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Preface

In this second edition of our book, we rewrote some sections and added new ones to
some chapters for better intelligibility, e.g., the new Sect. 6.9 titled “Schwarzschild
Original Solution and the Existence of Black Holes.” Three new chapters (in this
edition, Chaps.5, 15, and 16) are included. Chapter 5 gives a Clifford bundle
approach to the Riemannian or semi-Riemannian differential geometry of branes
understood as submanifolds of a Euclidean or pseudo-Euclidean space of large
dimension. We introduce the important concept of the projection operator, study
its properties, and introduce several other operators associated to it, as the shape
operator and the shape biform, crucial objects to define the bending of a submanifold
equipped with a Euclidean or pseudo-Euclidean embedded in a Euclidean or
pseudo-Euclidean space of large dimension. We give several different expressions
for the curvature biform operator in terms of derivatives of the projection operator
and of the shape operator and prove the remarkable formula S?>(v) = —d A 3(v),
which says that the square of the shape operator applied to a 1-form field v is equal
to the negative of the Ricci operator (introduced in Chap. 4) applied to a 1-form field
v. Such result is used in Chap. 11 to show how to transform in *“ marble” the “wood”
part of Einstein equation. By this we mean that we can express its second member
containing a phenomenological energy-momentum tensor in a purely geometrical
term involving the square of the shape operator. More, Chap. 11 besides including
the results just mentioned has been completely rewritten and is now titled “On the
Nature of the Gravitational Field.” We hope that this chapter leaves clear that the
interpretation of the gravitational field as the geometry of a Lorentzian spacetime
structure is only one among different possible choices, not a necessary one. We
added to this second edition Chap. 15 titled “Maxwell, Einstein, Dirac, and Navier—
Stokes Equations,” which, besides reveling some surprising relations concerning
the many faces of Maxwell, Dirac, Einstein, and the Navier—Stokes equations also,
clarifies the meaning of the so-called Komar currents and finds their explicit form in
General Relativity theory. There is now also Chap. 16 that analyzes the similarities
and main differences between Dirac, Majorana, and ELKO spinor fields, a subject
that is receiving a lot of attention in the last few years. We present an alternative
theory for ELKO spinor fields of mass dimension 3/2 (instead of mass dimension

v



vi Preface

1 as originally proposed in [1]) and show that our ELKO spinor fields can be used
to describe electric neutral particles carrying “magnetic-like” charges with short-
range interaction mediated by a su(2)-valued gauge potential. We also change (in
relation to the first edition) some symbols for better clarity on the typing of some
formulas. Of course, in a book of this size, it is almost impossible not to use the same
symbol to represent (at different places) different objects. We tried to minimize such
occurrences, and a list of the principal symbols is given at the end of the book. There,
the reader will find also a list of acronyms and an index. References are given at the
end of each chapter. A detailed description of the contents of the chapters is given
in Chap. 1.

We are particularly grateful to the many helpful discussions on the subjects
presented in this book that we had for years with P. Angles, G. Bruhn, E 'W.
Hehl, R.F. Ledo, (the late) P. Lounesto, (the late) Ian Porteous, R. A. Mosna, A.M.
Moya, E.A. Notte Cuello, R. da Rocha, J.E. Maiorino, Z. Oziewicz, F. Grangeiro
Rodrigues, Q.A.G. Souza, J. Vaz Jr., and S.A. Wainer. We are also grateful to the
many readers of the first edition who pointed to us misprints and some errors that
(we hope) have been corrected in this edition. Of course, they are not guilty for any
remaining error or misconception that the reader may eventually find. Moreover, the
authors will be grateful to anyone who inform them of any additional correction that
should be made to the text.

Campinas, Brazil Waldyr Alves Rodrigues Jr.
August 2015 Edmundo Capelas de Oliveira
Reference

1. Ahluwalia-Khalilova, D.V., Grumiller D.: Spin half fermions, with mass dimension one: theory,
phenomenology, and dark matter. J. Cosmol. Astropart. Phys. 07, 012 (2005)
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Chapter 1
Introduction

Abstract In this chapter we describe the contents of all chapters of the book and
their interrelationship.

Maxwell, Dirac and Einstein’s equations are certainly among the most important
equations of twentieth century Physics and it is our intention in this book to
investigate some of the many faces' of these equations and their relationship and to
discuss some foundational issues involving some of the theories where they appear.
To do that, let us briefly recall some facts.

Maxwell equations which date back to the nineteenth century encodes all
classical electromagnetism, i.e., they describe the electromagnetic fields generated
by charge distributions in arbitrary motion. Of course, when Maxwell formulated
his theory the arena where physical phenomena were supposed to occur was a
Newtonian spacetime, a structure containing a manifold which is diffeomorphic to
R x R3, the first factor describing Newtonian absolute time [30] and the second
factor the Euclidean space of our immediate perception.” In his original approach
Maxwell presented his equations as a system of eight linear first order partial
differential equations involving the components of the electric and magnetic fields
[22] generated by charge and currents distributions with prescribed motions in
vacuum.? It was only after Heaviside [16], Hertz and Gibbs that those equations
were presented using vector calculus, which by the way, is the form they appear
until today in elementary textbooks on Electrodynamics and Engineering Sciences.
In the vector calculus formalism Maxwell equations are encoded in four equations
involving the well known divergent and rotational operators. The motion of charged
particles under the action of prescribed electric and magnetic fields was supposed
in Maxwell’s time to be given by Newton’s second law of motion, with the so-
called Lorentz force acting on the charged particles. It is a well known story that

By many faces of Maxwell, Dirac and Einstein’s equations, we mean the many different ways in
which those equations can be presented using different mathematical theories.

2For details on the Newtonian spacetime structure see, e.g., [30].

3Inside a material the equations involve also other fields, the so-called polarization fields. See
details in [22].
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2 1 Introduction

at the beginning of the twentieth century, due to the works of Lorentz, Poincaré
and Einstein [35], it has been established that the system of Maxwell equations
was compatible with a new version of spacetime structure serving as arena for
physical phenomena, namely Minkowski spacetime (to be discussed in details in
the following chapters). It became also obvious that the classical Lorentz force law
needed to be modified in order to leave the theory of classical charged particles and
their electromagnetic fields invariant under spacetime transformations in Minkowski
spacetime defining a representation of the Poincaré group. Such a condition was a
necessary one for the theory to satisfy the Principle of Relativity.*

Modern presentations of Maxwell equations make use of the theory of differen-
tial forms and succeed in writing the original system of Maxwell equations as two
equations involving the exterior derivative operator and the so-called Hodge star
operator.’

Now, one of the most important constructions of human mind in the twentieth
century has been Quantum Theory. Here, we need to recall that in a version of
that theory which is also in accordance with the Principle of Relativity, the motion
of a charged particle under the action of a prescribed electromagnetic field is not
described by the trajectory of the particle in Minkowski spacetime predicted by
the Lorentz force law once prescribed initial conditions are given. Instead (as it
is supposed well known by any reader of this book) the state of motion of the
particle is described by a (covariant) Dirac spinor field (Chap. 7), which is a section
of a particular spinor bundle. In elementary presentations® of the subject a Dirac
spinor field is simply a mapping from Minkowski spacetime (expressed in global
coordinates in the Einstein-Lorentz-Poincaré gauge ) to C*. At any given spacetime
point, the space of Dirac spinor fields is said to carry’ the DU/20) g p©.1/2)
representation of SI(2,C), which is the universal covering group of the proper
orthochronous Lorentz group. Moreover the Dirac spinor field in interaction with
a prescribed electromagnetic potential is supposed to satisfy a linear differential
equation called the Dirac equation. Such theory was called relativistic quantum
mechanics (or first quantized relativistic quantum mechanics).

“4The reader is invited to study Chap. 6 in detail to know the exact meaning of this statement.
5These mathematical tools are introduced in Chap. 4.
5The elementary approach is related with a choice of a global spin coframe (Chap. 7) in spacetime.

"The precise mathematical meaning of this statement can be given only within the theory of spin-
Clifford bundles, as described in Chap. 6.

8Soon it became clear that the interaction of the electromagnetic field with the Dirac spinor
field could produce pairs (electrons and positrons). Besides that it was known since 1905 that
the classical concept of the electromagnetic field was not in accord with experience and that the
concept of photons as quanta of the said field needed to be introduced. The theory that deals with
the interaction of photons and electrons (and positrons) is a particular case of a second quantized
renormalizable quantum field theory and is called quantum electrodynamics. In that theory the
electromagnetic and the Dirac spinor fields are interpreted as operator valued distributions [3]
acting on the Hilbert space of the state vectors of the system. We shall not discuss further this
theory in this book, but will return to some of its issues in a sequel volume [6].
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Now, the covariant Dirac spinor field used in quantum electrodynamics is, at
first sight, an object of a mathematical nature very different from that of the
electromagnetic field, which is described by a 2-form field (or the electromagnetic
potential that is described by a 1-form field). As a consequence we cannot see any
relationship between these fields or between Maxwell and Dirac equations.

It would be nice if those fields which are the dependent variables in Maxwell and
Dirac equations, could be represented by objects of the same mathematical nature.
As we are going to see, this is indeed possible. It turns out that Maxwell fields
can be represented by appropriate homogeneous sections of the Clifford bundle
of differential forms C{(M, g) and Dirac fields can be represented (once we fix a
spin coframe) by a sum of even homogeneous sections of C{(M, g). These objects
are called representatives of Dirac-Hestenes spinor fields.” Once we arrive at this
formulation, which requires of course the introduction of several mathematical
tools, we can see relationships between those equations that are not apparent in the
standard formalism (Chap. 13). Finally, we can also easily see the meaning of the
many Dirac-like presentations of Maxwell equations that appeared in the literature
during the last century. Moreover, we will see that our formalism is related in an
intriguing way to formalisms used in modern theories of Physics, like the theories
of superparticles and superfields (Chap. 14).

Besides providing mathematical unity to the theory of Maxwell and Dirac
fields, we give also a Clifford bundle approach to the differential geometry of
a Riemann-Cartan-Weyl spacetime. This is done with the objective of finding a
description of the gravitational field as a set of sections of an appropriate Clifford
bundle over Minkowski spacetime, which moreover satisfy equations equivalent to
Einstein’s equations on an effective Lorentzian spacetime. That enterprise is not just
a mathematical game. There are serious reasons for formulating such a theory. To
understand the most important reason (in our opinion), let us recall some facts. First,
keep in mind that in Einstein’s General Relativity theory (GRT) a gravitational field
is modeled by a Lorentzian spacetime!® (which is a particular Riemann-Cartan-
Weyl spacetime). This means that in GRT the gravitational field is an object of a
different physical nature from the electromagnetic and Dirac-Hestenes fields, which
are fields living in a spacetime. This distinct nature of the gravitational field implies
(as will be proved in Chap. 10) the lack of conservation laws of energy-momentum
and angular momentum in that theory. But how to formulate a more comprehensible
theory?

A possible answer is provided by the theory of extensors and symmetric
automorphisms of Clifford algebras developed in Chap. 2, which, together with the
Clifford bundle formalism of Chap. 4, suggests naturally to interpret Einstein theory
as a field theory for cotetrad fields (defining a coframe) in Minkowski spacetime.

9The details are given in Chap.7 whose intelligibility presupposes that the reader has studied
Chap. 3.

1Tndeed, by an equivalence class of diffeomorphic Lorentzian spacetimes.
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How this is done is described in the appropriate chapters that follow and which are
now summarized.

Chapter 2, called Multiform and Extensor Calculus, gives a detailed introduction
to exterior and Grassmann algebras and to the Clifford algebra of multiforms. The
presentation has been designed in order for any serious student to acquire quickly
the necessary skill which will permit him to reproduce the calculations done in
the text. Thus, several exercises are proposed and many of them are solved in
detail. Also in Chap.2 we introduce the concept of extensor, which is a natural
generalization of the concept of tensor and which plays an important role in our
developments. In particular extensors appear in the formulation of the theory of
symmetric automorphisms and orthogonal Clifford products, which permit to see
different Clifford algebras associated with vector spaces of the same dimension,
but equipped with metrics of different signatures, as deformations of each other.
A theory of multiform functions and of the several different derivatives operators
acting on those multiform functions is also presented in Chap. 2. Such a theory is the
basis for the presentation of Lagrangian field theory, a subject discussed in Chaps. 8
and 9. There, we see also the crucial role of extensor fields when representing
energy-momentum and angular momentum in field theory.

Chapter 3 describes the hidden geometrical nature of spinors, and it is our hope
to have presented a fresh view on the subject. So, that chapter starts recalling some
fundamental results from the representation theory of associative algebras and then
gives the classification of real and complex Clifford algebras, and in particular
discloses the relationship between the spacetime algebra and the Majorana, Dirac
and Pauli algebras, which are the most important Clifford algebras in our study
of Maxwell, Dirac and Einstein’s equations. Next, the concepts of left, right and
bilateral ideals on Clifford algebras are introduced, and the notion of algebraically
and geometrically equivalent ideals is given. Equipped with these notions we
give original definitions of algebraic and covariant spinors. For the case of a
vector space equipped with a metric of signature (1,3) we show that it is very
useful to introduce the concept of Dirac-Hestenes spinors. The hidden geometrical
nature of these objects is then disclosed. We think that the concept of Dirac-
Hestenes spinor and of Dirac-Hestenes spinor fields (introduced in Chap. 6) are
very important and worth to be known by every physicist and mathematician.
Indeed, we shall see in Chap. 12 how the concept of Dirac-Hestenes spinor fields
permits us to find unsuspected mathematical relations between Maxwell and Dirac
equations and also between those equations and the Seiberg-Witten equations (in
Minkowski spacetime). Chapter 3 discuss also Majorana, Weyl and dotted and
undotted algebraic spinors. Bilinear invariants, Fierz identities and the notion of
boomerangs are also introduced since, in particular, the Fierz identities play an
important role in the interpretation of Dirac theory.

Chapter 4 discusses aspects of differential geometry that are essential for a
reasonable understanding of spacetime theories and in our opinion necessary to
avoid wishful thinking concerning mathematical possibilities and physical reality.
Our main purpose is to present a Clifford bundle approach to the geometry of
a general Riemann-Cartan-Weyl space M (a differentiable manifold) carrying a
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metric g € sec TgM of signature (p, q), a connection V, an orientation t,. Such
a structure is denoted by (M,g, V, 7,). The pair (V,g) defines a geometry for M.
When M is 4-dimensional (and satisfies some other requirements to be discussed
later) and g has signature (1, 3), the pair (M, g) is called a Lorentzian manifold.
Moreover, endow M with a general connection V, with a spacetime orientation g
and with a time orientation 1 (see Definition 4.105). Such a general structure will
be denoted by (M,g,V, 1., 1) and is said to be a Riemann-Cartan-Weyl spacetime.
Lorentzian spacetimes are structures (M, g.D, 7, 1) restricted by the condition that
the connection D is metric compatible, i.e., Dg = 0 and that the torsion tensor of that
connection is zero, i.e., ®[D] = 0. A connection satisfying these two requirements
is called a Levi-Civita connection'' (and it is unique). Moreover, if in addition to the
previous requirements, M ~ R* and the Riemann curvature tensor of the connection
is null (i.e., R[D] = 0) the Lorentzian spacetime is called Minkowski spacetime.
That structure is the ‘arena’ for what is called special relativistic theories.

It is necessary that the reader realize very soon that a given n-dimensional
manifold M may eventually admit many different metrics'”> and many different
connections. Thus, there is no meaning in saying that a given manifold has torsion
and/or curvature. What is meaningful is to say that a given connection on a given
manifold has torsion and/or curvature. A classical example [23], is the Nunes
connection on the punctured sphere M = $? = {S?\ north + south poles}, discussed
in Sect. 4.9.8. Indeed, let (§2, g, D) be the usual Riemann structure for a punctured
sphere. That means that D is the Levi-Civita connection of g, the metric on s
which it inherits (by pullback) from the ambient three dimensional Euclidean space.
According to that structure, as it is well known, the Riemann curvature tensor of
D on 3‘2 is not null and the torsion of D on 3‘2 is null. However, we can give to the

punctured sphere the structure (3‘2, g, V) where V¢ is the Nunes connection. For that
connection the Riemann curvature tensor R[V¢] = 0, but its torsion ®[V¢] # 0.
So, according to the connection D the punctured sphere has (Riemann) curvature
different from zero, but according to the Nunes connection it has zero (Riemann)
curvature.

If the above statements looks odd to you, it is because you always thought of the
sphere as being a curved surface (bent) living in Euclidean space. Notice, however,
that there may exist a surface & that is also bent as a surface in the three dimensional
Euclidean space, but is such that the structure (S, g, D) is flat. As an example, take
the cylinder & = S! x R with g the usual metric on S' x R that it inherits from
the ambient three-dimensional Euclidean space, and where D is the Levi-Civita
connection of g, then R[D] = 0 and ®[D] = 0.

1Of course that denomination holds for any manifold M, dimM = n equipped with a metric of
signature (p, q).

2The possible types of different metrics depend on some topological restrictions. This will be
discussed at the appropriate place.



6 1 Introduction

The above discussion makes clear that we cannot confuse the Riemann curvature
of a connection on a manifold M, with its bending,13 i.e., with the topological fact
that M may be realized as a (hyper)surface embedded on an Euclidean ( or pseudo-
Euclidean) space of sufficiently high dimension.'* Keeping in mind these (simple)
ideas is important for appreciating the theory (and the nature) of the gravitational
field, to be discussed in Chap. 11.

As we already said the main objective of Chap. 4 is to introduce a Clifford bundle
formalism, which can efficiently be used in the study of the differential geometry of
manifolds an also to give an unified mathematical description of the Maxwell, Dirac
and gravitational fields.

So, we introduce the Cartan, Hodge and Clifford bundles'> and present the
relationship between them and we also recall Cartan’s formulation of differential
geometry, extending it to a general Riemann-Cartan-Weyl space or spacetime
(hereafter denoted RCWS).

We study the geometry of a RCWS in the Clifford bundle C{(M,g) of the
cotangent bundle.'®

First we introduce, for a given manifold M, a structure (M, §, B), where 5 is the
Levi-Civita connection of an arbitrary fiducial metric g (which is supposed to be
compatible with the structure of M) and call such a structure the standard structure.
Next we introduce the concept of the standard Dirac operator dacting on sections of
the Clifford bundle C£(M, §) of differential forms. Using §, we define the concepts
of standard Dirac commutator and anticommutator and we discuss the geometrical
meaning of those operators. With the theory of symmetric automorphisms of a
Clifford algebra (discussed in Chap.2) we introduce infinitely many other Dirac-

like operators given (M, 5), one for each non-degenerated bilinear form field
g € sec TgM that can be defined on the standard structure (M, g, D). Such new

13Bending of a manifold viewed as submanifold of a Euclidean or pseudo-Euclidean space of large
dimension is characterized by the shape operator, a concept introduced in Chap. 5.

14Any manifold M, dim M = n, according to Whitney’s theorem, can be realized as a submanifold
of R™, with m = 2n. However, if M carries additional structure the number m in general must
be greater than 2n. Indeed, it has been shown by Eddington [7] that if dim M = 4 and if M
carries a Lorentzian metric g, which moreover satisfies Einstein’s equations, then M can be locally
embedded in a (pseudo)Euclidean space R, Also, isometric embeddings of general Lorentzian
spacetimes would require a lot of extra dimensions [4]. Indeed, a compact Lorentzian manifold
can be embedded isometrically in R?#® and a non-compact one can be embedded isometrically in
R2'87 !

15Spin-Clifford bundles are introduced in Chap. 7.

191n this book, the metric of the tangent bundle is always denoted by a boldsymbol letter, e.g., g €

secTIM. The corresponding metric of the cotangent bundle is always represented by a typewriter

symbol, in this case, g € sec T:M. Moreover, we represent by g : TM —> TM the endomorphism

associated with g. We have g(u,v) = g(u)g~ v, for any u, v € sec TM, where gy is an appropriate
- E

Euclidean metric on TM. The inverse of the endomorphism g is denoted g_l. We represent by
g : T*M — T*M the endomorphism corresponding to g. Finally, the inverse of g is denoted by
g~ 1. See details in Sect.2.8.
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Vv Vv
Dirac-like operators are denoted by §. Using § we introduce the analogous of

the concepts of Dirac commutator and anticommutator, which are first introduced
using § and explore their geometrical meaning. In particular, the standard Dirac
commutator permits us to give the structure of a local Lie algebra to the cotangent
bundle, in analogy with the way in which the bracket of vector fields defines a local
Lie algebra structure for the tangent bundle. The coefficients of the standard Dirac
anticommutator—called the Killing coefficients—are related to the Lie derivative of
the metric by a very interesting relation [see Eq. (4.160)].

Subsequently, we introduce, besides the structure (M, g, ﬁ) on M, also a general

RCWS structure (M, §, V),V # B, on the same manifold M and study its geometry
with the help of C{(M,§). Associated with that structure we introduce a Dirac
operator @ and again using the theory of symmetric automorphisms of a Clifford

Vv
algebra we introduce infinitely many other Dirac-like operators d , one for each
non-degenerated bilinear form field g € sec TYM that can be defined on the structure
M, 2, V).

With respect to the structures (M,g,V) and (M, §5) we also obtain new
decompositions of a general connection V. It is then possible to exhibit some
tensor quantities which are not well known, and have been first introduced (for the
best of our knowledge) in the literature in [32] and exhibits interesting relations

between the geometries of the structures (M, g, lo)) and (M, g, V). These results are
used latter to shed a new light on the flat space'” formulations of the theory of
the gravitational field (Chap. 11) and on the theory of spinor fields in RCWS, as
discussed in Chap. 10.

We also show that the square of the standard Dirac operator is (up to a signal,
which depends on convention) equal to the Hodge Laplacian < of the standard
structure. The Hodge Laplacian & maps p-forms on p-forms. However, the square
of the Dirac operator d in a general Riemann-Cartan space does not maps p-forms on
p-forms and as such cannot play the role of a wave operator in such spaces. The role
of such an operator must be played by an appropriate generalization of the Hodge
Laplacian in such spaces. We have identified such a wave operator £, which (apart
from a constant factor) is the relativistic Hamiltonian operator that describes the
theory of Markov processes, as used, e.g., in [24].

Chapter 4 presents also some applications of the formalism, namely Maxwell
equations in the Hodge and Clifford bundles, flux and action quantization. The
concepts of Ricci and Einstein operators acting on a set of cotetrad fields 6 defining
a coframe are also introduced. Such operators are used to write ‘wave’ equations
for the cotetrad fields which for Lorentzian spacetimes are equivalent to Einstein’s
equations.

7The word flat here refers to formulations of the gravitational field, in which this field is a physical
field, in the sense of Faraday, living on Minkowski spacetime.
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Chapter 5 gives a Clifford bundle approach to the Riemannian or semi-
Riemannian differential geometry of branes understood as submanifolds of a
Euclidean or pseudo-Euclidean space of large dimension. We introduce the impor-
tant concept of the projection operator and define some other operators associated
to it, as the shape operator and the shape biform. The shape operator is essential
to define the concept of bending of a submanifold (as introduced above) and to
leave it clear that a surface can be bended and yet the Riemann curvature of a
connection defined in it may be null (as already mentioned for the case of the Nunes
connection).

We give several different expression for the curvature biform operator in terms
of derivatives of the projection operator and the shape operator and prove the
remarkable formula 8?(v) = —d A d(v), which says that the square of the shape
operator applied to a 1-form field v is equal to the negative of the Ricci operator
(introduced in Chap. 4) applied to a 1-form field v. Such result is used in Chap. 11
to show how to transform in marble the “wood” part of Einstein equation. By this
we mean that we can express its second member containing a phenomenological
energy-momentum tensor in a purely geometrical term involving the square of the
shape operator.

Chapter 6 introduces concepts and discusses issues that are in our opinion
crucial for a perfect understanding of the Physics behind the theories of Special
and General Relativity.'® To fulfill our goals it is necessary to give a mathematically
well formulated statement of the Principle of Relativity." This requires a precise
formulation (using the mathematical tools introduced in previous chapters and
some new ones) of an ensemble of essential concepts as, e.g., observers, reference
frames,?” physical equivalence of reference frames, naturally adapted coordinate
chart to a given reference frame (among others) which are rarely discussed in
textbooks or research articles. Using the Clifford bundle formalism developed
earlier, Chap. 6 presents a detailed discussion of the concept of local rotation as
detected by an observer and the Fermi-Walker transport. After that, a mathematical
definition of reference frames (which are modeled by timelike vector fields in
the spacetime manifold) and their classifications according to two complementary
schemes are presented. In particular, one classification refers to the concept of
synchronizability. Some simple examples of the formalism, including a discussion
of the Sagnac effect, are given. We define the concepts of covariance and invariance
of theories based on the spacetime concept, discussing in details and with examples
(including Maxwell and Einstein’s equations) what we think must be understood by

18We presuppose that the reader of our book knows Relativity Theory at least at the level presented
at the classical book [18].

19 A perfect understanding of the Principle of Relativity is also crucial in our forthcoming book [6]
which discusses ‘superluminal wave phenomena’.

201t is important to distinguish between the concept of a frame (which are sections of the frame
bundle) introduced in Appendix A.l.1 with the concept of a reference frame to be defined in
Chap. 6.
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the concept of diffeomorphism invariance of a physical theory. Next, the concept
of the indistinguishable group of a class of reference frames is introduced and the
Principle of Relativity for theories which have Minkowski spacetime as part of their
structures is rigorously formulated. We briefly discuss the empirical status of that
principle, which is also associated with what is known as Poincaré invariance of
physical laws. We show also the not well known fact that in a general Lorentzian
spacetime, modeling a gravitational field according to the GRT, inertial reference
frames as the ones that exist in Minkowski spacetime do not exist in general.
Ignorance of this and other facts, e.g., that distinct reference frames are in general
not physically equivalent in GRT generated a lot of confusion for decades, in
particular lead many people to believe in the validity of a “General Principle of
Relativity”. The reference frames in a general Lorentzian spacetime which more
closely resembles inertial reference frames are the pseudo-inertial reference frames
(PIRFs)?' and the local Lorentz reference frame associated with y (LLRFy).?
With the help of these concepts we prove that the so-called ‘Principle of Local
Lorentz Invariance’? of GRT is not a true law of nature, despite statements in
contrary by many physicists. In general a single PIRF is selected as preferred in
reasonable cosmological models in a precise sense discussed in Sect.6.8. Such a
selected PIRF V is usually identified with the reference frame where the cosmic
background radiation is isotropic (or the comoving frame of the galaxies). It is
important to keep this point in mind, for the following reason. Suppose that physical
phenomena occur in Minkowski spacetime, and that there is some phenomenon
breaking Lorentz invariance, as, e.g., would be the case if genuine superluminal
motion existed. In that case, the phenomenon breaking Lorentz invariance could be
used to identify a preferred inertial reference frame I, as has been shown by many
authors.?* However, the identification (as done, e.g., in [25-27]) of Iy with V, the
reference frame where the cosmic background radiation is isotropic and which is
supposed to exist in a Lorentzian spacetime (solution of Einstein’s equations for
some distribution of energy-momentum) cannot be done, because I is an inertial
reference frame and V is a PIRF and these are concepts belonging to different
theories. Chapter 6 gives also a short account of the Schwarzschild original solution
to Einstein’s equation and the notion of black holes, emphasizing that the global
topology of a given solution to Einstein equations obtained, of course in an open
set U of a not yet defined manifold M is most the time added by hand in the process
of obtaining the maximal extension of that solution.

In Chap. 7 a thoughtful presentation of the theory of a Dirac-Hestenes spinor field
(DHSF) on a general RCST (M,g,V,t o 1) is given, together with a clarification

21See Definition 6.59.
22See Definition 6.61. y is a timelike geodesic in the Lorentzian manifold representing spacetime.

Z3Here, this principle is a statement about indistinguishable of LLRFy. It is not to be confused with
the imposition of (active) local Lorentz invariance of Lagrangians and field equations discussed in
Sect. 10.2.

24This issue is discussed in details in [6].
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of its ontology.*> A DHSF is a section of a particular spinor bundle (to be
described below), but the important fact that we shall explore is that any DHSF has
representatives on the even subbundle of the Clifford bundle C£(M, g) of differential
forms. Each representative is relative to a given spin coframe.

In order to present the details of our theory we scrutinize the vector bundle
structure of the Clifford bundle C£(M, g), define spinor structures, spin frame bun-
dles, spinor bundles, spin manifolds, and introduce Geroch’s theorem. Particularly
important for our purposes are the left (Cﬁéme X(M ,9)) and right (CﬁgpmT }(M ,9))
spin-Clifford bundles on a spin manifold (M, g, T 2> 7). We study in details how these
bundles are related with C£(M, g). Left algebraic spinor fields and Dirac-Hestenes
spinor fields (both fields are sections of Celsmn;” \ (M, g)) are defined and the relation
between them is established. Then, we show that to each DHSF ¥ € sec cegpmf \ M)
and to each spin coframe E € sec Pspin¢ , (M) there is a well defined sum of even
multiform fields (EMFS) ¢z € sec C{(M, g) associated with W. Such an EMFS is
called a representative of the DHSF on the given spin coframe. Of course, such
an EMFS (the representative of the DHSF) is not a spinor field, but it plays a
very important role in calculations. Indeed, with this crucial distinction between
a DHSF and their EMFS representatives, we find useful formulas for calculating
the derivatives of both Clifford fields and representatives of DHSF on C{(M, g)
using the general theory of covariant derivatives of sections of a vector bundle,
briefly recalled in Appendix A.5. This is done by introducing an effective spinorial
connection?® for the derivation of representatives of a DHSF on C{(M,g). We
thus provide a consistent theory for the covariant derivatives of Clifford and spinor
fields of all kinds. Besides that, we introduce the concepts of curvature and torsion
extensors of a (spin) connection and clarify some misunderstandings appearing in
the literature.

Next, we introduce the Dirac equation for a DHSF ¥ € sec Celspm'fs(M’ g)
(denoted DEC{') on a Lorentzian spacetime.?’ Then, we obtain a representation of
the DECZ' in the Clifford bundle. It is that equation that we call the Dirac-Hestenes
equation (DHE) and which is satisfied by even Clifford fields ¥z € secC{(M, g).

We study also the concepts of local Lorentz invariance and the electromagnetic
gauge invariance. We show that for the DHE such transformations are of the same
mathematical nature, thus suggesting a possible link between them. Chapter 7 also
discusses the concept of amorphous spinor fields, which are ideal sections of the
Clifford bundle C£(M, g) and which have been some times confused with true spinor
fields (see also Chap. 12).

Chapter 8 deals with the Lagrangian formalism of classical field theory in
Minkowski spacetime. Recall that in Chaps.4 and 7 we show how to represent

Z3For the genesis of these objects we quote [28].
26The same as that used in [28].

2"The case of Dirac-Hestenes equation on a Riemann-Cartan manifold is discussed in Sect. 10.1.
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Maxwell, Dirac and Einstein equations in several different formalisms. We hope
to have convinced the reader that studied those chapters( and will study Chaps. 9
and 11) of the elegance and conciseness of the representation of the electromagnetic
and gravitational fields as appropriate homogeneous sections of the Clifford bundle
CL(M, g) (Clifford fields).?® Also, we hope to have convinced the reader that the
Dirac-Hestenes spinor fields—which are sections of the left spin-Clifford bundle,
Celsmn;” \ (M, g)—can be represented, once we fix a spin coframe, as even sections of
cem ,>g), i.e., a sum of non homogeneous differential forms.

Taking into account these observations Chap. 8 is dedicated to the formulation
of the Lagrangian formalism for (interacting) Clifford fields and representatives of
Dirac-Hestenes fields living on Minkowski spacetime using the theory of multiform
functions and extensors developed in Chap. 2. We show that it is possible to exhibit
trustful conservation laws of energy-momentum and angular momentum for such
fields. Several exercises are proposed and many solved in details, in order to help
the reader to achieve a complete domain on the mathematical methods employed.
A thoughtful discussion is given of non-symmetric energy-momentum extensors,
since in any case the non-symmetric part is responsible for the spin of the field (see
Sect. 8.7). The cases of the electromagnetic and DHSF are studied in details.

Chapter 9 is dedicated to the study of conservation laws on Riemann-Cartan and
Lorentzian spacetimes. We already observed that the nature of the gravitational field
and the nature of other fields (e.g., the electromagnetic and Dirac fields) in GRT are
very distinct. The former, according to the orthodox interpretation, is to be identified
with some aspects of the geometry of the world manifold (spacetime) while the latter
are physical fields, in the sense of Faraday living in a background spacetime. This
crucial distinction implies that there are no genuine conservation laws of energy,
momentum and angular momentum in GRT. A proof of this statement is one of the
main objectives of Chap. 9. To motivate the reader for the importance of the issue
we quote page 98 of Sachs and Wu [31]:

As mentioned in section 3.8, conservation laws have a great predictive power. It is a shame
to lose the special relativistic total energy conservation law (Section 3.10.2) in general
relativity. Many of the attempts to resurrect it are quite interesting; many are simply garbage.

The problem of the conservations laws in GRT is a particular case of the problem
of the conservation laws of energy-momentum and angular momentum for fields
living in a general Riemann-Cartan spacetime (M, g, V, 7, 1). This latter problem
is also relevant in view of the fact that recently a geometric alternative formulation
of the theory of gravitational field (called the teleparallel equivalent of GRT [21])
is being presented (see, e.g., [2, 5]) as one that solves the issue of the conservation
laws. This statement must be qualified and it is discussed in Sect. 11.6, after we
prove in Chap. 9 that for any field theory describing a set of interacting fields living
in a background Riemann-Cartan spacetime there are conservation laws involving

28For a description of the gravitational field by a set of 1-forms g? € sec /\IT*M ,a=20,1,2,3
see Chap. 11.
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only the energy-momentum and angular momentum tensors of the matter fields, if
and only if, the Riemann-Cartan spacetime time has special global vector fields
that besides being Killing vectors satisfy also additional constraints, a fact that
unfortunately is not well known as it should be. In the teleparallel equivalent of
GRT (with null or non null cosmological constant) it is possible to find a true
tensor corresponding to the energy of the gravitational field and thus to have an
energy-momentum conservation law for the coupled system made of the matter
and gravitational fields. However, this result as we shall see is a triviality once
we know how to formulate a gravitational field in Minkowski spacetime, an issue
also discussed in Chap.11. In Chap.9 we treat in details only the case where
each one of the fields ¢*, A = 1,2,...n, is a homogeneous Clifford field ¢* €
sec \"TM <> sec CL(M, g). Moreover, we restrict ourselves to the case where the
Lagrangian density is of the form, LA (¢) = Loja(P) = La(x, ¢, d¢p). This case is
enough for our purposes, which refers to matters of principles. However, the results
are general and can be easily extended for nonhomogeneous Clifford fields, and
thus includes the case of the representatives in the Clifford bundle of DHSF on a
general Riemann-Cartan spacetime. We remind also that Chap. 9 ends with a series
of non trivial exercises (with detailed solutions) including one that gives the detailed
derivation of Einstein’s equation from a Lagrangian density written directly for the
cotetrad fields 6%,a =10, 1,2, 3.

Chapter 10 gives a presentation of the theory of DHSFs on a general Riemann-
Cartan spacetime. Such a theory reveals a hidden problem, the one of knowing
the exact meaning of active local Lorentz invariance of the DHSF Lagrangian
and of the DHE. We show that a rigorous mathematical meaning to that concept
can be implemented with the concept of generalized gauge connections introduced
in Appendix A.5.2 and surprisingly implies in a “gauge equivalence” between
spacetimes with different connections which have different torsion and curvature
tensors.

Chapter 112 in this second edition has been completely rewritten and is now
titled On the Nature of the Gravitational Field. 1t first presents a theory of the
gravitational field where this field is described by global gravitational potentials
{g®}, g* € sec /\l ™, a = 0,1,2,3, living on a parallelizable manifold M.
Using the g? to introduce a metric like field on M, namely g = n,,0° ® g°
makes the Lorentzian structure (M,g) a spin manifold. With the field g we
introduce a Hodge star operator ; which is then used in the writing of a postulated

Lagrangian density for the gravitational potentials g* in interaction with matter
fields. Such a Lagrangian does not involves any connection defined in M, which
thus permit us to present convincing arguments that the geometrical interpretation
of the gravitational field modelled by a Lorentzian spacetime structure (LSTS)
(M,g,D, 1, 1) according to GRT, is no more than a possible choice.

2 Chapter 10 in the first edition.
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This geometrical interpretation becomes almost obvious once we prove that
the field equations for g are equivalent to Einstein equations describing the
gravitational field by the LSTS (M, g, D, t¢, 1). However , our approach makes clear
that there are other geometrical structures such as, e.g., a teleparallel spacetime
structure (M,g,V, 1., 1) (and yet other geometrical structures) that can equally
well represent the gravitational field.

Recalling that we learned in Chap. 9 that in GRT there are no genuine energy-
momentum and angular momentum for the gravitational field and no genuine
conservations laws for the matter and the gravitational fields,*® we mention yet
that:

(a) Einstein’s gravitational equation has as second member the energy-momentum
tensor of matter fields, and this tensor is symmetric. However, we learned in
Chap. 8 that the canonical energy-momentum tensors of the electromagnetic
field and of the Dirac field are not symmetric, this fact being associated with the
existence of spin. If this fact is taken into account (even if we leave out quantum
theory from our considerations) it immediately becomes clear that Einstein’s
gravitational theory, must be an approximation to a more complete theory.
Science does not yet know, which is the correct theory of the gravitational
field, and indeed many alternatives have been and continues to be investigated.
We are particularly sympathetic with the view that gravitation is a low energy
manifestation of the quantum vacuum, as described, e.g., in Volovik3! [33]. This
sympathy comes from the fact that, as we shall see, it is possible to formulate
theories of the gravitational field in Minkowski spacetime in such a way that a
gravitational field results as a kind of plastic distortion of the physical quantum
vacuum. However we do not discuss such a theory here, the interested reader
may consult®? [15].

(b) The crucial distinction between the gravitational field and the other physical
fields, mentioned above, has made it impossible so far to formulate a well-
defined and satisfactory quantum theory for the gravitational field, despite
the efforts of a legion of physicists and mathematicians. Eventually, as a first
step in arriving at such a quantum theory we should promote the gravitational
field described by the potentials g to the same status of all other physical
fields, i.e., a physical field living in Minkowski spacetime which satisfies
field equations such that genuine conservation laws of energy-momentum and

30There are, of course, other serious problems with the formulation of a quantum theory of
Einstein’s gravitational field, that we are not going to discuss in this book. The interested reader
should consult on this issue, e.g., [19, 20].

3Honestly, we think that gravitation is an emergent macroscopic phenomenon which need not
to be quantized and which will eventually find its correct description in a theory about the real
structure of the physical vacuum as suggested, e.g., in [33]. However, we are not going to discuss
such a possibility in this book.

320n this issue, see also the book by Kleinert [17], which however describes plastic distortions by
means of multivalued functions.



14 1 Introduction

angular momentum hold. Theories of this type are indeed possible and it seems,
at least to the authors, that they are more satisfactory than GRT, and indeed
many presentations have been devised in a form or another, by several eminent
physicists in the past. In Chap. 11 our version of such a possible theory is
given. In it is possible to formulate a genuine energy-momentum tensor for
the gravitational field. The formula [Eq. (11.9)] derived by standard methods
directly from the postulated Lagrangian density is a very complicated one
involving many terms. However, using some results of the Clifford bundle
formalism and taking into account that we can use D, the Levi-Civita connection
of the metric like field g as no more than a mathematical device to simplify
eventual calculations, we show that it is possible to represent the energy
momentum 1-form fields for the gravitational field by a very nice and short
formula [29] Eq. (11.35) worth to be registered.

We mention again that in our theory the field g obeys Einstein’s gravitational
equation in an effective Lorentzian spacetime. However, g is considered a physical
field (in the sense of Faraday) living in Minkowski spacetime (the true arena
where physical phenomena takes place), thus being an object of analogous nature
as the electromagnetic field and the other physical fields we are aware of. The
geometrical interpretation, i.e., the orthodox view that the gravitational field is
the geometry described by a LSTS (M,g,D, 1., 1) is a simple coincidence, as
emphasized by Weinberg [34], valid as an approximation. Such view is a useful
one, because the motion of probe particles and photons can be described with a
very good approximation by geodetic motions in the effective Lorentzian spacetime
generated by a ‘big’ source of energy-momentum. However, keep in mind that as
mentioned above other possible representations of the gravitational field are also
possible. Chapter 11 has also a section on Einstein’s most happy thought, i.e., the
equivalence principle (EP). We remark (see also the discussions in Chap. 6) that
the interpretations of the equivalence principle in GRT (as originally suggested by
Einstein) is subject to criticisms. It has been recently suggested that the original
Einstein suggestion for the meaning of the EP seems more reasonable described
in the teleparallel interpretation of GRT. However, even that interpretation, as will
be shown, is subject to criticism. We mention also that Chap. 11 discuss also the
Hamiltonian formalism for our theory and how it relates to the ADM energy concept
in GRT. Finally, despite our view that gravitation is well described by a field theory
in Minkowski spacetime we present (using results proved in Chap. 5) in Sects. 11.7
and 11.8 a mathematical formulation of Clifford’s idea of matter as curvature in a
brane world, in particular showing how the “wood” part of Einstein equation (i.e.,
the second member with the phenomenological energy-momentum tensor) can be
transformed in “marble”, i.e., can be given a geometrical formulation in terms of the
square of the shape tensor.

In Chap. 12, On the Many Faces of Einstein’s Equations, we show how the
orthodox Einstein theory can be formulated in a way that resembles the gauge
theories of particle physics, in particular a gauge theory with gauge group Si(2, C).
This exercise will reveal yet another face of Einstein’s equations, besides the ones
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already discussed in previous chapters. For our presentation we introduce new
mathematical objects, namely, the Clifford valued differential forms (cliforms)
and a new operator, D, which we called the fake exterior covariant differen-
tial (FECD) and an associated operator D, acting on them. Moreover, with our
formalism we show that Einstein’s equations can be put in a form that apparently
resembles Maxwell equations. Chapter 12 also clarifies some misunderstandings
appearing in the literature concerning that Maxwell-like form of Einstein’s equa-
tions.

In Chap. 13, called Maxwell, Dirac and Seiberg-Witten Equations, we first
discuss how i = +/—1 enters Dirac theory since complex numbers do not appear
in the equivalent Dirac-Hestenes description of fermionic fields. Next we discuss
how i = +/—1I enters classical Maxwell theory and give (using Clifford bundle
methods) a detailed presentation of the theory of polarization and Stokes parameters.
Our approach leaves the reader equipped to appreciate the nonsense that sometimes
even serious publishing houses leave to appear, as e.g., [§—14]. We also present
several Dirac-like representations of Maxwell equations. These Dirac-like forms of
Maxwell equations (which are trivial within the Clifford bundle formalism) really
use amorphous spinor fields and do not seem to have any real importance until
now. A three dimensional Majorana-like representation of Maxwell equations is
also easily derived and it looks like Schrodinger equation. After that, we exhibit
mathematical equivalences of the first and second kinds between Maxwell and Dirac
equations. We think that the results presented are really nice and worth to be more
studied. The chapter ends showing how the Maxwell-Dirac equivalence of the first
kind plus a reasonable ansatz can provide an interpretation for the Seiberg-Witten
equations in Minkowski spacetime.

In Chap. 14 we explore the potential of the mathematical methods developed
previously. We show that we can describe the motion of classical charged spinning
particles (CCSP) when free or in interaction with the electromagnetic field using
DHSEFE. We show that in the free case there is a unitary DHSF describing the motion
of the CCSP which satisfies a linear Dirac-Hestenes equation. When the CCSP
interacts with an electromagnetic field, a non linear equation that we called the
classical Dirac-Hestenes equation is satisfied by a DHSF describing the motion of
the particle. We study the meaning of the nonlinear terms and suggests a possible
conjecture: that this nonlinear term may compensate the term due to radiation
reaction, thus providing the linear Dirac-Hestenes equation introduced in Chap. 7.
Moreover, we show that our approach suggests by itself an interpretation for the
Dirac-Hestenes wave function, namely, as a probability distribution. This may be
important as it concerns the interpretation of quantum theory, but that issue will not
be discussed in this book. After that we introduce (using the multiform calculus
developed in Chap.2 and some generalizations of the Lagrangian formalism
developed in Chap. 8) the dynamics of the superparticle. This consists in showing
that it is possible to give a Lagrangian formulation to the Frenet equations describing
a CCSP and that the resulting equations are in one to one correspondence with
the famous Berezin-Marinov equations for the superparticle. We recall moreover
how the Clifford-algebraic methods previously developed suggest a very simple
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interpretation for Berezin calculus and provides alternative geometric intelligibility
for superfields, a concept appearing in modern physics theories such as supergravity
and string theory. We show moreover that superfields may be correctly interpreted
as non homogeneous sections of a particular Clifford bundle over spacetime, and we
observe that we already had contact with objects of this kind in previous chapters,
namely the representatives of DHSF introduced in Chap.7 and the generalized
potential (Sect. 13.4.5) appearing in the theory of the Hertz potential. Our main
intention in presenting these issues is to induce some readers to think about the
ontology of abstract objects being used in advanced theories in alternative ways.
We exhibit in Chaps.4-14 several different, mathematical faces of Maxwell,
Einstein and Dirac equations. In Chap. 15 titled—"“Maxwell, Einstein, Dirac and
Navier-Stokes Equations”—we show that given certain conditions we can encode
the contents of Einstein equations in Maxwell like equations for a field F=dAe
sec /\2T*M (or FF = dA € sec /\2T"‘M),33 whose contents can be also encoded in
a Navier-Stokes equation. For the particular cases when it happens that F? # 0 we
can also using the Maxwell-Dirac equivalence of the first kind discussed in Chap. 13
to encode the contents of the previous quoted equations in a Dirac-Hestenes like
equation for y € sec(/\OT*M + /\ZT*M + /\4T*M) such that F = ¢y .
Specifically, Sect. 15.1 shows how each LSTS (M = R* g.D, 7, 1) which,
which as we already mentioned, is a model of a gravitational field generated by
T € sec TgM (the matter plus non gravitational fields energy-momentum tensor) in
Einstein GRT is such that for any K € sec TM—which is a vector field generating a
one parameter group of diffeomorphisms of M—we can encode Einstein equations
in Maxwell like equations satisfied by F' = dK where K = g(K,) with a well
determined current term named the Komar current Jx = —gK , whose explicit form

is given.

Next we show in Sect. 15.2 that when K = A is a Killing vector field, due to
some noticeable results [Eqs. (15.28) and (15.29)] the Komar current acquires a
very simple form and is then denoted J4. Then, interpreting, as in Chap. 11 the
Lorentzian spacetime structure (M = R* g, D, 7, 1) as no more than an useful
representation for the gravitational field represented by the gravitational potentials
{g“} which lives in Minkowski spacetime we show in Sect. 15.3 that we can find a
Navier-Stokes equation which encodes the contents of the Maxwell like equations
(encoding Einstein equations) once a proper identification is made between the
variables entering the Navier-Stokes equations and the ones defining Aand F ,
objects clearly related to A and F = dA. We also explicitly determine also the
constraints imposed by the nonhomogeneous Maxwell like equation §F = —J4 on

the variables entering the Navier-Stokes equations and the ones defining A (or IZ).

332 = 8(A,) and A = g(A,) with g and g the metrics of Minkowski spacetime denoted in

Chap. 15 by (M = R* g, lo) 75, 1) and of the structure (M = R* g,D, 7, 1) describing an
effective Lorentzian spacetime.
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Finally we comment on relations between Einstein and the Navier-Stokes equations
living in spacetimes of different dimensions found by other authors.

Chapter 16 analyzes the similarities and main differences between Dirac,
Majorana and elko spinor fields and the equations satisfied by these fields, a subject
that is receiving a lot of attention in the last few years. We present an alternative
theory for elko spinor fields of mass dimension 3/2 (instead of mass dimension
1 as originally proposed in [1]) and show that our elko spinor fields can be used
to describe electric neutral particles carrying “magnetic like” charges with short
range interaction mediated by a su(2)-valued gauge potential A = Al ® 1; €
sec \'T*M @ spiny < sec C£(M, n) ® Ry 3. Some crucial criticisms to the mass
dimension 1 elko spinor field theory are also given, since that theory breaks Lorentz
and rotational symmetries in a very odd way as shown in Sect. 16.7.

The book contains an appendix where we review some of the main definitions
and concepts of the theory of principal bundles and their associated vector bundles,
including the theory of connections in principal and vector bundles, exterior
covariant derivatives, etc., which are needed in order to introduce the Clifford and
spin-Clifford bundles and to discuss some other issues in the main text. Jet bundles
are also defined. We believe that the material presented in the appendix is enough
to guide our reader permitting him to follow the most difficult passages of the text,
and in particular to see the reason for our use of many eventually sloppy notations.

Having resumed the contents of our book, the following observations are
necessary. First, it is not a Mathematics book, despite the format of the presentation
in some sections, a format that has been used simply because it is in our opinion the
most efficient one, for quotations. Even though it is not a Mathematics book, several
mathematical theories (some sophisticated, indeed) have been introduced and we
hope that they do not scare a potential reader. We are sure that any reader (be him
a student, a physicist or even a mathematician) who will spend the appropriate time
studying our book will really benefit from its reading, since he (or she) will start
to see under a different point of view some of the foundational issues associated
with the theories discussed. Hopefully this will give to some readers new insights
on several subjects, a necessary condition to advance knowledge.

Second, we recall that we mentioned in the introduction of the first edition that it
was our intention to discuss the question of the arbitrary velocities solutions of the
relativistic wave equations and that due to the size attained by that first edition with
its thirteen chapters plus an Appendix, it has been decided to discuss that subject
in a sequel volume entitled Subluminal, Luminal and Superluminal Wave Motion.
Well, unfortunately the planned new book is not ready yet as the beginning of 2014,
being still being written.

We tried to quote all papers and books that we have studied and that influenced
our work, and we offer our apologies to any author not cited who feels that some of
his writings should be quoted.
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Chapter 2
Multivector and Extensor Calculus

Abstract This chapter is dedicated to a thoughtful exposition of the multiform
and extensor calculus. Starting from the tensor algebra of a real n-dimensional
vector space V we construct the exterior algebra AV of V. Equipping V with a
metric tensor g we introduce the Grassmann algebra and next the Clifford algebra
CL(V, ) associated to the pair (V, g). The concept of Hodge dual of elements of AV
(called nonhomogeneous multiforms) and of C£(V, ) (also called nonhomogeneous
multiforms or Clifford numbers) is introduced, and the scalar product and operations
of left and right contractions in these structures are defined. Several important
formulas and “tricks of the trade” are presented. Next we introduce the concept of
extensors which are multilinear maps from p subspaces of /\V to g subspaces of AV
and study their properties. Equipped with such concept we study some properties
of symmetric automorphisms and the orthogonal Clifford algebras introducing
the gauge metric extensor (an essential ingredient for theories presented in other
chapters). Also, we define the concepts of strain, shear and dilation associated
with endomorphisms. A preliminary exposition of the Minkoswski vector space
is given and the Lorentz and Poincaré groups are introduced. In the remaining of
the chapter we give an original presentation of the theory of multiform functions of
multiform variables. For these objects we define the concepts of limit, continuity
and differentiability. We study in details the concept of directional derivatives
of multiform functions and solve several nontrivial exercises to clarify how to
work with these notions, which in particular are crucial for the formulation of
Chap. 8 which deals with a Clifford algebra Lagrangian formalism of field theory in
Minkowski spacetime.

2.1 Tensor Algebra

We recall here some basic facts of tensor algebra. Let V be a vector space over the
real field R of finite dimension, i.e., dimV = n, n € N. By V = V* we denote the
dual space of V. Recall that dimV = dim V. The elements of V are called vectors
and the elements of V are called covectors or 1-forms.
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2.1.1 Cotensors

Definition 2.1 We call space of k-cotensors (denoted 7} V) the set of all k-linear
mappings 7 such that

VxV...xV
T =R 2.1
k-copies

Remark 2.2 In what follows we identify 7oV = R, and TV = V.

2.1.2 Multicotensors

Definition 2.3 Consider the (exterior) direct sum TV = Y 2 & T,V =
D2, TxV. A multicotensor t of order M, € N is an element of TV of the form

T = ZkM;O @ 1, T € T}V, such that all the components 7 € T,V of t are null for
k > M. TV is called the space of multicotensors.

We can easily show that TV is a vector space over R. We have that the order of
T + 0, 1,0 € TV is the greatest of the orders of t or o, and of course, the order
of atr,a € R, t € TV is equal to the order of 7. The set Ty, V = ZkM=0 @ T,V is
clearly a subspace of TV. Sometimes it is convenient to denote an element of 7),V

by T = (70, T1s e Thy- -+ Tht)-

Definition 2.4 The k-part operator is a mapping (); : TV — T;V such that for all
Jj € N,j # k we have that

{{th); = 0, (2.2)
where ((t)«); € T;V.
Then, if t = (to, 1, ..., T ..., Tn) € TV we have that
(‘L’)k = (O,...,‘L’k,...,O).

Definition 2.5 A multicotensor t € TV is said to be homogeneous of grade k if
and only if T = ().

Of course, the set of multicotensors of grade k is a subspace of TV which is
isomorphic to 7V and, we can write any © € T)/V as

T = ZZOM’“ (2.3)
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2.1.3 Tensor Product of Multicotensors

Definition 2.6 The tensor product of multicotensors is a mapping ® : TV x TV —
TV such that:

(i) ifa,beTyV=R,a®b = ab,

(i) fae Randt € T,V,p > 1, thena ® 1 = 7 ® a = ar,

(iii) if o € T;V and v € T;V, with j,k > 1 then 0 ® © € T;44V and is such that for
Vi,.oo 0V, Vikl, ..., Vit € V we have

o ®‘L’(V1, e Vi Vit g, e ,Vj+k) = CT(V], e .,Vj)‘L’(Vj_H, . ,Vj+k), (24)

(iv) the tensor product satisfies the distributive laws on the right and on the left and
itis associative, i.e., fora,b e R,o0 € T;,V, 7 € T}V, ¢ € T}V
C+1)RPp=000+1Q 9,
PR +1)=¢0Q0+¢Q®rT,
TP =08 (t®¢). (2.5)

(v) If 0,7 € TV then

K

(c®1)h = ZJ:OO} & T—j> (2.6)
where 0; ® 7 is the tensor product of the j component of o by the (k — j)
component of 7.

Of course, from (iii) we may verify that the tensor product of cotensors is not
commutative in general.

Remark 2.7 We recall that the tensor product of multitensors is defined in complete
analogy to the previous one. The reader may easily fill in the details. We recall
also that it is possible to extend the definition of tensor product by allowing tensor
products of a r-tensor by a s-cotensor. We then denote, as usual, by

T;V=VR:---VRV® -QV=V® - -QVRV®---®V 2.7)

the space of the r-contravariant and s-covariant tensors. P €77V is a (r + s)-
multilinear map

P VXVXx.. xVxVxVx...xV—=>R

(2.8)
s-copies r-copies
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Remark 2.8 If P € T{V and S € TV we define the tensor product of P by S as
the multilinear mapping R® S € Tsr:qp V. Note that in general, P® S # S® P.

The (exterior) direct sum 7V = erv[:o,po @7,V equipped with the tensor product
is a real vector space over R, called the general tensor algebra of V. Note also that
we can define TV= @,fioTkV, the space of multitensors in complete analogy to
Definition 2.3. Note moreover that 7'V = T, V.

2.1.4 Involutions

Definition 2.9 The main involution or grade involution is an automorphism A :
TV — TV such that:
(i) ifea eR, @& =a;
(i) ifa; ® - @a €TyV.k> 1, (a1 ®--Qa)" = (—D)fa1 ® - ® a;
(iii) ifa,b € Rand 0,7 € TV then (aoc + bt) " = a6 + b7;
(iv) if t =Y o, 7 € TxV then

T = Zk:o Tr, 2.9)
Definition 2.10 The reversion operator is the anti-automorphism~ : TV 57 + T €
TV suchthatif v = )", 7, © € T}V then

() ifa eR, @ =«a;

) ifa; @ - Qe iV, k> 1, (a1 Q- Qap) = Q@ -+- Q ay;
(iii) ifa,b € Rand o,t € TV then (a0 + bt)™ = a6 + b7,

(iv) ift =) o, & € TxV then

7= Zk:O %, (2.10)
where 7 is called the reverse of .

Definition 2.11 The composition of the grade evolution with the reversion operator,
denoted by the symbol — is called by some authors the conjugation and, 7 is said
to be the conjugate of . We have T = (7)" = (3)™.

2.2 Scalar Productsin Vand V

Let V be real vector space, dimV = n.

Definition 2.12 A metric tensor is a 2-cotensor g € T,V which is symmetric and
non degenerated. A basis {e;} of V is said to be orthonormal if g(e, e;) is equal
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to +1 or equal to —1 and g(ex, e;) = O for j # k. We have

1 if ij=12...p
gle.e) =g(e.e) =g; =19 —lifi,j=p+1,p+2,....p+q . (2.11)
0 if i

with p + g = n. The signature of g is defined by the difference (p —¢) and it is usual
to say that the metric has signature ( p, g). We denote g(v, w) = v - w and called the
dot - a scalar productin V.

Definition 2.13 A metric g induces a fundamental isomorphism between V and V
given by V 3 v - v = g(v,) € V such that given any w € V, we have

fiv(w) = g(v, w). (2.12)

Definition 2.14 A general metric in V is a 2-tensor g€T?V, i.e., a mapping g :
V x V — R which is symmetric and non degenerated.

Let {g*} be the basis of V dual to a basis {e;} of V, i.e., e“(e) = &5 We are
particularly interested in a metric g € T2V such that if {&*} is the basis of V dual to
an arbitrary basis {e;} of V then

g(e' ey = g(el, &) = g, (2.13)

and gij ik = 8,‘;, i.e., the matrix with elements gij is the inverse of the matrix with
elements g; in Eq. (2.11). Recall also that the inverse of the isomorphism { is the
mapping i~ : Vo a - fi7la = g(a,) € V.

Definition 2.15 The scalar product of «, 8 € V equipped with the metric g given
by Eq.(2.13) is denoted (to emphasize the relation between the components of g
and g)

o éﬂ = g(a.p) = g™, 17 B). (2.14)

Remark 2.16 Take notice that v-w = g(v,w) = g(fv, iw) and that o - 8 will be
g

denoted simply by « - 8 when the context is clear.

Definition 2.17 Let {&*} be the basis of V dual to the basis {e;} of V. A basis {e*}
of V is said to be the reciprocal basis of {e;} if and only if €& = ff~'&*, for all
k =1,2,..,n. Also, a basis {g;} of V is called the reciprocal basis of {*} if and
only if & = fley.

The reader may verify that e* - ¢; = 6 and &* - &; = &}
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Exercise 2.18 Let {e;} and {¢"} be bases of V and V, such that £"(e;) = &}. Show

that the set {(1,&!,..., 65, ..., e" ®@---@e&P*,.....e" ®---® &™)} <4<y is a basis
M+1_|

of TyV and dim Ty V = 2

n—1

2.3 Exterior and Grassmann Algebras

Definition 2.19 The exterior algebraof V is the quotient algebra
TV
Av:-%l (2.15)

where J C TV is the bilateral ideal' in TV generated by the elements of the form
u® v+ v ®u, withu, v € V. The elements of /\ V will be called multiforms2

Let p : TV — /\ 'V be the canonical projection of TV onto /\ V. Multiplication in
/\ 'V will be denoted as usually by A : A\ V — A V and called exterior product. We
have

Definition 2.20 ForeveryA,B e AV,
AAB=p(A®B), (2.16)

where ® : TV — TV is the usual tensor product.

Remark 2.21 Note that if u, v € V we can write
1 1
u®v:E(u@v—v@u)—}—z(u@v—}—v@u), (2.17)
and then,
1
p(u®v)=u/\v:§(u®v—v®u). (2.18)

We can easily show that /\ V is a 2"-dimensional associative algebra with unity.
In addition, it is a Z-grade algebra, i.e.,

Nv=@NY

!Given an associative algebra 2, a bilateral ideal I is a subalgebra of 2| such that for any a,b € A
and fory € I, ay € I, yb € I and ayb € I. More on ideals on Chap. 3.

2If we do the analogous construction of the exterior algebra using V instead of V = V*, then the
elements of the resulting space are called multivectors.



2.3 Exterior and Grassmann Algebras 27

and

/\VV/\/\XVC/\}“-HV’

r,s > 0, where \"V = p(T,V) is the (?)-dimensional subspace of the r-formson
V.,ANV=R,AN'V=V, ANV =A{0}ifr>n).IfA € \'V for some fixed
r(r =0,...,n), then A is said to be homogeneous. For any such multivectors we
have:

AAB=(=1)"BAA, (2.19)

Ae N'V,Be \'V.

The exterior algebra (as can easily be verified) inherits the associativity of the
tensor algebra, a very important property. It satisfies also, of course, the distributive
laws (on the left and on the right), i.e.,

A+B)AC=AANCH+BAC,
AANB+C)=AAB+ANC. (2.20)
Definition 2.22 The antisymmetrization operator A is the linear mapping A :

T,V — /\k V such that (i) foralla € R : Aa = «, (ii) forall v € V : Av = v, (iii)
forall X; ® Xo ® --- ® X € TV, with k > 2,

1
AXI®X2 ® @ X) = 1 ) €(0)Xot) ® Xo) @+ B Xoy,  (221)

to€ESk

where 0 : {1,2,...k} — {0(1),0(2),...0(k)} is a permutation of k elements
{1,2,...k}. Of course, the composition of permutations is a permutation and the set
of all permutations is Sy, the symmetric group.

Exercise 2.23
(a) For t € T,V a general k-cotensor and vl, ..., vk € V show that
1 k 1 i i
At(v,...,v) = E€i1-~-ikT(V1,---,Vk), (2.22)

where ¢;, _;, is the permutation symbol of order &,

1, if i; -- i is an even permutationof 1 ...k
€y, = § —1, if i ---ig is an odd permutationof 1. ..k (2.23)
0, otherwise
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(b) Show thatif A, € A’V and B, € A7V then
A, ANBy; = A(A, ® By). (2.24)
Remark 2.24 Some authors define the exterior product A, A B, by

: +q)!
Ay AB, = %A(AP ® B,). (2.25)

This definition is more used by differential geometers, whereas the definition
given by Eq. (2.24) is more used by algebraists. Additional material on this issue
may be found in [5]. See also Exercise 2.31

2.3.1 Scalar Productin / V and Hodge Star Operator

Now let us suppose that V and V are metric vector spaces that is, they are endowed
with nondegenerate metric tensors which we denote conveniently in what follows
by ¢ € T,V and § € T?V of signature (p,q) and such that g;8/* = §*, with
g; = g(e;, ¢) and g% = g(e/, &/), where {e;} is a basis for V and {&/} a basis for V
with &/(e;) = 8{ . We can use those metric tensors to induce scalar products on /\ V
and /\ V. We give the construction for /\ V.

Definition 2.25 The (fiducial) scalar productin /\ V is the linear mapping i A Vx
g
AV — R given by

A - B = det(g(u;, v))), (2.26)
g

for homogeneous multivectors A = u; A---Au, € \"VandB =v  A---A v, €
A"V, u;,v; € V,i = 1,...,r. This scalar product is extended to all of /\ V due to

linearity and orthogonality and A : B = 0if A € A"V, B € \'V,r # s. We shall
g

agree that if a, b € /\0 V =R, thena-b = ab.

If the metric vector space (V, §) is also endowed with an orientation, i.e., a metric
volume n-covector denoted by tg € A"V such that

o = \deté\el/\---/\snz;51/\---/\8,
|det 2|

£ o7 = (-1, (2.27)
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then we can introduce (see Definition 2.27) a natural isomorphism between the
spaces A"V and \"7'V.
Remark 2.26 'When the metric g used in the definition of the scalar product is

obvious we use from now on only the symbol - in order to simplify the formulas.

Definition 2.27 The Hodge star operator (or Hodge dual) is the linear mapping
*: A"V — A"V such that
g

AA%B=(A-B). (2.28)
g

for every A,B € /\"V. Of course, this operator is naturally extended to an
isomorphism * : AV — AV by linearity. The inverse x~' : A"V — A"V

g g
of the Hodge star operator is given by:
*TA=(=1)"""sgng x A, (2.29)
g g

forA € A"~V and where sgn g = detg/| detg| denotes the sign of the determinant
of the matrix with entries §,-j where {e;} is an arbitrary basis of V.

Note that * is a linear isomorphism but is not an algebra isomorphism.
g

Remark 2.28 When the metric g used in the definition of the Hodge star operator is
obvious we use only the symbol * in order to simplify the formulas.

Exercise 2.29 Show that for any X,Y € AV

X-Y=(XY)=(XV)o=Y-X (2.30)

Exercise 2.30 Let {¢;} and orthonormal basis of V and {e/} is reciprocal basis, i.e.,
g -k = 8{‘ . Then, any Y € /\ V can be written as

1 Jl/p
Y:;Y Sle"'Agfp (2.31)
= l'le...jpsfl A A,
p:

Show that:

(@) Y =Y. (e A Agh),

(2.32)
() Yy, = Y- (g5 A---As).
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Exercise 2.31 Verify that, e.g., that if ¥ = 1 YVe; ng; € A7V (Y0 = —V, of
course) then Y7 # Y(e/, ¢/). Find® Y (€', ¢, ) in terms of Y¥. On the other hand show
thatif Y = £ Ve;Ae; € A7V then V(e', e/) = Vi,

The algebra /\ V inherits the operators A (main automorphism) , ~ (reversion)
and ~ (conjugation) of the tensor algebra TV, and we have

(AB)" = AB,

(AB)” = BA, (2.33)

A~ = @A) = @A

forall A,Be \V,withA =AifAcR,A=—-AifAcVandA =AifAcRor
AeV.

2.3.2 Contractions

Definition 2.32 For arbitrary multiforms X, Y,Z € AV the left (1) and right (L)
contractions of X and ¥ are the mappings 5 : A VXAV > AV,L: AVXAV —

g g
/\ Vsuch that

(X2Y)-Z=Y:(XAZ),
g g

X.Y)-Z=X:(ZAY). (2.34)
g g

These contracted products L and L are internal laws on /\ V. Sometimes
g g
the contractions are called interior products. Both contract products satisfy the

distributive laws (on the left and on the right) but they are not associative.

Remark 2.33 When the metric g used in the definitions of the left and right
contractions is obvious from the context we use the symbols _ and .

Definition 2.34 The vector space /\ V endowed with each one of these contracted
products (either 1 or L) is a non-associative algebra. We call Grassmann algebra of
multiforms the algebraic structure (/A V, A, 1, L), which will simply be denoted by

(A\V.8).

3Recall again that when the exterior product is defined (as, e.g., in [5, 9]) by Eq. (2.25), then X, -,
in Eq. (2.32) really means X(gj,, ..., &j,)- So, care is need when reading textbooks or articles in

order to avoid errors.
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We present now some of the most important properties of the contractions:

(i) Foranya,b € R,and Ye AV

aib = a_b = ab (product in R),
aaY = YiLa = aY (multiplication by scalars). (2.35)

(ii) Ifa,by,..., by €V then

k
as(by A+ Ab) =Y (=Y a-bby A+ Abj A Aby, (2.36)
j=1
where the symbol lvaj means that the b; factor did not appear in the j-term of the
sum. )
(iii) Forany Y; € A/ Vand ¥, € A'V withj < k
YooY = (1Y% 9y, (2.37)
(iv) Forany Y;e N/Vand ¥, e A\'V

YuY, =0, ifj > k,
YiLY: =0, ifj < k. (2.38)

(v) Forany X;, Y € /\k \%4
XeaYe =Y Y =X - Y = Xi - Yo, (2.39)
where Y, the reverse of Yy € /\k V is the antiautomorphism given by
Vi = (=1)2¢ Dy, (2.40)
(vi) Foranyv e Vand X,Y € AV

VX AY) = (viX)AY + X A (v2Y). (2.41)
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2.4 Clifford Algebras

Definition 2.35 The Clifford algebra CL(V,g) of a metric vector space (V,g) is
defined as the quotient algebra*

cev.py ="

o

where Je C TV is the bilateral ideal of TV generated by the elements of the form
u®v+v®u—2§(u,v),withu,v eVCTV.

Clifford algebras generated by symmetric bilinear forms are sometimes referred
as orthogonal, in order to be distinguished from the symplectic Clifford algebras,
which are generated by skew-symmetric bilinear forms (see, e.g., [3]).

Letpe : TV — CE(V, ) be the natural projection of TV onto the quotient algebra

CL(V, g). Multiplication in C£(V, g) will be denoted as usually by juxtaposition and
called Clifford product. We have:
AB = py(A® B), (2.42)

A,B € CL(V, §). The subspaces R,V C TV are identified with their images in
CL(V, 2). In particular, for u,v € V C CL(V,§), we have:

1 o 1 o
WOV = SOV O W+ ) + (B Hy@u— 2w ). (243)
and then
1 o o
oy (U V) =uv = §(M® v—vQ®u)+ gu,v) =unv+gu,v). (2.44)

From here we get the standard relation characterizing the Clifford algebra
CUV., 8),

uv + vu = 28(u, v). (2.45)

“For other possible definitions of Clifford algebras see, e.g., [1, 12, 13]. In this chapter we shall be
concerned only with Clifford algebras over real vector spaces, induced by nondegenerate bilinear
forms.
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2.4.1 Properties of the Clifford Product

With some work the reader can prove [5] the following rules satisfied by the Clifford
product of multiforms:

(i) Foralla e Rand Y € AV : aY = Ya equals multiplication of multiform ¥ by
scalar a.
(ii) ForallveVandY e AV:

vy =viY+vAYandYv=Yv+YAv. (2.46)

(i) ForallX,Y,Z e AV :X(YZ) = (XY)Z.

The Clifford product is an internal law on /\ V. It is associative (by (iii)) and
satisfies the distributive laws (on the left and on the right). The distributive laws
follow from the corresponding distributive laws of the contracted and exterior
products.

Recall that the Clifford product is associative but it is not commutative (as
follows from (ii)) .

Note that since the ideal J; C TV is nonhomogeneous, of even grade, it induces
a parity grading in the algebra A V, i.e.,

CLV.g) =CLUV,3) @ CLY(V, D), (2.47)
with
v, =@ V)
ct'v.9) = (@D Torr1V). (2.48)
We say that C{(V,g) is Z, graded algebra. The elements of C{°(V,g) form a

subalgebra of C{(V,g), called even subalgebra of CL(V,g). Note that C£'(V, )
is not a Clifford algebra.

2.4.2  Universality of CL(V, &)

We now quote a standard theorem concerning real Clifford algebras [3]:

Theorem 2.36 If A is a real associative algebra with unity, then each linear
mapping ¢ 1 V — A such that:

(P(w)* = g(u. u) (2.49)
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for every u € 'V, can be extended in an unique way to a homomorphism Cg :
CU(V,3) — A, satisfying the relation:

¢ = Cy o pg. (2.50)

Let (V,2) and (V’,g’) be two metric vector spaces and ¥ : V — V' a linear
mapping satisfying:

gWw. @) =gu.v) 2.51)
forevery u,v € V.
We denote by Ay the natural extension of v, i.e., the linear mapping Ay :

AV — /\V/ called exterior power extension (see more details in Sect.2.7) such
that:

(i) forse AV C AV,
Ay (s) = s, (2.52)

(ii) for any homogenous multiformay A---Aa, € AV C AV, a; € AV we have
AP A Aa) =Y)Ao Ape) e NV C AV, (2.53)

(i) 1fA =D’ A€ NV, then
)

AV (A) = @:ZOAw(Aj) e NV c A\V. (2.54)

Then, using Theorem 2.36 we can show that there exists a homomorphism
Cy : CL(V,g) — CL(V', &) between their Clifford algebras such that:

Cyo pg = py © Ay (2.55)

Moreover, if V and V are metrically isomorphic® vector spaces, then their
Clifford algebras are isomorphic. In particular, two Clifford algebras C£(V, g) and
CL(V,g') with the same underlying vector space V are isomorphic if and only if the
bilinear forms g and g’ have the same signature. Therefore, there is essentially one
Clifford algebra for each signature on a given vector space V.6

SWe call metric isomorphism a vector space isomorphism satisfying Eq. (2.51). The term isometry
will be reserved to designate a metric isomorphism from a space onto itself.

SHowever, take into account that Clifford algebras C£(V, 5) and CE(V, & ) over the same vector

space may be isomorphic as algebras (but not as graded algebras) even if § and %’ do not have
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Definition 2.37 Let R”? (p + g = n) denote the vector space R" endowed with a
metric tensor of signature (p, ). We denote by R, , the Clifford algebra of R,

Natural Embedding A V < C{(V, g)

Another important (indirect) consequence of the universality is that C£(V,g) is
isomorphic, as a vector space over R, to the Grassmann algebra (/\ V, g). Let the
symbol A — B means that A is embedded in B and A C B.There is a natural
embedding [11] A\ V < CL(V, 2). Then C£(V, g) is a 2"-dimensional vector space
and given A € C£(V, g) we can write:

A= (A),. (2.56)

r=0
with (A), € A"V < CL(V, g) the projection of A (see Definition 2.4) in the A"V
subspace of /\ V.

Definition 2.38 The elements of C£(V,g) will also be called multiforms and
sometimes also called “Clifford numbers”emph. Furthermore, if A = (A), for
some fixed r, we say that A is homogeneous of grade r. In that case, we also write
A=A, e \N'VCUV,Q).

Since AV < CU(V,g), CL(V,g) inherits the main antiautomorphism, the
reversion and the conjugation operators that we defined (see Eq.(2.33) in A V.
Note moreover that C£(V, g) also inherits from (/\ V, g) the scalar and contracted
products of multiforms.

Exercise 2.39 Show that:
() IfA e \V < CLV,g) then

A), = (1) (), (A), = (=1)77""D(A),. (2.57)

(i) fae Vs CUV.8), A, € N"V.B, € N\°V, r.s > 0: (see [10])

as(ABy) = (asA)Bs+ (=1)'A(alBy)
= (aAA)By— (=1)A(a A By), @58)
an(ABy) = (aAA)By—(=1)A.(aiBy) '

= (aJAy)Bs + (—1)"A,(a A By).

the same signature. The reader may verify the validity of this statement by inspecting Table 3.1 in
Chap. 3 and finding examples.
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(iii) ifa € V< CL(V,g)and A € \V < CL(V, ) then
a.A = —ALa,aNA =A Aa.

(iv) ifa e V< Cl(V,g)andA € \ 'V < CL(V, ) then

ai(A A B) = (asA) AB+ A A (aJB).

(v) ifA,B € AV < CL(V,g) then

(vi) ifae Ve Cl(V,g)andA,B € \'V < CL(V,g) then
(asA)-B=A-(anB).
(vii) ifA,B,C € AV < CL(V,2) then

AL(BiC) = (A AB)C,
(ALB)LC =AL(BAC).

(viii) ifA,B,C € AV < CL(V,g) then

(ALB)-C=B-(AAC),
(BLA)- C = B-(C AA).

(ix) ifA,B,C € AV < CL(V,g) then

(AB)-C = B-(AC),
(BA) - C = B- (CA).

(x) ifA, € N"V < CUV,8),B, € \*°V < CL(V,2) then [10] :

A,B; _(AB)\r—v\+(AB)\r—v\+2+ + AB r+v

. _ 1
withm = 5(r +s—|r —s|).

(2.59)

(2.60)

2.61)

(2.62)

(2.63)

(2.64)
(2.65)

(2.66)
2.67)

(2.68)
(2.69)

\r—v\+2ka

(2.70)
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(xi) ifA, € \'V < Cl(V,8),B; € \'V < CL(V,8) and r < s show that
A;aBs = (AB) - = (=1)CNBA,) -y = (=) BuLA,.  (2.71)
(xii) Show that for e*,¢® € A\'V < CL(V,8) and B € \*V < CL(V.?)
((e* A e®)B)y = & A (e"B) + £* (¢ A B). (2.72)

Exercise 2.40 Define the commutator product of A, B € C£(V, g) by
1
AXB= E[A,B], (2.73)

Show that the commutator product satisfy the Jacobi identity, i.e. for A,B,C €
CUV.9)

Ax(BxC)+Bx(CxA) +Cx(AxB)=0 (2.74)
Exercise 2.41 Show that if F € A’V <> C{(V, ), then
F}=—-F-F+FAF. (2.75)

If the metric vector space (V,g) is oriented by e, then we can also extend
the Hodge star operator defined in the Grassmann algebra to the Clifford algebra
CL(V,g), by letting * : CL(V, g) — CL(V,g) be given by:

*A="*(A),. (2.76)

Exercise 2.42 Show that forany A, € /\"VandB; € A\'V,r,s > 0:

A ANxB; = B A XA, r=s
A, -*xB; =By -*A,; r+s=n
A, A*Bg = (=1)“"V « (A4,.By); r<s (2.77)
Arax By = (=1)*x (A, ABy); r+s<n
*A, = Ar-lfg = Arl’g

*Tg = sgné; *x] = T3
Exercise 2.43 Let {¢/} be a basis of V (a n-dimensional real vector space) dual to
a basis {e,} of V. Let g be the metric of V such that g(e,,e,) = £,, and let g
be a metric for V such that g(¢*,&") = g"’and §’“’§Wg = 8/’5. Show that writing
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ghlBp = gt A voo A gl gV 1V = gVl A .. A gV we have

1 o |0 o wee
* ghttp = ) \/ |detg gt ... ghvire, ., ¥tV (2.78)

All identities in the above exercises are very important for calculations. They are
part of the tricks of the trade.

2.5 Extensors

In what follows /\<> V denotes an arbitrary subspace of /\ V, called a subspace part
of /\ V. Consider the arbitrary subspace parts A{ V...., Ao Vand A\°Vof A\ V.

Definition 2.44 Any linear mapping # : A7V x ... x AoV — A° Vis called an
extensor [6] over V.

The set of extensors over V, with domain A7V x ... x A? V and codomain
/\<> V has a natural structure of a vector space over R and will be called EXT-(V).
In what follows we shall need to study mainly the properties of extensors where
the domain is a single subspace part, say /\;> V. The space of that extensors where
ALV =A°V = AV will be denoted by ext-(V).

2.5.1 (p,q)-Extensors

Definition 2.45 Let p,g € N with 0 < p,g < n. A extensor over V with domain
/\”V and codomain A7V is called a (p, g)-extensor over V. The real vector space
of the (p, g)-extensors over V is denoted by ext — (A" V, A7 V).

Note that if dim V = n then dimext(\” V, A\7V) = ( )(n)

n
p/ \g)*

2.5.2 Adjoint Operator

Definition 2.46 Let ({s/}, {¢;}) be a pair of arbitrary reciprocal basis for V (i.e.,
g/ - & = §)). The linear operator

T ext(/\p v, /\q V)st1 e ext(/\q v, /\p V)
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such that
T 1 J1 jp
t(Y):;(t(e AceANEP)-Y)ey NN g,
1 . )
= —'(t(zsj1 Ao Ngy) - Y)elt ANl (2.79)
p!

is called the adjoint operator relative to the scalar product defined by g. ' is called
the adjoint of ¢.

The adjoint operator is well defined since the sums in the second members of the
above equations are independent of the chosen pair ({&/}, {¢;}).

2.5.3 Properties of the Adjoint Operator

(i) The operatorT is involutive, i.e.,
(" =1 (2.80)
(i) Letr € ext(N\?V, A\’ V). Then, foranyX € A’VandY e A7V
1(X)-Y =X-1(Y). (2.81)

(iii) Letr € ext(A\?V, \"V) and u € ext(/\" V, A\?V). Then, composition of u
with 7 denoted # o u € ext(/\" V, \" V) and we have

(tou) =u ol (2.82)

2.6 (1,1)-Extensors

2.6.1 Symmetric and Antisymmetric Parts of (1, 1)-Extensors

Definition 2.47 An extensor ¢ € ext( /\l v, /\l V) is said adjoint symmetric relative
to the scalar product defined by g (adjoint antisymmetric) if, and only if t = '
(t = —1%).

Itis easy to see that for any 7 € e)ct(/\1 v, /\l V), there are two (1, 1)-extensors over
V, say t4 and 7_, such that £ is adjoint symmetric (i.e., t4 = tl) and 7_ is adjoint
antisymmetric (i.e., - = —¢ ) and

t(a) = ty(a) + t—(a). (2.83)
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Moreover,

t+(a) = %(t(a) + 1 (a)). (2.84)

Definition 2.48 7, and 7_ are called the adjoint symmetric and adjoint antisymmet-
ric parts of 1.

2.6.2 Exterior Power Extension of (1, 1)-Extensors

Definition 2.49 Let 7 € ext(/\' V, \' V)) and Y € A V. The linear operator

1 1
o ext(/\ V,/\ V) — ext-(V), trt, (2.85)
such that for any
1 J1 J
(Y)=1-Y+ ZE((E A AER) S Y)HEL) A A L)) (2.86)
k=1"
~1 J1 Jk
=1-Y+ ZE((SJ'I/\---/\SJ-,()-Y)t(S YA A1), (2.87)
k=1""

is called the (exterior power) extension operator relative to the scalar product defined
by g. We read t as the extended of 7.

The extension operator is well defined since the sums in the second members of
the above equations is independent of the chosen pair ({&/}, {¢;}). Take into account

also that the extension operator preserve grade, i.e., if Y € /\k Vthen 1(Y) € /\k V.

2.6.3 Properties of t

(i) Foranyr € e)ct(/\1 V, /\l V),andany o € R,v,vy,...,0; € /\l V we have

() = a, (2.88)
t(v) = 1(v), (2.89)

twr A Av) = Hv)) A At(vg). (2.90)



2.6 (1, 1)-Extensors 41

An obvious corollary of the last property is
X AY) = 1t(X) AL(Y), (291

forany X,Y € A V.
(i) Forallr,u € ext(\' V. \' V) it holds

tou=tou. (2.92)

(i) Let 7 € ext(\' V. \' V) with inverse 1! € ext(\' V.A' V) (e, ror! =
ot =iy where iy € ext( /\1 V, /\1 V) is the identity extensor). Then

O '=@CH=r" (2.93)

(iv) Forany 7€ ext(/\' V. \' V)
hH=0"=7. (2.94)
(v) Letr € ext(N' V. \' V), forany X, Y € AV

X_t(Y) = t(' (X)JY). (2.95)

2.6.4 Characteristic Scalars of a (1, 1)-Extensor

Definition 2.50 The trace of ¢ € ext(\' V. A\' V) relative to the scalar product
defined by g is a mapping

1 1
tr:ext(/\ V,/\ V) >R
such that
r(t) = t(g’) - g = t(g) - el (2.96)

Note that the definition is independent of the chosen pair ({&/}, {¢;}). Also, for
anyt € ext(/\1 V.A'V),

r(th) = (). (2.97)
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Definition 2.51 The determinant of ¢ € ext(\' V, \' V) relative to the scalar
product defined by £ is the mapping det : ext(/\' V. A' V) — R such that

1 . .
Oett = ;g(e“ Ao NE) (8 At NEj) (2.98)
1 . .
= —'g(gh A Ngy) (8 A A e, (2.99)
n.

Remark 2.52 Note that the definition is independent of the chosen pair ({&/}, {&;}).
When it becomes necessary to explicitly specify the metric g relative to which the
determinant of 7 is defined we will write d¢tr instead of detr.

g
Remark 2.53 For the relation between the definition of detr and the classical
determinant of a square matrix representing ¢ in a given basis see Exercise 2.58.

Using the combinatorial formulas v/! A -++ A v/ = 1=yl A-.o A v™ and v}, A
= € 1 - i

A Vj, = €j.j,V1 A+ A v, where ¢/ and ¢;,..;, are the permutation symbols
ofordernand v!,...,v" and vy,...,v, are linearly independent covectors, we can
also write

dett =1(e' A AEYN) (e1 A AE,) = g(%) '2 (2.100)
1 n A
=tler AN AEy) (e /\---/\5):5(2)-5, (2.101)
& _
where weused: ¢ = ¢ A---Ag" andz =& N A&y
2.6.5 Properties of Dett
(i) Foranyse ext(N\'V.A\'V),
dett’ = dett. (2.102)
(ii) Foranyr e ext(\' V., \' V), andI € \"V we have
t(I) = Ioetr. (2.103)

(iii) Foranyr,u € ext(\' V.\' V),

Oet(f o u) = Oett Oetu. (2.104)
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(iv) Letr € ext(/\1 V. \' V) with inverse 1~ € (1,1) -ext(V) (i.e., tor ! =
ot =iy wherei; € (I, 1)-ext(V) is the identity extensor), then

detr ™! = (detr) L. (2.105)
In what follows we use the notation det ™' # meaning dett ™! or (detr) ™.
) Ifr € ext(/\l v, 1V) is non degenerated (i.e., 0etr # 0), then it has an
inverse ' € ext(\' V, \' V), given by
Y (a) = vet et (al)I 7, (2.106)

where I € /\" V is any non null pseudoscalar.

2.6.6 Characteristic Biform of a (1, 1)-Extensor
Definition 2.54 The 2-form [7] of # € ext(\' V. \' V) is

. . 2
bif(t) = t(e') ey = t(e)) nel € \ V. (2.107)

Note that bif (¢) is indeed a characteristic of ¢ since the definition is independent
of the chosen pair ({¢’}, {¢,}).

Properties of bif (¢)
(i) Lett € ext(\' V. \' V). then
bif (") = —bif (1). (2.108)

(i) The adjoint antisymmetric part of any ¢ € e)ct(/\1 v, /\l V) can be ‘factored’
by the formula [6]

t_(a) = %bif(t) X a, (2.109)

where x means the commutator product [see Eq. (2.73)].
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2.6.7 Generalization of (1, 1)-Extensors

Definition 2.55 Let G : ext(/\' V.A\'V) 3 t = T € ext-(V) such that for any
Ye AV
Gt(Y) = T(Y) = t(g) A (g,2Y) = 1(&)) A (¢77), (2.110)

The linear operator G is called the generalization operator of ¢ relative to the scalar
product defined by g, T is read as the generalized 7.

Note that G is well defined since it does not depend on the choice of the pair
({&’}, {&;}). Note also that G preserves grade, i.e.,if ¥ € /\k V,then T(Y) € /\k V.

Properties of G

(i) Foranya € Randv € A\'V we have

T(a) = 0, Q.111)
T(v) = 1(v). (2.112)

(ii) ForanyX,Y € A\ V we have
TXAY)=TX)AY +XAT(Y). (2.113)

(iii) G commutes with the adjoint operator. Thus, 7" means either the adjoint of the
generalized as well as the generalized of the adjoint.

(iv) The adjoint antisymmetric part of the generalized of ¢ is equal to the general-
ized of the antisymmetric adjoint part of #, and can be factored as

T_(Y) = %bif(t) x Y, (2.114)

forany Y € A V.

2.7 Symmetric Automorphisms and Orthogonal Clifford
Products

Besides the “natural” Clifford product of C{(V,g), we can introduce infinitely
many other Clifford-like products on this same algebra, one for each symmetric
automorphism of its underlying vector space. In what follows we are going to
construct such new Clifford products.’

"The possibility of introducing different Clifford products in the same Clifford algebra was already
established by Arcuri [2]. A complete study of that issue is given in [8]. The relation between
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There is a one-to-one correspondence between the endomorphisms of (V, ) and
the bilinear forms over V. Indeed, to each endomorphismg : V — V we can
associate a bilinear form g : V x V — R, by the relation:

g(u,v) = g(g (u),v) (2.115)

forevery u,v € V.
As we know [recall Eq.(2.79)] the adjoint of the extensor g : V — V is the
extensor (linear mapping) g : V — V such that for any u,v € V

g . v)=gw-v=u-g" @W.

Definition 2.56 An endomorphism G : V — V is said to be symmetricor skew-
symmetric if its associated bilinear form G : V x V — R is, respectively, symmetric
or skew-symmetric. In the more general case we can write a bilinear form G as:

G=G4 +G_, (2.116)

with G4 (u,v) = %[G(u, v) + G(v,u)], forevery u,v € V.

Then, correspondingly, its associated endomorphism G will be written as the sum
of a symmetric and a skew-symmetric endomorphism, i.e.,

G=Gy+ G-, (2.117)

with G4,G- : V — V standing for the endomorphisms associated to the
bilinear forms G4 and G_, respectively. We see immediately that for a symmetric
automorphism, i.e., G = G4 we have G4 = G'.

Ifg = g, = g' is a symmetric automorphism of (V, g), the bilinear form g €
T2V associated to it has all the properties of a metric tensor on V and in that case g
can be used to define a new Clifford algebra C£(V, g) associated to the pair (V, g).

This is done by associating to the bilinear form g [10] a new scalar product e = ;

of vectors in the algebra in the space V = /\l V related to the old scalar product by
uev:=g(u,v)=g)- v (2.118)

forevery u,v € V.
Also, given A, = w1 A ... Aup, B, = v A ... AV, € NV < CUV, 2) we

define in analogy with Definition 2.25

Ap [ ] B[, = det(g(ui, Uj)) = det(g(ui) . Uj) (2119)

different Clifford products is an essential tool in the theory of the gravitational field as presented
in [4], where this field is represented by the gauge metric extensor & (Sect. 2.8.1).
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This new scalar product is extended to all of /\V due to linearity and orthogo-
nality and Ae B = 0if A € A'Vand B € A'V, r # 5. Also, we agree that if
a,beR E/\OVthenaob = ab.

2.7.1 The Gauge Metric Extensor h

If it can be easily proved that C£(V, g) will be isomorphic to the original Clifford
algebra C£(V, g) if and only if there exists an automorphism / : V — V (called the
gauge metric extensor) such that:

gu) - v = h(u) - h(v), (2.120)

for every u, v € V. We will say that & is the square root of g (or by abuse of language
of g) even when h # h',
Eq. (2.120) implies that

g=h'h (2.121)

We can prove (see below) that every positive symmetric transformation possesses
at most 2n square roots, all of them being symmetric transformations, but only one
being itself positive (see, e.g., [8]).

If Eq. (2.120) is satisfied, we can reproduce the Clifford product of C£(V, g) into
the algebra C£(V, g) defining an operation

V= :1CUV,8) xCLUV,3) — CLV,2),
g

AVB= AgB = Y ((h(A)h(B)), (2.122)

for every A, B € CL(V, g), where h™! is the inverse of the automorphism of h, and
h:ClV,8) <> NV — AV < CLV,g) is the extended of & defined according
to Eq. (2.85). In particular, if u,v € V < C{(V, g) are covectors, then

UV =UOV +UANU.
g

In addition, the product v : CL(V,g) x CL(V,g) — CL(V,g) satisfies all the
properties of a Clifford product which we have stated previously.
We introduce also the contractions 4 : C£(V,g) x CL(V,g) — CL(V,g) and
g

L1 CL(V,2)xCL(V,g) — CL(V, g) induced by Vv : CL(V,g)xCL(V,g) — CL(V, ),
g

in complete analogy to Definition 2.32, and we left to the reader to fill in the details.
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Relations analogous to those given in the earlier section will be obtained, with the

@ 9

usual contraction product “_” replaced by this new one.
Furthermore, if we perform a change in the volume scale by introducing another
volume n-vector 7, € /\" V such that

7, o7, = (—=1)7,

then we can also define the analogous of the Hodge duality operation for this new
Clifford product, by letting » : C£(V, g) — CL(V, g) be given by:
g

A, A (xB,) = (A, @ B,)1y, (2.123)
g

for every A,,B, € N\'V < CL(V, §), r = 0,...,n. Of course, the operator
g

just defined satisfies relations that are analogous to those satisfied by the operator
*(= x) [see Eq. (2.28)], and we have:
g

* = sgn(deth)h ™! o xoh (2.124)
8 g

= sgn(eth)h ' x h

as can be verified (see Exercise 2.60)

Remark 2.57 For the case of two metrics, say g and 3 of the same Lorentz signature
(1, 3) such that g may be continuously deformed into  we have deth > 0. In this
case, we can write

[P S
Il

Wl oxoh. (2.125)
n

which we abbreviate as x = h~! % h.
g "

2.7.2 Relation Between 0¢tt and the Classical Determinant
det[T}]

Let V be a real vector space of finite dimension n and V its dual. Using notations
o

introduced previously, let 8z and gz be metrics of Euclidean signature and é and g
be metrics of signature (p, ¢) in V and V which are related as explained in Sect. 2.2.
Let moreover g : VxV — R be an arbitrary nondegenerate symmetric bilinear
formon Vand g : V x V — R a bilinear form on V such that if {¢/} is a basis
of V dual to {e;} (an arbitrary basis of V), then g;g’ = 8;‘, where g; = g(e;, e)



48 2 Multivector and Extensor Calculus

and g* = g(e/,€"). Let also {g;} be the reciprocal basis of {¢/} with respect to

the Euclidean metric gz. Let also ¢ € ext( /\1 v, /\1 V) be the unique extensor that

corresponds to T € T2V, such that for any a, b € /\1 V we have T(a,b) = t(a) - b
8E

and ¢ € ext( /\1 v, /\1 V) be the unique extensor that corresponds to 7 € T2V, such
that for any a, b € /\1 V we have T'(a, b) = t(a) - b. Define T;; = T (e, €j).
g

Exercise 2.58 Show that the classical determinant of the matrix [7};] denoted
det[T};] and Oett and et are related by:
8e g

det[T;] = dett(er A= Agy) - (B1 A+ A&p)
2E 2E

=0ett(er A Agy) - (E1 A+ . Agy). (2.126)
g g

Solution We show the first line of Eq. (2.126). Recall that for any vy, va, ..., wy,. ..,
w, € V we have

(I A AV - (WA AW = €% - wg e - Wy (2.127)

gE gE gE

and the property #(v; A -+ A v) = (V1) A -+ A t(vg). By definition of classical
determinant of n X n real matrix we have
det[Tjk] = 517 Tlsl . Tnxn = 515n T(81 , Ssl) . T(Sn, 8%)
= GSI.“X”t(Sl) c Egp 't(gn) © &5, = (t(gl) ARRRRAN t(gn)) : (51 ARERIAN Sn)
8E 8E 8E

=t A NE) - (E1 A A&y, (2.128)
2E

hence, by definition of dets, i.e., t(I) = Idetr for all non-null pseudoscalar I,
2E gE

Eq. (2.126) follows.

Remark 2.59 Note, in particular, for future reference that writing detg =

det[g(e;, €;)], det g = det[g(e/, €*)] we have,

(detg)™! =detg =detg(e; A---Agy) - (81 A+~ Agy)
gE gE

=0etgler A Agy) - (e1 A+ Agp). (2.129)
g g

where g € e)ct(/\l v, /\l V) is the unique extensor that corresponds to g € T?V
such that g(a,b) = g(a) - band g € ext(\' V, \' V) is the unique extensor that
2E

corresponds to g € T?V such that g(a, b) = g(a) - b.
g
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Exercise 2.60 Prove Eq. (2.124).

Solution To prove Eq. (2.124) we need to take into account that for each invertible
(1, 1)-extensor & such that g = h'h and for any X, Y € /\ V the following identity
holds

h(X3Y) = h(X)_h(Y). (2.130)
H £
By definition
*X = Xtg, *X =X, (2.131)
g g g g

Also, since \det§| =1, we have 7y = /|detg 75, detg = (deth)™2 and
h(zg) = (deth)Tg. (2.132)
Then

X_I‘L'g = |detg|)~(_|r§
g g
= V|detg|n™! (ﬁ(i)gh(fg))
g

= /|detg|(@eth) ! (h(ff);l(fg))
g

= sgn(@eth)h ' xh(X) (2.133)

2.7.3 Strain, Shear and Dilation Associated
with Endomorphisms

Recall that every linear transformation can be expressed as composition of elemen-
tary transformations of the types R, : V — Vand S,, : V — V, defined by: (see,

e.g., [10]).

R.(u) = —aua™"

Sap() = u+ (u-a)b, (2.134)
for every u € V, where a,b € V are non-zero (co)vectors parametrizing the

transformation and a~! = a/a* = a/(a - a). Transformations of the type R, are
called elementary reflections. Recall also that it is a classical result proved in any
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good book of linear algebra that any isometry of (V, g) can always be written as
the composite of at most n such transformations. The skew-symmetric part of a
transformation of the type “S,;,” will be denoted by S, We have:

1 1
S[ab] (M) = E (Sab(u) - Sba(u)) = Eu—‘(a A b)v (2135)

for every u € V. Itis again an example of an extensor, this time mapping biforms in
forms.

The symmetric part of a transformation of the type “S,;” is called a strain; it is a
shear in the a A b-plane if a - b = 0, or a dilation along a, if a A b = 0. Obviously,
a dilation along a direction a can be written more simply as:

Sq(u) :u—i—/c(u-a)%, (2.136)

forevery u € V, where k € R, k > —1, is a scalar parameter. If k = 0, then S, is the
identity map of V, for any a € V. If k # 0, then S, is a contraction (—1 < k < 0)
or a dilation (¥ > 0), in the direction of a, by a factor 1 + «.

Now, we can show that every positive symmetric transformation can always be
written as the composite of dilations along at most n orthogonal directions. To see
this, it is sufficient to remember that for any symmetric transformation g associated
to g we can find an orthonormal basis {¢,} of V for which (aligned indices are not
to be summed over)

8(ey) = Auep,

where A(,) € R is the eigenvalue of g associated to the eigenvector g, (u =
1,...,n). Then, defining

&
Se,, () = 1+ k() (u - gﬂ)g—’;, (2.137)
"

forevery u € V, with k() = A¢u) — 1, we get:
g==580--08,. (2.138)

If the symmetric transformation g is in addition positive, i.e., g = hh', we have
eu-8(ey) = h(ey)-h(ey) = Aqwysy - €. Then, since the signature of a bilinear form
is preserved by linear transformations (Sylvester’s law of inertia), we conclude that:

_ h(ey) - hgy) > o.

A
() £n-Ep

(2.139)
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This means that in Eq. (2.137), k() = A — 1 > —1 and therefore it satisfies the
definition of dilation given by Eq. (2.136). Note also that the positive “square root”
of g is givenby h = §}/> 0--- 0 /%, with

&
S () = w4 Gy (u- S,L)s—’;, (2.140)
nw

forevery u € V, where {(u,) = —1 + /Aq).

With these results it is trivial to give an operational form to the product defined
through Eq. (2.122), although eventually this may demand a great deal of algebraic
manipulation.

We emphasize that although we have considered only the positive symmetric
transformations in the developments above, the formalism can be adapted to more
general transformations (see, e.g. [8]).

We give as example of the above formalism Table 2.1, where we listed the g’s
relating all metrics of signature ( p, ¢) in a vector space V, withdimV = p+¢q = 4,
relative to a standard metric of Lorentzian signature. Note that if {¢"} is a basis of
V with ¢* - ¢V = p*¥ = diag(1,—1,—1,—1) then

g(v) = R(gm... etr)U, (2141)
where Rgui . cury is a product of r-reflections, each one in relation to the hyperplane
orthogonal to &*i. Then, we have, e.g., Ro(v) = —&’ve’,Ri(v) = glvel,i =

1,2,3. Also, the last column of Table 2.1 list the matrix algebra to which the
corresponding Clifford algebra R, ; is isomorphic (see Chap. 3 for details).

Table 2.1 Endomorphisms generating all Clifford algebras in 4-dimensions

g g(v) g” g" g’ g” (P.9) Ryg
Ro) — 0y ~1 ~1 ~1 ~1 0, 4) H(2)
R(]) glve! +1 +1 —1 —1 (2,2) R(4)
Ron) —eVlpeled -1 +1 -1 -1 (1,3) H(2)
Rz ele?ygle! +1 +1 +1 —1 3,1) R(4)
Ro12) —e0¢lg2ye2ele! —1 +1 +1 —1 (2,2) R(4)
R123) ele2edvedele! +1 +1 +1 +1 (4,0) H(2)

Roo123) —eV8le2e3pe3e?el gf -1 +1 +1 +1 3,1 R(4)
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2.8 Minkowski Vector Space

We give now some details concerning the structure of Minkowski vector space
which plays a fundamental role in the theories presented in this book.®

Definition 2.61 Let V be a real four dimensional space over the real field R and
n : VxV =R a metric of signature’” —2. The pair (V, 5 ) is called Minkowski
vector space and is denoted by R'3.

We recall that the above definition implies that there exists an orthonormal basis
b = {eg, e|, e, e3} of R such that

1if pu=v=0,
ne..e) =mnle,.e) =nn =4 —-lifpu=v=1,23, (2.142)
0 if W .

We use in what follows the short notation 7, = diag(1,—1,—-1,—1).
The notation

nu,w)=u-w=w-u=n(w,u), (2.143)

where the symbol - as usual is called a scalar product will also be used. Also, for
any u € R, we write u-u = v’

We recall that given a basis b = {e,} of V the basis b = {e"} of V such that

lif u = v,

2.144
0if u # v. ( )

el.e, =6 =

is called the reciprocal basis of b.

Note that e” - e = 5", with the matrix with entries n*" being the matrix
diag(1,—1,-1,-1).

The dual space of V in the definition of the Minkowski vector space is as usual
denoted by V. The dual basis of a basis b = {e,} of R is the set b* = {&*} such
that ¢*(e,) = 8} . We introduce in V a metric of signature —2, 1 : VxV — R, such
that

n(et, e") = n"". (2.145)

The pair (V, 1) will be denoted by R*""3. We write 1(u, v) = u - v. Recall also
that the reciprocal basis of the basis b* = {&"} of V is the basis b* = {g,} of V

8The proofs of the propositions of this section are left to the reader.

9The signature of a metric tensor is sometimes defined as the number (p — g).
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such that
gu-€g =6l (2.146)
The metric 5 induces an isomorphism between V and V given by
Voara=1n(,)eV, (2.147)
such that for any w € V we have
a(w) = n(a,w). (2.148)

Of course the structures R!* = (V, ) and R*!* = (V,n) are also isomorphic.
To see this it is enough to verify thatif v,w € Vandv =g (v,),w =g (w,) € V
then, n(u, v) =5 (v, w).

Definition 2.62 Let v € V, then we say that v is spacelike if vZ < 0orv = 0, that
v is lightlike if vZ=0andv # 0, and that v is timelike if v2 > 0. This classification
gives the causal character of v. An analogous terminology are used to classify the
elements of V.

When v €V is timelike, we denote by ||v|| = /v - v the norm of v.

Remark 2.63 From nowhere when no confusion arises we writeu € V asu € R!3.
That notation emphasize that u is an element of V and it can be classified as a
spacelike or lightlike or timelike vector. Also, within the same spirit we write when
no confusion arises u € V as u € R*!'3. The same notation will be used also for
subspaces S of V (S of V), i.e., we write S C V (S C V) as § C R!? (S ¢ R*13),

Definition 2.64 Let S C R*!'3 be a subspace. We say that S is spacelike if all its
covectors are spacelike, that S is lightlike if it contains a lightlike covector but no
timelike vector, and S is timelike if it contains a timelike covector.

Definition 2.64 establish that a given subspace S C R*!3 is necessarily spacelike
or lightlike or timelike. We now present without proofs some propositions that will
give us some insight on the linear algebra of R*!:3.

Proposition 2.65 A subspace S C R*'3 is timelike if and only if its orthogonal
complement is spacelike.

Proposition 2.66 Let S C R*'3 be a lightlike subspace. Then its orthogonal
complement St is lightlike and S N S+ # {0}.

Proposition 2.67 Two lightlike covectors, ny, ny € R*'3 are orthogonal if and only
if they are proportional.

Proposition 2.68 There are only two orthogonal spacelike covectors that are
orthogonal to a lightlike covector.
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Proposition 2.69 The unique way to construct an orthonormal basis for R*'3 is
with one timelike covector and three spacelike covectors.

The next proposition shows how to divide the set T C R*!3 of all timelike
covectors in two disjoint subsets T+ and T, which are called respectively future
pointing and past point timelike vectors.

Proposition 2.70 Let u,v € T. The relation 1 on the set T x T such that u 1 v
if and only if u - v > 0 is an equivalence relation and it divides ¥ in two disjoint
equivalence classes T and T~ .

Remark 2.71 Such equivalence relation is used to define a time orientation in
spacetime structures (see Chap.4).

Proposition 2.72 " and T~ are convex sets.

Recall that T to be convex means that given any u,w € T+ and a € (0, 00) and
b € [0, 00) then (au + bw) € TT.

Proposition 2.73 Letu,v € TT. Then they satisfy the anti-Schwarz inequality, i.e.,
|u-v| = ||u|| ||v|| and the equality only occurs if u and v are proportional.

We end this section presenting the anti-Minkowski inequality, which is the basis
for a trivial solution [16] of the “twin paradox”, once we introduce a postulate (see
Axiom 6.1, Chap. 6) concerning the behavior of ideal clocks.

Proposition 2.74 Let u,v € T+. Then we have
[lu+vl| = [[u]| + [|v]], (2.149)

which will be called anti-Minkowski inequality.

Proposition 2.75 Let u, v be spacelike covectors such that the spanfu, v] is space-
like. Then the usual Schwarz and Minkowski inequalities |u - v| < ||u|| ||v|| and
[l + v|| < ||u]| + ||v]| hold. If the equalities hold then u and v are proportional.

Proposition 2.76 Let u, v be spacelike covectors such that the span(u, v] is timelike.
Then the anti-Schwarz inequality |u - v| > ||u]| ||v|| holds. If the equality holds then
u and v are proportional. If u-v < 0 and u+ v is spacelike then the anti-Minkowski
inequality ||u + v|| > ||u||+||v|| holds, the equality holding if u, v are proportional.

Exercise 2.77 Prove Propositions 2.65-2.76.

2.8.1 Lorentz and Poincaré Groups

Definition 2.78 A Lorentz transformation L :V — V acting on the Minkowski
(co)vector space R*!* = (V,n) is a Lorentz extensor, i.e., an element of
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ext(\' V., \' V) >~ V ® V such that for any u, v € V we have
n(Lu, Lv) = n(u, v). (2.150)

The set of all Lorentz transformations has a group structure under composition
of mappings. We denote such group by O 3. As it is well known these transfor-
mations can be represented by 4 x 4 real matrices, once a basis in V is chosen.
Equation (2.150) then implies that

detL = +1. (2.151)

Transformations such that detl. = —1 are called improper and the ones with
detL = 1 are called proper. Improper transformations, of course do not close in a
group. The subset of proper Lorentz transformations define a group denoted SO; 3.
Finally, the subset of SO, 3 connected with the identity is also a group. We denote it
by SOf ;. This group also denoted by ﬁl is called the proper orthochronous Lorentz
group. The reason for the adjective orthochronous becomes obvious once you solve
the next exercise.

Exercise 2.79 Show that if L € SO{; and u € Tt C V, then Lutu. Also show
that if ve€T~, then Lv1v.!°

Definition 2.80 Let L be a Lorentz transformation and let @ € V. A Poincaré
transformation acting on Minkowski vector space R!* is a mapping P :V—V,
v Pv =Lv +a.

A Poincaré transformation is denoted by P = (L,a). The set of all Poincaré
transformations define a group denoted by P—called the Poincaré group—under
the multiplication rule (group composition law) given by

(Ll, Cl)(Lz, b)v = (Lle, le + CZ)V = L2L1U + le + a. (2152)

This composition law says that the Poincaré group is the semi direct product ()
of the Lorentz group O 3 by the translation group. We have

T ={(1,a),1€ 0,3,acV}, (2.153)

and we write P = O;3 ® 7. We also denote by P* = SO, 3 ® T and by Pl =
SO, X T.

The theory of representations of the Lorentz and Poincaré groups is an essential
ingredient of relativistic quantum field theory. We shall need only some few results
of these theories in this book and that results are present at the places where they
are needed.

101f the reader has any difficulty in solving that exercise he must consult, e.g., [17].
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Exercise 2.81 Show that if u,v € V, and P = (L, a) is a Poincaré transformation
then P(u —v) -P(u—v) = (u—v) - (u—v).

2.9 Multiform Functions

2.9.1 Multiform Functions of a Real Variable

Definition 2.82 A mapping ¥ : I — AV (with I € R) is called a multiform
function of real variable [14].

For simplicity when the image of Y is a scalar (or 1-form, or 2-form , ...,
etc.) the multiform function A +— Y(A) is said respectively scalar, (or 1-form, or
2-form, ..., etc.) function of real variable.

Limit and Continuity

The notions of limit and continuity for multiform functions can be easily introduced,
following a path analogous to the one used in the case of ordinary real functions.

Definition 2.83 A multiform L € A V is said to be the limit of Y(1) for A € I
approaching A € 1, if and only if for any & > 0 there exists § > 0 such that!!
IY(X) —L| <&, if 0 < |A — Ag| < 8. We write Ahnxl Y(A) =L

—>A0

We prove without any difficulty that:

Jim (Y() +Y() = lim Y() + lim Y(3). (2.154)
Jim (Y() @ Y(1) = lim Y() @ lim Y(3), (2.155)

where ® is any one of the product of multiforms, i.e., (A), (), (1, L) or (Clifford
product).
Y(A) is said continuous at Ay € I if and only if Ahnxl Y(A) = Y(Ao). Then, sum
—A0

and products of any continuous multiform functions are also continuous.
Definition 2.84 The derivative of Y in A is

Y (o) = lim LB =Y

2.156
l—)/\() /\. — /\.0 ( )

Recall that the norm of a multiform X € /\ V is defined by ||X|| = +/X - X, where the symbol -
refers to the Euclidean scalar product.
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The following rules are valid:

Y+v)=Y+4+Y (2.157)
Y®Y)Y =Y ®Y+Y®Y (Leibniz’s rule) (2.158)
(Yo¢) = (Y op)’ (chain rule), (2.159)

where ® is any one of the product of multiforms, i.e., (A), (+), (1, L) or (Clifford
product) and ¢ is an ordinary real function (¢’ is the derivative of ¢). We also write

d
times —Y (1) = Y'(A).
sometimes o L) 1)

We can generalize easily all ideas above for the case of multiform functions of
several real variables, and when need such properties will be used.

2.10 Multiform Functions of Multiform Variables

Definition 2.85 A mapping F : A°V — AV, is said a multiform function of
multiform variable.

If F(Y) is a scalar (or 1-form, or 2-form, ...) then F is said scalar (or 1-form, or
2-form,...) function of multiform variable.

2.10.1 Limit and Continuity

Definition 2.86 M < /\ V is said the limit of F for Y € \°V approaching Y, €
/\° V if and only if for any & > 0 there exists § > 0 such that |[F(Y) — M|| < e, if
0 < ||Y — Yo| < 8. We write Yhn}l/ F(Y) =M.

— 1

The following properties are easily proved:

YILII;O(F(Y) + G(Y)) = YILHII’OF(Y) + Yli)n)lloG(Y). (2.160)
Jim (F(Y) ® G(Y)) = lim F(¥) ® Jim G(Y), 2.161)

where ® is any one of the product of multiforms, i.e., (A), (), (1,) or (Clifford
product).

Definition 2.87 Let F: \°V — A V. F is said to be continuous at Yy € A° V if
and only if YhII)l] F(Y) = F(Yo).
— 1
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Of course, the sum Y — (F + G)(Y) = F(Y) + G(Y) or any product Y +>
(F®G)(Y) = F(Y)®G(Y) of continuous multiform functions of multiform variable
are continuous.

2.10.2 Differentiability

Definition 2.88 F : \°V — A V is said to be differentiable at Yo € A° V if and
only if there exists an extensor over V, say, fy, € ext-(V), such that

lim F(Y) — F(Yo) — fr,(Y — Yo) _
Y=Y, 1Y — Yol

0. (2.162)

Remark 2.89 1t is possible to show [15] that if such fy, exists, it must be unique.

Definition 2.90 fy, is called the differential (extensor) of F at Y.

2.11 Directional Derivatives

Let F be any multiform function of multiform variable which is continuous at Y.
Let A # 0 be any real number and A an arbitrary multiform. Then, there exists the
multiform

. F(Yo+ A (A)y,) — F(Yo)
lim .

lim . (2.163)

Definition 2.91 The limit in Eq. (2.163) denoted by F/, (Yo) or (A-dy)F(Y)) is called
the directional derivative of F at Y, in the direction of the multivector A [15]. The
operator A - dy is said the directional derivative with respect to A and this notation,
i.e., A - dy is justified in Remark 2.102. We write

F(Yo + A {A)y) — F(Yo)

Fi(Yo) = (A-0y)F(Yy) = }in}) 0 (2.164)
or more conveniently
, d
Fy(Yo) = (A-dy)F(Yy) = d_AF(YO +A{A)y)| - (2.165)

A=0

The directional derivative of a multiform function of multifunction variable is
linear with respect to the multiform direction, i.e., forall @, 8 € RandA,B € AV

Flyspp(Y) = aFj(Y) + BFR(Y). (2.166)
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or
(@A + BB) - 0yF(Y) = aA - dyF(Y) + BB - 0y F(Y). (2.167)

The following propositions are true and their proofs may be found in [15].

Remark 2.92 When there is no risk of confusion we write (A - dy)F(Y) simply as
A - dyF.

Proposition 2.93 Let Y +— F(Y) and Y +— G(Y) be any two differentiable
multiform functions. Then, the sum Y — (F + G)(Y) = F(Y) + G(Y) and the
products Y — (F ® G)(Y) = F(Y) ® G(Y), where ® means (N), (+), (u,L) or
(Clifford product) of differentiable multiform functions. Also,
(F+ G)\(Y) = F\(Y) + G,(Y). (2.168)
(F® G),(Y) = Fy(Y) ® G(Y) + F(Y) ® G,(Y) (Leibniz’s rule). (2.169)

2.11.1 Chain Rules

Proposition 2.94 Let Y +— F(Y) and Y — G(Y) be any two differentiable
multiform functions. Then, the composite multiform function Y — (F o G)(Y) =
F((G(Y))y), with Y € domF, is a differentiable multiform function and

(F o G)y(Y) = Fp , (G()) ). (2.170)

Proposition 2.95 Let Y — F(Y) and A — Y(A) be two differentiable multiform
functions, the first one a multiform function of multivector variable and the second
one a multiform function of real variable. Then, the composite function A — (F o
Y)(A) = F((Y(A))y), with Y € domF, is a multiform function of real variable and

(F oY) (A) = Fy),(Y(A))y). (2.171)

Proposition 2.96 Let ¢ : R — Rand ¥ : \°V — R be respectively an ordinary
differentiable real function and a differentiable multiform function. The composition
oW : ANV =R (¢0W)(Y) = ¢(¥(Y)) is a differentiable scalar function of

multiform variable and
(¢ 0 W), (Y) = ¢ (W (V)W) (Y). (2.172)
The above formulas can also be written

A-9y(F+G)(Y)=A-dyF(Y) +A-0yG(Y). (2.173)
A W(F@G)(Y)=A-3F(Y)®GY)+ F(Y) ®A-dyG(Y). (2.174)
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A3y (FoG)(Y) =A-3yG(Y) - yF((G(Y)),). withY € domF.  (2.175)

%(F o Y)(A) = %m) S0yF((Y(A))y). with ¥ € domF. (2.176)

A-dy(po W) (Y) = %QS(QJ(Y))A SOy W(Y). (2.177)

2.11.2 Derivatives of Multiform Functions

Let F be any multiform function of multiform variable, which is differentiable at Y.
Let ({&'}, {¢;}) be an arbitrary pair of reciprocal basis for V (i.e., &/ - &; = §!). Then,
there exists a well defined multiform (i.e., independent of the pair ({&/}, {¢;}) and
depending only on F)

1 1
XJ:WSJF;J(Y) = XJ:WSJFQJ(Y), (2.178)

The symbol J denotes collective indices. Recall, e.g., that

&1 = 1, &jsens Eijpjy = i N Ep N8y

e = 1,6, ... eV = gl Nglt A A g, (2.179)

andv(J) =0,1,2,...forJ = &,j1,jij2-* Jjn, ... where all indices ji, jo, . .., j, Tun
from 1 to n.

Definition 2.97 The multiform given by Eq.(2.178) will be denoted by F'(Y) or
dyF(Y) and is called [8, 14] the derivative of F at Y. We write

'Y) = I N
F'(Y) = 0yF(Y) = B il FL(Y). (2.180)

2.11.3 Properties of dyF

Proposition 2.98

(a) Let Y +— ®(Y) be a scalar function of multiform variable. Then,

Ay ®(Y) = A - (dyD(Y)). (2.181)
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(b) LetY + F(Y) and Y — G(Y) be differentiable multiform functions. Then,

dy(F+ G)(Y) = 0yF(Y) + dyG(Y). (2.182)
dy(FG)(Y) = ayF(Y)G(Y) + F(Y)dyG(Y) ( Leibniz’s rule). (2.183)
Remark 2.99 In field theories formulated in terms of differential forms (see

Chap. 9) the directional derivative of a multiform function, say F : /\r 5 X
F(X) € A\" in the direction of W = 8§X € A\ V is written as

oF
SF = §X A L 2.184
N ox (2.184)

called the variational derivative of F and % is called the algebraic derivative of F.
Now, since §F = W - dx we can, e.g., verify that for F = X A xX we have the
identification

F r
8X - 0xF =8F =8X A g—X = (=1)2""DEX A OxF. (2.185)

More details may be found in [4].

2.11.4 The Differential Operator dy®

Definition 2.100 Given a multiform function of multiform variable, we define the
differential operator [15] dy® by

1

J
v(])!g ® ;- dyF(Y), (2.186)

oy ® F(Yo) =)
J

where @ is any one of the products (A), (+), (4, L) or (Clifford product).

dy (the derivative operator) is also called the generalized gradient operator and
dyF is said to be the generalized gradient of F. Also dyA is called the generalized
rotational operator and dy A F is said the generalized rotational of F. Finally the
operators dy- and dy_ are called generalized divergent operators and dy - F is said
the generalized scalar divergent of F and dy_JF is said the generalized contracted
divergent of F.

Note that these differential operators are well defined since the right side of
Eq. (2.186) depends only on F and are independent of the pair of reciprocal bases
used.
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2.11.5 The A ® dy Directional Derivative

Definition 2.101 The A ® dy directional derivative of a differentiable multiform
function F(Y) is

A® yF(Y) = Zﬁ(A ® ))F, (Y) (2.187)
- !

where ® is any one of the four products (A), (+), (1), (L) or the Clifford product.
The symbol J denotes collective indices.

Remark 2.102 We already introduced above the A - dy directional derivative. The
other derivatives will appear in our formulation of the Lagrangian formalism in
Chaps. 7 and 8. We see moreover that the symbol A - dy for the directional derivative
is well justified. Indeed, from Eq. (2.187) using - in the place of ® we have

b o
A-dyF(Y) = XJ:U(J)!(A e')F. (Y)

1 /

= XJ:WAJFEJ(Y)

=F 1 (¥)
2

= F,(Y). (2.188)

We now solve some exercises dealing with calculations of directional derivatives
and derivatives of some multiform functions that will be used in the main text, in
particular in the Lagrangian formulation of multiform and extensor fields over a
Lorentzian spacetime (see Chaps. 8 and 9).

2.12 Solved Exercises
Exercise 2.103 Let A°V > Y > Y -Y € R, where A\°V is some subspace of
AV.FindA-dy(Y-Y) and dy(Y - Y).

Solution

A0y ¥) = (A (A (VA (A))

A=0

, (2.189)

= i(y. Y+ 24 (A)y Y + A% (A)y - (A)y)
dA =0
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A-0y(Y-Y) =2(A), - Y =24-7.

gley-dy(Y-Y) =Y e2(e;-Y) =2Y.  (2.190)

Ihy(Y-Y)=> )]

J U(J)'

Exercise 2.104 Let A°V>Y > B-Y € R, withBe A V.FindA-dy(B-Y) and
dy(B - Y).

Solution
A-dy(B-Y) = %B-(Y+A(A)Y) =B-(A)y =A-(B)y, (2.191)
2=0
I (B-Y) = X ——ee,  0y(B-Y) = X —— (e - (B)y) = (B)y.

7 v(J)! Tv(J)!

(2.192)

Exercise 2.105 Let A°V 5 Y > (BYC)-Y € R, with B,C € A V. Find A -
dy((BYC) - Y) and dy((BYC) - Y).

Solution

d
A9y ((BYC)-Y) = —- (B + 1 (A)y)C) - (Y + A (A)y)
A=0

_ %((BYC) Y + A(B(A)y C) - Y + A(BYC) - (A)y)
+ 2B (A)y O (A)y)];
= (B(A)y C)-Y + (BYC) - (A),
= (A)y - (BYC + BYC),
A-dy((BYC)-Y) = A-(BYC + BYC), . 19

where we used that (AYB) - Y = Y - (AYB). Then,

1
dy((BYC) -Y) = ;msjsj - dy(BYC - Y)

1
- XJ:U(J)!

&’(es - (BYC + BYC),),

and finally

dy((BYC) - Y) = (BYC + BYC), . (2.194)
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Exercise 2.106 Let x A B, with x,a € A\'Vand B € A\’V. Letalsoa € \'V.
Find a - 0,(x A B), the divergence d,1(x A B), the rotational d, A (x A B) and the
gradient d,(x A B).

Solution Taking into account thatx A B € /\3 V we have

d
a-0(xAB)= —(x+Xa)AB =aAB, (2.195)
dA A=0
da(x AB) = Y elgj- d:(x AB) = Y e/(g; A B) = (n—2)B. (2.196)
j=1 j=1
WAXAB) =Y e/ ne-0(xAB) =) e/ A(g;AB) =0. (2.197)
j=1 j=1

0,(x AB) = 3 gle;- 9, (x AB) = fs"(ej/\B)
j=1 j=1

J
= > (¢/a(; AB) + &/ A (¢j A B)), (2.198)
j=1
3. (x AB) = (n—2)B. (n = dimV) (2.199)
Exercise 2.107 Let x € A\'V and B € A’V and consider x2B € A'V. Find
a- d;(x1B), 0,1(x1B), 9, A (x1B) and 9, (x1B).
Solution
d
a-0;(x1B) = —(x + Aa)_B = a_B. (2.200)
dA A=0

0ya(xuB) = ZSjJSj - 0y(xaB) = ZSjJ(EjJB) = Z(Sj ANegj)aBr =0,
/ =

Jj=1 Jj=1

(2.201)
0: A (xuB) = is/’ A&+ 0x(xaB) = is/’ A (gj1B) = 2B. (2.202)
j=1 j=1
8.(ruB) = Y ele; - 0,(xuB) = 3 ¢/(e;1B) (2.203)
j=1 j=1
dx(xaB) = > (¢'(gj1B) + &' A (¢,1B)) = 2B. (n = dim V)
j=1

(2.204)
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Exercise 2.108 Leta € \' VandB; € A\*VandA € A\ V.Then,anB; € A\7'V
and we can define a (k 4+ 1)-multiform function of vector variable

1 k+1
/\ V3a|—>a/\Bk€/\ V. (2.205)

Calculate A - d,a A By, the divergence d,.(a A By), the rotational d, A (a A By)
and the gradient d,(a A By).

Solution

d
A-0d,aNBy = d_k(a + /\(A)a) A By = (A>a A By = (A)l A By, (2.206)

A=0
1
dq(a ABy) = Z (J)'e 181+ 0qu(a ABy) = Z,: U(J)!gu((gm A By),
(2.207)
daa(a A By) = Z e/1(e; A By) = (n— k)By, (2.208)
j=1
da A(@AB) =Y & A(gj ABY) =0, (2.209)
j=1
da(a A By) = Z el(gj A By) = Z[eu(e,- A By) + &' A (g; A By)]
j=1 j=1
= 8a_n(a A Bk) = (n — k)Bk (2.210)

Exercise 2.109 Leta € /\1 V and B, € /\kV, l <k<nandA € V. Then,
aiBy € /\k_l V and we can define a (k — 1)-multiform function of vector variable

1 k—1
N Vaar—aBie/\ V. (2.211)

Calculate A - d,a.By, the divergence d,1(a_By), the rotational d, A (auBy) and the
gradient d,(auBy).

Solution

d
A - 04a.B; = d_)k(a + A{A)a) 2B = (A)4quBr = (A)11By, (2.212)
2=0

— _ 1 J
0,a(auBy) = Z (J)'S a8y - 0gu(alBy) = ZJ: U(J)!s a({&y)11Bg), (2.213)

0qa(aluBy) = Zé‘j_l(gj_lBk) = Z(sj A g))aB; =0, (2.214)
Jj=1 J=1
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da A (auBy) = Z &/ A (gj1By) = kBy (2.215)
j=1

da(asBy) = Z &’ (&;1By) (2.216)
j=1

= Z[SjJ(EjJBk) +el A (SjJBk)]
=1

= 9, A (aiBy) = kBy. (2.217)

Exercise 2.110 Given two multiform functions F : A"V — A"V, G: \'V —
/\?V abbreviated F(Y), G(Y) show that

I [F(Y) A G(Y)] = dyF(Y) A G(Y) + (=1)PUF(Y) A 0yG(Y). (2.218)

Exercise 2.111 Leta € A\'Vand Y,Y : A' V— AV be differentiable functions
of the position form x = x*g; € /\1 V. Prove the following identities

(a)dy - [04(aX) - Y] = (0,0X) - Y+ X- (0, A Y)
(B)y - [Dal@ AX) - Y] = (9, A X) - Y + X - (3,Y) (2.219)
(C)ax : [aa(aX) ' Y] = (axX) Y+ X- (axY)

Solution Note that if we prove (a) and (b) then (c) follows by summing the
identities (a) and (b).

(a) Using the algebraic identity (buB) - C = B - (b A C) valid for b € /\l V and
B, C € /\ 'V we can write the second member of (a) as

(0,0X) - Y+ X- (0, AY) = (" ugr - 0,X) - Y + X - (6" A er - 0,Y)
= g5 0,(e50X) - Y + 50X - (.- 0,Y).  (2.220a)

Now, taking into account Eq.(2.216) we can write the first member of
identity (a) in of Eq. (2.111) as follows:

Oy - [0a(anX) - Y] = 8 - {e"[(40X) - Y]}
= &' k0)[(ex2X) - Y]
= n"[(x20:X) - Y + (ex2X) - 9,Y]
= (" HX) - Y + (LX) - Y
= g5+ 051X - Y) + (€51X) - (g - 3,Y). (2.221)
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Comparing Eqgs. (2.220a) and (2.221) identity (a) is proved.
(b) The second member of identity (b) in Eq. (2.111) can be written as
OAX) Y+X-(0,AY) =Y - (0, AX)+ (0, AY)-X

= 0y - [04(aoX) - Y]. (2.222)

Taken into account the algebraic identity (b A B) - C = B - (baC) valid for
be N\'VandB,C e AV we can write

0y * [0g(aaX) - Y] = 0x - [0.X - (@ A Y)]

=0y [da(@a N X) Y], (2.223)
and identity (b) in Eq.(2.111) is proved.

(c) As we already said summing up identities (a) and (b), identity (c) in Eq. (2.111)

follows. Nevertheless we give another simple proof of that identity. Indeed, we
can work the first member of identity (c) as

0y - [0a(aX) - Y] = €* - '0i[eX - Y]

N [(e0:X) - Y + (eX) - (0kY)]

= (“0X) - ¥ + (X))o

= 3Y) - Y + (Xe1diY))o

= (3Y) - Y + (X3Y))o

= (0X)-Y + X - (3Y). (2.224)
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Chapter 3
The Hidden Geometrical Nature of Spinors

Abstract This chapter reviews the classification of the real and complex Clifford
algebras and analyze the relationship between some particular algebras that are
important in physical applications, namely the quaternion algebra (Rg,), Pauli
algebra (Rsp), the spacetime algebra (R;3), the Majorana algebra (R3;) and
the Dirac algebra (R4 ;). A detailed and original theory disclosing the hidden
geometrical meaning of spinors is given through the introduction of the concepts
of algebraic, covariant and Dirac-Hestenes spinors. The relationship between these
kinds of spinors (that carry the same mathematical information) is elucidated
with special emphasis for cases of physical interest. We investigate also how to
reconstruct a spinor from their so-called bilinear invariants and present Lounesto’s
classification of spinors. Also, Majorana, Weyl spinors, the dotted and undotted
algebraic spinors are discussed with the Clifford algebra formalism.

3.1 Notes on the Representation Theory of Associative
Algebras

To achieve our goal mentioned in Chap. 1 of disclosing the real secret geometrical
meaning of Dirac spinors, we shall need to briefly recall some few results of the
theory of representations of associative algebras. Propositions are presented without
proofs and the interested reader may consult [3, 8, 12, 16, 20, 21] for details.

Let V be a finite dimensional linear space over K (a division ring). Suppose that
dimg V = n, where n € Z. We are interested in what follows in the cases where
K = R, C or H. In this case we also call V a vector space over K. When K = H it
is necessary to distinguish between right or left H-linear spaces and in this case V
will be called a right or left H-module. Recall that H is a division ring (sometimes
called a noncommutative field or a skew field) and since H has a natural vector space
structure over the real field, then H is also a division algebra.

Definition 3.1 Let V be a vector space over R and dimg V = 2m = n. A linear
mapping

J:VsV 3.1)
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such that
J? = —Idy, (3.2)

s called a complex structure mapping.

Definition 3.2 Let V be as in the previous definition. The pair (V,J) is called a
complex vector space structure and denote by V¢ if the following product holds.
LetC>z=a+ib (i = +/—1)andletv € V. Then

zv = (a+ ib)v = av + bJv. (3.3)

It is obvious that dim¢c = 7.

Definition 3.3 LetV be a vector space over R. A complexification of V is a complex
structure associated with the real vector space V @ V. The resulting complex vector
space is denoted by V*. Let v, w € V. Elements of V€ are usually denoted by ¢ =
v + iw, and if C 3 z = a + ib we have

z¢ = av — bw + i(aw + bv). (3.4

Of course, we have that dime VE = dimg V.
Definition 3.4 A H-module is a real vector space S carrying three linear transfor-
mation, I, J and K each one of them satisfying
P =J = —lds,
IJ=-JI=K, JK=-KJ=I KI=-IK=]. (3.5a)

Exercise 3.5 Show that K> = —Idg

In what follows A denotes an associative algebra on the commutative field
F=RorCandF CA.

Definition 3.6 Any subset / € A such that
ay el ,Nae A, Vy €1,

V+oelVypel (3.6)

is called a left ideal of A.

Remark 3.7 An analogous definition holds for right ideals where Eq. (3.6) reads
Ya € I,Ya € A V¢ € I, for bilateral ideals where in this case Eq. (3.6) reads
aybel,Ya,be A,Vy € 1.

Definition 3.8 An associative algebra A4 is simple if the only bilateral ideals are the
zero ideal and A itself.



3.1 Notes on the Representation Theory of Associative Algebras 71

Not all algebras are simple and in particular semi-simple algebras are important
for our considerations. A definition of semi-simple algebras requires the intro-
duction of the concepts of nilpotent ideals and radicals. To define these concepts
adequately would lead us to a long incursion on the theory of associative algebras,
so we avoid to do that here. We only quote that semi-simple algebras are the direct
sum of simple algebras and of course simple algebras are semi simple. Then, for our
objectives in this chapter the study of semi-simple algebras is reduced to the study
of simple algebras.

Definition 3.9 We say that e €4 is an idempotent element if > = e. An idempotent
is said to be primitive if it cannot be written as the sum of two non zero annihilating
(or orthogonal) idempotent, i.e., e#e; + e,, with eje, = eze; = 0 and e% = e,
e =e.

We give without proofs the following theorems valid for semi-simple (and thus
simple) algebras A:

Theorem 3.10 All minimal left (respectively right) ideals of semi-simple A are of
the form J = Ae (respectively e A), where e is a primitive idempotent of A.

Theorem 3.11 Two minimal left ideals of a semi-simple algebra A, J = Ae and
J = A€’ are isomorphic, if and only if, there exist a non null Y' € J' such that
J =JY.

Let A be an associative and simple algebra on the field F(R or C), and let S be
a finite dimensional linear space over a division ring K D F and let E = EndgS =
Homg (S, S) be the endomorphism algebra of S.!

Definition 3.12 A representation of A in S is a K algebra homomorphism® p :
A — E = EndgS which maps the unit element of A to Idg. The dimension K of S
is called the degree of the representation.

Definition 3.13 The addition in S together with the mapping A x S — S, (a,x) —
p(a)x turns S in a left A-module,’ called the left representation module.

Remark 3.14 Tt is important to recall that when K = H the usual recipe for
Hompy(S,S) to be a linear space over H fails and in general Homy(S, S) is
considered as a linear space over R, which is the centre of H.

Recall that Homg (V, W) is the algebra of linear transformations of a finite dimensional vector
space V over K into a finite vector space W over K. When V = W the set Endx V =Homg (V, V)
is called the set of endomorphisms of V.

2We recall that a K-algebra homomorphism is a K-linear map p such that VX, Y € A, p(XY) =
pX)p(Y).

3We recall that there are left and right modules, so we can also define right modular representations
of A by defining the mapping Sx.A — S, (x, a) > xp(a). This turns S in a right .A-module, called
the right representation module.
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Remark 3.15 We also have that if A is an algebra on F and S is an .4-module, then
S can always be considered as a vector space over IF and if ¢ € A, the mapping
X :a— xq with y,(s) = as,s € S, is a homomorphism .4 — EndpS, and so it is a
representation of A in S. The study of .4 modules is then equivalent to the study of
the IF representations of .A.

Definition 3.16 A representation p is faithful if its kernel is zero, i.e., p(a)x =
0,Vx € S = a = 0. The kernel of p is also known as the annihilator of its module.

Definition 3.17 p is said to be simple or irreducible if the only invariant subspaces
of p(a),Va € A, are S and {0}.

Then, the representation module is also simple. That means that it has no proper
submodules.

Definition 3.18 p is said to be semi-simple, if it is the direct sum of simple
modules, and in this case S is the direct sum of subspaces which are globally
invariant under p(a), Va € A.

When no confusion arises p(a)x may be denoted by a * x or ax.

Definition 3.19 Two .A-modules S and S’ (with the “exterior” multiplication being
denoted respectively by < and %) are isomorphic if there exists a bijection ¢ :
S — S’ such that,

p(x+y) = o) + (), Vx,y €8,

pa<x)=ax*xex), Vae A, 3.7
and we say that the representations p and p’ of A are equivalent if their modules are
isomorphic.

This implies the existence of a K-linear isomorphism ¢ : S — S’ such that ¢ o
p(a) = p'(a)op,Ya e Aorp'(a) = pop(a)op™'. IfdimS = n, thendimS’ = n.
Definition 3.20 A complex representation of A is simply a real representation p :
A — Homg(S, S) for which

p(Y)oJ =Jop(Y).VY € A. (3.8)

This means that the image of p commutes with the subalgebra generated by
{IdSa J} ~ (C'
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Definition 3.21 A quaternionic representation of A is a representation p : 4 —
Homg(S, S) such that

p(Y)oI =10 p(Y), p(Y)oJ = Jop(Y), p(Y) oK = Kop(Y),VY € A. (3.9)

This means that the representation p has a commuting subalgebra isomorphic to
the quaternion ring.
The following theorem is crucial:

Theorem 3.22 (Wedderburn). If A is simple algebra over T then A is isomorphic
to D(m), where D(m) is a matrix algebra with entries in D (a division algebra), and
m and D are unique (modulo isomorphisms).

3.2 Real and Complex Clifford Algebras and Their
Classification

Now, it is time to specialize the previous results to the Clifford algebras on the field
F = R or C. We are particularly interested in the case of real Clifford algebras.
In what follows we take V = R". We denote as in the previous chapter by R”¢
(n = p + q) the real vector space R” endowed with a nondegenerate metric g :
R"xR" — R. Let{E;}, (i = 1,2,...,n) be an orthonormal basis of R4,

+1,i=j=12,...p,
gL E)=gj=gi=4—-1,i=j=p+1,....p+q=n, (3.10)
0, i#].

We recall (Definition 2.37 that the Clifford algebra R,, = C{(R”9) is the
Clifford algebra over R, generated by 1 and the {E;},(i = 1,2,...,n) such that
E? = g(E,, E), E:Ej = —E;E;(i # j),and E\E; ... E, # %1.

R, , is obviously of dimension 2" and as a vector space it is the direct sum of
vector spaces /\k R” of dimensions (Z), 0 < k < n. The canonical basis of /\k R”
is given by the elements e4 = Ey, - Eq,, 1 < oy < ... < o < n. The element
ej=E---E, € \"R" — R, , commutes (n odd) or anticommutes (n even) with
all vectors Ey, ... ,E, € /\1 R" = R". The center R, , is /\0 R" = Rif n is even
and it is the direct sum A’ R" @ A’ R" if n is odd.*

All Clifford algebras are semi-simple. If p + g = nis even, R, , is simple and if
p + g = nis odd we have the following possibilities:

(a) R, issimple <> 3 = —1 <> p—q # 1 (mod 4) <> center of R, , is isomorphic

to C;
(b) R, is not simple (but is a direct sum of two simple algebras) < e% =+1 <
p —¢q = 1(mod 4) < center of R, , is isomorphic to R @ R.

“For a proof see [20].
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Now, for R, , the division algebras D are the division rings R, C or H. The
explicit isomorphism can be discovered with some hard but not difficult work. It is
possible to give a general classification of all real (and also the complex) Clifford
algebras and a classification table can be found, e.g., in [20]. One convenient table
is the following one (where ; = [r/2] means the integer part of n/2).

We denoted by R) ~the even subalgebra of R,, and by R} the set of odd
elements of R, ;. The following very important result holds true

Proposition 3.23 Rp’ ¢ = Ry g1 and also Rp ~ R

q.p—1

Now, to complete the classification we need the following theorem:

Theorem 3.24 (Periodicity)> We have

Ri+s = R0 ®Rgo Ropts = Ro, ® Rog

3.11)
Rytsqg =R, ®Rso Rygrs =R, ® Rogs.

Remark 3.25 We emphasize here that since the general results concerning the
representations of simple algebras over a field IF applies to the Clifford algebras
R,, we can talk about real, complex or quaternionic representation of a given
Clifford algebra, even if the natural matrix identification is not a matrix algebra
over one of these fields. A case that we shall need is that R; 3 ~ H(2). But it is
clear that R; 3 has a complex representation, for any quaternionic representation of
R, , is automatically complex, once we restrict C C H and of course, the complex
dimension of any H-module must be even. Also, any complex representation of R,, ,
extends automatically to a representation of C ® R, .

Remark 3.26 C ® R, , is isomorphic to the complex Clifford algebra C{,,. The
algebras C and R, , are subalgebras of C{,,

3.2.1 Pauli, Spacetime, Majorana and Dirac Algebras

For the purposes of our book we shall need to have in mind that:

RO,I >~ (C,
Ro)z >~ H,
R30 ~ C(2),
Ry3 ~ H(2),
Rs; >~ R(4),
R4’1 =~ (C(4)

(3.12)

3See [20].
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R3¢ is called the Pauli algebra, R 3 is called the spacetime algebra, Rj3 | is called
Majorana algebra and Ry | is called the Dirac algebra. Also, the following particular
results, which can be easily proved, will be used many times in what follows:

Ry, ~R}, =Rsy, R} ~Ry3 Ry, ~Rys,
Ry ~ C@R»}ql, Ry ~ C@R»}ql. (3.13)
In words: the even subalgebras of both the spacetime and Majorana algebras is the
Pauli algebra. The even subalgebra of the Dirac algebra is the spacetime algebra and
finally the Dirac algebra is the complexification of the spacetime algebra or of the
Majorana algebra.
Equation (3.13) show moreover, in view of Remark 3.26 that the spacetime
algebra has also a matrix representation in C(4). Obtaining such a representation

is very important for the introduction of the concept of a Dirac-Hestenes spinor, an
important ingredient of the present work.

3.3 The Algebraic, Covariant and Dirac-Hestenes Spinors

3.3.1 Minimal Lateral Ideals of R, ,

We now give some results concerning the minimal lateral ideals of R, ,.

Theorem 3.27 The maximum number of pairwise orthogonal idempotents in K(m)
(where K =R, CorH) ism.

The decomposition of R, ; into minimal ideals is then characterized by a spectral
set {e,q,;} of idempotents elements of R, ; such that:

(@ Y ey =1
i=1

(b) epgjepak = Sixepqj;
(c) the rank of e,,; is minimal and non zero, i.e., is primitive.

By rank of e,,; we mean the rank of the /\ R”? morphism, ey, : ¢ > Pepy ;.
Conversely, any ¢ € I,,; can be characterized by an idempotent €,,; of minimal
rank # 0, with ¢ = ¢e,;.

We now need to know the following theorem [13]:

Theorem 3.28 A minimal left ideal of R, , is of the type
Ly =R, 404, (3.14)

where

1 1
epq: E(l—}—eal)---E(l—}—eak) (315)
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is a primitive idempotent of R, ; and where ey, . . ., ey, are commuting elements in
the canonical basis of R, , (generated in the standard way through the elements of
a basis (E1, ,Ey,Ept1, ... Eprg) of RP9) such that (eq,)* = 1, (i = 1,2,...,k)
generate a group of order 2F, k = q — 7q—p and r; are the Radon-Hurwitz numbers,
defined by the recurrence formula riys = r; + 4 and

i 1

0 2,/314/5/6/|7 (3.16)

T 0/1/2/2{3[3|3 3
Recall that R, ; is a ring and the minimal lateral ideals are modules over the ring
R, 4. They are representation modules of R, 4, and indeed we have (recall the above

table) the following theorem [13]:
Theorem 3.29 Ifp + g is even or odd with p — q # 1(mod 4), then

R, 4 = Homg (py, 1) =~ K(m), 3.17)
where (as we already know) K = R, C or H. Also,
dimg (I,4) = m, (3.18)
and
K ~ eK(m)e, (3.19)

where ¢ is the representation of €,, in K(m).
Ifp+ q =nisodd withp —q =1 (mod4), then

R, ; = Homg (Ipg, 1,9) = K(m) & K(m), (3.20)

with
dimg (I,g) = m (3.21)

and

eK(m)le ~ R& R
or (3.22)
eK(m)e ~ H ¢ H.

With the above isomorphisms we can immediately identify the minimal left
ideals of R, , with the column matrices of K(m).



3.3 The Algebraic, Covariant and Dirac-Hestenes Spinors 77

Table 3.1 Representation of the Clifford algebras R, , as matrix algebras

pP—q

mod 8 0 1 2 3 4 5 6 7

Ryq R(2") R(e?;) R(21) C@") HErh) HE ) H2+~!) C@")
D

R(2") HEA )

3.3.2 Algorithm for Finding Primitive Idempotents of R, ,

With the ideas introduced above it is now a simple exercise to find primitive
idempotents of R,, ;. First we look at Table 3.1 and find the matrix algebra to which
our particular Clifford algebra R, , is isomorphic. Suppose R, , is simple.® Let
R, , >~ K(m) for a particular K and m. Next we take an element e,, € {e,} from the
canonical basis {e,} of R, , such that

e =1. (3.23)

Next we construct the idempotent e,, = (1 + €4,)/2 and the ideal I,; = R, e,
and calculate dimg (1,). If dimg (1,4) = m, then e, is primitive. If dimg (/,,) # m,
we choose e,, € {e4} such that e,, commutes with e,, and eiz = 1 and construct
the idempotent e, = (1 + €, )(1 + €4,)/4. If dimk (1;,,) = m, then e}, is primitive.
Otherwise we repeat the procedure. According to Theorem 3.28 the procedure is
finite.

333 R

. Clifford, Pinor and Spinor Groups

The set of the invertible elements of R, , constitutes a non-abelian group which we
denote by R . It acts naturally on R, 4 as an algebra homomorphism through its

twisted adjoint representation (Ad) or adjoint representation (Ad)

Ad: Ry — Aut(R,,); u > Ad,, with Ad,(x) = uxii™", (3.24)
Ad: R} — Aut(R,4); u = Ad,, with Ad,(x) = uxu” ! (3.25)

%Once we know the algorithm for a simple Clifford algebra it is straightforward to devise an
algorithm for the semi-simple Clifford algebras.
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Definition 3.30 The Clifford-Lipschitz group is the set

y={uek | Vxe R, w™' e R™}, (3.26a)
or
Ty ={ue ROV URND | Vxe R, uxu™ e R}, (3.26b)

Note in Eq. (3.26b) the restriction to the even (R,*,,(qo)) and odd (R;,(ql)) parts of

*
vaq'

Definition 3.31 The set Fz?.,q =TI, N Rg,q is called special Clifford-Lipschitz
group.

Definition 3.32 The Pinor group Pin, , is the subgroup of I, ; such that
Pin,, = {u € T,y IN(u) = £1}, (3.27)
where

N:R,, = R, , Nx) = (xx)o. (3.28)

Definition 3.33 The Spin group Spin, , is the set

p.q
Spin,, = {u e I) IN(u) = £1}. (3.29)

It is easy to see that Spin,, , is not connected.

Definition 3.34 The Special Spin Group Spinj, , is the set

Spin,, , = {u € Spin, ,|N(u) = +1}. (3.30)
The superscript e, means that Spinj  is the connected component to the identity.
We can prove that Spinj is connected for all pairs (p,g) with the exception of
Spin®(1, 0) >~ Spin®(0, 1).
We recall now some classical results [17] associated with the pseudo-orthogonal
groups O, , of a vector space R”? (n = p+¢q) and its subgroups. Let G be a diagonal

n x n matrix whose elements are G;
G = [Gyj] = diag(1,1,...,—1,—1,...—1), (3.31)

with p positive and g negative numbers.
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Definition 3.35 O, , is the set of n x n real matrices L such that

LGL” = G, detL?> = 1. (3.32)

Equation (3.32) shows that O, ; is not connected.

Definition 3.36 SO, ,, the special (proper) pseudo orthogonal group is the set of
n x n real matrices L such that

LGL! =G, detL = 1. (3.33)

When p = 0 (¢ = 0) SO, , is connected. However, SO,, , (for, p, g # 0) is not
connected and has two connected components for p, g > 1.

Definition 3.37 The group SO, , the connected component to the identity of SO, 4

will be called the special orthochronous pseudo-orthogonal group.’

Theorem 3.38 Ad|Pinp_q : Pin, , — O, is onto with kernel Z,.

Adlspmp# : Spin,, , — SO, 4 is onto with kernel Zo. AdlSpin;q : Spinj, . — SO;
is onto with kernel Z,.

We have,

Pi Spin Spin?
0,4 = 1;;’"1, SO,, = pzzp,q, SO;,q = pZ_zp’q' (3.34)

The group homomorphism between Spinf

,q and SO°(p, g) will be denoted by

L : Spin{, — SO (3.35)

Pq°

The following theorem that first appears in [20] is very important.

Exercise 3.39 (Porteous). Show that for p + ¢ < 4, Spin®(p, q) = {u € R, 4|uit =
1}.
Solution We must show that for any u € Rg’q, N(@u) = +1 and x € R”? we have

that Ad, (x) € R74, But when u € Rg, o Adu(x) = uxu~'. We must then show that

y=uxu"' € RP,

"This nomenclature comes from the fact that SO°(1, 3) = E_Ti_ is the special (proper) orthochronous

Lorentz group. In this case the set is easily defined by the condition L) > +1. For the general case
see [17].
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Since u € Rg’q we have thaty € R},’q. Lete;,i = 1,2, 3,4 an orthonormal basis
of Ry g p + q= 4 Now,y = (uyu™")" = —uxu! = —y. Writing

. 1 .
y=ye + ayljkeiejek,
Y. y*eR,

we get
y=—Ye

from which follows thaty € R4,

3.3.4 Lie Algebra of Spin{ ,

It can be shown [14, 16, 23] that for each u € Spinf,3 it holds u = +ef,F €

/\2 R!? < Ry3 and F can be chosen in such a way to have a positive sign in
Eq. (3.33), except in the particular case F> = 0 when u = —e’. From Eq.(3.33)
it follows immediately that the Lie algebra of Spin{ ; is generated by the bivectors
F € \*R!3 < R, 3 through the commutator product.

Exercise 3.40 Show that when F? = 0 we must have u = —e".

3.4 Spinor Representations of Ry 1, Rg ,and Ry 3

We investigate now some spinor representations of Ry 1, RQJ and R; ;3 which will
permit us to introduce the concepts algebraic, Dirac and Dirac-Hestenes spinors in
the next section.

Let by = {ep,e;, ey, e3} be an orthogonal basis of RI3 s R 3, such that
e.e,+e,e, = 2n,,, withn,, = diag(+1, -1, -1, —1). Now, with the results of the
previous section we can verify without difficulties that the elements e, €/, ¢” € Ry 3

e = %(1 + e) (3.36)
e = %(1 + ese) (3.37)

1
e = 5(1 + ejeze3) (3.38)
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are primitive idempotents of R; 3. The minimal left ideals,® I = Rize, I' = Ry 3¢,
I" = Ry 3e” are right two dimension linear spaces over the quaternion field (He =
el = eR, 3e).

An elements ® € Rm%(l + ep) has been called by Lounesto [15] a mother
spinor.” Let us see the justice of this denomination. First recall from the general

Sping; Spin{ 4 N .
7 — 801,3’ 7 — 80173’

and Spinj ; >~ SI(2, C) is the universal covering group of Ll = SOf 3, the special
(proper) orthochronous Lorentz group. We can show [10, 11] that the ideal I =
R, ze carries the D'/29 @ D(©1/2) representation of S1(2,C). Here we need to
know [10, 11] that each ® can be written as

result of the previous section that % ~ Oy3,

D = e + Yreseie + Ysesepe + Yaeiepe = Z Visi, (3.39)

§1 =€, §p = e3ee, 53 = e3ept, 54 = €1epc (340)

and where the V; are formally complex numbers, i.e., each ¥; = (a; + b;e,e;) with
a;,b; € R and the set {s;,i = 1,2, 3, 4} is a basis in the mother spinors space.

Exercise 3.41 Prove Eq. (3.39).

Now we determine an explicit relation between representations of R4 ; and Rj ;.
Let {fy, f;, 1, f3, f4} be an orthonormal basis of R4 ; with

f=f=B=6=£f=1,

fofp = —fgva,A #BandA,B=0,1,2,3,4.
Define the pseudo-scalar
i=ffiffsf,, P=—1, ify=fi, A=01,234 (3.41)
Put
Eu =144, (3.42)
we can immediately verify that

EuEy + EEu = 2o (3.43)

8 According to Definition 3.47 these ideals are algebraically equivalent. For example, ¢’ = ueu ",

withu = (1 + e;) ¢ FIJ'

°Elements of I’ are sometimes called Hestenes ideal spinors.
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Taking into account that R; 3 =~ qul we can explicitly exhibit here this isomorphism
by considering the map j: R; 3 — qul generated by the linear extension of the map
i* R > RY |, 3*(en) = €4 = £y, where £, (u = 0,1,2,3) is an orthogonal
basis of R"*. Note that j(Ir,;) = lgg , where lg,; and Izo, (usually denoted
simply by 1) are the identity elements in R; 3 and R2,1~ Now consider the primitive
idempotent of R 3 =~ Rg.l,

1
e =3 =50+&) (3.44)

and the minimal left ideal I | = RY e,
The elements Z € 12’ , can be written analogously to ® € Rm%(l—}- €p) as,

Z=Y z5 (3.45)
where
51 =), 5 = £1&:eY,, 53 = E:380€Y). 54 = E160eY, (3.46)
and where
zi = a; + £,61b;,

are formally complex numbers, a;, b; € R.
Consider now the element f € Ry

1
f= eglz(l +i£15)
1 1 .
= 5(1 + 50)5(1 +i£18), (3.47)

with i defined as in Eq. (3.41).
Since fR41 f = Cf = fC it follows that f is a primitive idempotent of R4 ;. We
can easily show that each ® € I = Ry |f can be written

V=Y "y ¥i €C,

h=f Hh==E&f i =&&] fi = E&f. (3.48)
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With the methods described in [10, 11] we find the following representation in C(4)
for the generators £, of Ry >~ Ry 3

12 0 0 —0j;
& = & = , 3.49
oY, (0_12)6 =7, (Gi ()) ( )
where 1, is the unit 2 x 2 matrix and o;, (i = 1,2,3) are the standard Pauli

matrices. We immediately recognize the y-matrices in Eq. (3.49) as the standard
ones appearing, e.g., in [4]. B

The matrix representation of ¥ € [ will be denoted by the same letter in boldface,
ie., V> W e C(4)f, where

f:%(l—kzo)%(l—kizlzz), i=+-1. (3.50)
We have
Y1000
U= 52888 , Y eC. (3.51)
Y4000

Equations (3.49)—(3.51) are sufficient to prove that there are bijections between the
elements of the ideals R 3 %(1+ €p), R?H %(1 + &) and Ry %(1 + 80)%(1 +i&,&).

We can easily find that the following relation exist between W € Ry ;f and Z €
RSJ%U + &),

1
v = Zz(l +i&1&,). (3.52)

Decomposing Z into even and odd parts relative to the Z,-graduation of R4 e

Ri3, Z = Z° + Z' we obtain Z° = Z'&, which clearly shows that all information
of Z is contained in Z°. Then,

1 1
U= 205(1 + 50)5(1 +i£15). (3.53)

Now, if we take into account that RS | 2(1 + &) = R} é(l + &) where the

symbol ROO means Rgol ~ RO ~ Rj o we see that each Z € R4 1 2(1 + &) can be
written

1
Z= wz(l +&) ¢ eRY ~RY,. (3.54)
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Then putting Z° = /2, Eq. (3.54) can be written

1 1
U= Wz(l + 50)5(1 +i&1&)

= ZO%(l +i85). (3.55)

The matrix representation of i and Z in C(4) (denoted by the same letter in
boldface) in the matrix representation generated by the spin basis given by Eq. (3.48)
are

Vi =Yy Y3 Uy Y1 =¥, 00
Yo Y Y —y5 Yy Y 00

v = 1 3. z= 1 . 3.56
Vs P Y v Vs UE 00 (3:20)
Ve —¥3 VYo Yf V4 —¥3 00

3.5 Algebraic Spin Frames and Spinors

We introduce now the fundamental concept of algebraic spin frames.'® This is the
concept that will permit us to define spinors (steps (i)—(vii)).!!

(i) In this section (V, 5) refers always to Minkowski vector space.

(i) Let SO(V, ) be the group of endomorphisms of V that preserves 5 and the
space orientation. This group is isomorphic to SO, 3 but there is no natural
isomorphism. We write SO(V, ) >~ SO; 3. Also, the connected component
to the identity is denoted by SO°(V, ) and SO°(V,n) =~ SOf;. Note that
SO°(V, ) preserves besides orientation also the time orientation.

(iii) We denote by C£(V, ) the Clifford algebra'? of (V, 5) and by Spin‘(V, 3) ~
Spin{ ; the connected component of the spin group Spin(V,#) =~ Spin ;.
Consider the 2 : 1 homomorphismL : Spin°(V, ) — SO°(V, 5),u +— L(u) =
L,. Spin°(V, ) acts on V identified as the space of 1-vectors of C£(V,n) =~
R, 3 through its adjoint representation in the Clifford algebra C£(V, ) which

10The name spin frame will be reserved for a section of the spinor bundle structure Pspinc , (M)
which will be introduced in Chap. 7.

This section follows the developments given in [22].

12We reserve the notation R, , for the Clifford algebra of the vector space R" equipped with a
metric of signature (p, q), p +¢g = n. C{(V, g) and R, ; are isomorphic, but there is no canonical
isomorphism. Indeed, an isomorphism can be exhibit only after we fix an orthonormal basis of V.
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@iv)

is related with the vector representation of SO°(V, ) as follows'?:
Spin®(V, ) 2 u+> Ad, € Aut(CL(V,n))

Ady: V=V, visuvu =L, 0v. (3.57)

In Eq.(3.57) L, © v denotes the standard action L, on v and where we
identified L, € SO°(V, 5) with L, € V® V* and

ﬂ (Lu @ v, Lu @ V) = ﬂ (Vs V) . (358)
Let B be the set of all oriented and time oriented orthonormal basis!* of V.

Choose among the elements of BB a basis by = {by, . ..., b3}, hereafter called
the fiducial frame of V. With this choice, we define a 1 — 1 mapping

X :SO%(V,n) — B, (3.59)

given by
L,— X (L, := X2, =Lbo (3.60)
where X1, = L,by is a short for {e;,....,e3 } € B, such that denoting the

action of L, on b; € by by L, © b; we have
e, =L,0b;:=0b, ij=0,...,3. (3.61)
In this way, we can identify a given vector basis b of V with the isometry L,

that takes the fiducial basis by to b. The fiducial basis by will be also denoted
by X1,, where Ly = e, is the identity element of SO°(V, p).

Since the group SO°(V,n) is not simple connected their elements cannot
distinguish between frames whose spatial axes are rotated in relation to the fiducial
vector frame Xy, by multiples of 2z or by multiples of 4. For what follows it is
crucial to make such a distinction. This is done by introduction of the concept of
algebraic spin frames.

Definition 3.42 Let by € B be a fiducial frame and choose an arbitrary uy €
Spin®(V, ). Fix once and for all the pair (19, bp) with up = 1 and call it the fiducial
algebraic spin frame.

Definition 3.43 The space Spin‘(V, 5) x B = {(u,b), ubu™" = upbouy'} will be
called the space of algebraic spin frames and denoted by S.

3Aut(CL(V, g)) denotes the (inner) automorphisms of C£(V, g).

14We will call the elements of B (in what follows) simply by orthonormal basis.
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Remark 3.44 Tt is crucial for what follows to observe here that Definition 3.43
implies that a given b € B determines two, and only two, algebraic spin frames,
namely (u, b) and (—u, b), since +ub(£u~") = uobouy".

(v) We now parallel the construction in (iv) but replacing SO°(V, ) by its universal
covering group Spin‘(V, n) and B by S. Thus, we define the 1 — 1 mapping

E : Spin(V, ) — S,

u — Eu): =

(3.62)

where ubu™' = by .

The fiducial algebraic spin frame will be denoted in what follows by . It is
obvious from Eq. (3.62) that E(—u) = E_, = (—u,b) # E,.

Definition 3.45 The natural right action of a € Spin®(V, 5) denoted by © on S is
given by

a®E,=a0 (ub) = (ua,Ad,~1b) = (ua,a 'ba). (3.63)
Observe thatif 2, = (/,0') =u' © Egand E, = (u,b) = u ® E then,
E,=w )0 B, = ' ubu™ ).
Note that there is a natural 2 — 1 mapping
s:S— B, E iy b= (£u Hbo(£u), (3.64)
such that
s(™'u') © E.)) = Adg-1)-1 (5(B ). (3.65)
Indeed,
s((w™'u') © Eu) = s((u™'u') © (u,b))

— M/—lub(u/—lu)—l — b/

== Ad(uflu/)fl b = Ad(uflu/)fl (S(E u)) (366)

This means that the natural right actions of Spin®(V, 5), respectively on S and B,
commute. In particular, this implies that the algebraic spin frames £,,E2_, € S,
which are, of course distinct, determine the same vector frame Xy, = s(&,) =
s(E2_,) = Xp_,. We have,

YL, =2, =L~

u

Xp,» Ly, € SOf 5. (3.67)

uo
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Also, from Eq. (3.65), we can write explicitly

uXr,, uy' = uput, uXr,, uy' = (—u)Er_,(—u)"' u € Spin“(V, g),

(3.68)
where the meaning of Eq.(3.68) of course, is that if Xy, = X, = b =
{eo,.....es} € Band ZLMO = by € B is the fiducial frame, then

uobjuy ' = (Lu)ej(£u"). (3.69)

In resume, we can say that the space S of algebraic spin frames can be thought
as an extension of the space B of vector frames, where even if two vector frames
have the same ordered vectors, they are considered distinct if the spatial axes of one
vector frame is rotated by an odd number of 27 rotations relative to the other vector
frame and are considered the same if the spatial axes of one vector frame is rotated
by an even number of 27 rotations relative to the other frame. Even if the possibility
of such a distinction seems to be impossible at first sight, Aharonov and Susskind
[1] claim that it can be implemented physically in a spacetime where the concept of
algebraic spin frame is enlarged to the concept of spin frame used for the definition
of spinor fields. See Chap. 7 for details.

(vi) Before we proceed an important digression on the notation used below is
necessary. We recalled above how to construct a minimum left (or right) ideal
for a given real Clifford algebra once a vector basis b € B for V< C{(V, g)
is given. That construction suggests to label a given primitive idempotent and
its corresponding ideal with the subindex b. However, taking into account the
above discussion of vector and algebraic spin frames and their relationship
we find useful for what follows (specially in view of the Definition 3.46 and
the definitions of algebraic and Dirac-Hestenes spinors (see Definitions 3.48
and 3.50 below) to label a given primitive idempotent and its corresponding
ideal with a subindex Z . This notation is also justified by the fact that a given
idempotent is according to definition 3.48 representative of a particular spinor
in a given algebraic spin frame Z .

(vii) Next we recall Theorem 3.28 which says that a minimal left ideal of C£(V, 7)
is of the type

IEu = CK(V, n)e: (370)

=u

where ez, is a primitive idempotent of C£(V, 7).
It is easy to see that all ideals Iz, = C£(V,p)ez, and Iz, = CL(V,p)eg , such
that

ez, = (W wez, (W u)™! (3.71)

1]

u

u,u’ € Spin®(V, n) are isomorphic. We have the
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Definition 3.46 Any two ideals Iz, = C{(V,n)eg, and Iz, = C{(V, n)eg,, such

=u

that their generator idempotents are related by Eq.(3.71) are said geometrically
equivalent.

Remark 3.47 1f u is simply an element of the Clifford group, then the ideals are said
to be algebraically equivalent.

But take care, no equivalence relation has been defined until now. We observe
moreover that we can write

Iz, = Iz, ('), (3.72)

u u

an equation that will play a key role in what follows.

3.6 Algebraic Dirac Spinors of Type Iz,

Let {Iz,} be the set of all ideals geometrically equivalent to a given minimal /z, as
defined by Eq. (3.72). Let be

T ={(2,,¥Yz,) |ueSpin°(V,y), B, €8, Vg, €lg,}. (3.73)
LetE,, By € 8, Vg, € Iz,, Vg, € Iz,. We define an equivalence relation Eon¥
by setting
(B, ¥z,) ~ (Ew.¥z,), (3.74)
if and only if and

() us(B)u"" = u's(B,)u'"!,

(i) Wz u' ™' = Wg,u™" (3.75)
Definition 3.48 An equivalence class

Uz =[(E,.Vz ) €T/E (3.76)

=u

is called an algebraic spinor of type Iz

Sy

for C4L(V,n). ¥z, € Iz, is said to be a

=u

representative of the algebraic spinor ¥z, in the algebraic spin frame E,.

We observe that the pairs (£,,¥g,) and (E_,,¥=z_,) = (E_,,—V¥g,) are

=u =u

equivalent, but the pairs (£,, ¥z,) and (E_,, —¥=_,) = (E_,, Wz,) are not. This

=u =u

distinction is essential in order to give a structure of linear space (over the real field)
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to the set . Indeed, a natural linear structure on ¥ is given by

a[(Eus “I”EU)] + b[(Eus “I”{: )] = [(Eus CZ\IJE“)] + [(Eu’sb"p/E“)]v

=u

(a+b)(Eu Vg,)] = a[(Ey. ¥g,)] + DI(EW ¥g,)]. (3.77)
Remark 3.49 The definition just given is not a standard one in the literature [5, 8].
However, the fact is that the standard definition (licit as it is from the mathematical
point of view) is not adequate for a comprehensive formulation of the Dirac
equation using algebraic spinor fields or Dirac-Hestenes spinor fields which will
be introduced in Chap. 7.

We end this section recalling that as observed above a given Clifford algebra
R, , may have minimal ideals that are not geometrically equivalent since they may
be generated by primitive idempotents that are related by elements of the group R |
which are not elements of Spin®(V, ) [see Egs. (3.36)—(3.38)] where different, non
geometrically equivalent primitive ideals for R 3 are shown). These ideals may be
said to be of different types. However, from the point of view of the representation
theory of the real Clifford algebras all these primitive ideals carry equivalent (i.e.,
isomorphic) modular representations of the Clifford algebra and no preference may
be given to any one.!® In what follows, when no confusion arises and the ideal Iz,
is clear from the context, we use the wording algebraic Dirac spinor for any one of
the possible types of ideals.

The most important property concerning algebraic Dirac spinors is a coincidence
given by Eq. (3.78) below. It permit us to define a new kind of spinors.

3.7 Dirac-Hestenes Spinors (DHS)

Let 2, € S be an algebraic spin frame for (V, ) such that
s(E,) = {ep, e, e, e5} € B.
Then, it follows from Eq. (3.54) that

Iz, = CL(V, ez, = CL°(V, p)ez,,

(3.78)

when

ez, = %(1 + €). (3.79)

u

5The fact that there are ideals that are algebraically, but not geometrically equivalent seems to
contain the seed for new Physics, see [18, 19].
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Then, each Wz, € Iz, can be written as
Wz, = Yz.ez,. Yz, €CLOV. ). (3.80)
From Eq. (3.75) we get
= U 'ues, = Yz,ez,. V=, ¥z, € CLOV, ). (3.81)
A possible solution for Eq. (3.81) is
ve 0 =yzu (3.82)
Let S x CL(V, n) and consider an equivalence relation £ such that
(B ¢z,) ~ (Ew,¢z,,) (mod £), (3.83)
if and only if ¢z , and ¢z, are related by
¢z 0" =z u . (3.84)

This suggests the following

Definition 3.50 The equivalence classes [(2,, ¢z,)] € S x CL(V,n)/E are the
Hestenes spinors.

Among the Hestenes spinors, an important subset is the one consisted of Dirac-
Hestenes spinors where [(Z,,, ¥z,)] € (S x CL°(V, 1)) /€.

We say that ¢z, (¥'z,) is a representative of a Hestenes (Dirac-Hestenes) spinor
in the algebraic spin frame Z .

3.7.1 Whatis a Covariant Dirac Spinor (CDS)

LetL’ : S - Band let L'(E,) = {&£,&1,&, &) and L'(Ey) = {&£).£].55. &5}
with L'(E,) = ul/(E,)u!, L(E,) = WL (E,)u'"" be two arbitrary basis for
R1’3 —> R4’1.

As we already know fz, = %(1 + 50)%(1 + 1£1&,) [Eq.(3.48)] is a primitive
idempotent of R4 >~ C(4). If u € Spin(1,3) C Spin(4, 1) then all ideals Iz, =
Ig,u~! are geometrically equivalent to Iz,. From Eq. (3.49) we can write

Iz, > Wz, =Y yifi, and Iz > Wz, =Y y/fl, (3.85)
where

h=fe, hHL=-E&f,. fH=8FE, ffH=~&E,
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and

fl/ :fEu’ fz/ = _giggfau’ f:; = gégéfsu’ f4 = gigéfau'

Since Wz, = Vg, (u''u)~", we get
W =Y v ™ w7 = Sal@ s = ) v
i ik k

Then

Yo=Y Sl W)y, (3.86)

where S;;(u~'u') are the matrix components of the representation in C(4) of (u™'u’)
€ Spinj 3. As proved in [10, 11] the matrices S(u) correspond to the representation

D20 @ DO1/2) of 81(2, C) =~ Spin{ ;.

Remark 3.51 We remark that all the elements of the set {/z,} of the ideals
geometrically equivalent to /g, under the action of u € Spin{; C Spinj; have
the same image I = C(4)f where f is given by Eq. (3.47), i.e.,

1
f=s0+y)d+iyy), i=+~-1
7 20 218
where Zu’ w = 0,1, 2,3 are the Dirac matrices given by Eq. (3.50). Then, if

y 1 Ry — C(4) = End(C(4)),
x> yx): CA)f - CHAf (3.87)

it follows that
v(E€) =v(E&), v =y (3.88)

for all {£,.}, {€, } such that £, = (u'~'u)&,(u'~'u)~". Observe that all information
concerning the geometrical images of the algebraic spin frames Z,, &, ..., under
L'disappear in the matrix representation of the ideals Iz, Iz, ... .., in C(4) since
all these ideals are mapped in the same ideal I = C(4)f.

Taking into account Remark 3.51 and taking into account the definition of
algebraic spinors given above and Eq. (3.86) we are lead to the following

Definition 3.52 A covariant Dirac spinor for R!* is an equivalence class of pairs
(2", W), where B is a matrix algebraic spin frame associated to the algebraic spin

frame Z, through the S(u™") € D=? @D©3) representation of Spin¢ 5, u € Spin¢ 5.



92 3 The Hidden Geometrical Nature of Spinors

We say that W, W' € C(4)f are equivalent and write
(EV, W) ~ (B}, ¥, (3.89)

if and only if,

U =S W)W, us(E)u = u's(E)u L (3.90)

Remark 3.53 The definition of CDS just given agrees with that given in [6] except
for the irrelevant fact that there, as well as in the majority of Physics textbook’s,
authors use as the space of representatives of a CDS a complex four-dimensional
space C* instead of I = C(4)f.

3.7.2 Canonical Form of a Dirac-Hestenes Spinor

Letv € R'? < R, ; be a non lightlike vector, i.e., v?

linear mapping

= v-v # 0 and consider a

Ly R S RY visz=yv), 22 =pv (3.91)

with ¢ € Ry 3 and p € RT. Now, recall that if R € Spin{ ; then w = RVR is such
that w2 = v2. It follows that the most general solution of Eq. (3.91) is

W = pl/2eteR, (3.92)

where 8 € R is called the Takabayasi angle and es = epe ese3 € A*R'? < R, 3
is the pseudoscalar of the algebra. Now, Eq. (3.92) shows that ¢ € R?g’ ~ Rjp.

Moreover, we have that ¥y # 0 since

w’lﬁ = peﬂe5 =0 + eSCUs
o =pcosPB, = psinp. (3.93)

The Secret

Now, let ¥z, be a representative of a Dirac-Hestenes spinor (Definition 3.50) in
a given spin frame Z,. Since Yz, € R?j ~ R3¢ we have disclosed the real
geometrical meaning of a Dirac-Hestenes spinor. Indeed, a Dirac-Hestenes spinor
such that wgulﬁgu # 0 induces the linear mapping given by Eq.(3.91), which

rotates a vector and dilate it. Observe, that even if we started our considerations
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with v € R!? < R;3 and v> # 0, the linear mapping (3.91) also rotates and
‘dilate’ a light vector.

3.7.3 Bilinear Invariants and Fierz Identities

Definition 3.54 Given a representative Yz, of a DHS in the algebraic spin frame
field E, the bilinear invariants'® associated with it are the objects: 0 — *w €
A°RZ + A'RY) — Ryz J = Juet € RS o Ri3, § = 1S,ete’ €
A’R'3 < Ry 3, K = K€" € R' < R, 3 such that

7 _ 0.7 _
Yz, ¥z, =0 —*0 Yge'¥z, =J,

yz.e'e’yz, =S vz, Yz, = #S, (3.94)
Vz,ePz, =K Yz, e'e'e’yz, = «K.
and where xw = —espsin

The bilinear invariants satisfy the so called Fierz identities, which are
=0+’ J-K=0J=-K>, JAK=(w—=*0)S (3.95)

S = —wK SLK = —wJ,
(xS).J = —0K (+S).K = —aJ, (3.96)
§-S=(S8)y=02—w?> (*S)-5S=—200.

JS = (w — *x0)K,

SJ = —(w + *0)K,

SK = (w — x0)J,

KS = —(w + x0)J,

§? = w? — 0% —20(xw),
S™! = KSK/J*.

(3.97)

Exercise 3.55 Prove the Fierz identities.

1Tn Physics literature the components of J, S and K when written in terms of covariant Dirac
spinors are called bilinear covariants.
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3.7.4 Reconstruction of a Spinor

The importance of the bilinear invariants is that once we know w, o, J, K and F
we can recover from them the associate covariant Dirac spinor (and thus the DHS)
except for a phase. This can be done with an algorithm due to Crawford [7] and
presented in a very pedagogical way in [14—16]. Here we only give the result for the
case where o and/or @ are non null. Define the object B € C ® R; 3 >~ Ry called
boomerang and given by (i = /—1)

B=0+J+i5S—iesK + esw (3.98)
Then, we can construct ¥ = Bf € Ry ,f , where f is the idempotent given by

Eq. (3.47) which has the following matrix representation in C(4) (once the standard
representation of the Dirac gamma matrices are used)

Y1000
3 Y2000
v = 3.99
Y3000 (3.99)
Y4000
Now, it can be easily verified that ¥ = Bf determines the same bilinear

covariants as the ones determined by Vz,. Note however that this spinor is not
unique. In fact, *B determines a class of elements B8 where £ is an arbitrary element
of R4 ;f which differs one from the other by a complex phase factor.

3.7.5 Lounesto Classification of Spinors

A very interesting classification of spinors have been devised by Lounesto [14-16]
based on the values of the bilinear invariants. He identified six different classes
and proved that there are no other classes based on distinctions between bilinear
covariants. Lounesto classes are:

.o #0, w#0.

2.0#0, w=0.
3.0=0, w#0.
4. 0=0=w, K#0, S#0.
500=0=w, K=0, S#0.
6.0 =0=w, K#0, S§=0.

The current density J is always non-zero. Type 1, 2 and 3 spinor are denominated
Dirac spinor for spin-1/2 particles and type 4, 5, and 6 are singular spinors
respectively called flag-dipole, flagpole and Weyl spinor. Majorana spinor is a
particular case of a type 5 spinor. It is worthwhile to point out a peculiar feature
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of types 4, 5 and 6 spinor: although J is always non-zero, we have due to Fierz
identities that J> = —K? = 0.

Spinors belonging to class 4 have not previously been identified in the literature.
For the applications we have in mind we are interested (besides Dirac spinors which
belong to classes 1 or 2 or 3) in spinors belonging to classes 5 and 6, respectively
the Majorana and Weyl spinors.

Remark 3.56 In [2] Ahluwalia-Khalilova and Grumiller introduced from physical
considerations a supposedly new kind of spinors representing dark matter that they
dubbed ELKO spinors. The acronym stands for the German word Eigenspinoren des
Ladungskonjugationsoperators. It has been proved in [9] that from the algebraic
point of view ELKO spinors are simply class 5 spinors. In [2] it is claimed that
differently from the case of Dirac, Majorana and Weyl spinor fields which have
mass dimension 3/2, ELKO spinor fields must have mass dimension 1 and thus
instead of satisfying Dirac equation satisfy a Klein-Gordon equation. A thoughtful
analysis of this claim is given in Chap. 16.

3.8 Majorana and Weyl Spinors

Recall that for Majorana spinorso = 0,0 =0,K =0,S #0,J,# 0
Given a representative ¥ of an arbitrary Dirac-Hestenes spinor we may construct
the Majorana spinors

1
Vi =5 (W & Veo). (3.100)
Note that defining an operator C:{ — eq; (charge conjugation) we have
C¥is = £V (3.101)

i.e., Majorana spinors are eigenvectors of the charge conjugation operator. Majorana
spinors satisfy

ViV = ViV = 0. (3.102)
For Weyl spinors0c = w =S =0and K #0,J # 0.

Given a representative ¥ of an arbitrary Dirac-Hestenes spinor we may construct
the Weyl spinors

1
Yy = 3 (¥ Fesvey). (3.103)
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Weyl spinors are ‘eigenvectors’ of the chirality operator es = epejezes, i.e.,
esYit = +yifey. (3.104)
We have also,
Vs Vi = Vg Vi = 0. (3.105)

For future reference we introduce the parity operator acting on the space of Dirac-
Hestenes spinors. The parity operator P in this formalism [13] is represented in such
a way that for Y € R?ﬁ

Py = —epfreg . (3.106)

The following Dirac-Hestenes spinors are eigenstates of the parity operator with
eigenvalues £1:

Pyt =4yt Yl =epyeg—y-,
3.107
Put ==yt g = edien + v G107

where ¥4 = wa?

3.9 Dotted and Undotted Algebraic Spinors

Dotted and undotted covariant spinor fields are very popular subjects in General
Relativity. Dotted and undotted algebraic spinor fields may be introduced using the
methods of Chap.7 and are briefly discussed in Exercise 7.63. A preliminary to
that job is a deep understanding of the algebraic aspects of those concepts, i.e., the
dotted and undotted algebraic spinors which we now discuss. Their relation with
Weyl spinors will become apparent in a while.

Recall that the spacetime algebra R, 3 is the real Clifford algebra associated
with Minkowski vector space R, which is a four dimensional real vector space,
equipped with a Lorentzian bilinear form

n:RYE xR SR (3.108)
Let {eo, ], ,, €3} be an arbitrary orthonormal basis of RI3 ie.,
n(e..e) = Nu, (3.109)

where the matrix with entries 7,,, is the diagonal matrix diag(1, —1, —1, —1). Also,
{e%, e!, e?, e} is the reciprocal basis of {ey, e, e, e3},i.e., n(e’, e,) = §/'. We have



3.9 Dotted and Undotted Algebraic Spinors 97

in obvious notation
n(e”.e’) = n,
where the matrix with entries n”*” is the diagonal matrix diag(1, —1, —1, —1).

The spacetime algebra R; 3 is generate by the following algebraic fundamental
relation

ele” 4 e’e! = 29MY. (3.110)

As we already know (Sect.3.7.1) the spacetime algebra R; 3 as a vector space
4 .
over the real field is isomorphic to the exterior algebra A\R!* = @ . /NR'3 of
j=

R!3. We code that information writing A\R!* < R; 3. Also, we make the following
identifications: A’R'? = Rand /\'R"? = R!3. Moreover, we identify the exterior
product of vectors by

ene’ = %(e“e” —e’e), (3.111)
and also, we identify the scalar product of vectors by
n(et,e’) = % (efe” + e"eM). (3.112)
Then we can write

ee” = (e, e") +eAe’. (3.113)

Now, an arbitrary element C € R; 3 can be written as sum of nonhomogeneous
multivectors, 1.e.,

1 1
C=s+cue' + Ecwe"e" + ac;wpe"e"e” + pe’ (3.114)

where s, ¢y, v, Clp,p € R and ¢y, ¢y are completely antisymmetric in all
indices. Also e = e’e'e’e’ is the generator of the pseudoscalars. Recall also that
as a matrix algebra we have that R; 3 >~ H(2), the algebra of the 2 x 2 quaternionic

matrices.

3.9.1 Pauli Algebra

Next, we recall (again) that the Pauli algebra Rz is the real Clifford algebra
associated with the Euclidean vector space R*’, equipped as usual, with a positive



98 3 The Hidden Geometrical Nature of Spinors

definite bilinear form. As a matrix algebra we have that R3y >~ C (2), the algebra
of 2 x 2 complex matrices. Moreover, we recall that R3  is isomorphic to the even

subalgebra of the spacetime algebra, i.e., writing R; 3 = R(l(g ® R(llg we have,
Rso ~ RY. (3.115)

The isomorphism is easily exhibited by putting o/ = e’e’, i = 1,2, 3. Indeed,
with 8% = diag(1, 1, 1), we have

olo! + olat =287, (3.116)

which is the fundamental relation defining the algebra R3 (. Elements of the Pauli
algebra will be called Pauli numbers.'” As a vector space over the real field, we
have that R3¢ is isomorphic to /\]R3*0 < R39 C Ry 3. So, any Pauli number can be
written as

o 1. . .
P=s+po' + Epija’a’ + p1, 3.117)

where s, p;, pij,p € R and p;; = —p;; and also

1=—i=0c'c?c’=¢. (3.118)

Note that > = —1 and that I commutes with any Pauli number. We can trivially
verify

o'o) =16} o* + 87, (3.119)

[0',0/] = ¢'d/—0’0’ = 26'Aa! = 210"

In that way, writing R3 g = Rg% + Rg()), any Pauli number can be written as

P=Q, +1Q: Q;eRy), 1Q;eRy, (3.120)
with

1
Q =ay+a(ic"), ay=s a= §€k]szj, (3.121)

Q: =1(bo + bk(16")), bo=p, b= —ps

7Sometimes they are also called ‘complex quaternions’. This last terminology will become
obvious in a while.
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3.9.2 Quaternion Algebra

Equation (3.121) show that the quaternion algebra Ry, = H can be identified as
the even subalgebra of R3 9, i.e.,

Ro, = H ~ RY). (3.122)

The statement is obvious once we identify the basis {1, ?, T, lAc} of H with
{1,106', 102,163}, (3.123)
which are the generators of Rg?()). We observe moreover that the even subalgebra of

the quaternions can be identified (in an obvious way) with the complex field, i.e.,
R(()(g =~ C. Returning to Eq. (3.117) we see that any P € R3 can also be written as

P =P, +1L,, (3.124)
where
P, = (s +po’) € /\ORI”’0 ® /\11&3’0 =R® /\IR“),
L, = 1(p + 1o) € /\21&3’0 ® /\3R3’°, (3.125)
with [; = —ej;j pij € R. The important fact that we want to emphasize here is that

the subspaces (R&® A1R3’0) and (/\2R3*0 @ /\3R3*0) do not close separately any
algebra. In general, if A, C € (R® /\1R3*0) then

1 2

ACeRa/\ R /\ R (3.126)
To continue, we introduce

o, =ee=—c', i=17223. (3.127)

Then, 1 = —o0 0,03 and the basis {1, ,j,lAc} of H can be identified with
{1, —lo, —10,, —10’3}.
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Now, we know that Rz o >~ C (2). This permit us to represent the Pauli numbers
by 2 x 2 complex matrices, in the usual way (i = v/ —1). We write Rz > P~ P €

C(2), with
ol ol = 0l
10)°

02> o2 = (Q_‘), (3.128)

3.9.3 Minimal Left and Right Ideals in the Pauli Algebra
and Spinors

The elements e4+ = %(1 4+03) = %(1 + ezep) € R(l(g ~ R0, ezjE = e4 are minimal
idempotents of R3 . They generate the minimal left and right ideals

L. =R%es, Ry =eiR)) (3.129)

From now on we write e = e4. It can be easily shown (see below) that, e.g.,
I = I, has the structure of a 2-dimensional vector space over the complex field
[10, 13], i.e., I ~ C2. The elements of the vector space I are called representatives
of algebraic contravariant undotted spinors'® and the elements of C? are the usual
contravariant undotted spinors used in physics textbooks. They carry the DGO
representation of S1(2,C) [17]. If g€ I we denote by ¢ € C? the usual matrix
representative'® of ¢ is

1
0= (zz), ol 0% eC. (3.130)

Denoting by I= eR(l(g the space of the algebraic covariant dotted spinors, we

have the isomorphism, I ~ (C2)" ~ C,, where ¥ denotes Hermitian conjugation.
The elements of (C?)" are the usual contravariant spinor fields used in physics

textbooks. They carry the D2 representation of SI(2,C) [17]. If & € I, then

18We omit in the following the term representative and call the elements of I simply by algebraic
contravariant undotted spinors. However, the reader must always keep in mind that any algebraic
spinor is an equivalence class, as defined and discussed in Sect. 4.6.

19The matrix representation of the elements of the ideals I, i, are of course, 2 X 2 complex matrices
(see, [10], for details). It happens that both columns of that matrices have the same information
and the representation by column matrices is enough here for our purposes.
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its matrix representation in (C?)" is a row matrix usually denoted by
E=(5&), &&eC (3.131)

The following representation of £ € I in (C?)' is extremely convenient. We say that
to a covariant undotted spinor & there corresponds a covariant dotted spinor £ given

by
isgé=fec (@ E.beC (3.132)

with

01
&= (_1 O)' (3.133)

We can easily find a basis for I and I. Indeed, since I = R(l(ge we have that any
@< I can be written as

0 =09 + ¢’
where
i =e W¥y=o01e,
o' =a+ib, @*=c+id, ab,c,deR. (3.134)

Analogously we find that any ’§ € 1 can be written as

E=gis 4

sl=e, §*=c¢co|. (3.135)
Defining the mapping
IQI —>R§?§ ~ R,
Lp®E) = &, (3.136)
we have

lzaozt(s1®si+sz®si),

o1 = —t(s ®s +5, ®Si),
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o, =t[i(s; ® s — $H® si)],

o3=—1(s; ®s —5, ®). (3.137)
From this it follows the identification

Rso ~ R} ~ C(2) =I®c], (3.138)
and then, each Pauli number can be written as an appropriate sum of Clifford
products of algebraic contravariant undotted spinors and algebraic covariant dotted
spinors. And, of course, a representative of a Pauli number in C2 can be written as
an appropriate Kronecker product of a complex column vector by a complex row

vector.
Take an arbitrary P €R;y such that

1
P = pt oo, (3.139)

where p*1*2-% € R and

o =0k, 0k, andop=1¢€eR. (3.140)

kiky..kj
With the identification Rz g =~ Rg(g ~I®c i, we can also write
P =Plu(sy ®5P) = PAsas?, (3.141)
where the P4, = X%, +iY",, X% Y4 € R.
Finally, the matrix representative of the Pauli number P € Rz is P € C(2) given
by

P =P ss, (3.142)

with PAB e Cand

=) ==(")
lo) 2T ) (3.143)

It is convenient for our purposes to introduce also covariant undotted spinors and
contravariant dotted spinors. Let ¢ € C? be given as in Eq. (3.130). We define the
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covariant version of undotted spinor ¢ € C? as ¢* € (C?)" ~ C, such that

9" = (p1.92) = @as”,
oa = oPepa @f = oy,
s'=(10), s*=(01), (3.144)

where?® g 5 = &4 = adiag(1, —1). We can write due to the above identifications

that there exists ¢ € C(2) given by Eq. (3.133) which can be written also as

e=e"sy Rsg=eaps’ BsP = (_01 (1)) = io, (3.145)

where X denotes here the Kronecker product of matrices. We have, e.g.,

1 0 1 01
|Z == & = = s

sms=(g)= (1) = (s) 00 =(50)

1 1 1 10

s Rs'=(10)R(01) = (10)= : (3.146)
0 00

We now introduce the contravariant version of the dotted spinor
§=(56)eC

as being E * € C? such that

. i .

B BA B
" =¢e"8, Ei=ep b,

s = ((1)) (85 = (?) (3.147)

where ¢;; = sAB = adiag(1, —1). Then, due to the above identifications we see
that there exists ¢ € C(2) such that

g= My Ry =o' W57 = ( ° (1)) — e (3.148)

20The symbol adiag means the antidiagonal matrix.
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Also, recall that even if {sa},{s;} and {s*},{s} are bases of distinct spaces, we
can identify their matrix representations, as it is obvious from the above formulas.

So, we have s4 = s; and also s4 = s*. This is the reason for the representation of a
dotted covariant spinor as in Eq. (3.132). Moreover, the above identifications permit
us to write the matrix representation of a Pauli number P € R3 as, e.g.,

P =Pups’ K sP (3.149)

besides the representation given by Eq. (3.142).

Exercise 3.57 Consider the ideal I = Rm%(l — epe3). Show that ¢ € [ is a
representative in a spin frame Z, of a covariant Dirac spinor’! ¥ € (C(4)%(1 +
Zo)(l + iZIZ 2). Let ¢ be the representative (in the same spin frame Z,) of

a Dirac-Hestenes spinor, associated to a mother spinor & € Rm%(l + €y) by
D = w%(l +€p). Show that ¢ € I can be written as ¢ = 1//%(1 +e0)%(1 —epe3).

(a) Show that ¢ge; = ¢ey;.

(b) Weyl spinors are defined as eigenspinors of the chirality operator, i.e., y S\Di =
+iW, . Show that Weyl spinors corresponds to the even and odd parts of ¢.

(c) Relate the even and odd parts of ¢ to the algebraic dotted and undotted
spinors.??
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Chapter 4
Some Differential Geometry

Abstract The main objective of this chapter is to present a Clifford bundle
formalism for the formulation of the differential geometry of a manifold M,
equipped with metric fields g € sec TSM and g € sec TSM for the tangent and
cotangent bundles. We start by first recalling the standard formulation and main
concepts of the differential geometry of a differential manifold M. We introduce
in M the Cartan bundle of differential forms, define the exterior derivative, Lie
derivatives, and also briefly review concepts as chains, homology and cohomology
groups, de Rham periods, the integration of form fields and Stokes theorem. Next,
after introducing the metric fields g and g in M we introduce the Hodge bundle
presenting the Hodge star and the Hodge coderivative operators acting on sections
of this bundle. We moreover recall concepts as the pullback and the differential
of maps, connections and covariant derivatives, Cartan’s structure equations, the
exterior covariant differential of (p + ¢)-indexed r-forms, Bianchi identities and
the classification of geometries on M when it is equipped with a metric field and
a particular connection. The spacetime concept is rigorously defined. We introduce
and scrutinized the structure of the Clifford bundle of differential forms (C£(M, g))
of M and introduce the fundamental concept of the Dirac operator (associated
to a given particular connection defined in M) acting on Clifford fields (sections
of C{(M,g)). We show that the square of the Dirac operator (associated to a
Levi-Civita connection in M) has two fundamental decompositions, one in terms
of the derivative and Hodge codifferential operators and other in terms of the
so-called Ricci and D’ Alembertian operators. A so-called Einstein operator is also
introduced in this context. These decompositions of the square of the Dirac operator
are crucial for the formulation of important ideas concerning the construction of
gravitational theories as discussed in particular in Chaps.9, 11, 15. The Dirac
operator associated to an arbitrary (metrical compatible) connection defined in M
and its relation with the Dirac operator associated to the Levi-Civita connection of
the pair (M, g) is discussed in details and some important formulas are obtained.
The chapter also discuss some applications of the formalism, e.g., the formulation
of Maxwell equations in the Hodge and Clifford bundles and formulation of Einstein
equation in the Clifford bundle using the concept of the Ricci and Einstein operators.
A preliminary account of the crucial difference between the concepts of curvature
of a connection in M and the concept of bending of M as a hypersurface embedded
in a (pseudo)-Euclidean space of high dimension (a property characterized by
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the concept of the shape tensor, discussed in details in Chap.5) is given by
analyzing a specific example, namely the one involving the Levi-Civita and the
Nunes connections defined in a punctured 2-dimensional sphere. The chapter ends
analyzing a statement referred in most physical textbooks as “tetrad postulate” and
shows how not properly defining concepts can produce a lot of misunderstanding
and invalid statements.

4.1 Differentiable Manifolds

In this section we briefly recall, in order to fix our notations, some results concerning
the theory of differentiable manifolds, that we shall need in the following.

Definition 4.1 A topological space is a pair (M,U) where M is a set and U a
collection of subsets of M such that

i) g9,Mel.
(i1) U contains the union of each one of its subsystems.
(iii) U contains the intersection of each one of its finite subsystems.

We recall some more terminology.! Each U, € U (a belongs to an index set
which eventually is infinite) is called an open set. Of course we can give many
different topologies to a given set by choosing different collections of open sets.
Given two topologies for M, i.e., the collections of subsets U and U, if Uy C U,
we say that U is coarse than U, and U, is finer than U . Given two coverings {U, }
and {V,} of M we say that {V,} is a refinement of {U,} if for each V, there exists
an U, such that V, C U,. A neighborhood of a point x € M is any subset of M
containing some (at least one) open set U, € U. A subset X C M is called closed
if its complement is open in the topology (M,U). A family {U,}, U, € U is called
a covering of M if U,U, = M. A topological space (M, ) is said to be Hausdorff
(or separable) if for any distinct points x, X' € M there exists open neighborhoods U
and U’ of these points such that U N U’ = &. Moreover, a topological space (M, U)
is said to be compact if for every open covering {U,}, U, € U of M there exists a
finite subcovering, i.e., there exists a finite subset of indices, say @« = 1,2,...m,
such that UJ_, U, = M. A Hausdorff space is said paracompact if there exists a
covering {V,} of M such that every point of M is covered by a finite number of the
Va, 1.€., we say that every covering has a locally finite refinement.

Definition 4.2 A smooth differentiable manifold M is a set such that

(i) M is a Hausdorff topological space.
(i) M is provided with a family of pairs (Uy, ¢y) called charts, where {U,} is a
family of open sets covering M, i.e., UyU, = M and being {V,} a family

'In general we are not going to present proofs of the propositions, except for a few cases, which
may considered as exercises. If you need further details, consult e.g., [3, 11, 25].
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of open sets covering R”, i.e., Uy,V, = R" the ¢, : U, — V, are
homeomorphisms. We say that any point x € M has a neighborhood which
is homeomorphic to R”. The integer » is said the dimension of M, and we write
dimM = n.

(iii) Given any two charts (U, ¢) and (U’, ¢’) of the family described in (ii) such
that U N U’ # @ the mapping ® = g oo™ : (U NU') — (U NU) is
differentiable of class C".

The word smooth means that the integer r is large enough for all statements that
we shall done to be valid. For the applications we have in mind we will suppose that
M is also paracompact. The whole family of charts {(U,, ¢ )} is called an atlas.

The coordinate functions of a chart (U, ¢) are the functions X' = alo ¢ : U —
R,i = 1,2,...,n where @’ : R" — R are the usual coordinate functions of R”
(see Fig.4.1). We write x'(x) = x' and call the set (x!,..,x") (denoted {x}) the
coordinates of the points x € U in the chart (U, ¢), or briefly, the coordinates.? If
(U', ¢") is another chart of the maximal atlas of M with coordinate functions x”
such that x € U N U’ we write x"(x) = x” and

X'(x) = F(x'(x), ..., x"(x)), 4.1)

and we use the short notation x/ = f/(x'),i,j = 1,...,n. Moreover, we often denote
the derivatives 9f//0x' by dx” /x'.

Let (U, ¢) be a chart of the maximal atlas of M andh : M — M, x — y = h(x)
a diffeomorphism such that x,y € U N h(U). Putting x'(x) = x' and y/ = x/(h(x))

x'(x)

Fig. 4.1 Coordinate chart (U, ¢), coordinate functions x : U — R and coordinates x(x) = x'

2We remark that some authors (see, e.g., [25]) call sometimes the coordinate function x’ simply
by coordinate. Also, some authors (see, e.g., [11]) call sometimes {x'} a coordinate system (for
U C M). We eventually also use these terminologies.
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we write the mappings 1/ : (x!,...,x") — (y!,...,)") as
y =1, (4.2)

and often denote the derivatives dh//dx’ of the functions b/ by dy//dx'.
Observe that in the chart (V, x), V C h(U) with coordinate functions {y’} such
that x' = y/ o h, x/(x) = ¥ = y/(y) = y/ and dy//dx' = §.

4.1.1 Manifold with Boundary

In the definition of a n-dimensional (real) manifold we assumed that each coordinate
neighborhoods, U, € M is homeomorphic to an open set of R”. We now give the

Definition 4.3 A n-dimensional (real) manifold M with boundary is a topological
space covered by a family of open sets {U,} such that each one is homeomorphic to
an open set of R"" = {(x!,...,.x") € R" | " > 0}.

Definition 4.4 The boundary of M is the set M of points of M that are mapped to
points in R" with x" = 0.

Of course, the coordinates of M are given by (xl, o 0) and thus dM is a
(n — 1)-dimensional manifold. of the same class (C") as M.

4.1.2 Tangent Vectors

Let C"(M, x) be the set of all differentiable functions of class C" (smooth functions)
which domain in some neighborhood of x € M. Givena curveinM,0c :R 2 [ —
M, t — o () we can construct a linear function

ox(t) : C'(M,x) — R, 4.3)

such that given any f € C"(M, x),
d
ox(Olf] = —1f o 0] ®. (4.4)

Now, 0x(?) is a derivation, i.e., a linear function that satisfy the Leibniz’s rule:

ox(D[f8] = o« (D[ f1g + fox(D[g], 4.5)

forany f, g € C"(M, x).
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This linear mapping has all the properties that we would like to impose to the
tangent to o at o(f) as a generalization of the concept of directional derivative of
the calculus on R". It can shown that to every linear derivation it is associated a
curve (indeed, an infinity of curves) as just described, i.e., curveso,y :R2 1 — M
are equivalent at xo = 0(0) = y(0) provided 4[f o o](®)|_, = %[f oY1) _,
for any f € C"(M, xp). This suggests the

Definition 4.5 A tangent to M at the point x € M is a mapping v|, : C"(M,x) - R
such that for any f,g € C"(M, x), a,b € R,

) vl laf + bg] = avi[f] + b vl [g].

4.6
i) vl Lfg] = v, [flg +/ vl. [l (%6

As can be easily verified the tangents at x form a linear space over the real field.
For that reason a tangent at x is also called a tangent vector to M at x.

Definition 4.6 The set of all tangent vectors at x is denoted by 7,M and called
the tangent space at x. The dual space of T, M is denoted by 77 M and called the
cotangent space at x. Finally 7T, M is the space of r-contravariant and s-covariant
tensors at x.

Definition 4.7 Let {x'} be the coordinate functions of a chart (U, ¢). The partial
derivative at x with respect to x' is the representative in the given chart of the tangent
vector denoted % . = 0i[, such that

9 _ 0 -
@xf-— @[fofﬂ ||

@(x)
= %(x"), 4.7
X
with
f) =foe '(x'(x),....x") =f(x",....x"). (4.8)

Remark 4.8 Eventually we should represent the tangent vector % \X by a different

symbol, say -%| . This would cause less misunderstandings. However, -%| is
ox' lx oxt Ix

almost universal notation and we shall use it. We note moreover that other notations

and abuses of notations are widely used, in particular f o ¢! is many times

denoted simply by f and then f(x') is denoted simply by f(x') and also we find
9 9

% x.[ fl= 3-—)’:.,.(x), (or.worse) %’X [ f]. = a—){, We shall use thes.e (an.d othe.r) sloppy

notations, which are simply to typewrite when no confusion arises, in particular we
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will use the sloppy notations (x) or 2 for -2 . [x], i.e.

ox! E)x‘

X/

— _51
Bl

oxt

. 0x
W) = o) =

If {x'} are the coordinate functions of a chart (U, ¢) and v|, € T,M, then we can
easily show that

—1 . 4.9)

with v|, [x] =v': U — R.
As a trivial consequence we can verify that the set of tangent vectors

{% i i=1,2,... n} is linearly independent and so dim 7,:M = n.

Remark 4.9 Have always in mind that v|, = v’ %| € T,U and its representative

in T R" is the tangent vector Vl(p(x) =: v ai, - such that v —\ f= V|%) f

Definition 4.10 The tangent vector field to a curve o0 : R © I — M is denoted by
ox(t) or ‘2—‘;

This means that o« (f) = ‘fl—‘t’(t) is the tangent vector to the curve o at the point
o (f). Note that 0, (7) has the expansion

. ad
ox (1) = v'(0 (1)) W , (4.10)
x=0o (1)

where, of course,

dx'oa(1)  do'(r)
a  adr’

v'(0(1) = ox()[x'] = (4.11)

with o' = x’o0. We then see, that given any tangent vector v|, € T, M, the solution
of the differential equation, Eq. (4.11) permit us to find the components o(¢) of
the curve to which v|, is tangent at x. Indeed, the theorem of existence of local
solutions of ordinary differential equations warrants the existence of such a curve.
More precisely, since the theorem holds only locally, the uniqueness of the solution
is warranted only in a neighborhood of the point x = ¢ (¢) and in that way, we have
in general many curves through x to which v/, is tangent to the curve at x.
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4.1.3 Tensor Bundles

In what follows we denote respectively by TM = |J ., TxM and T*M =
U epr T M the tangent and cotangent bundles® of M and more generally, we denote
by T'M = e ThM the bundle of r-contracovariant and s-covariant tensors. A
tensor field 7 of type (r, 5) is a section of the 7"M bundle and we write* 7 € sec T"M.
Also, TgM = M x R is the module of real functions over M and T?M = TM,
T'"™M =T*M.

4.1.4 Vector Fields and Integral Curves

Leto : I — M acurve and v € sec TM a vector field which is tangent to each one of
the points of o. Then, taking into account Eq. (4.11) we can write that condition as

do (f)
dr

v(o(?) = 4.12)

Definition 4.11 A curve o : [ — M satisfying Eq. (4.12) is called an integral curve
of the vector field v.

4.1.5 Derivative and Pullback Mappings

Let M and N be two differentiable manifolds, dimM = m,dimN = nand ¢ : M —
N a differentiable mapping of class C". ¢ is a diffeomorphism of class C" if ¢ is a
bijection and if ¢ and ¢! are of class C".

Definition 4.12 The reciprocal image or pullback of a function f : N — R is the
function ¢*f : M — R given by

$*f=fo¢. 4.13)

Definition 4.13 Given a mapping ¢ : M — N, ¢(x) = y and v € T, M, the image
of v under ¢ is the vector w such that forany f : N - R

wlfl = v[fogl. (4.14)

3In Appendix we list the main concepts concerning fiber bundle theory that we need for the
purposes of this book.

“See details in Notation A.6 in the Appendix.
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The mapping ¢« |, : sec T,M — sec TyN is called the differential or derivative (or
pushforward) mapping of ¢ at x. We write w = ¢ |, v.

Remark 4.14 When the point x € M is left unspecified (or is arbitrary), we

sometimes write ¢, instead of ¢« |,.

The image a vector field v € sec TM at an arbitrary point x € M is

¢« v[f1() = v[f 0 §](x). (4.15)

Note that if ¢ (x) = y, and if ¢ is invertible, i.e., x = ¢~ !(y) then Eq. (4.15) says
that or

¢« v[£100) = v[f 0 Bl(x) = v[f 0 Pl ). (4.16)

This suggests the

Definition 4.15 Let ¢ : M — N be invertible mapping. Let v € sec TM. The image
of v under ¢ is the vector field ¢.v € sec TN such that forany f : N - R

¢v[f] = v[fop] = v[foglogp™". (4.17)
In this case we call
¢x : secTM — sec TN, (4.18)

the derivative mapping of ¢.

Remark 4.16 If v € sec TM is a differentiable field of class C" over M and ¢ is a
diffeomorphism of class C"t! then ¢« v € sec TN is a differentiable vector field of
class C" over N. Observe however, that if ¢ is not invertible the image of v under
¢ is not in general a vector field on N [3]. If ¢ is invertible, but not differentiable
the image is not differentiable. When the image of a vector field v under some
differentiable mapping ¢ is a differentiable vector field, v is said to be projectable.
Also, v and ¢, v are said ¢-related.

Remark 4.17 We have denoted by o (7) the tangent vector to a curve o : [ — M. If
we look for the definition of that tangent vector and the definition of the derivative
mapping we see that the rigorous notation that should be used for that tangent vector
is 0%/, [d%], which is really cumbersome, and thus avoided, unless some confusion
arises. We will also use sometimes the simplified notation o to refer to the tangent
vector field to the curve o.
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Fig. 4.2 (a) The derivative mapping ¢. (b) The pullback mapping ¢*

Definition 4.18 Given a mapping ¢ : M — N, the pullback mapping is the
mapping

¢* :secT*N — secT*M,
¢’ w(v) = w(pxv) 0 P, (4.19)

for any projectable vector field v € sec TM. Also, ¢*w € secT*N is called the
pullback of w (Fig. 4.2).

Remark 4.19 Note that differently from what happens for the image of vector fields,
the formula for the reciprocal image of a covector field does not use the inverse
mapping ¢~ !. This shows that covector fields are more interesting than vector fields,
since ¢*w is always differentiable if w and ¢ are differentiable.

Remark 4.20 From now, we assume that ¢ : M — N is a diffeomorphism, unless
explicitly said the contrary and generalize the concepts of image and reciprocal
images defined for vector and covector fields for arbitrary tensor fields.
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Definition 4.21 The image of a function f : M — R under a diffeomorphism
¢ : M — N is the function ¢,f : N — R such that

¢ f =fog! (4.20)

The image of a covector field B € sec T*M under a diffeomorphism ¢ : M — N is
the covector field ¢« such that for any projectable vector field v € secTM, w =
¢«v € sec TN, we have ¢ B(w) = B(¢p;'w), or

¢«B=(9")"B. 4.21)
For S € sec T M we define its image ¢«S € sec T, N by
¢)*S(¢)*ﬁ], .. .¢*ﬂr, ¢*v1, “e ,¢)*vs) - S(ﬁ], e ﬂr, I)], ceey UJ), (4.22)

for any projectable vector fields v; € secTM, i = 1,2,...,s and covector fields
BiesecT™*M,j=1,2,...,r.

If {e ;} is any basis for TU, U C M and {#'} is the dual basis for T* U, then

S = S}::::};Q/l R Q G Re, ®---Re; (4.23)
and
$eS = (810970 @ @ $u0" D hues @ B Pue;.  (424)

Definition 4.22 Let SesecT/N, and B1,f2,..., B, € secT*M and vy,..., v, €
sec TM be projectable vector fields.The reciprocal image (or pullback) of S is the
tensor field ¢*S € sec 7'M such that

¢*S(ﬁlv o 7ﬁl‘s Vi, ... ,'Us) = S(¢*ﬂlv o ’¢*ﬁl‘s ¢*vlv o ,¢*Us), (4’25)

and

¢*S = (ST o) e R R @ ¢yl ® - R Pl e,. (4.26)

Let x' be the coordinate functions of the chart (U,¢) of U C M and
{0/0¥}, {dx'}, i,j = 1,...,m dual® coordinate bases for TU and T*U, i..,
dx'(3/3x') = 8]. Let moreover y' be the coordinate functions of (V, y), V.C N
and {3/0y*},{dy"}, k,1 = 1,...,n dual bases for TV and T*V. Letx € M,y € N
with y = ¢(x) and x'(x) = x', y'(y) = y. IS (... y") = S () are the

5See Remark 4.41 for the reason of the notation dx'.
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components of S at the point y in the chart (V, y), then the components S’ = ¢*S
in the chart (U, ¢) at the point x are

yioo ayh axt dxr

it On ayk ayke
i () = (0TS (). (4.27)

]1] J1--Js

S () = S (v o

4.1.6 Diffeomorphisms, Pushforward and Pullback
when M = N

Definition 4.23 The set of all diffeomorphisms in a differentiable manifold M
define a group denoted by &), and called the manifold mapping group.

Let A, B C M.Let 8y > h : M — M be a diffeomorphism such that h
A — B,e > he. The diffeomorphism h induces two important mappings in the
tensor bundle TM = @r —0 T;M, the derivative mapping hy, in this case known
as pushforward, and the plillback mappings h*. The definitions of these mappings
are the ones given above.

We now recall how to calculate, e.g., the pullback mapping of a tensor field in
this case.

Suppose now that A and h(.A) C B can be covered by a local charts (U, ¢) and
(V, ) of the maximal atlas of M (with A, h(A) C UNV) with respective coordinate
functions {x*} and {y*} defined by®

x(e) = . x"(h(e)) = y*. y"(e) = y". (4.28)

We then have the following coordinate transformation
W = x*(h(e)) = h*(x"). (4.29)
Let {d/0x*} and {d/dy"} be a coordinate bases for T(U N V) and {dx"} and {dy"}

the corresponding dual basis for 7* (U N V).
Then, if the local representation of S € secT;M C sec7M in the coordinate

chart {y"} at any point of U N V is S € sec T/R",

9 9
— Ml IL, J Vi Vs
S = st (yydy" ® ... ®dy" ® By ®...® By (4.30)

SNote that in general y*(h(e)) # y*.
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we have that the representative of ' = h*S in 7/R"at any point e € U NV is
given by

. . 0 ad

* _ ¢l/oy...0p s _—

RS =T @ R RS ® B o
oyt ay"s 9x°! ax°r

0xP1 e 0xPs ayMI e ayMr ’

oo @d) = Syl (67()

(4.31)

Remark 4.24 Another important expression for the pullback mapping can be found
if we choice charts with the coordinate functions {x*} and {y*} defined by

x(e) = y"(h(e)) (4.32)
Then writing
x(e) = x, y*(h(e)) =y, (4.33)
we have the following coordinate transformation
y=hr ) = o, (4.34)
from where it follows that in this case

S (W) = Sl (v (). (4.35)

-Ps

4.1.7 Lie Derivatives

Definition 4.25 Let M be a differentiable manifold. We say that a mapping o :
M xR — M is a one parameter group if

(i) o is differentiable,
(i) o(x,0) =x,Vxe M,
(iii) o(o(x,s),t) =o(x,s+1),VxeM,Vs,t € R.

These conditions may be expressed in a more convenient way introducing the
mappings o; : M — M such that

0,(x) = o (x, 1). (4.36)

For each t € R, the mapping o; is differentiable, since 0; = o o [, where [, :
M — M x R s the differentiable mapping given by /;(x) = (x, 1).
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Also, condition (ii) says that oy = idy,. Finally, condition (iii) implies, as can be
easily verified that

07 0 Oy = Oyt 4.37)

Observe also that if we take s = —# in Eq. (4.37) we get 0,00_, = idy,. It follows
that for each ¢ € R, the mapping o; is a diffeomorphism and (0;)™! = o_,.

Definition 4.26 We say that a family (o,,7 € R) of mappingso, : M — M is a
one-parameter group of diffeomorphisms G, of M.

Definition 4.27 Given a one-parameter group o : M x R — M for each x € M, we
may construct the mapping

o, :R—>M,
o, (1) = o(x,1), (4.38)

which in view of condition (ii) is a curve in M, called the orbit (or trajectory) of x
generate by the group. Also, the set of all orbits for all points of M are the trajectories
of G1 .

It is possible to show, using condition (iii) that for each point x € M pass one
and only one trajectory of the one-parameter group. As a consequence it is uniquely
determined by a vector field v € sec TM which is constructed by associating to each
point x € M the tangent vector to the orbit of the group in that point, i.e.,

d
v(0x (1) = —ox (1) (4.39)

Definition 4.28 The vector field v € sec TM determined by Eq. (4.39) is called
a Killing vector field relative to the one parameter group of diffeomorphisms
(0s,t € R).

Remark 4.29 Tt is important to have in mind that in general, given a vector field
v € sec TM it does not define a group (even locally) of diffeomorphisms in M. In
truth, it will be only possible, in general, to find a local one-parameter pseudo-group
that induces v. A local one parameter pseudo-group means that o; is not defined for
all t € R, but for any x € M, there exists a neighborhood U(x) of x, an interval
I(x) = (—&(x), e(x)) C R and a family (o, € I(x)) of mappings o, : M — M, such
that the properties (i)—(iii) in Definition 4.27 are valid, when [t| < &(x), |s| < &(x)
and |t + 5| < e(x).

Definition 4.30 Taking into account the previous remark, the vector field v €
sec TM is called the infinitesimal generator of the one parameter local pseudo-group
(o1,t € I(x)) and the mapping 0 : M x I(x)—M is called the flow of the vector
field &.
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S(x)

S(x) X = o,(x)

Oy

0, S(x)
Fig. 4.3 The Lie derivative

Of course, given v € sec TM we obtain the one parameter local pseudo-group
that induces v by integration of the differential equation Eq. (4.39). From that, we
see that the trajectories of the group are also the integral lines of the vector field v.

Definition 4.31 Let (oy, ¢ € I(x)) a one-parameter local pseudo group of diffeomor-
phisms of M that induces the vector field v and let S € sec T;M. The Lie derivative
of S in the direction of v is the mapping

£, :secTyM — secT. M,

*S—§
£,8 = lim 2> >
t—0 t

(4.40)

Remark 4.32 Tt is possible to define the Lie derivative using the pushforward
mapping, the results that follows are the same. In this case we have £,S =

lim— =25 (Fig.4.3).

4.1.8 Properties of £,

(i) £, is a linear mapping and preserve contractions.
.o . . J
(ii) Leibniz’srule. If S € sec T/ M, S’ € sec T, M, we have

£,8508)=£S05 +S®L,5. (4.41)
(i) Iff : M — R, we have

£.f = v(f). (4.42)

(iv) If v,w € sec TM, we have
£,w = [v,v], (4.43)
where [v, w] is the commutator of the vector fields v and w, such that

[v.w](f) = v(w(f)) —w((f)). (4.44)
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(v) If w € secT*M, we have
£,0 = (v(wr) + wier(v') — o) 0, (4.45)

where v/ and ; are the components of in the dual basis {e;} and {6} and the
c‘]k are called the structure coefficients of the frame {e;} , and

lej.e] = clie. (4.46)

Exercise 4.33 Show that if v|, v,, v3 € sec TM, then they satisfy Jacobi’s identity,
ie.,

[v1, [v2, v3]] + [v2, [V3, v1]] + [v3, [v1, v2]] = 0. (4.47)
Exercise 4.34 Show that foru, v € secTM

Lo = [£u. &) (4.48)

4.1.9 Invariance of a Tensor Field

The concept of Lie derivative is intimately associated to the notion of invariance of
a tensor field S € sec T/ M.

Definition 4.35 We say that S is invariant under a diffeomorphism# : M — M, or
h is a symmetry of S, if and only if

n*S|, = S|, . (4.49)

We extend naturally this definition for the case in which we have a local one-
parameter pseudo-group o, of diffeomorphisms. Observe, that in this case, it follows
from the definition of Lie derivative, that if S is invariant under o;, then

£,5=0 (4.50)
More properties of Lie derivatives of differential forms that we shall need in

future chapters, will be given at the appropriate places.

Remark 4.36 A correct concept for the Lie derivative of spinor fields is as yet a
research subject and will not be discussed in this book. A Clifford bundle approach
to the subject which we think worth to be known is presented in [22].



122 4 Some Differential Geometry
4.2 Cartan Bundle, de Rham Periods and Stokes Theorem

In this section, we briefly discuss the processes of differentiation in the Cartan
bundle and the concept of de Rham periods and Stokes theorem.

4.2.1 Cartan Bundle

Definition 4.37 The Cartan bundle over the cotangent bundle of M is the set
NTm=JA\Tm= PN 1M (4.51)
xXEM X€EM r=0

where A\ T'M, x € M, is the exterior algebra of the vector space T)"M. The sub-
bundle \" T*M C /\ T*M given by:

Nrm=|JN\ 1M (4.52)

XEM

is called the r-forms bundle (r = 0, ..., n).
Definition 4.38 The exterior derivative is a mapping

d: sec/\T*M — sec/\T*M,
satisfying:

(i) d(A+ B) =dA + dB:
(i) d(AAB) =dAAB+ A AdB;
(i) df (v) = v(f);

(iv) d® =0,

(4.53)

for every A, B € sec A T*M, f € sec A" T*M and v € sec TM.
Exercise 4.39 Show that for A € sec A\’ T*M and vy, vy, ..., v, € secTM,

P
dA(vo. 1. ... v)) = Y (=D'0i(A(vo. v1..... B ... V)

i=1

+ Z (=)™ A([v;, Vi]vo, Vi, .. Vil D), D).

0<i<j<p

(4.54)
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Remark 4.40 Note that due to property (ii) the exterior derivative does not satisfy
the Leibniz’s rule, and as such it is not a derivation. In fact the technical term is
antiderivation (see [3]).

Remark 4.41 Let x' be coordinate functions of a chart (U, ¢) of an atlas of M. A
coordinate basis for TU in that chart is denoted {9/0x'}. This means that for each
xeU,od/ox |x is a basis of T, U. As we already know, the dual (coordinate) basis for
T*U is denoted” {dx'}. This means that d¥|_is a basis for T U. We have (indeed)
that

A (3/0x)| = /x|, = & (4.55)

4.2.2 The Interior Product of Forms and Vector Fields

Another important antiderivation is the so called interior product (sometimes also
called inner product).

Definition 4.42 Given a vector field v € secTM we define the interior product
extensor of v with « € sec /\” T*M as the mapping

2 p—1
sec T*M x sec /\1 T*M — sec /\1 T*M,
(v,0) > iy, (4.56)
where i, : sec A? T*M — sec \P~' T*M satisfy
(i) Forany o,f € sec AT*M and a,b € R,
iy (ax + bB) = ai,a + biyB. (4.57)

(i) if f € sec /\0 T*M is a smooth function, then i,f = 0,
(iii) If {e;} is an arbitrary basis for TU, U C M, and {6} its dual basis,

p
e O AL A O =Y (D)0 A LB AL A, (4.58)

r=1

where as usual #/means that the term @/t is missing in the expression.

"Eventually a more rigorously notation for a basis of 7* U should be {dx'}.
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From Eq. (4.58) it follows that for A, € sec \’T*M and B, € sec \T*M we
have

i,(A) A B,) = iyA, A B, + (=1)A, Ai,B, (4.59)

and we usually say that i, is an antiderivation.

Exercise 4.43 If {x'} are coordinate functions of a local chart of M, and v = v' %,
show that i,dx! = v'.

Exercise 4.44 Properties of i,. Show that
2

i, =0, (4.60)

di, +i,d =£,, (4.61)

[£v7 iw] = £yiy —iy£, = i[‘U, W], (4.62)

£,d = d£,. (4.63)

Equation (4.61) is sometimes called Cartan’s magical formula. It is really, a
very important formula in the formulation of conservation laws, as we shall see
in Chap. 9.

4.2.3 Extensor Fields

Let {#'} be an arbitrary basis for sec T*U, U C M. Let k = k;68' € sec \' T*M and
0= 2wy, 00 A AOTesec N'T*M ,r=1,2,....n.

Definition 4.45 A (1, 1)-extensor field 7 : sec \' T*M — sec \' T*M and its
extension f : sec /\1 T*M — sec /\l T*M are the linear operators given by

t(k) = t(/ciGi) = Kit(Gi),

1 ) ) 1 ) .
t(w) = g(ﬁw,-lm,-r@” Ao ANOT) = —wyy  1(0") A A (BT (4.64)

r!

forall k and w, r = 1,2, ...n. Moreover, if f € sec /\OT*M, we put t(f) = f.
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4.2.4 Exact and Closed Forms and Cohomology Groups

Definition 4.46 A r-form G, € sec /\" T*M is called closed (or a cocycle) if and
only if dG, = 0. A r-form F, € sec /\" T*M is called exact (or a coboundary) if
and only if F, = dA,—|, with A, € sec /\r_1 T*M.

Definition 4.47 The space of closed r-forms is called the r-cocycle group and
denoted by Z"(M). The space of exact r-forms is called the r-coboundary group
and denoted by B"(M).

We recall that the sets Z"(M) and B" (M) have the structures of vector spaces over
the real field R. Since according to Eq.(4.53iv) d> = 0 it follows that B"(M) C
Z"(M). Then if F, = dA,—; = dF, = 0, but in general dG, = 0 & G, = dC,_|,
with C,_; € sec /\r_1 T*M.

Definition 4.48 The space H"(M) = Z"(M)/B"(M) is the r-de Rham cohomology
group of the manifold M. Obviously, the elements of H"(M) are equivalent classes
of closed forms, i.e., if F,,F. € secH"(M), then F, — F, = dW,—, W, €
sec N T*M.

As a vector space over the real field, H" (M) is called the r-de Rham vector space
group of the manifold M.

Definition 4.49 The dimension of the r-homology® (respectively cohomology)
group is called the Betti number b, (respectively b") of M.

A very important result is the

Proposition 4.50 (Poincaré Lemma) If U C M is diffeomorphic to R" then any
closed r-form F, € sec \" T*U (r > 1) which is differentiable on U is also exact.

Proof For a proof see , e.g., [25].1

Note that if U C M is diffeomorphic to R” then U is contractible to a point p € M.
Also, from Poincaré’s lemma it follows that the Betti numbers of U, b" = 0,r =
1,2,...,r.

Any closed form is exact at least locally and the non triviality of de Rham
cohomology group is an obstruction to the global exactness of closed forms.

Remark 4.51 1Tt is very important to observe that Poincaré’s lemma does not hold
if F, € sec /\r T*M is not differentiable at certain points of R”, since in that case
the manifold where F, is differentiable is not homeomorphic to R". The ‘classical’
example according to Spivack [43] is A € sec /\1 T*R?,

A= —ydx + xdy

Ty = dlaretan z). (4.65)

8See Definition 4.65.
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Observe that A is differentiable on R? — {0}, but despite the third member of
Eq. (4.65) A is not exact on R?, because arctanﬁ is not a differentiable function
on R2.

4.3 Integration of Forms

In what follows we briefly recall some concepts related to the integration of forms
on orientable manifolds. First we introduce the definition of the integral of a n-form
in an n-dimensional manifold M and next the integration of a r-form A, € sec T*M
which is realized over a r-chain.

4.3.1 Orientation

Let M be an n-dimensional connected manifold and U,,Ug C M, U, N Ug #
@. Let (Uy, ¢a), (Ug, @g) be coordinate charts of the maximal atlas of M with

coordinate functions {x! } and {X’/é}, i,j=1,2...,n Lete € U, N Ug. The natural

ordered bases {%‘ } and {% } of T.M are said to have the same orientation if
o e ﬁ e

. i| > 0. If J < 0 the bases are said to have opposite orientations.
e

An orientation at e € U, N Ug is a choice of an ordered basis (not necessarily a
coordinate one) for T,M.

Now, suppose that the basis {%‘ } is declared positive (a right-handed basis).

A orientation in T,M induces naturally an orientation in 7*M as follows. Let { 6’ |e}
be an ordered basis of T*M. Let 7, = 6! |e A+ A 0",. Then,

"’(%e’ ’aize)
. (a),) o'l (a],) - 'L (%))
GG ED |
. (]) o () o )
If r(ailj 7| ) > 0 we say that the ordered basis (6]} of 7M is

i

> oxp

positive. If 7, ( % e ) < 0 we say that the ordered basis {9i|e} of TS M is

negative.
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Suppose that for all e € U, N Ug we have J = det [ZL}} > 0. In this case we
B
define that on U, N Uy that the bases {%} and {ail} of TU, and TUg have the same
« Xﬁ
orientation. If J = det |:§—X'-;i| < 0 we say that the bases have opposite orientation on
B
Uy N Ug.

Definition 4.52 Let {U,} be a covering for M, an n-dimensional connected mani-
fold. We say that M is orientable if for any two overlapping charts U, and Upg there

exist coordinate functions {x’ }, {Xjﬂ} for Uy and Upg such that det gxif*:| > 0.
B

Remark 4.53 From what has been said above it is clear that if M is orientable, there
exists an n-form t € sec /\"T*M called a volume element which is never null.

Thus, we have the alternative (equivalent) definition of an orientable manifold.

Definition 4.54 A connected n-dimensional manifold M is orientable if there exists
a non null global section of N\"T*M and t,7" € sec /\"T*M define the same
orientation (respectively opposite orientation) if there exists a global function A €
sec \"T*M such that A > 0 (respectively A < 0) such that T/ = Ar.

Remark 4.55 Of course, a given orientable manifold M admits two inequivalent
orientations, one is declared right-handed, and the other left-handed. It is quite
obvious that there are manifolds which are not orientable, the classical example is
the Mobius strip, which may be found in almost all books in differential geometry,
as, e.g., [3, 25].

4.3.2 Integration of a n-Form

In what follows we suppose that M is orientable.” Let (U, @) be a chart of the
maximal atlas of M and {x'} the coordinate functions of the chart. Let i €
sec /\OT*M be a Lebesgue integrable function and'® v = dx! A --- A dx" €
sec \"T*M.

Definition 4.56 The integral of At € sec \"T*M in21 C U C M is

/ht = /h o 1 (x)dx! .- dx" (4.67)
A

P(2)

°In Chap. 6 we will learn that a spacetime manifold admitting spinor fields must necessarily be
orientable.

100f course, we should write T = ¢ (dx! A --- A dx") since dx’ are 1-forms in T,
is a sloppy (universally used) notation.

n
w0y R S0, ours



128 4 Some Differential Geometry

where in the second member of Eq.(4.67) is the ordinary multiple integral of a
Lebesgue integrable function 1 = h o ¢! (x) of n variables.

Letbe 2l C U NV and (V,¥) another chart of the maximal atlas of M with
coordinate functions {x”} and suppose that J = det [ﬂ] > 0on U N V. Then we

oax’/
can write that

ht =hoy YWY A~ AdX™ = ho T (XN [T dX A Adx™ (4.68)

and

/ht = / hoy ' () |J)axt---ax™, (4.69)
2 ¥ ()
which corresponds to the classical formula for a change of variables in a multiple
integral.
Now, if M is paracompact, i.e., there is an open covering {U,} of M such that
each e € M is covered by a finite number of the U, a partition of the unity associated

to the covering {U,} is a family of differentiable functions p, : M — R such that:
(@) 0 < py < 1;(b) pu(e) = O forall e ¢ Uy; (c) If k is the finite number of U,

k

covering e then for any e € M we have that Z Pa (e) = 1.1t is obvious that we
o=

can write

W)=Y pu@h@ =" _ ho(e). (4.70)

We then have the
Definition 4.57 The integral of ht € sec \"T*M in M is

/hr = /har => / hy 0 93 (xX')dx" - - - dx" (4.71)
M Uy 9o (Uqg)

We may verify that the definition is independent of the choice of atlas used for M
(and thus of the partition of the unity used) if the new atlas has the same orientation
as the previous one.

4.3.3 Chains and Homology Groups
Orientation of Subspaces
Let (u',...,u") be a right handed coordinate system for R”. For any R" C

R" (u',...,u") is a naturally right handed coordinate system for R”, which is
supposed to be coherently oriented with R”.
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Definition 4.58 A r-rectangle P” in R” C R” is a naturally positive oriented subset
of R" such that @’ < u' < b',i = 1,...,r. The boundary of the rectangle P" is the
set dP"of 2r rectangles P"~! € R"™! defined by the faces u' = a' and u' = b’ of P".
We suppose that the boundary dP" is coherently oriented with P". That means that
any face has the orientation (u!,...#,...u")if u' = a',iis even and u’ = b', iis
odd and the opposite orientation if ' = a',iis odd and u' = b', iis even.

Next we introduce the concept of elementary chain in M.

Definition 4.59 An elementary r-chain or ¢, in a n-dimensional connected
manifold M is a pair (P',f), withf : R” D U — M a differentiable mapping. The
image of the P" rectangle is denoted by suppc,. When f is a diffeomorphism suppc,
is called an elementary r-domain of integration.

Definition 4.60 The boundary of an elementary r-chain is the image of dP".

Definition 4.61 A r-chain on M is a formal linear combination of elementary r-
chains c,; with real coefficients C, = > ; 4iCri- The space of r-chains in M forms a
vector space over the real field. It is denoted by C,(M) and called the r-chain group.

Remark 4.62 We are in general interested in formal locally finite linear combina-
tions with @; = +£1, in which case C, is said a domain of integration on M. More
generally, in algebraic topology the coefficients a; are in many applications elements
of a finite group. In that case C,(M) is a group, but it is not a vector space. That is
the reason why C,(M) has been called the r-chain group.

Definition 4.63 The boundary operator d is a mapping
d:C, (M) — Cr— (M) (4.72)

such that for any r-chain C, =}, a;c;;

aC, = ZJ_ a;oc,;, (4.73)

where dc,; is the image under f of an elementary P;j-rectangle.

The boundary operator d has the fundamental property
? =0, (4.74)

a formula that will be proved below.

Definition 4.64 A finite r-chain C, is said to be a cycle if and only if dC, = 0. The
space of cycles is denoted Z,(M). Also, a finite r-chain C, is said to be a boundary
if and only if C, = dC,_ and the space of boundaries is denoted by B,(M).

Since 9% = 0 it follows that B,(M) C Z,(M). We then have

Definition 4.65 The quotient set H.(M) = Z,(M)/B,(M) is called the r-homology
group of M.
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Remark 4.66 Recall that the dimension of the r-homology group is called the Betti
number b, of M.

In what follows we use the standard convention that Z°(M) is the space of
differentiable functions 4 such that dh = 0. Also, we agree that B'M) = @. Finally,
we agree that Zy(M) = Cy(M) and that Bo(M) = @.

4.3.4 Integration of a r-Form

Definition 4.67 The integration of F, € sec \" T*M over suppC, is
F, = | F. = ; *F,, 4.75
/ Z] % / Zi Y / ! (473)
Cr Crj P;

where f* is the pullback mapping induced by f.

When F, is continuous and C, is finite the integral is always defined. The integral
is also always defined if F, has compact support and C, is locally finite. In what
follows we suppose that this is the case. Definition 4.67 shows very clearly that it is
bilinear in F, and C, and suggests the definition of a non degenerated inner product
() : C,(M) x sec \"M — R given

(©.F) = [ F. (4.76)
Cr
With the aid of that definition we can say that two chains C, and C, ' are
equal if and only if (C,, F,) = (C., F,). This observation is important because the
decomposition of a chain into elementary chains is not unique.
Recall that given a manifold, say M with boundary, its boundary is denoted by
dM. The manifold M is called triangulable if it can be decomposed as a union of

adjacent n-domains of integration with orientation compatible with the orientation
of M.

4.3.5 Stokes Theorem

Theorem 4.68 (Stokes) For any F, € sec \" T*M and C, € C,(M) it holds
/ dF, = / F,. 4.77)
ol ac,

Proof For a proof, see, e.g., [25].1
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Stokes formula can be written in the suggestive way
(Cy,dF,) = (3C,, F}) (4.78a)
Proposition 4.69 The boundary operator d has the fundamental property
¥ =0. (4.79)
Proof Tt follows directly from the fact that @ = 0 and Stokes theorem. Indeed,
(0°C,,F,) = (3C,,dF,) = (C,,d*F,) = 0,

which proves the proposition.ll

4.3.6 Integration of Closed Forms and de Rham Periods

We now investigate integration in the case when G, € sec \" T*M is closed. The
inner product introduced by Eq. (4.76) permit us to define a mapping from the space
of closed (cocycles) forms Z"(M) into the (dual) space of cycles Z,(M), by
1:Z7(M) — Z,(M), (4.80)
such that for any G, € sec /\" T*M and z, € Z,(M),
I(G))(z) = (2, G)). (4.81)
Note now that

(zr + 0c, Gy) = (2, G;) + (0c, G;) = (2, G;) + (¢, dG;) = (2, G,), (4.82)

because G, is closed. This implies that I(G,) can be considered as a linear function
on the equivalent class of z, modulus B,(M), i.e., it defines a mapping

I:Z' (M) — H,(M). (4.83)

Also, I(G, + dG,—1) = I(G,), so it is obvious that I really defines a linear
transformation

I:H (M) - H.(M). (4.84)

Theorem 4.70 (de Rham 1) The mapping1 : H (M) — H,(M) is an isomorphism.

If H.(M) is finite dimensional as when M is compact and ifzﬁl), e (with b =
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the r-Betti number) is a r-cycle basis of H.(M) and if 1, ..., w, € R are arbitrary
numbers then there is a closed r-form G, € Z' (M) such that

D.Gy=m,i=1,....r (4.85)

Proof See, e.g., [25].1

Definition 4.71 The number 7, in Eq. (4.85) is called the period of the form G, on
the cycle 7D,
Corollary 4.72 (de Rham 2) [f for a closed form G, € sec \" T*M and for any
2 e H, (M) we have (2, G,) = 0 then G, is exact, i.e., G, = dG,_, for some form
G,—1 € sec \' T*M.

Note also, that when M is compact the spaces H,(M) and H'(M) are finite
dimensional and dim H" (M) = b”. Thus de Rham theorem justifies writing

H'(M) = (H,(M))*, (4.86)

and the nomenclature: homology and cohomology groups for H,(M) and H"(M).

4.4 Differential Geometry in the Hodge Bundle

4.4.1 Riemannian and Lorentzian Structures on M

Next we introduce on M a smooth metric field g € sec TYM and gives the

Definition 4.73 A pair (M,g), dimM = n is a n-dimensional Riemann structure
(or Riemann manifold) if g € sec TgM is a smooth metric of signature (n,0). If g
has signature (p, g) with p + g = n, p # n or g # n then the pair (M, g) is called
a pseudo Riemannian manifold. When g has signature (1,n — 1) the pair (M, g) is
called an hyperbolic manifold. When dim M = 4 and g has signature (1, 3) the pair
(M, g) is called a Lorentzian manifold.'!

We already defined the concept of oriented manifold. Thus, we say that a Rieman-
nian (or pseudo Riemannian or Lorentzian) manifold is orientable if and only if it
admits a continuous metric volume element field 7, € sec \" T*M given in local
coordinate functions {x'} covering U C M by

7, = /|detg|dx! A ... A X", (4.87)

""'When Lorentzian manifolds serve as models of spacetimes it is also imposed that M is
noncompact. See Sect. 4.7.1.
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where

0

0
detg = det [g(@, @)} . (4.88)

Proposition 4.74 Any C" manifold M, dimM = n admits a C"~' Riemannian
metric g (signature (n,0)) if and only if it is paracompact.

Proof For a proof see, e.g., [3].1

Let us consider now a smooth oriented metric manifold M = (M,g, 1),
dimM = n, where g is a smooth metric field of signature (p,q) and 7, €
sec \" T*M. We denote by g € sec TSM the metric tensor of the cotangent bundle.
Also we denote the scalar product induced on A 7*M by the metric tensor g
€ secToM bylzé s sec \ T*M xsec \ T*M — sec \" T*M.If A, B € sec /\pT*M

we have (recall Eq. (2.123))

(A-B)y, = A A *B (4.89)
8 8

4.4.2 Hodge Bundle

Definition 4.75 The Hodge bundle of the structure M is the triple
M) = "M, -, 15). 4.90
AN = (A\TM, . 7) (4.90)

The importance of the Hodge bundle is that besides the exterior derivative
operator, we can now introduce a new differential operator called the Hodge
codifferential. Equipped with these two operators we can write, e.g., Maxwell
equations (with currents) in a diffeomorphism invariant way'? (see Sect. 4.9.1). This
is a very important fact, which is often not well known as it should be.

12When there is no chance of confusion we eventually used the symbol - instead of the symbol - in
4

order to simplify the notation.

BBFor the exact meaning of the concept of diffeomorphism invariance of a spacetime physical
theory (as used in this text) see Sect. 6.6.3.
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Definition 4.76 The Hodge codifferential operator in the Hodge bundle of /\ (M)
is the mapping § : sec A\ T*M — sec A\ T*M, given, for homogeneous multi-
g

forms, by:
§ = (—1)"»"ldx, (4.91)
g P |
where g is the Hodge star operator associated to the scalar product K
Definition 4.77 The Hodge Laplacian operator is the mapping
? : sec/\T*M — sec/\T*M
given by:
O = —(dé + 8d). (4.92)
g g g

The exterior derivative, the Hodge codifferential and the Hodge Laplacian satisfy
the relations:

dd=85=0; ©=(d—08)>%
88 8 8
Ao = Od; 8O = O;
8

g g8 88 4.93
Sx = (—1)r+1*d; *8 = (_1)rd*; ( )
g8 g g8 g
déx = *x6d; *db = ddx; *xO = Ox.
88 88 g 8 g 8 g8 g8

Remark 4.78 When it is clear from the context which metric field is involved we

use the symbols %, § and < in place of the symbols x, § and < in order to simplify
g g g

the writing of equations.

4.4.3 The Global Inner Product of p-Forms

Definition 4.79 Let A, B € sec /\pT*M and suppose that the support of A or B is
compact. The global inner product of these p-forms is

(A,B) = / A A %B. (4.94)

M
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Definition 4.80 Let 7 : sec /\pT*M — sec /\qT*M be a (p, g) extensor field

acting on the sections of /\pT*M of compact support. We define the metric
transpose of T as the the (g, p) extensor field 7 such that

(TA,B) = (A, T'B) (4.95)

Exercise 4.81 Show that d and § are metric transposes of each other i.e.,

(A, B) = (A, dB) (4.96)

Are the formulas given in Eq. (4.96) true for a compact manifold with boundary?

4.5 Pullbacks and the Differential

Proposition 4.82 Ler ¢* : M — N be a differentiable mapping and let h* be the
pullback mapping. Let A, B € sec )\ T*M. Then

¢*(AAB) =¢*A N G*B. 4.97)

Proof 1Tt is a simple algebraic manipulation.ll

Proposition 4.83 Let ¢ : M — N be a differentiable mapping and let ¢* be the
pullback mapping. Let A € sec \ T*M. Then,

¢*dA = d(¢p*A) (4.98)

Proof Since an arbitrary form is a finite sum of exterior products of functions and
differential of functions, we see that it is only necessary to prove the theorem for a
0-form and an exact 1-form «. The first case is true because,

¢*dg =d(go¢)
=d(¢*g) (4.99)

where we used the definition of reciprocal image. Now, if @« = dg, i.e., « is exact,
we have

¢*do = ¢p*ddg = 0.
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Also,
d(¢*) = d(¢p*dg) = d|d(¢*g)] = d*¢p*g = 0, (4.100)

and the proposition is proved.ll

Proposition 4.83 is also very much important in proving the invariance of some
exterior differential system of equations under diffeomorphisms.

4.6 Structure Equations I

Let us now endow the metric manifold (M, g), with an arbitrary linear connection
V obtaining the structure (M, g, V).

Definition 4.84 The forsion and curvature operations and the torsion and curvature
tensors of a connection V, are respectively the mappings'4:

T :sec(TM x TM) — sec TM,
p :sec(TM x TM) — EndTM

t(u,v) = Vv — Vyu — [u,v], 4.101)
pu,v) =V, V, =V, V,, — V[u,v] (4.102)
and
O, u,v) = o (t(u,v)), (4.103)
R(o,w,u,v) = a(p(u,v)w), (4.104)

for every u,v,w € sec TM and « € sec /\l T*M.

Exercise 4.85 Show that for any differentiable functions f, g and & we have

T (gu,hv) = ght(u,v),
p(gu.hv)fw = ghf p(u,v). (4.105)

14EndTM means the set of endomorphisms TM — TM.
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Given an arbitrary moving frame {e, } on TM, let {6”} be the dual frame of {ey}
(i.e., 0°(eq) = 8 ). We write:

leq.ep] = ci;;gep,

. 4.106
Ve.ep = Lf;ﬂep, ( )

where ci;;g are the structure coefficients of the frame {e, } and Lf;;g are the connection

coefficients in this frame. Then, the components of the torsion and curvature tensors
are given, respectively, by:

[c]relT?y = ©(0°. eq.€p) = Loy — LE;, — oy,

R = R(07, ey, eq.ep)
= eo(Lly) —ep(Lly,) + Lo, LY, — Ly Lo, — gLty

Qo Boap

(4.107)
‘We also have:

dor = —%cf;ﬁ@“ NCLS

Ve, 07 = —L{, 6", (108

where a),’; e sec \' T*M are the connection I-forms, ®" € sec \* T*M are the

torsion 2-forms and R, 5 € sec A\’ T*Mare the curvature 2-forms, given by:

P TP pu
W = L,aﬂQ ,
1,
eFr = 5T,’;ﬂe‘% AP, (4.109)
1
P 0 o ﬂ
RY, = 2R~wﬂ9 NG,

Multiplying Eqgs. (4.107) by %90‘ A 6P and using Eqgs. (4.108) and (4.109), we get
the Cartan’s structure equations:

dep+wf; ABF = @Or,

B

. ’ . . 4.110
dofy, + oy Aol =R, ( )

Exercise 4.86 Show that the torsion tensor can be written as

O =e, ® O 4.111)
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Exercise 4.87 Put 621+ = 03 A... A 0% and %02+ ® = x(6% A--- A H?). Show
g 4

that when ®2 = 0 we have

dOM = —A A QP — A D (4.112)

d* 021 = —@i A %0 — e — T A %D, (4.113)
g g g

4.6.1 Exterior Covariant Differential of (p + q)-Indexed
r-Form Fields

Definition 4.88 Suppose that X € sec T1§+‘1M and let

X0 @ v e see \ T, @.114)
such that
X0l v) = X1 vy, ey, 00 0. (4.115)
forvy...,v, € secTM. The Xffll_::;f:" are called (p + ¢)-indexed r-forms.
Definition 4.89 The exterior covariant differential'> D of Xffll_::;’:" on a manifold
with a general connection V is the mapping:
r r+1
D:sec /\ T"M —sec \' ' T*M.0=<r<4, (4.116)

such that!®

(r + DX, 7 (o, v1 ..., vy)
= (=D'Ve, X(00. 01 ... By vy ey OM L O1)
=0

— Z (=D X(x(vy, V), 00, V1. Dyyenn Ve, €,

0<v. =r

Copson iy, 011,01, (4.117)

15Sometimes also called exterior covariant derivative.

16 A5 usual the inverted hat over a symbol (in Eq. (4.117)) means that the corresponding symbol is
missing in the expression.
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Then, we may verify that
DX}, = dXy T+ ol AXGT 4 ol AXT (4.118)
— o) AX == ol AXT
Remark 4.90 Sometimes, Eqs. (4.110) are written by some authors [45] as:

D6? .= O°F,
“Da),’; = 'Rf’l;.” 4.119)

and D : sec AT*M — sec A\ T*M is said to be the exterior covariant derivative
related to the connection V. Whereas the equation D6 := ©” is well defined, we
see that the equation “De/, := RY,.” is an equivocated one. Indeed if Eq. (4.118)
is applied on the connection 1-forms !, we would get D!y’ = do!) + ol A
0% — 0% A ol So, we see that the symbol Do), given by the second formula in
Eq. (4.119), supposedly defining the curvature 2-forms is to be avoided. The reason
for the failure of Eq.(4.118) in that case is that there do not exist a tensor field
o € secT{M which satisfy the corresponding Eq. (4.115). More details on this

issue may be found in Appendix A.3.

Exercise 4.91 Show that if X/ € sec \"T*M and YX € sec \’ T*M are sets of
indexed forms,'” then

DX’/ A Y®) = DX A YK + (—=1)"X) ADYX. (4.120)
Exercise 4.92 Show that if X*1--*» € sec \" T*M then
DDXH it = qul....;Lp + Rlﬁs A XHsebp + .. R/Z: Ax#l....#s. (4121)

Exercise 4.93 Show that for any metric-compatible connection V if g = g,,0* ®
6" then,

Dg,, = 0. (4.122)
Since we are dealing with a metric manifold, we must complete Cartan’s structure

equations with the equations stating the relation between the connection and the
metric. For this, following the usual nomenclature [1, 40, 47] we give the

17Multi indices are here represented by J and K.
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Definition 4.94 The nonmetricity tensor field of the structures (M,g,V) is the
tensor field Q € sec TYM with components'® in the basis {6} given by

Ouap = —Vu8ap = —€u(8pa) + 8oallp + 8po LSy (4.123)
Correspondingly, we introduce the nonmetricity 2-forms, by:

1 .
Q= 3 Fog 0 A 68, (4.124)

where Qf)[;ﬁ] = g”"(Qupy — Opay)- Multiplying Eq. (4.123) by 6% A 67 and using
Eq. (4.110a), we get:

DO, = db, — ol Abg = @, (4.125)
where {0, } is the reciprocal frame of {6"} is the (i.e., 8, = g,,,0") and
¢, =0,-Q,.

Equation (4.125) can be used as the complement of Cartan’s structure equations for
the case of a metric manifold.

4.6.2 Bianchi Identities

Differentiating Eq. (4.110) and Eq. (4.125) we obtain the Bianchi identities":
(a) DO’ =dO’ + oy AOF =R A 67,
(b) DRY, = dR; — R Aol + oy ARE =0, (4.126)

(© DO, =d®, —of A®s =R A6

4.6.3 Induced Connections Under Diffeomorphisms

Let M and N be two differentiable manifolds, dimM = m, dimN = n.

18We use the notation Vb~ = V,,t = (V)b for the components of the covariant
derivative of a tensor field . This is not to be confused with V,, = ey (t{f_'_'_'), the derivative
of the components of ¢ in the direction of ¢, .

9To our knowledge, Eqgs. (4.125) and (4.126¢) are not found anywhere in the literature, although
they appear to be the most natural extension of the structure equations for metric manifolds.
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Definition 4.95 Let V be a connectionon N and X,Y € secTN and T € sec T, N,
f:N —> Rand h:M — N a diffeomorphism. The induced connection h*V on M
is defined by

h*Vh;lxh*T = h*(VxT). (4.127)
Example 4.96 Letf: N — R and Y € sec TN. Then,
h*Vh?Xh*Y =h*(VxY),

from where it follows (taking into account that for any vector field V € sec TN,
h*N = h;!N) that

h*Vh;lxh*Y foh=h*(VxY)|.foh= Vx Y|y f, Ve € M.
[4
Remark 4.97 Now, suppose that M = N and h: M — M a diffeomorphism.

Suppose that D is the Levi-Civita connection of g, then h*D = D' is the Levi-Civita
connection of h*g = g’ since using Eq. (4.127) we infer that

h*D, -ixh*g = D;;lxh*g = h*(Dx g)|,, Ve € M. (4.128)

Taking into account that®® h*[X, Y] = [h*X,h*Y] we have for X, Y € sec TM,
h*(DxY — DyX — [X,Y]) = 0. (4.129)
Remark 4.98 Equation (4.127) applied to the case M = N also implies, as the

reader may verify the important fact that the curvature tensor of h*D will be null if
the curvature tensor of D is null.

4.7 Classification of Geometries on M and Spacetimes

Definition 4.99 Given a triple (M, g, V):

(a) itis called a Riemann-Cartan geometry*' if and only if

Vg=0 and ®[V] # 0. (4.130)

208ee, e.g., [3,p. 135].

210r Riemann space.
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(b) itis called Weyl geometry if and only if

Vg #0 and e[V] =0. (4.131)
(c) itis called a Riemann geometry if and only if

Vg=0 and O[V] =0, (4.132)

and in that case the pair (V, g) is called Riemannian structure.
(d) itis called Riemann-Cartan-Weyl geometry if and only if

Vg #0 and ®[V] # 0. (4.133)
(e) itis called a (Riemann) flat geometry if and only if
Vg =0 and R[V] =0,
(f) itis called teleparallel geometry if and only if
Vg =0, O[V] #0and R[V] =0. (4.134)

For each metric tensor defined on the manifold M there exists one and only one
connection in the conditions of Eq. (4.132). It is called Levi-Civita connection of
the metric considered, and is denoted by D. If in a given context it is necessary to
distinguish between the Levi-Civita connections of two different metric tensors g

o
and g on the same manifold, we write D, D.

Remark 4.100 When dimM = 4 and the metric g has signature (1,3) we
sometimes substitute the word Riemann by the word Lorentzian in the previous
definitions.

4.7.1 Spacetimes

From nowhere besides the constraints already imposed (Hausdorff and paracom-
pact) on M, we suppose also that it is connected and noncompact [14, 38]. We
now introduce the concept of time orientability on an oriented Lorentzian manifold
structure (M, g, 7,), which plays a key role in physical theories.

Definition 4.101 Let (M,g) be a Lorentzian manifold, TM = J, ¢, TeM its
tangent bundle and 7 : TM — M the canonical projection (see Appendix). The
causal character of (e, v) € TM is the causal character of v (Definition 2.62).

Definition 4.102 A line element at x € M is a one-dimensional subspace of T, M.
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Proposition 4.103 Let M be a C'paracompact and Hausdorff manifold,
dim M = 4. Then the existence of a continuous line element field on M is equivalent
to the existence of a Lorentzian structure on M.

Proof For a proof see [3].1

Proposition 4.104 The set T C TM of timelike points is an open manifold and it
has either one (connected) component or two.

Proof A proof of this important result can be found in [38].H

Definition 4.105 A connected Lorentzian manifold (M,g) is said to be time
orientable if and only if ¥ has two components and one of the components is labeled
the future T+ and the other component T~ is labelled the past. We denote by 1 the
time orientability of a Lorentzian manifold.

Definition 4.106 A spacetime is a pentuple (M,g,V,1,,1) where (M,g) is a
Lorentzian oriented and time oriented manifold and V is an arbitrary covariant
derivative operator on M.

Definition 4.107 When (M.g,V, 1, 1) is a spacetime and V = D is the Levi-
Civita connection of g the spacetime is said to be Lorentzian. When Vg = 0 and
O(V) # 0 we call the structure 0t = (M, g, V, 1, 1) a Riemann-Cartan spacetime.
The particular Riemann-Cartan spacetime for which R(D) = 0, ®[V] # 0 is called
a teleparallel spacetime (also called Weintzenbock spacetime according to [26]).

Definition 4.108 A Lorentzian spacetime structure M = (M, 3, D, 7, 1) is said to
be Minkowski spacetime if and only if M ~ R* and R(D) = 0.

Remark 4.109 We just establish that any Lorentzian manifold admits a continuous
element field. If it is also time orientable, we can choose a direction for the
continuous element field, and say that it is a timelike vector field pointing to the
future. This is a nontrivial result and very important for our discussion of the
Principle of Relativity (Chap. 6).

4.8 Differential Geometry in the Clifford Bundle

It is well known [28] that the natural operations on metric vector spaces, such as,
e.g., direct sum, tensor product, exterior power, etc., carry over canonically to vector
bundles with metric tensors. Then we give the

Definition 4.110 The Clifford bundleof differential forms of the metric manifold
(M,g) is:
™
ce,g) = —— = JcuriM. g, (4.135)

g XEM
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where 7M denotes the (covariant) tensor bundle of M, J; C TM is the bilateral
ideal of TM generated by the elements of the forma ® 8 + 8 ® « — 2g(«, B), with
o,fesecT*M C TM and CL(T; M, g,) is the Clifford algebra of the metric vector
space structure (7'M, gy).

It will be shown in Chap.7 that the Clifford bundle C£(M,g) (as defined by
Eq. (4.135)) is a vector bundle associated to the principal bundle of orthonormal
frames Psoep 4, 1.€.,

CUM,g) = Psoep g Xaa Ry 4. (4.136)
In Eq.(4.136) Ad is the adjoint representation of Spin, ., ie., Ad : SO,  —
Aut(R, ), u > Ad,, with Ad,A = Au~!,Yu € SO; YA € Ry =~ CUTIM, 9y).
Details on these groups may be found in Chap. 3. In Chap. 7 we scrutinize the vector

bundle structure of the Clifford bundle of differential forms over a general Riemann-
Cartan manifold modelling spacetime.

4.8.1 Clifford Fields as Sums of Nonhomogeneous Differential
Forms

Definition 4.111 Sections of C£(M, g) are called Clifford fields.

We recall some notations and conventions. By F(U) we denote the frame bundle
(see Appendix A.3) of U C M. A section of F(U) will be denoted by {e,} €
sec F(U). The dual frame of a frame {e,} will be denoted by {6*}, where 8% €
secT*U C T*M. When {e,} is a coordinate frame associated to the coordinate
functions {x"} of a local chart covering U we use instead of e, the notation e, = 9,
and in this case 0% = dx®. When {e, } refers to an orthonormal frame we use instead
of e, the notation e, and instead of 6% the notation 62.

Recall that as a vector space over R, C£(TFM, g,) is isomorphic to the exterior
algebra A T M of the cotangent space and

AT =B, N\'Tim, (4.137)

where /\k TrM is the (Z)-dimensional space of k-forms. Then, there is a natural
embedding > A\ T*M < C{(M,g) [21] and sections of C£(M, g)—Clifford fields
(Definition 4.111)—can be represented as a sum of non homogeneous differential
forms. Let {e,} be an orthonormal basis for TU C TM, i.e., g(ea,eyp) = Nap, Where
the matrix with entries 7, is the diagonal matrix, diag(1,1,.....—1,...,—1) and
(a,b,i,j,... = 1,2,...,n). Moreover, let {6} € sec /\1 T*M — secCl(M,q)

22Recall again that the symbol A <> B means that A is embedded in Band A C B.
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such that the set {6?} is the dual basis of {e ,}. We denote by {6;} be the reciprocal
basis of {61}, 1i.e., 6; - 0} = S‘i'.
g

For the particular case of a 4-dimensional spacetime, of course, the range of the
bold labels are a, b, i,.. = 0, 1, 2, 3. Recall that the fundamental Clifford product is
generated by

003 + 6ipt = 29, (4.138)
If C € secCl(M, g) is a Clifford field, we have:

: 1 . 1 .
C=s4+v0"+ Ebije‘&' + atijkele"@k +p95 s (4.139)

where 65 = 6°619203 is the volume element and

0
s, Vi, bij, tiji, P € sec /\ T*M <> secCL(M, g). (4.140)

4.8.2 Pullbacks and Relation Between Hodge Star Operators

Let M be a n-dimensional manifold and g, g € sec TSM two metrics of the same
signature with corresponding metrics (for the cotangent bundle) §,g € sec TSM .
Let g and g be the extensor fields associated to § and g.Let h: M — M be a
diffeomorphism such that

g=nh"g. (4.141)

From the algebraic results of Sect.2.8 we easily infer that there exists a metric
gauge extensor field 4 such that

g(a) : b= h(a) : h(b) (4.142)
g g

for any a,b € sec /\IT*M and we write g = h'h. Then, as in the purely algebraic
case discussed in Sect.2.8 we can also show that we have the following relation
between the Hodge star operators associated to g and g

«=h"%h (4.143)
g

0 %

Remark 4.112 1In this case we say that the metric gauge extensor 4 is related to the
pullback mapping h* and describes an elastic distortion. However, keep in mind
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that in general given a it does not implies the existence of h* such that Eq. (4.141)
holds. In this case # is said to generate a plastic distortion. More details in [9].

‘We now show the

Proposition 4.113 Leth : M — M a diffeomorphism. Let g, g € sec TSM two
metrics of the same signature. Then for any € sec \'T*M we have

*h*o =h*»ow (4.144)
8 g

Proof As in Remark 4.24 take two charts (U, ¢) and (V, y), U, h(U), C V with
coordinate functions x’ and y’ such that and x'(¢) = y'(h(e)), i.e., calling x'(¢) =
X, y'((e)) = ' we have 3y'/d¥ = &}, dx' = dy'. Let also 2(3/0y,0/0y") =
2u(¥’). Then it follows that g (x) = gu(y/(x')) = gu(x)) and detg = detg. Now, if
w = [}!a),-lm,-p (x') dx* A...Adxi, we can write (taking into account that \"T*M <
CL(M,g) and also \'T*M < CL(M, 3))

*h*ow = h*w.t, = h*wT,
g g

1 L .
= ijil---ip (y’(x’))dx” A Adx? /| detgldx' AL A dX"

1 = . "
= ij,-lm,-p(y’(x’))dy” A Ady?y|det8ldy' AL A dy"

1 e =
= ;a)il___ip (y') Ay AL A dy”’# |detg|dy' A ... Ady"
: 4
=h*»w,
8

and the proposition is proved.ll

Remark 4.114 When g = h*g , there exists an associated metric gauge extensor
field 4 such satisfying Eq. (4.142), i.e., g¢ = h'h. The relation xh*® = h* » » and
8 £

* = h™! % h permit us to write the suggestive operator identity
8 g

hh*ow = hh* % o. (4.145)

0 %

Exercise 4.115 Consider any diffeomorphism h : M — M, and two metrics g and
g such that g = h*g. Show that

*xd*xh*o =h*"*xd*xw, (4.146)
g8 8 g £

forany w € A\T*M.
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Solution The first member of Eq.(4.146) can be writing successively using
Eq.(4.144) as

*xd » h*w = *dh™* x @
g ¢ g 3

4.8.3 Dirac Operators

We now equip the Riemannian (pseudo Riemannian, or Lorentzian) manifold (M, g)
with a standard structure (M, g, B), where D is the Levi-Civita connection of g.
We are going to introduce in the Clifford bundle of differential forms C£(M, §)
a differential operator 9, called the standard Dirac operator,23 which is associated to
the Levi-Civita connection of the structure (M, g, lo)) and we study the properties of
that operator. Next we define new Dirac-like operators associated with a connection
different from the Levi-Civita one, i.e., to connections V defining a general
Riemann-Cartan-Weyl geometry (M, g, V). Moreover, making use of the results
developed in Sect.2.7, we show that it is possible to introduce infinitely many
others Dirac-like operators, one for each bilinear form field defined on the manifold
M of the structure (M, g, 5). These constructions enable us to formulate the
geometry of a Riemann-Cartan-Weyl space in the Clifford bundle C£(M, §). Some
interesting geometrical concepts, like the Dirac commutator and anticommutator,
are introduced. Moreover, we show a new decomposition of a general linear
connection, identifying some new relevant tensors which are important for a clear
understanding of any formulation of the gravitational theory in flat Minkowski
spacetime (Chap. 11) and other related subjects appearing in the literature.

The Standard Dirac Operator

Givenu € secTM and A € sec \'T*M < secC{(M,3) consider the tensorial
mapping A +— lo)uA € sec N'T*M — secCL(M, c_c‘f;). Since B,Jg C J§, where J§
is the ideal used in the definition of C£(M, §), we see immediately that the notion
of covariant derivative (related to the Levi-Civita connection®) pass to the quotient

Bt is crucial to distinguish the Dirac operators introduced in this chapter and which act on sections
of Clifford bundles with the spin Dirac operator introduced in Chap. 7 and which act on sections
of spin-Clifford bundles.

24 And more generally, to any metric compatible connection.
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bundle C¢(M, §), i.e., given A, B € sec \'T*M < secCL(M,§) we have taking
into account the fact that Bu,é =0= 5,,% that

Pui(A®B—B®A) +§(A. B

Dy (AB) 7

= 5,,[%(A ®B—B®A)] + (Du§)(A, B) + §(DuA, B) + &(A, D,B)
= Du(A)B + AD,(B). (4.147)

Before continuing we agree that the scalar and contracted products induced by §

will be denoted simply by the symbols - and _ instead of the symbol - and .
g £

Definition 4.116 The standard Dirac operatoracting on sections of C£(M, g) is the
first order differential operator

)= 6°D,,. (4.148)
For A € secCl(M, g),
DA = 0%(Dy, A) = 6% 1(Dy,A) + 6% A Dy, A)
and then we define:

LA = 6°4(Dy A).
IAA = 0% A (D, A),

in order to have:
d=0.+ A (4.149)

Remark 4.117 Note moreover that for A € sec /\1 T*M < secCL(M,g) we can
also write

A = §-A. (4.150)

Exercise 4.118 Verify that the operators §. and § A satisfy the following identities:

(a) INAAB) = (WIAA) AB +A A (DAB),
() 83(A,1By) = (WAA) B, +A,s(1B): r+1 <5, .151)
(©) dox = (1% dA; o= (=1 dA.

In addition to these identities, we have the important result [24, 32].
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Proposition 4.119 The standard Dirac derivative § is related to the exterior
derivative d and to the Hodge codifferential § by:

d=d-34, (4.152)

that is, we have 9A = d and § = —6.

Proof Tf f is a function, §AF = 6% A Do f = eq(f)0% = df and dof = 09D, f =
0 -beaf = 0. For the 1-form fields 6” of a moving frame on T*M, we have § AG? =
0% A D, 00 = —T030° A 0F = —3f) A 0P = dor.

Now, for a r-forms field w = %walmaré’“l A...A0%, we get, using Eq. (4.151a),

1
Inw = —(dwa,..a, A 0% Ao AO% + Wy 0, O™ A O A A G
r!
4+ 4+ (_1)r+lwalmarea1 Ao A QY1 A d@ar)
=dw.

Finally, using Egs. (4.93c) and (4.151c), we get §ow = —5w.1

Note also that given an arbitrary coordinate moving frame {6* = dx*} on M
(x? : U — R, U C M, are coordinate functions), we have the following interesting
relations:

(@) .67 = 960 = =g T = V/[(det§)]d, (V/](det §)1[g")

o H s 5 (4.153)
(b) §10, = -0, = ['hs = V/|(det§)[3,(v/|(det)~"]),
where {3, = 9/0x”} is the dual frame of {§*}. Note that detg = (det§)~".
Exercise 4.120 Verify that if o, B € sec /\1 T*M < sec C{(M, §) then
Ha-B)= (- PB + (B o —as(AB) — Ba(dr). (4.154)

4.8.4 Standard Dirac Commutator and Dirac Anticommutator

Definition 4.121 Given the 1-form fields o, 8 € /\1 T*M — secCL(M, ) and 9,
the standard Dirac operator of the manifold, the operators [, ] and {, } given by

[or. 1 = (o DB — (B - D
fo, By = (@- DB+ (B Vo, (4.155)

are called, respectively, the Standard Dirac commutator (or Lie bracket) and the
Standard Dirac anticommutator of the 1-form fields « and S.
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‘We have the identities:

e, B = dae A B) = [(B-0) A B — e A (-B)] (4.156)
{o, B} = In(@- B) — [(Dra) B — as(IB)].

The algebraic meaning of these equations is clear: they state that the Dirac
commutator and the Dirac anticommutator measure the amount by which the
operators o = —§ and § A = d fail to satisfy the Leibniz’s rule when applied,
respectively, to the exterior and to the dot product of 1-form fields.

Now, let {e, } be an arbitrary moving frame on TM, {0°} its dual frame on T*M
and {0, } the reciprocal frame of {#°}. From Egs. (4.155) we obtain, respectively:

[6. 651 = De, 0 — De, 6
= (7, - 5.0,
= 0, (4.157)
and
{62, 05} = De, 05 + De, 60,
= (0 + D)6,
= b6, (4.158)

O e . .. . o o
where Ffw are the components of the Levi-Civita connection D of §, c.‘;ﬁ are the
structure coefficients of the frame {e,} and where we introduce the notation bf;'ﬂ =

19‘.’;. 2+ lg‘.p .- The meaning of these coefficients will be discussed below.

Clearly, Eq. (4.157) states that the Dirac commutator is the analogous of the Lie
bracket of vector fields. These operations have similar properties. In particular, the
Dirac commutator satisfies the Jacobi identity:

[oe. [B. @]] + [B. [@. o] + [w. [e. 811 = 0. (4.159)

a,B,w € /\l T*M < sec CL(M,g). Therefore it gives to the cotangent bundle of
M the structure of a local Lie algebra.

4.8.5 Geometrical Meanings of the Commutator
and Anticommutator

The geometrical meanings of the Dirac commutator and the Dirac anticommutator
are easily discovered from Egs. (4.157) and (4.158). Indeed, Eq. (4.157) means that
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-
Oa

Fig. 4.4 Geometrical interpretation of the: (a) Standard commutator [6,, 6] and (b) Standard
anticommutator {6, 63}

the Dirac commutator measures the amount by which the vector fields e, = §(f,,)
and e, = §(6,) and their infinitesimal lifts (¢, = §(6,.), €¢j = §((6;,)) along
their integral lines fail to form a parallelogram. By its turn, Eq. (4.158) means that
the Dirac anticommutator measures the rate of deformation of the frame {6,}, i.e.,
{0y, 0} gives the rate of dilation of the vector field g(6,, ) under dislocations along
its own integral lines, while {0,,0g}, @ # B, gives the rate of variation of the
angle between §(f,,) and c_c‘fj(@ﬁ,) under dislocations in the direction of each other
(Fig.4.4).
We state now another interesting result:

Proposition 4.122 The coefficients bf;'ﬁ of the Dirac anticommutator of a moving
frame {0,} are given by:

by = —(£erg)ap, (4.160)

where £¢0 denotes the Lie derivative in the direction of the vector field e and {e”}
is the dual frame of {0y}

Proof The coefficients 12’;/3 of the Levi-Civita connection of g are given by:
(e.g.,[3])

o .. 1, ° ° o
F-Z,s = Egpfr [ea(gﬁd) + eﬂ(gaa) - eo(gaﬂ)]

Lo o [ o - o . o .
o [gwcf;ﬁ + Bupch — g,wcfjw] . (4.161)
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Hence,
bi;;s = §pa I:eﬂ(é%ao) + ea(§oﬁ) - eo(§ﬁa) - §uad73:7 - §Mﬁc.lg¢'y] (4.162)

and the rh.s. of Eq.(4.162) is just the negative of the components of the Lie
derivative of the metric tensor in the direction of ¢” = g"°e,.H

Killing Coefficients

In view of the result stated by Eq. (4.160), the attempt to find (if existing) a moving
frame for which bf;;g = 0 is equivalent to solve, locally, the Killing equations for
the manifold. Because of this we shall refer to these coefficients as the Killing
coefficients of the frame. Of course, since the solutions of the Killing equations are
restricted by the structure of the metric as well as by the topology of the manifold,
it will not be possible, in the more general case, to find any moving frame for which
these coefficients are all null.

4.8.6 Associated Dirac Operators

Besides the standard Dirac operator we have just analyzed, we can also introduce in
the Clifford bundle C£(M, §) infinitely many other Dirac-like operators, one for each
nondegenerate symmetric bilinear form field that can be defined on the structure
(M.g,D).

Letg € sec TSM be an arbitrary nondegenerate positive symmetric bilinear form
field on M. To g corresponds ge sec TSM as already introduced. We denoted by
g :secT*M — sec T*M the associated extensor field to g and by & : secT*M —
sec T*M the field of linear transformations which induces g, i.e., have:

g(a, B) = - g(B) = h(a) - h(B)
= g(h(a). h(B)) (4.163)
forevery a, p € sec \' T*M <> sec CL(M, §).
We also denote by vV = : CL(M,§) x CL(M,§) — CL(M,J) the “Clifford
product” induced on C£(M, §)g by the bilinear form field g and by e = - : C£(M, §)x
CL(M,§) — CL(M, §) the “dot product” associated to the new Clifforfl product “V.”
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Definition 4.123 Let {0“} be a moving frame on T*M, dual to the moving frame
{eq} on TM. We call Dirac operator associated to the bilinear form g € sec TgM the
operator:

v [} ]
d=dv =(6°D,) = (6VD,,). (4.164)
g
We also define
v ]
d1=6%iD,,, (4.165)
g g
where _ is the contracted product with respect to g. Then,
g
Vv Vv Vv Vv
b=+ n=d240n, (4.166)
g g
\'

because the exterior part of the operator § coincides with the exterior part of the

operator 9.
Vv

Of course, the properties of the operator § differ from those of the standard Dirac
\
operator . It is enough to state the properties of the operator ¢, which are obtained
g

from the following proposition:

\2
Proposition 4.124 The operators §. and §. are related by:
g

v
@Ja) = @Jav) + su0, 4.167)
8

for every € secCL(M, §), where s = gp"lo)pgwé?“ € sec T*M < secCL(M,g) is
called the dilation 1-form of the bilinear form g.

Proof Given a r-forms field w = %walmaré’“l A ABY e secCl(M, ), we have

o

1
Do, = —(Dpwa,..0,)0% Ao N O,
r!

P

with

o o o
_ _TH — . —TH
Dy, ..a, = €p(Wa,...a,) Lo ®pas..a, Iy, a0y (4.168)
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Then,
PP 1 . )
0 _lDepa) = _'Dpwal...arepJ(Q A A D)
g r! 2
1o
= _|Dpwa1...ar(gpal L NN LR

r!

+ (—1)r+1gpa,490t1 A A GFTY,
or

\%

PR Y

8" D0y 0% Ao A O (4.169)
Now, taking into account that

] ] o
Lo} Lo} Lo}
8" DpWsa,..c, = Dp(8" Woay..q,) — (Dpg" )say...crrs

o

goqugm = _gpangtms
and recalling also that g*° = gP* §Z, we conclude that

v 1

;a) N (r_ 1)|§pU(DP§gwﬂdz...ar)9a2 A A B

1 o o o
o D) B 0 07 A A0
Thus, writing @gq,.. o, = §ga)w2___ar and 5, = go‘ﬁﬁagﬂp, we finally obtain the

Eq.(4.167).1

4.8.7 The Dirac Operator in Riemann-Cartan-Weyl Spaces

We now consider the structure (M, g, V) where V is an arbitrary linear connection.
In this case, the notion of covariant derivative does not pass to the quotient bundle
CL(M,3) [4]. Despite this fact, it is still a well defined operation and in analogy
with the earlier section, we can associate to it, acting on the sections of C£(M, é),
the operator:

9 =0V,

where {6%} is a moving frame on T*M, dual to the moving frame {e,} on TM.
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Definition 4.125 The operator 9 is called the Dirac operator (or Dirac derivative,
or sometimes gradient).

We also define:

3.4 = 0%(V,,A),

INA =0"A(V,A), (4.170)
for every A € sec C£(M, §), so that:
0=0.+0An. (4.171)
The operator d A satisfies, for every A, B € sec C£(M, {:}):
ANAAB) =@ AA)AB+AA(dAB), (4.172)

what generalizes Eq. (4.151a). By its turn, Eq.( 4.151c) is generalized according to
the following proposition:

Proposition 4.126 Let Q° be the nonmetricity 2-forms associated with the connec-
tion V in an arbitrary moving frame {0°} and Ve, eg = Lf;;gep. Then we have, for
homogeneous multiforms,

(@) (=1)"'*71x  =3In+Q° Ay,

(b) (=) 1x719A%x =9, —Qj,» (4.173)

wherei,A = 0,.A and j,A = 0, A A, for every A € secCL(M, 39).

Proof Letw = %a)almar@“l A= ANO% € sec \'T*M — secCL(M, g) be a r-form
field on M. We have (6, A -+ A 0p) A %0 = (O, A+ A Op,) - )Ty = wp,. p,Tg
and it follows that V, ((0g, A -+ A 8g,) A *w) = e,(wg,..8,)T,. But on the other
hand, we also have

Ve, (O, Ao NOg ) Axw =0 AVAOg AV, o
+ (Lo, @pp..p, + oo+ L 0p1p1p)Tg
— (@ Oopap, + 0+ Qg 0B pip) T
and therefore we get, after some algebraic manipulation:
Ve, * @ = *Vo,0 4+ Qopy * (0" A (0" 1w)), 4.174)

from which Eqs. (4.173) follow immediately.ll

Taking into account the result stated in the above proposition and the definition of
the Hodge codifferential (Eq.(4.91)), we are motivated to introduce in the Clifford
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bundle the Dirac coderivative operator, given, for homogeneous multiforms, by:

¢
d=(=1)*"ax*.
Of course, we have:
¢
d=(-1)"*1d,%x + (=) 'A%

and we can, then, define:

¢
.= (-1 * L dAx = =9 + Q'Dij
¢
IN:= (=D *1asxd A+ Q° Ay,
so that:
¢ ¢ ¢
0=0A+0_.

The following identities are trivially established:

¢
3= (=)' x19x

e

L4
0= (~)*19x; #d = (—1)0x

<

¢ ¢
00x = *xdd; %00 = dd*

¢ *
*0 = —(0)2%; *(3)2=—-08%x .

(4.175)

(4.176)

4.177)

(4.178)

(4.179)

In addition, we note that the Dirac coderivative permit us to generalize Eq. (4.151b)

in a very elegant way. In fact, in consequence of Proposition 4.126 we have:

Corollary 4.127 For A, € sec \' T*M < sec C{(M,3), B, € sec \'T*M

sec CL(M, §), with r + 1 < s, it holds:

¢ ¢
3.(A,B,) = (3 AA,)JBs + (—1)"A, (3 By).

(4.180)

Proof Given a 1-form field @ € A' T*M and a s-form field ® € sec \' T*M, we
have, from Eq. (4.174), that V,, * (¢_w) = * Ve, (01w + Qppun * [0% A (0" 2(cuw))].

We also have that

Ve, * (0ow) = (=1)'T'V, (a A o)

= *[(VEJO()J(I) + ai(Ve, 0 + Qa,w(eﬂ A (0¥ Lw))],



4.8 Differential Geometry in the Clifford Bundle 157

where we have used Eq. (4.174) once again. It follows that:
Ve, (@uw) = (Ve, )0 + ai(Ve,0) + Qo 0’ Lw. (4.181)

Then, recalling that (¢; A ... A p)ow = oja...0000, With o,...,a, €
secT*M,w € sec \'T*M,r < s + 1, and applying Eq. (4.181) successively in
this expression, we get Eq. (4.180).H

Another very important consequence of Proposition 4.126 states the relation
between the operators d and .

Proposition 4.128 Let & = ©F — QP, where ©F and QP denote, respectively, the
torsion and the nonmetricity 2-forms of the connection V in an arbitrary moving
frame {0*}. Then:

(a) IAN =N —OF A, ,

4.182
(b) 9. =<BJ—q)’Dij ( )

Proof If f is a function, d Af = 0 AV, f = ex(f)0% =df and d_f = 6%V, f =
0. For the 1-form field #” of a moving frame on T*M, we have d A 0° = 6% A
Ve, 07 = —LZﬂQ“ AOP = —a)g AOF = dor —er.

Now, for a r-form field w = %a)almar@“l Ao A B we get
1
IN® = —(dway. a0 NI A A O+ 0y, O™ NG N N O
r!
ot (D Mg, 0, 0% A A AdO)
1
- ﬁ(wal,,.a,G)“‘ ANO2 Ao A O 4 -
+ (1) Mg, 0,09 Ao AT A Q)
1
LR CON O LYNSIN T

+ (—1)’+1a)almar_1p9“1 A A B
=do - 0" Ai,w

and Eq. (4.182a) is proved.
Finally, from Eqgs. (4.173b) and (4.182a) we obtain

dA*w = (—1)Txdw — (—1)’+1*Q”_|jpa)
=0 A*xw— OF A xw

= (=D duo — (=) % 0°_j 0.

Therefore, d 1w = dow — P _j,w, and Eq. (4.182b) is proved.H



158 4 Some Differential Geometry

¢ ¢
From Egs. (4.182) we obtain the expressions of 3 3 and d A in terms of §_ and §A:

2=+ 0% (4.183)

e e

A=A =D Adp.

Obviously, the Dirac coderivative associated to the standard Dirac operator is
given by:

L4

d=9A—d=d + 4. (4.184)

We observe finally that we can still introduce another Dirac operator, obtained

by combining the arbitrary affine connection V with the algebraic structure induced

by the generic bilinear form field g € sec TgM . With respect to an arbitrary moving
frame {6} on T*M, this operator has the expression:

vV =0"VV,,. (4.185)

It is clear that in the particular case where V = D is the Levi-Civita connection of g,
the operator d—which in this case is the standard Dirac operator associated to g—
will satisfy the properties of Sect. 4.8.3, with the usual Clifford product exchanged
by the new Clifford product “Vv.” In addition, for a more general connection we can
apply the results of Sect. 4.8.6, once again with all the occurrences of § replaced
by g. (In particular, the standard Dirac operator associated to g is replaced by that
associated with g.)

4.8.8 Torsion, Strain, Shear and Dilation of a Connection

In analogy with the introduction of the Dirac commutator and the Dirac anticom-
mutator, let us define the operations:

Definition 4.129 Given «, B € sec /\1 T*M the Dirac commutator and anticom-
mutator of these 1-form fields are

@ [a.pl = (@-3)p—(B-3)a— [« Bl
(b) floe, BBk = (@ - )P+ (B- ) — {a, B}. (4.186)

We have subtracted the Dirac commutator and the Dirac anticommutator in the r.h.s.
of these expressions in order to have objects which are independent of the structure
of the fields on which they are applied.
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If {6, } is the reciprocal of an arbitrary moving frame {8“} on T*M, we get, from
Eq. (4.186a):

[6a. 061 = (Tis — Q') P (4.187)

where To’f are the components of the usual torsion tensor (Eq. (4.107)). Note from
this last equation that the operation defined through Eq. (4.186a) does not satisfy the
Jacobi identity. Indeed we have:

> 006161 = > (10, — O NI — Ol )6, (4.188)
[wBo] [eBo]

where the summation in this equation is to be performed on the cyclic permutations
of the indices ., B and .
From Eq. (4.186b), we get:

{{901’ 9/3}} = (S’;ﬁ - Qp(aﬁ))e ,
where Qﬁ;ﬂ) = 8" (Qupo + Qpac) and we have written:

Sy = 10+ L, — b

" (4.189)

It can be easily shown that the object having these components is also a tensor.

Using the nomenclature of the theories of continuum media [39, 42] we will call it
the strain tensor of the connection. Note that it can be further decomposed into:

. o 2
Sf;ﬂ = Sf;ﬁ + ;s”gaﬂ (4.190)
where S";ﬁ is its traceless part, which will be called the shear of the connection, and

1, .
s = S8S, (4.191)

is its trace part, which will be called the dilation of the connection.

It is trivially established that:

YD B g
Loy = r.‘;ﬁ+§ .’;ﬁ+55f;ﬂ. (4.192)
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o o . . . .
where F,’; = 2(b wp T € aﬁ) are the components of the Levi-Civita connection
of 8.

Equation (4.192) can be used to relate the covariant derivatives with respect to
o
the connections D and V of any tensor ﬁeld on the manifold. In particular, recalling

that Dag,ga = ea(gﬂg) — gwl“aﬂ — gﬁMIHm = 0, we get the expression of the
nonmetricity tensor of V in terms of the torsion and the strain, namely,

| D [P,
Oups = E(g,wT.’;,3 + 8puTlhy) + E(gwsf;ﬂ + 2581, (4.193)

Equation (4.193) can be inverted to yield the expression of the strain in terms of the
torsion and the nonmetricity. We get:

S0 = 8" (Qupo + Qpoa — Coap) — & @puTley + ZouTlhy)- (4.194)

From Eqgs. (4.193) and (4.194) it is clear that nonmetricity and strain can be used
interchangeably in the description of the geometry of a Riemann-Cartan-Weyl
space. In particular, we have the relation:

Qaﬂo + Qoaﬂ + Qﬂoa = Socﬁa + Sgaﬂ + Sﬂga, (4.195)

where Spo5 = ngS . Thus, the strain tensor of a Weyl geometry satisfies the
relation:

Saﬂa + Soocﬁ + Sﬁoa =0.

In order to simplify our next equations, let us introduce the notation:

Kby =10, — 1 = (T"ﬂ+Sﬂ) (4.196)

From Eq. (4.194) it follows that:

oo 1 o o o o
Kiﬂ = _Egpa(vagﬁo + Vﬂgoa - Vogocﬁ)

Lopy o . o "o .
- Egp (guaT.I;ﬂ + guﬂT.I:m _guUT.Zﬁ)s (4.197)

25We note that the possibility of decomposing the connection coefficients into rotation (torsion),
shear and dilation has already been suggested in a Physics paper by Baekler et al. [1] but in their
work they do not arrive at the identification of a tensor-like quantity associated to these last two
objects. The idea of the decompositions already appeared in [40].
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where we have used that Qugs = —Vq §,3,,. Note the similarity of this equation with
that which gives the coefficients of a Riemannian connection (Eq. (4.161)). Note
also that for Vg = 0, K.’Z}'g is the so-called contorsion tensor.>

Returning to Eq. (4.192), we obtain now the relation between the curvature tensor

st 5 associated with the connection V and the Riemann curvature tensor Rﬁmﬂ of

the Levi-Civita connection D associated with the metric g§. We get, by a simple
calculation:

RP

_ o p.u p.u
wep = Roap T Luiap)s (4.198)

where:
Yo
J! o = D K"

P _ p -
he — Ko K = VoK’ — Kb K%, + KoK (4.199)

Multiplying both sides of Eq. (4.198) by 16% A 6F we get:

RE = RE 4+ 30, (4.200)
where we have written:
3= Ly g A eh, (4.201)
) M[aﬂ] ’

From Eq.(4.198) we also get the relation between the Ricci tensors of the
connections V and D. We define the Ricci tensor by

Ricci = Ryqdx" ® dx®,

Ry = R”W o (4.202)
Then, we have
Rua = Rug + Jar (4.203)
with
Jua = DaK,”p' D K" + K K" —K,pp',',K,‘;'l'L
= VoK' — VKb — Kl K% + K KS (4.204)

26Equations (4.196) and (4.197) have appeared in the literature in two different contexts: with
Vg = 0, they have been used in the formulations of the theory of the spinor fields in Riemann-
Cartan spaces [15, 46] and with ®[V] = 0 they have been used in the formulations of the
gravitational theory in a space endowed with a background metric [8, 13, 23, 35, 36].
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Observe that since the connection V is arbitrary, its R1001 tensor will be not

be symmetric in general. Then, since the Ricci tensor R,w of D is necessarily
symmetric, we can split Eq. (4.203) into:

Rije) = Juals
(4.205)

Ry = Rua + J(pa).-

Now we specialize the above results for the case where the general connection
V = D is the Levi-Civita connection of a bilinear form field g € sec TSM, i.e.,
® = 0 and Vg = 0. The results that we show next generalize and clear up those
found in the formulations of the gravitational theory in a background metric space
[13, 23, 35, 36].

First of all, note that the connection D plays with respect to the tensor field g a
role analogous to that played by the connection V with respect to the metric tensor
g and in consequence we shall have similar equations relating these two pairs of

o
objects. In particular, the strain of D with respect to g equals the negative of the
strain of V with respect to §, since we have:

o g
S,a =L

o o
b+ Ly, —b

oy == + T —dl) = S,

/306’

where b/, = Fp o+ Fp and df,; = LY 5 + Ll denote the Killing coefficients of

the frame with respect to the tensors g and g respectlvely. Furthermore, in view of
Eq. (4.197), we can write Kf;'/'s = %S’;ﬂ as

1 o o o o
Kiﬂ = _Egpa(vagﬂa + Vﬂgoza - Vagaﬂ)

1 o o o
= Egpo (Dagﬁo + Dggao — Dogocﬁ)- (4.206)
Introducing the notation:
det
° %, (4.207)
detg

we have the following relations:
P 1 oaf o 1 af o 1
K-pa = _E Vogaﬂ = Eg Ddgocﬁ = ;eﬁ(}f)s
. 1o .
g K, = —— Dy (xg"), (4.208)

o 1 o
BIKG, = V).
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Another important consequence of the assumption that V is a Levi-Civita
connection is that its Ricci tensor will then be symmetric. In view of Egs. (4.205),
this will be achieved, if and only if, the following equivalent conditions hold:

DoKpy = DgKpa,

. (4.209)
VoK', = VKD,

4.8.9 Structure Equations 11

With the results stated above, we can write down the structure equations of the
RCWS structure defined by the connection V in terms of the Riemannian structure
defined by the metric g. For this, let us write Eq. (4.192) in the form:

Wy = @f + wh = & + T + of, (4.210)

with oy = L70%, & = T00 wh = K20°, <) = 177.0% and of; =
%Sf;'ﬂ@“. Then, recalling Eq. (4.200) and the structure equations for both the RCWS

and the Riemannian structures, we easily conclude that:

w’ ﬂ ABF = Or,
whi Al = —D,,, 4.211)
Dwf, + wfjé A wﬁj =3,
where Io) is the exterior covariant differential (of indexed form fields) associated to

]
the Levi-Civita connection D of g. The third of these equations can also be written
as:

Dwi —wi Awh =30, 4.212)

where D is the exterior covariant differential (of indexed form fields) associated to
the connection V.

Now, the Bianchi identities for the RCWS structure are easily obtained by
differentiating the above equations. We get:

(@) DOP = 3% A 6P —wy A OF,
(b) Db, = 35 A 05+ wh A @5, (4.213)
(©) DY =R Awh —wly ARE
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or equivalently,

DO’ = 3% A 6P,
DO, = 3 A6, 4.214)
D3}, = R Awh —why ARG

4.8.10 D’Alembertian, Ricci and Einstein Operators

As we have seen in the Sect.4.8.3 given the structure (M, 5, &) we can construct the
Clifford algebra C£(M, §) and the standard Dirac operator § given by (Eq. (4.152))

h=d—S6. (4.215)

We investigate now the square of the standard Dirac operator. We shall see
that this operator can be separated in some interesting parts that are related to the

D’ Alembertian, Ricci and Einstein operators of (M, lo), §).

Definition 4.130 The square of standard Dirac operator §is the operator, ¥ =00
sec N\’ T*M < secCL(M,3) — sec \' T*M <> sec CL(M, §) given by:

8 = (d—8)(d — 8) = —(d§ + 8d). (4.216)

We recognize that &?2 = < is the Hodge Laplacian of the manifold introduced
by (Eq. (4.92)). On the other hand, remembering also that Eq. (4.148)

]

$: eaDeus

]
where {#*} is an arbitrary reference frame on the manifold and D is the Levi-Civita
connection of the metric §, we have:

92 = (6°De,)(0’ De,) = 6°(6" Do, Doy + (Do, 68)Dey)
= é%aﬂ (DeuDeﬁ - F.Z/'gDep) + 0% A eﬂ(DeaDeﬁ - F.'Z/'gDep)-
Then defining the operators:

(a) <p<p = §aﬂ(DeaDeﬁ - F.;;};Dep)a

, o’ o oo (4.217)
() dA = 6% A 6P (De,Dey — F,‘;ﬂDeP),
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we can write:
=9 =99+ (4.218)
or,

192 = (4’4 + 4)/\)(434 + 0N
=LIANFIAD. (4.219)
Remark 4.131 Tt is important to observe that the operators §- § and § A § do not have

anything analogous in the formulation of the differential geometry in the Cartan and
Hodge bundles.

Remark 4.132 Moreover we write for w € sec \" T*M < sec C4(M, g), §- dw and
A dw to mean respectively (§- ) and (Y A §)w. The parenthesis will be included
in a formula only if there is a risk of confusion.

The operator §- § can also be written as:

1 ° o o o o
b= 5 [DeuDeﬁ + Dy, Do, — b, ﬂDep] . (4.220)

Applying this operator to the 1-forms of the frame {6%}, we get:

— __SaPpgi
b-dor & Mpaﬂé” (4.221)
where:
My = ea(Tlg) +ep(Tl) — THOTS — Tl 00 — B, ﬂr (4.222)

The proof that an object with these components is a tensor is a consequence of the
following proposition:

Proposition 4.133 For every r-form field o € sec \'T*M, o = %wal...aﬁ“‘ A
.. A 0%, we have:

1 o o o
B0 = =8P DeDpwey..c, 0“0 A --- A O (4.223)
r:

Proof We have Beﬁa) = %Bﬂwm___aﬁ"“ A ... A 0%, with

o o o
_ o oo
Dﬂwoq...a, = eﬂ(wal...ocr) - F.ﬂalwoaz...a, - =TI o, Pay..or—10-
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Observe moreover that we have

DaDﬂa)oq...a, = ea(Dﬁwal...ocr) - F%'&lDawoaz...ar

o o o o
o o
-TI Dﬂwoaz...ar — ... F.aarDﬂa)al...ar_la

oo

but
1 2 o o
De,Dey» = D, (=Dgwg,. o, 0% A+ A OY)
r!

1 o o] o
;(ea(Dﬁwal...a,) - Fngﬂwwzmar —
- fwgz.(;zrﬁﬂwal...a,,la)eal Ao A BY,

Thus we conclude that:

o 1o o

(De,Dey = ToyDe, ) = ﬁD,J[D,gwm,,u,‘e“l A NG

Finally, multiplying this equation by g% and using the Eq.(4.217a), we get the
Eq.(4.223).1

In view of Eq. (4.223), we give the

Definition 4.134 The operator (0 = §- §1is called (covariant) D’Alembertian.

Note that the D’ Alembertian of the 1-forms 8# can also be written as:
° o o 1 ° o o o o
- 96" = g’ D,Dysk 6" = 3 P (DyDp8} + DpDy8})0"
and therefore, taking into account the Eq. (4.221), we conclude that:

Aolﬂ...

L = —(DuDps! + DpDast). (4.224)

o ...
what proves our assertion that M’ ,’;a p are the components of a tensor.
By its turn, the operator JA dcan also be written as:

1 o o o o .. o
Ind= 50" n 0" [DeaDeﬁ — Doy De, — cf;ﬂDep] . (4.225)
Applying this operator to the 1-forms of the frame {6}, we get

10 o o
Indor = —ERf;aﬂ(G A 0PYOP = —RPIG,, (4.226)
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o e . Q
where Rf;a p are the components of the curvature tensor of the connection D. From
Eq. (2.46), we get:

REGP = RIELOP + R A 6P,

The second term in the r.h.s. of this equation is identically null because of the
Bianchi identity given by Eq.( 4.213a) for the particular case of a symmetric
connection (" = 0). Using Eqgs. (2.35) and (2.37) we can write the first term in the
r.h.s. as:

o lo,,.
RPFLOP = ERfZﬂ(G“ A0P)6,

Lo 4
= — R0 0,:(6% 1 607)

Lo,
=-3 P (80P —856%)
= —R508 = R 0P, (4.227)

o . . . . . . . o}
where ng are the components of the Ricci tensor of the Levi-Civita connection D
of g. Thus we have:

IADO" = RE, (4.228)
where 700‘ = Icé.’gé?ﬁ are the Ricci 1-forms of the manifold. Because of this relation,

we give the

Definition 4.135 The operator § A § is called the Ricci operator of the manifold
associated to the Levi-Civita connection D of g.

The proposition below shows that the Ricci operator can be written in a purely
algebraic way:

Proposition 4.136 The Ricci operator § A § satisfies the relation:
IAND=R" Ady + R Ay, (4.229)

where (keep in mind) RFO = 27"“70%3; = %é’"“l%fg/;@“ L

Proof The Hodge Laplacian of an arbitrary r-form field o = %wal L, 0N AG
is given by: (e.g., [3]—recall that our definition differs by a sign from that given
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there) Ow = § & = L 0)ay..0, 04 A ... A B, with:

(<>w)a1 oy = §aﬁDaD/3 Wy, ..ar

o
P po- v
- E (_1) R,apwaal...ap...a,
p

=23 (~DPYIR Onar..yiyc (4.230)
pPq

rP<q

where the notation & means that the index « was exclude of the sequence.

The first term in the r.h.s. of this expression are the components of the
D’ Alembertian of the field w.

Now, recalling that i, = 6, 1w, we obtain:

o 1 o
R? Nigw = - [Z(—I)PRprwwl,,,&Pmar] U A .. A QY
“Lop

and also,

00 A s _ 2 +q ppo- a o
RIT A dplow = == ;(—1)1’ RS Opoay.iyoiigay | 07 Ao A O
r<a
Hence, taking into account Eq. (4.218), we conclude that:
< . < o
@A Do = R? Nigw + R ANipisw,

for every r-form field w.H

Observe that applying the operator given by the second term in the rh.s. of
Eq. (4.229) to the dual of the 1-forms 6#, we get:

R Ay % 08 = Ry % 07 5(07 101
= Ry A *(0° A O7OM) (4.231)
= % (Rps 2(07 A 07 A O1)),

where we have used the Eq. (2.77). Then, recalling the definition of the curvature
forms and using the Eq. (2.36), we conclude that:

o o 1 o o
RPNy iax 0" = =2 % (R¥ = SROY) = 2% G*, (4.232)
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where R is the scalar curvature of the manifold and the Qo * may be called the Einstein
1-form fields. That observation motivate us to give the

Definition 4.137 The Einstein operator of the Levi-Civita connection D of gonthe
manifold M is the mapping M : sec CL(M,§) — sec CL(M, §) given by:

1 o
W= R M) (4.233)
Obviously, we have:
o o 1o
o = Gr = R — Jkor. (4.234)
In addition, it is easy to verify that * ' (YA * = — YA § and *_1(7%" ANlg)x =

o
‘R _jo. Thus we can also write the Einstein operator as:

m- %(&M =R o). (4.235)

Another important result is given by the following proposition:

Proposition 4.138 Let c?)l; be the Levi-Civita connection I-forms fields in an
arbitrary moving frame {6"} on (M, lo), ). Then:

(@) 9901 = —(-3l — &7 - &y

o 4.2
(b) <I)/\<I)9M:_(a)/\wp _wl‘;) /\wg)ep ( 36)
that is,
o = —(I3f) — &7 350" (4.237)

Proof We have
b1 = 6% - D, (P4 09
= 0% - (ea (IV57)0F — T T007)
= 8" (eq (1)) — T I'y)
and &7 - &ly = (ff/g; 0%) - (56 = gPe 15 15 Then,
— (&9 a)“ — c?) )gp

= 8P (ea(Ty) — Pl B — Pz iir)or
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1, e I - R 7Ty I
T2 aﬁ (e"(r~l/§p) +ep(y) — oo g, — Ff/;a R
=9-90".
Equation (4.236b) is proved analogously.Hl

Exercise 4.139 Show that —(6, A 9(,)47%/’” = f?(@o A Bs) - RO = R, where R is
the curvature scalar.

4.8.11 The Square of a General Dirac Operator

Consider the structure (M, V,§), where V is an arbitrary Riemann-Cartan-Weyl
connection and the Clifford algebra C£(M, §). Let us now compute the square of
the (general) Dirac operator 8 = tr(1V,). As in the earlier section, we have, by one
side,

3 =@.+dNOB+ 0N
=920+ 30N+ INIL+ 3INIA

and we write 8 10 = 8%.,9 AdA = 3°A and
Ly =010A+0 A0, (4.238)
so that:
3 =030+L40+3 A . (4.239)
The operator £4 when applied to scalar functions corresponds, for the case of a
Riemann-Cartan space, to the wave operator introduced in [30]. Obviously, for the

case of the standard Dirac operator, £ reduces to the usual Hodge Laplacian of the
manifold, which preserve graduation of forms.

¢
Now, a similar calculation for the product 39 of the Dirac derivative and the
Dirac coderivative yields:

¢ ¢ ¢
00 =0.0.+ L_+ 09 AIA, (4.240)

with

¢ ¢
L_=010 A+dA-0. (4.241)
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On the other hand, we have also:

& = (0°V.,)(0PV,,) = 6°(0PV,, Ve, + (Ve 0P)Ve,)
= 8P (Ve,Vey — Ly Ve,) + 0% N 0P (Vo Vo — Loy Vo))

and we can then define:

3-8 =g (Ve, Ve, —LippVe,)

, ; (4.242)
dAD = 0% A0V, Ve, — L0 Ve,)

in order to have:
?=00=0-0+0A0. (4.243)
The operator d - d can also be written as:

1 ) 1 .
3.9 = 59“ -0 (Ve Ve — L Ve,) + 595 -0 (Ve, Ve, — L3, Ve,)

1., . ;
= 3§ ﬂ[VeaVeﬁ + Vey Ve, — (Lf;ﬂ + Lf’ﬂa)vep]
or,

1

3.9 = §°aﬂ (Ve Vey + Ve, Ve, = bpVe,) = 5"V, (4.244)

p’
where s” has been defined in Eq. (4.191).
By its turn, the operator d A d can also be written as:
BN = 0% NGBV, V., — L7V Y98 n 60V, — L7V
A —5 A (eo, eﬁ_uﬁ ep)+§ A (eﬁ ea_~ﬂa ep)
(4.245)

Veﬁ Veo( - (L‘; - L.pf;a)vep]

1
= 60" 0P [Ve, Ve, — s

or,
1 .
dINY = 59“ A 0P (VeuVey = Vey Ve, = chgVe,) — OV, (4.246)

Exercise 4.140 Prove that the Ricci and Einstein operators are (1, 1)-extensor fields
on a Lorentzian spacetime, i.e., for any A € sec /\1 T*M — sec C{(M, g) we have

IANIA=0AD(A0") =A,0 ADOM, (4.247)
WA = W(A,60M) =A,BO".
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Solution We prove the first formula, since after proving it the second one is
obvious. We choose for simplicity an orthonormal cobasis {62} for T*M dual to
the basis {e,} for TM, such that [e,, ep] = ci’ijed. Let V be a connection on a
Riemann-Cartan-Weyl spacetime, such that V, e, = Lf;'i,ed. Recalling (Eq. (4.245))
we have

1
INIA= 59“ A 0%{[ea, en](Ak) — LY ea(Ax) — LY ea(Ak) 0%} + Axd A 36X

1
=0"A 0P {ch — L% — LY 105 + Akd A 90¢

1
=5 90% A O° + Akd A 0% = Ad A 30",

since for a Lorentzian spacetime the torsion tensor (with components 79; ) is null.
Exercise 4.141 Show that for any A € sec /\l T*M — sec C{(M, g) we have

AINIA=DADA+ T 0,4, (4.248)

<

where A := A,07, A, := 85.8""A, and J¥ := §°PJ5, 07, where Jg, is given by

4.9 Some Applications

4.9.1 Maxwell Equations in the Hodge Bundle

The system of Maxwell equations has many faces.”’” Here we show how to express
that system of equations in the Hodge bundle and then in the Clifford bundle. To
start, let (M, g, 7g) be an oriented Lorentzian manifold.

Maxwell equations on (M, g, ) refers to an exterior system of differential
equations given by a closed 2-form F € sec /\2 T*M and a exact 3-form J, €
sec /\* T*M. Then there exists G € sec /\? T*M such that

dF = 0 and dG = —J,. (4.249)

It is postulated that in vacuum there is a relation between G and F (said
constitutive relation) given by

G = xF. (4.250)

2"Besides the ones presented in this chapter, others will be exhibited in Chap. 13.



4.9 Some Applications 173

In that case putting J, = *J,, J, € sec /\1 T*M and taking into account
Eq. (4.91) we can write the system (4.249) as?®

dF = 0 and 6F = —J,. (4.251)

F is called the Faraday field and J, is called the electric current.

4.9.2 Charge Conservation

Of course, §J, = 0, which means that charge is conserved. Indeed, let C; be a three
dimensional volume contained in a space slice, i.e., in a spacelike surface. Then the
electric flux contained in C, = dCj is

0= [ %, =— / dG = — / «F. (4.252)
C3 aC3

C3

It is an empirical fact that all observable free charges are integer multiple of the
electron charge. This phenomenon is called charge quantization. On the other hand

consider a 4-volume C4 with boundary given by dCy = C;z) - C;l) + § where

with the condition J,|s = 0 and where ng) and C;l)are three dimensional volumes
contained in two different space slices. Then,

/ *Je:/ dG:/ d*G =0, (4.253)
dCy dCy Cy

from where it follows that
/ *J, = / *J,. (4.254)
C:(;I) C:(;Z)

We postulate that F is closed but it may be (eventually) not exact. In that case it
may have period integrals according to de Rham theorem, i.e.,

/ o F =38 (4.255)
]

where zg) € H,(M) are cycles. It seems to be an empirical fact that all g = 0,
at least for cycles in the region of the universe where men already did experiments.

This means that F is exact, i.e., it is possible to define globally a differentiable

28Thirring [44] said that the two equations in Eq. (4.251) is the twentieth Century presentation of
Maxwell equations.
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potential A € sec /\1 T*M such that F = dA. This also means that there are no
magnetic monopoles in nature.”® Indeed, if z, is a cycle (a closed surface) then we
have

/ F= / dA = (3z2.A) = (0,A) = 0. (4.256)

4.9.3 Flux Conservation

Of course, A is only defined modulus a gauge, i.e., A + A/, with A’ € sec \' T*M a
closed form. The period integrals of A’ according to de Rham theorem are

/ LA =2, (4.257)
g

Now, it is an empirical fact that ®;) is quantized in some (but not all) physical
systems, like, e.g., in superconductors [16]. The phenomenon is then called flux
quantization. In appropriate units

/A’ = nh/2e, (4.258)

21

where 7 is an integer and # is Planck constant and e is the electron charge.

Note also that from J, = —dG in Eq. (4.249) it follows that G is defined also only
modulus a closed form G'. The period integrals of G’ may eventually correspond to
topological charges. Another possibility of having ‘charge without charge’ coming
from statistical distributions of quantized flux loops has been investigated in [18,
19]. We shall not discuss these interesting issues in this book.

4.9.4 Quantization of Action

Finally we mention the following. As we shall see in Chap. 7 the Lagrangian density
of the electromagnetic field in free space is given by

1
L(A) = —5F AF. (4.259)

2See however the news in [31] where it is claimed that magnetic monopoles have been observed
in a synthetic magnetic field.
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Calling K = A A xF, we can write
1
LA) = _EdK' (4.260)
Now, it seems an empirical fact that action is quantized, i.e., we have

a= | L@
Cy

- / K = nh. (4.261)
C3=0Cy

Remark 4.142 We observe that fc3= aCs K has been introduced by Kiehn (see [20]).
However he called A A xF the topological spin, which is not a good name (and
identification of observable) in our opinion. The reason is that according to the
Lagrangian formalism (see Chap. 8, Eq. (8.124))* the spin density is proportional
to A A F. This result and the other period integrals discussed above suggests that
quantization may be linked to topology in a way not suspected by contemporary
physicists. On this issue, see also [29].

4.9.5 A Comment on the Use of de Rham Pseudo-Forms
and Electromagnetism

Besides the forms we have been working until now, in a famous book, de Rham
[6] introduces also the concept of impair forms®' in a n-dimensional manifold M,
which is essential for the formulation of a theory of integration in a non orientable
manifold.

Definition 4.143 An impair p-form in M is a pair of p-forms such that if its
representative in a given 2l C M in a cobasis {6’} for T*U (U D ) is declared
as being

1 4 4
oly = ;wil...ipell A= NB7 € sec /\pT*M

30See also [7].

31 Also called by some authors pseudo forms.
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then its representative w|, in 2 C V C M ina cobasis {#'}, ' = A0/ for T*V (VN
UD2RA)is ‘

1 - - »
w|V — Ija}il..:ipell A A 0’1’ € sec /\1 T*M’ (4262)

with

i i
Dir..ipAjy - A

...lp jl'

Wjy..jp, = W (4.263)

The introduction of impair forms leads to the question of exterior (and interior)
multiplication of forms of different parities (i.e., even and odd). The rule introduced
by de Rham [6] is that the product of two forms of the same parity is a form, whereas
the product of two forms of different parities is an impair form. Also de Rham
introduces the rule that application of the differential operator d to a form preserves
1ts parity.

impair

We can verify that if we denote by A, T*"M = Z N o T*M the real
p=0

vector space of the pseudo forms we can give a structure of associative algebra to
the (exterior) direct sum A\T*M & /\impairT*M equipped with the exterior product
satisfying the de Rham rules mentioned above.

Having introduced the concept of de Rham pseudo forms we call the reader’s
attention to the following remarks.

Remark 4.144 1In our brief presentation above of Maxwell equations we introduced
the electromagnetic current as J, = * 1], J, € sec /\1 T*M. Since until that point
we have not introduced the concept of impair forms its is clear that we supposed
that J, is 3-form. This certainly means that the theory as presented presupposes that
we use always bases with the same orientation in order to calculate the charge in a
certain three dimensional volume contained in a given space slice (Eq. (4.253)). The
use of bases with the same orientation presupposes that spacetime is an orientable
manifold. As will be discussed in Chap. 7 orientability of a spacetime manifold is a
necessary condition for the existence of spinor fields. Since these objects seems to
be an essential tool for the understanding of the world we live in, we restrict all our
considerations to orientable manifolds. Eventually, if is discovered some of these
days that our universe cannot be represented by an orientable manifold, then it will
be necessary to study deeply the theory of impair forms.

Remark 4.145 1f the spacetime manifold is orientable we do not need to consider,
as some authors claim (e.g., [20, 29]) that J, and G must be considered as pseudo
forms. A thoughtful discussion of this issue may be found in [5].
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4.9.6 Maxwell Equation in the Clifford Bundle

Let now, (M, g, D, 74, 1) be a Lorentzian spacetime and let C£(M, g) be the Clifford
bundle of differential forms. Since D is the Levi-Civita connection of g we know
(Eq. (4.152)) that the action of the Dirac operator d on any P € sec /\’7 "M —
Cl(M,qg) is 9P = (d —5)P. So, let us suppose that the Faraday field and the electric
current are sections of the Clifford bundle, i.e., F € sec /\2 "M — C{(M,q),
Jo € sec /\1 T*M — C{(M,g). In that case, it is licit two sum the equations
dF = 0 and 6F = —J,, which according to Eq.(4.251) represent the system of
Maxwell equations in the Hodge bundle. We get, of course, the single equation

OF = J,, (4.264)

which we be call Maxwell equation. Parodying Thirring [44] we may say that
Eq. (4.264) the twenty-first century representation of Maxwell system of equations.

Exercise 4.146 Show that in Minkowski spacetime (M,9,D, 1y, 1) (Defini-
tion 4.108) Eq.(4.264) is equivalent to the standard vector form of Maxwell
equations, that appears in elementary electrodynamics textbooks.

Solution We recall (see Table 3.1 in Chap. 3) that for any x € M, CL(T:M, 1) =~
R;3 =~ H(2), is the so called spacetime algebra. The even elements of R; 3 close a
subalgebra called the Pauli algebra. That subalgebra is denoted by R?g’ ~ R3p ~
C(2). Also, H(2) is the algebra of the 2 x 2 quaternionic matrices and C(2) is the
algebra of the 2 x 2 complex matrices. As in Sect. 3.9.1 a convenient isomorphism
R?y_,) ~ Rz is easily exhibited. Choose a global orthonormal tetrad coframe {y*},
y* =dx*, n =0,1,2,3,and let {y,} be the reciprocal tetrad of {y*},i.e., y,-y* =
8t'. Now, put

0, = YiYo, 1 = —y0y1y2y3 = —)/5. (4.265)

Observe that i commutes with bivectors and thus acts like the imaginary unity i =
V=1 in the subbundle C£°(M, n) = |J,p; CEO(T*M, 1) < CL(M, 1), which we
call Pauli bundle. Now, the electromagnetic field is represented in C£(M, ) by F =
%F“”yM Ay, € sec N*T*M < sec CL(M, 1)) with

0 —E; —E, —E3
E, 0 —Bs B
E, B3 0 —-B
E;—-B, By 0

FY = , (4.266)

where (Ei, E», E3) and (B;, By, B3) are the usual Cartesian components of the
electric and magnetic fields. Then, as it is easy to verify we can write

F =E +iB, (4.267)

with . E = Z?=1 E,’O’i, é = Z?=1 BiO'i.
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For the electric current density J, = py® + Jiy; we can write
wle=p—j=p—Jo. (4.268)

For the Dirac operator we have
3
Y0d = Z = — + v. (4.269)

Multiplying both members of Eq. (4.264) on the left by yy we obtain

Y0F = yoJe,
(% + VYE+iB) =p—] (4.270)
From Eq. (4.270) we obtain
WE+i0B+V-E+VAE+iV-B+iVAB=p—]. 4.271)

For any ‘vector field’ A e C®(M,n) — CL(M,n) we define the rotational
operator VX by

VxA=—iV AA. (4.272)

This relation follows once we realize that the usual vector product of two vectors
a= Z? Laioand b = Y5 1 bioj can be identified with the dual of the bivector

a Ab through the formulaa x b= —ia Ab. Finally we obtain from Eq. (4.271) by
equating terms with the same grades (in the Pauli subbundle )

(a) YE =p (b) VxB - dE =, 4.273)
() VXE+0dB=0, (d V-B=0,
which we recognize as the system of Maxwell equations in the usual vector
notation.

We just exhibit three equivalent presentations of Maxwell systems of equations,
namely Eqgs. (4.251), (4.264), and (4.273). They are some of the many faces of
Maxwell equations. Other faces exist as we shall see in Chap. 11.
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4.9.7 Einstein Equations and the Field Equations for the 0?

As, it is the case of Maxwell equations, also Einstein equations have many faces.
Here we exhibit an interesting one which is possible once we have at our disposal the
Clifford bundle formalism. So, let now (M., g, D, 7,, 1) be a Lorentzian spacetime
(Definition 4.107) modelling a gravitational field in the general theory of Relativity
[38]. Let {e,} be an arbitrary orthonormal basis of TU (a tetrad*?) and {6°} of T*M
its dual basis (a cotetrad), with a,b = 0, 1, 2, 3. We recall that Einstein’s equations
relating the distribution of matter energy represented by the energy-momentum
tensor T = T30 ® e, sec T{ U C sec T{ M can be written (in appropriated units)

1
Ry — S8R = ~T;. (4.274)

where R}, is the Ricci tensor and R is the scalar curvature. Multiplying both members
of Eq. (4.274) by 6" and taking into account Eq. (4.228) defining the Ricci 1-forms
in terms of the Ricci operator d Ad (with = 62D,,) we can write after some trivial
algebra

T
INd O+ 593 =-T7 (4.275)

where® T* = 720" € sec \' T*M < secCU(M,g) are the energy-momentum
1-form fieldsand T = T3.
Now, taking into account Eqgs. (4.218) and (4.219) we can write

1
—0:96" A0+, A 6" + ST = T (4.276)

Now, let {x*} be the coordinate functions of a local chart of the maximal atlas
of M covering U C M. When 6? is an exact differential, and in that case we write
0? —» O6* = dx* and if the coordinate functions are harmonic [10], i.e., 60* =
—90" = g F’;ﬂ = 0, Eq. (4.276) becomes

1
06" — SRO* =T, (4.277)

where [ is the covariant D’ Alembertian operator (Definition 4.134).

32We shall see in Chap. 6 that any Lorentzian spacetime admitting spinor fields must have a global
tetrad.

3Sometimes in the written of some formulas in the next chapters it is convenient to use the notation
T = -T2
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4.9.8 Curvature of a Connection and Bending. The Nunes
Connection of S*

Consider the manifold S = {S\north pole + south pole} C R3, it is an sphere of
radius R = 1 excluding the north and south poles. Let g € sec ng‘z be a metric
field for 3‘2, which is the pullback on it of the metric of the ambient space R3. Now,
consider two different connections on §2, D—the Levi-Civita connection— and V¢,
a connection—here called the Nunes** (or navigator) connection’>— defined by the
following parallel transport rule: a vector is parallel transported along a curve, if at
any x € S? the angle between the vector and the vector tangent to the latitude line
passing through that point is constant during the transport (see Fig. 4.5).

Exercise 4.147 (i) Show that the structure (g‘z,g, D) is a Riemann geometry of
constant curvature and;

(ii) that the structure (g‘z,g, V) is a teleparallel geometry, with zero Riemann
curvature tensor, but non zero tensor.

Solution The first part of the exercise is a standard one and can be found in many
good textbooks on differential geometry. Here, we only show (ii). We clearly see
from Fig.4.5a that if we transport a vector along the infinitesimal quadrilateral
pqrs composed of latitudes and longitudes, first starting from p along pgr and then
starting from p along psr the parallel transported vectors that result in both cases
will coincide. Using the definition of the Riemann curvature tensor, we see that it is

o o
null. So, we see that S? considered as part of the structure (Sz, g, V) is flat!

34Pedro Salacience Nunes (1502-1578) was one of the leading mathematicians and cosmographers
of Portugal during the Age of Discoveries. He is well known for his studies in Cosmography,
Spherical Geometry, Astronomic Navigation, and Algebra, and particularly known for his discov-
ery of loxodromic curves and the nonius. Loxodromic curves, also called rhumb lines, are spirals
that converge to the poles. They are lines that maintain a fixed angle with the meridians. In other
words, loxodromic curves directly related to the construction of the Nunes connection. A ship
following a fixed compass direction travels along a loxodromic, this being the reason why Nunes
connection is also known as navigator connection. Nunes discovered the loxodromic lines and
advocated the drawing of maps in which loxodromic spirals would appear as straight lines. This led
to the celebrated Mercator projection, constructed along these recommendations. Nunes invented
also the Nonius scales which allow a more precise reading of the height of stars on a quadrant. The
device was used and perfected at the time by several people, including Tycho Brahe, Jacob Kurtz,
Christopher Clavius and further by Pierre Vernier who in 1630 constructed a practical device for
navigation. For some centuries, this device was called nonius. During the nineteenth century, many
countries, most notably France, started to call it vernier. More details in http://www.mlahanas.de/
Stamps/Data/Mathematician/N.htm.

33Some authors call the Columbus connection the Nunes connection. Such name is clearly
unappropriated.
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(a) (b)
© —dv, ¢) (O —dd, ¢ +dy)
s r=n
- 1
p q
%, ¢) 0, ¢ + do)

Fig. 4.5 Characterization of the Nunes connection

Let (x",x*) = (0,¢) 0 < ¥ < 7,0 < @ < 2m, be the standard spherical

o o
coordinates of a S? or unitary radius, which covers all the open set U which is S?
with the exclusion of a semi-circle uniting the north and south poles.

Introduce first the coordinate bases

{0, = 9/ox"}, {6" = dxM} (4.278)

for TU and T*U.
Introduce next the orthonormal bases {e,},{6*} for TU and T* U with
1
e1 =201, &= ——0, (4.279)
sinx

0! = dx',0% = sinx'dx*. (4.280)
Then,

[ei.e5] = cjex. (4.281)

&y = —c5 = —cotx!,

and

g = dx' ® dx' + sin’> x'dx* ® dx®
=0'®0' +6%® 0% (4.282)
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Now, it is obvious from what has been said above that our teleparallel connection
is characterized by

Ve =0. (4.283)

Then taking into account the definition of the curvature operator (defini-
tion (4.104)), we have

R(0°, ex. e, ¢f) = 6° ([V;ngj — VLV - eri,eﬂ] ek> =0. (4.284)

Also, taking into account the definition of the torsion operation (defini-
tion (4.103)) we have

T(ehej) = ngei - Vgiej - [ei, ej]

= [ej, ¢j], (4.285)

and T3, = —T3%, = cot 9.

If you still need more details, concerning this last result, consider Fig.4.5b
which shows the standard parametrization of the points p, g, r,s in terms of the
spherical coordinates introduced above. According to the geometrical meaning of
torsion, we determine its value at a given point by calculating the difference between
the (infinitesimal)*® segments (vectors) priand pr, determined as follows. If we
transport the vector pg along ps we get (recalling that & = 1) the vector ¥ = srq

1
such that |g(17 , T))| 2 = sin ¥ Ag. On the other hand, if we transport the vector ps
along pr we get the vector gr, = gr. Let w = sr. Then,

lg(w, )| = sin(? — AY)Ap ~ sin Ap — cos ¥ AY Ag, (4.286)
Also,
- ] -
i=rry = —u(—7—).u = g, )| = cos ¥ AY Ag (4.287)
sind dg

Then, the (Riemann-Cartan) connection V¢ of the structure (3‘2, 8.V‘, 1) has anon
null torsion tensor ©. Indeed, the component of & = rr, in the direction d/d¢ is
precisely Tg(pAﬂAfp. So, we get (recalling that V5;0; = F,’;'Bk)

T = (F.Z’Q; _ F.ﬁ)’l;) — —cotf. (4.288)

36This wording, of course, means that this vectors are identified as elements of the appropriate
tangent spaces.
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To complete the exercise we must show that Vg = 0. We have,

0=V,g(ee) = (V.2 eie) +g(Vgeiej) +gle Ve
= (V;'cg)(ei,ej). (4.289)

Remark 4.148 This exercise, shows clearly that we cannot mislead the Riemann
curvature tensor of a connection with the fact that the manifold where that
connection is defined may be bend as a surface in an Euclidean manifold where it is
embedded. Bending is characterized by the shape operator®’ (a fundamental concept
in differential geometry that will be presented in Chap. 5 using the Clifford bundle
formalism). Neglecting this fact may generate a lot of wishful thinking. Taking it
into account may suggest new formulations of the gravitational field theory as we
will show in Chap. 11.

4.9.9 “Tetrad” Postulate? On the Necessity of Precise
Notations

Given a differentiable manifold M, let X, Y € sec TM be vector fields and C €
sec T*M a covector field. Let TM = €D2._, T"M be the tensor bundle of M and P €

rs=0"s
sec TM a general tensor field. We already introduced in M a rule for differentiation

of tensor fields, namely the Lie derivative. Taking into account Appendix A.4 we
introduce three covariant derivatives operators, V*t, V™ and V, defined as follows:

V1 :secTM x secTM — sec TM,
(X,Y) > ViY, (4.290)

V™ :isecTM x secT*M — sec TM,
(X.C) > V5C, (4.291)

V :secTM x sectM — sec TM,
(X,P) > VP, (4.292)

Each one of the covariant derivative operators introduced above satisfy the
following properties: Given, differentiable functions f,g : M — R, vector fields

YSee, e.g., [17, 27, 34, 41] for details.
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X,Y € secTM and P, Q € sec TM we have

Vix+gyP = fVxP + gVyP,
V(P + Q) = VxP + VxQ,
Vx(fP) = fVx(P)+X(f)P,
V(PR Q) =VxPRQ+ PR VxQ. (4.293)

The absolute differential of P € sec T;M is given by the mapping

V:secT{M — sec T, | M,
VP(X,Xl,...,XJ,Oll,...,Olr) = VxP(Xl,...,XS,Oll,...,Olr),
Xi,...,X,€5ecTM,ay,...q, €secT*M. (4.294)

To continue we must give the relationship between V¥, V™ and V. Let U C¢ M
and consider a chart of the maximal atlas of M covering U coordinate functions
{x*}. Letg € sec TSM be a metric field for TM and g € sec TgM the corresponding
metric for TM (as introduced previously). Let {d,,} be a basis for TU, U C M and
let {0#* = dx"} be the dual basis of {d,,}. The reciprocal basis of {6*} is denoted
{0,.}, and we have g(6*,6,) = 8. Introduce next a set of differentiable functions
h; hy : U — R such that:

hiqh =85, hin =5 (4.295)
Define
ey, = hypo,
where the set {e,} is an orthonormal basis*® for TU, i.e., g(eaen) = n**. The

reciprocal basis of {e,} is {e’} and g(e®ep) = &) The dual basis of TU is {67},
with 0% = h? dx" and g(6°, 0") = 1. Also, {0} is the reciprocal basis of {0%},
ie. g(0% 0p) = 8. It is trivial to verify the formulas

g = WAhnan, g™ = hehyn™,

Nab = HEByg 0, ™ = hhDgh”. (4.296)

v

38PSOFL3 (M) is the orthonormal frame bundle (see Appendix A.1.2).
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The connection coefficients associated to the respective covariant derivatives in
the respective bases are denoted as:

Vg; 9y =Th 8, V; 0" =—Th 9% (4.297)
V;:eb = wpec, V;:eb = —w,';c' e, Véz ep = a),cl;'bec, (4.298)
Vo, dx" = —Tp dx*, V5 6, =T4 0, (4.299)
V.0 = —wbi6c, vy 0° = b6, (4.300)
V, 0" = —weanb, (4.301)
Wabe = Naa®e = —epa, W5 = N oan®, O = —w§P (4.302)
etc... (4.303)

To understood how V works, consider its action, e.g., on the sections of TllM =
TM ® T*M. For that case, if X € sec TM, C € sec T*M, we have that

V=vVt®Idry +1dm  V, (4.304)
and
VX®C) =(VIXY)@ C+X®QV C. (4.305)
The general case, of V acting on sections of 7 M is an obvious generalization of
the previous one, and details are left to the reader.
For every vector field V € sec TU and a covector field C € sec T*U we have

Vg;V = Vg;(V“aa), V;,C = V5 (C.6%) (4.306)

and using the properties of a covariant derivative operator introduced above, Vg,: Vv
can be written as:

Vg;V = Vg,:(vaaa) = (Vg; V)% 0y

= (8,V*)e + VIV 3

Ve
- (axu + V”I‘.‘L’;)) o := (V5 V)Ba. (4.307)

where it is to be kept in mind that the symbol V: V¢ is a short notation for

Vive = (Vi V)e. (4.308)
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Also, we have

V5. C = Vi (Cob) = (V7,C)ab”

_ (aca _cﬂrff;(;) 9.

dxH

= (V,Co)b%, (4.309)
where it is to be kept in mind that* that the symbol V,, Cy is a short notation for
vV, C = (Va_ﬂ C)y. (4.310)

Remark 4.149 When there is no possibility of confusion, we shall use only the
symbol V to denote any one of the covariant derivatives introduced above. However,
the standard practice of many Physics textbooks of representing, V:V‘)‘ and
V:{ V¥ by V, V¥ should be avoided whenever possible in order to not produce
misunderstandings (see Exercise below).

Exercise 4.150 Calculate V hj = (VB_M 0%, = (V;thaa)v and V:hf‘j =
(Vg'; d,)? = (Vg;h‘v’eb)a. Show that in general V  if 7 V:hﬂ # 0 and that
uh? + @l h) — T2 hb = 0. (4.311)

Exercise 4.151 Define the object
e=e, Q0= h;aﬂ ® dx" € sec TllM, (4.312)
which is clearly the identity endomorphism acting on sections of 7U. Show that
Vuh = (V@) = 8,k + kb — T3 hb = 0. (4.313)
Remark 4.152 Equation (4.313) is presented in many textbooks (see., e.g., [2, 12,
37]) under the name ‘tetrad postulate’. In that books, since authors do not distinguish
clearly the derivative operators V', V™ and V, Eq.(4.313) becomes sometimes

misunderstood as meaning V, A} or V:hﬂ, thus generating a big confusion. For
a discussion of this issue see [33].

3Recall that other authors prefer the notations (V 3, V) 1= V?L and (V R C)o := Cy:p- What is
important is always to have in mind the meaning of the symbols.
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Chapter 5
Clifford Bundle Approach to the Differential

Geometry of Branes

Abstract Using the Clifford bundle formalism (CBF) of differential forms and
the theory of extensors acting on C£(M, g) (introduced in Chap.4) we first recall
the formulation of the intrinsic geometry of a differential manifold M (a brane)
equipped with a metric field g of signature (p, g) and an arbitrary metric compatible
connection V introducing the torsion (2 — 1)-extensor field , the curvature (2 — 2)
extensor field R and (once fixing a gauge) the connection (1 — 2)-extensor w and
the Ricci operator @ A @ (where 9 is the Dirac operator acting on sections of
C{(M, g)) which plays an important role in this paper. Next, using the CBF we give a
thoughtful presentation of the Riemann or the Lorentzian geometry of an orientable
submanifold M (dim M = m) living in a manifold M (such that M~ R"is equipped
with a semi-Riemannian metric g with signature (p, g) and p + ¢ = n and its Levi-
Civita connection B) and where there is defined a metric g = i*g, wherei : M — M
is the inclusion map. We prove several equivalent forms for the curvature operator R
of M. Moreover we show a very important result, namely that the Ricci operator of
M is the (negative) square of the shape operator S of M (object obtained by applying

the restriction on M of the Dirac operator 3 of CZ(IEI , ) to the projection operator
P). Also we disclose the relationship between the (1 — 2)-extensor @ and the shape
biform S (an object related to S). The results obtained are used in Chap. 11 to give
a mathematical formulation to Clifford’s theory of matter (Rodrigues and Wainer,
Adv Appl Clifford Algebras 24:817-847,2014).

5.1 Introduction

In this chapter we use the Clifford bundle formalism (CBF) developed previously
in order to analyze the Riemann or the Lorentzian geometry of an orientable
submanifold M (dim M = m) living in a manifold M such that M ~ R" is equipped
with a semi-Riemannian metric g (with signature (p,g) and p + ¢ = n) and its
Levi-Civita connection D.

In order to achieve our objectives and exhibit some nice results that are not
well known (and which, e.g., may possibly be of interest for the description and
formulation of branes theories [15] and string theories [2]) we first recall in Sect. 5.2
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how to formulate using the CBF the intrinsic differential geometry of a structure
(M,g, V) where V is a general metric compatible Riemann-Cartan connection, i.e.,
Vg = 0 and the Riemann and torsion tensors of V are non null. We recall that we
introduced in Chap.4 (once we fix a gauge in the frame bundle) a (1, 2)-extensor
field w : sec \'T*M — A*T*M closed related with the connection 1-forms which
permits to write a very nice formula for the covariant derivative [see Eq. (5.30)] of
any section of the Clifford bundle of the structure (M, g, V). It will be shown that @
is related to S : sec \'T*M — A>T*M the shape operator biform of the manifold.

Then in Sect. 5.3, we suppose that M is a proper submanifold' of M which i :
M + M the inclusion map. Introducing natural global coordinates (x!,...,x")
for M ~ R" we write § = Y lminidx’ @ dx) = nydx’ ® dx’ and equip M with
the pullback metric g := i*g. We then find the relation between the Levi-Civita

connection D of g and B, the Levi-Civita connection of g. We suppose that g is non
degenerated of signature (p, g¢) with p + g = m.

In this chapter C£ (1\31 ,§) and CE(M, g) denote respectively the Clifford bundles
of differential forms of M and M. Moreover, in what follows

A R B B
§=2i= 75 ®==1"-—=®

. - Q — 5.1
oxi — Ox/ oxi — Ox/ -1y

is the metric of the cotangent bundle. The Dirac operators’ of CE(Ail, g) and
C{(M, g) will be denoted by d and 3. Let / = n — m and

{€1.€2 ..., m Cmt1s- -\ Cmti) (5.2)
an orthonormal basis for TU (lOJ C 1\31) such that
{er,€2,....em} =1{€1.22,...,0m} (5.3)
is a basis for TU (U C f]) and if
(1,62, Gm gm+l gty (5.4)

is the dual basis of the {e;} we have that {§!,6% ... 0™ = {51,52, . ,90'”}
is a basis for 7* U dual to the basis {ej, €3, ..., em} of TU. We have, as well known

'By a proper (or regular) submanifold M of M we mean a subset M C M such that for every

X € M in the domain of a chart (U,0) of M such that o : M N U— R'x{l},ox) =
o Ly, where L= (L ) € RV

2Take notice that the Dirac operators used in this chapter are acting on sections of the Clifford
bundle. It is not to be confused with the Dirac operator which acts on sections of the spinor bundle
(see details in [16]). According to [5], this last operator can also be used to probe the topology of
the brane.
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from Chap. 4
§ =" 06D, =0D,, 8= I ,0D,=0D,. (5.5)

Remark 5.1 Take notice that the bold face sub and superscripts are used to denote
bases {¢;} and {6} of the tangent and cotangent space of M. This notation is
conveniently used in what follows.

The dual basis of the natural coordinate basis {3a } is denoted in what follows by
{y'} where, of course, y' = dx'. Moreover, {e &%,..., "} denotes the reciprocal
frame of {e} ie., g(€, e]) 8‘ and by {9} the re01procal basis of {9 N ie.,
g(@’, Oj) = 9’ . Ooj = 8;.. Moreover, take into account that fori,j = 1,---,m
itis g(6'.6) = §(6.6). So we will write also g(6',6;) = 6'- 6; = §i. The

o ]
representation of the Dirac operator 9 in the natural coordinate basis of M is of

course, 9 = Yo 3 -. Note that we have 9’”“} =0,..., gmti| = 0, i.e., the
M M
{61 .., 9™ for any vector fielda € secTU andd = 1,...,m + [ we have

§m+d)M (@) = 0.

We denote moreover

d =0 d=y" 6D, =00D, (5.6)

o
the restriction of @ on the submanifold M. The projection operator P (an extensor

field) on M and the shape operator S = P secCZ(Il(iI, g) — secCl(M,q)
and shape biform operator of the manifold M, S : sec \'T*M +— N°T*M
S(a) := —(a -0l (where i, = I, = 6'6%.--0™ is the volume form® on
U C M) are fundamental objects in our study. The definition of those objects
are given in Sect.5.3 and the main algebraic properties of P, S and S besides all
identities necessary for the present paper are given and proved at the appropriate
places.

Section 5.4 is dedicated to find several equivalent expressions for the curvature
biform 9R(u, v) in terms of the shape operator. We recall that the square of the
Dirac operator d acting on sections of the Clifford bundle has two different
decompositions, namely

2= —(d54+68d)=0-3+d A0, (5.7)
. o o . ol o2 om .
3The volume g foron U C M will be denoted by [, = 6 @ ---6 . The volume form 75 on

[e ] o o o o o o
U C M will be denoted I, = 6102 ---gmgm+1...gntl = | gmgm+1... gn+i,
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where d and § are respectively the exterior derivative and the Hodge coderivative and
d -9+ d A9 are respectively the covariant Laplacian and the Ricci operator. The
explicit forms of @ - @ and d A @ are given in Chap.4 where it is shown moreover
that @ A 9 is an extensorial operator and

IANIO =R, (5.8)

where the objects R = Ri#/ € sec A'T*M — secCl M, §) with R; the
components of the Ricci tensor associated with D are called the Ricci 1-form fields.

One of the objectives of the present chapter is to give (Sect.5.5) a detailed proof
of the remarkable equation

dAD (v) =—-S*(v), (5.9)

which says that the shape biform operator is the negative square root of the Ricci
operator.* We moreover find the relation between S(v) and @ (v) thus providing a
very interesting geometrical meaning for the connection 1-forms ', of the Levi-
Civita connection D, namely as the angular ‘velocity’ with which the pseudo scalar
I, when it slides on M.

In Sect.5.5 we prove some identities involving the projection operator and its
covariant derivative which are necessary, in particular, to prove Proposition 5.47.

In Sect. 5.6 we present our conclusions.

5.2 Torsion Extensor and Curvature Extensor
of a Riemann-Cartan Connection

Letu,v,t,z € secTM and u,v,t,z € sec /\1 T*M — sec CL(M, g) the physically
equivalent 1-forms, i.e., u = g(u, ), etc. Let moreover {e,} be an orthonormal basis
for TM and {62}, 6* € sec /\1 T*M — C{(M, g) the corresponding dual basis and
consider the Riemann-Cartan structure (M, g, V).

Definition 5.2 The form derivative of M is the operator

0 :secCl(M,g) — secCL(M, g),
oC : = 6%,,C (5.10)

4This result appears [with a positive sign on the second member of Eq. (5.9)] in [11]. See also [18].
However, take into account that the methods used in those references use the Clifford algebra of
multivectors and thus, comparison of the results there with the standard presentations of modern
differential geometry using differential forms are not so obvious, this being probably one of the
reasons why some important and beautiful results displayed in [11] are unfortunately ignored.
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where 8, is the Pfaff derivative of form fields
8e,C 1 =D 106, (C), (5.11)

such that if (C), is expanded in the basis generated by {6?}, i.e., (C), = C, =
%Cil...iré’i"“ir € sec \"T*M < secCL(M, g) it is

1 o o
86, (C)r = —ea(Cirei, 6" ) = —ea(Cires )00 (5.12)

Given two different pairs of basis {e,, 6*} and {e}, 0’} we have that
6%9,.,C = 09, C, (5.13)

since for all C,

1 - 1 -
§C, = 078,,C, = 0°€}(Ch.;, 0") = 0%€a(Cipoi, 0. (5.14)
r:

l ipee,

Remark 5.3 We recall also that any biform B € sec /\ZT*M — secC{(M,g) and
any A, € \'T*M < sec C{(M, g) with r > 2 it holds that

BA, =BJA, +BxA,+BAA,. (5.15)

where for any C, D € secC{(M, g) itisC x D = %(CD — DC).We observe that for
vE /\IT*M — secCL(M, g) it is

Bxv=BLv=—-v.lB. (5.16)

v
Call 9 := 6?V,, the Dirac operator associated with V, a general Riemann-Cartan
connection. In Chap. 4 we introduced the Dirac commutator of two 1-form fields
u,v € sec /\l T*M — sec CL(M, g) associated with V by

1 1 1
[,]:sec/\ T*M x sec/\ T*M—>sec/\ "M
\ \
[#,v] = (u-3)v— (v-3)u— [u,v]
where

[u,v] = (u-3)v—(v-9d)u, (5.17)

is the Lie bracket of 1-form fields.’

Recall that if [e,, €] = cfia'i,ed, then [6,, 6] = cfia'i, q.
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Definition 5.4 For a metric compatible connection V, recalling the definition of the
torsion operator we conveniently write

T(u,v) = [u,v], (5.18)
which we call the (form) torsion operator.

Remark 5.5 We recall (see Chap.2) the action of the operator 9, (u €
sec \' T*M — secC{(M,g)) acting on an extensor field F : sec \' T*M —
sec \"T*M, u > F(u). If u = ui6;, 9, := 91‘% acting on F'(u) is given by

ad . a .
._ pk iny .— k i 3
DuF () = 0% Fut6y) 1= O il F(6)

= 0%F(6k) = 0X_F(6k) + 6% A F(6y). (5.19)

Also the action of the operator 9, A 3, (u = u'6;,,v = vi6;) acting on an extensor
field G : sec \' T*M x sec \' T*M < sec \" T*M, (u, v) > G(u, v) is given by

% u™u"G(O™, 0")
u

= 0% A 0'G(6k. 6. (5.20)

0y A 0,G(u,v) = ek% A 6!
u

Definition 5.6 The mapping
2 1
t: sec/\ "M — sec/\ T"M,
1
«(B) = EB- 0y A 3y)T (1, ). (5.21)
is called the (2-1)-extensorial torsion field and
tuAv) =1t(y,v). (5.22)
Indeed, from Eq. (5.21) we have taking B =a A b
1
tlanb)= E(a A D) - (9, A 0y)T (1, v). (5.23)

Now,

@ A 3y) T(u,v) = (6% A OYT (6K, ). (5.24)
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Then,
tlanb)= %(a A b) - (0% A ONT (6. 6) = t(a.b).
Definition 5.7 The extensor mapping
O : sec /\1 T*M — sec /\2 "M,
O(c) = %(&, A dy)T(u,v)-c,

is called the Cartan torsion field.

We have that
tuAv) =0.(uAv)-O(c)
and if V,, 0 := —wP"0¢ then

z-t(u A v) = zqu* TS,

¢ e o oo
T~ah = Wap — Wpg — Caap -
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(5.25)

(5.26)

Definition 5.8 The connection (1-2)-extensor field @ in a given gauge is given by

(v=2g([,))
1 2
w: sec/\ "M — sec/\ T"M,
1
v o) = Evca)f:,bea A Op.
We also introduce the operator
1 2
®: sec/\ ™ — sec/\ T*M,
1
v oW =w, = Evcwi'.bé’a A B
and it is clear that

o) = w,.

(5.27)

(5.28)

(5.29)
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We recall that it is proved in Chap.7 (Sect.7.5) using the theory of covariant

derivatives in vector bundles that for any C € sec C{£(M, g) we have

1
ch = 6vc + E[wvvc]

=0,C + wy xC,

(5.30)

where w, xC : = % (wyC — Cwy) is the commutator of sections of the Clifford bundle.

Exercise 5.9 Choose a basis for C£(M, g) and verify by direct computation the

validity of Eq. (5.30).

Remark 5.10 Note for future reference that if v = g(v, ) then
vxC=vi.
Also take notice that
v
V., =v-0

Definition 5.11 The form curvature operator is the mapping

p: sec(/\l T*M x /\l T*M) — End /\l T*M,

v \Y v
p(u,v) =[u-9,v-9]—fu,v]-9
= [Vuv Vv] - V[u,v

withu =g(u,),v =g, ),u,v € secTU C secTM

Definition 5.12 The form curvature extensor is the mapping

p: sec(/\1 T*M x /\1 T*M x /\1 T*M) — sec /\1 T*M,

v v v
p(u,v,w) =[u-9,v-9w—[u,v]-ow

= [Vu. Volw =V yw

withu =g(u,),v=gw,),w=gw,),u,v,w csecTU C TM
It is obvious that for any Riemann-Cartan connection we have

p(us U,W) = —p(U, Lt,W),

(5.31)

(5.32)

(5.33)
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One can easily verify that for a Levi-Civita connection we have
p(u, v, w) + p(v,w,u) + p(w,u,v) = 0. (5.34)

Note however that Eq. (5.34) is not true for a general connection.

Definition 5.13 The mapping

R: sec(/\1 T*M)* — sec /\0 T"M,
R(a,b,c,w) = —p(a,b,c) - w, (5.35)
a=g(a,),b=g®b,),c=g(,),w=gw,)

witha,b,c,w € sec TU C TM is called the curvature tensor.

One can verify that for the connection V
R(a,b,c,w) = —R(b,a,c,w), (5.36)
R(a,b,c,w) = —R(a, b,w, c), (5.37)
and that for a Levi-Civita connection

R(a,b,c,w) = R(c,w,a,b), (5.38)
R(a,b,c,w) + R(b,c,a,w) + R(c,a,b,w) =0, (5.39)

Eq. (5.39) is known as the first Bianchi identity.

Proposition 5.14 There exists a smooth (2-2)-extensor field,
R :sec \’T*M — N\’T*M,
B — R(B) (5.40)
called the curvature biform such that for any a, b, ¢, d € sec /\l T*M we have
R(a,b,c,d) =R(aAb)-(cAnd)=—(c Ad)_R(a A D) (5.41)

Such B — R(B) is given by

1
R(B) =~ B+ (3 A )3 A dap(a.b.c) -d, (5.42)
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and we also have
1
R(anb) = 50 Adapla.b.c)-d. (5.43)

Proof First, we verify that Egs. (5.42) and (5.43) are indeed equivalent. Indeed,
Eq. (5.42) implies Eq. (5.43) since we have

R(aAb) = —%(a AD) - (0p A Dy)0c A dap(p,g,c)-d

1 a-d,a-0
= —_ det p 719, .q.c)-
€ |: 'ap aqi|a /\adp(p q c)-d

(a-8pb-8q—a-8qb-8p)8cA8dp(p,q,c)-d

Rl = A=

=— (a- 0pb - 8q) de A dap(p,q,c) - d
1
= _EBC A dagp(a,b,c)-d.
Also, Eq. (5.43) implies Eq. (5.42) since taking into account that
1
B = EB-(aa Adp)anb
we have
1
R(B) = i)‘{(EB - (04 A Op)a A b)
1
= EB - (04 A 0p)R(a A D)
1
= _ZB - (04 A 0p)0c A Ogp(a,b,c)-d.
Now, we show the validity of Eq. (5.41). We have taking into account Eq. (5.43)

1
R(aAb)ilcnd) = —E(C Ad) (0, Adg)pla,b,p)-q

_ 1 c-0p c- 04
- Zdetl:dapdaq}p(asbvp) q

—

Z_E (C.3pd.Bq—c-aqd'Bp)P(aava)'q
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= —c-0pd-dy4p(a,b,p)-q
= —p(a,b,c)-d =R(a,b,c,d),

and the proposition is proved. B

Proposition 5.15 The curvature biform R(u A v) is given by®

RuAv)=u-0w (v) —v- 0w (1) + o(u) x w(v). (5.44)

Proof The proof is given in three steps (a)—(c)

(a)

(b)

We first show that Eq. (5.44) can be written as

\% \Y
RUAV) =u-0w, — V- 0w, — E[wu,wv] — @)

1
= Vuwv - vau - E[wua wv] — @y, (545)

withu = g(u, ), v = g(v, ). Indeed,we have

u- g(a)(v)) =u- 6(w(v))+%[a)(u),a)(v)]. (5.46)
and recalling the definition of the derivative of an extensor field, it is:
(u-3w) (v) =u-0w (v) := ud(w))—w(u-ov). (5.47)
we have,

u-8(w))—v-dwm) =u-8w@)—v -8 wu)+w@ov)—w(v-du)
=u-0w)—v-0wu)+w(u,v])
=u-0w,— V- 0w, + &y, (5.48)

and using the above equations in Eq. (5.44) we arrive at Eq. (5.45).
Next we show (by finite induction) that for any C € sec C{£(M, g) we have

(. V4] = Vuea)C = 593 A 0).C), (5.49)

with R(u A v) given by Eq.(5.45). Given that any C € secC{(M,qg)
is a sum of nonhomogeneous differential forms, i.e. C = ZZ=OCP with

%Recall that in Eq. (5.45) [u, v] is the standard Lie bracket of vector fields # and v and [u, v] :=
u-dv — v - Ju is the commutator of the 1-form fields u and v.
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C, € sec N'T*M < secC{(M,g) and taking into account that C, =
%Cil...i p@il ---0% it is enough to verify the formula for p-forms. We first verify

the validity of the formula for a 1-form 6 € sec /\1 T*M — secCL(M,g).
Using Eq. (5.45) and the Jacobi identity

[@y. [04.0'T[@u. [0, @, 116", [0, @] (5.50)

we have that

%[m(m v), 01] (5.51)

1 . . 1 . . . .
3 {(Vua),ﬁ' - Q'Vuw,,—i—i[[w,,,wu], ' — (Vyw,0' + 0'Vy0, — [w[u,,,]ﬁ']}

1 . 1 . . 1 . .
= E {[Vu&)v, 91] + E[wvv [wua 91]]_ [vavv 91] - E[wuv [wvv 91]] - [w[u,v]v 91]}
= VuV,0' =V, V,0' — V|, 10" (5.52)

Now, suppose the formula is valid for p-forms. Let us calculate the first member
of Eq. (5.49) for the (r + 1)-form @1~ +1 = gl giz... gi+1 We have
Vo Vy (017541 — W, W, (017341 — W, 4 (71
= Vu((Vo 1) 0271 4 61V, 61 +1) — V, (V,01) 0%+ 4 61V, 0% +1)
- (V[u,v]eil)eizmirﬁ) — ot V[u,v]eizmi""‘
= (Vuv,,eil)eiz'-'ir—o—l + Vveil V,,Oiz"'”‘ + Vueil V,,Qiz'"i""‘ + 09il V,,V,,Oiz"'ir+1
- (Vvvueil)eizmir_H - Vueil vaiZ"'ir_H — Vveil VugiZ"'ir_H _ Qil V,,Vueiz'"iH'I
- (V[u.v]eil)eizmir*—l) — g V[u.v]giz"'ir—b—l
= eil (V,,V,,Oiz"'i’“ _ V,,V,,Oiz"'i’“ _ V[u’v]giz---i,_,_l)
F(Vu Vo0 =V, V, 01—V, 01 g2 i+
iy 1 by 1 o
= 01 (SR A ). 0] 4 (SR A v), 1 hER
1 .
= SR Av). 64, (5.53)
where the last line of Eq. (5.53) is the second member of Eq. (5.49) evaluated
for 11912 ... Qir+1,

(c) Now, it remains to verify that

R(u,v,t,2) = (t A7) - R(u A v), (5.54)
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with R (u A v) given by Eq. (5.45). Indeed, from a well known identity, we have
that for any 7, z € sec \'T*M, and R(u A v) € sec A\*T*M it is

A -RuAv) =—22(2R(u A D))
=z- (R A V)

= lZ- [R(u, v),1]

2
BB o (VYo = VoVt — Vi)
and the proposition is proved. B

In particular we have:
R(u, v,z,1) = ztu*vPRS;,,

R = (@) — en(@0) + ool — oo — cppole . (555
and

R(0%,60°,0,,60y) = (6% A O°)-R(6, A ) =R, (5.56)

where R is the curvature scalar.

Proposition 5.16 For any v € sec /\l T*M — secCL(M, g)
[Ve,s Ve ]v = R(6a A Op)Lv — (Top, — @5y + @) Ve - (5.57)

Proof From Eq. (5.49) we can write

1
[Ve,» Ve, Jv = E[m(ea A Bb),v] + Vi, ey)V

= f‘)}‘(93 A eb)l-v + V([easeh]_veaeh""vehea)v + Vveaehv - Vvebeav
= %(93 N Gb)l_v + V_T_Ca'i]ecv + Vw;‘;i]ecv — Vw_cl;;iecv
= 9R(04 A Op)Lv — (TS, — 0% + @5a) Ve v

which proves the proposition. ll

Proposition 5.17

RO A By) = RE = do + o A S (5.58)
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Proof Recall that using

([Vekv Vel] - V[ek,al])ej = p(eksel)ej = _R'lklels
([Veky Vel] - V[ek,au])ej = p(eksel)ej = leklels (559)
we have
R(Ba A Bp)Lv = V™ p(eq, €p)0m = vaf;;;abOi. (5.60)
On the other hand, for a general connection, we must write
1 Kk 1
Rab := ERklabe A6 (5.61)
and then

1
RapLV = EUmRklab(Qk N el)l_e = _Umleabel = Ulemabel = va!mabel

and the proposition is proved. B

Proposition 5.18 The Ricci 1-forms’ R® := R3O and the curvature biform R (0, A
Ob) for the Levi-Civita connection D of g are related by,

1
RY = E(9*’ A OP)(R(6a A Op)L0Y) (5.62)
Proof Recalling that the Ricci operator is given by
1
ang 04 = 5(9“ A 6°) (IDe,s Dey 10 — ¢S, De 0°) (5.63)

and moreover taking into account that by the first Bianchi identity it is R; A 0. = 0,
we have

1 1
E(9*‘ A 0°) ([De,, Dey 10 — D, 0%) —5((9a A BP)RE: ¢ = RE4G,
= R“.0. + R A O = —0.sR™
1
= —50ea(6" A 6")R,
= —R% 0> =RI (5.64)

which proves the proposition. ll

"The R2 := ®R¥,, are the components of the Ricci tensor.
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Proposition 5.18 suggests the

Definition 5.19 The Ricci extensor is the mapping

1 1
R: sec/\ "M — sec/\ T*M,
R(v) = 0.R(u A v). (5.65)

Remark 5.20 Of course, we must have R(69) = RY. Moreover, we have

3R A V) = eb%m(ukek AV) = eb%ukm(ek A V)

= OPR(SEO A v) = O°R(Oy Av)
= 6P_9R(6y A V) + 6° ARG A V)
= "SR A V).

So,

R Av) =0,208@uAv)and I, A R(uAv) =0. (5.66)

5.3 The Riemannian or Semi-Riemannian Geometry
of a Submanifold M of M

5.3.1 Motivation

Any manifold M,dimM = m, according to Whitney’s theorem (see, e.g., [1]),
can be realized as a submanifold of R”, with n = 2m. However, if M carries
additional structure the number n in general must be greater than 2m. Indeed,
it has been shown by Eddington [8] that if dim M = 4 and if M carries a
Lorentzian metric g and which moreover satisfies Einstein’s equations, then M can
be locally embedded in a (pseudo)Euclidean space R!°. Also, isometric embeddings
of general Lorentzian spacetimes would require a lot of extra dimensions [4].
Indeed, a compact Lorentzian manifold can be embedded isometrically in R>*¢ and
a non-compact one can be embedded isometrically in R?®7! In particular this last
result shows that the spacetime of M-theory [7, 14] may not be large enough to
contain 4-dimensional branes (representing Lorentzian spacetimes) with arbitrary
metric tensors. In what follows we show how to relate the intrinsic differential



204 5 Clifford Bundle Approach to the Differential Geometry of Branes

geometry of a structure (M, g, D) where g is a metric of signature (p, g), D is its
]

Levi-Civita connection and M is an orientable proper submanifold of M, i.e., there
is defined on M a global volume element 7, = I,, whose expression on U C M is
given by

I, =0'6*..0m (5.67)

]
We suppose moreover that M ~ R” and that it is equipped with a metric g of
signature (p,g) = n. However, take notice that our presentation in the form of a

local theory is easily adapted for a general manifold M.

Projection Operator P

Definition 5.21 Let C = Y"_ C,, with C, € sec A\'T*M <> secCL(M.§). The
Projection operator on M is the extensor field
P :secCL(M,§) — secCL(M, g),
P(C) = (CuI)L, . (5.68)

Remark 5.22 Note that for all Cx € sec A\\T*M < secCL(M.§), if k > m
then P(C) = 0, but of course, it may happen that even if A, € sec \'T*M <>
sec CL(M, ) with r < m we may have P(A,) = 0.

We define the complement of P by
P, (C)=C—-P(C) (5.69)

and it is clear that P (C) have only components lying outside C£(M, g). It is quite
clear also that any C with components not all belonging to sec C£ (1\31 ,§) will satisfy
Cul, =0.

Having introduced in Sect.5.1 the derivative operators 9 and its restriction
= 3 ” (Egs. (5.5) and (5.6)) we extend the action of P to act on the operator

PQ) = YU P(6*D,,) := Y0 P(6%)D,, = I ,65D,, = 0. (5.70)
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Shape Operator S
Definition 5.23 Given C € secC/ (AC;I ,§) we define the shape operator

S : sec CL(M, &) — sec CL(M, &),
S(C) = 3P (C) = 3(P(C)) — P(AC). (5.71)

5.3.2 Induced Metric and Induced Connection

For any C € secC{(M, g) and v € sec TM we write as usual [3, 13]
D,C = (D,0)) + (DO, (5.72)

where (D,C); € secCL(M, g) and (D,C), € sec[CL(M, g)]1 where [CE(M, g)]. is
the orthogonal complement of C£ (1\04 ,9) inCL(M, g).

As it is very \O)vell known [3, 13] if g := i*g and v € secTM (and v = g(v,))
and C € sec C£(M, §) the Levi-Civita connection D of g := i*g is given by
D,C = (D,C), (5.73)
and of course
D,C:= (v-3C) (5.74)
Moreover, note that we can write for any C € sec C{(M, g)
v-3C = (v-3C)) =P -dC) (5.75)
Also, writing
(Dy,C), =P, (v-3C) (5.76)
we have
v-d =P-3) = (v-3)] = (v-3) =v-0—PL(v-3) = v-0-PL(v-0). (5.77)
So, it is
v 0Ll = Y0 (D + PL(v-007)) 0"

= Dyl 0, +PL(v-00) A O (5.78)
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Now, D1, € sec \"T*M < secCL(M,g) is a multiple of I,, and since Iyzn =
£1 depending on the signature of the metric g we have that D, [, = 0.

Indeed,

0 = D,I2 = 2(Dyl,)I, (5.79)
and so
0 = (Doly)ul," = Dyl

In any Clifford algebra bundle, in particular C£(M, g) we can build multiples of
the 1,, not only multiplying it by an scalar function, but also multiplying it by a an

appropriated biform. This result will be used below in the definition of the shape
biform.

533 S@) =S@) =0, AP, (}) and S(@1) = 3,.P, (¥)

For any C esec C€(M, g) itis C = P(C) we have (with u € sec /\lT*Aal — sec
CLM, Q)

A(P(C)) = 3P (C) — P(3C)
= ,P, (C) — P(20)
=3, AP, (C) + 3,4P, (C) — P(C) (5.80)

where
P, (C):=u-oP (C) = u-3(P(C)) — (P(u-2C)). (5.81)
Recall that for ¥ € sec /\IT*Zﬁl — sec Cﬁ(]\fil, §) we can write
S@) = 0P (8) = 9y AP, (B) + 0P, () (5.82)
where we used that for any ¢ esec CE(I&I ,g) itis
3P, (C) == Z:’;lé’i%u P (6) = Y, 6D P () = 3P (C) (5.83)

Puttingﬁ = 13” + 0, = v+ U, we have the
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Proposition 5.24
S@) =8Sw) =3, AP, (D), S(¥1) = 8,.P,(D).
Proof Indeed,
S(®) = S@)) + S(1) = du AP, (V) + 3,aPu (V)
and so, it is enough to show that
34aP, (0)) =0 and 9, AP, (V1) =0,
From P2(0) = P(V) we get
P.P(3)) + PP.(3)) = P.(3)),
So, for 13” and 0, itis
PP,(v)) =0 and PP,(¥1) =P,(V1).
Since PP, (7)) = 0 we have that
3PP, (D)) = P(3,) 1P, (3)) = 0,2P,(T)) = 0.
From PP, (01) = P,(01) we can write
9y AP, (V1) = 3, APP,(B1) = P(3,) A PP, (D1) = P(3, AP,(D1)).
Now, take t, y € sec /\IT*M — sec C£(M, g). We have

(tAY) - (B APP,(BL)) = (1 AY) - (B4 APL(BL))
= 13((v- 8y APU(BL) — 8y A ((aPu(BL))
= 1.(y- 3(P(5L)) — P(y- 05,) — 6
A (263 - 3(P(BL)) — P(8; - 351)))
= 14(P(y-081) — 0% A (yuP(0; - 051)))
= t2(Dyd1) — 0" A (ya(De,01))) = 0
from where it follows that

0. AP (1) =0

and the proposition is proved. B
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(5.85)
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(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)
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Shape Biform S

Definition 5.25 The shape biform (a (1, 2)-extensor field) is the mapping

S:sec \'T*M — N’T*M, (5.93)
v S(),
such that
v ol = —S@),. (5.94)

From Eq. (5.15) it follows that
S()al, = 0and S(v) A, = 0. (5.95)
Since S(v)al,, = 0 it follows from Remark 5.22 that
P(S(v)) = 0. (5.96)
Now, using the fact that D,I,, = 0 and Eq. (5.94) it follows from Eq. (5.78) that
v-ol, = (PL(v-06) A O, = —-S)I,.
ie.,
S(v) = =P (v-06)AH. (5.97)
Proposition 5.26 For any C € sec C{(M, g) we have
DyC = v-3C + S() x C = DyC + S(v) x C. (5.98)

Proof Taking into account Eq.(5.97) we have for any v,w € sec /\lT*M —
secCL(M, g)

vaSW) = —vL(PL(w-06)A0))
= —(vu(PL(w-06))0' + VP (w-06)
= VP, (w-06;) =Py (w-0v) — P [(w- )]

=P, (w-0v). (5.99)
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So,

v-Sw:P(v-Sw)—FPJ_(v'Sw)
= D,w 4+ waS(v)
= Dyw — S(v)Lw. (5.100)

Now, for v, w € sec /\lT*M — sec C{(M, g) we have

Dy(wu) = (Dyw)u + wDyu = (va)u + (S(v) x w)u + wlo),,u + w(S() X u)
= (Dywu) + (S) x Wy — w(u x S(v))

= (lo),,wu) + (S(v) x wu), (5.101)

from where the proposition follows trivially by finite induction. l

Of course, it is
D, C = DoC + S(v) x C (5.102)

Now, recalling Eq. (5.30) we have®

DeC = 84,C + &, x C (5.103)
where fori,j=1,...,m, Beiei = Beﬂoj = —Zﬁ=1c°oi'l'(§k, it is
o 1 clab
wy, = EU @503 N Oy (5.104)

So, we get

D,C =v-3C +S(v) xC
=0,C+ (& + S(v)) xC (5.105)

and in particular

D, C = 8,,C + (&, + S(e,)) x C. (5.106)

8Take notice that this formula being gauge dependent is not valid if e; —> x; where the x; coordinate
vector fields. See Corollary 5.27.
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Comparison of Eq. (5.106) with Eq. (5.28) (valid for any metric compatible connec-
tion) implies the important result

w, = (@ + S(v)) (5.107)

We can easily find by direct calculation that in a gauge where @, # 0,

wy = P(dy) (5.108)
which is consistent with the fact that from Eq. (5.96) it is P(S(v)) = 0.
Let (xl, ...,x™, ...,x") be the natural orthogonal coordinate functions of M >~
R™.

Corollary 5.27 ForC € sec C{(M, g)

D,C = vi%c + S(v) x C. (5.109)

Proof Taking into account that D 5 dx’ = 0 follows that
ox?

o 1 o
Oy = E(Fkil)dxk Adx' = 0. (5.110)

Using this result in Eq. (5.98) with ¢; — % gives the desired result. l

Remark 5.28 Comparison of Egs.(5.105) and (5.109) shows that S(v) cannot
always be identified with w(v) which is a gauge dependent operator.

5.3.4 Integrability Conditions

Remark 5.29 Take into account that the commutator of Pfaff derivatives acting on
any C € sec C£(M, g) is in general non null, i.e.,

[Be;. 0e;]C = Y1k e (Ciyni, )07 0, (5.111)

unless e; are coordinate vector fields, i.e., ¢; — X;.

Remark 5.30 Also, since the torsion of lo) is null we have in general
[6: - 0.65 - 01C = [6:. 6] - 3C = K61 -0C = K5 D, C #0, (5.112)

unless e; are coordinate vector fields. Moreover, for the case of orthonormal vector
fields

[6; - 0,6; - D]C # [0, B¢, ]C. (5.113)
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Remark 5.31 The integrability condition for the connection Dis expressed, given
the previous results, by

dAd=0 (5.114)
which means that for any C e sec C@(Ao4 ,§) itis
dndcé=o0

For the manifold M recalling that x; = 0y, is a Pfaff derivative we have for any
C esecCl(M,qg)

(0x,0xj — 0x;05,)C = 0. (5.115)
If we recall the definition of the form derivative [Eq. (5.10)], putting
8 := 05, (5.116)
we can express the ‘integrability’ condition in M by
0AD = 0. (5.117)
Finally recalling Egs. (5.63) and (5.64) for v € sec /\IT*M — sec CL(M, g) itis
INdv =R (5.118)

where R are the Ricci 1-form fields.

535 S(v) = S()

Proposition 5.32 Let C = v € sec /\IT*M — sec CL(M, g) we have
S(v) = S(v). (5.119)
Proof We have

S(v) = 3(P(v)) — P(dv)
= v — P(dv). (5.120)
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Now, dv = DAV + d_v and since P(SJU) = d_v we have
S(v) = 0AV — P(dAY) (5.121)

It is only necessary due to the linearity S of to show Eq.(5.119) for v =
0q.d =1, ..., m. We then evaluate

OAba = Yk 0 De,ba = Z’l?=12:l=1,t;ék£)tkd9k AO!
= ka=12:n=1,r;ék6?’tkd9k A+ Z?:lzgn:niﬂé?)tkdek A etv (5.122)

from where it follows that

m m o 2 J m o o 2
S(fa) = Y hy i 1 Bual® A 0" = 52k=12t=+nf+1(wrkd — Owa) 0% A 0’

(5.123)
On the other hand
B4 - SIW, — nll ""’Immlo)ed(@l A NGy
= C{Bed(el “ee em)
= aZLlZ;’:lé’)rdk@l e B0,
k-position
= aZZ[:lZT:]C?)tdkel 91‘ Qm
k-position
+a2;"=12:"=ti+1a3,dk91 e 0" O, (5.124)
k-position
and now we can easily see that
S(6q) X Iy = 0a - Ol (5.125)

and it follows that S(fa) = S(64). B
We also have the

Proposition 5.33 Let v, w € sec /\IT*M — sec CL(M, g) we have

v-Sw) =w-S() (5.126)
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Proof Recalling Eq. (5.123) we can write

m iod m m—+1 o k ot
v SW) = D s VWO DD Pl A0

1 m i o o 4
= 52'@:1” w(@Dia — Bia)0" = w-S(v)

and the proposition is proved. ll

536 dAvV=03AVD + S(v) and 04v = 9 v
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]
We first observe that since torsion is null for the Levi-Civita connection D we have

for any u, v € sec T*M <> sec CE(I\OL §) we have

u-5v=U-5u+|[u,v]]

(5.127)

from where it follows P ([u, v]) = 0 when u, v € sec T*M — sec C£(M, g) since

calculating [u, v] with 3 expressed in the natural coordinates of M we find that

[u, v] € sec T*M — sec C£(M, g). From this it follows that
PL(u-dv) =P (v-u).
Then we can write

dAv=3 60F A D, (V*6)

mk=1
m m m m+Il=n
= 3 0" A{ec(V) + VYL 00+ Y 0T AR S L
rk=1 s=1 rk=1 s=m+1

=dAv+ Y O°A kal(ﬁer)
mk=1

=dAv+ Y 08 AVRPL(Diby)
mk=1

—dAv 40" AP (DO

=dAV+O"APL(v-06;)
and recalling that S(v) = —P (v - 89,0/\6’r we finally have
DAV =3A0+SW)

and the proposition is proved.

(5.128)

b5

(5.129)
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Also, from [Eq. (5.86)] we know that 9, P, (13”) = 0. So,

v = 3(P(v)) = oP (v) + P(dv)
= ,AP, (v) + 0,.P, (v) + dv
=0, AP, (V) +dAv+ v

=S(W)+0Av+ a1 (5.130)
and thus we see that
v =dw (5.131)
We then can write
v = dv + S(v). (5.132)

537 9C=9C+S(C)

We can generalize Eq. (5.132), i.e., we have the

Proposition 5.34 For any C € sec C£(M, g) we have
9C = 3C +S(C),
QAC=3AC+S(C), 2.C=0d.C. (5.133)

Proof

(i) From the fact that for any A, B € sec CK(I\OL §) itis P(A A B) = P(A) AP(B)
we have differentiating with respect to u € sec /\IT*M — sec CL(M, g)

P,(AAB)=P,(A)AB+AAP,B) (5.134)
and of course

P, (AL AB)) =P, (AL) AB, P (ALABL) =0,
P,(Ay ABj) =P, (A) AB + Ap APL(B)). (5.135)
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(ii) For C € sec C{(M, g) itis C = P(C) and we have using Eq. (5.71)
3C = 0P (C) — P(3C)
=3AP (C) + 0P (C) + 8C (5.136)

(iii) Now, we can verify recalling that S(C) = S(C) + C1) = S(Cj) + S(C1) and
following steps analogous to the ones used in the proof of Proposition 5.24 that

S(C)) = S(P(C)) = AP (C)) S(CL) =P(S(CL) =P (C)). (5.137)
(iv) Using Eq.(5.137) in Eq. (5.135) we have
IAC +0.C = AP (C) + 0P (C) + IAC + 9.C
or

IAC +0.C =8(C) +S(CL) +IAC +d.C
=S(C) +dAC + 3.C, (5.138)

which provides the proof of the proposition. ll

Proposition 5.35 For any C € sec CL(M, g) we have:
3C = P(3C) (5.139)
Proof From Eq. (5.71) when C € sec C£(M, g) it is
P(S(C)) = 0.
Then, applying P to both members of the first line of Eq. (5.133) we have
P(3C) =(3C); = P(3C) + P*(S(C)) = P(3C) = §C (5.140)

and the proposition is proved. B

5.4 Curvature Biform 93(u A v) Expressed in Terms
of the Shape Operator

5.4.1 Egquivalent Expressions for )R(u A v)

In this section we suppose that the structure (M,g,D) is such that is M a
submanifold of M ~ R”" and D the Levi-Civita connection of g = i*g. We obtained
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in Sect.5.1 a formula [Eq. (5.44)] for the curvature biform SR(u A v) of a general
Riemann-Cartan connection. Of course, taking into account the fact that R is an
intrinsic object, the evaluation of 2R(u A v) does not depend on the coordinate chart
and basis for vector and form fields used for its calculation. In what follows we take
advantage of this fact choosing the basis {% dx'} as introduced above for which

@(u) = 0. Thus, we have, recalling Egs. (5.44) and (5.45) that

RuAv) =Dy () — Dy o) + o) X (V) — @,
= 5,, w(v) — 5,, o) + wu) x w(v)
—wW) Xo) —ou) X ) — Oy

= Bu o) — lo),, o) + o) X o(V) — @) (5.141)

On the other hand since in the gauge where @(u) = 0 we have that w(u) = S(u)
and thus we can also write

R(u A v) = Dy 0(v) — Dy 0(u) + S() x Sv) — S([u, v]). (5.142)
Now, putting x; = 3/0x' we have

D, o) — Dy w(u)
= —uvH{Dy S () — Dy, S(%)}
=~ Dy (Dl ;") — Dy (Dl I,")}

I—l

= _uivj{ﬁxiﬁxj-lm) Ir;l) + (ij-lm) (lo)xi m
- (DXjDXiIm) Iy;l) - (Dxilm) (ijlyzl)}

= —u'v"{(DixjIn I,,") — (Dx;In) (DxI,,") — (D 1) (Dx1,")}

Xi'm

;") = Dgln) (Dy ")}

Xi'm

=~ {—(Dyln) (D
=~ {(Dy ) I;") (DI V) — (D)) (D))}

= v (D) 1;") (D L)L) = (D)) (Dl 1)}

= —u'VIS(H)S ;) + u'vIS(9;)S (%)

= —SW)S©) + S()S(u) = —28(u) x S(v). (5.143)

Thus,we get

RuAv) =-=8u) xSw)—S(u, v]). (5.144)
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Now take into account that since R(u A v) € sec /\ZT*M — sec C£(M, g) we must
have, of course, —S(u) x S(v) — S([u, v]) = P(—=S(u) x S(v) —S([u, v])) and since
Eq. (5.96) tell us that P(S([u, v]) = 0 we have the nice formula’

R A v) = —P(S(u) x S(v)) (5.145)

which express the curvature biform in terms of the shape biform.

542 S*v)=-3Ad (v)

In this subsection we want to show the

Proposition 5.36 Let v € sec /\IT*M > sec CL(M, g). Then,

S*(v) = -9 A 9 (v). (5.146)

Equation (5.146) tell us that the square of the shape operator applied to a 1-form
field v is equal to the Ricci operator applied to v. This result will play an important
role in Chap. 11 where we give a formulation to Clifford intuition that matter is
represented by little hills in a brane [17].

Now, to prove the Proposition 5.36 we need the following lemmas:

Lemma 5.37 LetC €sec CE(Z\C;I, g) and v € sec /\IT*M — sec CL(M, g). Then

P,(C) =P(C) x S(v) —P(C x S(v)). (5.147)
Proof Indeed,

P,(C) = D,(P(C)) — P(D,C)
= D,(P(C)) — S(v) x P(C) — P(D,C — S(v) x C)
= D,C — 8(v) x P(C) — D,C + P(S(v) x C)
=P(C) x S(v) — P(C x S(v)) (5.148)

which proves the lemma. B

“Note that in [11, 18] the second member of Eq. (5.145) is the negative of what we found. Our
result agrees with the one in [6].
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Lemma 5.38 Let C esec CL(M,g) and v € sec /\IT*M — sec CL(M, g).Then
D,C = D,C—P,(C). (5.149)

Proof Follows from the first line in Eq. (5.148). &
Lemma 5.39 Ler C €sec C4(M,g) and u, v € sec /\lT*M.(—> sec CL(M, g). Then

DuD,C = P(DyD,C) + PP, (C). (5.150)
Proof Using Eq. (5.149) we have
Du(DyC) = Dy(DyC—P,(C))
= DuDyC—P,(D,C) — Dy(P,(C)) + P,P,(C). (5.151)
On the other hand we have
P(D,D,C) = —P,(DyC) + Dy (P(D,C))
= —P,(D,C) + Du(D,)
= —P,(D,C) + Du(D,C—P, ()
= DuDyC—P,(D,C) — Dy(P,(C)). (5.152)
Putting Eq. (5.152) in Eq. (5.150) gives the desired result. H
Lemma 5.40 Let C €sec C£(M,g) and u, v € sec /\lT*M — sec CL(M, g).Then
R(u A v) x C = [P,.P,IC. (5.153)
Proof Using Eq. (5.150) we have
[Du. D,]C = P([Dy. D,IC) + [P, P,]C

= P(DpiC) + [P P,IC
= Dju,wiC + [Py, P,]C (5.154)

Thus we get that

([Du.,Dy] — Dpu,u))C = [Py, P,]C (5.155)
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Recalling now Eq. (5.49) we have
Rurv)xC=[P,P,]C

and the lemma is proved H

Lemma 5.41 Let C €secCL(M, g) and u, v € sec /\IT*M.L) secCl(M, g). Then,
RuAv)xC=-P(Su)xS)) xC (5.156)

Proof This follows directly from Eq. (5.145). &
Remark 5.42 We shall now evaluate directly the first member of Eq. (5.157) to get
Eq. (5.160) which when compared with Eq. (5.145) will furnish identities given by
Eq.(5.161).

([Du> Dy] = Dpuw))C = R(u Av) x C. (5.157)
Given the linearity of SR(u A v) we calculate the first member of Eq. (5.157) for the

case u = Xj, v = X;. Taking into account that D,,C = BuC + S(u) x C we get with
calculations analogous to the ones in Eq. (5.143) that

[Dy;, Dy;]C = =S() x S(¥) x C (5.158)
and taking into account that it is [X;, Xj] = 0 we can write the last equation as
([Dx;, Dx;] = Dixi x))C = R(Di A ) x C == S() x S(F) xC (5.159)
and so it follows that
RuAv)xC=—8u)xS)xC. (5.160)
Of course, we must have P(S(u) x S(v) xC) € sec C£(M, g). Since S(u) x S(v) =
P(S(u)xS(v))+PL(S(u)xS(v)) and we already know that R(uAv) = —P(S(u) x
S(v)) it follows that P (S(u#) x S(v)) = 0 and moreover we get that
P(S(u) x S(v) xC) =P(S(u) x S(v)) x C =P(S(u) x S(v)) xP(C). (5.161)
Lemma 5.43 Let C € sec C£(M,g) and u, v € sec /\lT*M — esec CL(M, g)

R(uAv) = Py(Su) (5.162)



220 5 Clifford Bundle Approach to the Differential Geometry of Branes
Proof Taking C = S(u) in Eq. (5.148) and recalling Eq. (5.96) P(S(u)) = 0.we get
P,(S(w) = —P(S(u) x S(v)) (5.163)

which proves the lemma. l
Remark 5.44 From Eq. (5.163) we immediately have
P,(S@)) = —P(S(v) x S(u)) = P(S) x S5(v)) = =Py (S(w)) = —P,(S(w))

(5.164)
where the last term follows from the fact that S(u) = S(u).

Proof (of Proposition 5.36) We know that R(v) = 9,9%(u A v). Thus using
Eq. (5.164) and recalling Eq. (5.71) we can write

R(V) = 3,Py(S)) = —3,P.(S(v)) (5.165)
= —3P (S(v)) = —-S(S(v)) = —S*(v).
Since we already showed that R(v) = 8 A 9 (v) we get
AN (v) = —S*(v)

and the proposition is proved. l

Remark 5.45 Take notice that whereas S(v) is a section of CE(I&I, 9), $*(v) €
sec /\lT*M — secCL(M, g).

Proposition 5.46 Leru,v,w € sec /\lT*M — sec C{(M, g). Then,
1
RuAv) = an A [Py, Pul(w). (5.166)

Proof From Eq.(5.153) withC = w € sec /\IT*M — secC{(M, g) we have
R(uAv) X w = [Py, P](W). (5.167)
Now, the first member of Eq. (5.167) is
R Av) xw=—w_R(uAv)
Now, writing R(u A v) = %uiij;jﬁlék A 6 we have

dw A (R Av) Xw) = —0"A (6,208 A D))

1.
—Eu'vler A (OTIRMO A B) = —2R(u A v). (5.168)
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Taking into account Egs. (5.167) and (5.168) the proof follows.
We can also prove the proposition as follows: directly from Eq. (5.155) we can
write

[P.. PJ(w) = u*v"([Dey.. Dey] — Dieye)w = uv'WRE;, 6. (5.169)

Thus

1. 9 _
59 WA(ukvlw'R.jkl@i)

1
an N [Pm Pv](w)
= lI/tklei,-nk]@m VAN Qi
2
= —*V'"Rig = —R(u A v) (5.170)

and the proof is complete. ll

Proposition 5.47 Let u,v,w € sec /\IT*M — sec C4(M, g). Then,
R Av) =0, AP,P,(w). (5.171)
Proof Recall that we proved [Eq.(5.162)] that R(u A v) = P,(S()). Also

Eq. (5.84) says that S(u) = S(u) = 9, A P, (u) for any u,w € sec /\lT*M —
secCL(M, g). Now from Eq. (5.179) we have

P, () = Pu(w) = u- P (w) = DyP (W) = Du(P(w)) — P(Duw) = (Duw) 1
(5.172)
which means that

Py (u) = (Py(u)) L. (5.173)
Then, we have that

R(u A v) =Py(Su) = Py (0w APy(u))
= Pv(aw A Pu(w)) =P, ((aw)ll A (Pu(w))J.)

BaI82 5 B

and the proof is complete. B

Remark 5.48 Since R(u A v) = —R(v A u), Eq.(5.171) implies that u,v,w €
sec /\IT*M — secCL(M, g)

dy A PP (W) = —0,, A PP, (W), (5.174)

thus exhibiting the consistency of Eq. (5.171) with Eq. (5.166).
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5.5 Some Identities Involving P and P,

Here we derive some identities involving the projection operator that has been used
in the above sections. The projection operator P has been defined by Eq. (5.68) and
its covariant derivative P, := u - 0P has been defined by Eq.(5.81). Let C,D €

sec CL(M, 8). Since
P(C AD) =P(C) AP(D), (5.175)
we have for any u € sec /\IT*M — secC{(M, g) that
P.(C A D) = P,(C) AP(D) + P(C) AP,(D). (5.176)
From P?(C) = P(C) we have that
P,P(C) + PP,(C) = P,(0). (5.177)
Now, we easily verify that
P,(w) =P (u-ow), P,(u) =PL(w-du). (5.178)

Now, we already know from Eq. (5.128) that P (u- Sw) and Py (w- Su) are equal
and thus

P,(w) =P, (u). (5.179)
From this equation also follows immediately that
P,P(w) =P,P(u). (5.180)

Now given that each X' € sec Cﬁ(]\il, £) can be written as X' = X + X1, with
&) = P(X) we get from Eq. (5.177) that

PPu(X”) =0, PPu(XJ.) = Pu(XJ.)- (5.181)

Also, from Eq. (5.176) we have immediately taking into account Eq. (5.181) for any
C.D € secCL(M,g) that

PM(C” AN DJ_) = C” AN PM(DJ_). (5.182)
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5.6 Conclusions

We presented a thoughtful presentation of the geometry of vector manifolds using
the Clifford bundle formalism, hopping to provide a useful text for people (who
know the Cartan theory of differential forms)'® and are interested in the differential
geometry of submanifolds M (of dimension m equipped with a metric'! g = i*g

of signature (p,q) and its Levi-Civita connection D) of a manifold M~ R (of
dimension n and equipped with a metric g of signature (p,§) and its Levi-Civita

connection lo)). We proved in details several equivalent expressions for the curvature
biforms 2R(u A v) and moreover proved that the Ricci operator @ A d when applied
to a 1-form field v is such that d A @ (v) = R(v) = —S*(v) (R(v) = R26y) is
the negative of the square of the shape operator S. It will be shown in Chap. 11 that
when this result is applied to GRT it permits to give a mathematical realization to
Clifford’s theory of matter.

We observe that our methodology in this chapter differs considerably [11, 12, 18].
Indeed, we use in our approach the Clifford bundle of differential forms C£(M, g))
and give detailed and (we hope) intelligible proofs of all formulas, clarifying some
important issues, presenting, e.g., the precise relation between the shape biform
S evaluate at v (a 1-form field) and the connection extensor w evaluated at v
[Eq. (5.107)]. In particular, our approach also generalizes for a general Riemann-
Cartan connection the results in [12] which are valid only for the Levi-Civita
connection D of a Lorentzian metric of signature (1,3). Moreover our approach
makes rigorous the results in [12] which are valid only for 4-dimensional Lorentzian
spacetimes admitting a spinor structure,'? since in [12] it is postulated that the frame
bundle of M has a global section (there called a fiducial frame).
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Chapter 6
Some Issues in Relativistic Spacetime Theories

Abstract The chapter has as main objective to clarify some important concepts
appearing in relativistic spacetime theories and which are necessary of a clear under-
standing of our view concerning the formulation and understanding of Maxwell,
Dirac and Einstein theories. Using the definition of a Lorentzian spacetime structure
(M,g,D, t,, 1) presented in Chap. 4 we introduce the concept of a reference frame
in that structure which is an object represented by a given unit timelike vector
field Z € secTU (U € M). We give two classification schemes for these objects,
one according to the decomposition of DZ and other according to the concept of
synchronizability of ideal clocks (at rest in Z). The concept of a coordinate chart
covering U and naturally adapted to the reference frame Z is also introduced. We
emphasize that the concept of a reference frame is different (but related) from the
concept of a frame which is a section of the frame bundle. The concept of Fermi
derivative is introduced and the physical meaning of Fermi transport is elucidated,
in particular we show the relation between the Darboux biform €2 of the theory of
Frenet frames and its decomposition as an invariant sum of a Frenet biform Qp
(describing Fermi transport) and a rotation biform 2g such that the contraction of
* Qg with the velocity field v of the spinning particle is directly associated with the
so-called Pauli-Lubanski spin 1-form. We scrutinize the concept of diffeomorphism
invariance of general spacetime theories and of General Relativity in particular,
discuss what meaning can be given to the concept of physically equivalent reference
frames and what one can understand by a principle of relativity. Examples are given
and in particular, it is proved that in a general Lorentzian spacetime (modelling a
gravitational field according to General Relativity) there is in general no reference
frame with the properties (according to the scheme classifications) of the inertial
referenced frames of special relativity theories. However there are in such a case
reference frames called pseudo inertial reference frames (PIRFs) that have most
of the properties of the inertial references frames of special relativity theories.
We also discuss a formulation (that one can find in the literature) of a so-called
principle of local Lorentz invariance and show that if it is interpreted as physical
equivalence of PIRFs then it is not valid. The Chapter ends with a brief discussion
of diffeormorphism invariance applied to Schwarzschild original solution and the
Droste-Hilbert solution of Einstein equation which are shown to be not equivalent
(the underlying manifolds have different topologies) and what these solutions have
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to do with the existence of blackholes in the “orthodox”interpretation of General
Relativity.

6.1 Reference Frames on Relativistic Spacetimes

In this chapter M = (M,g,D, T4, 1) denotes a Lorentzian spacetime and M =
(M,n,D, 7, 1) denotes Minkowski spacetime. We adopt, as before, natural units
such that the value of the velocity of lightis ¢ = 1.

Proposition 6.1 Let Q € secTU C sec TM be a time-like vector field such that
2(Q,Q) = 1. Then, there exist, in a coordinate neighborhood U, three space-like
vector fields e; which together with Q form an orthogonal moving frame for x € U.

Proof Suppose that the metric of the manifold in a chart (U, ¢) with coordinate
functions {x"} isg = g,,dx" @dx".Let Q = (Q"9/0x") € sec TM be an arbitrary
reference frame and g = g(Q,) = Qudx*, O, = g,,Q". Then, g, (x)O* Q" = 1.
Now, define

0° = (ag)udx* = Qudx*, 6.1)
Y = QILQV — 8uv-
Then the metric g can be written due to the hyperbolicity of the manifold as
g = naf* ® 0",
3
Z 0 @ 0 =y, (x)dx" ® dx”. (6.2)

a=1

Now, call g = Q and take e, such that 6(ey,) = J. It follows immediately that
g(ea.ep) = Nap,a,b=10,1,2,3. W

Before we proceed we need to know precisely how the metric g relates tangent
space magnitudes to magnitudes on the manifold. Let o : R D I — M, be a smooth
curve, i.e., o is C° and piecewise C!. We denote the inclusion function I — R by
u, and the distinguished vector field on I by d/du. For each u € I, o4u denotes the
tangent vectors at o () € M. Thus,

d
Oxy = I:O—*(_)i| € TU(u)Ms (63)
du o)

where o denotes the derivative mapping of the mapping o.

Definition 6.2 A curve is said timelike (respectively lightlike, or respectively
spacelike) if for all u € I, g(0xy, 0x,) > O (respectively g(0uy, 0xy) = 0, or
respectively g(Ouxy, 0y) < 0).
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Definition 6.3 The path length between events ¢; = o(a) and ¢; = o (b) along the
curve o, such that for all u € I, g(0xy, 0x,) has the same signal at all points along
o (u) is the quantity

b

/ i (0w )]} 6.4)

a

Observe that taking the point o(a) as a reference point we can use Eq. (6.4) to
define a function with domain o (7) by

u

s:o() = R, s(o(u) = su) = / il [|g (s, )] - (6.5)

r

With Eq. (6.5) we can calculate the derivative of the function s (after introducing
a local chart {x"} covering the domain of interest)

ds

o =l ol = |

dx* oo dx" oo
du du

8uv i| (6.6)

From Eq.(6.6) old books on differential geometry and almost all books on
General Relativity writes the equation

(ds)* = gpdxtdx’, (6.7)

which is supposed to represent the square of the length of the ‘infinitesimal’ arc
determined by the coordinate displacement

dx* oo
du

xtoo(r)— xtoa(r) + (r)e, (6.8)
where ¢ << 1 is an ‘infinitesimal’ number.

The above mathematically correct notation is somewhat cumbersome, and when
no confusion arises x* o o' (r) is denoted simply by x*(r).

We recall that a moving frame at x € M is a basis for the tangent space 7\M. An
orthonormal frame at x € M is a basis of orthonormal vectors for T, M.

Definition 6.4 An observer in a spacetime 9 is a future pointing time-like curve
o : R D I — M such that g(o«,0x) = 1. The timelike curve o is said to be the
world line of the observer.
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6.1.1 Bradyons and Luxons

One of the important ingredients of physical theory is the concept of particle.
Roughly speaking a particle is defined by the attributes it carries and a classification
of particles can only be given in the context of a particular theory. However, one of
the attributes of a particle is its inertial mass, modelled classically by m € RT +{0}.
We can give the

Definition 6.5 A massive scalar particle is a pair (m, 0), withm > Oando : [ - M
a timelike curve pointing to the future such that g(ox, 04) = 1.

A scalar particle as above defined is sometimes called a scalar bradyon.
Relativistic quantum field theory admits the existence in nature zero mass particles,
also called luxons, as, e.g., photons. Now, particles with m > 0 or m = 0 may also
carry intrinsic spin, and the classical description of that property in the case m > 0
will be given in Sect. 6.1.6 and Chap. 6. Photons also carry spin, but in that case, a
coherent description of their properties can only be given in the context of relativistic
quantum field theory [137], which is a subject that will not be discussed in this
book. However, a crucial property of photons is that their paths in spacetime are null
geodesics. These null geodesics are also supposed in classical GRT to be the paths
followed in spacetime by light rays. This assumption can be justified classically
once we suppose light is a wave phenomenon described by Maxwell equations, and
define light rays as normals to wave fronts. For details see, e.g., [30, 47].

Axiom 6.1 (Standard Clock Postulate) Let o be an observer. Then, there exists
standard clocks that can be ‘carried by o’ and such that they register (in o) proper-
time, i.e., the inclusion parameter u of the definition of observer.

It seems that modern atomic clocks are standard clocks [4], and indeed they
are used as such clocks in the GPS system [3, 10]. However we must call the
readers attention that the earlier experiments by Hafelle-Keating always quoted in
textbooks, like e.g., in [31] were not precise enough to verify any claim [43, 63]. In
[31] it is also claimed that the lifetime of unstable elementary particles, like, e.g.,
the lifetimes of muons traveling at near the speed of light in a storage ring [12] are
compatible with the standard clock postulate. However, as observed by Apsel [9],
there are indeed some small discrepancies. On this issue see also [122, 123].

Definition 6.6 An instantaneous observer is an element of TM, i.e., a pair (x, Q),
where z € M, and Q € T, M is a future pointing unit timelike vector. SpanQ C T.M
is the local time axis of the observer and Q7 is the observer rest space.

Of course, T,M = SpanQ & O, and we denote in what follows SpanQ =T
and Q1 = H, which is called the rest space of the instantaneous observer. If ¢ :
R D I — M is an observer, then (ou, oxu) is said to be the local observer at u and
write

TouM =T, ®H,, ucl.
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Definition 6.7 The orthogonal projections are the mappings
Pu = TouM — H, , q. - TouM — T,. (69)
Then if Y is a vector field over o then pY and qY are vector fields over o given by
PY)u = pu(Ys), (qY)s = qu(Y.). (6.10)
Definition 6.8 Let (x, Q) be a instantaneous observer and p, : T:M — H the
orthogonal projection. The projection tensor is the symmetric bilinear mapping
h: TM x TM — R such that for any U, W € T,.M we have:

h,(U, W) = g,(pU, pW) (6.11)

Let {x"*} be coordinates of a chart covering U C M, withx € U and ag =
2,.(Q,). We have the properties:

(a) h, =g, — g g
(b) h|QJ_ = gleJ-
(©) h(Q.) =0

6.12
(d) h(U,) =g(U,) & g(U,Q) =0 (6.12)
© p="h | ®adx|,

(f)| trace(h) ;2| ® dx’|,) = -3

‘X

The Proposition 6.1 together with the above definitions suggests:

Definition 6.9 A reference frame for U € M in a spacetime 901 is a time-like vector
field which is a section of TU such that each one of its integral lines is an observer.

Definition 6.10 Let Q € sec TM, be a reference frame. A chart in U € M of an
oriented atlas of M with coordinate functions {x*} such that 9/9x° € sec TU is a
timelike vector field and the 3/0x’ € sec TU (i = 1,2, 3) are spacelike vector fields
is said to be a possible naturally adapted coordinate chart to the frame Q (denoted
(nacs|Q) in what follows) if the space-like components of Q are null in the natural
coordinate basis {d/dx*} of TU associated with the chart.

Note that such chart always exist [19].

6.1.2 Classification of Reference Frames I

An arbitrary reference frame Q € secTU C secTM for a general Lorentzian
spacetime may be classified according to: (1) a decomposition of DQ given by
Eq.(6.42) below or, (2) according to its synchronizability. In order to present
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these concepts we shall need to introduce some additional mathematical tools, as
the Fermi-Walker connection and infinitesimally nearby observers. However, even
without that concepts we already may give the following definitions.

Definition 6.11 A reference frame Q € secTU C secTM is in free fall (or
geodetic) if and only if ag = DgQ = 0.

Definition 6.12 A reference frame Q € sec TU C sec TM such that DQ = 0,Q is
said an inertial reference frame (IRF).

Remark 6.13 IRF's exist in Minkowski spacetime, as it is easy to verify. However,
we can also easily show that in the GRT where each gravitational field is modelled
by a Lorentzian spacetime there is in general no frame Z € sec TM satisfying DZ =
0. Indeed, existence of an /RF is possible [131] only in a spacetime where the Ricci
tensor satisfies Ricci(Z,F) = 0, for any F € sec TM. This excludes, e.g., Einstein-
de Sitter spacetime. So, no IRF exist in many models of GRT considered to be of
interest by one reason or another by ‘professional relativists’. The best we can have
are some reference systems maintaining some of the characteristics of an IRF. These
reference frames are the pseudo inertial reference frames and the locally inertial
reference frames associated to an observer in free fall. These important concepts
will be discussed below (Sect. 6.9).

6.1.3 Rotation and Fermi Transport

Leto : R D1 — M, t — o(t) be an observer. Let Y be a vector field over o.
As well known [131] in order for the observer to decide when a unitary vector Y €
(04¢)* has the same spatial direction of the unitary vector Y’ € (0x¢/)" (t/ # 1),
he has to introduce the concept of the Fermi-Walker connection.

Proposition 6.14 There exists one and only one connection F over o, such that
FxY = [p(c"D)xp + q(0"D)xq]Y (6.13)

for all vector fields X on I and for all vector fields Y over o.

In Eq. (6.13) 0*D is the induced connection over ¢ of the Levi-Civita connection
D and F is called the Fermi-Walker connection over o, and we shall use the
notations F, , F/dt or F,, (see below) when convenient. We also will write (by
abuse of language) only D, as usual, for ¢ *D in what follows.

Proof The proof follows at once from the general properties concerning the
behavior of connections under pullback mappings [19]. B

Definition 6.15 A moving (orthonormal) frame {¢,} over ¢ is an orthonormal basis
for T, ()M with €9 = 0. The set {€%}, ¢* € sec T:(I)M — secCL(M, g) is the
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dual comoving frame on o, i.e., £*(ep) = &. The set {ea}, £a € sec T:(I)M —
secCL(M, g), with &* - &, = 8}, is the reciprocal frame of {&%}.

Let X and Y be vector fieldsovero and Y = g(X, ), Y = g(Y,) € sec T:(I)M —
CL(M, g) the physically equivalent 1-form fields.

Proposition 6.16 Ler be X, Y be form fields over o, as defined above. The Fermi-
Walker connection F satisfies the properties

(a) ]:e(,Y = DeoY_ (80 : Y)a + (Cl : Y)Sos
where a = D¢y, is the (1-form) acceleration.

b) L X-Y)=F,X-Y+X -FY

(©) Fepeo =0

(d) If X,Y are vector fields on o such that X,,, Y, € H, Yu € I then' g(FX, ),
and g(FY,)|, € H,, Yuand

FaoX Y =DgX-Y (6.14)
Proof We prove only (a). The other properties are trivial. First we prove that
FoY=D,Y—(eg-Y)a+ (a-Y)e (6.15)
with a = D€, and where we wrote €p - Y = g (€9, Y),a- Y =g(a,Y).

From Eq.(6.13) and the abuse of notation mentioned above and taking into
account that q(Dg,€9) = 0, we can write

]:saY = p[Deo (pY)] + q[Deo (qY)] (6.16)
Now,
q[Deo qY)] = q{Deo (Y-€0)eo}
= q{(D,Y)-€0)e0 + Y - (Dey€0)€0 + (Y-€0)Dey€0}
= [(Dg Y)-€0]eo + (Y - a)eo
=qDqY) + (Y - a)eo. (6.17)
Also,

P[D¢ (pY)] = p[D¢Y — D¢ (qY)]
=PpD¢Y) — p{D¢, (Y - €0)€0}
=pD¢Y) —pi[(DqY) - €0leo + (Y -a)eg + (Y - €9)a}
=pDqY) — (Y - €p)a. (6.18)

IRecall the notations introduced in Chap. 4, where g denote the metric in the cotangent bundle.



232 6 Some Issues in Relativistic Spacetime Theories

Summing Egs. (6.17) and (6.18) we get Eq. (6.15). Then (a) follows at once we
take into account that for any X, Y € sec TM,

gD,Y,) =Dg,lg(Y, )] =DY, (6.19)

which proves the result. ll

Now, let Yo € sec T, M. Then, by a well known property of connections there
exists one and only one 1-form field Y over ¢ such that 7. Y = 0 and Y(7p) = Y.
So, if {&,|, } is an orthonormal basis for T{’,"TOM (&al,, € Ty ,M,a=0,1,2,3) we

70 (e8]
have that the ¢,’s such that 7. e; = 0 are orthonormal for any 7, as follows from

(b) in Proposition 6.16. We then, give the

Definition 6.17 Let Y| € H; and Y, € H;‘z are said to have the same spatial
direction if and only if ¥, = a’ &,,, Y = d' &il,,.

This suggests the following definition:

Definition 6.18 We say that Y € sec T M is transported without rotation (Fermi
transported) if and only if F, Y = 0.

In that case we have
D
DGOY =£&0" Y = d_Y = (Y- 80)61 - (a . Y)S()
T

=Y.i(egAa) = (aneg)LY. (6.20)

6.1.4 Frenet Frames over ¢

Proposition 6.19 If{e,} is a comoving coframe over o (Definition 6.15), then there
exists a unique biform field Qp over o, called the angular velocity (Darboux biform)
such that the &, satisfy the following system of differential equations,

D60 &2 = QpLEa,
(6.21)

1 1
Qp = Ea)abe“ AgP = —E(D60 ep) A &P

Proof Tt follows at once if we take into account that &, - €® = 8;’ and use Egs. (2.36)
and (2.37). 1

Corollary 6.20 If the comoving coframe {&,} is Fermi transported then the angular
velocity is QF,

Qr =aneo. (6.22)
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Proof The result follows from Eqs. (6.20) and (6.21). &

6.1.5 Physical Meaning of Fermi Transport

Suppose that a comoving coframe {&,} is Fermi transported along a timelike curve
o, ‘materialized’ by some particle. The physical meaning associated to Fermi
transport is that the spatial axis of the tetrad g(e;,) = €;,i = 1,2,3 are to be
associated to the orthogonal spatial directions of three ‘small’ gyroscopes carried
along o.

Definition 6.21 A Frenet coframe { f,} over o is a moving coframe over ¢ such that
Jo = g(0x.) = g(€.) = g9 and
Dfa = QpLfa,
Qp = kof ' ALY+ 12 ALY+ 0f2 A SR (6.23)
where k;,i = 0, 1,2 is the i-curvature, which is the projection of Qp in the fiT! A f!
plane.

Definition 6.22 We say that a 1-form field Y over o is rotating if and only if it is
rotating in relation to gyroscopes axis, i.e., if F¢, ¥ # 0.

6.1.6 Rotation 2-Form, Pauli-Lubanski Spin 1-Form
and Classical Spinning Particles

From Eq. (6.23) taking into account that a = D fy = kof ! and Eq. (6.22) we can
write

Qp = aAfo+ Qs. (6.24)

We now show that the 2-form Qg over ¢ is directly related (a dimensional factor
apart) with the spin 2-form of a classical spinning particle. More, we show that the
Hodge dual of Qg is associated with the Pauli-Lubanski 1-form. To have a notation
as closely as possible the usual ones of physical textbooks, let us put fo = v.

Call Qg the Hodge dual of Qg. It is the 2-form over o given by

* Qg = —Qgf*, 2 =112 (6.25)
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Define the rotation 1-form S over o by
S = —*xQgLv. (6.26)
Since QgLv = 0, we have immediately that
S-v=—%xQs.(vAv)=0. (6.27)
Now, since D, (S - v) = 0 we have that (D,,S) - @ = —S - a and then
DS = —S.i(a A v), (6.28)
and it follows that
FeoS =0. (6.29)

It is intuitively clear that we must associate S with the spin of a classical spinning
particle which follows the worldline o. And, indeed, we define the Pauli-Lubanski
spin 1-form by

W =khS, h =1, (6.30)

where £k > 0 is a real constant and # is Planck constant, which is equal to 1 in
the natural system of units used here. We recall that as it is well-known D, W =
—W_(a A v) is the equation of motion of the intrinsic spin of a classical spinning
particle which is being accelerated by a force producing no torque [156].

6.2 Classification of Reference Frames I1

6.2.1 Infinitesimally Nearby Observers, 3-Velocities
and 3-Accelerations

Let Q € secTU C sec TM be a reference frame, , its flux and o an integral line
of Q and suppose that we have a parametrizationo : R D I — M, g(0x,04) = 1.
Then o is an observer.

Definition 6.23 An infinitesimally nearby observer to o is a vector field W : R D
I — T,yM such that there exists a vector field W’ over o such that W = pW’ and
which is Lie parallel with respect to Q, i.e., £QW’ = 0. W is sometimes called a
Jacobi field.
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Proposition 6.24 Suppose that Q is a geodesic frame, ie., DgQ = 0. Then,
£oW = 0.

Proof Recall that in a Lorentzian manifold, where the torsion tensor is null the equa-
tion £oW = 0 implies that Dw'Q = DoW’. Now, W = W' —g(W’, Q)Q and then,
[W,Q] — [g(W,Q)Q,Q] = 0. We need then to prove that [g(W',Q)Q, Q] = 0.
We have,

[g(W,Q)Q. Q] = Dgw.0)oQ — Dog(W,Q)Q
= [Dog(W', Q)]Q.

But, Dog(W'.Q) = g(DqW'.Q) = g(PwQ.Q) = Dwg(Q.Q) = 0, and the
proposition is proved. l

Now, let us examine following [131] the geometrical meaning of an infinitesi-
mally nearby observer. Recall that for s € I there is a neighborhood £ = (s—¢, s+¢)
of s and a neighborhood U of o (s) and a vector field V € sec TU such that W = Voo
on & and£oV = 0. Let (U, ¢) be a map of the maximal atlas of M with coordinates®
{x"} covering ¢(U) such that Q|, = ﬁain. We write W|, = w"(aj_(i# o a|€). We
may write for p € U, ¢(p) = {(°(p).X' (). ¥ (p). ¥’ (p)) | [¥*(p)| < &, Vu} and
assume that for p = o(s), ¢ (0(s)) = (s5,0,0,0). There is then a congruence of
integral curves of Q determined by

(s,u) > (s + wou, whu, wu, w3u). (6.31)

Note that u = 0 gives 0| and u times a constant gives another curve of the
congruence in U where the parametrization given by {x*} holds. Now, when W|,
and Q o o are linearly independent, different curves have different images. This
uniquely determines W/| as its transversal vector field, i.e., for any f : U — R and
s€E,

(Wf)(s) = %f(ww‘)u,wlu,wzu,w%) : (6.32)
u=0

Conversely, once W|, is given, the family is determined up to first order in x° in the
sense of a Taylor series.
In the coordinates {x*} where V = Vua;(iw the equation £V = 0 implies that

Q(VH#) = 0. Let {w"} be real constants such that Wi = w“(a% o 0| ) for
?

some 7o € ¢. Then putting V = w/ = we have £V = 0. Then, the interpretation
of W becomes clear. It represents the linearized version of a one parameter family

of integral curves of Q near . Note however that in an arbitrary chart (U, ¢') with

[og7))

2This chart always exist [19].
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coordinates {x*} covering ¢’'(U), where V = V# ZL\:LI“

that

the equation £V = 0 implies

Q[V¥] = aﬁV“, (6.33)

oxV
which is nonzero in general.

Definition 6.25 Let o be an observer on Q and W be an infinitesimally nearby
observer to o and F the Fermi-Walker connection over o. Then, F,, W and
]-"g*W = Fo. (Fo, W) are called respectively the 3-velocity and the 3-acceleration
of the infinitesimally nearby observer W relative to o.

We observe that we can show (see below) that for any s € I, (F,,W), € H and
(}'g*W) € H,, thus justifying the names 3-velocity and the 3-acceleration. The
meaning of these concepts become clear with the aid of the following propositions.

Proposition 6.26 Let Q € secTU C sec TM be a reference frame and o : 1 — M
an observer in Q. Let also Y € H,. Then, the mapping Y +— DyQ defines a linear
transformation Aq : Hy — Hy, such that if W is any infinitesimally nearby observer
to o we have

Fo W =AW = DyQ. (6.34)

Proof First we need to show that AgH; C H,, Vs € I. But this is trivial since
VY € H we have

1
8(AY. Q) =g(DvQ.Q) = SDvg(Q.Q) = 0. (6.35)

Now, we need to show that Vs € I F;, W = Dw;Q. To show that is, of course,
equivalent to show that VY € Hj,

8(Fo,sW.Y) = g(Dw,Q.Y). (6.36)
Now, recall (e) of Proposition 6.16 which says that
8(Fo.sW.Y) = g(D,,,Q.Y).
Then, we need only to prove that
gD; W, Y) =g(D,,,Q.Y), VY € Hy. (6.37)
Since W is an infinitesimally nearby observer to ¢ we know that there exists W', a

vector field over o, such that the projection pW’' = W and such that £oW' = 0.
Of course, W = W — fo, for some smooth function f on o. Now, let V' and F
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be respectively a vector field and a smooth function defined on a sufficiently small
open set U of o (s) such that

Voo=W, [V,Q =0, Foo =F. (6.38)
Moreover, define
V=V -FQ (6.39)

such that Vo 0 = W. Now, since the torsion of a Lorentzian spacetime is zero, we
have DyQ — DoV — [V, Q] = 0, and we can write

DvQ = DoV + Q(F)Q. (6.40)

At s, we have Dy,Q = D, W + Z%:(s)a*s. This implies that g(D,, ,W,Y) =
8(D,,.Q,Y), VY € H, and the proposition is proved. H

Now, recall that since g(W, Q) = 0 then W has only spatial components relative
to an orthonormal frame {e,} € sec PSOT,a(U)’ with e = Q and F, e, = 0. Then
from Eq. (6.34) we have (i,j = 1,2, 3)

%Wi(s) = (D,0Q)i W (s). (6.41)

where ag = g(Q, ). So, the first member of Eq.(6.41) clearly shows that the
Fermi derivative JF,, W is a measure of the rate of change of the coordinates of
an infinitesimally nearby observer W to ¢ on Q. To interpret the second member of
Eq. (6.41) we need the

Proposition 6.27 Given an arbitrary reference frame Q € sec TU C secTM fora
Lorentzian spacetime [131] there exists a unique decomposition of ag = g(Q, ) as

1
Dog =agQ@ag +wq +0qg + g@Qh, (6.42)
where h € sec TgM is the projection tensor (Definition 6.8), aq is the (form)
acceleration of Q, wq is the rotation tensor (or vortex) of Q, 6 q is the shear of Q

and &g is the expansion ratio of Q . In a coordinate chart (U, ¢) with coordinates
xt covering ¢(U), writing Q = Q" 03/9x* andh = (g,,, — 0,0, )dx" @ dx" we have

aq = g(DqQ,),
®Qu = Qughlhl,
1
0 Qup = [Quiv) — 5 Cohyulhyhp.

Co=0",. (6.43)
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Proof 1t left as exercise.

Clearly, w o measures the rotation that one of the infinitesimally nearby curves to
o had in an infinitesimal lapse of propertime with relation to an orthonormal basis
Fermi transported by the observer at o. Also, o ¢ represents the ratio of change
of the separation between o and an infinitesimally nearby curves. Finally, as it is
easy to verify, &g = doq gives the fractional ratio expansion of the 3-dimensional
volume element defined by o and its nearby curves.

Remark 6.28 A preliminary classification of reference frames in Riemann-Cartan
spacetimes is given in [52].

Exercise 6.29 Compute ag,wq,0¢ and €q in the orthonormal frame {e;} €
Psoc, (U), witheg = Q and F,€; = 0, €a = €al,.

Exercise 6.30 Show that

oxQ N dC\(Q =0 wQ = 0. (6.44)

6.2.2 Jacobi Equation

Lemma 6.31 Let Q € secTU C secTM be a reference frame and o : I — M
an observer in M. Let also Y € Hj. If p is the Riemann curvature operator see
Eq.(4.102) then the mapping

Y= p(QY)Q (6.45)
defines a mapping Hy — Hj.

Proof The result follows once we verify that g(Q, p(Q,Y)Q) = 0, which is a simple
consequence of the symmetries of the Riemann tensor. B

Proposition 6.32 Let Q be a free fall frame, o an observer on Q and W an
infinitesimally nearby observer to o. Then,

Fo W = p(0s, w)0x, (6.46)

Proof Recall that Proposition 6.24 says that £¢W = 0 when DgQ = 0. Now, let
s € I and let V be a vector field defined in some sufficiently small neighborhood of
o(s) and such that [V,Q] = 0 and W = V o ¢. Then, taking into account that in
a Lorentzian manifold the torsion tensor is zero, which means that DoV — DyQ —
[Q. V] = 0, and that DgQ = 0 by hypothesis, we can write

D3V =Dqo(DqV) = Do{DyQ + [Q.V]} = DoDvQ
= DoDvQ — DypoQ—Dio.vQ
=pQ.V)Q. (647)
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Restricting Eq. (6.47) to o and taking into account that 7, = D,, since o is
geodesic, Eq. (6.46) follows. B

Equation (6.46) is known as the geodesics separation equation or Jacobi equation.

Example 6.33 Consider a Friedmann-Robertson-Walker universe which is mod-
elled by a Lorentzian spacetime with metric given by

(6.48)

dx' @ dx' + di® ® di® + dx® ® dx’
g:dt@dt—R(t)z(x®x+ ®© +x®x),

(1+ K2 /4)?

where r = /(x1)2 + (x2)2 + (x3)2, K is a constant and R(f) a smooth function
(t > 0). The reference frame Q = % (the comoving reference frame) in a
Friedmann-Robertson-Walker universe is supposed to be realized by a dust of
‘particles’ representing the matter of the universe. Choose an integral line o of Q.
As an infinitesimally nearby observer to o take, e.g., the vector field over o given by

0
X o

Let us calculate F2 W. It is clear that we must take 0 = Ql,, and V = 9/9x".
We get:

) wo R
Fe, W = RW, (6.50)

which means that nearby observers, even if they have constant coordinates in the
chart {z, '} naturally adapted to Q shows a 3-acceleration in that universe if R # 0.
Recall however that the acceleration of any observer o on Q is D, 04 = 0.

6.3 Synchronizability

We can now give a classification of reference frames according to their synchroniz-
ability and discuss carefully the meaning of that concept.

Definition 6.34 Let Q € secTU C secTM be an arbitrary reference frame and
ag = g(Q,). We say that Q is locally synchronizable iff g A dag = 0. The
reference frame Q is said to be locally proper time synchronizable if and only if
dag = 0. Q is said to be synchronizable if and only if there are C*° functions
h,t: M — R such that ®g = hdt and h > 0. Q is proper time synchronizable if and
only if wg = dt.
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At first sight, the classification of reference frames according to their synchro-
nizability does not look intuitive, so it is a good idea to see from where it came
from.

6.3.1 Einstein Synchronization Procedure

To start, let Q € sec TU C sec TM be an arbitrary reference frame, and let (U, ¢) be
a chart covering U with coordinate functions {x*} which are used by the observers
in Q to label events.

Now, consider two clocks A and B at rest on Q € secTU C secTM , and let o
and o” be their world lines (which are integral lines of Q) and which moreover we
suppose to be worldlines of two nearby observers in the sense of Definition 6.23.
According to the standard clock postulate (Axiom 6.1) the events on o and ¢”can be
ordered. Let ¢y, ¢, ¢, be three events on o ordered as

e < e < e, (6.51)

and let ¢’ be an eventon ¢’ (see Fig. 6.1). At event ¢; a light signal is sent from clock
A to clock B where it arrives at the event ¢’ and is instantaneously reflected back to
clock A where it arrives at event ¢,.

The question arises: which event ¢ on ¢ is simultaneous to the event ¢/? The
answer to that question depends on a definition as realized by Einstein [39] and long
before him by Poincaré [105]. Let?

pler) = (0. x" 20, ) = (0.x' XX,

o(e) = (xe,x 2200, () = (xe,,x + Ax' X2 4+ AP+ AYY),
(6.52)

Fig. 6.1 Einstein synchronization of standard clocks

3We are using an obvious sloppy notation.
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be the coordinates of the pertinent events in chart (U, ¢). The following definition
is known as Einstein’s synchronization procedure (or Einstein’s convention).

Definition 6.35 The event ¢ in o which is simultaneous to the event ¢’ in ¢” is the
one such that its timelike coordinate is given by

1
=+ 5 [0 —x) + 0, — )] (6.53)
Remark 6.36 The factor 1/2 in Eq.(6.53) is purely conventional. Non standard
synchronizations can be used as explained in details, e.g., by Reichenbach [113].
In a non standard synchronization we change the factor 1/2 by any function « of the
coordinates such that 0 < x < 1.

Our next task is to determine the relation between the timelike coordinates of
events ¢ and ¢’ as functions of Ax’ and the metric coefficients. Recall then that, as
already observed in Sect. 6.2.1, in Relativity Theory the motion of a ray of light is
supposed to take place along a null geodesic. So, let £ : R DI — M, u — £(u) be a
null geodesic passing through events ¢; and ¢’ and e, (see Fig. 6.1). Then,

g(ly, Ly) = 0. (6.54)

Calling Ax(l) = xS, - 81, Axg = xgz - x?,, and taking into account that the

‘infinitesimal” arcs ¢;¢’ and ¢’e; in £ can be represented by the vectors
Wi = (—Ax), Axy, Axy, Axs), Wy = (AXY, Axy, Axp, Ax), (6.55)

their arc length in y are given by g(W;,W;) = g(W,,W,) = 0. Solving that
equations for Ax? and for Ax9, we get

8io
800

0= 4+ 22 AX (6.56)

6.3.2 Locally Synchronizable Reference Frame

Let us now explain the genesis of the definition of a locally synchronizable frame
Q € secTM, for which ag A dag = 0. We need to recall first some purely
mathematical results related to Frobenius theorem [11].

(i) A 3-direction vector field H, in a 4-dimensional manifold M for x € M is
a 3-dimensional vector subspace H, of T,.M which satisfies a differentiability
condition. This condition is usually expressed as one of the two equivalent
propositions that follows:
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Proposition 6.37 For each point xo € M there is a neighborhood U C M of x
such that there exist three differential vector fields, Y; € secTM (i = 1,2,3) such
that Y1(x), Y2(x), Y3(x), is a basis of Hy, Vx € U.

Proof see [11]. R

Proposition 6.38 For each point xo € M there is a neighborhood U C M of x such
that there exist a one form o € sec T*M such that for allY € H, <& a(Y) = 0.

Proof see [11]. A
(ii) We now recall Frobenius theorem:

Proposition 6.39 (Frobenius) Let be xg € M and let be U a neighborhood of xy.
In order that, for each xo € M there exist a 3-dimensional manifold I1,, > xo
(called the integral manifold through x,) of the neighborhood U, tangent to H, for
all x € I, it is necessary and sufficient that [Y;,Y;]x € Hy, (forall i,j = 1,2,3
and Vx € Ily,) if we consider the condition in Proposition 6.37. If we consider
the condition on Proposition 6.38 then a necessary and sufficient condition for the
existence of Iy, is that

aAda = 0. (6.57)

(iii)) Now, let us apply Frobenius theorem for the case of a Lorentzian manifold. Let
Q € sec TM be a reference frame for which ag A dag = 0.
Then, from the condition for the existence of a integral manifold through
Xo € M we can write,

OlQ(Yl) = OlQ(Yz) = OlQ(Y3) =0. (6.58)

Now, since Q is a time like vector field, Eq.(6.58) implies that the Y;
(i = 1,2,3) are spacelike vector fields. It follows that the vector field Q
is orthogonal to the integral manifold I1,, which is in this case a spacelike
surface.

Now the meaning of a synchronizable reference frame (which is given by
Eq. (6.57)) becomes clear. Observers in such a frame can locally separate any
neighborhood U of xy (where they “are”) in timexspace.

6.3.3 Synchronizable Reference Frame

Now, suppose that Q = Q*d/dx* € TU is synchronizable, i.e., there exists a
function# : U — R such that g = hdt. In this case we can choose a (nacs|Q), with
x% = 1 as the time like coordinate in U. We have

(Q) = guwQ"dxt = hdx®
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S 0 i — 2 . - i
whose solution is Q = m&/ dx” with goo(x) = h* and that g,o(x) = 0. This can
be seen as follows.
_ 1 0 s 0 _
.When Q= m&/ dx”, we have from Proposition 6.1 that 8° = g(Q, ) can be
written as
0° = Vgoo(x)dx” + 8i0() dx', (6.59)
v 800(x)
and also
3

Z Q0 = Vi (0)dx? ® dx”

i=1

B (M - g,-;(x)) dx' @ dv, i.j=1.2.3. (6.60)
goo(x) ‘
Now, since ag = 6° the metric g in the coordinates {x} must be diagonal with
goo(x) = h? and that gjo(x) = 0. In that case Eq. (6.56) implies in that case

K =20, (6.61)

which justifies the definition of a synchronizable frame.
It is an appropriate time to work out some examples of the above formalism,
which, we admit, may look very abstract at first sight.

6.4 Sagnac Effect

As an important application of the concepts introduced above, we give in this
section a kinematical analysis of the Sagnac effect [132]. Our description illustrates
typical problems that arises when we deal with reference frames that are not locally
synchronizable (i.e., frames Q for which ag A dag # 0). To go directly to the
essentials, in this section (M, n, D, T,, 1) is Minkowski spacetime.

We recall that according to Definition 6.12, a reference frame I € sec TM on
Minkowski spacetime is inertial if and only if DI = 0.

Now, let (¢, r, ¢, z) be cylindrical coordinates of a chart (U, ¢) for M such that
I = d/0t. Then

n=dt®@dt—dr ®dr—r’dp @ dp — dz ® dz. (6.62)
Let P € TM be another reference frame on M given by

d ad
2.2\-1/2 2.2\—1/2
P=(01-wr) 8t+w(1 w°r) 5 (6.63)
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P is well defined in an open set U C M defined through the coordinates by

P(U)={—0<t<o0;0<r<l1l/w;0<¢ <2m;—00 <z < 00} (6.64)

Then,
ap =q(P.) = (1 -’ dt — wr’(1 — 0**) "' ?dg (6.65)
and
2wr
ap ANdap = —mdt Adr Ado (6.66)

The rotation (or vortex) vector can be calculated from the formula wg = n(wq,) =
n(x(ap A dap),)], n being here the cotangent bundle Minkowski metric. We have

wo = o(l — wzrz)—lai (6.67)
Z

Since wg # 0, for 0 < r < 1/w. This means that P is rotating with (classical)
angular velocity o (as measured) according to I in the z direction.

Now P can be realized on U C M by a rotating platform, but is obvious that at
the same ‘time’ on U, I cannot be realized by any physical system.

P is a typical example of a reference frame for which it does not exist a (nacs|P)
such that the time like coordinate of the frame has the meaning of proper time
registered by standard clocks at rest on P.

According to the classification of reference frames given above it is indeed trivial
to see that P is not proper time synchronizable or even locally synchronizable.

This fact is not very well known as it should be and leads some people from time
to time to claim that optical experiments done on a rotating platform disproves the
Special Relativity Theory (SRT). Recent claims of this kind has been done by Selleri
and collaborators on a series of papers [36, 53, 139, 140] and by Vigier [154]. This
last author wrongly stated that in order to explain the effects observed it is necessary
to attribute a non-zero mass to the photon and that this fact, by its turn, implies in
the existence of a fundamental reference frame.

There are also some other misleading papers that claim that in order to describe
the Sagnac effect it is necessary to build a “non-abelian electrodynamics” [8, 13—
17]. This is only a small sample of papers containing very wrong statements
concerning the Sagnac experiment.* Now, the Sagnac effect is a well established
fact (used in the technology of the gyro-ring) that the transit time employed for
a light ray to go around a closed path enclosing a non-null area in a non inertial
reference frame depends on the sense of the curve followed by the light ray.

40Of course, there are good papers on the Sagnac effect, and [107] is one of them.
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Selleri arguments that such a fact implies that the velocity of light as determined
by observers on the rotating platform cannot be constant, and must depend on the
direction, implying that nature realizes a synchronization of the clocks which are at
rest on the platform different from the one given by the Einstein method.

Selleri arguments also that each small segment of the periphery of the rotating
platform of radius R can be thought as at rest on an inertial reference frame moving
with speed wR relative to the laboratory (here modeled by I = 9/917). In that way,
he argues that if the synchronization is done a I’Einstein between two clocks at
neighboring points of a small segment, the resulting measured value of the one way
velocity of light must result constant in both directions (¢ = 1), thus contradicting
the empirical fact demonstrated by the Sagnac effect.

Now, we have already said that P is not proper time synchronizable, nor is P
locally synchronizable, as can be verified.

However, for two neighboring clocks at rest on the periphery of a uniformly
rotating platform an Einstein’s synchronization can be done. Let us see what we
get.

First, let {X*} be coordinate functions for U such that’

=t F=r ¢=¢-—wt i=: (6.68)

In these coordinates » is written as

1 =(1—-’P)di @ di —20Pd¢ ® di — dF @ di — rPde Q@ dp — d3 ® d?
= g, di" ® di". (6.69)

Now take two standard clocks A and B, at rest on P. Suppose they follow the
world lines p and p’ which are infinitesimally close.

As we know (Axiom 6.1) the events on p or p’ can be ordered. Let ¢, e, ¢, € p
with ¢y < ¢ < ¢, where

pler) = B3 2.8), () = @,.3.2.8),
p(e) = 22228, o) = %2 + A R + AR B+ AD).  (6.70)

with ¢; is the event on p when a light signal is sent from clock A to clock B, ¢’ is
the event when the light signal arrives at clock B on p’ and is (instantaneously)
reflected back to clock A where it arrives at event e, and finally e is the event
simultaneously on p to the event ¢’ according to Einstein’s convention introduced
above. Then according to Eq. (6.56)

=3 4 &A” £ 30 6.71)

800

SNote that {¥*} is a (nacs|P) since in these coordinates P = (1 — o> rz)fé 9/01.
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We emphasize that Eq. (6.71) does not mean that we achieved a process permitting
the synchronization of two standard clocks following the world lines p and o/,
because standard clocks in general do not register the “flow” of the time-like
coordinate x°. However, in some particular cases such as when g, is independent
of x” and for the specific case where the clocks are very near (see below) and at rest
on the periphery of a uniformly rotating platform this can be done.

This is so because two standard clocks at rest at the periphery of a uniformly
rotating platform “tick tack™ at the same ratio relative to I. Once synchronized they
will remain synchronized. It follows that the velocity of light measured by these
two clocks will be independent of the direction followed by the light signal and will
result to be ¢ = 1 every time that the measurement will be done. This statement
can be trivially verified [124] and is in complete disagreement with a proposal of
Chiu et al. [28]. We now analyze with more details what will happen if we try the
impossible task (since P is not proper time synchronizable, as already said above)
of synchronizing standard clocks at rest at the ring of a rotating platform which is
the material support of the reference frame P.

Suppose that we synchronize (two by two) a series of standard clocks (such that
any two are very close®) at rest and living on a closed curve along the periphery
of a rotating platform. Let us number the clocks as 0, 1,2,...,n. Clocks 0 and 1
are supposed “be” at the same point p; and are the beginning of our experiment
synchronized. After that we synchronize, clock 1 with 2, 2 with 3, ... and finally n
with 0. From Eq. (6.71) we get immediately that at the end of the experiment clocks
0 and 1 will not be synchronized and the coordinate time difference between them

will be
80i a)Rz ~
d 6.72
95800 951—0)2132 ¢ (6.72)

For wR << 1 we have A7 = £2wS where S is the area of the rotating platform and
the signals & refer to the two possible directions in each we can follow around the
rotating platform.

The correct relativistic explanation of the Sagnac experiment is as follows.
Suppose (accepting the validity of the geometrical optics approximation) that the
world line of a light signal that follows the periphery of the rotating platform of
radius R is the curve 0 : R D I — M such that o, is a null vector. Using the
coordinate 7 as a curve parameter we have

1(0x,0%) = (1—w?R*)(dlo0)? —2wR?(d$o0)(dioc)—R>(ddoo)? = 0.  (6.73)

%Very close means that [/R < 1, where [ is the distance between the clocks and R is the radius of
the platform, both distances being determined in the frame P.
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Then

m’i{% — —w=+1/R. (6.74)

It follows that the coordinate times for a complete round are
T+ =27R/1 F R, (6.75)

where the signals & refer to the two possible paths around the periphery, with —
when the signal goes in the direction of rotation and + in the other case. It is quite
obvious that 7+ can be measured by a single clock.

6.4.1 Length of the Periphery of a Rotating Disk

How observers on board of a rotating platform will define the length of the periphery
of their disc? We think that a reasonable answer is that they will define such a
length as an appropriate sum of the infinitesimal distances determined by them at a
given coordinate time ¢ (instantaneous observers). This means the following. Each
observer is equipped with a standard ruler, device realized by a clock and a light
emitter and receiver at rest on the platform, which permits the determination of the
time of flight of a light signal that are emitted from the position of the standard
clock, go to the infinitesimal point in the disc whose distance is to be measured and
is reflected back to the clock. At coordinate time ¢ all observers make measurements
of the infinitesimal distances that they are supposed to measure and then one of them
collect the results and effectuates the appropriate sum. From the above calculations
it is clear that the metric of the rest space corresponds to the projection tensor h
(6.11) and we get’

L =27R(1 —w?R?)™'2, (6.76)

Being 7+ the proper times measured by standard clock at rest at the periphery of the
rotating platform, corresponding to T4+, we have

e = (1 —w’R)?Ty = L(1 £ wR). (6.77)

This equation explains trivially the Sagnac effect according to Special Relativity.

"This result follows at once from the definition Note that the claim by Klauber [65] that the space
geometry of the disc is flat is in contradiction with the way measurements are realized in Relativity
Theory.
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Selleri [36, 53, 139, 140] calls the quantities c+
= = (6.78)

the global velocities of light in the rotating platform for motions of light in the
directions of rotation (—) and in the contrary sense (4). He then argues that these
values must also be the local values of the one-way velocities of light, i.e., the values
that an observer would necessarily measure for light going from a point p; in the
periphery of a rotating platform to a neighboring point p,. He even believes to have
presented an ontological argument that implies that Special Relativity is not true.
Well, what is wrong with Selleri’s argument is the following. Although it is true that
the global velocities c+ can be measured with a single clock, the measurement of the
local one way velocity of light transiting between p; and p, requires two standard
clocks synchronized at that points. Local Einstein synchronization is possible and
as described above gives a local velocity equal to ¢ = 1, and this fact leads to no
contradiction.

Before concluding this section it is very much important to recall that a reference
frame field as introduced above is a mathematical instrument. It did not necessarily
need to have a material substratum (i.e., to be realized as a material physical system)
in the points of the spacetime manifold where it is defined. More properly, we state
that the integral lines of the vector field representing a given reference frame do not
need to correspond to world lines of real particles. If this crucial aspect is not taken
into account we may incur in serious misunderstandings.

Exercise 6.40 Do solid rulers on board of a rotating platform suffers the Lorentz
contraction? Suppose that the platform and the small solid rulers on board are of
the same material. Suppose that when the platform is at rest the maximum integral
number of the small rulers around the periphery of the disc is py and the maximum
integral number of small rulers around the diameter is dy. Let p and g be the
respective number of rulers when the platform is rotating. How did you model the
platform in both cases? Is p/q = po/do?

6.5 Characterization of a Spacetime Theory

In this section we define what we mean by a general relativistic spacetime theory
[124]. In our approach a physical theory F is characterized by:

(i) atheory of a certain species of structure in the sense of Boubarki [21];
(ii) its physical interpretation;
(iii) its present meaning and present applications.

We recall that in the mathematical exposition of a given physical theory F,
the postulates or basic axioms are presented as definitions. Such definitions mean
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that the physical phenomena described by F behave in a certain way. Then, the
definitions require more motivation than the pure mathematical definitions. We call
coordinative definitions the physical definitions, a term introduced by Reichenbach
[113]. Also, according to Sachs and Wu [131] it is necessary to make clear that
completely convincing and genuine motivations for the coordinative definitions
cannot be given, since they refer to nature as a whole and to the physical theory
as a whole.

The theoretical approach to Physics behind (i)—(iii) above is then to admit the
mathematical concepts of the species of structure defining F as primitives, and
define coordinately the observational entities from them. Reichenbach assumes
that “physical knowledge is characterized by the fact that concepts are not only
defined by other concepts, but are also coordinated to real objects”. However, in
our approach, each physical theory, when characterized as a species of structure,
contains some implicit geometric objects, like some of the reference frame fields
defined above, that cannot in general be coordinated to real objects. Indeed, it would
be an absurd to suppose that the infinity number of IRFs that (mathematically) exist
in a Minkowski spacetime are simultaneously realized as physical systems.

Definition 6.41 A general relativistic spacetime theory is a theory of a species of
structure such that:

(i) If Mod F is the class of models of F, then each Y € Mod F contains as
substructure a Lorentzian spacetime 91 = (M, D, g, T4, 1). We recall here that
g is a Lorentz metric and D is the Levi-Civita connection of g on M. More
precisely, we have

T:((M7D’g7rg’/r)v¢l""’¢m)7 (679)

(i) The objects S;,i = 1,2, (S| = g,S5, = D) of the substructure 9t characterize
the geometry of a spacetime. The ¢, € sec TM (the tensor bundle),’ i =
1,...,m are (explicit) geometrical objects defined in U C M characterizing
the physical fields and particle trajectories that cannot be geometrized in the
theory. Here, to be geometrizable means to be a metric field or a connection on
M or objects derived from these concepts as, e.g., the Riemann tensor (or the
torsion tensor in more general spacetime theories).

(iii) The mathematical objects o; = ( S1,S82, ¢4, k = 1,...,m) describing any
particular model Y € Mod F are supposed to satisfy the proper axioms of
the theory F, also called the equations of motion (or dynamical laws) of F.
The equations of motion for all spacetime theories analyzed in this work
are intrinsic equations, i.e., they do not need the introduction of a particular
chart of the manifold to be presented.” Here we write the equations of motion

8Some of the ¢; may be sections of spinor bundles. See Chap. 6.

9The intrinsic equations, for any coordinate chart of the maximal atlas of M with coordinate
functions {x*} translate as a set of partial differential equations, which may be nonlinear.
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symbolically as Do; = f(o1, ..0;) where © is some (differential) operator and
f a ‘function’ of the o;.

(iv) Each spacetime theory has some implicit geometrical objects that do not appear
explicitly in Eq. (6.79). These objects are the reference frame fields (which we
already defined above).

Remark 6.42 We shall investigate some crucial issues associated with the fact that
the equations of motion of the principal physical theories possesses the mathemati-
cal property of being diffeomorphically invariant, a concept to be introduced below.

6.5.1 Diffeomorphism Invariance

Definition 6.43 Let Y, Y eModF, Y = (M.g,D, 715, 1), ¢y,....¢,)and Y =
(M, gD 1y, 1),8,,....,¢,) with the g, D, T, and the ¢, i = 1,...,m defined
inUCMandg',D', tyand the ¢}, i = 1,...,mdefined in V C M. We say that T
and Y’ are mathematically equivalent'® (and denotes Y ~ Y’) if

(i) there exists h € &, such that Y/ = h*Y, i.e., V C h(U) and
D' =h*D, g =h'g, ¢, =h"¢,.....¢,, =h%¢,, (6.80)

The models Y and Y’ are:

(i) free boundary solutions of the equations of motion of F, or (more important)

(iii) solutions of well posed initial and boundary valued problems to the equations
of motion of F. This means that if the mathematical objects defining Y satisfy
the equations of motion of the theory with initial and boundary conditions B(U)
in U C M, then the mathematical objects defining Y satisfy diffeomorphically
equivalent equations of motion (to the ones satisfied by Y') and verify the initial
and boundary conditions h,B(U) in h(U) C V.

In Physics literature any spacetime theory satisfying Definition 6.43 is said to be
diffeomorphism invariant or generally covariant.

However, in the literature of GRT it is also stated that Y,Y" € Mod F
do represent the same physical model. Moreover, due to the acceptance of that
statement sometimes it is stated that general covariance is to be identified with a
Principle of General Relativity. What are the meaning of these statements? Let us
analyze them in detail.

Tn fact we can be a litle bit more general and define as equivalent Y =
(M.g.D, 1. 1). 9., ¢,) and Y = (M, g, D' 1y, 1), 9], ..., #!), where h: M — M’
is any diffeomorphism between two manifolds M and M’.
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6.5.2 Diffeomorphism Invariance and Maxwell Equations

To understand the meaning to be attached to diffeomorphism invariance let us start
with a simple example, i.e., Frye, the Lorentz-Maxwell electrodynamics (LME) in
Minkowski spacetime. We are here interested in knowing under which conditions
and in which sense any two Y, Y’ € Mod Fpyg related by a diffeomorphism do
represent the same physical model. Now, Fpye has as model

TLME = (Ma "afﬂvDa TaFv‘]? {aia mj, Qi}), (681)

where (M, , ty, D, 1) is Minkowski spacetime, {0;, m;, ¢;}, i = 1,2,..., N is a set
of all charged particles (generating J), m; and g; being their masses and charges
with 0; : R D I — M being their world lines. Also, FF € sec /\ZT*M is the
electromagnetic field and J € sec /\1 T*M is the electromagnetic current. Denoting
v() = N(0xi, ), the proper axioms of the theory are

dF =0, §F = —J, (6.82)
n

m;Dg, vy = qiv)JF, (6.83)
1

Consider the substructure (M, 5) and a general diffeomorphism h : M — M.
Under this diffeomorphism 5 — h*p = g.

The metric field g in M, defines a Lorentzian manifold (M, g). Now, since g =
h*p, we know that in this case for any L € sec \" T*M, K € sec \"' T*M, r < p,
we have

dh*K = h*dK,
*d*h*K =h*+xd K,
8 8 n n

h*L_h*K = h*(L_K), (6.84)
8 n

where the first two lines in the above equation follows directly from Eq. (4.146) and
the last line from a convenient use of the second identity in Eq. (2.130) and from
Eq. (4.145).

Thus, from a mathematical point of view it is a trivial result that F7yg has the
following important property.

Proposition 6.44 If Egs. (6.82) and (6.83) have a solution (F,J, (0;, m;,q;)) in
h(U) € M in the ‘universe’ (M., ty, D, ?), then (W*F,h*J, (h«o;, m;, q;)) is also
a solution of modified equations of motion

dh*F =0, $h*F = —h"/J, (6.85)
g
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mih*Dh;lm* h* vy = gh* U(i)_lh*F, (6.86)
g

in U in the ‘universe’ (M, g, tg, h*D, .1
Proof It follows trivially from Eq. (6.84). &

To fix the ideas imagine an electromagnetic current J € sec /\1 T*M with has
support only in a region U C M. Let C C U be a Cauchy surface and 9C its
boundary, where Cauchy data and boundary conditions are given. Consider a series
of diffeormorphisms {h} such that each h : M — M is equal to the identity in the
region U C M and nonzero in the region M\U. Then h*J = J. Let F € sec A\* T*M
be a solution of the proper axioms of the theory,12 ie,dF = 0,8F = —J, for
a well posed initial and boundary valued problem obtained in a global coordinate
chart (M, ¢) of an atlas of M with coordinate functions {x*} in Einstein-Lorentz-
Poincaré gauge. As well known, since Maxwell equations are a hyperbolic system
of differential equations a well posed problem consists in the Cauchy problem
(initial data on a Cauchy surface) with appropriate boundary conditions given at
the boundary of the Cauchy surface [58]. It is obvious that any h*F € sec A\* T*M
will satisfy the transformed Maxwell equations (6.85) in the coordinate chart (M, ¢)
with coordinate functions {x*} in Einstein-Lorentz-Poincaré gauge. Moreover h*F
will satisfy the same initial and boundary conditions in C and dC, since h*F|. =
F|c and h*F|y- = F|,c This is no contradiction because the solution h*F refers to
a field which moves in another structure, i.e., the structure (M, g), not the original
Minkowski structure (M, n).

So, we claim that for an arbitrary diffeomorphism h : M — M, the structures
(F.,J, (0i,m;, q;)) and (h*F,h*J, (h«o;, m;, q;)) do represent the same model if we
identify the ‘universes’ (M,n,D,ty,1) and (M,g,h*D, 75, 1), and indeed, more
generally, we identify all universes that are related by diffeomorphisms of the type
described above. This is a perfect procedure from the mathematical point of view.
However we need to investigate if what is mathematically perfect is also correct
from the physical point of view. So we need to have an answer for the following
question:

Question 1 Is our identification of ‘universes’ related by diffeomorphisms in the
case of electromagnetic phenomena also compatible with other known physical
phenomena taking place in these ‘universes’? This will be investigated in the
next section. However, first we introduce yet another important question, which is
presented after the following remark.

Remark 6.45 Return to h*F. It is obvious that in general h*F is not a solution of
the original Maxwell equations (6.82) in the universe (M, 3, 7,, D, 1), for indeed

"We observe also that although we restrict our example to Minkowski spacetime it is easy to prove
that Maxwell equations are diffeomorphism invariant in any Lorentzian spacetime.

12We write for simplicity § = §, 4 =..
n n
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if h*F would be a solution we would have two different solutions h*F and F
satisfying the originally given initial and boundary conditions in that universe.
This is impossible as a consequence of the uniqueness theorem for the solutions
of hyperbolic differential equations satisfying Cauchy conditions and appropriated
boundary conditions, once we exclude, on physical grounds advanced solutions
[92].

Question 2 When do F and h*F under the above conditions do represent possible
physical phenomena in the same ‘universe’ (M, 5, 7,, D, 1)?
To answer that question we introduce the concept of Poincaré diffeomorphisms.

Poincaré Diffeomorphisms

Since the diffeomorphism invariance of Maxwell equations is true for any h € &y,
it is true for £ € 731 C By, i.e., for any Poincaré diffeomorphism. We have

¢*y =1y, (*D = D. (6.87)

In this case, ({*F,£*J, (£«@;, m;, e;)) can be considered a solution of the
equations of motion (6.82) in the universe (M,y,7,,D, 1) but the coordinate
representations of the original equations of motion in the Einstein-Lorentz-Poincaré
coordinates {x*} must satisfy appropriate transformed initial and boundary condi-
tions (of course).

Remark 6.46 Take into account that (£*F, €*J, (£«p;, m;, e;)) will represent for
observers at rest in an inertial reference frame I a phenomenon distinct from the
one described by (F,J, (¢;, m;, e;)). A typical example is the field of an electric
charge at rest in I and the one of a charge moving at constant velocity (relative to I).
See Example 6.58.

Exercise 6.47 Let (M,g,) and (N, g,) be two 4-dimensional Lorentzian manifolds.
A diffeomorphismh : M — N is called a conformal map if

h*g, = Q’g|, (6.88)

where Q2 : M — R*.Ifh is a orientation-preserving conformal map show that:

(a) If F € sec /\ZT*M, then

h*(ga;F) = ;(l(h*F) (6.89)

(b) PuuM = N ~ R* and g, = g, = 5, a Minkowski metric. Show that the free
Maxwell equations are invariant under conformal transformations, i.e., dFF = 0,
0F =0= dh*F =0,6h*F = 0.

(c) Discuss the initial value problem for the situation described in (b).
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Enter the Electromagnetic Potential A

The homogeneous Maxwell equation dF = 0 in Minkowski spacetime implies that
there exists A € sec \' T*M such that

F=dA (6.90)

As already discussed A is defined modulus a closed form ¥ (dy» = 0). In terms of
A, Eq. (6.82) read

OA+dSA =1, 6.91)

where & = —(8d + d6) is the Hodge Laplacian. Equation (6.91) is diffeomorphism
invariant (in the sense explained above), since the corresponding equation for h*A
[see Eq. (6.85)] is

— (8d + d8)h*A + dSh*A = h*/. (6.92)
8 IS IS

Note that even the Lorenz gauge §A = 0 is diffeomorphism invariant, since

xd*h*A=h"xdxA=0. (6.93)

g 8

Taking into account Eq. (4.93) we have from Eq.(6.91), taking into account that
8J = 0, that

O 8A + 8dSA = 0. (6.94)

This equation shows that we indeed have only three independent equations
for the components of A in any given coordinate chart. The missing degree of
freedom, corresponds to gauge invariance. This means that Eq. (6.91) is not enough
to determine A for a Cauchy problem, unless we fix the gauge, a procedure that
eliminates one degree of freedom. In particular, if we work in the Lorenz gauge
SA = 0, Eq. (6.91) is the wave equation, which has a unique solution for a Cauchy
problem.

Remark 6.48 Sometimes we find in the literature the statement that if A is solution
of Eq. (6.91) so is (A + ). Well, this is true only for boundary free solutions and
if ¥ is harmonic, i.e., & = 0. The same is not true for a Cauchy problem, for
indeed, if (A 4 ) is to satisfy the same initial conditions as A on a Cauchy surface,
it is necessary that y satisfies homogeneous boundary conditions on that Cauchy
surface, and since ¥ solves the wave equation we must have that ¢ = 0.
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6.5.3 Diffeomorphism Invariance and GRT

Let us now analyze a problem in GRT which is analogous to the one in electrody-
namics just discussed in the previous section. This will permit us to give an answer
to the question just introduced above. Here, one of the S; is g, which is a dynamic
variable determined by the distribution of the energy momentum tensor 7 of all
fields and particles in M through Einstein’s equations,

1
Ricci — EgR =-T. (6.95)

This equation is manifestly diffeomorphism invariant (Definition 6.43). Consider
then a series of diffeormorphisms h, (where o belongs to a given index set) such
that each h, is equal to the identity in the region U C M where the energy
momentum tensor of matter is different of zero and nonzero in the region M\U.
If the above conditions are satisfied we have that hyT = T. If we accept that
YT = ((M.g.D,75,1).T) and Y’ = ((M.h}g.hiD, tpx . 1), h3T) do represent
the same physical model (as suggested by the diffeomorphism invariance of the
theory) we see that it is necessary that the diffeomorphism invariance of Einstein’s
equations implies that if the metric field g solves a well posed initial value and
boundary problem for Einstein’s equations'® for a given T, then hg.g must also
solve the diffeomorphic initial and boundary valued problem for Einstein’s equa-
tions for the same T = hg+T.'* This may only be true, of course, if the mathematical
nature of the Einstein’s equations do not allow the complete determination of the ten
functions g, (x) once that equations are written in a coordinate chart {x**} of the
maximal atlas of M (covering a region big enough for our considerations to make
sense). And indeed, that is the case,!’ since we have ten equations for the Einstein
tensor Gy, = Ry, — 38R = —T},, but they are not independent since we have
four constraints, coming from D, Gl =o.

This implies according to the majority view that in GRT any particular gravita-
tional field must be described by an element of the quotient space LorM /G, where
LorM is the space of all spacetimes associated to Lorentzian manifolds (M, g) for
all possible Lorentzian metrics g on M and Gy, is the group of diffeomorphisms of
M. More on this issue may be found in [109].

13The initial value problem (Cauchy problem) in GRT is very subtle one and difficult one, and the
reader interested in details must consult, e.g., [29, 55].

4This situation is known as Einstein’s hole argument. A very detailed discussion of the argument
is given in [119], where many important references can be found.

15 As known since a long time ago. See, e.g., [74, 91, 156] for details.
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6.5.4 A Comment on Logunov’s Objection

The above arguments are so simple and appealing that is hard to imagine any
objection. However, according to Logunov [74, 75] in practice, when we introduce
an arbitrary chart for U C M in order to find a gravitational field for a given
matter distribution, we have a problem. Indeed, Logunov argues: which hyxg do
we choose as solution for Einstein’s equation? He argues that GRT has no internal
answer for that question and this is true. In GRT [55, 91, 156] a unique hyxg
is specified only by arbitrarily selecting four unknown components of the metric
tensor for a given problem. Experts in GRT say that procedure corresponds in
fixing a coordinate gauge. Other authors are more subtle and only say that a ‘gauge
condition’ must be given. What is the meaning of such statements? Hawking and
Ellis, e.g., [55] select the ‘gauge’ by fixing a background metric g and imposing a
condition on the covariant derivative of h, g relative to the Levi-Civita connection
determined'® by g. In particular they choose the harmonic gauge. Such a gauge has
been used by Fock [46] for the particular case where g is a constant Minkowski
metric on a manifold M diffeomorphic'” to R*. So, the above procedure furnishes a
solution g which satisfies Einstein’s equations, the given initial and boundary valued
conditions (supposed physically realizable in nature) and the gauge condition.
To see the importance of the above remarks, let us analyze a simple problem,
namely the solutions of Einstein’s equations for a static and spherically symmetric
distribution of matter with its energy momentum tensor having support in an open
set U C M. Introducing a chart (U, ¢) with coordinates (x°, x', x>, x*) = (1,7, 6, ¢)
for ¢(U), and being the image of U under the coordinate mapping given by
{—o00 <t <00,(0 <r <r)U (ro <r < o0)} the form of the metric for
r > rp must be'®

g = goodt ®dt + 2go1dt @ dr + g11dr @ dr + g22d0 ® db + gz3dep @ dp,  (6.96)

where all the metric coefficients can be functions only of the radial coordinate. An
analysis of the possible solutions of Einstein’s equations for the above problem has
been given by several authors, the presentation of [74, 75] being particularly well
done and careful. The conclusion is that there are infinite possible metrics that have

16This of course, implies in four conditions to be satisfied by the components of the metric /iy +g.

17You may argue that in so doing we have fixed the topology of the spacetime. Well, this is true,
but do not forget that any solution of Einstein’s equations is obtained in a local chart of an abstract
manifold, and in general there are many different topologies consistent with the metric obtained in
the particular chart. This means that in truth, the topology of a solution to Einstein’s equations is
fixed by hand. This will become clear in Sect. 6.9.

8See, e.g., [71].
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the same asymptotic behavior when r — co. Two of them are:

2 2m\ !
g = (1 - —m) dr ® di — (1 - —m) dr ® dr — r*(df & d6 + sin® 0de ® do),
r r
(6.97)

and

g = (r_m)dt®dt— (H—m) dr @ dr — (r +m)*(df ® df + sin® 0dy ® dg),
r+m r—m
(6.98)

where m is a parameter with the meaning of the mass of the system in the natural
systems of units.

Equation (6.97) is (wrongly) known (see Sect. 6.9) as Schwarzschild solution and
Eq. (6.98) is another valid solution, for which

D, (/detgg") =0, (6.99)

o
where D = D is the Levi-Civita covariant derivative of a Minkowski metric § = g,
which in the coordinates (¢, r, 8, ¢) is written as

g=dt®dt—dr®dr—r*(df @ db + sin’> 0dy @ dy). (6.100)

Equation (6.99)"? is not satisfied by g,. So, which one are we going to use in order
to compare empirical data with predictions of the theory? Any expert on GRT will,
of course, answer that question saying that both metrics are permitted, because, the
meaning of the coordinates in each one are different (even if they are presented
by the same letter). The reasoning behind that answer is that we can know what
the spacetime labels mean, only after we fix a metric on it. With this answer,
diffeomorphism invariance holds, if we do not include a particular gauge fixing
equations as part of the theory.

Indeed, we can perform a coordinate transformation in Eq. (6.97) which makes it
in the new variables to have the appearance of Eq. (6.98).

However, according to Logunov, to not know a priori the meaning of the
coordinates leads to ambiguities in the predictions of experiments, e.g., in the time
delay of radio signals in the solar system.?’ The reason is that the time delay of a
radio signal that goes, e.g., from Earth to Mercury and comes back flying in the
background gravitational field generated by the Sun, is defined as the amount of
extra time (as measured with a clock on Earth) to do the same path in the absence
of the Sun’s gravitational field. Now, both metrics (g, and g;) reduce to Minkowski

9Equation (6.99) is similar but not identical to harmonic gauge condition.

20Recently Scharf [133] also puts in doubt the validity of diffeomorphism invariance. We will not
comment on his paper here.
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metric in the absence of the Sun’s gravitational field and so, we have two different
predictions using the labels (¢, r, 8, ¢), if we suppose that in g, and g; they have the
same meaning.

We think that only meaningful question that can be done at this point is the
following: what is the meaning attributed by astronomers to the coordinate functions
tr0,9)?

This is an important question since once we know that answer only one of
the predictions, using g, or g; will agree with empirical data once we use the
astronomers’ interpretation of (¢, r, 8, ¢). Logunov [74, 75] claims that under these
conditions only the metric g; is compatible with experimental data. More, according
to him, his theory (with a zero graviton mass) predicts that data because in it there
is an analogous to Einstein’s equation plus Eq. (6.99), which is an integral part of
his theory.

Logunov’s conclusion would be correct only if one can claim that the
astronomers meaning of the coordinates (¢, r, 8, ¢) for the time delay experiment is
the one that those coordinates have in a flat Minkowski spacetime. But this can only
be confirmed if: someone can do the time delay radio signal experiment putting off
the gravitational field, and this no astronomer can do, of course.

According to our view, what can be inferred is the following: if the data favors
the use of g;, this only says that the procedure astronomers use to put labels to
spacetime events make the coordinates (z,7, 6, ¢) to have the meaning that they
have as encoded in g;.

Remark 6.49 Logunov emphasizes that there are compelling reasons to claim that
the Minkowski structure of spacetime manifests itself in some identifiable way.
Indeed, in his theory it is claimed that manifestation of the Minkowski spacetime
structure arises in the empirical validity of the energy-momentum and angular-
momentum conservation laws for all physical phenomena. In Chap.9 we show in
details that in GRT there are no genuine energy-momentum and angular-momentum
conservation laws.

Remark 6.50 Tt is also said that diffeomorphism invariance is a crucial requirement
that GRT must satisfy in order to avoid indeterminism [38, 109, 119]. We prefer not
to go on the that discussion here. The reason is that as it will become clear in Chap. 9,
where we study the shameful problem of the ‘energy-momentum conservation’ in
GRT, we do not think that this theory, with its orthodox interpretation, is one worthy
to be preserved anymore. One way to have trustful energy-momentum conservation
is to suppose that the arena of physical phenomena is Minkowski spacetime and that
the gravitational field is a field in the Faraday sense, which no special distinction
in relation to the other fields. This, of course do not implies that we necessarily
need to have Logunov’s theory as the unique possibility. However, whatever theory
we decide to use it must give the results predicted by GRT in the case that we
know these predictions are good ones. In that case, we may say that the geometrical
description “a la General Relativity” is a coincidence, which may be valid as a first
approximation (see Chap. 11). We mention yet, that diffeomorphism invariance is
also said to play a crucial role in some recent tentatives of formulation of a quantum
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theory of gravity, like loop gravity. Here is not the place to venture on that subject.
The interested reader may consult [129] and the careful analysis presented in [119]
of many of Rovelli’s claims.

6.5.5 Spacetime Symmetry Groups

Let h € &,,. We recall (Definition 4.35) that if for a geometrical object T we have
h*T = T or equivalently

T =T (6.101)

then h is said to be a symmetry of T.

Definition 6.51 The set of all {h € &,,} such that Eq. (6.101) holds is said to be
the symmetry group of T.

Definition 6.52 Let Y, T € Mod F, Y = ((M,g,D, 7., 1), T1,....T,), T =

(M, hiD, hag haty, he?) T, ..., heT,) with the T;, i = 1,...,m defined in
UCMandT,,i=1,...,mdefinedin V € h(U) C M and such that

D =nh.D, g=hg. (6.102)

Then Y is said to be the h-deformed version of Y.

Remark 6.53 Take notice that—as will be clear in a while—(T},...,T,,) and
(h«Ty,...,hsT,) in general will correspond to different phenomena as registered
by observers at rest in a given arbitrary reference frame Q € sec TM.

Definition 6.54 Let Q € secTU C sec TM,Q e secTV CsecTM, UNV # @
and let {x*}, {x*} (the coordinate functions associated respectively to the charts
(U, ¢) and (V, @)) be respectively a (nacs|Q) and a (nacs|Q) and suppose that X =
x* oh™! : h(U) — R. Thus, Q = h,Q and Q is said to be a h-deformed version
of Q.

Let Y, Y € Mod F be as in Definition 6.52. Call 0 = D,g,...,Ty,..., T,)and
0= D.,g,,....,h.Ty, ... hiT,). Now, o is such that it solves a set of differential
equations in ¢(U) C R* with a given set of boundary conditions denoted »*"},
which we write as

Dy (0guy)e =05 7 ;e e, (6.103)
and o defined in h(U) C V solves

DYy (Buomy)s . = 05 6% heehW) V. (6.104)
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In Egs.(6.103) and (6.104) Q?xl‘} and @‘{’w}, o = 1,2,...,m, mean sets of
differential equations in R*.

How can observers living on the universe (M, g,D, T4, 1) discover that T, Y e
Mod F are deformed versions of each other? In order to answer this question we

need some additional definitions.

6.5.6 Physically Equivalent Reference Frames

Definition 6.55 Let Q,Q be as in Definition 6.54. We say that Q and Q are
physically equivalent or indistinguishable according to theory F (and we denote
Q ~ Q) if and only if there exist a (nacs|Q) and a (nacs|Q) such that: (i) the
functions D, Q, and D,;(_)g have the same functional form and (ii) the system
of differential equations (6.103) have the same functional form as the system of
differential equations (6.104) and b4} must be relative to {x} the same as po"
is relative to {x*} and if b s physically realizable then b+ must also be
physically realizable.

Definition 6.56 Given a reference frame Q € secTU C sec TM the set of all
diffeomorphisms {h € &} such that h,Q ~ Q forms a subgroup of &, called
the equivalence group of the class of reference frames of kind Q according to the
theory F.

Remark 6.57 In the next section we establish what is the meaning of a Principle
of Relativity for a spacetime theory based on Minkowski spacetime. One of
the meanings of this principle is that all inertial reference frames are physically
equivalent. It is very important also to realize that general covariance is not to be
identified with a Principle of General Relativity. Indeed, if such a principle is to
have the meaning that all arbitrary reference frames are physically equivalent then
it does not hold in GRT as will become clear in Sect. 6.8.2.

6.6 Principle of Relativity

In this section the arena where physical phenomena occur is supposed to be
Minkowski spacetime M = (M,75,D,t,,1). Let then LT € secTM be two
distinct IRF in M, which we recall are frames such that DI = DI’ = 0. According
to Definition 6.34 any IRF is proper time synchronizable. A global (nacs|I) {x"}

is said to be in the Einstein-Lorentz-Poincaré gauge if 1 = 310 and the set {ai“}
X X

is an orthonormal frame, i.e., 17(3)%, 3% = 7. It is crucial to have in mind that,

given the natural system of units used in this book where the light velocity ¢ = 1,
the coordinate x° = x(¢) has the meaning of proper time as measured by clocks
at rest in I and synchronized a 1’Einstein. Also, the spatial coordinates x' = x'(e),
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i = 1,2, 3 have the meaning of proper distances as measured along the spatial axis
from a fixed origin. Let {x’*} be a (nacs|I) also in the Einstein-Lorentz-Poincaré
gauge. Then the coordinates x* = x(e) and x* = x’*(e) of any event ¢ € M are
related by

K =LA + at, (6.105)

where LY are the matrix components of a Lorentz transformation L. € El and a*
are real constants. When a* = 0, Eq.(6.105) is a special orthochronous Lorentz
mapping. According to Eq. (4.29) the set of all coordinate transformations of the
form given by Eq. (6.105) can be associated to a subset of the diffeomorphism group,
namely Pi = {{} C &y. Any{ € 731 is a Poincaré diffeomorphism. If T €
sec TM (or is a connection) we call £, T a Poincaré deformed version of T. When,
£ induces only a Lorentz transformation, then £, T is called a Lorentz deformed
version of T.
We can verify that

tin=n, &D=D, VLePl (6.106)

i.e., according to Definition 6.51 the Poincaré group (and in particular its subgroup
El = §01 ;) is a symmetry group of # and D.

Now, the following statement denoted PR; is usually presented as the Principle
of Relativity in active form [127].

PR;: Let £ € 'Pl C Oy If for any possible physical theory F, if Y € F,
T = (M,n,D,ty,1).Tr.....Ty) is a possible phenomenon, then X' = £, Y is
also a possible physical phenomenon.

The following statement denoted PR, is known as the Principle of Relativity in
passive form [127].

PR,: All inertial reference frames are physically equivalent or indistinguishable
for any possible physical theory F.

PR; and PR, are equivalent statements of the Principle of Relativity and we
believe that they capture the ideas of Poincaré [106] and Einstein [39] (see also on
this respect [73, 86, 157]). The existence of a Principle of Relativity for a physical
theory permit us to find nontrivial solutions for the equations of motion of the theory
once very simple solutions are known. We illustrate this case in the following

Example 6.58 As in Sect. 6.5 let Fryg be classical electrodynamics taking place
Minkowski spacetime. More precisely, consider Lorentz-Maxwell electrodynamics
(LME) Frmg as a theory of a species of structure. We already know that LME has as
model

TLME = (M,n,T",D,T,F,J, {ai,mi,ei}). (6107)
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We already know from Sect.6.5.1 the precise sense in which Yz may be
considered diffeomorphism invariant for h € &,.

Now, let us study the case where h = £ € 731 C &y, ie., for a Poincaré
diffeomorphism for which

¢*y = n,0*D = D. (6.108)

In this case, as we learned in Sect. 6.5 (£*F, £*J, (£«¢;, m;, e;)) can be considered
a solution of the equations of motion (6.82) in the universe (M, , 7y, D, 1), but with
appropriate transformed initial and boundary conditions (of course).

The explicit form of Poincaré diffeomorphisms is introduced as follows. Let {x*}
and {x*} be two coordinate charts covering M naturally adapted to the global IRFs
I=0/0x"and I’ = 9/0x, such that, e.g.,

1 d vl d

r= = —,
N pr T e T

(6.109)

3 .
where v = (v!, v%,v¥) and v? = Z~_1(Ul)2‘ Then, a Poincaré mapping £ : ¢ — {e¢
is defined by the following coordinate transformation

x"(e) = x"*(Le) = A¥x"(e) + a”, (6.110)

Suppose we have a charge at rest at the origin of the I’ frame and let be F =
%F o (%)dx™ A dx’ be the electromagnetic field generated by this charge. As it
is well known,

ex/t

/ Z;l (xi)2

Foi(x'*) = , Fj(x®) = 0. 6.111)

Then, we have

_ 1 -
F:={*F = 3 (F(")) g dx* A dx?,
(F(xp))aﬁ = Fu, (P ()AL A} (6.112)
To simplify the calculations, let v = (v,0,0). Writing, as usual, in Cartesian

notation, F = (E, 0) and F = (E, ]_3), we have

- e _ -
E(@") = ——— (x' =%, 2%, %), B = vxE@"),
R3V1 =2 ( )

R \/ G2 P, (6.113)
1—-v
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The field F = £*F describes the field of a charge moving with constant velocity
along the x-axis. We have obtained this result in a practically trivial way using PR.
The reader will certainly appreciate the power of PR; once he tries to solve directly
Maxwell equation for that problem (see, e.g., [76]).

6.6.1 Internal and External Synchronization Processes

We recall once more that a IRF on Minkowski spacetime is mathematically
described by a unit time like vector field I € sec TM such that DI = 0. We also
defined a set {x*} of coordinate functions covering M which is moreover a (nacs|I)
in the Einstein-Lorentz-Poincaré gauge, i.e., in these coordinates I = 9/ 9x%and
"(z)xiw % = Ny We recall that x = x(e) has the meaning of proper time ate € M
as measured by a clocks at rest in the frame and which have been synchronized by
Einstein’s method described above. Such a procedure is an infernal operation in the I
frame, and as such it is more properly called an internal synchronization process.*!
Of course, Einstein’s method using light signals, is not the only possible internal
synchronization procedure, and indeed, several other methods are known, like, e.g.,
the ones described in [61, 62, 79, 80, 159].

As discussed in [126] the validity of the Principle of Relativity implies that
any possible internal synchronization procedure of clocks must be equivalent to
Einstein’s method and no method can realize absolute synchronization relative to the
time of a chosen ‘preferred’ reference frame. This statement means the following.
Let Iy = 9/0x° be a ‘preferred’ inertial reference frame and {X*} be a (nacs|Ip) in
the Einstein-Lorentz-Poincaré gauge and where it is experimentally verified that all
internal synchronization procedures agree with the one obtained through Einstein’s
synchronization procedure. Let, e.g.,

1 0 v ad
VT2 T2t

be another inertial reference frame. Choose a (nacs|I) {x*} in the Einstein-Lorentz-
Poincaré gauge such that

I (6.114)

-0 -1 -1 -0

0 X —ux , X —uX ERINE I

X = , X = , =XxXx =Xx. (6.115)
V1—0v? V1 =2

Let A and B clocks at rest in I following world lines 04 and op parametrized by
%0, When the standard clocks at I, reads %° the spatial coordinates of the clocks are
¥4 = X 004(Xy) and X' = X' 0 64(Xo). Then from Eq. (6.115) it follows that the

217t is crucial to have in mind that the synchronabilty to which Definition 6.34 refers is internal
synchronization.
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readings of the standard clocks A and B are (according to the observers in Iy) out of
phase by

0 0 v v

X —xf =— 2A5c‘ (6.116)

(¥l 5 _—
T AT =T

in relation to the standard clocks synchronized “a I’Einstein” in Iy. The phase
difference depends explicitly on the relative velocity of the frames.

Suppose now that it would be possible with an internal synchronization proce-
dure, different from Einstein’s method, to synchronize clocks in I such that the time
registered by standard clocks (say at A and B) at rest in that frame are given by
coordinates x} and x% and such that when the standard clocks at I reads x° we
have

x§ —x% =0. (6.117)

The coordinate x° may be named absolute synchronization as defined by I.

Then, by comparing set of clocks synchronized with the different synchroniza-
tion procedures it would be possible to determine the velocity of the I reference
frame relative to the I reference frame. If for all possible inertial frames it would
be possible to find coordinate functions that realize absolute synchronization in the
sense of Eq.(6.117), this will select Iy as a preferred one, and we would have a
breakdown of the Principle of Relativity. This is because, the phenomenon involved
in the alternative synchronization procedure in I will not be a Lorentz deformed
version of the same phenomenon in Ij.

6.6.2 External Synchronization

Suppose that we eventually identify in the universe we live a given IRF, say I
as having some cosmic significance. Let {x*} be a (nacs|Iy) in Einstein-Lorentz-
Poincaré coordinate gauge. Let I [given by Eq.(6.114)] be another IRF whose
observers have determined the velocity of their frame I relative to I by realizing
experiments involving some phenomena generated external to that frame. Of course,
nothing prevents those observers to use x” = ¥°+/1 — v2 as time coordinate function
representing the reading of standard clocks at rest in I which are synchronized
according to the readings of the clocks at rest in Iy. A natural set of global
coordinates which could be used by observers in I are then

0

0 _ 0 /T 3,1 _ X —UX 2_2.3_ 3
X = ] -3, x = —, x" =Xx,x" =X, (6.118)
V1 =2

which we call the absolute gauge coordinates, and which have been used by
many authors in the past, as, e.g., in [26, 81-83, 115, 117, 118, 126, 150]. Now,
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the coordinate functions {x"} such that x*(e) = x* is a (nacs|I), since in that
coordinates we have

I_

=0 (6.119)

Also, in these coordinates the Minkowski metric tensor reads,

7 =dx’ ® dx’ — 2vdx’ ® dx' — (1 — v?)dx' ® dx! — dx* ® dx* — dx*> ® dx°,
(6.120)

being non diagonal.
Recall that the set of naturally adapted coordinates {x*} (Einstein-Lorentz-
Poincaré gauge) and {x"} (absolute gauge) to I are related by

=% 0 =x—vx!. (6.121)

Some authors, as e.g., [20, 32, 81, 82, 114-116, 118] claims that Iy may be
identified as the reference frame where the cosmic background radiation is isotropic.
However, if the reference frame where the cosmic background radiation is isotropic
is to be understood as a reference frame on a Lorentzian spacetime modeling a
cosmological model according to GRT, then this identification is not possible since
as already said in Remark 6.13 there are in general no inertial frames in a general
Lorentzian spacetime.

The use of the coordinates {x*} will be a useful one indeed only in the case that
we can identify a preferred IRF by internal experiments breaking Lorentz invariance
in the frame I. More on this issue will be discussed below and in our book yet in
preparation [100], where we shall need the results of the next section.

6.6.3 A Non Standard Realization of the Lorentz Group

Let

1 0 vl 9
-1 9, v 9
Nond® | =0

v/l

1 0 0
= — + >
/1— ()2 0x9 /1— (v')? oxt

be two IRFs. Suppose that observers at the IRF I and I’ can measure their velocities
relative to a given preferred frame Iy. Observers in the frames I and I' may use
coordinates in the Einstein-Lorentz-Poincaré gauge, denoted respectively by {x*}
and {x'*} or they can use coordinates in the absolute gauge, respectively {x*} and
{x*}. If they use absolute gauge coordinates, the velocity of the preferred frame as

!/

(6.122)
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measured by those observers can be written as

9
Iy=u'— +u'—
o= 0x0 tu oxi
0 )
I, = u° o +u' Pt (6.123)

Also, the velocity of frame I' as determined by the observers in the I frame will
be written as

a .0
4 0 i
I'=w 70 +W_3 - (6.124)

We write x' = (X, x!,x2,x%), ¥ = 3,3, %% %), ¥ = (x% x!,x%,x%), ' =
0, x", %%, x7), u' = 0, u) and o = (W°, u"), w = (W, w') Then the set of
coordinates in the absolute gauge are related by

x = AL, wi, x' = AL, u)x,
x' = AL, u)x, (6.125)

and
W' = AL, uu. (6.126)

In Eq. (6.124), I_,, L , L are elements of the Lorentz group, u and u’ are, of course,
the components (i.e., the velocity) of the Iy frame as determined by I and I [see
Eq. (6.124)] in absolute gauge coordinates. Finally, A (L, u) is a 4 x 4 matrix, whose
explicit form (has been found in [83] and with more details in [114-116, 118])

is?2:

(a) For rotations we have

AR u) = ((1)1(1 ) . (6.127)

where R € SOj is a standard rotation matrix.
(b) For boosts we have

W) 0
A(Lw, M) = —w 15+ ww’ — 1w W (6.128)

22We use for future reference the notations of [114—-116, 118].
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For boosts (with “parallel” space axis) the coordinates introduced above are
related as follows:

1 _ _ u-x
X=—-x x=x—u(-—— |},
u

1+ V14+u?
1
W=—=o— u=u'v (6.129)

0 Ly . (—0 u'- X )
X=—x" X =x—-u(X - ————),
u’® 1+ +/1+u?
1
0 __ r__ 0./
U = —m u=u"v (6.130)
and
w0 — Lo X/:X_w( o_L)
wo™ 1+ VT+w2)
0 0 /0 —;
W=l o WHu-w) (6.131)
u® 1+ uOu(1 + Su'vd)

The metric tensor reads, e.g., in coordinates {x"} as § = g, dx" ® dx", with

1 uu’
= . 6.132
By ( wu —1; + W)’ueu’ ) ( )

Also, as a generalization of Eq. (6.121) we also have

WO =% =i, K = % (6.133)

which gives the relation between coordinates in the Lorentz and absolute coordinate
gauges.
Finally, the nonstandard realization of the Lorentz group is given by the
following rules:
ALy, A(Ly, w)u)A(Ly,u) = A(LyLy, u),
AT'(Lu) = AL AL, wuw),
AL, u) = 14. (6.134)
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6.6.4 Status of the Principle of Relativity

The Principle of Relativity according to textbooks and in particular in Roberts
review [120] titled: ‘What is the Experimental Basis of Special Relativity?’ is
supposed to be one of the most well tested principles of Physics (see also [160]).
High Energy physicists proudly claimed during all the twentieth century that PR; is
routinely verified in any high energy physical laboratory®? and that PR, is routinely
used when data of different laboratories are compared. The validity of the Principle
of Relativity is known also as Poincaré invariance of physical laws. According to
the definitions given above the reason for that is obvious.

Despite all enthusiasm, the question arises? Is the Principle of Relativity a true
law on nature valid under all conditions? Well, if the GRT is a correct description of
the nature of the gravitational field the answer is no. The reason is that in this theory
there are no inertial reference frames (in general) as we already remarked. Even a
so called Principle of Local Lorentz Invariance (PLLI), stated in many books and
articles (see references below) is not true, as it will be proved in Sect. 6.8 below.
Finally, even if we could formulate (as indeed we can, see, e.g., Chap. 11, and also
[45, 73, 127, 138, 156]) a theory of the gravitational field in Minkowski spacetime
(satisfying the Principle of Relativity), no one can warrant that this Principle is a
true law of nature valid under all conditions, for we do not know all laws of nature.
Having said that the reader must be informed that:

(a) From time to time there are claims in the literature that certain very low
energy experiments involving the propagation of light and the roto-translational
motion of solid bodies violate Lorentz invariance. We quote in that class of
experiments24 [81, 82] and [66, 152, 153]. The data described in [152] can be
explained with a very simple model, where it is postulated a breakdown of PR;
for solids in roto-translational motion [126]. However it seems that the data in
[153] is more compatible with a null result. Breakdown of Lorentz invariance
in the roto-translational motion of solid bodies as described in [126] may also
explain the data in [81, 82]. However, these experiments (to the best of the
authors’ knowledge) have not been duplicated and we have serious doubts about
those results. In this respect see also the thoughtful analysis in [77, 151].

(b) Also, recently Cahill [24, 25] and also Consoli [33] and Consoli and Constanzo
[34, 35] claim that the small, but not null results in Michelson-Morley like
experiments done in the past can be accounted by explicitly postulating that
the propagation of light in a medium breaks Lorentz invariance. For the case of
the anomalous experimental results in the Brillet and Hall experiment (which is

2Which they wrongly suppose are inertial reference frames. Indeed, all known high energy
laboratories are located on the Earth, which is not an inertial reference frame.

2%We must say that we do not know if these experiments have been duplicated. In [126] it is
analyzed a possible breakdown of PR; for solids in rototranslational motion which accounts for
the results of the Kolen-Torr experiment [66, 152].
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a Michelson-Morley like experiment done in vacuum) Cahill postulated that
the Schwarzschild gravitational field of the Earth accounts for an effective
medium. With that hypothesis his calculations at first sight seems to explain
those ‘anomalous’ results. On the other hand, Klauber [65] claims to explain
the anomalous Brillet and Hall [22] experimental results by postulating that
the devices used in the experiment does not suffer Lorentz contraction when
turned. Also it is worth to quote here that a reanalysis of the data of Miller’s
classical experiment [85] by Allais® [2], show the existence of correlations that
are hard to believe to have the simple explanations given by Shankland [141].
All these claims need, of course, to be more carefully analyzed, but in particular
it is necessary to take into account that Earth is not an inertial reference frame
according to both the SRT and the GRT. Recall that inertial reference frames
did not exist (in general) in GRT as already remarked several times. This fact,
it seems to us, has not been properly taken into account by those authors in
their analysis of the classical experiments. In particular, in any real Michelson-
Morley like experiment the light paths enclose a finite area and then, those
experiments are indeed analogous to a Sagnac experiment, and a non null (but
very small) phase shift may be predict for them. This observation has already
been remarked by Post [107, 108]. However, if the authors quoted above are
correct, since along time ago a breakdown of PR has already been found. This
would be disturbing to say the less.?

(c) There are also many conjectures that a possible breakdown of Lorentz invari-
ance will happen in phenomena involving low and very high energies (see, e.g.,
[1, 5-7, 67-69, 78, 155] and references therein®’) and/or cosmological scales
(98]

(d) Also, there are claims of a possible breakdown of Lorentz invariance in the
phenomenon of the wave packet reduction of an entangled quantum state of
two identical particles (see, e.g., [23, 54, 103, 104, 114-118, 142, 146, 161] and
references therein).?

ZMaurice Allais is a French physicist that won Noble Prize in Economics. It is worth to visit his
home page at: http://allais.maurice.free.fr/Science.htm.

26We advise the reader keep an open eye on this issue following the articles on the subject appearing
at the arXiv.

YIn fact, a google search for “breakdown of Lorentz invariance” will show several hundred
of serious articles on the subject. Of course, we do have the opportunity to analyze all such
possibilities in our book.

ZCases (c) and (d) will discussed in our planned book [100], whose proposal is among others to
show that none of the experiments claiming superluminal propagation (as e.g.: (A) Superluminal
group velocities of voltage and currents configurations propagating in wires [64, 87, 88, 102,
121]; (By) Superluminal group velocities of electromagnetic field configurations propagating
in dispersive media with absorption or gain [27, 143]; (B,) Superluminal group velocities of
tunneling microwaves [40-42, 56, 95-97]; (B3)Superluminal group velocities of a single tunneling
photon [144]; (B4) Superluminal group velocities of tunneling electrons [72]; (C;) Superluminal
group velocities of microwaves launched and received by non axially aligned horn antennas
[51, 59, 60, 110-112]; (C,) Direct measurements of superluminal velocities of peaks of finite
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For the rest of this book we assume the validity of Principle of Relativity
(PR; or PR) in our discussions.

6.7 Principle of Local Lorentz Invariance in GRT?

From time to time we find in the literature the statement that the existence of the
cosmic background radiation defines a kind of preferred inertial reference frame.
However, as we already know, in GRT in a general Lorentzian spacetime modelling
a gravitational field generated by a given energy momentum tensor, in general,
inertial reference frames do not exist.

In view of that fact, the following question arises naturally: which characteristics
a reference frame on a GRT spacetime model must have in order to reflect as much
as possible the properties of an IRF that exists in Minkowski spacetime?

The answer to the question is that there are two kind of frames in GRT, namely
PIRFs (Definition 6.59) and LLRFs (Definition 6.61), such that each frame in
one of these classes share some important aspects of the IRFs of SRT. Both
concepts are useful and it is worth to distinguish between them in order to avoid
misunderstandings. A thoughtful discussion of these concepts was presented in
[124] and we follow that exposition.

Definition 6.59 A reference frame J € secTU,U C M is said to be a pseudo
inertial reference frame (PIRF) if D53 = 0 and a5 A da; = 0, with oy = g(J,).

This definition means that a PIRF is in free fall and is non rotating. It means also
that it is at least locally synchronizable.

Definition 6.60 A chart (U, ¢) of an oriented atlas of M with coordinates £*is
said to be a local Lorentzian coordinate chart (LLCC) and {£"} are said to be local
Lorentz coordinates (LLC) in py € U if and only if

g(0/0E",0/08") |po: NMpvs (6.135)

1
) =0, T, (") |,= —g(Rf)‘é;,L(S”“) + R%5,.(E") |ps P # Po.
(6.136)

Let (V,y) (VN U # @) be an arbitrary chart with coordinates {x*}. Then,
supposing that py is at the origin of both coordinate systems the following relations

aperture approximations to electromagnetic Bessel beams (X-waves), both in the optical and in
the microwave region [93, 130]) do not imply in any violation of the Principle of Relativity.
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holds (approximately)
EH = x4 lpl‘"(p )x"‘xﬁ
- ) -af 0 s
1 _,. o
x = = ST (o) P, (6.137)

where in Eq.(6.137) F’;ﬂ (po) are the values of the connection coefficients at pg
expressed in the coordinates {x*}.

The coordinates {£#} are also known as Riemann normal coordinates and the
explicit methods for obtaining them are described in many texts of Riemannian
geometry as, e.g., in [94] and of GRT, as e.g., in [156].

Lety € U C M be the world line of an observer in geodetic motion in spacetime,
i.e.,D,, vy« = 0. Then as it is well known we can introduce in U LLC {£#*} such that
for every p € y we have

ad
0| = Ve &(9/08",9/0E")] e, = M,
as PEY
L) | = 8g(0/08" Dajaer/067)] o, = 0. (6.138)

Take into account for future reference that if the {£#} are LLC then it is clear
from Definition 6.60 that in general "}’ (§) |,7 O forall p ¢ y.

Definition 6.61 Given a geodetic line y C U C M and LLCC (U, &") we say
that a reference frame L = 9/9£° € sec TU is a Local Lorentz Reference Frame
Associated to y (LLRFy) if and only if

0

e e,

L|

[07 FVAN dOlL| =0. (6.139)

1254

Moreover, we say also that the Riemann normal coordinate functions or Lorentz
coordinate functions (LLC) {£*} are associated with the LLRFy.

Remark 6.62 Tt is very important to have in mind that for a LLRFy L in general
DiL|,¢, # 0 (i.e., only the integral line y of L in free fall in general), and also
eventually o, A dag|,e, 7# 0, which may be a surprising result for many readers.
In contrast, a PIRF J such that 3|, = L|, has all its integral lines in free fall and the
rotation of the frame is always null in all points where the frame is defined. Finally
its is worth to recall that both J and L. may eventually have shear and expansion
even at the points of the geodesic line y that they have in common [124].



272 6 Some Issues in Relativistic Spacetime Theories

Definition 6.63 Let y be a geodetic line as in Definition 6.61. A section s of the
orthogonal frame bundle Pso¢ U, U C M is called an inertial moving tetrad along
y (IMTy) when the set

Sy = {(60@),61@),62@),63(17)),[7 eyn U} Cs, (6140)

it such that Vp € y

€)= vulp. glew €], = N (6.141)
with

T (p) = ¢, g(ea(p),De,(€p(p)) = 0. (6.142)

The existence of s € sec Pgo¢ U satisfying the above conditions can be easily

proved. Introduce coordinates {£#} for U such that at py € y, €9(po) = % =
Po

Vxipo» and €;(po) = aisf ,i = 1,2,3 (three orthonormal vectors) satisfying

p(l
Eq. (6.138) and parallel transport the set €,,(po) along y. The set €, (po) will then
also be Fermi transported since y is a geodesic and as such they define the standard
of no rotation along y.

Remark 6.64 LetJ € secTV be a PIRF and y C U C V one of its integral lines
and let {§/*}, U C M be a LLC through all the points of the world line y such that
¥« = J|,. Then, in general {§"} is not a (nacs|J) in U, i.e., J|,¢, # 8/3§0|p¢y

evenif J|,c, = a/ag°|p€y.

6.7.1 LLRFYys and the Equivalence Principle

There are many presentations of the EP and even very strong criticisms against it,
the most famous being probably the one offered by Synge [148]. We are not going
to bet on this particular issue. Our intention here is to prove that there are models
of GRT where the so called Principle of Local Lorentz Invariance (PLLI) which
according to several authors (see below) follows from the Equivalence Principle is
not valid in general. Our strategy to prove this strong statement is to give a precise
mathematical wording to the PLLI (which formalizes the PLLI verbally introduced
by several authors) in terms of a physical equivalence of LLRFys (see below) and
then prove that PLLI is a false statement according to GRT. We start by recalling
formulations and comments concerning the EP and the PLLI.
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According to Friedman [48] the

Standard formulation of the EP characteristically obscure [the] crucial distinction between
first order laws and second order laws by blurring the distinction between infinitesimal laws,
holding at a single point, and local laws, holding on a neighborhood of a point.. ..

According to our point of view, in order to give a mathematically precise
formulation of Einstein’s EP besides the distinctions mentioned above between
infinitesimal and local laws, it is also necessary to distinguish between some very
different (but related) concepts, namely,”’

1. The concept of an observer (Definition 6.4);

2. The general concept of a reference frame in a Lorentzian spacetime (Defini-
tion 6.9);

3. The concept of a natural adapted coordinate chart to a reference frame (Defini-
tion 6.10);

4. The concept of PIRFs (Definition 6.59) and LLRFys (Definition 6.61) on U C
M,

5. The concept of an inertial moving observer carrying a tetrad along y (a geodetic
curve), a concept we abbreviate by calling it an IMTy (Definition 6.63).

Einstein’s EP is formulated by Misner, Thorne and Wheeler (MTW)[89] as
follows:

in any and every Local Lorentz Frame (LLF), anywhere and anytime in the universe, all
the (non-gravitational) laws of physics must take on their familiar special relativistic forms.
Equivalently, there is no way, by experiments confined to small regions of spacetime to
distinguish one LLF in one region of spacetime from any other LLF in the same or any
other region.

We comment here that those authors®’ did not give a formal definition of a LLF.
They try to make intelligible the EP by formulating its wording in terms of a LLCC
(see Definition 6.60) and indeed these authors as many others do not distinguish
the concept of a reference frame Z € sec TM from that of a (nacs|Z). This may
generate misunderstandings. The mathematical formalization of a LLF used by
MTW (and many other authors) corresponds to the concept of LLRF introduced
in Definition 6.61.

In [31] Ciufolini and Wheeler call the above statement of MTW the medium
strong form of the EP. They introduced also what they called the strong EP as
follows:

in a sufficiently small neighborhood of any spacetime event, in a locally falling frame, no
gravitational effects are observable.

PThese concepts are in general used without distinction by different authors leading to misunder-
standings and misconceptions.

30For the best of our knowledge no author gave until now the formal definition of a LLRF as in
Definition 6.61.
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Again, no mathematical formalization of a locally falling frame is given, the
formulation uses only LLCC. Worse, if local means in a neighborhood of a given
spacetime event this principle must be false. For example, it is well known fact
that the Riemann tensor couples locally with spinning particles. Moreover, the
neighborhood must be at least large enough to contain an experimental physicist and
the devices of his laboratory and must allow for enough time for the experiments.
With a gradiometer built by Hughes corporation which has an area of approximately
400 cm? any researcher can easily discover if he is leaving in a region of spacetime
with a gravitational field or if he is living in an accelerated frame in a region of
spacetime free with a zero gravitational field.

Following [31, 89] recently several authors as, e.g., Will [158], Bertotti and
Grishchuk [18] and Gabriel and Haugan [49] (see also Weinberg [156]) claim that
Einstein EP requires a sort of local Lorentz invariance. This concept is introduced
in, e.g., [18] with the following arguments.

To start we are told that to state the Einstein EP we need to consider a laboratory
that falls freely through an external gravitational field. Moreover, such a laboratory
must be shielded, from external non-gravitational fields and must be small enough
such that effects due to the non homogeneity of the field are negligible through
its volume. Then, they say, that the local non-gravitational test experiments are
experiments performed within such a laboratory and in which self-gravitational
interactions play no significant part. They define:

The Einstein EP states that the outcomes of such experiments are independent of the
velocity of the apparatus with which they are performed and when in the universe they
are performed.

This statement is then called the Principle of Local Lorentz Invariance (PLLI)
and ‘convincing’ proofs of its validity are offered, and there is no need to repeat
that ‘convincing’ proofs here. Prugovecki [109] endorses the PLLI and also said
that it can be experimentally verified. In his formulation he translates the statements
of [18, 31, 48, 49, 89, 156, 158] in terms of Lorentz and Poincaré covariance of
measurements done in two different IMFy (see Definition 6.63). Based on these
past tentatives of formalization®' we give the following one.

Einstein EP: Let y be a timelike geodetic line on the world manifold M. For
any LLRFy (see Definition 6.61) all non gravitational laws of physics, expressed
through the coordinates {£/*} which are LLC associated with the LLRFy (Defini-
tion 6.61) should at each point along y be equal (up to terms in first order in those
coordinates) to their special relativistic counterparts when the mathematical objects
appearing in these special relativistic laws are expressed through a coordinates in
Einstein-Lorentz-Poincaré gauge naturally adapted to an arbitrary inertial frame
I € secTM’, where M’ = R* is the manifold of a Minkowski spacetime structure
M=WM 5D, 1y1).

31See [99] for a history of the subject.
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Also, if the PLLI would be a true law of nature it could be formulated as follows:

Principle of Local Lorentz Invariance: Any two LLRFy and LLRFy’ associ-
ated with the timelike geodetic lines y and y’ of two observers such thaty Ny’ = p
are physically equivalent (according to Definition 6.55) at event p.

Of course, if PLLI is correct, it must follow that from experiments done by
observers inside some LLRFy’—say L’ that is moving relative to another LLRF
L—there is no means for that observers to determine that L’ is in motion relative
to L.

Unfortunately the PLLI is not true. To show that it is only necessary to find a
model of GRT where the statement of the PLLI is false. Before proving this result
we shall need to prove that there are models for GRT were PIRFs are not physically
equivalent also.

6.8 PIRFs on a Friedmann Universe

Recall that GRT is a theory of the gravitational field [131] where a typical model
F € ModFg is of the form

F=(M, gD, 1), T, (m,0)), (6.143)

where 9 = (M,g.D, 1, 1) is a relativistic spacetime and T € sechM is
called the energy-momentum tensor. The tensor T represents the material and
energetic content of spacetime, including contributions from all physical fields (with
exception of the gravitational field and test particles). For what follows we do not
need to know the explicit form of T. Also, (m, o) represents a test particle, whose
world line is o. The proper axioms of Fg are:

1
Dg = 0.0(D) = 0.G = Ricci — -Rg = ~T. (6.144)

where O is the torsion tensor, G is the Einstein tensor, Ricci is the Ricci tensor and
r is the Ricci scalar. The equation of motion of the test particle (m, o) that moves
only under the influence of gravitation is:

DG*O'* - O. (6.145)

M is in general not flat, which implies that in general (see Remark 6.13) there is no
IRF 1, i.e., a reference frame such that DI = 0.

Now, the physical universe we live in is reasonably described by metric tensors of
the Robertson-Walker-Friedmann type [131]. In particular, a very simple spacetime
structure 901 that represents the main properties observed (after the big-bang) is
formulated as follows: Let M = R* xI,1 C RandR : I — (0,00),t — R(¢)
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and define g in M (considering M as subset of R*) by:
g=dt®dt—R(1)’ Y d¥ @dx',i=1.2.3. (6.146)

Then g is a Lorentzian metric in M and V = 9/0¢ is a time-like vector field in
(M, g). Let M be oriented in time by /0t and spacetime oriented by dt Adx' Adx*> A
dx®. Then 9 is a relativistic spacetime for I = (0, 00).

Now, V = 0/0r is a reference frame. Taking into account that the connection
coefficients in a (nacs|V) given by the coordinate system in Eq. (6.146) are

, . R
I =0, T = RR§,, Tk = ﬁ(g;
F.i(')'o = F%l- = F-%é =0, (6.147)

we can easily verify that V is a PIRF (according to Definition 2.6) since DyV =
0and day Aay = 0, ay = g(V,). Also, since ay = dt, V is proper time
synchronizable.

Proposition 6.65 In a spacetime defined by Eq. (6.146) which is a model of Fg there
exists a PIRF Z € sec TU which is not physically equivalent to V = 9/ 0t.

Proof LetZ € sec TU be given by

R2 2\1/2
gz R+u)"”
R

3/9t + %3/3){1 (6.148)

where in Eq. (6.148) u # 0 is a real constant.

Since DzZ = 0 and doz A az = 0, az = g(Z,), it follows that Z is a PIRF.>?
All that is necessary in order to prove our proposition is to show that Z and V are
not equivalent. It is enough to prove that the expansion ratios €z # €y. Indeed,
Eq. (6.43) gives

¢y = 3R/R,

RR + 2R(R? 4 u?)1/2
¢ = [ R +u)7] (6.149)
R2 (R? 4 u2)'/?

where

d
v=R(=x'oy) =u(l +u?)~/? (6.150)
dt =0

Zntroducing the (nacs|Z) given by Eq. (6.153) we can show that az = dt’ and it follows that is
also proper time synchronizable.
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is the initial metric velocity of Z relative to V, since we choose in what follows the
coordinate function 7 such that R(0) = 1, = 0 being taken as the present epoch
where the experiments are done. Then, €y (pg) = 3a, and for v << 1, Ez(py) =
3a—av’.l

6.8.1 Mechanical Experiments Distinguish PIRF's

The question arises: can mechanical experiments (distinct from the one designed to
measure the expansion ratio) distinguish between the PIRFs V and Z? The answer
is yes. To prove our statement we proceed as follows.

(1) We start by finding a (nacs|Z). To do that we note if y is an integral curve of Z,
we can write

d
Zy = [ (x"o V)—]\y (6.151)

where s is the proper time parameter along y. Then, we can write [taking into
account Eqgs. (6.147)] its parametric equations as

1 (dsX °y) _ u 2 3
th oy = (dst o) R(R2+u2)1/2 X“oy X oy

(6.152)

(The direction x' oy = 0 is obViously arbitrary.) We then choose as a (nacs|Z)
the coordinate functions (¢, x’', x’2, x’*) such that:

t
1
n 1 ) 2
P /0 RORM) + 72 5 7
t[R2 211/2
P=x = / RIS RL S S (6.153)
0 R(r)
We then get:
_ 1—2(1=R(’ )‘%] n "
g =dl ®dl —R({)> [ =02 de@dv{ (6.154)
+dx/2 ® dx/Z + dx/?) ® dx/3
and the connection coefficients in the (nacs|Z) are,
o RR? - RRZ ., - R
F.(/)d = -1 8kl,F.%)1 = ——;’F%Z = F-?())S = 1
(R% +u?)? (R% + u?)> (R? + u?)2

rh =0T =T% =T% = 0. (6.155)
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where R() = R(#(?')) and v given by Eq. (6.150) is the initial metric velocity of
Z relative to V, since we choose in what follows the coordinate function 7 such
that R(0) = 1, ¢+ = 0 being taken as the present epoch where the experiments
are done. Z = 9/0¢ is a proper time synchronizable reference frame and we
can verify that ¢ is the time shown by standard clocks at rest in the Z reference
frame and which are synchronized a I’Einstein. Notice that an observer at rest in
Z does not know a priori the value of v. He can discover this value as follows:

(2) The solution of the equation of motion for a free particle (m, o) in V with the
initial conditions at py = (0, x' 0 ¢(0) = 0), i = 1,2,3 and 4x' 0 6(0) = &’
for a fixed i and %x" 00(0) = 0,j # i, is given by an equation analogous to
Eq. (6.152). The accelerations are such that

4
oY oo)| =0.j#i (6.156)

Po

(3) The equation of motion for a free particle (m,¢’) in Z , can be written as (we
. . . . . 2 2 2
write for simplicity in what follows j?x’l odg'(Y) = j?x/l 7)) = %x’l, etc...)

A RR2  ax”' ar

N2
ds? (R2 4 u2)3 dr ds) ’

A2 R daxli ( dr
ds?

), i=2,3,

2 2— U 1
ds (R2 + u2): dt
&l RR ' A\ e
ds> T (R2 4 u2) dr dr dr

_1
dr = (ad"\ o, (dx?\ o, (d*\]
— =|[1+R*| = R’ R? 6.157
ds [+ (dt’)Jr (dt’)+ (dt’) ¢ )

where the dot over R in Eq. (6.157) means derivative with respect to  and R
denotes the square root of the coefficient of dx’' ® dx’! term in Eq. (6.154).

[}

From these equations it is easy to verify that the two situations:
(a) motion in the (x'!, x’?) plane with initial conditions at po with coordinates (¢ =
0,xX'' =x? =0 = x?) given by
dx/l (t/)
dr

dxlz(t/)
U Ty

=0, (6.158)

Py

Py

and



6.8 PIRFs on a Friedmann Universe 279

(b) motion in the (x’!, x’?) plane with initial conditions at py with coordinates (¢ =
0,xX' =x? =0 = x?) given by

dx''(t) dx*(t)
=0, = vy, 6.159
dr dr v2 ( )

Po Po

produce asymmetrical outputs for the measured accelerations along x'! and x'2.
The explicit values depends of course of the function R(7). If we take R(¢r) =
1 + at, the asymmetrical accelerations will be given in terms of a << 1 and v.
This would permit in principle for the eventual observers living in the PIRF Z
to infer the value of u (or v).

6.8.2 LLRFy and LLRFy’ Are Not Physically Equivalent
on a Friedmann Universe

Proposition 6.66 **There are models of GRT for which two Local Lorentz Refer-
ence Frames are not physically equivalent.

Proof Take as model of GRT the one just described above where g is given by
Eq. (6.146) and take as before, R(f) = 1 + at. Consider two integral lines y and y’
of Vand Z such thaty N y’ = p.

We can associate with these two integral lines the LLRFy L and the LLFRy’ L’
as in Definition 6.60. Observe that V|, = L|, and Z|[,, = L/|y,.

Definition 6.56 says that if L and L’ are physically equivalent then we must have
DL = DL'. However, a simple calculation shows that in general DL # DL/ even at
p! Indeed, we have

TN\ 2
¢ = =3t (E) , (6.160)

RR? 2R

(R2 +u2)32  (R® + u?)l/2

¢y = 2R(R? + u?)"/? + R —

33The suggestion of the validity of a proposition like the one formalized by Proposition 6.66 has
been first proposed by Rosen [128]. However, he has not been able to identify the true nature of
the V and Z which he thought as representing ‘inertial’ frames. He tried to show the validity of
the proposition by analyzing the output of mechanical and optical experiments done inside the
frames V and Z. We present below a simplified version of his suggested mechanical experiment. It
is important to emphasize here that from the validity of the Proposition 6.66 Rosen suggested that
it implies in a breakdown of the PLLI. Of course, the PLLI refers to the physical equivalence of
LLRFys. Also the proof of Proposition 6.66 given above appeared originally in [125].
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2RR*  , 2R, 2R,
—_— = — —= x- — —= -
R +w) R+w)  (R+w)

(6.161)

From Egs. (6.160) and (6.161) we see that the expansions ratios &, and &, are
different in our model and then our claim is proved. At p, we have € (p) = 0 and
¢ (p) = 2av>. A

Remark 6.67 Proposition 6.66 establishes that in a Friedmann universe there is a
LLRFy (say L) whose expansion ratio at p is zero. Any other LLRFy’ (say L)
at p will have an expansion ratio at p given by 2av?, where @ < 1 and v is the
metric velocity of L/ relative to L at p. This expansion ratio can in principle be
measured and this is the reason for the non validity of the PLLI as formulated by
many contemporary physicists and formalized above. Note that all experimental
verifications of the PLLI mentioned by the authors that endorse the PLLI have
been obtained for LLRFys moving with v << 1, and have no accuracy in order
to contradict the result we found. We do not know of any experiment that has been
done on a LLRFy which enough precision to verify the effect. Anyway the non
physical equivalence between L and L' is a prediction of GRT and must be accepted
if this theory is right. In conclusion, PLLI is only approximately valid.

We recall that Friedman [48] formulates the PLLI by saying that if (U, &),
(U, ") (UN U # @) are LLCC adapted to the L and L’ respectively, then the
PLLI implies that two experiments whose initial conditions read alike in terms of
{&#} and {£#} will also have the same outcome in terms of these coordinates .

Friedman’s statement is not correct, of course, in view of Proposition 6.66 above,
for measurement of the expansion ratio of a real reference frame which has material
support is something objective and, of course, can be in principle, be determined
with an appropriate physical experiment. However, for experiments different from
this one (measurement of the expansion ratio) we can accept Friedman’s formulation
of the PLLI as an approximately true statement.

Recall the expansion ratios calculated for V,Z, L, L’. Now, a << 1. Then, if
v << 1 the LLRFy L and the LLRFy’ L will be almost ‘rigid’ whereas the V
and Z are expanding. In other words, the L and L’ frames can be thought as being
physically materialized in their domain by real solid bodies and thus correspond
to small real laboratories, the one used by physicists. On the other hand it is well
known that the V frame is an idealization, since only the center of mass of the
galactic clusters are supposed to be comoving with the V frame, i.e., each center of
mass of a galactic cluster follows some particular integral line of V. Concerning the
Z frame, in order for it to be realized as a physical system it must be build with a
special matter that suffers in all points of its domain an expansion a little bit greater
than the cosmic expansion. Of course, such a frame would be a very artificial one,
and we suspect that such a special matter cannot be prepared in our universe.
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6.8.3 No Generalization of the Principle of Relativity for GRT

In the previous sections we presented a careful analysis of the concept of a
reference frames in GRT. These objects have been modelled as certain unit timelike
vector fields. We gave physically motivated and mathematical rigorous definition
of physically equivalent reference frames in a relativistic spacetime theory. We
investigate which are the reference frames in GRT which share some of the
properties of the inertial reference frames of the Special Theory of Relativity. We
found that in GRT there are two classes of frames that have some of the properties of
the inertial frames of Special Theory of Relativity. These are the class of the pseudo
inertial reference frames (PIRFs) and the class of the local Lorentz reference frames
(LLRFys). We showed that LLRFy s are not physically equivalent in general and this
implies that the so called Principle of Local Lorentz invariance (PLLI) which several
authors state as meaning that LLRFy s are equivalent is false. It can only be used as
an approximation in experiments that do not have enough accuracy to measure the
effect we found. We prove moreover that there are models of GRT where PIRFs are
not physically equivalent also. Our results show without any doubt that there is no
generalization of the Principle of Relativity, understood as a generalization of PR,
i.e., that there exists physical equivalence of all reference frames in GRT. Indeed, in
the structure (M, g, D, 74, 1) given two arbitrary reference frames Z, Z' it is not the
even the case in general that DZ = DZ’ and so they are not physically equivalent.

6.9 Schwarzschild Original Solution and the Existence
of Black Holes in GRT

1. Schwarzschild [136] looked for a solution of Einstein equations supposing a
priori that the spacetime manifold where a point mass and the gravitational field
it generated live is M = R x R3 where time takes values in R and R? denotes
the usual three-dimensional Euclidean space. Indeed, he equipped R x R? with
coordinates (t,x,y,z) explicitly saying that (x,y, z) are rectangular Cartesian
coordinates. After that, as a second step he introduced usual polar coordinate
functions in the game. In so doing, he correctly left out from R? the origin
O = (0,0,0) where the point mass particle is supposed to be located at any
instant of coordinate time ¢ and start solving Einstein equations in the manifold
R x (R* — 0) ~ R x (0, 00) x 82, introducing standard spherical coordinates
(r, v, ¢). However, since those coordinate functions do not satisfy the Einstein
coordinate gauge®* that Schwarzschild chose to use, he introduced spherical
coordinates with determinant 1. After some mathematical tricks, he found as

34Einstein coordinate gauge fixes /|detg| = 1.
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solution of his problem a metric field g,,, which has a unique singularity at O
and as such his solution does not imply in any black hole (defined in 4 below).*
Schwarzschild original solution reads

8., = h(r)dt ® dt — h(r)”'f'(r)dr ® dr — F(r)(df ® df + sin’ 8dg ® dg),
(6.162)

where
h(r) = (1 — 2_m) . f(r) =@ +8mH)'3 (6.163)

However, in fact Schwarzschild, in order to determine one of the integration
constants of the differential equations he was solving and that leads him to
Eq. (6.162), needed for his calculations to use the manifold with boundary?°
R x [0, 00) x 2 and thus his original mass point supposed to be located for any
instant of time at the point O € R? ended to be represented by the manifold?’
{0} x S? (something obviously odd that Hilbert elegantly, without criticizing
Schwarzschild, observed in a footnote of his paper on the Schwarzschild
solution).

. Before proceeding, and in order to avoid any confusion note that despite

the fact that the original manifold postulated as model of space-time by
Schwarzschild is R x R? this does not imply that this manifold or the manifold
R x [0, 00) x $? equipped with the Levi-Civita connection D of g, (that solves
Einstein equation) is flat. In fact, the connection D for Schwarzschild problem
is curved, this statement meaning, of course, that its Riemann curvature tensor
is non null. Please, take always the following statement into account [44]:

Manifolds do not have curvature, it is the connection imposed on a manifold that may
or may not have non null curvature (and/or non null torsion, non null nonmetricity).
Some manifolds may be bended surfaces in a Euclidean (or pseudo-Euclidean) space
of appropriate dimension. But to be bended (a property described by the shape
operator introduced in Chap.5) has in general nothing to do with the fact that a
connection defined in the manifold is curved.

. Droste [37] and Hilbert [57] found independently another solution of

Einstein equations based on different assumptions than the ones used by

330ne can easily verify that the coordinate time for a radial light ray to go from any r > O to a
point such that 2m < r < oo is finite.

3For the use of the concept of manifold with boundary to present singularities in General
Relativity, see, [50, 55, 134, 135]. For some skilful commentaries on the peril of using boundary
manifolds in General Relativity without taking due care see [145].

37£0} denotes the set whose unique element is 0 € [0, 00) , i.e., the boundary of the semi-line
[0, 00).
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Schwarzschild.’® Modern relativists® (following Droste and Hilbert) find as
solution®” with rotational symmetry of Einstein equation in vacuum a metric
field g,y (at least C?) defined in the manifold R x (0,2m) U (2m, 00) x s2.
Relativists say that the “part” R x (0,2m) x §? where the solution is valid
defines a black hole [131].

. It is crucial to have in mind that the quasi spherical coordinates functions

(r, ¥, ¢) used by modern relativists are such that the coordinate function r is
not the Schwarzschild spherical coordinate function r, i.e.,

r#r.

. Schwarzschild wrote his final formula for g, using a function f(r) which is

formally identical to the Droste-Hilbert formula for g, if f(r) is read as the
coordinate function r. However, Schwarzschild solution is valid only for f(r) >
2m whereas the Droste-Hilbert solution is valid for any r € (0, 2m) U (2m, 00).

. Of course, there is no sense in supposing that space-time has a disconnected

topology. Thus, under the present ideology of finding maximal extension of
manifolds equipped with Lorentzian metrics as the true representatives of
gravitational fields, relativists maximally extend the solution g to a solution
g valid in a connected manifold called the Kruskal (sometimes, Kruskal-
Szekeres) spacetime [70, 149]. The total Kruskal manifold which has an exotic
topology is usually associated to a hypothetical object called the wormhole. The
final solution g is presented as a function of coordinate functions (u, v, ¥, @)
and r which (keep this in mind) becomes an implicit function of the coordinate
functions (u, v).

. It is assumed by relativists that a connected “part” of the Kruskal manifold

describes a black-hole where g has a real singularity only at the place defined
by the function r(u, v) = 0.

. In conclusion, Schwarzschild original solution and the Kruskal extension of the

Droste-Hilbert solution define space-times with very different topologies, so
they are not the same solution of Einstein equation. In the former the topology
of the manifold has been fixed a priori, in the latter the topology of the manifold
has been fixed a posteriori by the process of maximal extension.

There are some published papers that do not properly distinguish these two
different solutions,*' moreover, there are some authors stating (explicitly, or
in a disguised way) that it is possible to extend the Schwarzschild original

38In the words of Synge [147]: Schwarzschild imposed spherical symmetry, whereas Droste and
Hilbert imposed rotational symmetry, a subtle but crucial detail.

¥See, e.g., [55, 101].

40Eventually, it would better to say, as did O’Neill in his book [101] that we start looking for one
solution of a problem and ended with fwo solutions.

“ITake notice that there are also some non sequitur mathematical statements in some of those
papers. See http://www.physicsforums.com/showthread.php?t=124277.
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solution that was written in terms of the function f for the domain 0 <
f(r) < oo, but this idea is, of course, a logical non sequitur, since for
Schwarzschild the manifold is fixed a priori. Any appropriate discussion of
the mathematical aspect of the back-hole solution of Einstein equations clearly
requires a reasonable understanding of differential geometry, and of course,
of topology.*> And it is also important, to advise that everyone that wants to
discuss the black-hole issue and did not read the original Schwarzschild paper
(or its English version, available at the arXiv) must do that in a hurry.

Failing to properly understand the different topologies of the two solutions
mentioned above (Schwarzschild and the maximal extension of the Droste-
Hilbert) is thus making some people (including some that say to be relativist
physicists) not to discuss contemporary GRT, but some other things, believing
to be the same thing.

The question if black holes exist or not is, of course, not a mathematical one,
it is a physical question and presently at least one of the present authors believe
that they do not exist, leaving this clear in [44], where it is argued that it is
necessary to construct a theory of the gravitational field where that field is
to be regarded as a field in the sense of Faraday (like the electromagnetic
field and the weak and strong force fields) “living” in Minkowski space-time
(see also Chap. 11). Thus, that “part” of the maximal extension of the Droste-
Hilbert solution of Einstein equations (describing a black hole) probably does
not describe anything real in the physical world.

It is indeed out of question, the fact that Einstein equations (according to the
contemporary interpretation of GRT) have solutions describing black holes.
Of course, this does not leave everyone happy and many physicists have
proposed and are proposing alternative solutions of Einstein equations capable
of describing the final stage of super dense stars and which according to them
looks more “realistic”. See, e.g., [84].

Exercise 6.68

®

(i1)

Show that under the transformation
f=tr=fr)=@+8m)"3 0 =06, ¢ =9 (6.164)

the expression of g, is the one given by g, in Eq. (6.97).
Are g, and g, diffeomorphically equivalent?

“2No more than what may be found in [55] or [101]. A thoughtful mathematical discussion (and
historical review) of the Schwarzschild,the Droste-Hilbert and Kruskal-Szekeres solutions may be
found in [90].

43We mean that black holes exist as legitimate solutions of the Einstein equation, e.g., the ones
described by a “part”[101] of the Kruskal-Szekeres solution.
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Chapter 7
Clifford and Dirac-Hestenes Spinor Fields

Abstract This chapter presents an original approach to the theory of Dirac-
Hestenes spinor fields. After recalling details the structure of the Clifford bundle of a
Lorentzian manifold structure (M, g) we introduce the concept of spin structures on
(M, g), define spinor bundles and spinor fields. Left and right spin-Cillford bundles
are presented and the concept of Dirac-Hestenes spinor fields (as sections of a
special spin-Clifford bundle denoted by (,’ngmT }(M ,g)) is investigated in details
disclosing their real nature and showing how these objects can be represented as
some equivalence classes of even sections of the Clifford bundle C£(M, g). We
introduce and obtain the connection (covariant derivative) acting on spin-Clifford
bundles Cegme }(M ,g) from a Levi-Civita connection acting on the tensor bundle

of (M, g). Associated with that connection we next introduce the standard spin-
Dirac operator acting on sections of Cﬁépiﬂ?s(M ,g) (not to be confused with the
Dirac operator acting on sections of the Clifford bundle defined in Chap.4). We
discuss how to write Dirac equation using the spin-Clifford bundle formalism and
clarifies its properties and many misunderstandings relating to such a notion that are
spread in the literature. We also discuss the notion of what is known as amorphous
spinor fields showing that these objects cannot represent fermion fields. Finally, the
Chapter also presents a simple proof of the famous Lichnerowicz formula which
relates the square of the standard spin-Dirac operator to the curvature of the (spin)
connection and also we obtain a generalization of that formula for the square of a
general spin-Dirac operator associated to a general (metric compatible) Riemann-
Cartan connection defined in (M, g).

7.1 The Clifford Bundle of Spacetime

In this Chapter, M refers (unless otherwise stated) to a four dimensional, real,
connected, paracompact and non-compact manifold. We recall that in Sect.4.7.1
of Chap. 4 we defined a Lorentzian manifold as a pair (M, g), where g € sec TgM
is a Lorentzian metric of signature (1, 3), i.e., forallx e M, T\M >~ T'M ~ R'3,
where R!3 is the vector Minkowski space. Moreover, we also defined in Sect. 4.7.1
a spacetime 9 as pentuple (M,g,V,1,,1), where (M,g,7g, 1) is an oriented
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292 7 Clifford and Dirac-Hestenes Spinor Fields

Lorentzian manifold (oriented by 7,) and time oriented by 1 , and V is a linear
connection on M such that Vg = 0. Also, T and R are respectively the torsion
and curvature tensors of V. If T(V) = 0, then 91 has been called in Chap.4 a
Lorentzian spacetime. The particular Lorentzian spacetime where M ~ R* and
such that R(V) = 0 has been called Minkowski spacetime and will be denoted by
M. We recall also that when Vg = 0, R(V) # 0 and T(V) # 0, 991 has been called
a RCST. The particular RCST such that R(V) = 0 has been called a teleparallel
spacetime.

In what follows Psoc , (M) (Psos, (M)) denotes the principal bundle of oriented
Lorentz tetrads (cotetrads). We assume that the reader is acquainted with the
structure of Pso: (M) (Pso‘;J(M)) (as recalled, e.g., in Sect. A.1.1) whose local
sections in U C M are the time oriented and oriented orthonormal frames (coframes)
in U, or simply frame (coframe) when no confusion arises [6, 9, 19, 20, 23]. Also,
since we work with the Clifford bundle of nonhomogeneous differential forms,
given a choice of a frame X € sec Pso: , (M) we immediately choose for almost all
considerations in this chapter the corresponding dual frame ¥ € sec Psoc , (M). We
recall also that Pso | (M) ~ Pso (M). We already defined the Clifford bundle of
differential forms on a structure (M, g) on Chap. 4. We recall that the Clifford bundle
of differential forms of a Lorentzian manifold (M, g) is the bundle of algebras

clM.g) = | cUTiM. g0). (7.1

xXEM

where CL(TM, g,) >~ R, 3 the spacetime algebra introduce in Chap. 3 and g is the
metric of the cotangent bundle such that g, is related to g, as introduced in Chap. 4.

7.1.1 Details of the Bundle Structure of C£(M, g)

We mention in Chap. 4 that a Clifford bundle is a vector bundle associated to the
principal bundle Psoe . (M) of orthonormal frames. More specifically we have that

CUM. g) = Psog (M) Xpq Ri3 > Psos (M) Xaq Ry 3

We now give the details of the bundle structure.

(i) Letm, : C{(M,g) — M be the canonical projection of C£(M,g) and let {U,}
be an open covering of M. There are trivialization mappings ¥; : = '(U;) —

Ui x Ry 3 of the form ¥ ,(p) = (wc(p), ¥ix(p)) = (x, Yix(p).lfx € U; N U
and p € ! (x), then

1pi,x(p) = hij(-x)wl',x(p) (72)
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for hj(x) € Aut(R;3), where h; : U; N U; — Aut(R;3) are the transition
mappings of C£(M, g). We know from Chap. 3 that every automorphism of
R 3 is inner. Then,

hii()Vix(p) = g () Vix(p)gis(x)~" (7.3)

for some g;;(x) € R} 5, the group of invertible elements of R, 3.

(ii)) Now, as we learned in Chap. 3, the group SOf 5 has a natural extension in the
Clifford algebra R, 3. Indeed we know that Ri?, acts naturally on R; 3 as an
algebra automorphism through its adjoint representation. A set of lifts of the
transition functions of C£(M, g) is a set of elements {g;} C R} ; such that if!

Ad : g — Ad,,
Adg(a) = gag™',Va € Ry3, (7.4)

then Adg,] = hy; in all intersections.

(iii) Also 0 = Ad|spin; , defines a group homeomorphism o : Spin{; — SOf;
which is onto w1th kernel Z,. We have that Ad—; = identity, and so Ad :
Spin{ ; — Aut(R; 3) descends to a representation of SO{ ;. Let us call Ad’ this
representation, i.e., Ad’ : SOS 5 13 —> Aut(R;3). Then we can write Adg(g)a =
Adga = gag™".

(iv) It is clear then, that the structure group of the Clifford bundle C£(M, g) is
reducible from Aut(RR;3) to SOf ;. Thus the transition maps of the principal
bundle of oriented Lorentz cotetrads Psos (M) can be (through Ad’) taken as
transition maps for the Clifford bundle. We then have [15]

CUlM,g) = Psos ,(M) Xaq Ry 3, (71.5)

i.e., the Clifford bundle is an associated vector bundle to the principal bundle
Pso: (M) of orthonormal Lorentz coframes.

7.1.2 (Clifford Fields

Recall that C{(T} M, g,) is also a vector space over R which is isomorphic to the
4
exterior algebra /\ 77 M of the cotangent space and A\ TrM = @k—o N*T*M,

where /\k TM is the (2)-dimensional space of k-forms. Then, as we already saw in
Sect. 4.6.1, there is a natural embedding A T*M — C{(M, g) [15] and sections of

'Recall that Spin{; = {a € ]Rl 5 1 aa = 1} = SI(2,C) is the universal covering group of the
restricted Lorentz group SO ;.
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CL(M, g)—<Clifford fields (Definition 4.111)—can be represented as a sum of non
homogeneous differential forms. Let {e,} € sec Pso‘;J (M) (the orthonormal frame
bundle) be a tetrad basis for TU C TM, i.e., g(e,, ep) = nap = diag(l,—1,—1,—1)
and (a,b = 0,1,2,3). Moreover, let {#*} € sec Pso: (M). Then, for each a =

0,1,2,3, 6% € sec /\1 T*M < secCl(M,g), i.e., {#P} is the dual basis of {e,}.
Finally, let {6,}, 0, € sec /\1 T*M < sec C{(M, g) be the reciprocal basis of {6},
ie., 0, 0P =P

Recall also that the fundamental Clifford product is generated by

62> 4 gha = 2pb, (7.6)

If C € secCl(M, g) is a Clifford field, we have:
i | inj 1 injpk 5
C=s+v6"+ Ebijg 0 + alijke 06 + p6°, 71.7)
where 65 = 0°016263 is the volume element and

0
s, Vi, bij, tijk. p € sec/\ T*M < secCl(M, g). (7.8)

7.2 Spin Structure

Definition 7.1 A spin structure on M consists of a principal fibre bundle 7 :
Pspin (M) — M (called the Spin Frame Bundle) with group Spin{ ; and a map

st Pspine (M) — Psoe (M) (7.9)

satisfying the following conditions:

(i) m(s(p)) = my(p) Yp € Pspinc, (M), 7 is the projection map of the bundle
Pso¢ , (M).

(i) s(pu) = s(p)Ady, ,Vp € Pspine (M) and Ad : Spin{; — Aut(R,3), Ad, :
Riz2x— wxu~l e Ry 3.

Definition 7.2 Any section of Pspine (M) is called a spin frame field (or simply a
spin frame).

Remark 7.3 We define also a Spin Coframe Bundle Pspinc , (M) by substituting in
Eq. (7.9) Pso¢ , (M) by Psoc¢ , (M). Of course, Pspmh (M) ~ Pspmh (M). Any section
of Pspint , (M) is called a spin coframe field (or simply a spin coframe). We shall
use the symbol & € sec Pspin , (M) to denoted a spin coframe dual to a spin frame
E € secPsoe ,(M).
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Recall that we learned in Chap. 3 that the minimal left (right) ideals of R, , are
left (right) modules for R, ;. There, covariant, algebraic and Dirac-Hestenes spinors
[when (p,q) = (1,3)] were defined as certain equivalence classes in appropriate
sets. We are now interested in defining algebraic Dirac spinor fields and also Dirac-
Hestenes spinor fields, on a general RCST, as sections of appropriate vector bundles
(spinor bundles) associated to Pspine (M). The compatibility between Pspine | (M)
and PSOf_3 (M), as captured in Definition 7.1 (and taking into account Remark 7.3),
is essential for that matter.

It is therefore natural to ask: When does a spin structure exist on an oriented
manifold M? The answer, which is a classical result [2,3,7,9, 11, 12, 15, 18-21, 23,
24], is that a necessary and sufficient condition for the existence of a spin structure
on M (given the already assumed properties of M) is that the second Stiefel-Whitney
class wp (M) of M is trivial. Moreover, when a spin structure exists, one can show
that it is unique (modulo isomorphisms), if and only if, H (M, Z,), the de-Rham
cohomology group with values in Z, is trivial. We now, introduce without proof a
theorem that is crucial for our theory.

Theorem 7.4 For a Lorentz manifold (M, g), a spin structure exists if and only if
Pso¢, (M) is a trivial bundle.

Proof See Geroch [11]. B

Remark 7.5 Recall that global sections X € sec Pso¢ , (M) are Lorentz frames and
global sections E € sec Pspine , (M) are spin frames. We recall from Sect. A.1.3 that
each X € secPso¢, (M) is a basis for TM, which is completely specified once we
give an element of the Lorentz group for each x € M and fix a fiducial frame. Each
E € secPgping, (M) is also a basis for TM and is completely identified once give
an element of the Spin{ 5 for each x € M and fix a fiducial frame. Note that two
ordered basis for TM when considered as spin frames are to be considered different
even if consisting of the same vector fields, which are related by multiples of a 27
rotation. Also, two ordered basis for TM are considered equal when considered as
spin frames, if they consist of the same vector fields related by multiples of a 47
rotation. Although we recognize that this mathematical construction seems at first
sight impossible of experimental detection, Aharonov and Susskind [1] warrants
that with clever experiments the spinor structure can be detected.

Remark 7.6 Recall that a principal bundle is trivial, if and only if, it admits a global
section. Therefore, Geroch’s result says that a (non-compact) spacetime admits a
spin structure, if and only if, it admits a (globally defined) Lorentz frame. In fact, it is
possible to replace Pso (M) by Pspine , (M) in Remark 7.4 (see footnote 25 in [11]).
In this way, when a (non-compact) spacetime admits a spin structure, the bundle
PSpin‘;_3 (M) is trivial and, therefore, every bundle associated to it is also trivial. This
result is indeed a very important one, because it says to us that the real spacetime
of our universe (that, of course, is inhabited by several different types of spinor
fields) must have a topology that admits a global tetrad field, which is defined only
modulus a local Lorentz transformation. A dual cotetrad has been associated to the
gravitational field in Chap. 4 (see more details in Chaps. 9 and 11), where we wrote



296 7 Clifford and Dirac-Hestenes Spinor Fields
wave equations for them. In a certain sense that cotetrad field is a representation of
the substance of physical spacetime.

Definition 7.7 A oriented manifold endowed with a spin structure will be called a
spin manifold.

Exercise 7.8 Show that Minkowski and de Sitter spacetimes are spin manifolds.

7.3 Spinor Bundles and Spinor Fields

We now present the most usual definitions of spinor bundles appearing in the
literature® and next we find appropriate vector bundles such that particular sections
are LIASF (Definition 7.16) or DHSF (Definition 7.27)

Definition 7.9 A real (left) spinor bundle for M is a vector bundle
S(Mv g) = PSpinfj (M) Xy M (710)

where M is a left module for R 3 and y; is a representation of Spinj ; on End(M)
given by left multiplication by elements of Spin{ ;.

Definition 7.10 The dual bundle S*(M, g) is a real (right) spinor bundle
§*(M,g) = Psping ,(M) x,,, M* (7.11)

where M* is a right module for R;3 and w, is a representation Spin{; in
End(M) given by right multiplication by (inverse) elements of Spin{,. By right
multiplication we mean that given a € M*, i, (u)a = au™", then

prua = Y (i)™ = yu~u”" = pp,)a. (7.12)
Definition 7.11 A complex spinor bundle for M is a vector bundle

Se(M,g) = Psping , (M) X, M¢ (7.13)

where M, is a complex left module for C ® R; 3 >~ Ry =~ C(4), and where p. is

arepresentation of Spin{ 5 in End(M,) given by left multiplication by elements of
Spin ;.

2We recall that there are some other (equivalent) definitions of spinor bundles that we are not going
to introduce in this book as, e.g., the one given in [5] in terms of mappings from Pgyiy , to some
appropriate vector space.
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Definition 7.12 The dual complex spinor bundle for M is a vector bundle
S (M, 9) = Psping , (M) x,,, M (7.14)

where M is a complex right module for C ® R;3 >~ R4 >~ C(4), and where p.
is a representation of Spin{ ; in End(M,) given by right multiplication by (inverse)
elements of Spiny ;.

Taking, e.g., M, = C* and j. the D!/29 @ D(®1/2) representation of Spin¢ 5 =
SI(2, C) in End(C*), we immediately recognize the usual definition of the (Dirac)
covariant spinor bundle of M, as given, e.g., in [6, 9, 20].

7.3.1 Left and Right Spin-Clifford Bundles

We saw in Chap.3 that besides the ideal I = Rm%(l + Ej), other ideals exist
in R; 3 that are only algebraically equivalent to this one. In order to capture all
possibilities we recall that R; 3 can be considered as a module over itself by left (or
right) multiplication. We are thus led to the

Definition 7.13 The left real spin-Clifford bundle of M is the vector bundle

Clisying (M. 9) = Pspin (M) xR 3 (7.15)
where [ is the representation of Spin{; on R, 3 given by l(a)x = ax. Sections of
Celspm'f \ (M, g) are called left spin-Clifford fields.

Remark 7.14 CZlSme \ (M, g)isa ‘principal R; 3- bundle’, i.e., it admits a free action
of R 3 on the right [15], which is denoted by R,, g € R; 3. This will be discussed in

detail below.

Remark 7.15 There is a natural embedding Pspine . (M) — CeZSpinfz(M ,g) which
comes from the embedding Spin{ ; < R ;. Hence (as we shall see in more details
below), every real left spinor bundle (see Definition 7.13) for M can be captured
from Celsmn;” \ (M, g), which is a vector bundle very different from C£(M, g). Their
relation is presented below, but before that we give the

Definition 7.16 Let /(M, g) be a subbundle of cegpmf \ (M, g) such that there exists
a primitive idempotent e of R; 3 with i

RV =W (7.16)
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for all ¥ € secI(M,g) — sec CLL (M, g). Then, I(M, g) is called a subbundle

of ideal left algebraic spinor fields. Any WU e secI(M,g) — sec Cﬁspm M,qg) is
called a left ideal algebraic spinor field (LIASF).

Spinf 5

I(M, g) can be thought of as a real spinor bundle for M such that M in Eq. (7.13)
is a minimal left ideal of R; 3.

Definition 7.17 Two subbundles I(M,g) and I(M,qg) of LIASF are said to be
geometrically equivalent if the idempotents e,€' € R 3 (appearing in the previous
definition) are related by an element u € Spinf 3, i.e.,e’ = ueu™!

Definition 7.18 The right real spin-Clifford bundle of M is the vector bundle
Cegpm (M’ g) = PSpinTJ (M) X R1,3- (7.17)

Sections of C{~

Spin 4 (M, g) are called right spin-Clifford fields.

In Eq. (7.17) r refers to a representation of Spinj ; on Ry 3, given by r(a)x =
xa~'. As in the case for the left real spin-Clifford bundle, there is a natural
embeddmg Psping (M) —  CLg (M,g) which comes from the embedding

SpmH — R13 There exists also a natural left L, action of a € R;3 on
CL;, (M, g). This will be proved in Sect. 7.4.

Spm

Spinf 5
Definition 7.19 Let I*(M, g) be a subbundle of C{’; Spin 5 (M, g) such that there exists
a primitive idempotent element e of R; 3 with
LY =V (7.18)

for any W € secl*(M,g) — secClL (M, q9)}. Then, I*(M,g) is called a

subbundle of right ideal algebraic spinor ﬁelds Any W € secI*(M,g) —
sec Cﬁgpm (M, g) is called a RIASF. I* (M, g) can be thought of as a real spinor

bundle for M such that M* in Eq. (7.14) is a minimal right ideal of R 3.

Definition 7.20 Two subbundles I*(M, g) and I*'(M, g) of RIASF are said to be
geometrically equivalent if the idempotents e,e’ € R 3 (appearing in the previous
definition) are related by an element u € Spin‘i’j, ie.,e = ueu"!

Spm

Proposition 7.21 In a spin manifold, we have
CE(M7 g) = PSpin‘;j (M) Xad Ry3.
Proof Remember once again that the representation

Ad : Spin{ ; — Aut(R;3) Ad,a = uau™' u € Spinf 5
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is such that Ad_; = identity and so Ad descends to a representation Ad’ of SOf 5
which we considered above. It follows that when Pgpine . (M) exists ClM,qg) =
Pspine (M) Xaa Ry 3. W

7.3.2 Bundle of Modules over a Bundle of Algebras

Proposition 7.22 S(M, g) (or ClepinTS(M ,9)) is a bundle of (left) modules over
the bundle of algebras CL(M, g). In particular, the sections of the spinor bundle

(S(M,g) or celspmf \ (M, 9)) are a module over the sections of the Clifford bundle.

Proof For the proof, see [15]. B

Corollary 7.23 Let ®, ¥ € sec Celspm;”z(M ,g) and ¥ # 0. Then there exists ¥ €
sec CL(M, g) such that i

U=y (7.19)

Proof Tt is an immediate consequence of Proposition 7.22. Bl

So, the corollary allows us to identify a correspondence between some sections
of C£(M, g) and some sections of I(M, g) or Cﬁépm?} (M, g) once we fix a section
on CﬁlSpin‘; 3(M ,g). This and other correspondences are essential for our theory of
Dirac-Hestenes spinor fields. Once we clarified what is the meaning of a bundle of

modules S(M, g) over a bundle of algebras C£(M, g), we can give the following

Definition 7.24 Two real left spinor bundles are equivalent, if and only if, they are
equivalent as bundles of C£(M, g) modules.

Remark 7.25 Of course, geometrically equivalently real left spinor bundles are
equivalent.

Remark 7.26 In what follows we denote the complexified left spin Clifford bundle
and the complexified right spin Clifford bundle by

u’smnh (M) = Pspine ,(M) x; C ® Ry 3 = Pspine (M) X, Ry 1,

Cllspine ,(M) = Pspins (M) x; C @Ry 3 = Psping, (M) X, Ry, (7.20)

7.3.3 Dirac-Hestenes Spinor Fields (DHSF)

Let e?, a = 0, 1,2, 3 be the canonical basis of R!3 <« R; 3 which generates the
algebra R; 3. They satisfy the basic relation e?e® + ePe* = 212", We recall that we
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showed in Chap. 3 that
1 0
e = 5(1 +e’) e Rys (7.21)
is a primitive idempotent of R 3 and
1 0y 1 - 201
f:§(1+e)§(l+1ee)eC®R1,3 (7.22)
is a primitive idempotent of C ® R 3. Now, let I = R;3e and Ic = C ® R 3f be
respectively the minimal left ideals of R; 3 and C ® R; 3 generated by e and f. Let
® = e e I and ¥ = ¥f € I¢. Then, any ¢ € I can be written as
D = Pe (7.23)

with @ € R(f’_,,. Analogously, any ® € I¢ can be written as
1 241
P = <I>e§(1 +ie‘e’), (7.24)

with ® € R?ﬁ.
Recall moreover that C @ Ry 3 >~ Ry ; =~ C(4), where C(4) is the algebra of the
4 x 4 complexes matrices. We can verify that

1000
0000
0000
0000

(7.25)

is a primitive idempotent of C(4) which is a matrix representation of f. In that way
as proved in Chap. 3 there is a bijection between column spinors, i.e., elements of
C* (the complex 4-dimensional vector space) and the elements of Ic. All that, plus
the definitions of the left real and complex spin bundles and the subbundle /(M, g)
suggests the

Definition 7.27 Let ® € secI(M,g) — secC@lspin,is(M, g) be as in Defini-
tion 7.16, i.e., '

1
R®=de=0d e’ =c= E(1+e°) € Rys. (7.26)

A DHSF associated with @ is an even section ® of C£.

spint , (M g) such that

P = de. (7.27)
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Remark 7.28 An equivalent definition of a DHSF is the following. Let ¥ €

sec (Cﬁlspini3 (M, g) be such that

1 1
&W:¢%:WJﬁ:f:§a+w%§ﬂ+m%UeC®Rm. (7.28)

Then, a DHSF associated to W is an even section ¢ of CEISpin‘; , (M, g) such that

U = &f. (7.29)

Remark 7.29 In what follows, when we refer to a DHSF ® we omit for simplicity
the wording associated with ® (or W). It is very important to observe that a DHSF is
not a sum of even multivector fields although, under a local trivialization, ® which
is a section of CEISpin‘; 3(M .g) is for each x € M mapped on an even element® of
R; 3. We emphasize that a DHSF is a particular section of a spinor bundle, not of
the Clifford bundle. However, we show below a very important fact, namely that

DHSF's have representatives in the Clifford bundle.

7.4 Natural Actions on Some Vector Bundles Associated with
P Spini’g‘ (M )

Recall that, when M is a spin manifold:

(i) The elements of C4(M,g) = Pspin?}(M) xaq Ry 3 are equivalence classes
[(p,a@)] of pairs (p,a), where p € Pspine (M), @ € Ry3 and (p,a) ~
(p'.d) & p' =pu”!

(i) The elements of Cﬁlspin?} (M, g) are equivalence classes of pairs (p, a), where

, d’ = uau™", for some u € Spinf ;;

P € Pspine (M), a € Rz and (p,a) ~ (p'.d') & p' =pu', d = ua, for
some u € Spin{ ;;
(iii)) The elements of Cﬁgpmh (M, g) are equivalence classes of pairs (p, a), where

U o = au™!, for

P € Psping (M), a € Ry 3 and (p,a) ~ (p'.d') & p' =pu”
some u € Spinj ;.
In this way, it is possible to define the following natural actions on these

associated bundles.

Proposition 7.30 There is a natural right action of R, 3 on C{! K(M, g) and a

Spin{_
natural left action of R 3 on Cﬁgpmi3 M, 9).

3Note that it is meaningful to speak about even (or odd) elements in C¢% , (M) since Spin{ ; €

Spinf_
0
RY ;.
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Proof Givenb € Ry3 and o € (,’lepin?3 (M, g), select a representative (p, a) for o
and define ab := [(p, ab)] . If another representative (pu~!, ua) is chosen for o, we

have (pu~', uab) ~ (p, ab) and thus ab is a well defined element of CEISpin‘f , M, g9).
. ;

Denote the space of R; 3-valued smooth functions on M by F(M, R, 3). Then,
the above proposition immediately yields the following

Corollary 7.31 There is a natural right action of F(M,R,3) on the sections
of CﬁlspinTS(M, g) and a natural left action of F(M,R;3) on the sections of
Cegpinf.s M, g).

Proposition 7.32 There is a natural left action of sec CL(M,g) on the sections
of CEépinTS(M, g) and a natural right action of secCL(M,g) on sections of

Clypg (M. 9).

Proof Given o € secC{(M,g) and B < sec CﬁépinT}(M, g), select representatives
(p,a) for a(x) and (p,b) for B(x) (with p € n~'(x)) and define (a¢B)(x) :=
[(p,ab)] € CEISpin‘; (M. g). If alternative representatives ( pu~! uau=") and
(pu~!, ub) are chosen for a(x) and B(x), we have

—1

(pu ', uau™'uby = (pu~", uab) ~ (p. ab)

and thus () (x) is a well defined element of C/¢ \ M,q9).1

Spin{_

Proposition 7.33 There is a natural pairing

sec CﬁlspinT}(M, g) X sec CﬁgpinT}(M, g) — secCL(M, g).

Proof Given o € sec CEISpin‘f }(M ,g) and B € sec cegpmfz(M ,g), select representa-
tives (p, a) for a(x) and (p, b) for B(x) (with p € 7~ (x)) and define (aB)(x) :=
[(p.ab)] € CL(M, g). If alternative representatives (pu~', ua) and (pu~"', bu™") are
chosen for a(x) and B(x), we have (pu~", uabu™") ~ (p, ab) and thus (efB)(x) is a

well defined element of C{(M, g). B

Proposition 7.34 There is a natural pairing

sec Cegpinf_3 (M, g) x sec Ceépinjs M,g) > F(M,R,3).

Proof Given o € sec CﬁgpmT X(M ,g) and B € sec CeZSpinfz(M ,g), select representa-
tives (p, a) for a(x) and (p, b) for B(x) (with p € 7~ (x)) and define (aB)(x) :=
ab € Ry 3. If alternative representatives (pu~', au™") and (pu~', ub) are chosen for
a(x) and B(x), we have au~'ub = ab and thus («f)(x) is a well defined element of

R1,3. |
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7.4.1 Fiducial Sections Associated with a Spin Frame

We start by exploring the possibility of defining “unit sections” on the various vector
bundles associated with the principal bundle Psgpine . (M).
Let

®;: w7 (U;) - U; x Spin{ 5,  ®;: ' (Uj) — U; x Spin¢ 4
be two local trivializations for Pspine , (M), with

i(u) = (w(w) = x,dixW),  Pj(u) = (w(u) = x. pjc(u)).

Recall that the transition function on g;; : U; N U; — Spin( 3 is then given by

gij(-x) = ¢i,x o ¢j,x_l s
which does not depend on u.

Proposition 7.35 C{(M, g) has a naturally defined global unit section.

Proof For the associated bundle C£(M, g), the transition functions corresponding to
local trivializations

Un ' (U) > UixRys, U:a ' (Uj) - Uy x Ry 3, (7.30)
are given by h;j(x) = Ady,(v). Define the local sections
L) =97 (x 1), L) =¥ (x 1), (7.31)

where 1 is the unit element of R 3. Since A;(x) - 1 = Ady; (1) = gii(x)1g;(x)~! =
1, we see that the expressions above uniquely define a global section 1 for C{(M, g)
with 1|y, =1, &

Remark 7.36 1Tt is clear that such a result can be immediately generalized for the
Clifford bundle C¢, ,(M, g), of any n-dimensional manifold endowed with a metric
of arbitrary signature (p,q) (where n = p + g). Now, we observe also that the
left (and also the right) spin-Clifford bundle can be generalized in an obvious way
for any spin manifold of arbitrary finite dimension n = p + ¢, with a metric of
arbitrary signature ( p, ¢). However, another important difference between C£(M, g)
and CelSpin; , (M, g) or ngpin‘; , (M, g)) is that these latter bundles only admit a global
unit section if they are trivial.

Proposition 7.37 There exists an unit section on CL (M,g) (and also on
q

Spiny,
cl! (M, q)), if and only if, Pspine (M) is trivial.
; :

Spin;
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r

Proof We show the necessity for the case of Cﬁspme (M, g),* the sufficiency is triv-
P9

ial. For C@gpmg (M, g), the transition functions corresponding to local trivializations
1
Gir N U) = Ui xRy, §ia (U) — U xR,,, (7.32)

are given by k;j(x) = Rg;(), With R, © Ry, — R, 4, x xa~'. Let 1 be the unit

element of R, 3. An unit section in Cﬁgpme (M, g)—if it exists—is written in terms
P.q

of these two local trivializations as

L ="', L =¢'x), (7.33)

and we must have 1;(x) = 17(x) Vx € U; N U;. As §i(17(x)) = (x,1) = §(1;(x)),
we have 1(x) = 1/(x) < 1 =k;(x)-1 & 1= 1g;(x)~" < g;(x) = 1. This
proves the proposition. l

Remark 7.38 For general spin manifolds, the bundle Pspin;,_q (M) is not necessarily
trivial for arbitrary (p, g), but Geroch’s theorem (Remark 7.4) warrants that, for
the special case (p,q) = (1,3) with M non-compact, Pspinc , (M) is trivial. The
above proposition implies that Cegpinf_3 (M, g) and also celspm;q (M, g) have global
“unit sections”. It is most important to note, however, that each different choice of
a (global) trivialization ; on CﬁgpmT~3 (M, g) (respectively celspm;q (M, 9)) induces a
different global unit section 17 (respectively 15). Therefore, even in this case there is

no canonical unit section on Cegpiﬂi,s (M, g) (respectively on CﬁlSpin‘;J M, 9)).

By Remark 7.6, when the (non-compact) spacetime M is a spin manifold, the
bundle Psyie . (M) admits global sections. With this in mind, let us fix a spin frame E
and its dual spin coframe & for M. This induces a global trivialization for Pgpine . (M)
and of course of Pspine (M). We denote the trivialization of Pspine | (M) by

CDE : PSpinT3(M) — M x Spiniﬁ,
with ®Z'(x,1) = E(x). We recall that a spin coframe E € sec Pspin¢ , (M)
(Remark A.17) can also be used to induce certain fiducial global sections on the
various vector bundles associated to Pspine , (M):
(i CeM, g)

Let {e,} be a fixed orthonormal basis of R'3> € R 1.3 (which can be thought of as the
canonical basis of R'). We define basis sections in C£(M, g) = Pspinc , (M) XaqR1 3

“The proof for the case of Cﬂlspinp (M) is analogous.
p.q
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by Ba(x) = [(E(x), ea)]. Of course, this induces a multiform basis {6;(x)} for each
x € M. Note that a more precise notation for 8, would be, for instance, 9;” .

. 1
(i) CEl e (M.9)

Let 15 be a section of Célspin,is(M, g) defined by 15(x) = [(E(x), 1)]. Then the

natural right action of R, 3 on CE’SPmT (M. g) leads to 1L (x)a = [(E(x), a)] for all
a € Ry 3. It follows from Corollary 7.31 that an arbitrary section o of celspmf \ M, 9)

can be written as & = 1Lf, with f € F(M, R, 3).

(i) CEG e (M, 9)

Let 17 be a section of CKgpinT}(M, g) defined by 15(x) = [(2(x), 1)]. Then the
natural left action of R; 3 on C’ngm,is(M, g) leads to al;(x) = [(E(x),a)] for all
a € Ry 3. It follows from Corollary 7.31 that an arbitrary section o of cegpmf \ M, 9)
can be written as o = f17%, with f € F(M, Ry 3). )

Now recall (Definition 7.1) that a spin structure on M is a 2—1 bundle map
s Psping , (M) — Psoc (M) such that s(pu) = s(p)Ady, Vp € Pspinc (M), u €
Spin{ ;, where Ad : Spin{; — SOf{;, Ad, : x — wxu~'. We see that the
specification of the global section in the case (i) above is compatible with the
Lorentz coframe {0,} = s(E) assigned by s. More precisely, for each x € M, the
element s(E(x)) € Pso , (M) is to be regarded as proper isometry s(E (x)) : R!3 —
T:M, so that 6,(x) := s(p) - e, yields a Lorentz coframe {6,} on M, which we
denoted by s(Z). On the other hand, C£(M, g) is isomorphic to Pspin (M) xaaRy 3,
and we can always arrange things so that 6,(x) is represented in this bundle as
0a(x) = [(E(x),ea)]. In fact, all we have to do is to verify that this identification
is covariant® under a change of coframes. To see that, let &’ be another section of
Pspine . (M), i.e., another spin coframe on M. From the principal bundle structure of
Pspine | (M), we know that, for each x € M, there exists (an unique) u(x) € Spin{ 3
such that E'(x) = Ex)u!(x). If we define, as above, 0.(x) = s(E'(x)) - e,
then 0,(x) = S(E()U" (1)) - &2 = SEDAdur - @0 = [(E(). Adugy - €a)] =
[(E@)u"(x), ex)] = [(E'(x). €a)], which proves our claim.

SBeing covariant means here that the identification does not depend on the choice of the coframe
used in the computations.
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Proposition 7.39
) ea = 12 (x)0a ()15 (x),Vx € M,
(i) 151% = 1, global unity section of C{(M, g),
(iii) 1215 =1 e Ry;.

Proof This follows from the form of the various actions defined in Propo-
sitions 7.30-7.34. For example, for each x € M, we have 15(x)0,(x) =
[(E(x), 1ea)] = [(E(x),ea)], a section of cegpmf}(M, g) (from Proposition 7.32).

Then, it follows from Proposition 7.34 that 1% (x)6a(x)15 (x) = e,1 = e,, Vx € M.
|

Let us now consider how the various global sections defined above transform when

— =/

the spin coframe E is changed. Let " € sec Pspin¢ ,(M) be another spin coframe
with E'(x) = E(x)u(x), where u(x) € Spin{ ;. Let 6y, 1%, 1% and 6, 17, IZE, be
the global sections respectively defined by E and E’ (as above). We then have

Proposition 7.40 Ler & and E’ be two spin coframes (sections of Pspine (M))
related by ' = Eu~', where u : M — Spin{ ;. Then
() 6, = UbU™"
(i) 15, = 15u = U1,
(i) 1, = w'15 = 15071, (7.34)
where U € secCl(M,qg) is the Clifford field associated to u by U(x) =

[(E(x),u(x))]. Also, in (ii) and (iii), u and u™' respectively act on 15 €

sec Celspinf_3 (M, g) and 15 € sec CﬁgpmT~3 (M, g) according to Proposition 7.31.

Proof (i) We have
0,(x) = [(E'(x), &a] = [(E(x)u(x), €)]
= [(B(), u(v)eau™" (x))]
= [(B®), u)D](E®), e)][(E (), u™" (x))]
= U(x)ba(x) U (x). (7.35)

(iii) It follows from Proposition 7.32 that

15,0 = [(E'(), D] = [(E@)u(x), )]
= [(E@. lu®™)] = [(E®,u ' ()] = u™ )15 ), (7.36)

where in the last step we used Proposition 7.31 and the fact that 15 (x) = [(E(x), 1)].
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To prove that 17, = 15U ~! we observe that

w150 = [(E@), ux)™)]
=[(E®. lu@®™H] = [(E®. DI [(EE@). u(x)™)]
=150 U ' (v), (7.37)

for all x € M. It is important to note that in the last step we have a product between

an element of CﬁgpinT}(M, g) (i.e. [(E(x),1)]) and an element of C{(M,g) (i.e.

[(EG). ux)™H]). =

We emphasize that the right unit sections associated with spin coframes are not
constant in any covariant way. To understand the meaning of this statement we now
investigate the theory of the covariant derivatives of Clifford and spinor fields.

7.5 Representatives of DHSF in the Clifford Bundle

Let W', a section of Cﬁgéme (M, g) be a Dirac-Hestenes spinor field associated to W'
1,3

a (ideal) section of I(M, g) (Definition 7.27). Recalling that ¥' = [(E, ¥%)] and
Corollary 7.23 we give the

—

Definition 7.41 For a given spin frame Z, a representative of W' in the Clifford
bundle is the even section g of C£(M, g) such that

U=yl (7.38)

Recalling Proposition 7.39 which says that llE 15 = 1, the global unity section
of C£(M, g) we have that

v = Wg. (7.39)

=/

Given another spin frame E’ = Eu the representative in C£(M, g) of W' is the
even section ¥z of C£(M, g) such that

Ve = W%, (7.40)
To find the relation between ¥z and ¥z’ we recall Eq. (7.34) and write

2 () = ¥ W1y ) = [(E@), Y @)IIE'®), D]
= [(E®), ¥z ()][(E®ux), 1]
= [(E(), YL )I(E @), ™" ()]
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= [(E®), ¥L)I(E @), DI(E @), u" (x))]
=[(E(®), ¥5(:)15U" (x)
=Yz (U (). (7.41)

Remark 7.42 A Right DHSF @', a section of Cﬁgpin,is(M ,g) associated to ®* a

(ideal) section of I*(M, g) also has representatives in the Clifford bundle and we
have in obvious notation

¢z = 15@", ¢z = 1L,@" (7.42)
and two different representatives ¢ and ¢z are related by

¢l = Ugs. (7.43)

7.6 Covariant Derivatives of Clifford Fields

Since the Clifford bundle of differential forms is C{(M, g) = TM/J4, itis clear that
any linear connection V on 7 M which is metric compatible (Vg = 0) passes to the
quotient 7M/Jg, and thus define an algebra bundle connection [7]. In this way, the
covariant derivative of a Clifford field A € secC{(M, g) is completely determined.
We now prove a very important formula for the covariant derivative of Clifford
fields and of DHSF using the general theory of connections in principal bundles and
covariant derivatives in associate vector bundles, which we recalled in Appendix A.

Proposition 7.43 The covariant derivative (in a given gauge) of a Clifford field
A € secCl(M, g), in the direction of the vector field V € sec TM is given by

VvA =0dv(A) + %[wV,A], (7.44)

where wy is the usual (/\2 T*M-valued) connection I-form written in the basis {0,}
and, if A = A?0,, then By is the (Pfaff) derivative operator such that dy(A) =
V(AN0; introduced in Chap. 56

Proof Writing A(f) = A(o(?)) in terms of the multiform basis {6;} of sections
associated to a given spin coframe, as in Sect.7.4.1, we have A(f) = Al(1)0;(¢) =
A'OIE ). eN] = [(E@®). Ar(Dep] = [(E(1), a(®)], with a(t) := A (1)e; € Ry 3. If

61 denotes collective indexes of a basis of C£(M, g) [see Eq. (7.7)].
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follows from item (ii) Definition A.54 in Sect. A.5 that

Al = [(E(0), ga(0g(t)™)] (7.45)

for some g(#) € Spin{ ;, with g(0) = 1. Thus

da _ d !
hm [g(t)a(t)g(t)_ —a(0)] = [ y :|
=0

dr dt
= a(0) + £(0)a(0) — a(0)£(0)
= V(AHE; + [2(0), a(0)],

where 2(0) € spin{ ;(= /\*R"? ) is the Lie algebra of Spin¢ ;. Therefore with

1 I .
wyv = [(p,80)] = wwﬂ A 6P = 50v. Oa A O (7.46)
1 1
:E 9/\9[,—2 Wach0* A O°.
we have
I 1

VvA = V(A )91 + E[a)v,A],

which proves the proposition. Il

Remark 7.44 In particular calculating the covariant derivative of the basis 1-
covector fields 6, yields [We,, O] = a)b - 6b. Note that

Wach = nadwg.{; = —Wpca (7.47)
and
0% = oy = —o2? (7.48)

In this way, @ : V +— wy is the usual ( /\2 T*M-valued) connection 1-form on M
written in a given gauge (i.e., relative to a spin coframe).

Remark 7.45 Equation (7.44) shows that the covariant derivative preserves the
degree of an homogeneous Clifford field, as can be easily verified.

The general formula Eq. (7.44) and the associative law in the Clifford algebra
immediately yields the
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Corollary 7.46 The covariant derivative Vy on CL(M, g) acts as a derivation on
the algebra of sections, i.e., for A, B € secCL(M,g) and V € sec TM, it holds

Vv(AB) = (VyA)B + A(VyB). (7.49)

Proof 1t is a trivial calculation using Eq. (7.44). B

Corollary 7.47 Under a change of gauge (local Lorentz transformation) wy,
transforms as

1 1
SOV UEwVU_l + (VyU) U™, (7.50)

Proof Using Eq. (7.44) we can calculate VyA in two different gauges as
1
VvA =0dy(A) + E[wV,A], (7.51)

or
/ 1 /
VvA = B,(4) + 5w} Al (7.52)

where by definition 3y (A) = V(A;)6' and 8},(A) = V(A})0". Now, we observe that
since 8”7 = UO'U™!, we can write

Udy(U™'A) = UBy(U'Ale") = V(A)e" + Al Udy(U™)
=0, (A) + AUD,(U™).

Now, Udy(U™'A) = dyA + U(dyU™")A and it follows that
8y(A) = dv(A) — [(ByU) U™ Al

Then, we see comparing the second members of Egs. (7.51) and (7.52) that

wy lw(,—l—U(BVU_l),

2

= ] =

1
wy, = Sov + @yU)U. (7.53)
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Finally, we have

1 1 1 1 _
Ea){/ = va + |:VVU— EG)VU + EU(UVi| U (7.54)

1
= EUa)VU_l +(VyU) U,

and the proposition is proved. B

7.7 Covariant Derivative of Spinor Fields

The spinor bundles introduced in Sect. 5.5, like I(M,g) = Psping, (M) x¢ I, I =

R1,3%(1 + Ep), and CelSpinfz(M’ 9), CKgpinT}(M, g) (and subbundles) are vector
bundles. Thus, as in the case of Clifford fields we can use the general theory of
covariant derivative operators on associate vector bundles to obtain formulas for the

covariant derivatives of sections of these bundles. Given ¥ € sec cegpmg (M, 9)
1.3

,
and ® € sec CESpin‘;’

VW and V5, ®.

(M, g), we denote the corresponding covariant derivatives by’
3

Proposition 7.48 Given W € sec Célspm,is(M, g) and ® € sec CEgpinTS(M, g) we
have, » ’

1
1

Proof 1t is analogous to that of Proposition 7.43, with the difference that Eq. (7.45)
should be substituted by \Ifﬁt = [(E(0), g(?¥)a(?))] and CDﬂr = [(E(0),a(®)g(®)™ ).
|

Proposition 7.49 Let V be the connection on CL(M,g) to which V° is related.
Then, for any V. € secTM, A € secCL(M,g), ¥ € secCl! . (M.g) and

Spin
d e sec Cégpinis M, 9),

Vi (AY) = A(V3 W) + (VyA)D, (7.57)
Vi (DA) = ®(VyA) + (V5 D)A. (7.58)

"Recall that I'(M, g) <> CLL M,g) and I"'(M, g) — CU M, 9).

Spinf 3 Spinf 3
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Proof Recalling that CﬁlspinTS(M, g) (C£§p1n13(M’ g)) is a module over C£(M, g),

the result follows from a simple computation. ll

Finally, let ¥ € sec CEISpin‘f }(M, g) be such that Ye=W where e2=¢c Risisa

primitive idempotent. Then, since Ve = W,
1
V‘Y/\IJ = V‘Y/(\Ife) = 6\/(‘1"6) + Ea)v\lfe
1
= [0y (V) + EwV\II]e = (ViyW¥)e, (7.59)

from where we verify that the covariant derivative of a LIASF is indeed a LIASE.

Finally we can prove a statement done at the end of the previous section: that the
right unit sections associated with spin coframes are not constant in any covariant
way. In fact, we have the

Proposition 7.50 Let 17, € sec CLy

Spin (M, g) be the right unit section associated
1.3

to the spin coframe E. Then

‘ 1
Vi ls =~ lha,. (7.60)

Proof It follows directly from Eq. (7.56). &

Exercise 7.51 Calculate the covariant derivative of W € sec CEISpin‘f }(M ,9) in the

direction of the vector field V € sec TM and confirm the validity of Eq (7.50).

Solution Let u : M — Spinj; C R;3 be such that in the spin coframe
E € secPspinc, (M) we have for U € secCLOWM,g), UUT' = 1, U(x) =

[(E(x), u(x))].We can write the covariant derivative of ¥ € sec CelSpinf_3 (M, qg) in

two different gauges &, & € sec Pspin , (M) as

ViU =3y (V) + %wv‘l', (7.61)
ViU =3),(¥) + %w"/\l-’. (7.62)
Now,
U= s’ = W5,

where s, s"! are the following equivalent classes in CEISpin‘f , M,9):

s =[E@.5)],. 5" = [(E'@.5)],.
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=/

with $ a spinor basis in an minimal left ideal in R; 3. Now, if E’ = Eu we can
write using the fact that celspmf \ (M, g) is a module over C£(M, g)

' =[(E', "], = [(E@u). 5], = [(E.us)],
= [(E@), uC))]ee [(E®), ST)], -
Recalling that U = [(E(x), u(x))]c, € secCL(M,g) we can write
st = Us'. (7.63)
Moreover, since

By (V) = V(¥)s',
3, (V) = V(¥))s”, (7.64)

we get
3, (V) = 8y(¥) + UByU HW. (7.65)

Indeed, since ¥ = [(8, Wz)], = [(E'. ¥;)], we can write

[(B"95)], = [(Bu ¥2)], = [(B.u¥z)],.

ie.,
UL = u g, (7.66)
Then,
By (V) = V(¥ [(E.5)], = [(E.v(¥)S)], = [(E.Bv(Ve)] (7.67)
8,(¥) = V¥ [(8.5)], = [(E".Vps))], = [(2.3v(w2)]
= [(E,udy(V%)] = [(E.udy(u'¥z)] (7.68)

from where Eq. (7.65) follows. Also,

1 1
12

1 1
l
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with

wy = [(E’WV)]CK B (771)
[(E"wv)]ee - (7.72)

i
Wy

Then we can write using Eq. (7.70),

1
Vi = (Eu,ﬁv(u_l‘lla) + Ew/vu_l\llg)L

1
= (E,uﬁv(u_l\llg) + Euw’vu_l\llg):|

L

1
= (E,BV‘I'E + udy(u HWg + Euw’vu_l‘l-'g)} (7.73)
l

Comparing Egs. (7.69) and (7.70) we get

1
wy = Eu_lwvu —By(u Mu. (7.74)

N —

We now must verify that Eqgs. (7.74) and (7.50) are compatible. To do this, we
use Eq. (7.72) to write

1
[
—wy =

1
5 [(E" . W))]py = Usow U™ + (VyU)U ™!

2

wy + @yU)U™!

= (E wy + Oy (u)u~ )i|
Cce
= ( —WV+6V(u)u ):|
Cct

Comparing Eqgs. (7.75) and (7.74), we see that Egs. (7.74) and (7.50) are indeed
compatible.

ll\)l»—‘ =

[I]

]

’,—u wyi + u liiv(u)):| . (7.75)
ct

7.8 The Many Faces of the Dirac Equation

As it is the case of Maxwell and Einstein equations also the Dirac equation has many
faces. In this section we exhibit two of them.
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7.8.1 Dirac Equation for Covariant Dirac Fields

As well known [6], a covariant Dirac spinor field is a section ¥ € sec S.(M,g) =
Psping (M) X, C* Let (U = M, ®), ®(¥) = (x,|¥(x))) be a global trivialization
corresponding to a spin coframe E (Remark 7.5), such that for {f.} € Pso; (M)
and {ea} € Pso: (M) it is

S(E) = {0%},6" € secCL(M, g), 0% (ep) = b}

620 + 69* =29y a, b =0,1,2,3. (7.76)

The usual Dirac equation in a Lorentzian spacetime for the spinor field ¥ in
interaction with an electromagnetic field A € sec /\l T*M — secC{(M, g) is then

iza(V‘Za + iqAa) |V (x)) — m|¥(x)) = 0, 7.77)

where Z*‘ € C(4),a=0,1,2,3is aset of constant Dirac matrices satisfying
Zazb + sza — 2,,,2\]) (7.78)

and |¥(x)) € C* forx € M.

7.8.2 Dirac Equation in C{ épin‘i . M, g)

Due to the one-to-one correspondence between ideal sections of the vector bundles
Cﬁgpm?} M, g), Cﬁépm?} (M, g) and of S.(M, g) as explained above, we can translate
the Dirac Eq. (7.77) for a covariant spinor field into an equation for a spinor field,
which is a section of celspmf }(M ,9), and finally write an equivalent equation for
a DHSF ¢ € sec C%pin‘;3(M’ g). In order to do that we introduce the spin-Dirac
operator. '

7.8.3 Spin Dirac Operator

Definition 7.52 The spin Dirac operator acting on sections of Cﬁlspinij (M, g) is the

first order differential operator [15]
9’ = Gan,a. (7.79)

where {62} is a basis as defined in Eq. (7.76).
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Remark 7.53 Ttis crucial to keep in mind the distinction between the Dirac operator
d introduce through Definition 4.125 and the spin Dirac operator 9° just defined.

We now write Dirac equation in Cﬁlspinh (M., g), denoted DEC/{'. Tt is

ve —mye® — gAYy =0 (7.80)

where ¥ € sec CEISpin‘f }(M, g) is a DHSF and the e* € R, 3 are such that ee” +
ePe? = 2™, Multiplying Eq.(7.80) on the right by the idempotent f = 1(1 +
e?)3(1 + ie'e?) € C ® Ry 3 we get after some simple algebraic manipulations
the following equation for the (complex) ideal left spin-Clifford field Vf = W €
sec (Cﬁlspini3 M, qg),

90 — mW — AW = 0. (7.81)

Now we can easily show, using the methods of Chap. 3, that given any global
trivializations (U = M, A) and (U = M, T), of C{(M,g) and CelSpinfz(M’ 9),
there exists matrix representations of the {f“} that are equal to the Dirac
matrices y? (appearing in Eq.(7.77)). In that way the correspondence between

Eqs. (7.77), (7.80) and (7.81) is proved.

Remark 7.54 We must emphasize at this point that we call Eq. (7.80) the DEC{'. Tt
looks similar to the Dirac-Hestenes equation (on Minkowski spacetime) discussed,
e.g., in [26], but it is indeed very different regarding its mathematical nature. It is
an intrinsic equation satisfied by a legitimate spinor field, namely a DHSF ¢ €
sec CelSpinf_3 (M, g). The question naturally arises: May we write an equation with
the same mathematical information of Eq. (7.80) but satisfied by objects living on
the Clifford bundle of an arbitrary Lorentzian spacetime, admitting a spin structure?
Below we show that the answer to that question is yes. But before we prove that
result let us recall how to formulate the electromagnetic gauge invariance for the
DECY'.

7.8.4 Electromagnetic Gauge Invariance of the DEC{'

Proposition 7.55 The DEC{! is invariant under electromagnetic gauge transfor-
mations

¥y = gl (7.82)
A A+ 9y, (7.83)

We, H> We, (7.84)
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¥, ¥’ esecCly . (M) (7.85)

Spinf 5

A € sec /\l T*M < secCL(M, g) (7.86)

with ¥, ¥’ distinct DHSF, 9 is the Dirac operatorand y : M — R — Rz isa
gauge function.

Proof The proof is obtained by direct verification. ll

Remark 7.56 1t is important to note that although local rotations and electromag-
netic gauge transformations look similar, they are indeed very different mathemati-
cal transformations, without any obvious geometrical link between them, differently
of what seems to be the case for the Dirac-Hestenes equation which we introduce in
the next section.

7.9 The Dirac-Hestenes Equation (DHE)

We obtained above a Dirac equation, which we called DEC{/, describing the motion
of spinor fields represented by sections ¥ of celspmf \ (M, 9) in interaction with an
electromagnetic field A € sec C£(M, g), )

3 We?! — gAW = mWe’, (7.87)

where 9° = 62V, , {0%} is given by Eq.(7.76), V,_is the natural spinor covariant
derivative acting on sec Cﬁlspin(;S(M, g) and {e*} € R'3 C R, is such that e*e® +
ePe? = 277", As we already mentioned, although Eq. (7.87) is written in a kind of
Clifford bundle (i.e., CEISpin‘; 3(M ,9g)), it does not suffer from the inconsistency of
representing spinors as pure differential forms and, in fact, the object W behaves as
it should under Lorentz transformations.

As a matter of fact, Eq. (7.87) can be thought of as a mere rewriting of the usual
Dirac equation, where the role of the constant gamma matrices is undertaken by
the constant elements {€®} in R;; and by the set {#?}. In this way, Eq.(7.87) is
not a kind of Dirac-Hestenes equation as discussed, e.g., in [26]. It suffices to say
that (i) the state of the electron, represented by W, is not a Clifford field and (ii)
the e?, a = 0, 1,2, 3 are just constant elements of R, 3 and not sections of 1-form
fields in C£(M, g). Nevertheless, as we show in the following, Eq. (7.87) does lead
to a multiform Dirac equation once we carefully employ the theory of right and
left actions on the various Clifford bundles introduced earlier. It is that multiform
equation to be derived below that we call the DHE.
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7.9.1 Representative of the DHE in the Clifford Bundle

Let {e?} be, as before, a fixed orthonormal basis of R'3 C R; 3. Remember that
these objects are fundamental to the Dirac equation (7.87) in terms of sections W of

I .
Cespinf.s M, g):
3 We! — gAW = mWe'.
Let & € secPgpine (M) be a spin frame and E € secPspinq_S(M) its dual

spin coframe on M and define the sections IZE, 1% and &,, respectively on

Celspinf_3 M, 9), CﬁgpmT~3 (M, g) and C€(M, g), as above. Now we can use Propo-

sition 7.39 to write the above equation in terms of sections of C£(M, g) :
QW10 — gA¥ = mW 17 1L, (7.88)
Right-multiplying by 1% yields, using Proposition 7.39,
0*(V3 W)156% — gAW1L = mW156°. (7.89)
It follows from Propositions 7.33 and 7.49 that
(V3,¥)15 =V, (¥1%) - ¥V}, (1%)
=V, (¥17) + %llllrsa)ea, (7.90)
where Proposition 7.50 was employed in the last step. Therefore
62 [Vea(mg) + %\Illza):| 0 — gA(W1%) = m(¥1;)0°. (7.91)
To proceed we recall Definition 7.41 which says that
Yz 1= Wlg (7.92)

is a representative in C£(M, g) of ¥ associated to the spin coframe E. We then have

1
6 [Vealﬁa + Ewawea} 0% — gAYz = myz6’. (7.93)



7.9 The Dirac-Hestenes Equation (DHE) 319
7.9.2 A Comment About the Nature of Spinor Fields

A comment about the nature of spinors is in order. As we repeatedly said in
the previous sections, spinor fields should not be ultimately regarded as fields
of multiforms, for their behavior under Lorentz transformations is not tensorial
(they are able to distinguished between 27 and 4 rotations). So, how can the
identification above be correct? The answer is that the definition in Eq.(7.92) is
intrinsically spin coframe dependent. Clearly, this is the price one ought to pay if
one wants to make sense of the procedure of representing spinors by differential
forms.

Note also that the covariant derivative acting on ¥z in Eq. (7.93) is the tensorial
covariant derivative Vy on C£(M, g), as it should be. However, we see from the
expression above that Vy acts on ¥z together with the term %WE wy. Therefore, it

is natural to define an “effective covariant derivative” Vg) acting on ¥g by

1
Vels = Ve Vs + SV, (7.94)

Then, Proposition 7.43 yields

1
Velvs =0, (V) + Soe Ve, (795

which emulates the spinorial covariant derivative,® as it should. We observe

moreover that if C € secC{(M,g) and if g € secC{(M,g) is a representative
of a Dirac-Hestenes spinor field then

Vi) (Cyz) = (Ve,O) Yz +CV Y=, (7.96)

With this notation, we finally have the DHE for the Clifford field representative

Vg € secCL(M, g) relative to the spin coframe E on a Lorentzian spacetime’ of a
DHSF ¥ € sec CelSpinfz(M’ g):

AVY=02 — gAYz = my=6°, (7.97)
where
90 — eavg) (7.98)

will be called the representative of the spin-Dirac operator in the Clifford bundle.

8This is the derivative used in [26], there introduced in an ad hoc way.

9The DHE on a Riemann-Cartan spacetime is discussed in Chap. 10.
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Let us finally show that this formulation recovers the usual transformation
properties characteristic of the Hestenes’s formalism as described, e.g., in [26].

For that matter, consider two spin coframes E, &’ € sec Psping , (M), with B'(x) =

E (x)u(x), where u(x) € Spin{ ;. We already know that ¥zr = ¥z U~'. Therefore,
the various spin coframe dependent Clifford fields from Eq. (7.93) transform as

0, = Ub,U ™", (7.99)
Ve = Ysg Ul

These are exactly the transformation rules one expects from fields satisfying the
Dirac-Hestenes equation.

7.9.3 Passive Gauge Invariance of the DHE

Exercise 7.57 Show that if
(s) 21 _ 0
9’“V8; I//E/QI - qAI//E/ = mlﬂg/el
then if the connection wy transforms as in Eq. (7.50) then
0* VY6 — gAyz = myz6".

This property will be referred as passive gauge invariance of the DHE. It shows
that the fact that even if writing of the Dirac-Hestenes is, of course, frame dependent,
this fact does not implies in the selection of any preferred reference frame."”

The concept of active gauge invariance under local rotations of the DHE will be
studied in Chap. 10.

7.10 Amorphous Spinor Fields

Crumeyrolle [7] gives the name of amorphous spinor fields to ideal sections of
the Clifford bundle C£(M, g). Thus an amorphous spinor field ¢ is a section of
CL(M, g) such that P = ¢, where P = P? is an idempotent section of CL(M, g).
However, these fields and also the so-called Dirac-Kihler [13, 14] fields, which are
also sections of C{(M, g), cannot be used in a physical theory of fermion fields
since they do not have the correct transformation law under a Lorentz rotation

10The fundamental concept of reference frame in a Lorentzian spacetime has been discussed in
details in Chap. 6.
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of the local spin coframe. However, amorphous spinor fields appears in many
‘Dirac like’ representations of Maxwell equations and are often confounded with
authentic spinor fields (i.e., sections of spinor bundles). Some of these ‘Dirac like’
representations of Maxwell equations will be discussed in Chap. 13.

7.11 Bilinear Invariants

7.11.1 Bilinear Invariants Associated to a DHSF

We are now in position to give a precise definition of the bilinear invariants fields
of Dirac theory associated to a given DHSF. Recalling that A” T*M < C¢(M, g),
p =0,1,2,3,4, and recalling Propositions 7.33 and 7.34, we have the

Definition 7.58 Let ¥ € sec CEISpin‘;}(M’ g) be a DHSF. The bilinear invariants

associated to W are the following sections of /\ T*M — C{(M, g):
- 0 4
YV =0 + 050 € sec (/\ "M + /\ T*M) , (7.100)

- 1 - 1
J =WeyV € sec/\ T*M, K = We3V¥ € sec/\ "M

- 2
S =WepV € sec/\ T"M,

where ¥ = \Il%(l + €), W € sec (,’ngm,i3 (M, g) and 85 = 6y123 € sec /\4 T*M.

Remark 7.59 Of course, since all bilinear invariants in Eq.(7.100) are sections
of C{(M,g) they have the right transformations properties under arbitrary local
Lorentz transformations, as required. As recalled in Chap. 3 these bilinear invariants
and their Hodge duals satisfy a set of identities, called the Fierz identities. They
are crucial for the physical interpretation of the Dirac equation (in first and second
quantizations).

7.11.2 Bilinear Invariants Associated to a Representative
of a DHSF

We note that the bilinear invariants, when written in terms of ¢z := W17, read
(from Proposition 7.39):

~ 0 4
S: l//'sl//'s =0 +95(,l) S SeC(/\ T*M+ /\ T*M)a
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- 1 - 1
J=yzb00s €sec \ T*M. K = yz030z € sec [\ T*M
- 2
S = Y=610,9z €sec [\ T*M.
where 05 = 6123 = 090160,0;. These are all intrinsic quantities, as they should be.

For a discussion on the Fierz identities satisfied by these bilinear covariants, written
with the representatives of Dirac-Hestenes spinor fields, see Sect. 3.7.3 and [17, 26].

7.11.3 Electromagnetic Gauge Invariance of the DHE

Proposition 7.60 The DHE is invariant under electromagnetic gauge transforma-
tions

Y > 1//:3 = 1//56‘“0211’ (7.101)
A Ay, (7.102)
e, > o, (7.103)

where Yz, ¥l € secClt(M,g), A € sec \' T*M < secCL(M,g) and where
X € sec /\0 T*M — sec CL(M, g) is a gauge function.

Proof 1t is a direct calculation. ll

But, what are the meaning of these transformations? Equation (7.101) looks
similar to Eq. (7.99) defining the change of a representative of a DHSF once we
change spin coframe, but here we have an active transformation, since we did not
change the spin coframe. On the other hand Eq. (7.102) does not correspond either
to a passive (no transformation at all) or active local Lorentz transformation for A.
Nevertheless, writing y = /2 yields

—a0219/2 21
erd 1200 ,40719/2 _ g0 _ 0

e 90710/29100870/2 — 9"t — g1 co5 g9 + 62 sin g0,
9_49210/2@3649210/2 — 9/2 — _91 Sin q@ + 92 cos q927

e10203 4702 — g — 93, (7.104)

We see that Egs. (7.104) define a spin coframe E’ to which corresponds, as we
already know, a basis {6, 01,02 63} for /\1 T*M — C{(M,g). We can then
think of the electromagnetic gauge transformation as a rotation in the spin plane 6!
by identifying ¥ in Eq.(7.101) with ¥z, the representative of the DHSF in the
spin coframe E’ and by supposing that instead of transforming the spin connection
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we, as in Eq. (7.50) it is taken as fixed and instead of maintaining the electromagnetic
potential A fixed it is transformed as in Eq. (7.102).

We observe that, since in GRT and also in Riemann-Cartan theory (see Chap. 9)
the field w,, is associated with some aspects of that field, our interpretation for
the electromagnetic gauge transformation suggests a possible non trivial coupling
between electromagnetism and gravitation, if the Dirac-Hestenes equation is taken
as a more fundamental representation of fermionic matter than the usual Dirac
equation. We will not have space and time to explore that possibility in this book.

7.12 Commutator of Covariant Derivatives of Spinor Fields
and Lichnerowicz Formula

In this section we complement the results of Sect. 5.2 and calculate the commutator
of the covariant derivatives of spinor fields and the square of the spin-Dirac operator
of a Riemann-Cartan connection leading to the generalized Lichnerowicz formula.
Let ¥ € secCl® (M, g) be a representative of a DHSF in a given spin frame &
defining the orthonormal basis {e,} for TM and let {62}, 6* € sec /\IT*M €
secCL(M, g) be the corresponding dual basis. Let moreover {6,} be the reciprocal
basis of {#2}. We show that!!

1 ) - e vols
VO, VOly = 59%(93 A Oy — (TG, — 0 + 05) VY (7.105)

Letu = g(u,), v= g(v,) € secTM. We calculate [V, V{”]y. Taking into
account that, e.g., V,iy)w =Vy¥ + %qu, we have

1 1 1 1
V;‘Y)V,E‘Y)w =V,V,¥ + E(V,,l//)a),, + E(V,,W)a),, + Zwku + vaua)v.

Then, using some of the results of Chap. 5, we have

1 1
V2, VY = [V Vol + 29 (Vawy = Vawy — - [0, @)

1
5[%(“ A U), W] + V[u,v]lp

1 1
+ Ew(vuwv - Vyo, — E[wmwv])

Compare Eq. (7.105) with Eq. (5.57). Also, compare Eq. (7.105) with Eq. (6.4.54) of Rammond’s
book [25].
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1 s 1
= SR A ). Y]+ V¥ — SVl
(Vs — Ve — 2[00 03]
2 uwv ku 2 wu7 wv
1 ;
= SR A )Y+ Vv

1 1
+ Ew(vua)v - Vywy — E[a)uv wy] — w[u,v])

[,0]

%[iﬁ(u AV), Y]+ VS w4 %w%(u A )

%m(u AV + VS (7.106)

[.0]

From Eq. (7.106), Eq. (7.105) follows trivially.

7.12.1 The Generalized Lichnerowicz Formula

In this section we calculate the square of the spin-Dirac operator on a Riemann-
Cartan spacetime acting on a representative ¥ of the DHSF. We have the

Proposition 7.61
1N\ 2 X A\ os 1 s
(39) v = (V) = k) VW + JRY + 3y — VY
Proof Taking notice that since & € sec C£(M, g), then V6" = V, 6, we have

2
() = @) (V)
=02 [(Ve,0") Vi) + 6°VOVY] (7.107)
=64 [(Ve,0") V) + 6°VIVY]
+0% A [(Ve,0°) Vi) + 0P VY]

and since V,, 0" = —w®0¢ we get

2
(a(y)) —p2, [(—a)g};@c) Véi) + QbVe(i)Ve(;‘)]
0% A [(~05t%) V) + 0PV V)]

’
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or
2 ..
(1) = ~ohor Vs + PV
b- K by (: k
—B0* AOVY + 67 APV ’
= oGV VY
—0% 0% AOPVY 4 62 A PVIVE)
or

2
(39) = 1 [VOVY — 05 V0] + 6% 2 6" | VOVE) - w5,V
Now we can define the operator
399 =y [VOVY - w5V, (7.108)
called the generalized spin D’Alembertian and
99D A9 = g2 A QP [V(v)v(v) wgi)ve(:)] , (7.109)
which will be called twisted curvature operator. Then, we can write
2
(39) =209 + 3 A 3. (7.110)
On the other hand, we can write
8989 =y [VOVY — w5,V ]
= VOV — s, v
= VY — Y
= [n“bvgy — et ] ve) (7.111)
and
O A g® = Law \ 90 L Lgw g0
9 AQ :53 Ad +§a )
1 1
= 30" A [ VOV — w5V + 560 A 6" [V — VY |

1 ‘
= 50" A6 [VOV = VOV — (%, - o) VO |
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= 0" A 6" [v;;} VO - VOV _ (5 + Tgb)v;y] . (7.112)

Taking into account that T, = w$; — o, — ¢4y, we have from Egs. (7.111)
and (7.112) that

(a(s))z _ [nabv(y) ac,) b ]V(S)
1 :
+ 56" A6 (Vv = VOV — (¢ + TSVY]. 2.13)
On the other hand, from Eq. (7.105), we have

[V(s) V(v)] v = _R(e AOy) Y+ S VY
and then Eq. (7.113) becomes
; 2
(09) v = [V — ] W + 30" A OUR ) v
1
_ Eea A PTG VO y
= [V — ol | VO + 5 <ea ABPYR (64 A Oy) ¥ — O VO,

We need to compute (62 A O°)R (6, A 6y). From (Eq. (2.70)) we have

(6% AO")R (6a A B) = (6" A O°)R (6a A B1))o + ((8* A B°)R (6a A 6b))>
+{(0* A O°)R (6a A Ob))a

Now, recalling Eq. (5.56), we can have

(6% A OPYR (B A Bb))o := (0% A 6°) iR (6a A By)
=—(6* AO") - R (6a A Oy) =

Next, we recall the identity (Eq. (2.72))
((0* A OPYR (Ba A O))2 = 0* A (B°R (Ba A Bp)) + 62 2(0° AR (6a A By))
and also the identity Eq. (2.60)

0210 AR (6 A Bp)) — 02 A (BPR (B2 A Op)) = (62 - YR (6a A 6y).
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Then, it follows that
(0> A OP)YR (B A Bp))2 = (0% 6")R (6 A ) = 1R (6a A Oy) =0

It remains to calculate (62 A PR (6, A Op))4. We have
a b a b 1 b c d
(0P AO°R (B2 A Op))s = 0P ANO° AR (O A 6y) = abcd@ ANOPANOCADO

1
= E(Rabcdeade + Racab ™™ + Raanc ™)

1
= E(Rabcd + Racab + Raabe) 0™
Now, using Eq. (4.198) we can write
Rabca = Rapea + J. ab[cd]

where I%abcd are the components of the Riemann tensor of the Levi-Civita connection
of g and from Eq. (4.199)

Toea = VeKii — KiK' + KiK.
‘]~a'[.éd] = ‘]~a'£d —J Elﬁc’
with K';d given by Eq. (4.197), i.e.,
K- 1 km n-- n- n-
K~cd = _577 (nncT.md + ﬂndT.mc - nan~cd)‘

o ] o
Taking into account the well known first Bianchi identity Raped + Racdb + Radbe =
0, we have

2
(a(x)) v = [nabvéz) ac b ]V(v)w + RI// +Jy — @cv(v)w (7.114)
where

1
= g (Jab[cd] + -]ac[db] + -]ad[bc] ) Qade

1
= g(fab[cd] + Jaclan] + Jadibe] €gr3s Te- (7.115)

and the proposition is proved. B
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Remark 7.62 Equation (7.114) may be called the generalized Lichnerowicz formula
and (equivalent expressions) appears in the case of a totally skew-symmetric torsion
in many different contexts, like, e.g., in the geometry of moduli spaces of a class of
black holes, the geometry of NS-5 brane solutions of type II supergravity theories
and BPS solitons in some string theories [8] and many important topics of modern
mathematics (see [4, 10]). For a Levi-Civita connection we have that J = 0 and
®¢ = 0 and we obtain the famous Lichnerowicz formula [16].

Exercise 7.63 Describe the bundles of dotted and undotted algebraic spinor fields
and their tensor product.'?

Solution We start by considering the bundle
CLOM,g) = Pspins ,(M) Xaa R{). (7.116)

which may be called the bundle of Pauli fields. Next we define the spinor bundles
S(M) = Pspins (M) x; 1, S(M) = Psping (M) x, 1 (7.117)

where I = Re is the ideal in R’} defined in Eq.(3.129), I' = R{e. Also, /
stands for a left modular representation of Spinj ; in R, 3 that mimics the DGO

representation of SI(2, C) and r stands for a right modular representation of Spinf ;

in R, 3 that mimics the DO representation of S1(2, C).
We then have the obvious isomorphism

CLO (M, g) = Pspine (M) xpq RY)
= Pspint , (M) 1@, I®cI

= S(M) ®c S(M). (7.118)
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Chapter 8
A Clifford Algebra Lagrangian Formalism
in Minkowski Spacetime

Abstract Using tools introduced in previous chapters, particularly the concept of
Clifford and spin-Clifford bundles (and the representations of sections of the spin-
Clifford bundles as equivalence classes of sections the Clifford bundle), extensor
fields and the Dirac operator we give an unified and original approach to the
Lagrangian field theory in Minkowski spacetime with special emphasis on the
Maxwell and Dirac-Hestenes fields. We derive for these fields their canonical
energy-momentum extensor fields and also their angular momentum and spin
momentum extensor fields. In particular we show that the antisymmetric part of
the canonical energy-momentum tensor is the “source” of spin of the field. Several
nontrivial exercises are solved with details in order to help the reader to familiarize
with the formalism and to make contact with standard formulations of field theory.

8.1 Some Preliminaries

Recall that in Definition (4.108) Minkowski spacetime has been introduced as the
structure (M, 9, D, 7,, 1) where M ~ R* and R(D) = 0, T(D) = 0. As we know
from Chap. 6, Minkowski spacetime possess an infinity of physically equivalent
inertial reference frames. These are frames I € sec TM such that DI = 0. Given an
inertial frame I, a global coordinate chart with coordinate functions in the Einstein-
Lorentz-Poincaré coordinate gauge {x*} for M is a (nacs|I) if I = % We choose a

global basis of the orthonormal frame bundle ¥ = {e, }, witheyg = I ande; = %
The frame X can be used in order to define an equivalence relation between tensors
located at different points ¢ € M. This can be done as follows.

The dual basis of {e, } will be denoted by {y*}, i.e., y* = dx* € sec /\1 ™M
and y*(e,) = §). As previously introduced, the set {y,,}, with y,, = 7,,,y" is called
the reciprocal basis of the basis {y*}. Recall that {e,, | .+ and {dx"| } are the natural
basis for the tangent vector space T.M and the tangent covector space 7; M. In what

follows we write,

x"(e) = x*, xH () = x*, (8.1)
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and recall that

il
Dy 5o =0, (8.2)
= Nuvdx’ ® dx” =gl 8.3
ﬂ—’?;w X ® X, nuv—ﬂ(ale,@)s ()

where the matrix with entries 7,,, is the diagonal matrix diag(1, —1, —1, —1).

Definition 8.1 Let T, T’ € sec 7"M. We say that T, € T’ M is equivalent to T,/ €
T/ M (written T, = T,) if and only if

Ty (e () = T (x(¢)) 84

As usual, the set of vectors equivalent to v, € T.M will be denoted by [v,]. The
set of equivalent classes of tangent vectors over the tangent bundle is a vector space
over the reals, that we denote by

M = {[v.] | forall v, € T.M}. (8.5)
Note that {[eu‘c]} is a natural basis for M. With the notations ¥ = [v.] and
ey = [eﬂ|e] we can write U = v*e,. The dual space of M will be denoted by

M = M*. The dual basis of {¢,} will be denoted by {y*}. A scalar product in
M, -: M xM — R can be defined in a canonical way using 7 (the metric of the
cotangent bundle) and the equivalence relation for tensors at different spacetime
points. Recall moreover that the Clifford algebra generated by the structure (M, -) is
CK(M, ) ~ R]g.

The pair (M, M) has the structure of an affine space, and (M, M, -) is a metric
affine space.

Definition 8.2 Fix a point ¢, € M. Then for any ¢ € M, we call x € M such that
x:=(e—¢)eM

the position covector of ¢ relative to ¢,.

Given two different Einstein-Lorentz-Poincaré coordinate charts for M, with
coordinate functions {x*} and {y*}, ¢ € M is represented by the coordinates

{x"(e)} and {y" (o)}, (8.6)

which are related in general by Poincaré transformation (L,a) = (L. ,a”). Of course,
when we introduce coordinates using the Einstein-Lorentz-Poincaré coordinate
functions x*, a given event, say ¢, has coordinates x*(¢,) = (0,0,0,0) and since
y*(e,) = Lix*(e,) + a* it follows that y*(e,) = a*. So, we can write

x=e—¢ =x"(e)y, =y, =y" @y, =YV, (8.7
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where!
Yy =Ly, (8.8)

Remark 8.3 1t is clear that once we fix a coordinate chart for M with coordinate
functions in Einstein-Lorentz-Poincaré gauge {x*}, with x*(e9) = 0, there is a
correspondence between the position covector x = (e—ep) and the objectx*(e)y,, €
/\1 T*M — C{(M, n). However take notice that x*(¢)y, is not a legitimate 1-form
field because the x*(¢), © = 0,1,2,3 are not the components of a vector field.
However, if we restrict ourselves to charts such that the coordinates are related by
Poincaré transformations then we can call x*(¢)y,, the position 1-form of the event
¢ € M relative to event ¢, € M. When there is no chance of confusion we denote
x"(e)y, by the same symbol x used to denote the position (co)vector (¢ — ¢g) € M.

The introduction of the position covector and the position “I1-form field”, permit
us to associate to each Clifford field C € sec C£(M, n) a multiform (valued) function
C of the position covector x. Indeed, the representation of C in a Einstein-Lorentz-
Poincaré chart with coordinate functions {x/*} is

_ 1 ay.,J
C= ECJ(X Y (8.9)

where C; : R* — R are (smooth) functions. The multiform (valued) function
associated to C is

C:M—CLM,"), x+— C(x), (8.10)

such that in the Einstein-Lorentz-Poincaré chart with coordinate functions {x*} we
have

— 1 J

where the C; : M — R are (smooth) functions such that (recalling that x =
x*(e)y, = x*y,) we have

Cj(xo‘) = CJ(X). (812)

Remark 8.4 Since in this chapter we shall use only coordinate charts in Einstein-
Lorentz-Poincaré gauge, taking into account the identification provided by
Eq.(8.12), (¢ — ¢p) <« x, C < C every time we introduce a Clifford field
C € secC{(M,n) we immediately identify it with the corresponding multiform

11— refers, of course, to the elements of the Lorentz transformation represented by the matrix
L.
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(valued) function C : M — C{(M, -) and when no confusion arises we use the same
symbol for both. The importance of the identification (¢ — ¢p) <> x, C <> C is that
it permits the use all identities of the multiform functions of multiform variables,
developed in Chap. 2 in an obvious way.

We recall now that a (p, g)-extensor (Definition 2.45) is a linear mapping

e N'M— N\'m (8.13)

and that the set of all (p, g)-extensors is denoted ext(\" M, \! M).

Definition 8.5 A smooth (p, g)-extensor field t on Minkowski spacetime is a
differentiable (p, g)-extensor valued function on M,

M3ers 1 cen(N\ TiM, N\ TiM). (8.14)

Remark 8.6 As it was the case for sections of C£(M, n), it is sometimes convenient
to associate (in an obvious way) to a smooth (p, g)-extensor field 7 a (p, g)-extensor
valued function ¢,

M>xest ee(\ M N\ M) (8.15)

This again permit us to use the identities presented in the extensor calculus
developed in Chap. 2 in the computations that follows. Once again we remark that
since we are to use only charts in the Einstein-Lorentz-Poincaré gauge we shall use
(when no confusion arises) the same symbol for both ¢ and ¢.

8.2 Lagrangians and Lagrangian Densities for Multiform
Fields

Let Y be a Clifford field, i.e., Y = X € secC{(M,n), or a representative of a
Dirac-Hestenes spinor field, i.e., ¥ = ¥ € secC{®(M,n).2 Since we restrict
ourselves to Einstein-Lorentz-Poincaré coordinate charts and choose a gauge where
the connection coefficients are null, the Dirac operator and the representative of the
spin-Dirac operator acting on sections of C£(M, n) has a very simple representation
indeed, and in order to leave no chance for confusion with the general case, we

2To shorten the notation, when Y is a homogeneous section of the Clifford bundle, we write Y €
sec A\’ T*M, instead Y € sec /\* T*M <> sec CL(M, n).
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write, 0 > 0, F 1IN 3;5). Then, with the above assumption

3
3, =9V = y"ax—ﬂ. (8.16)

The operator 9, acts on the multiform (valued) function ¥ : M — C{(M,-)
associated to Y € secCL(M,n) as the vector derivative relative to the position
covector x also denoted 9, introduced in Sect. 2.11.2. We write

(e—¢y) < x, 9,.Y < 03,Y(x),

and if

= Z @y’mﬂ) (8.17)

we have that

8,Y = )’MZEV Y. (8.18)

Remark 8.7 In what follows we shall need to consider also the derivatives 9, ® Y,
where ® is any one of the product of multiforms (Clifford, _, _ or A) introduced in
Sect. 2.12 and also derivatives of functionals of multiform (valued) functions.

Definition 8.8 The Clifford jet bundle® Jg(C€(M, 1)) of M is the (trivial) vector
bundle given by

Jo(CUM. 1) = Usens (CLM. 1), (8.19)
such that for X, ¥ € sec C£(M, n) such that X 7! ¥ we have
9, ®Y(x) =09, ®X(x). (8.20)

Definition 8.9 We call a functional of the Clifford field Y € secC{(M,n) any
mapping F : Je(CL(M, n)) — CL(M, n).

Remark 8.10 Given any field Y € secC{(M,n) we abbreviate by Fg(Y) (or
F(x,Y,0,®Y)oryet* F(Y(x),d, ® Y(x)) ) the mapping

FolJg(Y). 8.21)

3For the definition of jet bundles and notation employed see Sect. A.1.3.

“In this case we are using a common sloppy notation where the section Y of the Clifford bundle is
written as Y (x). Note that Y (x) is also a sloppy notation for the mutiform (valued) function Y.
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Remark 8.11 To any functional of the Clifford field Y corresponds in an obvious
way a functional of the corresponding multiform (valued) function Y with values in
C{(M, -) and both objects are identified (when no confusion arises) in order to be
possible to use in a standard way the theory of multiform functions of multiform
variables described in Chap. 2.

Remark 8.12 Clearly, given two functionals F, F’ : Je(CL(M,n)) — CL(M,n)
any one of the products F @ F' is well defined. We write
(F®FH)Y)=F (X)) ®F (). (8.22)

Definition 8.13 In the case £ : Jo(CL(M, n)) — /\4 T*M, L is said a Lagrangian
density for the field Y. In the case, £ : Jo(CL(M,n)) — /\O T*M, £ is said a
Lagrangian for the field Y.

For any Lagrangian density £(Y,d, ® Y) there corresponds a well defined
Lagrangian £(Y, 9, ® Y) and they are related by
LY, 0.®Y)=L(Y,0,® )y, (8.23)

where 7, is the volume element in M.

Definition 8.14 To any Lagrangian density Lg(Y) or Lagrangian £¢(Y) the action
for the multiform field Y € T*M on U C M is the real number

8.2.1 Variations
Vertical Variation

In this book, we restrict our investigation only to theories where the fields Y are
Clifford fields (Y = X) or Dirac-Hestenes spinor fields (Y = ). As we learned in
Chap. 7 these fields carry different representations of Spin{ ;,which is the universal

covering group of the homogeneous restrict and orthochronous Lorentz group Lg .
Let be u € Spin{ ;(M) < secCl(M,n), i.e., for any x € M, u(x) € Spin{; —
R;3. Then, if Y = X € secC{(M,n) is a Clifford field, an active local Lorentz
transformation sends X + X’ € sec C£(M, n), with

X' = uXu. (8.25)
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If Y = ¢ € secCL (M, n) is a representative of a Dirac-Hestenes spinor field,
then an active local transformation sends v +— ', with

V' = uy. (8.26)

From Sect. 3.3.4 we know that each u € Spin{ ;(M) can be written as & the

exponential of a biform field F € sec /\2 T*M < sec CL(M,n). For infinitesimal
transformations we must choose the + sign and write F = af, a < 1, F2 # 0.

Definition 8.15 Let Y = X be a Clifford field or Y = ¢ a representative of a Dirac-
Hestenes spinor field. The vertical variation of Y is the field §,,Y (of the same nature
of Y) such that

§, Y=Y —-7. (8.27)

Remark 8.16 The case where F is independent of x € M is said to be a gauge
transformation of the first kind, and the general case is said to be a gauge
transformation of the second kind.

Horizontal Variation

Let 0, be a one-parameter group of diffeomorphisms of M and let £ € sec TM be the
vector field that generates oy, i.e., in local coordinates in Einstein-Lorentz-Poincaré
gauge, we have

do!" (x*)

() = el R (8.28)

Definition 8.17 We call the horizontal variation of ¢ induced by a one-parameter
group of diffeomorphisms of M the quantity

Y —o*Y
8§y =lim—— ' — _g.y. (8.29)
t—0 t

Definition 8.18 We call total variation of a multiform field ¢ the quantity
8Y=8UY+8/1Y=8UY—£EY. (8.30)

Remark 8.19 1t is crucial to distinguish between the variations defined above,

something that sometimes is not done appropriately in textbooks. We denote in

what follows by § a generic variation (horizontal or vertical). In particular such
a distinction is essential for the developments in Chap. 9.
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Now, when we have a field theory formulated on Minkowski spacetime, diffeo-
morphisms associated with global Lorentz transformations have a very important
physical meaning, as we learned in Chap. 6. How to describe such a diffeomorphism
using the Clifford bundle formalism? Recall that a diffeomorphism related to a
global Lorentz transformation is given by

Lied, x=c—¢, =x'()yu > X = =x"(")y,, (8.31)
with
x" (") = L'x"(e), (8.32)
with L) € S07 ; independent of ¢ € M. We can then write
X =L (e)y, = x(@u you = x"(e)y, = uxu (8.33)

for some constant section u € Spin{3(M) < sec C{(M,n), i.e., independent of
¢ €M such that the 2 — 1 homomorphism % : Spinj; — SOf; (Chap.3) gives
h(u™') = [ Recalling now our discussion of Sect.4.5 concerning the pullback
mapping, we have: putting £*X = X', £*y = ¢’ that

X (x)=X(¥) =uX(xu ",
v (x) =y (x/) = uy(x). (8.34)

Remark 8.20 Equation (8.34) shows that the pullback mapping corresponding to a
global Lorentz transformation in the present formalism has the same form as a local
constant rotation, but care must be taken in using such formulas in order to avoid
misconceptions.

8.3 Stationary Action Principle and Euler-Lagrange
Equations

Let U be an open set of M, with boundary dU and consider an arbitrary multiform
field A € secCL(M,n) such that A] 3y = 0. Given a Lagrangian £g(Y) =
L(Y,d, ® Y) we introduce [2] the mapping® £, : M x [ — R

La(r ) i= S(Y(x) + AAX))y. 3, ® Y(x) + A{0, ® A())s.01), (8.35)

SRecall that in Eq. (8.35) (A)x means the projection of A in the grades of X. See Definition 2.4,
Chap. 2.
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where A € [ and [ is a subset of R containing zero. Note that £4(x,0) =
L£(Y(x), 9, ® Y(x)). In view of this fact we call £4(x, A) the varied Lagrangian.

Definition 8.21 Given a Lagrangian £g(Y) we define its variation by

8Le(Y) := %Q(Y(X) + A{A(X)y, 0, ® Y(x) + 1(3, ® A(x))a,®Y) .
=0
(8.36)

Definition 8.22 The variation of the action is
SAY)=34§ / Le(Y) = / §Le(Y). (8.37)
U U

Axiom 8.23 In Lagrangian field theory the dynamics of a field Y is supposed to
be derived from the Stationary Action Principle, hereafter denoted SAP, i.e., we
suppose that the laws of motion are to be deduced from

8 A(Y) = 0 forall A such that Aly, =0. (8.38)

The SAP implies the so called Euler-Lagrange equations (ELE) for the field Y.

Proposition 8.24 Given a field Y on U C M and postulated a Lagrangian
L£(Y,0,®Y) the SAP implies for the cases: () 3, ®Y = 9,1Y; (b) 0, ®Y = 3, AY;
()9, ® Y = d.Y the following ELEs.

(@) dyL(Y,0,1Y) — 0, A0y, yL(Y,0,4Y) =0,
(b) Iy L(Y,0, AY) — 0,105 avEL(Y,0. A Y) =0, (8.39)
() 0yL(Y,0,Y) —9,(05yL(Y,0,Y)) =0.

Proof Here, we prove only case (c), leaving the proof of the other cases as exercises
for the reader. The Y-variation of £(Y, d,Y) gives immediately, using the definition
of derivatives of multiform functions of multiform variables (see Eq. (2.165)),

§L(Y.8,Y) = A-0yL(Y,d,Y) + 8,A - 05 y£(Y. 3,Y) (8.40)

Now, recall the identity (c) in Eq. (2.111) which says that for any multiform fields Y
and 1-form a = a"y,,, with a* constant functions, we have

0:Y) - X 4+ Y- (9,X) = 9, - [0,(aY) - X] (8.41)
where 9, = y* %. Using this result we can write Eq. (8.40) as

8L(Y,0,Y) = A-[dyL(Y,0,Y) — 8, - Iy L(Y(x), 8,Y)]
+ 3, - [0a(aA) - Dgy £(Y, 3, Y)]. (8.42)
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Then the SAP gives
/{A- [0yL — 0y - Iy L] + 9, - [04(ad) - gy L]}y = O, (8.43)
U

for all A such that A|,,; = 0. Now, given any form field v we write Stokes theorem
for d(»v) in the form

/(ax-v)r,, =/ VT, (8.44)
U U

Then, the second term in Eq. (8.43) taking into account the boundary condition
can be written (in obvious notation)

/U 9y - [04(aA) - Dy £(Y, 8.Y)]7y = /a y y* - [0a(aA) - Dgy £(Y, 3:Y)](ypaty)
= /a UA.(yMaays(Y, .Y)dS, =0. (8.45)
Using Eq. (8.45) in Eq. (8.43) we get
/U A-[0yL(Y,8,Y) — 3,0y L(Y,d,Y)]d*x = 0, (8.46)

for all A. By the arbitrariness of A we get
Ay L(Y,8.Y) — 8,(day L(Y, 8,Y)) = 0,

and the proposition is proved. ll

8.4 Some Important Lagrangians

8.4.1 Maxwell Lagrangian

The Lagrangian associated with the Maxwell field A € sec /\1 T*M (i.e., the
electromagnetic potential) generated by a current J, € sec /\1 T*M is

(A, 0, AA) = —%(ax ANA)- (3 AA)—A-J,. (8.47)

Using Eq. (8.39b) we get immediately

3,100, AA) = J,. (8.48)
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The electromagnetic field is (see Sect.3.6) F = 9, A A € sec /\2 T*M. Then
taking into account that 3, A (9, A A) = 0, we can write Eq. (8.48) as

9. F =J., (8.49)

which is, of course, equivalent Eq. (4.264) of Chap. 4.

8.4.2 Dirac-Hestenes Lagrangian

We recall that once a global spin coframe E € Ppine (M) is fixed, a Dirac-
Hestenes spinor field can be represented by a even section of sec C£(M, n). Let
then ¢ € sec(/\o ™M + /\2 ™M + /\4 T*M) be a representative of a Dirac-
Hestenes spinor field ¥ € sec CeZSpinfz(M , 1) relative to a global spin coframe E.
A possible Lagrangian for such a field in interaction with an electromagnetic field
Aesec \' T*M is

LW, 3.:9) = B:Viys) - ¥ — q(A¥yo) - ¥ —my - ¥, (8.50)
where the real parameters m € R* and g€ R are called the mass and electric charge

of the Dirac-Hestenes field and i := y5. Lagrangian (8.50) is of type (c) in Eq. (8.39).
Then, the respective ELE is

Ay (W, ,¥) — 3,(0py £(x, ¥, 8,9)) = 0. (8.51)
We have
3y L(. 3x¥) = (dxyriys)y — Ay yo + Ay o)y —2my
= 8. Viys — 2Aq¥ryo — 2m. (8.52)
Also,
3,y (Y, 3:9) = —Ba,y sy - Yiys) = —iys. (8.53)

Then, we have with o3 = y3y9
0, Vioy —myryo —qAy =0, (8.54)
or, equivalently o3

Y y2y1 —mypyo — gAY =0, (8.55)
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which we recognize as equivalent to the Dirac-Hestenes equation (Eq.(7.93))
introduced in Chap. 7, since the term containing the connection biform in Eq. (7.93)
is null in our case, because we are using only Einstein-Lorentz-Poincaré coordinate
charts and using only exact global cotetrad fields (as introduced above), for which
the connection coefficients are all null.

Exercise 8.25 Show that (Ayyo) - ¥ = A - ¥y see Eq. (2.69).
Exercise 8.26 Show that for the above Lagrangian

9:(9a,y £V, 3:9)) = 0,.(9a,y £V, 3.9)). (8.56)

Solution: We have from Eq. (8.53) that

3:(3a,y &Y, 3:Y)) = —y" 0, ¥iys.

On the other hand we can write the term (d,1iy3) - ¥ in the Lagrangian as

("0 iys) - . (8.57)

Then, using Egs. (2.68) and (2.69) we can write
(YHouviys) - = @uyiys) - yHy = =0, 9 - (Y yriys) = —(yiys) - 9,9
(8.58)
Using now Eq. (2.192) we get

s,y (—(y"yiys) - 8,9) = —y" yiys,

and then

3y (09,4 (=" iys) - 0,9)) = —yH B, vriys.

8.5 Canonical Energy-Momentum Extensor Field

We now find the canonical energy-momentum extensor for each one of the types of
Lagrangians in Proposition 8.24.

We are interested here in diffeomorphisms that are simply translations in the
Minkowski manifold. These are generated by very simple one-parameter group
of diffeomorphisms. Indeed, under a translation in the constant ‘direction’ y,, the
position 1-form x (of a spacetime point ¢, with coordinates x* (¢) = x*) goes in the
position 1-form x’ (of a spacetime point ¢/ = o;¢, with coordinates x'#(¢) = x'*)
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and we write
X =x+ ey, (8.59)

Given the rule for the pullbacks Y/ = o,*Y for any ¥ € sec /\k ™M —
secCL(M, n), the equivalence relation (Definition 8.1), and the convention given
by Eq. (8.1), we can write 0, Y (x) = Y(x’). Then, we have

Y (x) = Y(¥). (8.60)

Now, a Lagrangian £ (Y) is invariant under the action of a one-parameter group
of diffeomorphisms generated by a vector field £ if the Lie derivative £: £ (Y) = 0.
This means that we must have

LY (x),8,® Y (X)) = LY(X), 8y @ Y(X)). (8.61)

To proceed we detail only the case where ® refers to the Clifford product. We derive
both members of Eq. (8.61) in relation to the parameter ¢ obtaining,

.Y (x) - 0y £(Y'(x), 8,V (x)) + 8,9, Y'(x) - 05,1 &(Y'(x). 3,Y' (x))
= 9. - 3y (Y (X), 3 Y (). (8.62)

In writing Eq.(8.62) we used the fact that both members can be considered
(composite) functions of &, some chain rules for composition of multiform functions
(Sect.2.11) and that 9,0, = 9.0,. Now, we calculate both members of Eq. (8.62)
for & = 0. Noting that

Y()|,_, = Y(®), 0 Y(X)|,_, = 9:Y (). (8.63)
andate = 0,
0ex' = Y, 0:Y' (x) = 9, Y(x) = yu - 9.Y(x), (8.64)
we can write Eq. (8.62) as

3,7 -9y L(Y(x), 9, Y(x)) + 8,0, Y - 95,y £(Y(x), 0y Y (x))
= yYu - 0:.£(Y (%), 0,Y(x)). (8.65)

Now, the first member of Eq. (8.65) can be written as

0,Y - 0yL(Y(x),0,Y(x)) + 9.0, Y - 05,y £(Y(x), 8,Y(x))
=0,Y-0yL(Y(x),0,Y(x)) 4+ 0,0, Y - 05,y £(¥(x), Y (x))
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+0,Y 0,05 vL(Y(x),0,Y(x)) —0,Y - 053,y05, vy £(Y(x), 0xY (x))
=0,Y [0y £(Y(x),0,Y(x) — 095,y L(Y(x),d,Y(x)]
+ 0.:(9,, Y (95, LY (). Y ()1 (8.66)
In writing Eq. (8.66) we use the identity 3,(AB) = 8,A - B + A - 3,B, valid for
arbitrary A, B € sec C{(M, n). Moreover, to simplify the notation we write in what
follows
(33xy£(Yf(;c_)/, 9,Y(x)) = 53Xy£(Y(x), 9,Y(x)). (8.67)

Observe also that the right side member of Eq. (8.65) can be written as

Vi 0:L(Y (%), 8:Y (x)) = 3, £(Y(x), 9, Y (x))
= y" - Yu0o £(¥ (%), 0:Y (x))
= y*[0e v LY (x), 0,Y (x))]
=9y [y LY (x), 0:Y (x))]. (8.68)

Now, if we suppose that the field satisfy the Euler-Lagrange equations, using
Eqgs. (8.66)—(8.68), we can write Eq. (8.65) as

3:[((7 - 3:1) 35,y £V (1), .Y (D)1 = 7, LY (1), .Y (¥))] = 0. (8.69)
So, we conclude that associated to the Lagrangian £(Y, 9,Y) there exists a (1, 1)-

extensor field such that for any n € sec /\1 T*M — secCL(M,n), with constant
coefficients we have a (1, 1)- extensor field

T : secCL(M,n) < sec /\1 T*M — sec /\1 T*M < secCL(M, 1)
T(n) = [{(n-3xY)3a,y (Y. 9, Y))1 — n€(Y. 9, Y)]. (8.70)
such that
3, -T(y,) = 0. (8.71)
Putting 7" = T(y"), we have
9, T =-6T* =0 (8.72)
or

d«T" =0, (8.73)
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Definition 8.27 The extensor field
1 1
T : secCL(M,n) < sec /\ T*M — sec /\ T*M — secCL(M, 1) (8.74)

is called the (canonical)energy-momentum extensor field of the field ¥ €
secCL(M, 1).

Taking into account the definition of 7 (the adjoint of 7)) satisfies
[0 3T (0] -y = 82+ T(y). (8.75)
we can write equivalently.
3,37 (n) = 0. (8.76)
Remark 8.28 The T+ € sec /\1 T*M < secC{(M,n) are called (canonical)
energy-momentum 1-forms and *7T# € sec /\3 T*M — secCL(M, n) the (canoni-

cal) energy-momentum 3-forms. Note that some authors (e.g., [3]) call Tt instead
of T the (canonical) energy-momentum 1-forms.

Exercise 8.29 Show that the following conserved energy-momentum extensors
may be derived from the Lagrangians £(Y, 1Y) and £(Y, 9,AY).

@) T(n) = [(9 5,y &(x. Y. 3,Y)5(n- 3,Y)) — n€(Y. 3,LY))],

fo (8.77)
(1) T(n) = [(n- 3.Y) (8 0,y £(Y. :AY))1 — n€(Y, 3, A V)],

where 3 5_y£(Y,9,Y) = (aaﬂyéﬁz, 3XY)_.
8.5.1 Canonical Energy-Momentum Extensor of the Free
Electromagnetic Field
The Lagrangian of the Free Electromagnetic field is
(A, 3,/A) = —%(3XAA) - (3,1A). (8.78)
Using Eq. (8.77b) we get

1
Ta(n) = (n- 3,A)F+nF - F. (8.79)



346 8 A Clifford Algebra Lagrangian Formalism in Minkowski Spacetime

The adjoint of the energy-momentum extensor of the electromagnetic field is
given by

Ti(n) = dpn - Ty(b) (8.80)
1
= 0pn - (b-0,A) F + §3hnF F.
Exercise 8.30 Show that
| 1
S FnF = (n3F)SF + Sn(F - F) (8.81)
Solution:
1 1 1
(naF)JF + El’l(F -F) = 3 [(nuF)F — F(nJF)] + El’l(F F)
1 1
=1 [nFF — FnF — FnF + FFn] + En(FF)
1 1
= —EFnF + 1 [2n(F-F) 4+ n(F AF)+ (F AF)nj
+ ! (F-F)
5"
L F)+ ! A(F AF)+ ! (F-F)
= —5Fn 5" 5" 5"
1 1 -
= ——FnF = —FnF.
2 2
Exercise 8.31 Show that
|
Ta(n) = anF + [d(n - A)]JF. (8.82)
Solution: From Eq. (8.79) we can write
1
Ta(n) = (n- 3XA)_|F+§I’IF -F-(n-0,A)JF — (nuF)JF
1
+ (naF)JF + EnF F. (8.83)

Now, recalling the identity given by Eq. (4.154) we have taking into account that
d,.n = 0 we have

3,(n-A) = (n-3,)A — ni(3,1A)
= (n-9,)A — nJF. (8.84)



8.5 Canonical Energy-Momentum Extensor Field
Then,
1
Ta(n) = [0,(n- A)|oF + (noF)JF + EnF -F
1
= [d(n-A)]|oF + (noF)JF + EnF F,
and taking into account Eq. (8.81), we can also write
1 ~
Ta(n) = EFnF + [d(n-A)]JF,

which is what we wanted to show.

Exercise 8.32 Show that
t 1 =
T,(n) = EFnF — (nuF) - 9.A.

Exercise 8.33 Show that

1 1
* Ty(n) = —E(l’l_lF) A *F + EFA (naxF)—d(n-A) A xF.

Solution: First, observe that (for any n € sec /\1 T*M — secCL(M, 1)),

d(n-A) A xF = d(n-A) A Fr, = —d(n-A) A Fr,

_ _%[d(n - A)FT, + Fryd(n- A)]
= _% [d(n-A)F — Fd(n-A)]ry
= —{[d(n-A)|_F},.

Also

(muF) A %F =ni(FAxF)—F A (nux F)

= n[(F - F)t,] — F A (naFty)
and
(naF) AxF = —(nJF) A Fry

- —%[(n_nF)Ft,, + Fry(n.F)]
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- _%[(nJF)F — F(nJF)]z,
= —[(nJF)F]7,.

Then, using Eq. (8.85) and the identities just derived above, we can write
1
*Ty(n) = % I:(nJF)JF+ EnFF +d(n -A)]4Fi|
1
= —(F) A *F + 3n(F - Pyt + {{d(n- A)LF),
1 1
= —(nuF) A xF + E(n_‘F) A *F + EF Amax F)+{[d@n-A)|.F}T,
1 1
= _E(nJF) A *F + EF A (max F) +{[d(n-A)].F}T,
1 1
:_E(HJF)/\*F+ EF/\(nJ*F)—d(n-A)/\*F. (8.91)
Remark 8.34 We easily verify that 7" = T(y*) - y" is not symmetric, but

1 1 -
Tap(n) = E(FF)n + (nuF)JF = EFnF, (8.92)

called the Belinfante energy-momentum extensor is symmetric. The non symmetric
part is also gauge dependent, but as can be easily verified the term d(n_A) A *F in
*xT4(n) can be written as an exact differential, since taking into account that d x F =
0 we have

d(niA) A xF =d(n-A) A xF
=dn-AAxF)+n-And*F
=d(n-A A *F). (8.93)
So, the gauge dependent term does not change the computation of the energy-
momentum of a free electromagnetic field, but as we are going to see, it has a crucial
role in the computation of the spin of the electromagnetic field and consequently in

the law of conservation of angular momentum. This important issue is not discussed
appropriately in textbooks.
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8.5.2 Canonical Energy-Momentum Extensor of the Free
Dirac-Hestenes Field

The Lagrangian for the (representative) of a free Dirac-Hestenes spinor field ¢ €
sec( A T*M + N> T*M + \*' T*M) is

Lo(, 0x9) = (xiys) - —myp - ¢, (8.94)

In this case, we get from Eq. (8.70) the energy-momentum extensor of the Dirac-
Hestenes field which, once we take into account that for any solution of the ELE
associated to £y(, 3,¥). We have,

Ty(n) = ((n- 3:9)3a.4 Lo(W (. 3.:¥))1 — nLo(¥, V)
= —((n- 9, Y)iys¥)1. (8.95)

This extensor is called the free Tetrode energy-momentum extensor of the Dirac-
Hestenes field.

8.6 Canonical Orbital Angular Momentum and Spin
Extensors

In this section we show that the global rotational invariance of the Lagrangian of
a Clifford field Y = X € secC{(M, n) or of a representative of a Dirac-Hestenes
spinor field, Y = ¢ € secC{(M, n), implies the existence of a conserved (2, 1)-
extensor field. From the possible Lagrangians £y(y, 3, ® V), we detail only the
calculations for the case where ® refers to the Clifford product and Y is a Clifford
field. For the other cases, we give only the final results.

By rotational invariance here we mean that the Lagrangian is invariant by
diffeomorphisms in Minkowski spacetime generated by one-parameter group of
diffeomorphisms of M generated by the six vector fields &) € sec TM such that

0
—, a,f=0,1,23, (8.96)

0
S S
§ap) = NagX o5 = NpeX" 5 ¢

which close the Lie algebra of the homogeneous Lorentz group. As we already

learned in Sect. 8.3, the representation of a diffeomorphism in M (generated a
rotation by ¥ in the fixed direction £(,,)) can be written as

_ 2 2
Xt x = e VNI xelu Mg (8.97)

with x = x*(e)y, and X' = x#(¢')y, = X y,.
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Recall that for any Clifford field X € sec C£(M, n) or representative of a Dirac-
Hestenes field ¥ € secCL® (M, n) their pullbacks X' € secCL(M,n), V' €
sec C£© (M, ) under a diffeomorphism generated by &,,, satisfy

X'() =X, ¥'(x0) =y ). (8.98)
and according to Eq. (8.34) we have,

(@) X'(x) = eV AW DX (x)eTAWE)

(b) w/(x) = g(yﬂ/\)/v%)l//(x/). (8.99)

Then, we must have
L£(Y' (x),0,Y () = £(Y(¥'), 9, Y (x)), (8.100)
forY =XorY = . Since x = VA D)y VA D) | we can write

3y Y (x) - Iy £(Y' (x), 3,Y' (x)) + 9,09 Y (x) - 3,y £(Y' (%), 8, Y (x)) (8.101)
= 0yx -0, L(Y (X)), 0, Y(X)).
Next, we evaluate in details both members of Eq. (8.101) at # = 0 for the case

Y = X (Clifford fields). The result for a Dirac-Hestenes spinor field will be given in
the next subsection. We need the results

0px'[y_g = 23 (Yu A1)

1 1
05X,z = (57 A X E) +3507 A 1) - LX) = 570 A X))
¥=0

= (Yu A yo) X X)) +x3(yu A ) - 0.X(x), (8.102)

where we recall that (y,, A ) x X = [(yu A p). X].
Now, the first member of Eq.(8.101) (Y = X) at & = 0 can be written as a
divergence, i.e.,

9 X (x) - I £X'(x), 3:X'(x)) + 3,09 X' (x) - 05,0 S(X' (%), 3. X' (x))] 5,
=8, (09X (0)] ,_y 0,0 SX(x), X ()1

=8 ([(yu A 1) X X(2) + x3(7 A 7o) - 3:X(0)]daxr £X (x), 9X ()1,
(8.103)
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and for the second member we have

819)6/ ' ax’S(X(x/)s ax’X(-x/))|19=0 = X4 ()/M A J/u) : aX'g(X(-x)s axX(x))
=0, [x1 (Vu A yv) £(X(x),9:X(x))]. (8.104)

Then, we get

- fea (v A ) £(X, 8:X)]
— 3 [{[(7u A ) X X+ x2(yu A ) - X095,y S(X, 9.1 = 0. (8.103)

Equation (8.105) implies that there exists a conserved (2, 1)-extensor field,

Jx 1 secCL(M, n) <= sec /\2 ™ — /\1 T*M — secCL(M, 1), (8.106)
Jx(B) = x2(B) £ — ([B X X + x1B- 8,X0; x£])1. (8.107)

such that with B € sec /\2 T*M — secCL(M, n) a constant biform
9, -Jx(B) = 0. (8.108)

Definition 8.35 The (2, 1) extensor field Jx given by Eq.(8.107) is called the
canonical angular momentum extensor of the field X € sec C£(M, n).

Exercise 8.36 Show that adjoint extensor of Jx(B), i.e., the (1, 2)-extensor J;(n),
n € sec /\1 T*M with constant coefficients is given by

I (n) = dpn - Ix(B)
= Ty(n) Ax + (X x 05 x£(X. 3.X)n),. (8.109)
Exercise 8.37 Show that
an-0.Jh(n) = 0. (8.110)

Remark 8.38 Sometimes, the (1, 2)-extensor

2 1
Jj( 1secCL(M, n) < sec/\ ™ — sec/\ ™ — secCL(M, n),

I = Th(n) Ax + (X(x) x 05 xL(x. X, 8, X)n),. (8.111)

instead of Jx is called the canonical angular momentum extensor of a multiform

field X € secC£(M, n). We use that wording indifferently since this will generate no
confusion.
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Equations (8.109) and (8.110) suggests the

Definition 8.39 The orbital angular momentum extensor and the spin extensor of
the field X € sec C£(M, i) are respectively

Li(n) = Ty (n) Ax, (8.112)
with x = x*y, and
SH(n) = (X(x) x 3, x£(x, X, 3,X)n),. (8.113)

Exercise 8.40 Show that the adjoint of S;(n), i.e., the (2, 1)-extensor field Sx(B)
such that SL(n) = dpn - Sx(B) is given by

Sx(B) = —((B x X)d3,xL£(x, X, 3.:X))1. (8.114)

Now, take B = y* A y,,.

Definition 8.41 The six Sx(y* A y,) = S' are called spin 1-form fields of the
field X and the six *S’:X are called spin 3-form fields (densities) of the field X.

As promised, we give next the angular momentum and spin extensors for
Lagrangians of the types (a) and (b) in Proposition 8.24, i.e., £(x, Y, d,.Y) and
L(x,Y,d,AY), and also for the case of the Dirac-Hestenes spinor field £(x, ¥, 9.,1).

8.6.1 Canonical Orbital and Spin Density Extensors
Jor the Dirac-Hestenes Field

For the case of a Dirac-Hestenes field ¥ € secCL (M, n), repeating the cal-
culations done in the previous section, we find the following conserved angular
momentum extensor

300 = T} Ax+ (395,020 v:3.9m):. (8.115)

The density of orbital angular momentum and spin extensors for the Dirac-
Hestenes field are respectively,

Li,(n) = T} (n) A x (8.116)
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and
i 1 5
8y (n) = (59 9.y L(x. ¥ 8:9)n):
1, . - 1,
= 5(1#1)/3%)2 = E1(s A ). (8.117)

Definition 8.42 The bilinear invariant

s =Yy (8.118)

is called the spin covector of the Dirac-Hestenes field.

Exercise 8.43 Show that the adjoint of the canonical (1, 2)-extensor S]; (n) of the
Dirac-Hestenes field is the (2, 1)-extensor field Sy given by

1 .
Sy(B) = (5BY + (x3B)da.y LY. d:9)n)1. (8.119)

8.6.2 Case £(X, 3,.X)

In this case, calculations analogous to the ones of the previous sections give

Sx(B) = —(da,.x£(X, 3,2X) (B x X)), (8.120)
and
1 ~ ~
Sk(n) = 5 (X % D, 806, X, 8, 5X)n — X x 0y, x $(X. 8,2X)) . (8.121)

8.6.3 Case £(X,d.AX)

In this case we obtain,

Sx(B) = —((B x X)0y rxL(x. X,d AX))1, (8.122)

Sh(n) = = (X x g AxLX. 5 AX)n+ X X ndg xLX, 85 A X)a. (8.123)

| =
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8.6.4 Spin Extensor of the Free Electromagnetic Field

In this case, using the Lagrangian given by Egs.(8.47) and (8.123) we get
immediately,
§ 1 ~ - -
S (n) = _E(A X Fn+ A X nF),
=(AXFin)y =AAFLn
= nmiF)ANA
=niAANF)—(n-AF (8.124)

This formula shows that the spin density of the electromagnetic field is indeed
gauge dependent and we think that it is just here that the reality of A becomes
apparent.’

Exercise 8.44 Show that

* Sa(y" Ay") = #8" = «[(AL(y" A y"))aF] (8.125)

8.7 The Source of Spin

We showed that for any Clifford field X € secC{(M,n) or representative ¢ &
sec C£© (M, n) of a Dirac-Hestenes spinor field there exists a (1,2)-extensor field
Ji(n) = TT(n) A x + ST (n) such that 9, - 3J"(n) = 0. Recalling Definition 2.54 that
says that bif (T) = T(y") A y,) we can write

an : axJT(n) = an : aX[T7L (n) AX+ ST (I’l)]
=y [0, TT(n) + T () A B,x] + 3, - 3,ST(n)
=0, -0, TT(n) + bif (T") + 9, - 38" (n) = 0. (8.126)
Taking into account that d,, - 3,77 (1) = 0 we get the fundamental result
3, - 9,8T(n) = —bif (T"), (8.127)

which says that ST(n) alone is not conserved when the energy-momentum extensor
is not symmetric, its source being —bif (T").

SWe observe that this density of spin is analogous to the corresponding one used in Relativistic
Quantum Field Theory, which is also gauge dependent. See, e.g., the discussion in [1].
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8.8 Coupled Maxwell and Dirac-Hestenes Fields

In this case, the Lagrangian for the coupled system of fields is:

- 1
LW 3:9.A.8,4) = (Yiys) - ¥ — A~ (q¥yoy) —my - ¥ — S(3:AA) - (3:7A).
(8.128)

Our Lagrangian depends then on two dynamic fields, A and v, which is a
combination of Lagrangians of types (a) and (c). A straightforward computation
gives as equations of motion for the dynamic fields

(@) 3x¥y2y1 —myryo — eAy = 0,
(®) 0.F =1, (8.129)

This is a nonlinear system of partial differential equations, since
Jo = eyyov. (8.130)

Also, a straightforward computation gives for the energy-momentum extensor of
the coupled fields

T(n) = ((n- 859)iys¥)1 + (n- 3xA)JF+%nF F
= Ty(n) + Ta(n), (8.131)

which is the sum of the energy-momentum extensors of the free Dirac-Hestenes and
free electromagnetic fields. We show below that there exists an extensor field, called

Tetrode extensor field T;m (n), with
Tror(n) = Ty (n) — (n-J,)A, (8.132)
such that
By - 95T, (n) = FLIL. (8.133)

Exercise 8.45 Show that

(i) bif(T},) = —18.is = Lid.As,
(i) Trer(n) = Thyp(n) = nbif (T},,,), (8.134)
(iii) By - 3,T), (n) = 0, - 3, Treur(n).
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Solution: We show (i). From the Dirac-Hestenes equation (Eq. (8.54)) we have
[Bxyiysly —my — eAyryois = 0. (8.135)
Now,
0, (Yiysyh) = 0, Yiys ¥ + Yiysd, (8.136)

and taking into account the notable identity valid in the spacetime algebra which
says that for any odd ¢ € Ry 3, (¢)1 = %(c + ¢) we have

s 1 _ _
(0, ¥iy3¥)1 = E(a;ﬂﬁ)’sw — Yiy30,9) (8.137)

and then

1 ~ ~ ~
5 0:Wiysy) + ¥ (uyiysy)i = [8.yiys]y. (8.138)

Using Eq. (8.136) in the second member of Eq. (8.138) yields
1 ~ ~
5 8:(0s) + (A viysyh = Ale + my v, (8.139)

where J, = elﬂyol/} is the electromagnetic current and s = 1//)/31} is the spin
covector field introduced in Eq. (8.118). Note also that the (), part of Eq.(8.139)
yields

1 -
S 35ais) + ¥ A @upriysPh = AN . (8.140)
Now,
bl..f(T;etr) = _bl..f(TTetr) = )/M A TTetr(V“)
=y A ((3;1%)/31;)1 — Yu-Al)
= yP A (0 Piys ) —A A,

1 1
= 59:(is) = JideAs, (8.141)

and (i) in Eq. (8.134) is proved.
To prove Eq. (8.133) we start from the conservation of T'(n),

3y - 3,Ty(n) + 0 - 8,Ta(n) = 0. (8.142)
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‘We have,
1 -
Op - 0,T4(n) = 0, - 3x(§FnF — (nJF) - 3,A). (8.143)
Moreover,
1 . 1 - - -
Op + 3x§FnF = E)/" - 0u[(0, F)nF + F(0,n)F + Fnd,F]
1 — -
= E(axFF+F3xF)
1
= E(]eF —FJ,) =J.JF. (8.144)
Also,

0y - 0c(naF) - 8,A) = Y - 0,[(0unaF) - 0,A + (n10,F) - 3,A + (nuF) - 0,0.A]
= (y*20,F) - 3.A + (y'oF)-9,0,A
=J,-0,A
1
=0, JA+J,- aXEA
=y [(0ude)A + J.(0,4)] -y - 0,[(0um) A + 1+ (0,]0)A
+n-J.(0,A)
= 0, - 0(n-J,)A. (8.145)
Using Eqgs. (8.144) and (8.145) in Eq. (8.142) gives
0 - 0,[Ty (n) — (n-J)A] = FoJ.. (8.146)
Finally taking into account (iii) in Eq. (8.134) we get
0 - 0,[Ty (n) — (n-J)A] = FoJ, (8.147)

which we recognize as Eq. (8.133).

Remark 8.46 This equation says that even if the Dirac-Hestenes field is moving in
aregion where F = 0, but A # 0 the consideration of the coupling term —(n - J,)A
is necessary in order for energy-momentum conservation to take place. Of course,
this is related to the well known Bohm-Aharonov effect.
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Exercise 8.47 Show that J},,(n) = T}, (n) Ax + S}, (n)

Oy - 3T} 0(n) = (FLJ )Ax. (8.148)
Exercise 8.48 Show that Jya(y" A y,) = J,,,, satisfy

dx Jyya ==+ ALFLI )AL - (" A )} (8.149)
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Chapter 9
Conservation Laws on Riemann-Cartan
and Lorentzian Spacetimes

Abstract In this chapter we examine in details the conditions for existence of
conservation laws of energy-momentum and angular momentum for the matter
fields of on a general Riemann-Cartan spacetime (M,g,V, 7, 1) and also in the
particular case of Lorentzian spacetimes 9t = (M, g, D, t,, 1) which as we already
know model gravitational fields in the GRT [3]. Riemann-Cartan spacetimes are
supposed to model generalized gravitational fields in so called Riemann-Cartan
theories. In what follows, we suppose thatin (M, g, V, 7, 1) (or 1) a set of dynamic
fields live and interact. Of course, we want that the Riemann-Cartan spacetime
admits spinor fields, and from what we learned in Chap. 7, this implies that the
orthonormal frame bundle must be trivial. This permits a great simplification in our
calculations. Moreover, we will suppose, for simplicity that the dynamic fields ¢*,
A = 1,2,...,n, are in general distinct r-forms,' i.e., each ¢** € sec \" T*M —
Cl(M,g), for some r = 0,1,...,4. Before we start our enterprise we think it is
useful to recall some results which serve also the purpose to fix the notation for this
chapter.

9.1 Preliminaries

9.1.1 Functional Derivatives on Jet Bundles

Let J'(/\ T*M) be the 1-jet bundle? over A\ T*M < CL(M,qg), i.e., the vector
bundle defined by

TN\ T*M) = UXGMJ; (/\T*M). 9.1)

I'This is not a serious restriction in the formalism since we already learned how (given a spinorial
frame) to represent spinor fields by sums of even multiform fields.

%For the definition of jet bundles and notations see Sect. A.3.1.
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Then, with each local section ¢ € sec AT*M — secC{(M,g)} we may
associate a local section j(¢) € secJ'(A T*M). Let {62}, 6* € sec /\1 T™*M —
secCl(M,g),a = 0,1,2,3, be an orthonormal basis of 7*M dual to the basis {e,}
of TM and let i € sec /\1 T*M < secC{(M,g) be the connection 1-forms of
the connection V such that V. e, = w{je.. We introduce also the 1-jet bundle
JHAT*M)" 2], e,

TNT M) = Ui (N\TMx \NTM x ... x \T*M) 9.2)

over the configuration space (/A T*M)"t? — (C&(M,g))""? of a field theory
describing n different fields ¢* belonging to sections of A 7°M < C{(M,g) on
a RCST, where for each different value of A we have in general a different value
of p. We denote sections of J'[(/\ T*M)" 2] by j; (6*, »f, ¢) or when no confusion
arises simply by j; (¢).
A functional for a field ¢ € sec A T*M < secCL(M,qg) in JY(A\T*M) is a
mapping F : secJ! (/\ T*M) — sec \ T*M, ji1(¢p) — F(ji1(9)).
A Lagrangian density for a field theory described by fields ¢* € sec A T*M,

A =1,2,...,nover a Riemann-Cartan spacetime is a mapping
4
L,y < secJ! [(/\ T*M)"? — sec/\ T*M, 9.3)
J1(0*. 05, ) = Ln(j1(67, w3, 9)). 94)

Remark 9.1 When convenient and context is clear, we eventually use instead
of L,(ji(60* wi,¢)) the sloppy notations L, (x,0% d0* b, dwy, ¢,dp) or
L(0*,d0* wf, dol, ¢,dp) when the Lagrangian density does not depend
explicitly on x, or simply £,,[¢] and even only L,,. Moreover, in the calculations
done below L, (0% d0% o}, dwl, ¢,d¢p) will be considered as a multiform
functional of the field variables (6%, d0%, v, dwi, ¢, d¢).

9.1.2 Algebraic Derivatives

Definition 9.2 Let X € sec \” T*U. A multiform functional F of X (not depending
explicitly on x € M) is a mapping

F : sec /\pT*U — sec /\rT*U

Let w := §X € sec \" T*U. Write the variation of F in the direction of X as
the functional §F : A" U — A" U given by

s — qiy FOCH28X) — F(X).

A—0 A (95)
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Remark 9.3 The algebraic derivative of F relative to X is given by

dFr
SF :=686X N —. 9.6
/\dX (9.6

Remark 9.4 We recall (see Remark 2.99) that % is related dxF defined in Chap. 2,
but take into account that these objects in general differ. See Remark 2.99.

dF

Remark 9.5 Sometimes, even if ' depends only on X we write g—g instead of 7,

i.e., we write Eq. (9.6) as

oF
SF :=86X N —. 9.7
Nax 9.7

When a functional depends on two independent variables, e.g., K(X, Y) we define
the (partial) derivative g_l; by

0K
K=6XN_—. .
dx SX A e (9.8)

Moreover, for a composed functional F o G(X) = F(G(X)) we gave the chain
rule::

0 0G OF

and for a functional L7 (X", G¥(X")) where the superindices indicates here the grade
of the object, we have immediately

. _ o IG* N
dxr  axr = axr ' Gk

(9.10)

Moreover, let X € sec A\’ T*U. Given the functionals F : sec A" T*U —
sec \"T*U — and G : sec \'T*U — sec /\'T*U the variation § satisfies

§(FAG)=8FAG+FASG, 9.11)

and the algebraic derivative (as is trivial to verify) satisfies

9 OF G
—(F = — —1)PF A —. 12
g FAG) =5 NG+ (E)TF A (9.12)

Another important property of § is that it commutes with the exterior derivative
operator d, i.e., for any given functional F

d8F = édF. (9.13)
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In general, we may have functionals depending on several different multiform
fields, say, F : sec(A’T*U x \!T*U) — sec \'T*U, with (X,Y) — F(X,Y) €
sec A\"T*U. In this case, we have:

oF oF
SF=86XAN—+8Y A 9.14
A X + A 9.14)

We are particularly interested in the important case where the functional F is such
that F(X,dX) : sec(N'T*U x N'T'T*U) — sec A*T*U, (X.dX) — F(X,dX).
Supposing that the variation § X is chosen to be null on the boundary W, U cU

(or that aad—l; \ = 0) and taking into account Stokes theorem, we can write defining

F:j'(X) = Rby

F(X) = /U/F(X) (9.15)
that
SF(X) = /U/SF(X) = / SX A 271; + 8dX A ai;
[ [ crpa(ZE)] oo 25)
/U/SX/\ [g—F —(—1 )Pd(ailF )} +/3U/8XA;TI;(
U/SX/\ %, (9.16)
where

9.17)

§F(X) 3£_ Ciya( 2
5 (7ax)

with 82 : sec(\’T*U x AT T*U) - N\*PT*U called the functional derivative®
of F.

3We observe that some authors (e.g.,[1, 7, 11]) denote — (=1)rd ( ) by L something we
also did in the first edition of our book.
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9.2 Euler-Lagrange Equations from Lagrangian Densities

The principle of stationary action, is here formulated as the statement that the
variation of the action integral (see Eq.(8.24)) written in terms of a Lagrangian
density £,,(j1(0%, 0%, ¢)) is null for arbitrary variations of ¢ which vanish in the
boundary dU of the open set U C M (i.e., §¢|y, = 0)

SA@) =8 /U Lo(1(6% 0. ) = /U SLu(H(6 0% ) =0.  (9.18)

Using Eq. (9.17) gives immediately

8A(¢)=/US¢/\%$) (9.19)
where
CBA@) . ALu@®) L, (Ln(d)
* X (p) = ) = P ( 1)d( 3dp ) (9.20)

is known as the Euler-Lagrange functional for the field ¢ Since §¢ is arbitrary in
Eq. (9.19), the stationary action principle implies that

*X(p) =0,

is the corresponding ELE for the field ¢.

We recall also that if G(jj(¢)) € sec A\’ T*M is an arbitrary functional and
0 : M — M a diffeomorphism, then G(j;(¢)) is said to be invariant under o if
and only if 0*G(ji(¢p)) = G(ji(p)). Also, it is a well known result that G(j;(¢))
is invariant under the action of a one parameter group of diffeomorphisms o; if and
only if

£:G(j1(4)) =0, (9.21)

where £ € sec TM is the infinitesimal generator of the group o;.

As an example, the Lagrangian density for the electromagnetic field generated by
a current J, € sec /\l T*M — secC{(M, g) in a Riemann-Cartan spacetime where
F=dA, A € sec /\l T*M — secCL(M,g) is

1
Lan(A) = —5F A+F = J. AA, 9.22)

The ELE (see Exercise 9.15) gives 6F = —J, and since dF = 0 we have Maxwell
equations

dF =0, 0F = —J,. (9.23)
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9.3 Invariance of the Action Integral Under the Action
of a Diffeomorphism

Proposition 9.6 The action A() for any field theory formulated in terms of fields
that are differential forms is invariant under the action of one parameters groups of
diffeomorphisms if L,,(j1(0*, w%, ¢))|8U = 0 on the boundary of dU of a domain
UcCM.

Proof Let L,,(j1(0*, 03, ¢)) be the Lagrangian density of the theory. The variation
of the action which we are interested is the horizontal variation, i.e.:

81AW®) = — /U £ L (1 (6%, 0%, 9). 9.24)
Let
1
£ =g(€) esec \ T*M < secCl(M. g). (9.25)

Then we have (from a well known property of the Lie derivative) that

£eLn(j1(0%, 0%, @) = d[E* 2L (j1(0, 0y, §))] + E*L[dL, (1 (07, @, 9))].
(9.26)

But, since L, (j1(0*, 0, $)) € sec /\4 T*M — secCl(M,g) we have dL,, = 0
and then £:£,, = d[£* .L,,]. It follows, using Stokes theorem that

/£g£m(j1(9"‘,w.1;,¢)) =/d[E*J£m(j1(93,w."{;,¢))]
U U
= / E*1Ln(j1(0%, 0§, ¢)) =0, (9.27)
U

since L,,(¢)|;3y = 0. W

Remark 9.7 1t is important to emphasize that the action integral is always invariant
under the action of a one parameter group of diffeomorphisms even if the corre-
sponding Lagrangian density is not invariant (in the sense of Eq. (9.21)) under the
action of that one parameter group of diffeomorphisms.

9.4 Covariant ‘Conservation’ Laws

Let (M.g,V, 1. 1) denotes a general Riemann-Cartan spacetime. As stated above
we suppose that the dynamic fields ¢>A, A = 1,2,...,n, are r-forms, i.e., each
¢t € sec \'T*M — secCL(M, g), forsome r =0, 1,...,4.
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Let {e,} be an arbitrary global orthonormal basis for TM, and let {62} be the dual
basis.* We suppose that 62 € sec /\1 T*M — secC{(M, g). Let moreover {0,} be
the reciprocal basis to {#?}. In Chap. 4 we learned how to represent the gravitational
field using {#?} and how to write Einstein equations for such objects.’

Here, we make the hypothesis that a Riemann-Cartan spacetime models a
generalized gravitational field which must be described by {6%, w%}, where w¥
are the connection 1-forms (in a given gauge). Thus, we suppose that a dynamic
theory for the matter fields ¢* € sec /\" T*M is obtained through the introduction
a Lagrangian density, which is a functional on J'[(/A T*M)>™"] as previously
discussed.

Active local Lorentz transformations are represented by even sections of the
Clifford bundle U € sec Spin‘f,3 (M) — sec CE(O)(M, g), such that UU = UU = 1,
i.e., U(x) € Spin{; =~ SI(2,C). Under a local Lorentz transformation the fields
transform as

0% > 0 = UB*U™" = AjO",
o} = oy = AwG(ATHY + AATD, (9.28)
¢)A — ¢/A — U¢)AU_1,
where Aj(x) € SOf;. In our formalism it is easy to see that £, (6%, wj, )

is invariant under local Lorentz transformations. Indeed, since 7, := 05 =

0°916%03 € sec /\4 T*M < sec C{(M,g) commutes with even multiform fields,
we have that a local Lorentz transformation produces no changes in £,,(6%, 0¥, ¢),
ie.,

L (0%, 0%, ¢) = UL, (0%, 0%, $)U™" = L,,(6*, 0%, ¢). (9.29)

However, this does not implies necessarily that the variation of the Lagrangian
density £,,(6*, w, ¢) obtained by variation of the fields (6%, w, ¢) is null, since
8, Ln = L,(0% + 8,0, 0f + 8y0), ¢ + 8,¢0) — L,(0%, @i, ¢) # 0, unless it
happens that for an infinitesimal Lorentz transformation,

L, (0% +8,0% i + 8,0%,¢ + 8,¢) = L, (UPPU", UoZU", UpU™)
=UL U =L, (9.30)
As we just showed above the action of any Lagrangian density is invariant under

diffeomorphisms. Let us calculate the total variation of the Lagrangian density £,,,
arising from a one-parameter group of diffeomorphisms generated by a vector field

“In this Chapter boldface latin indices, say a, take the values 0, 1, 2, 3.

3 A Lagrangian density for the {#2} for the case of GRT will be introduced in Sect. 8.5 and explored
in details in the next Chapter.
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€ € sec TM and by a local Lorentz transformation, when we vary 6%, %, ¢*, d¢*
independently. We have (recalling Eq. (8.30))

8L = 8,Lo —£:L0. 9.31)

In what follows we suppose that the Lagrangian of the matter field is invariant
under local Lorentz transformations,’ i.e., §,£,, = 0. Now, note that £,, depends
on the 62 due to the dependence of the fields ¢* on these variables and on the
¥ because eventual covariant derivatives of the fields ¢* must appears in it. We
suppose moreover that £,, does not depend explicitly on d6? and dw¥,. Then

ALy, . 0Ly §A(9)
8L, = —£:L, =80 A —— + 8wk A St A — 9.32
= —£:0* A *To — £c0fy A *J2 — £:¢" A *Zy, (9.33)
where xX, = 3;};;1)) are the Euler-Lagrange functionals of the fields ¢ and we
have:

Definition 9.8 The negative of the coefficients of §6* = —£:6?, i.e.

9L, 3
* Ty =—xTy:= ~3g € sec/\ "M (9.34)
are called the energy-momentum densities of the matter fields, and the T, = =72 €
sec /\1 T*M are called the energy momentum 1-form fields of the matter fields. The
negative of coefficients of §w} = —£:0%, i€,
oL 3
b _ b __ m *
*JP=— P = ok € sec [\ T*M. (9.35)

are called the angular momentum densities of the matter fields.

Taking into account that each one of the fields ¢* obey a Euler-Lagrange
equation, *X 4 = 0, we can write

/8/:,,, = —/£E£m = /*7; AEO* + « TP A Lol . (9.36)

Now, since all geometrical objects in the above formulas are sections of the
Clifford bundle, recalling Eq. (4.61), we can write

£§Qa = £%1d0* + d(E* 10%). (9.37)

6We discuss further the issue of local Lorentz invariance and its hidden consequence in [5, 28].
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Moreover, recalling also the first Cartan’s structure equation,
do* + i A O° = @, (9.38)
we get
£:0° = E*10% — €%, (0 A O°) + d(E* 0%
= £.0" — (5" - 0f)0° + (£ - 0°) 0y + d(E7 167
= D(E*10%) + £* L0 — (£* - 03)0", (9.39)

where D is the covariant exterior derivative of indexed p-form fields introduced by
(Eq. (4.118)). To continue we need the following

Proposition 9.9 Let w be the 4x4 matrix whose entries are the connection 1-forms.
For any x € M, §* Jwy € spinj 3 >~ sl(2, C) = sof 3, the Lie algebra of Spinf 5 (or
of SO ;).

Proof Recall that any infinitesimal local Lorentz transformation (at x € M) A} €
SOf ; can be written as

Ay =8+ x5 |l <1,

Xab = —Xba- (9.40)

Now,
E o} = €7 (Lig,0°) = (8a0%) - (L0
=" 9.41)
and we see that £* - wy satisfy
5* *+ Wap + 5* * Wha = gc(Lacb + Lpea) = 0, (9.42)

since in an orthonormal basis the connection coefficients satisfy Lachy = —Lpca- We
see then that we can identify if |£¢| << 1

Ay = —E" oy (9.43)

as the generator of an infinitesimal Lorentz transformation, and the proposition is
proved. H

Now, the term — (g* . a)ab) 6" has the form of a local vertical variation of the 62
and thus we write

8,0% := — (£ - 0¥) 0" = x40° (9.44)



368 9 Conservation Laws on Riemann-Cartan and Lorentzian Spacetimes

Using Eq. (9.44) we can rewrite Eq. (9.39) as
£:0° =D(E"-0") + £, 4+ 8,0%. (9.45)
We see that £:6* = §,0? only if we have the following constraint
D(§* - 6*) + £*.0% = 0. (9.46)
A necessary and sufficient condition for the validity of Eq.(9.46) is given by
Lemma 9.11 below.
Now, let us calculate £: % . By definition,
£r0% = £*4(dof) + d(E - o)
=§"0(RY) — (7 - 0d)ofy + (E* - 0ol +dE - o), (9.47)

where in writing the second line in Eq.(9.47) we used Cartan’s second structure
equation,

dofy + 0% No§ =RY. (9.48)

Under an infinitesimal Lorentz transformation A = 1 + y, recalling Eq. (9.28), we
can write (in obvious matrix notation)

Sy = —dy + yo — oy, (9.49)
which using Eq. (9.43) gives for Eq. (9.47)
Lewl = EXU(RY) + 8,03, (9.50)
Now, for a vertical variation we have:

8L,
A’

/sv,cm = /svea A + 8,0f A —= + 8" A (9.51)
U U b

002 !

Then, if we recall that we assumed that [ §,£,, = 0 and if we suppose that the field

equations are satisfied, i.e., xX 4 = i.g/”; = 0, Eq. (9.36) becomes,

/85,,, = —/£E,cm = /*7; AEO* + % TP A £ . (9.52)
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Then
—/£gcm _ —/ [DE*-6%) + (£*.0%) + 8,6°] A +Ta
[ + si0k] 1
- / WTa A (E20Y) + *T¥ A (E*2(RY)
DT - 6N — (D« T)E" - 6%)

_ / STa A (E* 20" 4 % T A (E*S(RE) — (D  To) (6 - 6%)
(9.53)

where we used that D[(§* - 0%) » T,] = d[(§* - 0%) » T,)], that xT,|;, = 0 and

/ dI(E" - 0%) « Tl = / (€ 0%) « Ty = 0. (0.54)
U U

Now, writing £* = £20, = £,0?, and recalling that the action is invariant under
diffeomorphisms we have (if as usual we suppose that L,, |5, = 0):

/8£m = — / £:L,, = [*7; A (0..0%) + *Ja',b A (B.aR5) —D * 72] £ =0,

(9.55)
and since the &€ are arbitrary, we end with

D * 7o + *xTa A (0c20®?) + x T2 A (B RE) = 0. (9.56)

Also, using the explicit expressions for 6,0 and §,wj given by Eqgs.(9.44)
and (9.50) in Eq. (9.51) for f 8§, L, we get,

/ *Ta A XSO+ +T0 A (0§ — oF X5 — dif)
1
= / |:§ (*7;/\9"—*Tb/\93)—d*ﬂ?—w$A*$?—*J§'Aw2':| pet
—o. (9.57)

and since the coefficients y% are arbitrary we end with

D Jr + % (¥T° A Oy — xTa A 6°) = 0. (9.58)
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Equations (9.56) and (9.58) are known as covariant conservation laws [3]. They
are simply identities that follows from the hypothesis utilized, namely that the theory
is invariant under diffeomorphisms and also invariant under the local action of the
group Spinj ;. Equations (9.56) and (9.58) do not encode genuine conservation laws
and a memorable number of nonsense have been generated along the years, by
authors that use in a naive way those equations. Some examples of the nonsense
is discussed in the specific case of Einstein’s theory in Sect. 8.7.

9.5 When Genuine Conservation Laws Do Exist?

We show now that when the Riemann-Cartan spacetime (M,g,V, 1., 1) admits
symmetries, then Egs. (9.56) and (9.58) can be used for the construction of closed
3-forms, which then provides genuine conservation laws for the matter fields. We
present that result in the form of the following [3]

Proposition 9.10 For each Killing vector field § € sec TM, such that £:.g = 0 and
£:0 = 0, where ® = e, ® O is the torsion tensor of V, and ©? the torsion 2-forms,
we have

d[(E"-6%) * Ta+ (65 - Le67) » T3] = 0, (9.59)

where Lg = £* 1D + Di is the so called Lie covariant derivative.

In order to prove the Proposition 9.10, we need some preliminary results, which
we recall in the form of lemmas.

Lemma 9.11 £:0* = 6,0 and £:0} = 8,03 ifand only if£:g = 0 and £:0 = 0.
Proof Let us show first that if £:0* = §,0? then £;g = 0. We have

£c¢ = Nap (£66%) ® 0° + nant® ® (£:6°). (9.60)
On the other since g is invariant under local Lorentz transformations, we have
8,8 = Nap (6,0%) ® o° + Napf?® ® (8v9b) =0. (9.61)

Then, it follows from Eqs. (9.60) and (9.61) that if £:0% = §,0? then £;.g = 0.
Taking into account the definition of Lie derivative we can write

£re, = —}f.l;eb, £:0% = xf{,’@b,

xy = [ea(”) — E™Onl. (9.62)
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Now, if £:g = 0 we have from Eq. (9.60) that (ncb}f,ca' + nac}fﬁ;) 0* @ 6 = 0,
i.e., in this case we need to have

Hap + Hpa = 0, (9.63)
and then it follows that for any x € M, ., € spin{ ;. Using Proposition 9.9 and
identifying x§ = x5 = —&* - wj the vertical variation can be written as §,0* =
£:02.

The proof that if £;w} = §,w], then £:0 = 0 is trivial. In the following we
prove the reciprocal, i.e., if £:0 = 0 then £¢wj, = §,03. We have,

£:0 = £re, ® O" + e, ® £:0" (9.64)
Then, if £:0 = 0 we conclude that
£:0" = £30", (9.65)
which is an infinitesimal Lorentz transformation of the torsion 2-forms. On the other
hand, taking into account Cartan’s first structure equation, Eq. (9.62) and the fact
that £:d0* = d(£:60%), we can write
£:0% = £:d0° + £:0% A O + 0% A £:60°
=d (330°) + £:0f A O° + 0f A x%6°
=d(x5) A 0" + 15d0° + £l A O° + xhwf A 0" (9.66)
Also, using Eq. (9.65) we have
£:0% = y3d0” + ryol A6, (9.67)
From Eqgs. (9.66) and (9.67) it follows that
£:0% A O° = yEo§ AO° — xhof A 0° —d (x%) A6, (9.68)
or
£ewfy = Yooy — Xp0l —dx - (9.69)
Thus, recalling Eq. (9.49) we finally have that £:0% = §,w}. B

Corollary 9.12 For any x € M, 6y - L:0* is an element of spin{ ;, if and only if,
£gg =0.
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Proof The Lie covariant derivative of 6? is given by

L0* = £* D6 + D (£* - 6°)
=£*1(d0* + w3 AOP) +d (8% 0°) + wf (€% - 6°)
=£:0" + (" - 0})0" — (€7 - O")f + o (5 - 6°)
=£:0" + (5" 00" = (xf + £ - wfy) 05,
where we put £:0* = % 6. Then,
Op - Le0® = x5 + €% - 0. (9.70)

Now, we already showed above that for any x € M, the matrix of the £* - ¥ is an
element of spin{ ; and then, 6}, - L0 will be an element of spin{ ; if and only if the
matrix of the x§; is an element of spin{ ;. The corollary is proved. B

Lemma 9.13 If£:g = 0 and £:0 = 0 then we have the identity
D (0 - Lg0*) + £* Ry = 0. (9.71)

Proof Using the definitions of the exterior covariant derivative and the Lie covariant
derivative we have
D (Qb . Lg@"') =d (Hb . Lg@a) + wp (6 - Lg6%) — 02 (0 - Le6°)
= d{@b . [£59“ + (¢* -wi’)@c]} + {9d . [£59“ + ¢* -wi’)@c]} a),db'
— {6 - [£:0% + (£* - 0%)0°]} 0,

ie.,

D (0 - Le0%) = £e0f, — £° 1 (dofy + 0% A 0f) (9.72)
+ d(Oy - £:07) + (6. - £:0%) — (O - £:0) % .

If, £.g = O, then for any x € M, 0 - £:0* € spin“i’q3 and the second line of
Eq. (9.72) is an infinitesimal Lorentz transformation of the w% . If besides that, also
£0 = 0 then £;:0} = §,w% and then the first term on the second member of
Eq. (9.72) cancels the term in the second line. Then, taking into account Cartan’s
second structure equation the proposition is proved. ll

Proof (Proposition 9.10) We are now in conditions of proving the Proposition 9.10.
In order to do that we combine the results of Lemmas 9.11 and 9.13 with the
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identities given by Egs. (9.56) and (9.58). We get,

d[(§* - 0") » Ta] = D[(§* - 0%) * T,]
=DE* -0 A *Ta + (E*-6°D + Ta
= Le0* A +Ta — (E°20%) A %Ta + (£ - 0M)D * T,

i.e., using Eq. (9.56),
dl(E* - 0%) * Ta] = Lg0* A Ty — x T2 A (E*IRE) . 9.73)

Observe now that if A € sec /\l ™™ — secC{(M,g) then, 6* A (6, - A) = A.
This permit us to write Eq. (9.73) as

dl(E* - 0%) * Tal = — (O - Le6®) A xTa A 0° — «F2 A (E*IRY). 9.74)

If £.g = 0, we have by the Corollary of Lemma 9.11 that for any x € M,
By - Le0 € spinf 5. In that case, we can write Eq. (9.74) as

dl(E* - 0°) x Tal = —= (6b - Lc0®) A[xTa A O° — xTP A 0,] — x T2 A (E*IRE)

=

= —(0p-Le0%) AD x TP — TP A (E*JRY). (9.75)
On the other hand, if £:® = 0, in view of Proposition 9.13 we can write
dI(E* - 0%) % Tal = =D (6 - Le6®) A %7 — (6 - Le0®) AD % 7
= —D[(6h - Ls0*) A *T,?] = —d[(6p - Le0®) A x T2 (9.76)
Finally, if £.g = 0 and £:0 = 0 we have
d[(E* - 6) % Ta + (6 - Le6®) A % T2 = 0, (7.40bis)

which is the result we wanted to prove. B

The fact that the existence of symmetries implies in the existence of closed 3-
forms has been originally demonstrated by Trautman [34-37]. See also [3]

9.6 Pseudopotentials in GRT

As we already said in Chap.4, in Einstein’s gravitational theory, i.e., GRT each
gravitational field is modelled by a Lorentzian spacetime 9 = (M,g,D, 14, 1).
The ‘gravitational field’ g is determined through Einstein’s equation by the energy-
momentum of the matter fields ¢>A, A =1,2,...,m, living in 9. As we already
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know from Chap. 4, Einstein’s equation (Eq. (4.276)) can be written in terms of the
fields 6 € sec /\l T*M — secCl(M,g), where {6#?} is an orthonormal basis of
T*M as

1
—(0-3)0*+dAN(0-6") 4310 A0+ 579“ =77, (9.77)
where 3 = 62D,,, T* = —T* = —T26" are the energy-momentum 1-form fields
and 7 = —T72. An explicit Lagrangian density giving that equation, which differs

from the original Einstein-Hilbert Lagrangian Lgy by an exact differential is (See
Exercise 9.17).

1 1 1
Ly = =5d0" A xdby + 86% A %860 + 7 (6" A 6a) A x (d6® A 6),  (9.78)
with
1
Lrr —5 * R = —d(@a A *d@a) + ﬁg 9.79)

The total Lagrangian density of the gravitational field and the matter fields can
then be written as

L=Ly+ Lo, (9.80)
where L,,(¢*, d¢p?) = L, (¢p*, dp*)tg = L(¢*, dp™) 1, is the matter Lagrangian.

So, it depends on the 62 but does not depends on the d6?.
Now, variation of £ with respect to the fields 62 yields

8L =8A,+8A, = [8L,+ [8L,

) 8§ A,
= [86, A 8—“2: + 86, A 8“;
aL oL oL
=[S0 A |2 +d| s §0a A ——. 9.81
v (G + o g )) + 1100 5 ©8D
We define
0L, L 0L,
= S¢i= 5 T = ——+ 9.82
* ! 30, * 340, * 30, ( )
where the T? = —*~! % are the matter energy momentum 1-form fields. We will

show in a while that

[8L, = —[80, A %G, (9.83)
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where G* = (R? — %RO“) € sec /\1 T*M — CL(T*M, g) are the Einstein 1-form
fields, with the R* = R20® € sec /\l T*M < CL(T*M, g) the Ricci 1-form fields
and R the scalar curvature.

Moreover, a calculation (see Exercise 9.18) gives for ¢ € sec /\3 T*M —
CL(T*M,g) and +S¢ € sec \> T*M < CL(T*M.,g) :

AL
*t© = aeg =~ 50w A [0S A *(6% A O° A 0Y) — 0B A x(0% A 0% A 6],
1
*S¢ = gjéi = 50w A *(62 A 0P A 6. (9.84)

So, we have with

*Q“;:—(zgj+d(§j6il))=—*ta—d*83=—*Ta=*Ta (9.85)

We give now a proof that the second and third members of Eq. (9.85) are equal
starting from the Einstein-Hilbert Lagrangian density Lgy instead of using £,.” We
have

1
ACEH = ——R‘L'g = _E * R. (986)

Now,
— %R = Rap A %(0% A O®) = — » [Rapo(8* A OP)]. (9.87)

Indeed,
—* [Rana(6* A O°)] = — % %R;ﬁf’. [(Be A Ba)1(6* A 6)]
= x SRRA0a O 7 6]
= —x %R;f;*,(sgsg — 5 = — xR =—%R.  (9.88)
Moreover

1 1
8Lpy = E‘m*‘" A *(0% A OP) + 57331, A 8[x(6% A 6P)] (9.89)

"For a derivation using £, see Exercise 9.18
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and taking into account Cartan’s second structure equation Rap = dwap + Wac A®Y,
we have

8Rap A *(0* A O°) = d8wap A x(0* A OP) + [$@ac A 05] * (6% A OP)
+ [@ac A 80G] * (6% A 6P). (9.90)

Now, taking into account Eq. (4.113) we have
dSwap A d * (0% A O™)] = d8[wap A *(6% A )] + Swae A d[x (6 A OP)]
= d8[wap A *(0* A OP)] — 8wae A {[0F A x(0¢ A O”)]
+ P A (0% A 0%}
and thus
SRap A *(02 A 0°) = d§[wap A x(6® A 6P)].
Also, taking into account that
E[*(6* A O)] = 86 A [0S * (67 A 6P)]
itis
Rab A 8[*(0* A OP)] = 80c A Rap A %(6° A 0 A OP) (9.91)
and so
8Lpy = %d[&oab * (0% A O™)] + %sec A Rap A *(6° A 02 A 6. (9.92)
Then under the usual assumption that variations vanish at the boundary we get
8 [Ley = %fsec A Rap A x(6° A 02 A OD). (9.93)
Now,
%Rah A (0 AP A QY = —% * [Rap2(6% A 6P A Y]
= —%Rabck S (CAVN S WCAUNCANCAS]

(R %R@d), (9.94)
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i.e.,
1
*x G4 = —ERab A *(6* A 6P A 6Y). (9.95)

and we get
Sfﬁgyz—fSGa/\*ga=—f89"'/\*ga. (9.96)
Next we use in Eq. (9.95) Cartan’s second structure equation. We get
2% GY = —dway A *(0* A O° A 0Y) — wae A 05 A x(0* A O A O
= —d[wap A *(0* A O° A 0Y)] + wap Ad * (67 A B° A OY)
— Wae A wp A *(0% A 6° A 09)
= —d[way A *(0* A O° A OD] + wap A 0 A (0P A O° A 6%
+ wap A 0y A *(0* AP ABY) + wap A 0f A (O A ABP)]
— Wac A WE A *(0* A O A 09)
= wap A [0) A %(0* A O° AOP) —d A %(6* AOP A OY)]
— d[wan A *(6% A 0P A 0Y)]. (9.97)

Then, taking into account Eq. (9.84) and that from Eq. (9.79) itis § [Ley = & [L,,
the dual of Einstein 1-form fields can be written as:

xGl=—xd—d x5t (9.98)

9.6.1 Pseudopotentials Are Not Uniquely Defined

Now, we can write Einstein’s equation in a very interesting, but eventually danger-
ous form, i.e.:

—d xS =« T 4 *1, (9.99)

In writing Einstein’s equations in that way, we have associated to the gravitational
field a set of 2-form fields x*S? called pseudopotentials that have as sources the
currents (x7? 4 *7*). However, pseudopotentials are not uniquely defined since,
e.g., pseudopotentials (xS* + *a?), with xa? closed, i.e., d * «® = 0 give the same
second member for Eq. (9.99).
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9.7 1Is There Any Energy-Momentum Conservation Law
in GRT?

Why did we say that Eq. (9.99) is a dangerous one?

The reason is that we may be led to think that we have discovered a conservation
law for the energy momentum of matter plus gravitational field independent of the
existence of appropriated Killing vector fields,® since from Eq. (9.99) it follows that

dxT?* + x*) = 0. (9.100)

This thought however is only an example of wishful thinking, because in Einstein
theory the x7* depends on the connection (see Eq. (9.84)) and thus gauge dependent.
They do not have the same tensor transformation law as the *7%(= — = T?), i.e.,
there is no tensor field associated to the 2. So, Stokes theorem cannot be used to
derive from Eq.(9.100) conserved quantities that are independent of the gauge,
which is clear. However, and this is less known, for this specific problem, Stokes
theorem, also cannot be used to derive conclusions that are independent of the
local coordinate chart used to perform calculations [4]. In fact, the currents #*
are nothing more than an old pseudo energy momentum tensor in a new dress. Non
recognition of this fact can lead to many misunderstandings. We present some of
them in what follows, in order to call our readers’ attention of potential errors of
inference that can be done when we use sophisticated mathematical formalisms
without a perfect domain of their contents.’

(i) First, it is easy to see that from Eq. (9.85) it follows that [19]
Dx®=Dx%T =0, (9.101)

where *® = e, ® *G* € secTM ® sec /\3 T*M and xT = e, @ xT? €
sec TM ® sec /\* T*M and where

Dx®:=e,3D*xG DxT=—€,3D«T? (9.102)

and D is the exterior covariant derivative of index valued forms (Definition 4.89).
Now, in [19] it is written (without proof) a ‘Stokes like theorem’

/ Dx% = / * T,
(9.103)

4-cube 3 boundary
of this 4-cube

8Recall that from the previous section we learned that energy-momentum conservation law for the
matter fields alone exist only when appropriated Killing vector fields exist.

“More details on this issue may be found in [22].
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We searched in the literature for a proof of Eq. (9.103) which appears also in many
other texts and scientific papers as, e.g., in [6, 38] but could, of course, find none,
which may be considered as valid.'® The reason is simply. If expressed in details,
e.g., the first member of Eq. (9.103) reads

/ ea ® (d* T + 0% A*T?), (9.104)

4-cube

and it is necessary to explain what is the meaning (if any) of the integral. Since
the integrand is a sum of tensor fields, this integral says that we are adding tensors
belonging to the tensor spaces of different spacetime points. As, well known, this
cannot be done in general, unless there is a way for identification of the tensor
spaces at different spacetime points. This requires, of course, the introduction
of additional structure on the spacetime representing a given gravitational field,
and such extra structure is lacking in Einstein theory. We unfortunately, must
conclude that Eq. (9.103) do not express any conservation law, for it lacks a precise
mathematical meaning.

In Einstein theory possible pseudopotentials are, of course, the *S* that we
identified above (Eq. (9.84)), with

1
*Se = [EwabJ(ea A B A 6)]6°. (9.105)

Then, if we integrate Eq. (9.99) over a ‘certain finite 3-dimensional volume’, say
a ball B, and use Stokes theorem we have'!

1 1
Pt = ——/ x(T*+1) = —/ * 8 (9.106)
8 8
B B

In particular the energy or (inertial mass) of the gravitational field plus matter
generating the field is defined by'?

1
PP=E=m=— lim [ 8" (9.107)
87 R—oo
0B

ii) Now, a frequent misunderstanding is the following. Suppose that in a given
q g g. Supp 8
gravitational theory there exists an energy-momentum conservation law for

10T particular, on this issue the reader should read page 108 of Parrot’s book [23].

"'The reason for the factor 87 in Eq.(9.106) is that we choose units where the numerical value
gravitational constant 87 G/c* is 1, where G is Newton gravitational constant.

12See the details of the calculation, e.g., in [22]
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matter plus the gravitational field expressed in the form of Eq. (9.100), where
T? are the energy-momentum 1-forms of matter and 7* are true'> energy-
momentum 1-forms of the gravitational field. This means that the 3-forms
(xT? + *1*) are closed, i.e., they satisfy Eq. (9.100). Is this enough to warrant
that the energy of a closed universe is zero? Well, that would be the case if
starting from Eq.(9.100) we could jump to an equation like Eq.(9.99) and
then to Eq.(9.107) (as done, e.g., in [33]). But that sequence of inferences
in general cannot be done, for indeed, as it is well known, it is not the case
that closed three forms are always exact. Take a closed universe with topology,
say R x S3. In this case B = S* and we have dB = 3S*> = @. Now, as it is
well known (see, e.g., [21]), the third de Rham cohomology group of R x §3
is H* (R x $*) = H*($?) = R. Since this group is non trivial it follows that
in such manifold closed forms are not exact. Then from Eq. (9.100) it did not
follow the validity of an equation analogous to Eq. (9.99). So, in that case an
equation like Eq. (9.106) cannot even be written.

Despite that commentary, keep in mind that in Einstein’s theory the ‘energy’ of
a closed universe'* supposed to be given by Eq.(9.107) is indeed zero, since in
that theory the 3-forms (x7?® 4 «1*) are indeed exact (see Eq. (9.99)). This means
that accepting #* as the energy-momentum 1-form fields of the gravitational field, it
follows that gravitational energy must be negative in a closed universe.

(iii) But, is the above formalism a consistent one? Given a coordinate chart {x*} of
the maximal atlas of M, with some algebra (left as exercise to the reader) one
can show that for a gravitational model represented by a diagonal asymptotic
flat metric,' the inertial mass E = my is given by

1 . Xi 8 i
my = —— lim / = —(g118228338")rHdR, (9.108)
167 r—o0 | r 0¥
oB

where 0B = S%(r) is a 2-sphere of radius r, gi¥ = x; and d< is the element
of solid angle. If we apply Eq.(9.108) to calculate, e.g., the energy of the
Schwarzschild space time'® generate by a gravitational mass m, we expect to
have one unique and unambiguous result, namely my = m.

13This means that the #* are no in this case pseudo 1-forms, as in Einstein’s theory.

14Note that if we suppose that the universe contains spinor fields, then it must be a spin manifold,
i.e., it is parallelizable according to Geroch’s theorem [12, 13], as we already know from Chap. 5.
!5 A metric is said to be asymptotically flat in given coordinates, if g =nu(1+0 (rfk)), with
k = 2 or k = 1 depending on the author. See, e.g., [30, 31, 39].

1For a Schwarzschild spacetime we have g = (1 — 22) dr @ dt — (1 — 27’”)_1 dr®dr—r*(df ®
df + sin® Ody ® dy).
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However, as showed in details, e.g., in [4] the calculation of E depends on the

. . — L)
spatial coordinate system naturally adapted to the reference frame Z = ‘/@ o

even if these coordinates produce asymptotically flat metrics. Then, even if in one
given chart we may obtain my = m there are others where my # m!"’

Moreover, note also that, as showed above, for a closed universe, Einstein’s
theory implies on general grounds (once we accept that the 7 describes the energy-
momentum distribution of the gravitational field) that my = 0. This result, it is
important to quote, does not contradict the so called “positive mass theorems” of,
e.g., references [30, 31, 42], because that theorems refers to the total energy of an
isolated system. A system of that kind is supposed to be modelled by a Lorentzian
spacetime having a spacelike, asymptotically Euclidean hypersurface.'® However,
we want to emphasize here, that although the energy results positive, its value is not
unique, since depends on the asymptotically flat coordinates chosen to perform the
calculations, as it is clear from the elementary example of the Schwarzschild field
commented above and detailed in [4].

In a book written in 1970, Davis [7] said:

Today, some 50 years after the development of Einstein’s generally covariant field theory
it appears that no general agreement regarding the proper formulation of the conservation
laws has been reached.

Well, we hope that the reader has been convinced that the fact is: there
are in general no conservation laws of energy-momentum in GRT. Moreover,
all discourses (based on Einstein’s equivalence principle)'® concerning the use
of pseudo-energy momentum tensors as reasonable descriptions of energy and
momentum of gravitational fields in Einstein’s theory are not convincing.

And, at this point it is better to quote page 98 of Sachs and Wu [29]:

As mentioned in section 3.8, conservation laws have a great predictive power. It is a shame
to lose the special relativistic total energy conservation law (Section 3.10.2) in general
relativity. Many of the attempts to resurrect it are quite interesting; many are simply garbage.

In GRT, we already said, every gravitational field is modelled (module diffeomor-
phisms, according to present wisdom) by a Lorentzian spacetime. In that particular
case, when this spacetime structure admits a timelike Killing vector field, we may
formulate a law of energy conservation for the matter fields. Also, if the Lorentzian
spacetime admits three linearly independent spacelike Killing vectors, we have a
law of conservation of momentum for the matter fields.

7This observation is true even if we use the so called ADM formalism [2] to be presented in
Chap. 11. To be more precise, let us recall that we have a well defined ADM energy only if the fall
off rate of the metric is in the interval 1/2 < k < 1. For details, see [20].

18The proof also uses as hypothesis the so called energy dominance condition [14].

197 jke, e. g.,in[1, 19, 24] and many other textbooks. It is worth to quote here that, at least, Anderson
[1] explicitly said: “In an interaction that involves the gravitational field a system can loose energy
without this energy being transmitted to the gravitational field.”
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This follows at once from the theory developed in the previous section. Indeed, in
the particular case of GRT, the Lagrangian density is not supposed to be explicitly
dependent on the w3,. Then, the term gﬁ;z = 0 in Eq.(9.59) is null. Then writing
T () = &"7,, Eq.(9.59) becomes d » T (£) = 0 or and Eq. (9.59) becomes writing
TE) =Ty,

§T(€) = 0. (9.109)

The crucial fact to have in mind here is that a general Lorentzian spacetime, does
not admits such Killing vector fields in general as it is the case, e.g., of the popular
Friedmann-Robertson-Walker expanding universes models.

At present, the authors know only one possibility of resurrecting a trustworthy
conservation law for the energy-momentum of matter plus the gravitational field
valid in all circumstances in a theory of the gravitational field that resembles GRT
(in the sense of keeping Einstein’s equation).?” It consists in reinterpreting that
theory as a field theory in flat Minkowski spacetime. Theories using Minkowski
spacetime have been proposed in the past by, e.g., Feynman [10], Schwinger [32],
Thirring [33] and Weinberg [40, 41] among others and have been extensively
studied by Logunov and collaborators in a series of papers summarized in the
monographs [16, 17]. In the Chap. 11 we discuss the nature of the gravitational
field and give Clifford bundle approach to the theory of the gravitational field in
Minkowski spacetime,’! following [26]. We also qualify a statement in [8] that in
the theory called teleparallel equivalent of GRT [18] there is an energy-momentum
conservation law.

Remark 9.14 As a final remark, we make the important observation that even if a
given Lorentziam spacetime modelling a gravitational field has one timelike and
three spacelike Killing vector fields and so we can defined four conserved quantities
P? (see Eq.(9.106)) we cannot in general define an energy-momentum covector P
(not a covector field) for the system as in special relativistic field theories. For a
thoughtful discussion of this issue see [27].

200n this issue, see also [25].

2! Another presentation the theory of the gravitational field in Minkowski spacetime employing
Clifford algebra techniques has been given in [15]. However, that work, which contains many
interesting ideas, unfortunately contains also some equivocated statements that make (in our
opinion) the theory, as originally presented by those authors invalid. This has been discussed with
details in [9].
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9.8 1Is There Any Angular Momentum Conservation Law
in the GRT

If the {6} and the {w}}} are varied independently in the sum of the Einstein-Hilbert
Lagrangian plus the matter Lagrangian then, as it is easy to verify we get the
additional field equation

Dx 0P =g = _,27% (9.110)

From this equation we get immediately
d* 0y =J5 — o A*x0% + %05 A o (9.111)
and one is tempted to define S™ = (—w® A x02 + x0P A ®¥) as 2-form densities

of spin angular momentum of the gravitational field and to the define the orbital
angular momentum of the system as

L3P ::/ * 67, (9.112)
S2

This definition, of course, has the same problems as the definition of energy in the
GRT because the 2-form fields $?" are gauge dependent. Moreover, the scalars L
cannot be considered as components of any tensor field in the spacetime manifold.

9.9 Some Non Trivial Exercises

Exercise 9.15
(a) Show that the energy-momentum densities x7, of the Maxwell field are given
by
1 -
* T, = *EFGaF. (9.113)

(b) Show also that T, - 6y = Ty, - 6a.
Solution:

(a) The Maxwell Lagrangian, here considered as the matter field coupled to the
background gravitational field must be taken (due to our convention in the
writing of Einstein equations and the definition of xT,) as

1
Ly =—5F AF. 9.114)
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or,

where F = %FabG“ ABP = %FabG“b € sec /\2 T™M — secC{(M,q) is the
electromagnetic field. Now, recall that

8% 0™ = 80° A [feu* 67

and that in general § and * do not commute. Indeed, for any A, € sec A\’ TM —
secCL(M, g) we have

[6,%]A, =8 x A, — %84, 9.115)
=80 A (fasxAy) — * [860 A (6a04,)].

Multiplying both members of Eq. (9.115) with A, = F on the right by FA we
get

FA§*F=FA*SF + FA{80% A (6aax F) — %x[660% A (620F)]}.
Next we sum § F A xF to both members of the above equation obtaining

S(FAXF)=28F AxF 4+ 80 A[F A (Baa % F) — (6,0F) A xF].

1 1
8 (_EF/\ *F) = —8F A *xF — 5893 A[F A (Bas x F) — (6a0F) A *F).

It then follows from Eq.(9.33) that if §6* = —£:0? for some diffeomorphism

generated by the vector field £ that

L, 1
*Ty = BT E[FA(QaJ*F)—(QaJF)/\*F].

Now,

(BaaF) A *F = — % [(6aaF) oF] = —[(0aF) 2F ]z,

and also using Eq. (2.60) we can write

(0asF) A %F = 04(F - F)tg — F A (B0 % F).

Using these results, we have

% [F A (603 % F) = (6a5F) A +F]

{0a(F - F)1g — (0auF) A %F — (6a0F) A *F}

N =
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{0a(F - F)Tg — 2(6a0F) A *F)}

N = N =

{Qa(F -F)tg + 2[(934F)4F]‘L'g}
= x Gea(F-F) + (eaJF)JF) = % * (FO,F),

where in writing the last line we used the identity given by Eq. (8.81).

(b) To prove that T, - 6y, = Ty, - 6, we write:
Ta b = —5 (FOuFO)o = ~((FLB) PO + 1 (60 + 00 A F) Foy)
= —(FLB)F8)o — 3 (GuFFoRYo = —((FLO)(FLby) + (FLB)F A )
+ {8 — L A F) oo
= ~{FEN + 5 ((F - F)ba- 0o
= —(FLbp) - (FLO,) + %(F -F)(6p - 0,) = Ty - 6,.
Note moreover that

Tab = Ta O = =0 FacFu1 + %chFCdflab, (9.116)

a well known result.

Exercise 9.16 Show that the connection 1-forms can be written as

Wab = —%[Qa_nd@b — ObadBy — (Ga(Oydbe) 0] (9.117)
or

Wab = OpdBy — 031d0y + %(GaJ(GbJ(OC A db,)] (9.118)

Solution: We prove Eq.(9.117). From Cartan’s first structure equation and
Eq. (2.60) we have

ea_ldeb = Qa_l(a),cl; N Qc) = (Qa_la),c];) A Qc — a)cb A (Qa_lgc)

= (Qa—‘w.c[;)ec — Wap.
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Moreover recalling Eq. (2.64) we have
BOai(BpadBe) = (Ba A Op)adBe = (Ba A Op) - (0 A 6a)

Qa_la).d' 0416a
=d ¢
o (ewag' ebJed)

= (0220%) (Op0a) — (0a20a) (Bp ™)

= Ua1Wpe — 9],4603,;.
Then

0ad0y — 6y dO, — (QaJ(Qb_ld@c)@c = (Qa_la).cl;)@c — Wah — (Qb_la)g)ec —+ Wpa
- (ea—la)bc)ec + (eb—lwac)ec = —2wap.

and using the above results Eq. (9.117) is proved.

Exercise 9.17 Show that the Einstein Hilbert Lagrangian Lgy = —%Rrg can be
written as

1 1 1
Lon = —d(0* Axdfy) = 2d0" AxdOy+ 286" Ax30a-+ 5 (d6° A 6a) nx (A6 A )
(9.119)

Solution: We already know from Eq. (9.79) that

1 1
—5 Rt = SRan A *(0* A 6P).
We use now Cartan’s second structure equation to write
1 a b 1 c a b
Len = Edwab A*(0* A O°) + E(a)f,|c Aw§) Ax(0% A7)
1 a b 1 a b 1 c a b
= Ed[wab/\*(Q N )]—I—Ea)abAd*(e N )+§wac/\w~b/\*(9 A B)
1 a b 1 a- c b
= Ed[wab A *(0* A O] — @b A@E A *(0°A0).

Now, we have
@ab A *(0% A O”) = — x [ap1(0% A O°)] = 2 % [(wap16”)6?]

Moreover, from Cartan’s first structure equation and Eq. (2.60) we have immediately
that

0 A xdBy = — x [(wabJeb)]ea’
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from where it follows that

%d[wab A *(0% A O®)] = —d[0 A xdby). (9.120)
Also,
Wab A 0% A (0 AO°) = — x [(@ah A @F)2(0° A O”)] = — x (@apwi 2(6° A 6°)]
= — % [(@ap 1) (0% 16°) — (@ar 16") (05 10)].
But,
(@ab20) (@ 10°) = @ap[(0%160°)0")
= Wap[(0°2(0 A 6°) 4+ ™)
= (wab A 0) (0T A ) + wap 0™
and then
Wab A OF A x(0° A OP) = —(0° - @ap) (6° A %)
+ (wab A O°) A x(0% A 0°) + wap A x0™.
Hence recalling that d0® = —w% A 0° and d x 6* = —w3 A %0 and that 0, =
— 71 d % 0, = —wap 0P, we have
(6" - wap) (6° A *@%) = =80, Ad x 6
=80, A% d % 0 = =50, A x60°
and
Wab A 0% A x(0° A OP) = =80, A x80* — dBy A %dO* + wap A *0™

Now, using Eq. (9.118) we can write

b — Wap N 6? /\*d@b — Wab /\9b A *xdO?

Wap A *0?
1
+ 3@ A *[02 (6" 1(Be A dB)]

1
= dbp A %dO® + dB, A xdO* — Ed@a A O A x(d6C A 6,)
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and get
wab A 0 A (0 A OP) = =80, A x60* — dOy A xd6?
+ 2d0, A xdO? — %d@a A 0% x (dO° A Be). (9.121)
Using Eqgs. (9.120) and (9.121) we finally have
L = —d(@a/\*an)—%dGa/\*d93+%59“/\*89§,+% (d0® A Op) Ax (d6° A B) .

and Eq. (9.119) is proved.
AL,

Exercise 9.18 Find the algebraic derivatives g%ﬁ;’ and -4 of Einstein-Hilbert
Lagrangian density Lgy := —%Rtg which can be written as

1 1
LEH = —d(ea VAN *dea) — Ed@“ VAN *d@a —+ 5593 A *893
1
+3 (d0* A Oy) A x (dOP A O) = —d(0* A *dB,) + L,.

necessary to obtain Eq. (9.84).

Solution: We first show that £, can be written as

1 1
L, = - (dO A Oy) A * (d6° A 6a) + 2 (d6® A Ga) A * (dOP A By)  (9.122)
Indeed, using the identities in Eq. (2.77) we can write:

(dO* A OP) A x(dBy A B,) = dB* A[O° A *(dBp A 6,)]
= d6* A *[(6°Ld6h) A O, + dBb,]
= dO® A xdby + dO* A x[0°.d6y) A 6,)]
= dO* A *dBy + [(0°2dOh) A Oa] A *d6?
= dO* A *dby + (6°1dBy) A (62 A xd6®)
= d6® A xdBy — (0°1dOy) A %(0,1d6?)
= 6" A xdly — 86° A %86, (9.123)

from where Eq. (9.122) follows.
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Now, we write
1 b a 1 a b
L, = —Ean A[B° A ;(d@b NG 59 A * (d@ A Qb)]
1
= Edea A xS?, (9.124)
Then we have from Eq. (2.60)
1
Oka(Ly) = —Eék_n(déa A *xS?)
1 1
= —E(Hk_nan) A xS? — Edé?a A (Bkax S?) (9.125)
and subtracting (6x_d6,) A *S* on both sides of the last equation we get
1 1
Ok a(Lg) — (Bkadby) A xS = E[(Qk_;dé?a) A *S? — Ean ABkaxSY].  (9.126)

Now, we recall from the properties of the algebraic derivatives and of contraction
operators (see Exercise 9.19) and taking also into account Eq. (9.10) that for L, it
holds

dL, 3L, 8do, AL,

Oeo(L) = o8 Ol
k(L) = Ga- = 36+ 9. oo,

9.127)

and we have immediately that

L, 0d0, 0L, L,
— = g ., = (Oxudly) N —= = (6xd0O, S?. 9.128
20 - 36 " ae, ~ B0 A o = BB A (9.128)
Since
8L, oL
= et 4 6 g
8L, =86k A 36, + &d k/\ad@k
we finally get

oL
* Ik = QkJ(Lg) — (6kadby) A *ang = GkJLg — (BkadBy) A xS?.

and we recall that according to Eq. (9.124)

1
* S = =0 A #(d6 A 0) = 0 A x (d0° A y) (9.129)
g
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which using the identities in Exercise 2.39 may be written in a suggestive form (to
be used in Chap. 11) as

1
5 Sic = = x dflc = (O % 0%) A xd % O+ S0 A % (d6° A Ga) (9.130)

Finally we recall that

8L, L,
scg_sekAﬁer(wk ) (9.131)

0d 6

dl, oL
= §6 =8 8 Ok A
] k/\|:dek +d(8d0k)}+d(8 k A

ad Hk

and for variations that are null on the boundary

L, L,
- e 132
8L, /Sek/\[dek+d(8d0k):| (9.132)

and taking into account Eq. (9.96) we get immediately

dc, e
s L g2 = g,
a6 T (ade) 9

Exercise 9.19 Verify that

y ek (62 A dO*) = Ohs(0a A dO?) (9.133)

: a_ 1 _a- gm n 36y __ ado? n __ n
Since d0® = 5ci,,0™ A 0" we have 3ot = Nak and S = =, AN O™ = ¢5,0" and
thus

I(la nd6?) | 06" 3(6y A db")
0% 6k 39d6®
= dfi + %0 A Oy

d
—(6a A dO*) =
a6, fa 49

On the other hand we have from?? Eq. (2.59)
Ok1(Ba A dO*) = (Bk10a) A dO? — Oy A (Bxc2dO?)

1
—d@k—g /\Qk_l(

2mn

O™ A 9“) = db + c1,0" A Oa.

and Eq. (9.133) is proved.

22Recall that  is an antiderivation.
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Exercise 9.20 Prove that Eqs. (9.129) and (9.130) are equivalent.

Solution: It is only necessary to verify that
0% A *(dOa A Ok) = *xdO + (O x 0%) A xd % Oy
Since xd x 0, = §0, = —F.'l'; (where D,,0” := —TP ¢ )we have that
0% A x(db, A Ok) = *dO + 50, (B % 07)
and
8602 x (O A O*) = —Th % (6 A 6)

On the other hand

0% A x(dBy A Ox) = 0% A x(Bk A dbBy) = %[0 2(0k A dB,)

= *[d@k — Ok A (G“Jdea)] = xdO — O N (G“Jdea)
= xdb — O * (G“Jdea)

So, it remains to prove that
Ok x (0% 1d0y) = 80, (O x 0%) = 80, x (6 A 07).
But as easily verified 6% .df, = —T'%.6° and thus
—Th O x 06 = =T % (i A 6°)

and the equivalence of Egs. (9.129) and (9.130) is proven.

Exercise 9.21 (a) Let (0,,m,) and (0,, m,) be two particles living in Minkowski
spacetime. Let p, = m,g(04x,) € sec Ty, M and p, = mpg(op«,) € sec T, M the
momentum covectors of the particles. How you would define the total momentum
of the two particles. If this object exists, where is the space where it lives? (b) May
you find a way to define the total momentum covector of the two particles if they
live in a general Lorentzian manifold? (c) Has this question something to do which
the absence of conservation laws of energy-momentum in GRT?
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Chapter 10
The DHE on a RCST and the Meaning of Active

Local Lorentz Invariance

Abstract In this chapter we give a formulation of the Dirac-Hestenes equation
on a Riemann-Cartan manifold (M, g, V, 74, 1) using the Clifford and spin-Clifford
bundles formalism. We show that the obtained equation which follows for a properly
chosen Lagrangian density (heuristically based on the principle of minimum cou-
pling) agrees with the one proposed by some authors using the standard concept of
covariant spinor fields. However, we do more: we show that postulating invariance
under active rotational gauge transformations of the Dirac-Hestenes Lagrangian
implies in the equivalence (in a precise sense) of torsion free and non torsion free
connections. Such a result suggests that the choice of a particular connection in
order to formulate spacetime field theories (which includes the gravitational field)
is somewhat arbitrary. This issue is deeply investigated in Chap. 11.

10.1 Formulation of the DHE on a RCST

Let (M,g,V,1,,1) be a general Riemann-Cartan spacetime. In this section we
investigate how to obtain a generalization in (M, g, V, 7,, 1) of the Dirac-Hestenes
equation (see Eq.(7.93)) for a representative Yz € secC{(M,g) of a Dirac-
Hestenes spinor field ¥ € sec Cf. 3(M, g). In order to do that we first

Spin{_
introduce a chart (¢, U) from the maximal atlas of M, with coordinates {x}.
The associate coordinate basis of TU is denoted by {e, = axiﬂ = 0J,) and we
denoted by {y* = dx"} its dual basis. Moreover, we suppose that the y* €
sec /\1 T*M < secCL(M, g). Also, let {ea} € sec Pso (M) an orthonormal frame
and {#?} € sec Psos (M) the dual coframe. Note that, for each a = 0,1,2,3,

62 € sec \' T*M <> secCL(M,g). In what follows we are going to work in a
fixed spin coframe E € sec Pspi¢ , (M) such that s(+ &) = {6} and so, in order to
simplify the notation we write simply ¥ instead of ¥/z.

Recall now that the Lagrangian density for the free Dirac-Hestenes spinor
in Minkowski spacetime (M, %, D, ty,1) (see Eq.(8.50)) can be written with
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396 10 The DHE on a RCST and the Meaning of Active Local Lorentz Invariance

coordinates {¥"} in Einstein-Lorentz-Poincaré gauge as
L@, d9) = 809, 09)dP A dS A dP A dF
= [@viys) - v —my - ¢]dR° A dR A dP A AR, (10.1)

where § = dx*D _o_. The usual prescription of minimal coupling between a given

o
spinor field and thde (generalized) gravitational field,

d* — 6% D, — V,

suggests that we take the following Lagrangian for a representative ¥ of a Dirac-
Hestenes spinor field in a Riemann-Cartan spacetime,

L@, 09%) = £y, 3 Y)dx® A dx' A dx® A dx®

- [(a@w"ezel) Y —my w] Jldetgldx® A dx' A di® A did,

(10.2)
where (with the notations of Chap. 7)
1
Ay = eavéz)w = /2 (%Iﬁ + 5‘”%‘”) . (10.3)
1
=0? (hﬁ;aw + Eweaw) (10.4)
Then § [ L(. 3®yr) = 0 gives the Euler-Lagrange equation
3y L — 0, (5,4L) = 0. (10.5)

Using the identities given by Eqgs.(2.68) and (2.69) we can write the term
02hly 0,y 0°0%0" - ¥ as

3., v0%%0" .y =8, v0°0%0" - 0%y
= B, ¥ - 0*v6°0%6! (10.6)
and

ds,,y & = —0*96°0%0" (10.7)
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We now must express 9, (33;4'//2) in terms of the Pfaff derivatives 8, 1. To do that

we first write
a __ pa g i
0* = hudx .

Then, putting detg := det[g(d,, d,)] since

Videt g] = det%hz] =0~
we have
S 00y = [y 6°0%6") -y —myr -y |57,
Then,

09,y £ = (35,y0e,¥) (30,4 £) = hy 05,y £

and Eq. (10.5) becomes
0y £ = (9,)9a,,y £Be, (95, L) = 0.
Now, we can verify that
b9, = B,

and taking into account that

[ea, en] = (hgen(h}) — hyea(h)))ee = cpec
we can write

Ouhy = =iy + 5" ea(h),
and Eq. (10.12) becomes
By £ = [, — oy + b ea(®)] (95, 4-) = 0.

Now, we have taking into account Eq. (2.194)

By (020, y0°0%0" - ) = (02w, 0" 020" + 0, 029 0°0%01) .,

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)
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and then
a 0p2n1 1 a 0p2p1 1 a 0p2p1
hoy £ = | 6%0,,9070°0" + 59 We, V07676" + Ea)gaB v 00" —2myr |,

I, & = —h7 " (6*v0°0%0"),
Be, (3o, y L) = —b'ea(h)(3a,,4 L) — H~'0°0,, 060", (10.17)

and Eq. (10.16) becomes

1 1
0*Vy 666" — Zeaweawe"ezel + Z@*‘weBWOOOZGI 93 bow—my =0
(10.18)

or, recalling that the components of the torsion tensor in an orthonormal basis is
given by

TS, = S — 0% — s (10.19)
and that, in particular! a)b = 2P = 0, we have
0*Vy 666" — la)eaG“lﬂGOGZ@l - %62"]’)931//909291 —my
= 6*Vy6°0%0" — 4 e, 06701
we, 0™ 0°0%0" — %cgiﬂ“IﬂQ(}@Z@l —my
= 0°VPy60°0%0" — lenweaw“ezel - %cg’i,x/fe“ezel —my  (10.20)
= 0*VYy6°0%0" + T 202000701 —my = 0.

Finally we write the Dirac-Hestenes equation in a general Riemann-Cartan
spacetime as [3]

a(x)w9291 + %TW@OGZGI — ml//@o =0, (10.21)

where

T = T%,6% (10.22)

No sum in b.
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is (sometimes) called the forsion covector. Note that in a Lorentzian manifold T = 0
and we come back to the Dirac-Hestenes equation given by Eq. (7.93). We observe
moreover that the matrix representation of Eq. (10.21) coincides with an equation
first proposed by Hehl and Datta [2].

We observe yet that if we tried to get the equation of motion of a Dirac-
Hestenes spinor field on a Riemann-Cartan spacetime directly from that equation
on Minkowski spacetime by using the principle of minimal coupling, we would
miss the term %Tgﬁ@zel appearing in Eq. (10.21). This would be very bad indeed,
because in a complete theory where the {82} and the {w,,} are dynamical fields we
can easily show that spinor fields generate torsion (details in [2]).

10.2 Meaning of Active Lorentz Invariance
of the Dirac-Hestenes Lagrangian

In the proposed gauge theories of the gravitational field, it is said that the
Lagrangians and the corresponding equations of motion of physical fields must be
invariant under arbitrary active local Lorentz rotations. In this section we briefly
investigate how to mathematically implement such an hypothesis and what is
its meaning for the case of a Dirac-Hestenes spinor field on a Riemann-Cartan
spacetime. The Lagrangian we shall investigate is the one given by Eq. (10.10), i.e.,

£y, dWy) = [(G“Ve(:)WOOOZQI) -y —my - 1//] ht. (Dirac-Hestenes)

Observe that the Dirac-Hestenes Lagrangian has been written in a fixed gauge

—~

individualized by a spin coframe & € sec Pspin¢ , (M) and we already know after

Exercise 7.57, that it is invariant under passive gauge transformations ¥ +> Y U™}
(UUT' =1, U € sec Spin{ ;(M) C secC{(M, g)), once the ‘connection’ 2-form
wy transforms as given in Eq. (7.50), i.e.,

1 1
SOV UEwVU_l + (VyO) U™ (10.23)

Under an active rotation (gauge) transformation the fields transform in new fields
given by

Yy = Uy,
O™ > 0™ = UO™UT! = AO",
em > e = (A7) ep. (10.24)

Now, according to the mathematical ideas behind gauge theories briefly outlined
in Appendix A.4, we must search for a new connection V* such that the Lagrangian
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results invariant. This will be the case if connections V* and V” are generalized
G-connections? (Definition A.66), i.e.,

Ve (UY) = UV,
or

VO (UY) = ARUVEY. (10.25)

Also, taking into account the structure of a representative of a spinor covariant
derivative in the Clifford bundle (see Eq.(7.55)) we must have for the Pfaff
derivative

0, > 0, = A0, (10.26)
and for the connection

w, = AN (Uwe, U™ =28, (U)U),

€n

or
wy = U, U™ = 28,, (1)U (10.27)
Write
/ 1 k-1 1 k-1
w, = Ew'“" O A G = Ew.m, O € secCIM, g),
1 k- 1 k1
We, = Ea),m,é’k AN 9] = Ea),m,@k] € sec CZM, g),
1
U=¢'F= EFrsewrs € secCIM, g). (10.28)
Recall that

__ . ra sb _ _r- _sb
Wy =1 Wanb!) ™ = Wy,

whk = OL k. (10.29)
Then, from Eqs. (10.27)—(10.29) we get

Wl = Adoh  ASAR — A em (F™) . (10.30)

2Note that V¥ and V’* are connection in the spin-Clifford bundle of Dirac-Hestenes spinor fields
whereas V©® and V’® the effective covariant derivative operators acting on the representatives of
Dirac-Hestenes spinor fields in the Clifford bundle.
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Now, we recall that the components of the torsion tensors, ® and ®’of the
connections V and V’ in the orthonormal basis {e; ® O™ A 6%} are given by

r e - -
mk = @pk — Pkn — Copko

T = oS — o — o (10.31)

where [ey, ex] = ¢l er.

Let us suppose that we start with a torsion free connection V. This means that
i = ohy — @i, Then,

T = ADARALCE — ¢ — em (F™) [nac AR — nen AR (10.32)
and we see that @ = 0 only for very particular gauge transformations.

We then arrive at the conclusion that to suppose the Dirac-Hestenes Lagrangian
is invariant under active rotational gauge transformations imply in an equivalence
between torsion free and non torsion free connections. It is always emphasized that
in a theory where besides v/, also the tetrad fields 6 and the connection 1-forms w$,
are dynamical variables, the torsion is not zero, because its source is the spin of the
Y field. Well, this is true in particular gauges, because as showed above it seems that
it is always possible to find gauges where the torsion is null. The reader is invited
to reflect on this result, taking also into account a result proved in Chap. 6 that says
that distinct LLRFy and LLRFy’ that meet at p € M are not physically equivalent.

Exercise 10.1 Show that whereas Maxwell Lagrangian density is invariant under
local Lorentz rotations, Maxwell equations (in general) are not [1].
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Chapter 11
On the Nature of the Gravitational Field

Abstract In this chapter we investigate the nature of the gravitational field. We first
give a formulation for the theory of that field as a field in Faraday’s sense (i.e., as
of the same nature as the electromagnetic field) on a 4-dimensional parallelizable
manifold M. The gravitational field is represented through the 1-form fields {g®}
dual to the parallelizable vector fields {e,}. The g*’s (a = 0,1,2,3) are called
gravitational potentials, and it is imposed that at least for one of them, dg® # 0. A
metric like field g = napg® ®g® is introduced in M with the purpose of permitting the
construction of the Hodge dual operator and the Clifford bundle of differential forms
CL(M,qg), where g = n™e, ® ep,. Next a Lagrangian density for the gravitational
potentials is introduced with consists of a Yang-Mills term plus a gauge fixing term
and an auto-interacting term. Maxwell like equations for F? = dg* are obtained
from the variational principle and a legitimate energy-momentum tensor for the
gravitational field is identified which is given by a formula that at first look seems
very much complicated. Our theory does not uses any connection in M and we
clearly demonstrate that representations of the gravitational field as Lorentzian,
teleparallel and even general Riemann-Cartan-Weyl geometries depend only on the
arbitrary particular connection (which may be or not to be metrical compatible) that
we may define on M. When the Levi-Civita connection of g in M is introduced
we prove that the postulated Lagrangian density for the gravitational potentials
differs from the Einstein-Hilbert Lagrangian density of General Relativity only by
a term that is an exact differential. The theory proceeds choosing the most simple
topological structure for M, namely that it is R*, a choice that is compatible with
present experimental data. With the introduction of a Levi-Civita connection for the
structure (M = R* g) as a mathematical aid we can exhibit a nice short formula
for the genuine energy-momentum of the gravitational field. Next, we introduce
the Hamiltonian formalism and discuss possible generalizations of the gravitational
field theory (as a field in Faraday’s sense) when the graviton mass is not null. Also
we show using the powerful Clifford calculus developed in previous chapters that
if the structure (M = R* g) possess at least one Killing vector field, then the
gravitational field equations can be written as a single Maxwell like equation, with
a well defined current like term (of course, associated to the energy-momentum
tensor of matter and the gravitational field). This result is further generalized for
arbitrary vector fields generating one-parameter groups of diffeomorphisms of M in
Chap. 14. Chapter 11 ends with another possible interpretation of the gravitational
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field, namely that it is represented by a particular geometry of a brane embedded in
a high dimensional pseudo-Euclidean space. Using the theory developed in Chap. 5
we are able to write Einstein equation using the Ricci operator in such a way that
its second member (of “wood” nature, according to Einstein) is transformed (also
according to Einstein) in the “marble”nature of its first member. Such a form of
Einstein equation shows that the energy momentum quantities —72 + %Tga (where
T* = T?g are the energy momentum 1-form fields of matter and 7 = T?) which
characterize matter is represented by the negative square of the shape operator
(S?(g)) of the brane. Such a formulation thus give a mathematical expression for
the famous Clifford “little hills” as representing matter.

11.1 Introduction

As well known, in GRT, each gravitational field generated by a given energy-
momentum tensor T is represented by an equivalence class' of Lorentzian space-
times [((M,D, g, ty, 1)], where we recall once again that a Lorentzian spacetime is a
structure (M, D, g, 7, 1) where M is a non compact (locally compact) 4-dimensional
Hausdorff manifold, g is a Lorentzian metric on M and D is its Levi-Civita
connection. Moreover M is supposed to be oriented by the volume form 7, and
the symbol 1 means that the spacetime is time orientable. From the geometrical
objects in the structure (M,D, g, 1., 1) we can calculate the Riemann curvature
tensor R of D and a nontrivial GRT model is one in which R # 0. In that way
textbooks often say that in GRT spacetime is curved. Unfortunately many people
mislead the curvature of a connection D on M with the fact that M can eventually be
a bent surface in a (pseudo)Euclidean space with a sufficient number of dimensions.”
This confusion according to our view leads to all sort of wishful thinking because
many forget that GRT does not fix the topology of M that often must be put “by
hand” when solving a problem, and thus think that they can bend spacetime or
even change its topology if they have an appropriate kind of some exotic matter.
Worse, the insistence in supposing that the gravitational field is geometry lead the
majority of physicists to relegate the search for the real physical nature of the
gravitational field as not important at all (see a nice discussion of this issue in [19]).
As discussed with details in Chap.9 what most textbooks with a few exceptions
(see, e.g., the excellent book by Sachs and Wu [34]) forget to say and give a proof
to their readers is that in the standard formulation of GRT there are no genuine
conservation laws of energy-momentum and angular momentum unless spacetime

'(M,D,g, 1, 1) is said to be equivalent to (M’,D’,g’, ré, 1) if there exists a diffeomorphism
h:M — M’ such that M =" hM D’ = h*D, g’ = h*g, ‘[; =h*g,M'=h"tand 7" = h*T.

Recall that bending is characterized by the shape operator introduced in Chap.5. Recall
moreover that, e.g., the shape operator for a punctured sphere viewed as a submanifold embedded

in 3-dimensional Euclidean space is non null, but its Nunes connection has zero curvature
(Sect. 4.9.8).
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has some additional structure which is not present in a general Lorentzian spacetime
[26]. Some textbooks e.g., [24] even claim that energy-momentum conservation
for matter plus the gravitational fields is forbidden due the equivalence principle?
because the energy-momentum of the gravitational field must be non localizable.
Only a few people tried to develop consistent theories where the gravitational field
(at least from a classical point of view) is simple another field, which like the
electromagnetic field lives in Minkowski spacetime (see a list of references in [11]).
A field of that nature will be called, in what follows, a field in Faraday’s sense.

Here we want to recall that: (1) the representation of gravitational fields by
Lorentzian spacetimes is not a necessary one, for indeed, there are some geometrical
structures different from (M, D, g, 7,, 1) that can equivalently represent such a field;
(2) That any realistic gravitational field can also be nicely represented as a field
living in a fixed background spacetime.

The preferred one which seems to describe all realistic situations is, of course,
Minkowski spacetime* (M >~ R*, D, 9, 7,, 1).

Concerning the possible alternative geometrical models, the particular case
where the connection is feleparallel (i.e., it is metric compatible, has null Rie-
mann curvature tensor and non null torsion tensor) will be briefly addressed
below (for other possibilities see [27]). What we will show, is that starting with
a thoughtful representation of the gravitational field in terms of gravitational
potentials g* € sec /\lT*M — secC{(M,g), a = 0,1,2,3 and postulating a
convenient Lagrangian density for the gravitational potentials which does not use
any connection there is a posteriori different ways of geometrically representing
the gravitational field, such that the field equations in each representation result
equivalent in a precise mathematical sense to Einstein’s field equations. Explicitly
we mean by this statement the following: any realistic model of a gravitational field
in GRT where that field is represented by a Lorentzian spacetime (with non null
Riemann curvature tensor and null torsion tensor) which is also parallelizable, i.e.,
admits four global linearly independent vector fields) is equivalent to a telepar-
allel spacetime (i.e., a spacetime structure equipped with a metrical compatible
teleparallel connection, which has null Riemann curvature tensor and non null
torsion tensor).> The teleparallel possibility follows almost directly from the results
in Sect. 11.1 and a recent claim that it can give a mathematical representation to
“Einstein most happy though” is discussed in Sect. 11.2. Comments about possible
conservation laws in the teleparallel equivalent of GRT is discussed in Sect. 11.6.

3We recall here that most presentations of the equivalence principle are according to our view
devoid from mathematical and physical sense. See, e.g., [32, 38] and our discussion in Sect. 6.7.

4Of course, the true background spacetime may be eventually a more complicated one, since that
manifold must represent the global topological structure of the universe, something that is not
known at the time of this writing [43]. We do not study this possibility here, but the results we are
going to present can be easily generalized for more general spacetime backgrounds.

SThere are hundreds of papers (as e.g., [10]) on the subject, but none (to the best of our knowledge)
develop the theory from the point of view presented here and originally in [31].



406 11 On the Nature of the Gravitational Field

Equipped with the powerful Clifford bundle formalism developed in previous
chapters we give in Sect. 11.3 a field theory for the gravitational field in Minkowski
spacetime (with field equations equivalent to Einstein equation in a precise math-
ematical sense). In our theory we are able to identify in Sect. 11.4.1 a legitimate
energy momentum tensor for the gravitational field expressible in a very short and
elegant formula.

Besides this important result we think that another important feature of this
chapter is that our representation of the gravitational field by the global 1-form
fields potentials {g?} living on a manifold M and coupled among themselves and
with the matter fields in a specific way (see below) shows that we can dispense
with the concept of a connection and a corresponding geometrical description for
that field. The simplest case is when M is part of Minkowski spacetime structure,
in which case the gravitational field is (like the electromagnetic field) a field in
Faraday’s sense.’ In Sect. 11.4.1 we present the Hamiltonian formalism for our
theory and discuss the relation of one possible energy concept’ naturally appearing
in it and its relation to the concept of ADM energy. In Sect. 11.5 we discuss the
role of a possible graviton mass in the formulation of the field theory of gravitation.
Despite our present opinion that gravitation is a plastic distortion of the Lorentz
vacuum [11] and thus is to be described by a field in the sense of Faraday living
in Minkowski spacetime in Sect. 11.7 (titled On Clifford Little Hills) using a nice
result proved in Chap. 5 (namely, that the Ricci operator is the negative square of the
shape operator) we show a way to represent as “marble” the “wood” part of Einstein
equation, i.e., we show how the phenomenological energy-momentum tensor can
be explicitly represented by a geometrical property of a 4-dimensional Lorentzian
brane embedded as a submanifold in a pseudo-Euclidean space of large dimension.
In Sect. 11.8 we present our conclusions.

11.2 Representation of the Gravitational Field

Suppose that a 4-dimensional M manifold is parallelizable, thus admitting a set of
four global linearly independent vector e, € secTM, a = 0,1,2,3 fields such
{ea} is a basis for TM and let {g®}, g* € sec T*M be the corresponding dual basis
(g*(en) = 85). Suppose also that not all the g* are closed, i.e., dg* # 0, for a

SIn Chap.15 (see also [33]) we even show that when a Lorentzian spacetime structure
(M,D, g, 14, 1) representing a gravitational field in GRT possess a Killing vector field K, then
there are Maxwell like equations with well determined source term satisfied for F = dA with
A = g(K,) encoding Einstein equation and more, there is a Navier-Stokes equation encoding the
Maxwell (like) and Einstein equations.

"This other possibility does not define in general a legitimate energy-momentum tensor for the
gravitational field in GRT, but it defines a legitimate energy-momentum tensor in our theory in
which the gravitational field is interpreted as a field in the sense of Faraday living in Minkowski
spacetime.
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least some a = 0, 1,2, 3. This will be necessary for the possible interpretations we
have in mind for our theory. The 4-form field g° A g! A g A g3 defines a (positive)
orientation for M.

Now, the {g?} can be used to define a Lorentzian “metric” field in M by defining
g € sec TgM by g := napg® ® gP, with the matrix with entries 7,y being the diagonal
matrix (1, —1,—1, —1). Then, according to g the {e,} are orthonormal, i.e., eaéeb =

g(ea, en) = Nap.

Since the eg is a global time like vector field it follows that it defines a time
orientation in M which we denote by 1. Then, the 4-tuple (M, g, 7, 1) is part of a
structure defining a Lorentzian spacetime and can eventually serve as a substructure
to model a gravitational field in GRT.

For future use we also introduce g € sec TgM by g := n*e, ® ep, and we write
o' "= gl g") = 1™

Due to the hypothesis that dg® # 0 the commutator of vector fields e,,
a = 0,1,2,3 will in general satisfy [e,, ep] = c!:i)ek,where the c!;i), the structure
coefficients of the basis {e,}, and we. easily show that dg* = —%c?l;'lgk Agl.

Next, we introduce two different metric compatible connections on M, namely
D (the Levi-Civita connection of g) and a teleparallel connection V. Metric
compatibility means that for both connections it is Dg = 0, Vg = 0. Now, we
put
b

_ c _ b _¢
D..ey, = w ec, D.,g° = —., 9",

Veen =0 V,g"=0. (11.1)

As we know, the objects @<, are called the connection coefficients of the
connection D in the {e,} basis and the objects w} € secT*M defined by
% = w?} g* are called the connection 1-forms in the {e,} basis. The connection
coefficients w®, of V and the connection 1-forms of V in the basis {e,} are
null according to the second line of Eq.(11.1) and thus the basis {e,} is called
teleparallel and the connection V defines an absolute parallelism on M. Of course,
as it is well known the Riemann curvature tensor of the Levi-Civita connection D
of g, is in general non null in all points of M, but the torsion tensor of D is zero in
all points of M. On the other hand the Riemann curvature tensor of V is null in all
points of M, whereas the torsion tensor of V is non null in all points of M.

We recall from Chap.4 that for a general connection, say D on M (not
necessarily metric compatible) the forsion and curvature operators and the torsion
and curvature tensors are respectively the mappings:

p:secTM @ TM @ TM — sec TM,
p,v,w) =D,D,w —D,Dyw — Dy, ,]w,
T:5ecTM ® TM — secTM,
t(u,v) = D,v — Dyu — [u,v]. (11.2)
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It is usual to write [S] p(u,v,w) = p(u,v)w and O(o,u,v) = o (t(u,v)) and
R(w,o,u,v) = a(p(u, v)w), for every u,v,w € secTM and o € sec /\1 T*M. In
particular we write 7%, := ©(g*, ep, e.) and Rggd = R(gb,ea, ec,eq), and define
the Ricci tensor by Ricci := Raeg® ® g€ with Ry 1= Rggb = Re¢a. We take as in
previous chapters A\T*M = @fzo/\rT*M — CLM, g).

Given that we introduced two different connections D and V defined in the
manifold M we can write two different pairs of Cartan’s structure equations.
Those pairs describe respectively the geometry of the structures (M,D, g, 1., 1)
and (M,V,g, 1., 1) called respectively a Lorentzian spacetime and a teleparallel

spacetime. In the case (M, D, g, t,, 1) we write
O :=dg" + 0y Ag’ =0, RY:=do} + o Aes,

where the ®? € sec /\ZT*M — secC{(M,g), a = 0,1,2,3 and the R} €
sec /\ZT*M — secCL(M,g),a,b = 0,1,2,3 are respectively the torsion and the
curvature 2-forms of D with

1 1
0" = Erﬁ;;gb Ags Ry = ERﬁ;;dg° A gl (11.3)
In the case of (M, V, g, 7,, 1) since w}, = 0 we have
w
Fri=dg" + oy Ag® =dg’, RY =dwi+wiAw =0, (11.4)

where the F? € sec /\ZT*M, a=0,1,2,3 and the %b € sec /\ZT*M, a,b =
0,1,2,3 are respectively the torsion and the curvature 2-forms of V given by
formulas analogous to the ones in Eq. (11.3).

We next postulate that the {g®} are the basic variables representing the gravi-
tational field, and moreover postulate that the {g“} interacts with the matter fields
through the following Lagrangian density

L="Ly+ Ly, (11.5)

where L,, is the matter Lagrangian density and
1 a 1 a 1 a b
L, = —=dg* A xdga + =8g" A *8ga + — (dg® A ga) A* (dg® Agp),  (11.6)
2 g 2g 4 4 g

The form of this Lagrangian is notable, the first term is Yang-Mills like, the
second one is a kind of gauge fixing term and the third term is an auto-interaction
term describing the interaction of the “vorticities” of the potentials (or if you
prefer, the interaction between Chern-Simons terms dg® A g,). Before proceeding we
observe that this Lagrangian is not invariant under arbitrary point dependent Lorentz
rotations of the basic cotetrad fields. In fact, if g* — g = A} g = RgaiZ (where
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for each x € M, A (x) € Ll, the homogeneous and orthochronous Lorentz group
and R(x) € Spin; 3 C Ry 3) we get that

1 1 1
! / / / / / / /b /
L, = —Edga A ;rdga + Egga A ;(g}’ga +7 (dg™ A gy) A x (dg® Agp). (117
differs from £, by an exact differential. So, the field equations derived by the
variational principle results invariant under a change of gauge and we can always
choose a gauge such that §g, = 0.

g

Now, a derivation of the field equations directly from Eq. (11.6) using constrained
variations of the g? (i.e., variations induced by point dependent Lorentz rotations)
that do not change the metric field g has been given in Chap. 9. The result is:

—dxSqg— *tqg=*Tq, (11.8)
g g g
with
oL 1
*lg = —2 = ~[(gaudg®) A *dga — dg* A (gaa * dga)]
4 dg 2" g g ge
1 a 1 a 1 a
+-d(gaa * g*) A xd * ga + —(gaa * g*) A xd * gy + —dga A * (dg® A ga)
2 g g g 27 g8 g g 2 g
1 1
——dg* Aga A | Gaa* (dg° A ge) | — = | 8aa(dg° A ge) | A *(dg* A ga),
4 ge 4 g g
(11.9)
a‘cg a 1 a
*Sq = = = —xdga—(gaa*g") A*xd*xga+ ~gaA*(dg* Aga).  (11.10)
g adg g ge g g 2 g
and the®
oL,
*Ta = 2" = x Ty (11.11)
g dgd g

with the xT4 the energy-momentum 3-forms of the matter fields.
g

Recalling that from Eq. (11.4) itis F? := dg, it is, of course, dF?* = 0 and the
field equations (Eq. (11.8)) can be written (recalling Eq. (11.10)) as

dx Fa=—%Ta— xtq — xby, (11.12)
g g g 4

8We suppose that £,, does not depend explicitly on the dg?.
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where
a 1 a
ha =d|(gas* g*) A*d *x ga— ga A * (F* A ga) |- (11.13)
g8 g g 2 g

Recalling the definition of the Hodge coderivative operator acting on sections of
A\"T*M we can write Eq. (11.12) as

gf“ = —(T9+t9), (11.14)

with the t9 € sec \'T*M given by
td =4 4+ pd, (11.15)

which are legitimate energy-momentum® 1-form fields for the gravitational field.
Note that the total energy-momentum tensor of matter plus the gravitational field is
trivially conserved in our theory, i.e.,

ST +t%) = 0. (11.16)
g 8

Remark 11.1 Recalling Egs. (11.9) and (11.13) the formula for the t? in Eq. (11.15)
cannot be, of course, the nice and short formula we promised to present in the
introduction. However, it is equivalent to the nice formula as shown in Sect. 11.3.

Exercise 11.2 Show that in a 2-dimensional spacetime the Einstein-Hilbert
Lagrangian density is an exact differential (see, e.g.,[8]).

Recall the similarity of the equations satisfied by the gravitational field to
Maxwell equations. Indeed, in electromagnetic theory on a Lorentzian spacetime we
have only one potential A € sec /\IT*M — secC{(M, g) and the field equations
are

dF =0, 6F=-/J, (11.17)
g

where F € sec /\ZT*M — secCL(M,g) is the electromagnetic field and J €
sec /\lT*M — secCl(M,g) is the electric current. As well known the two
equations in Eq.(11.17) can be written (if you do not mind in introducing the
connection D in the game as a mathematical tool to simplify some formulas) as
a single equation using the Clifford bundle formalism, namely

AF=1. (11.18)

9This will become evident after we present below the nice formula for the t¢.
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where we can write 8 = d — § = g*D,,, where 9 is the Dirac operator (acting on
g

sections of C£(M, g)).

Now, if you feel uncomfortable in needing four distinct potentials g* for
describing the gravitational field you can put them together defining a vector valued
differential form'’

1
g:ga®eaesec/\ T"M ® TM < secCL(M,g) ® TM (11.19)
and in this case the gravitational field equations are

dF =0, 8F = —(T +1), (11.20)
IS

where F = F2 R e,, T = T* @ ex,t =t* ® e,. Again, if you do not mind in
introducing the connection D in the game) by considering the bundle C{(M, 9) @ TM
we can write the two equations in Eq. (11.20) as a single equation, i.e.,

AF =T +t. (11.21)

At this point you may be asking: which is the relation of the theory just presented
with Einstein’s GRT? The answer is that recalling (See Exercise 9.16) that the
connection 1-forms *® of D are given by

1
0= [gdgdzf - g°§d9d + g“g(g";dga)ga} (11.22)

we already showed in Chap. 9 that the Lagrangian density £, becomes

Ly = d(g" A xdga) + Len, (11.23)
8
where
1 e 4 1
Lpy = SRea A *(g° A g%) = —5 *R (11.24)
2 g 2¢g

(with R¢q given by Eq. (11.3)) is the Einstein-Hilbert Lagrangian density. This, as
we know from Chap.9 permits (with some algebra) to show that Eq.(11.8) are
indeed equivalent to the usual Einstein equation.

Before ending this section we recall from Chap.9 that from Eq. (11.8) we can
also define for our theory a meaningful energy-momentum for the gravitational plus
matter fields Indeed, using Stokes theorem for a ‘certain 3-dimensional volume’,

1
10Recall that g = g® ® e, is the identity operator in /\ T*M.
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say a ball B we immediately get

1 1
P = —— N = — S2. 11.25
SHIB;(Ta—Ft) SnIBB; ( )

11.3 Comment on Einstein Most Happy Though

The exercises presented above indicate that a particular geometrical interpretation
for the gravitational field is no more than an option among many ones. Indeed,
it is not necessary to introduce any connection D or V on M to have a perfectly
well defined theory for the gravitational field whose field equations are (in a precise
mathematical sense) equivalent to the Einstein field equation. Note that we have
not given until now details on the global topology of the world manifold M, except
that since we admitted that M carries four global (not all closed) 1-form fields g?
which defines the object g, it follows as we know from Chap. 7 that (M, D, g, ., 1)
is a spin manifold [12, 13], i.e., it admits spinor fields. This, of course, is necessary
if the theory is to be useful in the real world since fundamental matter fields are
spinor fields. The most simple spin manifold is clearly Minkowski spacetime which
is represented by a structure (M = R*. D, n, 75, 1) where D is the Levi-Civita
connection of the Minkowski metric ». In that case it is possible to interpret the
gravitational field as a (1, 1)-extensor field & which is a field in the Faraday sense
living in (M,D,n,ty,1). The field k (as we know from Eq.(2.121)) is a kind
of square of g which has been called in [11] the plastic distortion field of the
Lorentz vacuum. In that theory the potentials g* = h(y?®) where y* = &} dx",
with {x"} being global naturally adapted coordinates (in Einstein-Lorentz-Poincaré
gauge) to the inertial reference frame 1 = 9/0x° according to the structure
M = R* D, y, 7y, 1), i.e., DI = 0. In [11] we give the dynamics and coupling
of h to the matter fields.

We want also to comment that, as well known, in Einstein’s GRT one can easily
distinguish in any real physical laboratory, i.e., not one modelled by a time like
worldline (despite some claims on the contrary) [29] a true gravitational field from
an acceleration field of a given reference frame in Minkowski spacetime. This is
because in GRT the mark of a real gravitational field is the non null Riemann cur-
vature tensor of D, and the Riemann curvature tensor of the Levi-Civita connection
of D (present in the definition of Minkowski spacetime) is null. However if we
interpret a gravitational field as the torsion 2-forms on the structure (M, V.g, 75, 1)
viewed as a kind of deformation of Minkowski spacetime then one can also interpret
an acceleration field of an accelerated reference frame in Minkowski spacetime as

generating an effective teleparallel spacetime (M, V, 1, 7, 1). This can be done as
follows. Let Z € sec TU, U C M with n(Z,Z) = 1 an accelerated reference frame
on Minkowski spacetime. This means as we know from Chap. 5 thata = DzZ # 0.
Put ¢y = Z and define an accelerated reference frame as non trivial if #° = n(eo,)
is not an exact differential. Next recall that in U C M there always exist [5] three
other p-orthonormal vector fields ¢;, i = 1,2, 3 such that {e,} is an y-orthonormal
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basis for TU, i.e., § = nap??* ® P, where {1#2} is the dual basis'' of {e,}. We then
have, D, e = @& ec, Do, 0 = —0%9¢.

What remains in order to be possible to interpret an acceleration field as a kind
e

of ‘gravitational field’ is to introduce on M a p-metric compatible connection V
e e
such that the {e,} is teleparallel according to it, i.e., V. ep = O,Veal?b = 0.

Indeed, with this connection the structure (M ~ R4, %, 1, Ty, 1) has null Riemann
curvature tensor but a non null torsion tensor, whose components are related
with the components of the acceleration a and with the other coefficients @,
of the connection D, which describe the motion on Minkowski spacetime of a
grid represented by the orthonormal frame {e,}. Schiicking [35] thinks that such
a description of the gravitational field makes Einstein most happy though, i.e.,
the equivalence principle (understood as equivalence between acceleration and
gravitational field) a legitimate mathematical idea. However, a true gravitational
field must satisfy (at least with good approximation) Eq. (11.12), whereas there is
no single reason for an acceleration field to satisfy that equation.

11.4 Field Theory for the Gravitational Field in Minkowski
Spacetime

Since the structure of the Lagrangian density for the gravitational field and the
resulting field equations do not use any connection we can assume the gravitational
field represented by the potentials g? is a field in Faraday sense, i.e., it leaves in the
Minkowski spacetime structure (M = R*, D, 5, 7,, 1). All geometrical like objects
like g, D, V introduced above are then to be understood as no more than auxiliary
mathematical devices to present formulas and to suggest possible geometrical
interpretations for the gravitational field. With this advise in mind we show next
that we can give a very nice and compact formula for the energy-momentum tensor
of the gravitational field.

11.4.1 Legitimate Energy-Momentum Tensor
of the Gravitational Field. The Nice Formula

Taking into account that 74 = dg? = 3 A g¢ we return to Eq. (11.14) and write it
as

gl =TI+ ¢4, (11.26)

Hp general we will also have that Ao #0,i=1,2,3.
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with ¢4 = t4 — d8g9. Next we recall from Chap.4 that the operator 9> (the
Hodge D’Alembertian) has two distinct decompositions, namely, for each M €
sec \T*M — secCL(M, g) we have
*M = —(d§ + Sd)M
& ¢
=0AOM+4+0-0M (11.27)

where d A 9 is the Ricci operator and 9 - 9 is the covariant D’ Alembertian operator.
We have

dnd gl =R, (11.28)

where the R = Rg? € sec /\IT*M > sec C{(M, g) (with RY the components of
the Ricci tensor) are the Ricci 1-form fields. Then we can write Eq. (11.26) as

Indgl+d-0gt =7+, (11.29)
or
RE+9-9g4 =79 444 (11.30)
Now, we recall that Einstein equation in components form is
Ri— %SQR =-T3 (11.31)

from where it follows immediately that

1
RY — ERgd =71 =79, (11.32)
Then
1
Rd+3-agd=Td+§Rgd+3-3gd, (11.33)

and comparing Eq. (11.29) with Eq. (11.33) we get

a_1lya d

t :§Rg +4d-9g° (11.34)
and

1
td = ERg" +9-9 g4+ dsg? (11.35)
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the nice formula promised and that clearly demonstrates that the objects tg, =

Nacnait*ag! are components of a legitimate gravitational energy-momentum tensor
g

field t = tga0? ® g? € sec T(%M . We observe moreover that

92 2 = 29.9 g% g% (11.36)
g

i.e., the energy-momentum tensor of the gravitational field in not symmetric.
As shown in [11] this is important in order to have a total angular momentum
conservation law for the system consisting of the gravitational plus the matter fields.
At least observe that t9 = t¢ when the potentials are chosen in the Lorenz gauge.

11.5 Hamilton Formalism

If we define as usual the canonical momenta associated to the potentials {g*} by
pa = 0Lg/0dg* = xS, and suppose that this equation can be solved for the dg® as
g

function of the p, we can introduce a Legendre transformation with respect to the
fields dg® by

L: (g% pa) = L(g%, po) = dg” A po — Lg(Q‘X’dgu(pa)) (11.37)

We write in what follows £4(g%,ps) = Lg(g% dg*(po)) and observe that
defining'?

8Le(8”.Pa) _ dp COL 8L(e%pe) dg“—a—L
8g* ' * 9ge’ 8Pe ' 0Pe

we can obtain (see details in [11])

g p SLe00 40D goa ) (0587 Pa)) | (8500 R0)) o (g 35
§g” 8g” 8pa

Exercise 11.3 Prove Eq. (11.38).

To define the Hamiltonian form, we need something to act the role of time for our
manifold, and we choose this ‘time’ to be given by the flow of an arbitrary timelike
vector field Z € sec TM such that g(Z,Z) = 1. Moreover, we define Z = g(Z,) €
sec /\1 T*M — C{(M, g). With this choice, the variation § is generated by the Lie

12We use only constrained variations of the g2, which as already recalled in Sect. 11.1 do not change
the metric field g.
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derivative £z. Using Cartan’s ‘magical formula’, we have
—68L, =%,8, =d(Z.8L,) +Z.dEe = d(Z05,). (11.39)

and after some algebra we get

8L 8L
d(Z.Ly) = d(£29% A po) + £20% A —f + £7p0 A (—) (11.40)
g 8pa
and also
8L,
d(£zg“ NPa — ZJEg) = —£Zg°‘ N . (11.41)
sg~
Now, we define the Hamiltonian 3-form by
H(g% pe) = £20% Ao — Z0L,. (11.42)

We immediately have taking into account Eq. (11.41) that, when the field equations
for the free gravitational field are satisfied (i.e., when the Euler-Lagrange functional
isnull, 8L, /8g* = 0) that
dH = 0. (11.43)
Thus H is a conserved Noether current. We next write
H =Z"Hy + dB. (11.44)
We can show (details in [11]) that H, = —8L,/8g* and B = Z*p, and now we

investigate the meaning of the boundary term'? B. Consider an arbitrary spacelike
hypersurface o. Then, we define

Hz/@%ﬁ%&z/?%+/3.
o o do

If we recall that H, = —8L,/8g* we see that the first term in the above equation
is null when the field equations (for the free gravitational field) are satisfied and we
are thus left with

E:/R (11.45)
do

which is called the quasi local energy [39].

3More details on possible choices of the boundary term for different physical situations may be
found in [23].
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Now, if {ey} is the dual basis of {g®} we have g°(e;) = 0, i = 1,2,3 and if
we take Z = eg orthogonal to the hypersurface o, such that for each p € o, To, is
generated by {e;} we get recalling that p, = *S, that

g

E:/ * So. (11.46)
o &

which we recognize (a constant factor apart) as being the same conserved quantity
as the one defined by Eq. (11.25).

The relation of the energy defined by Eq.(11.46) with the energy concept
defined in ADM formalism [3] can be seen as follows [42]. Instead of choosing
an arbitrary unit timelike vector field Z, start with a global timelike vector field
n € secTM such that n = g(n, ) = N’dt € sec /\l T*M — CEL(M,qg), with
N :R DT — R, apositive function called the lapse function of M. Thenn Adn = 0
and according to Frobenius theorem, n induces a foliation of M, i.e., topologically
itis M = Ixoy, where o, is a spacelike hypersurface with normal given by n. Now,
we can decompose any A € sec AP T*M <> C{(M, g) into a tangent component A
to o, and an orthogonal component 1A to o; by

A=A+ 1A, (11.47)
where
A:=ni(dtnA), TA=dinAL, AL = n.A. (11.48)
Introduce also the parallel component d of the differential operator d by:
dA = na(dt A dA) (11.49)
from where it follows (taking into account Cartan’s magical formula) that
dA =dt N (£,A —dA L) + dA. (11.50)
Call
m=-—g+n®n=9¢Qg,

(where n = n/N) the first fundamental form on o, and next introduce the Hodge
dual operator associated to m, acting on the (horizontal forms) forms A by

n
A= x(— AA). 11.51
*xA ;(N A) ( )
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At this point, we come back to the Lagrangian density Eq.(11.42) and, proceeding
like above, but now leaving §»n? to be non null, we eventually arrive at the following
Hamiltonian density

H(g'p) = £ag' A *p, — K. (11.52)
where
g — g =dt A (nag)) = n'dr, (11.53)

and where K, depends on (n, dn, gi , d_gi , £ngi). We can show (after some tedious but
straightforward algebra that H(gi, Ei) can be put into the form

H = n'H; + dB, (11.54)

with as before H; = —8L,/8g' = —8K,/8n’ and
B = —Ng. A xdg (11.55)

=i m =

Then, on shell, i.e., when the field equations are satisfied we get
E = —/ Ng. A xdg' (11.56)
doy = m =

which is exactly the ADM energy, as can be seen if we take into account that taking
do; as a two-sphere at infinity, we have (using coordinates in the Einstein-Lorentz-
Poincaré gauge) g; = h;dx’ and h;;, N — 1. Then

; o Ohy Ol
P iy k
[ ;Qg =h (8xk s * g (11.57)

and under the above conditions we have the ADM formula

ahik 3hik
"= - k
£- /a ( oxi axk) wg (11.58)

which, as is well known , is positive definite.'* If we choose n = g° it may happen
that g° A dg” # 0 and thus it does not determine a spacelike hypersurface o;.
However all algebraic calculations above up to Eq. (11.55) are valid (and of course,
gt = g*). So, if we take a spacelike hypersurface o such that at spatial infinity the

¢; (g"(e;) = 8%) are tangent to o, and ¢y — 9/0¢ is orthogonal to o, then we have

14See a nice proof in [42].
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E = E'since in this case —~Ng. A xdg' — —g; A *(g° A xdg’) which as can be easily
verified (see Eq. (11.10)) is the asymptotic value of xS0 (taking into account that at
g

spatial infinity dg® — 0).

11.6 Mass of the Graviton

In the Lagrangian given by Eq.(11.6) the mass of the graviton is supposed to be
zero. A non null mass m requires an extra term in the Lagrangian. As an example,
consider the Lagrangian density

1 1 1 1
Ly, = —=dg® A *dgy + 580" A *8ga + — (dg® A ga) A * (dg® A gp) + Sm’ga A *g®
8 2 g 2¢ gg 4 g 2 g

(11.59)

With the extra term the equations for the gravitational field, for the S? result in

—d*S* =+T* 4+ ** +m® * g°, (11.60)
IS IS 8 8

from where we get

(T + 1) = —m?8g® (11.61)
g g

If we impose the gauge 6g® = 0, which is analogous to the Lorenz gauge in
g

electrodynamics, Eq. (11.61) becomes

§(T*+ 1) =0, (11.62)
8

which is the same equation valid in the case m = 0!
There are other possibilities of having a non null graviton mass, as, e.g., in
Logunov’s theory [20, 21], which we do not discuss here. !

11.7 Comment on the Teleparallel Equivalent of GR

We observe that some people [10] think to have find a valid way of formulating a
genuine energy-momentum conservation law in the teleparallel equivalent to general
relativity. In that theory, as we already know (see also [22]), spacetime is teleparallel
(a.k.a. Weintzenbock [25]), i.e., has a metric compatible connection with non zero

5We only observe that Lagrangian density of Logunov’s theory when written in terms of
differential forms is not a very elegant expression.
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torsion and with null curvature.'® However, the claim of [10] must be qualified.
Indeed, we have two important comments (a) and (b) concerning this issue.

(a) First, it must be clear that the structure of the teleparallel equivalent of GRT as
formulated, e.g., by Maluf [22] or Andrade et al. [10] consists in nothing more
than a trivial introduction of: (1) a bilinear form (a deformed metric tensor)
g = 7Napg® ® g’ and (2) a teleparallel connection in a manifold M ~ R* (
part of the structure defining a Minkowski spacetime). Indeed, taking advantage
of the discussion of the previous sections, we can present that theory with a
cosmological constant term as follows. Start with ﬁ;, (Eq. (11.59)) and write it
(after some algebraic manipulations) as

1 1
Ly =—5dg" A x |:an — 8a A (Bndg) + 5 *(ga A +(dg" A 9b)):|
8

1
—i——nga A xg?
2 g

1 1 1
= ——dg® A x(Vdgy — 2Pdg, — = Ddga) + —m’ga A xg®,  (11.63)
2 g 2 2 g
where

dga :(1) dga +(2) dga +(3) dga,
(l)dga — dga _©2 dga _ 3 dga,

1
@ag* = ggb A (Gb;dGb),

Odg? = —= x (g" A *(dg® A gp). (11.64)
g 8

[OSHIE

Next introduce a teleparallel connection by declaring that the cobasis {g?} fixes
the parallelism, i.e., we define the torsion 2-forms by

©* = dg*, (11.65)

and Lg becomes

1 1 1
L =——0*Ax VO 2002 — — B0 | + —m’g, Axg?,  (11.66)
8 2 g 2 2 g

161n fact, formulation of teleparallel equivalence of GRT is a subject with a old history. See, e.g.,
[18].
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where V@2 =) gg2, D@2 =6 gg2 and ®02 =06V dg?, called tractor (four
components), axitor (four components) and fentor (sixteen components) are the
irreducible components of the tensor torsion under the action of SOf 5.

(b) Recalling the results of Chap.9 we now show that even if the metric of a given
teleparallel spacetime has some Killing vector fields there are genuine con-
servation laws involving only the energy-momentum and angular momentum
tensors of matter only if some additional condition is satisfied. Indeed, in the
teleparallel basis where V,e, = 0 and [ey,en] = c%,,ea We have that the
torsion 2-forms satisfy

1 1
O =dg* = —Ecﬂ;ngm Agh= ET?{{ngm Agh. (11.67)
Then, recalling once again that £ (dg?) = d(£:9%) = d(xf, g”) and Eq. (9.62)
we can use Eq. (9.65) (which express the condition £:© = 0) to write

d(eya®) = xhdg®, (11.68)
which implies
s Ag? =0. (11.69)

Then, Eq.(11.69) is satisfied only if the torsion tensor of the teleparallel
spacetime satisfy the following differential equation:

Tha em(EY) + ea(E™Thy,) — en(E™Thy,) = 0. (11.70)

Of course, Eq.(11.70) is in general not satisfied for a vector field £ that is
simply a Killing vector of g. This means that in the teleparallel equivalent of GRT
even if there are Killing vector fields, this in general do not warrant that there are
conservation laws as in Eq. (9.59) involving only the energy and angular momentum
tensors of matter.

Next, we remark that from Lg we get as field equations (in an arbitrary basis, not
necessarily the teleparallel one) satisfied by the gravitational field the Eq. (11.60),
ie.,

—d*S* =T+ x4, (11.71)
IS IS 8
with
* = x4+ m? x g (11.72)
8 8 8

and S* and #* given in Eq. (9.84) where it must also be taken into account that in
the teleparallel equivalent of GRT and using the teleparallel basis the Levi-Civita
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connection 1-forms wj there must be substituted by —«% , with

1
k4 = - [ngdg“ — g°.dg® + (gcJ(ngdga)) ga}
g g 8 IS

1
=—3 [g‘h@“ —gc,0% + (g%(g%@a)) g“:| , (11.73)
IS 8 8 IS

where k¥ = K3 g¢, with K3, the components of the so called contorsion tensor.'”
We have,

1
- SKab A K A % (g A g Ag®) + i A x(g* Ag® A go)] (11.74)

Under a change of gauge, g* — ¢ = Ug?U = Alg® (U € sec Spin{;(M) —
CL(M,g), Aj(x) € SO 3, Y x € M), we have that ©* > O = A;‘;@b. It follows
that the ¢}, which are the components of the energy-momentum 1-forms t* = ¢ gP
defines a tensor field.

We then conclude that for each gravitational field modelled by a particular
teleparallel spacetime, if the cosmological term is null or not there is a conservation
law of energy-momentum for the coupled system of the matter field and the
gravitational field which is represented by that particular teleparallel spacetime.
Although the existence of such a conservation law in the teleparallel spacetime is
a satisfactory fact with respect of the usual formulation of the gravitational theory
where gravitational fields are modelled by Lorentzian spacetimes and where genuine
conservation laws (in general) do not exist because in that theory the components
of 1 defines only a pseudo-tensor, we cannot forget observation (a): the teleparallel
equivalent of GRT as formulated, e.g., by Maluf [22] or Andrade et al. [10] consists
in nothing more than a trivial introduction of: (1) a bilinear form (a deformed metric
tensor) g = 7apg* ® g” and (2) a teleparallel connection in the manifold M ~ R*
of Minkowski spacetime structure. The crucial ingredient is still the old and good
Einstein-Hilbert Lagrangian density.

Finally we must remark that if we insist in working with a teleparallel spacetime
we lose in general the other six genuine angular momentum conservation laws
which always hold in Minkowski spacetime. Indeed, we do not obtain in general
even the chart dependent angular momentum ‘conservation’ law of GRT. The reason
is that if we write the equivalent of Eq.(11.60) in a chart (U, ¢) with coordinates
{x*} for U C M we did not get in general that dx* A xt" = dx” A xt*, which
as well known is necessary in order to have a chart dependent angular momentum
conservation law [40].

17See, Eq. (4.197) with Qug, = 0.
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11.8 On Clifford’s Little Hills

Even if we leave clear that there are at present time not a single indication
that the topology of our spacetime is different from R*we cannot leave out the
possibility that its topology is more complicated, in particular that it is modelled
by a Lorentzian brane (See Chap.5) living in a large dimensional manifold. One
interesting aspect of this possibility is to transform the “wood” part of Einstein
equation in “marble”. Let us see how to do this applying the notable formula

AN (v) =R(©W) =—-8*(v)

(see Eq.(5.9)) of brane theory to General Relativity. As we will see this permits to
give a mathematical formalization to Clifford’s intuition'® presented in [6], namely
that:

(1) That small portions of space are in fact of a nature analogous to little hills on a surface
which is on the average flat; namely, that the ordinary laws of geometry are not valid in
them.

(2) That this property of being curved or distorted is continually being passed on from one
portion of space to another after the manner of a wave.

(3) That this variation of the curvature of space is what really happens in that phenomenon
which we call the motion of matter, whether ponderable or ethereal.

(4) That in the physical world nothing else takes place but this variation, subject (possibly)
to the law of continuity.

To proceed. let (M. g, D, 74, T) be a model of a gravitational field generated by
an energy momentum tensor T := T26* ® 6® describing all matter of the universe
according to General Relativity theory. As well already know Einstein equation can
be written as

1
IAN0 0% =T+ ET@”, (11.75)
where 7% := T26" and T = T2, with T2. If we suppose that the structure (M, g) is

a submanifold of (1\04 ~ R", 8) for n large enough as discussed in the beginning of
Sect. 5.3 we can write Eq. (11.75) taking into account Eq. (5.146) as

1
S* (%) =T* — Erea. (11.76)

Thus, in a region where there is no matter S?(6?) = 0, despite the fact that S(6?) =
S(6*) may be non null. So, a being living in the hyperspace R" and looking at our
brane world will see the little hills (i.e., “matter”) are special shapes in M, places

8Taking into account, of course, that differently from Clifford’s idea, instead of a space theory of
matter, we must talk about a spacetime theory of matter.
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where the S?(#®) # 0 which act as sources for P(SJS(G*‘)) since P(SJS(@“)) =
—S2(0%).

Remark 11.4 To properly appreciate the above argument one must take in mind
that the shape extensor depends for its definition on the metric g and the Levi-Civita

D connection of £ g used in M. So, a different choice of metric in M will imply in
Clifford’s little hills to be represented by different shape extensors. Despite this
fact, it seems to us that shape is most appealing than the curvature biform 93'° or
the Ricci 1-form fields R* = dAd 62 as indicator of the presence of matter as
distortions in the world brane M. Indeed, inner observers living in M in general
may not have enough skills and technology to discover the topology of M and so
cannot know if their brane world is a bended surface in the hyperspace (i.e., 1\04)
or even if a open set U C M is a part of an hyperplane or not. Moreover, those
inner observers that have learned a little bit of differential geometry know that they
cannot say that their manifold is curved based on the fact that the curvature biform
is non null, for they know that the curvature biform is a property of the connection
(parallelism rule) that they decide to use by convention in M and not an intrinsic
property of M. They know that if they choose a different connection it may happen
that its curvature biform may be null and their connection (not their manifold) may
have torsion and even a non null nonmetricity tensor?’ So, with their knowledge of

differential geometry they infer that little hills (as seems for beings living in M ) can
only be associated to the shape extensor if they use Levi-Civita connection of g in M.

11.9 A Maxwell Like Equation for a Brane World
with a Killing Vector Field

When (M, g) admits a Killing vector field’! A € sec TM then it follows [30] that
A = 0, where A = g(A, ) € sec /\lT*M — secC£(M, g). In this case we can
show that the Ricci operator applied to A is equal to the covariant D’ Alembertian
operator applied to A, i.e.,

OANIA=0-0A (11.77)

Now, recalling Eq. (5.7) that the square of the Dirac operator 3 can be decomposed
in two ways, i.e.,

IAIA+3-9A=203%A=—dSA—8dA (11.78)

19Recall that 94 is in general non null even in vacuum.

20Details about these possibilities are discussed in [11] where a theory of the gravitational field on
a brane diffeomorphic to R* is discussed.

21See more details in Chap. 15.
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we have writing F = dA and taking into account that SA = 0 that Einstein equation
can be written as

§F = 28*(A) (11.79)
and since dF = ddA = 0 we can write Einstein equation as:
OF = —28*(A). (11.80)

Equation (11.80) shows that in a Lorentzian brane M of dim 4 which contains
a Killing vector field A, Einstein equation is encoded in an “electromagnetic like
field” F having as source a current J = 2S8?(A) € sec C4(M, g).

Exercise 11.5 Prove Eq. (11.77).

11.10 Conclusions

This is a good point to end this chapter. Our intention in this book was only to
present some critical aspects of GRT theory (mainly using the Clifford bundle
formalism when convenient) and to discuss matters of principle, in particular to
let the reader aware of some very controversial issues concerning the orthodox
interpretation of Einstein’s theory, as, e.g., the case of the energy momentum
‘conservation’. We showed that this particular problem can be solved if we interpret
the gravitational field as a physical field living in Minkowski spacetime. The
gravitational field, when the graviton mass is zero, creates an effective Lorentzian
geometry where probe particles and probe fields move. In such theory there are no
exotic topologies, black holes,> worm holes, no possibility for time-machines,*

220n this issue recall Sect.6.9 keeping in mind that there are articles criticizing the notion
that black holes are predictions of GRT due mainly to some mathematical misunderstandings
as, e.g.[1, 4, 36] and/or physical grounds. When thinking on this issue take also into account
the ‘pasticcio’ concerning the black hole information ‘paradox’ (see, [15, 17]) and its possible
resolutions with the suggested existence of a “complementarity principle” [37] or existence of
firewalls [2] as an indication that the foundations of GRT and its relation to other theories of
Physics are not well understood as some people would like us to think. Recently adding stuff to the
“pasticcio” Hawking [16] is claiming that “The absence of event horizons mean that there are no
black holes—in the sense of regimes from which light can’t escape to infinity”. But this statement
seems to be already an old idea. More information at http://asymptotia.com/2014/01/30/hawking-
an-old-idea/ and http://www.physics.ohio-state.edu/~mathur/.

2The possibility for time machines arises when closed timelike curves exist in a Lorentzian
manifold. Such exotic configurations, it is said, already appears in Godel’s universe model.
However, a recent thoughtful analysis by Cooperstock and Tieu (which we endorse) shows that
the old claim is wrong. Authors like, e.g, Davies [9] (which are proposing to build time machines
even at home), Gott [14] and Novikov [28] are invited to read [7] and find a error in the argument
of those authors.


http://www.physics.ohio-state.edu/~mathur/
http://asymptotia.com/2014/01/30/hawking-an-old-idea/
http://asymptotia.com/2014/01/30/hawking-an-old-idea/
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etc., which according to our opinion are pure science fiction objects. Eventually,
many will not like the viewpoint just presented,>* but we feel that many will become
interested in exploiting new ideas, which may be more close to the way Nature
operates. We hope that our study clarifies the real difference between mathematical
models and physical reality and leads people to think about the real physical
nature of the gravitational field (and also of the electromagnetic field>’). We briefly
discussed also an Hamiltonian formalism for our theory and the concept of energy
defined by Eq. (11.25) and the one given by the ADM formalism, which are shown
to coincide.
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Chapter 12
On the Many Faces of Einstein Equations

Abstract This chapter gives a Clifford bundle approach to a theory of the grav-
itational field where this field is interpreted as the curvature of a S1(2, C) gauge
theory. The proposal of this presentation is to emphasize the many faces of Einstein
equation and in the development of the theory a collection of some non trivial and
useful formulas is derived and some misconceptions in presentations of the theory
of the gravitational field as a SI(2, C) gauge theory is discussed and fixed.

12.1 Introduction

Even if we leave clear in the previous chapters our opinion that the gravitational
field must be interpreted as a physical field in Minkowski spacetime, we decided
to present here how the orthodox Einstein theory can be formulated in a way
that resembles the gauge theories of particle physics, in particular a gauge theory
with gauge group SI(2, C). This exercise will reveal yet another face of Einstein’s
equations, besides the ones already discussed in previous chapters.! For our
presentation we introduce mathematical objects called Clifford valued differential
forms (cliforms) and a new operator D called the fake exterior covariant differential®
(FECD) acting on them. Moreover, with our formalism we show that Einstein’s
equations can be put in a form that apparently resembles Maxwell equations
written in coordinates and using the covariant of a Lorentzian spacetime structure
(M,g,D, 1, 1)? and which is very different from Eq. (11.80) of Chap. 11 which

'Of course, this will not exhaust the possible faces of Einstein’s equations, for finding new faces
depends mainly on authors mathematical knowledge and imagination. Also, the reader is here
advised that this chapter do not intend to be a presentation of the many developments that goes
under the name of gauge theories of gravitation. The interested reader on this issue may consult,
e.g., [9, 12].

2The name is due to the fact that D does not always satisfy a Leibniz type rule when applied to the
® ~product of arbitrary cliforms.

3Such form of Einstein’s equations leaded some people equivocally [17, 18] to think that they
achieved an unified theory of the gravitational and electromagnetic field. A discussion of that issue
may be found in [6, 15].
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really encodes Einstein equation in a Maxwell like equation when (M, g) admits a
Killing vector field.*

12.2 Preliminaries

Let (M,g,V,1,.1) be a Riemann-Cartan spacetime. We already introduced the
Clifford bundle of differential forms C£(M, g). To present from where ‘S1(2, C)
Gauge Theories of Gravitation’ come from it will be useful to introduce Clifford
valued differential forms. For presenting these objects we need to introduce besides
the Clifford bundle of multiforms C£(M, g), also the Clifford bundle of multivector
fields that will be denoted in what follows by C£(M, g)

cem.g) = | Jeurm. g). (12.1)

XEM

This bundle has, of course, an analogous structure as the bundle C£(M, g) of
multiform fields and all products, contractions, etc., are defined in analogous way,
and we shall use the same symbols for them, since this procedure produces no
confusion. If {e,} € Pso¢,(M) is an orthonormal basis for TM = /\lTM —
Cl(M,g) we have

exep + epey = 2Nap. (12.2)

Moreover, we introduce {e®} as the reciprocal basis of {e,}, i.e., e, - e® = §P. A
general section m € sec C{(M, g), called a (nonhomogeneous) multivector field has,
e.g., the expansion

: 1 .. 1 .
m=s+ ve' + Ebije'eJ + ;tijke‘ejek +pe5, (12.3)

0,1,2,3

where e° = ele?e? is the pseudoscalar generator and

0
s, i, bij, tijk, p € sec/\ TM — secCL(M, g). (12.4)

To motivate the introduction of Clifford valued differential forms we shall need to
recall some results from the general theory of connections (see Appendix) adapted
for the case of the spacetime structure (M, g, V, 74, 1).

In the Appendix we learned that a connection (a gauge potential) is a 1-form in
the cotangent space of a principal bundle, with values in the Lie algebra of a gauge

4See also Chap. 15.
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group. For a gauge theory of the gravitational field it seems natural (at least at first
sight’) to take as gauge potential the linear connection®

A
w € sec T*Pso: (M) ® s1(2, C), (12.35)

which determines exterior covariant derivative operators acting on sections of
associated vector bundles to the principal bundle Psoc . (M). However, a moment of

reflection shows that aA) cannot be the unique ingredient of our theory, since, if our
objective is to end with a geometrical spacetime structure (M, g, V, 7, 1) modeling
a gravitational field we needs to be able to reproduce the well known results obtained
with the usual covariant derivative of tensor fields in the base manifold. For that we

A
need besides @ also the soldering form

A
0 esecT*P_, (M) @R'3. (12.6)

4
S0j 3

Letbe U CMandlet¢c : U — ¢(U) C P_, (M). We are here interested in
3

SO§.
A A

the pullbacks ¢*@ and ¢*@ once we give a local trivialization of the respective

bundles. As it is well known [5, 10], in local coordinates {x*} covering U and with

A
{e, = 0,,} abasis for TU, ¢*6 uniquely determines the tensor field’

1
0 = e, ® di" = e dx" € secTM ® /\ T*M. (12.7)

Remark 12.1 InEq.(12.7) and other formulas involving Clifford valued differential
forms we will omit the symbol ® when no confusion arises.

Now, if we give: (1) the Clifford algebra structure to the tangent bundle, thus
generating the Clifford bundle C£(M, g) and; (2) recall moreover (see Sect.3.3.4)
that for each x € U C M the bivectors of C£(T:M, g,) generate under the product
defined by the commutator, the Lie algebra [11] spin{ ; 2 sl(2, C), we are naturally
lead to define the representatives in C£(M,g) ® A\T*M for 6 and for the pullback

SWe are not going to discuss this issue here. Such a deficiency may be supplied by a careful and
lucid analysis of the problem of formulating GRT as a possible gauge theory with gauge groups
S1(2, C) or T(4) as done by Wallner [20].

A
In words, @ is a 1-form in the cotangent space of the bundle of orthonormal frames with values
in the Lie algebra sof ; 2 sl(2, C) of the group SOf ;.

"Note that this tensor is the identity tensor acting on the space of vector fields on U C M. We
denoted the identity tensor by g in Chap. 11.
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A . A .
® = ¢*w of the connection w in a given gauge.

1 1 1
0 = eudx = e,6" €sec [\ TM® /\ T"M — Ct(M.g) & )\ T*M.

1
© = E a),l;.c

epec0?

1 2 1 1
- E(w.‘;,;ceb Ae)®0% esec \'TM® /\ T"M — CL(M.g) ® )\ T*M.
(12.8)

From Appendix A.4 we recall that whereas @ is a true tensor, @ is not a true
tensor, since its ‘components’ do not have the appropriate tensor transformation
properties. Indeed, the w®¢ are the ‘components’ of the connection relative to the
basis {e,}. They are defined by

Veaeb = _w.l;éec’ Wahe = —Wcha = nadw.db;s (12.9)
where V,, is a metric compatible covariant derivative operator defined on the
tensor bundle and that acts naturally on C£(M, g) as we already learned in previous
chapters. Objects like # and @ will be called Clifford valued differential forms (or
Clifford valued forms, or yet cliforms, for short), and below we give a detailed
account of the algebra and calculus of that objects. Let us now recall some additional
concepts of the theory of linear connections in the form appropriated for our
enterprise.

12.2.1 Exterior Covariant Differential

To achieve our objectives of presenting a ‘gauge like’ formulation of the theory
of the gravitational field we need to find an operator which acts naturally on
sections of cliforms and which mimics the action of the pullback of the exterior
covariant derivative operator acting on sections of a vector bundle associated with
the principal bundle Pso« , (M), once a linear metric compatible connection is given.
This operator is introduced below and called fake exterior differential operator
(FECD). It is used in the calculations of curvature bivectors, Bianchi identities, etc.
With the FECD D and its associated operator D, we can formulate Einstein’s theory
in such a way that the resulting equations looks like the equations for a gauge theory
with S1(2, C) as the gauge group. Before introducing D we first recall the concept of
the exterior covariant derivative (differential) acting on arbitrary sections of a vector
bundle E(M) associated with Psoc (M) (having as typical fiber a [-dimensional real
vector space) and on EndE(M) = E(M) ® E*(M), the bundle of endomorphisms
of E(M) introduced in Appendix A.5 and next the concept of absolute differential
acting on sections of the tensor bundle, for the particular case of /\l TM. In what
follows we use a simplified notation in relation to the general one in Appendix A.5
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Now, from Appendix A.5.4 we know that the exterior covariant differential
operator d acting on sections of E (M) and EndE(M) is the mapping

df :secE(M) — secE (M) ® /\IT*M, (12.10)

such that for any differentiable functionf : M — R, A € secE (M) and any F €
sec EndE(M) @ \'T*M), G € secEndE(M) ® \?T*M we have®:

df(fA) = df ® A + fdfA,
d(FRAA) = dfF @, A+ (—1)F ®, d°A,
dE(F®r G) =dfF @A G+ (=1)’F @4 d5G. (12.11)
In Eq.(12.11), wiiting F = F* ® f”, G = G’ ® g\’where F*, G* €
sec EndE(M), £ € sec AN’T*M and g;q) € sec \/T*M we have
FOrNA= (F'®fP) @A
FOAG=(F@fP)@,G" ® g, (12.12)

with the product ® A given through Definition A.68 in Appendix A.5.4. In order
to simplify even more the notation we eventually use when there is no possibility of
confusion, the simplified (sloppy) notation

(F'A) @ fP) = (FUA) £,
(F @) @5 G’ @ gl = (F'G*) £V A g2, (12.13)

where F'A € secE (M) and F°G” means the composition of the respective
endomorphisms.

Let U C M be an open subset of M, {x*} coordinate functions of a maximal atlas
of M, {e,} a coordinate basis of TU C TM and {sx}, K = 1,2, .../ a basis for any
sec E(U) C sec E (M). Then, a basis for any section of E (M) ® /\IT*M is given
by {sk ® dx"}.

Recall also, that the covariant derivative operator V,, : sec E (M) — sec E (M)
is given by

d*A = (V. A) ® dx*, (12.14)

eﬂ

where, writing A = AK ® sk we have

Ve, A = 3,A% ® sk + AX ® V,,sk. (12.15)

8Recall that the product ® A is given in Definition A.68.
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Now, let examine the case where E (M) = TM = /\ITM — CL(M,g). Let {e;},
be an orthonormal basis of 7M. Then, using Eqs. (12.14) and (12.9)

dEej = (Vekej) ® ok = e ® wl;,

wf = wkjo", (12.16)

where the w'j € sec \' T*M are the connection 1-forms.
Also, for v = vle; € sec TM, we have

dfv = Veiv®9i = ¢ @ d%v',
a5t = dv' + wh ook (12.17)

12.2.2 Absolute Differential

Now, let E(M) = /\ITM < CL(M,g). In this case, df is the usual absolute
differential V of A € sec /\ZTM — secCl (M, g), i.e., it is a mapping (see, e.g.,
[5D

V : sec /\ITM — sec /\ITM ® /\IT*M, (12.18)

such that for any differentiable A € sec /\ZTM we have
VA = (V,4) ® 6, (12.19)

where V,,A is the standard covariant derivative of A € sec /\ZTM — secCl (M, g).
Also, for any differentiable function f : M — R, and differentiable A € sec /\ITM
we have

V(fA) = df ® A + fVA. (12.20)

Now, if we suppose that the orthonormal basis {e;} of TM is such that each e; €

sec /\1 TM — secCL (M, g) , we can easily find using the Clifford algebra structure
of the space of multivectors that we can write:

1
Vej = (Vaey) @ 6° = S[0.¢]] = —¢j0

1
® = Ew?{(ﬂbea Aep ® OF

1 2 1 1
wa{('.beaeb ® 0¥ € sec/\ ™ ® /\ T*M < secCL(M,2) ® /\ T"M,
(12.21)
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where o is the representative of the connection in the given gauge.
The general case is given by the following proposition:

Proposition 12.2 For A € sec /\ZTM — secCl (M, g) we have
1
VA =dA + E[w,A]. (12.22)

Proof Left to the reader. Note that A is to be considered as a /\ITM -valued O-form.
|

Equation (12.22) can now be extended by linearity for an arbitrary nonhomoge-
neous multivector A € secC{ (TM, g).

We proceed now to find an appropriate exterior covariant differential which
acts naturally on Clifford valued differential forms, i.e., objects that are sections
of AT*M ® CL(M,g) (= CL(M,g) ® \T*M ) (see next section). Note that we
cannot simply use the above definition putting E (M) = C{(M, g) and EndE(M) =
EndC{(M, g), because EndC{(M,g) # CL(M,g) ® \T*M. Instead, we must find
inspiration in the general theory in order to find an appropriate definition. Let us see
how this can be done.

12.3 Clifford Valued Differential Forms

Definition 12.3 A homogeneous multivector valued differential form of type (I, p)
is a section of/\lTM®/\”T*M > CL(TM,2) @ \T*M,for0 <1 <4,0<p<4.
A section of C£(M, g) ® A\T*M such that the multivector part is non homogeneous
is called a Clifford valued differential form (cliform).

We recall, that any A € sec \'TM @ N'T*M — secCL(M,g) ® N'T*M can
always be written as

1 ir..d
A=my ® W(p) = l—'m(ll) ‘e -, ® W(p)

1 ® i .
= 0 ® UL 01 A n 6

_ _milmi/eil e ® I/Ij(f)...j,, 1 NN} (12.23)

1 ip..0; j j
= rp!AjLnjpeil ... €5 QRN A ANOY.
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Moreover, recall that (See Definition A.68) the @ » product of A = X Ry e
secCL(M,g)Q@ /\'T*M and B = g@x(‘” € secCLM, g)® \T*M is the mapping’:
®n :secCl(M,g) ® /\pT*M x secCl(M,g) ® /\qT*M
— secCl(M,g) ® /\p+qT*M,
AR B=AB® P A 4. (12.24)
Definition 12.4 The commutator [A,B] of A € sec \'TM ® N'T*M

secCl(M,g) @ N'T*M and B € \"TM @ N'T*M — secCL(M,g) @ N\IT*M is
the mapping:

[ Disee Ave \N'1°M xsec N\ & \'T*M

%[l+m—\l—ml] el 2 +
—m
—sec YA ™o N M,
k=0

[A,B| =A®\B— (=1 "B®, A (12.25)

Writing A = JAl-Je; ... ey, B = LBi-ing . ¢y, with y® €
sec A\’T*M and y'9 € sec \/T*M, we have

1
[A, B] = Al B [ej, ---ej. e, e, | ¥ A 9. (12.26)

The definition of the commutator is extended by linearity to arbitrary sections of
Cl(M,g) ® N\T*M.

Now, we have the following proposition:

Proposition 12.5 Let A € secCL(M,g) ® \'T*M, B € secCL(M,g) ® \T*M,
CeAecsecClM,g) ® \'T*M. Then,

[A,B] = (—1)'*7[B, A], (12.27)
and
(=1 [[A,B], C] + (=D)®[[B.C] .A] + (=1)"[[C,A],B] = 0. (12.28)

Proof It follows directly from a simple calculation, left to the reader. B

m m
°Note that A and B are general non-homogeneous multivector fields.
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Equation (12.28) which is analogous to Eq. (A.45) may be called the graded
Jacobi identity [3].

Corollary 12.6 Ler A® e sec \’TM ® N\'T*M and B € sec \'TM @ N'T*M.
Then,

[A? Bl =C, (12.29)
where C € sec N'TM ® \'H1T*M.
Proof 1Tt follows from a direct calculation, left to the reader. B
Proposition 12.7 Ler w € sec \>TM @ \'T*M, A € sec \'TM ® \'T*M, B €
sec \"TM ® N\'T*M. Then, we have
[@0,A®x B] = [w,A] ®x B+ (—1)’A ®, [w, B]. (12.30)
Proof Using the definition of the commutator we can write
[w,A] ®/\ B = (w ®/\A - (_1)[7A ®/\ (()) ®/\ B
= (@® A®NB—(—1)"" AR, B®\w)
+(—=1)PTIA QA BRr @ — (—1)’A @, ® @ B
= [@,A®x B] = (-1)’A Q [w. B],

from where the desired result follows. l

From Eq. (12.30) we have also'”

(p+9)w.A®x Bl
=plw,A] ®x B+ (—1)’'qA ®4 [w. B]
+qlw,A] ® B+ (—1)’pA @4 [@, B].

Definition 12.8 The action of the differential operator d acting on

! p
A€ sec/\ ™ ® /\pT*M < secCl(M,g) ® /\1 T"M,
is given by:

dA = ej, ---ej, ® dAV (12.31)

=ej € ® dlegll...g,iell A A B,

10The result printed in [15] is wrong.
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We have the important
Proposition 12.9 Let A € secCL(M,2)Q@ N\'T*M and B € secCL(M,g)Q N\'T*M.
Then,
d[A, B] = [dA, B] + (—1)’[A., dB]. (12.32)

Proof The proof is a simple calculation, left to the reader. B

We now define the fake exterior covariant differential operator (FECD) D and
also an associated operator D,, acting on a cliform A € sec /\ITM  N'T*M —
secCL(M,g) @ N'T*M, (I,p > 1) as follows.

12.4 Fake Exterior Covariant Differential of Cliforms

Definition 12.10 The fake exterior covariant differential (FECD) of A is the
mapping:

) D 1 1
D :sec /\ TM@/\‘T*M—>sec/\TM®/\”T*M®A/\ T*M
1 +1
Csec \ TM ® /\p T*M,
1
DA :dA—i—g[w,A], it Aesee ANTM® N'T"M. 120, p=1. (1233)

where o is given by Eq. (12.21).

Remark 12.11 For p = 0 we identify A\'TM ® A\°T*M = A\'TM and thus in order
to have an agreement with Eq. (12.22) we put DA = dA + %[w, A]. When [ = 0
we have DA = dA.

Proposition 12.12 Ler A € sec N'TM @ N'T*M < secCL(M.g) @ \'T*M,
B e sec N"TM @ N'T*M — secCL(M,g) @ \T*M. Then, the FECD satisfies
D(A®p B) = DA®A B+ (1)) A®x DB
+glw, Al @A B+ (—=1YpARA (@, B]. (12.34)
Proof It follows directly from the definition if we take into account the properties
of the product ® » and Eq. (12.30). &

Remark 12.13 According to the above proposition D does not satisfy Leibniz’s rule
when applied to the product A ®, B . This may seems strange, but we recall that
there are some important derivatives operators as, e.g., the Dirac operator acting on
sections of a Clifford bundle of multiforms that also does not satisfy Leibniz’s rule.
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12.4.1 The Operator D,,
Definition 12.14 The operator D,, is the mapping

D, : sec /\ITM ® /\pT*M — sec /\ZTM ® /\pT*M,

such that for any A = L? @ P@ ¢ sec /\ITM ® N'T*M < secCL(M,g)
QAT*M, I, p > 1, we have

(De, A) @ 0" = DA. (12.35)
We have immediately
Dy A=, A+ g[wr, Al (12.36)
where 9,4 := LY ® [%‘e,(Pil...i,,)Gil"'iﬂ ®: = ®(e;) and, of course, in general'!
Do, A # V., A (12.37)

Let us examine some important cases which will appear latter.

Casep =1
Let A € sec N'TM @ \'T*M — secCL(M.g) ® \'T*M. Then,
1
DA =dA+ E[w, Al, (12.38)
or

1
Do A = B A+ > [on, Al (12.39)

Casep =2
Let F € sec N'TM @ N\*T*M < sec C4(M,g) ® \*T*M. Then,

DF = dF + [0, F], (12.40)
Do, F = 3, F + [0r, F. (12.41)

For a Clifford algebra formula for the calculation of V,, A, A € sec A\’ T*M recall Eq. (7.44).
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12.4.2 Cartan Exterior Differential of Vector Valued Forms

Recall that [7] Cartan defined the exterior covariant differential of € = ¢ ®
¢i esec\'TM ® \'T*M as a mapping

1 D 1 p+1
veoA™Me NTM— \NmMe \ 1M,
Ve = V(e ® €) = ¢; @ d€' + Ve A €1, (12.42)
V"ej = (Vekej)ék

which in view of Egs. (12.31) and (12.21) can be written as
. . : 1
V€ = V(g ®¢€) =de + E[w, cl. (12.43)

So, we have, for p > 1, the following relation between the FECD D and Cartan’s
exterior differential (p > 1)

1
DE = V€ + ”T[w, ¢l. (12.44)

Note moreover that when ¢1) = ¢; ® @ € sec\'TM ® )\'T*M, we have
D) = yee, (12.45)

‘We end this section with two observations:

(1) We emphasize that to the concept of the fake exterior covariant differential
just introduced is different from the usual definition of the exterior covariant
differential acting on sections of a vector bundle E(M) ® A\’T*M and also in
sections of EndE(M) ® A’T*M, as discussed in the Appendix and as appear
in well know texts, e.g., [1, 2, 7, 8, 13, 14, 19]. Our intention in defining
the fake exterior covariant differential of Clifford valued forms was to find
an object that could mimic coherently the pullback under a local section of
the covariant differential acting on sections of vector bundles associated with
a given principal bundle as used in gauge theories. The consistence of our
definition will be checked in several situations below.

(2) We note also that the fake exterior covariant differential is different from the
concept of exterior covariant derivative of indexed p-forms'? which are objects
like the curvature 2-forms (see below) or the connection 1-forms introduced
above.

12These objects have been introduced in Definition 4.89.



12.4 Fake Exterior Covariant Differential of Cliforms 441
12.4.3 Torsion and Curvature Once Again

Let 0 = eydx = e,0* € sec N'TM @ N\'T*M < CL(M.g) ® \'T*M and
® = % (oB%en Ne) ®0 = §wg~?ebecea esec N’TM @ \'T*M — CL(TM ,g) ®
/\IT*M be respectively the representatives of a soldering form and a connection
(in a fixed gauge) on the basis manifold. Then, following the standard procedure
[10], the torsion of the connection and the curvature of the connection on the basis

manifold are defined by

1 2 2
© =Df esec /\ TM® [\ T*M — CL(M.g) ® /\ T*M. (12.46)
and
2 2 2
R=Dwesec \'TM® /\' T*"M — Ct(M.g) ® |\ T*M. (12.47)

We now calculate ® and then DR. We have,

1
DO = D(e.6%) = e db® + E[wa,eb]Qa N (12.48)

and since %[wa, eq] = —equw, = w5y e. we have
D(eah?) = ea[d0* + wiz0° A 09] = €,0%, (12.49)

and we recognize
O = dO* + wiy0" A 0, (12.50)

as Cartan’s first structure equation.

12.4.4 FECD and Levi-Civita Connections

For a torsion free connection, the torsion 2-forms ®? = 0, and it follows that @ =
0. We recall that a metric compatible connection @ (for which D,,g = 0,a =
0,1,2,3) satisfying ®* = 0 is called a Levi-Civita connection. In the remaining of
this Chapter we restrict ourself to that case.

To start recall that from Eq. (12.33) we have,

DR = dR + [0. R]. (12.51)

Then, taking into account that

1
R =do + 5[0, 0], (12.52)
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and that from Eqs. (12.27), (12.28) and (12.32) it follows that

dlow,w] = [do,»] — [0, dw],
[do,®] = —[®,do],

[[@, @], @] =0,
and it results that
DR =dR + [w,R] = 0.

which is known as the Bianchi identity.

Note that, since {e,} is an orthonormal frame we can write (R?;;g' = RZ"V)

1
R = ZR;‘};ea Aep ® (de* A dx”)

1 1
ZRggeaeb ANNUAES ZRﬁgeaeﬁ ® dx’ A dx°®

1
= ZRWpGe"e” Q dx’ A dx’,

(12.53)

(12.54)

(12.55)

where R, ., are the components of the curvature tensor. We recall from Chap. 5 the

well known symmetries

R/wpa = _R\J/Lp(Ts
R/wpa = _RM\J(Tpv

R/wpa = Rpo;w .

We can also write Eq. (12.55) as

1 1
R = ZRz‘};e,»aeb ® (8¢ A 0% = ERwdx" A dx”

1
= ERi‘,eaeb,

with

1 1 2
R, = ERZI:;eaeb = ER;‘}:ea Aep € sec/\ ™ — Cl(M, g),

1 2
R — ERZ"de“ Adx’ e sec/\ T*M,

(12.56)

(12.57)

(12.58)
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where Ry, is called curvature bivectors and we recognize from Chap. 4 the R as
the Cartan curvature 2-forms, which satisfy Cartan’s second structure equation

R = dw’y + 0 AwYy, (12.59)

aresult that follows immediately calculating dR from Eq. (12.52). Now, we can also
write,

DR =dR + [0.R]

1
—R® e epdx” A dx") + [@p, Ry Jdx? A dxt A dx”}

1
=_{d
2GR

1
= S {0Ryy + [0, Ry Jldx’ A di A dx* (12.60)

1
= EDeprdxp A dxt A dx”

1
=~ (D,Ru + D

3 R,, + DeURpM) dx” Ndx* Adx' =0,

en
from where it follows that
De, Ry + Do, Ryp + De, Ry = 0. (12.61)

Remark 12.15 Equation (12.61) is called in Physics textbooks on gauge theories
(see, e.g., [13, 16]) Bianchi identities. Physicists call the operator

D, =D, =, + [@p], (12.62)

acting on the curvature bivectors as the ‘covariant derivative’. Note however that, as
detailed above, this operator is not the usual covariant derivative operator D,, acting
on sections of the tensor bundle, and not realizing this fact may give rise to a real
confusion.

We now find the explicit expression for the curvature bivectors Ry, in terms of
the connections bivectors @, = ®(e,), which will be used latter. First recall that
by definition'?

R, =R-(0, A6)=—R-(6,A6,) =—R,,. (12.63)

13{#*} is the dual basis of {e,} and the scalar product in Egs. (12.63) and (12.64) refers to the
scalar product of the form factors of R.
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Now, observe that using Eqs. (12.27), (12.28) and (12.32) we can easily show
that

[, @] (ep. NDY) =0 Qpw- (6/1. ABy) = 2[w(eﬂ),w(eu)]
=2[w,, ,]. (12.64)

Using Eqgs. (12.52), (12.63) and (12.64) we get
R, =00, — 0,0, + [0,,®,] (12.65)

which is to be compared with Eq. (5.44) of Chap. 5.

Exercise 12.16 Let A € sec \’TM <> secCE(M,g) and R the curvature of the
connection as defined in Eq. (12.47). Show that,'*

1 1
DA = Z[R,A] + Z[dw,A]. (12.66)

12.5 General Relativity as a S1(2, C) Gauge Theory

12.5.1 The Non-homogeneous Field Equations

The analogy of the fields R,, = %Rzlf,eaeb = %foea A e, € sec /\2TM —
CL(M, g) with the gauge fields of particle fields is so appealing that it is irresistible to
propose some kind of a SI(2, C) formulation for the gravitational field. And indeed
this has already been done, and the interested reader may consult, e.g., [4, 12] for
details. Here, we observe that despite the similarities, the gauge theories of particle
physics are in general formulated in flat Minkowski spacetime and the theory here
must be for a field on a general Lorentzian spacetime. This introduces additional
complications, but it is not our purpose to discuss that issue with all attention it
deserves here. We only wants to discuss some issues related to the formalism just
introduced above.

To start, recall that in gauge theories besides the homogeneous field equations
given by Bianchi identities, we also have a nonhomogeneous field equation. This
equation which is to be the analog of the nonhomogeneous equation for the
electromagnetic field is written here as

DxR=d*R+[w,*xR]=—xJ, (12.67)

14The value obtained for DA in [15] is wrong.
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where the 7 € sec \°TM & \'T*M — C{(M,g) ® \'T*M is a ‘current’, which,
if the theory is to be one equivalent to GRT, must be in some way related with the
energy momentum tensor in Einstein theory. In order to write from this equation an
equation for the curvature bivectors, it is very useful to imagine that /\2T*M —
CL(T*M, g), the Clifford bundle of differential forms, for in that case the powerful
calculus used in previous chapters can be used. So, we write:

® € sec /\ZTM ® /\lT*M

< CUTM . g) & /\'T"M = CL(M. g) ® CL(T*M, q),
R = Dw € sec /\ZTM® /\ZT*M

< CUM,8) & \'T"M < CUM,g) & CLT*M, q)

J=J,®60" =J,0" € sec /\ZTM ® /\IT*M (12.68)
— CL(M,g) ® CL(T*M, g).

Now, using Definition 2.27 of the Hodge star operator and recalling that for a
torsionless connection it is d = dA and § = —d_ we can write

d*R =—0°(—31R) = —x (3_R) = — * ((0,R")6"). (12.69)
Also,

[@, *R] = [@,, Rop] ® 0" A (0% A 0F)
= —[@,, Rop] ® 0" A 0°(6% A 6F)

—%[a)ﬂ, Rys] ® {046°(6% A 0F) + 6°(6% A 0P)01}
95

= [ Rop] ® {07 (6% A 0F) — (6% A 67)6"}

= 0°[w,.. Rop] ® {67 5(0% A 0F)

= =2 ([, RG]0 (12.70)
Using Eqgs. (12.67)-(12.70) we get'?

9, R" 4 2[0,,RY] = D, RV = J,. (12.71)

I5Recall that J, € sec A\ TM —> sec CE(M, g).
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So, the gauge theory of gravitation has as field equations the Eq.(12.71), the
nonhomogeneous field equations, and Eq. (12.61) the homogeneous field equations
(which is Bianchi identities). We summarize that equations, as

D, R =1, D, Ryy + Do, Ryp + Do Ry = 0. (12.72)

Equation (12.72) which looks like Maxwell equations, must, of course, be
compatible with Einstein’s equations, which may be eventually used to determine
RY, w, and J,, an exercise left to the interested reader.

12.6 Another Set of Maxwell-Like Equations for Einstein
Theory

We now show, e.g., how a special combination of the R} are directly related with
a combination of products of the energy-momentum 1-vectors T, and the tetrad
fields e, (see Eq.(12.75) below) in Einstein theory. In order to do that, we recall
from previous chapters that Einstein’s equations can be written in components in an
orthonormal basis as

1
Rap — EﬂabR = —1lap, (12.73)

where Rap, = Rpa are the components of the Ricci tensor (Rap = R%;.), Tap are the
components of the energy-momentum tensor of matter fields and R = 7, R*” is the
curvature scalar. We next introduce as (in analogy to what has been done in Chap. 9
for form fields) the Ricci I-vectors and the energy-momentum I-vectors by

1
Ra = Rane® € sec /\ T™ < CL(M, g), (12.74)
1
Ta = Tape® € sec /\ T™ <> CL(M, g). (12.75)
‘We have that
R, = —€”_Ryp. (12.76)

Now, multiplying Eq. (12.73) on the right by " we get

1
Ry~ sRey = ~Ta. (12.77)

Multiplying Eq. (12.77) first on the right by e}, and then on the left by e}, and
making the difference of the resulting equations we get

1
(—e°.Rac) ep —ep (—eJRye) — ER(eaeb —epey) = (epTa — Taep). (12.78)
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Defining
C (4 1
Fap = (—€“1Rac) e — ep (—€1Rac) — ER(eaeb — epey)
1 C C C C 1
= E(Race ep + epe‘Rac — €“Racep, — epRace) — ER(eaeb — epey) (12.79)
and

Ib = De,(epT* — Tep), (12.80)

we have'¢
Do, Fyy = Jp- (12.81)

It is quite obvious that with coordinates {x*} covering an open set U C M we
can write

D, F = Jp, (12.82)
with ]-"g = gP* Fop and
1
Fop = (—eV_IRay) eg —eg (—ey_nRay) - ER(eae,g —egey), (12.83)
Jg = De,(e"Tg — TPep). (12.84)

Remark 12.17 Equation (12.81) (or Eq. (12.82)) is a set of Maxwell-like nonhomo-
geneous equations. It looks like the nonhomogeneous classical Maxwell equations
when that equations are written in components, but keep in mind that Eq. (12.82) is
only a new way of writing the equation of the nonhomogeneous field equations in
the S1(2, C) like gauge theory version of Einstein’s theory, discussed in the previous
section. In particular, recall that any one of the six F g € sec /\2TM — CL(M, g).

Or, in words, each one of the F7 is a bivector field, not a set of scalars which are
components of a 2-form, as is the case in Maxwell theory. Also, recall that according
to Eq. (12.84) each one of the four J3 € sec /\2 ™ — CL(M, g).

From Eq.(12.81) it is not obvious that in vacuum we must have F,, = 0.
However that is exactly what happens if we take into account Eq.(12.79) which
defines that object. Moreover, F,p, = 0 does not imply that the curvature bivectors

16Note that we could also produce another Maxwell-like equation, by using the usual Levi-Civita
covariant derivative operator D in the definition of the current, i.e., we can put J, = D, (T%ey, —
e, T?), and in that case we obtain D¢, /3 = Jp. An equation of this form appears in [17, 18].
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R,p are null in vacuum. Indeed, in that case, Eq. (12.79) implies only the identity
(valid only in vacuum)

(ec—‘Rac) ep = (ec—‘Rbc) €a. (12.85)

Moreover, recalling definition (Eq. (12.58)) we have
1 c, d
Ry = ERabcde e, (12.86)

and we see that the R,p, are zero only if the Riemann tensor is null which is not the
case in any non trivial general relativistic model.

The important fact that we want to emphasize here is that although eventually
interesting, Eq. (12.81) does not seem (according to our opinion) to contain anything
new in it. More precisely, all information given by that equation is already contained
in the original Einstein’s equation, for indeed it has been obtained from it by simple
algebraic manipulations. We state again: According to our view terms like

1 1
Fab = E(Raceceb + epeRac — €“Racen — epRace) — ER(eaeb — epe,),
1
Rap = (epTa — Taep) — ER(eaeb — epey),
1
Fap = ER(eaeb —epey), (12.87)

are pure gravitational object and there is no relationship of any one of these objects
with the ones appearing in Maxwell theory. Of course, these objects may eventually
be used to formulate ‘interesting’ equations, like Eq. (12.81) which are equivalent
to Einstein’s field equations, but this fact does not seem to us to point to any new
Physics. Even more, from the mathematical point of view, to find solutions to the
new Eq.(12.81) is certainly as hard as to find solutions to the original Einstein

equations.
In [17, 18] there appear equations resembling the above ones using paravector
fields g, = ea\ep € sec CLO(M, g). However, in those papers, the author

mislead the equations that he obtained with the Maxwell equations describing the
electromagnetic field, and claimed to have obtained an unified field theory for the
gravitational plus electromagnetic field. According to our discussion, such claims
are unfortunately equivocated. More details on this issue may be found in [6, 15].
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Chapter 13
Maxwell, Dirac and Seiberg-Witten Equations

Abstract In this Chapter we discuss three important issues. The first is how
i = +/—1 makes its appearance in classical electrodynamics and in Dirac theory.
This issue is important because if someone did not really know the real meaning
uncovered by i = +/—1 in these theories he may infers nonsequitur results.’
After that we present some ‘Dirac like’ representations of Maxwell equations.
Within the Clifford bundle it becomes obvious why there are so many ‘Dirac like’
representations of Maxwell equations. The third issue discussed in this chapter are
the mathematical Maxwell-Dirac equivalences of the first and second kinds and
the relation of these mathematical equivalences with Seiberg-Witten equations in
Minkowski spacetime (M, 3, D, Ty, 1) which is the arena where we suppose physical
phenomena to take place in this chapter. We denote by {x"*} coordinates in Einstein-
Lorentz-Poincaré gauge associated to an inertial reference frame ey € sec TM.

Moreover {e, = %} € secTM, (u = 0,1,2,3) is an orthonormal basis, with

neys.e,) = nu = diag(l,—1,—1,—1) and {y* = dx"} € sec/\lT*M <
sec C£(M, n) is the dual basis of {e,,}.

13.1 Dirac-Hestenes Equation and i = +/—1

We already learned in Chap. 7 that we can write Dirac equation in interaction with
the electromagnetic field in the spin-Clifford bundle Celsmn'f \ (M, n), as
e —mye® — gAYy =0 (13.1)

where ¥ € sec CEISpin‘f }(M, n) is a DHSF and the e* € R;; are such that e%e” +
ePe® = 27" and A € sec \' T*M — sec C£(M, ). Equation (13.1) that we named
DEC/{' does not involve complex numbers. We also learned that once we fix a spin

frame the DHC/! has a representative in the Clifford bundle that we called the Dirac-

'A clear example of the veracity of that statement is discussed in Sect.13.2.1 using material
published in the literature.
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Hestenes equation,’

where ¥z € sec C{(M, ) is the representative of ¥ € sec CﬁlSpin‘; , (M, n) in the spin
coframe & € Pgpine , (M). Again this equation does not contain aﬁy complex number
in its formulation, and we already know from previous Chaps. 3 and 7 the important
geometrical meaning of representatives of DHSE.

Now, we recall that i = +/—1 enters Dirac theory once we multiply Eq. (7.80) on
the right by the idempotent f = %(1 + eo)%(l + ie?e') € C @ Ry 3. We get after
some simple algebraic manipulations the following equation for the (complex) ideal

left spin-Clifford field Vf = W € sec (Clepin?3 M, g),
i0°W —m¥ — gAV = 0. (13.3)

From that equation we get using the standard matrix representation of the {y*}
the standard Dirac equation for column spinor fields (c.r., Eq.(7.77)). We would
like to emphasize here that this introduction of i = +/—1 in (first quantization)
Dirac theory is superfluous from any fundamental point of view, although it may be
useful in calculations. However it must be clear to the reader that Eq. (13.3) hides
the crucial geometrical information that 2! refers to the spin plane.

13.2 Howi = +/—1 Enters Maxwell Theory

The plane wave solutions (PWS) of ME are usually obtained by looking for
solutions to these equations such that the potential A = A, y* is in the Coulomb
(or radiation) gauge, i.e.,

Ao =0, A :=V-A=0 (13.4)
Equation (13.4), of course, implies that d - A = —6A = 0, i.e., the Lorenz gauge

condition is also satisfied. Now, in the absence of sources,A and F = d AA = dA
satisfy, respectively the homogeneous wave equation (HWE) and the free ME

0A =0, (13.5)
AF =0 (13.6)

The PWS can be obtained directly from the free ME (0F = 0) once we suppose
that F is a null field, i.e., F2 = 0 (see Exercise 13.1). However, for the purposes we

2Recall that 8 = s‘"’VE:) is the representative of the spin-Dirac operator in the Clifford bundle.
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have in mind we think more interesting to find these solutions by solving [JA = 0
with the subsidiary condition given by Eq. (13.4).

In order to do that we introduce besides {x*} another set of coordinate {x'*} also
in the Einstein-Lorentz-Poincaré gauge which are also a (nacs|d/dx"), such that ,
X0 =0 ¥ = R;xf. Putting * = dx'* we then have

e =Ry"R; & =0, &' £y, (13.7)

where the (constant) R € sec Spin, (M) generates a global rotation of the space axes.
We also write

Ei&j = &ij, €Eieg = _éi, s Z,Ej = e = —¢j, i= E@ﬁg,,i,j = 1,2,3 and i 751

(13.8)

We consider next the following two linearly independent monochromatic plane
solutions A®, i = 1,2, of Eq. (13.5) satisfying the subsidiary condition giving by
Eq. (13.4) and moving in the ¢; direction,

(—1)i+16‘21(l_55:| e1exp |:—(—1)i+1621¢_5i

A =
exp |: 5 5

:| = exp [e21(—1)i+1<]3i] 1,
bt M >R x> () = K" + @ =0t =k ¥ + @0 = K]
K = wés. (13.9)
where the @; are real constants, called the initial phase. Since A = 0 we write,
AD = A0y = exp [—(=1)lexdi] e = e exp[(=1)end] . (13.10)

Now,

FO =9 AAD = 9 AAD = 95904

= (3, — V)(-AD). (13.11)

13.2.1 From Spatial Rotation to Duality Rotation

We calculate in details F(V in order for the reader to see explicitly how i = ¢,é,¢3
enters in the classical formulation of the electromagnetic field. We have,

FU = —w [¢16,¢1 exp(e211) — ¢3¢162¢1 exp(ea1 1) |

= w [é; —ie1 ] exp(—e21¢1)
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= w [ + ié,] exp(—igy)

wi—¥ -7+ 01,0 =¢1—% (13.12)

#1

This formula shows how a spatial rotation turns up into a duality rotation, a really
non trivial result.

13.2.2 Polarization and Stokes Parameters

Now, a monochromatic plane wave can be written as a linear combination of F (M and
F®  which have, of course, opposite helicities,’ denoted from now on respectively
by 4 and —. We write

F o ie—2) {a+e)[_i("”_z/'}/+‘p+] — a_e[i("”_z/'}/+‘p—)]} (13.13)
w

where a4 are real constants. Now, observe that F' can be written as the product
of two (different) 2-dimensional matrix fields with values in the Clifford bundle
I(M,n) = CL°(M, n)e,where

¢ = (1_—2“) e sec CLO(M, ) (13.14)

is an idempotent field.* We write

. “ior—FY - i(w—F Y 2 s
F = \/§1e1 I:ee i(wr—k ), cel@—k X)] I::/:/C%Z);ie'H‘ﬂee} (13.15)

This means that each line of , e.g., the 2-dimensional matrix field

(13.16)

Q- \/Ewa+e_i"fe
—V2wa_etiv—¢

is an amorphous spinor field (recall Sect. 7.10).
Writing

F=E+iB F =E —iB,

3For the moment different helicities means that the vectors A®”) have opposite sense of rotation. We
will be more precise later.

“Recall that Z(M, n) is a bundle of amorphous spinor fields and it is not to be confused with the
bundle /(M, n) (Definition 7.16) of algebraic spinor fields.
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we recall that the polarization of a given wave is in general specified by E =
(F 4+ F)/2, the electric field. Now, for every formally complex number or formally
complex Euclidian vector field we define in an obvious way the operators Re and
Im, such that, e.g.,

E=ReF=ReJ=Re [ée—“w’—z"}’)] : (13.17)
- i - o — a)ﬁa+e_i"+
¢ = 7 [¢1 + ie2, 81 —ies] [wﬁa_eiw } . (13.18)
The Clifford valued two dimensional complex vector field
o~ 2a4 e 9+
E = . 13.19
[w\/za_e"/’— i| ( )

plays an important role since it enters in the definition of the coherence density
matrix. .

We observe that & looks like the complex electric field used in electrodynamic
text books, (with the substitutioni — i = \/—_1) as, e.g., in the books by Jackson
[19] and Landau and Lifshitz [22] . However, it is necessary to emphasize once more
that ~/—1 has no meaning in classical electromagnetic field and its use in general
occults the fundamental geometrical meaning of i.

To continue we put

ar =aye ., a, =a_é¥, (13.20)
which are formally complex numbers. Now,
u+S=2FF"

= 40 (|ar + O afay + O a0l - |arl)(1 4 E),
(13.21)

where 1 and S are respectively the energy density and the Poynting vector. The mean
value of this equation over the rapid oscillations of the field gives

(u+5) = 40> (a1 + |a2)(1 + é3). (13.22)

Now we calculate the product EE™ . This gives,
Uppt o[ 1P aay
20? af ay |as|?

=¢ (0" + p'or + p’o2 + p03) . (13.23)
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In Eq. (13.23) the 0, i = 1, 2, 3 are the Pauli spin matrices and the matrix p,

p = po + p101 + P20, + p303,

lai|* + |az|?
- 2

2 _ 2
101 = ReaT“Zy ,02 = Imai"az, 103 = M
(13.24)

is called the Cartesian representation of the coherence density p. The p' are called
the Stokes parameters. The expression for EET suggest to us to define the fake
‘spinor’ field ¥ = p® ¢ € secCLO(M,n) ® T(M,n) C secCL(M,n) ® CL(M,n),
where p (the coherence density matrix) is given by,

P = po+ pie1 + p2ex + p3és = po + p. (13.25)

Now, consider the action of> Spiny(M) ® Spiny(M) on the sections of
secCI(M,n) ® Z(M, n) C secCI(M,n) ® CL(M, n) defined by

YT Y =UpU ' ® U e, U € sec Spiny (M). (13.26)

Since the information contained in Y and Y’ are the same we see that UpU ™ 'has

also the same information carried by p. The matrix representation of UpU™! is
given by

UpU™! (13.27)

where for any x € M, U(x) € SU(2) is the matrix representation of U €
sec Spin; (M) and p the matrix representation of p. For example, for

1T i
U= [_1 1} (13.28)

we have the so called Jones representation. Writing
T=p"®@c+p®c¢ (13.29)

we see that the coherence matrix, defines an unitary6 vector p ® ¢ in an internal
space. This means that any tentative of associating p or better, pyo = poy°’ — piy’

3Spin; >~ SU(2).

©Recall that p is an unitary vector.
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with a spacetime vector field will produce nonsense.” Recall the ratios

2 2
7 = M, e = p (13.30)

o> Lo

which are called respectively the degree of linear polarization and the degree of
circular polarization. We can write recalling Eqs. (13.24) and (13.20)

sl e P
jar P+ la_P?

FxF*

SR (13.31)

:163'

This last formula for 7 appears in electrodynamics and optics books written in

terms of a complex Euclidean vector field £ which has the same form as the biform
field § € sec CL%(M, i) (with the substitutioni — i = +/—1). Explicitly, we find,
e.g., in Silverman’s book [42],

L ExEr
e =ity 28 = J, (13.32)
g.6+
Now, in [9-15] it is defined
B = T8 < &t (13.33)
w

and it is claimed that this phaseless field B® is a fundamental longitudinal magnetic
field with is an integral part of the plane wave field configurations. Obviously, this
is sheer nonsense, and Silverman’s in his wonderful book [42] writes in this respect:

“Expression (13.32) is specially interesting, for it is not, in my experience, a
particularly well-known relation. Indeed, it is sufficiently obscure that in recent
years an extensive scientific literature has developed examining in minute detail
the far reaching electrodynamic, quantum, and cosmological implications of a
“new” nonlinear light interaction proportional to ExET (deduced by analogy to
the Poynting vector S o € x 7?[+) and interpreted as a “longitudinal magnetic
field” carried by the photon. Several books have been written on the subject.
Were any of this true, such a radical revision of Maxwellian electrodynamics
would of course be highly exciting, but it is regrettably the chimerical product of

"This is just what happened with the misleading BO® theory presented in a series of books and
inumerous articles, see e.g., [9-15].

8n Silverman’s book his Eq. (34), pp.167 is the one that corresponds to our Eq. (13.32).
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self-delusion—just like the “discovery” of N-Rays in the early 1900s.(During the
period 1903—1906 some 120 trained scientists published almost 300 papers on the
origins and characteristics of a totally spurious radiation first purported by a French
scientist, René Blondlot).” °

Of course, the real meaning of the right hand side of Eq. (13.31) (or Eq. (13.32))
is that it is a generalization of the concept of helicity which is defined for a single
photon in quantum theory (see, e.g., [20, 42]). We shall not give the details here,
we only quote that, e.g., for a right circularly polarized plane wave (helicity —1),
ay =0,a_ =1and t¢c = —1.

Exercise 13.1 Find PWS of the free Maxwell equations d F = 0 directly.
Solution As we know ME in vacuum can be written as

dF =0, (13.34)
where F € sec /\2 T*M — secC{(M,n). The well known PWS of Eq.(13.34)
are obtained as follows. In a given Lorentzian chart {x*} of the maximal atlas of
M naturally adapted to the inertial reference frame 3/9x° a PWS moving in the

z-direction is written as

F = fe'?x, (13.35)
k=k'y, k' =k =0, x=x"y,, (13.36)

where k, x € sec /\l T*M — secCL(M, n) and where f is a constant 2-form. From
Egs. (13.34) and (13.35) it follows that

kF=0. (13.37)
Multiplying Eq. (13.37) by k we get
KF =0 (13.38)
and since k € sec /\1 T*M — sec CL(M, 1) then
=0 < ko= x|k| =&, (13.39)
i.e., the propagation vector is light-like. Also

F*=_—F.F+FAF=0 (13.40)

90f course, Silverman is referring to papers like, e.g., [9-15] and hundred of others by one author
and his many associates. Some of the absurdities of those papers are discussed in [6].
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as can be easily seen by multiplying both members of Eq. (13.37) by F and taking
into account that £ # 0. Equation (13.40) says that the field invariants are null for
PWS. Such fields are known as null fields.

As in the previous section we emphasize again the fundamental role of the
volume element ys (duality operator) in electromagnetic theory. In particular since
e’5** = cosk - x + yssink - x, we see that

F =fcosk-x+ ysfsink - x. (13.41)

Writing F = E +iB, with i = ys and choosing f = ¢| +iéy, e -¢; = 0, ¢y, €,
constant vectors in the Pauli subbundle sense, Eq. (13.35) becomes

(E +1iB) = ¢, coskx — &y sink - x + (¢ sink - x + &, cosk - x). (13.42)

This equation is important because it shows once again that we must take care with
the i = +/—1 that appears in usual formulations of Maxwell theory using complex
electric and magnetic fields. The i = +/—1 in many cases unfolds a secret that
can only be known through Eq. (13.42). From Eq. (13.37) we can also easily show
thatk-E = k-B = 0, i.e., PWS of ME are transverse waves. However, contrary
to common belief, the free Maxwell equations possess also solutions that are not
transverse waves and for which F? # 0. Those (extraordinary) solutions [32, 33, 35]
and their properties will be fully investigated in a forthcoming book [8].
We can rewrite Eq. (13.37) as

kyoyoFyo =0 (13.43)
and since kyy = ko + %, voFyy = —E + iB we have
kf = kof. (13.44)

Now, we recall that in C£°(M, n) (where the typical fiber is isomorphic to the Pauli
algebra R3 ) we can introduce the operator of space conjugation [18] denoted by *

such that writing f = & + ib we have
f*=—é+ib; Kk =k : kK* = —k. (13.45)

We can now interpret the two solutions of &> = 0, i.e., kg = |I;| and ky = —|I;| as
corresponding to the solutions kof = I;f and kof* = —l;f*; f and f* correspond in
quantum theory to “photons” which are of positive or negative helicities. We can
interpret kp = |%| as a particle and ko = —|%| as an antiparticle.

Summarizing we have the following important facts concerning PWS of ME: (1)
the propagation vector is light-like, k* = 0; (2) the field invariants are null, F? = 0;
(3) the PWS are transverse waves, i.e., k-E=k-B=0.
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13.3 ‘Dirac Like’ Representations of ME

We exhibit in this section some faces (i.e., different mathematical representations)
of ME where in any case the Maxwell field is represented by an amorphous spinor
field (see Sect.7.8.) satisfying a ‘Dirac like’ equation. In the next section we show
how, given a spin coframe, we can associate a representative g € sec C£(M, ) of
a Dirac-Hestenes spinor field to the Faraday field F € sec /\ZT*M — secCL(M, n).
The equation satisfied by ¥z gives a mathematical Maxwell-Dirac equivalence of
the first kind.
We start from the Maxwell equation written in the Clifford bundle, i.e.,

AF =1, (13.46)

where F = %F’“’yﬂy\, € sec AX’T*M < secCL(M,n) and J € sec \'T*M —>
sec CL(M, n). Moreover, we recall that

0 —E' —F? —F3
E' 0 —-B; B,

F*] = , 13.47
[F] E B, 0 _B ( )
E*-B, B 0
and that we can write
F=E+iB (13.48)

with E = E'G;, B = B'G;, 6; = ;)0 as discussed in the previous section.

13.3.1 ‘Dirac Like’ Representation of ME on 7'(M, 1)
Now, consider the bundle of amorphous spinor fields Z' (M, n) = C£°(M, n)e, where

1 1 -
e = 5(1 —y3y0) = 5(1 + 53) € secCLO(M, ) (13.49)

is a primitive idempotent field.
We can perform the following algebraic manipulations in ME.

AF =J = 3y"'Fy? = 1y°. (13.50)
Also,
3y’ =5"9,,6°=1,6" = —a;, (13.51)

yOFy = —E +iB, Jy° = Juot.
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Writing Ft = E—iB, ¢ = Fte, y = —J,6" e € sec T'(M. ), we have,
o = g. (13.52)

As the reader can easily verify recalling the results of Chap. 3, Eq. (13.52) has a two
dimensional matrix representation, namely

ol =g (13.53)
with
—FE3 + 1B3 0 —Jo+J30
_ Loy = , . 13.54
s I:—E1+iE2+iBl—Bz O:| X [J1+1J2 0i| ( )

13.3.2 Sachs ‘Dirac Like’ Representation of ME

Consider the equation 3y = x, ¥ = Fe’ and » = Je”, where the idempotent
fielde” = %(1 + ¥3y°) € sec CL°(M, ) generates the bundle of amorphous (Weyl)
spinor fields Z” (M, n) = C£°(M, n)e”. The objects living in Z"(M, ) have a 4 x 4
matrix representation, as the reader may easily verify using the results of Chap. 3.
We have,

[ —FE; +iB3 000
gy | “E BB =B, 000
—lo 00E; —iE, +iB, + B,
LO 00 —F3 —1iB3
0 00—J,+1i),
0 00—-Jyp+J3
= 13.55
X=| 445000 (13.55)
LJi+i/, 000
Putting now,
o= | BtiB Coa= |t (13.56)
—E| —1E, + 1B — By Ji1+1)»
n E, —iE, +iB; + B> n —J1 +1/»
(pZZ . ) Xy = 5
—E3 —iB3 Jo+J3
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the matrix representation of the equation dFe” = ye” decouples in two differential
equations for matrix representation of the amorphous (Weyl) spinor fields namely

6"9,0,0,=E, a=1.2. (13.57)
Equation (13.57) has been first obtained by Sachs [37] in an ad hoc way starting

from a non covariant equation. Of course, both equations in Eq. (13.57) carries the
same information, exactly the same information carried by Eq. (13.53).1°

13.3.3 Sallhofer ‘Dirac Like’ Representation of ME

Consider now the idempotent e = %(1 + v%) € secCl(M,n). The 4 x 4 matrix
representations of the amorphous spinor fields ¢ = Fe, £ = Je € sec C£(M, n)e are
easily found as

[ iB; iBi+B,00
—iBy| + B, —iBj 00
= , 13.58
¢ E; E,—iE, 00 ( )
| B +1E, —E; 00
[ Jo 0 00
0 Jo 00
= . 13.59
§ J3 Ji—i/,00 ( )

| J1 +iJy =3 00

We can easily verify that each one of the non null columns of ¢ satisfies a
‘Dirac-like’ equation. In part1cular taklng into account that the ME are invariant
under the substitutions B > E E+— —Band considering a medium with dielectric
susceptibility € and magnetic permeab1l1ty 1 (both possibly, spacetime functions)
and making the substltutlon B +— Hin Eq. (13.58), writing moreover ¢ for the
speed of light in vacuum,'! we get that the free electromagnetic fields in the medium
satisfies

c ot

——
|=1

.V—[dz }li}¢=o, (13.60)
—pl

10The pair of Eq. (13.57) suggest the existence of new invariants for the electromagnetic fields, and
indeed Sachs made interesting use of them in [37] .

"'We are using s system of units such that ¢ = 1.
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which is an equation originally obtained by Sallhofer [38—41] in an ad hoc way.
Recently Smulik [44] obtained several interesting solutions for ME from known
solutions of Eq. (13.60) for some € and px functions.

13.3.4 A Three Dimensional Representation of the Free ME

Here we derive a three dimensional representation of the free ME, first presented
by Majorana [25] (see also [21]), but obtained in a completely different way from
the one given below. Our starting point is Eq. (13.50) (obviously equivalent to ME)
which since it is also satisfied by ysF can be rewritten (in the case J = 0) in the
following equivalent ways in C£°(M, ) C CL(M, n).

A(ysF) =0,

i519,F = 0, (13.61)
6% 0 o'
(IT)E‘F = —l?a,’F.

Now, we recall that [67/2,67/2] = is/G* /2, i.e., the set {G7/2} is a basis for
any x € M of the Lie algebra su(2) of SU(2), the universal covering group of SO3,
the special rotation group in three dimensions. A three dimensional representation
of su(2) is given by the Hermitian matrices

0 —i8r3 igr2
K =|iP 0 —igp! (13.62)
—igP? 5Pt 0
and
[K?, K] = ie?K". (13.63)

Writing moreover K = I for the three dimensional unitary matrix and defining

E, +iB,
|F)=| E»+iB> |, (13.64)
E; +iB;

we can obtain ME in three dimensional form with the substitutions

1. .
Eo“ — K i1, F = | F). (13.65)
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in Eq. (13.61). We get
.0 .
13_t|]:> = —iK- V|F) (13.66)

Note the doubling of the representative of the unity element of C£°(M, n) when
going to the three dimensional representation. This corresponds to the fact that
in relativistic quantum field theory, the 2 x 2 matrix representation of Eq.(13.61)
(projected in the idempotent %(1 + G%)) represents'? the wave equation for a single
quantum of a massless spin 1/2 field, whereas Eq.(13.66) represents the wave
equation for a single quantum of a massless spin 1 field.'?

13.4 Mathematical Maxwell-Dirac Equivalence

In [1-5] using standard covariant spinor fields Campolattaro proposed that Maxwell
equations are equivalent to a non linear Dirac like equation. The subject has been
further developedin [31, 36,47, 48] using the Clifford bundle formalism. The crucial
point in proving the mentioned equivalence (abbreviated as MDE in what follows,
when no confusion arises), starts once we observe that to any given representative
v e sec(/\o ™M + /\2 T™*M + /\4 T*M) — secC{(M,n) of a Dirac-Hestenes
spinor field in a given spin coframe there is associated an electromagnetic field
F € sec /\2 T*M < secCL(M,n), (F*> # 0) through the Rainich-Misner theorem,
i.e., we have [30, 31, 36, 47, 48]

F=yyny. (13.67)

Before proceeding we recall that for null fields, i.e., F2 = 0, the spinor associated
with F through Eq. (13.67) must be a Majorana spinor field (Sect. 3.3). Now, since
an electromagnetic field F, with F> # 0 satisfying Maxwell equation'* has six
degrees of freedom and a Dirac-Hestenes spinor field has eight (real) degrees of
freedom some authors felt uncomfortable with the approach used in [31, 36, 47,
48] where some gauge conditions have been imposed on a nonlinear equation

120f course, it is necessary for the quantum mechanical interpretation to multiply both sides of
Eq. (13.66) by #, the Planck constant.

BIndeed in quantum mechanics the Pauli matrices o; and the matrices K; are the quantum
mechanical spin operators and

3 3
)= %(1 + %) = % YK =1(1+1) =2
i=1 i=1

14Such solutions exist [32, 33, 35] and are investigated in details in a forthcoming book [8].
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(equivalent to Maxwell equation), thereby transforming it into an usual linear Dirac
equation (the Dirac-Hestenes equation in the Clifford bundle formalism). The claim,
e.g., in [16] is that the MDE found in [31, 36, 47, 48] cannot be general. The
argument there is that the imposition of gauge conditions implies that a i satisfying
Eq. (13.67) can have only six (real) degrees of freedom, and this implies that the
Dirac-Hestenes equation corresponding to Maxwell equation can be only satisfied
by a restricted class of Dirac-Hestenes spinor fields, namely the ones that have six
degrees of freedom.
Incidentally, in [16] it is also claimed that the generalized Maxwell equation

OF = Jo + Vs (13.68)

(where J,, J,, € sec /\1 T*M) describing the electromagnetic field generated by
charges and monopoles [24] cannot hold in the Clifford bundle formalism, because
according to that author the formalism implies that J,, = 0.

In what follows we analyze those claims of [16] and prove that they are
equivocated. The reason for our enterprise is that as will become clear in what
follows, understanding of Eqs. (13.67) and (13.68) together with some reasonable
hypothesis permit a derivation and eventually even a possible physical interpretation
of the famous Seiberg-Witten monopole equations [27, 28, 43]. So, our plan is the
following: first we prove that given F in Eq.(13.67) we can solve that equation
for ¢, and we find that ¥ has eight degrees of freedom, two of them being
undetermined, the indetermination being related to the elements of the stability
group of the spin plane y»;. This is a non trivial and beautiful result which can be
called inversion formula. Next, we introduce a generalized Maxwell equation and
the generalized Hertz equation. After that we prove a mathematical Dirac-Maxwell
equivalence of the first kind [31, 36, 47, 48], thereby deriving a Dirac-Hestenes
equation from the free Maxwell equations. Moreover, we introduce a new form
of a mathematical Maxwell-Dirac equivalence, called MDE of the second kind.
This new MDE of the second kind suggests that the electron is a ‘composite’
system. To prove the Maxwell-Dirac equivalence of the second kind we decompose
a Dirac-Hestenes spinor field satisfying a Dirac-Hestenes equation in such a way
that it results in a nonlinear generalized Maxwell (like) equation satisfied by
a certain Hertz potential field, mathematically represented by an object of the
same mathematical nature as an electromagnetic field, i.e., IT € sec /\2 T*M —
sec C{(M, n). This new equivalence is very suggestive in view of the fact that there
are recent (wild) speculations that the electron can be splitted in two components
[26] (see also [7]). If this fantastic claim announced by Maris [26] is true, it is
necessary to understand what is going on. The new Maxwell-Dirac equivalence of
the second kind may eventually be useful to understand the mechanism behind the
“electron splitting” into electrinos, but we are not going to discuss these ideas here.
Instead, we concentrate our attention in showing that (the analogous on Minkowski
spacetime) of the famous Seiberg-Witten monopole equations arises naturally from
the MDE of the first kind once a reasonable hypothesis is imposed. We also present
a possible coherent interpretation of that equations. Indeed, we prove that when
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the Dirac-Hestenes spinor field satisfying the first of Seiberg-Witten equations is
an eigenvector of the parity operator, then that equation describe a pair of massless
‘monopoles’ of opposite ‘magnetic’ like charges, coupled together by its interaction
electromagnetic field.

13.4.1 Solution of F = ¥ynv

We now want solve Eq.(13.67) for . Before proceeding we observe that on
Euclidian spacetime this equation has been solved using Clifford algebra methods in
[46]. Also, on Minkowski spacetime a particular solution of an equivalent equation
(written in terms of biquaternions) appear in [17]. We are going to show that
contrary to the claims of [16] a general solution for ¥ has indeed eight degrees
of freedom, although two of them are arbitrary, i.e., not fixed by F alone. Once
we give a solution of Eq. (13.67) for v, the reason for the indetermination of two
of the degrees of freedom will become clear. This involves the Fierz identities, the
boomerangs and the general theorem permitting the reconstruction of spinors from
their bilinear invariants discussed in Chap. 3.

We start by observing that from Eq.(13.67) and from Eq.(3.92) valid for
invertible representatives of DHSF we can write

F = peP"" Ry, R. (13.69)
Then, defining f = F/peP?s it follows that
f=RynR, (13.70)
2 =-1. (13.71)
Now, since all objects in Eqgs. (13.69) and (13.70) are even we can take advantage
of the isomorphism R3;, = R(l);,, and making the calculations when convenient
in the Pauli algebra. To this end we recall Eq.(13.47) for the components of F,
where (E', E?, E®) and (B', B, B?) are respectively the Cartesian components of
the electric and magnetic fields.
We now write as already done above F in C£°(M, ), the even subbundle of
ClM, n).
F =E +iB, (13.72)

with E = E'G,, B = B/G;,i,j = 1,2,3. We can write an analogous equation for f,

f=2é+ib. (13.73)
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Now, since F? # 0 and
F?=F.,F+FAF

= (E>—B%) +2i(E- B) (13.74)

the above equations give (in the more general case where both I, = (12"2 — Ez) #0
and I = (E- B) # 0):

T > =
= g, B = lalrctan %(E é) . (13.75)
cos[arctg2f] 2R
Also,
_ 1 = 2 S >
¢ = —[(Ecos B + Bsin )], b = —[(Bcos B — Esin pB)]. (13.76)
P P
13.4.2 A Particular Solution
Now, we can verify that
yar +f &3 —if
L= — = , (13.77)
V2 =) 5 0 —if - 53)
I =[O -y =T 5. (13.78)

is a Lorentz transformation, i.e., LL=1LL=1. Moreover, L is a particular solution
of Eq. (13.70). Indeed,

— 2(1 —y53
Y21 -l-f~ 212 f,, _ [2A =y _/ (13.79)
V20 —ys0) 7 2(1—ys0)  2(1—ysT)
Of course, since f2 = —1, ¢ = b*—land ¢ - b = 0, there are only four real

degrees of freedom in the Lorentz transformation L. From this result in [16] it is
concluded that the solution of the Eq. (13.67) is the Dirac-Hestenes spinor field

¢ = Jpe"PL, (13.80)

which has only six degrees of freedom and thus is not equivalent to a general
Dirac-Hestenes spinor field (the spinor field that must appears in the Dirac-Hestenes
equation), which has eight degrees of freedom. In this way it is stated in [16] that a
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the MDE of first kind proposed in [31, 36, 47, 48] cannot hold. Well, although it is
true that Eq. (13.80) is a solution of Eq. (13.67) it is not a general solution, but only
a particular solution.

13.4.3 The General Solution

The general solution R of Eq. (13.67) is trivially found. It is
R =1LS, (13.81)

where L is the particular solution just found and S is any member of the stability
group of y»1, i.e.,

SynS = ya, S§=85 = 1. (13.82)
It is trivial to find that we can parametrize the elements of the stability group as

S = exp(yo3v) exp(y219), (13.83)

with0 < v < oo and 0 < ¢ < oco. This shows that the most general Dirac-Hestenes
spinor field that solves Eq. (13.67) has indeed eight degrees of freedom (as it must
be the case, if the claims of [31, 36, 47, 48] are to make sense), although two degrees
of freedom are arbitrary, i.e., they are like hidden variables!

Now, the reason for the indetermination of two degrees of freedom has to do with
a fundamental mathematical result: the fact that a spinor can only be reconstruct
through the knowledge of its bilinear invariants and the Fierz identities as discussed
in Chaps. 3 and 7.

13.4.4 The Generalized Maxwell Equation

To comment on the basic error in [16] concerning the Clifford bundle formulation
of the generalized Maxwell equation we recall the following.

The generalized Maxwell equation [24] which describes the electromagnetic
field generated by charges and monopoles, can be written in the Cartan bundle (of
the oriented manifold M) as

dF = K,, dG=K, (13.84)

where F, G € /\2 T*M and K,,, K, € /\3 T*M, i.e., all these objects are taken to be
pair forms (see Sect.4.9.5)
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These equations are independent of any metric structure defined on the world
manifold. When a metric is given and the Hodge dual operator  is introduced it is
supposed that in vacuum we have G = «F. In this case putting K, = — » J, and
K,, = xJ,,, with J,, J,, € sec /\l T*M, we can write the following equivalent set of
equations

dF = —x J,,d*x F = —xJ,, (13.85)
SxF=1J,,6F =—J, (13.86)
dF = — % J,,, 6F = —J,. (13.87)

Now, supposing that any sec /\j T*M — secC{(M,n) (j = 0,1,2,3,4) we get
from the above equations

d—08)F=J,+K,or d—08)F=—-J,+K,, (13.88)
or equivalently
9F =J, + ysJ, or 0(—ysF) = —Jm + ys/e. (13.89)

Now, writing

1 1
F = EF“")/M)/U, *F = 5(*F“")yﬂyv, (13.90)

then generalized Maxwell equations in the form given by Eq. (13.86) can be written
in components ( in a Lorentz coordinate chart) as

O F" =JI, 0,(C"F*) = —JI. (13.91)
Now, assuming as in Eq.(13.67) that FF = Wyzﬂﬁ and taking into account the
relation between i and the representation of the standard Dirac spinor field Wp
we can write Eq. (13.91) as
au‘i’D [J,)Ms )/)\1] ‘I’D = 2"5’ aM\pDJ,)S [),)/Lv J/)U] \IJD = _2‘155
v 1< An * LY 1- ATA A
F* = E\I‘D [V;u )/,,] v, (*F*) = E\DD)/S [)/,L, yu] Yp. (13.92)
The reverse of the first formula in Eq. (13.89) reads

IF =J,— K. (13.93)
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First summing, and then subtracting Eq. (13.68) with Eq.(13.84) we get the
following equations for F' = ¥y, Y:

AVynv + @Yyny) =20, 3Vyn¥ — @Yyny) = 2K, (13.94)

which is equivalent to Eq.(3.76) in [16] (where G is used for the three form of
monopolar current). There, it is observed that J, is even under reversion and K, is
odd. Then, it is claimed that “since reversion is a purely algebraic operation without
any particular physical meaning, the monopolar current K,, is necessarily zero if the
Clifford formalism is assumed to provide a representation of Maxwell’s equation
where the source currents J, and K, correspond to fundamental physical fields.”
It is also stated that Eqgs. (13.92) and (13.94) imposes different constrains on the
monopolar currents J, and K.

It now is clear that those arguments of [16] are fallacious. Indeed, it is obvious
that if any comparison is to be made, it must be done between J, and J, or
between K, and K. In this case, it is obvious that both pairs of currents have
the same behavior under reversion. This kind of confusion is widespread in the
literature, mainly by people that works with the generalized Maxwell equation(s) in
component form (Eq. (13.91)).

It seems that experimentally J,, = 0 and the following question suggests itself:
is there any real physical field governed by a equation of the type of the generalized
Maxwell equation (Eq. (13.68))? The answer is yes.

13.4.5 The Generalized Hertz Potential Equation

In what follows we accept that J,, = 0 and take Maxwell equations for the
electromagnetic field F € sec /\2 T*M <— secCl(M,n) and a current J, €
sec \' T*M < secCL(M, ) as

oF = J,. (13.95)

Let IT = %H’“’yuyu = l:Ie + il:Im € sec /\2 T*M — secC{(M,n) be the so
called Hertz potential [6, 35]. We write

0 ! —I2 —I1?
m o —m m
Hg an 0 —H,ln
H;’ —an H,ln 0

(] = (13.96)

and define the electromagnetic potential by

A = —68T1 € sec A'T*M < secCL(M, 1), (13.97)
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Since 82 = 0 it is clear that A satisfies the Lorenz gauge condition, i.e.,
SA = 0. (13.98)
Also, let

y>S=dIl € sec/\3T*M < secCl(M, 1), (13.99)

and call S, the Stratton potential." Tt follows also that
d(y’S) =d’Tl = 0. (13.100)
But d(y°S) = y°8S from which we get, taking into account Eq. (13.100),
5S = 0. (13.101)

We can put Egs. (13.97) and (13.99) in the form of a single generalized Maxwell
like equation, i.e.,

M=d-HT=A+y’S=A. (13.102)

Equation (13.102) is the equation we were looking for. It is a legitimate physical
equation. We also have,

O = (d—8)*T1 = dA + ysdS. (13.103)
Next, we define the electromagnetic field by
F=0A=C0M=dA+ ysdS = F, + ysF),. (13.104)
We observe that,
O =0=F, =—ysF,. (13.105)
Now, let us calculate d F. We have,
oF = (d—§)F

(13.106)
= dA + d(y%dS) — §(dA) — §(y5dS).

15This object first appears for the best of our knowledge in [45].
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The first and last terms in the second line of Eq. (13.106) are obviously null. Writing,

J, = —8dA,and y°J, = —d(y°dS),
we get Maxwell equation
OF =(d—-90)F =J,,
if and only if the magnetic current ySJm =0,1ie.,

8dS = 0.

a condition that we suppose to be satisfied in what follows. Then,

CA = J, = —8dA,

&S =0.
Now, we define,
F,=dA =E, +iB,,
Fy = dS = By, + iEy.

and also

F=F,+ysF, = E+iB = (E. — Ey) + i(B. + By).

Then, we get
O, =E  ©M,=8
It is important to keep in mind that:
OMN=0=E=0,and B =0.

Nevertheless, despite this result we have,

Proposition 13.2 (Hertz Theorem)
OCM=0 = 0dF, =0.

Proof We have immediately from the above equations that

dF, = —d(ysdS) + 8(ysdS) = ysd*S — ys8dS = 0,

which proves the proposition. ll

(13.107)

(13.108)

(13.109)

(13.110)

(13.111)

(13.112)

(13.113)

(13.114)

(13.115)

(13.116)
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We remark that Eq. (13.116) has been called the Hertz theorem in [6, 35]. Hertz
theorem has been used to find nontrivial subluminal and superluminal solutions of
the free Maxwell equation in [32, 33]. See also our forthcoming book [8].

13.4.6 Maxwell Dirac Equivalence of First Kind

Let us consider a generalized Maxwell equation
F =7, (13.117)
where J is the generalized electromagnetic current (an electric current J, plus a

magnetic monopole current —ysJ,,, where J,, J,, € sec /\l T*M — CL(M,n)). We
proved in a previous section that if F2 # 0, then we can write

F=vyyuy, (13.118)

where Y € sec CEO(M ,7M) is a representative of a Dirac-Hestenes field. If we use
Eq.(13.118) in Eq. (13.117) we get

AW yauy) = v, (Yyn ) = Y @u¥yn ¥ + ¥y, ¥) = J. (13.119)

from where it follows that

29", ¥y = J. (13.120)

Consider the identity

YOy V)2 = 3Py — v (0,9 ya o — Y (0, ¥ v V)4 (13.121)

and define moreover the covector fields

J=v"0, 0y )o, (13.122)
g = "0, ysya¥)o. (13.123)

Taking into account Eqgs. (13.120)—(13.123), we can rewrite Eq. (13.119) as

~ 1
WV yny = [EJ + G+ ng)} . (13.124)

Equation (13.124) yields in the case where v is non-singular (which corresponds
to non-null electromagnetic fields) a representation of Maxwell equation satisfied
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by a representative of a DHSF. Indeed, we have

eVsh

1
Ay = [5‘7 + G+ ng)} Y. (13.125)

The Eq.(13.125) representing Maxwell equation, written in that form, does
not appear to have any relationship with the Dirac-Hestenes equation (Eq. (7.97)).
However, we shall make some algebraic modifications on it in such a way as to
put it in a form that suggests a very interesting and intriguing relationship between
them, and eventually a possible hidden connection between electromagnetism and
quantum mechanics.

Since ¥ is supposed to be non-singular (F> # 0) we can use the canonical
decomposition of ¥ and write ¥ = p'/2ef¥s/2R, with p, B € sec \°T*M —
sec C£(M,n) and R € secSpin { ;(M). Then

1
Y = 5(3“ Inp+ ys50,8 + Qu)V, (13.126)
where we define the 2-form
Q, = 2(0,R)R. (13.127)

Using this expression for 9,3 into the definitions of the covectors j and g
(Eqgs. (13.122) and (13.123)) we obtain that

J = VM- $)peos p+ vl - (r55)]psin B, (13.128)
g = [R (r58)]pcos f— (R - S)psin B, (13.129)

where we define the spin 2-form S by

1 _ 1 ~
S=S¥yay ' = FRy2uR. (13.130)
We define moreover
J =¥y = pv = pRy’R™", (13.131)

where v is a ‘velocity’ field for the system. To continue, we define also the 2-form
Q = v#Q, and the scalars A and K by

A=Q-S, (13.132)
K=Q-(ys5). (13.133)
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Using these definitions we have that

QS = Av,. (13.134)
Q.- (y5S) = Kv,, (13.135)

and the vectors j and g can be written as

Jj = Avpcos  + Kvpsin 8 = Apv, (13.136)
g = Kvpcos B — Avpsin 8 = kpv, (13.137)
where we putted
A = Acosf + Ksin f, (13.138)
k = Kcosf — Asinpf. (13.139)

The spinorial representation of Maxwell equation is written now as

e Y5

B
TV + Ayo + ysk ¥ . (13.140)

9 -
Yy 2

As we already mentioned [32, 33, 35] there are infinite families of non trivial
solutions of Maxwell equations such that F2 # 0 (which correspond to subluminal
and superluminal free boundary solutions of Maxwell equation). Then, it is
opportune to consider the case J = 0. We have,

Yy = AV yo + yskYyo, (13.141)

which is very similar to the Dirac-Hestenes equation.

Constraining the Degrees of Freedom of

In order to go a step further into the relationship between those equations, we
remember that the electromagnetic field has six degrees of freedom, while a Dirac-
Hestenes spinor field has eight degrees of freedom and as proved above two of
those degrees of freedom are hidden variables. We are free therefore to impose
two constraints on Y if it is to represent an electromagnetic field. We choose as
constraints the following equations saying that the “currents” j and g are conserved

d-j=0andd-g=0. (13.142)
Using Eqgs. (13.136) and (13.137) these two constraints become

d-j=pA+13.-7=0, (13.143)
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d-g=pk+ka-J=0, (13.144)

where J = pv and A= (v-d)A, k = (v - 8)k. These conditions imply that

KA = Ak (13.145)
which gives (A # 0):
K
1= constant = — tan S, (13.146)
or from Eqgs. (13.138) and (13.139):
K
x= tan(B — Bo). (13.147)

Now we observe that f is the angle of the duality rotation from F to F’ = e"sPF.
If we perform another duality rotation by By we have F > e?5f+Po)F and for the
Takabayashi angle 8 — B + Bo. If we work therefore with an electromagnetic field
duality rotated by an additional angle S, the above relationship becomes

K
X tan f. (13.148)

This is, of course, just a way to say that we can choose the constant Sy in
Eq. (13.146) to be zero. Now, this expression gives

A
cos B’

A=Acosf+ AtanBsinf = (13.149)
k =AtanfBcosfB — Asinf =0, (13.150)
and the spinorial representation of the Maxwell equation (Eq. (13.141)) becomes
Yy —AYy =0 (13.151)
Note that A is such that

oA =—219-J. (13.152)

The current J = Wyol/} is not conserved unless A is constant. So, if we suppose
also that

0-J=0 (13.153)

we must have



13.4 Mathematical Maxwell-Dirac Equivalence 477

A = constant.

Now, throughout these calculations we have assumed # = ¢ = 1. We observe
that in Eq. (13.151) A has the units of (length)_l, and if we introduce the constants
A and ¢ we have to introduce another constant with unit of mass. If we denote this
constant by m such that

A= — (13.154)
then Eq. (13.151) assumes a form which is identical to Dirac-Hestenes equation:

mc
Yy — 5 V=0 (13.155)

Remark 13.3 1t is true that we did not prove that Eq. (13.155) is really the Dirac-
Hestenes equation since the constant m has to be identified in this case with the
electron’s mass, and we do not have any good physical argument to make that
identification, until now. In resume, Eq. (13.155) has been obtained from Maxwell
equation by imposing some gauge conditions allowed by the hidden parameters in
the solution of Eq. (13.67) for ¥ in terms of F. In view of that, it is certainly more
appropriate instead of using the term mathematical Maxwell-Dirac equivalence
of first kind to talk about a correspondence between that equations under which
two degrees of freedom of the Dirac-Hestenes spinor field are treated as hidden
variables.

We end this section with the observation that it is to earlier to know if the above
results are of some physical value or only a mathematical curiosity. Let us wait. . .

13.4.7 Maxwell-Dirac Equivalence of Second Kind

We now look for a Hertz potential field IT € sec /\2 T*M satisfying the following
equation

ol = (36 +mPy; + m(Iyo12)1) + 5P + mBy; — ys(mllyon)3)  (13.156)

where 6,°B € sec /\0 T*M, and m is a constant. According to previous results the
electromagnetic and Stratton potentials are

A =906 + mPBys + m(Ilyon)1, (13.157)
¥sS = y5(0 + mBy; — ys(mllyo12)3), (13.158)

and must satisfy the following subsidiary conditions,

(06 + mPBys + m(Myox)1) = Je, (13.159)
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O(ys(3P + m&ys — ys(mllyoiz)3)) = 0, (13.160)
OB + md - (yon)1 =0, (13.161)
OP —mad - (ys(Iyoi2)3) = 0. (13.162)

Now, in the Clifford bundle formalism, as we already explained above, the
following sum is a legitimate operation

Y =—6+1II + ysP (13.163)

and according to previous results Eq. (13.163) defines ¥ as a(representative of some
Dirac-Hestenes spinor field. Now, we can verify that i satisfies the equation

Yy —myyy =0 (13.164)

which is as we already know a representative of the standard Dirac equation (for a
free electron) in the Clifford bundle.

The above developments suggest (consistently with the spirit of the general-
ized Hertz potential theory developed above) the following interpretation. The
Hertz potential field IT generates the real electromagnetic field of the electron.'®
Moreover, the above developments suggest that the electron is “composed” of
two “fundamental” currents, one of electric type and the other of magnetic type
circulating at the ultra microscopic level, which generate the observed electric
charge and magnetic moment of the electron. Then, it may be the case, as speculated
by Maris [34], that the electromagnetic field of the electron can be spliced into two
parts, each corresponding to a new kind of subelectron type particle, the electrino.
Of course, the above developments leaves open the possibility to generate electrinos
of fractional charges. Well, it is time to stop speculations on this issue.

13.5 Seiberg-Witten Equations

As it is well known, the original Seiberg-Witten (monopole) equations have been
written in Euclidean “spacetime” and for the self dual part of the field F. However,
on Minkowski spacetime, of course, there are no self dual electromagnetic fields.
Indeed, the equation xF = F implies that the unique solution (on Minkowski
spacetime) is F = 0. This is the main reason for the difficulties in interpreting
that equations in this case, and indeed in [46] it was attempted an interpretation
of that equations only for the case of Euclidean manifolds. Here we derive and

16The question of the physical dimensions of the Dirac-Hestenes and Maxwell fields is discussed
in [36].
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give a possible interpretation to that equations on Minkowski spacetime based on a
reasonable assumption.

To start we recall that the analogous of Seiberg-Witten monopole equations read
in the Clifford bundle formalism and on Minkowski spacetime as

IYyn —AY =0,
F=yyny, (13.165)
F =dA,

where ¥ € secCL°(M, 1) is a representative of a Dirac-Hestenes spinor field in a
given spin coframe, A € sec /\l T*M — secC{(M, n) is an electromagnetic vector
potential and F € sec /\2 T*M — sec C£(M, ) is an electromagnetic field.

Our intention in this section is:

(a) To use the Maxwell Dirac-Equivalence of the first kind (proved above) and
an additional hypothesis to be discussed below to derive the Seiberg-Witten
equations on Minkowski spacetime.

(b) to give a (possible) physical interpretation for that equations.

13.5.1 Derivation of Seiberg-Witten Equations

* Step 1. Assume that the electromagnetic field F appearing in the second of the
Seiberg-Witten equations satisfy the free Maxwell equation, i.e., dF = 0.

e Step 2. Use the Maxwell-Dirac equivalence of the first kind proved above to
obtain Eq. (13.151),

Ay — AYyy = 0. (13.166)
* Step 3. Introduce the ansatz
A= My (13.167)
This means that the electromagnetic potential (in our geometrical units) is
identified with a multiply of the velocity field defined through Eq. (13.131). Under
this condition Eq. (13.166) becomes

oYy —AY =0, (13.168)

which is the first Seiberg-Witten equation!
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13.5.2 A Possible Interpretation of the Seiberg-Witten
Equations

Well, it is time to find an interpretation for Eq. (13.168). In order to do that we recall
that (as it is well known) if ¥+ are Weyl spinor fields (recall Eq. (3.103)), then ¥+
satisfy a Weyl equation, i.e.,

Yy = 0. (13.169)

Consider now, the equation for 4 coupled with an electromagnetic field A =
gB € sec /\1 T*M — secCL(M, 1), i.e.,

Y4y + gBY+ = 0. (13.170)
This equation is invariant under the gauge transformations
Vi > et B B+ 06. (13.171)
Also, the equation for ¥_ coupled with an electromagnetic field gB is
dY_ya + gBy_ = 0. (13.172)
which is invariant under the gauge transformations
V_ > Y% B> B— 00. (13.173)
showing clearly that the fields {4 and y_ carry opposite ‘charges’. Consider now
the Dirac-Hestenes spinor fields ¥, ¥V (recall Eq. (3.107)) which are eigenvectors
of the parity operator (recall Eq. (3.106)) and look for solutions of Eq. (13.168) such
that = ¥ 1. We have,
vty +gByt =0 (13.174)
which separates in two equations,
ay! Byl =0,  ayl—gysByl =0 13.175
Vv, +gysBy, =0, V! —gysBy! = 0. (13.175)
These results show that when a Dirac-Hestenes spinor field associated with the
first of the Seiberg-Witten equations is in an eigenstate of the parity operator, that

spinor field describes a pair of particles with opposite ‘charges’. We interpret these
particles (following Lochak'” [23]) as massless ‘monopoles’ in auto-interaction.

"Lochak suggested that an equation equivalent to Eq. (13.174) describe massless monopoles of
opposite ‘charges’.
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Observe that our proposed interaction is also consistent with the third of Seiberg-
Witten equations, for F' = dA implies a null magnetic current.

It is now well known that Seiberg-Witten equations have non trivial solutions on
Minkowski manifolds (see [29]). From the above results, in particular, taking into
account the inversion formula (Eq. (13.79)) it seems to be possible to find whole
family of solutions for the Seiberg-Witten equations, which has been here derived
from a Maxwell-Dirac equivalence of first kind with the additional hypothesis that
electromagnetic potential A is parallel to the velocity field v (Eq.(13.131)) of the
system described by Eq.(13.172). We conclude that a consistent set of Seiberg-
Witten equations on Minkowski spacetime must be

IYyn —AY =0,
F= ll/f)/zllﬂ,

2 13.17
F=dA, (13.176)
A= yyy .

We end this long chapter recalling that we exhibit two different kinds of
possible Maxwell-Dirac equivalences. Many will find the ideas presented above
speculative from the physical point of view, but we think that all will agree that
the mathematical coincidences found deserves more careful investigation. We think
it is really provocative that the MDE of the second kind reveal an unsuspected
possible interpretation of the Dirac equation, namely that the electron seems to
be a composed system build up from the self interaction of two currents of the
‘electrical’ and ‘magnetic’ types. Of course, it is to earlier to say if this discovery
has any physical significance. We showed also, that by using the MDE of the first
kind together with a reasonable hypothesis we can shed some light on the meaning
of Seiberg-Witten monopole equations on Minkowski spacetime. We hope that the
results just described may be an indication that Seiberg-Witten equations (which are
a fundamental key in the study of the topology of four manifolds equipped with an
Euclidean metric tensor), may play an important role in Physics, whose arena where
phenomena occur is a Lorentzian manifold.
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Chapter 14
Superparticles and Superfields

Abstract This chapter shows very clearly that the Clifford and spin-Clifford bundle
formalism (introduced in previous chapters) offers a very simple way to write
the equation of motion of a massive spinning particle. Indeed this equation is
immediately derived from Frenet equations for a moving frame. Moreover, with
addition of very a reasonable hypothesis the deduced spinor equation for the
spinning particle leads directly to a classical (nonlinear) Dirac-Hestenes equation.
An additional hypothesis leads to a linear Dirac-Hestenes equation and suggests
automatically a probability interpretation for the Dirac-Hestenes wave function.
We also show how the Clifford and spin-Clifford bundle formalism permit the
introduction of multiform valued Lagrangians and a simple interpretation of the so-
called superparticle theory. Moreover, the Berezin differential and integral calculus
is shown to be no more than the result of contractions in an appropriate Clifford
algebra. Also, the nature of superfields is clearly disclosed.

14.1 Spinor Fields and Classical Spinning Particles

We supposed in what follows that spacetime (M,g,D, 7z, 1) is a spin manifold,
which implies, as we learned in Chap. 7 the existence of a global tetrad frame {e,}
€ secPsoq, (M). Let {y?},y* € sec /\l T*M — CL(M,g) be the dual frame of
{ea}. Also, let {ya} be the reciprocal frame of {y?}, i.e., y* - y» = 8p. Suppose
moreover that the reference frame (Definition 6.9) defined by ey is in free fall, i.e.,
D, ep = 0 and that the spatial axis along each one of the integral lines of ey have
been constructed by Fermi transport of spinning gyroscopes. This is translated by
the requirement that D,,e; = 0,1 = 1,2, 3, and we have, equivalently D,,y?* = 0.
We introduce a spin coframe E € Pspin¢ , (M) by the method described in Chap.7
such that s(£E) = {y?}. Now, let ¥ be the representative of an invertible Dirac-
Hestenes spinor field over o (the world line of a spinning particle) in the spin
coframe E. Let moreover {f,} be a Frenet frame over o such that fy = yy|, and
g(fo. ) = eo|,. Then, as we know from Chap. 6 we can write

fa= Wy ¥l (14.1)
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Now, the general form of a representative of an invertible Dirac-Hestenes over o is

5
v = p%eﬂ%R, where p, B : 0(I) > Rand R : o(I) — Spinj; C R%. Recalling
Eq. (6.21) we get using Eq. (14.1) that

1
DeyR = 5 QR (14.2)

which may be called the spinor equation of motion of a classical spinning particle.

14.1.1 Spinor Equation of Motion for a Classical Particle
on Minkowski Spacetime

Now, let us analyze the spinor equation of motion of a free particle in Minkowski
spacetime. In that case, recalling Eq. (6.24) we have Qp = Q2g. We can trivially
redefine the Frenet frame in such a way as to have k3 = 0 (recall Sect. 6.1.3).
Indeed, this can be done by rotating the original frame with U = /1% and choosing

o = arctan (—f—;) So, in what follows we suppose that this choice has already been

done. We are interested in the case where «; is a real constant. Then, Eq. (14.2)
becomes

1
D, R = EKyfzflk. (14.3)
The solution of Eq. (14.3) is
k2 21
R = exp(E)/ y1). (14.4)

Suppose next the existence of a covector field V € sec /\1 "M — C{(M,qg)
and of an unitary Dirac-Hestenes spinor field with representative ¢ € CL(M,g)
(¢¢ = 1) in the spin coframe E such that V|, = v and ¢|, = R. Without any
loss of generality we can choose a global tetrad field such that y? — y* = dx*
(where {x*} are coordinates in Einstein-Lorentz-Poincaré gauge for the Minkowski
spacetime). Then, under all these conditions we can rewrite Eq. (14.3) (taking into
account the definition of the spin-Dirac operator and its action on representatives of
Dirac-Hestenes spinor fields) as:

1
Do, R=y" 3¢ = Exmzyl. (14.5)

Defining

p= %VO,XZX“)/M, (14.6)
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we have that
¢ = el (14.7)
Now,

Y0 3¢ =% = (¢y°9 )09, (14.8)

and substituting this result in Eq. (14.5) we get
997y + 9y = 0. (14.9)
Put m = —% and end with
apy*y' —mey® = 0. (14.10)

Equation (14.10) is formally identical to the Dirac-Hestenes equation for a
unitary spinor. Note that the signal of k, merely defines the sense of rotation in
the e, A e plane.

Recalling the various spin operators introduced in Chap. 7 we can call the bilinear
invariant Qs € sec A\’ T*M — C{(M., g)

Qs = key*y'e (14.11)

the spin biform. Note that for our example S = *Qsv = koy’dp €
sec /\1 T*M — C{(M, g) and may be called the spin covector.

Remark 14.1 The results just obtained shows that a natural interpretation suggests
itself for the plane ‘wave function’ ¢ in the theory just presented. It describes a
‘spinning fluid’ (i.e., determines a velocity field V) such that the particle follows
one of its streamlines. It is not a physical field in any sense.' This interpretation
is reinforced by the derivation in the next section of a classical non linear Dirac-
Hestenes equation for a charged spinning particle moving under the action of an
electromagnetic field.

14.1.2 Classical (Nonlinear) Dirac-Hestenes Equation

We start from the classical Lorentz force law, which as well known, describes the
motion of a classical particle of mass m and charge e following a worldline o :

1Of course, the question of renormalization of the wave function ¢ is to be deal in the same way
as in standard quantum mechanics.
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R D I — M under the action of an electromagnetic field. Let o, be the velocity
of the particle and let v = g(o«,) be the physically equivalent 1-form. From now
one we suppose, as in the previous section that v € sec Ty M — secC{(M, g). Let

F' € sec /\2 T*M — secCL(M, g) be the total electromagnetic field acting on the
charged particle, i.e., the sum of external electromagnetic field F and the self field
Fo.LetA' = A + A, € sec \' T*M — secCL(M, g) be a potential generating F.
Then we have

mv = ev F' = evi(dA'). (14.12)
To continue, we suppose the existence of a 1-form field V € sec /\1 "M —

sec C£(M, g) such that its restriction over o is v, i.e., V|, = v. Also we impose that
V2 = 1. Next we observe that

1
v =ViV = vJ(a/\V)Jrzav2 = ViQAV) =VidV) = —@dV)LV, (14.13)
Using this result in the first member of Eq. (14.12) we get
[d(mV — eA — eA;]LV = 0. (14.14)

A sufficient condition for Eq. (14.14) to hold is the existence of a O-form field y
such that

mV —eA—eA; =dy = 0y. (14.15)
Equation (14.15) is more conveniently written as
dy +e(A+A;) =mV. (14.16)
Squaring this equation we get putting A’ = A + A,
(dy + eA)? = m? (14.17)

which we recognize as the classical relativistic Hamilton-Jacobi equation, if we
ignore the self field A;.
. . . 1L B
As in the previous section, let ¥ = p2e275R € secCl’(M,g), be the
representative (in the spin coframe E) of a particular invertible Dirac-Hestenes
spinor field such that

Y £ 0 (14.18)

v

. 1
and since ¥ = p2e2?” R we have

V= yyly! = e RyORT. (14.19)
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Remark 14.2 Observe that since V € sec /\1 T*M we must necessarily have that
B = 0or B = m. These values correspond to charges of opposite signs.

Substituting Eq. (14.19) in Eq. (14.16) after multiplying both members by ¥ and
taking § = 0 we get

By + eA Yy = myy°. (14.20)
We now write

V= Yoe "X, ya1 = yayi (14.21)

where v is also a representative of some invertible Dirac-Hestenes spinor field that
determines the same current J = 9y as the one determined by .
We observe moreover that

IxY = Yo + dpoe oy, (14.22)

Using this result in Eq. (14.20) and observing that e™ "' = v~ ' we arrive at
the non linear equation

Yy + eAY + eAsy —myryo — d(In o) Y ya = 0. (14.23)

This result is to be compared with the guantum Dirac-Hestenes equation
(presented in Chap. 76) for an electron interacting with a electromagnetic field A
which is

VY + eAV — m¥y, = 0, (14.24)

where U € sec C£°(M, g), but with W = ,oeﬂy5 with B =0orf = m.
Comparison of (14.23) and (14.24) shows that besides the difference in normal-
ization there is a nonlinear term in Eq. (14.23) namely 9 (In ¥/0)¥ y2; and that the
quantum Dirac-Hestenes equation does not include the self interaction term eA;y.
The term 9 (In ¥o) ¥ y21 is identical to Bohm’s quantum potential (see, e.g., [5]).
Our exercise, may eventually serve as a prelude for a interpretation of quantum
theory, since it is clear that {» must be thought as a kind of probability amplitude
defining a probability current distribution through the bilinear invariant J = ey )/01}
(and a probability spin distribution biform S = %Wym 1}). In this way, as it was the
case with the discussion on the previous section, the ‘wave function’ ¥ is not to be
interpreted as a real field in any sense, at least in the theory here presented.
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14.1.3 Digression

Despite this fact, a ‘fanatic’ field theorist may argue that ‘the field ate the particle’,
i.e., the electron is indeed a field, not a particle and that ¥ satisfying Eq. (14.23) is
a real field living in Minkowski spacetime. If that is the case, it seems tempting to
that field theorist to present the following

Conjecture 14.3

h
eAs = S9(nYo)yyny . (14.25)
Indeed, if Eq. (14.25) holds, then Eq. (14.23) becomes

AV a1 + eAy —mypryy = 0. (14.26)

Ifweleft V = e‘ﬂVSWyol//_l and do not use Remark 14.2 then under the same
hypothesis as above we would arrive at

Yy + eAY — myrypef”” = 0. (14.27)

Well, we stop just here to conjecture and end this section observing that
Eq. (14.27), which will be called hereafter the non linear Dirac-Hestenes equation
(NLDHE), has been extensively studied by Daviau [2, 3]. He showed that it gives
very good results for the hydrogen spectrum. Also, Eq. (14.27) equation possess
very nice properties not possessed by the DHE and it is surprisingly connected in
an intriguing way with the free Maxwell equation as discussed in [6]. Moreover,
the nonlinear term ¢#?” causes no difficulty concerning the superposition principle,
since it has been shown in [7] that we can superpose only ‘wave functions’ having
the same fixed value of the Takabaysi angle 8.

Remark 14.4 Ttis worth to observe that Eq. (14.24) can be derived heuristically by a
very simple argument. Indeed, in Hamiltonian mechanics the canonical momentum
IT of particle in interaction with an electromagnetic A potential and following a
world line o such that v = o, satisfies

[MT=p—ecA (14.28)

Then if W is a Dirac-Hestenes spinor field such that Wy%Ww—! , = U we can write
Eq.(14.28) as

IV + AV = m¥y° (14.29)
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and thus heuristically postulating that in relativistic quantum mechanics [TV +—
dWy2y! we get Eq.(14.24).2

14.2 The Superparticle

The results of the previous sections showed that the Frenet equations and a
Dirac-Hestenes like equation are (when properly interpreted) appropriate equations
describing important aspects of the motion of classical spinning particle. In what
follows we propose to develop a Lagrangian and Hamiltonian formalism for Frenet
equations using the multiform calculus developed in Chap. 2. For reasons that will
become clear in a while we call the classical spinning particle the superparticle.
For great generality we consider in what follows a n-dimensional flat Minkowski
spacetime (M,n,D, t,,1), where (T:M,n,) = R'7~!. The Clifford bundle of
multiforms is C£(M, n) and we choose as before a basis generated by the {y"},
yt e sec A\T*M <> sec CL(M, 1), such that

ylyY 4+ yVyt =29H = diag(l,—1,...,—1),
wov=012,....n (14.30)

‘We have

Definition 14.5 A superparticle is a pair (0, X), where o : R D I — M is a time
like curve and X : R D I — secC{(M, n) is a Clifford-field over o (or a set of
Clifford fields over o).

Definition 14.6 A multiform Lagrangian is a mapping
L (X(s), X(5)) — L(X(s), X(s)) € secCL(M, 1) (14.31)

where X € sec C£(M, n) and s is an invariant time parameter on .

Recalling Chap. 7, we see that L is a multiform functional, i.e., given a trivializa-
tion of C£(M, n) it has values in the Clifford algebra R, ,—; for each 7.
The most general L can then be written as

L=){Li=) L. (14.32)
k k

2This simple heuristic argument has been generalized in order to obtain the wave equation for a
spin 1/2 particle in [9].
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To gain confidence in the sophisticated multiform derivative calculations that we
shall need to do, we start by studying a simple case, namely, we choose X = X, €
sec A'T*M < secC€(M, n) and L = (L), a scalar multiform functional.

We postulate next that the action for the superparticle is

2

AX,) = / ds L(X,(s), X,(s)) (14.33)

and that the equations of motion can be derived from the principle of stationary
action (recall Chap. 7), that reads

d
E -A(Xr + tAr)|r=0 =A,- aXr~A(Xr) =0, (14.34)
where A, € sec \'T*M — sec C£(M, n) is a Clifford field over o such that

A (s1) = A,(s2) = 0. (14.35)

From Eq. (14.34) we get

52 .
/ ds [(A, - 9x, )L+ A, - 35 L] =0, (14.36)

S1

Since L = {L)o and X,, A, € sec \'T*M <> sec C£(M,n) we have

A - aX, <L>O = (Ar(aX,L))O = Ar . (aX,L)ra

. * (14.37)
A- a)'(r (L)o = (Ar(aXrL))O =A,- (aXrL)r‘
Using Eq. (14.37) into Eq. (14.36) results
k) 5 5 d
[ 1@ onn, - L@ D=0, (14.38)
S1 s "
ie.,
~ d
A, - (0x,L — d—(aX L)), =0. (14.39)
S r

Since for L = (L)o, we have dx,L = (dx,L), and 93 L = (dy L) and since A, is
arbitrary then Eq. (14.39) implies

d
(O L = (33, L)), = 0. (14.40)
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or
d
ox,L — d—(ax L)=0, (14.41)
S r

that is the Euler-Lagrange equation. It is quite clear that the Eq. (14.41) holds for L
being a functional of a general Clifford field X over o.

Next we study the general case where L is given by Eq.(14.32). However,
we restrict ourselves without loss of generality to the case where X = X, €
sec N'T*M < secCL(M, 1)

We define

T = Z(t)k = Zrk, (14.42)

where the 1} € sec /\'T*M < sec C£(M, n) are constant multiforms.
Then,

(Liyo=L-t=)» Lou=Y L x (14.43)
k k

In this way (LT7)¢ has the role of a scalar valued Lagrangian and we define the
action by

AX) = / ; ds(L(X.X)%)o. (14.44)

51

The principle of stationary action then gives

/52 ds[(A, - 3x){L T)o + (A, - ;) (LT)o]

s1

= Z /fz ds[(A, - 3x)(Li - w) + (A, - 3Ly - w)] = 0. (14.45)
& s

Since (A, - dx)tx = 0, we have (recalling Eq. (2.177))

(Ar-0x) (Li - @) = (A 0x Li) -
= (A; - OxLi)r - e = (A-(OxLi))i * Tk- (14.46)

But, since X = X, € sec \'T*M < secC{(M, n), then

OxLi = (OxLi)|r—k + (OxLi)|r—kj+2 + « -+ (Ox L) (14.47)
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and we can write,

(Ar - 0x) (Li - @) = (Ar(OxLi) jr—i )k - T + (Ar(OXL) p—kj+2)k - T
+ o4 (A Ox L) ri )k - T

L (r+k—r—kl)

= Y (AOxL)y—i+2) T (14.48)
=0

Also,

(A - 03) (Li - ) = (A3 Li))k - T
LIr+k—r—kI]

D (AL k20 T

£=0

3 lr4k—|r—k|]

Z [%(Ar(aj(Lk)r—k+2£>k

£=0

d
(A Ok (14.49)

Using Egs. (14.48) and (14.49) into Eq.(14.45) and taking into account that
Ar(s1) = Ar(s2) = 0 we get

Lr+k—|r—kl]
52 2 d
Z/ ds Z (Ar[(aXLk)lr—kH-Zlg(aXLk)\r—k\—f—Z{)k'Tk:0- (14.50)
k St =0

Now, the 7; are constant sections of sec \'T*M <> secCL(M,n). Then if
p = (}). it follows that 7; is of the form ()" #» yy, ...y, where (z)*~"» are
arbitrary real constants. Also the term in the brackets in Eq. (14.50) is of the form
( e = Y)Mtry,, ...y, and Eq.(14.50) results in a sum of terms of the form
@ (( Y)Yy - - - V- Since the (zx)#!Hr are arbitrary constants, Eq. (14.50)
implies that for each k we must have

d d d
(A [0xLy— g(aka)hr—H +... [OxLy— g(aXLk - a(aka)]wk)k =0, (145D

or

d
(Ar[oxLi — £(3ka))/( =0. (14.52)
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Next we show that Eq. (14.52) implies the multiform Euler-Lagrange equation
oxL d(3~L)—0 (14.53)
XLk ds X k) — ’ .
which means
[0xL d (05 Lx)] =0
bk — o OE)ir—u = 0.
[0xL d (05 Ly)] =0
X Lk ds x| r—k|4+2 = Y,

(14.54)

d
[OxLi — g(aXLk)]r+k =0.

Observe that if k = 0, Eq.(14.53) implies (;) = (;) = 1 equation, whereas
the variation of A, implies (") arbitrary variations. Then (%) x 1 = () and we
conclude the existence of (’;) Euler-Lagrange equations, namely, one for each of the
(*) components of [dy,Lo — 4 (33 Lo)] € sec \'T*M < secCL(M,n). The same
happens with k& # 0 and r = 0 since in this case we have (Z) x1 = (Z) Euler-
Lagrange equations for [0y, Ly — %(akrl‘k)] € sec N'T*M < secCL(M, n) which
has (}}) components.

We now must extend the above reasoning for k # 0, r # 0. Observe that in this
general case we need

L lr-k—|r—k]
Z n _ n n n P n
Pt |r—k| +2¢ |r — k| |r—k|+2 r+k
n\ (n
S()(k) nk<n,r+k<n, (14.55)
r

in order to deduce from Eq. (14.52) the validity of Eq. (14.53). This happens because

Llpk—|r—
Eq.(14.53) is equivalent to Eq.(14.54) which is a set of ZZL(_)H( Ir=El Euler-

Lagrange like equations, and from Eq. (14.52) we can deduce only (") (}) equations
of the Euler-Lagrange type.

Now, Eq.(14.55) has been tested in a computer program to be true, and we
conclude for the validity of Eq. (14.53), the multiform Euler-Lagrange equation.
Indeed, Eq.(14.53) is valid also if X is a general multivector field over o, and
we conclude that the principle of stationary action with L = )", L; produces the
general multivector Euler-Lagrange equation

d
OxL — —(35L) = 0. (14.56)
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14.3 Superparticle in Minkowski Spacetime

We now postulate the following biform valued Lagrangian for a superparticle whose
world line in 4-dimensional Minkowski spacetime is o

1 1
Ls = Ee" Ney — Ea)’“’eﬂ N ey, (1457)

where {e,}, u = 0,1,2,3 a comoving coframe for o in Minkowski spacetime and
where the w,,, are functions over o. From Eq. (14.57) we have four multiform Euler-
Lagrange equations

d
8o, Ls — — (3, Ls) = 0. (14.58)
P s

We have taking into account the results of Exercise 2.108 (Chap. 2):

1 3 1
3% (56‘# AN eﬂ) = —56“#, 3eu (Ea)“”eﬂ AN Eu)

1, 3.
= 3w"’e,, 0z, (Ee“ A eﬂ) = Ee“.

Defining Qp = %a),we" A e’ we arrive at
e, = QpLey, (14.59)

which is similar to the equations of motion of a Frenet tetrad (see Eq.(6.21)).
And, indeed, for particular values of w,, Eq.(14.59) may be identified with Frenet
equations.

14.4 Superfields

Here we show the connection of the Clifford bundle formalism and the concept of
multivector derivatives with the Berezin supercalculus.

In 1977 Berezin [1] introduced the following calculus now known today as
supercalculus [4, 11].

Let&;,i = 1,...,n be the generations of the Grassmann algebra G,,. Then,

.51 =0 (14.60)

where { } is the anticommutator.
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Obviously, we have the following isomorphism
§ioe b oeineg (14.61)

where e; are orthonormal covectors generating the Clifford algebraR,, ,, p + g = n.
(We leave p, g unspecified at this moment).

With that identification any combination of Grassmann variables is isomorphic
to a certain multiform.

Berezin introduced the differentiation of functions of Grassmann variables by the
rules :

<«

W .90 _ o
= by = (14.62)

Introducing the reciprocal basis {e'} of R, 4, €' - ¢; = §; we have

%( - e, (14.63)
I
)g el . (14.64)
J

We immediately verify with the above identifications that differentiation in the
Berezin calculus satisfies the so called graded Leibniz’s rule [4, 11].

Then if f(§) = f(&1,...&,) is a general Grassmann function a Taylor expansion
yields

. 1 . .
& =fH+fiE+ 3 GETEL 4L ;fg L EM (14.65)

Berezin defined integration by the rules

/1d§i=0, /sida: 1.Vi,
L L L (14.66)

a 0 d

% GE T 9E

/ FE o EdEn b .. dE1 = F(B)

It is obvious that f(£) is clearly isomorphic to a multiform F' € R,,, with the same
coefficients as in Egs. (14.65) and (14.65) is equivalent to

(...((FLehe™ b ..) = (FE"),, (14.67)

n—1

E'=¢"Ae" . nE. (14.68)
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With this identification almost all supercalculus as presented, e.g., in deWitt [4]
reduces to elementary algebraic identities for multiform functions. This also shows
that superfields, first introduced by Salam and Strathdee [10] are isomorphic to
sections of the Clifford bundle. Indeed to the superfield A : M x G, — G,, which
has the obvious Taylor expansion,

A, §) = Ao() + (A1(0)iE" + (%Az(x)) ki3 (14.69)
i

1 n
+m..(—TAan) ghi-€" (14.70)
n: H1---n
it corresponds C(x) € sec C{£(M, n) given by

Clx) =Ax) + (Al(x))iei + ( Az(x)) lel+

ij

( Awao et . et (14.71)
H1---Hon

Remark 14.7 The amazing fact that we would like to emphasize here is that,
as we learned in Chap.7, any representative of a Dirac-Hestenes spinor field
is an even section of the Clifford bundle and thus has the same structure of
superfield. Moreover the generalized potential A = A + y°S, where A is the usual
electromagnetic potential and § is the Stratton potential introduced in Sect. 13.4.5
is also a superfield.

To end this section we write a Berezin-Marinov’s like Lagrangian [1] for a
spinning particle in Minkowski spacetime as

1. 1
Ly = Egusﬂ — Ewwg“g“ (14.72)

where §, : t — G4, 0 = 0,1, 2,3 are elementary Grassmann fields over o, and w,,,
are functions over o, which in the original Berezin-Marinov model are constant
functions.

With the isomorphism defined by Eq. (14.61), namely &, +— e, where {e, } is an
orthonormal coframe over o (introduce above) we get the isomorphism

Lpy >~ Ls (14.73)

where Lg is the biform Lagrangian defined by Eq. (14.57).



References 499

From the identification Lgy =~ Lg it becomes clear that in Berezin-Marinov
Lagrangian in a 4-dimensional Minkowski spacetime can produce a (classical)
Dirac-Hestenes equation as discussed in Sect. 14.1.3

In conclusion, we showed that Frenet equations are naturally appropriate equa-
tions of motion a classical spinning particle, and from the spinor form of Frenet
equations we even obtain a ‘classical’ Dirac-Hestenes equation for a unitary
representative of a Dirac-Hestenes spinor field and also a nonlinear Dirac-like
equation for a general representative of a Dirac-Hestenes spinor field.

We succeeded also in giving a multiform Lagrangian formalism for Frenet
equations and showed that it is isomorphic to a generalization in a 4-dimensional
Minkowski spacetime of the Lagrangian of the famous Berezin-Marinov [1] model,
thus eventually providing a satisfactory geometrical interpretation of that model a
physical system living in usual Minkowski spacetime. Moreover, our developments
also indicates strongly that eventually superfields may also have geometrical
interpretation as Clifford fields.* This statement is based on the observation that
any representative of a Dirac-Hestenes spinor field in a spin frame may be identified
with a superfield!
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Chapter 15
Maxwell, Einstein, Dirac and Navier-Stokes
Equations

Abstract In the previous chapters we exhibit several different faces of Maxwell,
Einstein and Dirac equations. In this chapter we show that given certain conditions
we can encode the contents of Einstein equation in Maxwell like equations for a
field F = dA € sec /\ZT*M (see below), whose contents can be also encoded in a
Navier-Stokes equation. For the particular cases when it happens that F2 # 0 we can
also using the Maxwell-Dirac equivalence of the first kind discussed in Chap. 13 to
encode the contents of the previous quoted equations in a Dirac-Hestenes equation
for ¢ € sec(A°T*M + N\*T*M + \*T*M) such that F = vy

Specifically, we first show in Sect. 15.1 how each LSTS (M., g, D, t,, 1) which,
as we already know, is a model of a gravitational field generated by T € sec TSM
(the matter plus non gravitational fields energy-momentum tensor) in Einstein GRT
is such that for any K € sec TM which is a vector field generating a one parameter
group of diffeomorphisms of M we can encode Einstein equation in Maxwell like
equations satisfied by F = dK where K = g(K, ) with a well determined current
term named the Komar current Jg, whose explicit form is given. Next we show in
Sect. 15.2 that when K = A is a Killing vector field, due to some noticeable results
[Egs. (15.28) and (15.29)] the Komar current acquires a very simple form and is then
denoted J4. Next, interpreting, as in Chap. 11 the Lorentzian spacetime structure
(M,g,D, 1., 1) as no more than an useful representation for the gravitational field
represented by the gravitational potentials {g*} which live in Minkowski spacetime

(here denoted by (M = R*, g, B 73, 1)) we show in Sect. 15.3 that we can find a
Navier-Stokes equation which encodes the contents of the Maxwell like equations

(already encoding Einstein equations) once a proper identification is made between
the variables entering the Navier-Stokes equations and the ones defining A= g(A,)
and I% = dz, objects clearly related [see Eq.(15.49)] to A and F = dA. We also
explicitly determine also the constraints imposed by the nonhomogeneous Maxwell
like equation gF = —J4 on the variables entering the Navier-Stokes equations and

the ones defining A (or ;\).
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15.1 The Conserved Komar Current

Let K € sec TM be the generator of a one parameter group of diffeomorphisms
of M in the spacetime structure (M, g, D, 7, 1) which is a model of a gravitational
field generated by T € sec TQM (the matter plus non gravitational fields energy-
momentum tensor) in Einstein GRT. It is quite obvious that if we put F' := dK,
where K = g(K,) € sec \' T*M then we can define a current Jx € sec \T*M by

Jx = —6F (15.1)
g
which, of course, is conserved, i.e.,
8Jg = 0. (15.2)
g

Surprisingly such a trivial mathematical result seems to be very important by people
working in GRT who call Jx the Komar current! [10]. Komar called”

1 1
¢i=—— Jgk = — F 15.3
87er;r K Snfw; ( )

the generalized energy.
To understand why Jk is considered important write the action for the gravita-
tional plus matter and non gravitational fields as

1
AZIEEH+f£m = _Ethg+f‘Cm' (15.4)

Now, under the (infinitesimal) diffeomorphism h : M — M generated by K we
have that g > g’ = h*g = g + §g where the variation §g = —£kg and taking into
account Cartan’s magical formula (£x P = KdP+d(KJP), forany P € sec AT*M)

g g

we have

§A= (8L + (8L
= —[£kLEn — [£xLm
= —[d(KsLen) — [d(KLy)
= [d(x0) (15.5)

'Komar called a related quantity the generalized flux.

2V denotes a spacelike hypersurface and § = 9V its boundary. Usually the integral € is calculated
at a constant x” time hypersurface and the limit is taken for S being the boundary at infinity.
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Of course, if xC is null on the boundary of the integration region we have § 4 =
g
0. On the other hand, recall that [11]

1
A= -3 [Ry/—detgd’dx'dx*dx’ + [L,/— detgdx’dx'dx*dx’. (15.6)

Variation of A with respect to g gives as we know Einstein equation G =
R — %55 R = —T¥ with R, and T/ the components of the Ricci and the energy-

momentum tensor and R the scalar curvature. Now, recall that G#* = R* — %Rg"
are the Einstein 1-form field and that D,G*¥ = 0 = D, T*". Put T* := T\’fgu and

EMi=Gh + T, M= EMg, = (GM + T")g, (15.7)

to get

1
SA = -3 JE" (£k8) v v/ — detgdx®dx' dx*dx’
= —[E*"'D,K,/— detgdx"dx' dx’dx®

= —[D,(E"K,)/— detgd:’dx' dx*dx’
= —[(3.E"K,) T,
8

= 8(E"K,
[ *8E°K)
= —fd * (£'K,). (15.8)
g
From Egs. (15.5) and (15.6) we have immediately that

fd(gem) +d(xC) = 0. (15.9)

and thus

3(E"K,) 4+ 6C = 0. (15.10)
g g

It follows that the current C € sec /\1 T*M is conserved if the field equations £¥ = 0

are satisfied. An equation (in component form) equivalent to Eq. (15.10) already

appears in [10] (and also previously in [1]) who took C = £YK,, + N where §N = 0.
g

Here, to continue we prefer to write an identity involving only § 4, = [8L,.
Proceeding exactly as before we get putting G(K) = G"K|, that there exists P €

sec \'T*M such that

0.G(K) + 4P =0. (15.11)
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and we see that we can identify
P = —Q"KM + L (15.12)

where 6L = 0. Now, we claim that we can find L € sec /\IT*M such that
g
P =-G"K,+ L =48dK. (15.13)
g

Let us find such a L and investigate if we can give some nontrivial physical meaning
to such P € sec \'T*M.

In order to prove our claim we observe that we can write (taking into account the
identities of Chap. 4 involving the Ricci, covariant D’ Alembertian operators and the
square of the Dirac operator)

1
G'Ky = RVK,y — S RK
1
=3 AOK— SRK

1
=3/\3K+3-3K—§RK—3-3K

1
:azK—ERK—a-aK

1
= —6dK —dSK — —RK — 0 - 0K (15.14)
g g 2
Then we take
1
P :=—-G"K, —dSK — ERK_ d-0K = 8dK (15.15)
g g
and thus®
1
L= —dSK—ERK—a-aK. (15.16)
g

Next, we recall the action of the extensor field T := T: dx* ® 0, onK is

T(K) = T"K,. (15.17)

3Note that since §(G*K,,) = 0 it follows from Eq. (15.16) that indeed §L = 0.
g g
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Then, we can write Eq. (15.15) as

1
8dK = T(K) — d8K — -RK — - 3K. (15.18)
IS IS

We can write Eq. (15.18) taking into accountthat R = T := T}, and putting F := dK
as

SF = —Jg, (15.19)
g
with

1
Jx = ~T(K) + 5TK + déK + 8- 9K. (15.20)
IS

Equation (15.20) gives the explicit form for the Komar current.* Moreover, since

6F = xd » F, we have:
g g g

d«F=x"! (T(K)—lTK— d5K—a-aK)
g g 2 g
= % (T(K) Ll dSK — 9 - aK) (15.21)
g 2 g

and thus taking into account Stokes theorem

Jd # F = [y % F (15.22)

we arrive at the conclusion that the quantity

1

= — *F
8w Js—ov &
1 1
=y ((T(K) — 3TK— 8K 9. 3K) (15.23)

is a conserved one.

Remark 15.1 As already remarked an equation equivalent to Eq. (11.36) has already
been obtained in [10] who called that quantity the conserved generalized energy.
But according to our best knowledge Eq. (15.23) first appeared in [17] and it shows
explicitly that all terms in the integrand are legitimate 3-form fields and thus the

4Something that is not given in [10].
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value of the integral is, of course, independent of the coordinate system used to
calculate it.

However, considering that for each K € sec TM that generates a one parameter
group of diffeomorphisms of M we have a conserved quantity it is not in our opinion
appropriate to think in this quantity as a generalized energy. Indeed, why should the
energy depends on terms like d6K and d - 9K if K is not a dynamical field?

g
We show in the next section that when K = A is a Killing vector field, i.e., £4g =
0, we can write Eq. (15.23) as

1 1
¢= * (T(A) = 5 TA) (15.24)

which is a conserved quantity’ which relativistic physicists [18] think when A

is a timelike Killing vector field to be more directly associated with the energy-

momentum tensor of the matter plus non gravitational fields. For a Schwarzschild

spacetime, as well known, A = d/0¢ is a timelike Killing vector field and in his
81

case since the components of T are T} = _detgp(r)v“vu and v'v; = 0 [since

vt = ﬁ(l,0,0,0)] we get £ = m.

Remark 15.2 Originally Komar obtained the same result directly from Eq. (15.23)
supposing that the generator of the one parameter group of diffeomorphism was
A = 9/0t, s0 he got £ = m by pure chance. Had he picked another vector field
generator of a one parameter group of diffeomorphisms A # d/d ¢, he of course,
would not obtained that result.

Remark 15.3 The previous remark shows clearly that the above approach does not
to solve the energy-momentum conservation problem for a system consisting of
the matter and non gravitational fields plus the gravitational field. It only gives
a conserved energy for the matter plus non gravitational fields if the spacetime
structure possess a timelike Killing vector field. To claim that a solution for total
energy-momentum of the total system’ problem exist it is necessary to find a way
to define a total energy-momentum 1-form for the total system. This can only be
done if the spacetime structure modeling a gravitational field (generated by the
matter plus non gravitational fields energy-momentum tensor T) possess additional
structure, or if we interpret the gravitational field as a field in the Faraday sense
living in Minkowski spacetime as did in Chap. 11. See also [7, 16].

SObserve that when A is a Killing vector field the quantities |, * T(A) and fv% * TA are separately
conserved as it is easily verified.

% An equivalent formula appears, e.g., as Eq. (11.2.10) in [23]. However, it is to be emphasized here
the simplicity and transparency of our approach concerning traditional ones based on classical
tensor calculus.

"The total system is the system consisting of the gravitational plus matter and non gravitational
fields.
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15.2 A Maxwell Like Equation Encoding Einstein Equation

We have seen above that if (M,g,D, 1., 1) is a model of a gravitational field
generated by T € sec TSM (the matter plus non gravitational fields energy-
momentum momentum tensor) in Einstein GRT and K € sec TM is a vector field
generating a one parameter group of diffeomorphisms of M the we can encode
Einstein equations in Maxwell like equations for F = dK where K = g(K, ).
Indeed, the encoding is given by

dF =0, §F = —Jx, (15.25)
8
1
Jx = =T(K) + 57K + d8K +9 - 9K (15.26)
8

Moreover, taking into account that the Dirac operator acting on sections of the
Clifford bundle is d = d — § we have the remarkable result that we can write a
g

single Maxwell like equation encoding Einstein equations, namely

AF = Jx. (15.27)

15.3 The Case When K = A Is a Killing Vector Field

To proceed we suppose that A = g(A4, ) € sec /\lT*M, where A is a nontrivial
Killing vector field in a LSTS (M, g, D, 7., 1) which represents a gravitational field
generated by a given energy-momentum distribution T € sec TSM according to
GRT. We will need two results that are presented in the form of exercises whose
solutions are left to the reader.®

Exercise 15.4 Show that if AesecTM is a Killing vector field in the LSTS
(M,g,D, 1, 1), then

SA =0, (15.28)
8

where A = g(A,) = Aa,g® = A?g,.

Remark 15.5 We recall now Exercise 11.5 (Chap. 11) that says that if A€ sec TM is
a Killing vector field in the LSTS (M,g. D, 14, 1), then

3 A A = 0A = R, (15.29)

8If you need help for the solution of the exercises, see, [15, 17].
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where @ = g®D,, is the Dirac operator acting on the sections of the Clifford bundle
CL(M,qg) and 3 A 9 is the Ricci operator acting on sec /\IT*M — secCL(M, g).
Finally R? € sec /\IT*M — sec C£(M, g) are the Ricci 1-form fields, with R? =
Rng, where R} are the components of the Ricci tensor. Also d - dA = [JA is the
covariant D’ Alembertian.

Using Eq. (14.4) we can immediately show taking into account the extensorial
property of the Ricci operator @ A d that Einstein equations R? — %Rg“ = T? after
multiplying both members by A, can be written as

1 1
d AdA— ERA =0d-0A— ERA =-T(A), (15.30)
from where the current in Eq. (15.26) now denoted J4 is given by
Js = RA—-2T(A) (15.31)

thus justifying Eq. (15.24) as a “generalized energy” in the case in which A is a
Killing vector field.

In this case the Maxwell like equation written in terms of the Dirac operator or
the field F associated to the Killing form A is simply

dF = RA — 2T(A). (15.32)

Remark 15.6 In the theory presented in [15] the field A is supposed to be (up to
a dimensional constant) the electromagnetic potential of a genuine electromagnetic
field created by a given superconducting current and interacting with the gravita-
tional field. Then, clearly, the field F = dA in [15] is supposed to automatically
satisfy Maxwell equations. In what follows we only suppose that A = g(A, ), where
A is a Killing vector field in the structure (M, g, D, 7,, 1). In this chapter, of course,
it is not supposed that A is the electromagnetic potential of any electromagnetic
field.

15.4 From Maxwell Equation to a Navier-Stokes Equation

In this section we obtain a Navier-Stokes equation following from the Maxwell like
equation [Eq. (15.32))] that encodes Einstein equation once we identify appropri-
ately the magnetic and electric like components of F' = dA with variables appearing
in theory of the Navier-Stokes equation.

To appreciate what follows we recall that the original Navier-Stokes equation
describes the non relativistic motion of a general fluid in Newtonian spacetime. It is
not thus adequate to use—at least in principle—a general LSTS (M, g, D, 74, 1) to
describe a fluid motion. In fact we want to describe a fluid motion in a background
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spacetime such that the fluid medium, together with its dynamics, is equivalent to a
LSTS governed by Einstein equation in the sense described below.

Next we recall that the theory of the gravitational field in Minkowski spacetime
presented in Chap. 11 interprets gravitation as a plastic distortion of the Lorentz
vacuum.’ In that theory the gravitational field is represented by a (1, 1)-extensor
field h: sec \'T*M — sec \'T*M living in Minkowski spacetime structure.
The field h—generated by a given energy-momentum distribution in some region
U of Minkowski spacetime—distorts the Lorentz vacuum described by the global
cobasis'® {y* = dx}, dual with respect to the basis (e, = /9x") of TM, thus
generating the gravitational potentials g* = h (5} y").

Now, in the inertial reference frame ey (according to the Minkowski spacetime
structure (M = R*, §5, 13, 1)), we write using the global coordinate functions
{x"} for M ~ R* 1!

A= z“eu = ( + Vo + q) ey — viel. = ;lue" = ¢pe® — vie', (15.33)

1
V1 —?
where the vector function v = (v1,v,, v3) is to be identified with the 3-velocity of a
Navier-Stokes fluid—in the inertial frame ey according to the conditions disclosed
below. Also, V|, denotes a scalar function representing an external potential acting
on the fluid, and

(#,x) d
g =/ @ (15.34)
0 P

where the functions p and p are identified respectively with the pressure and density
of the fluid and supposed functionally related, i.e., dp A dg = 0. Furthermore v? :=
> W)

Observe that ¢ looks like the relativistic energy per unit mass of the fluid. Then
we will write A as

1 . .
A= (Ev2 +V+ q) eo—vie, = g’ — e, (15.35)

where the new potential function V is the sum of V with the sum of the Taylor
expansion terms of [(1 — v?)™"/2 — 1v?]. Hence we have

° o o o o o 10
A=gA,) =Apt =n,Ay =Aty,, F=dA= EF,wy“/\y”, (15.36)

9More details may be found in [7].

10The {x/} are global coordinate functions in Einstein-Lorentz Poincaré gauge for the Minkowski
o

spacetime that are naturally adapted to an inertial reference frame ey = 9/9x°, Dey = 0.

!'The basis {e/*} is the reciprocal basis of the basis {e, }, .., 2(e", e,) = &)
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and

0 1
A=gA,) =Ap" =gnA'y' =A'y,, F=dA= 3 Wyt Ay’ (15.37)

15.4.1 Identification Postulate

We proceed by identifying the magnetic like and the electric like components of
the field F. It seems natural to identify the magnetic like components of F with the
vorticity field, but we cannot identify electric like components of F with the Lamb
vector field. The correct identification is given as follows. Write F W = (dﬁ) v as

0 Lh—dilhb—dyy 5 —ds

O A L I
—I3+d3 —w, w1 0
were w is the vorticity of the velocity field
w:=VxXxuv, (15.39)
and
l:=wxuv, (15.40)
is the so called Lamb vector and moreover
d=—Vy, (15.41)

where y is a smooth function.

Remark 15.7 We emphasize that the identification of the components of F has been
done in an arbitrary but fixed inertial frame ey = 3/0x° as introduced above.

Next we recall that the non relativistic Navier-Stokes equation for an inviscid
fluid is given by Chorin and Marsden [5] and Flanders [8]

33_" + -V = —V(V+ ). (15.42)

or using a well known vector identity,

v

P xv—v(ve? L), (15.43)
ot p 2
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By these identifications,'” we get a Navier-Stokes like equation from the straight-

forward identification of I —d = (1%01,1%02,%03) and w = (1%32,1%13,1%21). Indeed,
we have

o 8vi 0
F05=(WXU)i—di=—¥—a—i., (15.44)
Fro = =30 e, (15.45)

where € is the 3-dimensional Kronecker symbol. Equation (15.44) becomes

d 1
L owxo+V(=0?)=-v(v+2)+a, (15.46)
ot 2 0
and since d = —V y for some smooth function y then Eq. (15.46) can be written as
v 1, P
— +wxv+V|=v )| =-V(V+y+- (15.47)
ot 2 P

which is now a Navier-Stokes like equation for a fluid moving in an external

potential V' = V + y. Moreover, the homogeneous Maxwell equation dF = 0
is equivalent to

Vxl+a—w=0,
ot

V.w =0, (15.48)

which express Helmholtz equation for conservation of vorticity.

Remark 15.8 Note that since A = g(A,) = A p* = IZ"gWy", we can write!?
A = g(A), (15.49)

where the extensor field g is defined by g(y,) = guvy". Thus, in general, we

can write since d(F — I?“) =0,F = F + G where G is a closed 2-form field.
So, dFF = dF = 0 express the same content, namely Eq. (15.48), the Helmholtz
equation for conservation of vorticity. Even more, taking into account that the

Minkowski manifold is star shape we have that G is exact. Thus F = F + dP,
for some smooth 1-form field P.

120ther identifications of Navier-Stokes equation with Maxwell equations may be found in [21,
22].

BWe have (details in [7]) ¢ = k'h and 2(2(y ). ¥,) = gu = &(h(y ). h(¥,)) = 8§(au. 0v) -
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15.4.2 A Realization of Egs. (15.40) and (15.41)

The attentive reader will realize that what has been done until now will be not
an empty exercise only in case there exist nontrivial solutions of Egs. (15.40)

and (15.41), i.e., 13"0,- = (w x v); + d; for at least a model of GRT given by the
LSTS (M, g, D, t,, 1) modelling a gravitational field. That this is the case, is easily
seem if we take, e.g., the Schwarzschild spacetime structure. As well known [12]
the vector field

A=10, =X +x'0p0 (15.50)

is a Killing vector field for the Schwarzschild metric.'* The 1-form field correspond-
ing to it and living in Minkowski spacetime is A = x?dx' —x'dx?. Thus ¢ = 0 and
v = (x?,—x',0). This gives 0 = Fo; = —d; + (w x v),. i.e.,

d=—vx(Vxv)=V[x"H?+ x>, (15.51)

and Eq. (15.47) holds. The reader is invited to find other examples for other solutions
of Einstein equations.

Remark 15.9 For the example just given above we have simply A = fi where
f = r?cos? . Thus in this case, we have the simple expression

F=df NA +fF. (15.52)

There are many examples of Killing vector fields for which A = ffl and for such
fields that developments given below in terms of A are easily translated in terms of A.

In particular, when A = sz we have the following identification of the components
of the Lamb and vorticity vector fields with the components of F,

1 0
li=Wwxv) = J;Fol» — (dInf A A,

1 1 o
w; = —EZ?:leijk [J;ij — (dInf AA),-,(] (15.53)

14The spherical coordinate functions are (7,6, ¢).
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15.4.3 Constraints Imposed by the Nonhomogeneous Maxwell
Like Equation

To continue, we recall that in order for the Navier-Stokes equation just obtained

to be compatible with Einstein equation it is necessary yet to take into account the

equation 6F = —J4 written in the LSTS (M., g, D, 1,4, 1) since that equation produce
g

as we are going to see constraints among the several fields involved. We want now
to express the constraints implicit in §F = —J4 in terms of the objects defining the
g
o
Minkowski spacetime structure (M = R*, §, D, T3, 1).

Now, taking into account that lo)§ = 0, we have
D$ = AesecT:M® \'T*M, (15.54)

where A € sec TgM ® /\1 T*M is the nonmetricity tensor of D with respect to g. In
the coordinates {x*} introduced above it follows that

A= Qusoy* @y’ ®y°. (15.55)

Then, as we recall from Chap. 4 the relation between the coefficients F,‘;L';X and lg'jw
associated to the connections D and D (D, 9" = —I"}/, g%, D.,g" = —I'},¢%) in

an arbitrary coordinate vector {3)%} and covector (¥ = dx"”) bases—associated to
arbitrary coordinate functions {x"} covering U C M—are given by’

- o L.
e = Do + 580 (15.56)
where
S[;ﬂ = §p0 (roﬁo + Qﬂaa - Qaaﬂ) (15.57)

are the components of the so called strain tensor of the connection.
In the coordinate bases {d/0x"} and {y* = dx"}, associated to the coordinate
]

functions {x"}, it follows that I}, = 0 and in addition the following relation for
the Ricci tensor of D holds:

Ry = Jou).-

15We use that § = 2,,0* ® 9* = g0, ® 0, where {8,} is the reciprocal basis of {#"},
namely ¥, = §W19"‘ and §W§W = 6. In the bases associated to {x/*} itis g = n,,y* @ y’ =
"y, ®v,.
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Denoting K‘;ﬂ = —%S,’Z;g, the J(,.,) is the symmetric part of
o o
_ .. .. S o
Jypa = DaK,’im — DPK%;L + K,’ZUKW — K‘;UKW.

o
Now, we introduce the Dirac operator associated to the Levi-Civita connection D of
g in our game,

d:= ﬂﬂba/axu = )/MBB/Z)X“ (15.58)
and recall Eq. (4.248) of Chap. 4, i.e.,
IAIA = (IANDA+L* : yA, (15.59)
g

where A = A, y*, A, = 1p.g"’ Ay, and LY = 1% J5,y° and the symbol - denotes
H

v

the scalar product accomplished with &. Since §A A = ROA, = IOQZ Asy% =0,
Eq. (15.59) reads

3 AIA = n"PUgeA = 1 Jpanic g Asy©. (15.60)

Recalling now Egs. (15.29) and (15.30), Eq.(15.60) can be written as an alge-
braic constraint,'® relating the components A, to the components of the energy-
momentum tensor of matter and the components of the g field that is part of the
original LSTS. We have,

1
NP Jpanug Ay = Eg"“.](,w)A,c —T%A,. (15.61)

Equation (15.61) are the constraints need to be satisfied by the variables of our
theory in order for the Navier-Stokes equation to be compatible with the contents of
Einstein equation.

15.5 Conclusions

Besides having determined the precise form of the so called Komar current we
showed that for each LSTS (M,g,D, 7, 1) representing a gravitational field in
GRT which contains an arbitrary Killing vector field A, the field F = dA [where

160f course, it is a partial differential equation that needs to be satisfied by the components of the
stress tensor of the connection.
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A = g(A, )] satisfies Maxwell like equations dF = 0, §F = —J4 with J4 given by
g

Eq. (15.31). Moreover we showed that for Killing 1-form field A= g(A,), when

some identifications of the components of A and the variables entering the Navier-
Stokes equation are accomplished and in particular when the postulated nontrivial
conditions [Eq.(15.38)]—;~"0,- = (dﬁ)oz' = I; — di—is satisfied, the Maxwell like
equations for F and thus the ones for F can be written as a Navier-Stokes equation
representing an inviscid fluid. Thus, the Maxwell and Navier-Stokes like equations
presented above'” are almost directly obtained from Einstein equation through
thoughtful identification of fields. All fields in our approach live in a 4-dimensional
background spacetime, namely Minkowski spacetime and a LSTS (M,g,D, 7, 1
) is considered only a (sometimes useful) description of a gravitational field,
as discussed in detail in Chap.11. We observe moreover that the results just
presented are in contrast with the very interesting and important studies in, e.g.,
[4, 9, 14] where it is shown through some identifications that every solution for
an incompressible Navier-Stokes equation in a (p + 1)-dimensional spacetime gives
rise to a solution of Einstein equation in (p +2)-dimensional spacetime.'® It is worth
also to quote [13] where it is also suggested an interesting relation between Einstein
equations and the Navier-Stokes equation. Finally we remark that it is clear that
we can find examples [19] of Lorentzian spacetimes that do not have any nontrivial
Killing vector field'” and of course, for such cases, it is not possible to find a Navier-
Stokes equation encoding Einstein equation.

As a last remark, we observe that the Killing vector field of the Schwarzschild
spacetime given by Eq.(15.50) is such that F = dA is given by F = 2p?!
and thus F? # 0. Thus, for this case taking into account the MDE of first kind
discussed in Chap. 13 we can also encode the contents of Einstein equation in
Maxwell like, Navier-Stokes like and Dirac-Hestenes like equations. All the fields
entering the original named equations are, of course, of very different nature, but
it seems to the authors a noteworthy fact that for the case just studied the very
different equations may have their contents encoded by equations resembling the
most important equations of twentieth century Physics.

17In [20] a fluid satisfying a particular Navier-Stokes equation is also shown to be approximately
equivalent to Einstein equation. The approach here which follows the one in [17] is completely
different from the one in [20].

'8For other papers relating Einstein equations and Navier-Stokes equations we quote also here
that the authors in [2] show that cosmic censorship might be associated to global existence for
Navier-Stokes or the scale separation characterizing turbulent flows, and in the context of black
branes in AdSs, Einstein equations are shown to be led to the nonlinear equations of boundary fluid
dynamics [3]. In addition, gravity variables can provide a geometrical framework for investigating
fluid dynamics, in a sense of a geometrization of turbulence [6].

19 Although, as asserted in Weinberg [24], all Lorentzian spacetimes that represent gravitational
fields of physical interest possess some Killing vector fields.
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Chapter 16
Magnetic Like Particles and Elko Spinor Fields

Abstract This chapter scrutinizes the theory of the so-called Elko spinor fields
(in Minkowski spacetime) which always appears in pairs and which from the
algebraic point of view are in class five in Lounesto classification of spinor fields.
We show how these fields differs from Majorana fields (which also are in class five
in Lounesto classification of spinor fields) and that Elko spinor fields (as it is the
case for Majorana fields) do not satisfy the Dirac equation. We discuss the class of
generalized Majorana spinor fields (objects that are spinor with “components” with
take values in a Grassmann algebra) that satisfy Dirac equations, clarifying some
obscure presentations of that theory appearing in the literature. More important, we
show that the original presentation of the theory of Elko spinor fields as having
mass dimension 1 leads to breakdown of Lorentz and rotational invariance by a
simple choice of the spatial axes in an inertial reference frame. We then present a
Lagrangian field theory for Elko spinor fields where these fields (as it is the case of
Dirac spinor fields) have mass dimension 3/2. We explicitly demonstrate that Elko
spinor fields cannot couple to the electromagnetic field, that they describe pairs of
“magnetic” like particles which are coupled to a short range su(2) gauge potential.
Thus they eventually can serve to model dark matter. The causal propagator for the
3/2 mass dimension Elko spinor is explicitly calculated with the Clifford bundle
of (multivector) fields. Taking the opportunity given by the formalism developed in
our theory we present a very nice representation of the parity operator acting on
Dirac-Hestenes spinor fields.

16.1 Introduction

Modern Cosmology based on GRT implies that our universe is permeated by
dark matter and dark energy. Elko spinor fields have been introduced in [2, 3]
to supposedly describe dark matter. These objects are dual helicity eigenspinors
of the charge conjugation operator satisfying Klein-Gordon equation and carrying
according to the authors of [2, 3] mass dimension 1 instead of mass dimension 3/2
carried by Dirac spinor fields. A considerable number of interesting papers have
been published in the literature on these intriguing objects in the past few years. In
particular, according to the theory in [2, 3] the anticommutator of a second quantized
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elko spinor field with its conjugate momentum is nonlocal and thus it is claimed
that the theory possess an axis of locality which implies also that the theory of
elko spinor fields break Lorentz invariance. We discuss this issue below (Sect. 16.7)
which according our view is an odd and acceptable feature of the theory in [2, 3].
We recall in Sect. 16.2 that differently from the theory described in [2, 3] where
a second quantized elko spinor field satisfies a Klein-Gordon equation (instead of
a Dirac equation) the classical elko spinor fields of A and p types satisfy by their
construction a csfopde that is Lorentz invariant. The csfopde once interacted leads
to Klein-Gordon equations for the A and p type fields. However, since the csfopde
is the basic one and since the Klein-Gordon equations for A and p possess solutions
that are not solutions of the csfopde for A and p we think that it is not necessary to
get the field equations for A and p from a Lagrangian where those fields have mass
dimension 1 as in [2, 3]. Indeed, we claim that we can attribute mass dimension of
3/2 for these fields as it is the case for Dirac spinor fields. A proof of this fact is
offered by deriving in Sect. 16.3 the csfopde for A and p from a Lagrangian where
these fields have mass dimension 3/2. This, fact is to be contrasted with the quantum
theory of these fields as presented in [2, 3, 5, 6, 11, 12, 14] (and references therein),
namely that elko fields have mass dimension 1.

Taking seriously the view that elko spinor fields due to the special properties
given by their bilinear invariants may be the description of some kind of particles in
the real world a question then arises: what is the physical meaning of these fields?

In what follows we propose on Sect. 16.4 that the fields A and p (the representa-
tives in the Clifford bundle C£(M, n) of the covariant spinor fields A and p) serve the
purpose of building Clifford valued multiform fields, i.e., K € C£°(M,n) ® R ; and
M € secCLO(M, ) ®RY 5 [see Eq. (16.40)]. These fields are electrically neutral but
carry magnetic like charges which permit that they couple to a su(2) =~ spiny, C

R{ ; valued potential A € sec ANTM spins (. If the field A is of short range the
particles described by the K and M may be interacting and forming a system of
spin zero particles with zero magnetic like charge and eventually form condensates
something analogous to dark matter, in the sense that they do not couple with the
electromagnetic field and are thus invisible.

In Sect. 16.5 we investigate the similarities and main difference between Majo-
rana and elko spinor fields. We observe that elko and Majorana fields are in class 5
of Lounesto classification [22] and although an elko spinor field does not satisfy the
Dirac equation as correctly claimed in [2, 3], a Majorana spinor field ¥y : M — C*
which is a dual helicity object according to some authors (see e.g., [23]) does satisfy
the Dirac equation. However this statement is not correct. An operator (quantum)
Majorana field ¥y, can satisfy Dirac equation if it is not a dual helicity object
(see Sect. 16.5.3). Also, even at a “classical level” a Majorana spinor field satisfies
Dirac equation if for any x € M their components take values in a Grassmann
algebra. Also, differently from the case of elko spinor fields some authors claim that
Majorana fields are not dual helicities objects [2], a statement that is correct only
for Majorana quantum fields as constructed in Sect. 16.5.3. For a Majorana field
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(even at “classical level”) whose components take values in a Grassmann algebra
the statement is not correct.

Finally, since according to our findings the elko spinor fields as well as the fields
KC and M are of mass dimension 3/2 we show in Sect. 16.6 how to calculate the
correct propagators for IC and M. We also show that the causal propagator for the
covariant A and p fields (of mass dimension 3/2) is simply the standard Feynman
propagator of Dirac theory.

In presenting the above results we use the representation of spinor fields in the
Clifford bundle formalism (CBF) as developed in Chap. 8. For the convenience
of the reader the necessary results are summarized in Sect. 16.2 where a useful
translation for the standard matrix formalism to the CBF is given. The CBF makes
all calculations easy and transparent and in particular permits to infer [13] in a while
that elko spinor fields are class 5 spinor fields in Lounesto classification [13, 22]. In
Sect. 16.7 we present a note on the calculation of the anticommutator of elko spinor
fields of mass dimension 1 as introduced originally in [2] which implies nonlocality
and worse,we show that it leads to an odd (and unacceptable) inference, namely
breakdown of rotation invariance and Lorentz by a simple choice by an observer of
the (x, y, z) of his laboratory! For completeness of our study on Dirac, Majorana and
elko spinor fields we present also in Sect. 16.8 a new representation for the parity
operator acting on Dirac-Hestenes spinor fields which although not well known is
really noteworthy. In Sect. 16.9 we present our conclusions.

Remark 16.1 The contents of this chapter has been first published in [26].

16.2 Dictionary Between Covariant and Dirac-Hestenes
Spinor Fields Formalisms

Let (M ~ R* 5, D, 7,) be the Minkowski spacetime structure where 5 € sec T20M is
Minkowski metric and D is the Levi-Civita connection of 5. Also, 7, € sec /\4T*M
defines an orientation. We denote by n € sec TgM the metric of the cotangent
bundle. It is defined as follows. Let {x*} be coordinates for M in the Einstein-
Lorentz-Poincaré gauge. Let {e,, = 0/0x"} a basis for TM and {y* = dx*} the
corresponding dual basis for T*M, i.e., y*(e,) = 8. Then, if n = Nuwy* ®y" then
n = n*'e, ® e,, where the matrix with entries 7, and the one with entries n** are
the equal to the diagonal matrix diag(1,—1,—1,—1).If a,b € sec /\l T*M we write
a-b = n(a,b). We also denote by {y,} the reciprocal basis of {y# = dx"}, which
satisfies y* - y, = 8b.

We denote the Clifford bundle of differential forms on Minkowski spacetime by
CL(M, n) and recall once more the fundamental relation

yhyr +ytyt =2t (16.1)
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As we know from Chap. 3 (covariant) spinor fields carrying a (1/2,0) & (0, 1/2)
representation of Spin(l)!3 =~ S1(2,C) belongs to one of the six Lounesto classes
[22]. Moreover, we recall that a (1/2,0) & (0,1/2) spinor field in Minkowski
spacetime is an equivalence class of triplets (¥, X, E) where for each x € M,
¥ (x) € C* X is an orthonormal coframe and E = u € Spin(l)ﬁ(M, n) C CL(M,n)
is a spinorial frame. If we fix a fiducial global coframe Xy = {y*} and take, e.g.,
Eo=u =1¢€ Spin?s(M, n) C CL(M,n) the triplet (¥, Xo, Eo) is equivalent
to (v, =, B) if y* = ALYY = (Fu)y*(£u") and ¥ (x) = S(u)¥,(x) where S(u)
is the standard (1/2,0) & (0, 1/2) matrix representation of S1(2, C). Dirac gamma
matrices in standard and Weyl representations will be denoted in this chapter by
y* and y* and are not to be confused with the y* € sec /\lT*M — CL(M,n).
As well known the gamma matrices also satisfy y#y¥ + p"p#* = 2n*' and
y*y" + y'y'" = 2" The relation between the y* and the p'* is given by

y = Syrs! (16.2)
where!
1 11
S = . 16.3
72 (1 —1) (163

We recall also that a representation of a (1/2,0) & (0,1/2) spinor field in
the Clifford bundle is an equivalence class of triplets (¥, X, E) where ¢ €
sec C£°(M, n) (the even subbundle of sec C£(M, 7)), ¥ is an orthonormal coframe
and E, = u € Spin(l)ﬁ(M ,1m) C CL(M,n) is a spinorial frame. If we fix a fiducial
global coframe Xy = {I'*} and take B,, = up = 1 € sec Spin(l),3(M, n) C
sec CL(M, n) the triplet (o, Zo, Eo) is equivalent to> (v, £, B,) if y* = AT’ =
(uw)y*(w™") and ¥ = ou~". Field ¥ is called an operator spinor field and the
operator spinor fields belonging to Lounesto classes 1, 2, 3 are also known as Dirac-
Hestenes spinor fields.

If y*, u =0,1,2,3 are the Dirac gamma matrices in the standard representation
and {y, } are as introduced above, we define

Ok 1= Yiyo € sec N T*M <> secCLO(M, ), k = 1,2,3, (16.4)
i=ys = yy172ys € sec N*T*M < sec CL(M, 1), (16.5)

'We will suppress the writing of the 4 X 4 and the 2 X 2 unity matrices when no confusion arises.

2Take notice that (¥, =, E,) is not equivalent to (¥, %, E_,) even if (wyHtu™') =
(—uwy*(—u™).
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Then, to the covariant spinor ¥ : M — C* (in standard representation of the
gamma matrices) where (i = v/—1,¢,¢ : M — C?)

(m0+im3)
AN —m? + im!
,/,_( )_ (n0+in3) ’ (16.7)
—n? + in!

there corresponds the operator spinor field ¥ € sec C£°(M, ) given by
V= ¢ + co3 = (m° + mkioy) + (n° + nkioy)os. (16.8)

We then have the useful formulas in Eq.(16.9) below that one can use to imme-
diately translate results of the standard matrix formalism in the language of the
Clifford bundle formalism and vice-versa

Yu¥ < vu¥yo,
i < Yy = yios,
iys¥ < Yoz = Yysyo,
v=y9' o1,
ATV
Vo —nyn. (16.9)

Remark 16.2 Note that y ,,ils and the operations and f are for each x € M
mappings C* — C*. Then they are represented in the Clifford bundles formalism
by extensor fields which maps C£°(M,n) — CL°(M, ). Thus, to the operator y M
there corresponds an extensor field, call it y,, : C£°(M,n) — C£°(M, n) such that
Yu¥ = vu¥yo.

Using the above dictionary the standard Dirac equation for a Dirac spinor field
¥ :M— C*

iyto ¥ —my =0 (16.10)
translates immediately in the so-called Dirac-Hestenes equation, i.e.,

Yy —myryo =0, (16.11)
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where 9 is the Dirac operator acting on C € sec C£(M, n), which using the basis
introduced above is simply

9C := y" 4(0,C) + " A (0,C) (16.12)

Remark 16.3 1t is sometimes useful, in particular when studying in Sect. 16.6
solutions for the Dirac-Hestenes equation to consider besides the Clifford bundle of
differential forms C£(M, n) also the Clifford bundle of multivector fields C£(M, ).
We will write 1/v/ € secCL(M, n) for the sections of the C£(M, n) bundle. The Dirac-
Hestenes equation in C£(M, n) is.

dver —myreg = 0. (16.13)
where e e, + e,e, = 27,, and 9= e“BM with e := n*” and (when using the
basis introduced above)

9C = " (3,C) + " A (3,0). (16.14)

for C € sec CL(M, n). Keep in mind that in definition of 3 the e* are not supposed
to act as a derivatives operators, i.e., e* 1(9,C) (respectively e/ A (9,,C)) is the left

contraction of e# with 0 MCV (respectively, the exterior product of e/ with BMCV ).

The basic positive and negative energy solutions of Eq.(16.10) which are
eigenspinors of the helicity operator are [31]

u(l)(p)e_i""xu, u® (p)e_il’uxu’ V(l)(p)eipuﬂ" v® (p)eipﬂxﬂ. (16.15)

The u®(p) and v\*)(p) (a = 1,2) are eigenspinors of the parity operator’ P, i.e.,
Pu®(p) = u®(p), Pv(p) = v (p), (16.16)
which makes Dirac equation invariant under a parity transformation. This will be
discussed below. These fields are represented in the Clifford bundle formalism by

the following operator spinor fields,

u” (p) = L(p)x”, v (p) = L(p)x" o3, (16.17)

3The parity operator acting on covariant spinor fields is defined as in [2], i.e., P = iy"R, where R
changes p — —p and changes the eingenvalues of the helicity operator. For other possibilities for
the parity operator, see e.g., page 50 of [7].
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where %) = {1, —io,} and L(p) is the following boost operator*

(16.18)

satisfying L(p)L(p) = 1.

Remark 16.4 Recall that Dirac-Hestenes spinor fields couple to the electromagnetic
potential A € sec /\IT*M — secC{(M, n) as

Yy —myyo + eAy = 0. (16.19)

As it is well known this equation is invariant under a parity transformation of the
fields A and .

n [2] the following (covariant) self and anti-self dual elko spinor fields
AL A Py Yy, M — C* which are eigenspinors of the charge

conjugation operator (C)° are defined using the Weyl (chiral) representation of the
gamma matrices by

+ * + *
o) = (azm )] ) A (p) = (_azm )] ) (16.20)

é,.+(p) ¢, (p)
s — ¢R:b (p) ) la — ( ¢R :b (p) )
Pz (P) (—Gz[ﬁ(p)]* Hem®=( o) as2n

where the CA”® = 4+1%, CA”® = —1/% and the indices {4+—}, {—+} refers to the
helicities of the upper and down components of the elko spinor fields, and where as
in [2] we introduce the following helicity eigenstates,’ ¢2’ (0) and ¢; (0) and ¢;{ 0)
and @ (0) such that with f’l%\ we have

o |¢L(0) 63 (0), a-%[az(ﬁm))*]=¢[az(¢f(0))*],
o |¢R(0) 67 (0), o-%[—az(ﬁ(ﬂ»*]=:F[—az<¢;5(0)>*].

(16.22)

4Recall that py° = puyl‘yo =E+p.
5The conjugation operator used in [2] is C¥ = —>2¢*. Using the dictionary given by Eq. (3.68)
we find that in the Clifford bundle formalism we have Cyy = —1r>1.

5The indices L and R in ¢2: (p) and ¢2: (p) refer to the fact that these spinors fields transforms
according to the basic non equivalent two dimensional representation of SI/(2, C).
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Also recall that being a general boost operator in the D'/>0@ D%!/2 representation
of SI(2.C)

K=K"/20@KOV2 = g5 ge 5 (16.23)

we have, e.g., takingo = p

s |E+m P s

More details, if necessary, may be found in [2].

Remark 16.5 By dual helicity field we simply mean here that the formulas in
Eq. (16.22) are satisfied. Note that the helicity operator (in both Weyl and standard
representation of the gamma matrices) is

. P
g.£:<" o O ) (16.25)

0 o- -2
Ipl

C*-valued spinor fields depends for its definition of a choice of an inertial frame
where the momentum of the particle is (po,p). The operator (K'/?° & K%!/?)
commutes with o - L‘ only if o - & is proportional to o - %. So, the statement
in [2] that the helicity operator commutes with the boost operator must be qualified.
However, it remains true that 02[¢l+(p)]* and ¢l+(p) have opposite helicities for
any p.

Remark 16.6 Recall that a C*-valued spinor field A?_ +1(p) given in the Weyl
representation of the gamma matrices is represented by AE_ +}(p) in the standard
representation of the gamma matrices. We have

s _ Is _ 1 11 02[¢+(p)]*
(- 1@ =5 ®) = 75 (1 —1) ( 6 ®) )
1

1 (o2l )] + ¢L+(p))
V2 (az[¢L+(p)]* — 9/ (P (16.26)

and then

s P 1 (az[¢:(p)]*+¢f(p)) L(—azw(p)]*wf(p))_

V2 \eals o -6 ) T V2 \ —aalbi 0] — o] (p)
(16.27)

Equations (16.26) and (16.27) show that the labels {— +} (and also {+ —}) as
defining the helicities of the upper and down C?-valued components of a A type

spinor field in the standard representation of the gamma matrices have no meaning
at all.
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Also, in [2] the following identifications are made:

PE+_}(p) = +il({l+_}(p)v P‘E_+}(P) = _il?__p}(p)s (16.28)
P?+_}(P) = _M'E_p_}(p)v P?_H(P) = +ilz_+}(p)‘

Moreover, we recall that the elko spinor fields are not eigenspinors of the parity
operator and indeed (see Eqs. (4.14) and (4.15) in [2]),

PI\E_H(P) =+ ?+_}(P) = P?.;._}(P)»
PAL L (p) = —iA{_,(p) = pi_4,(p).
PAL_,(p) = —idi, ,(P) = {4 ().
PAL, (D) = ki, (@) = Pl (P). (16.29)
Then if A*(x) := A*“(p)exp(e*“ip,x*), with € = —1 and €’ = +1 we
have due to their construction that the elko spinor fields must satisfy the following
csfopde:
iy O Ayt mpy =0, iyROupl_yy +mhiy =0,
yPOuA gy —mpiy oy = 0. iyROupr gy —mAgy =0,
iyHo Ay, — mp‘{l_+} =0, iy"aﬂp?+_} —mAy_, =0,
iyHou A +mpy_ =0, iyFoupi, , +mAL_,, =0. (16.30)

If )L‘z’j__},szﬂ, p?’i_},pzfﬂ € secCl%(M,n) are the representatives of the

covariant spinors A}¢ ,, A7¢

G-y Mgy P‘z’j__}, p‘zf+} : M — C* then they satisfy the
csfopde:

X pyyar +mpy yyo =0, p{_ 1y +mAy, 4y =0,
IN{_yyar —mpy 3 yo =0, pp_ 3y —mA 4y =0,
Yy —mp_yvo = 0. 3, _yyar —mAy_yv0 =0,
A 3yt +mp_yvo =0, 9pg, yyar +mAL_v0 = 0. (16.31)

Remark 16.7 From Eq.(16.31) it follows trivially that the operator spinor fields
/\?j;_}, /\if e pg’_‘é_}, p“{vf 4y € sec CZO(M , n) satisfy Klein-Gordon equations. How-
ever, e.g., the Klein-Gordon equations

K 21 _ a 2 a _
D/\{_+} +m A{—+} =0, I:lp{+_} +mipl_, = 0, (16.32)
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possess (as it is trivial to verify) solutions that are not solutions of the csfopde
satisfied /\‘E_ +}and p{” oy An immediate consequence of this observation is that
attribution of mass dimension 1 to elko spinor fields seems equivocated. Elko spinor
fields as Dirac spinor fields have mass dimension 3/2, and the equation of motion
for the elkos can be obtained from a Lagrangian (where the mass dimension of the
fields are obvious) as we recall next.

16.3 The CSFOPDE Lagrangian for Elko Spinor Fields

A (multiform) Lagrangian that gives Eq. (16.31) for the operator elko spinor fields
A?—ﬁ-}’ A‘{‘_H, Pty Pi_yy € sEC CL°(M, n) having mass dimension 3/2 is:

_ LY @A iys) - ALy + QAL yiys) - Ay + B0, Liys) - pof,
2 H@pp_yyiys) - Py = 2ZmAy, o gy +2mAL Py
(16.33)

We know from Chap. 8 that the Euler-Lagrange equation obtained, from the
variation, e.g., of the field /\f+_} is:

a*?+—}£ k (3“3

i+

c) —0. (16.34)

We have immediately’

1 \ s a
Oay, £ = 5945 yiys —mp{_y.
1 K s 0 1 s 0
Qori_y, £ = =300, (“{—+}) "*{+—}‘V3) = =3 iy
1 .
= (9, £) = +50%, i (16.35)

Recalling that iys = —yy1y» the resulting Euler-Lagrange equation is
dApyy2r —mpi_yyvo = 0.
Remark 16.8 With this result we must say that the main claim concerning the

attributes of elko spinor fields appearing in recent literature, i.e., that these objects
are of mass dimension 1, seems to us not necessary if not equivocated and the

"In the second line of Eq.(16.35) we used the identity (KL) - M = K - (ML) for all K,L,.M €
secCL(M, ).
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question arises: which kind of particles are described by these fields and to which
gauge field do they couple? This question is answered in the next section.

16.4 Coupling of the Elko Spinor Fields a su(2) =~ spin; ,
Valued Potential .4

We start by introducing Clifford valued differential multiforms fields, i.e., the
objects

K=2x_,®1—p{ _,®in €secCl(M,n) QR},
M=2_ |, ®1—pf, , ®in €secCLO(M,n) R, (16.36)

where 11, 12, T3 are the generators of the Pauli algebra R3 g =~ R?ﬁ and i := 1117273.
So, we have 7; := I'i['g where the I, are the generators of Ry 3,i.e., I, I, +I', [ =
277,“,. AISO, i:= T1T2T3 = F0F1F2F3 =: Fs.

We define the reverse a general Clifford valued differential multiforms field

1 1 ..
N =N Ql+Nk® Tk, + ENk ® 7Ty + af\/ﬂk"l’i‘ck‘[j € secCL(M, n) ®R(1)73,
) (16.37)

where N0, Nk, N NK € sec CL(M, 1) by
- - - 1 ~.. 1 ~..
N=N"@1+N*® Tk, + EMJ ® 7T + mekfktjl’i (16.38)

Since, as well known the 71, 75, 73 have a matrix representation in C(2), namely
Ty, T3, T3, a set of Pauli matrices, we have the correspondences

K < (’X?—H - ?+—}) Mo (Ah—} _'0?—+}) (16.39)
Py Mgy Py My
‘We observe moreover that
1 AS 0 1. .1 AS 0
K=K-(I4m) < | B ] M=-K=(1+n) < |+ (16.40)
2 P4y O 22 Py 0

Then, from Egs.(16.31) we can show that the K and M fields satisfy the
following linear partial differential equations

Ay — mKityyy = 0, (16.41)
IMys + mMityy = 0. (16.42)
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Indeed, it = ik = A?—H ® ity — '0?+—} ® 1, Min, = iMn, = A?—H ®
i) — '0?— 4 ® 1 and we have the correspondences:

K < (AE—H _p?+—}) Mo <A§+—} _p?—+}) ’
Plvmy Meny Pty Moy
a A’S a AS
Kit, < ( p){;—} i‘”)’ Mit, < ( p/{;ﬂ §+—})_ (16.43)
Tty Pl M- P+

Then, from Eqgs. (16.41) and (16.42) we see that K and M satisfy the following
linear partial differential equations

dKy, + imrKyy = 0, (16.44)

IMy,; —imt,Myy = 0, (16.45)

which, on taking the corresponding matrix representation gives the coupled equa-
tions for the pairs ()L‘E_H, p‘{1+_}) and ()L‘E+_}, pi+}) appearing in Eq. (16.31).

Before proceeding we observe that the currents

Ji = Kuyok € sec /\lT*M ® sping , <> secCL(M, 1) ® R(l)ﬁ, (16.46)
Jm = MuyM e sec \'T*M ® spins g <> sec CL(M, ) ® RY 5, (16.47)

are conserved, i.e.,
ddc =0, 9.0 =0. (16.48)
Indeed, let us show that d .Jx = 0. We have
1 ~ <
D = 3 (3/C‘C1)/0/C + Kuypkd ) (16.49)
From Eq. (16.41) we have
o ~ ~
K = imKryyp12, Ko = 0,Ky* =imypnnak. (16.50)
Then,
L - -
0. Jx = E(lm’CTZszTlJ/o/C + imKy1n1112K)

im -
= 7(’6(1’271 + un)ynk =0.
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The fields /C and M are electrically neutral, but they can couple with an su(2) =~
spin; , C R3 valued potential

A=A@1iesec \'T*"M ® spin; , <> sec C4(M,n) ® Ry 3. (16.51)
Indeed, we have taking into account thati = I's, 5 = Tjp that the coupling is

0Cy21 —mKT'sTyyo + gT's AKX =0, (16.52)
IMyz + mMT sy + gT's AM = 0. (16.53)

Equations (16.52) and (16.53) are invariant under the following transformation
of the fields and change of the basis of the spin; , C R(l)% algebra:

i, in
K> K= e, Mis M = 59T,
ir, _ ir, ir. — in
Ars A = 5400 g o7 Tsa8 T 1y T = M50 ToyeTsef o (16.54)

With the above result we propose that elko spinor fields of the A and p types,are
the crucial ingredients permitting the existence of the K and M fields which do not
carry electric charges but possess magnetic® like charges that couple to an spinz o C
R valued potential A.

16.5 Difference Between Elko and Majorana Spinor Fields

Here we recall that a Majorana field (also in class five in Lounesto classification’
and supposedly describing a Majorana neutrino) differently from an elko spinor field
is supposed in some textbooks to satisfy the Dirac equation (see, e.g., [23]), even
if that equation cannot be derived from a Lagrangian (unless, as it is well known
the components of Majorana fields for each x € M are Grassmann ‘numbers’). The
“proof™ in [23] for the statement that a Majorana field ¥y, : M — C* satisfies the
Dirac equation is as follows. That author writes that ¢, : M — C? and ¢ : M — C?
belonging respectively to the carrier spaces of the representations D%'/? and D'/

8The use of the term magnetic like charge here comes from the analogy to the possible coupling
of Weyl fields describing massless magnetic monopoles with the electromagnetic potential A €
sec \'T*M. See Chap. 13.

9We mention Dirac spinor fields are the real type fermion fields and that Majorana and Elko spinor
fields are the imaginary type fermion fields according to Yang and Tiomno [34] classification of
spinor fields according to their transformation laws under parity.
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of SI(2, C) satisfy

ot id,p, = m,. (16.55)
& id,p, = m,. (16.56)

with o* = (1,0') and 6" = (1, —¢'’) where o/(= 0;) are the Pauli matrices. From
this we can see that we can write:

(0", () _ (o
(L)(g) e

s
The set of matrices yp’™* := 00
o 0

matrices in Weyl representation,. It follows that ¥’ satisfy the Dirac equation, i.e.,

) is (as well known) a representation of Dirac

iy o, 9" —my’ = 0. (16.58)
Have saying that, Maggiore [23] defines a Majorana field (in Weyl representation)
by
Vi = (;’:l) - (ia‘%*), (16.59)
and write
iy", ¥y —myy =0, (16.60)

concluding his “proof™.
Now, let us investigate more deeply that “proof™. First recall that writing

$,() = ¢, (P, ¢,(x) = ¢, (p)eT P, (16.61)

we have from Eqgs. (16.55) and (16.56) that

(po—o0 -p)9.(p) = £me,(p), (16.62)
(po+ 0 -p)9,(p) = £me,.(p). (16.63)
However, if ¢,(0) and ¢,(0) are the zero momentum fields we have (with » being

the boost parameter, i.e., sinhx/2 = /(y — 1)/2) with y = 1/+/1 — v2 and n the

direction of motion) by definition:
,(p) := ¢3¢, (0) = (coshx/2 + o - nsinh x/2)¢,(0)

_ Potm+o-p

= W¢r(0)’ (16.64)
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¢o,(p) = e_%"'”(b,(()) = (coshx/2 — o -nsinh x/2)¢$,(0)

= potmzo-p
= Lmipo + my2 21O (16.65)

We can now verify that Eqgs.(16.64) and (16.65) only imply Egs.(16.62)
and (16.63) if!”

$,(0) = +¢,(0). (16.66)

But this condition cannot be satisfied by a Majorana field ¥y, : M — C* as
defined by Maggiore [23] where ¢,(0) = io ¢} (0). Indeed, writing ¢/(0) = (v, w)
with v, w € C we see that to have ¢,(0) = £+¢,(0) we need v = 0* and w = —v*,
i.e., v = @ = 0. We conclude that a Majorana field ¥y, : M — C* cannot satisfy
the Dirac equation.

16.5.1 Some Majorana Fields Are Dual Helicities Objects

Before continuing we recall also that it is a well known fact (see, e.g.,[18]) that the
Dirac Hamiltonian commutes with the operator X - p given by Eq.(16.25). Thus
any ¥ : M — C* satisfying Dirac equation which is an eigenspinor of the Dirac
Hamiltonian may be constructed such that ¢, and ¢, have the same helicity. Since
a Majorana spinor field ¥, : M — C* as defined by Maggiore [23] does not
satisfy Dirac equation we may suspect that it is not an eigenspinor of the of the
operator X - p. And indeed this is the case, for we now show ¢,(0) and ¢,(0) in a
Majorana field ¥y, : M — C* are not equal. Taking the momentum (without loss
of generality) in the direction of the z-axis (of an inertial frame) and ¢;(0) = (1,0)
we have

o - pp,(0) = —,0), o -plic?¢,(0)) = —ic?¢,(0), (16.67)

and as the elko spinor fields they are also dual helicities objects.

Remark 16.9 Keep also in mind that as well known even if a Majorana field is
described by a field [24] ¢ : M — C? carrying the D'/?° (or D%!/?) representation
of SI(2, C) the value of the helicity obviously depends on the inertial reference frame
where the measurement is done [7, 27] because the helicity is invariant only under

10That ¢,(0) = =£¢,(0) is a necessary condition for a spinor field ¥ : M — C* to satisfy Dirac
equation can bee seem, e.g., from Egs. (2.85) and (2.86) in Ryder’s book [30]. However, Ryder
misses the possible solution ¢,(0) = —¢,(0). This has been pointed by Ahluwalia [1] in his
review of Ryder’s book.
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those Lorentz transformations which did not alter the direction of p along which the
angular momentum component is taken.

16.5.2 The Majorana Currents Jy and Ji,l

We observe moreover that if a Majorana field ¥y : M — C* should satisfy the
Dirac equation then Eq. (16.60) should translate in the Clifford bundle formalism as

0Ymy21 —mymyo = 0, (16.68)

where Y € secCLO(M,n). Then, current Jyy = YmyoUm € sec /\1 "M —
secCL(M, n) is conserved as it is trivial to verify. Moreover, it is lightlike (since for
a class five spinor field Yy = 0 and thus Jar - Jv = Umyo(Um¥m) yo¥m = 0)
but it is a non null covector field if the components of the spinor field ¥, : M — C*
have values in C2. Indeed writing Jp = ¥mYo 1/~/M = Jf\‘/[)/ﬂ we see immediately that

S = Uy ¥y, #0. (16.69)
Also, the current

Jan = Umysim = Uy Y5¥ " i) va (16.70)

is non null as it is easy to verify, and is also lightlike. If the Majorana spinor field
was to satisfy the Dirac equation the current JIS\4 would be also conserved, i.e., 9.
Jﬁ,[ = 0. In that case we would have a subtle question to answer: how can a massive
particle have associated to it currents Jy and JIS\4 that are lightlike? What is the
meaning of these currents?

Remark 16.10 Of course, the answer to the above question from the point of view of
a first quantized theory is that a Majorana field cannot carry any electric or magnetic
charge, i.e., the physical currents epJy and 6]M115v1 are null because ey = gm = 0.

16.5.3 Making of Majorana Fields That Satisfy the Dirac
Equation

Is it possible to construct a Majorana spinor field that satisfies the Dirac equation?
There are two possibilities of answering yes for the above question.
First Possibility: As, e.g., in [20] and [9] we consider ab initio a Majorana
field as a quantum field and which is not a dual helicity object. Indeed, define
a Majorana quantum field as ¥, as an operator valued field satisfying Majorana
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condition ¥ := —y’zwﬁ; = ¥}, This condition can be satisfied if we define!!
v, (x) = 4 > . s)a(p. e +v(p.s)a’ (p.s)e "), (16.71)
M L (27[)3/2 - pv ps ps pv ) .

with
{a(p.s).a'(p'.s)} = 8,v8(p—p), {a(p.s).ap’.s)} =0 (16.72)

and where the zero momentum spinors u(0, s) and v(0, s) are

1 0
u(0,1/2):% Ol u(0,—1/2)=% ol
0 1
0 -1
2(0,1/2) = % (1) Cw0.-1/2) = iz (1) , (16.73)
—1 0
satisfying
You(0,5) = u(0,s), you(0,s) = —v(0,s) (16.74)
Indeed, we can verify by explicit calculation that
m+ puy™y"” m—puy™y"

u(0,s), u(p,s) = v(0,s) (16.75)

(p-) = v 2po(po + m) v 2po(po + m)

and taking into account Eq. (16.74) we see that
(puy™ —mu(p.s) = 0. (puy™ +muv(p.s) = 0. (16.76)

With this results we can immediately verify that the quantum Majorana field ¥}, (x)
satisfy the Dirac equation,

(iy™"9, —m)yy,(x) = 0. (16.77)

UHere yj; i= [ il X, (b 9)al (b, s)e™ P + 0¥ (p, )a(p, )ePs).
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For that Majorana field that is not a dual helicity object we can construct in the
canonical way the causal propagator that is nothing more than the standard Feynman
propagator for the Dirac equation (see, e.g.,[20]).

Remark 16.11 In a second quantized theory the currents Jy and wa are given by
the normal product of the field operators and in this case the current: 1%,,;/’ Oy !, :as

well known is null, but : 15;‘4 y”y'*4, :is non null. For a proof of these statements,
see, e.g., [20] where in particular a consistent quantum field theory for Majorana
fields satisfying the Dirac equation is presented, showing in particular that the causal
propagator for that field is the standard Feynman propagator of Dirac theory.

Second Possibility: In several treatises, e.g., [28, 33] even at the “classical level”
it is supposed that any Fermi field must be a Grassmann valued spinor field, i.e., an
object where q&z = (vw)and v,w : M — G, with G a Grassmann algebra [8, 15],
i.e., v(x) and w(x) are Grassmann elements of a Grassmann algebra for all x € M.

In this case it is possible to show that the Majorana field defined, e.g., in [28] by

\I:’M=( 22 ) (16.78)

—029}

does satisfy the Dirac equation.

To prove that statement write ¢; = (v w) where for any x € M, v(x) and w(x)
take values in a Grassmann algebra. If W™ does satisfy Dirac equation we must
have for W (p) at p = 0 that

m (_‘;ZL‘PZ) —m (_f;s) —0. (16.79)
L

Then we need simultaneously to satisfy the equations

$1 = —02¢ and ¢ = 020}, (16.80)
which at first sight seems to be incompatible, but are not. Indeed, from ¢y = —0c zq&z
we obtain

v =iw*and w = —iv* (16.81)

and from ¢, = 0»¢; we obtain

V= —iw* and w = iv*. (16.82)
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So, if we understand the symbol * as denoting the involution defined by Berizin'?

Eq. (16.81) is consistent if we take
v=v*andw = 0*. (16.83)
But since forany ¢ € Cand ¢ € G itis (cp)* = c¢*¢* the equation v = iw* implies
v = (i0*)* = —iv™ = —iw (16.84)

and since v = v* and w = w* Eq.(16.80) implies v = —iw™*. Thus, surprisingly as
it may be at first sight Eq. (16.81) is compatible with Eq. (16.82).

Claim 16.12 We may then claim that a Majorana field whose components take
values in a Grassmann algebra satisfies the Dirac equation. This is consistent
with the fact that Dirac equation under these conditions may be derived from a
Lagrangian [28, 33]. We can also verify that for such a Majorana field the current
Jv = 0.

Remark 16.13 In resume, from the algebraic point of view there is no difference
between elko spinor fields A, p : M — C*and Majorana spinor fields Yy M—>
C*. However have in mind that the Majorana field defined in [28] (Eq.(16.78)
above) looks like an elko spinor field, but, of course, is not the same object, since
the components of an elko spinor fields are for any x € M complex numbers but the
components of W™ in [28] take values in a Grassmann algebra.

Of course, if we recall that in building a quantum field theory for elkos make
automatically the components of elko spinor fields objects taking values in a
Grassmann algebra we cannot see any good reason for the building of a theory like
in [2]. Instead we think that elko spinor fields are worth objects of study because
they permit the construction of the X and M fields introduced above which may
describe possible of “magnetic like” particles.

16.6 The Causal Propagator for the /C and M Fields

We now calculate the causal propagator Sg(x Tx/) for, e.g., the K € sec clOM, n®
R(l);,, field. Recall from Remark 16.3 that the K field must satisfy

3Kes — mKTsapeo + [sgAK = 0. (16.85)
If Ié,-(x) is a solution of the homogeneous equation

3K e21 — mK,TsTapeq = 0,

12See pages 66 and of [8].
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we can rewrite Eq. (16.85) as an integral equation
K@) =Kiw) +4 / d*ySr(x,y) A()K)TsTTs. (16.86)

Putting Eq. (16.86) in Eq. (16.85) we see that Sp(x, y) must satisfy for an arbitrary
P esecClM,n) QR

3Sr(x — Y)P()ear — mSp(x — y)P(y)eo = 8*(x — y)P(y) (16.87)

whose solution as it is easy to verify is [19]

d4 PP(Y) +m7)()’)90 Py

Srr=NPO) = o )4f "

(16.88)

For the causal Feynman propagator we get with E = pg = +/p? + m?

(t— l‘/)dep (PEQ) + ml(y)eg)er o P =)

Sr(x — y)K(x) = 5

-1
2(2m)3
(PRG) = mKOeo)en iy, oy

3
0(t—1)[dp -

2(2 )3
(16.89)

v v

For a scattering problem defining Iy = I — K; with K; an asymptotic in-state
we get when t — 0o

A pA ’E: A Ié ; L L
Kix) =q / d'y[d’p PAVRG) + ? EA@) 0eoet —ip, o) (16.90)
This permits to define a set of final states Iéf given by
Kr(x) = q d4y PrAMK(Y) + mAY)K(y)eo)ea o (=) (16.91)

2E;

which are plane waves solutions to the free field Dirac-Hestenes equation with
momentum py. Equipped with the /C;(x) and Cr(x) we can proceed to calculate the
scattering matrix elements, Feynman rules and all that (see details if necessary in
[19D).

For the covariant A and p fields the causal propagator is the standard Dirac
propagator Sr(x — x’). Indeed, it can be used to solve, e.g., the csfopde

iy“BM/\‘E_H)/zl + mp‘{‘+_} =0, iy“aup‘{‘+_} — mkg_ﬂ =0 (16.92)
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once appropriate initial conditions are given. To see this it is only necessary to

rewrite the formulas in Eq. (16.92) as
iAoy —mAgy = —mA_ iy + P ) = X
iy 0, p{y —mpl_y = mAi_y + Py = x.
Equations (16.93) and (16.94) have solutions
Moy = [ s
ey = [ dySrx =y
once we recall that

(iy" 3 —m)Sp(x —y) = §*(x —y).

(16.93)
(16.94)

(16.95)

(16.96)

(16.97)

16.7 A Note on the Anticommutator of Mass Dimension 1

Elkos According to [2]

According to the theory of elko spinor fields as originally developed in [2] (see
also [1, 3—6] the evaluation of the anticommutator of an elko spinor field with its

canonical momentum gives

3
(A, 1), TI(x,1} = i§(x — X)) + i / (;JTP)SefP'“‘"/)g(p),

with
G = ¥y mu(p),
where the spacelike p-dependent field n = n,(p)e, is

(no(p), n1(p), n2(p), n3(p)) := (0,n(p)),
p = (pcos, psinf cos @, psinb sing)

1
n(p) := —i P = (—sing, cos ¢, 0)
sinf dp \ |p|

= (—t(1+ )72 (1 + 12)_1/2,0), T = py/px.

(16.98)

(16.99)

(16.100)

(16.101)
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Putting A = x — X' it is"?

N d3p . ,
A) = i (x—x)
Ga) = | e o)
=~y y'P(A) + ¥y’ 0(A) (16.102)
with
Ay Ay
P(A) = ——3( J————. 0(A)= —5( J———.  (16.103)
(A2 + Az) (AZ 4+ Az)
Remark 16.14 In [25] the integral in Eq.(16.102) has been evaluated for the
case when A lies in the direction of one of the spatial axes ¢, = 9/dx’ of an
arbitrary inertial reference frame ¢y = 9/ 9xY (where x*, w = 0,1,2,3) are

coordinates in Einstein-Lorentz-Poincaré gauge naturally adapted to ep).We note
that the evaluation of each one of the integrals in [25] is correct, but they do not
express the values of the Fourier transform Q(x —x') for the particular values of A
used in the calculations of those integrals. It is not licit to fix a priori two of the
components of A as being null to calculate the integral (27)~> S/ d*pe® )G (p)
for this procedure excludes the singular behavior in the sense of distributions of the
Fourier integral. So, it is wrong the statement in [25] that elko theory as constructed
originally in [2] is local. However, let us show now that this nonlocality is really
odd.

16.7.1 Plane of Nonlocality and Breakdown of Lorentz
Invariance

When A, # 0, Q(x — x/) is null the anticommutator is local and thus there exists in
the elko theory as constructed in [2, 5] an infinity number of “locality directions”.
On the other hand Q(x —x') is a distribution with support in A, = 0. So,the
directions A = (Ay, Ay, 0) are nonlocal in each arbitrary inertial reference frame
ep chosen to evaluate Q(x —x). Recall that given an inertial (coordinate) reference
frame ey = 9/3x° in Minkowski spacetime there exists [10] and inﬁnity of triples of
vector fields {e{" = 9/dx},,.e{” = 0/0x%,. " = d/0x3} (with 20, x} .22, . x3,)),
coordinates in Einstein-Lorentz-Poincaré gauge naturally adapted to e, differing by
a spatial rotation) which constitutes a global section of the frame bundle. So, the
labels x, y and z directions in inertial reference frame ey are no more than a mere
convention and thus without any physical significance. This means that the theory as

3This result has been also found by Ahluwalia and Grumiller. We find the above result without
knowing their calculations. See erratum to [25] at Phys. Rev. D 88, 129901 (2013).



16.8 A New Representation of the Parity Operator Acting on Dirac Spinor Fields 539

constructed in [2] breaks in each inertial reference frame rotational invariance by a
subjective choice of an observer and since in different inertial references frames
there are different (x,y) planes the theory breaks also Lorentz invariance. This
physically unacceptable feature of the theory of elko spinor fields as constructed
originally in [2] was eventually the main reason that lead us to present investigation.

16.8 A New Representation of the Parity Operator Acting
on Dirac Spinor Fields

Let as before {¢, = aiu} and {e, = %} be two arbitrary orthonormal frames for
X X .

TM and let ¥y = {I'* = dx"} and ¥ = {y" = dx"} be the respective dual frames.

Of course, ¢ and ey are inertial reference frames and we suppose now that ey is

moving relative to &y with 3-velocity v = (vl, v2, v3), ie.,

1 [«] 3 ‘Ul o
SN N S} (16.104)
x/l—v20 i;Vl—Uz

Let &,, and E, be the spinorial frames associated with X, and 2. Consider a
Dirac particle at rest in the inertial frame &, (take as a fiducial frame). The triplet
(Yo, X0, Eo) is the representative of the wave function of our particle in (X, Eo)
and of course, its representative in (X, E) is (¢, X, ). Now,

€o

v =uyo (16.105)
where u describes in the spinor space the boost sending I'* to y#, i.e.,y* = u
I'“u~! = AUT". Now, the representative of the parity operator in (2o, E¢) is Py,
and in (X, E) is P,; We have according to our dictionary [Eq. (3.68)] that
P = v¥y’ Puto = T%ol, (16.106)
or

P.¥ =y'RY, P,¥,=T"R¥,, (16.107)

where ¥ and ¢, are Dirac ideal real spinor fields. From Chap. 3 we have

v = w%(l +9°), ¥y = %%(1 + 19, (16.108)
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and if the momentum of our particle is the covector field p = IOJMFP“ = puy*

with (Do, p1. P2, p3) = (m,0) and (po.p1.pp2.p3) i= (Ef p) (and of course p,, =
A/‘j_ﬁlt = Agﬁo) ‘R an the operator such that if ¥ = ¢ (p)e®* then

RY = ¢(p)e " = p(p)e 07, (16.109)
Also uR = Ru and clearly Ryry = ¥y. Now,
uPou ' u¥y = ul'R¥y = ul%u™"Ru¥y = y"RV, (16.110)
from where it follows that
Pu = uPuu™". (16.111)

Now we rewrite P,¥ = y'RW as

] ]

PV = 2urRw, = 20Uy,
m m

D 1
N R 2 (16.112)
m m

We conclude that the parity operator in an arbitrary orthonormal and spin frames
(X, E) acting on a Dirac ideal spinor field ¥ is

1

Of course, when applied to covariant spinor fields ¥ : M — C* the operator P

is represented by

1
P=—p,p". (16.114)
m

A derivation of this result using covariant spinor fields (and which can be easy
generalized for arbitrary higher spin fields) has been obtained in [32].
16.9 Conclusions

In Chap. 13 (see also [29]) it was shown that the massless Dirac-Hestenes equation
decouples in a pair of operator Weyl spinor fields, each one carrying opposite
magnetic like charges that couple to the electromagnetic potential A € sec /\1 ™M
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in a non standard way.'* Here we proposed that the fields A and p serves the purpose
of building the fields K, M € secC{(M,n) ® R(l),S' These fields are electrically
neutral but carry magnetic like charges which permit them to couple to a spins

valued potential A € sec \'T*M ® spins . If the field A is of short range the
particles described by the K and M may interact forming something analogous to
dark matter, in the sense that they may form a condensate of spin zero particles with
zero total magnetic like charges that do not couple with the electromagnetic field
and are thus invisible.

We obtained also the causal propagators for the X and M fields, which can be
used to calculate scattering matrix elements, Feynman rules, etc.1d

Before closing this last chapter of our book we observe yet that elko spinor fields
already appeared in the literature before the publication of [2]. A history about
these objects may be found in [16, 17]. In those papers a Lagrangian equivalent
to Eq.(3.79) written for the covariant spinor fields A and p is given. However,
the author of those papers did not comment that since the basic csfopde satisfied
by the elko spinor fields is by construction the ones given in Eq.(3.74) and as a
consequence these fields, contrary to the claim of[2], must have mass dimension
3/2 and not 1.

We recalled also that as claimed in [2] an elko spinor field (of class five in
Lounesto classification) does not satisfy the Dirac equation. According to some
claims in the literature (see, e.g., [23]) a Majorana spinor field ¥y, : M — C*
and which is a dual helicity object (that also belongs to class five in Lounesto
classification) does satisfy the Dirac equation. However we showed that this claim is
equivocated. At “classical level” a Majorana spinor field can satisfy Dirac equation
only if its components for any x € M take values in a Grassmann algebra.

It is important to emphasize in order to avoid misunderstandings that the theory
presented in this paper is an alternative theory to the one originally built in [2] and
developed in a series of interesting and challenging papers (see references). It differs
drastically from that theory. The main differences are that the equations satisfied by
our elko spinor fields of mass dimension 3/2 [see Eq.(16.31)] and their solutions
are trivially Lorentz invariant. In the theory in [2] the elko spinor fields are of
mass dimension 1 and that theory breaks Lorentz invariance as shown in Sect. 16.7.
Also our theory gives a prediction of a new type of particle that is electrically and
magnetically neutral but has a magnetic like charge which can couple with an spin;
valued gauge field. The other theory (for the best of our understanding) does not fix
the nature of the field that intermediates the interaction of the particles described by
their elko spinor fields of mass dimension 1.

14In [21] it is proposed that the massless Dirac equation describe (massless) neutrinos which carry
pair of opposite magnetic charges.

I5At least, we can say that now we have all the ingredients to formulate a quantum field theory for
the KC and M objects if one wish to do so.
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Appendix A
Principal Bundles, Vector Bundles
and Connections

Abstract The appendix defines fiber bundles, principal bundles and their associate
vector bundles, recall the definitions of frame bundles, the orthonormal frame bun-
dle, jet bundles, product bundles and the Whitney sums of bundles. Next, equivalent
definitions of connections in principal bundles and in their associate vector bundles
are presented and it is shown how these concepts are related to the concept of
a covariant derivative in the base manifold of the bundle. Also, the concept of
exterior covariant derivatives (crucial for the formulation of gauge theories) and the
meaning of a curvature and torsion of a linear connection in a manifold is recalled.
The concept of covariant derivative in vector bundles is also analyzed in details
in a way which, in particular, is necessary for the presentation of the theory in
Chap. 12. Propositions are in general presented without proofs, which can be found,
e.g., in Choquet-Bruhat et al. (Analysis, Manifolds and Physics. North-Holland,
Amsterdam, 1982), Frankel (The Geometry of Physics. Cambridge University Press,
Cambridge, 1997), Kobayashi and Nomizu (Foundations of Differential Geometry.
Interscience Publishers, New York, 1963), Naber (Topology, Geometry and Gauge
Fields. Interactions. Applied Mathematical Sciences. Springer, New York, 2000),
Nash and Sen (Topology and Geometry for Physicists. Academic, London, 1983),
Nicolescu (Notes on Seiberg-Witten Theory. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2000), Osborn (Vector Bundles.
Academic, New York, 1982), and Palais (The Geometrization of Physics. Lecture
Notes from a Course at the National Tsing Hua University, Hsinchu, 1981).

A.1 Fiber Bundles

Definition A.1 A fiber bundle over M with Lie group G will be denoted by £ =
(E,M,m,G,F). E is a topological space called the total space of the bundle, 7 :
E — M is a continuous surjective map, called the canonical projection and F is the
typical fiber. The following conditions must be satisfied:

(a) 7~ (x), the fiber over x, is homeomorphic to F.
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(b) Let{U;, i € J}, where J is an index set, be a covering of M, such that:

* Locally a fiber bundle E is trivial, i.e., it is diffeomorphic to a product bundle,
ie,n '(U) ~ U; x FforallieJ.
* The diffeomorphisms ®, : # ' (U;) — U; x F have the form
®i(p) = (m(p). $ix(p)). (A1)

Bilr—1(0) = Pix : n~!(x) = Fis onto. (A.2)

The collection {(U;, ®;)}, i € 7, are said to be a family of local trivializations
for E.
» The group G acts on the typical fiber. Let x € U; N U;. Then,

pjxo¢ F—>F (A3)
must coincide with the action of an element of G for all x € U; N U; and

i,jed.
*  We call transition functions of the bundle the continuous induced mappings

gj - UiN U; — G, where g;;(x) = ¢ 0 ... (A.4)

X

For consistence of the theory the transition functions must satisfy the cocycle
condition (Fig. A.1)

gii()gjx(x) = gix(x). (A.5)

! (x)

— F
?(Pi,x o ¢Exl =& (x)

Ui

Fig. A.1 Transition functions on a fiber bundle
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Transition functions on a fiber bundle

Definition A.2 (P,M,n,G,F = G) = (P,M,n,G) is called a principal fiber
bundle (PFB) if all conditions in Definition A.1 are fulfilled and moreover, if there
is a right action of G on elements p € P, such that:

(a) the mapping (defining the right action) PxG > (p, g) + pg € P is continuous.

(b) giveng, g’ € Gand Vp € P, (pg)g' = p(gg)).

(c) Vx e M, I_l(x) is invariant under the action of G, i.e., each element of p €
7! (x) is mapped into pg € w~!(x), i.e., it is mapped into an element of the
same fiber.

(d) G acts free and transitively on each fiber = ! (x), which means that all elements
within 7z ~! (x) are obtained by the action of all the elements of G on any given
element of the fiber 7' (x). This condition is, of course necessary for the
identification of the typical fiber with G.

Definition A.3 A bundle (E,M,n,,G = GI(m,F),F = V), where F = R or C
(respectively the real and complex fields), GI(m, IF) is the linear group, and V is an
m-dimensional vector space over I is called a vector bundle.

Definition A.4 A vector bundle (E,M, n, G, F) denoted E = P X, F is said to be
associated to a PFB bundle (P, M, rr, G) by the linear representation p of G in F =
V (a linear space of finite dimension over an appropriate field, which is called the
carrier space of the representation) if its transition functions are the images under
p of the corresponding transition functions of the PFB (P, M, , G). This means the
following: consider the following local trivializations of P and E respectively

®;: N (Uy) - U; x G, (A.6)

B :n;(U) - U xF, (A7)
Eilg) = (m1(a), xi(9)) = (x. xi(q)), (A.8)
Xileiioy = X 177 () > F (A9)

where m : P x, F — M is the projection of the bundle associated to (P, M, , G).
Then, forallx € U; N Uj, i,j € J, we have

Xix © Xii = p(djx 0 d). (A.10)

In addition, the fibers 7' (x) are vector spaces isomorphic to the representation
space V.

Definition A.5 Let £ = (E,M, , G, F) be a fiber bundle and U C M an open set.
A local (cross) section of the fiber bundle (E, M, x, G, F) on U is a mapping

s:U — E suchthat mos=Idy. (A.11)
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A global section s is one for which U = M. Not all bundles admit global sections
(see below).

Notation A.6 Let U C M. We will say that p € sec £|; (or p € sec E|) if there
exists a local section |, : U — E, x = (x, p(x)), with p : U — F.

Remark A.7 There is a relation between sections and local trivializations for
principal bundles. Indeed, each local section s, (on U; C M) for a principal bundle
(P, M, m, G) determines a local trivialization ®; : # 7' (U) = UG, of P by setting

@' (x,8) = s(x)g = pg = Rep. (A.12)
Conversely, ®; determines s since
s(x) = 7' (x, e). (A.13)

Proposition A.8 A principal bundle is trivial, if and only if, it has a global cross
section.

Proposition A.9 A vector bundle is trivial, if and only if, its associated principal
bundle is trivial.

Proposition A.10 Any fiber bundle (E,M, rt, G, F) such that M is contractible to a
point is trivial.

Proposition A.11 Any fiber bundle (E,M, x,G,F) such that M is paracompact
and the fiber F is a vector space admits a local section.

Remark A.12 Take notice that any vector bundle admits a global section, namely
the zero section. However, it admits a global nonvanishing global section if its Euler
class is zero.

Definition A.13 The structure group G of a fiber bundle (E, M, x, G, F) is said
to be reducible to G’ if the bundle admits an equivalent structure defined with a
subgroup G’ of the structure group G. More precisely, this means that the fiber
bundle admits a family of local trivializations such that the transition functions takes
valuesin G',ie., g; : U;NU; — G'.

A.1.1 Frame Bundle

The tangent bundle TM to a differentiable n-dimensional manifold M is an
associated bundle to a principal bundle called the frame bundle F(M) = | ¢, FxM,
where FM is the set of frames at x € M. Let {x'} be coordinates associated to a local
chart (U;, ¢;) of the maximal atlas of M. Then, T,M has a natural basis {% ‘X} on
U CM.
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Definition A.14 A frame at 7.M is a set X, = {eil,,..., ey} of linearly
independent vectors such that

-]
Jo=F — A.14
eils LN |, ( )

and where the matrix (Ff) with entries A’l: € R, belongs to the real general linear
group in n dimensions Gl(n, R). We write (F}) € Gl(n,R).

A local trivialization ¢; : 77! (U;)—U; x Gl(n,R) is defined by

$i(f) = (x, Xy), 7(f) = x. (A.15)

The action of a = (af:) € Gl(n,R) on a frame f € F(U) is given by (f,a) — fa,
where the new frame fa € F(U) is defined by ¢;(fa) = (x, '), 7(f) = x, and

T ={e

X

x,...,e;|x},

e, = ¢l d. (A.16)

Conversely, given frames X, and X/ there exists a = (a}) € GI(n,R) such that
Eq. (A.16) is satisfied, which means that Gi(n, R) acts on F(M) actively.

Let {x'} and {x'}be the coordinates associated to the local chart (U;, ¢;) (U, ¢})
and of the maximal atlas of M. If x € U; N U; we have

;0
ei'x ZF{ @

_; 0

" 0w

)
X X

(F)), (F)) € Gl(n,R). (A.17)

. - k .. .
Since F{ = Ff( <ai) ) we have that the transition functions are
X

W
Axk
ki) —
gi(x) = (35&)

Remark A.15 Given U C M we shall denote by X € sec F(U) a section of F(U) C
F(M). This means that given a local trivialization ¢ : 7~ ' (U)—U x Gl(n,R),
¢(X) = (x, ), 7(f) = x. Sometimes, we also use the sloppy notation {e;} €
sec F(U) or even {e;} € sec F(M) when the context is clear.

€ Gl(n,R). (A.18)
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A.1.2 Orthonormal Frame Bundle

Suppose that the manifold M is equipped with a metric field g € sec TSM of
signature (p, q), p + g = n. Then, we can introduce orthonormal frames in each

T,U. In this case we denote an orthonormal frame by X, = {e|,,..., €,/ } and
;0
ily — hl | > Al9
e |x i axj ( )
gleil, . ¢ )|, = diag(1,1,...1,=1,...,—1) (A.20)

with (h;.i ) € O,,, the real orthogonal group in # dimensions. In this case we say that
the frame bundle has been reduced to the orthonormal frame bundle, which will be
denoted by P, (M). A section X € secP o, (U) is called a vierbein.

Remark A.16 The principal bundle of orthonormal frames Pso¢, (M) over a
Lorentzian manifold modelling spacetime and its covering bundle called spin
bundle Pgpine ,(M) discussed in Chap. 6 play an important role in this book. Also,
vector bundles associated these bundles are very important. Associated to Pso: (M)
we have the tensor bundle, the exterior bundle and the Clifford bundle. A55001ated
to Pgpine (M) we have several spinor bundles, in particular the spin-Clifford bundle,
whose sections are the Dirac-Hestenes spinor fields. All those bundles and their
relationship are studied in Chap. 7.

Remark A.17 In complete analogy to the construction of orthonormal frame bundle
we may define an orthonormal coframe bundle that may be denoted by Po,(M).
Since to each given frame X € sec Pp,(M) there is a natural coframe field ¥ €
sec Po, (M), the one where the covectors are the duals of the vectors of the frame. It
follows that Pg,(M) =~ Po,(M). In particular Pso: M) ~ Pso‘;J (M).

A.1.3 Jet Bundles

Let £ = (E,M,n,G,F) be a fiber bundle. Let x € M and let U, C M be a
neighborhood of x. Let sec |y, be the set of all local sections of £ defined in U,.
Let r € Z*, r > 1. Next define in sec €|, and equivalence relation ~; such that if
sl 8|y : Uy = E we say that

SIK ~; s|)k (Azl)
if for any smooth function f : E — R and any smooth curve 6 : R —M, 1 — o (¢),

with 6(0) = x we have that the mappings f o k o ¢ and f o A o ¢ have the same
r-order Taylor expansion at t = 0.
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If we introduce local coordinates for £, we immediately see that the equiva-
lence relation ~/ reduces to the requirement that the local expressions of « and A
have the same r-order Taylor expansion at x. We denote by j'« the equivalence class
identified by the representative k € sec |y, -

Definition A.18 Letj (£) be the quotient space sec&|y, /~;. We call the the r-jet
bundle of € the disjoint union of all j7(£), i.e., the bundle J'(£) = |, c)dx(E). We
moreover define the maps 7" and 7§ such that

" JE) > M, (k) ==x,
my (&) = E, mp((Jjik)) = sl

More details on jet bundles, a natural setup for rigorous formulation of field
theories may be found, e.g., in [2].

A.2 Product Bundles and Whitney Sum

Given two vector bundles (E,M,n,G,V) and (E',M’,n’,G’, V') we have

Definition A.19 The product bundle E x E’ is a fiber bundle whose basis space is
M x M, the typical fiber is V @ V', the structural group of E x E’acts separately as
G and G’ in each one of the components of V @ V' and the projection & x x’is such

that Ex E' ™3 M x M.
Definition A.20 Let (E,M,n,G,V)and (E',M,x’, G’, V') be vector bundles over

the same basis space. The Whitney sum bundle E & E’ is the pullback of E x E’ by
h:M—MxM,h(p)=(p,p).

Definition A.21 Let (E,M,n,G,V) and (E',M,x’, G’, V') be vector bundles over
the same basis space. The tensor product bundle E ® E’ is the bundle obtained from
E and E' by assigning the tensor product of fibers 7! ® /! for all x € M.

Remark A.22 With the above definitions we can easily show that given three vector
bundles, say, E, E', E” we have

EGQEQE)=(EQE)®(ERE"). (A.22)



552 A Principal Bundles, Vector Bundles and Connections

A.3 Connections

A.3.1 Equivalent Definitions of a Connection in Principal
Bundles

To define the concept of a connection on a PFB (P, M, &, G), we recall that since
dim(M) = m, if dim(G) = n, then dim(P) = n + m. Obviously, for all x € M,
! (x) is an n-dimensional submanifold of P diffeomorphic to the structure group
G and 7 is a submersion, ! (x) is a closed submanifold of P for all x € M.

The tangent space T,P, p € £~ (x), is an (n + m) -dimensional vector space and
the tangent space V,P = T,(m ! (x)) to the fiber over x at the same point p € 7! (x)
is an n-dimensional linear subspace of T, P called the vertical subspace of T,,P.1

Now, roughly speaking a connection on P is a rule that makes possible a
correspondence between any two fibers alongacurveo : R2 1 — M, t +— o(¢). If
Do belongs to the fiber over the point 0 (%) € o, we say that py is parallel translated
along o by means of this correspondence.

Definition A.23 A horizontal lift of ¢ is a curve 6 : R 2 I — P (described by the
parallel transport of p).

It is intuitive that such a transport takes place in P along directions specified by
vectors in 7,P, which do not lie within the vertical space V,P. Since the tangent
vectors to the paths of the basic manifold passing through a given x € M span
the entire tangent space TyM, the corresponding vectors Y, € T,P (in whose
direction parallel transport can generally take place in P) span a n-dimensional linear
subspace of T,P called the horizontal space of T,P and denoted by H,P. Now, the
mathematical concept of a connection can be presented. This is done through three
equivalent definitions given below which encode rigorously the intuitive discussion
given above. We have,

Definition A.24 A connection on a PFB (P, M, i, G) is an assignment to each p €
P of a subspace H,P C T,P, called the horizontal subspace for that connection, such
that H,P depends smoothly on p and the following conditions hold:

(i) m« : H,P — T:M , x = m(p), is an isomorphism.
(ii) H,P depends smoothly on p.
(iii) (Rg)«H,P = H,,P,Vg € G, Yp € P.

Here we denote by m. the differential of the mapping m and by (R,)« the
differential of the mapping R, : P — P (the right action) defined by R,(p) = pg.

"Here we may be tempted to realize that as it is possible to construct the vertical space for all
p € P then we can define a horizontal space as the complement of this space in respect to T,P.
Unfortunately this is not so, because we need a smoothly association of a horizontal space in every
point. This is possible only by means of a connection.
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Since x = m (6 (#)) for any curve in P such that 5 (f) € =~ (x) and 6 (0) = py, we
conclude that &« maps all vertical vectors in the zero vectorin T,M, i.e., w«(V,P) =
0 and we have,?

T,P=H,P® V,P. (A.23)
Then every Y, € T,P can be written as
Y, =Y,+Y),, Y eHP,  Y,€V,P (A.24)

Therefore, given a vector field Y over M it is possible to lift it to a horizontal vector
field over P, i.e., m«(Y,) = m«(Y)) = Y, € TuM for all p € P with n(p) = x. In
this case, we call Y’ ’; the horizontal lift of Y. We say moreover that Y is a horizontal
vector field over P if Y =Y.

Definition A.25 A connection on a PFB (P,M, =, G) is a mapping I, : T.M —
T,P, such that Vp € P and x = m(p) the following conditions hold:

(1) T is linear.

(11) Ty O Fp = IdTXM-
(iii) the mapping p — T, is differentiable.
(iv) Tryp = (Rg)«T)p, forall g € G.

We need also the concept of parallel transport. It is given by,

Definition A.26 Leto : R DI — M, t — o(f) with xy = 0(0) € M, be a curve
in M and let py € P such that w(py) = x¢. The parallel transport of py along o is
given by the curve 6 : R DI — P,t +> 6 (1) defined by

d ., d
EG(I) = Fp(aa(t))v (A.25)

with po = 6(0) and 6 () = py;, ®(py) = x.

In order to present yet a third definition of a connection we need to know more
about the nature of the vertical space V,P. For this, let)) € T,G = & be an element
of the Lie algebra & of G. The vector 2) is the tangent to the curve produced by the
exponential map

d
Y= 7 (exp(r)) ) (A.26)

Then, for every p € P we can attach to each ) € 7,G = & a unique element
Y, € VpP as follows: let f (—e,8) > P, t — pexpt) be a curve on P. Observe

2We also write TP = HP @ VP.
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that it is obtained by right translation and then 7 (p) = 7 (pexp2)) = x and so the
curve lies in 7! (x), the fiber over x € M. Nextlet § : P — R be a smooth function.
Then we define

d d
Y,3(p) = ES of(n) o ES(PCXPU@)) . (A.27)

0 =0
By this construction we attach to each J) € 7.G = & a unique vector field
over P, called the fundamental field corresponding to this element. We then have
the canonical isomorphism
Y, <9, Y, eV,P, Pel.G=86 (A.28)
from which we get

V,P~ ®. (A.29)

Definition A.27 A connectionon a PFB (P, M, r,G) is a 1-form field @ on P with
values in the Lie algebra & = T,G such that Vp € P we have,

() @,(Y)) =YandY, <, where Y, € V,PandQ € I.G = &.
(i) @, depends smoothly on p.
(iil) @p[(Ry)+Y,] = (Ad—1w))(Y,), where Adw, = g~ 'w,g.

It follows that if {G,} is a basis of & and {6’} is a basis for T* P then
wp, =0, ®G, = a).‘,f'(p)é’[’; ® Ga, (A.30)

where o are 1-forms on P.
Then the horizontal spaces can be defined by

H,P = ker(w,), (A.31)

which shows the equivalence between the definitions.

A.3.2 The Connection on the Base Manifold

Definition A.28 Let U C M and

s:U—na Y(U)cP, wos=Idy, (A.32)

be a local section of the PFB (P, M, , G).
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Definition A.29 Let @ be a connection on P. The 1-form s*w (the pullback of @
under s) given by

(5" @) (Yy) = @y (sxYy), Yy € TLU, s:Y, € T,P, p=s(x), (A.33)

is called the local gauge potential.

It is quite clear that s*w € secT*U ® &. This object differs from the gauge
field used by physicists by numerical constants (with units). Conversely we have the
following

Proposition A.30 Given @ € secT*U ® & and a differentiable section of
= (U) C P, U C M, there exists one and only one connection @ on m~"'(U)
such that s*w = w.

Consider now
weT*URSG, o=@ '(xe)w=s*w, sx) =0 (xe),

0 €TV ®6, o =@ '(xe)e =50, sk = (xe).
(A.34)

Then we can write, for each p € P (m(p) = x), parameterized by the local
trivializations ® and @’ respectively as (x, g) and (x, g’) with x € U N U’, that

'og =g 'dg' + ¢ 'wlg. (A.35)

w, =g 'dg+g~
Now, if
g =hg. (A.36)
we immediately get from Eq. (A.35) that
@ = hdh™" + hd h™", (A.37)

which can be called the transformation law for the gauge fields.

A.4 Exterior Covariant Derivatives

Let /\k (P,®) = /\kT*P ® 6,0 < k < n, be the set of all k-form fields over P with
values in the Lie algebra & of the gauge group G (and, of course, the connection
w €sec \' (P, ®)).
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Definition A.31 For each ¢ € sec /\k(P, ®) we define the so called horizontal
form @" € sec A\*(P, &) by

(X1, Xa. ... Xp) = o(X]. X]. ... X)), (A.38)

where X; € T,P,i=1,2, .. k.
Notice that (pz (X1, X, ..., Xy) = 0if one (or more) of the X; € T,,P are vertical.

Definition A.32 ¢ € sec /\kT*P ® V (where V is a vector space) is said to be
horizontal if q)p(Xl, X,...,Xk) = 0, implies that at least one of the X; € T,P,
i=1,2,...,nis vertical.

Definition A.33 ¢ € sec \*T*P ® V is said to be of type (p, V) if Vg € G we
have

Rip =p(g)o. (A.39)

Definition A.34 Let ¢ € sec /\kT*P ® V be horizontal. Then, ¢ is said to be
tensorial of type (p, V).
Definition A.35 The exterior covariant derivative of ¢ € sec /\k (P, ®) in relation
to the connection w is

D¢ = (d)" € sec \*(P, &), (A.40)
where D?¢, (X1, Xs..... Xp. Xit1) = d(pp(X”,X’z’,...,X’,j,XQH). Notice that
do = de® ® G, where ¢“ € sec /\kT*P, a=12,...,n.

Definition A.36 The commutator of ¢ € sec /\i(P, ®B) and ¥ € sec /\j (P, ®),
0 <i,j < n,denoted by [@, ¥] € sec /\HV(P, &) such that if X, ..., Xi1; € sec TP,
then

. ¥](Xi,. ... X)) (A.41)

1 a
= Z(—l) oKy, - Xe)s ¥ K1y - -+ Xeitp)]s
Y sesS,

where S, is the permutation group of n elements and (—1)° = =1 is the sign of
the permutation. The brackets [, ] in the second member of Eq. (A.41) are the Lie
brackets in &.

Writing

0=0"®G. ¥=¥'®G. ¢ csec/\(T*P). ¥ esec \(T*P),
(A.42)
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we have

[0.¥] =0 A ¥’ ®[Ga. Gs]
, (A.43)
=fa( @ NY7) ® G
where f7,; are the structure constants of the Lie algebra.

Remark A.37 In this section we are using (in order to get formulas as the ones
printed in main textbooks) the exterior product as given in Remark 2.24 of Chap. 2
(there denoted A). We hope this will cause no misunderstanding.

With Eq. (A.43) we can prove easily the following important properties involving
commutators:

[(pv 1”] = (_1)14‘1:1'[10, (p]v (A44)
—D*.¥]. ]+ (—'[[¥.t]. 0] + (—D)Y[[z.0].¥] = 0, (A.45)
dlp. ¥] = [de. ¥] + (—1)'[e.dy], (A.46)

for ¢ € sec \'(P.®), ¥ € sec N/(P,®), T € sec /\k(P, ®).
We shall also need the following identity

@, 0](X1,X;) =2[0 (X)), o (X2)]. (A47)

The proof of Eq. (A.47) is as follows:
(i) Recall that

[w, C()] = (w“ N wb) ® [gas gb] (A48)
(i1) Let X, X, € sec TP (i.e., X; and X, are vector fields on P). Then,

[0, 0](X1.X2) = (@“(XD)0"(X2) — 0’ (X2)0"(X1))[Ga. G
=2[e (X)), »(X2)].

(A.49)

Definition A.38 The curvature of the connection w € sec /\I(P, ) is R €
sec /\2(P, &) defined by

QR° =D%w. (A.50)

Definition A.39 The connection w is said to be flat if ¢ = 0.
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Proposition A.40
D?® (X1, X2) = do (X1, X5) + [0 (X)), @(X2)]. (A51)

Eq. (A.51) can be written using Eq. (A.49) (and recalling that o (X) = »“(X)G,)
as

1
Q° =D =dw + E[w,w]. (A.52)

Proof See,e.g.,[1]. W
Proposition A.41 (Bianchi Identity)

DQ® = 0. (A.53)
Proof
(i) Let us calculate d2¢. We have,

d® =d (dw + %[w,w]) . (A.54)

We now take into account that d’@ = 0 and that from the properties of the
commutators given by Eqgs. (A.44)—(A.46) above, we have

dlw,0)] = [do,»] — [@,dw],
[dw,w] = —[w, dw],

[[@,w], w] = 0. (A.55)
By using Eq. (A.55) in Eq. (A.54) gives
dQ°® = ldw, »]. (A.56)
(i1) In Eq.(A.56) use Eq. (A.52) and the last equation in Eq. (A.55) to obtain
dQ® = [Q°, »]. (A.57)

(iii) Use now the definition of the exterior covariant derivative [Eq. (A.40)] together
with the fact that @ (X") = 0, for all X € 7,,P to obtain

D°R® =0,

which is the result we wanted to prove. Bl
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We can then write the very important formula (known as the Bianchi identity),

DYR° = dR° + [0, %] = 0. (A.58)

A.4.1 Local Curvature in the Base Manifold M

Let (U, ®) be a local trivialization of #~!(U) and s the associated cross section
as defined above. Then, s*Q¢ := Q¢ (the pull back of 2¢) is a well defined
2-form field on U which takes values in the Lie algebra &. Let o = s*® (see
Eq. (A.34)). If we recall that the differential operator d commutes with the pullback,
we immediately get

1
QY =s5"D°w = dw + 3 [w,w]. (A.59)

It is convenient to define the symbols

Do = s*D°w, (A.60)
DQY := s*D”Q° (A.61)
and to write
DQ? =0,
(A.62)

DQC = dQ® + [w, Q] = 0.

Eq. (A.62) is also known as Bianchi identity.

Remark A.42 In gauge theories (Yang-Mills theories) Q¢ is (except for numerical
factors with physical units) called a field strength in the gauge ®.

Remark A.43 When G is a matrix group, as is the case in the presentation of gauge
theories by physicists, Definition A.36 of the commutator [¢, ¥] € sec /\H’j (P, ®)
(@ € sec \'(P,®), ¥ € sec (P, ®)) gives

[p.¥] =0 A¥ —(-1)'¥ Ao, (A.63)

where @ and ¥ are considered as matrices of forms with values in & and ¢ A ¥
stands for the usual matrix multiplication where the entries are combined via the
exterior product. Then, when G is a matrix group, we can write Egs. (A.52) and
(A.59) as

Q=D =dw + ®w N w, (A.64)
QY :=Dw =dw + w A o. (A.65)
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A.4.2 Transformation of the Field Strengths Under a Change
of Gauge

Consider two local trivializations (U, ®) and (U’, ®') of P such that p € z= (U N
U’) has (x, g) and (x, g’) as images in (U N U’) x G, wherex € UN U’. Let s, s’ be
the associated cross sections to @ and @’ respectively. By writing s*Q¢ = Q®', we
have the following relation for the local curvature in the two different gauges such
that g’ = hg

QY = hQ°n™!, VxeUNU. (A.66)
We now give the coordinate expressions for the potential and field strengths in
the trivialization ®. Let {x*} be coordinates for a local chart for U C M and let
{8M = %} and {dx*}, u = 0, 1,2, 3, be (dual) bases of TU and T*U respectively.
Then,
0 =0"® 7, = wjd" &G, (A.67)
1
QY=(QY)®¢G = EQf‘};de’* Adx" ® G,. (A.68)
where wf, €25, : M D U — R (or C) and we get
Qe = 0,05 — 0,05 + [l o, (A.69)
with £, the structure constants of &, i.e., [G,, Gp] = fo;,Ge.

The following objects appear frequently in the presentation of gauge theories by
physicists.

1 . v a 1 " c
Q)" = Q" A dx” = dof + Ef,bcw” A, (A.70)
Qc;iv = Qfl;:vga = B;va - aku + [w;u wu], (A71)
oy = @5, Ga. (A.72)

Next we give the local expression of Bianchi identity. Using Eqgs. (A.62) and
(A.70) we have

P P
DQ" = S (DQ) e’ A de A di =0, (A73)

Putting

DRy =D, Q,, (A.74)
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we have
D, = 8,9, + [0, 2,1, (A.75)
and
D,Q,, +D,QY +D,Q,, =0. (A.76)
Physicists call the operator
D, := 0, + [w,, ]. (A.77)

the covariant derivative. The reason for this name will be given below.

A.4.3 Induced Connections

Let (Py,M;,,Gy) and (P, M,, m,,Gy) be two principal bundles and let F :
P; — P, be a bundle homomorphism, i.e., F is fiber preserving, it induces a
diffeomorphism f : M; — M, and there exists a homomorphism A : G; — G;
such that for g; € G, p; € P; we have

F(p1g1) = Ry F(p1)- (A.78)

Proposition A.44 F : Py — P, be a bundle homomorphism. Then a connection
w1 on Pidetermines a unique connection om P;.

Remark A.45 Let (P,M,n’,0,,) = Pg,,(M) be the orthonormal frame bundle,
which is as explained above reduction of the frame bundle F(M). Then, a connection
on Pg, ,(M) determines a unique connection on F(M). This is a very important
result that has been used implicitly in Sect. 4.9.9 and the solution of Exercise 4.150.

Proposition A.46 Let F(M) be the frame bundle of a paracompact manifold M.
Then, F(M) can be reduced to a principal bundle with structure group O, 4, and to
each reduction there corresponds a Riemannian metric field on M.

Remark A.47 1f M has dimension 4, and we substitute O,, +— SOf{ 5 then to each
reduction of F(M) there corresponds a Lorentzian metric field on M.

A.4.4 Linear Connections on a Manifold M

Definition A.48 A linear connection on a smooth manifold M is a connection @ €
secT*F(M) ® gl(n,R).
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Remark A.49 Given a Riemannian (Lorentzian) manifold (M, g) a connection on
F(M) which is determined by a connection on the orthonormal frame bundle
Po, (M) (Psos (M)) is called a metric connection. After introducing the concept
of covariant derivatives on vector bundles, we can show that the covariant derivative
of the metric tensor with respect to a metric connection is null.

Consider the mapping f|, : T.(M) — R" (with p = (x,X,) in a given
trivialization) which sends v € T,M into its components relative to the frame
Y. ={eil,s.-.. el Let{ 9f|x} be the dual basis of {¢;|,}. We write

fl, ) = (¢|, (v). (A.79)

Definition A.50 The canonical soldering form of M is the 1-form 6 €
secT*F(M) ® R" such that for any v € secT,F(M) such that v = m,v we
have

(0(v)) := 09, (v)e
= 09, (V)e,, (A.80)
where {e,} is the canonical basis of R" and {6} is a basis of T*F (M), with 8¢ =
T*0, 0%, (v) = 0%, (v).

Definition A.51 The torsion of a linear connection @ € sec T*F(M) ® gl(n,R) is
the 2-form DO = © < sec \> T*F(M) @ R" .

As it is easy to verify, the soldering form 6 and the torsion 2-form ® are tensorial
of type (p, R"), where p(1) = u, u € Gl(n, R).

Using the same techniques employed in the calculation of D®w(Xj,Xz)
[Eq. (A.51)] it can be shown that

0O =db + [w,0], (A.81)
where [, | is the commutator product in the Lie algebra of the affine group A(n, R) =
Gl(n,R) K R", where X means the semi-direct product. Suppose that (e”, e.) is the

canonical basis of a(n, R), the Lie algebra of A(n, R). Recalling that

w(v) = wi(v)e, (A.82)
0(v) = 0%(v)e, (A.83)

we can show without difficulties that

D°e =[2,0]. (A.84)
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A.4.5 Torsion and Curvature on M

Let {x'} be the coordinates associated to a local chart (U, ¢) of the maximal atlas of
M.Let X € sec F(U) withe; = F/-2 and @ = 0“e,. Take w4v = v. Then

i0x
(0,(0) = fl, (v) = fl, (@Y (0)3;) = f|, (A (0)(F})"ex)
= ((F)™'d¥ (mxv)). (A.85)

With this result it is quite obvious that given any w € R”, @ determines a
horizontal field vy € secTF(M) by

(0 (vw(p)) = w. (A.86)

With these preliminaries we have the

Proposition A.52 There is a bijective correspondence between sections of T*M ®
TIM and sections of T* F(M) ® R, the space of tensorial forms of the type (p, R")
in F(M), with p and q being determined by T{M .

Using the above proposition and recalling that the soldering form is tensorial of
type (p(u), R"), p(u) = u, we see that it determines on M a vector valued differential
1-form® 0 = e, ® 0% € secTM ® \' T*M. Also, the torsion © is tensorial of type
(p(u),R"), p(u) = u and thus define a vector valued 2-formon M, ® = e, ® O €
secTM ® /\2 T*M. We can show from Eq. (A.81) that given u, w € T,F(M),

O(m sut, Tw) = dO (T ut, TW) + a)Z(n*u)Hh(n*w) — a)Z(Jt*w)Qb(n*u).

(A.87)
On the basis manifold this equation is often written:
® =D0 =e¢,® (DO
= e, ® (d° + 0 A 6"), (A.88)

where we recognize D6 as the exterior covariant derivative of index forms
introduced in Sect. 3.3.4.4

30 is clearly the identity operator in the space of vector fields.

“Rigorously speaking, if Eq.(A.88) is to agree with Eq.(A.87) we must have &¢ A 9’ =
@) ® ] b ] b ® a')g) i.e., as already observed A must be understood as A given in Remark 2.24.

However, this cause no troubles in the calculations we done using the Clifford bundle formalism.
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Remark A.53 Also, the curvature 2 is tensorial of type (Ad, R"z). It then defines
Q=e,800"®@R% csecTIM® /\2 T*M which we easily find to be given by

Q=e,®0"® R}
=e,® 0" ® (do% + 0’ A 0f), (A.89)

where the R} € sec /\2 T*M are the curvature 2-forms introduced in Chap.4,
explicitly given by

Ry = dof + of Al (A.90)

Note that sometimes the symbol Dw?, such that R, := Dwj, is introduced in some
texts. Of course, the symbol D cannot be interpreted in this case as the exterior
covariant derivative of index forms.” This is expected since @ € sec /\1 TP ®
gl(n, R) is not tensorial.

A.5 Covariant Derivatives on Vector Bundles

Consider a vector bundle (E, M, w1, G, V)® associated to a PFB bundle (P, M, , G)
by the linear representation p of G in the vector space V over the field F = R or
C. Also, let dimp V = m. Consider again the trivializations of P and E given by
Egs. (A.7)—(A.9). Then, we have the

Definition A.54 The parallel transport of Wy € E, w1 (¥y) = xp, along the curve
0:R>31— M, t— o(t) fromxg = 0(0) € M tox = o(t)is the element ¥, € E
such that:

@ 7 () = x,
(i) xi(¥y) = p(@i(py) © 97" (po)) xi(Wo).
(iii) py,; € P is the parallel transport of py € P along o from xo to x as defined in
Eq. (A.25) above.

Definition A.55 Let Y be a vector at x( tangent to the curve o (as defined above).
The covariant derivative of ¥ € sec E in the direction of Y is denoted (D5W),, €
sec E and

!
(DYW)(x0) = (DFW),,, = lim (¥}, — W), (A91)

5See Sect. A.3.
6Also denoted E = P X, V.
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where \Il(|)|, is the “vector” ¥, = W (o (f)) of a section W € sec E parallel transported
along o from o (¢) to xp, the only requirement on o being

d

In the local trivialization (U;, E;) of E (see Egs. (A.7)—(A.9))if ¥, is the element
in V representing ¥,, we have

xi(Wh) = p(gogr ) ity (¥1). (A.93)

By choosing pg such that go = e we can compute Eq. (A.91):

d
(D‘EI‘I’)xo = d_tp(g_l (l‘)\IJ,)

t=0

,, . dg(1)
o (" ©~a

This formula is trivially generalized for the covariant derivative in the direction
of an arbitrary vector field Y € sec TM.

With the aid of Eq. (A.94) we can calculate, e.g., the covariant derivative of ¥ €
sec E in the direction of the vector field ¥ = axiﬂ = 0,. This covariant derivative is
denoted D‘BEM\II.

dvy,
dt

) (o). (A.94)
t=0

‘We need now to calculate %

. In order to do that, recall that if % is a tangent
=0

to the curve o in M, then sx (%) is a tangent to &, the horizontal lift of o, i.e.,
Sx (%) € HP C TP. As defined before s = d>l._1(x, e) is the cross section associated
to the trivialization ®; of P [see Eq. (A.6)]. Then, as g is a mapping U — G we can
write

d d
[s*(d—t)} (&) = E(g 00). (A.95)

To simplify the notation, introduce local coordinates {x*, g} in 7~!(U) and write
o (t) = (¥ (1)) and 6(1) = (x (1), g(1)). Then,

d d d
— | = x* () — o(1) —
s (§) =¥ 05+ a0 (A.96)

in the local coordinate basis of 7(~!(U)). An expression like the second member
of Eq. (A.96) defines in general a vector tangent to P but, according to its definition,
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s« () is in fact horizontal. We must then impose that

SN en L L an D o 9
Sx (dt) x(1) T + 8@ 5~ (_axﬂ + a).MQagag), (A.97)
for some a*.

We used the fact that axi# + a),‘i;gag% is a basis for HP, as can easily be verified
from the condition that @ (Y") = 0, for all Ye HP. We immediately get that

ol = (1), (A.98)
and
d
% = §(1) = =" (N0’ Gug. (A.99)
g _
7 o = —X (O)(L)Mga. (AIOO)

With this result we can rewrite Eq. (A.94) as

dy,
dt

P @eM ), Y=

(DE\I’)X = - .
Yoo =0 dr |,

(A.101)

which generalizes trivially for the covariant derivative along a vector field ¥ €
sec TM.

Remark A.56 Many texts introduce the covariant derivative operator D% acting on
sections of the vector bundle E as follows.

Definition A.57 A connection DF on M is a mapping

DF - secTM x sec E — sec E,

(X,¥) — DLW, (A.102)

such that DY : sec E — sec E satisfies the following properties:

(i) D%(a¥) = aDW,
(ii) DS(¥ + ®) = DYV + D5 ®,
(iii) Dx(f¥) = X(f) + /Dy, (A.103)

(iv) D%, W =DYWw +DEW,
v) Di W = DLW,
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forall X,Y e secTM, ¥, ® € secE, Ya € F = R or C (the field of scalars entering
the definition of the vector space V of the bundle) Vf € C*°(M), where C*°(M) is
the set of smooth functions with values in [F.

Of course, all properties in Eq.(A.103) follows directly from Eq.(A.101).
However, the point of view encoded in Definition A.57 may be appealing to
physicists. To see, recall that in general in physical theories E = P x, V where
o stands for the representation of G in the vector space V.

Definition A.58 The dual bundle of E is the bundle E* = P x,+ V*, where V* is
the dual space of V and o* is the representation of G in the vector space V*.

Example A.59 As examples of bundles of the kind £ = P x,V we have the tangent
bundle which is TM = F(M) x, R" where p : Gl(n,R) —Gl(n,R) denotes the
standard representation and T*M = F(M) X, (R")* where the dual representation
p* satisfies p* (g) = p(g~')". Other important examples are the tensor bundle
of tensors of type (r,s), the bundle of homogenous k-vectors and the bundle of
homogeneous k-forms, respectively:

"M = ® ™™ = F(M) xg (® R"),
/\k T™ = F(M) % /\k R",

k k
J\ T*M = F(M) x AL AR (A.104)

k k . .
where @7, /\, and/\ .« are the induced tensor product and exterior powers
representations.

Definition A.60 The bundle E ® E* is called the bundle of endomorphisms of E
and will be denoted by End(E).

Definition A.61 A connection D" acting on E* is defined by
(DE"E*)(W) = X (E*(W¥)) — E*(DLW), (A.105)

for VE* € secE*, VW € secE and VX € sec TM.
Definition A.62 A connection D®E" acting on sections of E ® E* is defined for
VE* € secE*, VW € secE and VX € sec TM by

DI E* QW =DE E* @ W 4+ E* @ DLW, (A.106)

We shall abbreviate DE®E™ by DEME Equation (A.106) may be generalized in an
obvious way in order to define a connection on arbitrary tensor products of bundles
E® E' ® ...E’. Finally, we recall for completeness that given two bundles, say
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E and E' and given connections DE and D there is an obvious connection DE®E
defined in the Whitney bundle E @ E’ (recall Definition A.20). It is given by

DE®F (W @ W') = DEW @ DEW/, (A.107)

for VW € sec E, VW' € sec E' and VX € sec TM.

A.5.1 Connections on E over a Lorentzian Manifold

In what follows we suppose that (M, g) is a Lorentzian manifold (Definition 4.73).
We recall that the manifold M in a Lorentzian structure is supposed paracompact.
Then, according to Proposition A.10 the bundles E, E*, T'M and EndE admit cross
sections.

‘We then write for the covariant derivative of We sec E and X € sec TM,

DEV = DYW + W(X)W, (A.108)

where W € sec EndE ® T*M will be called connection 1-form (or potential) for D§
and DY is a well defined connection on E, that we are going to determine.
Consider then a open set U C M and a trivialization of E in U. Such a
trivialization is said to be a choice of a gauge.
Let {e;} be the canonical basis of V. Let ¥|,, be a section of the bundle E.
Consider the trivialization 8 : z7'(U) — U x V, B(¥) = (z(¥), y(¥)) =
(x, x(¥)). In this trivialization we write

V|, = (x, ¥ (x)), (A.109)
Y(x) € V,Vx € U, with ¥ : U — V a smooth function. Let {s;} € sec E|,
si= x'e;)i=1,2,...,mbeabasis of sections of E|, and {e,,} € sec F(U), u =
0,1,2,3 abasis for TU. Let also {¢"}, " € sec T*U, be the dual basis of {e,} and
{s*'} € sec E*|;;, be a basis of sections of E*|, dual to the basis {s;}.
We define the connection coefficients in the chosen gauge by
E jou
D, si = W-Iuisf' (A.110)
Then, if U = W's; and X = X'e,
Exy — vupE ig.
DyV = X"D, (¥'s;)

— X! [eﬂ(\lﬂ) + W,"l;j\w] si. (A111)
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Now, let us concentrate on the term X“Wfl't'j‘lﬂ's,-. It is, of course a new section
F := (x, X“W,’I'L'j‘l”s,-) of E|;, and X“W}l’;j‘lﬂsi is linear in both X and W.

This observation shows that WY € sec(End E|,; ® T*U), such that in the
trivialization introduced above is given by

WY =Wisi ® s @ e (A.112)

is the representative of JV in the chosen gauge.
Note that if X € sec TU and ¥ := (x, ¥'(x)) a section of E|; we have

o (X) 1= 0y = X'Wiisi @ 57,
wy (W) = X'W, W, (A.113)
We can then write
DYV = X (V) + of (¥), (A.114)
thereby identifying D(;(E\IJ = X (). In this case D(;(E is called the standard flat
connection.

Now, we can state a very important result which has been used in Chap. 2 to write
the different decompositions of Riemann-Cartan connections.

Proposition A.63 Let DYE and DF be arbitrary connections on E then there exists
W € secEndE ® T*M such that for any W€ sec E and X € sec TM,

DEW = DY + W(X)W. (A.115)

A.5.2 Gauge Covariant Connections

Definition A.64 A connection DE on E is said to be a G-connectionif for any u € G
and any W € sec E there exists a connection D'F on E such that for any X € sec TM

D (p()¥) = p(u)DY¥. (d11)

Proposition A.65 If DEW = DYW + W(X)W for We sec E and X € sec TM, then
DEW = DYW + W (X)W with

W (X) = uWX)u~" + udu™". (A.116)
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Suppose that the vector bundle E has the same structural group as the orthonor-
mal frame bundle Psoc , (M), which as we know is a reduction of the frame bundle
F(M). In this case we give the

Definition A.66 A connection D on E is said to be a generalized G-connection if
for any u € G and any W € sec E there exists a connection D’ on E such that for any
X € secTM, TM = Pso: (M) x,;m R*

D (p(u)¥) = p(u)DY ¥, (A.117)

where X' = p™X € sec TM.

A.5.3 Curvature Again

Definition A.67 Let D be a G-connection on E. The curvature operator
REe sec \* T*M ® EndE of D is the mapping

Rf :secTM ® TM ® E — E, (A.118)
RY(X,Y)¥ = DyDy¥ — DyDyV¥ — Dfy V¥
R*(X.Y) = DyDy — DyDy — Dy y;. (d14)

forany WesecE and X, Y € sec TM.

If X = 8,“ Y = 0, € secTU are coordinate basis vectors associated to the
coordinate functions {x*} we have

RE(d,.8,) =R, = [DEM’ng]‘ (A.119)

In a local basis {s; ® s*} of EndE we have under the local trivialization used
above

R =RY, 5. ® 5™,
Rfj;{)b =0, W5, — 3UWf;'b + W.‘;'L. o — Wi ,‘;'b. (A.120)
Equation (A.120) can also be written

RE, = 9, W, — 0, W, + W W], (A.121)
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A.5.4 Exterior Covariant Derivative Again

Definition A.68 Consider ¥ ® A, € secE® \'T*M and B, € \'T*M . We
define (¥ ® A,;) @ Bs by

(U ®A,) ®r B, = ¥ ® (A, ABy). (A.122)

Definition A.69 Let WA, € secEQ/\' T*M and I®B, € secEndE® \'T*M.
We define (IT ® B;) @ (¥ ® A,) by

(M®By) ®x (V®A,) =TI(V) ® (B, AA,). (A.123)

Definition A.70 Given a connection D® acting on FE, the exterior covariant
derivative d”" acting on sections of EQ /\" T*M and the exterior covariant derivative
ar™® acting on sections of EndE @ A\*T*M (r,s = 0, 1,2,3,4) is given by

(i) if WesecE then for any X € sec TM

d”" ¥(X) = DEY, (A.124)

(i) Forany V®A, € secE® N\ T*M
d”" (U®A,) = d”" U ® A4, + URAA,, (A.125)
(iii) Forany I®B, € secEndE ® \'T*M
d?" " (MeB,) = d”"" TI® B, + [1®dB,, (A.126)

Proposition A.71 Consider the bundle product € = (EndE @ \'T*M) @4 (E ®
N T*M). Let T = TI®B; € secEndE ® N\'T*M and ¥ = VRA, €
secE ® /\' T*M . Then the exterior covariant derivative d° ¢ acting on sections
of € satisfies

DEndE

P MR, ¥) = @M @5 ¥ + (—1)TT@d> . (A.127)
Exercise A.72 The reader can now show several interesting results, which make
contact with results obtained earlier when we analyzed the connections and
curvatures on principal bundles and which allowed us sometimes the use of sloppy
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notations in the main text:

(i) Suppose that the bundle admits a flat connection D6, We put d”° = d. Then,
if y €secE® /\' T*M we have

dDOE)( =dy + WQnyx.
(i) If y e secE® /\" T*M we have
@)’y = RE@, . (A.128)
(iii) If y € secE® /\" T*M we have
@)y = RE@d™ . (A.129)
(iii) Suppose that the bundle admits a flat connection D°E. We put d® = d.

Then, if
(iv) IT € secEndE @ N\'T*M

a1 = am + [, . (A.130)

)
d?"“RE = 0. (A.131)

(vi)
RE = dW + W . (A.132)

DEndE

Remark A.73 Note that RE # dP W.

We end here this long appendix, hopping that the material presented be enough
to permit our reader to follow the more difficult parts of the text and in particular to
see the reason for our use of many eventual sloppy notations.
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