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General Preface

The seven volumes of the series Basic Course: Theoretical Physics are thought to be
textbook material for the study of university-level physics. They are aimed to impart,
in a compact form, the most important skills of theoretical physics which can be
used as basis for handling more sophisticated topics and problems in the advanced
study of physics as well as in the subsequent physics research. The conceptual
design of the presentation is organized in such a way that

Classical Mechanics (volume 1)
Analytical Mechanics (volume 2)
Electrodynamics (volume 3)

Special Theory of Relativity (volume 4)
Thermodynamics (volume 5)

are considered as the theory part of an integrated course of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate and
self-contained, sometimes surely at the cost of certain elegance, so that the course
is suitable even for self-study, at first without any need of secondary literature. At
any stage, no material is used which has not been dealt with earlier in the text. This
holds in particular for the mathematical tools, which have been comprehensively
developed starting from the school level, of course more or less in the form of
recipes, such that right from the beginning of the study, one can solve problems in
theoretical physics. The mathematical insertions are always then plugged in when
they become indispensable to proceed further in the program of theoretical physics.
It goes without saying that in such a context, not all the mathematical statements can
be proved and derived with absolute rigour. Instead, sometimes a reference must
be made to an appropriate course in mathematics or to an advanced textbook in
mathematics. Nevertheless, I have tried for a reasonably balanced representation
so that the mathematical tools are not only applicable but also appear at least
‘plausible’.

The mathematical interludes are of course necessary only in the first volumes of
this series, which incorporate more or less the material of a bachelor programme.
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In the second part of the series which comprises the modern aspects of theoretical
physics,

Quantum Mechanics: Basics (volume 6)

Quantum Mechanics: Methods and Applications (volume 7)
Statistical Physics (volume 8)

Many-Body Theory (volume 9),

mathematical insertions are no longer necessary. This is partly because, by the time
one comes to this stage, the obligatory mathematics courses one has to take in order
to study physics would have provided the required tools. The fact that training in
theory has already started in the first semester itself permits inclusion of parts of
quantum mechanics and statistical physics in the bachelor programme itself. It is
clear that the content of the last three volumes cannot be part of an integrated
course but rather the subject matter of pure theory lectures. This holds in particular
for Many-Body Theory which is offered, sometimes under different names as, e.g.
advanced quantum mechanics, in the eighth or so semester of study. In this part, new
methods and concepts beyond basic studies are introduced and discussed which are
developed in particular for correlated many particle systems which in the meantime
have become indispensable for a student pursuing master’s or a higher degree and
for being able to read current research literature.

In all the volumes of the series Basic Course: Theoretical Physics, numerous
exercises are included to deepen the understanding and to help correctly apply the
abstractly acquired knowledge. It is obligatory for a student to attempt on his own
to adapt and apply the abstract concepts of theoretical physics to solve realistic
problems. Detailed solutions to the exercises are given at the end of each volume.
The idea is to help a student to overcome any difficulty at a particular step of the
solution or to check one’s own effort. Importantly these solutions should not seduce
the student to follow the easy way out as a substitute for his own effort. At the end
of each bigger chapter, I have added self-examination questions which shall serve
as a self-test and may be useful while preparing for examinations.

I should not forget to thank all the people who have contributed one way or
an other to the success of the book series. The single volumes arose mainly from
lectures which I gave at the universities of Muenster, Wuerzburg, Osnabrueck,
and Berlin in Germany, Valladolid in Spain, and Warangal in India. The interest
and constructive criticism of the students provided me the decisive motivation for
preparing the rather extensive manuscripts. After the publication of the German
version, I received a lot of suggestions from numerous colleagues for improvement,
and this helped to further develop and enhance the concept and the performance
of the series. In particular, I appreciate very much the support by Prof. Dr. A.
Ramakanth, a long-standing scientific partner and friend, who helped me in many
respects, e.g. what concerns the checking of the translation of the German text into
the present English version.
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Special thanks are due to the Springer company, in particular to Dr. Th. Schneider
and his team. I remember many useful motivations and stimulations. I have the
feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
May 2015






Preface to Volume 3

The main goal of this volume 3 (Electrodynamics) corresponds exactly to that of
the total Basic Course: Theoretical Physics. It is thought to be an accompanying
textbook material for the study of university-level physics. It is aimed to impart, in a
compact form, the most important skills of theoretical physics which can be used as
basis for handling more sophisticated topics and problems in the advanced study of
physics as well as in the subsequent physics research. It is presented in such a way
that it enables self-study without the need for a demanding and laborious reference
to secondary literature. For the understanding of the text, it is only presumed that
the reader has a good grasp of what has been elaborated in the preceding volumes 1
and 2. Mathematical interludes are always presented in a compact and functional
form and practiced when they appear indispensable for further development of the
theory. For the whole text, it holds that I had to focus on the essentials, presenting
them in a detailed and elaborate form, sometimes consciously sacrificing certain
elegance. It goes without saying that after the basic course, secondary literature is
needed to deepen the understanding of physics and mathematics.

Electrodynamics is presented here in its inductive version. That means that
the fundamental Maxwell equations are motivated by some basic and consistent
experimental facts. The conclusions derived from the Maxwell equations can then be
compared to the corresponding experimental facts. The complete agreement found
up to now provides a strong support of the validity of the concept. The mathe-
matically demanding nature of electrodynamics makes practicing the application
of concepts and methods especially mandatory. In this context, the exercises which
are offered after all important subsections play an indispensable role for an effective
learning. The elaborate solutions of exercises at the end of the book should not keep
the learner from an independent treatment of the problems, but should only serve as
a checkup of one’s own efforts.

This volume on electrodynamics arose from lectures I gave at the German
Universities in Muenster and Berlin. The animating interest of the students in my
lecture notes has induced me to prepare the text with special care. This volume one
as well as the other volumes is thought to be a textbook material for the study of
basic physics, primarily intended for the students rather than for the teachers.

ix



X Preface to Volume 3

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was always
delightful and very professional. A decisive contribution to the book was provided
by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal (India). Many
thanks for it!

Berlin, Germany Wolfgang Nolting
May 2015
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Chapter 1
Mathematical Preparations

In this introductory chapter we want to first discuss the Dirac’s §-function which
is important for many practical applications. Then the following considerations
will concern Taylor expansions for fields and surface integrals. Subsequently
we shall deal with vector analysis, the decisive mathematical tool for working on
electrodynamics.

1.1 Dirac’s §-Function

In order to motivate the introduction of the §-function let us go back to classical
mechanics. The concept of the mass point has proven under certain preconditions as
rather useful. The center of mass theorem (Sect. 3.1.1, Vol. 1), for instance, states
that the center of mass of a system of mass points moves as if the total mass of the
system were concentrated in this point and all external forces would act exclusively
on it. According to Eq.(4.4) in Vol. 1 the mass M of a body can be expressed in
terms of the mass density p(r):

M= [ &rp).
/

But how does the mass density of a mass point look like? It can be unequal zero
only in a single point:

p(r) =0 Vr#r,

© Springer International Publishing Switzerland 2016 1
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2 1 Mathematical Preparations

The volume integral, however,

V/ & p(r)

shall be nevertheless finite provided ry lies within the volume V. We thus ‘symbol-
ize’ p(r) as follows

p(r) = M §(r —ro) (1.1)
and require:
1,ifroeV
drér—ry) =1 - 1.2
/ ré(r—ro) { 0 otherwise , (1.2)

v
dr—rg) =0 Vr#r,. (1.3)

Equations (1.2) and (1.3) are the defining equations of the Dirac’s §-function
(short: §-function). Obviously, one must not understand the integral (1.2) as a usual
Riemannian integral. Since, because of (1.3), the effective integration interval is of
zero-width the integral should actually vanish. Sometimes one helps oneself with the
idea that for r = ry the §-function takes the value oo so that something finite results
out of 0-00. This is of course only an auxiliary view. The §-function is not a function
in the ordinary mathematical sense which ascribes to each value of its definition
range uniquely a certain value of the function. Instead it is defined by Egs. (1.2)
and (1.3). It is therefore denoted as an improper function or as a distribution. The
related exact mathematical theory is called the distribution theory. It goes beyond
the framework of our introductory presentation here and therefore must be settled
by some plausibility considerations. For that we restrict ourselves at first to the one-
dimensional case.
Let us consider a sequence of Lorentz curves (Fig. 1.1)

1 n

S e R

, (n>0). (1.4)

Fig. 1.1 Illustration of the
d-function as a limiting
function of a sequence of
Lorentzians
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For the height of the maximum at x = a we have

and for the width of the peak (‘full width at half maximum”)

2n — 0.
7]—>0+

The area under the Lorentz curve amounts to

B
/dx [%—772 m (z_a)2i| = % [arctan ('B ;a) — arctan (a;a)}

1,iffe<a<$,
— %,ifa:aora:ﬂ,
0 otherwise (a # «, B) .

For n — 0" L, becomes arbitrarily narrow. Thus it is:

lim L,(x—a)=0 Vx#a, (1.5)
n—0t

B l,ife<a<§,
lim /Ln(x—a)dx: %,ifa:ocora:ﬂ, (1.6)
0

+
o otherwise (a # a, B) .

The sequence of integration and limiting process in Eq.(1.6) must not be inter-
changed. If we strictly obey that, then we can write ‘abbreviatorily’:

.1 n
—a) =1 s 1.7
Sr—a) = lim s (17)

with

S(x—a)=0 Vx#a,
B

1,iffa<a<p,
/dxé’(x—a)z %,ifa:ocora:ﬂ, (1.8)
e 0 otherwise (a # «, B) .

The §-function can be represented also by other limiting processes (see exercises!)
where these processes have to fulfill only (1.5) and (1.6).
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On the basis of Egs. (1.5) to (1.7) one verifies the following properties of the

S-function:

1.

Let f(x) be a function which is continuous in the neighborhood of x = a. Then it
holds:

B fla), fa<a<§B,
/f(x)8(x—a)dx= if(a) . ifa=aora=p, (1.9)
p 0 otherwise (a # «, f) .

Proof From the mean value theorem of integral calculus (Sect. 1.2.3, Vol. 1) we
first have:

B B
Fyla) = / Ly — a)f )dx = (£) [ Li—a)dx. &elaf].

o

For n — 0% L,(x — a) becomes an arbitrarily sharp peak around a and F,(a)
does not change if the interval of integration is restricted to the region for which
L, is unequal to zero. £ must lie within this effective region of integration which
for n — 0T contracts to the point a:

B
lim Fp(a) = f(a) lim /Ln(x —a)dx .
n—>07+ n—0+
o

With (1.6) we then get the assertion (1.9).

§[f] = Zm&x—xi), (1.10)

x;: simple zero of f(x); f(x;)) = 0; f'(x;) # 0.
We perform the proof as Exercise 1.7.3. One easily recognizes the following
special cases:

(a)
S(ax) = i 8(x) (1.11)
lal
(b)
8(x2—a2)= L[8()6—61)+5(x+a)]. (1.12)

2|al
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gx)d(x—a) = g(a)d(x—a) , (1.13)
x6(x) =0. (1.14)

X

/Qﬁ&@:@@p:{

—00

1 forx >0,

1.1
0forx <0 (1.15)

‘step function’

5. Derivative of the §-function [a € («, B)]:

B B B
/ 5'(x — a)f (¥) dx = (1) 8(x — )| — / 50— a)f (¥) dx = —f(a) .

Since f(x) must only be differentiable, being otherwise arbitrary, this formal
integration by parts leads to the following identity:

f(x) 8 (x—a) =—f(@)8(x—a). (1.16)
6. One can consider the §-function also as the derivative of the step function:
d
dx—a) = —0Okx—a). (1.17)
dx

because:

ﬂ_{l,ﬁa<a<ﬁ,

d
/ 56()6 ~@)dx = Ox—a) 0 otherwise ,

o

d
—0Bx—a)=0 Vx#a.
dx

But these are just the two defining equations of the §-function.

7. Multi-dimensional §-function
The three-dimensional §-function is defined by (1.2) and (1.3).
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(a) Cartesian coordinates:

r= ()C, Y, Z) 5 ro = (-XOs Yo, ZO)

/d3r...—>/// dxdydz ...
4 v

ansatz:

8(r—rp) = y(x,y,2) 8(x — x0) 8(y — y0) §(z — 20) -

y(x,y, z) must be chosen such that (1.2) is fulfilled:

dPré(r—ry) = dxdydzy(x,v,2) 8(x —x0) 6(y — yo) 8(z — z0)
.

= ¥ (X0, 0, 20) /// 8(x —x0) 8(y — yo) 8(z — z0) dxdy dz
1%
_ } v(x0.y0.20) . ifro €V,
0 otherwise .

That means:

and therewith:

8(r —rp) = 8(x —x0) 8(y — yo) 8(z — 20) - (1.18)

(b) curvilinear coordinates (u, v, w): According to ((1.367), Vol. 1) the volume
element reads:

a(x, y,
= dvdyde= 22D gy aw
a(u, v,w)
————

Jacobian determinant

We choose a similar ansatz as in (a):

8(r—rp) = y(u,v,w)8(u—up) §(v —vg) (w — wy) . (1.19)



1.2 Taylor Expansion 7

Because of (1.2) we then have to fulfill:

/d%S@—r@—-ﬁOlMdvd (yizyOLuMOMu—u@

S8 —v)S(w—wo) =1, ifrgeV.

-1
d(x,y,2)
= — . 1.2
(8(u,v,w) ro) (1.20)
Examples

spherical coordinates (7, 9, ¢) ((1.390), Vol. 1):

That leads to:

d(r—rg) =

1
> 8(r—ro) 8(% — o) (¢ — ¢o) - (1.21)
ry sinth

cylindrical coordinates (p, ¢, z) ((1.382), Vol. 1):
1
8(r—ro) = p—S(P—Po) 8(¢ — 0)é(z— 20) - (1.22)
0

Very soon the great importance of the §-function for Theoretical Physics will
become evident. It is therefore absolutely mandatory to become familiar with
this special function.

1.2 Taylor Expansion

Oftentimes it is unavoidable for a physicist to simplify certain mathematical
functions in specific interesting regions in order to attain to concrete results for
a given physical problem. Such a simplification should of course be ‘physically
reasonable’, i.e. it should not falsify the actual results too roughly. In particular a
reliable estimate of the mistake caused by the simplification would be desirable.

Let us first consider functions of one variable f = f(x). If these are arbitrarily
often differentiable, which is presumed in the following, then, normally, they can be
expanded as a power series ((1.92), Vol. 1)

S =) ax"
n=0
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where the coefficients a,, are fixed by the behavior of the function at the pointx = 0:

1 1
a=f0); ar=f0); a=-0;: .. anzn—!ﬂ"’(O);

We thus have with 0! = 1! = 1:

o

1
OED A (1.23)
—0 n.
One says that f(x) is expanded as a Taylor series around the point x = 0. A

decisive precondition is, besides being arbitrarily often differentiable, the series
should converge. The values of the variable x for which this is the case define the
region of convergence of the power series.

For a series to be convergent the contributions of the summands must necessarily
approach zero with increasing power of the variable. This allows for an approxima-
tion to the function f(x) by terminating the series after a finite number of terms:

fx) = > ! + R.(0) . (1.24)
n=0 W—l
\ , remainder term

approximate polynomial of m-th degree

At which position the series is to be terminated that depends on the demand of
accuracy.

Example
f(x) = sinx,
(sinx)(z")|x=0 = (—1)"sin0 =0,

(sinx)® V| _ = (=1)"cos0 = (—1)".
That yields with (1.23):

o n+1 3 s

SIHXZZ(—I) m:x_a-’_ﬁ_”.

n=0

The accuracy of the approximation obviously increases with increasing n (Fig. 1.2).

The representation of the function f(x) by an approximate polynomial of finite
degree appears reasonable of course only when the remainder term

R,(x) — 0.
m—00
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Fig. 1.2 Various y

. . . =X 3 5
approximations for the sine N —x- X 4+ X
. . Vs 3 51
function by taking into . / :
account different numbers of | SRe. .
terms of the exact series - > N
expansion N y=sinx
! \
\ T X
m/2
\
\ x’
—_— =xX——
V3 3l

Unfortunately, in many practical applications it is not uniquely predictable. One
knows various types of estimates for the remainder term, e.g. according to Lagrange:

it
R, (x) :f“"“’(é)m , 0<é&<x. (1.25)

We can take the value & € (0, x) for which the right-hand side becomes maximal to
get an upper bound for R,,.

If f(x) is not to be expanded around x = 0 but around an arbitrary position x = xg
then (1.23) must be changed accordingly:

u=x—x = () = flu+x) = g).

We expand g(u) as above around u = 0:

o

80 =Y OO

n=0

g"(0) = £ (0 + xo) .

The generalization to (1.23) thus reads:

[e.]

0 = 3 O (126)

n=0
In electrodynamics the

Taylor expansion of fields”

turns out to be highly important, i.e. the expansion of functions of more than one
variable.
Let ¢(r) be a scalar field and let us expand ¢(r + Ar) around r:

o(r+ Ar) = o(x; + Axp, 0 + Axp,x3 + Axz) = F(t=1) .
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Thereby we have defined:
F(t) = o(x; + Axit,xp + Axpt, x3 + Axzt) = @(r + Arr) .

According to (1.23) we have:

F(1) = Z %F(”) 0)7" .

n=0 """

The chain rule yields:
3 90
F'(0) = —Ax;,
(0) ; g A

32
7 _ )
F"(0) = ;k Ax]Axk—Bxk axj(,o(r)
2

0
2;: ija—xj o(r) ,

n

9
FM(0) = Zija o(r) .
J I

Therewith we have the Taylor series for scalar fields:

n

21 (L 9
(p(r+Ar)=Z; ZAx,-g o(r)
n=0"" \j=1 7

o 1
=2 (Ar-V)'o()
n=0

!
=exp (Ar- V) o(r) . (1.27)

We obtain an approximate polynomial of m-th degree for ¢(r + Ar) if we quit
the Taylor series after m summands. For the remainder term it follows according
to (1.25):

Ry=R,(t=1) = F(’”H)(é)m , 0<E<.
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This means:

3 m+1

1 0

Example Let us expand

o

o(r) = Ty (Coulomb potential of a point charge)
—TIg

around r = 0. r adopts here the role of Ar in (1.27):

n=20:
o
o= =0)=—, (1.29)
Iy
n=1
d o o 0 o Xj — Xjo
N g _Ir_r0| — g g
0x; |r —ro| Ir — 10| dx; [r —rol? |r—rol
0 o
= ijggo(O) = rjzxjxjo .
j J 0
o
@1 = =(r-r), (1.30)
o
n=2

9’ a 0 o
ZXij—anaxj —ll‘ _ I‘0| = ;xj‘Xka—Xk |:_—|l' _ l'0|3 ()Cj —XjO):|

Jk

—a by 3o
= ijxk [l Y + (% — xjo) (x — xko):| )
jik

r—r® |r—rof

2

3

Bl o 8y Xj0Xk0
ija—xj ¢(0) = ijxk (—? + 30—
Jj=1 Jjk

0

la
¢ === [3(r-r0)2 — rzrg] ) (1.3D)
2r
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Therewith we have found the following expansion

o I r-r 13(r-rp)? — 2
o(r) = =a[—+ =+ = ( 0)5 0 4 } , (1.32)
II'—I'()| ro ry 2 o

which will be used in the course of this volume.

1.3 Surface Integrals

In connection with the definition of ‘work’ in Sect.2.4.1 of Vol. 1 we came across
the line integral. The volume integral was introduced in Sect.1.2.5 of Vol. 1.
Another multiple integral is the surface integral, which as a special type of multiple
integrals is frequently used in electrodynamics. Therefore it should be considered
here in proper detail.

1.3.1 Oriented Surface Elements

The position vector of any point of the space trajectory can be written as function
of a single parameter (see Sect. 1.4.1, Vol. 1). Accordingly, surfaces are represented
by two parameters:

F={r(uv); u,veD}. (1.33)

This can be made clear as follows: At first we keep u fixed and vary only v. That
yields a special space curve. Then we change u to u + du. By a subsequent variation
of v we get a second space curve and so on. A further family of curves we obtain
when we fix v and vary u. That corresponds, by the way, to the coordinate lines of a
suitably chosen system of coordinates introduced in Sect. 1.7.1 in Vol. 1. Following
this way we can decompose the total area F' into small elements (Fig. 1.3).

We now give each area element df an orientation, i.e. we consider df to be a
vector such that the direction of df is perpendicular to the area element. Of course
we are then still left with two possibilities for the vector direction. To make it unique
we agree that for surfaces S(V) of a certain space region V the surface vector always
points outwards. Now we have, maybe except for the sign:

df =da x db,

0
da=r(u,v+dv)—r(u,v) ~ a—rdv ,
v

9
db = r(u + du, v) — r(u, v) ~ a—rdu .
u
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Fig. 1.3 Representation of v+dv
an oriented surface element

r(u+du,v)

We can cut off the respective Taylor expansions in both cases after the linear term:

df = ﬁxﬁ dudv . (1.34)
v Ju
The two vectors
or or
v =</ S d u = 5
r % and T o

span a plane which at the point r(x, v) is oriented tangentially to the area F'. It is
therefore denoted as

tangent plane
with the

surface normal

r, Xr,

n(r) = (1.35)

Ir, xr,|
Therewith it follows for the surface element:
df =dfn(r) .

Example: Surface of a Sphere
Parametric representation:

F={r=r(r=R 0,¢); 0<9 <m,0<¢ <27} .
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Fig. 1.4 Oriented surface z
element on the surface of a
sphere

The transformation formulas ((1.389), Vol. 1),

x = Rsin?d cos g ,

y = Rsin?dsing ,

z=Rcos?,
lead to:
ar . .
pri R(cos ¥ cos ¢, cos ¥ sin g, —sin ) ,
ar . . .
Pl R(—sin ¥ sin ¢, sin ¥ cos ¢, 0) .
2

That means according to ((1.393), Bd. 1):

Jar or .
39 = Rey ; % = Rsinve, .

With ey x e, = e, the element of the surface of the sphere reads:
df = (R*sind d9 dg) e, .

It is oriented radially outwards (Fig. 1.4).

Example: Cylindrical Barrel
Parametric representation (Fig. 1.5):

F={r=r(p=R.¢.2): 0<¢ <27, -L/2<z=<+L/2}

Rsinddg

(1.36)
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Fig. 1.5 Oriented surface
element on a cylinder barrel

N

L
2,
1
I L dz
! £
OL’;;EvLsdf
1
_ade
L= _Ll BN

The transformation formulas ((1.381), Vol. 1),

x = Rcosg,
y = Rsing ,
=2z,
lead to:
or
— = R(—sing, cosg,0) = Re, ,
de
Jar

— =1(0,0,1) =e..
=00 =¢
Insertion into (1.34) yields with e, x e, = e,:
df = (Rdy dz)e,, . (1.37)

A befitting representation of the surface element requires the choice of a proper
system of coordinates. It is therefore highly recommendable to look back on the
method of transformation of variables which was introduced in Sect. 1.7.1 of Vol. 1.

1.3.2 Surface Integrals

Let

a(r) = (a1 (r), az(r), a3(r))
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Fig. 1.6 To the definition of

the flux of a vector field a(r) df d
through the surface S of a if
volume V

S(V)

df

a(r)

Fig. 1.7 Flux of a vector
field through infinitesimally
surface elements

be a vector field and V a volume with the closed surface S(V). In electrodynamics
very often the question arises how strongly the vector field a(r) penetrates the
surface S(V) from the inside to the outside and vice versa (Fig. 1.6).

Definition 1.3.1 Flux of a(r) through the area S:

ps(a) = /a(r) -df . (1.38)

N

At each point of the area S the scalar product of the vector field a(r) and the
surface element df is to be generated where the surface element has the direction
of the outwardly directed normal. The flux is thus a scalar quantity and the surface
integral a special case of a multiple integral introduced in Sect. 1.2.5 in Vol. 1.

Let us investigate the surface integral in (1.38) a bit more in detail. For an
approximate calculation we decompose the area S in many small elements Af(r;),
where the argument r; indicates at which position on § the surface element is to be
found (Fig. 1.7). Then

a(r;) - Af(r;)
is the flux through the surface element Af(r;). If the surface elements are sufficiently

small we can assume the field a to be homogeneous on Af, i.e. we can replace it by
a representative value a(r;). We obtain an approximate expression for the total flux
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@s(a) of the field a through the area S by adding up all partial fluxes through the
small areas Af(r;):

ps(a) ~ Y a(r) - Af(r)

1

This expression can be improved step by step by a steady refinement of the elemental
areas Af. The limiting value of these Riemannian sums of the elemental fluxes as
a consequence of the described decomposition of the area into small pieces, which
becomes finer and finer, is denoted as surface integral:

gs(a) = / a(r)-df = lim > a(r) - Af(r) . (1.39)
i=1

N

Precondition here is that this limiting value does exist independently of the type of
the decomposition into elemental areas. So the actual shape of the partial area Af
during the limiting process must be arbitrary.

The surface integral over a closed area is symbolized by a special integral sign:

psv)(a) = 35 a(r)-df . (1.40)

S(V)

Example: Flux of a Homogeneous Field Through a Cuboid
a = (ay,ay,a;); ay ay,a; const

¢ a-df =aba,—aba,+caay,—caa,+cba,—cba,=0.

S(V)

We see that the flux of a homogeneous field through a cuboid is zero (Fig. 1.8).
This result for homogeneous fields can obviously be generalized to arbitrary closed
areas: ‘The flux that is flowing into the volume V is also the flux flowing out’.

Example: Flux of a Radially Symmetric Field Through the Surface of a Sphere
a(r) = a(r)e, (central field) .

For df we use (1.36):

T 2w

¢(a) = R*a(R) / / sin® d® dp = 2ma(R)R*(— cos )]
0 0

= ¢(a) = 4nR%a(R) . (1.41)
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Fig. 1.8 Fluxof a
homogeneous vector field
a(r) through a cuboid df

Example: Flux Through Arbitrary Surfaces
Let S be parametrized by u, v. Then it follows with (1.34):

ps(a) = /a [r(u,v)]- (ﬁ X ﬁ) dudv . (1.42)
dv  Ju
s

The resulting twofold integral is to be solved according to the rules of Sect. 1.2.5 in
Vol. 1.

1.4 Differentiation Processes for Fields

After having discussed in the last section the methods of integration, we now discuss
the relevant differentiation techniques for fields. The divergence (div = V-) and the
curl (rotation) (curl = V) have been already introduced in Sect. 1.5 of Vol. 1. They
will be represented here once more but in a different manner.

1.4.1 Integral Representation of the Divergence

We perform the following considerations in connection with a physical example.
Let AV(r) be a volume with the point r inside. Within this volume one finds the
electrical charge AQ(r). The field lines of the electrical field strength E have their
sources at positive charges and end at negative charges (sinks). If the surface S(AV)
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Fig. 1.9 Positive and
negative charges as sources
and sinks of an electrical field

encloses a positive charge density (Fig. 1.9) then the flux of E through S(AV) will
be proportional to the enclosed charge AQ. One therefore calls

1

AV
S(AV)

E . df the average source density of the field E in AV .

We are interested in the source density at a certain space point r which we determine
by volumes AV(r) becoming progressively smaller around r. We claim that this
source density is identical to the divergence of the E-field defined in ((1.278),
Vol. 1):

1
divE=V.E= lim — 95 E-df. (1.43)
AV—>0 AV
S(AV)

Let us consider a sequence of volumes AV, which are centered around the point
ro contracting themselves onto this point for n — oo. For simplicity we think of
cuboids with edge lengths Ax,, Ay,, Az, which tend to zero for n — oo:

Af; = Ay Aze, = —Af,
Afg, = Ax Azey = —Af4 y
Afs = AxAye, = —Af; .

For the flux of E through the surface of the cuboid we find (Fig. 1.10):

1 1
¢ E.df = //dydz [EX (x0+ EAx,y,z) —E, (xo—EAX,y,Z)}
S(AV) F1
1 1
—i—// dxdz [Ey (x,yo + EAy,Z) —E, (X,yo - EA% Z)i|
F3

1 1

+//dxdy [Ez (x,y,ZOJr EAZ) —E; (x,y,xO—EAz)} .

Fs
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Fig. 1.10 Illustration of a Afs
special sequence of volumes T
for the justification of the T 7] Af
integral representation of the Afy 1 _F- |Az
divergence <—-‘/L, =.|'-;-0 - Af;
AfE ! Ax
Ay

To the integrand we now apply the Taylor expansion (1.26):

95 E.df://dydz [%(xo,y,z)Ax+(’)(Ax3):|
Fi

S(AV)

+// dxdz [aaiyy(x,yo,z)Ay + O(Ay3)i|

F3
oE, 3
4 /f dedy| SE ey w)hz + 082
Fs

With the mean value theorem of integral calculus (see (1.117), Vol. 1) and
AV = Ax Ay Az

we can write:

1 0E, JdE,
— @ E-df = —(x0,y1.21) + O(AX) + —= (x2. 0. 22) + O(AY?)
AV ox dy
S(AV)
)
+3—;(X3,y3,zo) + O(AZ) .
Thereby we have:

1 1
X,X3 € |:x0—§Ax,xo+§Axi| ,
€ 1A + 1A
Y1,¥3 Yo 5 Y, Yo 5 Y

1 1
21,22 € [Zo—EAz,zo—FEAz} .
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During the limiting process AV — 0 these intermediate values must approach xg, o
and zo, respectively, and the correction terms disappear. That means:

E,
Jim ALV 95 E.df = aai = (ro) + %(ro) + aa—%(ro) = divE(ry) = V - E(rp) .
S(AV)
(1.44)
Our derivation by use of a sequence of cuboids represents of course a certain
restriction. In the theory of differential forms the general case is traced back by use
of special mapping theorems to the above situation. Therewith it can be shown that
the integral representation (1.43) of the divergence is valid for all types of sequences
of volumes which are contracted onto the point ry.
Calculation rules for the divergence are presented in ((1.279) to (1.281), Vol. 1).
The general representation by curvilinear coordinates is given in ((1.378), Vol. 1).
Let us further generalize the results of this section. For this purpose we choose
in (1.43) E = agp (a: constant vector; ¢(r): scalar field). Applying ((1.281), Vol. 1)
we can use:

div(ap) = agradp + ¢ diva .
=0
This yields with (1.43) since a is arbitrary :
i 1
gradgp = Vg = lim — df o . (1.45)

AV—0 AV
S(AV)

If we choose instead E = a x b(r), where a is again a constant, while b(r) is a
sufficiently often differentiable vector field, then it follows with (see Exercise 1.5.8,
Vol. 1)

div[a x b(r)] = b(r) - curla —a - curl b(r) = —a - curl b(r)
=0

after insertion into (1.43):

¢ df - [a x b(r)]

S(AV)

—a-curlb(r) = Al‘ilg0 AV

) 1
= AlégoA_Va' 95 b(r) x df .
S(AV)
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Since a is assumed to be arbitrary we can conclude:

1
curlb(r) = V x b(r) = Al‘i/moA_V ¢ df x b(r) . (1.46)
—
S(AV)

We can gather (1.43), (1.45) and (1.46) to the following general

surface integral representation of the nabla-operator

1
Vo...= lim — .
o Alégo AV 95 df o (1.47)
S(AV)

Thereby the small circle means

o = - for scalar fields ¢ <— (1.45)
= . or x for vector fields E,b < (1.43), (1.46).

1.4.2 Integral Representation of the Curl

By ((1.286), Vol. 1) we have introduced the curl, which ascribes to a vector field
a(r) another vector field

b(r) = curla(r) = V x a(r) .
As in the last section for the divergence we are now looking for a corresponding

integral representation which illustrates the geometrical meaning of the curl.

Definition 1.4.1

a(r) : vector field ,

C : closed curve without double-points (‘path’) ,

Zc(a) = ¢ a-dr: circulation of a(r) along the way C . (1.48)
c

The line integral needed for the calculation of Z¢ has been introduced in Sect. 2.4.1
of Vol. 1.

The circulation can be considered in a descriptive manner as a measure of the
vorticity of the vector field a(r) within the area F¢ enclosed by the path C. One
may interpret, for instance, a as the velocity field of a flowing liquid. In Fig. 1.11
the circulation along the circular paths C;, C, is maximal for the field plotted in the
left part of the figure, while it disappears for the field in the right part.
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!ll‘llll\ ‘!Illllil ‘l“lll G
G
G

Fig. 1.11 Vector fields with different vorticities along the circular ways C; and C,

y Ax,
G,
b « 0
S A
0 | Ay,
1
1
N
X x

Fig. 1.12 Tllustration of a special sequence of closed paths for calculating the circulation

We have learned in Sect. 2.4.2 of Vol. 1 that Zc(a) vanishes if V x a = 0. One
therefore may expect that there does exist a close connection between circulation
and curl which we will now derive.

Let C, be a sequence of closed curves in a plane which for n — oo are
contracting to the point ry and let F¢, be the area enclosed by C,. We calculate
the circulation

Zc,(a) = %a-dr

Cy

at first for a special sequence of paths C,,, namely for rectangles in the x, y-plane with
edge lengths Ax,, Ay,, which are passed through in the mathematically positive
sense (Fig. 1.12). The surface normals thus point into the z-direction:

xo+ % Axy

1 1
Zc,(a) = / dx{‘lx (x,yo - EA)’naZO) — ay (x, Yo + EA)’naZO)}

1
X0— 7 Axp

Yot 3 Ay

1 1
+ / dy{ay (x0+§Axn7y7ZO) —dy (XO_EAxn’y’ZO)}

yo— % Ayn
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x0+%A/\fn
day 3
= dx —a—y(x, Y0, 20) Ay, + O (Ayn)
Xo—%AXn
Yo+ 3 Ay
day 3
+ dy E(XOv ¥:20)Ax, + O (Axn) :
Yo—3 Ayn

In the last step we have applied the Taylor expansion. If we still exploit the mean
value theorem of integral calculus, where

1 1 1 1
X € __Am _An ) y € __Anv _An
X [xO 2xx0+2 X} y [yo 2yyoJrz y}
then it follows in the next step:
day _ 4 Oay _ 3
ZCn (a) = _8_y(x7y07 Zo)Aan)’n"i‘O (Aanyn)'i_a_)é(xm ys ZO)Aany11+O (AynAxn) .

By the limiting process n — 00,
Ax, =0, Ay,—0; Fc, =Ax,Ay, =0,

the way C,, contracts onto the point ro. The intermediate values x, y reduce to x, yo:

. Zg, day, da, .
Tim Fz = [—a—y(l‘o) + a—;(ro)] + lim [0 (Ay;) + O (Ax])]

day,  Oay

- (g - a—y) (o) = [V x a(ro)].

According to ((1.286), Vol. 1) the right-hand side represents just the z-component
of the curl of a.

We can now repeat the same consideration for sequences of areas F¢,, which
are oriented in, respectively, x- and y-direction obtaining then correspondingly the
x and y components of the curl. These can be gathered by the following important
line integral representation of the curl:

1

n-curla(r) = Flirno o 95 a-dr, (1.49)

c—> C
c

n is the surface normal of F¢. One can interpret the curl as areal density of the
circulation.
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Calculation rules for the curl are listed in ((1.287) to (1.293), Vol. 1). The
representation in arbitrary curvilinear coordinates is given by ((1.380), Vol. 1).

In the last section we were able to derive from the integral representation of
the divergence a general expression for the nabla-operator in the form of a surface
integral. In a similar way we succeed in representing the nabla-operator by line
integrals. Let

a(r) =b-o(r),

be a vector field where b is a constant vector and ¢(r) a scalar field. Then ((1.289),
Vol. 1) can be used:

curla = ¢ curlb +(gradgp) x b = (grady) x b
=0

= n-curla=n-(Vpxb)=b-(nx V).
Since the vector b is arbitrary, it follows from (1.49):

) 1
nx Vg = Flclglo ITC ¢ o(r)dr . (1.50)
c

If we now choose
a(r) =b xE(r) ..

then we get, by exploiting the cyclic invariance of the scalar triple product several
times:

n-cula=n-[Vx(bxE)]=[Vx((bxE)]-n
=mxV)-(bxE)=—-nxV)-.(Exb)
=—b:[(nx V) xE]

Note that V acts only on E since b is a constant vector! Inserting this result together
with

[bxE(r)]-dr=(Exdr)-b=—b-(dr xE).

into (1.49) we come to:

1
(nxV)xE:Flclgochygder(r). (1.51)
c
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From (1.49)—(1.51) we can read off a general

line integral representation of the nabla-operator

1
(nxV)A...zlim—ggdrA..., (1.52)
Fc—0 F¢
c

where A stands for:
«o(r) < (1.50),

XE(r) < (1.51),
a(r) < (1.49).

1.5 Integration Theorems

1.5.1 The Gauss Theorem

In connection with the introduction of the divergence in Sect. 1.4.1 we found:

E.df = AVdivE(r) + AV -O (AV2/3) ]
S(AV)
The remainder disappears in the limit AV — 0. We now place alongside the

partial volume AV;(r;) a further cuboid AV;y (r;y;) which has a side face in
common with AV; (Fig. 1.13):

E.df + 95 E - df = AV,divE(r;) + AV;4+1divE(r;+1) + remainder .
S(AV)) S(AVit1)
The contributions of the common side face to the surface integrals on the left side

of the equation just cancel each other because of the opposite directions of the
respective surface normals (Fig. 1.13). What remains is only the surface integral

Fig. 1.13 Justification of the df=—df;

Gauss theorem by the flux of / /

the vector field E through the : / i /
1

surfaces of infinitesimally |
small volumes )'%_ - L ?_ |-
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over the envelope surface of the total volume. This procedure can be continued and
a given volume V can be filled that way by a number of small cuboids AV;. The
contributions of the common side faces are not included anymore and we obtain an
approximate expression for the flux of the vector field E through the surface S(V):

35 E.df ~ Xn:divE(ri) AV; + Z INACIINAD
S(V) i=1 i=1

We can now let the decomposition of the volume become finer and finer. That
does not change anything on the left-hand side, while on the right-hand side the
first summand becomes a typical Riemannian sum and therewith finally a volume
integral (Sect. 4.2, Vol. 1). The correction term on the right-hand side tends to zero:

Zn: AV; O (AVI.Z/?’) < Z AV
i=1

i=1
Therewith we eventually arrive at the important

— 0.
n—>o0

mlax(’) (AV?/S)

Gauss theorem

Let E(r) be a sufficiently often differentiable vector field and V be a volume with a
closed surface S(V). Then it holds:

/divE(r) &r= 95 E-df. (1.53)

v S(V)

This extremely useful theorem connects volume properties of a vector field with its
surface properties. Let us add some special remarks:

(a) Vorticity flux through a closed area:

9§cur1a-df= / diveurla d®r=0. (1.54)
N’
S(V) Vv =0

(b) Let j be the current density (current per unit-area) then gSS(V j - df will be the
current through the surface of the volume V. Further let p be the charge density
(charge per unit-volume) and therewith d/ 0t fv p d*r the temporal change of the
total charge in V, then the latter must be opposite and equal to the charge current

through the surface:
ap !
dr— j-df=0.
/ "ot + 9§J

v S(V)
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We use the Gauss theorem to get:

0
/d3r (a—i) +divj) =0.
v

This relation is valid for arbitrary volumes and therefore can be correct only
if:

9
3—‘; Fdivj=0 (1.55)

This is the fundamental continuity equation, the physical content of which will
get an in-depth discussion later.

Let us derive the Gauss theorem for scalar (!) fields. For this purpose we take
in (1.53)

E(r) = Ag(r)

where A is an arbitrary constant vector and ¢(r) a scalar field. With ((1.281),
Vol. 1) we can write for the divergence:

divE(r) = ¢(r) divA +A - grade .
=0

This inserted into (1.53) yields since A is an arbitrary vector:
/gradgo dr = ¢ pdf . (1.56)
v %)
We now choose
E(r) = A xb(r),

where A is again a constant vector and b(r) a vector field. We apply (see
Exercise 1.5.8, Vol. 1)

div(A xb) =b-curlA—A-curlb
~———
=0
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and find therewith:

¢df-(Axb):—A- dfxb

S(V) S(V)

/div(A xb)d’r = -A- / curlbd®r .
\%4 \%4

Because of (1.53) we then have:

/curlbd3r= 95 df xb . (1.57)

v S(V)

Equations (1.53), (1.56) and (1.57) are different formulations of the Gauss
theorem which can be combined symbolically as follows:

9§dfo...=/d3rvo... (1.58)

S(V) 4
Thereby the small circle means the same as in (1.47):

o = - for scalar fields ¢ ,

= . or x for vector fields E, b .

1.5.2 The Stokes Theorem

With a method of proof very similar to that of the last section we are now going to
derive a theorem which combines, for an arbitrary vector field, the line integral
over the boundary of an arbitrarily large and arbitrarily oriented area with the
corresponding surface integral.

Let the area F be bordered by the boundary curve C. It need not thereby nec-
essarily be about a plane area. However, the considered area can be approximately
represented by a collection of n area elements AF;, which may be so small that each
of them may be considered as plane. The directions of the various area elements
need not be parallel. The area elements are bordered by curves C; which build with
AF; a right-handed system (right-twisted screw) (Fig. 1.14).

On the way to the integral representation of the curl (1.49) we found the
intermediate result:

AF; - curla(r;) + AF; O(AF;) = gga - dr.

Ci
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Fig. 1.14 To the justification
of the Stokes theorem by
inspecting the circulations of
a vector field on the edges of
infinitely small and arbitrarily
oriented area elements

The area element AF; | has together with AF; a common piece of boundary curve
which, however, is run through on C; and C;4; in opposite directions (Fig. 1.14).
If one adds to the last equation the corresponding equation for i + 1 then the
contribution of this common piece to the total line integral vanishes. What is left
is the integral over the boundary curve C;y(+1) which runs around the total area
AF; v AF;y;. Summing up the n area elements one gets:

> AF;-curla(r) + Y AF; O(AF) = 95 a-dr.

— —
! ! Cito+..4n

We now make the decomposition of the area finer and finer filling therewith F' more
and more exactly. The correction term on the left-hand side then disappears in the
limit n — oo:

> AF; O(AF) < F-max|O(AF)| —> 0.
1 n—>oo
i=1

The first summand is again an ordinary Riemannian sum and the path Ci424 . 4
becomes identical to C. That eventually results in the
Stokes theorem

Let a(r) be a sufficiently often differentiable vector field and F be an area with the
boundary curve C(F) = OF then it holds:

/a-dr: /curla-df. (1.59)

oF F

We want to follow up here also a first discussion of this fundamental theorem.
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Fig. 1.15 To the calculation 6
of the flux of a curl field u
through a closed area w

(a)

(b)

()

Way-independence of line integrals
With the discussion of conservative forces F in Sect.2.4.2 of Vol. 1 we had
found as possible criteria for the existence of a potential:

curl]F =0 and %F-dr:O
c

The equivalence can easily be proved by the use of Stokes theorem: Let
_(ﬁc F - dr = 0 for arbitrary closed paths C. That means with Stokes theorem
¢Fc curl F-df = 0 for arbitrary areas F¢. But this is possible only if curl F = 0.
Vorticity flux through a closed area

A closed area can be thought to be originated by a contraction of the
boundary curve C = JF onto a single point. But then it must be (Fig. 1.15)

¢a-dr=0,
OF

since the length of the boundary approaches zero. According to (1.59) it follows
then

9§curla-df:0 (1.60)

F

for each vector field a(r). The same result we could already derive with (1.54)
from the Gauss theorem.
Special example

Assume

a(r) = %er; B = const .
Then it holds (see Exercise 1.5.7, Vol. 1):
curla(r) = B.
This leads with the Stokes theorem to

/a-dr:/curla-df:B-/df:BFJ_. (1.61)

JoF F F
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The value of the integral turns out to be independent of the shape of the
boundary curve dF, thus also independent of the shape of the area F. Decisive
is only the projection F'j , the area perpendicular to B.
Stokes theorem for scalar fields

We take

a(r) = Ap(r),

where A is an arbitrary constant vector and ¢(r) a scalar field. By use of
((1.289), Vol. 1):

curla = ¢ - curlA +gradp x A .
=0

we get from (1.59):
A-/ @dr = / df - (gradp x A) =A-/ df x grady .
aF F F
It follows since A is arbitrary:
/ pdr = / df x grade . (1.62)
aF F

Stokes theorem for vector fields
We now take

a(r) = A xb(r),

where A is again an arbitrary constant vector. After repeated application of the
cyclic invariance of the scalar triple product one gets:

/(Axb)-dr:A-/bxdr“ég)/cuﬂ(Axb)-df

oF oF F

:/[Vx(Axb)]-dfz/(dfo)-(AXb)
F F

:—/(dfo)-(be)=—A-/[(dfo)xb(r)]
F

F

(V acts only on b(r)!).
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Therewith we have found:

/dr x b(r) = /(dfx V) x b(r) . (1.63)
F

oF

Equations (1.59), (1.62) and (1.63) are different versions of the Stokes theorem
which can be combined symbolically as follows:

/drA...:/(dfo)A.... (1.64)
F

oF

The symbol A is to be understood as in (1.53):

A o(r) < (1.62),
-a(r) < (1.59),
xb(r) <= (1.63).

In the second line curla - df = (df x V) - a has been used.

1.5.3 The Green Theorems

As simple applications of the Gauss theorem two valuable formulas can be derived
which are called ‘Green theorems’, ‘Green identities’ or ‘Green laws’.

Let ¢, ¥ be two at least twofold continuously differentiable scalar fields and V a
volume with a closed surface S(V). We define the vector field

E(r) = ¢(r) grady/ (r)

and apply to it the Gauss theorem (1.53). For this purpose we need divE, where we
exploit ((1.281), Vol. 1) and ((1.282), Vol. 1):

divE(r) = div(p grady) = ¢ div grady + gradys - grade
=AYy +Vy-Vo.

We still introduce the (position-dependent!) surface normal n(r),
df =ndf ,
finding therewith:

E-df = p(Vy -n)df .
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Definition 1.5.1 Normal derivative of y on S(V):

Vl//-nza—l// . (1.65)
on

With these preparations the Gauss theorem (1.53) yields:
First Green Identity

/((p AV + (VY - Vo) d’r = 95 —df (1.66)

S(V)
In the above derivation, if we interchange the fields ¢ and ¥ and subtract the
resulting expression from the first Green identity (1.66) then we get the

Second Green Identity

9 9
/(sko—wAw)d3r= ¢( a—w—w q0) df . (1.67)
n
14

S(V)

If we finally still choose ¢ = 1 in (1.67) then it follows a further useful identity:

/chﬁr: 95 a—l//df (1.68)

v S(V)

1.6 Decomposition and Uniqueness Theorem for Vector
Fields

In this section we want to prove two propositions which are of great importance
for vector fields. When combined they tell us that under certain preconditions each
vector field a(r) is uniquely determined by its source field diva and its vortex
field curla. Or in other words: Each vector field can be uniquely represented as
a sum of a curl-free and a source-free part. For the proof of these propositions some
preparations are necessary.

Assertion

1 1
—r)y=——"A——. 1.69
Sr—r) = 4 |r—r'| (1.69)

Proof We have to show that this representation of the §-function fulfills the two
relations (1.2) and (1.3):
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(A r#r,8r—-r)=0:

—1 di d —1 di r—r
— = dlIvgrad—— = dlV——
r—r] S Ty r—r

((1.281), Vol. 1) div(r —r’)

1
T +(@r—r)-grad——

r—1r/|3

((1.284), Vol. 1) 3 C3r—r)- r—r 1
r—r'? r—v'||r—r/|*
=0.

Therewith property (1.3) is verified.
(b) We still have to show:

/d3r8(r—r’) = { L. ifr eV,

0 otherwise
v

We thus inspect:

Because of part (a) the integrand is zero for ¥ # 0. This leads to a first
conclusion:

1 _

/d3?A;:=O, ifr=0&V.
r

1%

If V contains the zero point then we are obviously allowed to replace, without

changing the value of the integral, V by a sphere the center of which coincides
with the origin:

1 1 e

/ PF A= = / d*rdiv (grad;:) (2 / df.(_qe;)
r r r

v

Vk S(Vk)

2 m
- 1
2 / dg / sind di 73 e; - (—qe;) = 4.
Fo
0 0

7o is the radius of the sphere. We have therefore found all in all:

1 —47 ,ifr eV
d*rA = ’ ’ 1.70
/ " r —r| {O, ifr' ¢ V. (1.70)

This corresponds to (1.2). The assertion (1.69) is therewith proven.
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1.6.1 Decomposition Theorem

Let a(r) be a vector field which is defined in the whole space and which, including
its derivatives, tends to zero at infinity with sufficiently high order. Then a(r) can
be written as a sum of a curl-free (longitudinal) and a divergence-free (transversal)
part:

a(r) = a(r) + al(r) , (1.71)
curlay =0; diva,=0. (1.72)

The transversal part is thereby fixed by the curl of a(r) and the longitudinal part by
the divergence of a(r):

a(r) = grada(r) , (1.73)
a(r) = curl B(r) , (1.74)
a(r) — __/ 3 / C};Vf(rr/ll) (175)
B(r) = E/di”r’clurﬂfagll). (1.76)

Proof For the following reformulations we will apply several times the previously
derived formulas:
curlcurlA = grad(divA) — AA ((1.293), Vol. 1) ,
div(pA) = @divA + A - grady ((1.281), Vol. 1)

If it is not unique onto which variables the differential operators act then we provide
the respective symbols with additional indexes:

1 J
—curl,curl,/d3r’ a(r)
47 [r—1r’|

1 N /
= e, / &7 div, 2 _ / & A, 2
T

| - A r —r'|

1 1
= —gradr/d?’r/% div,a(r’) +a(r’) - grad, ——
4 r — 1’| —_—

"r—r|
+ / aA*ra@)s(r—r')

1 1
=a(r) — Egradr / &r a) - gradr,m
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1 1
=a(r) — Egrad, / d*r div, (a(r’) P r’|)

div,-a(r’)

1
—grad, | d&°/
+4ngra,/ r r—r|

=a(r) —a(r) — %gradr/ dr a(r')

S(V—00) |I‘—l‘/| '

In the last step we have used the Gauss theorem. Since according to our assumption
the vector field a(r) vanishes at infinity sufficiently rapidly, the surface integral does
not contribute:

a(r’)

Ir—r|’

1
a(r) = ay(r) + —curl, curl, / &r
4

We still manipulate the last summand a little bit:

a(r ol. 1 1
curl, / gy 2 _ 2. h / & curl,a(r') —a(r’) x grad, ——
Ir — 1| [r — 1| —— [r —r/|

1
/ &*r a(r') x grad, ——
Ir—r'|

- [ @, 20 4 [ curl a(r’)
Ir —r'| r—r|

A
asn / ar < 2 s
S(V—00) Ir—r|

The surface integral vanishes in this case, too, so that it remains:

1 /
—curl, curl, / a4 r’ﬂ = curl B(r) = a,(r) .
47 [r—1r’|

Therewith the decomposition theorem (1.71) is proven.

1.6.2 Uniqueness Theorem

The vector field a(r) is uniquely fixed if for all space points

diva(r) sources ,

curla(r) vortexes

are known.
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Proof Leta,(r), ax(r) be two vector fields with

diva;(r) = divay(r) ,

curla;(r) = curlax(r) .
For the difference vector
D(r) = a;(r) —ax(r)
it then holds:
divD=0; curlD=20.

The latter relation implies

D=Vy,
so that we have with the first relation:

Ay =0.
We now use the first Green identity (1.66) for ¢ = :

/[WAW +(Vy)*] &r = 95 YVY-df=0.
S(V—>00)

The surface integral vanishes because of the presumption concerning the behavior
of the fields at infinity. It remains:

/(v¢)2d3r=0<:> Vy=0=D.

From this it follows the assertion a;(r) = a,(r).
Conclusions

1. A vortex-free field (curla = 0) is a gradient-field! Because according to (1.71)
and (1.76):

a(r) = ay(r) = gradu(r) .

2. A source-free field (diva = 0) is a curl-field! This follows from (1.71)
and (1.75):

a(r) = a, = curl B(r) .
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3. In general a(r) is a superposition of a curl- and a gradient-field:
a(r) = grada(r) + curl B(r) .
4. The scalar potential «(r) is obtained from the sources of a(r):
Aa(r) = diva(r) . (1.77)
5. The vector potential 8(r) is obtained from the vortexes of a(r):

AB(r) = —curla(r) . (1.78)

1.7 Exercises

Exercise 1.7.1 Show that Dirac’s §-function §(x — a) can be written as limiting

value of the function
1 (x—a)?
filx—a) = exp (— )
V7N n

forn — 07,
Exercise 1.7.2 Verify the following representations of the §-function:

1
lim Im—— = +78(x —a)
n—o0t  (x—a) Fin

(Im: imaginary part).
Exercise 1.7.3 Let g(x) be a differentiable function with simple zeros
Xu (g(x,) =0, g'(x,) # 0). Prove the following identity:

1
&’ ()|

55 =Y 8(x— 1) -

n

Exercise 1.7.4 Calculate the following integrals:

+5
1./(x2—5x+6)8(x—3)dx,
-2

B
2/qw—ﬂwwa—@w,
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3. /xZS(xZ—3x+2)dx,
0
+o0

4, / Inx8 (x —a)dx,
0

5. /sin3 ) (cosﬂ — Cos z) dv .
3
0
Exercise 1.7.5 Write down the two-dimensional §-function

1. in Cartesian coordinates,
2. in plane polar coordinates!

Exercise 1.7.6 Determine the Taylor series of the following scalar fields:

1. ¢(r) = exp(ik-r) (k = const),

2. ¢(r) = |r —ro| (up to second order) .
Exercise 1.7.7 Integrate the function

fly) =x%y’

. over the triangle area (0,0) — (1,0) — (1, 1),

. over the area of a circle around the origin with the radius R,

3. over an area for which the boundary consists of a circle around the origin with
radius R plus the positive x- and the positive y-axis.

N —

Exercise 1.7.8 Calculate for the rectangle with the edge points (b, 7 0),
(0.4%.0). (0.0. %), (b.0. %)
1. the vectorial surface element df,
2. the vector of the total area F,
3. the flux of the field
a(r) = (yz, 2xy, 37 —xz)

through the area F of the rectangle.
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Exercise 1.7.9 Calculate the flux of the vector field a(r) through the surface of a
sphere with the radius R and the origin as its center:

1. a(r) = 312 ,
;

(x,y,2)
Va+ 2y +22°

3.a(r) = 3z, x, 2y) .

2.a(r) =

Exercise 1.7.10 Given a cylinder with height L and radius R. The midpoint of the
cylinder coincides with the origin of coordinates.

1. Find suitable parametrizations and calculate the vectorial element df of the
cylinder surface (barrel and front faces)!
2. Calculate without using the Gauss theorem the flux of the vector field

E(r) =ar (o = const)

through the cylinder surface.
3. Confirm the result of part 2. by applying the Gauss theorem!

Exercise 1.7.11 Calculate for the vector field

a(r) =or
the vectorial double integral
¥ = / a(r) x df
F

over a sphere (radius R, center at the origin of coordinates) and over a cylinder
(radius R, length L).

Exercise 1.7.12 In case of known charge density p(r) one can determine by

szfmm

the total electric charge QO and by

p=/fnmn
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the electric dipole moment p of the charge distribution. Calculate these quantities
for a homogeneously charged sphere with radius R:

po,ifr <R,

r) =
p(r) 0 otherwise .

Exercise 1.7.13 Prove the following useful relations:

1. Gradient of a scalar product:
V@:-b)=(b-V)a+(a-V)b+bx(Vxa)+ax(Vxh),
2. Divergence of a vector product:
V.-(axb)=b-(Vxa)—a-(Vxb),
3. Curl of a vector product:
Vx((@axb)=(-V)a—-b(V-a)—(a-V)b+a(V:b).

Exercise 1.7.14

1. Evaluate the divergence in arbitrary curvilinear-orthogonal coordinates y;, y», y3
(see (1.250), Vol. 1) using its integral representation

1
divE = lim — sﬁ E.df.
AV—0 AV
S(AV)

In the process use for AV the volume of the differential scalar triple product built
by the y;-coordinate lines (Sect. 1.7., Vol. 1).

2. Express the divergence by cylindrical coordinates.

3. Formulate the divergence in spherical coordinates.

Exercise 1.7.15

1. Use for the evaluation of the curl in arbitrary curvilinear-orthogonal coordinates
Y1, Y2, y3 the integral representation

1
n-curla(r) = Flimo A 95 a-dr.
c—> C
c

2. Express the curl by cylindrical coordinates.
3. Express the curl by spherical coordinates.
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Exercise 1.7.16 Calculate

1. the components of grad (e - r) with spherical coordinates,
2. dive,, grad divey, curl e, div e,, curl ey with spherical coordinates,
3. the components of curl (e x r) by the use of cylindrical coordinates (¢ = const).

Exercise 1.7.17 Demonstrate that for a conservative force field F(r) the integral

¥ = ¢ F(r) x df
S(v)
over the closed surface of an arbitrary volume V always vanishes.

Exercise 1.7.18 Let the vectors E(r, ¢), B(r, ¢) fulfill the relation

d
1E=—-—B.
cur o

At an arbitrary point of time #p, B = 0 for all r. Show that for all times it must then
hold divB = 0.

Exercise 1.7.19 Givenis an area F = Fe, in the xy-plane:

1. F: circle with radius R around the origin,
2. F: rectangle with side lengths a and b.

Show first by a direct calculation and then alternatively by use of the Stokes theorem

that
/rxdrzZF.

JoF

Interpret the result geometrically and find reasons why the relation is valid even for
arbitrary areas F!

Exercise 1.7.20 Given is a vector field
a(r) = (0,0.y)
as well as the area F' which is defined as the part of the plane
6x+3y+2z=12.

lying in the first octant (Fig. 1.16).

1. How does the parameter representation of the area F read? Find the vectorial area
element df.
2. Calculate the flux of a through F.
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Fig. 1.16 The area F as part
of the plane 6x+3y+2z = 12
framed by the way
C=C+GC+G

3. Find reasons why a can be represented as curl-field curl B(r). Is the choice of
B(r) unique? Determine a possible S(r)!

4. Calculate once more the flux of a through F, but now via a line integral along the
path C = C; + C; + C;. Confirm therewith the result of part 2.! What influence
does the non-uniqueness of S(r) have?

Exercise 1.7.21 Prove the following relation, generally valid for vector fields
a(r), b(r):

/d3rb-cur1a= /d3ra-curlb+ 515 df-(axb).

% 14 S(V)

Exercise 1.7.22 Calculate for the vector field

a(r) = (—y(? + %), x (& + %), xy2)

Zg a(r) - dr

along the circle lying in the xy-plane with its center at the origin of coordinates and
the radius R.

the line integral

Exercise 1.7.23 Are the following vector fields pure gradient-fields or pure curl-

fields?

1. a(r) = xe, + ye,,

2. a(r) = (bax, zcosyz, ycosyz),

3. a(r) = (x(z =), ylx —2), 2(y =),
4. a(r) = (x%y, cosz’, zy).
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Exercise 1.7.24 Two scalar fields ¢; (r), ¢2(r) both fulfill within the volume V the
differential equation:

Ap(r) =f(r) Poisson-equation
On the surface S(V) it holds ¢; (r) = @a(r). Verify that then

@1(r) = @a(r) inV

Hint: Use the Green theorems for ¥ (r) = ¢;(r) — @a(r).

1.8 Self-Examination Questions

To Section 1.1

1. What do we call a distribution?

2. Which requirements do define Dirac’s §-function?

3. List the most important properties of the §-function.

4. How does the three-dimensional §-function read in curvilinear coordinates?

To Section 1.2

1. Under which conditions can a function f(x) be expanded as a Taylor series?

2. What does one understand by the approximate polynomial and the remainder
term, respectively, of a Taylor series?

3. How does the estimation of the remainder term according to Lagrange look like?

4. Give the Taylor expansion for a scalar field ¢(r).

To Section 1.3

. What is to be understood by the orientation of an area element?

. What is a tangent plane?

. What is the parameter representation of the surface of the sphere (radius R)?

. Calculate the oriented surface element of the cylindrical barrel!

. Is the flux of the vector field a(r) through the area S a vector or a scalar? How is
the flux defined?

. Define the surface integral!

. Formulate the flux of a homogeneous field through the surface S(V) of an
arbitrary volume V!

r
8. What is the flux of the field a(r) = « - — through the surface of sphere which has
r
the radius R and its center at r = 07

| SN N B N R

~N

To Section 1.4

1. What does one understand by the average source density of the field E in the
volume V?
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. How can one get from the average source density the divergence of the E-field?
. How does the general surface-integral representation of the nabla-operator read?
. What does the circulation of the field a(r) along the way C mean?

. What is denoted as vorticity of a vector field?

. Which connection does exist between circulation and curl?

. Formulate the line-integral representation of the curl!

. What is the general line-integral representation of the nabla-operator?

To Section 1.5

N —

~N N W

. Formulate the Gauss theorem!
. What can be said by use of the Gauss-theorem about the vorticity-flux curl E of

a vector field E(r) through a closed surface?

. Which form does the Gauss theorem have for scalar fields?

. Formulate the Stokes theorem!

. Answer the question 2. by use of the Stokes theorem!

. Which form has the Stokes theorem for scalar fields?

. How can the Gauss and the Stokes theorem for all types of fields be written in a

general (symbolic) form?

. What does one understand by the normal-derivative of a scalar field on the area

S?

. What are the first and second Green identities? How can one derive the second

identity from the first?

To Section 1.6

1.

What does the decomposition theorem tell us?

2. What does one understand by the longitudinal, what by the transversal part of a

B~ W

vector field? By which properties of the field are they determined?

. What is expressed by the uniqueness-theorem?
. What can be said about a curl-free (source-free) field?
. What does one understand by the scalar potential and what by the vector potential

of a vector field?



Chapter 2
Electrostatics

2.1 Basic Concepts

2.1.1 Charges and Currents

The fundamental terms of classical mechanics,
mass, length, time

are more or less directly detectable by our sense organs and by our inherent
sense of time, respectively. In a certain sense we can perceive them without any
auxiliary experimental means. In electrodynamics there comes along as fourth basic
quantity the

charge,

the observation of which, however, requires special auxiliary means. We do not have
a sense organ for a direct perception of electrical phenomena. That makes them for
the beginner imperceptible and conceptually quite difficult.

Already before Thales of Miletus (625 to 547 BC) it was known that certain
bodies change their properties if they are rubbed against other bodies. If, for
instance, a piece of the mineral amber (Greek: electron) is rubbed by a cloth then it
is able to attract small, light bodies (grains, scraps of paper or the like). The thereby
acting forces can not be explained mechanically. One therefore states, simply for a
start, that the rubbed material finds itself in an

electric state

One observes further that this state can be transferred to another body by touching.
This can be expressed most elegantly by introducing a substance-like quantity,
namely the

electric charge Q
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This quantity is considered to cause the above-mentioned forces. By a proper contact
it can ‘flow’ as

electric current /

from one body to another.
Experimental experience tells us that two types of charges exist which, rather
arbitrarily but appropriately, can be discriminated as positive and negative:

Q > 0: positive charge , @1
QO < 0: negative charge .

The sign of the charge is fixed in such a way that rubbing a rod of glass leaves behind

the charge QO > 0 on the rod, while rubbing a rod of ebonite (hard rubber) leads to

the charge Q < 0. This fixing has the consequence that the charge of the electron,

which is chosen as the natural unit, is negative. As to additive and multiplicative

numerical calculations the charges behave like usual negative and positive numbers.

Total Charge

0=Y a- 22)

i=1

O = 0 means firstly only that positive and negative charges are cancelling each

other, and not necessarily that the whole body is built up by electrically neutral

pieces. Removing positive charge makes the body negatively charged and vice versa.
For charges a conservation law is found:

In a closed system the sum of positive and negative charges is constant.

In the above-mentioned rubbing-experiments no charge is thus created; only
positive and negative charges have been spatially separated from each other.

For a deeper insight into electromagnetic processes the decisive experimental
finding is that the charge, as we know it from matter, possesses a quantized, atomic
structure. There exists the smallest, no further fissionable

elementary charge e

Each other charge can be written as an integral multiple of e:

Q=ne; nez. (2.3)
Examples
electron: n=-1,
proton: n=-+1,
neutron: n=20,

atomic nucleus: n = Z (atomic number) .
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Experimental proofs of the charge quantization are:

1. the electrolysis (Faraday’s law),
2. the Millikan’s experiment.

An important term for the electrodynamics is the
charge density p(r),

which is to be understood as charge per unit volume. Using it the total charge Q in
the volume V is calculated as

0= / &*rp(r) . (2.4)

Vv

In strict analogy to the concept of the mass point in classical mechanics one
introduces for the electrodynamics the

point charge g,

if the charge distribution is of negligible extension in all directions. We therefore
have as charge density of a point charge:

p(r) = g8(r—ro) . 2.5

This abstraction frequently means a strong mathematical simplification, which,
however, sometimes, has also to be handled with care.

The fact that charged bodies exert forces on each other can be used for measuring
the charge (electrometer). One observes that charges with the same sign repel each
other while charges with different signs attract. That can very easily be demonstrated
by a ‘charge balance’ (Fig.2.1).

For a tentative (!) definition of the unit of charge we apply the concept of the
point charge:

Two point charges of equal magnitudes, which exert on each other in the vacuum
at a distance of 1 m the force

1012

F=——_N, 2.6
4m - 8,8543 (26)

+(-)
T ~(+) )

Fig. 2.1 Schematic representation of the charge balance
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both possess the charge
1 coulomb (1 C) = 1 ampere-second (1 As) .

The meaning of this definition will become clear later. For the elementary electric
charge e it leads to the value:

e=1,602x107"°C. (2.7)

As already mentioned moving charges build an electric current or a
current density j(r)

IJT: normal unit vector in the direction of the moving charge,

| j|: charge which is transported per time unit through the unit of area
perpendicular to the direction of the current.

Example Homogeneous distribution of N particles each with the charge g in a
volume V all of which have the same velocity v:

j=nqv, n:V. (2.8)

As (strength of) current / through a given area one denotes then the following
surface integral:

I:/j-df. 2.9)

F

The unit of current is ‘ampere’ 1 A. A current of the strength of 1 A transportsin 1s
just the charge of 1 C. Later it will be shown that the exact definition uses the mutual
force acting between two conductors (wires) both carrying a definite current.

The conservation law of the charge can be formulated as continuity equation:

dp

5 Tdivi=0. (2.10)

We have already derived this relation earlier (1.55) by the use of the Gauss theorem.
For the derivation we had presumed that the temporal change of the total charge
in an arbitrary volume V must be oppositely equal to the charge current through
the surface S(V). However, this expresses nothing but the charge conservation in a
closed system.
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2.1.2 Coulomb’s Law, Electric Field

We now investigate a bit more precisely the manner how charged particles interact
with each other. Thereby we first rely exclusively on the experimental experience.
Let two charges ¢g; and ¢, have the separation (Fig.2.2)

ra = [rpl =|r—rf.

which is very much larger than the linear extensions of both the charge distributions
so that it should be allowed to consider them as point charges. Then the force acting
between the two charges is given by the Coulomb’s law:

ry—n

Fo=kqiq =-Fy . (2.11)

Iri —raf?
Fy, is the force exerted by the charge 2 on the charge 1. Equation (2.11) is to be
considered as an experimentally uniquely verified matter of fact. The constant k
depends on the medium in which the point charges are located, but of course also
on the units which we use for measuring the basic electrical quantities. This will be
explained below somewhat more precisely.

The Coulomb-force F1,

1. is directly proportional to the charges q1, ¢»;

2. is inversely proportional to the square of the distance between the two charges;

3. acts along the connecting line, attractive for charges with opposite signs and
repulsive for those with the same sign;

4. fulfills action = reaction.

Decisive precondition for the validity of (2.11) is that the considered charges are at
rest. In case of moving charges additional terms appear which we will discuss in
detail at a later stage of the course.

For the electrostatics equation (2.11) is to be accepted as experimentally
established basic law. The full formalism of the electrostatics is based on (2.11)
together with the so-called ‘principle of linear superposition” which corresponds
to Newton’s fourth axiom for classical mechanics ((2.47),Vol. 1). It states that the
Coulomb-forces on the charge g; due to several other charges g; are adding together

Fig. 2.2 Arrangement for the 9
formulation of the Coulomb’s
law
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vectorially:

ry—r;
Fl_ququ| P (2.12)

The Coulomb’s law connects charges with purely mechanical quantities what can
be used for the definition of the unit of charge. Unfortunately, for electrodynamics
there exists quite a series of different systems of units, with in principle are
all equivalent being only suitable for different intended uses. Since the precise
specifications, strictly speaking, can be understood only after one is familiar with
the full electrodynamics, we restrict ourselves here to a few preliminary remarks:
(1) Gaussian System of Units (cgs-System)
This is defined by

k=1,

where the charge unit (CU) derives itself uniquely with (2.11) from mechanical
quantities, i.e does not represent a new basic quantity:

1 CU = 1 cmdyn'/? (ldyn - 1g¥) . (2.13)
S

Two unit charges with a separation of 1 cm exert on each other a force of 1 dyn.

(2) SI: International System of Units (MKSA-System)

(SI because of Systeme International d’Unités). In addition to the mechanical basic
units meter (M), kilogram (K), second (S) comes along as electrical unit the ampere
(A) for the strength of current. That yields for the charge unit

1 C(coulomb) = 1As.

The ampere is defined such that the constant k in (2.11) is given by:
N
k=10""¢ — .
A2
Thereby

¢ = 2,9979250 - 10° = (2.14)
S
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is the speed of light in vacuum. One takes

1
k= 2.15
4 €0 ( )

with the permittivity of vacuum ¢, (also dielectric constant of vacuum)

A%g? A
€ = 8.8543. 1012 N_niz = 8.8543.10"12 ﬁ . (2.16)

Here we have further used
Nm
1V (volt) =1 — 2.17)
As

To keep the confusion to a minimum we apply from now on exclusively the SI
system!

Although the actual measurand represents a force it appears to be highly useful
to introduce the concept of the

electric field E(r)

It is created by a charge configuration and is defined by the force on a test charge ¢:

. F
E = lim — . (2.18)
q—0 q

Hence it is a vectorial quantity. The limiting process is necessary since the test
charge itself modifies the field. But on the other hand, because of (2.3) it is of course
also somewhat questionable (a mathematical abstraction which is physically not
realizable). The unit of the electric field strength is then:

1 N 1 v 2.19

c-lo- (2.19)

By the concept of the electric field the interaction process described by (2.11)

consists of two steps. At first a given charge distribution creates instantaneously

an electric field filling the whole space. This field exists independently of the point

charge g which, in the second step, reacts locally on the already present field
according to

F(r) = ¢E(r) (2.20)

The idea goes back to M. Faraday (1791-1867) to illustrate the field concept by the
use of a pictorial language, which, however, is more of qualitative than quantitative
character. One introduces

field lines
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and understands by these the paths along which small pesitively charged, initially
resting bodies would propagate under the Coulomb force (2.11) and (2.20), respec-
tively. Accordingly, the field lines of point charges are radial (Fig. 2.3).

At each point of space r the field

2.21)

is oriented tangentially to the there existing field line.

When one brings two point charges closer together then the corresponding force
lines will mutually alter each other, since the test body, whose path defines the lines,
is now under the influence of both the point charges (Fig. 2.4).

The figures convey the impression that two charges of opposite sign execute a
‘field-line tension’ on each other, i.e. they behave attractive, while charges of the
same sign execute a ‘pressure’, i.e. they repel each other. From the definition of the
field line as the path of a positively charged test-body follows:

Field lines do never intersect!

They start at positive charges and end at negative charges.

RN
KA

Fig. 2.3 Electric field lines of positive and negative point charges

v
N\
e

Fig. 2.4 Field lines produced by two, respectively, oppositely and similarly charged point charges
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According to the principle of linear superposition (2.12) it holds for the field of
n point charges:

1 - r—r;
Er) = —— — 2.22
® 47 €9 Z Ve = ;| 2:22)

J=1

The generalization to continuous charge distributions is then obvious (Fig.2.5),

dg = p(r)d*r

where dg means the charge in the volume element d*r at r’. dq creates at r the field:

dg r—r
dE(r) = .
®) e r—1'?
We add together:
1 3/ N r
Ex)=—— | &rp) . (2.23)
47 € r—1'|3
For the vector in the integrand we can also write:
r-r 1
e—rpP r-r|”
The static electric field is therefore a pure gradient-field:
E(r) =—-Vo(r). (2.24)
This relation defines the
scalar (electric) potential
1 r
p(r) = / sy P (2.25)
47 € [r —1r/|
Fig. 2.5 Continuous charge o(r)#0
density restricted to a finite
space region
a
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Because of (2.24) the field lines are perpendicular to the equipotential surfaces!
From (2.24) follows also

curl (¢E) =0,
i.e. the Coulomb force (2.20) is conservative and thus possesses a potential V:
F=-VV; V=gqgoe{).

¢(r) can be interpreted therewith as the potential energy of a unit charge g = 1 C in
the field E at the position r.
The line integral of the electric field E must be independent of the path:

r

@(r) —p(ro) = — / E(r')-dr' . (2.26)

ro

One denotes this potential difference as voltage (electric tension) U(r, ry). The
unit of U and ¢ is the volt defined in (2.17).

Examples 1. N point charges

N N
N ’ _ 1 qj
p() =D 460 — 1) = ¢(r) = . ; r (2.27)

=1

With (2.24) it follows again (2.22).
2. Homogeneously charged sphere, radius R, charge O
We put the origin at the center of the sphere (Fig. 2.6):

po,ifr <R,

2.28
0 otherwise . ( )

p(r') = %

Fig. 2.6 To the calculation

of the scalar potential of a
homogeneously charged r
sphere
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Let the direction of r define the z-axis. Then the scalar potential ¢ is calculated
as follows:

1
o) = 2 [

47 € [r —r/|
sphere
R 2 T |
= /dr’r’z / d(p’/dz?’sinl?’
47 € J ) ) 12+ 12 = 2rr cos
5 R +1 J :
__ 4T Po ’ o2 l
= e /drr /dcosz? dcosﬁ/\/rz—i-r’z—er’cosz‘}’ (_W)
0 -1
2 1 ;
:—47;52;/dr/r’(|r—r/|—|r+r’|)
0
R
_ZNpOl/dr, 2rr Jifr < v,
T dwey r 272 ifr> 1
0
R
/dr’r/z, ifr>R,
1 0
_ _Po Ay~
4 e r - R
/dr/r’2+/dr’rr/,ifr§R
0 r
R3
00 47 ? s ifr>R,
- dre r | T Fome oy o
?+§(R —V),lfrfR.
This can be written as follows:
1
0 — forr > R,
o) = —— 17 (2.29)
T €0 WGRZ—}J) fOI'}’SR.

Outside of the sphere the potential is identical to that of a point charge QO
located at the origin of coordinates (Fig. 2.7).
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Fig. 2.7 Radial behavior of
the scalar potential of a
homogeneously charged
sphere

Fig. 2.8 Radial behavior of
the electric field strength of a
homogeneously charged
sphere

Fig. 2.9 To the calculation
of the electric field strength of
a homogeneously charged
straight line

2 Electrostatics

For the electric field we have (Fig. 2.8):

E(r) =e,

47t60

% forr >R,
rQ(r) (2.30)

—~ forr<R.
2

Q(r) is here the charge which one finds inside the sphere with the radius r < R:

3

4
0 =0 =p5r (=R

3

3. Homogeneously charged straight line
Let the straight line define the z-axis (Fig.2.9) and let « be the charge per

unit-length. For the calculation of the electric field according to (2.23) one
uses conveniently the cylindrical coordinates (p, ¢, z). We perform the explicit
evaluation as Exercise 2.1.4:

E(r) = —~

. 2.31
2w ep p € ( )
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Fig. 2.10 Electric field of a E E
homogeneously charged —
plane _

-—l—- z

This corresponds to the scalar potential:

o) = — d Inp 4 const . (2.32)
0

4. Homogeneously charged plane
Let it be the infinitely extended xy-plane with the homogeneous surface charge
density o (Fig. 2.10). The evaluation in Exercise 2.1.5 yields:

Z

Er) = = Ze, . (2.33)
26() |Z|
This corresponds to the scalar potential
o
¢(r) = ——1|z| + const. (2.34)
260

2.1.3 Maxwell Equations of Electrostatics

Starting from the Coulomb’s law (2.11) and (2.20), respectively, and the principle
of superposition (2.12), which we consider as experimentally proven basic matter
of facts, we now derive two fundamental field equations for E. We are dealing
thereby in this chapter exclusively with time-independent fields in vacuum, which
are generated by any charge distributions p(r).

We use the general form (2.23) for the electric field E(r) and calculate its flux
through the surface S(V) of a preset volume V:

1 /
/E(r)-df /d3/p(r) /df
47 € Ir—r']?

S(V) S(V)

1
&*r p(r') / df-

-
S(V)

/d3r/p(r) /d*m
41 € r’|

471
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_ 1 /d3r/p(r’)/d3r8(r—r/)
€0
v

1 / o) = 1 q(V). (2.35)
€0 €0
Vv

For the above rearranging we have applied ((1.282), Vol. 1), (1.58) and (1.69). The
flux of the E-field through the surface of an arbitrary volume V is, except for an
unessential factor, equal to the total charge ¢(V) incorporated in V. This relation is
called

‘physical Gauss theorem’

If one applies to (2.35) once more the mathematical Gauss theorem (1.53) it follows:

/ &r (divE— @) =0.
\%4 €

This is valid for arbitrary volumes V so that it must already hold:
) 1
divE(r) = — p(r) . (2.36)
€0

We have derived therewith a first field equation. It expresses the fact that the sources
of the electric field are indeed the electric charges.

We could have deduced the relation (2.36) also directly from the decomposition
theorem (1.71) for general vector fields. According to (2.24) E(r) is a pure gradient-
field, therefore it does not contain a transversal part. By comparison of (2.25)
with (1.75) one finds immediately (2.36).

The second field equation follows automatically from (2.24):

curlE = 0. (2.37)

The electrostatic field is curl-free. For electric fields with an explicit time-
dependence this relation has to be later modified.

With the Stokes theorem (1.60) one recognizes that the circulation of the E-field
along an arbitrary closed path vanishes:

/E-dr:/curlE-df:O. (2.38)

oF F

Because of their decisive importance we summarize once more the field equa-
tions (2.35) to (2.38), which are called the

Maxwell equations of electrostatics
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Differential representation:
) 1
divE = —p,
€0
curlE =0 (2.39)
Integral representation:
1
E.df = —q(V),
€0
S(V)

/E-drzO. (2.40)
oF

With the scalar potential ¢(r) introduced in (2.24) the two Maxwell equa-
tions (2.39) can be combined to give the so-called Poisson equation:

1
Ap(r) = —— p(r) . (2.41)

The solution of this linear, inhomogeneous, partial differential equation of second
order is considered as the ‘basic problem of electrostatics’. If p(r’) is known for
all ¥’ and there are no boundary conditions for ¢(r) in the finiteness then the Poisson

equation is solved by (2.25):
L[ p)
41 € [r—1r’|

This can easily be proven by using (1.69):

p(r) =

1
Ap() [ pwra
41 € [r—1'|

1 1
- / &r p(r)8(r—r) = ——p(r) .
€0 €0

Very often, however, the situation is different: p(r’) is given in a finite volume V
and the values for ¢(r) or for the derivatives of ¢(r) on the surface S(V) are known.
Therewith the potential ¢(r) for all r € V is to be found. One speaks of a

boundary-value problem of the electrostatics

Typical boundary-value problems will be discussed in Sect. 2.3.
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If the considered space region is free of charge then the Laplace equation must
be solved:

Ag(r) =0 (2.42)

The general solution of the Poisson equation can be written as the sum of any
special solution of the Poisson equation and the general solution of the Laplace
equation.

Final Remark

The physical Gauss theorem can serve to calculate elegantly and quite easily
the E-fields of highly symmetric charge distributions. We demonstrate this by the
example (2.28) of the homogeneously charged sphere. The choice of spherical
coordinates appears to be obvious:

E(r) = E.(r,9,p)e, + Ey(r, 0, p) ey + E,(r, 0, ¢) e, .

We simplify this expression first by elementary symmetry considerations:

1. Rotation around the z-axis does not change the charge distribution. The compo-
nents E,, Ey, E, must therefore be independent of ¢.

2. Because of the rotational symmetry around the x,y-axes there is no ¥-
dependence.

This yields as intermediate result:
E(r) =E.(r)e, +Ey(r)ey + Ey(r) e, .

The charge distribution does not change, either, by a reflection at the xy-plane.
Accordingly, E has therefore to be mirror-symmetrical, i.e.

(EvEyE) "5 (B By —E) .
With ((1.393), Vol. 1) we find:
E.,=E,(r)cost? — Ey(r)sind .

With the transition ¢ — 7 — ¥ cos ¢ changes its sign; sin ¢ remains unchanged. In
order to guarantee E, — —E, it must therefore be

Es(r) =0

In addition, this is also needed to leave E, and E, unchanged by the reflection at the
xy-plane ((1.393), Vol. 1).
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Analogously, the mirror-symmetry at the yz-plane requires:

—>T—¢

¢
(EXs Eys Ez) —> (_Ex, Ey, EZ) .
Again with ((1.393), Vol. 1) one finds:

E. =E.(r)sin® cosg + Ey(r)cos ¥ cosp — E,(r) sing
= E.(r)sintt cos¢ — E,(r)sing .

With the transition ¢ — m — ¢ cos ¢ changes its sign, sin ¢ does not. That requires:

After these symmetry considerations we are left with the strongly simplified ansatz:
E(xr) =E.(r)e,.

The field of a homogeneously charged sphere is due to symmetry reasons radially
oriented. This holds of course for all spherically symmetric charge distributions.

We now calculate the flux of E(r) through the surface of a sphere with the radius
r (Fig.2.11):

2w k4
/ E.af"2" E.(r) / do / dv sin® r* = 4nr?E,(r) .
5(V,) 0 0

On the other hand, we have (2.35):

1 1 Q s ifr>R s
/E-dfz—q(V,)=—- P
€0 €0 0 3 ifr<R.
S(Vy) R
Fig. 2.11 To the calculation PACEREN
of the electric field of a / r>
homogeneously charged [ <N E
sphere by use of the Gauss ( IT>_>
theorem \ ! df
\ /
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The combination of the last two equations yields

= ifr>R,
E(r) = e -3 7
4 € — ,ifr <R,
R3 -

where Q is the total charge of the sphere. This confirms our previous result (2.30).

2.1.4 Field-Behavior at Interfaces

What happens to the electrostatic field E(r) at interfaces which carry a finite surface
charge density o? The answer to this question can be easily found by use of the
integral theorems. At first we place, as plotted in Fig.2.12, at the interface a small
box with the volume AV, half to the left of the interface and half to the right, which
we call in the following

‘Gauss-casket’

The edges perpendicular to the interface have the lengths Ax, which in a limiting
process we let approach zero:

/ d® rdivE(r) = / df-E(r) — AFn-(E,—E).
X—>
AV S(AV)

n is the position-dependent normal of the interface. On the other hand it also holds:

1 1
/ &r divE(r) = — / &rp(r) = —oAF .
€0 €0
AV AV

Fig. 2.12 ‘Gauss-casket’ for
the determination of the
interface behavior of the
normal component of the
electric field
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Fig. 2.13 ‘Stokes-area’ for
the determination of the
interface behavior of the
tangential component of the
electric field

The comparison yields:
n-(E,—E)="2. (2.43)
€0

We see that the normal component of the electric field behaves discontinuously at
the surface if o # 0.

We investigate the behavior of the tangential component of the field by the use
of the

‘Stokes-area’

t = surface normal of AF, tangential at the interface: AF = AFt, Al, =
Al(t x n) = —Al (Fig.2.13).
With the aid of the Stokes theorem it first follows:

0:/curlE-df: /dr-E —> Alltxn)-(E,—E)).
Ax—0

AF JAF

Here we read off
(txmn)-(E,—E) =0 (2.44)

i.e. the tangential component is in any case continuous at the interface!

2.1.5 Electrostatic Field Energy

According to (2.20) the force

F(r) = ¢ E(r)

acts on the point charge g at the position r in the electric field E(r). In order to shift
the point charge ¢ in the field E from the point B to the point A the work Wsp must
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be done:

A

WAB— F.dr = /E dr

=q | dp =qlp(A) —9B)] = qUas . (2.45)

[
f

The work is counted as positive if it is ‘absorbed by’ the system.

Definition 2.1.1 The energy of a charge configuration p(r), which is restricted to a
finite space region, corresponds to the work which is necessary to move the charges
from infinity (¢(co) = 0) to the given configuration (2.25).

(1) N Point Charges

(i — 1) point charges g; at the positions r; create at r; the potential

i—1
1 q]'
r) = .
¢(r) 47 € Z |r; — 1]
j=1
The work to bring the additional i-th charge g; from oo to r; then amounts to

Wi=qipr) . [p(c0)=0].

We now add together these ‘partial works” W; from i = 2 to i = N. Note that the
first charge (i = 1) is shifted with a zero-amount of work from oo to r; since the
space is then still field-free:

N

N
iqj 1 !’ qiq;
= . 2.46
471’6() Z Z |l',—l'j| 81 € i; |ri_rj| ( )

i=2 j=1

3" means that the term i = j is excluded.

(2) Continuous Charge Distributions

The corresponding generalization to (2.46) reads:

// Prady PP _ 1 / & rp()p(r) . (2.47)

r—r|

871 €
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@(r) is the electrostatic potential created by the charge density p itself. One can
now express W, instead by p and ¢, also by the electric field caused by the charge
density p:

W = —%O/d“%rAqo(p = —%O/d“}r div(p Vo) + %/d3r(v<ﬂ)2
= —%O/df- (¢ Vo) + %O/d?’r(vﬁl’)z :

The surface integral is to be performed over an area which lies at infinity so that we
can assume because of (2.25):

1 1
p~=. Vo~ . df~r.
r r

Thus the surface integral does not contribute:
W= %0 / SrEm) . (2.48)
In the integrand we find the energy density of the electrostatic field:
W= %0|E|2 . (2.49)

The comparison of (2.46) and (2.48) poses a serious problem: In the field-
formulation’ we always have W > 0, whereas for point charges according to (2.46)
W < 0 is also possible. Is this a nasty contradiction? The cause is the self-energy
of a point charge which is not accounted for in (2.46) (Z:] ...), but it is implicit
in (2.48). The two expressions are therefore not completely equivalent. Let us
demonstrate this by an

Example Let q;, g be two point charges at r; and r»:

1 r—r r—r;
E= + .
41 € (ql [r—ry? qz|r—r2|3)

This yields for the energy density in the field-formulation:

2 2
€0 2 1 4 B (r—r)-(r—m)
w=—|E|" = + 2
2 IE] 32n260[ [r—ri]*  |r—ry* N4 [r—r? r—nr)3
————

self-energy density interaction-energy density

= ws + wr.
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We discuss the interaction part:

R=r—-n, R—x=r—-r;, &’r = &°R

q192 R:-(R-x)
dPrw = d*R——~ .
/ i 1672¢ / R3}R —x|?

The polar axis coincides with the vector x (Fig.2.14):

2

e’} +1
2
q192 5 R* — Rxcos
drwy = R?dR | do | dcos?d
/ e 167t2€0/ (p/ OV RB(RE + 22 — 2Rxcos 9)32
0

0 -1

+1 0o d 1
:ﬂfdcosﬁ/dR(—— )
87 € 1 ) dR /R? + x2 — 2Rxcos ¥

_qgq 1l 1 q19>
drey x  Amey |rp—ra|

Without self-energy we therefore find according to (2.46) just the expected result
for point charges.

The self-energy can be considered as the energy being necessary to contract the
point charges out of an infinitely diluted ‘charge cloud’. Thereto we calculate the
energy of a homogeneously charged sphere and let then the radius of the sphere
become arbitrarily small. With (2.30) we have:

R

o0
_ @ 4n 2/ P / )1 0 (11 1
a4 (a2 | = i I
=2 Ten2 62Q et A Sreo \3R TR

0 R

The electrostatic energy of the homogeneously charged sphere,

3 2
_3 o (2.50)

5 4n 60R
Fig. 2.14 Arrangement for
the determination of the R
interaction part of the energy ‘1‘1 x a0
density of two point charges

r
r )
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thus diverges for R — 0. That illustrates the divergence of the self-energy of a point
charge, which represents even today an unsolved problem of the electrodynamics.
One makes do with the ‘auxiliary vision’ that the self-energy of the point charges is
constant and therewith physically uninteresting.

2.1.6 Exercises

Exercise 2.1.1 Explain the charge densities p(r) for

1. a homogeneously charged sphere of the radius R,

2. a homogeneously charged very thin spherical shell of radius R,

3. a homogeneously charged, infinitely thin circular disc with the radius R and the
total charge Q.

Exercise 2.1.2 An infinitely thin circular disc of the radius R lies in the xy-plane
and possesses a constant surface charge density oy. The center of the disc coincides
with the origin of coordinates. Calculate the electrostatic potential and the electric
field on the z-axis. Discuss the behavior for z = 0 and z — Fo0!

Exercise 2.1.3

1. The space between two concentric spheres with the radii R; and R, (R < R,) is
charged with the density

p(r)zg%forRi<r<Ra(a>0),

0 otherwise

Calculate the total charge.
2. Calculate for the charge distribution (screened point charge)

2 ,—ar
p@):q[g(r)_:‘_ne ]

r

the total charge Q.
3. A hollow sphere with the radius R carries the charge density

p(r) =opcos¥ 6(r—R) .

Calculate the total charge Q and the dipole moment p:

p= /rp(r)d3r.
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Exercise 2.1.4 An infinitely thin, infinitely long straight wire carries the homoge-
neous line-charge « (charge per unit length).

1. What is the spatial charge density p(r)?
2. Calculate directly (without using the Gauss theorem) the electric field strength
and its potential.

Exercise 2.1.5 An infinitely extended plane carries the homogeneous surface
charge density o (charge per unit area). Calculate as in Exercise 2.1.4 the electric
field and its potential.

Exercise 2.1.6 The stationary point charges +¢q and —¢g with the separation a
represent an electrostatic dipole. By the dipole moment p one understands a vector
with the magnitude ga in the direction from —q to +4.

1. Calculate the potential of the dipole and express it for large distances r > a
approximately in terms of the dipole moment.
2. Formulate the electric field by use of spherical coordinates.

Exercise 2.1.7 Calculate for the charge density p(r) from Exercise 2.1.3 (part 1.)
the electric field strength E and the electrostatic potential in the three space regions

(a)0§r<Ri; (b)lerSRda (C)Ra<r‘

Exercise 2.1.8 For the hydrogen atom in its ground state it holds approximately:
The nuclear charge is centered point-like at the origin and the average electron
charge density is given by

e 2r
= e (-2)
Ta a

(a = Bohr radius). Calculate the electric field strength E as well as its potential ¢.
Discuss the limiting cases r < a, r > a.

Exercise 2.1.9 An infinitely long circular cylinder is homogeneously charged.
Calculate the electric field strength and the corresponding potential.

Exercise 2.1.10 Calculate the energy density and the total energy of the electro-
static fields which result from the following charge distributions:

1. Homogeneously charged thin spherical shell,
2.

o

— forR; <r <Ry (x> 0),
pr) =4 r?

0 otherwise .
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2.2 Simple Electrostatic Problems

Let us discuss, as an interlude, a few simple applications of the theory of electro-
statics developed so far.

2.2.1 Parallel-Plate Capacitor

By a parallel-plate capacitor we understand a system of two plates arranged parallel
to each other with a distance d. They have both the area F (Fig.2.15). In order to
avoid later edge effects we assume

d < F'/?

The two plates carry, homogeneously distributed, the equal and opposite charges
40, i.e. the surface charge densities

o(0) = % =—0(d) .

The electric field created by the lower plate will be oriented from symmetry reasons,
except for edge effects, in positive or negative z-direction (Fig. 2.16) (see (2.33)):

Ei(r) =Er(d)—e. .
|z|

We put a Gauss-casket with the volume AV = AF Az ‘around the plate’ so that the
basal planes AF at the positions 4-(1/2) Az lie parallel to the plates of the capacitor.
The side areas do not contribute to the flux of the E-field through the surface S(AV)

Fig. 2.15 Schematic
arrangement of a

- F

parallel-plate capacitor d Q
0

+Q
Fig. 2.16 Electric field E,
(without edge effects) of the P R
positively charged plate of a 2=0 : +Q
parallel-plate capacitor J LT T

™ av
Ey
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since E and df are orthogonal to each other there.

1
/ Ey-df=2E, (z = iEAZ) AF
S(AV)

1 o o
L Gg(AV)= ZAF = E () = — .
€0 €0 2¢

The result is a field homogeneous almost in the whole space which only reverses
its direction at z = 0 (see (2.33)):

E )= e .
260 |Z|

The same consideration yields for the plate at z = d (Fig.2.17):

o z—d
E_(r)=—
@ 2¢y |z—d|

e .
The resulting total field is then unequal zero only between the plates:

gezfor0<z<d,
Er)=E;(r)+E_(r) =14 & (2.51)
0 otherwise .

To this field an electrostatic potential belongs of the form:

const; forz <0,
—0
o(r) = - z+const, for0 <z<d, (2.52)
0
consts forz >d.

Between the plates we therefore find the voltage (electric tension):

U=€0(Z=0)—€0(z=d)=;0d=€0%d. (2.53)

Here we recognize a proportionality between the charge of the capacitor and the
electric tension:

o=C-U. (2.54)
Fig. 2.17 Electric field E_
(without edge effects) of the
negatively charged plate of a -Q z=d
parallel-plate capacitor T
E
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The constant of proportionality C is called capacity of the parallel-plate capacitor:

C d (2.55)

=€ = . .
*d

We see that the capacity C is determined by purely geometrical material quantities.

As unit one chooses:

[C] = 1F (farad) = 1 % . (2.56)

It is about a rather huge unit since 1 farad corresponds to an area-to-distance ratio
of about 10" m (1 F = 10°u F = 10°nF = 10'2 pF).
With (2.51) the energy density of the capacitor is easily calculated

2
wur=%uam2=§; (2.57)

for all points r between the plates. That leads to the total energy

10> 10* 1 1
1o 190

W=wFd= =-==-QU=-CU>. 2.58
w 2 eF 0 (2.58)

2.2.2 Spherical Capacitor

In this case the capacitor consists of two concentric spherical shells with the radii
Ry, R, and the homogeneously distributed charges £Q (Fig.2.18). The charge
density (see Exercise 2.1.1)

=2 so—ry--2L 50—
P = g B =R = o = Ro) (2.59)

is therewith restricted to a finite space region so that, according to (2.25), the
potential vanishes at infinity. The charge distribution is spherically symmetric.

Fig. 2.18 Schematic plot of
a spherical capacitor

<12
<>
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Consequently it holds for the E-field:
E(r) =E(r)e,.
By use of the Gauss theorem we prove therewith in Exercise 2.2.1:

0, ifR1>r,
0

E(r) =
® 41 €

|
e — ,ifRh>r>Ry,
72

0 . if r > R2 .
Together with the physical boundary conditions
o(r —>00)=0; @ continuous atr = Rj andr = R,

we find for the scalar potential (Fig.2.19):

It thus appears as electric tension (voltage) between the spherical shells:

1 1
U=9¢(R)—¢R) = 47th0 (R_l B 172) '

The spherical capacitor has therewith the capacity

R R

C =4me .
R, — Ry

Fig. 2.19 Radial dependence [ I
of the scalar potential of a |
spherical capacitor

(2.60)

2.61)

(2.62)

(2.63)

Nt—_————
Nt————
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The energy density is restricted to the space between the two concentric spherical
shells:

2 Ry 1
W = Q -47t/r2dr—
3212 ¢ ré
R
> R,—R 10> 1 1
- Q Rk 1O 1, Lo, (2.64)
87t60 Rz’Rl 2 C 2 2

2.2.3 Cylindrical Capacitor

The formation consists of two coaxial cylinders both with the height # and with
radii Ry < R, (Fig.2.20). We neglect again the stray fields at the edges and
can therefore act on the assumption that the E-field is axially symmetric. Using
cylindrical coordinates (p, ¢, z) leads then to the following plausible ansatz:

E(r) =E(p)e, .

Let us consider a further coaxial cylinder Z, and calculate the flux of the E-
field through its surface. The front sides do not contribute since E and df are
perpendicular to each other. On the cylinder jacket it holds (1.37):

df = (pdedz)e, .

Fig. 2.20 Schematic plot of
a cylindrical capacitor

SO

"wlt)))»)))))%
RIS
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That leads to:

1
/ E-df = pE(p)2nh = a/di’v’p(r’)
Z,

5(Zp) o

0, if,O<R1,
=—10,ifRi<p<Ry,

1o, ifR <p.

The electric field is thus restricted to the inside space:

2 Electrostatics

(2.65)

0 s if p < Rl s
E(r) = —e, 1,ifRi<p<Ry,
2meoh 07 o ity < p )
From that we get the electrostatic potential by fulfilling all physical boundary
conditions:
Ry .
In— ,if p <Ry,
Ry
R

p(r) = ¢(p) = 37 ek mf,ile <p<Ry,

0, ifRy < p.
Between the two cylinders there appears the voltage:

0 Ry
In— .
2 60/’1 R1

The cylindrical capacitor therefore has the capacity:

_ 21 €oh
In(R2/Ry1)

The energy density follows directly from (2.65):

1
Q> |5 .ifRi<p<Ry,

0  otherwise .

(2.66)

(2.67)

(2.68)
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Therewith the total energy is easily calculated:

0 1
W= | pdpdpdzw(r) =2nh—— | dp—

8m2egh? 0
Ry
2
R
-2 R (2.69)
4 th R1
We see that in this case, too, it holds:
1 Q? 1 1
Wz_g_z_QU_ cuU?
2 C 2

2.2.4 The Dipole

An arrangement of two equal and opposite point charges £g¢ is called a dipole
(Fig.2.21). If a is the distance vector oriented from —g to 4g one denotes as dipole
moment the vector p = ga. This is the usual definition which we will, from reasons
which become clear at a later stage, formulate here a bit more precisely.

Definition 2.2.1  ‘Dipole’ This is an arrangement of two equal and opposite
point charges £¢, the distance a of which is approaching zero with simultaneously
increasing charge ¢ in such a way that the dipole moment

p= lim ga (2.70)
£

thereby remains constant and finite.

The so defined dipole is then located in a fixed space point. Not only charges
(monopoles) but also such dipoles are sources of electrostatic fields which we
are now going to inspect a bit in more detail.

Let a at first still be finite and let the charge —q be at the origin (Fig.2.22). Then
the two charges produce the following potential:

1 q q
p(r) = —+ :
47 € r |r—al

Fig. 2.21 Simplest a
arrangement of a dipole +q
consisting of two point

charges —-q
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Fig. 2.22 Arrangement for P
the calculation of the scalar
potential of a dipole

-4

For the second summand we use its Taylor-expansion (1.32):

1 1 r-a 13(r-a)?—rd N
r—al r r 2 o
g (r-a 3(r-a)?—rd
s = Sy e T ).
¢(r) 47 € ( r3 + 255 +

If we now let the distance between the charges become arbitrarily small with
simultaneously, in the sense of (2.70), increasing ¢ then the second summand and
all higher terms of the expansion vanish:

1 r-p
—_— . 2.71
4 €0 }"3 ( )

¢p(r) =

An electrostatic charge configuration with such a scalar potential is called a
dipole. The corresponding electric field E(r) is conveniently expressed by spherical
coordinates where the polar axis is chosen to be the direction of the dipole p:

1 pcos?

D) =
#o(r.0.¢) dr ey 12

The components of the electric field are then:

dop _ p 2cos?

EP=—— = ,
d or Arey 13
1 d¢p p sind
EP = -~ = , 2.72
v r 0t dr ey 13 2.72)
EP = _ ! 8@ =
¢ rsind de

The field obviously possesses rotational symmetry around the dipole-axis (Fig. 2.23)!

One should notice that the E-field of two point charges with a finite distance a
(see Exercise 2.1.6) represents a real dipole field only in the far zone (r > a). It
looks very much different in the near zone. The electric flux, created by a dipole,
through a closed area, which encases the dipole, is of course zero because the total
charge of the dipole vanishes (2.35).
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Fig. 2.23 Equipotential 1\
surfaces and electric field
lines of a dipole \ /

_ E-Field lines

Equipotential-
surfaces

7 N
( \
\ /
Vs
A ~
// |A \\
I
Let us write the dipole field still in a somewhat more compact form:
D 1 1
E°(r)=—-Vgp(r)y=—-V|[p-V-] .
41 € r
In Exercise 1.7.13 we have shown:
V(a-b)=(b-V)a+ (a-V)b+bxcurla+axcurlb.
It follows therewith for the field:
b 1 1 1
E“(r) = P-V)V—+pxcul (V-
41 € r r
= .V)— =
4 € ® r3 Cdrne Z Bxl r3
1 e 3rux;
= ‘47[60;1"(577) ‘
Finally we have:
1 3(r-
)= [3@Pr Pl 2.73)
47 € r r

In analogy to the charge densities of the electric monopoles one can introduce also
a dipole density:

N
M) =) psr—R). (2.74)
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The total potential of N discrete dipoles p; results from a superposition of the
individual contributions according to (2.71):

R 1
= — oV, —
(pD(r) 47T 60].:1 pj |r_R]|
1 3./ / 1
=— | &Y IOx)V,—— . (2.75)
41 € r —r'|

The last step can be understood as the generalization of the microscopic to the
continuous dipole density analogously to that of the charge densities performed
with (2.23). We will encounter this expression again in Sect. 2.4 when we discuss
the electrostatic field in macroscopic media.

What a force does act on a dipole in the electrostatic field? We answer this
question most easily by considering the two point charges ¢ with the at first finite
distance a. Let the charge —g be located at r and the charge +¢ at r + a (Fig. 2.24).
E(r) is an external field! Then the force that acts on the dipole is:

F(r) = —gE(r) + gE(r + a) .

A Taylor-expansion according to (1.27) yields:
E(r+a)=EI) +(a-V)E(r) + % (a-V)?E(r) +...
It follows for the total force:
F(r) = g(a- V)E(r) + %q (a-V)2E(r) +...
Performing the limiting process (2.70) we are left with the first term:
Fpo(r) =(p-V)E(r). (2.76)

We see that in a homogeneous field the dipole does not experience a force but it
does feel a torque M:

M(r) = —¢q [0 x E(r)] + ¢ [a X E(r + a)]
=qgaxE(r)+qgax(@-V)E() +...

Fig. 2.24 To the calculation a +q
of the force which acts on a -q
dipole in an electrostatic field r+a
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It then results with the limiting process (2.70):
Mp(r) = p x E(r) . 2.77)

The torque tries to rotate the dipole into an energetically favourable position, i.e. to
a position of minimal potential energy V. The latter is determined simply as follows:

Starting with the general vector relation proven in Exercise 1.7.13, which was
already used above, we can write because of p = const:

Vip-E)=(p-V)E(r) 4+ p xcurlE(r) .
N——

=0

This yields with (2.76) the alternative representation of the force on the dipole
located at r :

Fp(r) = V(p-E) . (2.78)

Via the general connection between (conservative) force and potential energy Vp
((2.233), Vol. 1),

Fp(r) = -V Vp(r),
one finds by comparison:

Vp(r) = —p-E(r) . (2.79)
The state of the minimal energy is stable. It corresponds to a parallel orientation of

dipole and field.
We could have found the expression (2.79) also directly by evaluating

Vp(r) = —q[p(r) — o(r + a)]

with a Taylor-expansion and the subsequent limiting process (2.70). The reader
should check that!

2.2.5 Dipole-Layer

By adipole-layer one understands an area being filled with dipoles the axes of which
have everywhere the direction of the respective area-normals. We want to find out
how the electrostatic potential behaves when crossing such a dipole-layer.
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Fig. 2.25 Representation of S a(r’)
a dipole-layer

7_an() d(r')=dn(r’)

We realize the dipole-layer by two parallel surfaces S and S’ with equal and
opposite surface charge densities o(r’) and —o(r'). Let n(r’) be the position-
dependent surface normal (Fig. 2.25).

Definition 2.2.2  Dipole surface density

D(r) = (}i_r)% [o(r)a(r)] (2.80)

d(r’) = dn(r'). In order to keep D constant during this limiting process the surface
charge density has obviously to grow indefinitely (cf. (2.70)).

According to (2.25) the dipole-layer creates the following potential at the point P

atr:
1 , o(r') o)
47 € S/df [r—r/| / i T —r' +d(r')|

Since d becomes infinitely small we can cut the respective Taylor-expansion for the
second summand after the linear term. We use (1.27):

p(r) =

1 1 1
= d.-V)——— +...
r—rtrae) v T4V T
1 n(’).(r—r)
S r—r| [r —r'|3

That yields for the potential:

o) = df' [o(r')d] % +
~1 (' —1)
= e [ e = @81)

(cf. (2.75)).

We want to further evaluate the integral by simple geometric considerations. For
this purpose we consider an element df’ on the area S (Fig.2.26). This appears for
the point under consideration r under the solid angle dQ2. For the projection df|
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Fig. 2.26 Geometrical
illustration to the calculation
of the surface integral

in (2.81)

perpendicular to r’ — r it then holds obviously:

r—-r

dr, = df’ (n . ) = df’ cosa

" —r|

~dQ ¥ —r)* (for sufficiently small d) .

If the point under consideration r lies, differently from Fig. 2.26, on the positive side
of the double-layer directly in the face of P on the prolongation of the vector r’ —r,
then we have

r—r

n-m =cos(m —a) = —cosa .

We embrace both cases by £d€2 where
9 = df (n- F=F
B [r—r'|?

is to be calculated with the geometry from Fig. 2.26. That means in (2.81):

o+(r) = :EL / dQ D(') . (2.82)
41 €
Ko

The integration is done over the part Ko of the unit-sphere which appears to be
covered by the area S. The minus-sign is valid if, as in Fig. 2.26, the point P lies on
the negatively charged side of the dipole (double)-layer and the plus-sign if it is on
the positively charged side.

For simplicity let us assume that

D(’') =D =const onS,
then the potential ¢ is given by the product of dipole density D and the solid angle

Qg(r), under which the area S is seen from the point r. The actual shape of S is
thereby immaterial:

D
@ (r) = i4— Qs(r) . (2.83)
TTEQ
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Let us additionally assume that the area S is plane and let the point r approach r’
on the dipole-layer. Then Qg(r) tends to 277. Passing through the dipole-layer the
potential thus performs a jump of

1
Ap=¢_—¢py+ =——D. (2.84)
€0

This result can now easily be generalized for the case that a) S is not everywhere
plane and b) D(r') is not everywhere constant on S. To show this one decomposes
at first the total area S into a small piece of area AF around the point under
consideration, at which the behavior of the potential will be investigated, and the
rest. AF shall be chosen so small that AF can be considered as plane and D(r’)
as constant on AF. The potential ¢(r) is then a superposition of the contributions
of this piece of area AF and all the rest of S. If the point under consideration r
now approaches the area AF, then the potential produced by AF performs a jump
according to (2.84). On the other hand, for points r’ outside AF the vector r' — r
behaves continuously at the transition of r through the piece AF of the dipole-
layer. That holds then also for n - (r' — r)/|r’ — r|>. The potential created by the
dipole-layer S without AF is continuous for r € AF and does not contribute to the
potential-jump. Altogether it thus holds for the discontinuity of the potential:

1
Ap=——D(r) res. (2.85)
€0

One can interpret this potential-jump as a potential-decline within the dipole-layer.
If one considers this as a small parallel-plate capacitor at AF with the distance d of
the plates then (2.85) corresponds exactly to (2.53).

2.2.6 The Quadrupole

In Sect.2.2.4 we have built the dipole on the basis of the limiting process (2.70)
by the use of two equal and opposite point charges +¢q. By a similar limiting
process two equal and anti-parallel dipoles can be composed to build a quadrupole
(Fig.2.27). We define as

Fig. 2.27 To the definition of
the quadrupole moment

~p



2.2 Simple Electrostatic Problems 85

quadrupole moments

6],:,' = }ilgl[) d,'pj s (286)
pj—>00

and require that these remain finite during the indicated limiting process. i,j are
indexes for Cartesian components. We determine the potential of such a quadrupole
as superposition of the potentials of both the dipoles which are at first at a finite
distance d. At the end we perform the limiting process (2.86). According to (2.71)
we find:

1 1
dreop(r) =p-V, | - —
r|r—d|

:p-Vr[l—l+(d'Vr)l i}
ror r
:p-V,[(d-V,)%}-l—

Higher terms do not play a role because of (2.86). An expression of this form we
have already dealt with in preparation of (2.73):

1
v, [d . v,-}
.

1 1
(d-V)V—+dx curl (V—)
r r

=0

1
== [3(r-d)r—rd] .
Therewith we have the potential:
1 1 )
o(r) = P [3-d)(r-p)—r’@d-p)]+...
JT €y I

If we express the scalar products by Cartesian components and perform the limiting
process (2.86) then we get the quadrupole potential:

r) =
Po(r) pr

,-1_5 Z qij (3x,-xj — 728,:,') . (287)
ij
We agree to call an electrostatic charge configuration, which leads to such a scalar
potential, a quadrupole.
Let us discuss, as an illustration, a concrete realization of the quadrupole by
point charges as we did it similarly for the dipole. For this purpose we now need
a system of four charges which are of the same magnitude being arranged as in
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Fig. 2.28 Simple realization +q
of a quadrupole by four point

charges

Fig.2.28. Each two of them carry the charge +¢q and —g, respectively. We will
see that the potential of this arrangement represents in the far zone a quadrupole
potential of the form (2.87) if we take

qij >~ qa;d

That can be seen as follows:

treno) L, 1 1
e =q|- - -
=\ T r—a—d Jr—al |r—d|

S TR R LRI TR0
ror ro 2 r
d eyl tavels
r ro 2 r
_l+(d.v)l_l(d-V)21+...}
r r 2 r

Contributions of monopoles and dipoles, respectively, are compensating each other:

smeop(®) = 5ql(a-V)@-V) + @-V)(a- V)] +

+qZ /8 8xr quax( r3)+
—un(3x’x‘ q1)+--- (2.88)
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For the far zone (r >> a, d) we can neglect the higher terms. It then remains the pure
quadrupole potential (2.87) which in the near zone, however, will exhibit strong
modifications.

Special case: stretched (linear) quadrupole (Fig. 2.29)

a=(0,0,a); d=(0,0,a).

This yields in the far zone according to (2.88) the potential:

32— 12

4reopo(r) = qga® 3

_ 23005219—1

= ga (2.89)

73

As expected the potential is axially symmetric, i.e. it is ¢-independent. Taking the
gradient we find the components of the electrical field (Fig.2.30):

_ d¢q _ 3qa* 3cos’ —1

3

or 4reg ré

o 10pq 6q a® cos ¥ sin

E* = =
v r 0t 4me ré

EZ=0. (2.90)

)

It should be reminded once more that within the near zone the field of the above
system of point charges does really look completely different. The pure quadrupole-

Fig. 2.29 The stretched q
quadrupole being built by z a
three point charges
a
q

Fig. 2.30
Equipotential-surfaces and
electric field lines of the
stretched quadrupole in the
far zone
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Fig. 2.31 Square —-q +q
arrangement of a quadrupole
consisting of four point
charges

+q -9

field (2.90) does exist only in the limit

a0 with g a® = const ,
qg— 00
because then the terms neglected in the above expansion vanish exactly.
Another realization of a quadrupole could be the following system of point
charges (Fig.2.31):

a=(0,0,a),
d=(0,a,0),
q32 =9 a; all the others ¢;; =0

It holds for the potential of this arrangement:

3zy ,3cos v sind sing
=qa"—— k.

dme r)=qga*—=
0pa(r) = ¢ : 3

In this case the potential is of course not axially symmetric.

2.2.7 Multipole Expansion

We now discuss the potential and the electric field of a spatially restricted charge
distribution p(r’), i.e. we presume that the total p # O-region can be embedded
into a sphere of finite radius R (Fig. 2.32). If there is no need to fulfill the boundary
conditions of finiteness then (2.25) is valid:

o) = o [ arr L)

r—r|"

The evaluation of such a volume-integral is not always simple. On the other hand,
often one is interested only in the asymptotic behavior of ¢ and E in the far zone
(r > R), i.e. far outside the p # O-region. It therefore suggests itself a Taylor-
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Fig. 2.32 Charge density
within a sphere of finite
radius R

expansion of the integrand with respect to powers of L
r

1 1 1 1 1 1
= exp(-r V)= —— (V)= + (- V)2= £ ...
[r —1r/| ror ro 2 r
1 r.r 3@ -r)?—r?7?
a1 Ty ( )5

r r 2r

This we insert into the above expression for ¢(r):

1 1

47{60(.0(1') = ;/d?)r/p(r/) + ﬁr./d?)r/r/p(r/)
1

a5 [ AP () =)

We still rewrite the third summand a little bit:
/ a&*r p(') (3(r .r)? - /2},2) = / & p) (Z 3xix;xjxj’- -2 Z Sijxixj)
iy iy
= Zx,-xj / d*r p(r') (3x;xj/- —1%8;) .
ij

One now defines the following

moments of the charge distribution

total charge (monopole): g = / & p(r') , (2.91)
dipole moment: p = / &rvp(r') , (2.92)

quadrupole moment: Q; = / d3r’p(r’)(3x§)§; —1%8;) (2.93)
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The resulting expansion of the potential
g r-p 1 XiXj
dmegp(r) = ;+r—3+§%:Q,]r—5+ (2.94)

shows that the potential of an arbitrary charge distribution is composed of the
potentials of a point charge, a dipole, a quadrupole, octupole and so on. One speaks
of a multipole expansion. For points which are very far from the p # 0-region the
charge distribution acts as a point charge located in the origin since the first term
of the expansion dominates. The closer one approaches the p # 0-region the more
terms of the expansion are to be taken into account.

Discussion

1. If g # 0 then the monopole term dominates in the far zone:

1. (2.95)

r) =
o (r) dmey r

The E-field corresponds to that of a point charge ¢ in the origin ((2.21) with
ro = 0)
2. If ¢ = 0 then the dipole term dominates:
1 r-p
dmey 13

(%> (I‘) = B (296)

which we have extensively discussed subsequent to (2.71). A simple realization
of a charge distribution with ¢ = 0 is a pair of equal and opposite point charges,

p(r) = —qd(r) + qé(r—a),
with the dipole moment:
p=—¢q-0+ga=gqga.
In the far zone, as soon as the higher multipoles become unimportant, the
corresponding field is a pure dipole field (2.73).
The dipole moment p (2.92) is invariant with respect to rotations of the system

of coordinates, but normally not invariant with respect to translations, i.e. linear
shifts of the origin as in (Fig.2.33):

l_) — /d?)r//r//l(—)(r//) ,
d3r// — d3}’/ ,

p= / Arrpr’) —d / Ar'p)y=p—dg. (2.97)
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Fig. 2.33 To the dependence
of the dipole moment on the
choice of the origin of
coordinates r’=r'-d

o(r)=5(")

In the case that the total charge g is zero then the dipole moment is invariant with
respect to translations, but only then.
Mirror-symmetrical charge distributions

p(r') = p(—r')

do not have a dipole moment:
p= [@reow) = [ @) = - [ @ vpu) = -

— p=0.

3. If g = 0 and p = 0 then the quadrupole term dominates:
1 XiXj
- § iy 2.98
Pq(r) 87 . Qi /5 ( )

The Qj;, defined in (2.93), are components of the quadrupole tensor:

Q11 Q12 013
Q=10 0»n 0x
031 Q32 033

The tensor concept we have already introduced in Sect.4.3.3, Vol. 1 (see
Exercise 2.2.12). From (2.93) one reads off some elementary properties of the
quadrupole tensor Q:

(a) Traceless
By the ‘trace’ of a matrix one understands the sum of its diagonal
elements:

Z Qii = / a*r p(r') (3 Zx,’.z — 3/2) =0. (2.99)

(b) Symmetric, i.e. Q; = Qi
That means that Q has only five independent elements.
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©

(d)

(e)

2 Electrostatics

The quadrupole moments g; derived in Sect.2.2.6 from an illustrative
model are not completely compatible with the Q;; presented here. If one
compares (2.87) with the expression directly before (2.91) one comes to:

1

4=y / & p(e ), (2.100)

By this the g; get their meaning for arbitrary charge distributions. The
comparison with (2.93) leads to:

05 =6q;—25; > qu (2.101)
k

Spherically symmetric charge distributions p(r') = p(+/) have no finite
quadrupole moment. For it follows at first from symmetry reasons

Q11 = 0» =03

and therewith because of (2.99) Q;; = 0,i = 1,2, 3. That Q;; = 0 fori # j,
one sees by a direct angle integration. So it holds for i # j:

0o +1 2
Q; = /d3r’p(r’) (3xx) = 3/ dr’r/zp(r/)/ dcosz?/ doxx; .
0 -1 0
That means, for instance, for the xy-element:

. . 1 . d .
X'y = r?sin> ¥ cos¢’sing’ = Er/z sin’ ﬂ/r sin? ¢’ .
%

The ¢’-integration thus let this term vanish. That can be shown in this way
for all off-diagonal terms.
Example: stretched point quadrupole (Fig.2.29).

charge density:

p(r) = qd(x)8(y) (§(z) —28(z — a) + 6(z —2a)) .

total charge:

dipole moment:

+o0
p=gq / d7(0,0,7) [8(Z) —28( —a) +8( —2a)] = 0.

—0o0
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quadrupole moments:
Qj=0 forisj,
Qll — /d3r/ p(r/) [3x/2 _ r/Z]

+o00
=gq / dZ (=% [8() —28(Z — a) + 8( — 2a)]

—00

=-2ga* = Qn,
+o00
031 =g¢q / d7277 [8() — 28(7 —a) + 8(7 —2a)| = 4q a” .

—00

The quadrupole tensor therewith reads:

-1 00
Q=240 -10]. (2.102)
0 02

2.2.8 Interaction of a Charge Distribution with an External
Electric Field

The external charge distribution pex creates an electric field with which the
charge distribution p(r) interacts (Fig.2.34). According to (2.47) it holds for the
electrostatic field energy of the total charge density:

8mey

e 3 3, 0P(0) + pex ()] [0(r') + pex(r)]
/fd rd’r .

r—r'|

Fig. 2.34 Schematic plot of

a charge density being E

restricted to a finite z Pex

space-region in the field of an o(r)#0 0

external charge density Qex #
Y



94 2 Electrostatics

The interaction part therewith reads:

W= // rapy POPT) / & p()gex (r) . (2.103)

 47we r—1/|

@ex 18 the scalar potential produced by pex. We assume that the p # O-region is small
enough so that gex can be considered there as approximately constant:

Pe0) = 9 0) (- Vg 0) F 3 V() + .

az(pex
ijBxi

1
= ¢ex(0) — 1 E(0) + 5 lZJx,-xj

r=0

Within the p # 0-region there do not exist charges which create the field E. Hence
there we have divE = 0. That means:

3 3% Qex 02 Pex
Ozza_xiEiZ_Z sz Z_ZSUax,-(gxi '
i i i ij

Such a term can therefore be confidently added to the above expression:

0E;(0) +

1
@ex(r) = @ex(0) —r - E(0) — g Z (3xixj - r25ij) ox;:
7

ij

This is now inserted into (2.103):

EO | (2.104)
0x

1
Wi=qeQ —p-EO) — 2> 05—
ij J
The charge (monopole) interacts with the external potential, the dipole moment with
the external field E, and the quadrupole moment with the spatial field-derivatives.
We can use this relation to determine the interaction between two dipoles. For
this purpose we insert into the second summand the field (2.73) of another dipole:

. - (2.105)

V) V)

1 . . .
Wiy — [Pl P2, (ra-py) (ro Pz)}

(r;2 = r; — rp). This important equation shows that the dipole-dipole interaction
can be attractive as well as repulsive depending on the relative orientation of the
two dipoles.
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2.2.9 Exercises

Exercise 2.2.1

1. Calculate the energy density and the total energy of the electric field in a spherical
capacitor. The two spherical shells carry the charges Q and —Q.

2. How does the energy in the capacitor change when the inner shell carries the
charge Q, the outer —Q/2, and vice versa?

3. Which pressure is exerted in both cases on the shells of the spherical capacitor?

Exercise 2.2.2 The two plates of a capacitor (distance d, area F, the left plate at
x = 0, the right plate at x = d) are charged with Q; and Q», respectively. Between
these two plates there is at the position xp a third, isolated plate with the known
charge Q.

1. Calculate the electric field inside the capacitor! Which voltage U is applied on
the capacitor?

2. Which electrostatic force acts on the middle plate? What happens in the case of
a short circuit U = 0?

3. Let the middle plate with the constant charge Q and the mass M be freely movable
(no gravitational force!). How does its mechanical equation of motion look like?

Exercise 2.2.3 A dipole with the moment p is located at r and a point charge ¢ at
the origin of coordinates (Fig.2.35).

1. Calculate the potential energy of the dipole.
2. Calculate the force which acts on the dipole.
3. Consider whether or not the third Newtonian axiom is fulfilled.

Exercise 2.2.4 Given is a cylindrical capacitor with the inner radius a and the outer
radius b. A voltage U = ¢(a) — ¢(b) is applied.

1. Calculate the electric field E(r), the potential ¢(r), and the capacity per unit
length.

2. For which value of a does the field strength at the inner cylinder become minimal
for a given U?

Exercise 2.2.5 Two concentric metallic spherical shells with radii R; and R,
possess the potential values ®; and ®,, respectively (Fig. 2.36).

1. Determine the potential ®(r) in the whole space for given ®; and ;.
2. Which charges Q; and Q; are on the spherical shells?

Fig. 2.35 Dipole p and point
charge ¢ shifted relative to 4
each other by the vector r
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Fig. 2.36 Concentric ®
metallic spherical shells with 2
different potentials ®;and ®,

Fig. 2.37 Two parallel T
connected capacitors each of
them with the capacity C cC —— I

Fig. 2.38 Infinite chain of
ordered capacitors each with P

| ]
the capacity C M J_
1

Exercise 2.2.6 A capacitor C is charged to the voltage Uy and then separated from
the voltage source. How much are the charge and the stored energy? In the next
step a second but uncharged capacitor of the same capacity is connected in parallel
(Fig.2.37). How much are now the voltage and the total energy of the two capacitors
(C = 100 uF; Up = 1000 V)?

Exercise 2.2.7 Calculate the capacity of an infinitely long chain of capacitors as
given in Fig. 2.38, each of them has the same capacity C.

Hint: By cutting one unit (broken line in Fig.2.38) the capacity Cx of the
infinitely long array does not change.

Exercise 2.2.8 A hollow sphere with the radius R carries the charge density
p(r) = opcos> 0 8(r —R) .

Calculate

. the total charge ¢,

. the dipole moment p,

. the components Q;; of the quadrupole tensor,

. the electrostatic potential ¢ (r) and the electric field E(r) up to quadrupole terms.

AW N =



2.3 Boundary-Value Problems in Electrostatics 97

Exercise 2.2.9 Let an electric dipole p; be at the origin of the coordinates and point
into the z-direction. A second electric dipole p; is at the position (xg, 0, zo). Which
direction does p, take in the field of p;?

Exercise 2.2.10 Four charges g are arranged in a Cartesian system of coordinates
at the points

(0,d,0), (0,—d,0), (0,0,d), (0,0,—d)

and four further charges —q at the points

d
(—d.0,0), (_E’O’O)’ (d.0,0), (2d,0,0) .

Calculate the dipole moment p and the quadrupole tensor Q of this charge-
arrangement.

Exercise 2.2.11 A given charge distribution p(r) possesses axial symmetry about
the z-axis.

1. Show that the quadrupole tensor is diagonal!

2. Verify: Qy = Qyy = —(1/2)Q..

3. Calculate the potential and the electric field strength of the quadrupole as a
function of Q..

Exercise 2.2.12 Why does the 3 x 3-matrix of the quadrupole moments Q;; (2.93)
have to be a tensor of the second rank?

2.3 Boundary-Value Problems in Electrostatics

2.3.1 Formulation of the Boundary-Value Problem

In Sect. 2.1.3 we identified the solution of the Poisson equation (2.41) as the basic
problem of electrostatics. All considerations therefore aim at developing solution
methods for this linear, inhomogeneous, partial differential equation of second
order.

If the charge density p(r’), which creates the potential ¢(r), is known and there
are no boundary conditions to be fulfilled at interfaces (bounding surfaces) for
finiteness, then the general solution (2.25) is fully sufficient:

1 /
p(r) = / r |:(r3/| (Poisson integral) .
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If p is spatially restricted then it holds in particular

¢ — 0; Vo — 0.

r—>00 r—>00

For many practical problems, however, this is not the actual starting point.

Definition 2.3.1  ‘boundary-value problem’

given: p(r') in a certain space region V,
do __
¢ or - =-E-n

on certain interfaces and bounding surfacesin V.

to be found: the scalar potential ¢(r) atall points r
within the interesting space-region V.

Let us first investigate under which conditions an electrostatic boundary-value
problem has a unique mathematical solution. For this purpose we use as essential
auxiliary means the two Green theorems (1.66) and (1.67) by which we transform
the Poisson equation (2.41) into an integral equation. If we insert

=) Y-

)

r—r|

into (1.67) then it follows:

1 1
/ [w(r/)Ar’m - WANP(I'/)} &’r
4

1 /
= —47r/d3r’qo(r/)8(r—r/) + —/d3r/ﬂ
€ r —r'|
v v

1 1 de
= [ o )

S(V)

In the second step we have exploited (1.69) and inserted the Poisson equation (2.41).
The normal-derivatives are thought as in (1.65).
If now r € V then it remains as solution for the potential:

3,/)(1' 1/ / 1 a(p_ /i 1
o) =g / vl T an df|:|r o Y5 o]

S(V)
(2.106)
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We want to discuss this relation:

1. p in V and, respectively, ¢ and dp/dn = n - V¢ on S(V) (n: surface normal)
determine the potential in the full region V. Existing charges outside V enter the
surface integrals only implicitly.

2. If V is free of charges then it holds forr € V:

1 , 1 d¢ .0 1

S(V)

Thus ¢ is completely determined by its own values and those of its normal-
derivative on S(V).
3. If V is the entire space and

(p(l'/) —
r’—oo I’
i.e.
1 dp 1
|I'—l'/| on’ ¥—oo 3 ’

.0 1
YO o e =v] e B
then the surface integral vanishes, only the volume integral is left which one calls
the Poisson integral, i.e. just the known result (2.25).

4. By both the data ¢ and d¢/dn on S(V) (Cauchy-boundary conditions) the
problem is overdetermined. We will see that in general they cannot be fulfilled
simultaneously. Thus Eq. (2.106) can not yet be considered as a solution of the
boundary-value problem. It is actually an integral equation which is equivalent
to the Poisson equation.

2.3.2 Classification of the Boundary Conditions

One distinguishes two types of boundary conditions:

Dirichlet-Boundary Conditions

10 given on S(V)!
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Neumann-Boundary Conditions

8_(,0 =-n-E given on S(V)!

on

One speaks of mixed boundary conditions if these have on S(V) piecewise Dirichlet
and piecewise Neumann character.

Before we think about the physical origin of such boundary conditions we
demonstrate the uniqueness of the solutions resulting from them (see Exer-
cise 1.7.24):

Let ¢ (r), ¢2(r) be solutions of the Poisson equation

Apa(r) = —ép(r)

with

91 =¢, onS(V) (Dirichlet)
or

% = 2 onS(V) (Neumann).

n on

For
¥ (r) = ¢i(r) — ga(r)
it then holds
Ay =0
with
Y =0 onS(V) (Dirichlet)

or

88—1’/1/ =0 onS(V) (Neumann).

The first Green theorem (1.66) then reads for ¢ = :

d
[artvavs@w=dvila.

1% S(V)
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For both types of boundary conditions the right-hand side vanishes. We therefore
have:

/d3r(VW)2:0 — V¢ =0 = 1 = const.

\%4

Dirichlet:
Y =00nS(V) = ¢y =0inV = ¢(r) =¢(r)inV

Neumann:

Y = const in V and %—f =0o0nS(V) = ¢i(r) =¢a(r)+ C.
The constant C is of no importance. It vanishes, for instance, when one goes by
performing the gradient to the actually interesting field strength E. Both types
of boundary conditions thus fix physically uniquely the solution of the Poisson
equation. This is valid also for mixed boundary conditions.

Why are Dirichlet- or Neumann-boundary conditions of practical interest? Where
and when do they become relevant? To answer these questions some preliminary
considerations are necessary: One can roughly divide the materials which can carry
charges into two classes:

1. Non-conductors (insulators): These are substances whose charged constituents
are fixed at certain space points. Even the application of an electric field cannot
release them of their bonds. One may think of the Na™and CI~ ions of a NaCl-
crystal. Excess charges brought onto a non-conductor remain localized even if
electric Coulomb-forces are acting.

2. Conductors (metals): These are materials in which electric charges (e.g.
electrons of a partially filled energy band in a solid) can almost freely be shifted.
They immediately react to an electric field. That holds in particular for excess
charges that are additionally brought in.

If the conductor finds itself in an electrostatic, i.e. time-independent field, the
charges will rearrange themselves in such a way as to give an equilibrium state in
which all the charges on the surface as well as inside the conductor are at rest. But
that means necessarily:

E(r) =0

o(r) = const in the conductor . (2.108)

What happens at the interface between the conductor and the vacuum? On the inside
of the conductor surface it must hold according to our above considerations:

E" =E"=0. (2.109)
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Tangential as well as normal component of the E-field are zero. We have found
in (2.44) that the tangential component behaves continuously at the interface:

EV=0; EW= 620 _ (2.110)

Important conclusion: The electric field is always oriented perpendicular to
the surface of the conductor (Fig.2.39), i.e.

Surface of the conductor = equipotential surface

From (2.109) it follows with the physical Gauss theorem that the interior of an
electric conductor is always charge-neutral. This fact does not change even if the
conductor is hollowed out. The resulting hole remains field-free (Faraday cage).
When we bring an electric conductor into an external electrostatic field the quasi-
free charge carriers will be shifted until the resulting total field enters the surface of
the conductor perpendicularly, i.e. the tangential component of E vanishes. That
means that the external field will be deformed. If, however, E;(l") # 0 then it follows
from (2.110) that a proper surface charge density o must have been built. One says:

The external field induces charges on the surface of an conductor!

We now come back to our boundary-value problem. We are looking for the
electrostatic potential ¢ (r) as the solution of the Poisson equation in a certain space-
region V (Fig. 2.40). The Poisson equation is defined by a

charge density p(r).
Its solution is influenced by boundary conditions on the

1. surfaces of conductors <= ¢ = const,
doa _ i _ _ o
2. charged areas <= 7 — 5 = — .,

3. dipole layers <= ¢, — ¢; = :E%D.

The following considerations aim at such cases for which the boundary conditions,
which are to be fulfilled, are of the Dirichlet- or the Neumann-type.

Fig. 2.39 To the behavior of E,
the electric field at interfaces

between a conductor and the

vacuum

Conductor
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Fig. 2.40 Typical boundary A
conditions for the solution of 6\)9&0‘ ° ¢=const o | Charged area
the Poisson equation o
i [ 2
D ’ on ! on
1
Pa Dipole layers

2.3.3 Green’s Function

We want to solve the boundary-value problem at first formally, and that by the use
of the so-called Green’s function G(r,’).
Green’s function: Solution of the Poisson equation for a point charge g = 1:

A,G(r,Y) = —%5(r— r). (2.111)
0

Obviously it is about a function which is symmetric in r and r’; i.e. we can let
the Laplace operator act also on the variable r’. With (1.69) one easily shows
that (2.111) has in the interesting space-region V the solution

L) (2.112)

G(r,Y) =
() dmey |r—1'|

where f(r,r’) is an almost arbitrary, symmetric function in r and r’ which has only
to fulfill within V

Afr,r)=0. (2.113)
We will later exploit the freedom to choose f almost arbitrarily for realizing special

boundary conditions.
We use once more the second Green identity (1.67):

/ & [p(t) A Gr.) — G, ¥) Arg(r)]
14

1 1
=—— / Ero)s—r)+ — / &*r G(r,¥)p(r)
€0 €0
Vv Vv

9 9
/ df' [(p(r’)a—g — G, r/)a—ﬂ .

S(V)
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For r € V that means:
0G d
p(r) = / &' p(r)G(r.r') — & / & | o) o= — Gt o | . (2.114)
on’ on’
1% S(V)

This relation is of course completely equivalent to (2.106); but we now have
the possibility to remove via the still freely choosable function f(r,r’) the over-
determination of the problem.

1. Dirichlet-boundary conditions
In the case that ¢(r") on S(V) is given one chooses f(r, r’) such that

0
/ df Gp(r,r)<2 — 0 . 2.115)
on’
S(vV)
Often, but not necessarily always, we realize this by
Gp(r,r') =0 Vr eSV). (2.116)
We then have for the scalar potential:

0Gp
o'

o(r) = / ¥ p(r)Go(r. ') — €0 / o) @.117)

v S(V)

Since ¢ on S(V) and p in V are known the solution of the problem is herewith
traced back to the determination of the Green’s function. The latter must
fulfill (2.115) and (2.116), respectively.
2. Neumann-boundary conditions
In the case that g—ﬁ = —E -non S(V) is given one chooses f(r, r’) such that

dGy(r, 1)

=% 2.118)

& / df' (')

S(V)

where ¢y may be an arbitrary constant. The at first glance obvious requirement
to choose, in analogy to (2.116), the function f(r, r') such that

ad
—Gy(r,r)=0 Vr esSV)
on’

leads to a contradiction. That can be seen as follows:

1 1
/d3r’A,/GN(r, r) = ——/d3r’8(r—r’) =——, ifrev.
€0 €0
v 4
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When we evaluate the integral on the left by the use of the Gauss theorem,

Gy
o'’

/d?’V/Ar'GN(I‘, r) = /df-V,/GN(r, r) = /df’

% S(V) S(V)

we get by comparison

Gy 1

df — = ——, ifreV. (2.119)
on’ €0

S(V)

That would be in obvious contradiction to the assumption that the normal-
derivative of Gy on S(V) identically vanishes. In the case of Neumann-boundary
conditions one therefore often chooses f(r, r’) such that

d 1
— Gy, r)=—— VresyV). (2.120)
on’ €S

Then the in principle irrelevant constant ¢ in (2.118) can be interpreted as the
average value of ¢ on the closed surface S(V):

1
%=§/wﬂﬁ. (2.121)

S(V)

We are then left with the formal solution for the scalar potential:

o0 - = [@rprGrr) e [ @Grngs . i
n
v S(V)

Since d¢/dn’ on S(V) and p in V are known, the problem to be solved is traced
back in this case, too, to the determination of a Green’s function, i.e. to the
determination of the potential of a point charge g = 1. The Green’s function
Gy/(r, r') must now fulfill the boundary condition (2.120) and (2.118).

Application Example

We consider a certain charge density p located in front of an in the xy-plane
infinitely extended, conducting and grounded plate (Fig.2.41). We search for the
potential in V = half space (z > 0). The boundary conditions to be fulfilled are of
the Dirichlet-type:

¢(x,y,2z=0) =0 (grounded metallic plate, see (2.108)),
@x = £00,y,2>0) = @x,y==200,2>0)=9¢x,y,z=400) =0.
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Fig. 2.41 Charge density in x
front of an infinitely

extended, grounded metallic

plate

e#0

@ is therefore identical to zero on the surface S(V). According to (2.117) the task
is the determination of the Green’s function Gp(r, ') for which, as a starting point,
(2.112) must hold:

1

Gp(r, ) =
p(r.r) dmey |r—1'|

+ fo(r,r') .

By definition we can perceive the Gp as the potential of a point charge at ¥’ € V.
Thereby the following conditions are to be fulfilled:

Afpo(r, ')y =0 VreVv,

9

/ df'Gp(r, )L — 0.
on’

S(V)

We try to realize the second condition by (2.116), i.e.
Gp(r,r) 20 forr e S(V).

We inspect first the xy-plane, which represents a part of S(V). There it must hold:

! -1
T dre P PR

fD (l', l'/)

This suggests for fp(r, r’) the following ansatz:

-1
dreplr —ry|

fD(rv l'/) =
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ry shall thereby originate from r’ by reflection at the xy-plane:
r=u,.7) = rp=.y.-2). (2.123)
That means:

-1
deoy/r =3V + =y + @+

fole,r') =
By applying the Laplace operator to the so-defined fp(r, ') we get:
/ 1 / 1 / /7 / /
Afp(r,r’)y = =8(r—rp) = —8(x—x)(y—y)z+7)=0 Vrr'eV.
€0 €0

Therewith the first requirement on fp(r, r’) is fulfilled. With our ansatz for fp the
full Green’s function reads:

Goter) — 1 1
P T e Ur— 1| v — rg|

1 1
__““[JQ—WV+O—VV+&—iV

1
— . (2.124
\/(X—X’)2+(y—y’)2+(z+z’)2} ( )

On the xy-plane (z = 0) the two summands within the bracket compensate each
other while on the boundary surfaces of V which lie at the infinity each summand
itself is already zero:

Gp(r,r) =0 vVr'eS(\V), reVv.
Therewith all the requirements are fulfilled. We are now able with (2.124)

and (2.117) to write down the full result for the scalar potential ¢ of the charge
density p:

1 1 1
o(r) = —/d3r/p(r’) - - (2.125)
dmey r—r| |r—rg]
v

(r=(xyz2;r =,y,7)ry = (X,y —2)). Note that, as expected, the Green’s
function Gp(r, r’) is symmetric with respect to an interchange of r and r’.

One should remember that the result (2.125) has been derived for the special
boundary condition ¢ = 0 on S(V). That was the reason why the second term
in (2.117) vanishes. If we change the boundary conditions such that the z = 0-
plane is no longer to be interpreted as grounded metal plate with therefore vanishing
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potential, but instead carrying an arbitrary ¢(x, y,z = 0) # 0, then nothing changes
for the Green’s function (2.124). However, we still need for the second summand
in (2.117) its normal-derivative:

dGp(r, 1)
on’

__9Gp(r, r')

/
s 0z

1 2z
/=0 4eg ((x_x/)z +(y _y/)z + Z2)3/2 :

The potential then reads:

@) = ¢(x,y,2)

+o0 +oo ' V.0
:/d3r/GD(r,r/)p(r’)+i/ dx’/ dy/ ey, 0) 7 -
v 27 J—oo —00 ((x_x/)2+(y_y/)2 +Z2)’

2.3.4 Method of Image Charges

In the last section we could trace back the formal solution of the boundary-value
problem completely to the determination of the Green’s function,

1 /
dres m +f(r.r),

G(r,v) =
that means to the determination of the potential of a point charge ¢ = 1. The actual
problem therefore concerns the specification of the function f(r,r’), which has to
fulfill on S(V) the conditions (2.116) and (2.120), respectively. Inside the interesting
space-region V the function f must be the solution of the Laplace equation:

Afr,¥)=0 VrreVv.

That suggests the following physical interpretation:

f(r,r’):  Scalar potential of a charge distribution outside V, that together with the
potential (4e€|r — r’|)~! of the point charge ¢ = 1 at r’ realizes the given
boundary conditions on S(V).

The position of this fictitious charge distribution depends of course on the position
1’ of the real charge ¢ = 1.

This interpretation is the starting point for the method of image charges: One
places outside of V fictitious charges, so-called ‘image charges’, at certain spots
which are determined by the geometry of the underlying problem. These image
charges serve to fulfill the required boundary conditions. On the other hand, they lie
outside of V and therefore do not disturb the Poisson equation within V (Fig.2.42).
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r’'=(0,0,2") r

Fig. 2.42 Replacement of the boundary conditions of an electrostatic problem by introducing
suitable image charges, demonstrated for the simple example of a point charge over a grounded
metallic plate

o(r') o(r") plus image charges
plus boundary conditions without boundary conditions

We try to become familiar with the procedure by considering some examples!

Example: Point Charge over a Grounded, Infinitely Extended Metallic Plate
We already discussed this problem in the last section in a slightly more general
form:

V:  halfspacez>0.
The boundary conditions are of the Dirichlet-type:
=0 onS(V).

We can always choose the system of coordinates such that the point charge g lies on
the z-axis. We can realize the condition ¢ = 0 on the xy-plane by an image charge
gs outside of V. It is plausible to assume that this image charge must also be a point
charge on the z-axis (Fig. 2.42). We therefore start with the following ansatz for the
potential:

q qB

dregp(r) =
r—r|  |r—rg]

(r' = (0,0,7); rg = (0,0,z3)). We have to determine gg, ry in such a way that
r; ¢ Vand

p(r) =0 Vr=(x,y0)
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This however means:

q qB

!
0= + :
V2 + (=22 2+ + ()

From this one gets immediately:

. ’ / / ’
qB = —q ; g = 2 <:>rB=_r’

= 1 1 1 (2.126)
¢ Cdmey \Ir—=v| |r+r|) .
Because of
1
y——— =4 8(r+1r)=0 VrreV
[r 4+ 1|

it is a solution of the Poisson equation which fulfills the Dirichlet-boundary
condition ¢ = 0 on S(V). It is therewith unique.
Let us discuss the result with respect to physics:

1. Electric field
We have to get the negative gradient of (2.126):

qg [y z—7) @y z+7)
E(r) = —
dwey | r—1'? Ir +r|?
The surface of the metal is an equipotential area (¢ = 0). The field

E is therefore perpendicular to it (Fig.2.43), corresponding to our general
considerations (2.110):

/

q Z
E(r; z=0)=— . 2.127
r:z2=0) meo (242 + ) ( )
2. Induced surface charge density
For this it holds according to (2.110):
/
0= eE( 7 =0) = -1 ‘ (2.128)

EAGES RO,

Fig. 2.43 Behavior of the
electric field of a point charge
in front of a grounded
metallic plate
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We obtain the total induced surface charge by integration over the metal surface
i= [ aro.
z=0

where conveniently plane polar coordinates are used:

df = pdpdy

oo

- J 4
:}q—_qo pp(p2+Z/2)3/2

o0
_ / ao (-4 ! - (2.129)
=9z p o P +)72) = q- :
0
The total induced surface charge is just equal to the image charge gg = —g.

3. Image force
The surface charge o which is induced on the metal plate by the point charge
q itself executes a force on the point charge.
The element df of the metal surface has the direction e, and carries the charge
o df. By q it experiences the force

dF = e.(o df)E(z = 0) .
E(z = 0) is the contribution of the point charge g exclusively to the field at z = 0.

Since the field below the plate (z < 0) vanishes, because there the contributions
due to g and due to o compensate each other, it holds:

EGz=0)=

N =
219

(see the considerations about the fields E4 (r) in the parallel-plate capacitor in

Sect. 2.2.1; the strict justification of the factor % comes later: Maxwell’s stress

tensor). According to action = reaction it follows then for the force F on the

point charge:
_ 1 )
F=— (| dF=—e,— | dfo".
260

z=0 z=0
Using (2.128) we have:

¢ 1

=———=€;. 2.130
4reg (21/)zez ( )
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We see that F is always attractive and corresponds exactly to the Coulomb-force
which the fictitious image charge gg at r; would exert on the charge ¢ at r’. One
calls F the image force.

Example: Point Charge over a Grounded Metallic Sphere
V is the space between two concentric spheres with radii R and R — oo. We
simulate the boundary condition

¢ =0 onS(V)

by introducing an image charge gg, which should not lie in V. It has therefore to be
located within the metallic sphere (Fig. 2.44). Due to symmetry reasons we expect:

AT (0 <R).

This leads to the ansatz:

q qB % CIB/Vfg

—+ =
|I'—I'/| |I'—l';3| ier_rT/er’| ‘(r/r%)er_er’

dmeop(r) =

(e, - e, = cosa). We fulfill the boundary condition ¢(r = R) = 0,

—1/2 —1/2
N L LB (R R
= R2 RCOSC( r/ ) 7 cos o .

R B \'B s
by
q gg 7 R
R g R 1
Therefore the solution is evident:
, R? R
p=—F=R qg=—q-. (2.131)
7 r
Fig. 2.44 Point charge ¢ -
over a grounded metallic oo \< - ’ p
sphere with suitably chosen /
image charge gp /
// ) a ” .
g q
9B
nw% ’
/
/
-
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The closer g approaches the surface of the sphere the larger is the magnitude of the
image charge and the farther the image charge shifts away from the center of the
sphere towards its surface.

The potential

_ 1 R/¥
p(r) = 4;;60 (Ir—r’| - Ir— (Rz/rIZ)rll) (2.132)

solves in V the Poisson equation and fulfills on S(V) the Dirichlet-boundary
conditions representing therewith a unique solution of the potential problem.
‘We now can read off from (2.132) the

Green’s function of the sphere

1
Gp(r,Y) =
p(r.x) 4mey <|r—r’| r—%r’|)

—1/2
= P42 —2rr e, ey
47t60|: " r)

—-1/2
-( = —2r e - eﬂ) ]. (2.133)

for which it obviously holds:

GD(I', l'/) = GD(I'/,I') ’
Gp(r,r) =0 VreS(V) and reV. (2.134)

Therewith we have solved automatically via our special example a big class
of essentially more general potential problems. The Green’s function Gp(r,r’)
according to our general theory (2.117) is all that we need in order to calculate
the potential ¢(r) of an arbitrary charge distribution p(r’) above a sphere with the
radius R, on the surface of which ¢ is arbitrary but known. So the sphere must not
necessarily be grounded (¢ = 0). For the complete solution we still need the normal
derivative of Gp. Thereby it is to be kept in mind that the normal unit vector points
perpendicular on S(V) outwards, that means according to our choice of V into the
inside of the sphere:

8GD

S(V) or

o
on’

1 r*—R?
Y=R 4meoR (12 + R2—2rRe, -e.)

32



114 2 Electrostatics

If the charge density p is known in V and also the surface potential (') =
@(R, ¥, ¢") on S(V) then the problem is completely solved (df’ = R? sin®'d¥'d¢’):

p(r) = p(r. 0, ¢) = / d&*r' p(r)Gp(r, 1)
Vv
2

+1
R(” —R?) PR V. ¢")
—— | d l‘/“/d ! - . 2.135
* A / €08 ¢ (r> + R*>—2rRe,-ey)3/? ( )
el 0

In both integrands a possibly complicated angle-dependence appears because of
e, -e, = sin® sin®’ cos(¢ — ¢’) + cos ¥ cos ¥’
Let us come back once more to our special example of the point charge g in front of

the grounded metallic sphere:

1. Surface charge density
It holds:

i 0
o= +eoa—¢ = +emn-Vo|,_f = —60—('0

1 ly=g ar r=R

The same calculation as that above for 0Gp/dn’ leads to:

so_ 4 (R L-R/r” (2.136)
T 47R2 / 2700 , 3/2 " :
T ) (14+R?/r?—2(R/r)cosa)

o is rotational-symmetric around the direction e,» and is maximal fora = 0 (o
as defined in Fig. 2.44). The smaller the distance between the point charge and
the surface of the sphere the larger is the concentration of the induced surface
charge around the e,s-direction (Fig. 2.45).

Fig. 2.45 The surface charge o
density o induced by a point

charge ¢ on a grounded

metallic sphere as the

function of the angle o , .,
defined in Fig. 2.44 2<n
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Fig. 2.46 To the calculation
of the image force between a
grounded metallic sphere and
a point charge over the sphere

One should figure out that the total induced surface charge g amounts to:

_ R
7= / dfo=—q5=qn. 2.137)

sphere

2. Image force
The metal surface is an equipotential-surface, the electric field E is therefore
perpendicular on it. The force, which is exerted by g on the area-element, is thus
oriented in the radial direction. As justified in the preceding example, it then
holds for the force which acts on the area-element df

2

af = g .
260

o is rotational-symmetric around the e, -direction. When we integrate dF over
the entire surface of the sphere (Fig. 2.46) then the components perpendicular to
e, are averaged out:

_ 1
F:—/dF:—e,/ / df o*cosa .
260

r=R sphere

After a simple calculation (see Exercise 2.3.1) it is found, as in (2.130), the
familiar Coulomb-force between charge and image charge:

1 q(—=qR/r) e q-qs

F=e- = e,/ .
" 4re (" —R2/r)* "dmey v —rp?

(2.138)

It is always attractive (g - gg < 0).

2.3.5 Expansion in Orthogonal Functions

The explicit solution of a potential problem can often be found or at least simplified
by an expansion of the solution function in terms of suitable systems of orthogonal
functions. What we have to understand in this connection by ‘suitable’ is, they are
determined by the symmetry of the boundary conditions. At first let us compile
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a list of terms and concepts which are also of importance for other disciplines of
Theoretical Physics.
U,(x), n=1,2,3...: real or complex, square-integrable

functions in the interval [a, b] .

Two terms are decisive for the following: orthonormality and completeness.

(1) Orthonormality

is given if it holds

b
/ dx U () Up (%) = S - (2.139)

a

(2) Completeness
This requires a little more discussion. Let
f(x) be a square-integrable function .

We then define

N

W) =) caln)

n=1

and ask ourselves how the ¢, must be chosen in order that fy(x) approximates the
given function f(x) as closely as possible. That means that we require

b
/dx|f(x) —fy@I? < minimal .
We reformulate

b b

N b
[astrw —per = [arwiem-Y e [avew
n=1 a

a a

N

b N
_ch/den(x)f*(x) + Zc:cn )
n=1 a n=1
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and build
a b
0=~ ... = —/den(x)f*(x) +c*,
dc,
a b
0= = —/dx U* (0 (x) + ¢ -
dc*

a
The ‘best’ choice for the coefficients ¢, thus is:

b

Cp = /dx Uy (x)f (x) . (2.140)

a

Intuitively one would expect that the approximation of f(x) by fy(x) becomes better
and better the more terms of the system of functions {U,(x)} are taken into account.
One speaks of

convergence in the mean

if
b
Nli_)n;o/dx Lf(x) —fv@) > =0. (2.141)

That is just the case for the so-called ‘complete’ systems of functions.

Definition 2.3.2 An orthonormal system of functions U,(x),n = 1,2,..., is
called complete, if for each square-integrable function f(x) the series fy(x)
converges in the mean towards f(x) so that it holds with the ¢, from (2.140):

oo

@) =Y el (2.142)

n=1

The exact proof that a certain system of functions is complete is not always a trivial
task! If we insert (2.140) into (2.142),

00 b
10 =3 [auioreuw.
n=1 w
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we recognize the so-called completeness relation

Y UrUx) = 8(x—). (2.143)

n=1

Examples 1. Interval [—xo, xo]

U, (x) ! ! sin (mr ) ! cos (nn ) (2.144)
(%) ; ——sin| —x ), — —x .
V2x0 /X0 Xo X0 X0

This is a complete orthonormal system, i.e. each in [—xg, xo] square-integrable
function can be expanded in this:

fx)=C+ Z |:an sin (%x) + b, cos (ﬂx):|

X
n=1 0

(Fourier series).
2. Functions of the spherical surface
With spherical coordinates (r, ¥, ¢) the Laplace operator can be written as

follows:
1d(,0 1
8= (75) + e

1 9 d -
ANpp = ——7=sind— +

sin 9 00 30 sin? 0 092 (2.145)

The eigen-functions of the operators Ay, and i %,

Al?,(p Ylm(ﬁv (P) = _l(l + 1) Ylm(ﬁv (P)

ad
la_ Ylm(ﬂv @) =—-m Ylm(ﬁs (p)
®

are called spherical harmonics:

Y@, @): 1=01,2,.... m=—l—1+1,....01—1,1. (2.146)
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They constitute a complete system on the unit sphere. We list here their most
important properties without intending to prove them in all detail:

(a)

— MM m img
Y. (0, 0) = i Usm)! P'(cos¥) "™,
Yiew(, ) = (=1)"Y}, (8, ¢) . (2.147)

(b) P/'(z): associated Legendre functions

PP@ = (11— 2R,

(I—m)!
(I +m)!

P"(z) = (=)™ Pl'(2) . (2.148)

These are the solutions of the so-called generalized Legendre equation:

d 5 dP m? _
d—z[(l—Z)d—J+[l(l+1)— I_Zz:|P(z)—O. (2.149)
(c) Pi(z2): Legendre polynomials
Pi(z) = ( -1, (2.150)

211 ! d7
They are solutions of the so-called ordinary Legendre equation:

d

e [(1 -z )ZP} +1(1+ PR =0. (2.151)

They build a complete orthogonal system in the interval [—1, 4+1]. However,
they are not normalized to 1; moreover it holds:

Pi(£1) = (£1). (2.152)
(d) Orthogonality relations:
+1
/ dzP((2)Pi(2) = 211 181k, (2.153)
i
/dzP?”(Z)PZ”(Z) 211 1 El:m)): S (2.154)

-1
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2

/d(p ei(m—m’)w =2m Smm’ s
0

2 +1
/d(p / dcos Ylfm’ (19, (P)Ylm(l?7 (P) = 811’8mm’ .
0 —1

(e) Completeness relations:

3 DAEP() =8~ 7)
=0

oo+l

Z Z Y50 @) Ym0, 9) =

1=0 m=—1

= §(¢p — ¢)8(cos ¥ — cos ') .
(f) Expansion theorem:

oo+l

@) =f8,0) =Y > Rin(Yim(9,9) ,

=0 m=—I
2 +1

Rim(r) = / dg / deos®f(r. 0.0 V(3. 0) .

0 -1

(g) Addition theorem:

+1
4

+1 2]
DY@ @)Y e) =

m=—1

(y = <(@¢’, 99)).
(h) Special functions:

Pi(cosy)

Po(Z) =1 s
Pi(z) =z,

Py(z) = %(3%2 -1,

1
P;i(z) = 5(513 —-32),...;

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)
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1
Yoo = —,
7 Vax
3 )
Yii = —y/—sinde?,
8w
3
Yio = Ecosﬁ,
1 /15 )
Y22—— —Sil’lzﬁelzw
4V 2w
15 )
Y1 = —y/—sin?d cos e’ ,
8w
5 (3 1
Yoo =1/ — [ Zcos? —= ] ,...
20 JT(ZCOS 2)

Use 2.147)for Y, —1; Yo —2; Yo 15 ...

2.3.6 Separation of Variables

We are looking for further solution methods for the Poisson equation,

1
Ag(r) = —ap(r) ,

which represents a linear, partial, inhomogeneous differential equation of second
order in a region, on the boundary of which certain conditions are prescribed.
The method of separation appears to be conceptually rather simple. It consists
essentially only of a special solution ansatz:

o(r) is written as a combination (e.g. a product) of functions, each of which
depends only on one independent coordinate (variable), for instance: ¢(r) =
J®)g()h(2).

One tries to achieve therewith that the partial differential equation reduces to
several ordinary ones which can be usually solved more easily. We demonstrate this
procedure by two examples:

(1) Laplace Equation with Boundary Conditions
We discuss the two-dimensional problem sketched in Fig. 2.47:

Ap=0 inV.
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Fig. 2.47 Two-dimensional @(x,¥0) =g (x)
electrostatic problem with
boundary conditions for
points within a charge-free
space V

We try to find the potential ¢(r) for all r € V under the boundary conditions on
S(V), which can be read off from Fig. 2.47 being all of Dirichlet-type. It is obviously
convenient to choose Cartesian coordinates,

92 d?
+ _

A= ,
axz  0y?

as well as the separation ansatz:

p(x,y) = f(0)g() .

When we insert this ansatz into the Laplace equation and then divide the resulting
expression by ¢ then we get:

140 1&g _
fdx?  gdy?

Since the first summand depends only on x and the second exclusively on y, both
terms on their own must already be constant:

1d% _ . 1df
g dy? fdx?

Therewith we already know the structure of the solution:

g() : acosh(ay) + bsinh(ay) ,
f(x) : acos(ax) + bsin(ax) .

We have to fulfill the boundary conditions:

00,y)=0 = a=0
px,00=0 =— a=0,

0(x0,y) =0 — a—>a,=—; neN,
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A special solution which fulfills all these three conditions would then be:

On(x,y) = sinh(a,y) sin(a,x) .

The general solution thus looks like:
nmw niw
,y) = ,sinh | —vy ) sin | — .
o(x.y) zn:c i (xoy) (XOX)
We fix the coefficients ¢, by the not yet used fourth boundary condition:

nmw nmw
= n 1 h e i .
©o(x) E cp Sin (Xo yo) sin (_x x)

1 0

We multiply this equation with sin (mmx/xy), integrate from 0 to xo, and exploit the
orthonormality relation (2.139) of the complete system of equations (2.144):

X0
b4 b4 T
Z ¢, sinh (n—yo) / dx sin (n—x) sin (m—x)
X0 X0 X0
n 0
nm X X mi
= Z ¢, sinh (—yo) —O(Snm = —Ocm sinh (—yo) .

- X0 2 2 X0

This leads to

X0

2
Cm = —/dxgoo(x) sin (ﬂx) ,
X0 sinh (%yo) X0

0

so that the problem is completely solved.

(2) Poisson Equation with Boundary Conditions

The formal solutions (2.117) and (2.122) of the boundary-value problem are
completely determined by the corresponding Green’s function. We therefore can
limit the discussion to the case of point charges. The following example will
show how the solution of the Poisson equation can be traced back to that of a
corresponding Laplace equation.

Let there be two infinitely extended, parallel, grounded metallic plates between
which a homogeneously charged wire is located, parallel to the plates and with
the distance yo from the lower plate (Fig.2.48). We are interested in the potential
everywhere between the plates.
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Fig. 2.48 Point charge y

between two parallel 9=0
grounded metal plates as an d ‘¢—:_L
example of a Yot==d---% V
Dirichlet-boundary value !
problem 0 J—:_V

N2

X0 \(P =0 X

The problem is independent of the z-coordinate. We therefore can consider it
to be an actual two-dimensional problem so that the homogeneously charged wire
becomes a point charge:

V = {r = (x,y); xarbitrary; 0 <y <d},
p(r) = qd(r—ro); To = (X0,Y0) -

Boundary conditions:
¢ = 0 on the plates and for x — =o00. Thus it is about a Dirichlet-boundary
problem.

But let us slightly reformulate the problem. We decompose the interesting space-
region V into two partial volumes V4 and V_,

Vi=Vkx>x); Vo=Vx<ux),

and solve the Laplace equation in each of the partial volumes V4, where the point
charge at ry can formally be interpreted as surface charge:

Ap=0 inV_, V4.
Boundary conditions:

@ ¢ — 0,

X400
(b) ¢x.y=0)=0,
(©) plr,y=d)=0,

do+  do—

(d) o(x0.y) =¢q8(—y) = —€ (W_W)‘ —w

The last condition is due to the interface-behavior (2.43) of the normal component
of the electric field:

o=¢m-(E,—E).
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One notes that it must be chosen for V1

n=—e; E,=-Vog| Ei = —Voi|,

xo
and for V_

n=e,; E,= _V‘P+|x0 ;i Ei= —Vo_|

X0 °

In both the cases one finds the same boundary condition (d).
Furthermore, ¢ must be continuous at x = xo (y # yo). Hence we now have to
realize mixed boundary conditions. (a) to (c) are of Dirichlet-type, (d) of Neumann-

type.
We start with a separation-ansatz:

p(x,y) =f(0)g) -

The Laplace equation

e 1dg
[ dx? g dy?

has the special solution:

fx) =ae’ +be P,
g(y) = acos(By) + bsin(By); B>0.

We now fit the boundary conditions.
Boundary condition (b) yields:

From condition (c) it follows:
B—B,=—; neN.

Boundary condition (a) leads to:

o0
— £),Fox o (1T
ot = ZA; e dxsm(;y) .

n=1
The continuity at x = x( requires:

a, = Aiﬂ')e_%"0 = A,(l_)e+%"° Vn.
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Therewith we have the following intermediate result:
> ni
— =5 lx=xol (_ )
X,y) = ape” d sin .
o(x.y) ; s Y

The coefficients a, we derive from the not yet used boundary condition (d):

(x0.) > . (nrr )( nmw nrr)
0(xp,y) = —¢€ apsin | —y) (————) .
0,y 0n=l d y d d
We exploit once more the orthonormality relation:
2 2 ; 2 :
T €9 . /mm q . mm
= [t n () = [ s —sin ()
g i d/ yo(xo.y)sin(—=y) = — [ dyd(y—yo)sin{—-y
0 0
This leads to
L4 sin(%F)
" e m

and therewith to the complete solution for the potential:
q 1 nmw nmw
— ; ; — 2 [x—xo]
X,y) = E — sin sin e d .
#x.) e =i n (dyo) (dy)

For not too small |x — x| one can restrict oneself, because of the exponential
function, to the first few summands (Fig. 2.49).

Fig. 2.49 Qualitative solution of the boundary-value problem of Fig. 2.48 for the scalar potential ¢
and the x-component of the electric field strength E,
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2.3.7 Solution of the Laplace Equation in Spherical
Coordinates

Boundary conditions are often to be fulfilled on surfaces which exhibit a special
symmetry. Then for the description one should use the corresponding coordinates
and should expand the potential in functions which fit to these coordinates. Let us try
to find in this section, as an important example, the general solution of the Laplace
equation

AD(r,0,9) =0

in spherical coordinates. The suitable complete system of coordinates are here the
spherical harmonics (2.146). We use the expansion theorem (2.159) in order to
express the potential ® by these functions:

oo+l
O(r, 0, 0) =Y Y Rin(r)Yin(D, ) . (2.162)

=0 m=—I

We apply the Laplace operator (2.145):

0=Ad = Z%}’zd}’( )+ Az?(p} Ylm(ﬁs(p)
1 d dR l(l+1)
Z%:{ﬁz (”25) 2 } Yim(9, ¢)

Because of the orthonormality of the spherical harmonics each summand itself must
already be zero. This leads to the so-called radial equation:

1 d [rzd_R}_ I(1+1)

R=0. (2.163)

r2 dr dr r2

We solve it with the ansatz (r # 0):

1
R(r) = ;u(r) .

Inserted into (2.163) we have therewith

(d_z_l(ltl))u(r)zo.

dr? r
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This equation has the solution
u(r) =Ar 4+ B
According to (2.162) the potential ® has then the general form:

oo+l

O(r.9.0) =Y Y (A + Bt D) Vi (9. 9) . (2.164)
=0 m=-—I

The coefficients must be fixed with respect to the current physical boundary
conditions. An oftentimes given special case is that of azimuthal symmetry of
the boundary conditions. Then the solution of the Laplace equation must exhibit the
same symmetry, i.e. must be g-independent. According to (2.147) that is fulfilled
only by the m = 0-spherical harmonics. Then (2.164) changes with (2.147) to :

o0
O(r, ) = Z(Zl + 1) [Ar + Br~ V] Py(cos 9) (2.165)
=0

For many boundary-value problems of the electrostatics the expressions (2.164)
and (2.165) represent extremely useful starting points.

Example: Potential of a Sphere with Azimuthal-Symmetric Surface Charge
Density

In case of azimuthal symmetry the Legendre polynomials P;(cosv) (2.150)
represent a suitable complete orthogonal system on the sphere. It is therefore
recommendable to expand the given surface density o () also in these functions:

o(®) =) (2l + oyPi(cos D) . (2.166)
=0

The factor (21 + 1) is, as in (2.165), without any special meaning, it is there
only for utility reasons. o(¢) is given and therefore is known. With the aid of the
orthogonality relation (2.153) for the Legendre polynomials, we can derive all the
coefficients o; from o (9):

+1
1
o = 3 /dcosﬂa(ﬂ)Pl(cos ). (2.167)

—1
For the scalar potential ®(r, ¥, ¢) we start with (2.165). Let us decompose ®:

®;(r): potential inside the sphere,

®,(r): potential outside the sphere.



2.3 Boundary-Value Problems in Electrostatics 129

The following conditions are to be fulfilled:
1. ®; isregularatr = 0:

o0
= Oi(r,Y) = 2(21 + I)Af) r'Py(cos ) ,
1=0

2. &, — 0 for r —» oc:
o0
= Ou(r.0) = Y (2 + DB VP (cos )
=0
3. @ is continuous at the surface of the sphere:
= O;(r=R, V) =P,(r =R,9%) = B;a) =A§i)R21+l ’

4. The surface of the sphere has the charge density o(¢). That means according
to (2.43):

or or

o(®) = —¢o (8d>a 8d>i)

r=R

o0
— Y (21 + DPi(cos D) [—(1 + DBPR2 lAf)RH] .
=0

It follows then:

o0
o) =€ Y (2 + 1)’A]’R™'P(cos ¥) .
=0

The comparison with (2.166) yields, since the P; represent an orthogonal system:
o = €2+ HAVR.

Therewith the A; are all fixed so that we can formulate the complete solution:
R & r\!
O;(r,%) = — (f(—)Pcosﬁ ,
(0.0 = 2301 () Preos)

R I+1
,(r, ) = — 01(7) Pi(cos ) . (2.168)

€
0 9=0
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2.3.8 Potential of a Point Charge, Spherical Multipole
Moments

In Sect. 2.2.7 we got the multipole expansion of the electrostatic potential ®(r), for
the case that there are no boundary conditions regarding the finiteness, by a Taylor
expansion of the term 1/|r — r’| in the integrand of the Poisson integral. There does
exist an alternative multipole expansion when one expands this term in spherical
harmonics.

Let us discuss this expansion at first under a somewhat more general aspect,
namely in connection with the potential of a point charge ¢ at the site rop. We
imagine a sphere whose center is at the origin of coordinates and is of the radius
ro (Fig.2.50):

®. (r): potential for r > ry ,

®_(r): potential for r < ry .

We take the general form (2.164) for the solution of the Laplace equation inside and
outside the sphere and determine the coefficients Aj, and By, by regarding the point
charge g as surface charge on the virtual sphere:

a(rg, %, @) = %8((;) — o) 8(cos ¥ — cos ) .
0

Boundary conditions:

(1) ®regularatr =0,
2) ®—>0forr— o0,
(3) @ continuous at r = ry for (¢, ¢) # (Fo, @o) »

P P
@ o =~ (%~

r=ro

Fig. 2.50 To the
representation of the potential
of a point charge by spherical
coordinates
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These boundary conditions must be consistent with (2.164):

from(l) = &, = ZAlmrlYlm(ﬁa ®) .

I.m
from (2) — d, = ZBlmr_(l+l)YZM(l9v (p) ’
I.m
— 1
from 3) = Aprh = Biry T = —ayy, .
ro

We still introduce the following notation:

inside (r <ry):r=r<,rg=r-,

outside (r > ro): r=rs ,rg =r< .

Therewith we get the intermediate result:

1 -\
o) =+ Y a (r—) Yin(3. )
> l,m >

The coefficients are fixed by the fourth boundary condition. To see this we first
exploit the completeness relation (2.158):

* 0d. 9D,
o(ro, v, ¢) = %Zyzm(ﬂovfﬂo)Ylm(ﬁ’ @) = —€o ( i )
0 1m > < /Jrs=r<=rng

A A1
= —€0 ) am¥in(9.¢) [—(1 D7 lﬁ}
I I'>=r<=ro

>

€
= 5 2 am@+ DYin(@.9)
0 I.m

The comparison of the first with the last line yields:
€oam(2l + 1) = q¥;, (%0, @o) -

Therewith we have found the potential of the point charge:

oo+l

_4q
o) = 47t60|1‘—l‘0| €ors Z Z 2l+1 ( ) Y (o. ¢0) Y (. ) -
(2.169)
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The useful feature of this representation lies in the complete factorization of the two
sets of coordinates (r, 9, ¢) and (ry, ¥y, o). This can be of great value when, for
instance, the one set contains the integration variables while the other set represents
the coordinates of a fixed point under consideration.

We can now repeat the same considerations once more for the special situation
that the point charge lies on the z-axis. Then we have azimuthal symmetry and
therefore can start from the representation (2.165) for ®. The above boundary
condition (4) then reads

q
2
rg

o0
S(cos® — 1) 2" L5214 DPy(eos ) .
dmr prs

o(ro, V) = >

By a completely analogous calculation one finds:

e} 1
O(r) = qo Z(:i) Pi(cos D) . (2.170)

=0 N~

Since the axes can always be chosen such that g lies on the z-axis, the two
relations (2.169) and (2.170) must of course be completely equivalent. If one
replaces in (2.170) ¥ by

y = <(r,1rp) ,

then the comparison leads to the important addition theorem for spherical
harmonics (2.161):

+1

1 *
o Pileosy) = > Y (B0, 90) Yin (9. ) - (2.171)
m=—/

2141

We now come to the multipole expansion mentioned at the start. If we take g = 1
in (2.169) and multiply the expression by 4mweg, then we have the expansion of
|r — ro|~! in spherical harmonics that we need for the Poisson integral

p(r')
Ir —r'|

4rey®(r) = / a>r

of a spatially limited charge distribution. We observe the electric field and the scalar
potential ®, respectively, far outside the charge-region p # 0. It is therefore to be
inserted into (2.169):

/ /
r>r <= r =r., r=rs
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We obtain:
oo +I 1 q
Im
dreg®(r) =4 — —— Y. (9,
meod(r) ”l§=0:m§=_:12[ [ 1 Yim(.9)

with the spherical multipole moments
an = [ &7 o504
for which it obviously holds because of (2.147):

qi—m = (_1)mQ7:n .
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(2.172)

(2.173)

(2.174)

(2.172) is equivalent to (2.94). The multipole moments are, however, defined

somewhat differently:

(1) Monopole (I = 0)
It follows with Yo = (47)~"/%:

1 /3/ / q
= —— | d&’F o(r) = — .
W= )=

Except for the unessential factor 1/+/4 this agrees with (2.91).

(2) Dipole (I = 1)

Via the spherical harmonics

3 3z
Yio(9, ) = \/ECOSﬂ = VE;’

3 . ; 3 x+
Y e = —‘/gsmﬁe"" = —‘/g

Yi-1(B,9) = =11, (0. 9)

(2.175)



134 2 Electrostatics

the following connection appears between the spherical and the Cartesian dipole

moments (2.92):
/ 3
qio = Z
an =g (Px+ ipy) = —qi_ - (2.176)

(3) Quadrupole (I = 2)

With the spherical harmonics

2_ 2
Yn(.9) = 3\ s Beos’d — 1) = 2/ 2 XL
I
15 l /15
Y21(0, ) = - — sinY cos Ve’ = — (x—l—zy)
2
Yn(d,¢) = —\/—sm 92 = ,/ (x+zy)

one gets the following five independent components of the quadrupole tensor (Q;;

from (2.93)):
L /s 0
q20 = 2V an 33,

1 /15 .
Q1 = —5\/ g(Qn —i0n) =—q>_; ,

1 [15 ,
=15 E(Qll —0»n—2i0n)=¢5_,. (2.177)

2.3.9 Exercises

Exercise 2.3.1 Calculate the image force F between a grounded metallic sphere
and a point charge g above the sphere. Verify Eq. (2.138)!

Exercise 2.3.2 Let a point charge g be inside a grounded metallic hollow sphere.
Calculate the potential ¢ (r) within the sphere and the surface charge density induced
on the inner side of the hollow sphere. How large is the total induced charge?
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Exercise 2.3.3 A point charge ¢ is at the site r’ above an insulated metallic sphere
which carries the total charge Q. R is the radius of the sphere. Calculate the potential
¢(r) outside the sphere and discuss the force F on the point charge.

Exercise 2.3.4

1.

Calculate the Green’s function for a two-dimensional potential problem without
boundary conditions regarding finiteness.
Hint: Use plane polar coordinates (p, ¢) with the Laplace operator:

A= 10 0 n 1 9
“pap\"op) T 2 a7
Solve then for p # 0 the Laplace equation
AG(p.¢) =AG(p) =0

and show by use of the (two-dimensional) Gauss theorem that it holds:

1
G(p) = — Incp
27t60
. Calculate the potential of a point charge ¢ at ry = (xg,yp) for the two-

dimensional boundary-value problem sketched in Fig.2.51. Use thereto the
method of the image charges.

Exercise 2.3.5 Solve by separation of variables the two-dimensional boundary-
value problem plotted in Fig. 2.52. Let the region G be charge-free. On the two legs
of the angle « ® = 0 and on the circular arc & = ®((¢). Calculate the potential
®(r) = P(p, @) inside G.

Fig. 2.51 Two-dimensional
. Y

electrostatic boundary-value

problem for the scalar ]

potential due to a point charge Yo /? “““““““ A d g
— '
—1 1
—1 1

¢=0 |
— 1
—1 1
—1 1
—1 1
—1 1
—1 |
TTTTTTTTTTTTIRT T x

=0 X,
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Fig. 2.52 Two-dimensional
electrostatic boundary-value
problem for a charge-free

region G D(R,0)=D((9)

Fig. 2.53 For the calculation z
of the potential in a T
charge-free rectangular box

____________ I R

Exercise 2.3.6 On the surface of a sphere with the radius R one finds the surface
charge density

o(¥) = op(3cos? ¥ — 1) .

Calculate the potential inside and outside the sphere.

Exercise 2.3.7 Given a rectangular box (cuboid) with edge lengths a, b, cin x, y, z-
direction (Fig. 2.53). Calculate the potential ¢ (x, y, z) in the inside of the charge-free
box obeying the following boundary conditions:

®(0.y,2) = ¢(a,y,z) =0
@(x,0,2) = ¢(x,b,2) =0
(/)(X,y,O) = @(xsys C) = ¢o -

Exercise 2.3.8 Try to solve the (ordinary) Legendre equation (2.151) by the power-
series ansatz

00
P(Z) = Z anzn
n=0

1. Derive a recursion formula for the coefficients a,. Show by it that the two
linearly independent solutions consist of a polynomial of /-th degree (Legendre
polynomial) and a not terminated power series (Legendre function of the second
kind).
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2. Calculate with the condition
P(1)=1

the Legendre polynomials P4(z) and Ps(z)!
Exercise 2.3.9

1. Assume that the for the solution of an electrostatic problem interesting space-
region V is charge-free. The electrostatic potential ®(r, 9, ) therefore fulfills
the Laplace equation

AP =0.

The given boundary conditions possess azimuthal symmetry which is transferred
to the potential ®:

= o(r,0).

Show that in such a case the solution can be expanded in Legendre polynomials
Pi(cos ) as follows:

o0
&(r, %) = Z (oclrl + ,31r_(l+1)) Pi(cos?) .
1=0
2. With the result of part 1., show that in the inside of a metallic grounded hollow
sphere (®(r = R, ) = 0) one always has:
P =0

3. Let the grounded metal hollow sphere from part 2. be in an electric field that
induces on the sphere the surface charge density:

0 = gy0p cos ¥

Determine the potential ®, in the exterior space!
Exercise 2.3.10

1. Consider a hollow sphere with azimuthal-symmetric surface charge density o (6).
This can surely be expanded in Legendre polynomials:

o(®) =Y _oP/(cos®) .

=0

Calculate the potential inside and outside the sphere!
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2. Find the result for the potential in case of the special surface charge density:
o () = 0p(2cos®> ¥ + cos ¥ — sin’ 1)

Exercise 2.3.11 A grounded metallic hollow sphere is situated in a homogeneous
electric field

E = Epe;, .

1. Calculate the potential ¢(r)!
2. Determine the surface charge density on the sphere!

Exercise 2.3.12 Demonstrate by a direct calculation that the scalar product r - r’ of
the two space vectors

r =r(r9%¢)

r/ — I./(r/’ 19/790/)

can be expressed by spherical harmonics as follows:

4
r-r = ?rr/ Z Yrm(l?/,(/)/)ylm(l?v (P) .

m=—1,0,1

Test the result by the use of the addition theorem for spherical harmonics.
Exercise 2.3.13 A hollow sphere of radius R carries on its surface the charge
density

p(r) =opcos §(r —R) .

Calculate the electrostatic potential & and the electric E inside and outside the
sphere. For this purpose, start at the Poisson integral,

L) s

q> == )
® 4me r—r/|

and use for |r — r’|~! the expansion in spherical harmonics (2.169)!

Exercise 2.3.14 Consider an electric dipole p at distance a in front of a plane
grounded metal surface which is assumed to be infinitely extended (Fig. 2.54).
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Fig. 2.54 Electrostatic

139

boundary-value problem n Vacuum
concerning the electric field N—

which arises by an electric j
dipole in front of a grounded 0 2 4 p

metal plane

Metal N

ig. 2. -di i =
boundary-valoe problem fo LRI
the scalar potential in an ; v
otherwise charge-free space ; @,(»)
$=07
—
Ie=ol[]]] =
x

0

1. How do the potential and the electric field of a (point-like) dipole in the free

space look like if the dipole is located

(a) at the origin of the coordinates,
(b) at the position a?

. Calculate with the method of image charges the potential in the space to the right
of the metal plate (vacuum) (Fig. 2.54) thereby fulfilling the boundary conditions.
. Calculate the electric field E(r) and the density o(r) of the induced charge on
the metal surface.

. Discuss the sign of the induced charge density for the cases that the dipole
moment is oriented

(a) perpendicular to the surface,
(b) parallel to the surface.

Sketch qualitatively the shape of the electric field strength for both the cases.
. Calculate for both the above cases the total induced charges, and that separately
for each sign.

Exercise 2.3.15 Consider the two-dimensional boundary-value problem sketched
in Fig. 2.55. The region V is free of charges. On three of the edges of Vitis ¢ = 0,
while on the fourth side of the rectangle it holds

%w=m(10.
Yo

Determine the scalar potential everywhere in V!
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Fig. 2.56 Homogeneously

charged wire in front of a

grounded metal plate N\ ~~A
~
~ 4
™~ Y
~ --4-x0
g x
~
\ v
~

Exercise 2.3.16 A straight, long, thin wire, which is homogeneously charged (A
= charge per unit length) is located with the distance x parallel to a very large
grounded metal plate (Fig.2.56).

1. Calculate the scalar potential ¢ of the wire at first without the conducting plate
(Hint: Gauss theorem with proper symmetry considerations).

2. Determine in the next step for the given arrangement the potential ¢ in the half-
space V to the right of the plate by means of the method of image charges.

3. How large is the surface charge density induced on the plate?

2.4 Electrostatics of Dielectrics (Macroscopic Media)

Our considerations up to now referred exclusively to electric fields in the vacuum,
described by the two Maxwell equations (2.39),

WWE=L . curlE=0.
€0

The goal now is to derive the corresponding field equations of matter. Matter
consists for the most part of charged particles (protons, electrons, ions, .. .), which
naturally react to external electric fields, i.e. being more or less strongly shifted out
of their equilibrium positions. That leads to induced multipoles and therewith to
excess fields within the matter which superimpose on the external one. It is clear
that the manner how the charged particles will adjust themselves with the external
field will distinctly modify the up to now discussed electrostatics of the vacuum. We
now therefore want to try to formulate the Maxwell equations in such a way that the
extremely complicated microscopic correlations in matter are taken into account in
a proper manner. Strictly speaking, for this we have to manage two subtasks:

1. Setting of a theoretical model for the analysis of the atomic interactions,
2. Definition of macroscopic field quantities on the basis of atomic data.
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The atomic model can be developed correctly only within the framework of quantum
mechanics. We have to restrict ourselves here therefore to certain broad indications,
only.

The considerations of this section deal exclusively with insulators (dielectrics),
i.e. substances which do not contain freely mobile charges and which consist of
stable sub-units, as e.g. atoms, molecules or unit cells of a crystal, with vanishing
total charge.

2.4.1 Macroscopic Field Quantities

We begin with the second point and discuss therefore at first the relevant macro-
scopic observables. Starting point is the fundamental postulate:
The Maxwell equations in the vacuum are microscopically universal laws!

dive=""" cule=0, (2.178)

€0

e: microscopic electric field; p,,: microscopic charge density.

If we knew the microscopic fields and charge distributions then there would not
be any reason to change the theory developed so far. This knowledge, however,
we do not have since there are typically about 10> molecular (atomic, subatomic)
particles per cubic centimeter performing quick and in general disordered motions
(lattice oscillations of ions, electron motions on atomic orbitals, ...). They give
rise to spatially as well as temporally strongly oscillating microscopic fields
whose exact determination appears to be absolutely hopeless. On the other hand,
however, a macroscopic measurement means in general a ‘rough sampling’ of a
microscopically huge region and therewith automatically an averaging over a certain
finite space-time sector by which rapid microscopic fluctuations are smoothed out
to a certain degree. A theory is therefore actually reasonable only for averaged
quantities. A microscopically exact theory is on the one hand not realizable, but
on the other hand not necessary, either. It would contain very much superfluous,
since experimentally not accessible information. How do we describe theoretically
the just mentioned experimental averaging process?

Definition 2.4.1 Phenomenological average
1 3./ / 1 3./ /
fe,)y=—— | &rfi’,0)=— | &rfx +r,1). (2.179)
v(r) v

v(r) v(0)

f(r, 1) : microscopic field quantity,
v(r) : microscopically large, macroscopically tiny volume
of a sphere with its center at r
(e.g. v ~ 107® cm?® with on an average still 107 particles).
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One can show that because of the large number of particles in the macroscopic
volume v(r) the rapid temporal fluctuations are smoothed out by the spatial
averaging. Equation (2.179) is not the only possibility for averaging. It is, however,
for our purpose here especially convenient. The physical results must be and will be
independent of the type of averaging.

It is an important assumption for the following steps that

_— 3
Vf = Vf (later also: 8tf_ 8t) , (2.180)

which obviously applies to the proposed averaging process (2.179). We now define:
E(r) = e(r): macroscopic electrostatic field. (2.181)
Because of (2.180) we then have:
curlé = curle; dive = dive .

By averaging in (2.178) we then obtain the
macroscopic Maxwell equations

dvE=""" culE=0. (2.182)
€0

We can write the macroscopic field E, too, as a gradient of a scalar potential:
e=-Vyp = e=-Vo=-V§ = E() == —Vo(r). (2.183)

We still have to fix ¢(r). For that we calculate at first the potential ¢; of a single
‘particle’ (ion, molecule, ...), which is composed of atomic electrons and nuclei
which on their part can be assumed to be point charges q,(f). That shall also hold for
the excess charges (free charges) which are found momentarily in the space region
of the j-th particle.

g = Zf{ ) q,(,/) : total charge of the j-th particle ,
o= Zf{) q,(f)S(r —1,): charge density in the j-th particle ,
p; = [ d°r p;(r) (r — R)): dipole moment of the j-th particle .

The distances within the given particle are of atomic dimensions and therefore small
compared to the distance between the center of gravity R; and the space point
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Fig. 2.57 Schematic pj ’j - is particle’
illustration of the total charge
and total dipole moment of a
‘particle’ which is composed
of point-like ‘sub-particles’

P (Fig.2.57). It therefore recommends itself a multipole expansion of the scalar
potential ¢;(r) around R;, which we will terminate after the dipole term (2.94):

qj pi- (r—R)

Ol S R T R

This expansion actually holds only for a fixed point in time ¢ because it is of course
R; = R;(?). This time-dependence, however, is segregated, as already mentioned,
by the subsequent averaging process and therefore we do no longer consider it
explicitly in the following.

We further introduce an effective charge density

N
pe(r) =Y gid(r—Ry),

=1

where N is the total number of particles, as well as an effective dipole density
(see (2.74)):

N
Me(r) = Y pd(r—R)).

j=1
Then we can write for the total scalar potential ¢(r) produced by all particles:

degp(r) = /d3r/ [& + I.(r') - i} .

[r—r/| [r—r/?
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We now perform the averaging on this expression:

A /
— 3 5 Pe (1)) r+x—r
) = [ [ |0 )

v(O)

/!
- /d* /43 ”[—pe(r +|)+He(”+x)| ;/|3:|

v(O)

_ 3 pe(r”) r”

This is the potential relevant for the electrostatics of dielectrics.

Definition 2.4.2 Macroscopic charge density

p(r) = pe(r) = - (r) > g (2.184)

JjEV

Note that p(r) results from an averaging which includes all charges in v(r).
Normally the bounded charges of the solid will compensate each other so that p(r)
will finally be due to the free excess charges, only.

Definition 2.4.3 Macroscopic polarization

P(r) = TT(r) = - (r) b (2.185)

JjEV

This at this stage is only a definition of the term P(r). It arises from the effect of
internal and external fields and will therefore be later calculated as functional of
these fields by the use of proper theoretical models.

With these definitions, the averaged scalar potential reads:

- r 1
4neo<p(r)=/d3r’[lf( )| +P() -V, m} .

For the Maxwell equations we need divE:

1
drwepdivE = —4Jr60A¢=—/d3 ’[p(r)A +P(@)- VA, ar /|:|
—r

1
Ir—r|
"2 4z p(r) + 4n / IrP(x') -V 8(r —1')
D —

—V,8(r—r’)

= 4n[p(r) = V-P(r)] .
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We have found therewith the important result:

div(eoE + P) = p(r) . (2.186)
Definition 2.4.4 (Di)electric displacement
D(r) = ¢E(r) + P(r) . (2.187)

Therewith we have the general
Maxwell equations of electrostatics

divD(r) = p(r); curlE(r) =0. (2.188)

Note that D is created by the ‘true’ excess charges being thus independent of the
material under consideration. The field E, in contrast, does depend on the material
because of P. Two electrostatic fields of the same geometry with the same excess
charges have identical dielectric displacements D.

The relations (2.187) and (2.188) suggest the definition of a
polarization charge density p, = —divP . (2.189)

We can write therewith the Maxwell equation also as follows:

divE(r) = 6—10 [p(r) + pp(r)] . (2.190)
We see that the electric field reacts on the actual local charge density in the matter,
in contrast to the D-field which is exclusively due to the excess-charge density p(r).
Hence it is clear that the actual experimental measurand is the E-field, while D is
only an auxiliary quantity. The polarization P acts like an additional internal field
E, which supplements the field Ey generated by the excess charges so that the total
field is given by:

E=E)+E,,
1

E,=——FP. (2.191)
€0

From the above derivation we have to conclude that the polarization field results
from induced dipoles (Fig.2.58). During this induction process charge is neither
added nor led away. The total polarization charge must therefore vanish:

0, = /d3r,op(r) = —/d3rdivP(r) =— / df-P=0. (2.192)

% 14 S(V)
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Fig. 2.58 Illustration of the ~T T T = -~
polarization generated in
condensed matter by an
external electric field. The
‘fictitious’ volume V serves
for the calculation of the total
polarization charge N Y,

Fig. 2.59 To the calculation
of the surface charge density
generated by the electric
polarization

P is of course unequal to zero only inside the (condensed) matter. Although the
total charge Q, vanishes, there appears, however, locally a finite polarization charge
density p,(r) as soon as divP(r) # 0. This is for instance the case at the surface
(Fig.2.58). There P(r) induces a surface charge density o, which can be calculated
by applying the Gauss theorem as done for (2.43) (Fig. 2.59):

n:-(P,—P)=—o0,.
Since only P; = P # 0 we have:
op=n-P. (2.193)

One should bear in mind, however, that local polarization charges always occur
when div P # 0, i.e. not necessarily only at the surface.

Up to now the term P is only defined. We still have to think about the physical
reasons for P # 0. One distinguishes different types of polarizations according to
which one can classify the dielectrics:

(1) (Ordinary) Dielectric

The external field shifts the positive and negative charges, bound in a ‘particle’, rel-
atively to each other so that electric dipoles are created. One speaks of deformation
polarization.

Example In the neutral atom without an external electric field the charge centers of
gravity of the negative electron cloud and the positive nucleus coincide. However,
in the field E these centers are shifted against each other thereby creating a resultant
finite dipole moment p (Fig. 2.60).
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Fig. 2.60 Illustration of a

deformation polarization {\
anp +
E e — p#0
—ze
E=0 E#0
i + P
Fig. 2.61 Molecular H -

structure of water (H,O)
(schematic)

(2) Paraelectric

If the material contains permanent dipoles, e.g. on grounds of the structure of the
molecule as in water (H,O) (Fig.2.61), ammonia (NHj3), ..., then in the absence
of an external field the directions of the vectorial moments will be statistically
distributed, therefore compensate themselves. An external field Ey # 0, however,
causes a certain alignment of the moments since the potential energy of the
system will therewith decrease according to (2.79). One speaks of orientation
polarization. This ordering tendency is opposed by the disordering tendency due to
the thermal motion. Both tendencies lead to a temperature-dependent compromise.

(3) Ferroelectric

This phenomenon is observed in materials which contain permanent dipoles which
orient themselves spontaneously, i.e. without the presence of an external field, below
a critical temperature T¢c (T¢: Curie temperature). Examples are:

seignette salt: NaKC4H4Og - 4H,0 ,

barium titanate: BaTiO; .
These substances exhibit a rather complicated field-dependent behavior. They are
therefore not included in the following considerations.
For dielectrics of the type (1) or (2) it holds in any case
P=PE) with P0)=0. (2.194)
We expand P in powers of E:

3 3
P; = ZV’/E/ + Z BikEEc+ ..., ijkef{xyz}. (2.195)
=1 jd=1
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yij (tensor of the second rank), B (tensor of the third rank), ... are material
quantities. The experimental experience tells us that for not too high fields the first
term of the expansion is already sufficient:

3
P~ Z viiE;: anisotropic dielectric ,
j=1

P; ~ y E;: isotropic dielectric .

In what follows we consider exclusively isotropic dielectrics (strong restriction!) for
which E and P are parallel:

P = y.¢0E . (2.196)

Xe 1s denoted as electric (dielectric) susceptibility, which as a so-called response-
function describes the reaction of the system to the electric field E:

D = (1 + xe)eoE = &€6E , (2.197)

€ = 1+ x.: (relative) dielectric constant (permittivity). For not polarizable media
(Xe=0)e = 1.

A simple demonstration of the theory developed so far represents the capacitor
with dielectric medium (Fig. 2.62). For its capacity it holds according to (2.54):

C=—=.
U
Q is here the ‘frue’ excess charge on the right plate, —Q that on the left plate. The
area of the capacitor-plate is F' and therewith the surface charge density o0 = Q/F.
For the latter we derive from (2.188) by applying the Gauss theorem as in (2.43):

c=D.-n=D. (2.198)
Fig. 2.62 Plane-parallel
capacitor with dielectric Q
medium
sr
-Q
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Let the dielectric be homogeneous so that between the plates homogeneous D and
E-fields are formed:

d
U=Ed= D,
€r€Q
Q=0F=DF.
It follows:
F
C = GrGOE . (2.199)

The comparison with (2.55) shows that the dielectric medium enhances the capacity
of the capacitor by the factor €, > 1! This must be understood as follows:

(1) U Fixed

Without dielectric Q = Qp = CoU. With dielectric between the plates polarization
charges arise at its surface (Fig. 2.63) which, to keep U constant, must be compen-
sated by the source:

Q0+Qp Qp UP
C=Z2"2_+C2=C(1+2
U 0 OQO 0 o0
Co|1+ P C D C
= e = —_— = € .
0 oF OE()E rCo

(2) Q Constant

Without dielectric we have now Uy = Q/C,. With dielectric the electric ten-
sion between the plates decreases because of the opposing field created by the

Fig. 2.63 Electric field and
polarization in the dielectric
between the plates of a
capacitor
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polarization charges:

D
Q_GCO

C: = =
Uy—U, o—o0p D-P

Co = GrC() .

The now still remaining task consists in the development of model-pictures for the
macroscopic parameters y. and ;.

2.4.2 Molecular Polarizability

For the polarization P(r) we found in (2.185):

P(r) = [I.(r) = np(r) . (2.200)
Here
n(r) = Y® (2.201)
v(r)

shall be the particle density in the averaging-volume v(r), while p(r) is the average
dipole moment per particle in v(r). For the exact field acting at the particle-position
r we can write:

Ee(r) = E(r) + Ei(r) . (2.202)

E(r) is here the averaged macroscopic field discussed in the last section and E;(r)
is an additional internal field, in a certain sense the microscopic correction field.

Definition 2.4.5 Molecular polarizability
p(r) = ¢ E(r) . (2.203)

Our first goal is to express the atomic characteristic & by macroscopic quantities like
€; and n. In the next step we then have to develop microscopic models for « itself.
We first try to determine the exact field E.x at the particle-position. Let the
considered particle be at the origin of coordinates. The origin may simultaneously
be the center of a spherical volume V (Fig. 2.64), which is chosen as microscopically
large and macroscopically tiny. The exact as well as the averaged field at the
particle-position are both generated by the external field E, of the excess charges
and by the polarization of the dielectric medium. The difference between the
exact and the averaged field at the particle-position mainly results from how the
polarizability is treated. The resulting field is in any case a superposition of field-
contributions which stem from each single particle of the material. As to the
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Fig. 2.64 Auxiliary
construction for the
determination of the
molecular polarizability of a
dielectric medium

E,
Fig. 2.65 Arrangement for z
the calculation of the field
contribution due to | 4 P,
polarization by the ‘auxiliary +
sphere’ in Fig. 2.64 s N\T
p
Qy
contributions of the particles far away to the field at r = 0 it will be rather

unimportant whether we average or not. The observable difference between the
exact and the averaged field will predominantly stem from the nearest neighbors,
e.g. from the particles in V (Fig. 2.64). The following ansatz therefore appears to be
plausible:

Ei(0) ~ E{") (0) —E!"(0) . (2.204)
EI(DV) is the macroscopic averaged contribution of the charges in V to the polarization
field, while El()ve)x is their actual contribution.

We start with the discussion of E;,V) (0). P is a macroscopic field term and V

was chosen as macroscopically tiny. We therefore can assume that P is practically
constant within the sphere. According to (2.193) P induces a surface charge on the
(fictitious) sphere (Fig.2.65):

0p =P, =Pcos? .

We can interpret this as space-charge density:

pp(r) = Pcos® -8(r—R) .
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pp(r) creates at (0, 0, 0) the following field:

E\(0) = 1 / d*r pp () )

deg | —r/|3
_p 7 e Al sin 9 cos ¢’
= /dr’é’(r’ —R) / do’ / dcos? cos? - | sind’ sin¢’
4meg ,
0 0 2 cos v

It therefore holds for the averaged contribution of the sphere:

P 1

EM(0) = ——e, = ——P(0) . (2.205)
360 360

The calculation of the second field term in (2.204) requires a little more effort, in
particular the actual arrangement of the lattice sites, the so-called lattice structure
will play a role. Let us agree upon the following assumptions (simplifications!):

1. All atomic dipoles p; within the volume V have the same magnitude and the
same direction.

2. The dipoles are arranged on a simple cubic lattice (Fig.2.66) with the lattice
constant a.

For the positions of the dipoles we can write:
rjx =a(i,j.k); i,jkeZ.
The dipole at r;; then creates according to (2.73) the following field at 0:

3rj(p - i) — P

5
4meors;

ik =

Fig. 2.66 Atomic dipoles on
a simple cubic lattice




2.4 Electrostatics of Dielectrics (Macroscopic Media) 153

We get the total field by summing over all i, j, k permitted in V. This means, for
instance, for the x-component:

v 14 R . i I
o _ 1 3iips +ipy + kp) —pP + 77 + 1K)
XEE,Ve)x(O) = ZEU =3 Z v ) - 2 1 k2)5/2 ’
< @ £ dreo(i2 + j2 + k2)
It holds obviously
74 .. v

> s Y e =

m 4reg(i2 4 2 + k)52 m 4reg(i2 4+ 2 + k2)32

since i,j,k run in V through the same positive as well as negative integers.
Furthermore, the cubic symmetry leads to:

14 14 4 )
R P
m (l-z +j2 + k2)5/2 m (l-z +j2 + k2)5/2 m (,-2 +j2 + k2)5/2 .

It remains therewith for the x-component of the resulting field

| K .
1 3i%p, — 3i%p
EV(0) = = X X =0
P,ex( ) a3 %: 47t60(i2 +]2 + k2)5/2

The same can be shown for the two other components so that we finally have:

EM(©0)=0. (2.206)

p.ex

We can now insert Eq. (2.204) to (2.206) into (2.202):
E(0) = E(0) + E;(0) = E(0) + 3%01)(0) . (2.207)
With the definition Eqgs. (2.200) and (2.203) the polarizability now comes into play,
P0) =np(0) =naEx(0) =no [E(O) + 3%0})(0)} ,

and via (2.196) the susceptibility y.:

Xe€0E(0) (1 - ﬂ) = naE(0) .
360
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It follows:

no
Xe = —T (2208)
€@ — —
3
When we further introduce by y. = ¢; — 1 the dielectric constant, then we have the
useful

Clausius-Mossotti relation

3 —1
o= 20 (ér ) , (2.209)
n \&+2

which relates the atomic characteristic « to the macroscopic parameters €, and n.

There does exist a series of more or less precise model interpretations of the
polarizability « each of them aiming at a special type of dielectric. An extensive
discussion here, however, is beyond the scope of our presentation. The mentioned
models connect « to atomic physical measurands. The value of the relation (2.209)
can be seen, among other things, in the fact that atomic properties can be understood
by measuring macroscopic quantities such as €, and n.

2.4.3 Boundary-Value Problems, Electrostatic Energy

The macroscopic Maxwell equations (2.188) are structurally unchanged compared
to those in the vacuum (2.39) and (2.40). The basic task always is to determine
the E-field. In principle the same considerations and procedures are valid which we
have developed in detail in Sect. 2.3 for the case of the vacuum.

If the relative dielectric constant €, is space-independent then the Poisson
equation is to be solved in the form

Ap=—"L". (2.210)
€r€Q

That means nothing new compared to Sect. 2.3. The charge density simply gets the
add by 1/e,. If, however, the interesting space region is filled by different dielectrics
with different er(i), then it is vital for the accomplishment of the basic task to know
the behavior of the D- and the E-fields at the interfaces (Fig. 2.67). Exactly the same

considerations as in Sect. 2.1.4 then lead to the following statements:

* With divD = p and by use of the Gauss theorem it follows as in (2.43):

n- (Dz — Dl) =0 . (2211)
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Fig. 2.67 Behavior of the
dielectric displacement at the
interface between two
different dielectrics

o here is the surface density of the excess charges, polarization charges are thus
excluded.
* From curl E = 0 follows the unchanged Eq. (2.44):

(txn) - (E,—E;)=0. (2.212)

The notation is the same as in Sect. 2.1.4.

It therefore holds on uncharged interfaces (o0 = 0):

€
Dln = D2n — Eln = %EZVL s
T
(D
€
Ey,=E) < D, = %DZ,. (2.213)
€r

If er(l) # er(z) then it is obviously such that both the fields cannot be simultaneously
continuous at the interface.

Let us close this section with a few considerations on the electrostatic energy.
For the vacuum we found in (2.47):

1
Wyacuum = E / d3}’p(l‘)(,0(l') .

This expression cannot be directly adopted since in the dielectric the buildup of the
polarization charges also requires energy.

The charge 8p(r)d>r possesses in the potential ¢(r), created by other charges, the
energy

(r)8p(r)d°r .

The work which is needed to change the charge density from p to p 4+ dp amounts
therefore to:

W = /d3r<p(r)8p(r) .
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@(r) is thereby thought to be created by p(r). With
@dp = ¢div(§D) = div(p D) — Ve - 5D
it further follows:

8W=/d3rdiv(<p8D)+/d3rE-8D.

We rewrite the first summand by the use of the Gauss theorem into a surface integral
which disappears for the case ¢(r — oo0) = 0 (at least as 1/r). We then have for the
total energy:

D
W=/d3r/E-8D. (2.214)
0

If we assume in addition an isotropic, linear medium, i.e. D = ¢,¢oE, then we can
further reformulate:

1 1
E-8D = e.cE- §E = Eereoa(EZ) = E5(E -D).
The relation (2.47) is therefore replaced in the case of a dielectric medium by:

1
W= §/d3rE-D. (2.215)

2.4.4 Exercises

Exercise 2.4.1 In a neutral hydrogen atom, which is in its ground state, the charge
density of the orbital electron is described by

e 2r
pelr) = == exp (——) :
Ta a

e is the magnitude of the electron charge, r the distance between the electron and
the proton. If an electric field Ey is applied it holds in first approximation that the
charge cloud of the electron is shifted without any deformation relative to the proton
by the vector ry.

1. Express the dipole moment p of the hydrogen atom in the field Ej in terms of ry.
2. Calculate the restoring force on the proton due to the shifted charge cloud of
the electron. Express it for rp/a < 1 by the dipole moment p. Find then a
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representation of p as function of the field via the equilibrium condition for the
force executed on the proton by the electric field Ey.

3. Calculate the relative dielectric constant ¢, for a dielectric medium consisting of
N hydrogen atoms homogeneously distributed in the volume V.

Exercise 2.4.2 A dielectric sphere (er(z) ,radius R) is surrounded by a homogeneous,

isotropic dielectric medium (er(l)) and is located in an (originally) homogeneous
field (Fig.2.68)

Ey =Epe, .

Find the resulting field inside and outside the sphere. What is the dipole moment of
the sphere?

Exercise 2.4.3 A parallel-plate capacitor (plate-area F, plate-distance d) is com-
pletely filled with a dielectric of the permittivity €.(z). Calculate its capacity. How
does the capacity look like if the dielectric medium consists of two layers with
thicknesses d; and d, and permittivities er( Y and er(z) ?

Exercise 2.4.4 A dielectric with the permittivity ¢, > 1 is pushed into a parallel-
plate capacitor (area FF = a - b, distance of the plates d) by a distance x ((I);
see Fig.2.69). The remaining space (II) between the plates is empty. The charge
on the lower plate is Q, that on the upper plate —Q. Edge-effects such as stray fields
shall be disregarded.

1. Which relations do exist between the electric field E and the dielectric displace-
ment D in (I) and (II)?

2. What can be said about D;/Dy and E;/Ep?

3. Which connection does exist between Dy, Dy and the surface charge densities oy,
oy ?

Fig. 2.68 Dielectric sphere

. " —
in a homogeneous electric s
field S
—_—
—_—
—_—
E,
Fig. 2.69 Parallel-plate a 0
capacitor partially filled with
: : . = |
a dielectric medium -- T
& (1) am d
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4. Calculate the E- and the D-field for the whole space between the plates!

5. Calculate the electrostatic field energy W!

6. Determine the force which acts on the dielectric by inspecting the change in
energy in consequence of shifting the dielectric by the way dx.

Exercise 2.4.5 Given is a dielectric sphere of the radius R. Let it be homogeneously
polarized:

P(r) = Py = Pye, forr <R,
n 0 forr>R.

The density of the ‘excess charges’ p(r) is zero.

1. Calculate the scalar potential ¢(r) inside and outside the sphere!
2. Calculate and plot the electric field strength E!

3. Determine the polarization charge density pp(r)!

4. How can the starting situation be realized?

Exercise 2.4.6 The yz-plane separates vacuum (left half-space) and a dielectric
medium (g, > 1) in the right half-space. At the position rp = —ae, (a > 0) in
the vacuum-region a positive point charge g is located. Calculate the electrostatic
field E in the whole space and discuss the polarization P and the polarization charge
density pp(r) of the dielectric (Fig. 2.70).

Proposal Use the method of image charges to fulfill the boundary conditions
(continuity-conditions at the interface).

2.5 Self-Examination Questions

To Section 2.1

1. What does the law of conservation of the charge mean?
2. What is denoted as elementary charge?

Fig. 2.70 Electric field of a Vacuum Dielectric
point charge in front of a er=1 £r>1
dielectric medium =
/’_’
4 X
*
a 0
\__‘
T~
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What does one understand by charge density? How is it connected to the total
charge?

Give the charge density of a point charge q.

Formulate the charge conservation as a continuity equation.

Which are the experimental facts of experience the electrostatics is based on?
What is the Coulomb law for point charges?

How is the electrostatic field defined?

What is the electric field of a point charge, of n point charges, of a continuous
charge distribution?

How do we understand in the framework of the field concept the interaction
process between point charges?

11. Is the Coulomb force conservative?
12. How is the scalar electric potential defined?
13. How are the electric field lines oriented relative to the equipotential areas?
14. What are the scalar potential and the electric field of a homogeneously charged
sphere (radius R, total charge Q0)?
15. What does one understand by the physical Gauss theorem?
16. Formulate the Maxwell equations of the electrostatics in differential and in
integral form!
17. What do we consider as the basic problem of the electrostatics?
18. Give the connection between the Maxwell equations and the Poisson equation!
19. How do normal and tangential components of the electrostatic field behave
during the transition through an interface which carries a finite surface charge
density o?
20. How is the energy of a static charge configuration defined?
21. What is the definition of the energy density of an electrostatic field?
To Section 2.2
1. What is a parallel-plate capacitor?
2. How is the capacity of a capacitor defined?
3. Which energy density is found in a spherical capacitor? What is its total energy?
4. How is the electric field oriented in a cylindrical capacitor?
5. What do we understand by a dipole? How does the scalar potential of a dipole
p look like?
6. Which r-dependence does the electric dipole-field have?
7. Which force and which torque act on a dipole in an homogeneous electrostatic
field? For which orientation has the dipole the least potential energy?
8. What is a dipole layer?
9. Which jump of the scalar potential does appear when crossing a dipole layer
with the dipole surface density D(r)?
10. What is a quadrupole? How does the potential of a quadrupole look like?
11. Sketch the equipotential areas and the electric field lines of the stretched (linear)
quadrupole!
12. What is understood by a multipole expansion?
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13.

14.

15.
16.
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Define the dipole moment and the quadrupole moment of a general charge
density p(r)!

How does the dipole moment behave in case of a rotation or a translation of the
system of coordinates?

List some special properties of the quadrupole tensor!

Do spherical-symmetric charge distributions have a dipole moment and a
quadrupole moment? Give reasons!

To Section 2.3

1.

10.
11.
12.
13.
14.

15.

16.

What do we understand by a boundary-value problem?

. Define and characterize Dirichlet- and Neumann-boundary conditions.
. Describe physical situations for which, respectively, Dirichlet- and Neumann-

boundary conditions are relevant.
How is the Green’s function defined in electrostatics?

. How does the Green’s function determine the electrostatic potential in case of

given Dirichlet- (Neumann-) boundary conditions?

Describe the method of image charges.

What do we understand by an induced charge density?

What is an image force? How strong is it for a point charge ¢ in front of an
infinitely extended, grounded metallic plate?

. A point charge g is located in front of a grounded metallic sphere with the

radius R at a distance of r from the center of the sphere (r > R). How large is
the total surface charge induced on the sphere? Is the image force attractive or
repulsive?

When do we call a system of functions u,(x) to be complete?

Formulate the completeness relation!

Cite some examples of complete systems of functions!

What does one understand by a separation ansatz?

How does the general solution of the Laplace equation read in spherical
coordinates?

Which complete system of functions appears to be convenient for the solution
of the Laplace equation with boundary conditions of azimuthal symmetry?
What do we understand by spherical multipole moments?

To Section 2.4

1.
2.

»

Nk

How is the macroscopic electric field connected with the microscopic field?
What do we understand by the macroscopic polarization?

How do the dielectric displacement, the electric field, and the polarization stick
together?

Comment on the difference between D and E!

What are the Maxwell equations of electrostatics in matter?

What is the actual measurand: D or E?

What is to be understood by deformation-polarization and what by orientation-
polarization?

Define the terms dielectrics, paraelectrics, ferroelectrics!
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How is the electric susceptibility defined?

What is the relation between susceptibility and dielectric constant (permittiv-
ity)?

Comment on the meaning of the molecular polarizability!

Give the Clausius-Mossotti formula! Sketch the derivation of this formula!
How does the electrostatic field energy look like in a space-region filled with
matter?



Chapter 3
Magnetostatics

Electrostatic fields arise from electric charges at rest and can be observed through
the actions of forces.

Magnetostatic fields arise from stationary electric currents, i.e. from moving
electric charges. The observation is that an on the whole uncharged but current-
carrying conductor exerts a force. Since an uncharged system cannot produce an
electric field one ascribes to this force another type of field which is called the
magnetic field.

In the following we will recognize again and again that there do exist distinct
analogies between electrostatic and magnetostatic phenomena. However, there are
also characteristic differences. Most of them rely on the experimental fact that
there are free electric charges (monopoles) but there do not exist free magnetic
monopoles. The basic unit of the magnetism is not any elementary charge but the
magnetic dipole m. Hence the magnetic field cannot be gauged by any magnetic
‘test-particle’ but only through the torque M which is exerted on a given magnetic
system by a certain known moment m. For this it holds, fully analogously to
Eq. (2.77) which is valid for the torque on an electric dipole p:

M=mxB. 3.1)

This relation will later be derived explicitly. B is the so-called magnetic induction,
the relevant field of magnetism. The definition of B provokes conceptually many
more difficulties than that of the analogous electric field E. It is obtained from the
fact that B is generated by currents.

The fundamental task of magnetostatics consists of the calculation of the
magnetic induction B from a given current density j.

© Springer International Publishing Switzerland 2016 163
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3.1 The Electric Current

In metallic conductors, according to our considerations in Sect.2.3.2, an elec-
trostatic field cannot exist. However, we can definitely generate in such conductors
a temporally constant potential difference (= temporally constant electric field) by
a steady supply of energy (external voltage source!). This field differs from the
electrostatic field on the outside by the following features:

1. heat development,
2. transport of electric charge (current),
3. set-up of a magnetic field.

The terms current density j(r) and the strength of current / have already been
introduced in Sect. 2.1. We are well-accustomed to them from experimental physics.
We therefore restrict ourselves here to a compilation in note form.

3.1.1 Electric Current: Ordered Motion of Electric Charges

Possible realizations:

(a) Shift of a charged body (conductor or dielectric) in the space = convection
current.

(b) Creation of a potential difference between the endings of a metallic wire =—
action of force on quasi-free charge carriers.

Assumptions:
v: average particle velocity along z-direction ,
n= %: temporally constant, homogeneous particle density ,
q: charge of the particle ,
F: cross section of the conductor .

dQ = (Fuvdf)ngq is therewith the charge flowing in the time dt through the
cross section of the conductor (Fig. 3.1).

Fig. 3.1 Simple arrangement
for the determination of the
current strength due to
charged particles

TT-
|
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3.1.2 Current Intensity 1

A d
I = lim Q——Q

A0 Af dr (3.2)

I is thus the amount of charge which penetrates the cross section of the conductor in
unit time. For the simple example given above the strength of current is therewith

I=nFvgqg.
The unit of the strength of current was already introduced after Eq. (2.9):

[I] = ampere = 1A = 1C/s

3.1.3 Current Density j

This is a vector whose direction is given by the direction of the motion of the electric
charge and whose magnitude corresponds to the charge transported per unit-time
through the unit-area perpendicular to the direction of the current. For the above
example that means:

o1
= —==ngqv.
I=F q
ngq is the in this example homogeneous charge density. In the general case the
current density is a time-dependent vector field,

j@x, ) = p(r,0)v(r, 1), (3.3)

which is connected via the charge density p(r, #) with the velocity field v(r, ¢) of the
system. The current intensity / through a given area F' is the surface integral of j
over F (Fig.3.2):

I:/j-df. (3.4)

F

Fig. 3.2 Strength of current
as surface integral over the
current density
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3.1.4 Continuity Equation

Y avi=o0. (3.5)

This important relation which we already derived in (2.10) is directly related to the
law of conservation of charge.

0
For the magnetostatics only the stationary case a—/t) = 0 is interesting, which

because of (3.5) entails
divij=0 (3.6)
We will exploit this relation several times in the course of this section. Two

consequences are mentioned right here:

(a) In the stationary case (3.6) the same current is running through each kind of
cross section. This we prove by calculating the surface integral over the surface
S(V) of a volume V, which may contain the two cross sections F| and F, (see

Fig. 3.3):
m:/fmmhzfdﬂj:/jwﬁ+/jdf
\%4

S(V) Fi F>

:Il_IZ — Il 212.
(b) Kirchhoff’s current law (node rule)

0=/fMﬁ=/ﬂj

v S(V)

=-L-L+L+1ly = L+L=5L5+1,.

At the node of some conductors (Fig. 3.4) the sum of the currents into the node
is equal to the sum of the currents flowing out of the node.

Fig. 3.3 Behavior of the /e \I
current in a conductor with X
variable cross section 4:\
df f df
I
1 F
I
F2 b o= = "\
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Fig. 3.4 Illustration of
Kirchhoft’s current law

Fig. 3.5 Schematic I /
current-voltage characteristic /

for ohmic and non-ohmic / .

/ ohmic
conductors s
7
7 U
/
/
/

non-ohmic

3.1.5 Ohm’s Law

The experimental observation teaches us that under ‘normal conditions’ the current
I running through an electric conductor is proportional to the applied voltage U:

U=1I-R. 3.7
The proportionality factor R is called electric or ohmic resistance with the unit:

[R] = [%} =1 % =1 (ohm). (3.8)

In general R is temperature-dependent so that, strictly speaking, (3.7) implies that
the temperature is kept constant in spite of the unavoidable heat development.

The Ohm’s law is not a physical law in the strict sense. It is not at all always
fulfilled by all electric conductors. One therefore sometimes divides the conductors
into two classes, the ohmic conductors and the non-ohmic conductors (Fig. 3.5).

The resistance R is not a material constant. In fact it depends on the physical
dimensions of the electric conductor. We come to a corresponding material constant,
however, when we formulate the Ohm’s law in local quantities. In this sense the
voltage corresponds to the electric field strength E(r) and the current to the current
density j(r):

j(r) = o(r) - E(r) . (3.9)

The actual statement of the Ohm’s law is that in an osmic conductor the

electric conductivity o (r)
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Fig. 3.6 Simple model of a

metallic solid @_ _@ @/G’)V' @

@@\@ @f@
@ s \g@a\@
'@"@';‘2"@"

does not depend on the field E. The reciprocal electric conductivity is called the
specific electric resistance p(r) = o' (r)

where p should not be confused with the charge density, not any more than o with
the surface charge density.

We finally calculate o in the framework of a simple model for a metal: The
particles which build the metallic solid are located as positively charged ions at
lattice sites of a highly symmetric structure (Fig. 3.6). They are positively charged
since the rather weakly bound valence electrons of the outermost electron shell have
detached themselves from the parent atom to move quasi-free within the lattice. One
says that they constitute an ‘electron gas’. Their velocity vectors v; do not have a
preferred direction if there is no external field. However, if there is a field E # 0
then the velocities are superimposed by a field-parallel component which increases
with time, until the electron is decelerated again to zero by a particle collision. If ¢
is the time which has been passed for the j-th particle since the last collision then it
holds for its average velocity:

One defines

1
T=—= t; as average collision time .
N Zj: J

Since the first term in the sum for v vanishes we get:



3.1 The Electric Current 169

Therewith we have as current density

ent

j=-—nev= E,
m

an expression which is in accordance with the Ohm’s law (3.9) where

6‘21/11'

o= (3.10)

m

3.1.6 Thread of Current

In the electrostatics the concept of the point charge has proven to be very useful. The
analog for the current is the thread of current, by which one understands a linearly
current / along a path C (Fig.3.7). We parametrize C by the arc length s and place
at each point of the path the moving trihedron (Sect. 1.4.4, Vol. 1). t: tangent-unit
vector; r = r(s). In this local Cartesian system of coordinates it holds:

dr=dst; df=dft; dr=df-dr=dfds; j=jt;: I=j-df =jdf.
It follows therewith:
jd’r = jtdfds = jdf dr = I dr .

The transition to the thread of current is thus performed by the replacement:

jd’r = Idr. (3.11)

3.1.7 Electric Power

When one shifts the charge ¢ in an electric field E by the line segment dr then on
the charge one has to carry out the work

dW = F(r) -dr = gE(r) - dr .

Fig. 3.7 To the introduction
of the concept of the ‘thread
of current’

dr
df
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If this is done within the time interval df the charge possesses the velocity v =
dr/dt, and the field provides the power

aw
— =qE(r)-v(r).
o = 9E@)-v(r)
Let us now consider a general charge density p(r). Then the power provided by the
field on the charged volume element is:

dP = [p(r)d’r] E(r) - v(r) = E(r) - j(r) d’r .

This leads immediately to the term of the
power density jir)-E(r)

The total power P carried out by the field E on the system in the volume V then
amounts to:

P:/j(r)-E(r)d3r. (3.12)

Vv

3.1.8 Special Case: Very Thin Wire = Thread of Current
For this it follows with (3.11) and (3.12):

1
P = I/E-dr =JU=RI= EUZ . in the case of an ohmic conductor .

C
(3.13)

In the stationary case the average velocity of the charge carriers in an ohmic
conductor does not increase. That means that the effect of the field does no longer
cause an enhancement of the kinetic energy of the carriers but is rather transferred
via collision processes to the lattice components (ions). That manifests itself as heat
energy = Joule(an) heat. One therefore also speaks of

P =RI*> powerloss ,

which appears during the passage of the current / through the ohmic load R.
Unit

[Pl=1VA=1W=1J/s. (3.14)
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3.2 Basics of Magnetostatics

3.2.1 Biot-Savart Law

The Coulomb law (2.11) represents, as an experimentally uniquely verified fact, the
basis of the whole of electrostatics. In magnetostatics this role is played by the

Ampere’s law

which describes the interaction between two current-carrying conductors (threads
of current) (Fig.3.8):

I I dr; x dr Xr
,uo 11 ¢9£ 1 ( 2 12) (3.15)
1 G
o: magnetic field constant (permeability of vacuum)
=47 10—7& ~ 1,2566 10—6E (3.16)
Ho = Am A2’ '

Comparing this quantity with the definition (2.15) of the dielectric constant €
(permittivity of vacuum) we recognize:

e poct =1. (3.17)

c is thereby the speed of light in vacuum (2.14). The two constants €y and pig
are therefore not independent of each other. In the special theory of relativity the
distinction between resting and moving charges is only a question of the reference
system which implies an equivalence of the Coulomb and the Ampere law. The
relation (3.17) between 1 and € is therefore not accidental.

For certain purposes it proves to be convenient to reformulate the force law (3.15)
a little bit:

dry X (dry X r12) = dry(dry - r13) — ri2(dry - dry) .

Fig. 3.8 Interaction between Cp L
two current-carrying closed

conductors

Gy 1,
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Fig. 3.9 Illustration of the : !

mutual influence of two y d >

pa'rallel current-carrying 1,C, L, C,
wires

PN
08

dz;

The first summand in (3.15) does not contribute:

1 1
9541 fi —9§dr1-v—=—/df-cur1 grad— | = 0.
"12 rp2 ri2

C C Ac

It remains as force between the two threads of current:

LI
F12 = —[Lo— dl‘1 dl‘2 - . (318)
r12

C1 G
This representation reveals the symmetry between the two interacting partners.
Obviously Newton’s third axiom (law of reaction) is also fulfilled:

Fip =—Fy .

Example We consider two long, parallel, straight wires with the separation d
through which the currents I; and I, respectively, are running (Fig.3.9). Which
force does the current-carrying conductor C, exert on the element dz; of the
conductor C;? In order to be allowed to apply (3.18) we bring to our mind that
Cy, G, are both closed at infinity by large semicircles so that the contributions of the
semicircles to the force on dz; do not play a role:
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+o0
L1 / —de, — (22 — z1)e;
dz [

= —po——dz
A a2+ (2 —2)2?
Ll e d
142 22
= pod ——dz1€, /
4 [ + (22 — 21)2]?

—00

22=1400
(22 —21) }

a2 e
= Mod ——Aaz71€y
Am &2 [d? + (22— 21)2]'2

23=—00
LI,

= uo——dz;€; .
MOZJTd z1€

The force per length exerted by C, on Cy,

LD

fi, = Mom e (3.19)
thus acts perpendicular to both the current directions, and is attractive if the currents
are in the same direction, and is repulsive if they are oppositely directed. This
relation serves in the system SI for fixing the unit of measurement of the electric
current. One considers two infinitely long, parallel, straight threads of current with
a distance of 1 m, through which the same currents /; = I, = [ are running. The
current / amounts to just 1 A if then according to (3.19) on a 1 m long conductor-
piece a force of 2 x 1077 N is exerted.

We now use (3.15) to define the magnetic induction generated by the current I,
in the loop C»,

I dr, Xr
Mm=mi¢¥%ﬁ, (3.20)
4 7,
G

analogously to the procedure which we used in (2.20) to introduce the electric field
E(r) via the Coulomb force between point charges. The current /; in the conductor
loop C) interacts with the B-field generated by the current /,:

F12 = 11 %d[‘l X Bz(l‘l) . (321)
Cy

Example Magnetic induction of a straight conductor:

I dr' x (r—v')
B(r) = po— | =227
0 =nogr [
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Fig. 3.10 For the calculation
of the magnetic induction of a I
linear electric conductor

0
=D
B
Cylindrical coordinates (Fig. 3.10):
r' =7e, = dr =d7e_,
r—r' =pe,+ (z—2)e;
7 +o00 o
Z
— B(r) = uo—pe .
(r) = poy—p w/ PR
—00
It follows:
B(r) = 10— — e (3.22)
= I~'L0 27{ p 0 - .

The B-lines are thus concentric circles around the linear conductor. They revolve
round the current in the sense of a right-hand helix (Fig. 3.10). The magnitude of
the magnetic induction is proportional to the strength of current / and is inversely
proportional to the perpendicular distance p from the conductor.

Formula (3.20), the so-called Biot-Savart law, shall now be extended to arbitrary
current densities in a similar way as was done in the electrostatics with the transition
from point charges to spatial charge distributions p(r) (2.23). For that we simply
use (3.11) in (3.20):

_ /
B(r) = @/d%’j(r’) x T (3.23)
¥4 [r—r']3

The analogy to the electrostatics is obvious. The comparison of the above result
with the expression (2.23) for the electric field E(r) shows that the product of
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charge density p and vector (r — r’) is now replaced by the vector product of j
and (r —r’). The transition from (3.20) to (3.23) has implicitly needed the postulate
of the superposition property of magnetic fields which represents together with
the Ampere’s law (3.15) the experimental basis of the magnetostatics.

Eventually we still find with (3.11) in (3.21) the force which a current density
j(r) experiences due to the B-field of another current density:

F = / [j(r) x B(r)] &*r . (3.24)
Example

point charge: p(r) = ¢d(r—rp); j(r) =qv(r)§(r—rp)
= F =g v(ry) xB(rp) . (3.25)

That is the so-called Lorentz force, strictly speaking it is its magnetic part.

The magnetic induction B(r) exerts further a torque M on the current density j:

M = /{r x [j(r) x B(r)]} dr . (3.26)

Finally we still have to introduce the unit of the magnetic induction:

N Vs
[B] : 1m = 1@ =1tesla (1T). (3.27)

3.2.2 Maxwell Equations

The fundamental Biot-Savart law (3.23) can be further rearranged (see (1.289),
Vol. 1). If one uses

j(’) 1 . . 1
V, x Ol = ; V, x .](r/) _J(r/) X Vr—,
r —r'| r —r'| [r—1/|
. (r—r')
_ /
= J) %

in (3.23) then one realizes that B can be written as the curl of a vector field:

s
Br) = v, x L0 [ g3y AT (3.28)
47 [r —r/|
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The magnetic induction is therefore a pure curl-field and thus source-free:
divB=V:-B=0. (3.29)

This is the homogeneous Maxwell equation of the magnetostatics. The correspond-
ing integral form is found with the aid of the Gauss theorem:

95 B(r)-df =0. (3.30)
5(V)
The flux through the surface S(V) of an arbitrary volume V equals zero. That
expresses the fact that magnetic charges (monopoles) do not exist.

According to the general decomposition theorem (1.71) for vector fields it must
hold for B(r) because of (3.29):

1 1 B(r
B(r) = curl, [— / =) (x )i| .
4

r—r'|

The comparison with (3.28) yields the inhomogeneous Maxwell equation of the
magnetostatics:

curlB=V xB = puoj. (3.31)

Using the Stokes theorem leads to the equivalent integral form:

/B-dr:,uo/j-dfzuol. (3.32)
oF F

I is the current through the area F. This so-called Ampere’s magnetic flux law can
be rather useful for the calculation of the B-field in the case of highly symmetric
current distributions, similarly to the Gauss theorem (2.35) in electrostatics. (One
consider once more as a simple application example the magnetic induction of a
straight conductor (3.22).)

3.2.3 Vector Potential

Equation (3.28) demonstrates that the magnetic induction B(r) can be written as the
curl of the vector field A:

_ Mo 3, J()
A(r) = - /d r ] (3.33)
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The so-called ‘vector potential’ A(r) adopts for the magnetostatics the role which
the scalar potential ¢(r) plays for the electrostatics. Note the formal similarity
of (3.33) with (2.25). We have:

B = curlA . (3.34)

The vector potential is by the above ansatz not uniquely determined, though. The
physically relevant field quantity B is obviously invariant under a

gauge transformation

of the vector potential:
A— A" =A +grady . (3.35)

x may be an arbitrary scalar function which can be fixed merely depending on the
utility-points of view since in any case it holds:

curlgrad y =0

Example Homogeneous B-field: B = By e;.
We have shown as Exercise 1.5.7, Vol. 1 that then

1 1
A(r) = =B xr = =By(—y,x,0
() =3 SB0(=y.x.0)
is an allowed choice which leads to curl A = B.
An often applied convention is the
Coulomb gauge: divA =0. (3.36)

(The notation will become clear later!) With this gauge the inhomogeneous Maxwell
equation (3.31) reads:

curl B = graddivA — AA =—-AA = puoj.

From this we come to the

‘basic problem of magnetostatics’

given: 1. j in a relevant space-region V
2. boundary conditions on S(V)

to be found: solution of the partial, inhomogeneous, linear differential equation
of second order for each component of A :

AA=—poj. (3.37)
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From a formal mathematical point of view this is the same way of looking
at a problem as we encountered it in connection with the Poisson equation of
electrostatics. That means the solution methods developed in Sect. 3.2 can directly
be adopted.

It does not make sense to discuss already at this stage concrete boundary-value
problems of the magnetostatics since we have formulated the latter so far only
for the vacuum. Typical boundary conditions, however, are found more or less
exclusively in matter!

3.2.4 Exercises

Exercise 3.2.1 A current is evenly distributed over the cross section of a straight
conducting wire with the radius R. Determine by use of the Maxwell equations
and by using simple symmetry considerations the B-field inside and outside the
conductor!

Exercise 3.2.2 A current-carrying, plane loop of conductor generates a magnetic
induction B(r). The current-element at P interacts with the B-field which is created
by other current-elements. Calculate the total force which the conductor loop exerts
on itself. Consider the conductor as a ‘thread of current’.

Exercise 3.2.3 Consider a cylindrically-symmetric current-distribution in spherical
coordinates:

J=Jj(r e, .

1. Show that then the vector potential, too, has this structure:
A(r) = A(r, D)e,

Hint: Expand Flr,‘ in the integral formula for A(r) in spherical harmonics.

2. Which scalar differential equation must be obeyed by A(r, ¥)?

Exercise 3.2.4 Through an infinitely long hollow cylinder with the inner radius R;
and the outer radius R, > R; (Fig.3.11) flows a homogeneous current /. Calculate
the magnetic induction B everywhere in space. Sketch |B| as function of the distance
from the z-axis.

Exercise 3.2.5 A coaxial cable consists of an infinitely long straight wire with a
circular cross section of the radius p;, which is coaxially surrounded by a metal
cylinder with inner radius p, and outer radius p3 (Fig.3.12). Inner and outer
conductor carry the currents I; and I, respectively, which are homogeneously
distributed over the respective conductor-cross section.
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Fig. 3.11 Current-carrying,
metallic hollow cylinder

Fig. 3.12 Current-carrying
coaxial cable

(S

1. Calculate the B-field in the whole space! Sketch the field behavior for /; = 0 and
I, < 0aswellas for/; > 0and I, = 0!

2. What does happen for the special case I; = —I, = I? Sketch for this special
case, t0o, the field behavior!

Exercise 3.2.6

1. For an infinitely extended conducting circular cylinder (radius R), which carries
a current of constant density (Fig.3.13)

jzje17

determine the magnetic induction for the whole space!
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Fig. 3.13 Current-carrying, circular-cylindrical conductor with a paraxial drill hole

%
</~’_%j¢0

Fig. 3.14 System of coordinates for the calculation of the magnetic induction of a current-density
distribution which is restricted to a finite spatial region

2. The conductor may have additionally a paraxially drilled hole (radius Ry) at
the distance a (a + Ry < R) from the cylinder-axis (Fig. 3.13). Determine the
magnetic induction B within the drilled hole!

3.3 Magnetic Moment

3.3.1 Magnetic Induction of a Local Current Distribution

We consider a current-density distribution j(r) which is confined to a finite spatial
region and creates at the observation point P a magnetic induction B(r) (Fig. 3.14).
Let the distance of the point P from the j # 0-region be very large compared to the
linear dimensions of this region.

Starting point is the expression (3.33) for the vector potential A(r). For the
denominator in the integrand a Taylor expansion appears to make sense as in
Sect.2.2.7:

1 1 r-.r

P =—+— (= multipole expansion) .
r—r r r
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This means at first:
1
A(r) = &/cpr’j(r’) + ﬂ—/d3r’(r-r’)j(r’) + ... (3.38)
4 r 47 13

For the further evaluation the following lemma will be useful:
Let f(r), g(r) be continuously differentiable, but otherwise arbitrary scalar fields.
Then it holds in the magnetostatics:

7:/d3r[f(r)j-Vg+g(r)j-Vf]:0. (3.39)
Proof

div(gfj) = (gf) divj +j-grad(gf) =f(- Vg +g(j-Vf)
=0 (3.6)

— ?:/d3rdiv(gfj)= / at-(gf j)
S(V)—o0

= 0, since the current density vanishes at infinity!
At first we use (3.39) for

f=1 and g=x,y or z

/ drjoe,.=0.

and obtain:

This means:
/ &Prjr)=0. (3.40)

The first summand in (3.38), the monopole-term, thus vanishes. This is once more
a confirmation of the fact that magnetic charges do not exist. It remains to be
calculated:

_ o r

yp ErrYji) ... (3.41)
JT 1

A(r)
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For this purpose we use once more the lemma (3.39), namely for f = x;, g = xj,
where x;, x; € {x,,2}:

0= /d3r(xijj+xjji) = /d3rxjji = —/d3rxijj-

Therewith we calculate (a arbitrary vector):

Zaj/d?’r’x;ji(r’) = —% Zaj/d3r’ (x;jj—xj’-ji)
J J

1 .
_5 Zéijkaj/dS}’/(l'/ X .])k .
J.k

a- / &)

In the last step we have exploited the definition of the vector product (see (1.95),
Vol. 1). Applying the same formula once more we realize that the following vector-
identity is valid:

/d3r’(a -r)ji) = —% %a X / [r' x j(r)] d3r’} ) (3.42)

With the

Definition 3.3.1 ‘magnetic moment’

m = %/ &rr x j(r)] (3.43)

the vector potential has then for large distances from the j # O-region the following
form (a =r):

A = + ... (3.44)

We restrict ourselves here to the lowest non-vanishing term of the expansion. Since
the monopole-term is zero it is the dipole-term.

For the calculation of the magnetic induction we apply the formulas

curl (ap) = pcurla—ax Vo, ((1.289), Vol. 1)
curl(axb) = (b-V)a—(a-V)b+adivb—bdiva (Exercise 1.7.13)

and get with m = const:

1 1
cu1r1A=ﬂ —curl(mxr)—(mxr)xV —
Az | 3 r
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Ho

{i[(r-V)m—(m-V)r+mdivr—rdivm]+i(mxr)xr}
47 r

73

Mo 1 1 . 3
=0 {—r—3(m- V)r+ r—3md1vr— = [mr? —r(m-r)]}

Mo | m 3
= E |:—r—3 + r—sl‘(ml‘):| .

B has therefore the same mathematical form as the analogous electrostatic dipole
field EP(r) (2.73):

B=1 [S(r—m)r _ m} . (3.45)

47 r 5
The magnetic induction B generated by j behaves, sufficiently far away from the
current density distribution, always like a dipole field provided that the dipole m is

defined as in (3.43).
Let us calculate explicitly the dipole moment m for two examples:

(1) Closed Plane Circuit of Current

We interpret the current loop as a thread of current and therefore use (3.11) in (3.43)
(Fig.3.15):

m:%l/(rxdr):IF. (3.46)
c

This simple result holds independently of the shape of the enclosed area (see
Exercise 1.7.19). m stands perpendicularly on the conductor plane (right-handed
screw rule!).

Fig. 3.15 For the
determination of the magnetic dr

moment of a closed plane C
current circuit
7
&/1
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(2) System of Point Charges

The current density j is now produced by a great many of charged particles which
are all considered as point charges. Let us assume that each of the particles has the
same charge g and the same mass M. Let the i-th particle at the time ¢ be at the
position R;(#) and have the velocity v;(f):

N
i) =g) vid(r—R). (3.47)

i=1

Inserted into (3.43) this yields:

N
= —q Z(R X V) = % Z (3.48)

1; is the orbital angular momentum of the i-th particle.

The ratio of magnetic moment and total angular momentum L = )", 1; is denoted
as ‘gyromagnetic ratio’. The factor ¢/2M, which is derived here purely classically,
remains valid even down to the atomic region, i.e. even for the electrons in an atom,
so long as it is about their orbital motion. For the intrinsic angular momentum (spin)
S of the electron, however, the corresponding magnetic moment my is rather exactly
twice as large compared to what would be expected according to (3.48):

—e
mg = VS . (3.49)

An explanation for this deviation from the classical expectation, which is called
magnetomechanical anomaly, needs the relativistic Dirac theory of the electron
which is however, beyond the scope of the presentation in this volume. We have to
shift it to Sect. 5.2 in Vol. 5/2.

3.3.2 Force and Torque on a Local Current Distribution

On the current density j(r), according to (3.24) and (3.26), an external magnetic
induction B(r) exerts the force (Fig. 3.16)

=/Ummehﬂ
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Fig. 3.16 Interaction

between two local B
current-density distributions ﬁ\
j(r) %0

and the torque

M= /{rx [j(r) x B()]} &°r.

We will investigate these relations now for the case that B changes only very little
within the j # O-region, which is assumed to be locally restricted. Then a Taylor
expansion of B with respect to the origin r = 0 located in the j # 0-region will be
useful:

B(r) = BO) + (r-V)BI®)|p — o + ...

This yields for F:

P =-80)x [ i+ [ 156 x @ VBOI & + .

Because of (3.40) the first summand vanishes, i.e. a homogeneous B-field does not
execute a force on a stationary current distribution.
We calculate the i-th component of the force:

Fi ~ —/ &Er(r-V)B(0) x j(r)], = —Zeij,( (/ rji(r) d3r) -[VB;(0)] .
Jk

At this stage we can exploit the vector-identity (3.42) where we take a = VB;:

%

F; +% %:Gijk { [VB;(0)] x / [r > j(r)] d3’}

k

== € [mx VB(0)], = = ej[m x VIB;(0)

Jk Jk

=) &ilm x V];Bi(0) = [(m x V) x B(0)]; .
Jik
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We have found therewith the following expression for the force F on the current
distribution j:

F ~ (m x V) x B(0) . (3.50)

However, one should not forget that it is the result with only the first non-vanishing
term of an infinite expansion:

F~-m[V:-B(0)]+ V[m-B(0)] .
It then remains with divB = 0:
F>~V(m-B). (3.51)
Note that this expression, too, formally agrees exactly with the analogous rela-
tion (2.78) of the electrostatics. Generally the (conservative) force is defined as the
negative gradient of a potential energy V. This means:
V=-—m-B. (3.52)
The dipole will try to orient itself parallel to the B-field in order to reach the state of
minimal energy.
The magnetic induction B therefore exerts on the current distribution j a torque

M. In contrast to the force F, already the first term of the above field expansion
contributes to the torque. Let us restrict ourselves here to this leading term:

M ~ /{r x [j(r) x BO)]} d°r
— [@rtioE B - BE-jo)
We apply once more the lemma (3.39), now withf = g = r:
o=2/d3r(rj-vr) =2/d3r(rj-e,) :2/d3r(j-r).
Therewith the second summand in the M-relation vanishes:
M ~ /d3r[r -B(0)] j(r) .

At this stage we use again the vector-identity (3.42), now with a = B(0):

M ~ —% %B(O) X /d3r[rx j(r)]} .
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With the definition (3.43) of the magnetic moment m the leading term in the
expansion of the torque takes the form

M ~ m x B(0) , (3.53)

which we have already discussed in the introduction of this chapter with (3.1) as a
possibility to measure direction and magnitude of the field B.

3.3.3 Exercises

Exercise 3.3.1 Calculate the vector potential A(r) and the magnetic induction B(r)
of a circular conducting loop (thread of current!). The current density reads in
cylindrical coordinates (p, ¢, 7):

j(@®) =18(p — R)8(2)e, .

The calculation of A(r) leads to an elliptic integral which cannot be solved
elementarily. Estimate this integral for the limits p < R and p > R by the use
of suitable Taylor expansions. Show that for p 3> R a dipole field emerges! Find the
corresponding magnetic dipole moment!

Exercise 3.3.2 On the surface of a hollow sphere with radius R a charge ¢ is
homogeneously distributed. The sphere rotates with constant angular velocity
around one of its diameter.

1. Determine the current density j(r) generated by the rotation!

2. Calculate the magnetic moment of the sphere caused by j!

3. Determine the vector potential A(r) inside and outside the hollow sphere!
Express A(r) and the magnetic induction B(r) for r > R by the magnetic moment
of the sphere!

Exercise 3.3.3 Let the surface charge density of a hollow sphere with the radius R
be distributed as

0 =0g cost.

Calculate the magnetic moment of the sphere for the case that it

1. is moved translationally with the velocity v in x-direction,
2. rotates with the angular velocity @ around an arbitrary axis through its center.

Exercise 3.3.4 Calculate the magnetic moments of the following systems:

1. Solid sphere (radius R, charge Q), which rotates with constant angular velocity
o around a space-fixed axis through the center of the sphere.
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2. Hollow sphere (radius R) with the charge density
o(r) = 0o8(r — R) cos> ¥ ,

which rotates with constant angular velocity @ around a space-fixed axis through
the center of the sphere (¢ = <(w, r)).

Exercise 3.3.5 Given a densely wrapped coil of the length L (coil radius R, number
of turns n), through which a direct current 7 flows.

. Calculate the magnetic induction on the axis (z-direction).

. Discuss the limiting cases L > R and L < R.

. Calculate the magnetic moment m of the coil.

. How does the magnetic induction B(r) look like at a great distance from the coil
center?

AW N =

3.4 Magnetostatics in Matter

So far we have always presumed that the current density j is a given and therewith a
known quantity. This presumption can, strictly speaking, no longer be taken as the
starting point when we investigate the magnetostatics in matter. The electrons of the
atomic elements of the solid build complicated, rapidly fluctuating, microscopic
currents which, according to (3.46), give rise to magnetic moments which, in
turn, provide, according to (3.45), contributions to the magnetic induction B. The
quantitative registration of these contributions appears to be impossible. But as
already explained in detail in the corresponding Sect.2.4 of the electrostatics,
averaged field quantities are entirely sufficient (see (2.179)).

3.4.1 Macroscopic Field Quantities

We start again with the assumption that the Maxwell equations in the vacuum (3.29)
and (3.31) are, from a microscopic point of view, universally valid:

divb =0; curlb = pojm . (3.54)
Jjm is the microscopic current density and b the microscopic magnetic induction. The
averaging process for field quantities introduced and explained in (2.179) defines the

macroscopic magnetic induction

B(r) =b(r) . (3.55)
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Because of the permutability of averaging and differentiation the homogeneous
Maxwell equation remains formally unchanged after the averaging:

divB=0. (3.56)

The macroscopic B-field is therewith, just as the microscopic one, a pure curl-field,
i.e. as in (3.34) we can define a vector potential A(r):

B = curlA . (3.57)
However, what is the averaged current density jm? It consists of two components.
There will be contributions from free, i.e. not bound (susceptible to manipulation)
charges. Think, for instance, of the quasi-free conduction electrons. But the bound

charges will also react to the fields. They will be shifted and therewith will create
certain currents:

Jm = Jt + Jbound - (3.58)

If pr is the charge density of the not bound particles then it holds for its contribution
to the current density:

Jt=prv. (3.59)

It is expedient to decompose the ‘bound’ current density still into two further
constituents:

Joound = Jp + Jmag - (3.60)

jp is the current density of the polarization charges. The polarization P(r) brings
about, according to (2.189), a polarization charge density

Pp(r) = —divP,

which of course obeys a continuity equation:
d o=
a—tpp(r) +divj, =0
That explains the current density jp:

- B]
Jp(r) = a_tP' (3.61)

As partial time-derivative it does not play, however, a role for the magnetostatics.
We will have to come back to this point later when treating dynamic phenomena.
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Here the magnetization-current density jmag is decisive. It results from the
motions of the atomic electrons in their stationary orbits around the respective
positively charged nuclei. Each of these motions represents a tiny magnetic dipole.
Without an external field, the directions of these dipoles are randomly oriented,
on an average therefore mutually compensating their actions. According to (3.53)
an external field will execute a torque on the elementary dipole, therewith taking
care for a certain ordering that eventually leads to an additional internal field Bpg,.
We imagine that this additional field is due to a current density jmae. Let jfffag(r)
be the magnetization current density of the i-th particle which we assume to be
stationary (3.6):

divj, = 0. (3.62)

Furthermore, it generates the moment m;:

m; = % / drl=R) x j0,m] . (3.63)

R; shall be the position of the dipole. The fulfillment of these two equations succeeds
with the following, relatively general ansatz:

Jine (1) = —m; x Vfi(r) = curl (m;f(r)) . (3.64)

The function f; is thought here only as an in-between quantity. Its precise meaning
is not so important. It has to fulfill only the following conditions:

1. f; is smooth within the volume occupied by the i-th particle and outside identical
to zero.
2.

Erfir)=1. (3.65)
particle (v;)

That the ansatz (3.64) fulfills the condition (3.62) is immediately clear and Eq. (3.63)
can be verified by insertion:

m; = —%/d3r(r—R,-) x (m; x Vf)
1
= / & im[(r—R) - V] — Vi [(r — R) - m]}

1 1
——jm [ Ere=R)Vi+ 5 [ @rVir-R)-m]
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= —%m,- / &rdiv [(r — R)fi(r)] + %m,- / &rfi(r)div(r —R))
45 [ @9 e —Ry w5 [ @rv e - R))

= —m / it (£ = RYI() + S

+% / dfﬁ(r)[(r—Ri)-mi]—%mi / &rir)
S(V—>00)

:mi

The surface integrals do not contribute since, because of 1., f disappears at infinity.
In the penultimate step we have used the Gauss theorem in its ordinary form (1.53)
and in its form (1.56). Moreover, condition 2. has been fulfilled.

We are now convinced that Eq.(3.64) is for our purposes here a reasonable
ansatz. We perform the averaging,

Jmag (r) = curl (Z m; f,-) = curl M(r) ,

1

and define

M(r) = ) mifi(r) (3.66)

as magnetization.

The function f; has, because of (3.65), the dimension //volume, the magnetization
therewith the dimension magnetic moment per volume. Performing the averaging
explicitly we get:

M(r) = % / &r (Z mifi(r/))
v(r) i

1 N(v(r))
— m,-/ Eri) .

v(r) p

v; is the volume of the i-th particle. It follows:

N(v()
M(r) = — i 3.67
M=) m (3.67)
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This expression yields the illustrative meaning of the magnetization as average
magnetic moment per volume. One should not forget, however, that just as
Eq. (2.185) for the macroscopic polarization P(r), Eq. (3.67) actually only defines
the magnetization M(r). The magnetic moments m; are influenced by internal as
well as external fields, i.e., M(r) will be a functional of these fields and as such a
functional has to be calculated on the basis of appropriate theoretical models.

After these foregoing considerations we are now able to formulate the macro-
scopic inhomogeneous Maxwell equation. After averaging in (3.54) we have:

curl B = 10 jm = fo (Jr + Jp + Jmag) = Kol + 1P + pocurl M . (3.68)

P drops out in the case of magnetostatics. We introduce a new field quantity:

1
H= M_B —M (magnetic field) . (3.69)
0

This definition of the macroscopic magnetic field H is chosen completely analo-
gously to that of the dielectric displacement D in the electrostatics (2.187). In both
cases they are, strictly speaking, only auxiliary quantities. The real measurands are
E and B:

B=puH+M). (3.70)
The inhomogeneous Maxwell equation now reads:
curl H = ji . (3.71)

H is connected to the free current, B to the real (total) current(comparison is valid
here also with the electrostatics). H and M have the same dimension:

B =M= (3.72)

Under specific preconditions (isotropic, linear medium) we can, in analogy to the
relation (2.196), choose the ansatz:

M = y.H, (3.73)

which defines the
magnetic susceptibility yp,.
Because of (3.70) one finally introduces the

relative permeability y, = 1 + ym:

B = (1+ xm) toH = prptoH . (3.74)
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Non-magnetizable materials have y,, = 0. That holds in particular for vacuum:

B =By = uoH (vacuum!). (3.75)

3.4.2 Classification of Magnetic Materials

The magnetic susceptibility y, is excellently suited to classify the magnetic
materials. Contrary to its electrical counterpart y. it can also be negative.

(1) Diamagnetism
This manifestation of magnetism is characterized by:
Xm <0; ym = const. (3.76)

The diamagnetism turns out to be a pure induction effect. Diamagnets do not contain
any permanent magnetic dipoles. Only when a magnetic field is switched on such
dipoles appear as induced moments. According to Lenz’s law, which we are going to
discuss in the next section, the induced dipoles (vectors!) are opposed to the applied
field. yn is therefore negative. Further on, typical is that yp, is almost temperature-
and field-independent as well as it is very small in magnitude:

[fm| ~ 1075 .

Diamagnetism is a property of all substances. One speaks of diamagnetism,
however, only if there are not additional components of paramagnetism or collective
magnetism (see below) present, which bury the relatively weak diamagnetism.

Examples

» almost all organic substances,

* noble metals such as Zn, Hg,

e nonmetals as S, I, Si,

» superconductors (Meissner-Ochsenfeld effect: y,, = —1 == ideal diamagnets).

(2) Paramagnetism
Decisive precondition for paramagnetism is the existence of permanent magnetic

dipoles which in a field are aligned more or less (cf with the orientation polarization
of the paraelectrica). To this orientating tendency, the disordering tendency due to
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Fig. 3.17 Simplest idea of
the electron shells in an atom

the thermal motion is opposed. It is therefore typical for paramagnets:

These permanent dipoles can be strictly localized at certain lattice sites. That is
in particular the case when an inner electron shell of an atomic constituent of
the system is not completely filled (Fig.3.17). An electron shell can accept at
most 2n” electrons, where the so-called principal quantum number n runs from
the center outwards through the values n = 1,2,3,.... Each electron has an
orbital angular momentum l;. For a closed, i.e. completely occupied electron shell,
the angular momenta compensate each other to yield the total angular momentum
L = ) ,1; = 0. If the shell is not completely occupied then L. # 0 and therewith
according to (3.48) a magnetic moment m results. — This situation is typical for
magnetic insulators, the susceptibility of which obeys for high temperatures the

Curie Law

T < 3.78
(D) = — (3.78)
Even the quasi-free conduction electrons of a metallic solid carry, due to their
spins, a permanent magnetic moment (see (3.49)). That leads to the so-called
Pauli paramagnetism with a susceptibility which in contrast to (3.78) is practically
temperature-independent.

(3) Collective Magnetism

The susceptibility here is in general a very complicated function of the external
magnetic field as well as the temperature:

Im = xm(T,H) . (3.79)

Precondition is as in (2) the existence of permanent magnetic dipoles which,
however, in consequence of an only quantummechanically understandable exchange
interaction align themselves in an ordered manner below a critical temperature 7*,
and that spontaneously, i.e. without being forced by an external field. The permanent
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magnetic moments can be
localized (Gd, EuO, Rb,MnCl, . ..)
but also
mobile (itinerant) (Fe, Co, Ni, . . .).
The collective magnetism can further be grouped into three big subclasses:

(3.1) Ferromagnetism
In this case the critical temperature is called
T* = Tc:  Curie temperature .

At the absolute zero (T = 0) all moments are parallelly aligned (1 111 1), for
0 < T < T¢ a certain disorder sets in which becomes stronger with increasing
temperature (/' "\, where, however, a non-zero total magnetization still
exists. For T > T¢ the ferromagnet behaves like a normal paramagnet. The Curie
temperatures of some prominent ferromagnets are shown in the following table:

substance: Fe Co Ni Gd EuO CrBr;
Tc [K]: 1043 1393 631 290 69 37

A typical feature of a ferromagnet is on the one hand the rather large absolute
value of the susceptibility yn and, on the other, its strong dependence on the ‘pre-
treatment’, ‘history’ of the material that leads to the so-called

hysteresis curve

(Fig.3.18). When switching on the magnetic field the ‘virgin’ material will at
first be magnetized along the

initial (magnetization) curve (a),

in order to reach finally a

saturation Mg (b)

After switching off the field, there remains a finite rest-magnetization which is
called

remanence (c)

Fig. 3.18 Hysteresis curve of M
a ferromagnet (b)

Mgy - —=
0<T<T¢ (c) 2
(d)/V(
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Fig. 3.19 Weiss domains of
a ferromagnet. The arrows
indicate the directions of the
magnetization

0<T<Tg

To remove it one needs an opposing field, the

coercive force (d),

The property (c) defines the

permanent magnet.

The hysteresis-loop is caused, in the final analysis, by the fact that the macro-
scopic material decomposes into small, microscopic regions, the so-called

Weiss domains.

The respective domains are spontaneously magnetized but in different directions
because of thermodynamic, energetic reasons (Fig.3.19). The external field H
brings these more and more in line until they attain the final parallel orientation
(“saturation’). It goes without saying that for ferromagnets the linear relation (3.73)
does not hold.

(3.2) Ferrimagnetism

In this case the lattice of the solid consists of two ferromagnetic sublattices A and B
with different magnetizations

M\ # M
where

M=Ms+Mg#0 for0<T<Tc.

(3.3) Antiferromagnetism

It is a special case of the ferrimagnetism. The two sub-lattices have equal but
opposite magnetizations. The critical temperature is denoted here as

T* = Tx: Néel temperature.
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The total magnetization

M =M, + Mg
Mo — (Mt

is thus always zero. For temperatures above Ty the antiferromagnet, too, becomes a
normal paramagnet. The linear relation (3.73) is not applicable.

3.4.3 Field-Behavior at Interfaces

With (3.37) we have formulated the basic problem of the magnetostatics. Concrete
boundary conditions come often into play by the special behavior of the fields B and
H at interfaces. That shall now be investigated more precisely where we apply the
integral theorems of Sect. 2.1.4. We locate around the interface a

Gauss-casket (Fig. 3.20)

with the volume AV &~ AF - Ax. Then we get:

0:/d3rdivB: / df-B = AFn- (B, —B)).

1% S(8V)

The normal component of the magnetic induction is therefore continuous at the
interface:

By, =By, . (3.80)

In case of different permeabilities ,uﬁl) , ;1,52) of the two substances, however, this

does not at all hold for the magnetic fields:

1
H, — I"Ll(' )Hln
2n — )
r

(3.81)

We now put around the interface a small
Stokes-area.

Fig. 3.20 Gauss-casket for
the determination of the
behavior of the magnetic
induction at interfaces
between two materials with
different permeabilities
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Al (2)

@ AF=AFt

Fig. 3.21 ‘Stokes-area’ for the determination of the behavior of the magnetic field and the
magnetic induction at interfaces between two substances of different permeabilities

Let t be the surface normal of AF, directed tangentially on the interface. Then it
holds (Fig.3.21):

Al = Alt xn) = —Al, .

jr is the surface-current density, i.e. the current per unit length on the interface.

/df-curlH:/df-jp — (Jr-t)dl,
§F §F

/df-curlH:/ds-H 8_)0 Al(txn) - (H, —Hy) .
8F asF

The comparison yields in this case:
(txm)-(H, —H)) = jp-t. (3.82)

(txmn) is a unit vector parallel to the Stokes-area. Thus, if there is no surface-current
density then the tangential component of the H-field is continuous:
(2)

jF =0: Hy =H,; < By = %Bl,« . (3.83)
it

The magnetic induction, however, has even for jr = 0, a discontinuous tangential
component.

3.4.4 Boundary-Value Problems

We had formulated in (3.37) the basic problem of the magnetostatics for the vacuum.
That must now be still debated for matter. Starting point are the two Maxwell
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equations
divB=0; curlH = j,

where from now on we suppress, as usual, the index f on the current density j. Of
course it is always meant to be the current density of the unbound charges. Let us
present and discuss, in form of a list, several typical statements of the problem.
(1) o, = const in the Whole Interesting Space-Region V
Then it is an isotropic, linear medium

curl B = purpoj . (3.84)

The problem has, thereby, not changed compared to (3.37). By the use of the
Coulomb gauge, the differential equation to be solved reads:

AA = —prfto] - (3.85)
On the right-hand side only the constant factor p, is added.
(2) V Consists of Partial Regions V; with Pairwise Different but Within V;
Constant p?
The problem has to be solved in each partial volume V; as described in (1), where
finally the partial solutions are fitted to each other by fulfilling the boundary
conditions (3.80) and (3.82).
(3) j = 0 in V with Boundary Conditions on S(V)
In this case we can define, because of curl H = 0, a scalar magnetic potential ¢p,:

H= -V, . (3.86)

When we assume again a linear medium with at least piecewise constant i, then we
get from divB = 0:

div (o Voom) =0 <= Apn =0. (3.87)

That is the Laplace equation known from electrostatics which is to be solved along
with the given boundary conditions.
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4)M(r) # Owithj=0inV

This situation can be realized, for instance, in a ferromagnet for 7 < T¢. Because
of curl H = 0, it can be defined as in (3.86), a scalar potential ¢y, so that the second
Maxwell equation can be rewritten as follows:

0=divB = podiv(H+ M) = Agp = divM. (3.88)

This corresponds to the Poisson equation of the electrostatics where div M(r) adopts
the role of (—1/€p)p(r). If there are no boundary conditions in a finite region we
then find as in (2.25) (Poisson integral):

Pm(r) = —— / 2y ME) (3.89)

r—r|

We assume that M is restricted to a finite space-region and use then in (3.89):

divM(’ M@’ 1
B (M) iy,
r—r r—r
M(r’ 1
= div # +M(I‘/)-VrT.
Ir—r'| Ir —r'|

The first summand, inserted into (3.89), can be written by the use of the Gauss
theorem as a surface integral which vanishes because of the localization of M. It
remains:

Ir—r'|

Pm(r) = —LVr/dWw. (3.90)
41

r—r|

If the point of observation r lies far away from the M # O-region then we can
terminate the already several times applied expansion

1 1 r.r

Ir —r/| T r3

after the first summand. The leading term yields:

1 1
Pm(r) & 1 (v,;) / d*r M(r) .

The integral is just the total magnetic moment my, of the system

My = / > M(r) . (3.91)
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Therewith the scalar magnetic potential gets a form already known to us:

(3.92)

r)~ —
(pm( ) 47T r3

This corresponds to the electrostatic dipole potential ¢p(r) (2.71). Since H follows
from ¢y, as EP (r) follows from ¢p(r), we can adopt directly the calculation that led
to (2.73). H has the typical form of a dipole field:

1 |:3 (remyg)r _ mtoti|

A~ — 3.93
4 rd 3 (3.93)

One should not forget that the results (3.89) and (3.90) are valid only if there are no

boundary conditions in a finite region. However, if there are boundary conditions to

be fulfilled on S(V), e.g. by

0
ﬂ:n-Vgom:—i—n-M,
on

then we have to use the same considerations as done in Sect. 2.3 for the boundary-
value problems of the electrostatics. We find in analogy to (2.122):

oui) =~ [ ar Sy L [ AN (3.94)

4 r — | 4 r—1/|
S(V)

The reader should check that!
Example: ‘homogeneously magnetized sphere’ (Fig. 3.22)

We use (3.90):
My d 1
(pm(r):— 0—/ dSV/

47 dz r—r|"
Vk

Fig. 3.22 For the
determination of the scalar

r
magnetic potential of a
homogeneously magnetized Y
sphere

M = M,(0,0,1)

| ¥~
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For the evaluation of the integral it is recommendable to choose r as polar axis:

. R +1 .
d’r =2n/’2d’/d
/ "= R B P e T
Vg 0 -1
R
2w x=-+1

—=— | Fdr P+ - 2}’/)()1/2|x=_1

B 3
With
d 1 z cos
——=—— = ;U =<(,M
dz r r3 r2 ( )
it follows then:
1 D
om() = = MoR> 222
3 r2

The total magnetic moment of the sphere is easily calculated since M was assumed
to be homogeneous:

4 47

My = ?R?’M = ?1'331\/106Z . (3.95)
Therewith we have the result:
1 mlot I
Pm(r) = ——3—. (3.96)
T

which agrees exactly with (3.92). The scalar magnetic potential as well as the
corresponding H- or B-field thus do not change if one replaces the homogeneously
magnetized sphere by a dipole at the origin of coordinates with the moment (3.95).
For this highly symmetric special case we therefore do find the dipole field (3.93)
not only asymptotically for great distances, but even in the immediate neighborhood
of the sphere.
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3.4.5 Exercises

Exercise 3.4.1 A small ferromagnet with the dipole moment m is fixed at x¢ = xp
e, in such a way that it is freely rotatable in the xy-plane. On it acts a homogeneous
field By = Bye,. In addition there is the field B; of a linear thread of current of
the current intensity /. Determine the angle o between the dipole moment and the
X-axis.

Exercise 3.4.2 Consider a sphere of the radius R with the permeability u,. Inside it
is homogeneously magnetized:

M = Mye, .

The current density j = O inside and outside the sphere.

1. State a reason why the magnetic field can be written as
H=-Vo,.

Calculate the magnetic potential ¢, in the exterior space of the sphere!

2. Calculate the magnetic field H inside and outside the sphere!

3. Assume that the magnetization M of the sphere is generated by a surface current
density j. Provide evidence that this must be of the form

j=a(})d(r—R)e,;.

Express a(7) by M!

Exercise 3.4.3 A straight, long, and thin wire lies at a distance a parallel to a very

large plate of the permeability ,uﬁl) (Fig. 3.23). The region to the right of the plate
has the permeability ,uﬁz) . The dc-current / runs through the wire.

1. Under which conditions is the introduction of a scalar magnetic potential ¢, with
H = —V,, possible and reasonable?
2. How large are H and ¢y, in case of an at first absent plate (curlA = p,poH)?

Fig. 3.23 Thin wire in front
of a large plate, where the
region in front of the plate I
and the plate itself possess

different relative

permeabilities X
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Fig. 3.24 Radially
magnetized spherical shell,
azimuthally magnetized
hollow cylinder

(Exercise 3.4.5)

3. Formulate the problem of the determination of ¢, for the given arrangement as
a boundary-value problem!

4. For the solution of the problem introduce image currents I, atx = —aandy = 0
as well as I at x = a and y = 0 so that /; together with / realizes the potential in
the region 2 and I, alone in the region 1. Express ¢, H and A by I, I,.

5. Determine I, I; from the boundary conditions for the fields.

6. How strong is the force per unit length that acts on the wire?

Exercise 3.4.4 An infinitely long solid cylinder (i, = 1) of the radius R carries
a constant current density jo. Calculate the vector potential and the magnetic field
intensity inside and outside the conductor by solving the Poisson equation for the
vector potential. Check the result for the magnetic field by applying the Stokes
theorem.

Exercise 3.4.5 Determine the H- and B-fields in the whole space

1. for a spherical shell which is magnetized in radial direction (Fig. 3.24)
M(r) = M(r) €,

2. for a hollow cylinder being magnetized in azimuthal direction (Fig. 3.24):

M(r) = M(p)e, .

3.5 Self-Examination Questions

To Section 3.1

1. How are current density and current intensity defined?
2. What is expressed by the continuity equation?

3. Derive Kirchhoff’s node rule!

4. What is the Ohm’s law?
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5.
6.
7.
8.

Is the electric resistance R a material constant?

What is to be understood by a thread of current?

How large is the power generated by an electric field E on a current density?
What is meant by power loss?

To Section 3.2

1.

Which experimental observation does provide the basis of magnetostatics?

2. Formulate the force between two conductor loops Cy, C, carrying the stationary

7.
8.
9.
10.
11.
12.

currents /1 and I,. Is the rule action=reaction fulfilled?

. How can the force acting between currents be used to fix the measurement unit

of the electric current?

How is the magnetic induction defined?

How do the B-lines of a straight conductor look like?

Which force and which torque are exerted by a magnetic induction B(r) on a
current density j(r)?

State the Maxwell equations of magnetostatics?

What does the Ampere’s magnetic flux law say?

What is the connection between the vector potential and the current density?
What is to be understood by a gauge transformation?

How is the Coulomb gauge defined?

Formulate the basic problem of the magnetostatics!

To Section 3.3

1.

Define the magnetic moment of a current density j(r)!

2. Which form does the vector potential A have sufficiently far away from the j #

(O8]

0-region?

. What is the magnetic moment of an arbitrary, closed, plane current loop?
. Which force is exerted by a homogeneous magnetic field on a stationary current

distribution?

. Which potential energy does a magnetic moment m possess in the field of the

magnetic induction B?

To Section 3.4

1.

Interpret the term magnetization-current density!

2. What does one understand by magnetization? Which connection does exist

»

between magnetization, magnetic field, and magnetic induction?

What are the macroscopic Maxwell equations of the magnetostatics?

Which analogies do exist between the field quantities E, D and P of the
electrostatics and A, H and M of the magnetostatics? Which are the actual
measurands?

. Which physical quantity is in particular appropriate for a classification of mag-

netic materials? By what are diamagnetism and paramagnetism, respectively,
characterized and by what do they differ from each other?
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e N

10.

3 Magnetostatics

List some typical features of ferromagnetism!

What do we understand by ferri- and anti-ferromagnetism?

How do B and H behave at interfaces?

When is it reasonable to define a scalar magnetic potential? Under which
conditions does it obey a Laplace and a Poisson equation, respectively?

How does the magnetic field of a homogeneously magnetized sphere look like?



Chapter 4
Electrodynamics

Chapters 2 and 3 have shown that electrostatic and magnetostatic problems can be
treated completely independent of each other. Certain formal analogies, though,
allow one to apply to a large extent identical calculation techniques to solve the
basic problems, but that does not lead to any direct dependency. This will now
change when we consider time-dependent phenomena, i.e. the decoupling of electric
and magnetic fields ha to be set aside. Therefore one should speak from now on of
electromagnetic fields rather than of electric and magnetic fields, separately. The
deep understanding of the close correlation between electric and magnetic fields
will be provided in the framework of the theory of relativity.

4.1 Maxwell Equations

At first we want to generalize the fundamental field equations of the electrostatics
divD=p; curllE=0

and the magnetostatics,
divB=0; curlH=j

to time-dependent phenomena. Thereby the starting point of our considerations shall
again be an experimental fact which is believed to be uniquely verified.

4.1.1 Faraday’s Law of Induction

The Biot-Savart law (3.23) includes the statement that a current density j generates
a magnetic induction B. In the year 1831 Faraday was concerned with the problem

© Springer International Publishing Switzerland 2016 207
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whether it might be also conversely possible to create a current by B. His famous
experiments on the behavior of currents in temporally changeable magnetic fields
led to the following observations: In a conductor loop C) a current is generated if

1. a permanent magnet is moved relative to the loop,
2. asecond, a constant current carrying conductor loop C, is moved relative to Cj,
3. the current in a conductor loop C; (‘at rest’ relative to C) ) is changed.

This direct experimental observation concerns electric currents. In the range of
validity of the Ohm’s law (3.9),

j=0E,

it is directly transferred to electric fields. Let us try to combine Faraday’s observa-
tions into a compact mathematical formula.

Definition 4.1.1

Electromotive force (emf):

(emf) = ¢E-dr, 4.1
C

Magnetic flux through the area F¢ (Fig.4.1):

d):/B-df. 4.2)

Fc

Faraday’s experiments ‘prove’ the proportionality between ® and (emf).

Faraday’s law of induction:

d
9§E-dr=—k—/B/-df. “4.3)
dt
C Fc
Fig. 4.1 Thumbsketch for
the definition of the magnetic
flux df B
-
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Here E is to be understood as the electric field in the (‘co-moving’) system
of coordinates, in which the conductor loop C is ‘at rest’. B’ is the magnetic
induction in the ‘fixed’ laboratory system and % mediates the temporal change
of the magnetic flux through the conductor loop as seen from the point of view
of the ‘co-moving’ observer.

The law (4.3) holds not only for the case where C is a real conductor loop, but
also even when C represents a fictitious closed geometrical loop.

However, we still have to fix the proportionality constant k. For this purpose
we use the following consideration: Let the current circuit C, in which the induced
current is observed, move with the velocity v, which is constant both in direction
and magnitude, relative to the laboratory (Fig. 4.2). In the lab we find the (possibly
time-dependent) magnetic induction B’. In contrast, as mentioned, in the Faraday’s
law of induction (4.3) the field E at r is meant as that in the ‘co-moving’ reference
system, where the conductor-element dr ‘is at rest’. The total time derivative on the
right-hand side of Eq. (4.3) refers to the view of an observer who ‘co-moves’ with
C. It can therefore contribute in two ways:

d (1) explicit rate of B’-change ,

dt" () position-change of the conductor loop .

Formally this can be seen as follows. It holds for the temporal change of B’ seen
from the co-moving observer:

d d
—B' = —B - V)B’
dt ot +-V)

and also, since v is constant in direction and magnitude:
cul(B' xv) = (v- V)B'— (B’ - V)v + B'divv — vdivB' = (v- V)B’ .

That means:

d a
EB/ = B_tB/ +curll (B xv).

Fig. 4.2 Simple arrangement B

(magnetic induction, closed

conductor loop) for fixing the

constant k in the Faraday’s

law of induction (4.3) dr
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The Stokes theorem yields:

/df-curl(B’xv)=¢dr-(B’xv)=9£B’-(vxdr).

Fc C C

For the temporal change of the magnetic flux we thus have:

d [, OB’ ,
Fc Fc

=1) =2)

Here we have used the fact that F does not change in the co-moving reference
system. The time differentiation can therefore be shifted into the integrand. There-
with (4.3) can be written as:

¢[E k(v x B)] = —k/ 81 df . 4.5)

C

In a second thought experiment (‘gedankenexperiment’) we fix the conductor loop
somewhere in space (v = 0), such that it has the same coordinates which the moving
conductor possesses in the co-moving reference system. Then the field in the rest-
system of the conductor is identical to the field E’ observed in the laboratory:

95 =k / B . (4.6)

The comparison of (4.5) and (4.6) leads to:
E=FE +k(vxB). “@.7

Decisive precondition for the derivation of this relation has been the assumption that
the Faraday’s law of induction (4.3) is equally valid in all reference systems which
move relatively to each other with constant velocities v, i.e that it is

Galilean-invariant

(Sect.2.2.3, Vol. 1). That is an acceptable assumption in the non-relativistic region
v?/c* < 1. In order to finally fix the quantity k, we consider the force on a single
point charge g, which is at rest in the moving conductor. It experiences the force

F=gqgE.
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Seen from the laboratory the point charge represents a current,

J=4¢qvi(r—Ro),
onto which the magnetic induction B’ exerts according to (3.24) the force:

/d3r(j xB') = g(vxB)
The total force acting on the particle as seen from the laboratory is then:
F =¢q[E +(vxB)].

The Galilean invariance requires F = F’ and therewith

E=E + (vxB). (4.8)

This important relation for the electric field E in a reference system, which moves
relative to the laboratory with the velocity v, brings out the close connection between
magnetic and electric fields. One should keep in mind, however, that because of the
assumed Galilean invariance the relation is free of doubts only non-relativistically.

By (4.7) and (4.8) eventually the constant k in the law of induction (4.3) is now
fixed:

k=1, (SD. 4.9)
The final version of the law of induction therewith reads:
d ,
E-dr=—— | B -df. (4.10)
dt
C Fc

Let us assume that the laboratory system is also the rest-system of the conductor
(B = B’) so that E and B are defined in the same reference system, then we can
reformulate (4.10) by use of the Stokes theorem:

/df- (curlE+B)=0.
Fc
This holds for arbitrary areas F¢. Therefore we can further conclude:

curlE = —B . (4.11)

This is the generalization of the homogeneous Maxwell equation of the electrostat-
ics (2.188) for time-dependent phenomena.
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4.1.2 Maxwell’s Supplement

Let us summarize here the basic equations which are so far at our disposal for the
description of electromagnetic phenomena:

divD =p (Coulomb),
curlE = —B (Faraday) ,
culH=j (Ampere),
divB =0.

Except for the Faraday’s law all these rules have been deduced from experiments
which concern static charge distributions and stationary currents, respectively. It is
therefore not at all astonishing that for non-stationary fields certain contradictions
might appear. This is indeed the case in connection with the Ampere’s law. We had
intentionally introduced, when discussing the magnetostatics in matter in Sect. 3.4,
the magnetic field H without the term P since in connection with (3.68) we were
interested only in magnetostatic phenomena. The relation curl H = j can therefore
not be valid for the general case. That can be illustrated immediately by applying
the divergence to this equation:

0 =divcurlH = divj .

For non-stationary currents this is a clear contradiction to the continuity equa-
tion (3.5):

dp
divie 00
1V ] at

Maxwell solved this contradiction by the following ansatz which is called the
Maxwell’s supplement:

curlH=j+jo . (4.12)

jo is at first only a hypothetical additional current for which it must hold:
.. . .. op .
divjo = divcurlH —divj = m =divD.

Hence the mentioned contradiction is removed when we replace the Ampere
relation by

cul H=j +D. (4.13)
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The static limit is obviously not violated. According to Maxwell one calls D the
electric displacement current

We have performed here the extension of the Maxwell equations to time-dependent
phenomena directly for the macroscopic field equations. When deriving the macro-
scopic field equations in the electro- and magnetostatics we chose a different way.
At first we started at the corresponding Maxwell equations in the vacuum and
then generalized these properly for matter. The same way we could have chosen
in principle here also. The identical consideration to that used above (Maxwell’s
supplement) would have given for the vacuum instead of (4.13):

curl B = poj + €ouoE .

From this relation one assumes again that, from a microscopic point of view, it is
universally valid. That means that the equation would work even in the matter if one
knew the corresponding microscopic currents:

curlb = g jm + €oito€ -

By applying the averaging process (2.179) one gets the corresponding macroscopic
equation:

curl B = ,uojm + eopLoE .

We calculated the averaged current density j,, with (3.68):

s .

Jm :Jf+P+Cuf1M.
It follows:
curl (B — toM) = pojs + pto(€oE + P) .

If we further use the definitions (2.187) and (3.69) for the auxiliary fields D and H,
then we indeed arrive at (4.13). But bear in mind that in (4.13) the term j always
means the free current density. From now on we suppress, however, the index f.

Therewith we have now at hand the complete set of basic electromagnetic
equations:

Maxwell equations:

homogeneous: divB =0 (4.14)
curlE+B =0 (4.15)

inhomogeneous: divD = p (4.16)
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cul H—D = j (4.17)
material equations: B=uyH+M) — uuH (4.18)
D =¢E+P — €¢E 4.19)

The arrows in (4.18) and (4.19) point to the special expressions for linear media.

4.1.3 Electromagnetic Potentials

The typical problem of electrodynamics consists of the calculation of electro-
magnetic fields generated by given charge- and/or current density distributions on
the basis of the fundamental Maxwell equations. That can be done by directly
starting with the Maxwell equations, i.e. by trying to solve a coupled system of
four partial differential equations of first order. Sometimes, however, it appears
to be more comfortable to introduce electromagnetic potentials (¢, A) which
automatically fulfill the homogeneous Maxwell equations, however at the cost
that the inhomogeneous equations are now transferred into a set of two partial
differential equations of second order. The general concept is already known to
us from electrostatics.
The homogeneous Maxwell equation

divB =0

is trivially solved when we write the magnetic induction, as we did in the
magnetostatics (3.34), now also as the curl of a vector field, the

vector potential A(r,r)
B(r,7) = curl A(r, 1) . (4.20)
We insert this into the second homogeneous Maxwell equation (4.15),
curl(E4+A) =0,
which suggests the following ansatz for the electric field:
E(r,t) = —Vo(r,1) — A(r, 1) . (4.21)
The scalar potential ¢(r, r) and the vector potential A (r, f) must be determined by

the inhomogeneous Maxwell equations. Both are actually auxiliary quantities which
fix by (4.20) and (4.21) the real physical observables E and B.
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The magnetic induction B(r, #) obviously does not change when we go over from
Ato

A(r,1) = A(r,1) + Vy(r, 1) ,

where y can be an arbitrary scalar field. Such a ‘non-uniqueness’ of the vector
potential can bring about non-trivial computational advantages. However, we have
to take into consideration that such a transformation would affect in general also the
electric field E, if we kept ¢(r, 7) fixed. ¢ must therefore be properly co-transformed:

Vo+A<Vo+A=Vg+A+Vy.
Except for an unimportant constant, which we are free to put equal to zero, we end

up with the following, always allowed

gauge transformation:

A(r,t) = A(r, 1) + Vy(r,1), (4.22)

o, 1) — o, 1) — y(r,1) . (4.23)
Thereby the fields E(r, f) and B(r, t), which are the actual measurands, remain
unchanged.

In order to recognize which gauging could be useful, let us inspect now the
inhomogeneous Maxwell equations where we restrict ourselves to the case of the
vacuum:

dvE =L curdB = poj+ pocok: . (4.24)
€0

We insert (4.20) and (4.21):

—Ag—diva = £
€0

curlcurl A = grad(divA) — AA = poj — po€o Vo — Ho€odA .

We use (3.17): ¢z = (poeo) ™'

A 1 & A—-V|divA + s = j
- - iv — = —
C2 atz cz(p I"LO.]a

-r
60'

|:A<p + a%(div A)} = (4.25)
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This system of equations can be simplified by proper gauge transformations:

(1) Coulomb-Gauge
One chooses the gauge-function y such that
divA =0. (4.26)

According to (4.25) the scalar potential then fulfills a differential equation,

Ao =2, 4.27)
€0

which, provided that there are no boundary conditions in the finiteness, is formally
identical to the Poisson equation of the electrostatics. We therefore can immediately
quote its solution:

1 't
o6, 1) = —— / &r P (4.28)
4 [r—1/|

@(r, 1) is the instantaneous Coulomb potential of the charge density p(r,?). One
therefore speaks of ‘Coulomb-gauge’.

Using the Coulomb-gauge in (4.25), we find for the vector potential A(r, ¢) the
following differential equation:

| .
OA(r,t) = sz — o - (4.29)

Here we have introduced the

d’Alembert operator:

O=A Lo (4.30)
N 2 0F2 '
We insert (4.28) for ¢ into the right-hand side of (4.29) and exploit the continuity
equation (3.5):

divj(r', 1)

4.31
r—r| (4.31)

DA, 1) = —ji0j — i‘—;v,/d%/
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According to the general decomposition theorem (1.72) for vector fields, the
current density j(r, ) consists of a longitudinal (j;) and a transverse part (j;):

j(rv t) = jl(rs t) +jt(r7 t) ) (4’32)
1 divj(r', t

i) =—-——V, / v divj(r.0) . (4.33)
47 r —r'|
1 1j(r/

jir, ) = —V, x / AL (LS (4.34)
47 [r—1'|

With (4.31) one realizes that the vector potential is completely determined by the
transverse current density ji:

OA(r, 1) = —poji(r,2) . (4.35)
The Coulomb-gauge is therefore also referred to as transverse gauge. It is not
Lorentz-invariant, i.e. observers in different reference systems moving relative to
each other are gauging differently. In principle that is irrelevant since the gauging

is completely optional. On the other hand, it will turn out to be inconvenient for
the treatment of relativistic problems.

A rather simple consideration makes clear that the Coulomb-gauge can always
be fulfilled, namely if

divA(r,t) = a(r,t) #0
then one may choose instead of A
A(r,1) = A(r,1) + Vy(r.1) ,
where y(r, t) shall guarantee:
divA = divA + Ay = 0.
That means
Ay = —al(r,t) .

That is again a Poisson equation with the solution:

() = / £y 4D (4.36)
A

r—r’|
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(2) Lorenz-Gauge

This gauge leads to a complete decoupling of both the differential equations (4.25)
for ¢ and A, which then in addition assume very symmetric forms.

Lorenz-condition

1
divA+ —¢ =0. 4.37)
C
Inserted into (4.25) it results:
OA(r, 1) = —poj, (4.38)
Oe(,r) ==2. (4.39)

€0

One can show that this gauging is independent of the reference system (inertial
system) therefore being Lorentz-invariant and thus convenient for the theory of
relativity (see Vol. 4).

We can convince ourselves that the condition (4.37), too, is always realizable.
Let us assume that

1
divA + —¢ = a(r,1) #0
c
then it follows with (4.22) and (4.23):
o= 1. I .
divA + <9 =a(r,0) + Ay — —dy .
c c

Equation (4.37) is thus realizable if the gauge function y(r, ) is chosen such that it
fulfills the inhomogeneous wave equation

Oyx(r,f) = —a(r,t) .

We notice that even the choice of y is not yet unique, since obviously one can add
to y any solution A of the homogeneous wave equation

OA(r,1) =0.

The Lorenz-condition defines therewith a whole gauge-class.

4.1.4 Field Energy

Let us discuss as a first important consequence of the Maxwell equations the

energy law of electrodynamics.
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For that we first consider a particle with the charge ¢ (point charge), which according
to (2.20) and (3.25) experiences in the electromagnetic field the Lorentz force:

F=¢gE+vxB). (4.40)

For a displacement by dr the field exerts work on the particle. This work is therefore
counted as positive:

AW =F -dr = gE - dr

By this process field energy is converted into kinetic energy. This corresponds to
power

dw
= _4v-E. 4.41
a9 (4.41)

Only the electric part of the force F is involved in the energy exchange between
the field and the particle. The magnetic field component does not exert any work
because it is always perpendicular to the particle velocity v.

The same statements are valid also for continuous charge distributions p(r, 7)
with the velocity field v(r, 7), which experience in the field the force density

f(r,1) = p(r,t) [E(r,7) + v(r,1) x B(r,1)] . (4.42)

The corresponding
power density

f(r,t) - v(r,1) = p(x,t) E(r, ) - v(r, 1) = j(r,1) - E(r, 1) (4.43)

is determined only by the electric field E and the current density j. The total work
performed by the field in the volume V then amounts to

dWy S .

V| #rjeE. 4.44

[ (4.44)
14

This relation becomes physically more transparent when we rearrange it further by
use of the Maxwell equation (4.17):

j-E=E-curlH—E-D .
Because of

div(ExH)=H-curlE—E-curlH= —H-B—E- curlH
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we then have:

dWy

7:/d%[—ﬂ-1'3—E-I')—div(E><H)] .

1%

We now introduce two important quantities:

Definition 4.1.2  Poynting vector
S(r,t) = E(r, 1) x H(r, 1) . (4.45)

We will see that S has the meaning of an energy current density

Definition 4.1.3  Energy density of the electromagnetic field

! [H(r,?) - B(r,t) + E(r,t) - D(r, )] . (4.46)

W(I', t) = E

This definition includes the special case (2.215) of electrostatics. Whether or not this
definition is really reasonable must be confirmed by the following considerations.
At least the dimensions are correct because not only E - D but also the product H- B
has the dimension of an energy density:

AV J
H-B =122 -1
m m?2 m?3

In any case Eq. (4.46) applies only to the so-called linear, homogeneous media,
D=¢¢E; B=pupuH (€ =const, u, = const),

for which further holds:

. 190
H-B=-—MH-B),
28t( )

.19
E-D=_-(E-D).

After these definitions and rearrangements the power of the field in the volume V

reads:
dw d
T;V:/d3rj'E:_/d3r(a_v:+divs) .
v %
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Since V is arbitrary it must even be satisfied the following continuity equation:

w

o, TdivS=—j-E. (4.47)

This relation is known as Poynting’s theorem. Provided that we accept the
definitions and interpretations of w as energy density and S as energy current density
then the Poynting’s theorem leads to the statement that the field energy in the
volume V

changes, on the one hand, by conversion into mechanical particle energy and
therewith via particle collisions finally into Joule-heat energy,

dW(meCh)
— = / &rj-E,
dt

\4

and, on the other hand by an energy current (radiation) through the surface of V:

/d3rdiVS= /df-S.

% S(V)

The total energy balance, written in integral form, is then:

d .
E( e+ W(VF‘C“”) = - / df-S . (4.48)
S(V)

We close this section with a remark on the Poynting vector S, which we could
interpret, obviously reasonably, as energy current density. Note, however, that this

vector enters our considerations via (4.47) exclusively in the form of divS. The
given physical meaning refers only to this expression, i.e. S itself is actually not
unique since a transformation of the form

S—>S+curle

does not change div S. It is therefore quite possible that S # 0 without involving
any energy radiation.

Example

E=(£,0,0); H=(0,0,H) homogeneous!
— S=ExH=(0,—EH,0)#0.



222 4 Electrodynamics

However, since divS = 0 there is no energy radiation through the surface of V:

o=/d3rdivs= /df-S.

v S(V)

4.1.5 Field Momentum

After the energy theorem we now want to discuss the
momentum theorem of electrodynamics

as a further important consequence of the Maxwell equations. We consider a system
of charged particles onto which only the Lorentz force of the electromagnetic
field acts. Then it holds according to Newton’s second axiom, if Pgnecmis the total
momentum of all particles in V:

d

EP‘V‘““*“ = /d3rp(E +vxB) = /d3r(pE +jxB). (4.49)

Vv v

We eliminate p and j by the inhomogeneous Maxwell equations (4.16) and (4.17):
pE+jxB =EdivD +curlHxB—D xB

d
= EdivD + HdivB + curlH x B — E(D x B) — D x curlE .

In the last step we have added a ‘proper zero’ (HdivB) and applied the homoge-
neous Maxwell equation (4.15).
We define tentatively:

Definition 4.1.4  Momentum of the electromagnetic field

pyY = / &*r(DxB). (4.50)

\%4

By (4.49) we find therewith the following intermediate result:

d .

- (e + pi) = / &*r (EdivD — D x curl E + HdivB — B x curl H) .
1%

4.51)

The right-hand side is symmetric with respect to electric and magnetic quantities.
We should try to represent them as momentum flux through the surface S(V) in
order to be able to interpret (4.51) as a balance of momentum. For this purpose we
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again presume a linear homogeneous medium (¢, = const, &, = const) and denote
by x1, X2, x3 the Cartesian coordinates:

o o | an
oE, OE 0E, 0E;
B, | == = Bl — - —=
2 (8x1 3X2 ) + (aX3 8x1 )i|
a (1 1 1

0 d
+—(E1Ey) + —(E1E3) | .
3X2 aX3

oE oE JdE
(EdivD —D x curlE); = €r€0|:El ( 1 - 3)

We get the corresponding expressions for the other two components:
S 1
EdivD —D x curlE); = €60 »  — ( EEj — ZE*; ) .
( Ji=eacd 5 ( =5 ,)

Strictly analogously one finds for the magnetic part in (4.51):

3
Z 9 ( lBzésij) :
< 0 2

Mr Lo =

(HdivB — B x curlH); =

We define:

Maxwell stress tensor 7 = (T;):

1 1
Tij = ErE()EiEj + mBiBj — 55,] (€r€0E2 +

o Bz) . (4.52)

With the elements of this symmetric tensor of second rank (T;; = T};) it follows
from (4.51):

j (piﬁ‘mh) +p(ﬁ°1d)) = / d3rZ o Ti (4.53)
]

If we understand the i-th row of the tensor T as a vector T},

T, = (T, To, Tn) ,
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then the sum on the right-hand side of (4.53) represents the divergence of T; so that
we can apply the Gauss theorem for a further reformulation:

d (mech) (field)} __ 3 1 _
dt (pV + Py )i = | PrdivTi= [ af-T;. (4.54)
v s(v)

Let n = (ny, ny, n3) be the normal-unit vector on S(V) directed outwards and be in
general position-dependent, i.e.

df = dfn
then we can also write:
d
7 (p(m“h) + (ﬁeld))' = / df Z Tyn; : momentum theorem . (4.55)
svy =1

The expression

3
E Tyn
=1

is obviously to be interpreted in this balance of momentum as the i-th component
of the momentum flux through the unit-area on S(V). Since the left-hand side
represents the total force acting on the system in V the above expression also means:

3
Z Tjn; = i-th component of the force acting on S(V) per unit-area.
=1

One can exploit this fact to calculate the force on an arbitrary physical body in an
electromagnetic field. To do this one chooses as S(V) a proper area enwrapping the
considered body.

Example (Plane-Parallel Capacitor)
Field contributions appear only between the plates:

B=0; E=(0,0,—E).
Therewith the Maxwell stress tensor reads

i . -10 0
T:(Y}i)zzersoEz 0 —-10
0 0 +1
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Fig. 4.3 For the calculation R > S(v)
of the force on one of the || AF |: +
plates of a plane-parallel ZT “FTI-F I Tf
capacitor by use of the E & I~F
Maxwell stress tensor

For the area-normal on the inside of the upper plate of the capacitor it holds
according to Fig. 4.3:

n=(0,0,—-1).

Therewith it follows for the force components:

¥ 3
-— =ZT1jn,~=—T13:0,
(a7).- 2
3
7| =2_Tn=-T3=0,

F = ; Tiin; = =T33 = 188 E?
— = ing = — = —= .
AF . = 3jMj 33 7 re0

We thus have found for the force acting on the unit-area of the inside of the upper
plate of the capacitor:

F_ 0,0 leeE2
AF_ 7521‘0 .

4.1.6 Exercises

Exercise 4.1.1 Let X, X’ be two inertial systems. Furthermore, let the electromag-
netic field be E, Bin ¥ and E’, B’ in ¥'. The field E has a constant direction in the
whole space. X’ is moving relative to ¥ with the constant velocity v parallel to E
(vo = «E). Show that the component of E’ in the direction of E is equal to E.

Exercise 4.1.2 Let the electromagnetic potentials in the vacuum be defined by
A(r, ) =ax—cnH’e.; @rt)=0 (a>0).

Calculate the field-energy density w(r, 7) and the Poynting vector S(r, 7)!
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Exercise 4.1.3 If there are no currents and charges then the scalar potential ¢(r, #)
and the vector potential A(r, f) both do fulfill in the Lorenz-gauge the homogeneous
wave equation

Oor,t) =0
OA(r,1) =0,

where 0 = A — (1/¢2)(3%/312).

1. Demonstrate that the electric field intensity E(r,7) and the magnetic induction
B(r, 7) obey the same differential equation.
2. The expressions

E(r,t) = Egsin(k-r — w?) ,
B(r,t) = Bysin(k-r — wt)

solve the wave equation. Which relation does exist then between w and k?
Investigate the relative orientation of the vectors k, Ey and By!

3. How large is the energy current density (energy flux) parallel and perpendicular,
respectively, to k?

4. How large is the field-energy density?

Exercise 4.1.4 Show, starting from the Maxwell equations, that the fields E and B
fulfill in the vacuum the inhomogeneous wave equations of the form

PRI T,
c? 02 n -

1 9
A_c_zﬁ B =0OB = A)(r,1),

Determine A; and A,.

Exercise 4.1.5 Given an arrangement of two parallel circular metallic plates of
negligible thicknesses with radii R with a separation of d. The space between
the plates is filled by a dielectric with a dielectric constant which has a space
dependence according to

&) =€ + %Ae (1 +2§) .

We assume in addition that R > d.
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Fig. 4.4 Capacitor (charge 7z
+Q) with circular plates of .
radius R and a separation d of Q

+ -
the plates 2

— >
4
2 -Q <L>

1. Calculate the capacity of the capacitor, the area-charge density at 7 = +d/2 as
well as the volume density of the charges bound in the dielectric (Fig.4.4).

2. The plates are equal and oppositely charged (+Q). How strong are the electro-
static forces which act on the plates? Assume thereto that the formula (4.52)
derived under the precondition ¢, = const for the stress tensor is still approxi-
mately valid. (Weak z-dependence of ¢,!)

Exercise 4.1.6 A homogeneously charged sphere with the total charge ¢ and the
radius R is rotating with constant angular velocity w around an axis through the
center of the sphere. Calculate

. the electric field E in the whole space,

. the current density j caused by the sphere rotation,
. the vector potential A in the whole space,

. the magnetic induction B in the whole space,

. the field momentum density pgelq = D X B,

. the angular momentum of the electromagnetic field

AN AW

LEics = / d’r(r X Prieia) !

4.2 Quasi-Stationary Fields

In Chaps.?2 and 3 we have discussed how typical problems of magnetostatics and
electrostatics can be solved. Starting points were always the Maxwell equations
which for static phenomena exhibit somewhat simplified structures. For time-
dependent problems we have to integrate the full set of Maxwell equations (4.14)
to (4.17). Because of their great technological importance, however, we restrict
ourselves here at first to relatively slowly varying fields, i.e. on so-called quasi-
stationary fields which can be worked on by an approximated set of Maxwell
equations. The approximation consists in the neglect of the displacement current D
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in (4.17). The law of induction (4.15), in contrast, is fully taken into consideration:

Maxwell equations in the quasi-stationary approximation

curlE=-B; cullH~j,
divD=p; divB=0. (4.56)

The approximation D ~ 0is equivalent to p ~ 0 and therewith, because of
the continuity equation, to div j &~ 0, which in turn according to (3.6) is formally
identical to the stationarity condition of the magnetostatics. That is the reason for
the nomenclature quasi-stationary. With this simplification the equations for the
magnetic fields will have the same structure as in magnetostatics!

What do we understand by ‘slowly varying fields’? Since D ~ 0 follows from
p ~ 0 we should better ask for ‘slowly fluctuating local charge distributions’.

The question can be answered of course only if we know ‘slowly compared to
what?’. Later we will see that electromagnetic fields propagate with the velocity of
light c¢. One therefore considers p(r, f) as ‘slowly fluctuating’ if p is changing only
very little during the time At = d/c, which the light needs to run through the linear
dimension d of the charge arrangement. One can then assume that at each point of
the field such a state essentially exists which corresponds to an infinitely fast field
propagation. Retardation effects of the fields, which will be discussed later, can then
be neglected at present.

4.2.1 Mutual Induction and Self-Induction

According to the law of induction (4.10) the temporal change of the magnetic flux
® through the area F¢,
P = / B.df,

Fc

corresponds to an electromotive force (emf) along the boundary C which is also
called induction voltage:

Uing = sﬁE .dr. (4.57)
C

For an illustrative interpretation we imagine the path C to be realized by a conductor
loop which we think for a moment to be disconnected between two close-by points
P; and P, (Fig.4.5). According to Faraday’s observation an induction current is
flowing along C. But that can be possible only if an electric field E is present in
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Fig. 4.5 Thumbsketch for
the interpretation of the
induction voltage

P, R

the conductor. Let the conductor be linear then E is oriented along C. We have
previously interpreted the voltage as the work to be performed for shifting the unit-
charge g = 1 between two space-points (see e.g. (2.45)). The work which is needed
to shift ¢ = 1 against the field from P; to P,

2
Waul(g=1)=— / E-dr, (4.58)
(=0
is therefore to be understood as the voltage between these points (Fig. 4.5). In reality
it appears, e.g., as a spark-over:

2

Uina = Wai1(q = 1)=+/E-dr=¢E-dr.

1 c
(©

In the last step we exploited the fact that the points P;, P, are closely adjacent. Note
that in electrostatics the integral on the right-hand side vanishes. The induced field,

however, is no longer curl-free.
The voltage in C will be unequal zero as long as the flux ® through the conductor
loop temporally changes,

Uind=/ curlE-df:—/ B.df = -9, (4.59)
Fc Fc

where the minus sign is a manifestation of the Lenz’s law:
The induced electric field is always oriented in such a way that it weakens the

cause of its origin.

Example Let the change of the magnetic induction B be such that
dB |1 df <= d® < 0.

This means:

Uind=¢E-dl'>0.
C
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The induction current [j,q therefore flows parallel to C. [iyq itself generates a
magnetic induction Bj,q, which according to the right-handed screw rule (see (3.22),
Fig.4.6) is opposed to dB.

Of great importance is the mutual induction of different conductor loops. A time-
dependent current /;(¢) in a closed conductor C; will create a magnetic induction
B;(r, 7). If its field lines penetrate another conductor loop C; then a voltage is
induced in this loop. That shall be investigate now a bit more precisely:

Let Cy,...,Ci,...,Cj,...,C, be closed conductor loops whose directions of
winding are defined by the directions of the currents. We denote as F; the area which
is enclosed by C; (right-handed screw rule!). According to (4.2) the various currents
cause the magnetic flux through F; (Fig. 4.7):

o = / df-BY . (4.60)

Ej

B is the total magnetic induction, penetrating the area F;:

BY = Xn:Bm = Xn:curlAm ) (4.61)
m=1 m=1

The vector potentials A,, assigned to the various currents are determinable as
in the magnetostatics since the differential equation to be solved in the quasi-
stationary approximation is formally identical to the basic problem (3.37) of the
magnetostatics. If we use the Coulomb-gauge then the vector potential obeys the

Fig. 4.6 Field profile of the
magnetic induction of a dBl df

current induced in a closed Bina
conductor (illustration of the
Lenz’s law)

G ind
Fig. 4.7 Schematic field
behavior of the magnetic
inductions of different closed Cp,

conductor loops for the
discussion of the mutual
induction
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Poisson equation,

AAW!(rs t) = _HrMij(rv t) s

whose solution is already known to us:

An(r,r) = B0 /d3 dnE ) (4.62)
47 |r—r’|

We assume that the current is homogeneously distributed over the cross section of
the conductor so that the concept of the ‘thread of current’ (3.11) is applicable:

/d 0 I(t)/dr

Ir—r'|
C"’l

—r|’

We therewith get:

n

Z /df curlA,, = Z %dr
FJ

m=

&
[

m=1 G

= MrMO Z[ (t)?S%dr - dr’ 1‘/|

> Lindn(?) - (4.63)

m=1

The coefficient, which depends only on the geometry of the conductor loops and the
permeability of the medium,

Lim = MrHO 9595 |r_r/| Ly (4.64)

Cj Cn

is called ‘coefficient of induction’ or more precisely:
L: self-inductance ,

Ljn; j # m: mutual inductance. .

According to (4.59) it then holds for the voltage induced in the conductor loop C;:

m=1
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The induced voltage for a certain loop thus consists of two contributions: One is
caused by current changes in the other conductor loops and the other by that in the
considered loop itself. Even if there is only a single conductor loop, an induced
voltage appears as a consequence of a current change since the magnetic flux which
penetrates the area of the current circuit will alter. That is described by the self-
inductance:

U () = —Lyii(1) - (4.66)

The calculation of the self-inductance according to (4.64) encounters serious
difficulties because the double-integral is divergent. The reason lies of course in
the concept of the thread of current applied. This is unproblematic when calculating
the mutual inductance since normally one can assume that the distances between
the conductors are large compared to the diameters of their cross sections. Such
an assumption, however, does not work for the self-inductance, for which the
expression (4.64) is therefore only of formal nature and can not be used for
a direct calculation. One has to apply other methods. For instance, one could
decompose the current, which runs through the considered conductor loop, into
several threads of currents and regard the mutual interference of these threads. In
any case, one has to take into consideration the finite cross section of the conductor
loop. The determination of the self-inductance therefore turns out to be much more
troublesome than that of the mutual inductance.

Sometimes, though, the derivation of the self-inductance can be carried out by
directly utilizing the relation (4.66) and (4.65), respectively:

Example: Self-Inductance of a Long Coil

Let us consider a coil of the length / and the radius R of the cross-section
with [ > R so that stray fields are negligible. For the description we choose
cylindrical coordinates (p, ¢, z), where the coil axis defines the z-direction. Because
of symmetry reasons and with the result (3.22) for the single wire the following
ansatz for the magnetic induction B should be valid:

B=2B(p)e;.

Let I be the current in the coil and I(F¢) the total current through the area F¢
(Fig. 4.8). Then we can make use of

curl B~ i ppj < 9SB <dr = pepo I(Fe)
c

in order to integrate the magnetic induction along the way plotted in Fig.4.8. The
contributions from C, and C. vanish. It thus holds:

/B-dr—i—/B-dr:ni,uruol.
Cp Cy
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Fig. 4.8 Schematic Cd
. _——— . — —
representation of a e |
current-carrying coil OFO--040O--0+40
Ca FC L e, T [ 2R
- e —.
I
Cp 1
R ®--®T® -Q-®
I
! A
- oo - ------ >

n here is the number of coil windings per unit-length. 1is defined in Fig.4.8. The
distances of the two partial paths C, and Cy4 from the coil axis obviously do not play
arole. B must therefore be homogeneous inside as well as outside the coil. Since B
is in any case zero at infinity we have to conclude:

B=0 forp>R. (4.67)

Inside the coil we then have:
/B-dr:BZ: ,ur,uonZI.
Cp

The magnetic induction inside the coil thus is:
B = puonle, (n=N/I) . (4.68)

So the field inside the long coil consisting of N windings is homogeneous. This
means for the magnetic flux through the cross section F:

® =BF = puuonFI.

The voltage induced in the whole coil then reads in the case of N windings according
to (4.59):

2

Upg = -—-NO = —er,u,oTFI .

The comparison with (4.66) yields the self-inductance of the coil,
N2
L= o F, (4.69)

which, as expected, depends only on the geometry of the coil and on the permeabil-
ity of the filling-material within the coil.
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4.2.2 Magnetic Field Energy

When we inspect a system of current-carrying conductors then we find that its
energy is first of all given by the magnetic energy of the various conductors. The
electric energy is, in contrast to that, practically negligible because, in such cases,
only very weak electric field intensities are present. The expression for the magnetic
part of the field energy can be put with self-inductance and mutual inductance into
a special form which is very useful for many purposes.

According to (4.46) it holds for the magnetic field energy:

1 1
W = / drH(r, 1) - B(r,1) = / d*rH(r, 1) - curl A(r, 1) .
Because of
div(AxH) =H-curlA —A-curlH
we can also write:
1 1
Wy = E/d3rA(r, 1) - curl H(r, ) + E/d3rcﬁv (A xH) .
We reformulate the second integral using the Gauss theorem:
/d3rdiv(AxH) = / df-(AxH)=0.
S(V—00)

The surface integral vanishes because of the asymptotic behavior of the various
terms: df ~ >, A ~ 1/r (3.33), H ~ 1/r% (3.23). Hence in the quasi-stationary
approximation we are left with:

Wy = % / i A1) . (4.70)

Note that in this expression the vector potential A is generated by the current density
j» 1.e. we can insert (4.62):

NrMO/dS /dx RIGURIGE @.71)

r—r’|

If the whole system consists exclusively of ‘thread-like’ conductors then we can
apply (3.11):

/

“r’“’ Zl(r)l(r)¢¢ —
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When we still insert the coefficients of induction L; according to (4.64) then we
eventually arrive at:

1
Wi = 5 %:Liili(l‘)lj(t) . (4.72)

For the special case of a single conductor loop this reads:

1
Wi = ELI2 . (4.73)

4.2.3 Alternating Currents (AC)

We consider a current circuit with a periodically impressed alternating voltage U, ()
(generator), an inductance L (coil), a capacity C (capacitor) and an ohmic resistance
R (Fig.4.9). The circuit carries a ‘thread-like’ current I(t).

The partial voltages at the various components of the circuit are known to us or
are at least easily calculable. So it holds for the voltage drop at the ohmic resistance:

1 l
/E-dr:—/j-dr:—l.
o oF

(R) (R)

/is the length and F the cross-section area of the resistance.
With (3.7)

Up=1IR

and the specific resistance p = 1/0 the ohmic resistance R is written as

/
R=p—. 4.74

P )
Fig. 4.9 Current circuit with L
ohmic resistance R,
capacity C, and inductance L

o
U.(t) o R

I(t) C
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At the capacitor we have according to (2.54) the voltage

UC=C,

being opposed to the impressed voltage as one can easily understand. At the coil it
appears the induced voltage

Up=-LI.
Altogether it therefore holds:
Ve—Li-2 =&
Cc
or
. 0 _
LI+ RI—l—E—Ue. (4.75)

Furthermore, we still have the connection between current and charge:

I=20. (4.76)
We have found a coupled system of linear inhomogeneous differential equations of
first order for the determination of the time-dependent current /() as consequence
of a given impressed voltage U,(?). Differentiating once more in (4.75) with respect

to the time and inserting (4.76) we can combine the two equations to one differential
equation of second order for /(7):

Lf+Ri+é=Ue. 4.77)
In the frequent case of a purely periodic impressed voltage
U, = Uy coswt 4.78)
we have to solve a differential equation,
LI+ RI+ é = -Uywsinot,

which is already known to us from the mechanics (‘harmonic oscillator’, (2.189),
Vol. 1). There we have already seen that a complete solution in the body of real
numbers is of course possible but rather cumbersome. It is recommendable to
perform the calculation in complex numbers since the exponential function is much
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easier to handle than the trigonometric functions (addition theorems!). One therefore
chooses, instead of (4.78), the complex ansatz,

Ue = Upe™" ,
to find therewith from (4.77):
I(t) = I &%) .
Of course physical measurands are always real. Therefore one has to interpret only
the real part of the complex solution of (4.77) as the actual physical result. Since
the differential equation (4.77) is linear, real and imaginary parts do not mix. If,
for instance, I = I '@ ~% solves (4.77) for U. = Uy €™ then, because R, L, and

C are real quantities, /™ (f) must obviously be a solution for U (). Because of the
superposition principle it is then certainly

1
Rel(f) = 3 (I(1) + I*(1)) = Iy cos(wt — @)
a solution of (4.77) for

ReU.(1) = = (Ue(t) + UZ(1)) = Upcoswt .

N =

As a logical consequence of the complex notation for / and U one defines also a
complex resistance Z:

u U ;
Z=—=22¢%
I

=|Z| ¥ . (4.79)

One uses the following notations:

impedance: |Z| = Up/lp = v/ (ReZ)? + (ImZ)? ,
effective resistance: ReZ ,

reactance: ImZ .

One visualizes these quantities in the so-called vector diagram (Fig. 4.10). The
complex resistance Z has a phase shift ¢:

ImZ
tang = — .
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Fig. 4.10 Effective z
resistance ReZ and reactance mZse—————
ImZ in the vector diagram !
\
0o |
\
? |
ReZ

In the context of alternating-currents one frequently uses the root-mean-square
(rms) values of the current and the voltage, respectively, which are defined as the
roots of the time-averaged squares of U and I, i.e. for instance (z: periodic time):

T

1
Uesz = —Ué/cos2 wtdt (wt =2m)
T

0

) 2

U

=0 /coszxdxz -0

0
Thus it is:
U, I

Uetr = 7% i L = % . (4.80)

For the calculation of the
power P in the alternating-current circuit

we can not use the above complex ansatze but have to apply the real terms because
P isnot linear in U and I. The momentary power arises out of the solution of (4.77):

P(t) = U(t) I(t) = Uply cos wt cos(wt — ¢) . (4.81)

The time-averaged power P(¢) is, however, more important, for which we get with

T T T

l/dt coswt cos(wt — @) = cosgol/dt cos’ a)t+sin<pl/dt cos wt sin wt
‘ 0 ‘ 0 f 0
1
=3 cos ¢

the following expression:

— 1
P(t) = EUOIO €08 @ = Ubgelefr COS @ . (4.82)
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Before we start to find the general solution of the differential equation (4.77) let us
still inspect some special cases:
(1) Alternating-Current Circuit with Ohmic Resistance (Fig.4.11)
Z is because of
Uc(t) =IR

a real quantity:

Z=R=ReZ=|Z].
The phase shift between current and voltage is zero:

p=0. (4.83)

The time-averaged power consumption in such a case is maximal:
— 1
P(1) = EUOIO = Uetlest - (4.84)

In terms of the root-mean-square values the power has the same structure as in the
direct-current (DC) case.

Fig. 4.11 ()
Alternating-current circuit
with an ohmic resistance and
the corresponding vector
diagram U (1) R

ImZ

R Re Z
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(2) Alternating-Current Circuit with Inductance (Fig.4.12)
Equation (4.77) simplifies to

Ue(t) = Up e = LI = iwLIye' ™" = iwLI(r) .

The complex resistance is now purely imaginary and vanishes in the case of a direct
current (w = 0):

Z=iwlL; |Z|=wL. (4.85)
The current is lagging behind the voltage by /2:

T
= . 4.86
=7 (4.36)

Because of cos 7/2 = 0 the time-averaged power is zero:

P=0 (4.87)

(watt-less current).
Fig. 4.12 1(r)
Alternating-current circuit
with inductance and the
corresponding vector diagram

U, (t) L

ImZ

ol
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(3) Alternating-Current Circuit with Capacity (Fig.4.13)

(4.77) simplifies in this case to:

ve=2% = 0.=11
e ccC
) 1
— iwlU, = EI,
i
Uc(t) = —=I(1) .
o)) = ——1()
Z is again purely imaginary:
i 1
Z=—; |Z|=—. (4.88)
oC oC

o=-=. (4.89)

For the direct current (w = 0) the impedance is infinitely large, since the direct
current cannot flow through the capacitor. The time-averaged power is again zero!

Fig. 4.13 I(t)
Alternating-current circuit
with capacity and the
corresponding vector diagram

U.(t) C

ImZ

[0 Re Z
L
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(4) Series Connection of Complex Resistances (Fig.4.14)

The same current /(z) flows through all resistances and the partial voltages add up:
U =ZIO) =Uy+Us+... 4+ Up=Z+Zo+ ... + Z)I(1) .

The resistances therefore add together:

Z=Z1+7Z+...+2Z,. (4.90)
Example (Fig.4.15)

1
Z:ZR+ZL+ZC=R+i(a)L——). (4.91)
wC

(5) Parallel Connection of Complex Resistances (Fig. 4.16)

The voltage drop U(¢) is the same across each of the resistors and the partial currents
add up (divj ~ 0!):

1 1 1 1
()= =U@)=1 I oL == — — | U®1) .
()= U0 =1 +h+..+ (zﬁzﬁ +Zn) 0

Fig. 4.14 Connection in
series of three complex
resistances
Z
Zy
Z3
I I(t)

Fig. 4.15 Series connection
of an 01'.1?110, an. ntlductlve, and
a capacitive resistance
P R L C
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Fig. 4.16 Parallel connection
of three complex resistances

VA
Zl ZZ ZS
We see that the complex conductances are adding together:
1 1
= = = . 4.92
~ ; 7 (4.92)

4.2.4 The Oscillator Circuit

Figure 4.9 represents a so-called series-resonant circuit. It consists of an external
voltage source U.(f) and the in series connected ohmic resistance R, coil of
inductance L, and capacitor of capacity C. The voltage U.(?) is assumed to be
known. One looks for the current /() as the solution of the inhomogeneous
differential equation of second order (4.77) and (4.75), respectively. The general
solution can be composed by the general solution of the respective homogeneous
differential equation and a special solution of the inhomogeneous equation. We thus
discuss in this section at first a situation which refers to the homogeneous differential
equation, i.e.

series-resonant circuit without external voltage source

for which (4.75) is to be solved in the form:

LI+RI+Q/C=0,

I=0 (4.93)

We think this to be realized, for instance, by the arrangement sketched in Fig. 4.17.
In case of the switch setting (1) the capacitor is brought to the voltage Uy by the
direct-current-voltage source. When we turn the switch over into the position (2)
the current circuit is short-circuited and the voltage source is decoupled. We then
observe the time variation of the current I(7), e.g., by using an oscilloscope via the
voltage Ug(¢) = R I(t) dropping at R. This issue corresponds to the following initial



244 4 Electrodynamics

Fig. 4.17 Realization of a e
series-resonant circuit (1) )
without voltage source
(switch setting (2)) R
o
Ug —
9 C
L

conditions which can be formulated most easily for the voltage Uc(¢) that drops at
the capacitor:

Uc(0) = Uy,

. 1. 1
Uc(0) = 0 = Z1(0) =0. (4.94)

We therefore rewrite the differential equation (4.93) using Uc as the variable (I(z) =
(1) = CUc()):

LCUc+RCU-+Uc=0.

With the definitions
2 =%: damping,
(4.95)
wg = 7 eigenfrequency
it becomes a differential equation,
Uc+2BUc+w}Uc=0, (4.96)

which is formally identical to the equation of motion ((2.170), Vol. 1) of the free,
damped, linear harmonic oscillator. Hence we already know the method of solution.
Starting point is the complex ansatz:

Uec ~ €7, (4.97)
by which (4.96) turns into:

—@* 4+ 2ifo +wi =0 .
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This equation is solved by:

iv,=-Pftiow,
1 R?
= 2-Br=—=——. 4.98
©=ya =P =\ (4.98)
Therewith the general solution of the differential equation (4.96) reads:
Uc) = e (U e + U 1) . (4.99)

Let us evaluate it further by explicitly using the initial conditions (4.94):
1 B
(1) :
UO :EUO(I_ZZ)’
1
UP = -u, (1 + iﬁ) . (4.100)
2 w

Via the frequency w (real, imaginary or zero) one recognizes, just like for the
harmonic oscillator, three types of solution:

(1) Weak Damping (Oscillatory Case)

This is the case if
2 2 2 L
p*<w; < R <4E (4.101)
The frequency w is then real and (4.99) and (4.100) can be combined to

Uc(r) = e P'U, (cos ot + E sin a)t)
®
= e_ﬂ’Uoﬁ (2 cos wt + L sin a)t)
w wo wo
= ¢ PU sin(wt + @) . (4.102)
®

where it must hold for the phase (cf. (2.178), Vol. 1):

sing = d ; cosg = ﬁ (4.103)
Wo Wo
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Fig. 4.18 Time-dependence
of the voltage drop across the
capacitor of a series-resonant
circuit in the case of weak
damping

4 Electrodynamics

I
V' e

T= 211/\/&)(2) -p?

The voltage at the capacitor performs a damped oscillation with an exponentially

decaying amplitude (Fig. 4.18):

A=UZ e P = A .

By differentiation in (4.102) with respect to time we obtain the actually interesting

current in the oscillator circuit:

1(1) = CUc(r) = CUy e (—,3 (cos ot + E sin a)t) — wsinwt + f cos wt)
o)

wL

(B* + 0?) sinwt

1
CUy e ? (——)
w

Uo _g .
=——" ¢ Pinwt

U
22 Pl sin(ot + 1) .
oL

(4.104)

The current is of course also exponentially damped, where the damping increases

with R and decreases with L.

For very weak damping § < wy (R =~ 0) the above solution simplifies to:

T
w X W, (pr’}:E,

Uc(t) ~ Uy e P sin (a)ot + %) ,

C
1(1) ~ Up,/ Ze_ﬁ’ sin(wot + 1) .

We see that the current runs ahead the voltage by about /2. The oscillations,
performed by Uc(¢) and I(t), bring about a steady exchange between electric field
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energy W, (capacitor!) and magnetic field energy Wy, (coil!):

1
W, = EC Uz~ e 2P cos? wot |

1
Wi = Ele ~ e 2P sin? wot |

t=0: I =0,Uc maximal = W, =0, only W, # 0,
t=1/4 Uc =0, maximal =— W, =0, only W, #0,
t=19/2: I=0,Ucmaximal (capacitor but oppositely charged
compared to the t = 0 case)
= Wn=0,onlyW, #0,
t = (3/4)tp: Uc = 0,1 maximal (but opposed to the current at ty/4)
= W. =0, only W, #0.

The ohmic resistance R (resistive load) causes energy dissipation. Via R the field
energy is converted into Joule heat:

<y (n = d Lewr v Le) = cuce +Lii
2 feld = z7\3%% T3 = cve
2 Vel +1(-R1—Uc) = —RT . (4.105)

This according to (3.12) and (3.13), respectively, is the power loss which manifests
itself as Joule heat.

(2) Critical Damping (Aperiodic Limiting Case)

There exists an interesting limiting case:

L
,82:a)§<:>w204:)R2:4E. (4.106)

In this case the two roots @; > in (4.98) are identical. However, we cannot simply
adopt (4.99) with @ = 0 since the solution then would contain only one independent
parameter:

Uct) = a e P
That would then be only a special solution, not the general one. However, we can
come to the general solution when we use this special solution as ansatz with a

time-dependent pre-factor (cf. (2.182), Vol. 1):

a =)



248 4 Electrodynamics

Fig. 4.19 Time-dependence Uc
of the voltage across the

capacitor of a series-resonant

circuit in the case of critical

damping

With (4.106) and (4.96) this ansatz leads to
d() =0 < «at) =a + ast,

where we fit the two independent parameters a; and a, to the boundary condi-
tions (4.94):

Uc(r) = Up(1 + Brye " . (4.107)
The voltage at the capacitor does in this special case no longer perform

oscillations instead being very rapidly exponentially damped without any zero-
crossing (Fig.4.19). The current intensity /(¢) of course behaves accordingly:

I(1) = CUc(t)y = —B°CUy -t e " . (4.108)

(3) Strong Damping (Creeping Case)
This case concerns
2 2 2 L

B°>wy < R >4E. (4.109)
The frequency w (4.98) is now purely imaginary:

w=iy; y=p*-a}. (4.110)
That means at first with (4.99):

Ue(t) = e P (U(()l) e+ UP eV’) , @.111)

where according to (4.100) the coefficients are found to be:

U, U
oo~ Yo (1B o Z U (i Y (4.112)
2 % 2 14
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Fig. 4.20 Time-dependence Uc
of the voltage across the Uy
capacitor of a series-resonant

circuit in the case of strong

damping

The voltage Uc(?) is in this case, too, not capable of performing oscillations
(Fig. 4.20). It rather decays exponentially with a characteristic time constant

o
B—vy’

which turns out to be larger than that of the aperiodic limiting case (there T = 1/).
The voltage Uc across the capacitor of the oscillator circuit drops down after the

short-circuit definitely most quickly in the aperiodic limiting case.

T

4.2.5 Resonance

The oscillation process, which is performed by the current /(f) as discussed in the
last section, is exponentially damped due to the ohmic resistance R (= friction).
If the oscillation is to be maintained then an additional external periodic voltage
source must be applied. Because of the reasons explained in Sect.4.2.3 we start
with a complex ansatz for the external source:

Ue(1) = Uy ™

and calculate the electric current with (4.77). After a certain settling time, to which
we will not refer here in detail, the current /(¢) in the series-resonant circuit will

follow the ‘exciting’ voltage, i.e. it will oscillate with the same frequency @. We
therefore choose the ansatz:

1(f) = 1y @9 .
That means we do not try to solve the full inhomogeneous differential equation
of second order (4.77) but rather simplify the problem by the assumption that the

‘build-up process’ is completed. Insertion of the ansatz into (4.77) then yields an
equation of determination for the amplitude /j:

1 .
Iy (—sz + iRw + E) = iwU, e

1 .
- IOI:R+Z(6L—_—)i|:U0€M
oC
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For the complex resistance (4.79) we read off, not surprisingly, the expres-
sion (4.91):

U.(t Uy . 1
7 — e():—oe'(pZR—‘rl' oL— — ) . (4.113)
1ty I oC

The amplitude of the current / therewith becomes a function of the frequency @ of
the applied voltage (Fig.4.21)

U U
Io = 70 = 0 . (4.114)
1] \/RZ + @L—1/wC)?
There is a particular frequency, namely the so-called resonant frequency
_ 1
WR — W) = —F/— (4115)

at which the amplitude of the current becomes maximal:

_ Uo
I()(a) = a)()) = ? .

The resonant frequency corresponds according to (4.95) to the eigenfrequency of
the oscillator circuit.

Current and voltage oscillate, though, with the same frequency , but are phase-
shifted with respect to each other by the angle ¢:

ImZ _wL—1/oC
ReZ R ‘

At the resonance the phase shift is zero (Fig.4.22).

Fig. 4.21
Frequency-dependence of the
current amplitude in the
oscillator circuit with external
voltage source

Fig. 4.22
Frequency-dependence of the
phase shift between current
and voltage in the oscillator
circuit with external voltage
source
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For the averaged power consumption P of the resonant circuit it holds according
to (4.82):

— 1
P = EUOIO cos ¢

1 ReZ 1 R (1/2)U3R
== OIOW:_ ool——

= 5. (4.116)
2 2 Z| R+ (@L-1/@C)

P is therefore also frequency-dependent with a maximum at the resonance @ = wo:

(4.117)

By ‘resonance’ one understands, strictly speaking, just this fact that there is a
frequency with maximal power consumption.
The frequencies @ , at which P still amounts to only half the maximum value,

== — 1 _ R , R
P(waI,Z)ZEPmax§ wl,zz:Fz-i- a)0+m,

define the resonance width or the half width (full width at half maximum)
_ R
Awip =wr —w) = Z(: 28) . (4.118)

The resonance curve therewith is the sharper the smaller the damping of the circuit.
For very weak damping, power is consumed more or less exclusively in the interval

_ R
Aw = wy £t — .
2L
By a change of wy = 1/+/LC, e.g., with the aid of a variable capacity of the
capacitor, one can extract a definite frequency interval from a mixture of alternating

voltages of different frequencies. Just in this way a radio receiving set tunes itself to
a certain emitter.

4.2.6 Switching Processes

We want to discuss at the end as a simple application example the build-up and
break-down of a direct current in an RL-circuit (Fig. 4.23).
At the time ¢ = 1, the direct-current voltage is turned on by flipping a switch:

U = const
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Fig. 4.23 Schematic set-up L
for the investigation of the

build-up process in an

RL-circuit

The then starting current obeys according to (4.75) the following differential
equation:

LI+ RI=U=const, ift>1. (4.119)
The general solution of the corresponding homogeneous equation reads:
Tom (1) = A ™ ®/D"

A special solution of the inhomogeneous differential equation (4.119) one directly
realizes:

= U
ST R
This result can of course also be ‘physically guessed’. The direct current, set in after
the build-up process, must of course also be a solution of (4.119) and should fulfill
the Ohm’s law.

The general solution of the homogeneous and a special solution of the inho-
mogeneous differential equation build the general solution of the inhomogeneous
equation:

U
() =2 +A e~ R/
The initial condition I(f = ) = 0 fixes A:
v ~R/L)(~10)
10 =+ (1-e D) (1> 1) . (4.120)

The current achieves its saturation value, strictly speaking, only at + — o0
(Fig. 4.24):
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Fig. 4.24 Time-dependence I
of the current intensity in an

RL-circuit when the voltage URt---=-=---=------=-=
U is switched on at t = fj by
flipping on a switch

t t

The build-up process is characterized by the
characteristic time constant t = L/R

The process is the more time consuming the smaller R and the bigger L. It is lastly
the self-inductance L which prevents the current to reach its full strength.

The energy which is taken from the source of the direct current is not only
converted into Joule heat but also partly used to generate the magnetic field within
the coil. That can be seen when (4.119) is multiplied by / and then integrated from
fotot > ty:

t t

U / I({)d! = %le(t) +R / P()dr . (4.121)

fo fo

The left-hand side represents the energy given by the source. The first term on the
right-hand side is just the energy needed to build up the magnetic field, and the
second terms represents the Joule heat produced in the resistive load.

We finally investigate the analogous switch-off process. For this we have to solve
the homogeneous differential equation

. R
I1(t) + zl(t) =0, (4.122)
with the boundary condition
U
It) == for t <t
(1) R or r=1
what obviously leads to
U ~®/Ly—n)
I(r) = Ee Vo =1). 4.123)

The current therefore does not disappear immediately with the switching-off of the
voltage source but rather decays exponentially with the same time constant as for
the switching-on process (Fig. 4.25).
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Fig. 4.25 Time-dependence I
of the current intensity in an
RL-circuit when the source of
the voltage is switched off at
the timet = £

Fig. 4.26 Schematic
representation of a hollow

conductor I

Fig. 4.27 Rectangular

conductor loop in the area of

influence of the magnetic

field of a current-carrying y
thin conductor

|
=y
—>Q |
|~
—
g

<--4

4.2.7 Exercises

Exercise 4.2.1 Given a hollow conductor with the inner radius R; and the outer
radius R, (Fig.4.26). In the inner hollow conductor a current / flows and in the
outer an equal and opposite current —1.

1. Calculate the magnetic induction in the whole space!
2. Determine the self-inductance per unit-length!

Exercise 4.2.2 A rectangular conductor loop (length a, width b), which carries a
current /5, is located within the magnetic field of a thin wire which in turn carries a
current I (Fig4.27).

1. Calculate the coefficient of the mutual inductance Li,.
2. Which force is exerted by the current /; on the conductor loop?
3. The current /; in the wire is switched on at the time # = 0 according to

L) =1(1—e) .

Calculate the voltage induced in the conductor loop. (The self-inductance of the
circuit is assumed to be negligible.)

Exercise 4.2.3 Consider the RL-circuit plotted in Fig.4.28 where the ohmic resis-
tance R = R(¢) is time-dependent.
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Fig. 4.28 RL-circuit with

temporally variable ohmic L
resistance
U
R(t)

Fig. 4.29 RC-circuit with a C
switch for connecting and (1) |
disconnecting a voltage ©)
source

Uy R

1. Switching-on process: Let t be the duration of the switching-on process which

starts at ¢ = 0. For the resistivity R it holds:

o) fort <0,
R(t) = YRot/t forO<t<Tt,
Ry fort <t.

Calculate the current /(¢) for t > 0. What is the condition for, respectively, quick
and slow switching on?

2. Switching-off process: This also starts at + = 0 being terminated at t = 7.

Ry forr <0,
R(t) = Ry-& for0<t<rt,

o0 fort <t.

Calculate I(r) for 0 < ¢ < t, where before the switching-off I1(r) = U/Ry =
const.

Exercise 4.2.4 Given a switching circuit consisting of a direct-current-voltage
source Uy, an ohmic resistance R and a capacity C (Fig.4.29).

1.

At the time ¢+ = ¢ty a direct voltage Uy is switched on (switch-position (1)).
Calculate the voltages Uc across the capacitor and Uy across the ohmic resistance
as well as the current  as functions of the time .

. At the time t = #; (Uc(#1) = Up) the voltage source is disconnected, the loop

short-circuited (switch-position (2)). Calculate again Uc(¢), Ug(?), 1(2).

Exercise 4.2.5 Calculate for the arrangement in Fig.4.30 (capacitively coupled
oscillator circuits) the eigenfrequencies!
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Fig. 4.30 Two capacitively I, I,
coupled oscillator circuits
both with inductances l
v A—=—="C
-1 CZl
L, L,

Fig. 4.31 A wire ring
rotating with the frequency w
in the field of a homogeneous
magnetic induction B

Fig. 4.32 Moving conductor
loop in a homogeneous
magnetic induction

t=0

a

a

Exercise 4.2.6 A circular ring with the radius R is rotating with constant angular
velocity around a diameter of the ring. Perpendicular to the rotation axis a
homogeneous magnetic induction B is present (Fig. 4.31).

1. Calculate the induction voltage generated in the ring as a function of time.

2. The ring consists of a metallic wire of conductivity o. Which current /(7) flows
through the ring if one assumes that it is homogeneously distributed over a cross
section A?

Exercise 4.2.7

1. A rectangular conductor loop with the side-lengths a; and a; lies in the xy-plane
and moves with constant velocity v in x-direction (Fig.4.32). A homogeneous
magnetic induction B = Bye, acts in the region 0 < x < d < a;. At the time
t = 0 the right rectangle-side of the conductor is located at x = 0. Calculate the
voltage Uiy induced in the conductor loop!
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Fig. 4.33 Circular conductor y
loop in the field of a v

homogeneous magnetic

induction =0 R

2. Solve the same problem for a circular conductor loop (radius R) where a
homogeneous magnetic induction B = Bye;, acts in the region x > 0 (Fig. 4.33).
The conductor loop moves in this case also in x-direction with v = const. Sketch

Uina(2)!

Exercise 4.2.8 A charge g is homogeneously distributed on the surface of a hollow
sphere with the radius R. As in Exercise 3.3.2 it rotates at first with constant angular
velocity wp around one of its diameter. Starting at t = 0 it is decelerated according to

o) =wye™” (y>0).

1. Which electric field is thereby induced in the quasi-stationary approximation
(D ~ 0) in the outer space (r > R)?
2. Under which conditions can the induced field be neglected compared to the
electrostatic field (r < 0)?
. What is the energy ‘emitted’ by the sphere per unit-time?
4. What is the total energy given away during the deceleration process?

W

4.3 Electromagnetic Waves

The finding that electromagnetic fields by themselves can propagate independently
of any charges and currents even in the vacuum with the velocity of light, belongs to
the most impressive and fundamental successes of the Maxwell’s theory. That means
that the fields are not only just auxiliary quantities for the interaction processes
between charges and between currents, in the manner we had at first introduced
them, but possess a self-contained physical reality. This assertion will be proven by
the fact that the complete set of Maxwell equations possess solutions for the fields E
and B, which depending on their type correspond to waves propagating in the entire
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space. There is no need to specially emphasize the great technological importance
which the discovery of the electromagnetic waves has achieved.

4.3.1 Homogeneous Wave Equation

In order to study non-stationary processes at first in an as simple framework
as possible we exclude for the present electrical conductors and investigate the
electromagnetic fields in an uncharged insulator (e.g. vacuum):

=0, jr=0, 0=0. (4.124)
We presume furthermore, as usual, a linear and homogeneous medium:

B= 1 uH; D=e¢€eE.
For this situation the Maxwell equations read:

divE=0; divB =0,

curlE = =B ; curl B = €60 ptr ptoE . (4.125)
The displacement current can now no longer be neglected. That means we are now
going beyond the quasi-stationary approximation.

Equation (4.125) represents a coupled system of linear, partial, homogeneous
differential equations of first order for the fields E and B. We will see that the system
can be exactly decoupled so that in this case it is not necessary to revert to the
auxiliary quantities ¢ and A:

From (4.125) we obtain by a repeated application of the curl to the equations of
the second line:

curlcurl E = grad (divE) —AE = —curl B = —ereour,uoﬁ ,
——
=0
curlcurl B = grad (divB) —AB = ereop,r,uocurlE = —ereo,uru()ﬁ .
~———
=0

The constant

1
u= —_¢ _¢ (4.126)
A Er€oMr Lo N €rMr n
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has the dimension of velocity. One calls

n= e/l 4.127)

the index of refraction of the medium marked by €., ;. u will turn out to be the
velocity of light in this medium.

Under the precondition (4.124) each component of E and B as well as also each
component of the vector potential A(r, 7) (in both gauges!) and the scalar potential
@(r, t) (in the Lorenz-gauge) fulfills the

homogeneous wave equation

Oy(r,)=0. (4.128)

The d’Alembert operator [ is here defined as in (4.30) if one only replaces the

velocity of light in the vacuum ¢ = (€/19)~"/? by that in the medium:
1 02
O=A—-—=—. 4.129
u? 9r ( )

The differential equation (4.128) is of similar fundamental importance as the
Laplace equation of electrostatics. We will have to investigate extensively, in the
following, this linear, partial, homogeneous differential equation of second order.
One should bear in mind that the wave equation (4.128) arose out of the Maxwell
equations by a curl-application. Its solution set must therefore not necessarily be
identical to that of the Maxwell equations. However, only those solutions of the
for E and B decoupled wave equations are interesting for us which simultaneously
reproduce the couplings between E and B as required by the Maxwell equations.

4.3.2 Plane Waves

The homogeneous wave equation (4.128) is obviously fulfilled by each function of
the form

vr,) =f(k-r—owt)+f+(Kk:r+ ot) (4.130)

where f_ and f} are sufficiently often differentiable, but otherwise arbitrary
functions of the phase

ox(r, ) =k-rFot. (4.131)
Without any loss of generality we can therefore assume w > 0, since by the

ansatz (4.130) both signs are already implied. Equation (4.130) is, however, only
then a solution when a certain relation between w and & is realized which we easily
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find by insertion into the wave equation:
2

a—l/f — wzl//// .

or?

Aw — kZ,W// :

Here it is meant with ¥ the second derivative with respect to the phase ¢+, i.e.
with respect to the full argument. Therewith the wave equation takes the form

wz " _ 2 wz dzf— d2f+ _
(e-i5)wwn=(e-%) (W*W) =0

and is solved by
w=uk. (4.132)

Let us investigate the solution (4.130) in more detail, but restricting ourselves here
to the partial solution f_.

For a constant phase ¢_(r, ) f— is obviously also constant, i.e. areas of equal
phases are also areas of constant f_-values. Let us consider a snap-shot at t = ty:

o—(r,tp) =k-r—wty,
The area of constant phase ¢_ is then defined by the condition
k-r = const.
This, however, is the equation of a plane (wavefront) perpendicular to k (Fig. 4.34).
/- has the same value for all points r with the same projection k- r onto the direction
of k.

When we consider the total space-time process then the condition for the motion
of a plane of constant phase ¢© reads:

Fig. 4.34 Wavefronts of a
plane wave

n
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This obviously moves with the phase velocity

d
4_2_, (4.133)
dt k

in the direction of k. k is therefore called the propagation vector.

Hence, the partial solution f_(k - r — w?) in (4.130) describes the propagation
of a ‘disturbance’ with plane fronts, in the direction of k with the phase velocity
u. f+(k - r + wt) then expresses the corresponding motion in the opposite, i.e. the
(—K)-direction.

Since both f_ and f, which are of the form given in (4.130), solve the wave
equation, this must in particular hold for the periodic functions:

for) =AM
fi(r,f) = B kren (4.134)

Spatiotemporally periodic functions like these, for which at fixed values # the points
of equal phase build a plane, are referred to as

plane waves

Let us at first use again here the expedient complex notation where we agree
upon, as usual, to consider only the real parts as the physically relevant terms.

In the case of plane waves, the areas of equal f1-values recur for a fixed time
periodically in the space with distance-vectors Ar,,:

Ar,-k=2nn; neZz.

One denotes the perpendicular distance between next adjacent wavefronts with the
same f4-value (Fig. 4.35),

A=—, 4.135
T ( )

as the wavelength and the propagation vector k also as wave vector.
If we now keep the space-position fixed instead of the time, i.e. if we observe

from a fixed space-point ry ¥ and f4, respectively, they will change at this point as
function of time, and will reach after the time interval

2
r=Z (4.136)
1)
again its starting value. t is therefore called the (oscillation) period,
1
v=- (4.137)
T

is the frequency and w = 27 v the angular frequency.
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Fig. 4.35 To the definition Re fy
of the wavelength of a plane
wave ! ! ! ! I

By combination of Egs. (4.133), (4.135)—(4.137) one finds the important connec-
tion:

A
u=jv=>=. (4.138)

We now transfer these general results onto the electromagnetic field which we are
actually interested in.
Thereby we learn all the essentials already by inspecting the partial solutions:
E = EO ei(k-r—wt) ,
B = B, /&0 (4.139)
It is a decisive requirement now that the plane waves do fulfill not only the
homogeneous wave equation but simultaneously have to obey the couplings in the

Maxwell equations. )
In a first step it follows from curl E = —B:

i(k x Eo) &'®T) = jpB, eiler=an)
Since this has to be valid for all space-time points we obviously have to start with
w=o: k=Kk.
Then we have:
kxEy = wBy . (4.140)
divE = 0 leads to:

k-Ey=0. (4.141)
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From divB = 0 we get:
k:-By=0. (4.142)

Finally we still have curl B = (1/u?)E:
1)
kxBy =——E. (4.143)
u

Let us square this equation in order to get statements about the magnitudes of the
field components:

2 2
kxBp)! = = B = K¥B: = B} E2 = 1B}
(XO)_u4 0= —u20:> o =uBg.

The vectors Eg, By, k build in this order an orthogonal right-system, i.e. E and B
are always and everywhere perpendicular to k and to each other (Fig.4.36). One
therefore speaks of

transverse waves
Without loss of generality we can assume that the wave vector k defines the z-
direction:

k =ke,.

Then the solutions of the wave equation which also satisfy the Maxwell equa-
tions (4.125) are:

E = (E()xex + E()yey) lke=on s

1 .
B:ZQ%@+m@wWWW (4.144)

Fig. 4.36 Relative directions transverse waves
of the electric field, the E

magnetic induction, and the

propagation vector in an

electromagnetic transverse

wave
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Fig. 4.37 Periodic space x t fixed
dependence of the E- and the
B-field where the propagation
vector is parallel to the z-axis

The final form of the wave is determined by Ey,, Eo, which are, however, in general
complex quantities. We consider as an example the physical solutions for real Ey,
and Ey, = 0 (Fig.4.37):

E = Ey, cos(kz — wt)e, ,

1
B = —E, cos(kz — wt)e, . (4.145)
u

As a further characteristic, transverse waves have a so-called polarization which
will be the topic of the next section.

4.3.3 Polarization of the Plane Waves

The solution (4.144) of the Maxwell equations (4.125) represents a monochromatic
(i.e. single-frequency) plane wave which propagates in the positive z-direction. It is
the spatial extension of a harmonic oscillation. We notice that the electromagnetic
wave is obviously completely determined by the E-vector (or equivalently by the B-
vector) alone. It is therefore sufficient to refer the following discussion exclusively
to the electric field vector E.

We firstly recognize that, in general, both the coefficients Ey,, Eq, are about
complex quantities:

Eor = |Eo| €5 Eoy = |Egy eeto)
Thus we have as actual physical E-field:
E =E.e. + Eye, (4.146)
with

E; = |Eox| cos(kz — wt + ¢) ,
E, = |Eqy| cos(kz — ot + ¢ + §) . (4.147)
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As to the relative phase &, several cases can be distinguished:

1)sd=00ré==xn
Then it is obviously

E = (|[Eo| e; £ ‘Eoy‘ e,) cos(kz — wt + ¢) ,

IE| = /|Eo:* + |Eo| (4.148)

The coefficient is a space- and time-independent vector, i.e. the electric field
intensity E oscillates in a fixed direction relative to the direction of propagation.
In such a case one calls the wave

linearly polarized
and the direction of E is the direction of polarization. It is inclined towards the
x-axis by the angle o (Fig.4.38):
+ iE0>'|

tano =
|E0x|

(4.149)

Obviously one can understand each of the two terms in (4.146) as a linearly
polarized plane wave. This means that every arbitrarily polarized plane wave can
be represented as a superposition of two linearly independent, linearly polarized
plane waves.

)8 = £1/2; |Eoi| = |Eoy| = E
In this case it follows from (4.147):

E = E[cos(kz — wt + ¢) e, F sin(kz — wt + ¢) ] . (4.150)
The upper sign holds for § = +x/2, the lower for § = —m /2. The bracket is for

a fixed space point z = z* just the parameter representation of the unit-circle. The
E-vector runs through a circle of radius E with the angular velocity w in the plane

Fig. 4.38 The polarization y
direction of the electric field E
in the case of a linearly
polarized plane wave
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perpendicular to the direction of the propagation. One therefore calls this type of
waves:

circularly polarized

Depending on the sign of § the circle is run through in one of the two possible
directions, namely clockwise or counter-clockwise.

In Fig.4.39 the k-vector points perpendicularly out of the plane of the paper
(z-direction). By convention the observer looks in the —z-direction, i.e. against the
propagation direction of the arriving wave. He then sees that the E-vector rotates
for § = +4m/2 to the left (counter-clockwise) and for § = —m/2 to the right
(clockwise). In this sense one speaks of a right or left circularly polarized wave.
If one considers the full space-time motion then the E-vector describes a circular
helix (Fig. 4.40):

(3)8 = xx/2; |Eo| # |Eoyl
In this case it follows from (4.147):

E, = |Eo|cos(kz — ot + ¢) ,
E, = F |Eoy|sin(kz — ot + ¢) . (4.151)

y x

left-circular right-circular

(L
A

Fig. 4.39 Projection of the electric field vector of a, respectively, left and right circularly polarized
wave which propagates in the z-direction

right-circular z k left-circular z k

Fig. 4.40 Space-time behavior of the electric field vector in the case of a, respectively, right and
left circularly polarized plane wave which propagates in the z-direction
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That can be combined to:

2
(E" )2+ E ) 4 (4.152)
|Eox| | Eoy| ' .
This is the equation of an ellipse with the semiaxes |Eq,| and |E0y\, which lie in x-
and y-direction, respectively. One therefore speaks of

elliptically polarized waves.

The E-vector runs through an elliptical helix and its amplitude is obviously no
longer constant (Fig.4.41). The inclination angle « of the E-vector with the x-axis
is now, in contrast to the case of linear polarization, space- and time-dependent:

:FlEOyl

tano =
|E0x|

tan(kz — ot + @) .

(4) 8 Arbitrary; |Eg,| # |Eo|

That is the most general and naturally the most complicated case since now the
ellipse is even twisted with respect to the xy-coordinate axes (Fig.4.42). But the
wave is still called

elliptically polarized.

Fig. 4.41 Behavior of the i y
electric field vector in an
elliptically polarized wave
with a phase shift by /2
between x- and y-component

Fig. 4.42 Behavior of the
electric field vector in an
elliptically polarized wave
with an arbitrary (!) phase
shift between the x- and the
y-component

t
S
5

N
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At the start of this discussion we have already realized that an arbitrary
elliptically polarized wave can be thought as being built up by two linearly polarized
waves which are perpendicular to each other. At the end of this section we want to
show that the wave can also be built up by two oppositely circularly polarized partial
waves.

We start with the complex vectors

er = L (extiey) ,

V2

by which we express the unit vectors e, ey:

| .
exzﬁ(eJr—i-e_); eyZT%(e+—e_).

That can be used for:

1
Eoce, + Epyey, = — [(EOx — l'E()y) ey + (on + l'E()y) e_] .

V2

The terms in the parentheses are complex quantities:
Eoy £ iEgy = Ex 7% |

Note that £ and E_ are now real. The general plane wave (4.144) can therewith be
brought into the following form:

E = L [E_ ei(kz—wt-l—yf)e_l_ + E+ ei(kz—a)t+)/+)e_] .

V2

Only the real part is physically relevant:

1
ReE = EE_ [cos(kz — wt + y_) e, — sin(kz — ot + y_) ¢,]
1
+§E+ [cos(kz — ot + yy) e, + sinlkz — ot + y4) ey] . (4.153)

This is just the sum of two oppositely circularly polarized waves with different
amplitudes (cf. (4.150)).
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4.3.4 Wave Packets

As the general solution of the wave equation (4.128) we had found expressions of
the form

Jr(kz £ 1)

where the propagation direction was identified as the z-direction. There was no need
to be precise with respect to the wave vector k and the angular frequency w. Only
the relation (4.132) for the phase velocity u has to be valid:

One can, for instance, consider k as an independent variable. But then, however,
because of this relation, @ can no longer be chosen arbitrarily. But this means also
that besides f4+ each linear superposition of such functions belonging to different
wave vectors k solve the wave equation if only the above relation is respected. A
still more general solution would therefore be

+o00
Fi(z.0) = / a(k)fs (kz + wi) dk (4.154)

—00

with a completely arbitrary weight function a(k).

For practical purposes this is an important point. In the last section we have
discussed monochromatic plane waves, i.e. waves with sharply defined (k, w). For
the practitioner that is not realistic since even the thinkably best real source cannot
emit monochromatically but rather in the form of more or less sharp ‘bunches of
frequencies’. However, because of (4.154) this does not mean any fundamental
difficulty for our theory. In contrast, additional considerations are unavoidable for
the so-called dispersive media:

dispersion <= ¢, = ().
Because of (4.126) the phase velocity u is then frequency-dependent. In systems
with dispersion one therefore has to consider @ as some function of k:

w = w(k) .

The partial waves f, which build up F+ in (4.154), then propagate with different
velocities. One cannot have a uniform phase velocity: That will lead us to a new
kind of velocity, the so-called group velocity.
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Fig. 4.43 Weight function b(k)
for a superposition of plane
waves being concentrated on
a narrow region of wave

vectors Akg

ko k

Weighted superpositions of plane waves are of practical importance in this
connection (Fig. 4.43),

+oo
Hy(z, 1) = / b(k) e"®ED g | (4.155)

—0o0

for which the weight function b(k) represents a function being concentrated on
a relatively narrow region Aky around a certain ko. The main contribution to the
above integral is then due to this wave-vector region. We therefore perform a Taylor
expansion of w(k) around ko, presuming thereby that w(k) is about a ‘well-behaved’
function of k:

dw
wk) = wlko) + k—ko) —| +...
dk |,
We write w(kg) = wo and define:
d
Vg = e :  group velocity . (4.156)
dk | =1,

In dispersion-less media the group velocity is identical to the phase velocity u. When
we insert the expansion into the exponent of the exponential-function,

6j(kz:l:a)t) — ei(koz:l:a)ot) 6jq(z:l:vgt) 4. (q = k— kO) ,

then we can, in case of a sharply peaked weight function in (4.155), truncate the
Taylor expansion of w(k) after the linear term since wave vectors k which deviate
strongly from k¢ hardly contribute to the integral because b(k) & O:

+o0
Hyi(z,t) ~ ei(koz:l:a)ot) / dqb(ko + q) eiq(z:l:vgt)

—00

_ ei(koz:l:wof)ﬁi (z+ Vg P . 4.157)
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That is a plane wave whose wavelength and frequency refer to the maximum of the
weight function b(k), modulated, however, by a space- and time-dependent function
H.. The modulation function H. moves with the velocity v, in, respectively,
positive and negative z-direction because a constant modulation phase

Z = vgt = const

means:

A plane wave modulated in such a way is called a
wave packet

In such a wave packet the plane wave propagates with the phase velocity ug, but the
total packet propagates with the group velocity v, (Fig.4.44).

Example: Gaussian Wave Packet
We assume a Gaussian distribution (Fig. 4.45) as the weight function :

b(k) =

2
—M) . (4.158)

2
Aoz ( AR

The maximum lies at k = ko:

Fig. 4.44 Phase and group
velocity of a modulated plane
wave

Fig. 4.45 Weight function of
the Gaussian wave packet

ko —Ako /2 ko +Aky /2
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The separation of the two points, located symmetrically to kg, at which b(k)
decreases to only the e-th fraction of its maximum, amounts to just Aky. The area
under the Gaussian bell curve is always 1, since:

i 4k — ko) 1
dk b(k 0 —1,
/ ® = of ( AR ) N
—0Q
where
+o00
1= /dy e
—00

To calculate I we use the following trick:

+o0 00 | o) d
P=i / dx dy @) = Zn/dpp e P = ——Zn/d,o— e =1,
2 dp
—00 0
Thus it holds:
+o00
[=J1 < / dkb(k) =1. (4.159)

(4.158) allows for a possible limiting-value representation of the §-function:

8(k — ko) = A}(l()l‘[_l)() b(k) . (4.160)
We now insert the Gaussian b(k) into the modulation function Hy:

Hi(z+ vgt) = dq ¢~/ AKG) laEvgn

2
Ako/7 /

2 2g 2 AR
Ak2 —ig(z £ vgt) = (E — —Ako(z + vgt)) + 1—60(2 + v,1)? .
We substitute:
2
y=-2 _ —Ako(z £ v,0) .

Ako
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It proves to be correct, although we can not strictly verify at this stage, that the
integration, in spite of the imaginary part of y, has to be performed from —oo to
400!

o~ 1 2 2
Hyi(z % vgt) = —=I e(TAk/10) kv
T

With (4.159) and (4.157) it follows then:

Hi(z1) = ko wor) e(—Ak%/16)(z:|:vgt)2 _ (4.161)

This is a plane wave whose amplitude depends gaussian-like on (z & vyt). The
Gaussian bell curve moves rigidly with the velocity v, in Fz-direction. One speaks

of an aperiodic wave train. The width of the wave packet, defined analogously to
that of b(k), is obviously:

8
Az=—.
“7 Ak
That means:
Az - Aky = const . (4.162)

For the wave packet we realize that the broader the k-distribution the narrower the
z-region and vice versa. A distribution, sharply localized in the k-space b(k) =

8(k — ko), i.e. Akop — 0, means in the position space an unmodulated plane wave,
6j(koz:l:a)ot)

Hi(z,t) —>
Akg=0

being therefore not localizable. On the other hand, spatially sharply locatable means
1/Aky — 0 or Aky — oo. The distribution in the k-space is therewith completely
smeared over. All the wave vectors then appear with the same weight.

This section has shown that a wave is characterized by two types of propagation
velocities:

itve , — @K
phase velocity: u = =~ ,
(4.163)
ity — dok)
group velocity: v, = <5~

The former describes the propagation of a plane wave, the latter that of a wave
packet. v, corresponds to the velocity by which energy and information (signals)

can be transported in a wave. The special relativity teaches us that the velocity of
light ¢ in the vacuum represents an upper bound for v,:

vg <c. (4.164)

This does not necessarily hold for the phase velocity u.
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One speaks of dispersion exactly then when u # v,. One should, however, bear
in mind that the concept of the group velocity is reasonable only as long as the
approximations carried out from (4.155) to (4.157) are really allowed.

4.3.5 Spherical Waves

The plane waves discussed in the last section represent only a special, though very
important type of solution of the homogeneous wave equation (4.128). Another class
of solution is given by the spherical waves. We come to these functions when we
formulate the wave equation with spherical coordinates (2.145):

A=—=— (= ]+ =Ay,,
r28r( 8r)+r2 e

A | 9 a 4 1 9
= — | sind — —_— .
"7 Sing 90 a7 sin? 9 d¢?

We proceed by assuming spherically-symmetric solutions

Y, =y ) = Apy =0

and verify this assumption by insertion into the wave equation:

Oy (LA (a0 187 _,
v=lre e TV =0

With
0? a ( Iy 02y ay 10 (,0¢
and
02 1 9?
e’ =72V

as well as the substitution

v(r,t) =ry(r, 1)

we have the following differential equation,

02 1 02
(W—;w)v(r,t)zO,
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which is solved by all functions of the type
v(r,t) = vy (kr + wt) + v_(kr — wt) ,

if only

0)2

k2=—2 <— w=ku (w=>0)
u

as in the case of plane waves. Hence, this means that

¥(r,t) = % [V (kr + wt) + v—(kr — w1)]

275

(4.165)

(4.166)

represents a further class of solutions of the homogeneous wave equation. Let us

briefly discuss these functions:

1. The phase

O+ = kr = ot

(4.167)

depends only on the magnitude of the position vector r. At a fixed time ¢t = 1, the
points of equal phase and therewith of equal y-values all have the same distance

from the origin, i.e. lying on a spherical surface of the radius r.

2. The amplitude decreases according to 1/r with increasing distance from the

origin.
3. If v4 (kr £ wt) is in addition periodic, for instance
vy ~ ei(kr:l:a)r)

then one speaks of spherical waves:

Yi(r, ) = A_i plkrEwn
r

4. How do the areas of constant phase (pi)) move?

kr + ot = (pi)) = const .

This leads to the phase velocity:

dr :Fa) - c
—_— = —_ = u = - .
dt k n

(4.168)

(4.169)

(4.170)
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The solution (4.169) represents the propagation of a ‘disturbance’ with spherical
wavefronts and the phase velocity u:

r(t) = ro — ut: incoming spherical wave ,
r(t) = ro + ut: outgoing spherical wave .

5. Spherical waves of equal phases have at a fixed time ¢ = #; the radial separation
Ar:

kAr=2xn; neN. 4.171)

The shortest distance (n = 1) (Fig. 4.46) defines the same

2
wavelength A = TN 4.172)

as for the plane waves (4.135).
If we keep the space-point fixed then the phase changes periodically with time
with the period

T=—,
1)
again as for the plane waves (Fig.4.47).
6. Finally, the solutions of the homogeneous wave equation have still to fulfill the
special couplings required by the Maxwell equations. For instance, the fields

E = E()l ei(kr—a)t) ,
r

1.
B = By— <= (4.173)

r

Fig. 4.46 Wavelength of
spherical waves
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Re ¢,

Fig. 4.47 Space-dependence of two spherical waves temporally shifted by one half of the
oscillation period

have to satisfy:
divE=0 and divB =0

Let us check:

or ar or\ydJ[1
divE = ( Eoy— + Eoy— + Ep.— | — | — =D
1v ( 0 8x+ 0}8y+ °Zaz) drl:re :|

df1l .
= I:on)—c + E()yX + E()ZE:I — [— el(kr_wt):|
r r rddr|r

1d
=Eyr)—-—(..) =0 = Ep-r=0.
r dr

This condition, however, is not at all satisfiable for a constant vector E,, which
is not the zero vector, and an arbitrary position vector r. The same is true for the
relation

B()'I'ZO,

which analogously follows from div B = 0. The spherical waves (4.173) do not
fulfill the Maxwell equations in this form.
4.3.6 Fourier Series, Fourier Integrals

We have recognized electromagnetic plane waves as special solutions of the source-
free Maxwell equations (4.125). It turns out, however, that any arbitrary solution
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of the homogeneous wave equation can be expanded in these plane waves. To see
this, we now introduce a new mathematical tool which encompasses in Theoretical
Physics a wide region of application and shall therefore be investigated here in
detail. We are talking about the

Fourier transformation

by which we will be able to find the most general solution of the wave equation.

We already got a certain ‘foretaste’ with the considerations of the wave packet
in Sect.4.3.4. There we had provided plane waves of different wave vectors k
with a known weight function b(k) and then ‘bunched’ them by summing together
(integrating) to a packet moving in space. Very often, however, it is also interesting
to pose the problem ‘the other way round’, namely, when we ask how such a weight
function b(k) has to be built up in order to realize a given wave packet. That can be
answered by the use of the Fourier transformation.

In Sect.2.3.5, which dealt with orthogonal and complete systems of functions,
we had seen that the orthonormal system of the trigonometric functions (2.144),

! cos (nrr ) ! sin(rm ) 1,2
5 - = —X) 3 n=12...,
Vi f Ja"a

represents, in the interval [—a, 4+a], a complete system in which any square-
integrable function f(x) can be expanded:

f@ =5+ i [an cos (%x) + b, sin (%x)] . (4.174)

n=1

This representation of the function f(x) is called its Fourier series. According
to (2.140) we find for the coefficients (explicit proof as Exercise 4.3.7):

+a
=5 _/ Feod
a, = l iaf(x) cos (ﬂx) dx ,
Cl_a a

+a
by = 1 / f(x) sin (ﬂx) dx . (4.175)
a a

If f(x) is periodic with the period 2a, which we will presume at first,

fx+2a) =f(x) ,
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then (4.174) is valid even for all x. Special cases are:
(1) Even Functions

f&x)=f(—x) = b,=0 Vn.
(2) Odd Functions

fx)=—f(—x) = fo=0; a,=0 Vn.

Example: Fourier Series of the Relaxation Oscillation

1
—x+1for—m <x<0,
fx) =

—x—1for0<x<m.
b4

f(x) is defined at first in the interval [—m, 4+ 7], however, with the periodicity and
symmetry (Fig. 4.48):

J+2m) =f): f(=x) = ().

Thus, only the values of the coefficients b, are to be calculated:

b g 0
1 1 1 1
b, = —/ (—x— 1) sin(nx)dx + — / (—x + 1) sin(nx)dx
g g b4 g
0 -

b4 b2

1 2
== /x sin(nx) dx — — / sin(nx) dx
i bid

0

Fig. 4.48 Representation of
a relaxation oscillation
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+ +
1 1 ™ 1 2 4
= — | —=x cos(nx) + — [ cos(nx)dx + — cos(nx)
T n . hm nmw 0
z_
=0
1 2 2
= —[-7=D"-7a(-D" ]+ —=[=D"-1]=——.
nmw nmw nm
Therewith we have found the
Fourier series of the relaxation oscillation
2 & sin(nx)
f@=-=%" : (4.176)
T~ on

Let us now continue to investigate the general Fourier series (4.174). With the
Euler’s formula ((2.146), Vol. 1) and the definition

1
v 2a

Va(x) = exp (i%x) . on=0+1,42,... (4.177)

we can write:

L cos (ﬂx) = € (Va(x) + v (x)) ,
a

Va V2
1 n —i
i (7’%) = =5 () — =)

Inserting that into (4.174) we can state firstly that the v,(x), too, represent a
complete system of functions. Moreover, we can show, as follows, that it is even
an orthonormal system:

+a +a

n#Fm 1 H
V¥ (x)vm (x)dx zZn 2| eitr/ammx dx
" 2
a
1 +a . ta
= — / cos [z(n — m)x] dx — L / sin [z(n - m)x] dx
2a a 2a a
1 +a

+a i T
—a + 27 (n —m) cos (;(n B m)x)

= ———sin (z(n — m)x)

2(n—m) a

—a

=0.
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The case n = m is trivial because of |v, ()c)|2 = 1/(2a) so that we have indeed:

+a
/ VY () Um (X)dX = Sy - (4.178)

—a

The completeness of the function v,(x) can be demonstrated by insertion into the
Fourier series (4.174):

f)=fo+ Z (an \/g(vn(x) + v—u(x)) + by (_i\/g) (va(x) — U—n(x)))
n=1

:fO + Z \/g((an - lbn) Un(-x) + (an + lbn) U—n(x)) .
n=1

One reads off the relations (4.175):
ap = d—y | bn:_b—n; aOZZfO; b0:O

Therewith, the Fourier series can be further compressed,

+o00
f) = @ > (an— iby)va(x) .

n=—0o0

which makes the completeness of the v, (x) become clear since f(x) is an arbitrary
square-integrable function. Note that the n = 0-term is just the constant f:

\/g(ao — ibo) vo(x) = \/g 2% % — 5.

For each periodic function f(x) with the period 2a, which is square-integrable in the
interval [—a, +a], one therefore can also write:

+o0
f@ = Y oyt

n=—0o0

+a
1 1 .
oy = s (a, —ib,) = — / fx) el axgy (4.179)
2 2a

In particular we get for the §-distribution,

8(x—x9) with—a <xy < +a,
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the expansion:

+oo
1 ,
Bx—x0) = - Y i/t (4.180)

n=—0o0

We now introduce a couple of new abbreviations:

~ [2
knzﬂ; W= opay — ; Ak:z.
a b1 a

Therewith (4.179) changes accordingly:

400
flx) = «/Lz_n > faet Ak, (4.181)
1 +a
= Wer / f(x) e *ridx . (4.182)

—a

Ak is the separation of adjacent k,. If one now goes over to non-periodic functions,
i.e. formally, to functions with a ‘periodicity interval’ [—a, a],—o0, then one has
to replace the sum in (4.181) ‘in the Riemannian sense’ (Ak — 0) by the
corresponding integral:

+o0

fx) = \/Lz_n / dk f (k) e (4.183)
+o0

fly = dxf(x) e (4.184)

=

One denotes f(k) as the Fourier transform or also as the spectral function of the
function f(x). Let us list some of its most important properties:

1. f(x) even: f(x) = f(—x)
Then obviously:

+o00

fk) = \/%_ / dx f(x) cos(kx) .
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This means that f(k), too, is an even function:

fk) =f(=k) . (4.185)

If f(x) is in addition real then that holds for f(k), too!

2. f(x) odd: f(x) = —f(—x)
Then:

+o00

f(k) = \/_Tl_n_é dxf(x)sinkx .

Hence, f (k), too, is odd:

Fk) = —f(=k) . (4.186)
If £(x) is in addition real then f (k) is purely imaginary!
3. f(x) real 5
In such a case f (k) can obviously be decomposed as follows,

Fk) = (k) = ifa(k) .
with real fj 5 (k), where f; is an even function of k and f> (k) an odd function:

F(=k) = filk) + ifo(k) = F* (k) . (4.187)

4. Fourier transformation is linear
One reads off directly from the definition that the Fourier transform g(k) of

8 = a1fi(x) + aaf2(x)

is given by:

g(k) = aufi(k) + arfo(k) .

provided thatﬂz (k) are the Fourier transforms of fj  (x).
5. Convolution theorem
Letfl(k), fz(k) again be the Fourier transforms of the functions fi(x), f>(x).
Then we have

+o00

1 /7 NT _
ﬁ_é dk' (K fi(k — k) (4.188)

as the Fourier transform of the product fi(x)f>(x). We perform the proof as
Exercise 4.3.10.
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6. §-function
Because of

+o00

P B _ —ike _ 1 ik
fk) = m_i dx8(x—xp) e e

we find after Fourier inversion the important representation of the §-function as
Fourier integral:

+o00

1 .
§(x —x) = 7 / dk &*x=0) (4.189)
14
—0o0
Analogous considerations lead to:
+o00
1 .
Sk — ko) = — / dx ¢~ ik—ko)x
2
—00

7. The factors in front of the Fourier integrals
are chosen in (4.183) and (4.184) symmetrically. Their choice is, however,
widely arbitrary, only the product of the pre-factors for back and forth transfor-
mation must always give 1/2m. That can be seen as follows: The abbreviations,
introduced before (4.181), could have also been

fo=vyoma ~ Akf, = yma,

with an at first arbitrary real y. All the following considerations would have been
the same and would have led in (4.183) and (4.184) to
| +o0
s =~ [ o ek
ym
—00
1 +o00
i =5y [ 09 e as.
—00

The product of the pre-factors
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is thereby unique and fixed, while y can be chosen arbitrarily. The choice y =
+/2/ 7 results in the symmetric pre-factors used so far. But often one takes also
y=1/mory =2:

f(k):%/dx... — f(x):/dk...

f(k)zfdx... — f(x):%/dk...

Notice, however, that the pre-factors in front of both (!) Fourier integrals of the
§-function (point 6.) are not arbitrary being instead fixed at 1/2!
8. Signs in the exponents

The signs in the exponents of the exponential functions in (4.183) and (4.184)

are also rather arbitrary. They have only to be opposite for f(x) and f (k).
9. Transformation of a time-function f(7)

The rules, which we have derived above for the pair of variables (x, k),
are valid in completely analogous manner for ‘times and frequencies’ (k =
2n/A <= w = 2x/t). Normally, but in principle completely unimportant,
one interchanges the signs in the exponents compared to (4.183), (4.184):

+o00
1 7 —iwt
£y = E_i dof(@) e
+o00
flw) = dif (1) €' . (4.190)

=]

10. Multi-dimensional functions
So far we have defined the Fourier transformation only for functions of one
variable. The generalization, however, is obvious, e.g.:

+o00
f(r, t) = (2711_)2 /dSk / dw‘f(k’ w) ei(k-r—wz) ,
+o00
f(k, w) = #/d%’ / dtf(r,1) o iker—or) 4.191)

Final Remark N
The definition of the Fourier transform f (k) in (4.184) is certainly reasonable only
if the integral does exist for all k. Thereto we have to surely require a sufficiently
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rapid vanishing of the function f(x) for |x| — co. That restricts enormously, though,
the class of functions, which allow a Fourier transformation. As an example, the
function

f(x) = ¢ = const

would not be transformable. One therefore extends the definition (4.184) by a
convergence generating factor:

+o00
U I D
f(k)_nlj(])n+ m_/ dx e f(x) . (4.192)

At first this extension does not at all influence those functions which can already be
transformed according to (4.184). The class of transformable functions, however, is
now substantially larger. As an example, let us inspect the above-mentioned function

fo=c

Fk) = lim —— [ dx e
n—0t

We have already calculated an integral of this type in connection with (4.161):

F(k) = lim % eI = 2w e 8(k) . (4.193)

7]—)0

In the last step we exploited (4.160) (see Exercise 1.7.1). The back-transformation
is then automatically fulfilled with (4.183). But this is valid only for this example.

In general one has to of course perform the same limiting process for the inverse
function, too:

f(x) = lim —— / dk e F (k) . (4.194)

n—)O

The same calculation as above delivers then to f(x) = §(x) the Fourier transform
f(k) = 1/+/27, which coincides with (4.189).

The limiting processes (4.192) and (4.194) are in general not explicitly stated,
but are always implied. In this sense the integrals in (4.183) and (4.184) are to be
understood symbolically.
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4.3.7 General Solution of the Wave Equation

Let us come back once more to the initial problem, namely to the solution of the
homogeneous wave equation (4.128),

1 92
(A— ﬁﬁ) Y(r, 1) =0,

for which we want to presume initial conditions of the form

Y(r,t=0) = yo(r); Y(r,t=0)=vy(r) . (4.195)

Let 1/}(k, ) be the Fourier transform of the required solution:

1
(2m)?

+o00
V(r, 1) = / &k / do ¥ (k, w) &= (4.196)

Thus, ¥ (r, ) represents a superposition of plane waves without being, however,
itself necessarily a plane wave, since all propagation directions k/k are in principle
allowed.

We insert the ansatz (4.196) into the wave equation and use:

i plker—on — i ilker—on
ox

i plkr—on _ iky gikr—on
dy

3 ier—on — g gilker—on)
0z '

Y oikr—on _ jpc pitker—on)

—y A kTN _ 2 ilker—on)

9 i(k-r—wr) 2 i(kr—or)
P el ‘r—wt — _w el ‘r—wt .
or?

Therewith it follows:

+infty

1 w?\ - I
o [0 [ o (04 % )i oret <o,

—infty
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The Fourier inversion then leads to:

w? ~
(? - k2) F(kw)=0. (4.197)

This is a remarkable result since we succeeded to replace the original partial differ-

ential equation for ¥/ (r, ) by a purely algebraic equation for v/ (k, ). Obviously ¥
can be unequal to zero only for

w = *uk. (4.198)

In that case it must indeed be Iﬁ # 0 because otherwise it would be ¥ (r,7) = 0.
This leads to the ansatz

V(K ) =ay(K)§(® + uk) + a_(kK)S(w — uk) , (4.199)

yielding as preliminary solution:

Y(r,1) =

3 i(ker-+kut) i(ker—kur)
@) /d k [a+(k)e r + a_(k) ™" ] .

This now we fit to the initial conditions (4.195):

e = s [ @M @)+ ()

vo(r) = (27’1)2 / Pk ¢k (a4 (k) — a_(K)) .

The Fourier inversion then leads to:

= )+ 0) = s [y

1 —i .
m(a+(k) —a_(k)) = TG / d*r e * Ty (r) .

The weight functions a4 (k) are therewith determined:

1 . j
a+(k) = yo / d’r e7ikT (%(r) F évo(r)) . (4.200)
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Insertion into the above preliminary solution yields:

3 3.7 zk(r r)
Y(r,t) = 20n )3/d /d

. |:eikut (1//0(1,/) _ kLUO(r/)) + e—ikut (1//0(1./) + ivo(r/))i| .
u ku

With the abbreviation:

D(r t) —1 dgk ,-k.r( ikur —ikur) (4.201)
’ 2(2%)3 ¢ ¢ ‘ .

it eventually follows the solution:
wpo=/ﬁ%ﬁb@-ﬂg%@@+0@—ﬂg%w». (4.202)

We want to investigate the function D(r, f) in somewhat more detail. With r as polar
axis the integrations in (4.201) can be performed as follows:

oo i +1
zer zku —i ku
D@ﬂ:ﬂhy/ﬁufﬂe f— et
—1

oo

— 2(27[)2 — /dk lkr lkur _ e—ikur) _ e—ikr (eikut _ e—ikut)]
0

+o00
— dk ik(r+ur) _ ik(r—ur)
2(2m)2ur / (e ¢ )
—00

= Tmur [6(r + ut) —6(r —ut)] .

In the last step we have used the representation (4.189) of the §-function. Because
of r > 0 and u > 0 finally we get:

8(r—ut)y, ift>0,

D(r,t) = —— . 4.203
.2 drur | =6(r +ut) ,ifr < 0. ( )

For ¢ = 0 we have to go back to the definition (4.201):
D(r,t=0)=0. (4.204)

The homogeneous wave equation is therewith completely solved.
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4.3.8 Energy Transport in Wave Fields

Because of mathematical expedience in the preceding sections we have used the
complex notation for the electromagnetic fields. That was allowed since the linear
operations in the relevant differential equations do not mix real and imaginary parts.
One can therefore perform the transition to the actual physical result (= real part)
only at the very end.

However, we are now interested in the energy-current density (4.45), the
energy density (4.46) and the momentum density (4.50) of the electromagnetic
wave field. These terms are all scalar or vector products of field vectors and thus
are non-linear expressions. We have therefore to treat the fields in these cases with
special care from the very beginning.

Let us consider as an example the scalar product of two complex vectors a
and b:

(Rea) - (Reb) =

(a+a*)-(b+b*)=-(a-b+a-b*+a*-b+a*.b*).

FNg-
Fyp-

Very often we are interested in situations in which the fields exhibit harmonic time-
dependences,

a(r, 1) = ap(r) e,

b(r,7) = bo(r) e ",
and which are needed only as time average:

t+1
A(r) = ! / A()dr . (4.205)

T
t

The averaging is done over a characteristic period T (wt = 2m) where the first and
the last summand in the above equation vanish:

| 1+t
a-b(r) = - a 60 / dr e—2iwr’ =
T

t

A . f) .ttt
iao 0 —2ior —=0. (4.206)
2wt t

On the other hand, for the two other summands we get:

a*-b() =4’ -by; a-b*() =4ap-b,
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which finally leads to:

DAy DAk A 1 A* T A I %
(Rea) - (Reb)(1) = (ao -bo + 4o - bo)

1 e T 1 S
ERe (aa‘ . bo) = ERe (ao . ba‘) )
Analogously one finds for the corresponding vector product:

(Rea) x (Reb)() = %Re (80 B ) = %Re (a5 xBo) -

291

(4.207)

(4.208)

Hence, if the electromagnetic fields exhibit a harmonic time-dependence then we

have for the energy density (4.46):
w(r,1) = %Re (ﬁo B} +E- 13;;)
and for the energy-current density (4.45):
S(r,1) = %Re (ﬁo X ﬁa‘) .
Let us assume in particular plane waves,

E(I', t) — EO ei(k.r—wt) ,
B(I', t) — BO ei(k.r—wt) ,

so that we can apply (4.140) and (4.143):

1 1
By = — (kxE)) = [Bo|* = [E|*,
w u
w2
Eo=—— (k xBy) = [Eo|* = u’|Bo|*.
w
This yields, e.g., for the magnetic part of the energy density:

1 1
IBo|* = —er€o|Eol? .
4piepbo 4

1 o~
W(r.1) = ;Re (HO . B;;) -
For the electric part of the energy density we find the same expression:

1 ~ o~ 1
We(r,t) = ZRe (EO -Dg) = Z€r€0|E0|2 .

(4.209)

(4.210)

(4.211)

(4.212)
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The time averages of the electric and magnetic energy densities in the plane wave
are identical. For the total energy density we therefore get:

1
ZMrMO

1
W(r, 1) = §€r€0|E0|2 = 1Bo|* . (4.213)

Let us finally evaluate the Poynting vector for the plane wave:

S(r,1) = ! Re (EO X ﬁ;) =

S Re [Eg x (k x Ej)]

2 e o

1
= Re(k|E0|2 —E} (B -k)) .
2w po —_—
=0
This means:

_ 1 [& k
S(r, 1) = = | SO g2 (4.214)

2V prpeo k

We can combine this expression with the energy density (4.213):
— _ k
S(r,1) = uw(r, t)% . (4.215)

Like for any current density, the energy-current density, too, can be written as a
product of velocity and density of the ‘flowing substance’. The energy transport
takes place in the direction of the propagation vector.

4.3.9 Wave Propagation in Electric Conductors

We have shown in Sect.4.3.1 that the electromagnetic field quantities E and B
solve the homogeneous wave equation (4.128) provided we presume at the start
a homogeneous uncharged insulator as the medium. The existence of electromag-
netic waves is therefore postulated by Maxwell’s theory. One should remember that
this statement resulted exclusively from the fact that, compared to the previously
discussed stationary and quasistationary fields, now the displacement current D
appears in the Maxwell equations. Without this term one can not come to the wave
equations for E and B.
Let us now extend the considerations of the last sections to

homogeneous, isotropic, neutral electric conductors (o # 0).
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In this case we have to regard in the inhomogeneous Maxwell equation for H not
only the displacement current D, but also the conduction current

j=o0E.
Hence, we now have to deal with the following set of Maxwell equations:

divE=0; divB=0;

. 1. (4.216)
curlE = —B; curl B = p; 000 E + < E.
u

We have formulated these differential equations again directly for the physically
relevant fields E and B. The wave velocity u was defined in (4.126). Strictly
speaking, the homogeneous equation divE = 0 is not fully self-evident. Indeed
we assume that the conductor is initially uncharged,

pr,t=0)=0,

but that this remains valid for all times ¢ must still be proved:
. . 1
0 = diveurl B = prpoodivE + —divE .
u

If it were p(r, t # 0) # 0, then it would hold:

1
divE = 0,
€r€Q
and therewith:
Hr[bo .
0="—""—0p+ pethofp
€r€Q
. 1 1
= p=—=p; T = —€€.
T o

The integration would finally lead to:
p(r,t) = p(r,t=0) e /7 .

We see that, if the electric conductor is uncharged at the beginning, then it will
remain so forever:

pr,t=0=0 = p(r,1)=0. 4.217)
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The Maxwell equations (4.216) are, because of the appearance of the conduction
current, indeed a bit more complicated than those of the uncharged insulator (4.125).
However, just as those for the uncharged insulator, in this case also they again build
a system of coupled linear partial homogeneous differential equations of first order
for E and B, which can, even in this case, be exactly decoupled:

. . 1 ..
curlcurl E = grad (divE) —AE = —curl B = —i;;100E — —E .
N—— u
=0

That yields for 0 # 0, in a certain sense, as generalization of the homogeneous
wave equation (4.128), the so-called
telegraph equation

2
[(A—lni)-ﬁhMﬂ%}E@J)=07 (4.218)

u? or
which for 0 — 0 reduces to (4.128). In spite of the fact that the field equa-

tions (4.216) are asymmetric in E and B, nevertheless one finds that the magnetic
induction B(r, £), too, fulfills the telegraph equation:

1 .
curlcurl B = grad (divB) —AB = pu,poocurl E 4 —curlE
N—— u

=0

. 1 ..
= —Hrio0 B — _2B .
u
It follows therewith:

2
|:(A L9 ) — uruoa%} B(r,1) =0. 4.219)

T2
To solve the telegraph equation (4.218) we assume a temporally harmonic wave:
E(r, 1) = Eo(r) e .

Insertion into (4.218) yields:
w? ~
(A + Z + ia),LLr,lLoo') Eo(r) =0. (4.220)

By formally introducing a complex dielectric constant (permittivity) €, we can cast
this differential equation into a form which is known to us from the insulators. We
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write:

w? _ o
7Hr6r = oz + I o0

2

oc
— € =€+ l.,lto
w
_ . 0 _
= & =+i— =¢€(w). 4.221)
€o

For 0 — 0¢, equals the normal dielectric constant €,. Analogously, a complex wave
velocity u can be defined:

(4.222)

_ 1 c
U= = .
vV MrngOGO vV Er“r
With these definitions Eq. (4.220) formally takes again the structure of the homoge-
neous wave equation:

@\ ~
(A + _—2) Eo(r) =0. (4.223)
u

Hence, we can in principle adopt the extensively discussed theory of the solution
of the homogeneous wave equation (4.128). We have to only replace in the result
in each case ¢, by the complex €,. Let us further inspect, in the following, the
consequences of this replacement.

The telegraph equation is obviously solved by

E(r,1) = E, &) (4.224)
provided
- W k
k=—x; k=2, (4.225)
u

where K is the real unit vector in the propagation direction. Because of u the wave
vector k is also now of course complex.

In (4.127) we have introduced the index of refraction n of a medium via the
equation

n = Jeu, (Maxwell’s relation)
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which connects the optics with the theory of electromagnetic fields. We generalize
this expression:

Ve =n 41y . (4.226)

n, y are thereby real quantities the meaning of which become clear by the following
calculation:

W =12 —y> +2iyn.
Inserting of (4.221) leads to:
o
W i—p = —y? +2iya.
€

This equation must be fulfilled simultaneously for the real as well as for the
imaginary part:

n? :ﬁz_)/z’

o —
—— =2yn
€

2
, 1 (n* o R A A
bl e _— n —nn = —
n 2 €y 4 \ g,

5 1, n n* n n* o \°
= N = -n — 4+ — .
2 4 4 \ ¢pc,0

Since 7 has to be real, only the positive root can be correct:

1 2
P=-n| 1+ 1+( g ) . (4.227)
2 )
We recognize
n —n
o—0

and can therefore interpret 77 as a generalized index of refraction.
For the quantity y in the ansatz (4.226) it follows, because of
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immediately from (4.227):

1 2
V= —n? | =1 + 1+( g ) . (4.228)
2 €EQEr W

As expected according to (4.226) it is

0.
L

In contrast to 7, y therefore has no direct analogue in insulators. The physical
meaning of y, however, becomes directly clear by inspecting the solution of the
telegraph equation:

E(l‘, t) =Ky ei(i-r—wt) =Eg ei((w/ﬂ)lf'r—a)t)
=E i@/ tiy)(er)—wi]

=K, V(@[ k) il(w/eaten)—on]

Without any loss of generality we identify the propagation direction with the z-
direction (k = e;):

E(r, 1) = Eg e~ /07 gol/e=i (4.229)

So the solution has the form of a damped plane wave. The strength of the damping
is lastly determined by y:

y : extinction coefficient

The damping mediated by y results finally from the generation of Joule heat in
the electric conductor.

Discussion

(1) Penetration (Skin) Depth

The electromagnetic wave cannot penetrate arbitrarily far into the electric conductor.
The distance Az = §, after which the wave amplitude is damped down to the e-th
fraction of its initial value, is denoted as the penetration or skin depth:
C Ao
§=—=—

= (4.230)
wy 2wy

(Ao: wave length in the vacuum (¢ = vAy)).
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(2) Wave Number

Because of (4.225) the wave number k is complex:

%Zko-f-ikl:

SRS

=2 G+iy). (4.231)
C

where

Y. (4.232)

The solution of the telegraph equation (4.229) can therewith be written as:

E(r,1) = Ey ¢ 117 ¢fkozmen (4.233)

(3) Phase Velocity
From
koz — wt < const
we find:
dz w c
=—=—=—. 4.234
T U Tk 7w (4.234)

The phase velocity in the conductor turns out to be smaller, because of 7 > n, than
that in the insulator.

(4) Wavelength

_ 2
T=" =22, (4.235)
k() n

A== %” -+ is the wavelength in the corresponding insulator (o = 0).

(5) Maxwell Equations

The solutions of the telegraph equation (4.218), (4.219),

E(l', l) — EO ei(K.r—wt) ,

B(r.7) = By /&0 |
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have to still fulfill the special couplings given by the Maxwell equations (4.216):

dvE=0 = «-E=0,
divB=0 = x-B=0,

. 1
crlE=-B — -k xE=B.
u

As in the insulator, (k,E,B) build, in this order, an orthogonal trihedron. The
electromagnetic waves are even now transverse!
However, E and B are no longer in (same) phase! One realizes this as follows:

B = é(ﬁ—i—iy)(lc xE) .

The polar representation of the complex number (7 + iy),

n4iy = a2+ y? v,

tang = (4.236)

]

leads to

1 .
B=—4/n+y2 E) ¢ . 4.237
C\/n +y*(k xE) e ( )

Hence, B and E are phase-shifted by the angle ¢!

(6) Time-Averaged Energy-Current Density

For this quantity we have according to (4.210):

St = — Re (Eo(r) xﬁ;(r))

2:u“r:u*O
1 ~ 1 O\ *
= ito Re (Eo(r) X — (IC X Eo) )
1 1 o 2 *
=3 Re— | k[Eo(r)|” — Ej (k - Eo)
Mo u ———
=0
1

1
= it |Eo|? e 217 ;Re(ﬁ— iy) .
T
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That yields:

_ Ey|?
S() = 0l p2vwsony (4.238)
2t oty

S decreases exponentially in the conductor. The reason is, as already mentioned,
energy dissipation by the generation of Joule heat.

(7) Time-Averaged Energy Density

For the energy density we can use (4.209):
W(r) = —Re (H0 (r) - B (r) + Bo(r) - D} (r))
The electric part is found as,
We(r) = %ereolﬁo(rﬂz = %ereo|E0|2 e s, (4.239)
while the magnetic part reads:

ke x ﬁ0|2 .

Win(r) =
Ao U

It follows therewith:
Wi (r) = i (“2 + y?)[Eo|? e72% . (4.240)

Because of
€
€€0 + —(n + yz) = €€ + —(2n — nz) = €€ + ZEOEZ — €€
T
€0 C2 2
Hr u% Nrﬂoug

we get eventually as total energy density:

Eo|? .
w(r) = |—°|2 eF2reloz (4.241)
Zp,r,uoup
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The comparison with (4.238) yields, in analogy to (4.215), the connection between
energy density and energy-current density:

S(r) = u, w(r) « . (4.242)

4.3.10 Reflection and Refraction of Electromagnetic Waves
at an Insulator

We want to discuss, as an important application of our hitherto developed theory,
the reflection and refraction of electromagnetic waves at

plane interfaces in a dielectric.

The physical laws and systematics to be derived are in the last analysis consequences
of

1. the general wave nature of the fields,
2. the special behavior of the fields at interfaces.

We consider at first which boundary conditions the electromagnetic field must obey
at interfaces areas between two dielectric media.

(A) Field Behavior at Interfaces

We have investigated this so far only for the time-independent fields. We, however,
use for the time-dependent terms also the same procedures as in Sects.2.1.4 and
3.4.3. (Key-words: Gauss-casket, Stokes-area.)

The div-equations have formally not changed compared to the static case.
Hence, we can directly take over (2.211) and (3.80) (n = normal of the interface):

n-D,—-D)=o0r; n-(B,—B)=0. (4.243)

With the indexes 1 and 2 we mark the two adjacent media, oF is the surface charge
density.

For the curl-equations we choose the Stokes-area (Stokes-path) as plotted in
Fig.4.49. The enclosed area is oriented such that its normal t lies tangentially to the
interface coming perpendicularly out of the paper-plane:

df =dft.
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Fig. 4.49 Stokes-area for the Al,
determination of the behavior n
of the magnetic field at ® @
interfaces M
AX
A O

Let jr be the surface-current density which represents a current per unit-length on
the interface. The Maxwell equation for curl H leads to:

/df-curlH:/df-j+£/df-D.
AF AF AF

On the separation area D is finite, therefore the second summand vanishes for
Ax — O:

/df-curlH —>  jret Al.
Ax—0
AF
On the other hand, the Stokes theorem also works,
/df-curlH: / dr-H — H,-AL +H;-Al,
Ax—0
AF IAF

with Al, = (t x n) Al = —Al,. It follows therewith:
(t X n) . (H2 — Hl) = j]: .t. (4244)
t has to merely lie tangentially to the interface, but can have otherwise an arbitrary

orientation. If we still exploit the cyclic invariance of the scalar triple product then
we can formulate the boundary condition for H:

nx (H,—H;)) =jr. (4.245)
It follows analogously from curl E = -B:
nx(E;—E;)=0. (4.246)

In this section we want to restrict ourselves to the case of uncharged (neutral)
insulators thus presuming op = 0 and jr = 0. Then we have for the field behavior
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at interfaces the following continuity conditions:

(HOnx (E;—E;) =
2n-D;—-D;) =
3)nx (H;—Hy) =
@n-B,—-B) =

: (4.247)

S O O O

(B) Laws of Reflection and Refraction

We now want at first to formulate the problem in order to derive very generally, first
relationships simply from the wave nature of the electromagnetic fields.

If an electromagnetic wave impinges at an interface, coming from medium 1,
there it will be partially reflected and partially refracted (Fig.4.50). Let us assume
exclusively plane waves in the following.

i(K; - f
El _—E)] el(l 1),

1 1
B1 = —kl X E1 = —(ICl X El) . (4248)
w1 73]

The relation for B; follows from (4.140); & is the unit-vector in k-direction and
u; the wave velocity in the medium 1:

1
Uy = —/——. (4.249)
1 1
v Hi )Ho €r( )60
reflected.
Elr = EOlr ei(klr.r_wlrt) s
1
B = M—(/clr x Ey) . (4.250)
1
Fig. 4.50 Refraction and z
reflection of electromagnetic @
waves at interfaces k,
@ .2

Hr, &

RO
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refracted.:
E2 — E()2 ei(kz-r—a)zt) ,
1
B2 = —(IC2 X Ez) s (4251)
up

1
= (4.252)

/@ y
ME )Mo Gr( )60

Without loss of generality, we can assume that the interface represents the xy-
plane of our system of coordinates and that the surface normal n = e, defines
together with the incident wave vector k; the xz-plane. As to the directions of k |,
and k, we do not want to fix anything at first. Instead of this we only assume that
the two planes spanned by the vector pairs (n, k) and (n,k;) enclose with the
xz-plane the angle ¢y, and ¢, respectively. We then have the unit vectors:

K1 = sin¥ e, + costhe, ,

k1 = sin ¥, cos @€, + sin ¥y, sin @€, — cos Ve, ,

k> = sin ¥}, cos gre, + sin ¥, sin g, e, + cos e, .
The boundary conditions (4.247) have now to be fulfilled at any point of time and
at any point of the separation area (z = 0). This, however, can be possible only

if the phases of the three waves differ at the z = 0-plane at most by an integer
factor of m:

(ki +r — wi1),=0 L (Kir » * — wpt) ;=0 + 17w L (ky - T — wat) ;=0 + mm .
We choose in particular (r = 0, t = 0) and get:
n=m=20.
For (r = 0, 7 # 0) we then have to conclude:
W =Wr=w =0 . (4.253)

There is no frequency change due to reflection and refraction at the (at rest,
stationary) separation area. For r # 0 it then remains to be fulfilled:

(kp - r)z=0 = (ki - r)z=0 = (ks - r)z=0 .
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This means, for arbitrary x- and y-components of r:

ki sin ¥y = ki, sin 94, cos ¢ = kp sin ¥, cos ¢;

0 = ky sin 9y, sin @y, = kp sin ¥, sin g, .
For (¥, 92 # 0) the second equation requires:
pr=¢2=0 (4.254)

Note that ¢, = 7 or ¢, = 7 would lead to a contradiction in the first equation!
We have to conclude that the wave vectors Ky, K;;, k, lie in one and the same
plane, namely the

plane of incidence

which is fixed by the direction of incidence k; and the normal of the interface n.

From the above first equation it still remains:
kl sin 191 = klr sin l91r = k2 sin 192 .

If we insert for the magnitudes of the wave vectors

w w w
k= —=—n=—y el =k
C C
=20, =2 /uP? (4.255)

C C

ky =

Sle

then we find:

Law of reflection:
=D, (4.256)

Law of refraction (Snell’s law):

sin 191 k2 np

== = 4.257
sin 192 k1 n ( )

Medium 2 is called optically denser than medium 2 if
ny >np.

Because of 0 < ¢, < m/2itis then ¥} > ¥,. Hence, the wave is refracted
towards the vertical. Furthermore it is u; > uy and A; > A,. On the other hand,
if medium 2 is optically rarer than medium 1, i.e. n, < nj, then the refraction
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bends away from the vertical. That has the important consequence that there does
exist a critical angle ¥, = ¥, at which total reflexion (%, = 7/2) takes place.
According to (4.257) this critical angle ¥ is determined by

sind = 2| (4.258)

n

(see point G).

(C) Intensities at Reflection and Refraction

All the rules and laws derived so far resulted from very general considerations on
the continuity of the fields at interfaces. However, they do not suffice when we want
to get information also about the intensities of the reflected and refracted partial
waves, which are determined by the square moduli of the field amplitudes.

We have shown previously that each elliptically polarized plane wave can be
decomposed into two linearly polarized waves with their planes of polarization
mutually perpendicular. We therefore discuss only the two special cases:

1. E, linearly polarized perpendicular to the incidence plane,
2. E; linearly polarized within the incidence plane.

We now derive statements from the continuity conditions (4.247), which we first
rewrite with respect to the case of interest at present:

nx[E,—(E,+E;]=0, (4.259a)
n-[¢”E,—¢V(E; +E;)] =0, (4.25%)

1 1
nx | —5 (ko xEy) — —5 (ki xEr + ki xEy) | =0, (4259)
/"Lr I'Lr )

n-[(koxEy) — (k} xE; + ky xE;)] =0.  (4.259d)

1. E; perpendicular to the plane of incidence

At first one should bear in mind that, as usual, the fields are chosen as
complex quantities. That means that, in general, the amplitudes of course are also
complex. In the following equations and in particular also in the Figs. 4.51, 4.52,
and 4.53 the field quantities are therefore always to be understood as their
physical real parts (optionally also the imaginary parts), without being explicitly
so indicated.

From the continuity of E at z = 0 follows that besides E;, E;; and E, are also
linearly polarized, perpendicular to the incidence plane and parallel to the y-axis.
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Fig. 4.51 Reflection and refraction of electromagnetic waves at interfaces, where the incident
electric field vector is linearly polarized perpendicular to the plane of incidence

Fig. 4.52 Reflection and refraction of electromagnetic waves at interfaces, where the incident
electric field vector is linearly polarized within the plane of incidence

2m
n +n,

Fig. 4.53 Dependence of the ratio of the amplitudes of the refracted (reflected) and the incident
field vector on the angle of incidence ¥, for linear polarization perpendicular and parallel,
respectively, to the plane of incidence

Equation (4.259b) is therefore trivially fulfilled. From (4.259a) firstly it follows:
E,=E +E;.

That holds for all points of the interface z = 0 and for arbitrary times. But since
the phase factors of all the three fields (4.249)-(4.251) are at the interface the
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same, we can even conclude:
Eop — (Eo1 + Eoir) = 0. (4.260)

Equation (4.259d) leads together with the law of reflection (4.256) just the
law of refraction (4.257) and vice versa, i.e. (4.259d) does not deliver any new
information. It still remains (4.259¢) to be evaluated:

12) [kz (n-E) —E;(n - kz)} oo |:kl (n-E)

—Ei(n-ky) +ki;(m-Ep) —E;(n- klr)i|
————

=0

k» k ki
= — E2 cos U + ! ——E cos; — —E; cos 191 =0.
u( ) (1) ’u(l)

T

With (4.255) it further follows:

(l) (2)
€r
(1) (E()] EOlr) COs 191 — (2) E()z COS 192 =0. (4261)
Hr Hr

We eliminate Ey;, by use of (4.260):

6(1) (1) )

2Ey — €08 H = Epn (1) cos ¥ + —g cos %
Mr T M
This yields eventually:
E 2 19
(ﬁ) - 1 Cos Ul . (4.262)
Ey s

npcostt + pe nz cos

With the law of refraction (4.257) we can express cos ¥, still by the angle of
incidence t:

2
. ny .
cosﬁ2:\/1—51n2192: 1——;sm2191.

n
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It follows therewith:

Eo» 2n1 cos th
o — m . (4.263)
O/ L pycosth + Lo\ /nd —ndsin® &

W
I

The ratio of the amplitudes of the refracted and the incident wave is herewith

completely fixed by the angle of incidence ¥, and the material constants
(12 (1.2)
61' k] T .

We still take from (4.260)

(7).~ (&),
Eo1 /) | Eoi) | '

so that with (4.263) the analogue formula for the reflected wave reads:

(1)

M 2 5262
E ny cos By — 4 /05 — nysin® ¥y
EO“ = b . (4.264)
/L pycosth + Lo\ /nd —ndsin® o
Hr

2. E; parallel to the plane of incidence
Let us perform the analogous considerations for the case that the E-vectors
are linearly polarized within the plane of incidence.
It follows from the continuity condition for D, (4.259b):

er(z)Eoz cos (% - 192) - er(” [Em cos (% — 191) + Epi;r cos (% — 191)] =0
= er(z)Eozﬂ sinth — er(” (Eo1 + Eoir) sinty =0
ny
or
Er(Z)Eoz% =D (Ey + Eorr) (4.265)
2
The continuity condition (4.259a) leads to:
E()2 sin (z — 192) — E()1 sin (z — 191) + EOlr sin (z — 191) =0.
2 2 2

This means:

E()z COS 192 = (Em — E()h—) COS 191 . (4266)
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Equations (4.265) and (4.266) can be solved for Ey,/E and Eg./Eo;, respec-

tively:

(&)
Eo Jy
(EOIr)

Eo /)

(D) Fresnel Formulas

2n1n, cos ¥

- , (4.267)
2 2 2.2
i{z) n5cos ¥y + nyy/n5 —nysin”
T
) 2 22
Esn3 cos 0 — nyy/nj —nisin® Oy
Hr (4.268)

0]

w2 2 22
M(z)nzcosz‘h + niy/n5 — nysin® %y
T

For the often encountered case that the media 1 and 2 have the same magnetic

susceptibilities (see (3.74)),

(2)

= p? (4.269)

which also includes the important special case of the non-magnetizable bodies

1 2
(" = pu? =

bit more:

(@
Eo

(EOIr
Eo

1), the general results ((4.263), (4.264), (4.267), (4.268)) simplify a

().
(%),
)
)

_ 2n cos 4.270)

"~ nicost +nycost, ’

_ 1y cos ty — ny cos 7 @271)
ny cos ¥ + ny cos v

_ 2n; cos th @.272)

"~ npcos® +njcost, ’

_ macos % — nycos 4.273)

nycost +njcost,

These relations can be further reformulated by means of the law of refraction and
the addition theorems of trigonometric functions:

EOl
( )
EOl

n 2sinth cos th

ny cost, sin ¥ + sin ¥, cos

2 sin ¥, cos th

_ 4.274
sin(d + ) ( )
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sin
(@) st cos ¥y — cos th
= <o
Eor /4 s%n 2 cos ¥ + cos B,
sin
Eoir in(%, — ¢
(ﬂ) - a8 (4.275)
Eog /o sin(Py +d)
Ep\) 2 sin %, cos P
Eo /| "~ sin®; cos ¥ + sind, cos P,

sin ¥ cos ¥ + sin ¥, cos ) =

= (sin ] cos ¥, + sin ¥ cos ¥1) - (cos ¥ cos ¥, + sin ¥} sin )

2sin ¥, cos th
Ep) _ , 4.276
(E01 ) | sin(@ + Pa) cos(P — o) ( )

sin 9 5
cos ] — cos . .
Eoir) _ sindy ! 2 _ sin(2%) — sin(21,)
Eo1 /) sin th

cos By + cos sin(29) + sin(2v7)

sin
2 tan ¥ 2tan
_ I+tan2d; 1+4tan2, _ (tandy —tand)(1 — tandy tandy)
© 2tandy 2tant,  (tan® 4 tan D) (1 + tan 9 tan )
1 + tan2 1 + tan2
EOlr) tan( — )
= —". 4.277)
(E()l I tan(d + 95)

Equations (4.274) to (4.277) are called the Fresnel formulas, named after their

discoverer.
Let us inspect the case that medium 2 is the optically denser medium, i.e.

n, >n < 191>l92.

1. For grazing incidence (¢ = m/2) there is no refraction (E, = 0) (Fig. 4.53).
2. (Eoir/E01) | < 0: The wave, which is polarized perpendicular to the plane of
incidence, gets a phase jump of 7.
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(Emr/Em)” > 0 as long as ¢ + ¥, < 7/2. According to the directions of E;
and Ei;, as chosen in Fig.4.52, this means also for the parallel, reflected wave a
phase jump of .

All in all, the reflected wave thus performs for ©; + ¥, < 7/2 a phase
jump of 7. We will see that this gets importance in connection with interference
phenomena for which the so-called optical path difference between two waves is
decisive.

3. There exists a significant angle of incidence,

H =0 : Brewster’s angle ,

(@) =0
EnJy

According to (4.273) this is exactly then the case when

at which

!
nycosty = njcosth ,

i.e.
2
nycos¥g = niy/1 —sin’® =ny /1 — —ésinzl?B
n
2
2 2 2
n 1 n n
- —% =—0- —étanzﬁ =1+ tan® ¥ — —étanzﬁB .
ny cos?¥p  nj n;
That means:
ny
tanvg = — . 4.278)
n

The reflected wave is then completely linearly polarized perpendicular to the
plane of incidence.
(E) Perpendicular Incidence (#; = #, = 0)

It is now impossible to define a plane of incidence, the discrimination between
perpendicular and parallel becomes meaningless. It follows from (4.270) to (4.273)
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for this special case:

(@) - (@) (4.279)

En), m+m Eoi )y’ '

(EOIr) _m—n (EOIr) (4.280)
Eon ), m+nm En )y '

Notice and verify that the sign in (4.280) does not mean any contradiction!

(F) Energy Transport (Intensities!)

Incident, refracted, and reflected waves do transport energy. According to (4.214)
we have for the corresponding energy-current densities:

— 1 [e€e€ k
S= - |2 K.
2V prpeo k
One defines therewith
1. the reflection coefficient (reflectance):
Si;
R= |2 (4.281)
Sl *n
2. the transmission coefficient:
S, -
7= [2" (4.282)
Sl -n
Because of
ki -n = kjcost ,
Ky - n = kycos(mr — ;) = —kj cos
kz-n = szOSl?z
that means for the here underlying case:
Eo |2
R =22 (4.283)
Eo
2 1) % |E 2
T — 6(1)_“(2) CoSUa | 202 (4.284)
€ [Ur COS 191 E()1
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The energy-flow balance
TH+R=1 (4.285)

should of course be fulfilled. Indeed, that can be shown. Multiply (4.260)
by (4.261):

2
()Mﬁ)

cosﬂz( J_)z
er(l),uﬁz) cos

(Egi)" = (Egi)” =

Multiplication of (4.265) by (4.266) results in the analogous expression for
the parallel components. If one then adds the two equations and takes into
consideration that the orthogonality of the components leads to

(Eéf)z + (E(l)li)2 = (Ey)’

then it first follows:

(2) ,uﬁ ) cos )

1 2
()’u() COSI9

(En)* — (Eoir)* = (Epn)” .

If we still remember that by the field terms always the real or the imaginary part
of these in principle complex amplitudes are meant, then we can use the last
equation once for the real part and once for the imaginary part in order to add the
two expressions. That eventually yields, because of (ReEy;)> + (ImEy;)?> = |Eo;|?,

s(z)uﬁl) cos

gﬁl)luf) cos ¥

Eoa[*
Eo

2
Eoir
Eo

3

.

what proves the assertion (4.285).

(G) Total Internal Reflection

We had already argued with (4.258) from the Snellius’s law of refraction that at the
transition from the optically denser to the optically rarer medium,

n>np,
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there exists an angle of incidence ¥, = ¥, for which total internal reflection arises.
The refracted wave propagates parallel to the interface. But what happens now for
191 > l?t?

According to the law of refraction (4.257) we have to at first accept

sint, > 1.
But then 9, can no longer be real. Since, on the other hand, we have anyway always

calculated with complex fields, this fact should not create difficulties for our theory,
in particular, the law of refraction should still retain its validity:

in ¥
sint}, = ﬂsinﬂl = 51.n L
ny sin o
cos ¥ is then purely imaginary:
. 19 2
cos®, = i (Sl,n 1) 1. (4.286)
sin

This we insert into the Fresnel formula (4.277):

(Emr) _ sin 1 cos ¥ — sin ¥ cos thy
I

Eo  sin® cos ¥ + sin P, cos >
. . 2
cos 91 — i/ (22) —1
= (4.287)
i sin ¥ 2
cos i + g (m) -1

Numerator and denominator are complex conjugate numbers having therewith
notably the same moduli:

E —iy )
— ( 0“) =X, (4.288)
E()] I o e
1 sin? 9 —sin® &,
tangp = . 4.289
¢ sin? &, cos ¥ ( )

The component which oscillates parallel to the plane of incidence thus experiences

with the total reflection a phase shift by (—2¢). The amplitude Ey;, is obviously
complex.
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Completely analogously one finds with (4.275) for the perpendicular component:

. . cos ¥
Eoir sin ¥, cos ¥ — sin ¥ cos ¥, o, — €08 U2
Ey ),  sindycost + sind cos % + cos i,
o t
. . 2 . 2
cos ¥ — iv/sin” ¥ — sin” 2y
= = e N
cos ¥ + iv/sin? ¥ — sin® ¥,
) 2
v/ sin” ¥ — sin” ¥,
tan w = . (4290)

cos

The phase angles ¢ and ¢ for the two components are thus not the same, i.e. the
two components of the reflected wave are phase-shifted relative to each other. If the
incident wave is linearly polarized then the reflected wave now becomes elliptically
polarized. The phase difference of the two components amounts to:

tan ¢ — tan
1 + tang tanyr
8 cos ¥ v/sin® ¥ — sin® &

— tan - =
2 sin® %

tang = tan(p — ¢¥) =

(4.291)

The ratios of the amplitudes (Emr/Em)” and (Eoir/Eo1)  turn out to be complex
numbers of the modulus 1, so that the name fotal internal reflection makes sense
((4283)= R=1).

How do these ratios look like in the medium 2? Actually it should not happen
anything there in the case of a real total reflection. According to (4.251) the factor

exp(ik;y - r) = exp[ikp(xsin ¥, + zcos ;)]

k
= exp [i - 2 (x sin ¢ty + izy/ sin? %, — sin® ﬁl)i|
sin o

in 9 2 in 9
=exp | —k»z (sm 1) -1 exp(ikzxssli 1)

sin B

is responsible for the propagation of the refracted wave. The wave is therefore
exponentially damped in z-direction, fading therewith away for 9, > 9 very rapidly.
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An energy flow into the medium 2 does not take place in the time average:

2)
1 k
S,on=- %Re (|E02|2n- —2)
2 M~ o ka
2)
1
- = 622)60 |Ega|?Re(cos 92) = 0 . (4.292)
2 Mr Ko

This definitely allows one now to speak for ¢, > ¥ of total internal reflection
((4282)= T =0).

4.3.11 Interference and Diffraction

A decisive characteristic of the concept of ‘wave’ is the
‘ability for interference’

Naively formulated this is the feature that ‘light can be destroyed by light’! However,
only the so-called coherent (light)waves are capable of doing that. Interfering wave
trains have to have a fixed phase-relation during a time span ¢ > 7 = % According
to the findings of atomic physics, light emission is due to atoms which are in
principle independent of each other. The emission is carried out in form of wave
trains of finite length. Hence, coherent light can not originate from two different
sources. The single atom of course can not come into question, either. One needs
instead ‘indirect’ methods. An interesting possibility for the generation of coherent
light is given by the classical

Fresnel’s mirror experiment

In this experiment a splitting of the wave train takes place by reflection or refraction
so that the resulting partial waves can then be brought into an interference with each
other.

L, and L, (separation d) are the virtual images of the real light source L produced
by two mirrors which are inclined relative to each other by the angle « (Fig. 4.54).
The light beams B; und B; starting (virtually) at L; and L, are then surely coherent.
Hence, they can interfere with each other. At the point P on the screen S the light
beams enhance themselves or extinguish each other depending on whether the path
difference A = PL, — PL; is an even or an odd multiple of half the wavelength %
On the screen there appear interference fringes as hyperbolas since the hyperbola is
defined by all points for which the difference of the distances from two fixed spots
(L1, Ly) is the same. The bright hyperbolas are running through the intersection
points of the circles around L; and L,, whose differences of radii amount to 0, A,
22, ... since there the coherent waves coming from L, L, mutually reinforce. On
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Fig. 4.54 Schematic set-up
of the Fresnel’s mirror
experiment. Bj, B, are two
mirrors inclined with respect
to each other by the angle «;
Ly, L, are the virtual images
of the real light source L. S is
a screen where the resulting
interference fringes can be
observed

Fig. 4.55 Geometrical beam
path for the reflection at two
plane-parallel mirrors for the
analysis of the ‘interference
of same inclination’

the other hand, extinction appears when the difference of the radii amounts to an
odd multiple of % since then a wave trough meets a wave crest. On the screen dark
and bright stripes alternate.

Another method to create coherent interfering light waves exploits the reflection
on two plane-parallel mirrors.

The ray 1 impinges at A the plane-parallel layer (index of refraction n) and is
partially reflected there. The ray 2 is at B partially refracted in direction to C where it
is partially reflected, in order to interfere at A with ray 1. The optical path difference
amounts to (Fig.4.55)

A
A =n(BC+TA) ~Fi+ 7 . (4.293)

The third term accommodates for the phase jump by m in connection with
the reflection at the optically denser medium (see the Fresnel formulas (4.274)
to (4.277)). Using further the law of refraction

ind
n= 0 (4.294)
sin

we get after simple geometrical considerations:

A
A =2d\/n? —sin® ¥ + 5 (4.295)
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For a given thickness d of the layer the path difference A is determined exclusively
by the angle of inclination ¢;. One therefore speaks of
interference of same inclination

A=z — constructive interference

A o z=0,1,2,...
A=Q2z+ 1)5 = destructive interference

Both the reported examples of interference need for their analysis unavoidably the
wave character of the light. This holds to the same extent also for the phenomenon of

diffraction

By diffraction we understand the deviation of the light from the straight-lined ray
path which can not be interpreted as refraction or reflection. It is a phenomenon
which is observed for all wave processes. Wave intensity can enter even the
geometrical shadow sector. Well-known examples are the following:

1. Pinhole: Depending on the distance of the screen from the pinhole one observes
in the center of the screen minima or maxima of the brightness (see Sect. 4.3.15),

2. Airy disk: In the center of the geometrical shadow region there is always a bright
spot: Poisson spot (see Sect. 4.3.14),

3. Halo of the moon: The light flare around the moon originates from the
diffraction on irregularly distributed water droplets in humid air (fog);

4. Rainbow: This arises as a consequence of refraction and reflection inside the
raindrops which are illuminated by the sun which is behind the observer. The full
explanation, though, relies again on a problem of diffraction,

5. Umbrella: The fine texture diffracts the light of a remote source whereby color
pictures of a crossed grating may result,

6. Acoustics, Sound.

Diffraction phenomena are observed only when the linear dimensions of the
diffracting barriers or holes are of the same order of magnitude as the wavelength
of the light or smaller. In the optical region (small wavelengths) there are therefore
not so many diffraction phenomena which belong to our daily experience. However,
in acoustics with sound-wavelengths of the order of meters the diffraction plays a
special role since it, in the first place, makes, e.g., hearing behind barriers possible.
In a certain sense, sound can readily circumvent barriers. The fact that light is also
a wave has been recognized therefore very much later than for sound.

The basis for the understanding of interference and diffraction is given by the
Huygens’ principle:

The henceforth propagation of an arbitrarily given wavefront is determined if
each point of the wavefront is treated as a source of a secondary spherical wave
and takes then the envelope of all these coherent spherical waves as the ‘new’ wave
front!

In a homogeneous medium a surface parallel to the original wavefront arises
in this way. According to Kirchhoff the Huygens’principle is in the last analysis
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a direct consequence of the Maxwell equations and their boundary conditions
at interfaces and barriers. The exact verification, however, turns out to be rather
complicated.

4.3.12 Kirchhoff’s Formula

The vectorial character of the electromagnetic fields shall at first be disregarded. We
consider instead the scalar quantity

E(r,t) = Eo(r) e, (4.296)

where, in addition, only its space-dependence is actually interesting. One may think,
e.g., of one of the two transverse components of the electric field. Only the intensity
(~|E?) is decisive for the following. Because of the necessity of coherence, the
waves discussed here must all have the same .

The field quantity is a solution of the homogeneous wave equation:

1 82 w2 —iw

2
w_n_ (4.298)
u c A

Let E and E’ be solutions of the wave equation with the same w. As scalar fields
they satisfy the second Green identity (1.68):

/ &*r(EAE' — E'AE) = / (EVE — E'VE) - df . (4.299)
4 av

The wave equation yields:

w2
2

EAE —E'AE = (— ) (EE —E'E)=0. (4.300)
u

Hence, it remains:

/ (EVE —E'VE)-df =0 (4.301)

av
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dV is the surface of an arbitrarily given volume V. In Sect. 4.3.5 we have shown that
besides the plane waves, the spherical waves also solve the wave equation. Let E be
such a solution with the above harmonic time-dependence. Let the spherical wave
start from the point P, the origin of coordinates inside of V (Fig.4.56)

eikr
E ~

(4.302)

r

It plays here at first only the role of a mathematical auxiliary quantity, in a certain
sense as a testing probe by which we want to investigate the optical field E. It must
therefore be only a solution of the wave equation and need not necessarily satisfy
additionally the Maxwell equations (see point 6. in Sect.4.3.5).

But we have to now take account of the fact that the spherical wave diverges
for r — 0. We therefore exclude this point by a small spherical volume V; as
sketched in Fig.4.56. When applying the Green identity we remember that df is
always outwardly oriented. That means that on dV; the vector df therefore points to
the center of the sphere:

eikr eikr
0= / + / (EV - VE) -df . (4.303)
r r

A

We consider the integral over the surface dV; of the sphere and use the fact that £
and VE remain continuous for r — 0. The unit-vector e, has the radial direction
seen from the center P of V; being therewith antiparallel to df.

r

ikr
- / VE(—e)r?sindddde =3 0. (4.304)

av;

Fig. 4.56 Region

of integration in (4.303) for
the derivation of the
Kirchhoft’s formula (4.305)
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The other term of the surface integral can be estimated as follows:

el 1 ik
\% —5+— ) e
I r

;
e Uik

= [ EV—df= [ E(—5 + — ) "¢ -df
r r r

av; av;

= / E(1 — ikr) €* sin 9 d®dg
E)V,-
r—=>0

—> E(P)-4xm .

Then follows the important Kirchhoff’s formula

1 eikr eikr
E(P) = — VE — EV -df . (4.305)
41 r r

v

The field at the point P is therewith represented by an integral over the surface
enclosing an otherwise arbitrary volume V containing P. The right-hand side of the

formula can be interpreted as the combined effect of spherical waves which start
at the surface elements of the boundary and interfere at P to produce E(P). This
prefigures in a certain sense the Huygen’s principle.

The choice of V is arbitrary, but in normal cases it is determined by the
experimental arrangement. The investigation may, e.g., refer concretely to the
diffraction of light by a small aperture in an otherwise opaque screen (Fig. 4.57):

3V screen 9V plus aperture o

The Kirchhoff’s formula needs E and VE on 9V and o. But this information
is normally not available. In general one therefore uses the following Kirchhoff
approximation, which is excellently confirmed by experience:

(a) E,VE = 00n dV

4.306
(b) E,VE on 0, as if the screen were not present. ( )

Let us use this approach now to calculate some special cases.

Fig. 4.57 Screen with an Aperture o
aperture to be used for the
surface integral in (4.305) | |

/ax“/




4.3 Electromagnetic Waves 323
4.3.13 Diffraction by a Screen with a Small Aperture

We presume a point-like source of light Q as the primary stimulation (Fig.4.58). It
generates on o the field E:

eikr()
E=A (4.307)
1o
This means:
d etkro 1 ik\ o
V,E=V,xE=—1A e =A -+ = e"ley; ep= —.
dro 7o rg 10 7o
(4.308)

Insertion into the Kirchhoff’s formula yields:

E(P) = i/ et { (—l + ik) cos(n, ep) — (—% + ik) cos(n, er)} df .

4 rro 10

(4.309)
Here we have already exploited the Kirchhoff approximation. In practically all
cases of interest, it can be presumed

2
Ty K==

o> A = !

so that the imaginary part in the bracket in (4.309) will be dominant:

eik

i (r+ro)
E(P) ~ LA/ {cos(n, ey) — cos(n, e;)} df . (4.310)
22 "o

According to this already a bit simplified formula, the light wave, which impinges on
the aperture o, propagates as if from each element df a spherical wave %kr emanated,
whose amplitude and phase are given by the impinging wave.

Fig. 4.58 Screen 9V and a
small aperture o in front of a
point-like source of light O
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Let us agree upon a further simplification. Since
r,ro > linear dimension of the aperture o

it is obvious that

cos(n, ey) — cos(n, e;)

rro

will only slightly change over the parameters of o. Hence, it should be allowed to
replace the (variable) vectors r and ry by the fixed vectors R and Ry if the latter
point to P and Q, respectively, from any common characteristic point of o, e.g. from
the ‘midpoint’ of the aperture (Fig.4.59):

i cos(n,Ry) — cos(n, R)/ ik(r+

E(P) ~ A ik(r+ro) g 4311

(P) 2) RRy ¢ / ( :
o

This expression is symmetric in the source of light O and the observer P. An
interchange of both changes only the sign which has no influence on the intensity.
One speaks of ‘reciprocity’!

The remaining task now is to calculate the surface integral in (4.311). We think
of

a plane screen with a small aperture

Let the screen lie in the xy-plane. We choose the origin of coordinates within the
aperture o. For any point from o it then holds:

r =,y,7=0). (4.312)

Fig. 4.59 Schematic representation of a plane screen with a small aperture o for an illustration of
the surface integral in (4.311). The directions of R and Ry are just opposite to those in Fig.4.58
which merely leads to E(P) — —E(P) which, however, is meaningless for the intensities of actual
interest
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With
R=(X,Y,2); Ro= (Xo, Yo, 2Z) (4.313)
and
r=R—-r; rg=Ry—r (4.314)
it then follows:
P =X-xX) 4+ ¥ —-y)+27? (4.315)
ro=Xo—XV+ Yo —Y)Y+7;. (4.316)

Because of the large distances r,ry,R,Ry > r we can terminate the Taylor
expansion

1 1
«/l—i-x:l—}-ix—gxz—i-(’)(x?’) (4.317)
after the first few terms in order to approximate:

r= {X2 + Y2+ 722X —2vy + X% + y/z}l/2

Xy Yy 2 1/2
ZR{l_ZF_ZF-’_F}

S PUMEY (e AP A T (R, PSS A 2+

N 2 R? R?  R? 8 R? R R?
XX v 172 1 5 3

—r—(Z 4+ 2 )+ xwen)ro(L). 4318
(R+R)+2R arg XX+ 1)+ (RZ) (4.318)

Note that X and Y can be of the same order of magnitude as R, i.e. the fourth
summand is of the order > /R. Analogously one finds:

R 1 ( 'Ly, /)+1r/2 1 ( 1y, ,)2_'_(9 3 4319)
7 X X R — X X —_— . .

0 0 Ry 0 0¥ 2Ry ZRS 0 0¥ Ré

Finally we have found:

r+r~R+Ry+eX,y). (4.320)
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(¥, y") is decisive for the phase:

X XO Y Y()
Py & AN X To
o(,y) = X(R+R0) y(R+RO)

1 2 12 1 1

AR V>
1 / "2 1 / n2

—5 (W) - s (Ko +Yoy) @320

0

The final result is the following version of the Kirchhoff’s formula:

i cos(n,Rpy) —cos(n,R) KRR / Ly
E(P) ~ —A k(R¥Ro) [ g’ oo Y) 4.322
P~ R-Ry ¢ if e (4.322)

a

This formula, which will be later evaluated for special geometries, can serve for a
reasonable classification of the diffraction phenomena:

(a) Fraunhofer diffraction
is given when the quadratic terms in ¢ (x’, y) can be neglected, i.e. when the
diffracting aperture is penetrated by practically parallel rays:

R—oc0; Ry—o00. (4.323)

That can be realized by putting the source of light at the focus of a lens.
(b) Fresnel diffraction
appears when at least one of the two distances R and Ry is so small that
terms in ¢(x’, '), which are of the order ?/R and r? /R, respectively, cannot
be neglected.

Let the diffraction-arrangements dV; and dV, be complementary to each other:

W = o WV, = a. (4.324)

That means, what is in the one arrangement the screen 8171,2 represents in the other

arrangement just the aperture 0, 1. For such a scenario the Babinet’s principle
holds:

E1(P) + E2(P) = Eo(P) . (4.325)

Ey(P) refers to the undisturbed primary illumination at the point P in absence of
the diffraction-screens; E(P) and E,(P) are the corresponding field amplitudes for
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the two diffraction arrangements. The proof succeeds directly with the Kirchhoff’s
formula (4.305) by the use of the Kirchhoff approximation (4.306):

r

1 ikr ikr
E\(P) + Ex(P) = ‘/df+/>ﬁ (e VE—EViﬂ). (4.326)
o1 07

Note that in the Kirchhoff’s formula P represents the origin of coordinates. With

/ﬂm+/ﬂm:/ﬂm (4.327)

sl o) v

and the Kirchhoff’s formula the assertion (4.325) is confirmed.

4.3.14 Diffraction by the Circular Disc; Poisson Spot

We discuss an example of Fresnel diffraction:
object of diffraction av (screen) = circular disc with radius a in the xy-plane
‘aperture’ o = the total xy-plane without the circular disc: a < x> + y* < 00
We agree upon a special arrangement which does not essentially impair the
physical information, but which strongly simplifies the mathematical evaluation:

The source of the light Q and the point of observation P lie on the vertical center
line of the circular disc, and at equal distances from the disc (Fig. 4.60)!

a = <(n,r)
B = <(n,ro)
P = po
r=rp.

For symmetry reasons it must be y = « (Fig. 4.60) and therewith:
<(n,rg) =7 —<(n,r) . (4.328)

We use (4.310) to get the field E(P) at the point P:

i eik(r-l—ro)
E(P) ~ —A/ (cos(n, ry) —cos(n,r)) df . (4.329)
21 7o

o
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Fig. 4.60 Geometric A2
relations for the 0 4
determination of the N
diffraction by a small circular e | P
disc (radius a) 9 v 0

g

[
:0( r 1
P

!

Because of cos(n, rg) = — cos(n, r) this relation simplifies to:
i eZikr
EP) = —XA/ 3 cos(n,r)df . (4.330)
a

We calculate the surface integral:
df = 2mxdx . (4.331)

With 2 = p? + x? in addition it follows:

L S NI N, (4.332)
dx dx

df = 2nrdr (4.333)

cos(n,r) = p/r. (4.334)

With 2 /A = k it then remains to be evaluated:

eZikr
E(P) = —iApk / dr—; (4.335)
r
Vrr+a
Further evaluation uses integration by parts:
< 2k 1| e2ikr® T ik
dr—— = 7k 5 +2 3 dr (4.336)
I l r / ,02 )
P2 +a? ot
1| 2k 1 o2k 3 7 Gk
=53 - - d
2k | | Jaga ik P T / e
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The expansion can be continued in this way. We now use the presumption

k> 1, (4.337)

which led to the initial formula (4.310) for E(P). It is possibly a bit problematic at
the edge of the disc:

® 2ik 2ikr |90
/ al L (4.338)
r >~ — . .
r? 2ik r? Nz
pe+ta
/p2+a2

The field strength E(P) therewith reads:

o2ikn/ P+

_ 4.339
P2 + a? ( )

o
E(P) ~ =A
(P)= 7

The primary wave coming from Q has as spherical wave on the edge of the disc (at
Py) the form:

(4.340)

E(P) ~ g—azE(Po) . (4.341)

The square of the absolute value provides the corresponding light intensity:

Py _ |EP)P 0

1
1(Po)  |E(Po) 4P+

(4.342)

This is a remarkable result for the light intensity on the vertical center line behind
an opaque circular disc. Except for the immediate space behind the disc (p & 0) one
observes on the center line, i.e. in the geometrical shadow region, always brightness
(Fig.4.61)! This phenomenon is called the

Poisson spot

It becomes even more astonishing when we discuss in the next section the
complementary diffraction arrangement.
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Fig. 4.61 Relative light IP)
intensity on the center line I(5)
behind an opaque circular i _____________

disc as function of the
distance p

4.3.15 Diffraction by a Circular Aperture

Starting point now is a circular opening of radius a, and therewith, the complemen-
tary arrangement to that of the last section. Essentially, only the integration limits
of the E(P)-integral (4.335) are actually to be changed:

Jrta

P eZikr
E(P) = —iApk / dr——. (4.343)
r
P
The limits of integration follow from:
X=0 & r=p; x=a & r=+p*+a?
The same consideration as in the last section leads to:
o etk Vrit+a
E(P)~—= A (4.344)
2 2
P
Let us further estimate this expression a bit:
o2k  pP+a? Qlik/2+a® Likp
5 =— - (4.345)
o, p-ta P
_ (P ) (4.346)
T \p2ra : :

We assume

,O2 > a?
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which allows for the following simplifications

0

VR tat—p — P(\/l +a2/p2—1)
1
~p (1 + Eaz/,o2 — 1) =d*/2p. (4.348)

It remains therewith for the field E(P):

A . ad 2
E(P) ~ —— &¥*r ¢t (2i sin (k“—)) ) (4.349)
2p 2p

We put this again in relation to the primary spherical wave on the edge of the disc
at Py,

ik A/ p%+a? A .
E(Py) = A ~ 2 giko+a/2p) (4.350)

Vprtar o p
so that we can write:
. a2
E(P) ~ —¢'*° (i sin (kz—)) E(Py) . (4.351)
o

This gives us the intensity:

IP) _ |EP) _ .2( a_z)
1Py) = |E(P0)|2 = sin k2p (4.352)

Hence, as function of the distance p an infinite number of intensity maxima (/(P) =
I(Py)) and minima (/(P) = 0, destructive interference) appear, which tend to merge
towards the aperture (p — 0) (Fig.4.62). Our above estimation, though, becomes
questionable in this limit!

Fig. 4.62 Relative light
intensity on the center line Ip)

behind a circular aperture as I(F,
function of the distance p
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Note that we have found the in principle ‘paradoxical result’ that for the circular
disc (Sect.4.3.14) it is never dark on the center line, while for the complementary
circular aperture infinite dark spots appear as function of the vertical distance.

At the end, let us still check our results with respect to the Babinet’s princi-
ple (4.325) which brings into relation the fields of the complementary diffraction
arrangements treated in this and the preceding section, respectively.

2ikr

E|(P) 4+ E>(P) = —iA,ok/dr

P

- (4.353)
.

If there were no diffracting object then the field at P produced by the light source in
Q should have, because of QP = 2p, the following form:

2ikp
Eo(P) =A 7 (4.354)
According to the Babinet’s principle it should therefore be valid:
(e9)
eZikp | ] 6‘2il<r
2 = —ik / dr > (4.355)

P

what can directly be shown with the estimations (4.338) and (4.344). The exact
agreement, though, is more or less accidental. We further check (4.355) by
differentiation with respect to p:

1 ik . 2ikp
(——3 + l—z) U S (4.356)
Pop p

In the interesting limit kp >> 1, the first term in the bracket on the left-hand side
can be neglected, whereby the equivalence is proven. The exact equality, however,
is hindered by the various estimations we have exploited on the way to the final
expression.

4.3.16 Diffraction by the Crystal Lattice

In this section we will discuss an important example of application from solid state
physics. To do so we have to first compile some elementary terms which may be
familiar, however, from basic lectures on experimental physics.
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A crystal lattice consists of regularly and periodically arranged atoms
(molecules), whose positions are defined by ‘lattice vectors’

3
R, = Z na; . (4.357)
i=1

The three non-coplanar vectors a; (i = 1,2, 3) are called ‘primitive translations’.
With

n=n,n,n3); mez

they span the total (infinite, Bravais-) lattice. Since there is no restriction for the
numbers n; the (mathematical) Bravais lattice is thought to be infinitely large (no
surface!). It can easily be seen that the choice of the primitive translations in
general will not be unique. The two-dimensional lattice in Fig.4.63 can be built
up according to (4.357) by (aj, ay), but also by (aj, a3) or (ay, a3). However, this
ambiguity in the description of a crystalline solid will not have any effect on the
following.

Many physical properties are better representable in the so-called ‘reciprocal
(dual) lattice’ than in the ‘real’ (direct) lattice. The corresponding ‘reciprocal lattice
vector’ has a similar structure as the ‘real’ lattice vector in Eq. (4.357):

3
Ky=)Y pbi: p=(pr.pnps): piei. (4.358)

i=1

The ‘primitive translations of the reciprocal lattice’ b; are closely related to those
of the real lattice and are defined by

a; b, =218 Vij. (4.359)

We still need for the following the concept of the ‘atomic lattice plane’. By this
one understands any plane in the crystal which is occupied by at least one lattice
point. According to this rather general definition there are obviously infinitely many

Fig. 4.63 Example of a
two-dimensional
Bravais-lattice
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different lattice planes in a Bravais lattice. To a given lattice plane, e.g., innumerable
parallel lattice planes exist. Together they build a ‘family of lattice planes’. The
orientation of a lattice plane (family of lattice planes) is described by the so-called

Miller indexes (%, k, [) .
For this purpose one fixes the intersection points,
xia, (i=1,2,3),
of the considered plane with the axes defined by the primitive translations a;. Via
ity =hik (4.360)

one determines a triple of relatively prime (!) integers and speaks then of the
(h, k, I)-plane
of the crystal.

Assertion
The reciprocal lattice vector

3
Kp = Zl’jbj
j=1

is perpendicular to the (pi, p2, p3)-plane of the direct lattice.

Proof The axis-intercepts of the (py, p2, p3)-plane in the real lattice (Fig. 4.64) are

A=Sa i=1,23.
Pi

An arbitrary vector in the ( p1, p2, p3)-plane can then be represented as (Fig. 4.64):

R(p) = y1(A1 — Ay) + y2(A3 — Ay).

Fig. 4.64 Area element of
the (p1, pa2, p3)-plane

a,
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That means:

C C C
K. R —a;— —ap | + —az— —a
»R(p) = Zp, ( ( = 2) v (p3 - 2))
C C
= Z2np] (J/l ( 81 — —5,2) + (_51'3 - _‘SiZ))
P1 P2 P3 P2

=21 (yi(c —¢) + y2(c — ©)))
=0.

That was to be proven.

Assertion
The distance between adjacent ( p;, p2, p3)-planes is given by:

2

= (4.361)
K|

d(p1.p2,p3) =

Proof All lattice vectors whose projections on the K,-direction,

K
‘KP L (p1,p2, p3)-plane ,

€x =
amount to A define the (p1, p2, p3)-plane at a distance A from the given origin of
coordinates:

2 2

BT ] LR ) = e g

minZ

We have therewith, as asserted, as distance between next adjacent planes:

2
Apy1 — Ay = |K_7:,| =d(p1.p2.p3) -

Strictly speaking, however, it is of course still to be shown that to a given m there
do exist three integers nj, n,, n3 such that pyn; + pony + psn3y = m + 1. The proof
is left to the reader:

After these preparations we now consider a plane wave which impinges on a
crystal lattice and is then scattered by all the lattice atoms. Let the plane wave have
the amplitude

A(I‘, l) — AO ei(k-r—a)t) ,
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Fig. 4.65 Diffraction at a
crystal lattice

where the time-dependence does not play any role here and is therefore ignored
further. The amplitude at the respective lattice points then is:

ARy) = Ag *FRn |

According to the Huygens’s principle (Sect.4.3.11) each lattice atom, which is
reached by the plane wave, becomes the point of origin of a spherical wave
(Fig. 4.65). This wave has at the point of observation P the amplitude

R ek’
(Ag &%) —-

(4.362)

Thereby an elastic scattering is assumed (no absorption, ...):
k| = k| = k.

We are interested in the intensity / o< |A|? at the point of observation P. The position
vector r determines, with respect to the origin of coordinates, the direction of the
scattered wave:

K =k-. (4.363)

r

We assume that P is far outside the crystal while the origin of coordinates lies inside
the crystal. Then we can use r > R, in order to replace in the denominator of the
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expression (4.362) to a good approximation ' by r. Because of the oscillations of
the exponential function, though, in the numerator one has to act more carefully:

¥ =/(r—Ry)’

— \/rZ + RZ — 2rRy cos(r, Ry)

R.\> .R
= r\/l + (—n) —2—=cos(r,Ry)
r r

1_R
~r (1 — =22 cos(r, Rn))
2 r

=r—Rycos(r,Ry) .

This means:
k¥ ~kr—K - -R,. (4.364)

The spherical wave starting at a lattice atom thus has at P the amplitude:

] ek’ ] gikr—ik'-Rn ekr
(Ag ™Rn) -~ (Ag ™Rn) —— =A— KT Rn (4.365)

The full amplitude results from the superposition of the contributions of all the
lattice points, where the crystal consists in a;-direction by, say, N; G = 1,2,3)
lattice sites:

ikr 3 Ni—1

A=A er l—[ Z oK) nja;

=1 \n=—N;

ikr 3 N1
e . ’ . ’
— AO e—le(k—k )-aj el(k—k )-njaj
j=1 n;=0

i2N;(k—K')-a; _ |

3
_ 4 € —iNj(k—K')-a; ¢
= Ay l_[ e i i PG

e 1 sin (N;(k —K') - a;)
rool er k) sin (J(k—k)-a)

(4.366)
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For the required intensity we need the square of the absolute value of the amplitude:

sin N(k K')- aj)
sin (k—k’)-aj)

1) =Io— ]_[

(4.367)

I is the intensity of the incident wave.

The conditions for the maxima of intensity can be read off already from
Eq. (4.366). Maxima appear obviously when all phase factors in the curly bracket
of the first equation line are equal to 1. That, however, is exactly the case when the
so-called

Laue equations: a-(k—K)=2nz; z€Z. (4.368)
are fulfilled. Because of

_ sin?(Nx)
Iim ———

—— =N
X—>Zm SIn” x

(x= %(k —K') - a;; N = 2N;) it holds in this case for the intensity:

3
1+ 2
Inax (1) = Io— H (2N))? . (4.369)
i

This is also directly readable on (4.366) if one puts the phase factors, as described,
equal to 1:

The wave-number difference of the incident and the diffracted wave appears to
be decisive for the intensity distribution:

K=k-k — a,-K=271z; g5€Z. (4.370)

One recognizes, with the definition equation (4.359) for the primitive translations of
the reciprocal lattice, that K must be a reciprocal lattice vector:

3
K=Y zb;. (4.371)

Let us try to find a physical interpretation of the Laue equations. Since the scattering
is thought to be elastic it must hold:

k=K =k—K| & k=K -2k-K+K?
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Fig. 4.66 Reflection at a net __-’ t-
plane under consideration of ’ N
the Laue equations e K A

(Pva)Ps) -Plane

or with the unit-vector in K-direction ex = K/K:

k-ex = %K . (4.372)

Hence, the Laue equations are exactly fulfilled as soon as the projection of the

incoming wave vector k on the direction of a reciprocal lattice vector is equal to

the half of the length of this reciprocal lattice vector (Fig.4.66). Such wave vectors
define in the reciprocal lattice the so-called ‘Bragg plane’.

We draw out of the integral numbers z; in Eqgs. (4.368) and (4.370), respectively,

the greatest common divisor zp € Z obtaining then relatively prime integers p1, p2,

pP3:
g =zpj: Jj=12.3.

That fixes the reciprocal lattice vector
1 @ :
Kp=—K = Z pb;
20 =

As proven above, K}, and therewith also K stand perpendicular to the lattice plane
with the Miller indexes py, p2, p3. The situation is represented in Fig. 4.66. Because
of k = k' one has obviously to conclude ¢ = @' which corresponds to the law
of reflection (4.256). k and k’ enclose the same angle with the Bragg plane. That
means:

K = 2ksint = z|Ky| = 271%0 .

Here we have brought into play according to (4.361) the (py,p2,p3)-inter plane
distance. Because of k = 2m/A the Laue equations are therewith equivalent to the
so-called ‘Bragg law’ (Fig.4.67)

2d(p1,p2,p3)sin? =z A . (4.373)
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Fig. 4.67 Bragg reflection at
a lattice-plane family

This can be seen as criterion for constructive interference of rays reflected at
parallel lattice planes. The optical path difference of ray 1 and ray 2 in Fig.4.67
amounts to

A =2x=2dsint .

To lead to intensity maxima at constructive interference this optical path difference
has to be an integral multiple of the wavelength of the incident radiation. But that is
just the Bragg law (4.373)!

As to the eminently important impact of the Laue equations (4.368) or the Bragg
law (4.373) on the investigation of the structure of solids the respective experimental
textbook literature should be consulted.

4.3.17 The Transition from Wave Optics to ‘Geometrical
Optics’

The last sections dealt with typical phenomena of the wave optics, i.e. with
electromagnetic waves like the waves of light, the properties of which are derivable
in totality from the basic Maxwell equations of electrodynamics. The wave optics as
superordinate theory possesses the limiting case of the ‘geometrical optics’ which is
dominated by the concept of ‘light rays’ and leads under certain conditions to ‘more
illustrative’ and therewith to more easily interpretable results than the full theory.
We therefore address the question: When does the wave nature of the light no longer
play an essential role? When is the concept of the ‘light rays’ useful and valid? How
does one actually come from the wave optics to the geometrical optics?

It should be mentioned that a part of the following considerations were already
used in another context in Sect. 3.6.2 of Vol. 2 of this course: Theoretical Physics,
where we tried to understand, in analogy to the relationship between geometrical
optics and wave optics, the classical mechanics as the ‘geometrical-optical limiting
case’ of the superordinate wave mechanics (quantum theory).
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What do we understand now by light rays? For plane waves or spherical waves
that appears to be clear. One defines

‘light rays’ as normals to the wave fronts
The latter are given as the solutions of the scalar wave equation of optics (4.128)

n* 0%y _

Ay -5 = (4.374)

Thereby v stands, for instance, for a Cartesian component of the electric field E or
the magnetic induction B. The plane waves as well as the spherical waves have been
found as solutions under the assumption of a homogeneous medium, i.e. its index
of refraction is position-independent, except for interface regions:

n(r) = n = const .

In inhomogeneous media with space-dependent n(r), though, the plane wave can
represent still a solution at most ‘locally’, and one has to ask oneself whether the
above ‘ray-concept’ remains useful. Above all, one has to realize that the validity of
the wave equation in the form (4.374) is no longer guaranteed. Instead, we have to
start with a position-dependent dielectric constant:

a=&); w1  n= /e~ Ve(r) =nr). (4.375)

Geometrical optics presumes that the scalar wave equation (4.374) is
furthermore valid, at least as a good approximation!

That can of course be the case only under certain preconditions. To find these
conditions we recall the derivation of the wave equation. Thereby it was used, inter
alia:

curl D(r) = gp&, curl E(r) .

That now becomes a bit more complicated:

curl D(r) = curl (go&:(r)E(r)) ~ gocurl (n*(r)E(r))
= & (n*(r)curl E(r) — E(r) x Vr’(r))
= & (n*(r)curl E(r) — 2n(r)E(r) x Vn(r)) .

To keep the scalar wave equation at least approximatively valid it is to require:

[2n(r)E(r) x Va(r)| <!< [R2(r)curl E(r)| < 2|E(r) x Va(r)| < |n(r)V x E(r)]| .
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That can be further estimated:
2[E(0)| [Va(r)| < n(r)|V x E(r)| o n(r)[k x E(r)| o< n(r)[k| [E(r)|

& 2|Vn(r)| < |kjn(r) = 2Tnn(r) .

That results in the requirement on the

‘limiting case of geometrical optics’: |[Vn(r)| < nTr) . (4.376)
The index of refraction n(r) thus should not change significantly over a distance
of the order of the wave length A. That’s why the geometrical optics is sometimes
denoted as the ‘A — 0’-limiting case of the superordinate wave optics. The wave
equation (4.374) then remains valid to a good approximation even if n = n(r). That
means that

Y =y () e

fulfills the equation

n*(r) w?
)+ "0y =0,
w 21 .
ky = — = —: wave number in the vacuum ,
C AO
AY(r) + (@) k() =0. (4.377)

We try the following ansatz of solution:
Y (r) = A(r) ¢ (4.378)

L(r) is denoted as ‘eikonal’ (Greek: ‘image’) or ‘optical light path’. The areas
L(r) = const define the areas of constant phase and therewith the wavefronts.
According to the general presumption of geometrical optics the amplitude A(r) is
only ‘weakly space-dependent’. With

Vlﬂ = (VA + lk()AVL) eikoL(r) ’
Ay = (AA + ikoALA + 2ikoVA - VL — k%A(VL)Z) HkoL(®)

the wave equation leads to:

0 = AA + ikgALA + 2ikgVA - VL — K2A(VL)? + kA .
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This equation must be separately valid for the real and imaginary parts:

AAL+2VA-VL=0, (4.379)
1 AA

(VL +n*—==—=0. (4.380)
kA

In the case of geometrical optics we can assume:
A(r) weakly space-dependent ; Ay < changes in the medium .

Hence, we can estimate:

AA A2

T <

That yields with Eq. (4.380) the
eikonal-equation of geometrical optics: (VL(r))?* = n’(r) . (4.381)

It delivers the transition from the general wave optics (interference, diffraction) to
the geometrical optics (rays, particle picture (photons)). One derives L(r) from the
eikonal-equation, in order to insert it then into the conditional equation (4.379) for
the amplitude A(r) therewith obtaining the complete (approximate) solution.

Where are the light rays now? In the last analysis, they are of course fixed by
the direction of the energy transport, which on its part is determined by the electric
field,

E(r,f) = Eo(r) e '
Eo(r) = Eo(r) ot (4.382)

and the magnetic induction,

B(r.) =By(r) e
By (r) = By(r) el . (4.383)

In the range of validity of geometrical optics we can make use of an only weak
space-dependence of the amplitudes:

Eo (l') ~Ey; By (I‘) ~ By . (4384)
The fields are coupled with each other by the Maxwell equations, e.g.:

curlE = —B ~, curl Eo(r) = iwﬁo(r) .



344 4 Electrodynamics
Because of (4.384) it is approximately:
curl Eo(r) & iko(VL(r) x Eg) e*L®
It follows therewith:
Bo(r) = ’% (VL(r) x Eo(r)) .

We now apply the eikonal-equation (4.381):

k 1 1 1 1
w ¢ un u|VL|
That yields:
~ 1 ~
Bo(r) = — (1) x Bo(r)) (4.385)
u
VL(r)
I(r) = ) (4.386)
|VL(r)]
We still exploit another Maxwell equation:
divD = 0 ~ go&;(r)divE A divE=0 ~ VL(r)-Eo(r) =0.
This means:
I(r) - Eo(r) = 0. (4.387)
We realize that in the range of validity of geometrical optics the vectors
Eo(r) . Bo(r) and 1(r)
build to a good approximation a
local-orthogonal trihedron
with
~ 2 1 |~ 2
‘Bo(r)‘ = ‘Eo(r)‘ . (4.388)
We calculate therewith now the time-averaged energy density (4.209),
Y 1 Y D * o -~
wir,f) = ZRe (Ho(r) .B:(r) + Eo(r) - D; (r))
= i B[+ jeosr[Roto|
Mr Lo
1 ~
(4388) Seoe |Eo (r)‘ , (4.389)
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and the time-averaged energy-current density (4.210):

St = %Re (Eo(r)xﬁg(r))

1 ~ —~
= Re (E B
St e (Eo(r) x B (r))

@385 1

T 2uo0p
@3 1

T 2ok

%Re (Eo(r) X (1(1') X ES (r)))

2 Bw)| 10

Eo(r))2 I(r) . (4.390)

1
= §M€0€r

With Eq.(4.389) we thus find in this case also the well-known relation (4.215)
between energy-current density and energy density:

S(r,t) = uw(r, ) l(r) 4.391)
Hence, the energy is flowing in the direction of the ‘beam-vector’

VL(r) _ VL(r)
IVL(r)| — n(r)

I(r) = (4.392)

This vector stands perpendicular to the ‘wave surfaces, wavefronts’ L(r) = const
(Fig. 4.68). The wave surfaces and the rays build at each space point an orthogonal
system (law of Malus).

At the end we want to discuss still a few simple applications:

* Plane wave
As we know, the plane wave is the solution of the wave equation in media
with

n = const .
Fig. 4.68 Wavefronts and L(r) = const.

ray trajectories in the scope of
geometrical optics
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The precondition (4.376) for geometrical optics is trivially fulfilled and according
to (4.378) it must hold:

. ) k
T L LD o Kr £ koL(r) = ~L(r) .
n
For the eikonal we thus have:

L(r):n(%-r) = VL(r):n(%) .

The wavefronts L(r) = const are therefore planes and the direction of the ray is
that of the propagation vector:

Ir) =1=

= (4.393)

VL(r) k
n k

¢ Spherical wave
We assume also here n(r) & n. Then it is to require:

eikr

< A(r) et

For sufficiently large distances r, the amplitude A(r) % is only weakly space-
dependent so that:

k
kr = koL(r) = ~L(r) = VL(r) = ne, .
n

The wavefronts L(r) = const are now spherical surfaces with radial directions of
the rays:

Iy = YVE® _ (4.394)

n

* Law of refraction
We consider a curved interface between two media 1 and 2 with different but
otherwise constant indexes of refraction n; # n,. In the range of validity of
geometrical optics it is on both sides of the interface:

curl (n(r)l(r)) = curl (VL(r)) =0

It follows with the Stokes theorem (1.60):

/ df - curl (n(r)l(r)) = 95 dr- (n(r)l(r)) = 0.
F oF
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Fig. 4.69 To the law of
refraction at curved interfaces

@ (n,L)

As for the discussion of the general field behavior at interfaces in Sect.4.3.10
we can conclude from this that the tangential component of the vector n(r)l(r) is
continuous at the interface (Fig. 4.69):

(m@i(r)) = (b)) .
This means:
n(0) [l (r)| sine = ny(r)[L(r)|sin B .

Because of |l;(r)] = |L(r)] = 1 we eventually get the Snell’s law of
refraction (4.257),

nysine = nysinf (4.395)

which therefore is valid, as a generalization of the derivation of (4.257), even for
curved interfaces.

4.3.18 Exercises

Exercise 4.3.1

1.

What is the equation of motion of a (point-like) particle with the charge ¢ and
the mass m in an electromagnetic field (E, B)? (The emission of radiation by the
moving charge is to be neglected.) Determine the temporal change of the energy
W of the particle in the external field.

. A circularly polarized monochromatic electromagnetic wave is described by the

field
E(r, f) = E (cos(kz — wt), sin(kz — wt),0) .

Calculate the corresponding magnetic induction B(r, 7). (The underlying medium
is assumed to be linear, homogeneous,uncharged, and isolated, e.g. vacuum.)
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W

. The particle from 1. moves in the field from 2. Formulate the equation of motion!

4. Let the particle be at ¢+ = 0 at the origin of coordinates. How should the initial
conditions for the velocity be chosen in order to keep the energy W of the particle
constant?

5. Find the momentum p of the particle and verify that the direction of p; =
(px» Py, 0) coincides at each point of time with the direction of B.

6. Solve the equation of motion with the initial conditions from 4.

7. Which path in the xy-plane does the particle traverse?

Exercise 4.3.2 A transverse electromagnetic wave in an insulating uncharged
medium (pf = 0, jf =0, 0 = 0) is

(a) linearly polarized,
E = Eysin(kz — wt) ,
(b) circularly polarized,
E = E, [cos(kz — wr) e, + sin(kz — w1) e,]
and propagates in the z-direction. Calculate

1. the magnetic induction B(r, 1),

2. the Poynting-vector S(r, 7),

3. the radiation pressure on a plane which is inclined by the angle ¥ relative to
the propagation direction (k = ke,).

Exercise 4.3.3 Consider a linear, homogeneous, uncharged insulator.

1. Formulate the Maxwell equations for the electromagnetic fields E and B?
2. Show that B fulfills the homogeneous wave equation.
3. The electric field strength E is given as a plane wave

E .
E(r, 1) = ?0 (ex _ zey) pilker—awi) (k =ke,) .

Calculate the magnetic induction B(r, 7) and determine its polarization.
4. The magnetic induction B is given as a plane wave of the type

B(r, 1) = By cos(kz — wt) e, + By sin(kz — wt) e, ,

Calculate the electric field strength E(r, ) and determine its polarization.
Exercise 4.3.4 Given is a linear, homogeneous, uncharged insulator.

1. The magnetic induction B(r, ) is a plane wave of the form
B(r, ) = Bo(4e, — 3e,) kr=n) (k = ke,, By real) .

Calculate the electric field strength E(r, ) and investigate its polarization!
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2. The electric field E(r, ¢) is given by
E(r,t) = ae,cos(kz — wt + ¢) — e, sin(kz — wt + ¢)
(o, B real). Calculate the magnetic induction B(r, 7) and investigate its polariza-
tion!
Exercise 4.3.5 The magnetic induction in a linear, isotropic, uncharged insulator
(&r, r) is given by
B(r,?) = ﬁo(r) et ﬁo(r) = (xe, + iyey) X (a,y €R).

Let B(r, ) be a solution of the Maxwell equations.

. Does B(r, 7) also solve the homogeneous wave equation?
. Which relation does exist between k and @?

. Determine the direction of the wave vector k!

. Calculate the corresponding electric field

RIS S

E(r, 1) = Eo(r) e " |

5. Express the time-averaged energy density w(r, 7) of the electromagnetic field as
a function of o and y!

6. Calculate the time-averaged energy-current density S(r, f) as a function of o and
y! Which relation does exist between S(r, ¢) and w(r, t)?

Exercise 4.3.6 Determine the Fourier-series of the following periodic functions:

1. f(x) =f(x+2m)

—x for—m7 <x<0,
f) = xforO<x<m.
2. f(x) =f(x+2m)

—1for—nm <x<-m/2,
flx) = 1 for—n/2<x<mnm/2,
—lforn/2<x<m.

3. f(x) =f(x+2m)

fx)=x> —m<x<+4m.
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4. Verify with the result from 3. the following relations:
()

2

7 _ i(—l)"
12 = 2

(b)
2 o0
b4 1
6 =2 n’
n=1

Exercise 4.3.7 Prove the relations (4.175) for the coefficients of the Fourier-
series (4.174)!

Exercise 4.3.8 Calculate the Fourier transform of the §-function (a > 0, b > 0)
§(x* + (b—a)x —ab) !

Check the result by back-transformation!
Exercise 4.3.9

1. Let f(x) be continuous everywhere and at xy expandable in a Taylor series. Show
that for

2
@ 4w = ew(37)

X
@ - (T)
(®) 6,7 (x) = — 7=y
2sin (—)
2
it holds:
+o0
lim / dx8V(x—xo)f (0) =f(x)  i=12.
=0
—00
2. Justify with 1(b) that the §-function can be represented in the open interval
(=1, +1) by the sum:
+00

+N
1 . 1 .
8(x) = Engrcl;o _X_:Nexp(mnx) = 3 Z exp(imnx) .

n=-—00
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3. Check for the orthonormalized system of functions,

2 . (nmw
—sin | —x ;o on=1,2,3,...; x€(0,x],
X0 X0

the completeness relation:

2 ad . nim . nmw / /
—Zsm —x | sin | —x =8(x—x) .
xo = \ X0 X0

Exercise 4.3.10

1. Let fi(k), f>(k) be the Fourier transforms of the functions fi (x), f»(x):

+o00

o) = J%_/ dx ¢,

Find the Fourier transform g(k) of the product

g(x) = fi(x)f2(x) !
2. Calculate the Fourier transforms of the functions

(@) f(x) = e7M;
(b) fx) = e7/(A5),

3. Show that for each square integrable function f(x) the following relation
(Parseval) is valid:

+o0 +00
/ FC0 2 = [ )tk

Exercise 4.3.11

1. Calculate the Fourier transform f (k) of the function

fx) =x e M,

2. Use the result from (1) for the derivation of the formula:

+o0
Fid _/ k2 "
16 J A4+
—0o0
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Exercise 4.3.12 Expand the spherical wave

w(r, l) — lei(kr—a)t)
-
in plane waves. Assume for the evaluation that k possesses an arbitrarily small,
positive imaginary part (k — k + i 0", convergence generating factor).

Exercise 4.3.13 Plane waves are solutions of the Maxwell equations in the vacuum:

E(r.7) = Eg ",
B(I‘, l) — BO ei(k-r—wr) )

1. A plane wave, linearly polarized in x-direction, propagates in the vacuum in the
positive z-direction. At z = 0 it meets a region of infinite conductivity o which
extends over the full semi-infinite space z > 0. Calculate the wave field in the
semi-infinite space z < 0.

2. Sketch the spatial course of the electric field strength E(r, 7) and the magnetic
induction B(r,7) fort = 0and t = t/4 = n/2w.

3. Find the direction and the magnitude of the surface-current density in the
boundary layer.

4. Calculate and discuss the energy density as well as the energy current of the
electromagnetic wave.

Exercise 4.3.14 An electromagnetic wave is propagating in a conducting medium
(o #0).

1. Find the dispersion law, i.e. the connection between the wave number k and the
angular frequency w of the plane wave in the form

K =f().

2. Consider for an electron gas with the particle density ny the motion of the
electrons in the field E = Eg e~ neglecting collisions as well as the Lorentz
force exerted by a magnetic field on the electron. Calculate the conductivity o of
the electron gas.

3. Calculate the critical frequency w, for the propagation of an electromagnetic

wave in the electron gas <k2 (0 = wp) < O) as well as the penetration depth for

a low-frequency wave (0 < wp).

4. In 2. the Lorentz force, executed from the magnetic field of the electromagnetic
wave on the electron, has been neglected compared to the electric force. By use
of the law of induction, find when this approximation is acceptable.

5. Discuss the circular birefringence of electromagnetic waves which propagate in
a plasma during the presence of an external homogeneous magnetic induction
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By. Consider for this purpose circularly polarized waves, which propagate in
direction of By, and calculate the index of refraction by generalization of the
parts 1. and 2. under the assumption that the precondition of part 4. is fulfilled.

Exercise 4.3.15 On a medium 3 (653) ; ;1,53) = 1) a thin layer of a medium 2 (er(z);

,uﬁz) = 1) is deposited. This layer is set-up such that a monochromatic plane wave

coming perpendicularly from the medium 1 (er(l); uil) = 1) enters medium 3
without any reflection. All the involved media are insulators (or = 0,jr = 0).

Calculate the index of refraction n, and the thickness d of this ‘compensation layer’.

Exercise 4.3.16 An electromagnetic wave is incident, coming from a medium 1,
upon a plane interface to an ‘optically rarer’ medium 2 (n, < n;: indexes of
refraction). At the interface it splits into a reflected and a transmitted wave as
represented in Fig.4.50. For all the following considerations we use the notation
as in Fig.4.50 and in particular:

n1=2; n2=1

1. Determine for the given arrangement the limiting angle of total reflexion 9!
2. Let the angle of incidence ¥, be fixed by

. !
sint; = cos g .

Determine % as well as sin ¥, and cos ;!
3. By applying the Fresnel formulas calculate

Eoir Eoir
and !
Eo )| Eo Jy
Find the tangent of the relative phase shift § of the two components! In this case,

is it possible that the reflected wave comes out circularly polarized?
4. Calculate the coefficient of reflection R!

Exercise 4.3.17 An electromagnetic wave, coming from a medium 1, is incident
upon a plane interface to an ‘optically rarer’ medium 2 (n, < n;: indexes of
refraction).

1. How large can the ratio ny/n; be at the most in order to allow for a circularly
polarized wave after total reflection?

2. For a given n,/n;, under which angle has the wave to strike the interface in order
to be circularly polarized after total internal reflection?

Exercise 4.3.18 A plane wave (frequency w) is incident on the (plane) interface
between two media of different indexes of refraction n and n’ (Fig.4.70). At the
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Fig. 4.70 Refraction of a B
plane wave at the interface

between two media with

different indexes of refraction

points A and B it has the same phase. Derive only by the requirement that the phase
is also the same at the points A’ and B’ the law of refraction

sin n

= —

sin ¥/ n

Exercise 4.3.19

1. Parallel light is incident on a screen which lies in the xy-plane and has a
rectangular aperture o (width 24, height 2B). Discuss the intensity distribution
of the diffraction pattern (Fraunhofer diffraction)!

2. How does the intensity distribution look like in the case of a slit (B >
A)? Discuss in particular the perpendicular incidence of the light and derive
conditions for the minima of diffraction!

4.4 Elements of Complex Analysis

For the further development of electrodynamics we need some auxiliary means
(mathematical tools) of the

complex analysis,

i.e., of the theory of complex functions,
f@) =u@) +iv@ =ulxy) +ivly); i=~-1,
of a complex variable

z=x+1iy x,yeR.
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Each complex function is expressed by a pair of real functions u and v of two real
variables x, y.

Remark The reader who is already familiar with complex analysis by a course in
mathematics may either use this section as a kind of self-examination or simply skip
it in order to proceed directly to Sect. 4.5

We already introduced the complex numbers in Sect.2.3.5 of Vol. 1, where we
discussed the classical mechanics, and applied them very often in the subsequent
course on Theoretical Physics. We have seen that due to formal reasons it can be
very useful to extend the physical, real quantities into the complex plane since
many calculations can be performed essentially more elegantly in the region of the
complex numbers. Simple complex-valued functions have proven to be of enormous
value, e.g., as ansatze for the solution of linear differential equations.

Since the complex analysis is indispensable not only for the electrodynamics but
also for many other fields of Theoretical Physics we want to compile here its most
important definitions and propositions. It is clear, though, that in the framework of
our compact representation much has to remain unproven being left as a matter of
consulting appropriate special literature.

4.4.1 Sequences of Numbers

Definition 4.4.1 A point set M is called neighborhood of the point zy in the
complex (number) plane if an ryp > 0 exists such that all points within a circle
around zo of the radius r( belong to M.

Definition 4.4.2 The sequence {z,} of complex numbers converges to zo € C,
lim z, = z9,
n—o0
if
1. in any neighborhood of zy lie practically all members of the sequence or
2. for each € > 0 there exists an ny(¢) so that for all n > ny

|zn — 20| < €.

As for real numbers one proves the following rules:
For

lim a, =«; lim b,=p
n—>oo n—>0o0
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one finds:
lim (a, £b,) =a£p,
n—>oo

lim aub, = a B |

n—>o00
. Oy o .
lim — = — (ifb, #0, B #0). (4.396)
n—>00 bn ﬂ

4.4.2 Complex Functions

A complex function
w=f(2) = u(2) +iv() (4.397)
represents a unique mapping of the complex z-plane onto the complex w-plane:

D927>WEW,

D: complex domain of definition; W: complex co-domain.
The continuity of a complex function is defined analogous to the real function
(Sect. 1.1.5, Vol. 1).

Definition 4.4.3 f(z) is continuous at zq if for all ¢ > 0 a § > 0 exists so that for
each z € D with

|z —z0| <6
holds:
|f(@) = flzo)| <€ (4.398)
Definition 4.4.4 If to eache > 0 a§ > 0 exists so that for all z, 7 € D with
lz—7| <6
it follows:
1f@) —f@)] <€, (4.399)

then f(z) is called uniformly continuous on D.
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Definition 4.4.5 The complex function f(z) is differentiable at z = gz if the
limiting value

lim 7@ =/ _ f(z0) = RAC) (4.400)
n—00 Zn — 20 dz

=20
does exist for each sequence z, — zp being thereby independent of the special
choice of the sequence.

All functions differentiable at z, are also continuous at zy;. The converse does
not hold! The differentiability in the complex case presumes that the sequence of
numbers {z,} can be led to zy from any direction within the complex plane. This
is a more stringent criterion than that for the differentiability of a real function of
two real variables x,y. So it is not sufficient to require for the differentiability of
f(z) = u(x,y) + iv(x,y) the differentiability of u and v, only. This can be seen as
follows:

u+iv =z =fx+1iy

ou dv . 0z
- a_x+l$ —f(Z)a—f(Z),

ou dv . 0z .,

5+18_y —f(z)ay—lf(z).

If one multiplies the first differential equation by i and compares the real and
imaginary parts of the left-hand sides then one recognizes the Cauchy-Riemann
differential equations:

ou v ou v
— = — =, 4.401
dx  dy ady ox ( )

Even the single functions are not completely arbitrary. If one differentiates the first
equation with respect to x, the second with respect to y and adds then the two
expressions together one gets:

Pu  PU_ puzo (4.402)

ox2 - 0yr = '
Similarly one finds:

v 0%

o+ =Av=0. 4.403

0x2 + 0y? v ( )

Hence, real and imaginary part of a differentiable complex function f(z) satisfy the
two-dimensional Laplace equation.
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It is easy to prove the following rules of differentiation:

D (A+p) =f+F.

@) (LR =Hfh+1if2.

3) (f‘) _ S 2fo2 (L #0).

5

2

4 hx) =g(fx) = H() =

Definition 4.4.6

4 Electrodynamics

( chain rule).

(4.404)

(4.405)

1. By a (complex) domain G one understands an open point set in which each pair

of points can be connected by a completely in G lying traverse line.

2. Let the complex variable z change along an arbitrary (!) closed path C, in G. If
the function f(z) always takes the same value after z has returned on C, to its
initial point then f(2) is called to be unique in the domain G.

Example of a Multiple-Valued (Ambiguous) Function

f@) =z,

Z

x+iy =z e
= Vi=1d"%e

If C is a closed path which circles once around the pointz = 0,i.e. (¢ = @9 — ¢ =
@o+2m) (Fig.4.71), then f(z) changes its sign after one circle because of ™ = —1.

/z is therefore not unique but double-valued!

Definition 4.4.7 f(z) is called analytic (regular) in a domain G of the z-plane if

f(2) is at all points z € G unique and differentiable.

Fig. 4.71 Closed path in the
complex plane
circumscribing the point
z=0

~
&
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The following propositions can be proven:

1. If the partial derivatives of the real functions u(x,y), v(x,y) with respect to
the real variables x and y are continuous in G and fulfill the Cauchy-Riemann
differential equations (4.401), then

f@) =fx+iy) = ulx,y) +iv(x,y)

is analytic in G.
2. Let fi(z), f2(z) be analytic in G then this holds also for

hEh, i il (L#0).

3. Each in G analytic function has there analytic derivatives of arbitrarily (!) high
order.

4.4.3 Integral Theorems

In the following, let f(z) be a continuous function of the complex variable z in the
domain G, 7o and z* two arbitrary points in G, and C a path from z, to z* which lies
completely within G (Fig. 4.72).

The complex curvilinear (line) integral

I = ]*f(z)dz

20

©)
over the path C is then defined by
n—1
1= 1im » f(5) Gor1 —2) (4.406)
n—>oo "

Fig. 4.72 Path C in a domain
G
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Fig. 4.73 Addition of two
paths in a domain G (C+C)

where the z, realize a decompositionof the path C: z, = z(t,); a =1 < 1) < ... <
t, = B. The &, are intermediate points: &, = z(£});t, < 1 < fy41.

Immediately from this definition some simple integral theorems follow which
we list here in a symbolic form. The not explicitly written integrand is always f(z)dz:

1.
z* 7 7
/ + / = / . (4.407)
20 z* 20
©) (e8] (C+C)
The path-notation (C 4+ C’) means that one has to go at first from zj to z* along
C and then from z* to z] along C’ (Fig.4.73). Equivalent to (4.407) we have the
statement:
2.
z* 2y z*
/ _ / + / , (4.408)
20 20 %
©) (C1) (©2)
This holds when z} is chosen in between zp and z* on C whereby C decomposes
into C; and C;.
3.
z* 20
/ —_ / , (4.409)
20 z*
(©) (=0)

C and (—C) denote the same paths which, however, are run through in opposite
directions.
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4.

/ozf(z) dz=a /f(z) dz; a=consteC. (4.410)
c C

Constant factors can be drawn in front of the integral.

/(fl(z) +£(2)dz = /ﬁ(z)dz+/f2(z)dz. (4.411)
C C C

Over a sum of finitely many functions can be integrated term by term.

The following formula can be important for estimations of complex curvilinear
integrals:

/f(z)dz E/If(z)lldzl <ML. (4.412)
c C

L is the length of the path C and M the maximum value of | f(z)| on C. This relation,
too, can be proven very easily with the definition (4.406).

For the formulation of the extremely important Cauchy’s integral theorem we
still need the

Definition 4.4.8 A domain G is called simply connected if each closed path that
takes its course completely in G, without any double point, encloses exclusively
points from the inside of G.

In other words, in a simply closed domain a closed path can always be contracted
to a single point without leaving the domain anywhere.

Proposition 4.4.1 Let f(z) be an analytic function in a simply connected domain G
and C a path remaining totally within G. Then the integral

]* f(2)dz

20

(©)

is dependent only on the end points zy, z*, but not on any special course of C.
Proof

f@dz= | w+iv)dx+idy) = | (udx—vdy) +i | (vdx+ udy)
[roe=] Juscrare

:/pr-dr—i-i/pi-dr,

C C
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where
pr=(u,—v); pi=@u; dr=(dxdy).

The two line integrals are, as is well-known, path-independent as long as the curls
of both the two-dimensional vectors p;, p; vanish:

curlp 8383 (Bv n au)
r = X = — | — _— s
u_); ox  dy
curlp; = 8383—@—3—1)
pi = |ox oy T dy
v ou

These expressions correspond, however, just to the Cauchy-Riemann differential
equations (4.401) being zero only when f(z) is analytic in G.

Hence, we have an alternative formulation of the above proposition:

Proposition 4.4.2  Cauchy’s integral theorem
For all closed paths which lie, together with the areas enclosed by them, totally
within a simply connected domain G, where f(z) is analytic, it holds:

_(]Sf(z)dz =0. (4.413)
C

This proposition represents the basis for all the further considerations on analytic
Sfunctions. An important deduction is, e.g., the

Proposition 4.4.3 Let C|, C, be two closed paths where C, lies totally within the
internal region of C| (Fig. 4.74). The ring-region defined by C, and C, belongs fully
to a domain G in which the function f(z) is analytic. Then:

/f(Z)dZ = /f(z)dz , (4.414)
Ci Cy

if Cy and Cy have the same direction of revolution, independently of whether or not
the internal region of C, totally belongs to G.

Fig. 4.74 Cutting of a
ring-region by two auxiliary
paths C” and C” into two
connected partial domains G,
and G,
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Proof We cut the ring-region, as indicated in Fig. 4.74, at two positions by auxiliary
paths C’ and C”. That decomposes the ring-region into two simply connected
domains Gj, G, in both of which f(z) is analytic. Therefore, the preconditions
for (4.413) are fulfilled. The contributions at the cut surfaces cancel each other
because of (4.409). Hence:

/ fRQdz =0 < /f(z)dzz /f(z)dz.
o ol

(=CN+C
Example of Application
f(2) = 1/(z— z0) is analytic everywhere except for the point zo. We look for

I = C/f(z)dz,

where C shall be an arbitrary z enclosing path. Let C’ be a circle around zo with the
radius p (Fig. 4.75):

Ciz=z+pe’; 0<¢g=<2m.

Following the above proposition we replace for the calculation of I the path C by

the path C":
d 2w . iv 2w
1=9§ < =/d<p’pe. =i/d<p=2m'.
=20 p e
0 0

c’

Hence, it holds for each path C that encloses zo:

d
515 I (4.415)

Fig. 4.75 Auxiliary

construction for the integral

over the complex function

f@) = (z—z0)~" along an

arbitrary path C which c
encloses 7o
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As a further important conclusion from Cauchy’s integral theorem (4.413) we prove

Proposition 4.4.4  Cauchy’s integral formula

Let f(z) be analytic in the domain G. Then, for each closed path C, which lies
completely within G without any double point, and for each point zo of the area
enclosed by C:

fa) = 5o pTOE
Tl Z—20
C

(4.416)

This is a really remarkable proposition, since it states that the values of the function
f on the boundary of C are sufficient to fix the values of f for all points in the inside
of C.

Proof

ro < 1O @)
Z—20

with F(z9) = f'(z0)

is analytic all over G so that because of (4.413):

d. d.
L
C C

C

In the last step we have used (4.410). Equation (4.415) eventually leads to the
proposition.

The inversion of the integral theorem (4.413) is known as proposition of
Morera:

Proposition 4.4.5  (Morera)
Let f(z) be continuous in a simply-connected domain G. For each closed path C
which takes its course completely within G it holds

zgf(z)dz =0.

Then f(z) is analytic in G.
Without proof we further present the integral formula for the derivatives:
Under the same preconditions as to (4.416) it holds for each analytic function

f(2):

d'fz) _ n! f(§)d§
C
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4.4.4 Series of Complex Functions

Definition 4.4.9 The series

o0
Zan; o, € C
=0

is called convergent if the sequence of partial sums
n
Sp = Z oy
v=0

is convergent in the sense of Sect.4.4.1; otherwise it is said divergent. One calls it
absolutely convergent if

o
> ol
n=0

converges.
Definition 4.4.10

{f»(2)}: Sequence of complex functions.
M: Set of all the points z which belong to the complex domains of definition of

all f,.

One denotes as region of convergence of the series the set M of all those z for
which

Y 5@
n=0

converges.

Definition 4.4.11 One calls the series Y oo f,(z) uniformly convergent in M if
there exists for each € > 0 an ny(¢) € N, which only depends on € but not on z, so
that it follows for all n > ng, p > 1 and all z € M:

|fi1@) + fu2(@) + -+ farp(D)] < €.

To prove the uniform convergence one frequently uses the
comparison test (for series)

Let Y ¢, be a convergent series with positive numbers ¢y, ¢y, ..., Cy, . . . which are
such that for all z of the region of convergence of the series Y f,(z) it can be
estimated

i@ <cn (neNy).
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Then the series Y f,(z) is uniformly convergent.

Each series represents in its region of convergence M a certain function F(z).
Sometimes this is formulated also ‘the other way round’ by saying that the function
F(z) can be expanded in Mc as such a series. For us it is above all interesting to
know whether such a series represents an analytical function.

Let {f,(z)} be a series of functions which all are analytic in the same region G
and for which the series

Fx) =Y £
v=0

converges uniformly in the inside of G. Then the following statements are valid:

1. F(z) is continuous in G.
2. One can integrate term by term:

o0
/ Fydz ="y / fi@)dz. (4.418)
c v=0¢
C: path which lies totally within G.

3. F(z) is analytic in G.
4. One can differentiate term by term:

FP) =Y "f"(). 4.419)
v=0

Proof of 1

F(z) = S,(2) + r(2),

5@ =) £@: n@= Y H@.
v=0

v=n+1

From the uniform convergence it follows: for each € > 0 there exists an ny(€) so
that for n > ny one finds

[ra(@)| < § (for all z) .

S,(z) is a finite sum of continuous functions. Hence, it follows: For each € > 0 and
all zo € G there exists a § > 0 so that for all z with |z — z| < § it holds:

1S:) = Sulao)| < 5
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Thus, let € > 0 be given and zy be an arbitrary point in G. Then there is always a
8 > 0 so that it holds for all |z — 7| < &:

|F(2) = F(20)| = [Sn(2) = Sn(z0)| + [ra(2)[ + |ru(20)| < €.

Proof of 2 1f F(z) is continuous then fc F(z)dz certainly exists. Because of (4.411)

we can write
/F(z) dz = / S, (2)dz + / ra(z)dz

C C C

and

/S,,(Z)dz = Zn:/fv(z)dz.

C v=0¢

Let L be the length of the path C, which shall be finite. Then there is for each € > 0
an ny(€) so that it follows for n > ng(€):

/rn(z)dz <elL.

C

Therewith it also holds:
/ F(R)dz— / fo(2)dz| < €L .
C v=0¢

But that is just the statement of (4.418) since € can be made arbitrarily small.

Proof of 3 For each totally in G proceeding, closed path C we have:

¢fv(Z)dZ =0 forallv.
C

According to 2. this also means:

¢F(Z)dz =0.

C

Hence, F(z) is analytic in G (Morera theorem).
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Proof of 4 zo € G. According to 3. F(z) fulfills the preconditions of the integral
formula (4.417):

v (2)d
F"(z9) = n! [ F@)dz _ n! qu(Z) :
W= G2y~ 2mif =zt

C C

The proof 2. needed only the uniform convergence of the functions f, (z) on the path
C. Let this be, e.g., a circle around z then the uniform convergence is surely also
valid for f,, (z)(z — z0) ™" '. It follows therewith:

v (2)d.
F"(z9) = Z 27” fu@dz Zf(")(zo)

(Z — 20 )n+1

A special case of the series discussed so far is given by the power series

(@) = an(z—20)", 0, €C
The region of convergence M for a power series is always the inside of a circle
around zp, the so-called circle of convergence. It holds the

Cauchy-Hadamard theorem:
Three possibilities exist for the convergence of a power series:

1. The series converges only for z = zo. Then it has the radius of convergence
R=0.

2. The series is absolutely convergent for all 7 <= R = oo.

3. The series converges absolutely for |z — zo| < R and diverges for |z — zo| > R
with

R= (g_ngo M)_l , (4.420)

lim: limit superior: Limiting value with the largest absolute value.

Proposition 4.4.6 A power series converges uniformly in each circle which lies
with a smaller radius concentrically within the circle of convergence.

Proof Letus assume R > 0,0 < p < Rand |z — zo| < p. Then it is for all these z:

n+p n+p
Y- Y el
v=n+1 v=n-+1
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Since the point z = zy + p lies within the circle of convergence ) |a,|p" is by
definition convergent. One can find thus to each € > 0 an ny(€) so that for all n > ng
andallp > litis

n+p

D lelp <e.

v=n+1

Just this characterizes the uniform convergence.
Therewith, we can repeat for power series the statements (4.418) and (4.419):
Proposition 4.4.7

1. A power series is analytic everywhere inside the circle of convergence.
2. All derivatives have the same radius of convergence.
3. For all coefficients o, one finds:

™ (z0) 1 f@)dz
W 2 ) (i—zo) L @420
C

a, =

For C the same preconditions are needed as those in (4.416).

Proposition 4.4.8  Expansion theorem, Taylor expansion Let f(z) be analytic in
G and zp € G. Then there exists one and only one power series of the form

o0
D =1’
v=0

with a, from (4.421), which converges in each circle around zy, that lies still fully in
G, and represents there the function f(z). (Each analytic function can be therefore
represented as a power series!)

Proof Let K be acircle around zg € G with the radius R where K, lies totally within
G. z € Kg but not from the edge = |z —z0| = p < R. Consider p < p; < R and
z* as an arbitrary point of the circle K, :

1 1 1 (z—20)"
T (* T ox Z(Z _Zo)n+1'

F—z (F-z20)0—(@—-2) F-z21_2%
¥ —20

Because of

TR _ P
P1

¥ —20
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the series is uniformly convergent according to the comparison test. This holds also
for the series:

(z—2z20)" .

(@) Z (@)
(z

¥ —7 -2 )n+1

It follows therewith ()~ and ¢ are commutable!):

L farlE) @) 0
%95 -z ZZHL%(Z Z)n+1z_20)‘flZ

Koy
= 1
= Z —'f(”’ (z0)(z —20)" -
n!
n=0
That means eventually:
o0
f@ =) anz—z0)".
n=0
We accept the uniqueness of the expansion from the

Proposition 4.4.9  Identity theorem of power series
Let us assume that the power series

Fol(z) = Zan(z_ ZO)n s
n=0

Fp(z) = Zﬂn(z —z0)"
n=0

both have the same radius of convergence R > 0 and that it holds

Fo(z) = Fp(2)

1. in an arbitrarily small neighborhood of zy
or
2. for infinitely many points accumulating at z.

Then Fo(2) and Fg(z) are identical!
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Proof
1. According to (4.421) we have:

_F @) _ 1 Fu@)dz
vt 2mi J -zt
C
1 Fg(2)dz

:31):

2mi J (z—zo)vt!’
c

Let C be a circle which lies fully within the mentioned neighborhood. — for
7€ C:Fy(z) = Fg(z) = o, = B, forall v.
2. Proof by complete induction:

v = 0: z — 2o via the points for which F,(z) = Fg(z). Power series are
continuous = oy = Bo.
v = v+ lig,=p,foru=01,2...,v.

Then it holds for infinitely many z:

ay+1 + a2z —20) + ... = o1 + But2(z—20) + ...

Hence, we have with 7 — zp: a,4+1 = By+1 , what was to be proved.

We now prove a theorem by which we can recognize the strong internal laws
of the analytic functions as it has already been hinted by Cauchy’s integral
formula (4.416). Alone from the analyticity, which yet allows for a very big class of
rather general functions, e.g. most of the functions needed in physical applications,
a very intensive correlation between the function values can be suggested. If these
are known for an arbitrarily small partial domain of the complex plane then they are
already known for the total plane.

Proposition 4.4.10  Identity theorem for analytical functions
Let f1(z), f2(z) be analytic in G; z9 € G. It may hold

h@ =)

1. in an arbitrarily small neighborhood of zy, or
2. on an arbitrarily small piece of a path starting at zg, or
3. in infinitely many points accumulating at z,

then it is

f1(R) = fo(z) everywhere in G .
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Proof

1. Let fi, f> be analytic functions which can be expanded as power series around 2.
These series converge at least in the maximal circle that still fits into G. Hence,
according to the above proven identity theorem of power series these power series
are identical within this circle because of 1. or 3., and therefore also f;(z) and
£(2).

2. Let now z* be an arbitrary point in G. We now demonstrate that then it must
also be f1(z*) = f(z%).

(a) Connect zy and z* by a path C. Let this have a minimal distance p to the
margin of G.
(b) Decompose the path C by the points

*
20,215,225 +++5%n = 2

such that the distances between neighboring points are in any case < p.

(c) Draw around each point z, a circle K,, which still just fits into G. The radii
of these circles are then surely > p. Each circle thus certainly contains the
center of the next circle (Fig. 4.76).

(d) fi,f> are analytic in each K,, and therefore expandable as power series around
zy. The identity is already proven for Kj.

(e) z1 € Ko = fi1 = f> is valid also at z; and in its neighborhood. Hence, the
power series are identical in K, too.

(f) In such a manner the procedure is continued via z, to z, = z* (Fig.4.76).
Therewith, we can in particular conclude that the initial assertion is correct:

[E) =£(E5)

Frequently one meets the situation that a given representation of a complex
function, as for instance the Taylor expansion, converges only in a certain partial
domain of the complex plane. But then it must not necessarily be excluded that
the function is reasonably defined also outside of this domain, that only the special
representation is no longer allowed. Sometimes one can extend then the domain of
definition by use of the method of the

analytic continuation.
This is based on the just proven identity theorem for analytical functions.
Fig. 4.76 Illustration of the

procedure of the chains of
circles
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Fig. 4.77 Tllustration for the

analytic continuation of a
complex function ‘

Let G, G, be two domains which have the partial domain G in common
(Fig.4.77). Let fi1(z) be an in G; analytic function. Then there does exist, according
to the identity theorem, no or one and only one function f>(z), which is analytic in
G>, and for which one has

H@) =fiz) inG

If such a function exists then it is said that fi(z) has been analytically continued
beyond G; into the domain Gy. It is clear that also the converse viewpoint is valid.
f>(z) is in G| the analytic continuation of f>(z).

According to the identity theorem fi(z) and f>(z) are completely entailing each
other. They have to be understood as elements of one and the same function F(z).

Example
G:  unit-circular area: |z| < 1
fik) =) 2",
G,:  circular area |z — i| < V2
H@) = az—i),
ap = (1—i)~ 0t
Because of

z—1

lz—i] < V2 <

we see that f>(z) converges in G:

1 z—i\" 1 1 1
£@) = 1—i2n:(1—i) T i 1z
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Fig. 4.78 Circular areas y
lzl < land |z —i] < 4/2in
the complex plane

i/ G
=

G

Because of |z < 1 this holds also for fi(z) in G;. In the ‘overlap-domain’
G (Fig.4.78) fi(z) and f>(z) are concurring. They represent in their circles of
convergence G and G, respectively, the function

1
F(z) = —.
© -z
This function is well-defined and analytic in the whole complex z-plane (except for
|z] = 1). The above-given special power-series expansions, however, are valid only
in G; and G», respectively.

4.4.5 Cauchy’s Residue Theorem

So far we have investigated exclusively analytic functions. All points, at which a
complex function is not analytic, are called

singular points
One distinguishes:
1. poles,

2. branching points,
3. essential singularities.

If f(2) is analytic in the neighborhood of zy, and if no statement about the analyticity
at zp is possible, then one speaks of zy as an

isolated singularity .

If (z—z0)"f () is, however, analytic at zo for any positive integer n then one says that
f(z) has at the point z a pole. The smallest n, for which this statement is correct, is
called the order of the pole.

A branching point of a function f(z) is a point zo, for which f(z) after a revolu-
tion on a closed path C, which encloses zp, does not come back to its initial value.
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Essential singularities are all the other isolated singular points of a complex
function f(z).

Let f(z) be analytic in a ring-like domain around z (Fig. 4.79). Inside the smaller
circle and outside the larger one the behavior of the function may be unknown. We
therefore discuss f(z) for z with

n<lgz—zl=p<nr.

ry, ry are chosen such that f(z) is analytic even on the boundary curves.

We decompose the ring-domain by two cuts C’ und C” into two simply connected
domains, the boundary curves are run through in the mathematically positive sense
(Fig.4.79). Then it follows from Cauchy’s integral formula (4.416):

L [ f(§)dE L [ f(&)ds
=P P
Cz C1

First integral:

I o 1 1 © Z (z—2z0)"
E—z  E-z_*T% (6 —z)t!
S—zo

With

L @)
2mi J (§ —zo)"tH!
C

n =

we thus have:

o0

1L [ f(§)dé n
o = ap\z —20) -
mi ) k-2 X_: =)
Gy n=0

Fig. 4.79 Ring-like domain c”
with auxiliary paths for the >
derivation of the Laurent
expansion

-
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Second integral:

Lo 1 [ i( _ZO)
E—z =2 _§-2 z—20 = \z2—2

Z—20

() Ly

n=1

If we now define
f(§)d¢
- 27”95 (E —zo)™ 1

then it is:

1 [ fEdE & .
_ﬁ S—Z = Z_:la_n(Z—ZO) .
C n=

As seen in Sect.4.3.18 it is allowed to choose in the definitions of a, and a—,
instead of C;, C; also any other path C that encloses zy and lies completely within
the ring-domain. Hence, we can define the coefficients very generally as follows,

1 f(§)d§

=—Qp-——, 4.422
28 J (§ —zo) ! ¢ )
c
where positive as well as negative n are permitted (cf. (4.421)).
Therewith we have derived for f(z) the so-called Laurent expansion:
+o00
f@= Y alz—z)". (4.423)
n=-—00

One can show that this expansion is unique!
Of special interest is the case that zq is the only singular point of f(z) inside the
first circle. The Laurent expansion converges then for all

O<l|z—z0l <1,

where r > 0 is the distance to the nearest other singular point.
In case of a pole of p-th order the series starts at n = —p. The values a, for
n < —p are then all equal zero. One calls

—1
Z ay,(z—70)": the principal part of the function f(z) .
n=—p
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The coefficient a—; is of special importance:
a—; = Resf(z): residue of f(z) at the point zg .

The comparison with (4.422) leads to the Cauchy’s residue theorem which turns
out to be a mighty auxiliary means for an effective calculation of integrals:
Let f(z) be analytic in the neighborhood of zy and C a zy enclosing path. Then:

Resyf(z) =a-1 = % 95 f2)dz . (4.424)
C

One easily proves that for more than one, but finitely many, isolated singular points
z; lying in the internal domain of C the above formula is to be extended as follows:

1 N
pre 51§f (2)dz = Z; Res,f(2) . (4.425)
c i=

The residue of a pole of p-th order is often determined advisably according to the
following formula:

ar (=200 @]

Res,f(z) = TR Zlgrzlo =

(4.426)

The residue theorem represents a mighty auxiliary means even for the calculation of
real integrals which will be finally demonstrated by two examples.

Example 1
+o0
/ dx
I= .
1+ x?
—00
We choose the path C as indicated in Fig. 4.80 and integrate the function
Z) =
@) 1+ 22
Fig. 4.80 Semi-circle with
radius R in the upper complex

half-plane
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along C. The function

1/ 1 1
f(Z):Z(ﬁ_eri)

possesses obviously two poles of first order but only one of them z = i lies in the
domain enclosed by C. The corresponding residue is found to be 1/2i.
Hence, it follows:

dz 5 [ dz
=2n 1 =m= .
1+ 1+22 T+ J 1+ 1+22
Estimation of the integral over the semi-circle:

f dz
2
m1+z

For R — oo the contribution on the semi-circle vanishes. Finally we have therefore
found:

—2nR
<
RE—1 kom

+o00

/ dx
1= — =7
1+ x2

—00
Example 2

+oo
sinx
I= —dx .
x
—00
This is an example for the oftentimes appearing case that a pole is located on
the real axis. Such a pole we circumvent on a small semi-circle Cy with the
radius r (Fig.4.81). Then it holds, for a start, according to the residue theorem (/;:

contributions on the respective partial paths C;):

L+l+hL+1=2mwiy Res,f(2).

i

z; are the singularities enclosed by the total path C.

Fig. 4.81 Auxiliary paths for

the investigation of an

integrand with a pole on the C Cs
real axis

-R C, -r z +r C, +R
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Close to zp it holds (zo: pole of first order):

f()—

379

f1(z) is analytic in the neighborhood of zy, i.e. continuous and therewith bounded:

i@l =M.

As a consequence we find:

L
10=/a ! Z+/f1(z)dz
Z—20
Co

Co

/fl(z)dszJrr — 0.
Co

Thus we get for r — 0:

dz .
Iy =a— = —a-1Ti.
Z—20

Co
The last step uses (4.415).
Let us come back to our example. We take

@

fl@)=—

Z

This function has a pole of first order at z = 0 with the residue:

a_; =limzf(z) =1.
z—0

Inside of C there is no pole:

edz .
0= :(Il+12+13)R—>oo—l7l',
Z r—=>0
C
11 = — dx 12 —dx .
X
—R
That means:
o0

sinx

(I + h)r>oo = Zi/ —Zdx.
r—0 X
0

(4.427)
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On the semi-circle it is z = R(cos ¢ + isin @)

dz —sing + icos
b s tieose g
z CoOS@ + isSIng
T
= [ = i/ d(p eiR(cosgo-i—isin(p)
0

T

— L] < /dqo e Reing
0

o0
. . [ sinx .
— lim =0 — Oz2l/—dx—17t.
0

R—00 X

From that we get the final result:

+oo
sSinx
—dx=m.
X

—00

4.4.6 Exercises

Exercise 4.4.1 Verify the following representation of the step function:

+o00

@(t) _ i / J e—ixt
“or ) Yi¥ior

—0o0

Exercise 4.4.2 Show as a reversal to Exercise 4.3.12 that a superposition of plane
waves with the amplitudes

_ 2
ko) =

v

~_~

(o — w)

E-r
yields the spherical wave
1 i(kr—wt)
Y(r, ) =—-e¢ .
r

In this connection we presumed in Sect. 4.3.6 that k has an infinitesimally small,
positive imaginary part (k — k +i0T).
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4.5 Creation of Electromagnetic Waves

4.5.1 Inhomogeneous Wave Equation

So far we have discussed exclusively the propagation of electromagnetic waves,
but completely excluded up to now how they are created. Electromagnetic waves
are produced by time-dependent charge and current distributions. We had seen
in Sect.4.1.3 that the problem of calculating time-dependent fields from given
current-charge distributions can be traced back to the solution of formally identical
inhomogeneous wave equations for the electromagnetic potentials. In the Lorenz
gauge the inhomogeneous differential equations (4.38) and (4.39) are valid:

) 1 &
OA(r, 1) = —pepeo j(r, 1) (D =A- ;ﬁ) ;

p(r, 1)
€€y

Dg{)(l‘, t) = -

The solutions of the completely decoupled wave equations for ¢ and A still have to
fulfill the Lorenz condition (4.37),

1 1
divA+ —¢ =0; = —". (4.428)
u €r€oUr Lo

The mathematical problem thus consists in solving the differential equation
Oy(r,t) = —o(r, 1), (4.429)
where the source function o(r,?) is assumed to be known. As for the Poisson
equation of the electrostatics, we approach the problem in such a way that we first
solve (4.429) for a point charge,
O,.Goe—r,t—1)=-8@_c—-r)st—7), (4.430)

in order to build up the complete solution then with the so found Green’s function:

V(r,t) = /d3r’/dt’ Gor—r. t—1)o, 7). (4.431)
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To solve the differential equation we use the method of the Fourier transformation
(Sect.4.3.6):

1 . , ) ,
Gor—rt—1) = / &k / do G(k, ) ) giet=1)
(2m)?
1 . ,
/N — 3 ik (r—r’)
Sr—r) = (27r)3/dke r-r)
1 +o0
St—1) = — / do e~ @)
2
—00

Insertion into (4.430) yields:

o 2 1
/ d3k/ do ¥ 0 Gk w) (< + 2 ) + — ! =0,
u? 472

By Fourier-reversal we get:

2
G(k, ») (kz - w—z) - (4.432)
u

The general solution of this equation reads:
Gk, w) = Go(k,w) + {ay (k) §(w + uk) + a_(k)§(w — uk)} , (4.433)

1
G()(k, a)) = 4—

el (4.434)
uZ

The term in the curly bracket is the already known solution (4.199) of the homoge-
neous equation which always has to be added. We have extensively discussed this
solution in Sect. 4.3.7 so that we can restrict our considerations here to Go(Kk, w):

o ik (r—1)—w(—1))
&k | do———
(r )4/ / w3 — w?

wo = uk . (4.435)

Gor—r',t—1) =

We evaluate the w-integral by complex integration (see Exercise 4.5.1). Because of

1 1 1 1
-2 2w \w+w ©-—w

the integrand has two poles of first order at w = Fawy.
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The Green’s function Gy describes a perturbation located at r at time ¢ which
has been created by a perturbation at the time ¢ at the place r’. Due to‘causality-
reasons’ we have to therefore require that Gy is unequal zero only for ¢ — ' > 0:

Gor—r',t—7) = Go(r—r',t—1)O@r—-7).

One calls this solution the
retarded Green’s function

For the complex w-integration the integration path is closed in the upper or lower
half-plane on a semi-circle with the radius R — oo. The semi-circle has to be
chosen such that its contribution to the integral vanishes. Because of the exponential
function in the integrand that succeeds for r—¢ > 0, if w takes a negative imaginary
part on the semi-circle, and for t — ¢ < 0, if w has a positive imaginary part. Hence,
the integration path has to be chosen as indicated in Fig. 4.82.

In order to guarantee the mentioned causality, we shift the path along the real
axis infinitesimally into the upper half-plane, i.e.:

+o0 +oo4i07F
/ do... — / do...
—00 —oo+i0t

For t — ¢ < 0 no pole is then enclosed by the integration path so that the residue
theorem (4.425) leads to

Gi'(r—r',t—1)=0 forr—1 <0. (4.436)

retarded Green’s function

t—t">0

[ J [ ] \ ) ™Y ]
—@ +(l)0 —@ +(l)0

t—t'<0

Fig. 4.82 Integration paths for determining the retarded Green’s function
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For t — ¢ > 0, however, both poles are circumvented by the integration path in the
mathematically negative sense. For the residues one finds

—, _/
e iw(t—t")

1 ) ,
a-1(fwo) = lim (@ F wy)— = F—— g Fiol=1)
o—>twy wy — w? 2wy

so that the residue theorem (4.425) yields:

+oo+i0t )
dow 1 e—iw(t—t’) — —2mi (eiwo(t—t’) _ e—iwo(t—t’)) )
wg —w? 2wg
—oo+i0t

This leads to the following intermediate result for the Green’s function:

. 3
"

On the right-hand side we recognize the function D(r—r’, t—¢') which we introduced
in (4.201) in connection with the homogeneous wave equation:

Ge'(r—v,t—1)=u’Dx—v,t—1) fort>"1.

We have already evaluated D(r — 1/, t — ') explicitly in (4.203):

1 —
Gi'e—r',t1—1) = ) r=rl _ t+7) . (4.437)
4rir — /|

u

This Green’s function exhibits obviously a causal behavior. The signal that is
observed at the time ¢ at the space point r is caused by a perturbation at r’, at a
distance |r — r’| from the point of observation, which acted at an earlier, the so-
called

. Ir—r'|
retarded time 1. =1 — . (4.438)
u
[r — r'|/u is just the time the signal needs to come from r’ to r:
S(ZJ - trel)
Gl'r—r',t—1)= —=, 4.439
o (r—r ) prer— ( )

As aside note, notice that the quasi-stationary approximation (Sect. 4.2) just consists
in the neglect of this retardation.



4.5 Creation of Electromagnetic Waves 385

Had we shifted the integration path infinitesimally not into the upper but into the
lower half-plane then we would have met the so-called advanced Green’s function
that differs from (4.439) by the fact that #,,; has to be replaced by

r—r/|
fy =1+

(4.440)

u

(One should check this explicitly!). In this case the principle of causality would
be violated; not the past, as in (4.439), but the future would influence the present.
Therefore, we discuss here, furtheron, the retarded solution which we insert into the
general ansatz (4.431):

.1 = / gy 2 t) (4.441)

4rir — /|

This means for the electromagnetic potentials:

/
E) tre
o(r,0) = / gy PO fre) , (4.442)
47 €€, [r —r/|
i
A(r,7) = M/d%/u ) (4.443)
4 r — /|

The electromagnetic potentials have therewith formally the same structure as in
the electrostatics and magnetostatics, respectively. Because of the retardation in the
integrand the treatment of the integrals, however, turns out to be in general a rather
awkward task.

With (4.442) and (4.443) the problem is completely solved, since from the
potentials and the well-known relations

B=curlA; E = —gradyp —A

the magnetic induction B and the electric field E can be deduced in the whole space
and for all times # > 7.

On can of course always add to the solutions presented here still the solution of
the homogeneous wave equation that we suppressed after (4.434). The free solution
can serve to fulfill the given boundary conditions.
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At the end, we have to still show that the just found electromagnetic potentials
indeed fulfill the Lorenz condition (4.428):

0

e plr. 1)

€r€Q

1
—zi/d%’dt —Gr -1, t—1)—2
u
= _Mruoi/d3r/dt/WG(r—r/,t—t/)p(r/,t/)
. 3.7 34 ! / d /o
= WMol | d°rdt G(r—r,t—t)wp(r,t)
(continuity equation) = — i, ol / &rdl Gir—v, 1 —17)divj(r', 1)
(divap = gpdiva+a- Vo) = ,uruoi/d3r/dt’ VG —r,t—1)-ji'. 1)

= —,uruoi/d3r’dt’ V.Gx—r',t—1)-ji',t)
— _divA(r, 1)

That was to be proven! For the transition from the second to the third line an
integration by parts with respect to ¢’ was performed. The integrated part does not
contribute since the retarded time 7, is finite so that the Green’s function vanishes at
¢ = Foo. At the transition from the fifth to the sixth line the integral [ d*'div (Gj)
could be changed into a surface integral with the aid of the Gauss theorem. That,
however, vanishes since j # 0 holds only in a finite, restricted space region.

4.5.2 Temporally Oscillating Sources

We consider a temporally oscillating system of charges and currents in a closed
region of space and want to discuss for this situation the formal solutions (4.442)
and (4.443) of the inhomogeneous wave equation. We start with a Fourier-
decomposition with respect to the frequency

p(r.0) = —= [ dw p,(r) e .

—iwt

jc.n = ffdij(r)e

Because of the linearity of the Maxwell equations we can restrict our considerations
to a single Fourier component:

p(r.1) = p(r) e~
0 =jme . (4.444)
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Fig. 4.83 System of p
coordinates for a spatially
restricted, temporally
oscillating system of charges I
and currents :
I
I

e#0
j#0

p(r), j(r) will in general be complex. They disappear outside a restricted space
region (linear dimension d, Fig. 4.83). From the solutions derived with (4.444), we
then obtain by linear combination with respect to w, the electromagnetic fields E
and B.

In the expression (4.443) for the vector potential we need:

J(00 t) = () e O/ (4.445)
That yields:
A(r,n) = A(r)e™", (4.446)
ik|r—r’|
A =28 [ <) (4.447)
4 r — 1’|

Via k = w/u the vector potential A(r) is w-dependent. It therefore oscillates with
the same frequency as the source. When r lies in the space-region where no free
currents and charges are present then everything is already fixed by A. Itis, e.g., not
necessary to separately determine the scalar potential ¢(r, 7). That can be seen as
follows: Outside the (p # 0, j # 0)-region curl H = D and therewith:

E = w’curl B = w’curl curl A(r, 1) = u® e 'curl curl A(r) .

Hence, the electric field strength is already given by the vector potential:

2
E(r,f) = i— e~ ®curl curl A(r) . (4.448)
w

The basic formula (4.447) is in general not directly integrable. One is forced to
accept approximations which, however, must be carefully defined since very often
they are reasonably justified only in a very narrow region of the typical parameter
space.
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First simplifications arise from the assumption that the space-region, which
contains charges and currents, is of linear dimensions d which are small compared
to the wavelength A of the electromagnetic radiation and small compared to the
distance r to the point of observation P:

small sources <= d < A,r. (4.449)

The ratio A/r can thereby be at first arbitrary. The following expansion suggests
itself when r’ lies in the (p # 0, j # 0)-region:

2 r
r—r|=vrP+r?=2r-r ~ry/1—=n-r (n:—)
r r
1
%r(l——n-r’) .
r

If we neglect basically quadratic terms of 7> then it remains:

iklr—r’ i —ikner’ i .
ezk\r o ~ etkre ikner’ ezkr(l —lkn'l'/) .

1 1
r—r|' ~ —(1+—n-r’) .
r r

We combine these two terms:
eiklr—r’ | eikr 1
——~— |14+ @-r)-—ik . (4.450)
[r—1r’| r r

The vector potential therewith consists of some characteristic terms which we are
going to investigate step by step in the next sections:

ikr 1 ikr
Frai / & i) + B (‘—ik) : / &r j()(m-r).
T r 4 r r
(4.451)

A(r) =

The first term corresponds to electric dipole radiation (Sect.4.5.3), the second to
magnetic dipole and electric quadrupole radiation (Sect. 4.5.4).

A further effective possibility for approximations is offered by a subdivision into
so-called zones:

d K r < A: near zone (static zone),
d L r ~ A: intermediate zone,
d K A K r: far zone (radiation zone).
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This subdivision leads to heterogeneous estimations for the vector potential (4.447).
One finds that the electromagnetic fields exhibit rather different behavior in the
various zones:

(1) Radiation Zone

We exploit the expansion that led to (4.450) at first in the form:

PR
ezk\r r/| 1
~—e

~ ikr e—ikn-r/
r—r| r

This yields the following simplified expression for the vector potential:

ikr
AR ~ £ (M / B i) e—f"“‘r/) . (4.452)
r 4

The vector in the bracket is independent of r. In the radiation zone the vector
potential behaves therefore like an outgoing spherical wave (4.169) with an angle-
dependent coefficient.

If one still exploits d < A, i.e. k¥ < 1, then the series expansion of the
exponential function in the integrand can be terminated after a finite number of
terms. In the simplest case it remains:

ikr
Ar) ~ S ol / B ) . (4.453)
r 4m

This is the first term in (4.451).

(2) Near Zone

In the near zone we have klr — r'| < 1 so that to a good approximation the
exponential function in the integrand of (4.447) can be put equal to 1. The vector
potential is then, except for the harmonic time-dependence ¢, identical to that
of the magnetostatics. Retardation effects are completely suppressed.

4.5.3 Electric Dipole Radiation

Let us now go back to the expression (4.451) and investigate the first term in
somewhat more detail:

ikr
Ar) = “::f "7 / &P j(r) . (4.454)



390 4 Electrodynamics

Let V be the volume of the (p # 0, j # 0)-space region. For stationary (!) current
densities the volume integral vanishes which we have proved as (3.40). But here that
is no longer true. Let x} be a Cartesian component of r’. Therewith:

div (x}j) = x{divj+j- Vx} = X divj + i .

We use this to reformulate the volume integral:
/ &r (') = / d*rdiv (x]j) — / &r X divj .

Changing the first integral by use of the Gauss theorem into a surface integral one
recognizes that this integral vanishes on an area which encloses the (finite) j #

0-region:
/ d&rjry = — / d*r' r'divj .

The continuity equation
- J
divj(r, 1) + a—tp(r, H=20
= divj(r) —iwp(r) =0

allows for a further rearrangement:
/ &) = —iw / &r'r'pr) .

On the right-hand side there appears the electric dipole moment p of the charge
distribution p, already known from electrostatics (2.92),

p= / &rrp), (4.455)
by which the vector potential takes the following form:

ikr
el S (4.456)

Air) = —i 4 r

The nomenclature electric dipole radiation seems to be justified.
With A, (r) we now calculate the electromagnetic fields. The relation

curl (ap) = pcurla—a x Vo
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at first yields, since p is independent of r:

ikr
curl A (r) = iw M:'urp X (V ¢ ) ,
r

b4

ikr d ikr 1 ikr

vl —nf —na(1-—) &

r dr r ikr r

We thus get for the magnetic induction:
HoMr o e 1
B (r) = uk l—— |(mxp). (4.457)
4 r ikr

B, is transversal to the position vector r. If p defines the z-axis then the B-field lines
are concentric circles around the z-axis. The magnetic induction exhibits cylindrical
symmetry. The calculation of the electric field turns out to be a bit more laborious.
Starting point is (4.457):

ikr

1
curlcurl A (r) = Mu K? A 1—— Jcurl(n xp)
4 ikr

3 r

eikr 1
—(n x p) X |:V . (1 — E)}} , (4.458)

(2 2
we (%= innep -l

2

;

curlmxp)=P:-V)n— (n:V)p+n divp —pdivn,
~—— N——

=0 =0
2
pdivn = —p,
,
1 1
(P-Vn=-p—-n(p-n).
r r
This we insert into (4.458):

ikr
E(r) =

K*[(n x p) x n] + % (%—ik) [3n(n-p)—p]} .
(4.459)

41 €p€;r
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While B, is polarized transversely to the radial unit-vector n = r/r, E; has both
longitudinal and transverse components. Let us still have a somewhat closer look at
the fields in the various zones:

(1) Radiation Zone

Here it is kr > 1 and therewith:

k2 k 1
—> > 3. (4.460)

r r r

The electromagnetic fields now simplify as follows:

o 6‘ikr

B, (r) ~ ——uk> —(n x p) , (4.461)
41 r

Ei(r) ~ u(B;(r) xn) . (4.462)

Hence, in the radiation zone E (1), too, is transversal to n. E;, B| and n build locally
an orthogonal trihedron (Fig. 4.84).

Typically the fields fall off in the radiation zone like spherical waves according
tol/r:

[Ei| —
r—>00

Bi| —
r—>00

S| = N =

For the time-averaged energy density in these dipole fields Eq. (4.209) holds:

1 1
wi(r) = 7 (,uo/t B |* + €o€r|E1|2) .

Fig. 4.84 Field directions of
the dipole radiation in the
radiation zone
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With (4.462) we can write,
|E(|* = u?[By]”,
getting therewith
_ 1 )
Wl(l') = |B1| .
2o hr

The energy density of the electromagnetic dipole field in the radiation zone then
results with (4.461) in:

1 (Kp)?
32m2epe, 12

% = <(n,p). (4.463)

wi(r) = sin? 9 |

For the time-averaged energy current density we now apply (4.210):
— 1 *
Si(r) = Re (E;(r) x B} (r))
2o hr

- 2M”;“rRe [(B1(r) x n) x B} (r)]

=" Re[—Bl(n-B’f)+n|B1|2:|
2H0Hr N——

=0
u

B (r)]* . (4.464)
ZMOMr

=n

It obviously holds again
Si(r) = nuw(r)
and therewith

Si(r) = 32m2epe, 12

sin’? n . (4.465)

The energy streams with the wave velocity « in the direction of the position vector,

df =dfn,
df = r*dQ ,

where d2 = sinddddyp.
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dR/dQ

Fig. 4.85 Dipole characteristic for fixing the radiation power per solid-angle element

Often one discusses the radiated power per solid-angle element d<2:

dP(Sl) = Si(r) - df: radiation power through area the element df at r

dPy)
-5 =/Si(r):n=

=
a2

————Kk'p’sin® 9 . 4.466
3272€)€, p ( )
That is the typical dipole characteristic (Fig.4.85). The dipole radiates strongest
perpendicular to the dipole moment. No emission happens along the dipole axis.
The characteristic is rotational-symmetric about the p-axis.

We get the total radiation power P(Sl) by integration over all solid angles:

+1 | +1 g
/dQ sin” 9 = Zn/dcosz‘}(l —cos? ) = 27 (cosﬁ — —cos® 19) -
J 3 1 3
) _ u 4 2 ( _@
= Py’ = —k k=—). 4.467
S 127 €p€; p u) ( )

The proportionality of the radiation power to the fourth power of the frequency and
to the square of the dipole moment is the important aspect of this formula.

(2) Near Zone

For this region we have kr < 1 and therewith:

K2 k 1
" < ) < 5 (4.468)

With %" ~ 1 the fields simplify now to:

1 3n(n-p)—p

E (r) ~ 3 , (4.469)
41 €y r
ik
B, (r) ~ M:f;ruﬁ(n xp) . (4.470)
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The electric field corresponds to the electrostatic dipole field (2.73), of course except
for the harmonic time-dependence e~*’. Since we could assume in the near zone
generally exp(ik|r — r'|) &~ 1 no retardation effects appear in the near zone.

If one compares |E;| with |uB,|, one realizes that because of 1/r3 > k/r* the
electromagnetic field will be dominantly of electric character in the near zone.

4.5.4 Electric Quadrupole and Magnetic Dipole Radiation

We want to go a step forward in the expansion (4.451) of the vector potential and
discuss the next higher term:

ikr
As(r) = “:: (l —ik) ¢ /d3r’j(r’)(n-r’). (4.471)

r r

A, can be decomposed into two characteristic terms. To see this we rewrite the
integrand as follows:

nx (' xj)=rm-j—jmn-r)
— (-r)jr) = %(r’ xj) xn+ % [m-r)ja) + (n-j@))r] .
That can be written as:
As(r) = AP (r) + A(r) . (4.472)

The first term corresponds to magnetic dipole radiation:

AT (r) = —“::f (l —ik) e [n x %/d3r’ (v xj(r’))} .

r r

In this expression we recognize the magnetic moment m defined in (3.43):

ikr
L Moy €
ATP(r) = ik
2 (r) =i . (

—(1- —) (mxm). (4.473)

The second term in (4.472) describes electric quadrupole radiation:

ikr

AR — Hoftr e (l _ ik) /dSr’ [n-1)j) + (n-j())r] .

8n r r

For a further rewriting we use

/ d*rdiv [Y(m-r)j)] = / d*r Xdiv [(n-1) j(') ]+ / & (m-r')j(r')-Vx' .
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The left-hand side is zero since j is restricted to a finite space region (Gauss
theorem!). Thus it follows:

/dS}’/ (n. l'/)jx(l'/) — _/dSr/x/l:(n . r/)divj(r/) +j(l‘/) . V,/(n- I'/):| )

n

Corresponding relations exist also for the other components:

/ &r' [(-r) j() + ' (n-j@)] = - / &r' ¥/ (n - x')div (')

- / d*r'r'(n-r) (iwp(r')) .

In the last step we have again applied the continuity equation:

1 ikr 1 .
AL(r) = ——uk S (1 - — ) oF / & r'(n-v)p(r) . (4.474)
2 r ikr J 4m

The integrand contains a moment of second order of the charge density p. Hence, it
is a quadrupole term as the subsequent analysis will yet further clarify.

(1) Magnetic Dipole Radiation

For this type of radiation we can find the electromagnetic fields without explicit
calculation, simply by analogy-observations on the electric dipole radiation in
Sect. 4.5.3.

By comparison of (4.473) with (4.457) we recognize the following mapping:

AT (r) poneg éBl(r) . (4.475)
Because of
BYP(r) = curl AJP(r)
and because of (4.448)

E|(r) = 1curlBl(r) = u’curl (iBl(r))
) 1)
we get the further mapping:

1
BI°(r) «— —E(r). (4.476)
m<p Y
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We can therewith read off directly from (4.459) the magnetic induction of the
magnetic dipole m belonging to the current density j:

ikr 1 1
B (r) = X% € )2 [ x m) xn] + — (— - ik) [3n(n-m) —m]! .
4 r r\r
(4.477)
From the law of induction
curl E(r, 1) = —B(r, 1)
we find because of the assumed harmonic time-dependence:
curl E(r) = iwB(r) .
This holds in particular for the electric dipole radiation
L eurl By (r) = By(r) .
1)
The comparison with
i? D D
—curl By (r) = EJ(r)
1)
delivers the last, still missing mapping:
EfP(r) <«— —Bi(r). (4.478)
m<>p
Eventually, it follows with (4.457):
1 k2 ikr 1
E™(r) = — T (1-—)mxm). (4.479)
4w eger u r ikr

All the previous statements about the electric dipole radiation can be transferred
by use of the mappings (4.475), (4.476), (4.478) to the magnetic dipole radiation, if
only one replaces the electric dipole moment (p) by the magnetic one (m). There are
only minor differences. For instance, the electric field of the electric dipole radiation
is polarized, according to (4.459), in the plane which is spanned by the vectors n and
p. while the electric field of the magnetic dipole radiation is oriented perpendicular
to the plane defined by n and m.

When calculating the energy-current density §I;D of the magnetic dipole radia-
tion, one has to only replace p by m in the corresponding expression (4.465) for
the electric dipole radiation. The mappings (4.476), (4.478) cause on the whole
still a factor 1/u?. For the power emitted into the solid angle d2 one thus finds
as in (4.466):

apy) 1 K

)
= 0. 4.480
dQmp  32nleper u s ( )
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Hence, it can not be decided from the angular distribution only whether it is about
electric or magnetic dipole radiation.

(2) Electric Quadrupole Radiation

We discuss now the term (4.474) for the vector potential which, as mentioned,
represents electric quadrupole radiation. The integral is a vectorial quantity,

109.¢) = / PP m-T)p) = (. baTy) .

for the components of which we can write:

3
/d3r’xj/. (Z n,-xg) o(r')
i=1

3

I ¢ 1

3 E ni/d3r/ (3x]/.x:. — r’z&j) o) + gnj/d3r/ 2p(r') .
i=1

Li(%, ¢)

This expression includes the quadrupole tensor (2.93):
Q= (Q’:")izi=l,2,3 ;o Q= /d3r’ (3xx; — 28;) p(r') .
We define
Q(n) = (Q1(n), O>(n), Q3(n)) (4.481)

with

3
Qi(n) = Z Qijn; -

j=1

That means for I:
1
I= 3 (Q(n) +n / r r/z,o(r/)) .

The vector potential then reads:

Q ) eikr 1 H«OH«; R ,
A (r) = —uk (1 - —) (Q(n) + n/d v p(r’)) . (4.482)
r ikr ] 24nm
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The electromagnetic fields to be derived from this formula are rather complicated.
We therefore restrict ourselves here to an investigation of the radiation zone. For
this the estimation (4.460) is applicable and therewith:

ikr
AL(r) ~ —uk? S % [ Qm) +n / B )
r 24m
One finds

curlm =0,

curlQ(n) = O (;) ,

ikr ikr 1
vi —nis [1+(9(—)},
r r r

so that with the vector formula

curl (ap) = pcurla—a x Vo

the magnetic induction of the electric quadrupole radiation can be written as:

ikr
BO(r) ~ ikn x AS(r) = —i22% T3 £ (n x Q(m)) (4.483)
24w r
If one compares this result with the expression (4.461) for the magnetic induction
B, (r) of the electric dipole radiation then one realizes that, there, only the electric
dipole moment p has to be replaced by (—i(k/6)Q(n)) in order to get (4.483). With
the corresponding replacement we can therefore adopt also the expression (4.462)
for the electric field:
k3 eikr
EL(r) ~ u (B;Q(r) x n) ~ i % [(ax Q) xn] . (4.484)
24w €pe, 1

E;Q, BEQ, n build a local orthogonal trihedron.
The time-averaged energy density,

1 k6 2
- nx QI (4.485)
A epe, 288 1?2

eQ2
2

W5(r) =

ZMOMr

belongs to this electric quadrupole radiation as well as the energy current density

S° = nuw® (4.486)
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and the power emitted per solid angle:

(2) 6
P
(d s ) LSNPV (4.487)
eQ

aQ = 47 €, 2887

The radiation pattern is for the general case rather complicated and can be presented
in closed form only for simple geometries.

Example We consider an oscillating charge distribution with a quadrupole moment
of the type (2.102) (oscillating stretched quadrupole):

Q;=0 fori#j,
O =0:; 0On =Q22=—%Q-
The quadrupole tensor is trace-less:
Inx Q = (mQs — n30>)” + (1301 —mQ3)> + (m Qs — mQ1) .
In our example it is
0= —%in P O = —%an ;o O3=0n3.

and therewith:

s, 1 2o 2 1 1 2
|n X Q| =Q nyns + §n3n2 + §n1n3 +mn3 | + —Enlnz + Enlnz

9 9 2 9
= ZQZ [(nan3)* + (min3)?] = ZQZ%(yZ +2%) = ZQZ cos® ¥ sin® ¥ .
r

It then follows:

dp (32) 2 2
~ 9 sin® 9 . 4.488
( 70 Q“ cos” ¥ sin ( )
eQ
The radiation power is therefore maximal in the directions ¢ = n/4 and ¥ =

37 /4. Tt disappears for ¢ = 0,7/2 and 7 (Fig.4.86). It is rotational-symmetric
with respect to the z-axis.

Final Remark

Higher expansions of the exact basic formula (4.447), beyond that performed
in (4.451), are becoming more and more complicated and magnetic and electric
contributions cannot be decoupled without further ado. Furthermore, we should
not forget that all considerations performed here are strictly bound to the precon-
dition (4.449)d < A, r.
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An exact, here not feasible multipole-expansion is in principle possible; however,
mathematically not so simple, but in return independent of restrictions of any kind.

4.5.5 Radiation of Moving Point Charges

Finally, we want to discuss a special application of the retarded potentials (4.442)
and (4.443). A point charge ¢ which moves along a path R(#) with the (momentary)
velocity V(7) creates a time variant electromagnetic field which we now be calculate.
For that, we investigate the potentials belonging to the charge density

p(r.1) = g8 (r—R()) (4.489)

and the current density

jr.6) = g V() § (r —R()) . (4.490)

(1) Electromagnetic Potentials

We use for the potentials the expression (4.431) with the retarded Green’s func-
tion (4.439):

7) -
(rt)—/d?”/dt o) (=l L) (4.491)
4|r — 1| u

Here the following assignment is valid:

o', 1)
€0€r

o(r',f) = = Y(r, 1) =o(r1),

O'(I'/, t/) = Hoﬂrj(r/s t/) — w(rs t) = A(I‘, t) .
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The r'-integration can be immediately performed because of (4.489) and (4.490),
respectively:

1. _ NN ’
o(e. ) q /dt,S(u|r R()| —t+7)

47 €oer Ir—R(7)| ’ (4.492)
ot [ o 8(HE=R@)| —1+7)
Ar.) =g / df V() R . (4.493)

Since R = R(?’) the 7'-integration is not so directly performable. We abbreviate

f() = ilr— R(/)| —t+7

(4.494)
and exploit the property (1.10) of the §-function:
S(t’
SLF)] = Z
j=1 dr’ t’=ti
t; are the simple zeros of the function f(¢').
df 1 d 1 (r—R()) V()
— =1+- -R@)|=1—- """ 4.495
dr + u dr " 2l u |r—=R()| ( )

Because of the unit-vector on the right-hand side we can estimate:

] /
VO _d V)
u dr u

The particle-velocity V is in all cases smaller than the velocity of light u so that
because of

CiA

dt’>0’

f(¢) turns out to be a monotonically increasing function which can have at most one
zero. In the case that there is no zero at all, one comes to the physically unrealistic

situation ¢ = 0, A = 0. We therefore can assume that f(#') has exactly one zero
' = tr which comes out as the solution of the equation

1
te(r, 1) =1 — — |r — R (ter)] - (4.496)
u
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Therewith we are now able to perform the #-integration in the expressions of the
potentials:

q
47 €0€r (I — Rlter)| — £ (0 = R(tier)) * V(b))

Hofteq V (frer) '
4 (|I' - R(trel)| - % (I' - R(tret)) ¢ V(tret))

o(r,1) = (4.497)

Adr, 1) =

(4.498)

These are the electromagnetic potentials of an arbitrarily moving particle which are
called

Liénard-Wiechert potentials

They cannot b calculated easily because of the retardation (4.496) for complicated

particle paths. ¢, accounts for the finite transit time of the electromagnetic wave

from the momentary particle position R to the point of observation r (Fig. 4.87):
Retarded distance vector

Drel(rs t) =r— R(tret) . (4.499)
With the further definitions,
Diet(r, 1)
Npee(r, 1) = ————, (4.500)
l( ) Dret (rv t)

1
Krel(rs t) =1- ;nret N V(tret) s

the potentials can be written more compactly:

q
r,t) = s 4.501
(p( ) 477 GOErDretKret(ra t) ( )
pofrq V (frer)
477 Dreikrer (T, 1) ’

A(r, 1) = (4.502)

Fig. 4.87 Illustration of the
retarded distance vector

R(t ret)

D, (r,t)
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(2) Special Cases
(a) Point charge at rest:
V=0 < R(@{) =Ry.

Inserting these data into (4.497) and (4.498), respectively, leads to the result,
which is well-known from electrostatics:

q

— . A(r,)=0.
47 €ger|r — Ry| (r.)

p(r1) =
(b) Uniformly moving point charge:
V=vy=const; R() =Rgy+ vor.
At first we have to determine #, by the retardation condition (4.496) (Fig. 4.88):

Dret(r, 1) = u(t — tret) = [t — R(tret)| = [r — Ro — Votret|
= |r —R(?) + vo(t — trer)| .
D(r.7) = r—R() (4.503)
= (W = 0})(t— tre)* = D*(r,1) + 2D - Vot — trer)

= D?(r, 1) + 2v9D(r, £) cos a(f — frer)

D v cos o D?
= (- tret)z -2 ﬁ(f — tret) = ) P
u* —vg u* — v
L D v cos o L \/ D2 D? v% cos? a
= (—let = ) 2 2 .
u? — Vg u? — Vg (u? — vo)2
Fig. 4.88 For the calculation Particle-path

of the potentials of a

uniformly moving particle
Vv

0
q é D(r,t)
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Since u > vy and t > f; must hold, only the positive sign can be valid, i.e.

D(r,t -
I — et = % (Uo cosa + yJu? — vé sin’ a) . (4.504)
— Y

Therewith it further follows:

1 1
Dret(rv t) - ;Drel(rv t) * V(tret) = u(t - trel) - ;VO * (D(l‘, t) + VO(t - tret))

1 1
_(’42 - U(%)(t — tret) — —Vo - D(r, 1)
u u

1 .
;D(r, )| vocosa + /u? — v(z) sin? & — vg cos o

2

=|r—R@H/1 - v—gsinza .
u
This means in (4.497):
q 1
1) = ,
o = el — RO 2
— Lgin’«
w2
1
A(r,1) = —vop(r,1) . (4.505)
u
(3) Electromagnetic Fields
Analogous to (4.500) we define:
D(r,t
n(r,t) = (r, ) ,
D(r,1)
1
k(r,t) =1——n(r,1) - V(7). (4.506)
u

Therewith follows, for instance:

ai (D(rt) t+t/) (1+18—D)8( )

= (1 - %n(r, t’)-V(t’)) 8.

= k(r,7)8 (%D(r, t/)—t—i-t’) . (4.507)
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&8'(...) denotes the derivative of the §-function with respect to the full argument:

bb D D V_ _% [~ (- V()n+ V()]

i (r.0) +
—n(r, R
D2 D D D

ot

- A\ 4.508
_an(nx ). (4.508)

For the calculation of the E-field we conveniently use the original integral
form (4.492):

E(r, 1)

0
—Vo(r, 1) — &A(r, 1)

’ 1 /) — 4
_ —q /dt,(VrJrV(z)g)s(uD(r,z) t+1)

47 €pe; u? ot D(r,t)
_ —q ry) n(r,?) (1 n_ /)
= —4ﬂ606r/dt§ Dz(r,t’)8 uD(r,t) t+t
@) V() ) ,(1 , )}
+(uD(r,t/) u’D(r,t') 5 uD(r’t) i
507) —q /dt' [_ n(r,?) N 1 (n(r,t’) V(@) )ii|
T dmee DA(r.7) |« ) \uD(r.7)  @D(xr.r)) or
-8 (lD(r, y—t+ t’)
u

(inth parts) g , [ n(r.7) ( 9 n(r.7) —V(t/)/u)] (1 ’ ’)
N d = BRSO s (~D(r.) — .
4 €oér / ' [Dz(r, t') + ' uk(r,t')D(r,t) u (r,0)—1+1

Because of the §-function the integrated part vanishes at the limits #/ = +o00. The
t'-integration can now be performed as in (4.497):

_q 1 n(r,?) 1 0 n(r,/)—V({)/u
Blr) = rae |:K(l', 1) (DZ(r, N T W k(e D@ 1) )L% '
509)

This we further rewrite with (4.508):

E(r,1) =

q |: 1 (n(r,t’) +(n(r,r’)-V(r’))n—V(r’)

4 eoer | k(r, ) \ D2(r, 1) uk(r,?)D%(r, 1)

n(r,?)=V()/u 9 , , 1 a(t')
T Dy e WP 0) - —Wﬂ |

We have introduced here by

ad
a(r) = a—tV(t)
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the particle acceleration. Eventually we still need:

(4.403)

d d 1

% (k(r, 1) D(r, 1)) % (D(r, 1) — ;D(r, t) - V(t))

= D(r,1)— 11’)(1; 1 -V() — lD(r, 1) -a(r)

= —n(r,1)-V(@) + VZ() (n(r 1) -a(r)) .

This yields for the E-field:

E(r,?)

- e[l o 2) s L)

+n(r, )2 (r, 1) + ;K(r, /) (n(r,/)m(r,7)- V(') — V(/))]

1
23w D, 1)

1 A n-v V2
Py G A
1 1 A\
—— |-al1=Zn-Vv . ——
* ui3D |: a( u n ) +(n-2) (n “)i|}t’—tm

That leads to the final result for the electric field:

B =—1 { ! (%ﬁﬁ_w?v(hjw?v

47 o€ k3, (r,1) | D2y(r. 1) u

1 V(trel) a(tret)
+—M Dre[(r’ l‘) : |:nret(rs t) X ((nret(rs t) - u ) X " ):|} .

(4.510)

Y
[_a(ﬂ)“(r’ /) + (n(r.) - a(t) (“(r, /)~ #)]} -

q
41 €per
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We still need the magnetic induction:

B(r,f) = curlA(r,¢) = MZ'L;Q /dt’ V, x |:D‘(I(t/t)/) (ID(r )y—t+ t)i|

; S, )y —t+71

4 D(r,?t)
Broed [y (7). /
:-Z—ﬂ/dtV(t)xl: D7) ( D(r./) — t+t)

n(r,?) , , ,
+m5 (;D(r,t)—t+t):|
_ Hofq , [ V(@) xn(r,7) 1 9 V() xn(r,7)
C Arm / dt [ D(r, 1) + (u or k(r,7)D(r, t’))}

8 (lD(r, )—t+ t’) .
u

In the last step first (4.507) was applied and then integration by parts was applied.
Doing the ¢-integration yields the intermediate result:

B(r.1) = HoMeq [ 1 (V(t/) x n(r, 1) L1 1 0 V() xn(r, t’))}
dr | k(r,?) D2(x, ) u 3t k(r,t)D(r, ) V=t

4.511)

Let us try to derive a simple connection between the E- and the B-field:

woi,g (1fVXn 109 V 1V d
B s = — = - — — - — —
=) 4 {K_ D? +u(8t//<D nto e,
@508 foieg (1[VXn 179 V
T 4x %K | D? u(at’KD Xt KDXD((n Vin—V) —
Mop:g (1 [VXn V-n) 1(8 V) }
= B 1 -(=— .
4 %K | D? ( + uK +u o kD xn P
We use (4.506) in the form:
V-n 1
1+ =—.
UK K

The magnetic induction therewith reads:

_ HoMrq V() 1 i V(') ’
B(r.n = 4 H:Dz(r, t)k2(r, 1) + uk(r,t) (3t/ Kk (r, t)D(r, t’))] x n(r,t)}tttm ’

(4.512)
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Otherwise it follows from (4.509):

nx E =

1
47[ €0€r Bt’ kD ) xn+ E |:_( D)Z (n n) (K D)i|

+—Lnx [ll)(n(n-V)—V):|

_q 1 a V()
n 47reoer|:/cu2 (at/ kD X 2D2 wipa VX

The comparison with (4.512) yields:

g g 1 (a V() /u

1/ =tret

1
B(r,7) = — (0 (r, 1) X E(r, 1)) . (4.513)
u
The electromagnetic fields of the moving point charge g are with (4.510) and (4.513)
completely determined.
(4) Poynting Vector

The electromagnetic fields decompose into two characteristic terms where one of
them is independent of the particle acceleration:

Eo = q 1 (e — ﬂrel)( rel)
0 = — ,

41 €€ K3, D2,
q 1 (11— V(tet) X 0
B(O) _ M(‘)"l; q K_3 ( ret) (DZ( ret) rel) (4.514)

ret ret

Both the fields decrease at large distances according to the reciprocal square of the
distance (~1/D2; ~1/r?), behaving thus as the static (stationary) fields of point

ret?

charges. In (4.514) we have applied the usual abbreviation:

1
Bt = ;V(tret) 4.515)

For B < 1 one speaks of a non-relativistic and for 8 < 1 of a relativistic particle
motion.
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The second field term is essentially co-determined by the acceleration of the
particle a:

q L Ny X [(nret ﬂret) X (aret/“)]
47 €g€r K, U Dreq

B(a) _ MoMrq Mper X {nret X [(yer — ﬂret) X (aret/u)]} (4.516)
4 /crel Do

These field-contributions decrease for large distances as 1/Dy, are therefore
dominating in the radiation zone over those from (4.514).

Let us now discuss the energy radiation of the moving particle given by the
Poynting vector:

S = ExB=

Hofr Hofet

[0 E> — (e - E)E] (4.517)

When we insert the electric field given by (4.510) then we get because of (4.514)
and (4.516), respectively, two different summands. These decay differently rapidly
with increasing distance D of the particle position R at the time #.; from the point
of observation r. At a sufficiently large distance (far field) we can restrict ourselves

to the (1/D2,)-term, which results from (4.516). The (1/D3,)-summands namely
do not contribute to the energy radiation since
§£Sdf—> —r2d9—> dQ—>——>0.
rel r r—>oo

These terms lead solely to a certain redistribution of the electromagnetic energy in
the surroundings of the moving particle. Only the field energy that can flow up to
the infinity leads to an actual loss of energy of the particle which is balanced by
the kinetic energy. All the other contributions are bound to the neighborhood of the
particle. For the energy radiation, thus, only (4.516) in (4.517) is interesting:

q2 {Nper X [(Mrer — Brer) X (Arer/ "‘)]} +0 ( )
ret
HOHr“ 167[250 2 Uy Diey D’
— §= 61 Nyet {nret X [(nret - ﬂret) (arel/u)]} +0 . (4518)
1672€p€,u kS, D%,

The energy flux therefore has the direction from the particle position R at the time
trer to the point of observation r. Furthermore, only accelerated particles (a # 0)
emit energy. A uniformly moving particle creates E- and B-fields, but does not lose
energy by radiation.
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Fig. 4.89 For the calculation
of the emitted energy per unit
time of a moving charged
particle

(S - nye) D2, is the energy emitted per time dr (at the point of observation) in the
direction of n in the solid angle d<2 (Fig. 4.89). It is even more interesting to look
at the energy emitted per time df,¢ by the particle on its path:

dpP dt
== = (S ° nrel) Dr2e1 (_) .
t/=trel

d2 dr
Referred to (4.496) it is:
dt 1 d 1
— =(14+-—D(, 7 =(1—=-n-V({
(dt/)t’=tm ( * u dr (r ))t’=rrel ( u " ( ))r’=rm
= Krel(rs t) .

That yields the radiation power:

dPs ¢ {0 X (e — Bre) X (@rer/ )]} @.519)
a2 1672€p€u (1 — Ny - ﬂret)5 '
We add a short discussion:
(1) Non-relativistic
Bree K 1.
Then we can estimate as follows:
dP 2.2
S HOKd et 25 (4.520)

dQ ~ 16ntu

¥ here is the angle between the acceleration a,e; and the radiation direction ng.
This type of radiation is realized in the X-ray apparatus. When electrons are
decelerated in metals then that leads to an electromagnetic radiation which is known
as bremsstrahlung.
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(2) Relativistic

Pree S 1.

Let us in particular assume that the particle is accelerated and decelerated, respec-
tively, in the direction of its motion, i.e.

Aret TT ﬁrel Or  Qret T\L ﬂret .
Then (4.519) becomes:

dPs  [oteq sin® ¥
dQ ~  1672u (1 — Brrcos?d)’

(4.521)

The space-direction of maximal emission is found by:

d dPs\ 1
—_— —_— = max = 1 1 2 _1 . 4. 22
e (dQ) 0 = (cos Mmus = 75— (\/ + 1562, ) (4.522)

Umax decreases monotonically with increasing particle velocity (Fig. 4.90):

Bret € 1 = Dyax & 7/2: radiation maximal perpendicular
to the forward direction,
Bret S 1 = Umax ~ 0: radiation mainly in the forward direction.

The radiation pattern is rotational-symmetric around the direction of the particle
motion (Fig. 4.90).

For further details to the topic ‘moving point charges’ the reader is referred to the
advanced literature. Keywords:

1. limits of the Bohr atom model,
2. radiation damping,
3. synchrotron radiation.

Fig. 4.90 Radiation pattern B<1
of a relativistic, charged
particle
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4.5.6 Exercises

Exercise 4.5.1 In Sect.4.5.1 the inhomogeneous wave equation,
Oy (r,t) = —o(r,1)
was solved by means of the Green’s function G(r —r/, ¢t — '),
0.Gr—rt—7)==8(c—-r)§(t—7) .

and by applying complex integration. Alternatively, try to integrate the inhomoge-
neous wave equation directly!

1. Show at first that the known relation (1.69),
1
A - =—474(r),
r

can be generalized to

+ikr
(A+#) = — = —4m8(r) |

2. Solve the inhomogeneous wave equation by use of the ansatz:

+o00

Y0 = J%_ [ dwvuw e
| +o00

o(r,t) = E_/ dw o, (r) e

Exercise 4.5.2 Consider the electric dipole radiation of a spatially restricted,
temporally oscillating source. Demonstrate for By (r, 7) that in the vacuum the phase
velocity is larger than c!

Exercise 4.5.3 In the infinitely extended yz-plane (x = 0) a spatially homogeneous
current I = Ioe™" (per unit-length in y-direction) is flowing in the z-direction.
Calculate the electromagnetic fields E and B in the whole space (x # 0)!

Exercise 4.5.4 Assume that the volumes V| and V, do not have any common space
point. j; and j, are currents, restricted to V| and V,, respectively, with the same
harmonic time-dependence:

e =jime™ (=12



414 4 Electrodynamics

Let E;(r, 1) be the electric field caused by j;(r, 7).
1. Show that it holds:

Ji(r, 1) - Ex(r,1) — jo(r,2) - Ey(r,7)
= div(Hy(r, t) x Ey(r, 1)) — div(Ha(r, ) X E{(r, 1)) .

2. Prove with the electric dipole approximation for the radiation zone the so-called
‘reciprocity theorem of the radiation theory’

/jl -Eyd’r = /jz.ElcPr.

Vi Va

3. Let the systems (volumes) V| ; have the dipole moments p; 2,

Pi2 = /d3rrP1,2(r)-

Via

Show that in the dipole approximation the result from part 2. can also be
expressed in the form:

E;reVy) -pir=E eV, -p

Exercise 4.5.5 Let a monochromatic plane wave (E;, B;) impinge on a system
whose linear dimensions are small compared to the wavelength of the radiation
(d <« A). Let the surroundings of the scattering system be vacuum (i, = € =
1). Assume the electric field E; to be linearly polarized in the direction #;. The
impinging field induces electric and magnetic multipoles in the system so that the
system becomes the source of scattered radiation (Eg, Bs) (Fig.4.91).

1. If one restricts the considerations to the electric dipole contribution, what are the
fields Eg, By in the so-called radiation zone (kr > 1) ?
2. Calculate the differential cross section:

scattered energy flux (ns, 3,)

do
d_Q(nS’ s W) = dS2 - incident energy-flux density (n;, 3;)

Fig. 4.91 Scattering of a H
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As a special case, the incident wave is scattered at a dielectric sphere (e,
const, u, = 1) with the radius R. Calculate do/d<2. Which statement is possible
about the polarization 7, of the scattered radiation?

Normally the incident electromagnetic wave is completely unpolarized, all
directions of the polarization vector »; are represented with the same weight.
Calculate the polarization P(¢) of the scattered radiation:

(7).

(7). +(

aQ
(do/dS2) (1 1s the scattering cross section for an incident wave which is linearly
polarized within (perpendicular to) the scattering plane. By ‘scattering plane’
one understands the plane which is spanned by n; and ny.

P() =

4.6 Self-Examination Questions

To Section 4.1

1.

11.
12.
13.
14.

15.

What is the physical essence of Faraday’s law of induction? On which
experimental observations is the law based?
What does one understand by Maxwell’s supplement?

. Explain the contradiction between the Ampere’s law and the continuity equa-

tion in the case of time-dependent phenomena!

Quote the full set of Maxwell equations!

Why does it make sense to introduce the electromagnetic potentials ¢ and A?
Which general gauge transformation is allowed for the electromagnetic poten-
tials? Show that thereby the electromagnetic fields E and B do not change.
What is understood by the Coulomb gauge? Which advantage is offered by its
usage?

Which advantage is offered by the Lorenz gauge?

Which force does act on a point charge ¢ in the electromagnetic field?

. What is the work done by the electromagnetic field on a charge density p(r, 7)

that is restricted to a finite volume V?

What is the physical meaning of the Poynting vector? Which kind of continuity
equation is fulfilled by it?

How is the energy density of the electromagnetic field defined?

Formulate the energy law of electrodynamics!

What do we understand by the field momentum? What is the momentum
theorem of electrodynamics?

Define and interpret the Maxwell stress tensor!
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To Section 4.2

1. What is meant by quasi-stationary approximation? Formulate the Maxwell
equations in this approximation!
Explain the term induction voltage!
What is expressed by the Lenz’s law?
Define self-inductance and mutual inductance!
What is the self-inductance of a long coil? Sketch its derivation!
Express the magnetic field energy of a system of current-carrying conductors
by the inductance-coefficients! How does it look like in the case of a single
conductor loop?
7. Which differential equation does the electric current / satisfy in a conductor
loop consisting of a coil, a capacitor, and an ohmic resistance?
8. What is the meaning of the terms impedance, effective resistance, and reac-
tance?
9. What does one understand by the effective values of the current and the voltage?
10. Derive and comment on the phase shifts between current and voltage as well as
the time-averaged power of an alternating current circuit with either an ohmic
resistance or a capacity or an inductance!
11. What does one understand by damping and eigenfrequency of the electric
oscillation circuit?
12. Discuss the time-behavior of current and voltage in the electric oscillation
circuit for weak, critical, and strong damping!
13. Which mechanical analogue to the electric oscillation circuit do you know?
14. How does the amplitude of the current [y in the series-resonant circuit depend
on the frequency w of the applied voltage? When does resonance appear?
15. How is the current in an RL-circuit built up after switching on a direct voltage?
What happens after switching off? In this connection, what is understood by
the characteristic time constant?

IR

To Section 4.3

1. Under which conditions do the components of E and B fulfill the homogeneous
wave equation? What is the wave equation?

2. Which structure does the general solution of the homogeneous wave equation
have?

3. What is a plane wave? Define for it the terms phase velocity, wavelength,
propagation vector, frequency, and period!

4. Which relation exists between phase velocity, wavelength, and frequency?

5. What is the solution of the homogeneous wave equation which simultaneously

satisfies the Maxwell equations? Which connection does exist between E, B

and k?

What is meant by linearly, circularly, and elliptically polarized plane waves?

When is a medium dispersive?

How and when do group and phase velocity differ?

What is a wave packet?

A
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10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.
32.

33.

34.
35.
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Are there other types of solution for the homogeneous wave equation, other
than the plane waves?

Describe a spherical wave!

What do we understand by the Fourier series of a function f(x)?

How is the Fourier transform of the function f(x) defined? List some of its most
important properties!

What is expressed by the convolution theorem?

How can we find, by means of the Fourier transformation, the most general
solution of the homogeneous wave equation?

How do energy density and energy-current density read for electromagnetic
fields with harmonic time-dependences? What does in particular hold for plane
waves?

How is the time-averaged energy density of a plane wave distributed over
magnetic and electric portions?

Give the connection between the Poynting vector and the energy density (time-
averaged) for the case of a plane wave!

Which differential equation does for a homogeneous, isotropic, uncharged,
electric conductor (o # 0) replace the homogeneous wave equation of an
uncharged insulator?

By which kind of ansatz can the telegraph equation get the same structure as
the homogeneous wave equation?

What determines the penetration depth of an electromagnetic wave into an
electric conductor?

Is the phase velocity of the wave in a conductor larger or smaller than that in an
insulator?

Which spatial dependence does the time-averaged energy-current density
exhibit in an electric conductor?

What are the continuity conditions for the electromagnetic field at interfaces in
uncharged insulators?

How do the laws of refraction and reflection read for electromagnetic waves at
interfaces?

For which angle of incidence does total reflection appear?

Which physical facts are expressed by the Fresnel formulas?

How can reflection be used to create linearly polarized waves?

How are the coefficients of reflection and transmission defined?

What does happen to the electromagnetic wave when the angle of incidence is
larger than the limiting angle of total reflection?

When and where do the phenomena ‘interference’ and ‘diffraction’ appear?
Sketch briefly the main steps necessary for the derivation of the Kirchhoff’s
formula!

Which simplifications lead to the Kirchhoff approximation? Try to make them
plausible!

What is the difference between Fraunhofer- and Fresnel-diffraction?

In which kind of optical experiments does the ‘Poisson spot’ appear? Why is
its appearance astonishing?
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36.
37.
38.
39.

40.

Explain the Babinet’s principle!

In which connection (experiment) are the Laue equations of great importance?
[lustrate the Bragg-law!

Define and interpret the limiting case of geometrical optics! What is its
relationship to the general wave optics?

What is the eikonal equation of geometrical optics? Which preconditions are
mandatory to come to this equation?

To Section 4.4

1
2

3.

NN o NV NN

10.
11.

12.
13.
14.
15.

16.
17.

18.

. When does a sequence of complex numbers {z,} converge to zop € C?
. When is a complex function denoted to be continuous at zop? When is the

function uniformly continuous?
How is the differentiability of a complex function defined? Which role do the
Cauchy-Riemann differential equations play?

. What is a domain G?
. When is the function f(z) analytic in a domain G?
. How is the complex line integral defined?

When is a domain called simply connected?

. Formulate the Cauchy’s integral theorem!
. What does the Cauchy’s integral formula express? Which connection does exist

with the proposition of Morera?

What is the region of convergence of a sequence of complex functions?

What is said by the Cauchy-Hadamard theorem about the convergence of a
power series?

What is the content of the expansion theorem?

Formulate the identity theorems for power series and analytic functions!
Explain the principle of the analytic continuation!

What is understood by a pole of n-th order, by a branching point of a function
f(@)?

Define and interpret the Laurent expansion of a function f(z)!

Let the function f(z) have at z* a pole of p-th order. How do you then calculate
the residue of f(z) at z*?

Formulate Cauchy’s residue theorem!

To Section 4.5

1.

(O8]

Sketch the way of solution for the inhomogeneous wave equation! How do effects
of retardation become noticeable in the general solutions of the electromagnetic
potentials?

. What is understood in connection with electromagnetic radiation by the terms

near zone and radiation zone?

. How does the vector potential behave in the radiation zone?
. How does the power per solid angle emitted by the electric dipole radiation

depend in the radiation zone on the wavelength A and on the dipole moment?
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5. Are retardation effects observable in the near zone?
6. What are Lienard-Wiechert potentials?

7. When will a charged particle emit energy?

8. What is bremsstrahlung?



Appendix A
Solutions of the Exercises

Section 1.7

Solution 1.7.1 It is to show:
1.6(x—a) =0 Vx#a,

ﬂ .
2./ dxd(x—a) = 1’1fa<fl<'3’
o 0 otherwise .

Tol.x # a:

lim e =0

n—0t /TN
To 2.
(@ a<a<§B:

' 1
2
Fp(a) = / —— e gy
n =
o

It follows withy = (x —a)/ /7:

B=a)/ /1

1 2
Fy(a) = ﬁ / dye™ .

(@—a)/ /1
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That means:
+o00
lim F,(a) ! /deyz—l
ot T Y N
—00
b) a<a<p:

a—a=a>0—a=H>0

e [P [ }
Fy(a dye™ = —/ dye?” — — dye™
«/_ a/yn ﬁ —00 ﬁ —00

= lim Fy(a)=1-1=0.
n—0t

) a<B<a
a—a=uo>0a-p=p>0

AN | oo | [t
- dye” ¥ dy e

Fy(a) = dye” = —
\/_ i Ve Vr g

= lim Fy(a)=1-1=0.

n—0t

From 2(a), 2(b), 2(c) we get:

. / 1 |: (x—a)2i| {1,ifot<a<,3,
lim ——exp dx = .
—ot+J /7N n 0 otherwise (a # «, B) .
o

It follows from 2(a) for the edge points:

B
1
/dxé’(x—a)zz, ifo =aorf=a.

o

Solution 1.7.2 Equation (1.7):

Ui
S(x — Iim — —— .
(x—a)= = a)
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Therewith it follows:

lim Im; = lim Imw = F lim "
7—0+ (x—a)tin oot x—a)?+n? 0t (x—a)?+n?
=Frélx—a).
Solution 1.7.3
1.
. n
S(gx)) = lm — ——— =0 forg(x 0.
(8(x)) G gx) #
On the other hand:

ZWﬁCMS(X—xn)ZO Vx #x,, ie.forgx) #0.

a<x,<p *nTe€

B
o= [aseoro= Y [ asewye

n

e—0" = Z / dx 8 (g () (x — X)) f(x)

B
— [ @ Y5 e -x) 0.

g (x,) > 0:

z=g(x)x
ﬂg/(xn)

1 Z
= I=) — $e—z)f | —
Tz </ )dzg/(x,a (emalf (g/(xn))
a g (x,
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a g (xn)<zu<B g (xn) 1 2 a<x,<pB 1
—— (—) = ——f(xa)
2 g (xn)" \ &' (xn) Z g (xn)

n

B
1
a/dx Xn: g/(—xn)8(x—xn)f(x) .

The comparison with the definition of 7 yields, since f(x) is arbitrary:

1

8(g(x) = Z 7o S
g (x,) <0
1=-% _7g/dz;5(z—z )f(L)
T g/ (x| N g )
—alg’|
= +Xn: / dzwé’(z—zn)f(g,(%n))
—Blg’|
—alg'|>z>—plg’| 1 z
e )

n

a<x,<f

B
1 1
= Y e = [ @Y s .
Zn: g’ (xn)] Zn: |8’ (xn) |
The comparison with the definition of / yields, since f(x) is arbitrary:

1
S(g) =y PIERTER

Solution 1.7.4
1.I1=9-154+6=0.
2.1=0.

3.

f)=x=3x+2=x-2)(x—1),
—zeros: x1 =2, x=1.
) =2x=3 = fl(x) =1 =~f(x)
= §(*-3x4+2)=8(x—2)+8(x—-1) = I=5.
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4.
+o0 |
I=— / dx(Inx)8(x —a) = — .
a
0
5.
f(@¥) = COSI‘/‘—COS% = zero: ¥ = % ,
1
F®) ==sind = f/(9) = —sin T = =3,
r sin® ¢ 3
I= (O =) dd =sin® = = .
rsingy] 0@~ SIvE =g
0
Solution 1.7.5
r=(xy; (pe),
ro = (x0.y0) ;: (0o, ®o)
d(r—rp) =0 forr#rg, (A.1)
_(1.ifrgeF,
/dfé’(r ro) = %O otherwise . (A-2)

F

1. Cartesian

ansatz: §(r — rp) = a(x,y) §(x — x0) §(y — yo)-
Equation (A.1) obviously fulfilled.

/ df 8(r — 1) = a(xo. y0) /f dxdy 8(x— x0) 50— y0)
F

F

- 1, if (xo,y0) € F,
= a(xo, Yo) { 0 otherwise .

= axo,y0) =1,
ie, §(r—ro) = d(x—x0)5(y—yo) -
2. Plane polar coordinates (Fig. A.1)

X =pcosey, y=psing,

I(x.y)
df =dxdy = 30p.0) dpdyp = pdpdey .
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Fig. A.1 y
)

ansatz:
8(r —ro) = B(p,¢) 8(p = po) (¢ — o) ,

[ arsw—r0 = [[ odoaopio.0156- p5t0 - a0
F F

= poB(po. ¢o) // dpde 8(p — po) 8(¢ — @o)
F

1 s if(p(),@o) ¥ s
0 otherwise .

= poB(po, %o) {

1
—t 18:_’
Po

_ 1
ie., 8(r—ry) = o 8(p— po) 8(¢ — o) -

Solution 1.7.6 Equation (1.27):

o] 1 3 9 " o] 1
o) =3~ [ Dug | #O =D - V'e(0) = exp(r- V)g(0) .
n=0 — \j=I1 J n=0
1.
ieik-r — ikjeik-r ,
an ’
3
J .
ijg ezk-r — i(k.r)ezk-r i
J

d
(Zx]a—xj) 0(0)=ik-r,

J
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n

ad
> :xjg ¢(0) = (ik-1r)"
j ]

o0
— (p(r)—z—(lk r".
n=0
2.
_XNT%o
v — 1o
n=0:
Yo =T19
n=1
(—xjo)
Zx,—so«)) =) v
- ro
j
r-ro
- @1 = — .
o
n=2:

d x] Xj0
Z’“”“"a g Tl = Zx”‘axk It — 1o

_ Zx‘xk [ Sk (g —x0)(n —Xko)}
- )

, |

J.k

r—ro| Ir —ro|3
2
9 r (rerp)?
— x— | )= -
Zj: J 0x; ¢(0) 70 rg

11
= 902:5%[’2”0 (r-ro)?] .

2 2
r-Tro r r-Tro
( )

allinall: ¢(r) =ry—

ro 2}’0 2}’(3)
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Fig. A.2 y
M (L,1)
F
(0>0) dx (1,0) X
Fig. A.3 y
R/,
1
:
X
F
Fig. A4 y
|
R |
|
X

Solution 1.7.7 Multiple integrals (see Sect.1.2.5, Vol. 1) (Figs.A.2, A.3, and
A.4):

1.

1 x
I = //dxdyf(x,y) = /dx/dyx2y3
F 0 0
| 4
= I = /d)cx2 )jT
0

X

1
1 1
:—/dxxéz—.
o 4 28

0
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2.
+R ++/R2—x2 +R . +VR—2Z
I=/dx dyx2y3=/dxx2(y—) =0.
4/ Ve
—R —JR2=2 —R
3.
R 2_ 2
4 R>—x
I = /dxx2 (y—)
4 /1o
0
1 ; 1 ;
= Z/dxx2 (R2 —x2)2 = Z/dx (R4x2 — 2R%* +x6)
0 0

Solution 1.7.8

1. Parametric representation (Fig. A.5):

a

F:%rz(x,y,zz—y—f-—) 7 0<x=<b;

V2
= F(x,y) .

o
A
<

A

S

We get with Eq. (1.34):

ar 9
df = (X x ) arvdy = (1,0,0) x (0,1, —1) dxdy
dx  Qdy

= df = (0,1,1)dxdy.

Fig. A.5
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2. Total area:

b a/N2

//df-(Oll)/dx/d

0

—F= Yo

V2
= |F| =ab.
3. Flux:
a-df = (2xy + 3722 — x))dxdy
3
= (ny—x2 +3y* = 3v2ay + Eaz) dxdy ,
b a/V2 ;
<pp(a)=/a-df=/dx / dy(ny—xz+3y2—3«/§ay+ Eaz)
F 0 0
b , \ o
a a a a a
= [di|lx——-x¥>— + —3ﬁ_+_)
0/ (4545 0
_ a’h*  ab’ n a*b
4 3V2 22
ab (1, 1, 1 )
= a a — b+ ab) .
or(a) = ﬂ(z e

Solution 1.7.9 Area element of the surface of a sphere:

df = (R®sin® dv dg)e, (Eq.(1.37)).

a(r) - er 5

2

<p1(a)=/a.df=3R/dz9/dgosinz9 =127 R.
0

Sk 0
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r r

Vet Jatr
3

NCE

€,

a(r) =

¢a(a) = 4r

3. Spherical coordinates:

e, = (sin? cos @, sin?d sin ¢, cos ) ,

a(r) = (3rcos®, rsinv cos g, 2rsind sing) ,

b4 2

¢3(a) = R /dz‘}/dgosinl?@ sin ¢} cos ¥ cos ¢
0o 0

+ sin® ¥ sin ¢ cos @ 4 2 sin ¥ cos ¥ sin @) ,
2 2
/dqpcosqp :/dgosingo:O,
0

0

2
=0

2 0

2

1
/dqosinqocosqo = —sin’g
0

= ¢3(a) =0.

Solution 1.7.10
1. Vectorial surface elements
Cylindrical coordinates (p, ¢, z) are certainly appropriate.
We start with the cylinder-barrel (p = R)
x=Rcosg,y=Rsing, z=2

— 1 = (Rcosp,Rsing,z), —= <z=<+

Parameters: ¢, z

or| |dr

% . ‘a—z' - (e, x e,)dp dz
= Re,dpdz

= Rdy dz(cos ¢, sin ¢, 0) .

431
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It holds on the front faces of the cylinder:

L
x:pcosq),y:psinqo,z::izz

L
—r = (pcosgo,psingo, :I:E) .
Parameters: p, ¢

ar Or
df =+ | — x — |dpdy
dp do

ar| |dr
= % “%)’(epx%)dpfhﬂ
= *tpe.dpdp

= +pdpdyp(0,0,1).

The plus sign holds for the ‘upper’, the minus sign for the ‘lower’ front face of
the cylinder.
2. Flux of the vector field through the surface of the cylinder

Y7 = /E'df

5(2)
Contribution on the barrel:

E-df = a(Rcoseg,Rsing,z) - (cosg,sing,0) Rdepdz
= aR? (cos’ ¢ + sin® ) dp dz
= aR*dy dz
27 +
— gog‘ml = aR? / do dz = 2maR’L .
0

[Nl

Contribution on the front faces:
. L
E-df =apdpdy | pcosg, psing, +§ -(0,0,1)

L
+apdpdy (pcosw,psinw,—z) +(0,0,—1)
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=aLpdpdp
R 2
— gfront — aL/pdp/dfp = naR’L .
0 0

We have therewith as total flux (V: volume of the cylinder):
0z = / E-df = pb"™ + )" = 3raR’L = 3aV .
S5(2)
3. Gauss theorem
e / E.df = / &*rdivE .
S(2) z
With
divE = adivr = 3«
we have immediately recalculated the above result:

¢Z=3a/d3r=3av.
z

Solution 1.7.11
1. Sphere
Equation (1.36):
df = (R*sin® do dy) e,
ar) =are;
— a(r)xdf ~e xe, =0
= Y. =0.

2. Cylinder
barrel (1.37) (Fig. A.6):

df = (Rdg d2)e, .
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Fig. A.6 df = (Rdypdz)e, .

VA
R

+_

2

B e .
4
¢ L
2

front faces:
Fi ={r=(pcosg, psing, £L/2); 0<p<R, 0<¢ <2m}.

ad ad
daf = (a—; X i) dpdp = (cos g, sing, 0) x (—psing, pcose, 0)dpdy

= pdpdye, .

We agreed that for closed surfaces the vector df always points outwards:

= wz:/a(r)xdf:a/(pep—i-zez)xdf
F F

EX / (pe, +ze;) x (Rdpdz) e,

barrel

+o / (0e, +ze) x (pdpdyp)e;

front face

+L/2

—o / (0e, +ze) x (pdpdp)e;

front face
—L/2

2 +L/2 2w

R
:ozR/dfp / dzze¢+06/d,0/d€0,02(_e¢)
0

0 —L)2 0
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2

R
—a/dp/dfp pP(—ey)
0

0
2 2

/dgoew = /dgo(—sinfp, cosp, 0) =0
0 0
— Y, =0.

Solution 1.7.12
Charge:

Q=/d3rp(l‘)=po / &

sphere
&r = Pdr sin® do dy ,
R b4 2 4
0= pO/rzdr/sinﬂdﬂ/dqo = po?nR3 .
0 0 0

Dipole moment:

R n 2w
p= pO/ /rzdr sin® d¥ do(rsind cos @, rsinv sing, rcos?d) ,
000

27 27
/d(pcosgo :/d(psingozo
0 0
R 7 27
== p=,00///r?’drdl?dgo(O,O,sinz‘}cosz‘})
0 0 0

T
R* 1 d
=27 pOT/dﬂ (0,0, E ﬁ sin2 '19)
0

=7 ,001%4 (O, 0, sin® z‘}ig)

0.
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Solution 1.7.13

1. Gradient of a scalar product
double vector product:

bx(Vxa)=V(a-b)-b -V)a,
Lt

ax(Vxb)=V(a-b)-(a-V)b

[
= bx(Vxa)+ax(Vxb)=V(a -b)+V(@-b)-(b-V)a-(a-V)b,
Lt )

Produktregel: V(a-b)=V (a-b)+V(a-b)= q.e.d.
Lt 4

2. Divergence of a vector product
product rule:

Viaxb)=V - (axb)+V -(axb)=V - (axb)-V(bxa).
4 | ) | i) (-

Exploit now the cyclic invariance of the scalar triple product. Pay attention on
which vector the operator V has to act.

V-(axb)=b-(Vxa),
L4

V.(bxa)=a-(Vx b)= q.e.d
| I

3. Curl of a vector product
product rule:

Vx(axb)=Vx(axb)+Vx(axb)=Vx(axb)-Vx(bxa).
L \ ? \ ) [

Double vector product (keep in mind the action of V!):

Vx(axb)=(b-V)a-b(V-a),
L2

Vx(bxa)=(a-V)b-a(V-b)= q.e.d
L1
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Fig. A.7 L -
ig Y3 mi N yszlne
7
- T
- -~
y:1-Line -
! (12 +d73, 73)
r(y1,¥2,y3+dy3) Y15 )2t dY2: )3
O y2s) (1 +dy1 ¥ 73)
Solution 1.7.14

1. (y1,y2,y3) —curvilinear-orthogonal (Fig. A.7)
Unit-vectors:

o — or/dy; 1 or
Y e/l by, i

Differential parallelepiped, built by the coordinate lines:

AV =da- (db x dc) .

Taylor expansion:

ar

da =r(y; +dyi,y2,y3) —r(y1,¥2,y3) & gd,)’l ,
1
ar

db =r(y1.y2 + dy2,y3) —r(y1,¥2,¥3) ~ gdyz ,
2
Jar

de =r(y1,y2,y3 +dy3) —r(y1.y2.y3) &~ gd)@ ,
3

therewith:

da = by dye, ; db=bydye,, ; dc=Dbydye,; e, -(e,xe;) =1
= AV = by by,by,dy\dy»dy; ,

df, =

df, =

da x dc|(y1,yz,y3) = (eyl X ey3) bylby3dy1dy3 = —eyzbylby3dy1dy3 s

de x dal O1.y2+dy2.y3)

= (ey, x €y,) by, (y1.y2 + dy2,¥3) by, (1, y2 + dy2, y3) dyidys
~———

=y,
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That leads to

E. dflareas in yp-direction — dyldy"x (Eyz (yl Y2+ dyZv y3)
by, (1, y2 + dy2,y3)by; (1, y2 + dy2, y3)
—Ey, (1,72, ¥3)by, (1. ¥2, ¥3) by, (1, Y2, ¥3))

ad
= dyldyzdy3 3— (Eyzbylby3) .
Y2
Analogously one calculates the contributions on the other sides of the differential
parallelepiped:

lim E-df:;[i(E.b by,)
AV=0 AV by, by, by, | 9y1 e
+i(E, b,b,)+i(E,b,b, )}
ayz Y22 Y173 ay3 Y3¥y17y2

=divE.

(cf. with (1.378), Vol. 1.)
2. Cylindrical coordinates (p, ¢, z)

d
a—r = (cosp, sing, 0) = b, =1,

or
% = (—psing, pcosg, 0) = b, =p,

9
X 0,0,1) = b, =1
0z

170 0 0
— divE=-| 2 (pE,) + —E, + —(pE
iv p[ap(f’ D+ Gt 30 Z)}
1 0 1 0 d
v ,03,0(p p)+p3(p <p+az z

3. Spherical coordinates (r, 9, )

x =rsind cosg ,

y =rsindsing ,
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z=rcost,
ar . . .
a—:(mnﬂcosgo,smz‘}smgo,cosz‘}) = b, =1,
r
ar . .
P r(cos ¥ cos @, cos ¥ sing, —sin}) = by =r,
or . . . :
30 = r(—sin ¥ sin ¢, sin ¥ cos¢,0) = b, = rsin?}
@
— divE ! 3(rlsinz‘}E)+ a(sinz?E)+ 3(E)
=S| »)+ o (r —(r ,
P2sing | or 90 PP
10 d 1 ad
divE = — —(’E, —(sin? E —E, .
= dvE =5 (CE) oy g SV o)+ s g, Be

Solution 1.7.15

1. Consider the hatched front side of the parallelepiped in Fig. A.7 (Exer-
cise 1.7.14):

dfs = —ey,by, by,dydy;
- |d.];2| = bylby3dyldy3 s
¢ a-dr = da- al(}'w'z,}’s) + de- al()’1+dy1~,y2,y3)
G

—da- a|(y1qy2,y3+dy3) —dec- a|(y1qy2,y3) ’

da and dc as in Exercise 1.7.14 (Fig. A.8).
Therewith one calculates:

1
n - curla(r) = —curl, (a(r)) = W ¢ a-dr
2l

= ——— | by dyia,, (1.2, 3
bylbygdyldyii[}l y }l(yly y)

+by, (1 + dy1, y2,¥3) dysay, (1 + dy1, y2,¥3)

Fig. A.8
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—by, (v1,y2.y3 + dy3) dyray, (y1, 2, y3 + dy3)
—by,dysay, (y1, y2, Y3)]

1 9 P
= s | =dyio— by ay ) d dy;— (by,ay, ) dy; | .
by, by, dydy3 |: Y1 3y ( yldyl) y3 + dy3 PN ( ysan) y1i|

Thus we have found:

1 0 0
curly,a(r) = — [S_yg, (by,ay,) — P (by3ay3)i| )

The same procedure leads to the other components:

curly, a(r) =

1 d d

1 d ad
curly,a(r) = b b [a (byzayz) - E (by'layl)i| :
y1¥y

(cf. with (1.380), Vol. 1!)
2. Cylindrical coordinates
It follows with b, = 1, b, = p, b, = 1:

curla:—ia —ia
p pdp © Az
curl,a = —a —ia
% azp apZa

oo L2y 12
curba = — —(pa,) — — —a, .
pdp T pdp”

3. Spherical coordinates
It follows with b, = 1, by =r, b, = rsin?:

1 0
1r = —— —(sin?d — —_— s
curla = Z505 59 GV a0) = T 5,
1 0 10
curlya = in T %a, - E(ra(p) ,
10 1 0
Curl(pa = ; E(}’aﬁ) — ; @a, .
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Solution 1.7.16
1. Gradient in spherical coordinates ((1.395), Vol. 1):

V= ez)—i-eli+e;i
T T T rsing 0p

(Generally: V = Zf’ 1€y, y_l aa (1.377), Vol. 1).
With « as polar axis it is:

o-r=qarcostt,

grad(ee - r) = a(cos v e, —sin ey) .

2. With the formulas from the Exercises 1.7.14 and 1.7.15 one finds:

dive, = 2oy ==
1v r2 ar( )=
2
graddiv e, = ——e,
;
curle, =0,
dive, =0,
curley = e(/, (r 1) =

J.az-axis= a=owe,r=pe,+ze,.
That leads to:

aXr=oupe xe, =ape, = withpart 2. from Exercise 1.7.15

1 d
curl (¢ X 1) = ; P (@p?) =20 = curl(a xr) =20e, .
o

Solution 1.7.17 F(r) conservative <= curlF(r) = 0.
With the special form (1.57) of the Gauss theorem,

/curlb &r= 95 df xb,

1% S(V)

%deFEO.

S(V)

one finds immediately:
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Solution 1.7.18

curlE = _EB (Maxwell equation, law of induction) ,
divcurlE = 0

0 d
- diVEBz EdivB:O — divB = const .

Exploit the presumption:
t=ty: B(r,tp) =0
= divB(r,7) = 0= divB(r,1) =0.

Solution 1.7.19 It is to be calculated:

Az%rxdr.

JoF

1. Direct calculation

(a) Circle
parametrization:

r = (Rcosg, Rsing, 0)

dr .
— = (—Rsing,Rcos¢,0)
dy
dr )
— rx — = R, .
dy
Therewith we calculate:
2
A:%rxdr:RzeZ/dfp
aF 0
= 27R%,

=2F.
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Fig. A.9 y
b &
Cy G

(b) Rectangle (Fig. A.9)

1

1
on Cy: /(a-t,0,0)x(a,0,0)dt:/O'dtzo
0 0

1

1
on Cy: /(a,b't,O)x(O,b,O)dt:/ab'ezdt:ab'ez
0 0
1

1
on Cs: /(a(l —1),b0,0) x (—a,0,0)dt = /ab -e, dt =ab e,
0 0
1 1

on Cy: /(O,b(l—t),O)x(O,—b,O)dtz/O-dtzo
0 0

Therewith it follows eventually:
A:ygrxdr=2ab-eZ =2F.
aF

2. Stokes theorem
generally it holds (1.64):

9£dr---EF/(dfo)---.

oF

%rxdr:—F/(dfo)xr.

JoF

That means here:
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Rearrangement:

(dfx V) xr = —df(V 1) — V(r-df)

= —3df + df = 2df
— 9erdr=2/df=2F.
aF F

We see that the result from part 1. is valid even for arbitrary areas. We have
already come across the integral in connection with the area conservation
principle ((2.251), Vol. 1).

Solution 1.7.20

1. Possible parametric representation (u = x, v = y):
3
F=!r(u,v)=r x,y,6—3x—§y 1 0<x<2,0<y<4-—2x; .

Vectorial area element:

df = (i xﬁ)dudv,

du  Jv
8r_(10 3) 8r_01 3
ox Ty \7 7 2)
This leads to
ﬁ h%e % — 3’ E’ 1 ,
dx dy 2
and finally:

3
df = (3, > 1) dxdy .

Surface normal:

1 7
n= 7(6,3,2) ;o df = dedyn.
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2

4-2x
1 1
10 :/df-a: 5//dxdy(6,3,2)-(0,0,y): E/dx / dy2y
F F 0

0

2 2
1 1
= E/dx(4—2x)2 = E/dx(m— 16x + 4x%)
0 0

25\ 16

= (8x—4x2+—x3) = —.
3 o 3

3. The field a(r) is source-free!
diva(r) =0.

The decomposition theorem (1.71) leads then to:
a(r) = curlf(r) .
The choice of B is not unique, The gauge transformation
B(r) — B(r) + grady(r)
does not change the result because of
curl grady(r) =0 .

For B(r) it must be:

d
O—B_yﬂz_a_zﬁyv
d d
O_a_zﬂ"_aﬂ“
d d
y= g b

A possible solution could then be:

Be=pB.=0: By=xy: B(r)=(0,xy.0)



446 A Solutions of the Exercises

4. Parametrization of the partial paths:

Cli
2x+y=4, I‘Z(2(l—t),4t,0); 0<r<1,
ar
— =(-2,4,0).
5 ( )
Cz:
3y+2:=12, r=(0,4(1-0.61); 0<r<1I,
ar
— =(0,-4,6) .
5 ( )
C3Z
3x+z=6, r=(2,0,6(1-1); 0<r<1,
or
— =1(2,0,-6) .
ot ( )
Flux of a through F:
@Z/a-df:/curlﬂ-df:/ﬂ.dr
F F aF

== ¢ = / dt(O,Z(l —t)-4t,0) - (—=2,4,0)
(€1
1
+ / dt(0,0-4(1—-1),0)-(0,—4,6)
(©2)
1
+/dt(0,2t-0,0)-(2,0,—6)
(C3)
1

32
= /dt 32(t—1) = (16t2— ?ﬁ)

0

L' 16

0 3 .

The non-uniqueness of B does not play any role since

/gradx(r)-drz/d)(zo.

JoF JoF
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Solution 1.7.21 With

b-rota=b-(Vxa)=V - (axb) (Spatprodukt)

[

=V.(axb)-V - (axb) (Produktregel)
[

=diviax b)+V - (bxa)
L9

=div(ax b) + a-rotb (Spatprodukt)

follows:

/d3r b - curla =
%

d*r div(a x b) + /d3r a-.curlb
14

d*ra-curlb + 95 df - (a x b)

S(V)

<\ <\

(Gauss theorem).

Solution 1.7.22 Stokes theorem:

%a(r) «dr = /curla(r) - df,

Cc Fc

curla(r) = (xz, —yz, (@ +y) + 22 + (& +)7) + 2y?)

= (xz,—yz, 4% +)7)) .

Parameter representation of the area F¢ (cylindrical coordinates):

Fc = {r=(pcosg,psing,z=0); 0<p=<R, 0=<¢ <27},

ar . ar .
— = (cosg,sing,0): —— = p(—sing,cosg,0)
ap dp
d d
— df = _rx_r dpdp = pdpdype,
dp do
— curla(r) - df = 4p°dpdy
R 21

— 9§a(r)-dr:/4p3dp/dqo:2nR4.
C

0 0

447
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Solution 1.7.23
1. a(r): gradient-field

diva=2; curla=0.
2. a(r): gradient-field

diva = 6o —z’sinyz —y’sinyz # 0,
curla = (cosyz—yzsinyz—cosyz+ yzsinyz,0—0,0—0)
=(0,0,0) =0.

3. a(r): curl-field

diva=z—y+x—z+y—x=0,
curla= (z+y,x+z,y+x) #0.

4. Neither a pure gradient-field nor a pure curl-field:

diva=2xy+y#0
curla = (z 4 37%sinz’,0— 0,0 —x?) = (z + 3z%sin2*,0, —x%) # 0.

Solution 1.7.24 Green identity (1.66):

[loaw+ v -voler=¢oila.

4 S(V)
Poisson equation:

A@ia(r) =f(r) withg; = @,onS(V).
For

Y (r) = ¢i1(r) — @a(r)
we then have:
Ay =0 inV.

Furthermore:

Yv=0 onS(V).
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We choose in the Green identity ¢ = ¥ with ¥ as given above:

0
Jv sy +@rler=¢ v L.
N—— N—— n
Vv =0 S(V) =0on S(V)

This means:
/d3r(VI//)2 =0 = Vy =0 = ¥ = const.
Vv

Because of ¥ = 0 on S(V) it then holds:

¥(r) =0 in V and therewith ¢;(r) = @a(r) .

Section 2.1.6

Solution 2.1.1
1. The sphere may carry the total charge Q:

R b4 2
4
0= /d3rp(r) = po/rzdr/sinﬁdﬁ/dqo = ,oOTﬂR3 ,
0 0 0

Q

— < ___ if0<r<R,
pr) ={ @/ "=
0

otherwise .
2. Total charge Q on the surface of a sphere:

ansatz:

p(r) = a(d.¢)8(r— R)

0o 1 21

= Q:/d3rp(r):///r2dr sind d dp a (9, ¢) 8(r —R) .

000

‘homogeneous’ means here (¥, ¢) = «

= Q=Radr = a= = p(r) = 8(r—R).

47 R? 47 R?
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Notice that §(r — R) has the dimension 1/length!
3. Cylindrical coordinates (0, ¢, z) are now useful:

p(r) = p(p.¢.2)
‘infinitely thin’ means
p(r) =y (b.¢) 8(2)
‘homogeneously charged’ means
p(r) = yO (R—p)8(2)

Total charge:

0= [ &)
00 400
=27T)//d,5,5 / dz0 (R —
0 —
R
— 2y [ aph
0
= wyR?
L0
T R?

That gives finally:

o) = L OR=$) 5.

A Solutions of the Exercises

£)8(2)

Solution 2.1.2 Charge density according to part 3. of Exercise 2.1.1 with cylindri-

cal coordinates:
p(r') =00 8(Z)OR— (') .
With

r'=pey + e
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we get for the electrostatic potential on the z-axis:

p(r’)

| ze; — 1’ |

2 R |
= 0o / dy’ / p'dp ————
. , | ze, — o'ey |

R

oo | dp/ ——
0/ Z + IOIZ

= 200/ 22 + p? \0
= 2moy (\/Z2 + Rz - |Z|) .

It follows therewith for the electrostatic potential:

2
0() = —|z| 1+(§) 4

depp(ze,) = /d3r’

From that one reads off the asymptotic behavior of the potential:

o 1 (R’
9z — 400) = —[zf [1+= (=) +---—1
260 2\ z

(o)) R2
=" 0.
460 |Z|

In addition it obviously holds:

(o
p(z=0)= R,
260

Electric field (normal component):

_r/

dregE(ze;) = /d3r/p(r)—/3
| ze; —1' |

2

R
e, — ey
- UO/dw//dp/p/zz—pp;'
S @+ p?)?

451
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Because of
2 2
/dqo/ep/ = /d(p’(—cos ¢’,sing’,0) = (0,0,0)
0 0

it remains:

/

Ie

R
dmegE(ze,) = eZUOan/dp/—3
o @+

1 1
= e,0027zZ (—— + —)
) VZ+R V2

Z Z
260271’ _—— .
=0 (|z| Jﬁm)

Therewith the electric field on the z-axis reads:

E(Ze)_eﬂ(i_;)
) “2e \lz2l V2R

The direction of the field is clear from symmetry reasons. One sees that the field
vanishes for z — co. At z = 0 the field strength makes a jump

Ez=0")—Ez=07) = ?.
0

This corresponds to the general field behavior at interfaces (see (2.43)).
Solution 2.1.3
1. Total charge:

T

R, 2
Q:/d3rp(r) :/rzdr%/smadﬂ/dq) — 47 (R —R;) .
r
R; 0

0

2. Total charge:

(o] T 21
3 062 ) e
0= | &rpix)y=g—qg— | dri* | sin®dv | do
4 r
0

0 0

oo

o
d
:q—qaZ/drre_‘” :q—l—qaza/dre_“’
0 0
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0 do o

3. Total charge:

o) 2 +1

0= /d3rp(r) = 00/drrZ(S(r—R)/d@/dcosﬁcosﬁ
0 0 -1
+1
=0.

1
= 2mwooR?= cos® ¥
2 -1

Dipole moment:

bd 2

o0
p:/rzdr/sinz‘}dz‘}/dgocrocosz?S(r—R)r
0 0 0
+1 27

= UORZ/dcosﬁ/dqo cos ¥ R(sin ¥ cos ¢, sin ¥ sin ¢, cos ¥)
—1 0
+1
3 2 4w s
=2no9R’ | dcos? (0,0,cos” ) = ?O'oR e, .
~1

Solution 2.1.4

1. The wire defines the z-axis. p(r) is then surely independent of ¢ and z. We
therefore choose as ansatz (cylindrical coordinates p’, ¢, z):

p(r) = a(p’)8(p") ,
(Z;: cylinder of the height /, radius R, wire = axis)

1 2 R R

— «t= [@row = [a: [dg [ode o0) = 201 [ o ap' o) 86
0

Z 0 0 0
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Only a(p’) = a/p’ does not lead to a contradiction:

R

/cl=27rla/dp 8(0)

(12)

2. Electric field:

1

E(r
(r) 41 €

r')

(r—

/d3/|p( 7

p'dp' = 509)/gd¢

47 € JT

1.23) «

, pe,+ (z—

A Solutions of the Exercises

=

7)e;

L for [

—0o0

41 € 72

+o00

K Pep

,o +(z—z

/)2]3/2

ye;

4 € 0>+

/d[ (v

—00

2 4 y2)3/2
~————

|

d 1

by 212

+
M% / @+ﬂm‘

400

v

Y22 |~

2
2

1
p2
Therefrom it follows for the electric field strength,

E(r) =

27reop €

and for the potential:

p(r) =

—K
Inp 4 const .
2 €0
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Solution 2.1.5 Charge density:

p(r) =06() .

Field strength:

+o00
_ / _ /
E(r) = ? // dx' dy' Goxy=y.o 32
4r € [(x—x) + (=) + 2%
—00

+o00 +o00

o _ _ 1
= ze; / dx dy———rs
47 e ¥2 32 23/2
o J ) @ +y>+22)
- +oo
o ,oozzzfnz
+o00
o 1
E(r) = e dx———
@ ZJTE()ZZ/ 242
—00
For z # 0 it holds for the integral:

1 T 1z
— arctan — =-—n
z 4 I A

oz

= E(r)=— —e,,
2¢€p |Z|
o
¢(r) = ——1|z] 4+ const .
260

Solution 2.1.6

1. Potential of the dipole:

L {—q q
o(r) = —+ :
dey | r |r —a|

Taylor expansion (1.32):

1 I r-a 3(r-a)’ - r’a®

_ 1
r—a| r r3 2 ro

r-a 3(r-a)?—r24d?
g (r-a 3@aP-ra )
4rey | 13 2r5

= ¢(r) =
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Fig. A.10

Large distances: r > a.
Dipole moment: p = g a (Fig. A.10):

2. Polar axis 11 a:
Spherical coordinates: V = (i % i i) .

r’ r 99 rsind de

47 €og(r) =1, 14 ,
r |r—ajl
E(r) = -Vo(r),

q q
()

r rze

Ir—a| = v2 +a® —2ra cos ¥ ,
| | r—acost
—|r—al = ,
or N2 4+ a2 —2ra cos ¥
ad r—al = ra sint
s V2 + a2 =2racost
Lie—al =0
—|r—a|l =
de
Jd 1 _ r—acost
arjr—al  (r>+a®—2racos)¥?’
1 0 I a sinv
r oY r—al  (r2+a*—2racos®)?’
1 d 1

r sin ¥ @ [r —a| -
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We have found therewith the components of the electric field:

q q(r —a cos®)
4 ek, = —= ,
7T €9 2 + (r2 + a®> — 2ra cos ¥)3/2
e Eo — qga sinv
0Ly (r2+a2—2ra COSl9)3/2 '
47 €0E, = 0.
Solution 2.1.7
o
p(r): r—szrRi<r<Rav
0 otherwise .

Spherically-symmetric charge distribution:
E(r) =E.(r,9,¢)e,+Ey(r,0,p)es +E,(r, 0, ¢)e, = E.(r)e, (justification?) .

Gauss theorem:

/ d*rdiv E(r) = / df-E(r) .
v S(V)
Maxwell equation:

/d3r div E(r) = i/cz3rp(1~) .
€0
Vv

Vv

It follows:

/df-E(r) = 6—1()/d3rp(r),

S(V) 14
V,: concentric sphere with radius r
= df = e, r*sind dd dp
2 1 3./ /
— 4nrE.(r) = — | &’Fp).
€
0 7
(@) 0 <r <Ry

pr)=0 = E(r) =E,(r)e,=0.
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(b) R <7 <Ry

(o]
/d3r/p(r/) =4na / r/zdr/T2 =4ma(r —R)
r

% Ri

o
— Er(r) = —Z(F—Ri) .
€gr

Using part (a) of Exercise 2.2.3 and the total charge:

Q = 4w a(R, — Ry)

we get:
R
Em=—2 'R
47 €01 Ry — Ri
() Ra<r:
Ra
1
/d3r’p(r’) =dna / r’zdr’72 =d4ra(R, —Ry)
r
Vv R;
0
— E = ro.
(I') 4 60}"2 ¢

This is the field of a point charge located at the origin of coordinates. Altogether we
then have:

0, forr < R;,
Er) =2 ] "% fur <r<r,.
47[60}’2 Ra_i

1, forR, <r.

Electrostatic potential:

]
E=-Vy¢: E(r) = —a—(f ;o) =) .

(©

o) = L + const .
4 eor

const = 0, since ¢(r) —> 0 (physical boundary conditions.)
r—>00
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(b)
0 R;
n=——~ (-mr-= t) .
#(®) 47reo(Ra—Ri)( n r+cons)
Continuity at r = Ry:
0 R;
=R)=——~ (-InR,— = t
o(r 2) 47r60(Ra—Ri)( nR, Ra—i—cons)
Q0
_47760Ra'

This holds only if
const =1nR, + 1.

Therewith the electrostatic potential reads:

0 ()
(a) ¢(r) = const = ¢(R;)
Continuity:
() = Wi_mln% .
Thus the final result is:
In(R./R;)

forO0 <r<R;,

R, — R,
0 1 —=Ri/r—In(r/R,)
o) = . R R forRi <r <R,,
1

- forR, <r.
,

Solution 2.1.8 We apply the physical Gauss theorem:

1
/E-df: —/p(r’)d3r/.
€0

\%4

S(V)
Charge density:
/ € / € _@F/a)
r')=p() = 8(F) — ——e .
pr) = p(r) = =—8() — —
point-like electron in its

nuclear charge (Z = 1) ground state
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This is a spherically-symmetric charge distribution. Therefore the ansatz:

We choose:

E(xr) =E.(r)e,.

V,: sphere with radius r, origin at the center of the sphere, df = r?sin ¥ d¥ dg e,:

area element on S(V).
Then it holds:

47 PEx(r) =

r

/ dxx*e P =

0

r

/ dr/rIZe—(Zr’/a) —

0

— 4 rzE,(r)

r

4Jr/dr/rlze_(2’//“),

e e

€0 €0TT al

(=]

0
d 1 r
e —Br 1 = Br
ap [ﬂ2 (=1 e }
2 2r r?
_ (B 2 B L B
[ gl - g }
2 _ﬁr(Z N 2r +rl)
Z e ),
p pPTB
3 2
az - ge_(zr/“) (% +ar+ r2)
2e a?
—(2r/a) 2
607e (E +ar+r)

€0

Therewith we have for the electric field:

E(r) =e,

The potential we get by integration:

2r 27
— & (1 +2 _’) _
a

a2

e 1 2 2
—(2r/a)
-+ =+
4 eoe (r2 ra az)

do

p(r) = @(r) with E(r)=——.

dr
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From that it follows:

r

o(r) = —/E,/dr’,

o0
.
/ dr e—(Zr//a)z _ 1 o2 el ! o 2r/a)
a? a I a ’
o0
A 2 1 rodTl 1
N il — )@ — ' &L el ey | — L /)
/dr(r/a+r’2)e ) = /drdr’l:r’e ’“:|— re e

oo oo

As the result we get a screened Coulomb potential:

1 1
= e (L4 1)

T € roa
ra
e
r) &
v () 4 €or
(pure Coulomb potential of the nucleus).
r>a
e
o(r) ~ 2 el
JT €oa

The total potential of the H-atom vanishes exponentially for large distances.

Solution 2.1.9 We choose cylindrical coordinates (Fig. A.11),

pv@aZs

Fig. A.11

o5
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and exploit the cylindrical symmetry of the problem:

E(r) =E(p)e, .
For the charge density we have:

po forp <R,
0 otherwise .

) = {

Let Z, be a cylinder with the length /, cylinder axis: z-axis, p: radius. Applying the
physical Gauss theorem leads to:

1
/ E-df:—/[)(r)d3r.
€0
S(Z,) Z,

We calculate the various contributions separately:
Front faces:

E L df — no contribution to the flux ,
Barrel (1.37):

df = pdopdze,
= E-df =pE,(p)dpdz

- / E.-df =2mnlpE,(p) .
5(Z,)



A Solutions of the Exercises

Finally this yields:
! if p <R
T
E(r) = —e,{ TR2
€0 —— ,ifp>R.
2p
The (1/p)-dependence for p > R is typical.
Potential:
d 19 0
E = \3 >~ 373 4 == E (3 — - .
(ap Iy az)w € ¢ = ¢(p)
inside:
Lo
¢(p) = —=0"+ 90,
€0
outside:
R%po
e(p) =— 5 Inp +¢r .
€0

The choice of the reference point is still free, e.g.:

o(p=R)=0.

Then we have:

Thus it remains:

poR2 %(1—'0—2) forp <R,
o(r) = ¢(p) = ——

R
260 | = forR<p
P
Solution 2.1.10
1. Charge density according to Exercise 2.1.1:
p(r) = §(r—R),

47 R?

Q: total charge, R: radius of the sphere.

463
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Electric field:
Spherically-symmetric charge distribution, therefore:

E(r) = E.(re,

V,: concentric sphere with the radius r.

/ df-E = / P sin® d dg E,(r) e, - &, = 41 rPE,(r) = i/cz3r’p(1~’)
€0

S(Vr) S(Vr) Vi
g ,ifr>R,
= €0
0, ifr<R.
That leads to:
0 .
—— — ,ifr>R,
E(r) =e, { 47w ¢ 12 "
0, ifr<R.
Energy density:
o5 :
—— — ifr>R,
W(l‘) = 327t260 r d
0, ifr<R.
Total energy:

o0
2 1 2
W= —620/d3r|E(r)|2= 0 47r/drr2— = W= Q
r

3272¢ 4 T 8meoR
R
2. Electric field:
We use Exercise 2.1.7:
0, if r <Ry,
—R
E(r) =e, Q i JifR <7 <R,

4 60}’2 R2 — R1

1, ifr >Ry,

Q =4 Ol(Rz —Rl).
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Energy density:
0, ifr<R1 y
2 2
€0 ) 0 1 r—R; .
r)=—Ef=— — <r<
W) = S B = e (RZ—RI) R =r=R
1, 1fR2 <r.
Total energy:
W= /d3rw(r)
0> b 1 1 T 1
= 4 drr*— ———— (¥ —2rR, + R /d 2
32m2¢ g / T (R, — Ry)? (r PR R) + [ drr 4

R

R
2
_ ¢ %L+;|:(R2—Rl)—2Rlln% +R (i—i)}}
1

8 €0 R2 (Rz — R1)2 Rl R2
0> [1 1 R+R R R
= — — — n —_—
8mey |[R2 Ry Ry—Ri (Ro—Ri)?> R
0? R, 1
— W= Ro—R)—Riln=2|—— .
47 € (Rz D v Ri | (R, —Ry)?
Section 2.2.9
Solution 2.2.1

1. Spherical capacitor:
O1=0; O=-0.
Charge density:

01 O
§(r—R ——8(r—R») .
4 R% (r D+ 4 R% (r 2)

p(r) =

Because of the spherically-symmetric charge distribution we can assume
(Fig. A.12):

E(r) = E.(r)e, .
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Fig. A.12

Let V, be the volume of a sphere with the radius r. Then the electric field can be
calculated as follows:

1
/ df-E = 4w PE.(r) = — / v p(r')
€0

S(Vr) Vr
4n | 0 0,
=— [d'*| —==8( —R) + 8(" —R
€ 4T R (=R 4nR§( )
0
1 O, ifr<R1,
=—1401, ifRy <r<R,,
€ .
101+ 0. ifRy <.
We finally get:
e 0, ifr <Ry,
E(r) = — 01, ifRi <r<R,,
47 egr? .
014+ 0, ifRy<r.
Energy density:
O, ifr<R1,
(r) ! ! 2 if R R
wr) = —— — <r<Ry,
32m2¢y 14 . A==

(01 + ) ifRy <r,

Spherical capacitor: Q; = Q; Q1 + 0> = 0.
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Total energy:

Rz o

W= /d3rw(r) = Q%/drizﬂQl +Q2)2/dri2
r r
Ry

8 €0
Ry

(it .
_ SM{QI (R1 R2)+(Q1+Qz) RZ} .

Spherical capacitor:

0 R—R
- 8mey RoRy
2a. 01 =0,0, =-0/2:
0, if}’<R1 s
Ww(r) = I 1 )02 ifR <r<R,,
R2r2eg r* | 0* .
T,lfRz <r.

The energy density inside the spherical capacitor remains unchanged since the
same fields are present there as in 1. But now there are still contributions of the

exterior:
2 (R, —R 1
w2 2L ).
8mey \ RoR; 4R,

2b. 01 =-0/2:0, =0

0, if}’<R1,
2
1 1 :
r) = _ —,1fR1<}’<R2,
w(m) 2r2 4 | 4
—,ifR2<}’.

The energy density inside the spherical capacitor is smaller since the field there
is weaker. Outside the capacitor everything is the same as in 2a.:

0? 1R2—R1+1i 0?
4 R,

- 8r €0 Z R2R1 - 32N€0R1 ’
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Fig. A.13

dS]I
dSzI

A Solutions of the Exercises

Q,

dF
Q 2

dF,

area element of the inner spherical shell ,

area element of the outer spherical shell .

This yields the pressure (Fig. A.13):

I. 01=0,0,=-0:

2a. 01 =0,0,=—-0/2%

P11 =

2b. 01 =-0/2,0, =0

p1 =

O +
dF, = dS E(r") ,
! Y4r R (f)
O _
dF, = dS,——E (r
2T R ()
dF, 0}
Pr =~ = T i
dS] 167 éoRl

_dF _ |02 01

Pr=4s, T TenteRs
QZ
P2 = len2e R,

0’ 0’
Teo pd P2T oo o
167%€0R] 327%€oR,

0? 0?
a2 i P2 oo
647 éoRl 32 60R2

ds,
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Solution 2.2.2

1. For the single fields of the practically infinitely extended plates it holds according
to (2.51) and Exercise 2.1.5, respectively:

O x
Ep, = ——e,
00T 2eoF ||
EQ = i " €y
260F |x—x0|
O x—d
Ep, = —/— € .
e 260F |x—d|

Therewith it results as the total field inside the capacitor, to the left of the Q-plate:

1
E/(x) = m(Ql —0—-0o)e,

and to the right of the Q-plate

1

E (x) = H(Ql +0— Qe .

Voltage at the capacitor:
d
U= —/de = —(Eixo + E.(d — x0))
0

-1
= 2aF ((Q1 — Q2)d — Q(2xg — d)) .
2. Force on the Q-plate:
F=0 (EQI (XO) + EQz (XO))

- F= 320~ 0.

Short circuit U = 0 means for Q; and Q5:

ZX()—d

O01—0=0 7

The force becomes therewith now space-independent:

Q2
260Fd

F =

(2)60 — d)ex .



470
Thus it is:
Xo = 3 — F=0

d
x0>§ — Fxe,

d
x0<§ — Fx —e,.

3. Equation of motion in the presence of the voltage U:

Amzﬁ%@—&y

Short circuit U = 0 and with y = xo — d/2:

It results therewith an exponential time-dependence.

Solution 2.2.3

A Solutions of the Exercises

1. The potential energy of a dipole in the electric field amounts to (2.79):

Vp(r) = —p-E(1) .

The point charge creates the field

g r
E(r) = —.
() 4 eq 13
This gives:
q Pp-r q
Vo(r) = — LALINS
b(®) drey 13 41 €

1

p-V-.

r

2. The force on the dipole can be derived from the potential energy:

Fo(r) = =V Vp(r) = — 1 g (p- vl) .

T €p

‘We use the formula:

r

V(a-b) =(b-V)a+ (a-V)b+ b x curla + a x curlb
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and obtain with p = const:

1 1 1
V(p-v-)=(p-v)v- V- = ,
(p r) ®-V) r +pxour r ZP ox; r3

N —

_ _Zp,(et T NN |

r B

It follows therewith:

g 3r(r-p)—
For) = dm e r

3. The field of the dipole at the position 0 of the point charge is according to (2.73)

By — L 30D bl

41 € ro

From this a force results which the dipole exerts on the point charge

Fp(r) = ¢Ep(r) = —Fp(r) .

The third Newtonian axiom is thus fulfilled.
Solution 2.2.4

1. Cylindrical coordinates (Fig. A.14):

P, z,
Symmetry:

E(r) =E,(p)e, .

Fig. A.14

=R
</
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A Solutions of the Exercises
Z: cylinder, L: length, p: radius.

5(2)

0, ifp<a
1 1 bl 9
/ df-E = E,(p) 2mph = —/d3r’p(r’) =
€0
V4

hg,ifa<p<b,
€0

0, ifb<p,
q: charge per unit length.
It follows:

|z
E,(p) = e % (in the inside!) .

Nabla-operator in cylindrical coordinates:

3 198 9
V= 5. _ 49 4q_ .
(3p p d¢ BZ)

This yields via the potential,

or) = —1

27 €

Inp + const ,

the voltage at the capacitor:

-3 . a
U=g(a)—¢b) = In—.
This means for the charge per unit length:

2 60U
In(b/a)

q:

Therewith the electric field,

u 1
MO /o

as well as the scalar potential are determined:

p(r) = —

U
1 t.
In (b/a) np + cons

Finally we get the capacity per unit length:

g _ 27me
U In(b/a)’
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2. Field at the inner cylinder:

U
B e
dEy(a) -U

da (aln(b/a))

S(nb—1—-1Ina)=0.

Hence, the field becomes extremal at ag = b e~ '. Because of

d’E,(a) 2U 2 v
= Inb—-1-1 —_—3
da? |:(aln (b/a))3 (In o a(aln (b/a))2i|a=g0
U _ve

Cbel(be )2 b3
it is about a minimum.

Solution 2.2.5 The spherical symmetry of the problem entails a spherically-
symmetric potential:

P(r) = &(r) .

1. Laplace equation (r # Ry, Ry)

— dJ(r):dJ(r):%—i-ﬂ.

la. r < Ry
Regularity at the origin (®(0) finite)

== a=0 <I>1(r)=,3=<1>1.
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1b. r>R2

o
P(r=Ry) = o) = —
(r=Ry) 2= o
— a =R,
R
= O,(r) = CDQTZ .
lc. Ri<r<Ry
It must be
o o
— =&;; — =
R + B vR + B 2
ol ——— | = —
R R 1 2
(P — P2)RIR,
— = -,
* R»— R
_ (P1 —DP)Ry Ry Dy — R D
B = — = .
Ry — R Ry — R
— total potential
@1 if r < R1 y
(P1 = P)RiRy 1 Ry®y — R Py R <r<R
o(r) = Ro—Ri 1 R> — R ! 2
Py — ifr>R,.
r
2. Poisson equation:
1
AP = ——p(l') s
€0
O O
r) = 8 —R + 8 _R N
,0( ) 47TR% (V 1) 47TR§ (r 2)
9 0 1 O ) 2
— —(rP—)=- =—5(r—R =—=5(r—R
8r( 8r) 4meg (R% (r=R)+ R3 (r=Ro))r

= _% (Q18(r — R1) + Q28(r — Ry)) .
JTEQ
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We integrate over the interval

[Ri—€, R +€]; € KRy —Ri,Ry
Ri+e€
0
= r— = —& (e > 0)
or 4meq
Ri—e

0 0
= R+ G)ZW —(R1 — G)ZW =

- (R% £0)

_R (P — P2)RIR, (_ 1

\_/

1 _ 2
Ri+e Ri—e Ry— Ry Rl
__
4meq
_ AR Ry (P — P2)
= 01 = Ry — R, .
We now integrate over [R, — €, R, + €]:
282 R2+€ _ Q2
or |p,—c 4re
—DyR, , (@ — P)RIR, 1
— Rt e))—2— (Ri—c¢ -
R +e) (Ry + €)? B2 =€) Ry — Ry (Ry —e)?
®; — D)RR
Y g, 4 DT PIRIR
R, — R,
_ —chR% + ® R R,
N R, — R,
_ Ry(®1R| — O1Ry)
Ry — R
_ D
4mey
4mwegRy(P2Ry — D1Ry)
—= O = :
R, — R
Solution 2.2.6

A
Qo= CUy = 10" 78103\7: 107" As

oo 1. As o o
Wo=-CU}=-10"*210°V> =50 Ws = 507 .
2 2 v
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o i
- - T

Fig. A.15

Connect in parallel:

O1=0==z0,
U, =U2=§U0=500V.

From that it follows:

1 U2 1. 02 W, W 1
W=Wi+W,=-Cl4-C2="q " =_W,.
N I A R R R M

Paradox: half of the stored energy has disappeared! Where?

Solution 2.2.7 Figure A.15 shows the equivalent circuit diagram from which
follows:

1 —1+ 1
Coo C CH+Csx

= C(C+ Cx) = Cx(2C + Cx)
2 2 1 2 5 2
= 0=C+CCxp—C" = Coo—i—EC —ZC
1 5

We see that the capacity does not become infinite!

Solution 2.2.8 Preset charge density:

p(r) = opcos’ 6 8(r —R) .
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1. Monopole:
+1
q= /d3r,0(r) = ooR% 2% / d cos 6 cos’ 0
-1
4
= —R%0y .
30 %
2. Dipole:

pzfﬁmm

+1 2
= gyR® / dcosf / dy cos® O (sin O cos ¢, sin 6 sin ¢, cos 6)
-1 0
+1
= 27moR3/dc039 (O,O,cos3 0)
—1

— p=0.

3. Quadrupole:

Ou = /cl?’r;o(l')(Zvc2 -
2r +1
= oR* / do / dcos 6 cos® 0 (3sin”* O cos®> ¢ — 1) .
0 -1

We use

2

2w
/dgocoszfp :/dgosinzfp =7.
0 0

(Show it with integration by parts!). It follows then:

+1
Oy = mooR* / dcos 6 (3 (cos* @ — cos* ) — 2 cos® )

-1

2 6
= JmOR4 - — =
3 5
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8

= —Eﬂ'O'()R4
Oy = /d3rp(r) (3y* =)
2w +1
= ooR* / do / dcos 6 cos® 0 (3 sin” @ sin? ¢ — 1)
0o -1
= QXX

0.. = / d’rp(r) (322 — %)
2 +1
= 00R4/d<p/d005900529 (3 cos> 6 — 1)

0 -1

6 2
= 27t00R4 - — =
5 3

16
= ErmoR4 — tracelessness of the tensor

0, = [ drp o)
2 +1
= 30oR* / do / dcos 6 sin” @ cos ¢ sin ¢
0o -1
=0= ny .

The g@-integration makes the term to vanish. The same holds also for the
following elements:

0. = / & ro(r) (3x2)

2 41
= 30oR* / do / dcos @ sinf cos g cos b
0o -1
=0=0x
0. = [ ¢
2+l
= 300R* / do / d cos 0 sin 0 sin ¢ cos 0
0o -1

:OZQyz-
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Quadrupole tensor:

3 -10 0
9 = E:rcroR4 0 —-10
0O 0 2

4. Scalar potential and electric field:
We take for the scalar potential the expansion (2.94) getting then with the partial

results 1. to 3.:

4w 1 1 8
dregp(r) = TRzao = + ﬁl_SNUOR4(_XZ V42 + -
4 1

1 ,1
= —R’0y (; + ngr_3 (2 cos* 6 —sin® 0) + ) .

This means

ooR> (1 1R )
o(r) = (;+r—3?(3cos 6—1)+--) .

From the scalar potential we derive with

(09 19 1 d
T \Or’ 700 rsind dg
the electric field:

E, =

ooR> (1 3R )
—+223 0—1)+---
36 (r2+r4 5( cos )+

R? ( R?
Ey = C;(:TO (m(—600595in9) +)

E,=0.

It is left therewith as final result:

ooR* ((1 3R ) 3R* .
E(l’):3—60((—z+ﬁ?(3COS 9—1)+ €, — mst@—l—--- (7] .

r

Solution 2.2.9 The dipole p; = p;e, produces the potential

(r) = I r-pp 1 piz
¥ T dmen P dmey P
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Fig. A.16

EV .
1
I
EO |
l
|
1
o I
1
EY
and therewith the electric field:
g = e _ 3 x
o ox drey 10

g = _de _ 3p )z
dy dmey rS’

ED — L1 _ (3_22 _ l)

< 0z drey \ r° 13

The potential energy of the dipole p» in the field of the other dipole p; is then to be
calculated from

T

The potential energy becomes minimal for the direction we are looking for, i.e. p;
orients itself parallelly to E(V (Fig. A.16):

3p1 X020

dmey 1y

EM (x0,0,20) =

EM(x0.0.20) = 0.,

1
EM(x0.0.20) = -2 — (22— 22) .
2 (x0,0,20) 47 e r(s)(zo 0)

EY (x0,0,20) 2 -x

tana = ) =
Ex (X(), Oa ZO) 3)(()20

Solution 2.2.10 Charge density:

p(r) = gid(x) 8@)[B(y—d) + 8(y + )] +8(x) S([E(z — d) + 8(z + d)]
—8(y) 8([8(x + d) + 8(x + d/2) + 8(x — d) + §(x — 2d)]} .
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Dipole moment:

+d+d/2—d—2d

p=/d3rp(r)-r=q d—d
d—d
3/2
— p=—qd| 0
0

Quadrupole tensor:

O = / drp() (20 =y’ = 2)

=q(-d*—d*—d* —d* - 2d* - 2d* /4 — 2d* — 8d”)

1

=—qd* (16+ 5) = —quz ,

Oy = /d3rp(r) (2> —x* = 2%)
=qQd*+2d° —d* —d&* + d* + d* /4 + d* + 4d°)

1\ 33 1
—qd (8+-) =g = 0.,
1 ( 4) 11 29

sz = /d3}’p(l') (2Zz _x2 _y2)

=q(~-d*—d* +2d* + 2d* + &* + d*/4 + d* + 4d°)

= d2(8+1)—Q
=4 I

It follows:

1 33

0, = ny = _EQxx = quz s

The trace is zero as it must be!
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Solution 2.2.11
1. Spherical coordinates: r, 9, ¢,
Axial symmetry: p(r) = p(r, ¥); dp/dp = 0.
x=rsind cosg,

y=rsind sing ,

z=rcost.
00 +1 2
Oy = /d3rp(r)(3xy) = 3/drr4/dcosz9 sin” 9 p(r, ﬂ)/dgo cos ¢ sing
0 ~1 0
bl =0
—0=0..
e +1 2
O, = 3/drr4/dcosﬁ sin ¥ cosz‘}p(r,l?)/dgo cos ¢
0 ~1 0
T
=0=0x,
[ +1 2
0Oy, = 3/drr4/dcosﬁ sin ¥ cos ¥ p(r, ﬂ)/dgo sin ¢
0 ~1 0
T
=0=0,.

0u = [Erpmee ) = [ drpwiee -y -2,
0, = [ oy -2 -2
This can be combined:

00, =3 / Pr o — )

) +1 2
= 3/drr4/dcosﬁ sin? 9 p(r, ﬁ)/dqp (cos® ¢ —sin ) ,
————
0 —1 0 cos 2¢

2
0.

1
Zsin?2
2smqo
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Thus we have found:
Oue = Oyy -
It further follows from the tracelessness:
Oz = Qo = —(Que + Q)
O =0y = —%Qo .

3.

! Q (, 1, 1,

trasatn = 5 S = & (2~ 4o
1
= % (005219 - Esinzl?) = —% (1 —3cos*®) .
This yields:
Qo 1-3cos?d
po(r) = .

16w €0 r3

With the nabla-operator in spherical coordinates,
V= 37 l iv .; i )
ar r 09 rsind d¢

9 1—3cos?v 31—3005219
or r3 ré ’

1 9 1—3003219_+32cosﬂsinﬂ_33in2ﬂ
r oY r3 oM o 4 ’

one calculates:

7

It results the electric field strength:

300 1

167 € *

Eo(r) = —Vgy(r) = — [(1—3cos’?)e, —sin20 ey] .

Solution 2.2.12 In a given system of coordinates the quadrupole moments
Q;; (2.93) are uniquely determined by the charge density p. A rotation of the system
of coordinates ({x;} — {x;}) must not change the scalar quadrupole potential.
According to (2.98) that means that the expression

Y Qyxx =) 05k
ij ij
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must be invariant. However, with a rotation of the system of coordinates the
(Cartesian) components of the position vector will change ((1.310), Vol. 1):

Xi = E dijxj
J

The d;; are the elements of the rotation matrix ((1.307), Vol. 1). But in order to keep
the above double sum invariant, obviously the quadrupole components have to be
co-transformed in a proper manner. If the 3 x 3-matrix Q is indeed a tensor of the
second rank then each row and each column transforms with a rotation of the system
of coordinates like the position vector:

QU = Z dildjm Oim
I.m

One can show therewith:

Z QU xikj = Z Z Z diydj Qpmdisdjixsx;
iy

ij Im st

= Z Z 81x8mt lexsxt

Im st

= Z le X1Xm

I.m

In the second line we have exploited the orthonormality relation ((1.316), Vol. 1) for
the rows and the columns of the rotation matrix.

Section 2.3.9

Solution 2.3.1 We take over the preliminary studies in connection with the example
of use ‘point charge over a grounded metallic sphere’ of the method of image
charges in Sect. 2.3.4, in particular the result (2.136) for the surface charge density
o. We use the notations from the Figs.2.44 and 2.46. Because of the rotational
symmetry of the surface charge density around the e, -direction it is reasonable to
choose this direction as polar axis. Then it remains to be calculated:

1
F=—e / dfazcosﬂ:Fe,/.
280

sphere
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With (2.136) it is therefore to be evaluated:

2+l 22
1 2 R? 1- RT cos
F = ——RZ/dq)/dcosﬂ a ( x)
2e9 167°R* 1”2 (14 £ —2Z cos 19)
0 T
¢ 1 R2\?
_ 1— =
167ey 12 2
+1 s
A= /dcosﬁ ZCOS 3
J (14 % —2% cos®)
We take

2

R 1
c=-2-; d=1+ y=ccost +d ~ dcos® = —dy
r c

2’

having then to evaluate:

1 d+c l(y d) | d+c | J d+c |

A= ey 2= iy L ay=
c / Yy c? / e / "y
d—c d—c d—c

1 1+d1 dte
c? y 2)’2 d—

1 1 1 d 1
sl +z(<d+c>z =)

1 (d —4dc B —2¢
- 2@ e s c2 - c2)2 C (d+0)2d-o)?
R 1 R

T8+ 5 ’/(1—52)4 |
Insertion into the expression for F leads finally to:

_ @yt v 1 oq(=47) emn 1 q-g8
ey 12 ( R2)2  dmeg (r — R—/z)2 4 ‘r/_rﬁ‘z '
r

2

That matches with (2.138)!

Solution 2.3.2 The ‘interesting’ space region here is V: interior space of the hollow
sphere,
boundary condition: ¢ = 0 on S(V) (Dirichlet).
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Fig. A.17

The Poisson equation forr € V:
. q /
Arp(r) = ——8(r—r)
€0

is solved by

q
4 ey |r—1'|

+f(r,x)

p(r) =

with A, f(r,r) =0in V.

Let f(r,r’) be the potential of an image charge located outside of V by which
we can simulate the boundary conditions. From symmetry reasons it is to expect
(Fig. A.17):

image charge = point charge gp

ry M’ (g > R).

The ansatz
4 op(r) = —2 1
r—r|  |r—ry]
fulfills in V the Poisson equation:
q/r q8/r/
41 €p(r) =
e — (7/nes] " [(r/rg) e, — ey

The boundary condition

e(r=R) =0
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is satisfied if it holds:

—1/2 —1/2
0=42 1+ﬁ—21/e,-e,/ L R—2+1—2Re,-er/ .
R R> "R re \rg Iy

This equation is solved by:

@ _ 9. R_T
rB/ R ’ rB/ R
R? R
:}rB/:—/>R; qB:—q—/
r r
q 1 R/r’
= o) = - :
v = o (|r—r’| It — (R2/r)r]

The solution fulfills in V the Poisson equation and on S(V) Dirichlet-boundary
conditions being therewith a unique solution.
We calculate the surface charge density:

d
oc=¢n-( E, —Ei)=60n-V<pi=EO—(p ,
S~—— or r=R
=0
J 1 a —1/2 r—r cosv
e — ’2 2 -2 / 19 —
pr e Rl G A L) 1P
d 1 . R — 7 cos ¥
r r—r||._x  (R2+7r2—2Rrcost)¥?’
0 R/Y B r—(R?/r") cos ¥ R
o [r—(R2/r)X'| (72 4 R4/r2 —2r(R?/r") cos 9)* 7'
0 R/V R R— (R?/r')cos ¥

ar r— R/ 7 (R/r3) (”2 + R — 2RV cos )2
r?/R —r cos

(r* + R — 2R cos 19)3/2 '

Hence it follows:
g —R+ 7 cos® +r?/R—7 cos®
47 5 (1 + R2/r> = 2(R/r) cos 9)2

q R) 1— R/
B 7 f£.(2.135) .
TR (r’ (14 R2/r? = 2(R/r') cos )" (ef. )
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We get the total induced charge by integration over the surface of the sphere:

+1
_ q(R R? d 1 r
T l1-— dcos? AT E
2\r =) d cos? (1 + R2/r? —2(R/r') cos D) R

g1
R\ [1—r/r'|  14R/

This yields finally:

Q1
Il

—q
(cf.2.137).

Solution 2.3.3

Without point charge:

Q disperses homogeneously over the metal surface. The action seen from
outwards is so as if the total charge Q were concentrated in the center of the
sphere (Fig. A.18).

With point charge:

gp is needed as surface charge for the compliance of the boundary conditions.
The rest Q — gp disperses homogeneously over the surface. We can therefore
start with:

@(r) = ¢1(r) + a(r) ,

¢1(r): as for the grounded metallic sphere (2.132),
¢>(r): potential of the point charge Q — ¢z,

R
Q—QB=Q+47’

Fig. A.18




A Solutions of the Exercises 489

located in the center of the sphere:

1 R/Y
e ® =4\ o] T e e
R\ 1
4 €opa(r) = | Q +617 P
Force on the point charge:
F=F +F,.
It follows with Eq. (2.138):
—¢’R/¥’

Fl = er’ 2
4w ey (¥ — R2/7)

F, is always attractive!

B e, 1@ q(R/1))
y=ey—————— .
4 E()r/2

When g and Q are of the same sign then

(a) large distances = repulsion; F, dominates,

b) ¥ SR — attraction; F; dominates.

This result explains why the charges of the metal sphere do not leave the sphere
in spite of their mutual electrostatic repulsion (work function). Energy must
be provided independently of whether the charges Q and g are of the same or
opposite sign (Fig. A.19).

Solution 2.3.4
1. Green’s function: Solution of the Poisson equation for a point charge ¢ = 1:
1
AG=—-——4(@r),
€
G(r) = G(p.¢) T G(p) .

no boundary conditions

Fig. A.19 F ’
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Fig. A.20

p # 0: Laplace equation:

0-a6=1 2 (1) 42 ¢,

pdp \" dp dp
G G
p  p

< G()=CiInCyp.
Two-dimensional Gauss theorem to fix the constant C;:

Fp: circular area around the origin, R: radius, df = Rd¢e,: area element
(Fig. A.20).

/dtdiv(VG): /df-VG,

Fg JdFR

1 1
/dt div(VG) = —— /dr 8(r) = ——,
€0 €0

Fr

Fr

2
c
/df-VG:RFl/dq) e,-e, =21 C
dFR 0

1 1 1
— Ci=—— — G(p) =— InCyp = — InCy/x2 4+ y2 .
27 € 27 € 27 €

2. ‘Interesting’ space region (Fig. A.21):

V={r=(y;x>0,y>0}.
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Fig. A.21 y
q
983 A" ? (%05 ¥0)
A
| N
: /: =0 x
|
9B, ® - - - - -------- o
qu

Boundary conditions are to be realized by image charges outside V!
gB, compensates g ony = 0:

rg, = (Xo0,—Y0): qB =—q.
qB, compensates g on x = 0:

rg; = (—x0,Y0) : g8, = —¢,
qB, compensates gg, onx = 0 and gg, ony = O:

rBz = (_an _y()) 5 4B, = (¢ .

That leads to:
Pe.3) = =57 [In(CoV/ =00 + 030D = In(Co V=007 + 0+ 07
+In(Cov/ (x + x0)% + (v + ¥0)?) — In(Ca v/ (x + x0) + (v — 0)?)]
— ey =——T 1 [(x = x0)* + (v = y0)I[(x + x0)* + (v + y0)*]
’ drey [(x—x0)? + (v +y0)[(x + x0)> + (v —y0)?]
One should check:

(1) ¢ solvesin V the Poisson equation Ag(x,y) = —(gq/€p) 8(x — x0) §(y — Yo),
(2) p(x=0.y) = ¢(x,y =0) =0.
Solution 2.3.5 Plane polar coordinates p, ¢ are useful.

1 4d d 2
Laplace operator: A = ; % (p%) + F 8_<p2 Separation ansatz:

D(p,p) = (p)O(¢) ,

G is free of charge = Laplace equation: A® = 0:

0=00)- —
p dp

dap

19 ( all\ T(p) 3O
P2 dp?
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Multiply the equation with p?/ ®:

d dIl 1 d*0 d dIl
() st ()

= —-—— p— —_—
(p) dp \" dp O(p) dg? dp \" dp
10
O dp?

The case v = 0 can be excluded. We therefore can assume v > 0:

HV = a\;pv + bup_v 5
0, = a, sin(vp) + b, cos(vy) .

Boundary conditions:

Q(p,p =0)=0 = b, =0,

Pp,p=a)=0 = v:E; neN.
o

®regularatp =0 = b, =0.

This leads to the general solution:

o0
. ni
®(p.¢) = Y _ cup"/" sin (gw) :

n=1
With the orthogonality relation

o

é/dqp sin (%(ﬂ) sin (}7’;_7[@) = Sum

0

it follows from the last boundary condition:

o 00

2 Z
— / d(p q)o((p) Sin (@(p) — Cann/agnm — CmRWlﬂ/lX
o o —

0 n=

2 o
= ¢, =R "/ Z / dp ®y(¢) sin qu .
o o
0

Solution 2.3.6 Except for the surface of the sphere the space is free of charge:

Ap =0.
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The boundary conditions have azimuthal symmetry and therefore also the potential
o(r, 9, ¢) = @(r, V). General solution (see (2.165)):

oo

o(r,v) = Z(Zl +1) (Alrl + Blr_(Z‘H)) Pi(cos ) ,
1=0

¢i: potential inside the sphere, ¢,: potential outside the sphere.
Regularity at the origin:

(@)
B =0
o0 .
= @(r.9) =Y AP Q@I+ 1) FPicos?) .
1=0
Vanishing at infinity:
AP =0

S
=
>
=)
N—
|

o0
> @i+ DB TPy (cos ) .
=0

Continuity at r = R:
¢i(R.0) = ¢ga(R. D)
— B;a) — A;DR”H '

Surface charge density:

_ dpa g
0=l %)

o0
—€0 Y 2+ DPy(cos))[—( + DBR™ 2 — 1AR™"]
=0

o0
= 0(9) = y_(2+ 1)’A]'R™'P(cos 9)
=0

< 00(3cos? ¥ — 1) = 20¢P»(cos ¥ ,

+1 +1
/dcosﬁo(ﬁ)Pm(cos %) = 209 / dcos?® Py(cos V)P, (cos )
—1 -1

2 4

=2 —Sm = Z Sm s
002m+1 2 500 2
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+1 0o +1
/dcos B o (3)P,(cos ) = € Z(Zl + 1)2A§i) R™! / dcos ¥ P,,(cos ¥)P(cos &)
—1

—1 =0

2
mF1 Sim

= 2¢9(2m + DADR"™!

L4
= AV = _ l=m______ 5
m = 500N S em+ 1) ™
i 200 :
= AV =0 . A0 =0 ¥ 2.
2 25€0R ’ m orm #
Solution:
20’0 >
(r, D) = r Py(cos?) ,
0. 0) = S rPa(cos )
200 4 P>(cos ¥
0alr, ®) = _OR4M )
560 r3

Solution 2.3.7 In the inside of the box the Laplace equation works:

02 0? 0?
Ag=[—=+—+— =0.
@ (ax2 + 5,72 + 812) ¢(x,y,2) =0

Separation ansatz:
9(r) = 1(x) 2(y) ¢3(2) -
Insertion into the Laplace equation and division by ¢:

idz(/)l 1 d*¢p, 1 d’ps

o1 d gy d? gy dP
—— —— ——

only dep. on x only dep. on y only dep. on z

Hence it must hold:

Ldo _
1 dx?
i@:_ly
@r dy?
1 d’¢;
L=y =@+ ).

¢ dz?
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This leads to the ansatz functions:

@1(x) = A;sin(ax) + Bj cos(ax)
@2(y) = Ay sin(By) + B, cos(By)
¢3(z) = Az sinh(yz) + Bs cosh(yz) .

Dirichlet-boundary conditions:

1.
(p(osys Z) = </)(a,y, Z) =0.
only fulfilled if:
nm
Bi=0; a—a,=—.
a
2.
@(x,0,2) = @(x,b,2) =0
requires:

mi
BZZO; ,3—),3,,127

3. The third boundary condition

@(x,9,0) = ¢(x,y,¢) = @o

we fulfill by a trick. At first we seek a solution ¢V (r) which satisfies the
boundary conditions

eV y.00=0: ¢Vxy.0) =g .

In the next step we look for a potential ¢® (r) with the boundary conditions:
P @y.00=¢o: ¢P(xy,0)=0.

Because of the linearity of the Laplace equation

o(r) = (1) + P (r)
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is then obviously the (unique) solution with the required boundary conditions!
In this sense we presume at first:

oV(x,3.0=0; ¢V(xy.c)=

It follows immediately:

With

o=y (2) + (5)

we come to an intermediate result:

o

eW(r) = Z Com SIN(0tpx) SIN(B,y) sINh(Ymz) -
nm=1
Still to fulfill:
o0
(p(l)(x,y, c) =@ = Z Cnm SIN(0,x) sin(B,,y) sinh(y,pc) .
nm=1

Orthogonality relation (easy to check)

dx sm sin (%x) = §8nm

b
~N / dx sm / dy sm -qoo
0 0

=002 1y -y -
rsm

o\m.

b
= a: Cyg sinh ()/rxc) .

We see that only odd r and s contribute. With

) \/(2n+1)2 (2m+1)2
VYam = T +
a b
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it follows therewith as solution:

16¢o 1 o (2n+1 C (2m+1
My —
) 2 ;n: 2n+1)2m+1) sm( a x) sm( b y)

sinh(Pmz)
sinh(Ppmc)

Now we still have to calculate ¢® with the boundary conditions

pP .00 =¢o: ¢P(x,y.c)=0.

But that can be done by use of the same path of solution. We have simply to
replace z by ¢ — z:

16¢o 1 . (2n+1 . (2m+1
@ (py —
v 72 Z 2n+1)(2m+1) sm( a x) sm( b y)

nm

sinh((c — )
sinh(P,c)

That leads to the complete solution:

1660 1 (241 (2m1
o) = —3 ;(2n+1)(2m+1)sm( a x)sm( b y)

[Sinh ();an) + sinh (?nm(c - Z))] .

“sinh(Junc)
Solution 2.3.8 Legendre equation (2.151):

diz%(l—zz)d%} P(z)+ 11+ 1)Pi(z) =0; [1=0,1,2,...

This can be rearranged:

(1=2) L po) = 2L Py + 10+ VP = 0
dz? ! dz ! : '

This is a differential equation of second order for which we need two linearly
independent solutions.

1. We insert the ansatz

[e.]

P@) =) a

n=0
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into the Legendre equation:

0=(1-2%) Z am(n — 172 =2z Z am?” '+ I(1+ 1) Z a7
n=0 n=0 n=0
o0
0= Z " {apiar(n+2)(n + 1) —aun(n— 1) —a2n + 11 + Da,} .
n=0

Comparison of the coefficients:
apt2(n+2)(n+1)—amn+ 1)+ 1+ Da, =0.
That yields the recursion formula:

nn+1)—=I1(l+1)
n+2)(n+1)

ap+2 = n -

One recognizes two linearly independent solutions determined by

(a() 750,611 =O) and (a0=0,a1 ?50) .

[ even:
(ap # 0,a; = 0) ~, polynomial of /-th degree
(ap = 0,a; # 0) ~ not terminating power series .
[ odd:
(a0 # 0,a; = 0) ~ not terminating power series
(a0 = 0,a; # 0) ~ polynomial of /-th degree .
2. Py(z):
Choose

aop 7é 0 , ap = 0.
That means at first:

a1:a3:a5:...:O.
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Furthermore:
a, = _42'5 ap = —10ay
2:3—4.5 -7
h=—Fa—B0= ?(—1000) = —=ap
4.5—-4.5
ag = 65 a4—0:a3—a10—

It is left therewith:
35
Pi(z) = aop (1 — 1022 + ?24)
35 8
P4(1); 1 =a0(1—10+?) = gao.

This yields finally:

0| W

Py(z) =

35
(1 —102 + ?24) .

Ps5(z):
Choose

That means at first:

ap = ady = a4 = =0
Furthermore:

1-2—-5-6 14

a3 = 32 alz—?al
_3-4—5-6 _—18( 14 )_21

BT Ty BT 3T

5-6—-5-6 0
ar = as = =dg9 = a = ... .
7 5.4 5 9 11

It is left therewith:
14 21
Ps(z) = a; (Z - =2+ ?ZS)

! 14 21 8
Ps(h)=1l=a|l-—+ = —aq .

499
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This yields finally:
Ps(z) = 15 14 , n 21
s(2) = 2\ 27 3 z 5 ).
Solution 2.3.9

1. Ansatz because of the azimuthal symmetry:
o0
® =" R(r)P(cos ) .
1=0

We use the Laplace operator as in (2.145) and take into consideration that the
spherical harmonics Y}, (¢, ¢) are eigenfunctions of the operator Ay ,. That holds
in particular for the m = O-functions which, except for an unimportant factor,
agree with the Legendre polynomials. Hence, it is also valid:

Ay o Pi(cos¥) = —I(l + 1) Pi(cos D) .
Laplace equation:
0= A0

=AY R(r)P(cos )

=0

{ > ( 0 )Rl(r)Pl(cos ) + AM Ri(r)Pi(cos )
72 or

( > ( 8) W+ 1))Rl(r)Pl(cosﬂ)
2 or r2

P(cos ¥): complete orthogonal system. Therefore it must already be:

10 (,0 1(1+ 1)
S (ﬂg) Ri(r) — Ri(r)=0.

Ansatz:

R() =~ ().
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It follows therewith:

1d{,d 1d duy(r)
el ZAR(D = —— (=
r2 dr (r dr) /) r2 dr ( w(r) +r dr

_ 1 (_dul(r) N duy(r) n rdzuz(r))

r2 dr dr dr?
_ 1 du(r)
T odrr

Thus it is to solve:

d*u(r (I1+1 _
d;ig): (rz )ul(r) ~ w(r) =T g

The radial function is therewith determined:
Rz(r) = VZ + ,31 r_(l+ D .

General solution for the potential:

oo

O(r,¥) = Z (o 4+ B r_(H'l)) Pi(cos V) .
1=0
2. Regularity of the potential at the origin (center of the sphere with radius R):
D=0 wvi.
It remains:
o0
Di(r,0) = Z o Pi(cos ) .
1=0
Grounding:
o0
®i(R.0) =0= > aR'Pcos®).
1=0

The orthogonality of the Legendre polynomials has the consequence:

aq=0VI ~ & =0.
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3. Grounding means:
o0
Qy(R.D)=0=> (/R + BR"*D) Pcos®) ~ Bi=-ayR'T".
1=0

The potential in the exterior space then takes the following form:
0 R2+1
Du(r. D) =) o (rl - ,zT) Pi(cos¥) .

=0

Surface charge density:

0P,
or

o0
= —g Z ar (IR~ + (I + DR'™1) Py(cos )
r=R =0

o = —¢&

!
= go0p cos ¥ = go0g P1(cos ) .

We exploit once more the orthogonality and find therewith:

1
—a1 (1 +2)=o09 ~N Ollz—gUo;OQ:OVl7él.

Potential in the exterior space:

1 R3
D, (r, V) = —300 (r— ﬁ) cos? .

Solution 2.3.10

1. Charge-free hollow sphere with azimuthal-symmetric surface charge density
means that the potential is independent of the angle ¢. Spherical coordinates are
appropriate and the Legendre polynomials build a suitable ‘complete orthogonal
system’. Therefore:

o(®) =) oP(cos¥) .

=0

General solution of the Laplace equation (2.165):

o(r) = @(r.9) =Y @+ 1) {Ar' + Br TV} Py(cos®) .
=0
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o (1) is given. With the orthogonality relation one finds:

1 oo 1
/ dcosVo(9)P,,(cosv) = Z oy / dcos ¥ P;(cos V)P, (cos )
—1 —1

=0

2
@) Oim

1
2 1
= 0, = (mz—-’_)/dcos Vo (9)Py(cos )
=1

= all coefficients o,, are known. Useful decomposition:
@i(r, ¥) : potential inside the sphere.
@a(r,¥) : potential outside the sphere.
Boundary conditions:

(a) @iregularforr >0 = Bi=

@i(r, ) = 2(21 + l)Aﬁrle(cos 9) .
1=0

() g =50 = A9 =

@a(r, ) = Z(Zl + l)Bfr_(H'l)Pl(cos 7).
1=0

(c) Continuity at r = R:

!

¢i(R. D) = @R, D)
orthogonality of the P, = B{R™ T = AR’
= B = AR,

(d) Surface charge density:
. 0, 0@
°\or ar

(o]
—€0 Y (21 + 1)Pi(cos B) {—( + DB{R™H? — AR~}
[=0

o ()

r=R

o0
+eo Y _(21+ 1)*Pi(cos AR ™! .
=0
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Orthogonality of the Legendre polynomials:

01 = €02l + 1)?AIR'™!
(o]

— Ai =
7 @214 1)2R !

The potential is therewith completely determined:

_ R > (o} r\!
oi(r,v) = p ; o+ (R) Pi(cos ) ,

o

R o R\ T!
a(r,0) = — — P v) .
#ar.9) €0 ; 21+1) (r) i(cos?)

2. Special case:

(%) = 00(2cos> ¥ + cos ¥ — sin® )

00(3cos’> ¥ — 1 + cos )
00(2P3(cos ¥) + Pi(cos¥)) .

With the general relation from part 1. it can be calculated:

1
2m+ 1
b 2 2+ 00(2 /dcosz?Pz(cosﬁ)Pm(cosz?)—i— /dcosﬁ‘Pl(cos lS‘)Pm(COSlS‘))

—1 —1

2m+ 1 2 2
= 2 Sm Sm
2 00( m 2 1 ‘)

0o (28m2 + 5m1)

— Potential:

5\R

3 2
@a(r, %) = 0065 { z (5) Py(cos ) + % (5) Pi(cos 19)§ .
0 r r

R (2 /r\2 1 /7
i(r,9) = 005 %— (—) Py(cosv) + 3 <E) Pi(cos 19)} ,
5
Solution 2.3.11 Azimuthal symmetry (Fig. A.22):

o(r,0) = 2(21 + D [Ar' + Br~ V] Pi(cos 9) .
1=0
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P e
-

NIt

P11

!

Conducting grounded sphere:
P(R.¥) =0 = B; = —AR"!.
Field in the inside of the sphere:
regularity atr = 0 — Bf) =0 VI

— AV =0 VI

= ¢ =0 intheinside.
E-field asymptotically homogeneous:

—> —Eyz = —Eyr cos? = —Eyr Pi(cos V) ,
r—00

o0
Z(Zl +1) [Alrl + Blr_(Z‘H)] Pi(costt) —> —EorPi(cost})
=0 r—>00

1
:>A1:—§E0; Ar=0 fOI'l?él
3 1 3
= B =-AR = +§E()R .

Potential outside the sphere:

r R?
o(r,9) = —EyR (ﬁ - 7) cos v .

Surface charge density:

d
0= —¢ a—w = 3¢egEycos? .

Tly=r
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Solution 2.3.12 Spherical coordinates

r = r(sin ¥ cos ¢, sin ¥ sin g, cos ) ,

3
Yio(D, @) = ‘/Ecosﬁ ,
3 . ;
Yiu(d¢) = —\/8—sml9e’¢’,
b4
3 . i
Yi-1(8, ) = ‘lg—smﬂe ¢
b4

e 4?7[(_? (Y“(ﬁ’ (p)_Yl_l(ﬁ’ (p))s
_g Y1 (@, 9) + Y1-1(8. 9)) . Yio (D, qo)) .

Similarly we get r’ , where, however, we still have to use:

Y (@) = (=1D)"Y_u (9. ¢")

Therewith:
/ / 4” ﬁ * * ! !
r =r T(—z (Yl_l(l?/,gl)/)—y“(l?,(p)),
ﬁ * ! ! * ! ! * !
7 (Yl—l(l(} @) + Y“(z‘} % )) ) Y10(19 vﬁ"/))

— rr = %”rr’{—%{yn(ﬁ, DY) + Vi (9. 9V (Y )
Y@ @)Y (0. ¢") = Y110, )Y (9, ¢)}
SO Y0 9) + Vi 0. Y )
+Y11(0, @)Y (0. @) + Y (D, @)Y (0, )}

+Y10(9, @) Y], (¢, 90/)}

4 * *
= r- r/ = Trr/(Yll(ﬂv @)Yll(ﬂ/v 90/) + Yl—l(ﬂv @)Yl—l(ﬁ/s (p/)
+Y10(0, @) Y15, ¢")

4
— r.-r = ?rr/ Z Yfm(l?/,d)ylm(l?,(ﬂ)‘
m=—1,0,1
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Addition theorem (2.161);

+1
21+ 1
?Pz(cos y) = Z Yy (8, @) Yim(9, )

m=—1
y = <(¥¢' 09) .
In our case here it is:
y = <«(r,r)
and therewith:
r-r' = rr cosy = rr’Pi(cos y)

4,

+1
= TVV Z Yikm(l?/v (P/)Ylm(l(}’ (p)

m=-—1

3
Yio(D. ¢) = o cos

the charge density is written:

Solution 2.3.13 With

p(r) = opcos?§(r—R) = \/gao Yi0(9,0)8(r—R) .

In addition we apply (2.169) for g = 1:

1 1 I
=47 Y —— =Y (9.0 V(D 0) .
r—r| %:21“ it
1. Inside space: r < R
re=r; r-=r

Potential:

| 1 [e’e) | ; 2 +1

_ [ U /2 3.7 r / /
@i(r) = 5_0 TUO /r dr’ IX: ZZ——H m /d(p /dCOS D
0 o 0 -1

Yio(, @)Y, (0, @) Yim(9, ) 8(+' — R)
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4
- V aozlm(ﬂ*"zlﬂ}el

/d(p /dcosz&" Y (8, 0 Y10(®', ¢")

0 -1

8118mo
= —\/ Uo Yio(9, 90) 5
= —vrcost
&0
o
A D) = 2
380

To this belongs a homogeneous electric field in z-direction:

(e[}
Ei(r) = —3—80% .

2. Outside space: r > R
Fe =1 rs=r.
Potential:

/1

D, (r) = 1 4—71 / r2dr’ §(r' — R) Z d

) 3 21 + 1 rl+l
0
2 +1
/d /dcosz&" Yio(@', oY, (0. @") Yim (D, @)
0 -1
8116mo
1 [an 1 R
= —00 = Y1o(l9 <P)
80 3
3
- % cost —

3 €0 }’2
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That gives for the electric field:

ad 10 1 0
Ea = —VqDa = — (erg +e&;% +e¢m@) CI)a

2 1
__% (e,R3 cos (——3) + ey R3—3(—sin 19))
r r

380
ooR? [ 2cos¥? sin
~ E,= e, es | .
3go r3 r3

With the dipole moment

4w 5
p=—Rope
3
a pure dipole field is left (2.72):
EO 1 2cos?
T Age p r
1 sin ¥
E® —
a dme P
EWY —0.

a

Solution 2.3.14
la. Equation (2.71):

r-
4w eopp(r) = TP .

Equation (2.73):
4 €0Ep(r) = 3(r}:5p)r — % )
1b.
47 €opp(r) = (l|.r_——a;)1|.3p ,
47 €Ep(r) = 3[(r—a)-pjr—a)  p

Ir—af r—al®
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Fig. A.23 —

/

— V

/

—

— n

/

/

=
\}
S

AL

2. Origin of coordinates on the metal surface, perpendicular in front of p. On the
metal surface it holds (Fig. A.23):

‘Image dipole’ pg outside V

1
= 4w epp(r) = (r—a):-p+ ———(@C—rp)-ps.
r —rg|

r—al® |

Symmetry: rg = —rgn.
Metal surface:

r—a| = VPR +a—2ar-n=vVri+a?,

r—rg| = \/r2+r]23+2r3 r-n= \/r2+r]23,

r-p—a-p r-pg —Is-Ps

!
=0
(}’2 + 612)3/2 (}"2 + r§)3/2

41 €pp(r) =

— rg=a, le. rg=-a=—an,

ps-n=p-n } P=pL+pP|.
r-p=-r-ps) ps=pL—P| -

From that it follows the potential in V:

4n€0¢(r):m((r—a) n (rJra))Jr(p”,r)(lr_lal3 1 ) .

[r—al®*  |r+al? - Ir + a|?

Since it holds on the metal surface

r—al=|r+a|l=+vVr*+ad*> and pL-r=0
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the boundary condition

0=g¢(r)

on the metal surface is obviously fulfilled.
3. E; = 0 in the metal.

inV:
3[(r—a)-pL](r—a) pL

41 €E,(r) = FE - r—ap

3[(r+a)-pi](r+a)  py

Ir + al® [r + a3
3(r-py)(r—a) p| 3(r-pp(r+a) p|
+ — — )
Ir—al [r—al? [r+al® Ir + af3

Surface charge density:

oc=¢E,- nIr-n=0

_ L[3(—a-p¢)(—a'n) pL-n 3(a-pi)(a-m)

. (P2 +a2)52 (2 + a2)32 (2 + a2)5/2

__pi-n 30-p)(-a-m 3(r-p)@-n
("2 + a?)¥2 ("2 + )52 ("2 + )52
G 3a’pL —pi( + @) +3a’pL —pL(r? + @) — 6a(r - py)
C 4n (r? 4 a?)/?
1 (4a®> —2r*)p1 —6a(r-py)
= o(r) = y 7+ ) , I € metal surface .
4a. Pl =0,pJ_ = p:

1 p2a®? —1?)

O-__—s
21 (r2 + a?)>/?
oc=0 forr:rozx/ia,
o0>0 forr<ry,|ifp>0,i.e.dipole

0 <0 forr>ry | directed away from the metal .

4b. py=p,pL=0:
1 6a(r-p)
C Am (PP a2
c>0: r-p<O0,

0<0: r-p>0.
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5. To 4a.:

Q. : total charge within the circle with the radius ry = ~/2a (Figs. A.24,
A.25, and A.26):

7 r ;’(Za2 —r?)
04 = /o(r)Z:rrdr:p/dr— ,
2 + )52
0 0
—_— a . 1 J— r
S = a ¢ SN = e
r a
tanoe = —; dr= 5 do
a cos? o
— 0 j )d ) a ! :
= r —
+=P 21 P+ )P+d (P +ad)l

0

Fig. A.24 B
% 1: +
+ p
0
]
Fig. A.25
+
+
+
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Fig. A.26
[&00] 2
cos” o
= p/ da(2 cos® o — sin® o) sin
cos? o a?
0
cos(ap)
cos o
e / dcosa(l —3cos’a) = B(cosa —cos® @)
a a 1
1
p .3 a r
= —cosqpsin“ oy = —
4 0 0 a (r% +a2)1/2 (r% + a2)
P 24°
T a (3a2)3/2
2 p
— 04 =—=".
33 a
Analogously:
o0
_ _ P 3 cos(/2)=0 _
o- = /o(r)Z:r rdr = o (cosoz — cos oc)|cosa0 =—-0+
ro
— total charge = 0.
To 4b.:

Q: Absolute value of the positive charge in the lower half and the negative
charge in the upper half of Fig. A.25. The two absolute values are equal because

of symmetry reasons;

the total charge is therefore also zero. We choose r-p > 0;
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p|: polar axis,

[e%e) +m/2
0= /rdr / dBo(r,B),
0 —r/2
+n/2
pjcr=rpcosf, / cosfdp =2.
—n/2
< 2 < 2
3 3 1
Qzﬂfdrr_zﬂf ar "
p (12 + a2)/2 p —— 2+ a (12 + a2
0 0 adt e —
cos“ a sin2 cosda
a3
/2
3 1
=r da cosa sin® o = Lsin%z‘
Ta — Ta 0
0 d sina
wa
Solution 2.3.15 Laplace equation in two dimensions:
2 32
Ap =5+ =0.
4 (ax2 ayZ) 4
Separation ansatz:
p(x.y) =f(x)g0) .
Insertion into the Laplace equation:
1 d? 1 d?
— _f + — _g =0
[ de g dy?
—— ~——
only dependent only dependent
onx ony
Ld¥ 1 d’°g
- =0T =—— .
[ v g dy?

Structure of the solution:

fx) =ae*™ +be ™,
g(y) = @ cos(ay) + b sin(ary) .
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Boundary conditions:

px=0,y)=0 = b=—a
(p(_x’yzo):() :}Ez:()’
nmw
o(x,y=y)=0 — a—a,=—:; neN.
Yo
Intermediate result:

ox,y) = Z cp Sin (y—y) sinh (—x) .

Yo

Further boundary condition:
®o = @(x = xo,y) = ch sin (Ey) sinh (ﬂxo) < sin (—y) .
" Yo Yo Y

Orthogonality relation:

Y0
2 mm b4
— | sin (—y) sin (—y) dy = m
Yo Yo Yo
0
Yo

2 . (nmw mir
- Z ¢, sinh ( ) / sin (—y) sin (—y) dy
Yo Yo Yo Yo

= Z ¢, sinh (—xo) Spm

Yo
Sml

sinh (—xo) '

:}Cm:

Solution:

h s
00.3) = an (Zy) |

sinh ( 35 X0 Yo

Solution 2.3.16

1. Cylindrical coordinates: p, ¢, z,
p: distance from the center of the wire.
Symmetries:

E(r) =E(p)e, .
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Gauss theorem:
V,: Cylinder with radius p and height L; concentric around the wire:

1 1
/d3rdivE = e—oq(vp) = a)LL = / df -E = E(p)27 pL .

A S(V,)
Electric field:
A1
E(l‘) = ) —€p
TeE P
Potential:
=— 1
o) = —5——Inp

2. ‘Image wire’:
To the left of the plate with distance (—xy), parallel to the plate, charge per length
(=4).

Potential:

wire = ow(r) = —

A
In/(x —x0)* + y?,
27 €
In v/ (x + x0)2 + 2.

image wire — ¢@w(r) = +

271 €

(r) = A In (x + x0)? + y?
¢ T 2me (x—x0)2+y2

Total potential:

Boundary condition:

A
ex=0,y,27) = In1=0.
2 €0
3. Induced surface charge density:
0= —¢€ 9
- 0 ax -0 ’

dp A 1 2(x + xp) 2(x — xp)

o 2men 2 (x+x0)2+y2  (x—x0)2+y*]’
0 A
do| A X A X
ax|,—g Teo x2+)? X+ )2
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Section 2.4.4

Solution 2.4.1

1. Charge density ‘electron plus nucleus’:
e 2r .
p(r) = ed(r) — — exp (——) (without field) ,
Ta a

2r —
pe(r) = ed(r) — % exp (—%) (with field) .

Dipole moment:
p= [ e = [ @0+ ropew + o

=ry / &*r pg(r' +ro) + / Ay pe(r + 1) |

= (e-

= 0; understandable because the total charge vanishes.

(0] (IT)

oo

e _h
/dr/r/Ze 2r/a)
0

[ ——;
=a3/4

~

N}
w

e At
() = —erg— —5 &rr e/
Ta
. 7 r Al sin ¥’ cos ¢’
— / . .
=—erg— —5 dr'rPe /“/dgo’/dcos ®' | sin ¥’ sin ¢’
Ta
0 0 —1 COS 19/

—erg—0 = p=—ery.
2. Restoring force:

Fr = eEe(r = 0) .
T

field of the electron

At first: electron at the origin

e 2r
EY
Ta a
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Field to be calculated by use of the Gauss theorem:

e | ,
47 PE(r) = ——e3 /dr’r’ze_zr /a
€oa
0

———
é—%efzr/“(%+ar+r2)

_ e 1 e 2rla 2r 277
= M=o lrm = Uttt a)]e

Now: electron at the position r

s B = — e r—ry | — gt=2l—rob/a (| 4 2|r — 1| n 2|r —1ro|? .
4 €y |r—ro)? a a2
Restoring force:
2
e 2r 2r2
Fr = P [1 - e—Zro/a (1 + 0 + 20)i|
4w eory a a
&2 e
N ——T) = —
37 epa’ 0 3w epa’ P

This estimation is correct since it holds for ry < a:

2 2r2
|:1 — g 2n/a (1 + il + —20):|
a a
2

Equilibrium condition:

eE() ; —FR =

p — p:37t60a3E0.
3w ey a’
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is so small that the electron-clouds to first approximation do not disturb each
other. It follows then:

Polarization:
P= 37t60na3E0 ,
Electric field:
E=E,— lP: (1-3nna’)E,
€0
Dielectric displacement:
D =¢y¢,E = ¢gE) = ¢gE + P,

Relative dielectric constant:

1
&= —.
1-3nnad

Solution 2.4.2 Since no free charges are present the Laplace equation is to be
solved:

Ap=0.

(a) Azimuthal symmetry (Fig. A.27):

e(r.9) =Y 21+ 1) (A + Br~"TV) Pi(cos 9)  (see (2.165)) .
[=0

Fig. A.27
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(b) Regularity at r = 0:

o0

@i(r, ) = Z(Zl + DA Pi(cos ) .
1=0

(c) Asymptotically homogeneous field:

@a(r, ) —> —Eoz = —Egr cos® = —Eyr P(cos )
r—00

o0
= @.(r,0) = —Eor Pi(cos ) + Z(Zl + DB~ "YP(cos 9) .
1=0

(d) Continuity at r = R:

@i(r =R, 9) = ¢.(r =R, 9)

By
:}AOZ—7
R
R 3B,
3 1R——E0R+Fa

B
AZ:W forlZZ

(e) D, continuous:

@ (3_‘/’) — e (31) ’
ar r=R or r=R

€ > 12l + DAR'™'Py(cos D)
l

= —Eoe"Pi(cos ) — €)Y (I + 1)(2 + BRI Py(cos D) .
l

Comparison of the coefficients (orthogonal functions!):

0=Byp,

1
301 = ~Eg el — 6B

€121+ 1A, = =1+ 1)(21 + 1)B, forl>2.

R2I+1
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Comparison with (d):

AZZBZZO fOI‘l?él,

o
Ay = —Ey

Zer(l) + er(z) ,

2) (D

1 € €
B, = —R3E0—
3 2651) + er(z)

(f) Solution:

3er(l)

———Fyr cos?)
26" + !

@i(r) = —

5 er(z) — eﬁl) cos U

@a(r) = —Eor cos® + EoR
d O

(g) Electric field:
Inside:

3651)

—————Ege; .
260 4 0

i =

Inside the sphere the resulting electric field is parallel to the external field Eg in
z-direction. According to (2.196) the polarization of the sphere is given by:

36r(1)(6(2) 1)

P= (652) — 1)60Ei = éoE() .

2¢€; m + er(z)
Outside:
Take
(2) (1)
€& —€
p =4n 60R3E0ﬁ
2¢; + €
Then we get:
.r
(Pa(l') =-Ey-r+ p_3
41 € r
——

dipole potential (2.71)
From that it follows as in (2.73):

E,.=E
0+471’€0 ro r3

1 |:3(r-p)r_£:|
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e :M:

Fig. A.29 Q

€.(2)

The external homogeneous field Ey is thus superimposed by the field of a dipole
p which is located at the center of the sphere and is oriented in z-direction

(Fig. A.28).

Solution 2.4.3 The dielectric displacement D has only a z-component, determined

by the true, free excess charges, therefore:
b2
F
Furthermore it holds:
D, = €& (2)E(2) .
It follows therewith for the space-dependent electric field:

Q

E(2) = Fe()eq

Potential difference between the plates by integration (Fig. A.29):

d
0 dz
U=9z=0)—-9p(z=d) = — .
¢(z=0)—9p(z=d) Fal o0
0
Hence, the capacity is:
_Q_ Feg _ Co
C___ddz_lddz’

0 €(z) dJ0 €(2)

Co = €oF/d: capacity of the plane-parallel capacitor in the vacuum.
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Special case: Dielectric material consisting of two layers with thicknesses d;, d,

and permittivities Er( b s er(z) :

d
/ i di | dy  die” +dye”

S «@ g & eVel?
From that we get the capacity:
el e F ee?d
= = 0 .
dlér(z) + d, Gr(l) d; Er(z) +dy Gr(l)

Solution 2.4.4
1.
Dy = €60k ; Dy = ey ;
Din = Diy e; ; Ein =Ene; .
2.
Ey=Ey=E,

because of curlE = 0 the tangential component does not change,

D] = ErDH .

Dy =o01; Dy=oy becauseofdivD = p.

Q = oiF1 + ouFu = DiF1 + DuFn = €oE(&F1 + Fu)

=eEblex+ (a—x)] =eEbla+ (& — 1)x] .

It follows therewith:
= Q e
obla+ (e —1x] =’
D[ = GrE()E 5 DH = 60E .
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5.
1 3 1
WZE drE'DZE(EDIF[d-FEDHFHd)
1 r
= EEdG()E (e.F1 + Fp) = EEOE db [Cl + (e — 1)x]
_ €0 deb
2 &b la+ (e —1)x]
This yields:
1 d Q?
W= Q .
2 €b (a + (& —1)x)
6.
F=Fe,,
P aw 1 dQ?* (e — 1)
 dx 2epbla+ (e— Dx]? T
The dielectric is pulled into the capacitor!
Solution 2.4.5

1. Macroscopic potential (formula after (2.185)):

4n£0<p(r)=/d3r’§|p( )|+ P(r) - | |

Excess charge density:
p(r')=0.

It is left:

r—r 1
4reg p(r) =Py - / a*r =-P,-V, / a*r — .
Ir—r Ir—r/|

<R <R

For the calculation of the integral we choose the direction of r as polar axis:

R
1 1
/ d3r’—/ = 27t/dr’r’2 /dcosﬂ
r—r| , 1 V2 + 72 =2rr cos ¥
<R —
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R

21 +1
=—" | drV \/r2+r’2—2rr’cosz‘}‘
r —1
0

2

R
= /dr/r’ (|r 47— |r=7])
0

—

r R
2fdr/r/2+2fdr/r/r(r<R)
0 r

= R
g {Zfdr’r’2 (r>R)

0
{5+§(R2—rl) (r <R)

3
1R (r>R)

1p2 1.2
RS — 3" (r<R)
ip3 (r>R).

Thus it holds

%Rz — érz (r<R

4 —_P,-V.4
&0 ¢ (r) 0" ¥ram { 1o (r>R).

It follows therewith the potential in the inside and the outside space:

o) = —Pye, | °

1 %r (r<R
€0 >R (r>R)

1 Py-r (}’<R)

_380§PO'I‘R—3(}’>R).

P

Dipole moment of the sphere:

pP= ?RSPO.

Finally we can write therewith:

4T”P()-I'(I'<R)
dreg r%p-r (r>R).

p(r) =

We see that outside the sphere the normal dipole potential (2.96) appears.
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2. Electric field strength:

E(r) = —Vo(r) .

It follows with the scalar potential from part 1.:

— 5z Poe; (r<R)

E(r) = 3e,( )
€€ -p)—Pp R
A gor’ (r>R).

In the inside of the sphere the field lines start at the positive polarization charges
on the surface of the upper hemisphere and go straight-lined to the corresponding
negative polarization charges on the lower hemisphere (Fig. A.30). In the outside
region it is a pure dipole field.
3. Polarization charge density:
pp(r) = —divP .
Thus it is
pp(r) =0 for r>R and r <R.

This means:

pp(r) = op(r)8(r —R) .

Fig. A.30
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op is the surface charge density. As in Fig.2.12 we position around the surface
of the sphere a ‘Gauss-casket’ and let the width Ax of the front surface approach
zero. Then it must hold:

/d3rdiVP: / df-P — AFn-(P,—P) .
AV S(AV)

n = e, is the normal-unit vector on the surface of the sphere. The indexes a
and i mark, respectively, the outside space and the inside space of the sphere. In
addition we get:

/d3rdivP =— / d*r pp(r) = —AF op(r) .

AV AV
The comparison leads to:

n- (P, —Pi) = —op(r).
Furthermore, it holds in the present special case:
P,=0; P=Py.
It results as polarization charge density:
op(r) = op(r)5(r—R) =Py-e,8(r —R) = Pocos¥ 6(r — R) .

As already mentioned above, positive charges appear on the upper spherical
interface and negative charges on the lower spherical interface.

4. As arealization of the above discussed model situation one could imagine two
spheres, homogeneously charged with +¢ and —gq, the centers of which are
shifted against each other by a where a < R. g and a are thereby to be chosen so
that:

Solution 2.4.6 For the solution in the left half-space (x < 0) we introduce in the
right half-space at (Fig. A.31)

ro = +ae,

an image charge gg which does not ‘disturb’ the corresponding Poisson equation of
the left half-space. For the solution in the right half-space(x > 0) we place an image
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Fig. A.31 Vacuum Dielectric
er=1 Er>1
g __ 9 9B X
fol ¥ =
a 0 +a

charge gj at
ro = —aey

which replaces there the real charge g. The system of point charges leads then to the
following potentials:

1 1
+ x<0
1 Ir + ae,| 5 |r — ae,|
drreg o(r) =
4 ! >0
_— X .
1 [r + ae,|
That gives us the ansatz for the electrostatic field:
r + ae, r —ae,
q 5+ 48 5 Xx<0
Ir + ae,| [r — ae,|
4o E(r) =
r + ae
| Thae £ 0.
[r + ae,|

We determine the image charges by the continuity conditions for the electrostatic
field at the

interface: {r(x =0,y,2);—00 <y,z < +00} .
Tangential component (2.213):
E;(x =0) =E,(x=0).

Normal component ((2.213), uncharged interface):

En(x=0) = %Ern(x =0).
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For points in the interface it is:
Ir+ae|=|r—ae|=+va+y>+22=0b(2).
Normal component at the interface:
E-el,_, .

Because of e, - r|,=¢ = 0 it must hold:

a —a , a
935 T 4855 = &ds 35 -
That yields:
q9—qs = &:qp - (A3)
Tangential component at the interface:
E- ez|x=0 .
Now it must be:
Z Z 1,z
19 +4gs 9By
That yields:
q+qs=qp . (A4)
Combination of (A.3) and (A.4):
;o 2
T =1 &+ 1
1—¢
® =4 14 &

The electrostatic field is therewith completely determined.

Polarization (2.196):

P=yeoE; Ye=ée—1.
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Vacuum: ¢, = 1. Hence it remains:

0 x<0
- —1 r e,
P(r) 4 &= rrae 5 Xx>0.
2 &+ 1 |r + ae,
The vacuum is of course not polarizable.
Polarization charge density (2.189):
divP(r) = —pp(r).
We have in our case for all r in the right half-space:
r—r
div —— = —div - grad
[r —ro| |r — 1o

drd(r—rg) =0.

This is correct since ry lies in the left half-space. Furthermore we used (1.69). It
follows therewith for all r with x < 0 and x > 0:

pp(r) =0.
Induced charges can exist only in the interface:
pp(r) = opd(x) .
Surface charge density (2.193):
op=—¢e-Pl._, .

That means here:

qg &—1 a

UP:_2ﬂ£+1 20242
T (@> +y* + 2%)2

Fore, =1 (n gs = 0, gy = q) the right half-space is also vacuum. Polarization
charges are impossible. For &, — o0 (~ ¢y = 0,gg = —g) it results the
known problem of a point charge in front of a metallic plate (2.128).
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Section 3.2.4

Solution 3.2.1 We place around the conductor a (fictitious) cylinder with the
radius p > R. = cylindrical coordinates p, ¢, z surely appropriate, therefore the
following ansatz:

B = B,(p,¢.2)€, + By(p, 9, 2)e, + B:(p, ¢, 2)e; .
We exploit the symmetry (Fig. A.32):

infinitely long wire =— B, =0, B # B(z) ,
rotational symmetry =— B # B(p) .

— new ansatz:
B = B,(p)e, + B,(p)e, .

Z,: cylinder of the length L, radius p, conducting wire as axis.
Maxwell equation:

B-df=0.

S(Zy)

Fig. A.32 z
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Front surface: df ~ e, = no contribution.

Barrel: df ~ e,.

= 0= fS(zp) B - df = B,(p)2npL

= By(p) =0

= B = B,(p)e,.

Maxwell equation (F,: front side of the fictitious cylinder):

1 ifp>R,
dr-B = df-j = ol 4 p?
/ Mo/ J= o ’O—ifpr,
F, Fp R?

dr = dpe, + pdpe, + dze, = dr B = pdpB,(p)

2
= /dr-B = pBw(p)/dfp = 27pB,(p) .
JoF 0

.
wol | = ifp>R,
:>B<p(/0):2_ /70

Solution 3.2.2

F = sﬁ(j(r) x B(r))d’r = Iggdr x B(r) .
C C
B(r) is effected by j:
—r -~
B(r) = i‘—gﬁd%/j(r/) x ——F _ ﬂ1¢dr/ x Ir—r

0
T r—r'|? 4nx r—r3’

‘Self-force’:

o
F:ﬂlzygygdrx dr’ x r-r
4 r—r|?
c C
— —
:@129595 av'(ar. 125 ) E2F (dr'-dr) ) .
4 [r—r/|? [r —r'|3
c C
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For the first summand we get:

/
- 1
9§dr.uz_9gdr.v,_
e =} r—r]
C C

OKes 1
Stek —/df- curlgrad—— =0
Ir—r'|
F.

0
It remains:
_ /
F= —@12§]§§1§dr-dr’L .
¥4 Ir—r']3
c C

When interchanging the variables r and r’ the force F turns to —F. That is possible
only if

F=0.

Conclusion:

The current-loop does not exert any force on itself!
Solution 3.2.3

j= j(n ﬁ)ew
1.
e, = (—sing,cosp,0) ,
J=Jj(r.9)(=sing,cosg,0)
= ji. +ij, = j(—sing +icosp) = ij(r,})e"” .
From

Am =2 / oy 3T

47 [r —r/|
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it follows
A,(r)=0
Atidy = 20 [ pp it
47 [r—1'|

Ly, I
Ly e UGS )ei‘p/
47 [r —1r/|

According to (2.169),

1 1 rl

[r —r/| = 4n Z 20+ 1 rl—il Vi (¥, 0" Yin (D, 9)
m,l >

r- = max(r,7’) ,
r< = min(r, ) ,

204+ 1 (1—m)!

BT pmcos 9)em .
U gmyllcosDe

Ylm(ﬂv 90)

Insertion into A, + iA, == ¢’-integration lets survive only the m = 1-term:
Ay +iA, = iA(r, D)e" .

€' stems from Y (9, ¢):

o

A(r, ) = /d3r/](r Z (z+1)' P! (cos 8") P! (cos 9) .

I=

With this A(r, ) it holds for the vector potential:

A(r) = A(r, ¥)e, = (Ax, Ay, Az)
= (—A(r, ) sing,A(r, ¥) cos ¢, 0) .

AA(r) = —poj(r) (%)

valid component by component:

A(A, + iAy) = —po(ix + l]y) )

NN AU S R A S
2o \" o r2sin® 99 v r2 sin? % 02
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performing the g-differentiation —

1
A———— AR, 0) = —oj(r, 9) .
(8 g ) A0 ) = =)

Notice, to divide (*) simply by e, is not allowed, leads to the wrong result!

Solution 3.2.4 Cylindrical coordinates p, ¢, z obviously useful. Because of
j = jez

we find:

s
A(r) = ﬂ/(p/ﬂ = A(p, ¢, 2)e; .
47 r —r'|

Due to symmetry reasons there cannot be neither a ¢- nor a z-dependence:

A(r) = A(p)e;
Nabla operator:

00 0z

0
V:eﬁ?%—i_e(p )
= B=curlA(r) = VxA() ~e,xe, =—e,

= B = B(p)e, .
Circle with the radius p around the cylinder axis:
dr = pdye, ; df = pdpdpe, ,

_— / dr - B = 27pB(p)

3F,
:/df-curlB:/ df - uoj
F

F, ?
0 ifp<R .
P’ — R}
R — R
1 lfP > R2 B

1(F))

ifRi<p=<Ro,
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B()
Fig. A.33
0 ifp<Rp,
p— R—%
— By = ML) L iR <p<Rs.
2 fz 1
- ifp>Ry

Solution 3.2.5 The same symmetry considerations as in Exercise 3.2.1 lead to the
ansatz (Fig. A.33):

B =B,(p)e, .

F,: Front surface (radius p) of a coaxial cylinder.

Maxwell equation:

/dr-B:Zn,oB(p(p)é,uo/df-j.
IF, F,
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(Ampere’s law)

[ari-

Fp

The B-field is therewith already determined:

Ho
B(p (,0) = Z

2
0
11—2, OEPEPI,
P1
I ; pPL=p=p,
p*—p3
h+h—5——=:ip=p=ps,
3~ P
L+5L; pP3=p.
I
=P 0<p=p1,
pll
11;; pPL=p=p2,
PP=p\ 1.
Il+122 B _7,025,051037
3P/ P
(h +1L)—; p;=p

Special case: I} = —I, = I (Fig. A.34)

> o,i 1,=0)

(1,=0, 1,<0)

Fig. A.34

537
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ol
By(p) = P

Solution 3.2.6
1. Vector potential (Fig. A.35):

A Solutions of the Exercises

=P 0<p=<pr1,
/1)1

= PL=Pp=pP2
gz—pzl

S~ im<p=<ps,
P3— PP

0; ;B =p.

_ L[ py i@
41

r—r|

The symmetry suggests cylindrical coordinates (p, ¢, z). Because of j = je,
and again from symmetry reasons the vector potential cannot exhibit any z- and

@-dependence:

A=A(p)e;.

(I,=—L,=1I)

Fig. A.35
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It is to be calculated:
B =curlA.

curlA aA aA aA aA aA aA
u =\ 5 — q Dy, T Ax T A — 7 x
dy ° 9z 0z ox  Cox T dy

= aA —aA 0

S\ay o @
d X

= 5-A(p) (X,——,O)
o J
0 )

= —A(p) (sing, —cos ¢, 0)
ap
0

= a_pA(p) €y -

Thus it must be valid:

B=B(p)e, .

Let C be a concentric circle around the conductor with the radius p (see
Fig. A.36). Then it follows with the Stokes theorem and the Maxwell equa-
tion (3.31):

/curlB -df = / B - dr = B(p) 27p
Fe C

2.
. N 0<p<R
= -df:
/‘LO/J MOJ{JTRZIRf,O.
Fc

Fig. A.36
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Fig. A.37

That leads eventually to:

B — 1 \V\p: O <R
= EMOJ RTf: R <
2. We can presume (see Fig. A.37):
a=(—a0,0).

We conclude from the linearity of the Maxwell equations that the field inside
the drill hole is composed by the field of the total cylinder through which flows
homogeneously j (see part 1.) and the drilled cylinder of radius Ry through which
flows —j homogeneously:

B = Bi(o1)el) + Ba(p2) el .
e((/,z), p2 refer to the origin Py of the cylinder drill hole:

1
e((pl) = (_ylv-xlso)
P1

1 1
e(foZ) = — (_yvast) = — (_yls-xl + a, 0) .
02 02
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This yields the field inside the cylinder-drill hole (o2 < Ry; p1 < R):

1 |
B = SHaj (—y1,x1,0) — S Hoj (=y1,x1 +a,0)

I .
= SH (0.—a.0) = —Spojaey .

Hence, the B-field of the cylinder-drill hole is homogeneous and oriented in (j x
a)-direction:

1 .
Bzzuo(]xa).

Section 3.3.3

Solution 3.3.1 Because of the special form of the current density
i) =18(p — R)é(2)e,
from symmetry reasons the vector potential will have the structure
A(r) = A(p, 2)e,
with the unit-vector:
e, = (—sing,cosg,0)
The y-component is then:

Ay = A(p,z) cos(p)

_ Mo / Pr 18(p" — R)3(2) cos ¢’
4w r —r| '

The evaluation for ¢ = 0 is sufficient:

r=(x,y,2) = (p,0,2)

/

r =W,y,7d)= (Rcosgo’,Rsinqo/,O),

Ay — Alp.2) = - /Pdp /dqo d’ 18(p" = R)8(2) cos ¢’
y V(Rcosg' — p)> + R?sin ¢/ + 72

2

Ho ’ ’ 1
—IR | dy cos ¢
4 ) VR2 + p? —2pRcos¢’ + 22
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Elliptic integral, not solvable elementarily! Therefore we restrict our discussion to
two limiting cases:

(a) p<KR
In this limit it can be estimated:
1 _ 1 (1 0? —2,0Rcos<,o’)_l/2
VR*+ p> —2pRcos¢’ + 722 VR*+ 22 R2+ 72

12

1 B 0> —2pR cos ¢’
i\ amt)

The first summand does not contribute. For the second summand the relation
2
/dqo/ cos’¢ =m
0

leads to

1 P
A(p.2) ~ —polRP——————— .
(p.2) 2 7 1o TN
From that we derive in the next step the components of the magnetic induction.
We need the curl in cylindrical coordinates (see Vol. 1, (1.380)):

1
curlA = — [9/dp 9/d¢ 09/0z| =

0 pA(p,z) O

e, pe, e 1
o ( 0z ap

d ad
__pA(ps Z)s 07 _pA(ps Z)) .

It follows therewith:

B, = lpLOI 23z—p5 )
4 (R* +22)2

B, =0,

B, = luole% )
4 (R2 + )3
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b) p> R
_1
1 . 1 (1 R2—2pRcos<p’) 2
VR + p2—2pRcos¢’ + 72 /p>+ 722 P>+ 22
1 (1 R? ) PR cos ¢’
R 202+2)/) (2 +2)r

The first summand does not contribute to A(p, z) in contrast to the second:

0

1
A(p,2) =~ ZMOIRZﬂ .
p°+2z7)?

Cylindrical coordinates
r = pe,+ ze;
= (p* +zz)% =r,
e XTI = pe xXe,=pe,.
We get therewith the vector potential,

o mXT
Ar) =122 ,
() 4g 73

of a magnetic dipole of a circular conductor loop (see (3.46)):
m = 7R’e, .

From that it results as to (3.45) the magnetic induction in the form well-known
for the dipole field:

B(r) = curlA(r) = Ho (M — m) .

4 rd 5l
Solution 3.3.2
1. Charge density (Fig. A.38):

q
47 R?

p(r) = §(r—R) .
Current density:

i) = p(r)v(r) = p(r)[w xr] .
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Fig. A.38

Surface:

r = Re, = R(sin¥ cosg, sin? sing, cosv) ,
w=we, =w(0,0,1)
= e, xe, = (—sin¥ sing, sin? cosg, 0)

= sin¥(—singp, cosg,0) =sinde, .

From that we find the current density:

i) = 4in sind §(r—R) e, .
2. Magnetic moment
Definition:
1 ) 5
m=z (rxjr))d’r
(e, X eq]) = (—cos ¥ cos @, —cos ¥ sing, sin) = —ey
0 2 +1
= m= Squ derS(r—R)/dq)/dcosz‘}( sin 9 ey)
-1
| +1
= an)RZ/dcos B (1 — cos® $)(0,0,1)
—1 2_%

1 2 1
= ngquezzquw
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3. Vector potential

Definition:
s
A = 20 [ e I
47 [r—1'|
Mo q 3 rert r
Ar) = — a’r8(r — R .
® 4 47rR2wX/ rér )|r—r’|

Polar axis 11 r:

r=r(0,0,1),

r' = ¥/ (sin® cos¢’, sind sing’, cos ') .

From that it follows:

00 +1 0.0.1

A(r) = Hod x/dr’r/35(r/—R)/dx *0.0.)
8 R2 }’2 + r/z —2rr'x
el

0

+1
R
— Hod (0 xer)/dx al ,
1 V2 +R? —2rRx

8
+1
1 +1
I:/dx =——x \/r2+R2—2rRx‘
1 r2 4+ R? —2rRx R -1
+1
1
+—/dx\/r2+R2—2rRx
rR
1
1 1 (21 32|t
=——(r—R R)+ — (- — ) (P +R*—2rR
rR(|r |+ |r+ |)+rR( 32rR)(r + r Rx) .
1 3 3
r> R:

1
I=——F—-R+r+R
rR

1
IR (r3 — 3R+ 3rR*—R — ¥ -3 R-3rR> — R3)
,
2 1 2R
=—=— —6r°R —2R%) = +— .
R 3r2R? ( g ) +3r2
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r <R:

21
[=-=

P
r—zzﬁpﬁuﬂ—m%=4a——

3R2

It results therewith for the vector potential:

2
,uolzﬂrz(wxe,),ifr>R,
A(r) =
uOI;];R(w xe), ifr<R.

In the outside space it thus holds:

Mo MXT
Ar) = —
(1) ===

r

Finally we get:

B(r) = o 3e,(e,-m) —m .
4 r

Solution 3.3.3 Magnetic moment according to (3.43):
1 3 )
m = E/d r(rxj)) .
Charge density of the hollow sphere:
p(r) = opcos#8(r —R) .
Current density:

i) = p(r)v(r).

1. Translational motion
vV=uvey.
Spherical coordinates:

r=r(sindcospe,+sindsinpe, +cosde,) .
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It is then:
rxv=rv(—sindsinge, +cose,) .

This we use for the above expression of the magnetic moment:

+1 27
1
m = E(70R3v/dcosﬁ /d(p cos ¥ (—sin®? sing e, + cos ¥ ey) .
0

-1
The first summand vanishes because of the ¢-integration. It remains:

+1
m = 7oyR*v / dcos®? cos’ de, .

-1

The magnetic moment is therewith orthogonal to the symmetry axis of the charge
distribution (cx e;) as well as to the translational velocity (o< ey):

2w,
m = ?R opv ey .

v(r) = o xr|,_p .
Current density:
jir) =0pcos?8(r—R) (w XT) .
Magnetic moment:

m = %(fo/d3r cos¥ 6(r—R) (r X (w Xr))

= %(fo/d?’r cos? §(r—R) (@ r* —r(r-w)) .

* ® X e, (parallel to the symmetry axis of the charge)
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Then it holds:
+1 2
m = %00]34 / dcos?d / dy cosvw (e, — cos ve,)
~1 0
+1
= nooR'we, / dcos? (cos ¥ — cos’ ¥)
~1
=0.

Here it was again the @-integration which let the x- and y-components of e,
vanish.

* ® e, (orthogonal to the symmetry axis of the charge)
Then it is to be calculated:

+1 2
1
m = E%R“/dcosﬁ/dg& costvw (ey —e (e -¢e)) .
0

Z1
For the bracket we find:
e, —e (e -e) = e (1—sin’?cos’p)
+ e, (—sin ¥ sing sin ¥ cos @)

+ e, (—cos ¥ sin ¥ cos @) .

The ¢-integration provides now the vanishing of the y- and z-components of
the moment. Hence it remains:

2 +1
1
m = 500R4wex /d(p /dcos s (cos ¥ —cos? @ (cos ¥ — cos’ 19)) .
0 —1

One recognizes that the integral over cos ¥ yields zero. Thus in this case also:
m=20.

The same result one finds of course also for the rotation around the y-axis. So
the magnetic moment vanishes for rotations around each of the three Cartesian
axes, therefore also for rotations around arbitrary axes through the center of
the hollow sphere!
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Solution 3.3.4

= %/(r x jr))d’r .

1. Solid sphere:
Charge density:

p(r) = Q @R

Current density:

i) = p(r)v(r)
= p(r)(® xr) ,

rx(@xr)=wr’—rr-w),

® 11 polar axis: ® = we, ,

3
m = 3 i3 O(r — R)(wr® — rrw cos 9)d’r

R
3
=3 i3 (w 4n/r4dr—w/r2®(r—R)cosz9(sinz9 sin<p,sin1900s<p,cosz9)d3r>.
big

0

x- and y-components of the second integral obviously do not contribute.
Hence, it remains:

R
3
m:—Q —2n/r4dr/dcosﬁcoszﬁ
ST R3
0 -1
3 R2
= Q 4w —2m -
4071

|
=4 ngQRw.
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2. Inhomogeneously charged hollow sphere:
Asin 1.,

j(r) = 008(r — R) cos’> ¥ (w x 1) ,
— m= %00/d3r8(r—R) cos’ H(wr® —r(r- ®))

2+l
= %00R4 / do / d cos ¥ cos® ¥ (@ — w cos De,)
0o -1
+1

= %O’()R427t / dcos ¥ cos> ¥ (@ — w cos (0, 0, cos 1))

~1

+1
= nooR*w / dcos ¥ (cos> ¥ — cos* )

2
5

|
—
Wi
(IS

1

ol

= m A ok
= —oR'w .
15"
Total charge:

0= / d*rop8(r — R) cos® ¥

+1
= 270yR? / d cos ¥ cos® ¥

-1

= o =——

Solution 3.3.5
1. Biot-Savart law (3.23):

r/

_ Mo 3/ ert r—
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with

r =(0,0,z2)
r' = (Rcosg,Rsing,7) .

Number of turns on dz’: +dz/
Current density of one winding (g: cross section of the conductor)

I
j') > ae(,, . d*F = qRdy .

Principle of superposition:

o n T r—r
Br)=-—- | dz7 —gqR | e, X ——=dop,
® 4nL/ qu/"’ - P’
0
e, X (r—r') = (—sing,cos¢,0) x (—Rcosp, —Rsing,z—7')

= ((Z —Z)cosg, (z—7) sin<p,R)

r—rP =R+ (- z/)2)3/2
2w 2
/cos<pd<p = /sinfpdfp =0.
0 0

For points r away from the axis the integral is not elementarily solvable! For
points on the z-axis one finds:

2 e
IR 1
B(z) = Hor d7 e,
3/2
L T wra-o
—3
wonlR? —(z—72) +3

€
2L CRR 4 (z—2)

_L
2

u nle( z—i—% z—% )
= 0=7€; —_— .
LANR+(+L R+
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Especially:

. Inside the coil (|z] <
L> R:

LK R:

Outside the coil:

|z| > L,R:
|z| > L > R:
B. = £p0
~ £
= %o
= Euo
~ £

A Solutions of the Exercises

nl
B.(0) = po——
) AR T
B (:I:L) _ nl
\T2) T AT
LY.
5):
n
Bz“ﬂozl-
~ nI
z"-’ﬂOzR .
B, ~0.
n | R 3 R\
— {1+ —) —(14+—
| (o) ()
al [ 1/ 2R 21+1 2R\
2L 2\2z+L 2\2z—L
nIR> 1 1
L [ (2z—L0L)?% (2z+L)?
nIR? | L\ 1+L_2
4172 2z 2z
nIR2(1+L 1+L)
4172 z z
nIR?
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3. Magnetic moment

m= %/(r’ x j()) d’r .

Asin 1.
+L
m = d7 —qR | (*' x e,)do ,
oL | < q / (r' x e,)dy
_L
2
r' xe, = (Rcosg,Rsing,z') x (—sing,cos ¢, 0)
= (=7 cosp,—7 sing,R)
no contribution to m
Therewith:
% 2
n1R2 , )
m = dz | do = nl(wR")e, .
— 0

Sl

4. Dipole field (3.45):

Mo (3(r-m)r m
4 s =

On the coil axis (r = ze;) and with the result from 3.:

n1R2

B =
Mozl |3

Section 3.4.5

Solution 3.4.1 Potential energy of a magnetic dipole m in the external field B,
V=-m- B() .
Equilibrium if V minimal —

m 11 By, thusin x-direction
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Current-carrying wire —>
le
Bi(r) = po7—  (see (3:22))
p

e, = (—sing,cosg,0) .

Total field
1 -y
B(r) =B _—
(r) = By 8 + Mozn(xz gy )(;

at the point Xy = (xo, 0, 0):

B(x¢) = Boe, + 1o e .

27 X0
The dipole orients itself parallel to B, thus enclosing with the x-axis the angle o:

1
27UC()B() ’

tana = o

Small angle:

tanae >~ o = |

0 (possibility of current measurement!) .
21 X()B 0

Solution 3.4.2

1. Inside and outside the sphere: j = 0
= Maxwell equation of the magnetostatics:

curlH =0
= H s a gradient field:
H=-Vg,.
With
0 =divB = podiv(M + H)
it follows:

A, =divM .
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Solution according to (3.90):

1 M’
outt) = ==, [
4 r—1/|

Homogeneously magnetized sphere, i.e. M = Mye,:

M,y d 1
() = -2 & / e

47 dz r—r|’
Vk

We choose r parallel to the polar axis:

R +1
1 1
/d3r/ ~ = 27r/r/2dr’/dcosﬁ’ 7
r —r/| J 1 (r2 + 12 = 2r cos 0)"/

Vk

R

T
=_ / rdr (|r— vl —|r+ r/I)
r

(=]

In addition:

dl 1z cos

’

dzr r2r r2

1 5 cost
= @n(r) = gMOR -

Total moment of the sphere:
3.7 / 4 3
m= | &’FM{I’) = ?R -Moe; .

= dipole potential:

1 m-r

m(F) = —
#n(©) 47 3

This first part was already calculated as an example of use after (3.94).
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2. Calculation of H outside the sphere as previously done for the electrostatic dipole
field:

V(a-b)=(b-V)a+(a-V)b+ b xcurla+axcurlb,

1
— H=-Vg,=——V(m- =)
4

"3
4 r
L ((m -V) Vl) (curl (Vl) = O)
4 r r

r

1
e (m-V) —
4 (m )r3

Il

|
&)~
3
/N
\wl,_.
(¢

~

|

-
S w

| 2
N——"

Therewith it holds:

Typical dipole field!
Inside the sphere we have:

M = y,,H (isotropic, linear medium) ,

= H=—e, for r<R.
M

3. Surface current density:
Cylindrical symmetry:

il = Ot(l;})é’(r—R) :

no ¢-dependence

Plausible:

J~e,.
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Test:
For the magnetic moment of the sphere it must be m ~ e_:

m = %/d%(rxj(r))

| [e'e) +1 2
= E/dr-r38(r—R)/dcosz9 oz(z?)/chp(e,xew)
0 5 0
| +1 27
= —R3/dcosﬂ a(ﬂ)/dqp (—ey)
2 ——
-1 0 (—cos 1 cos ¢,—cos ¥ sin ¢,sin )
+1

= nR3/dcosz§‘ a(¥)sind - (0,0,1)
—1
~ e, (was to be proven)
= j(r) = a(3)8(r —R)e, .
We determine «(1}) from the boundary conditions of the fields at the surface of
the sphere (Fig. A.39).
divB = 0 == with the Gauss-casket one finds for the normal components
(see (3.80)):
By, — B, =0

Here:

B,(R+0")—B.(R-0")=0.

Fig. A.39 z df

Al

0+
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Tangential components:

n=e.; t=e¢ — txn=¢ey,

Alj = —Al, = Al(n x t) = RAY (—ey) .

Element of the ‘Stokes area’:

df = rdrdde,
R+0T
== /df-j = a(P)Av / rdr-8(r —R)
AF R—0t
= a(J)RAD .
On the other hand:

/df-j = / dr-H
AF AAF

= HR+0")-AL +HR-0"). Al
= RA® (Hy(R+0T) —Hy(R—0+)) ,
— Hy(R+0")—Hy(R—0") = ().

Field components from part 1.:

r>R:
m cos ¥
m(F) = —

#n(F) 47 72
s H, = 10 _msinﬂ
r= 819('0'” 47 13

r<R:

M,

e, -ey = —sinv

M,
— Hp = —0(—sin v).
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In conclusion:

indt M,
MY 0 Gnw
47 R3 Am

1 ind M
—R’*M, s + 0 sin g
3 R3 Am

1 1
:Mosinl?(——f-—) ,
3 am

Hy(R+0") —Hy(R—0T)

34 Xm
3xm

= o(}) = Mysind .

Solution 3.4.3
1. Maxwell equations of the magnetostatics:
curlH=j; divB=0.
In regions G, in which j = 0, it holds:
curlH =0,
so that because of curl gradg,, = 0 a scalar magnetic potential can be introduced:
H = —gradopp,

2. Equations (3.33) and (3.85):

A(r) = Mr o /dS}’/ j(l‘/)

4w r—r|’
j(@’) = j(') e, (cylindrical coordinates!). It follows:

A(r) =A,(r, ¢, 2)e; .
Symmetry:

A(r,0,2) = A(r)

1 0A 0A 0A 0A 10 1 0A
— A=¢|-———2¢ _r_ = N —=(rA)— - T
eur e(r )+e¢(31 8r)+e"(r3r(r 2 r 8(,0)

0A,
= —Ee(p = upuoH  (see (1.380), Vol. 1)

= H=H(r)e,.
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Fig. A.40

wire

F,: circular area L wire, radius r (Fig. A.40).
It follows:

I:/j'df:/CurlH-df:/H.dr:H(r)zﬂr.

Fy Fy oF,

That yields as magnetic field if the plate is absent:

I
H(r)=——¢,.
(r) 2mr ¢

Cylindrical coordinates:

d 1 9 0
v=(2 22
(8}” rdg’ 8z) ’

1 0 v

H=-Vo, =—-€,— —¢n=-—=¢
¢ “r aqo(p 2mr ?
0 I
= gn=—5— (F£0)
dp 2
I
= ¢m = ——¢@ + const.
2
Area perpendicular to the wire:
tang = Y
xX—a

— ¢ = arctan
X—a

1 y
—t Om = —— arctan ,
21 xX—a

where an additive constant has been put to zero (Fig. A.41).
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Fig. A.41

Y
p
|
|
|
¢ |
a x
3. Boundary-value problem for the arrangement with plate
(@) Agm = 0forr # 0.
(b) Continuity conditions for the fields:
ad ad
H, continuous <— Hm = ,
ay x=0" ay x=0t
il ad
B, continuous <= u" Sl = n? Zom .
dx x=0" dx x=0Tt
4. Image currents
Region 2:
1 1
I(Tf) = —— arctan y arctan
21 x—a 2w x+a
Region 1:
I
(p[(nl) = ——2 arctan
2 x—a
Magnetic field strength
Region 2:
ad
HO — _ 2,0
x o m
kel et et
- 5 2 | (x— )2 o SN2 | 2
i (P Lt T Lo
1 1 1 I
- Z (X_Cl)2+y2(_y) + Z (x+a)2+y2(_y) )
@ _ _3 @ _ L 1 1 I 1 1

m

ay 2711_}.()%)2 (x—a)+§1+(ﬁ)2 x+a)
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1 1 1 I

e 2 T T am Grar a2 CTY
ad
HO = _ 2,0
z aZ<Pm
Thus:
1 I 1 1
- - " (yx—alO)+— L 0) .
27 (x—a)2+y2( S )+271 (x+a)2+y2( yx+a.0)
Region 1:
Analogously:

1 I
21 (x—a)? +y?
B = Mﬁl)’uOH(l) : B® — ’uf)MOH(Z) .

HD = (=y,x—a,0),

5. I, I from the boundary conditions of the fields:

H; continuous <— H}(,l)(x =0)= H}(,z) (x=0)
—al, _ —al aly

aZ+y2_a2+y2 a2+y2
= L=I1-1,

B, continuous <= uil)Hf(l)(x =0) = pciz)Hf(Z)(x =0)

s 0 22 _ o @_—h
Mr aZ+y2_Mr a2+y2 Hr a2+y2
= wh=pPU+1),
Thus:
(D
e
I] = TZ)IZ -1
T
Q)]
Mr
— 12 =2/ WIZ
T
(2 1) ®)
2 —
= L= <1>Mr ol h= Mfl) Mru)"
ﬂr +,ur /‘Lr +Mr

6. According to (3.24):

F = / (j(r) x B(r)) d&°r .
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From that we get the force density
f=jxB
and the force per length:
f=1IxB.
Field of I; at the position of the wire (without plate!):

1 =1

HY2() = — ———— 0,
X (l) 2 (x+a)2+y2 ;re)
(r=a,y=0)
1 (+al L 1

HP (1) = — — ——,
y- ) 21 (x +a)? +y? wie 27 2a

H?(I) =0

I
— BW(xr=a.y=0 = pou? ;e .
dma

I=1e,

Popow () — )

= f=—
a0

e, .

Solution 3.4.4

(a) Current density
Cylindrical coordinates: p, ¢, z (Fig. A.42).

j(l‘) =Jjo(p) e,

. 1
Jo(p) = m(a(R— p) .

Fig. A.42
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(b) Vector potential
General solution:

A =2 / pralLe)

47 [r —r/|
= A(r)~e, = A, =4,=0.
A, = Az(pv (,O,Z)

cylindrical symmetry — A, = A;(p,2) ,
infinitely long — A, = A (p) .

(c) Poisson equation
According to (3.37) we start at:

AA=—puoj,
A_1 ad ad n 1 92 n 92
o \"p) TP T2
Thus it is to be solved:

19 9 .
5 (p%Az(p)) = —ajo(p) -

Outside (p > R):

1 a( ] )
——p=A.(p)| =0
> \Pap )

d
— p%Az(p) =c

il c
— —Ap) = -
ap o
— A (p) =clnp +A§0) .

Inside (p < R):

9 aA() o
30 (P, (0) | = o P

d
— p—A(p) = — 1o P’ +ci

1
ap 27 R?



A Solutions of the Exercises 565

3A()_ 1 +C1
< ? apzp_ MOZﬂRzp ,0

p>+cilnp+c.

A(p) = —
— A:p) Koy

Without loss of generality: ¢, = 0,
Regularity at the origin: ¢; = 0

I
Ap) = — ’,
= A:p) = —po yPely
Continuity at p = R:

clnR+ A = —MOL

¢ 47
= A(I‘) =Ap)e.,

2 .
- . ifp<R,
Ho o RZP mp=

Ap) =
clng—uoi,ifp>R.
R 4 -

(d) Magnetic field (1, = 1)

10 ad d ad
HwoH = curlA = ( A, — B_ZAW) e, + (a—ZAp — %Az) €,

p ¢
10 19
+ ——(,oA)———A)e'
(pap “opoe )T
H= ! 3A()e =H,(p)e
o Bp P TS
1
s.f Rv
wmreP P =
H,(p) =
——, ifp>R
Hop
Continuity at p = R:
c 1
po 2w

= H=~H,(p)e, .,
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|=

5. ifp<R,
H(p(p):g

|~

, ifp>R.

(e) Test by the Stokes theorem
K,: Circle with the radius p L e;:

Hy(p)2mp (dr 1 H)  (direct)

¢ H.dr =
J [ df-curlH = [ df-j(r) (Stokes)
»

Fg, Fg,

P
I
=2n—— [ dp/pOR—p’
nRZ/ PP OR—p)
0

2

21 | = ifp=R,
TR
— ,ifp<R.
5 mp=
From this it follows:
I 1
2_ > lfp Z R )
Hy(p) = I]T P
P ifp<R
2m R?
Solution 3.4.5
1.
M(r) = M(r)e, .
We write

_ M)

m(r)
and calculate
curlM(r) = curl(m(r)r) .
With

Dy =B _imx

ox; ar ax; o r
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we find for the curl of the magnetization:

curlM(r) = o
,

om <x2 X3 X3 X X1 X2 )

This is valid in the whole space, i.e. inside as well as outside the spherical shell;
outside of course trivially because of M = 0. Since in addition there do not flow
any currents (j = 0) it holds likewise in the whole space:

curlH=10.
Therewith it follows also:

curlB = curl (uo(H+M)) =0.

Furthermore it is always valid: divB = 0. According to the decomposition
theorem (1.71) the magnetic induction thus vanishes in the whole space:

B(r)=0.
That means for the magnetic field:
H(r) = —M(r) .
It is therefore unequal zero only within the spherical shell and opposes the
magnetization.
M(r) = M(p) e, .
Nabla operator in cylindrical coordinates (Vol. 1, (1.388)):

€ Lo +e 9
Ypdp oz’

0
V=e, — +
P 9 0
One easily calculates therewith the divergence of the magnetization:
. 10 ~
divM((r) =V -M(r) = ——M(p) =0.
pdg

Since it is always div B = 0 it follows further

divH(r) = div (LB(r) — M(r)) =0.
Mo
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Because of the absence of currents, in addition, curlH = 0 so that in line with the
decomposition theorem (1.71) the magnetic field vanishes in the whole space:

H(r)=0.

The magnetic induction is now unequal zero only in the region of the hollow
cylinder:

B(r) = o (H(r) + M(r)) = poM(r) .

Section 4.1.6

Solution 4.1.1 General: X: Lorentz force on the charge ¢:
F=¢gE+vxB).
Y. = r — R; R = vyt. Herefrom it follows:
vV =v—vy particle velocity in " .
Lorentz force:
F =gE +v xB)=¢g[E + (v—vy) xB].
3, ¥ inertial systems <= F = F’. Herefrom we find:
E+vxB=FE + (v—vy) xB'.

Especially: X: particle at rest, i.e. v =10

— E' =E+v,xB.
According to the presumption: vo 1t E < vy =« E

— E =E+oExB.

Thus it follows for the component of E’ in the direction of E:
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Solution 4.1.2
1. Electric field:

E(r,1) = —Vo(r, 1) — A(r, 1)
= —A(r,1)

= +2ac(x — ct)e; .
2. Magnetic induction:
B(r,t) = curlA(r, 1)

(0, —ia(x — ct)z, O)
ox

= 2o(x—cte, .

3. Field-energy density (vacuum):

w(r, 1) = % [iBz(r, 1) + goE2(r, z)}

1 1
= — | B%(r,7) + =E*(r,1)
2,LL() c2

il (x—ct)?.
Mo

4. Poynting vector (vacuum):
S(r,t) = E(r, 1) x H(r, 1)
1
= —E(r, 1) xB(r,1)
Ko

4 2
= ic(x—ct)zex
Mo

=cw(r,1)e,.
Solution 4.1.3
1. Generally it holds:
E(r.1) = —Vo(r,1) — A(r.1) |
B(r,7) = curlA(r, ) .
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Let us use:

d 0

O—...=—=—0...,
ot ot
ov...=vOo...,
Ocurl... =curld ... ,

We then obtain:

d
OE(r,t) = —-VOe(r,t) — —OA(r,1) =0,
N—— ot S———
=0 =0
OB(r,f) = curlJA(r,¢) =0.
———

=0

2
—— sin(k-r—owr) = —kf sin(k-r — wt) .
ox
Analogously the other components:
Asin(k-r —wr) = —k*sin(k - r — 1) ,
2

7 sin(k - r — wt) = —w?sin(k - r — wr)

2
— OE(r,t) = (k2—w—2)Eosin(k-r—a)t) =0,
c

wz
OB(r,7) = (k2 — —2) B(r,1) =0
C
= o = £clk|.

No charges:

divE=0 = —cos(k-r—wr) {Ejk, + Epk, + Ejk.}
= Eo-k=0; E)Llk.

Analogously:

divB=0 = Byo-k=0; By Llk.
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Furthermore:

curlE = —B
> —cos(k-r— i) [e (kEj — kE)) + e, (kEj — kE) + e, (kEy — kyEp) |
= —wBgcos(k:r—wt)

<:)kxE0:a)B0; B()J_Eo.
3. Energy-flux density ~ Poynting vector:
S(r,t) = E(r,t) x H(r, 1)

1 1
= S=—ExB=—E;xBysin’(k-r—oi),
Ho Mo

1 1 1 1
EoxBy= —Egx (kxEg) = —kE} — —Eo(Ey-k) = — E_k
w w w w
1
= S=—-sin’(k-r—onElk
WHo

= S, =S, S1 =0; energy flux only in the k-direction.

4. Field-energy density:

w(r, 1) = %(E(r, £)-D(r, 1) + H(r, ) - B(x. 1)) .

Here:
1 2 [,
w(r,t) = —¢oE“(r, 1) + —B“(r,1)
2 210
= l sin?(k - — wr) [ €E2 + iB2
2 " w )
2 L oso [ 2
BO = 6(7]( EO = ;EO = HOGOEO

1
= w(r,1) = eoE(z) sin?(k - r — wr) = —Bé sin?(K+r — wr) .
Mo

Solution 4.1.4 Wave equations of the electromagnetic field in the vacuum:
curlH=j+D

= curlB = poj + poeoE = poj + C_2E
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Then:

curlcurlB = graddivB — AB = —AB
1 .
= pocurlj + —zcurlE ,
c

9 1E & B
—Ccur = ——
ot or?

1 92

- (A — c_zﬁ) B = OB = —ppcurlj = Ay(r,7) .

In the same manner one proceeds:

curlE = —B = —pLoH
= curlcurlE = graddivE — AE
= —,uocurIH ,

. 0 . ..
curlH = EcurlH =j+ ¢E,

1 1
divE = —divD = —p
€0 €0
=4 1V + 95 AE 32E
J— —] = — €)—
. P MoatJ Mo 057
1 & 1 d
— ([A—-—=—= |E=0E=—-V —j=Ai(r,1).
( c28t2) @ P'Htoat.l 1(r, 1)

Solution 4.1.5
1. We use (2.211) (Fig. A.43):

oc=D@.e.—DV.¢e,,

DY =0,
Fig. A.43 Gauss-casket
\ z
d e ! +Q
- T
2 PR Y L
E
3 d
2 | _Q
R
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DY = (0,0,—D)
= D=0 :i:d _ ¢
N 2) nR
Electric field:
E=E()e,; E(z) = = .
@e:; E@) coer(z)  €oer(z) wR?
Voltage:
+d/2 +d/2
0 dz
U=-— E(z)dz =
/ Od: =% | a a6 1 22d)
—d/2 —d/2
0 d 1 SR
= —1 —Ae(l1+2=
€y R? Ae " El+2 E( + d) —ap
0 d €1 + Ae
= —1In .
eom R? Ae €1
Capacity:

_ € R? Ae
d In(l1+ Aec/e))

Density of the charges bound in the dielectric:
Polarization:

1
P:D—eoEz(l—ér(Z))D.

Polarization-charge density (2.189):
pp = —divP .

Therefrom we get the surface density of the bound charges:

I WY (A D !
Up( 2)_3F ( 2)_3FnR2( _sr(id/Z))
AN 1
— % (+§) T R (1_€1+AE) '

A\_, 2 (_1L
Op (—E) _+JTR2 (1 El) .
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op compensates partly the actual surface charge on the plates so that the field
between the plates is weakened.
Volume density:

. . 1 0 d 1
pp = div(—P) = —div [(l_ér_(z)) Di| :—sz%
= p=0, ifeaFea(@),

0 Ae

T TR dle 1 (1/2)Ae (1 + 20/d)]

2. Equation (4.53):

d : 9
(mech) (ﬁeld)) e / 3 T
dt (p " 2 r,; ox; "

i=1

1 1 1,
T = exeoEiEj + ——B;B; — =6;j | exoE” + B .
Mo 2 M fbo

In our exercise it is

B=0; E=(0,0E®)

within the capacitor. It follows therewith:

) 100
T=§er(z)eoE2(z) 0 —-10
0 01
() i 0o
= (=) —— _
TR 2¢.(z)€0 0 01

Force density:
3 3 3 3 a
total) __ s
R 3 o S
=1 only dependent on z
. 0
f(lOtdl) = (Os 07 a_ZTZZ) )

oy _ 0o 10N Ae
fz - 9 Tzz - 2 2
z 2¢ \7 R/ dley + (1/2)Ae (1 + 22/d))]
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Fig. A.44 I df’

Force on the plates of the capacitor (Fig. A.44):
Force components (4.54):

F; = /df'TLZ /df.ZTUe/: /delenj
S(V) SV) / svy
T;; # 0 only in the inside of the capacitor:

n = (0,0,—1) upper plate ,
n = (0,0,+1) lower plate .

Force on the upper plate:

F +d R’T. +d o !
p— —_— —]T — p— .
N2 “Z\ 2 T R? 2¢0(€1 + Ae)

Force on the lower plate:

F d +7 R, d ¢ 1
—= | =47 —— = .
A2 “\ 2 7 R? 2¢p€;

Because of the space-dependence of the dielectric constant €, = €,(z) the forces
on the two plates of the capacitor are different!

Solution 4.1.6

1. The rotation does not change the homogeneous charge density of the sphere:

4n p3
. q/FR ,ifr <R,
1) = = : .
pie = ot = {1/ F ST
The electric field, too, is therewith time-independent and identical to that of the
homogeneously charged sphere ‘at rest’. This field has been calculated as an
example in Sect. 2.1.3:

E(r) = Le

.
4meg

r/R?,ifr <R,
1/r*,ifr>R.
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2. Let the axis of rotation coincide with the z-axis and the center of the sphere
with the origin of coordinates. Then the point of the sphere at r (r < R) has the
velocity

v(ir) =we, xr.

The time-independent charge density leads to a time-independent current
density:

3q

i) = p)vin) = =

w(e, Xr)OR—r) .
With
e, xe, = (0,0,1) x (sin? cos ¢, sin ¥ sin ¢, cos ¥})
= (—sin ¥ sin ¢, sin ¥ cos ¢, 0)
=sinde,
it is also valid:

(0]

. 3q
=k

rsint @R —r)e, .

Cartesian components of the current density:

3
Jo(r) = —45;3 rOR—r) sindsing ,
3
Jy(@®) = 4;::3 r®R —r) sind cosg ,
jz(r) =0.

For the next part of this exercise a further transformation is advisable. With the

spherical harmonic
3 . ;
Y (9, ¢) = — ™ sin 9 ¢
/4

it can obviously be written:

S . |81 3qw
Jxt iy = —i ?WV@)(R—V)YM(T?JP)-
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3. With j also the vector potential will be time-independent:

_ Mo 3 7 i) _
A(r,t)—E /d r 1] =A(r).

Because of j, = 0, A, = 0. For the calculation of the combination

o Mo 3 jx(l'/) + ijy(r/)
Actify = /d r/W
/87t 3qw P ,r’@(R ) ,
4nR? r—r] 19

we apply in the integrand the formula (2.169) (r- = min(r, r'); r~ = max(r, r')),

1 _Am 1 r<
|I'—I'/| e 221+1( )Ylm(l9 </’)Y1m(l9§0)

in order to exploit then the orthonormality of the spherical harmonics:

8m 3qw

1
A, +iA, = —i0 2T 4 ¥y (9.
=TI TS R ”%:21+1 m(@. ¢)

l
./d3r @(R—r)l Yi (8. ¢) Yo, (9. ¢)

/87t 3gw
= —lpLo 4R ZZ[+1 lm( 90)

2
[ae Z:I/dqo [ acos90 076) 1, 0°9)

0 -1

S181m

87 3qw 1 <
= —ifoy] — =Y (9, dr'r?
oy = 45 3l </’)/

For the remaining integral

R

f(r,R) = /dr’ r/3r—;
;

>
0
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we have to distinguish whether the point of observation r lies inside or outside
the sphere:

R
/dr/rl—4=R—S, if r>R
r2 512 -
f(V,R): 0 r R
1 3
—Z/dr’r’4+r/dr’r’:K(Rz——rz) Jifr<R.
r 2 5
0 r

It follows therewith:

A, +iAy = ip sin® e f(r,R) .

q
" 4n R
In detail the following is thus valid for the Cartesian components of the vector
potential:

Ad(r0.9) = —po oo sind singf(r.R) |
4nR3

A(r, 0, @) = 99 Gind cosgf(r.R)

WV @) = o 3mes S G

A (r,0,¢) =0.

With
—singe, +cospe, = e,
the vector potential can eventually be compressed to:
Ar) =A,(r, V) e, ,

qw - .
A(p(r,ﬁ) = Mom smﬂf(r,R) .

4. According to (1.380) from Vol. 1 the curl reads in arbitrary curvilinear coordi-
nates yi, y2,y3:

1
y1Yy2Y3 by, Ay, by,Ay, by A,

by ey, Dy,ey, byey,
curlA = 0 9 0

Thereby it is ((1.370), Vol. 1):

or
ayi

Yi T
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In the case of spherical coordinates (b, = 1; by = r; b, = rsin?) it remains to
be evaluated for the magnetic induction:

e, rey rsinve,

1 ] Ll
BZCUI'IAZm 3 39 %
0 0 rsindA,
= B,e,+Byey .

Radial component:

1 a , .
Br = m (@(rsm ﬁA(p(}’, 19)))

1 d qo .
=5 (819 (rsin®po —— o Sin O f(r, R)))

_qo [f(r.R)

st ———(2sin? cos ¥) .

With f(r, R) from part 3. one gets:
. 2R’ R
_ qwcos =3 r=znr,
Brr9) = o = ) 2

3
Rz—grz,ifrfR.

Angular component:

1 0
By = — T —(rsin® Ay (r,9))
_ 1 il ( 9 qw 9 1( R))
~ rsin® or rsiny po ks 47 R3 sin "
qw sind 0
= —Hoy 3 (Vf(” R))
RS
gw sind 9 g’ ifr =R
=—Ho T oy 3
4nR® r or | RP—22) ifr<R
2 5
RS
i -, ifr>R
- qw sin? 5,2 ir=
47R3 r
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We have therewith found for the ¥-component of the magnetic induction:

RS
qosind | 73 ifr >R

By(r,0) = po ———
9 (r,0) = o A R

6
—R2+§r2,ifr§R.
5. Field-momentum density:

I_)ﬁeld =DxB =g¢goEre, X (Brer + Bﬂeﬂ)
= oE(r)By(r, V) €, = Preia ey -

Thereby we can use the results from the parts 1. and 4.:

RS
_ g\2 wsind | 235> ifr >R
Pﬁeld(r,ﬂ)=,uo(—) — !5
4 R? 6r
2L L ifr<Rr
5R3 R

6. Field-angular momentum:

Lfes = /dSV(I' X Pfield) = — / d*rrpreia(r, 9) ey
Because of
ey = (cos ¥ cos g, cos ) sing, —sin )

the ¢-integration,

2
/dqp cosg(sing) =0 ,
0

lets the x- and y- components of the angular momentum vanish:
Lfea = Le,

It remains to be calculated:

oo +1

L= Zn/rzdr/dcosﬂrsin Y piea(r, U)
0 21
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5 +1 R 6, ) RS
o ) 3 roor 3
_MOSﬂRS/dcosﬂ(l—cos v) /rdr(gﬁ—l—a)+/rdr§

-1 0 R

7w 2\ (6R* R* R*
= Mo 2—=)lz=—-——7—+—+
87 R3 3)\57 5 5
Therewith a relatively simple result arises eventually for the angular momentum
of the electromagnetic field:

e w .
field 035 Z

It thus has the same direction as the angular velocity of the rotating homoge-
neously charged sphere!

Section 4.2.7

Solution 4.2.1

1. Current density (cylindrical coordinates)

i) =jp)e.
J(p) :.118(/0 _Ri) +Ja 8(:0 -R,),

Kg: circle with the radius R perpendicular to the z-axis.
R, < R <R,

I = / (1) - df = 27 / dppjid(p—Ry) = 27 Rij
KR KR

0 = /j(r)-dszn(Riji—i—Raja):I+27rRaja
Kr
1

—t 'a = —
)

— ) = —— (50— R) — 8(p— R)) e, .
2mp
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Quasi-stationary approximation:

curlB =~ u;ioj < 9£B-drm,uru0/j-df.
C FC

From symmetry reasons:

B=2B(pe,.

0, ifp<Ri,
ggB-dr=B(p)2ﬂp= Mol L ifR; < p <Ry,
K, 0, ifR, < p,

! ifRi <p<R
T — ,1 i a s
— B(p) = { "2 p P
0 otherwise .

2. Magnetic flux
Appears only between the inner and the outer conductor (Fig. A.45). There it

R, Ry
1 1
o, = /B-df= /dp/dzB(p) = lcuruo—/dp—
21 P

Ri Ri

Fe

is

! L e
=1 —In—.
Mr o 27 'R,
It follows herefrom:

The magnetic flux per unit-length that penetrates the space R} < p < R,
amounts to:

@ In(Ra/Ri) 7

b =—=
I Hr o '

Fig. A.45
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Fig. A.46 z T

4D

Result:
Self-inductance per unit-length of the hollow conductor:

ln(Ra / Ri)
L= pepro—0— .
2
Solution 4.2.2
1. Magnetic field of the wire
Quasi-stationary approximation:
curlH = j .

Cylindrical coordinates (p, ¢, z).
Symmetry (Fig. A.46) —> ansatz:

H, =H(p)e!) .

K,: circle in a plane perpendicular to the wire with the radius p:
/curlH-df = /H-dr:anH(p)%/j-df:Il
K, K, K,

1
— H; =—le$).
2w p
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Flux through the conductor loop
Area element: df; = —dxdye,. There it is obviously ef,l) =e€,; p=).
We therewith get for the magnetic flux:

a d+b

b
D, = /Bl df, = —Mo—/dx/ = —Mo—a In (1 + 3) = Lali

= —Uo— In - .
2! M027r d

2. Magnetic interaction energy (4.72):

Ly = Ly

— Wn=LyL1,.

Change Ad of the distance d where I, I, = const:

—b/d* poab
dWn = L ALy = — L1 Ad=1LL———Ad,
— “02 T ¥ bjd Y2 d(d + b)
AWieeh = —dWy = —F,Ad
Hoab
—F,=LL—— .
YT ndd + b)
3.
L) =1 (1 - e_‘”) - il(l) = aly e .
That means:
7 a b —at
Uina(1) = —=Lo1 11 (1) = poz—In {1 + = Jalpe™" .
2 a
Solution 4.2.3

1. Switching-on process
Differential equation to be solved:

LI(ty+R0I(1) = U
This reads for0 <t < t:

Ll(l‘) +R0‘L’Q =U.
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Plausible ansatz:
Ity =at.

This leads to:

U

La+ R =U = = —.
+ Ryt o L+ Rot

It therefore holds:

1(t) =

t 0<r<rt.
L+ Ryt

For ¢t > titis R(t) = Ry.
It is therefore to be solved:

LI(t) +Rol(r) =U

= LI(t) + Ry (I(t) - Rﬁ) =0
0

d U U

Solution:

I(r) — Rﬂo = (I(r) — R_lf)) exp [—%(r— ‘L')i| .

Continuity of I(7):

Ut U T
()= =
L+Ryt Ry L/Ry+<

I(t)_g ﬂ( T 1) U —L/R,

Re Ro\L/Ro+t ) RoL/Ro+t
U L/R R
= I(t) = — I—Aexp ——O(t—r) T<t.
Ry L/Ry+ 7 L

The final value U/Ry is only exponentially achieved.
Characteristic time constant of the switching-on process: L/Ry

= ‘quick’ switching-on: t < L/Ry = I(r) < U/Ry .,
‘slow’ switching-on: 7 > L/Ry = I(7) =~ U/Ry .
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2. Switching-off process
LIty +R0I() =U .

This is an inhomogeneous differential equation of the first order!
For 0 <t < t we define:

Homogeneous differential equation:

. o dotl o
I+ —I=0 — — =— ,
T—t 1 T—t

d d
—1Inl = —In(r — 0)*
- dtn 7 n(t —1)

= Lhom(?) = c(zr —0)*.
Special solution:
Ansatz: Is(t) = B(t —1).

Insertion:

—BL+

R()T U
T_tﬁ(f—f)=U = ,3=m (@ #1)

= (1) = L(a—U_l)(t—t) .

General solution of the inhomogeneous differential equation:

I(t) = c(zr — ) + L(t —1.

L —1)
Boundary condition:
U Ut
I0)=—=ct"+ —
= =" T e
U Ut~

—u

R’ Lla—1)

— I(t):R—i(l—;)a—%(l—é)a—i-%(l—%)
:U(l_g)a(zelo_Roft—L)Jr%aO—ll (1-7)

U e —1 U « t
Uy Sy gy
Ry t/ a—1 Ryo-—1 T

— Cc =
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That means:

o :R_an(1—t/2:l(1—t/c)°' .

Special cases:
U
It=0)=—; It=1)=0.
(1=0)= 5 Ia=1)
Solution 4.2.4
1. t> 19:

Uy =Uc+ Uy,
I=0=CUc
= Uy = Uc+RCUc.

General solution of the homogeneous differential equation:

Uc + %Uc =0
— U™(1) = Ae/RC.
Special solution:
Uc = Uy (after the settling phase) .
General solution of the inhomogeneous differential equation:
Uc(t) = Uy + Ae /R
Initial conditions:
Uct =1)) =0 = A = —Uye"/RC
Solution:
Uc(t) = Up(1 — e~ T0/RE) |
1) = CUC() = %e_(’_tO)/RC ,

Ugr(?) = RI(f) = Uye T0/RC
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2.
t> 1. OZUc+RCUC,
t=1t:. Uy=Uc
= Uc(t) =Ae R Uy=Ae/FC.
Solution:

Uc(t) — UO e—(f—tl)/RC ,

Uy
I ) = — e—(l‘—tl)/RC ,
) =-—2
Ur(t) = —Uge U=/RC,

Solution 4.2.5 Voltage balances:
o left:

t t

1 1
U(t)— — [ Iidf —/Idt/ U, =0.
@) C1/1 +C1 ,dl' + Uy,

e right:

t t

1 1 1 1
-+ =+ — L df —/Idt/ U, =
(C21+C1+C22)/2 +C1 1 + Uy,

¢ Inductances
ULl = —Llil ) UL2 = —inz.

For abbreviation we define,

L_1, 1 1
C;, Cy C  Cyp’

and differentiate the voltage-equations with respect to the time:

1 1 . .
—h - =L+ L =U,,
Cll C12 11

1 1 .
L4+ —L,—L,,=0.
sz Cll 2
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For the calculation of the eigenfrequencies it must be taken U, = 0! With the ansatz
for the then homogeneous system of equations,

L =Loe”; L =Dhye,

it remains to solve:

—1 —o’Ly )1 ——11 =0
- 9
C 1110 C 20

1 1
—1I —— 4+ @’y | =0.
C 1o+( C2+w 2) 20

A non-trivial solution requires a vanishing secular determinant:

—
o -
|
8I\)
=
N———
|
Q=
+
el\)
S
SN———"
+
2

|
(e}

~ (1-0’CiL) (1 - 0’CLy)

With the eigenfrequencies of the uncoupled circuits,

2 1 o |1
L,C,

These are then the eigenfrequencies of the capacitively coupled circuits:

1 C
ot = b0t o) [} o)+ Sofod

N =

Solution 4.2.6

1. n: Unit vector perpendicular to the area of the wire:

df = dfn
<(n,B) = ¢(t) = w(t — 1) ,
Uina = —24) ,

ot
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@:/df-B = /dfn-B:Bcos[a)(z‘—to)]/df:BJTR2 cos[w(t — to)]

ring ring ring

= Uja = B R* w sinfo(t — 19)] .

2.
L [, .
Uing = ¢E-dr: —9§J-dr, jMdr,
o
Ring ring
1 1 2w R
ind o 951 " oA " oA
ring ring
1 .
= I(1) = EJBARa) sm(a)(t—to)) .
Solution 4.2.7

1. Which part of the rectangular conductor loop is covered by the magnetic
induction (Fig. A.47)?
0<vr<d:
F(t) = apvt
d<vt<a:
F(t) = axd

ap <vt<a+d:

F(t) = ay(a; +d —vr)

Fig. A.47

Q| Fy 0

a

NN
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Fig. A.48 Uind
+B0d2V —————————————————

vt

—Byayy b—d oo

= magnetic flux through the conductor loop:

dD(t):/B-dfz /B-df

Fy F(r)
vt , if0<vt<d,
d, ifd<vt<a,
= Boay , .
a+d—vt,ifa <vt<a +d,
0, otherwise .

— induced voltage (Fig. A.48):

Uig = —®

+1,if0<vt<d,

0, ifd<vt<ay,
—1,ifay <vt<a +d,
0, otherwise.

= —Boazv .

2. Finite overlap of the conductor loop with the homogeneous magnetic induction
B = Bye, (Fig. A.49) for

O0<vt<2R.

The area covered by the field is the difference from the segment of the circle

A, = aR?
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Fig. A.49

and the triangle

A Solutions of the Exercises

v
/

B
v by
—

1
Ap = E(R cosa)(2R sin )

= R%cosasina

— F() = R*(¢ — cosasina) .

The angle « is time-dependent:

a=a(t); cosa(t) = R=vt ,= a(f)sina(?) = % .

In addition:

Magnetic flux:

Induced voltage:

Uing

sin o

= Uind

R

F(t) = nR*> = const, ifvt > 2R.

@:/B-df:BoF(t).

—® = —R*(1 + sin? a — cos® a)a(£) By
—2R*sin® « - @(1)By

R sing - &
2R sma~RBo

1
V1 —cos?a = \/1 — E(RZ — 2Rvt + v*1%)

vt vt
—2ByRu | & (2 - —) .
R R
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Fig. A.50 Uina®

Vt/R

- ==
\S]

—2ByRv

One should realize that it is just about a circle equation (Fig. A.50):

Uing
X =
2ByRv
vt
YT R

= =y =—(y-12+1
= X+ -1)7=1.

Center at

(.y) =(0.1).

Solution 4.2.8

1. Quasi-stationary approximation

curlE = —B ccurlH=j
divD =p; divB =0.

Coulomb-gauge (divA = 0)
1 1
= Ap(r.)) = ——p(r.1) = ——p(r)
€0 €0

AA(r, 1) = —poj(r.1) ,

= ¢(r,1) = ¢(r) = %eor (r>R).
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With respect to the vector potential it is the same problem as in Exercise 3.3.1,
however now with a time-dependent magnetic moment!

m(t) = %quw 03]

Wo m(f) Xr
Ar,t) = ————
(. 47z
Electric field
E= Ey + E;
N———

before the
deceleration (y=0)

q
31‘
47T60r

E)=—-Vop =

Induced excess field: E; = —A

() =-yu@ (¢>0)
Mo lea')(t)xr

— E = .« — N
! 4w 3 r3
RZ
Eir,) = 22T (o xr) (6> 0).
12713
2.
Ei| _ epo !
< R < 1,
B = 3 R

ywoR* < 3-c*  (c: velocity of light) .

3. Emitted energy per unit-time (4.48)
/ df-S(r,1) = Ws..
S(V)

S(V): Surface of a sphere with the radius R
S(r, t): Poynting vector

S(r,t) = E(r, 1) x H(r, 1) ,
df = dfe,
— df-S =dfe,-(E; xH), since Ey~e,.

Emission thus only as a consequence of the deceleration.
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It holds as in Exercise 3.3.1:

4 ro r3

oy qR?
48726
toyq*R*

= m (((l) X I') X (3((0 . er)er _ (0))

— E; xH=

((@ x1) x (3(m - e,)e, —m))

—2(@-T)w+r(3(w-e,)2—w?)

2
qR*
— €,- (El X H) =r (((0 . e,)2 — 602) MoV (W)

R\’
= Moy ( 1 ) ro*(cos? ¥ — 1) .

12713

— emitted energy per unit-time:

+1
. Rw \*
Ws(t) = uoy (fzﬂ;;) R32n/dcos B (cos’ ¥ — 1)
—1
§-2=1
8w 1 gqw \2 4
= —poy— R
Ho¥ 3 (127rR>

2

. R
— Ws(t) = —poy—a? (1> 0).
547

Wy Z/Ws(l‘)dt
0

5 o0
qgR , -2
‘W%“’O/ die™"
0

qu 2
g
1087

= —Mo

independent of y, proportional to the square of the initial velocity.
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Section 4.3.18

Solution 4.3.1

1. Lorentz force:
F=¢[E+ (vxB)].
Equation of motion:
mi‘:q[E—i—(i‘xB)] .
Temporal change of the particle energy:
W=v.-F=¢gv-E.
2. Maxwell equations (o = 0, jr =0, 0 = 0):
divE =0; divB =0;

curlE = —B ;curlB = LzE ,
u

where u = 1/ /é:€o/trjdo-

curlE = e (%—%)+e,(%—%)+e (%_8&()
oy oz "oz ox “\oax  dy
:_%e +8Ex (%_BEX)

! Y ox A

€
0z 0z
= —k E(cos(kz — 1), sin(kz — w1),0) = —kE = B =FkE.

This means:
1 1
B = kE | ——sin(kz — wt), —cos(kz — wt),0 ] .
1) 1)
Magnetic induction:

1 1
B=——(E,—E0)=-exE,
u u

1
B=—-kxE.
w
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3. Equation of motion:

Components:

4. Requirement:

This means:

mié:qu(l—E)

u

mj}:qu(l—E)
u

= 4-B).

m'f:q[E—f—(i'xB)]:q%E—Fi[i‘x(eZXE)]}

:q[E—Fiez(i‘-E)—iE(l‘-eZ)} .

qE (1 — E) cos(kz — wt) ,
u

qE (1 — E) sin(kz — wt) ,
u

W =0 fulfilledif v-E =0 valid for all times .

=0 & z=const=1vg <= z(t) =vot (z(0) =0).

Equations of motion:

Integration:

() = —% sin (a) (@ — 1) t) + %o

u

E v
() = —i—q— cos (a) (—0 — l)t) + Yo .
maw u

X0, Yo still unknown:

0= v-E=3i(t)E + (1) E,

E
= q_(_ sin(kz — wt) cos(kz — wt) 4 cos(kz — wt) sin(kz — wt))
mw

597
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+Exo + Eyyo
= EJo + Eyyo .

That must hold for arbitrary times ¢ and all space-points r. The initial conditions
are therefore to be chosen such that

Xo=30=0.

With z(r = 0) = 0 that fixes the initial velocity:

E
i =0) = (o,q—,vo) .
maw

E E
p= (_q_ sin(kz — wt) , a= cos(kz — wt) , mvo)
1) 1)

Comparison with part 2.:

B.

Eapll BN

PL = (p0p),0) =

6. Solution of the equation of motion:

x(1) = —% (—m cos (a) (% — 1) t)) + X0

qE 1

x(IZO)ZOZWF'FX().

X-component:

y-component:

_gE 1 . Vo
0= ey (G 1))
yt=0)=0=y.

It remains:
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zZ-component:

7(t) = vot
7. With the abbreviation
E
R _q_2 (u > vg)
mw? vo—u

we find:
() =R’ + (0()* = R*.
Hence, the path is a circle in the xy-plane with the radius R and its center at (R, 0).

Solution 4.3.2

1. Magnetic induction

curlE = —B .
(a)
curlE = %_%,%_%,%_%
dy dz 0z dx  Ox ady
aE aE 0 k(—Eoy, Eoy, 0) cos(k 7
= T s oL = - 3 X5 — W
dz 0z 0y> =0 <
= B= (EOy, —Eoy, 0)k cos(kz — wt)
k 1
= B = —(—Eyy, Eox, 0)sin(kz —wt) = —(k xE) .
w w
(b)

d 0
curlE = (—a—Ey, a—Ex, 0) = —Eok[cos(kz — wt) e, + sin(kz — wi) e, ]
z Z

— B= Eok[cos(kz — wt) e, + sin(kz — wt) ey]

k
= B = Eg—[—sin(kz — wi)e + cos(kz — wr) e, ]
w

k 1
= —(—Ey.E.0)= —(kxE) .
w w



600 A Solutions of the Exercises

2. Poynting vector

S(r,1) =ExH=

E x B (energy-current density) .
Ko

It holds for both the cases (a) and (b):

1 1
S(r, 1) = —Ex(kxE)
Hrfbo @
1
= (kE> —E (E -k)) = Ee,
W fho ~—— Ut Lo
=0
That means:
(@)
S(r,1) = £réo Eé sin®(kz — wi)e; .
(b)
S(r, 1) = £réo Eé e, .
Mr Lo

3. Radiation pressure
Radiation pressure ~ momentum transfer to the area ~ normal component
(n - F) of the force F exerted on the unit area.
Density of the field momentum:

A 1
Priela = D X B = €:ur€000 S = > S,

u: phase velocity of the electromagnetic wave.
All wave fronts in the inclined cylinder in Fig. A.51, whose volume is

AV =udt costdS ,
reach within the time dt the area-element dS. The plane shall be totally absorbing.
The waves create a field momentum Preig AV on dS in dr.

Force = momentum per time:

F = ﬁﬁeld u COSl?dS .
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Fig. A.51

Radiation pressure:

n- A cos ¥
ps = ¢ =u cos¥ N« Pgeyg = n-S.
Solution:
(@)
1 2 2 2 2
ps = — |S|cos” U = e,60Ej sin” wt cos” ¥ (wallatz =0) .
u
(b)
! 2 22
ps = — |S|cos” ¥ = ge9E;cos” ¥ .
u
Solution 4.3.3

1. Linear, homogeneous: B = u;uoH; D = €:¢E.
Uncharged insulator: pf = 0, jr = 0,0 = 0.
Maxwell equations:

divE=0, divB=0,
curlE = —B , curlB = ereo,uruoE = uizE .

1 . 1.
curlcurB = grad(divB) — AB = —curlE = ——B,
— u u
=0

1 92

OB =0, here0 = A— = — .
where iy
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3.
curlE = —B
1 k E ,
— B=—-KkxE=— _O(ez X e, — 2e, X ey)et(k-r—wr) .
w w 5

B is linearly polarized:

Eok .
B = L(Zex + ey)ez(k-r—a)t)
Sw

1.
curlB = —2E = ex[—BOk cos(kz — a)t)] + ey[—Bok sin(kz — a)t)]
u

= E = —uwBo[e, cos(kz — 1) + e, sin(kz — wr)]

= E = uBy[e, sin(kz — wr) — e, cos(kz — o1)] ,

i.e. E is circularly polarized.
Solution 4.3.4
1. For

E = Eoei(kz—a)l‘) , B = Boei(kz—a)t)
it holds in a linear uncharged insulator (Maxwell equation):
o 1.
culH=j+D = curlB= —E.
u
This is equivalent to
kx By = ——E, .
u
Because of
B() = §0(4ex — 3€y)

it follows

~ k
k xBy = kB()(4ey + 3e,) = ——E .
u
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Electric field
E = —ul%(4ey + 3e,)e/ oD

E (as well as B) is linearly polarized since

Ey
tano = — = const .
X

2. Maxwell equation
curlE = —B .
We therefore need
curlE = e (Bkcos(kz — wt + ¢)) + e, (a(—ksin(kz — ot + ¢)) .

Time-integration yields for the magnetic induction B with v = ku:

1
B = — (Bsin(kz — ot + @)e, + a cos(kz — wt + @)ey) .
u

One recognizes:

B\ (B 1

=] +1=Z) =—=.

B % u?
— elliptically polarized! Semiaxes: 8/u and o/ u.

Special cases:
a = B —> circularly polarized!

Solution 4.3.5

1. Each solution of the Maxwell equations is automatically also a solution of the
homogeneous wave equation. One knows that the reversal does not hold.
2. The wave equation

1 &
(A_ﬁﬁ) B(r,t)—O

is solved by
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divB=0 & k-B=0 = ak, +iyk,=0 = k., =0, k,=0.
Thus it is:

k =ke,.

1. 1
curlB = popoD = —E = —io—E = i (k x B) .
u u

It follows therewith:

2
E = _u—(k x B) = —u(e, x B) = —u(xe, —iye,) olkr=en
1)

Eo(r) = u(iye, — ae) e’vT

5. Time-averaged energy density:

W) = 1Re (Eo - Dy + Ho - By lRe(sg o[+ —— [ )
w(r, = — . . = — .
4 0 0 0 0 4 re0 0 Lk 0
With
- |2 2 2 - |2 2,2 2
‘Bo‘ =( +y); ‘Eo) =u (@”+y°)
it results:
— 1 1
w(r,1) = - @ +y%).
2 Mo

6. Time-averaged energy-current density

S, 1) = %Re (Eo(r) x ﬁg(r))

u
= Re((iye, — ae)) X (ae, — iyey)
Z,Uvr,UvO ( y y )
u
= ) Re()’zez - az(_ez)) .
Mo
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Fig. A.52
Thus it is
S(r, 1) = " @+ 9y e, =uw(r,t)e,.
2peho
Solution 4.3.6
1. (Figure A.52)
—x -7 <x<0,
f(x)_{+x:0§x§n.

General Fourier series:
f(x) = f(x + 2a), square-integrable in [—a, a]

= f(x) =fo+ i [an cos (%x) + b, sin (%x)] .
n=1

Here:

a = 71,

f(x)even — b, =0 Vn.
+a

Jo= %/f(x)dx = % }nf(x)dx: % /ﬂxdx—i- /0(—x)dx
—r 0 Zx

—a

= fo

)

s
2
+a

+r
a, = é/f(x) cos (%x) dx = % /f(x) cos(nx)dx

b4 0 b4

1 1 2
= — /x cos(nx)dx — — /x cos(nx)dx = — /x cos(nx)dx
bid bid i
0

0 -
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2
= a, = —x sin(nx)
nmw

T 2 A
- — / sin(nx)dx
o N
0

2 4 2

= - COS(”LX) = - ((—l)n — 1)
n’m 0 n’m

_ , if n odd,

0, if neven.

Fourier series:
cos[(2k + 1)x]
f = Z Qk+ 1?2 -

2. (Figure A.53)

fx)even = b, =0 Vn.

fo= — /f(x) dx = [( -9+ @I+ (—x)|§/2] =0,
1 i
a, = — /f(x) cos(nx) dx
7T
- [—sm(nx)| 72 4 sin(u)] 73 = sin(nx) |7 ]
nw B _”/2 "
! [sin(nn) + 2sin (nn) + sin (nn)] ! sin <n7r)
— e i - J— = — 91 —_ .
niw 2 2 2 nr 2
Fig. A.53
______ — - -~ - -
! !
| !
—TT —11/2 /2 U X
|
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Fig. A.54

607

Fourier series:

f) = % i sin (;;n/z)

cos(nx) = % Z_:

n=1

3. (Figure A.54)

[ cos [(2k + 1)x] .

fx)=f(—x) = b,=0 Vn.
It then remains to be calculated:
+r
1 2
fo=— Xdx = i
2
1 / 2
a, = — x“ cosnxdx
T

T

=0 -

+n
1 1 2 . +r 2
—| —x smnxi
n — 2 n

X sin nx dx)

+r
172 +r 2
= — —zxcosnxi_ﬂ - cosnxdx
T\ — "2 n

2 (—1)"
4 4
—(=1)"— — sin nxi—_Hr
n n 7
=0
Therewith the Fourier series reads:

) = cr

w2
3

-

cosnx .
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4. (a) Because of f(0) = 0 it must be:

2

7 _ i(—l)"
12 & w2

(b) For x = m we have f(r) = m? and cos(nm) = (—1)". The Fourier series
from 3. yields therewith for this special case:

2 0 1
Tl

Solution 4.3.7 The addition theorems of the trigonometric functions ((1.60), (1.61)
in Vol. 1) are useful:
x) =

ni
COS (—X) COS (
a
. (nm .
s (—X) s ( X) =
a a

. /nm mi
sin (—x) cos (—x) =
a a

In detail it follows therewith for n # m:

(cos ((n + m)%x) + cos ((n —m) %x)) ,
(cos ((n —m) %x) — cos ((n + m)%x)) ,
(

sin ((n + m)%x) + sin ((n - m)gx)) .

EE

N = = N =

+a +a
_/dxcos (%x) cos (?x) = %_/ dx (cos ((n + m)%x)

+ cos ((n — m)%x))
1 a
2 ((n + m)mw

+ —(n —am)n sin ((n —m) %x))

sin ((n + m) %x)

+a

—a
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+a +a
/ dx sin (%x) sin (ma_nx) = % / dx (cos ((n - m)%x)
— cos ((n + m) %x))
= % (—(n —am)n sin ((n —m) %x)

+a

_ m sin ((n + m) %x))
=0

—a

+a

/dxsin (%x) cos (W;—nx) =0.

—a

Here one can already exploit that the integrand is an odd function of x.

Forn = m # 0 we find:

+a

+a
1 1 2
[ axcost (M) = 5 [Lax (1405 (274
a a 2a a

1 a . (2nmw
=—(2a4+ — sin| —x
2a 2mn a

——— ———
=0
| +a | +a
—/d)csin2 (Ex) = —/dx(l — cos? (ﬂx)) =2-1=1.
a a a a

+a

é/dxsin (%x)cos(% ) =0.

—a

609
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This follows, as above, because of the odd integrand.

Summary:

+a

1
—/dxsin (Ex) sin (@x) =6m Mm=12,..),
a a a
| +a
- /dxcos (Ex> cos (@ ) = S »
a a a
+a

é/dxsin(%x) cos(% ) =0.

—a

The relations (4.175) are now easily demonstrated:

1.

+a +a co +a +a
% /dxf(x) - %L/fodx—l—;(a,n/cos (”;—nx>dx+bm/sin (”;—”x) dx):|

—a —a

fot i an . (mrr ) ~+a b (mrr ) ~+a
= sin { —x - cos | —=x
0 2mm a —a  2mm a —a

m=1 —_———— [—

=0 =0

=fo-

ta +a
é/dxf(x) cos (%0 = é/dxfo cos (% )
+ i aml iadx cos (Ex) cos (ﬂx)
m=1 - ¢ ‘
+a
+ b”% /dxsin (r';—ﬂ )cos (% )

oo

+ Z(am&m +0)
m=1
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+a +a

tl_l/dxf(x) sin (%X) = é/dxfo sin (% )

+a

o0
1
+ Z am; / dx cos (”;—nx) sin (%x)
m=1

—a

The relations in (4.175) are therewith proven.

Solution 4.3.8
f@=x>+b-ax—ab.
Zeros: f(x;) = 0:
¥+ (b—ax=ab
1 2
~ (x + E(b — a))

1 1
N X2 = _E(b —a) =+ E(b +a)

1 1
—(b—a)+ab==(b 2
4( a) +a 4( +a)

N X1 =a; xx=-b.
It follows with f/(x) = 2x + (b — a):

fe)=a+b: f(xn)=-(a+b).
Therewith:

2 1
§(f(x)) = ZWS(x—xi) = (8(x—a) + 8(x + b)) .

i=1
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Fourier transform:

de(f(x)) ezkx (eika + e—ikb) )

; 1
f(k):ﬁ_i V2r(a+b) ( +b)

Checkup:

+00
— L ; ika —ikb ) —ikx
f(x)_m_i dk(m(a_’_b)(e +e ™)) e

+oo +o00
= 1 L / dk e—ik(x—a) + L / dke—ik(x+b)
a+b\2n 2
—00 S

a—}—;b (x—a)+8(x+ b))

That was to be proven!
Solution 4.3.9

1. (a) The Taylor expansion of f(x) around x is inserted into the following integral:

+o00 00 +o00 -
/ dx8l(l)(x—x0)f(x)=; / dx8l(l)(x—x0)fr_(!xo)(x—xo)’

+o00
O £(r)
:Zf r('xo) /dusl“)(u)u’
r=0 : 00

2 ) [
" (x
= (2r)‘0 du 51(1)(u) u’r .
=0 :

—0o0

In the last step we have used that 51(1) (u) is an even function of u so that
only the even powers of u contribute to the integral. One shows, e.g. by full
induction, that the integral can be evaluated as:

. 2n+ D!
/ dete—ar’ = \/7(2n+1)(2a)"



A Solutions of the Exercises 613

Therewith we have:

+o00
o] f(2r)(xO) .
_é dx(s}”(x—xo)f(x):Z:Om(zrﬂ)uzz .

For I — 0 only the » = 0-summand survives:

+o00

lim [ ded)” (r = x0)f (¥) = f(x0) (A5)

(b)

+o00

llin}) dx 81(2) (x —x0)f (x)
—00

i [ ap SnGEmx0)
1>0 2sin (5 (x — x0))

fx)

i [ sin(wu)
= lhn%) du 3 ()
— S
. sin (2 JTM)

o+ 1) (u=1/l(x—xo))

+o00

_ /du sin(nu)f(xo)

Tu

—0o0

| +o00 .
siny
=f<xo>—/dy—.
s y

—0o0

The left-over integral can be solved with Cauchy’s residue theorem (see
second example in Sect. 4.4.5):

+o00 .
sin

/ dy—y =7.
y

—00

Hence:

+o00
lim / dx 81 (x — x0)f (x) = f(x0) . (A.6)
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That is the definition equation for the §-function:
lim 8 (x — x0) = 8(x — xo) -
[—0
2. With the I’Hospital’s rule one easily finds:
1
82c=0)==- A 1im8?(x=0) - 0.
l 1—0

In contrast, lim;_, o 81(2) (x) remains undetermined for x # 0 (oscillatory behav-
ior!). However, Eq. (A.6) is sufficient for the definition of the §-function!
Let us now consider forx € (—1, +1):

+N N
Z T — Z (eiﬂnx + e—innx) -1
n=-—N n=0
1— ein(N+l)x 1— e—irr(N+l)x
= 1 _ eiﬂx + 1 _ e—iﬂx - 1

72— (einx 4 e—inx) _ (ein(N-H)x + e—in(N-H)x)
2 — (eir[x + e—inx)

eme + e—me

+— -
2 — (emx _ e—mx)

cos(Nwx) — cos (N + 1)mx)
1 — cos(x) '

We still use ((1.60), (1.61) in Vol. 1):

1 — cos(x) = 2sin’ ?

cos(Nmx) —cos (N + 1)mx) = cos (((N + %) — rrx)

This means:

N in((N+ L
Y o= M =26 (x) with = —— .
= sin (Zx) N+3
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Conclusion:

1 N 1
li imnx li 5(2) imnx .
m E . e = lm%) l (x) = —2 ) E_ e

N— o0 E
n
All expressions are periodic with respect to transformations
x—>x+2z withz==+1,4+2,+£3,....

One obtains therefore the corresponding behavior also in the other intervals. It
remains therewith:

+o00

8(x):% > e

n=-—0oo

3. Forx,x' € (0, xp) we calculate:

o0
1 cnx , _nm, nx s
_ _2_ (ezxo(x-l—x) —e on(x x") —el"O(X x") +e '
X
0n=0

—iZ (x+x’))

1 +o00

L Z (ei%(x—x’) _ ei%(x+x’))
2)6() n

() (5]
X0 X0 X0
Sx—x) —8(x+x)

>0

=8kx—x).

That was to be proven!
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Solution 4.3.10
1.

8(k) = dx e i (X)f2(x)

=/
+oo  +oo

(2n)3/2 /dX/ dky / dszl(kl)fz(kz)e—ikx i(k1 Fho)x

+00 +00 +o0
ks dio i () ) 5 / dx ek
-5/ ]

—00 —00 —00

d-function (4.189):
1 +oo
o(k) = — / dx e
2n
—00

It follows:

1 +o00 +00

8(k) = N / / dky dix fi (kr) fo (ko) 8(k — ki — k2)
—00 —00

+o00
3(k) = J%_i dk, o (ko (k — )

2a. f(x) = e M
flky = «/_ / dxe MemH e~ even |
k) = i -2
flk)y = \/E_i dxe ™ coskx m[,

o0
I = /dxe‘lx‘ coskx:/dxe_xcoskx
0
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1 © 7
= %e_" sinkx0 + %/dxe_" sin kx
0
1 e 1
= O—ﬁcoskxe |8°—k—21

1 1 1
( +k2) ) 1442

~ 2 1
= f(k) = \/; T (Lorentz curve] .

2b. f(x) = exp (—x*/Ax?):

~ 1 / 2 /A2y _:
k - dx e—(x /Ax )e—th ,
0=
—00
C e = + kA RPLICINE
A T\ Ax . i
dx
= — kA — dy =
Y Ax + o v = Ax
A +oo+i...
~ X 2 2 2
— f(k) — e_(1/4)k Ax / dy e
V2
4 —00+i ...

~ A
= f(k) = T;e_(l/4)szx2 also gaussian-like .

3. Proof by insertion:

r oo +oo
/ dxlf(x)lz_ 2 dx/dkf (k)e™ / WK )™
ﬂ&W(WM—YwNMX
+o0
= /dklf(k)lz-

—00

617
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Solution 4.3.11

1. f(x) is an odd function of x. The Fourier transform therefore reads:

7 _L —|x| —ikx __\/7
fk) = m/xe dx /xe sin kx dx .

We calculate:

~)
Il

/ xe “sinkxdx
0

coskx(1 —x)e " dx

1
o coskx(xe™)

dxxe ™ cosxdx .

1=

o0
/dxe_" cosxdx —
0

I

=]

I was calculated in part 2a. of Exercise 4.3.10:

o0
I = /dxe"‘ cosxdx =
0

1+
Therewith:

o
7= 1 lsinkx( —X)OO+ ! /sinkx(l Ye ¥d
=-1-— xe — —x)e “dx

Tz . R
0
o
~ 1 1 1 . -
N I(l—}—ﬁ ZEI—i-k—z sinkxe “dx

1
= —-I]— — coskxe™
0

1 < 1 T
X B + F/ coskx (—e ™) dx
0

I
1=
/N

L

|
Tl =
N—

_I_
| =

A T1+K) = - +o =
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The Fourier transform is therewith determined:

~ ]2 2k
fw:ﬂganﬁ-

2. We use the so-called Parseval-relation from part (3) of Exercise 4.3.10:

+o00 +00
/&mwé[www.

That means with the functions from part (1):

+o00 +o00 [es)
8 K 2 ol 2 2
— dk ——— = dex"e ™ =2 | dxx“e
T (14 K*)*

—00 —0o0 0

+
> 2

o0
k 7 2 ,—0x
~ /dkm:z/d“e
—00 0

That was to be proven.

Solution 4.3.12

+o00 .
B 1 - _ el(kr—a)r)
U(k,o) = —7 / d*r / dte ' ®r—on

+o00
_ dt ei(a‘)—a))ri / d3rl ei(kr—l_(-r)
21 21 r
—0o0
——

S(w—w) (see (4.189))
= 8(d — w)V(K) ,

~ = 1 | O
\Ij(k) - / d3r_ et(kr—k-r) ,
2w r
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Spherical coordinates (k: polar axis),

[ed] +1
= @(l_() = /drr/dxei(kr_er)
0 -1
o0 . X o0
_ /drreikr_i (e—illr_eilzr) — i/dr [ei(k—/E)r_ei(H/E)r]
kr k
0 0
j 1 | P 1 |
_ ! [ pilk=or| ™ _ __ ikt :| ‘
0 i(k+k) 0

Tk Litk—h
The equation is actually not defined at the upper bound, therefore introduction of a
convergence generating factor:

k — k—+i0T,

i.e., the spherical wave is arbitrarily weakly exponentially damped

. () = 1 ( 1 1 ) 2
Ck\k+k k—k) -
e 2 B
Expansion of the spherical wave in plane waves:

_ ei(l_(-r—wr)

1 1
] )= i(kr—wt) _ /d _ )
1) =Te 272 2k

Solution 4.3.13
1. Propagation in z-direction:
k = tke; .

Linearly polarized in x-direction:

Ey =Epe, .

Maxwell equations:

1 1
= Byp=—kxEy==x-Epe, (vacuum!) .
w c
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In the semi-infinite space z > 0:

0 = oo — extinction coefficient ,

1 o \?
(4.228): Y2 =—-n*|—1+4 41+ ( ) — 0.
2 €0ErW g—>00
The wave cannot penetrate the region z > 0, i.e. total reflection.
Continuity condition:

nx (E. —EJ)|._,=0 (n=e),
E.=0; E~e — E=0 atz=0.

Ansatz:
E =e¢e, (EoeikZ + Eoe_ikz) e
B = %ey (Eoe”‘Z — Eoe_ikz) g it
E=0 atz=0 = Ey=—E,.
This yields standing waves:
E(r,1) = 2i E, sin(kz)e e, ,
B(r,f) = 2% cos(kz)e " e, .
The fields are real:
ReE(r, 1) = 2E, sin(kz) sin(wi) e, ,

E
ReB(r, 1) = 220 cos(kz) cos(wt) e, .
C

They are spatially as well as temporally phase-shifted by /2!
2. see Fig. A.55!
3. Boundary condition:

nx (He —Ho)|og = jr ;

H. = 0 because 0 = 0.
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Fig. A.55 t=

From this it follows:

1 €
Jp=——e, xB(z=0) =-2E [ =2 cos wt (e; xey)
Mo Mo

[€
= jr = 2E) —Ocosa)tex,
Mo

Alternating current in x-direction!
4. Energy density:

1
w(r,t) = E(ReH - ReB + ReE - ReD)
171 ) )
= — | —(ReB)” + ¢p(ReE)
2 [ o

= 2E2¢q(sin® kz sin® wt 4 cos® kz cos® wt)

1 1
= 2E(2)60 |:§(1 — cos 2kz) sin® wr + 5(1 + cos 2kz) cos’ a)t:|

= € Ej [1 + cos 2kz(cos® wt — sin® wr)] |

w(r,t) = E()E%(l + cos 2kz cos2wt) .

Time-averaged:

T

1
w(r) = —/dtw(r, 1) = E()E(Z) .
T
0

The energy density has a spatial period of Az = m/k = A/2 and oscillates

temporally with 2w around the mean value EOE(Z).
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Energy-current density:

S(r, ) = ReE(r, 1) x ReH(r, 1) = 4E2 / sin kz cos kz sin wt cos wte,
Ho
= S(r,1) = E2 /— sin 2kz sin 2wt .
Ko
Time-averaged:

S(r,7)) =0 (standing wave) .
Solution 4.3.14
1. Telegraph equation (4.218):

1 9 d
[(A—;ﬁ) M o0 = :|E(l')—0

E(I‘, l) ~ ei(k-r—wt)

Ansatz:

1
= —k2+;a)2+iur,u00a):0

— I’ = w—2+i
_uz /JLI‘/“LOO-(U-

2. Single electron: mass m, charge —e
Equation of motion:

mv =—eEge ™

eE
= mv() = €20 =it 4 const .
iw

From this we get as current density:

j=—-enyv=

0E ~+ const .
w

Ohm’s law:

j=0forE=0 =— const=0.

€2n0 €2n0
J =i—E — o=i—.
maw maw
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3. o imaginary since E was considered as a complex quantity:

2 2
kz w Hr o €7 1o
= —2 -_——,
u m
! Mr Lo €2n0
. T
kz(a)p) =0 < wéur,uosrso ——— =0
m
2
np e
—t w2 = .
€r€gm

2
F>0foro>w,,0 <o, = kK~ —Mr,uoemﬂ = (ik)?

- ezno
= K = pupo—
m

= E(r,f) ~e 7@ (k| z-axis) .

Penetration depth k8 = 1:

m u
:}8: —2:—,
V ieitoe®ng — wp

u: wave velocity in the electron gas.
4. Actual total force:

F = Fi+F,
F1 = —eE,
Fz = —evxB

= |F2| < |Fy|, ifv|B| < [E|.
One obtains from 2.:
v=-_|E|.
maw

The law of induction yields:
. 1 1
curlE=-B — B=—kxE, |Bl=—k|E|
1) )

e 1 !
— v|B| = —|E| —k|E| <k |E|
mow o

2 ma)2 maw

maw
= |E| K = — = = .
e ®? _ pepoeng \/7 _ e
ey o —EE=R eEcofiiog )1 —
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5. Index of refraction: k = (w/c)n

k ) K2
= n=c6— — n- = .
w €opow?

We seek after the (k2, w?)-relation for the case that the external field By is absent,
as a generalization of 1.:

mv=—E({)—evxBy (By=Bope;).
Circularly polarized wave, complex ansatz (cf. (4.150)):
E() = Eo(r)(e, £ ie)e ™" |
j=0cE~v — v~E.

Therefore the following approach:

v(r, 1) = va(r)(e, Lie))e ™

— —imovs(r)(e, £ ie,) = —eEo(r)(e, £ ie,) —eBo(—e, £ ie,)vL(r)

— va(r){—imo tieBo} (e, tie) = —eEo(r)(e, + ie,)

—ieEyr)  —ieEy(r)
:> r) = = s
v(r) mw F eBy m(w F w)

. = e By/m: cyclotron frequency.
We now proceed as in 2.:

j=—enpv = —enovAi—(r)E(r, 1) Z6E
Eo(r)
ie*ng
- 0= ——Q.
m(w F w.)

Asin 1. it follows from the telegraph equation:

)W ) e’ny
k= — +ipo0 @ = pplo&reow™ |1 — —————— | .
u me€gw(w F )
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Fig. A.56 'k,
r

Plasma:

w2
K = ppoecow?® (1 -—2r |

o(w F o)

2

ki:w_z 1_L

u? o(w F w.)
2
2 @p

= i =i |1l -——].
+ M( w(w F w)

ny # n_ for By # 0, i.e. the index of refraction is different in the plasma
for right and left circularly polarized waves. This is the reason for the circular
birefringence.

Solution 4.3.15 Assume for all the three media (Fig. A.56)
w=p?P=pd=1.

Then it holds for the indexes of refraction:

n=ve": i=1,273.

Interfaces: xy-plane. That means:

Normal of the interfaces: n = e,

Incidence plane: (n, k;)-plane.

In general:

The incident wave E; can be decomposed into two linearly polarized waves, one
perpendicular and the other parallel to the incidence plane.

Here:

Perpendicular incidence = incidence plane not definable; distinction between
parallel and perpendicular meaningless.

Therefore w.l.o.g.: E; = Ej e,.
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Medium 1:
Incident wave:

E = Ey e,

1 n ) k
Bi = — (k1 x E) = —Eg 017" e = K1 = —=e.
73] C kl
Reflected wave:
) w

E, = Eyp, e heon o, (klr = Zm = kl) ,

1 n —ikyz—iwt
B]r = _( K1 X Elr) = __EOlre €y .

Ul ~—~— Cc

—e;

The sum of both contributions yields the total field in the medium 1.
Medium 2:
E; = Epe®e,

np i(ko7—
B2 — ?EOZ et(kzz wt) ey ,

—ikyz—iwt

E), = Egpy,e €y,

n —ikyz—iwt
B, = 7 Eppre™ €y

Medium 3:
Here only a refracted wave:

E; = Egz &,

ns i(knz—
B3 = ?EOS el(ksz ) ey .

Boundary conditions:
Tangential components of E and H continuous at the interfaces.

z=0:

Eo1 + Eoir = Eo + Egor
ni(Eot — Eo1,) = n2(Eox — Eor) .

E()z elkzd 4 E02r e—lkzd — E03 e1k3d ,

ikod —ikod ik3d
I’lz(Eoze 2 —E02,e 2 ) :n3E03e 34
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Compensation layer such that
!
Ep-=0.

For this purpose it remains to be solved:

z=20:
Eyg —Ep — Egpr =0,
nEgr —naEgp + nyEgp, = 0
~ (m —n2)Ep + (n1 +n2)Egp, = 0.
z=d

(n2 — n3)Eg €4 — (ny + n3)Egyy e 4 = 0 .

The determinant of the coefficients of the homogeneous system of equations for
Ey; and E, must vanish:

(}’lz — n3)eik2d(n2 +ny) = (nz — "1)("2 + n3)e—ik2d

2ikpd (2 —m1) (2 + n3)

— T (2 + n1)(np —n3)

The right-hand side is real, therefore the left-hand side must also be real.

(a) eZikzd =1

A
e khd=mn < d:%

and

!
(n2 + 1) (2 — n3) = (ny — ny)(n2 + n3)
— l’l% + nyny — nan3 — N3 ; Yl% + npn3y — nn3 — NNy
<~ 2niny ; 2nsn3
<= n; = n3 not the interesting case!

(b) eZikzd =1
2 1 A
= kd = mt o= d=(2m—i—1)72
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and
2 _ 2
ny + niny — npn3 — NNy = —N; — Non3 + nins + ning
2
< 2n; = 2nn3
= n:=nn
o — H1A3 .

Law of refraction:

kz nyp A]

ki om A
From that it follows for the compensation layer:

A
ny = /ninz ; d:(2m+l)ﬂ—l.
n24

Solution 4.3.16
1. According to (4.258) one finds the angle of total reflection:

. ny 1
Ug=—==- = 0 =30°.
Sm v, m )

2. From the requirement

. !
sin}; = cos

we derive
1
2sin® 9 =sin? ¥ +cos’ P =1 = sind =cost = — = O =45°.
V2

Law of refraction (4.257):

. n . 2

sinty = —sinth = — =+v2>1,

ny ﬁ

costh = /1 —sin?h =+v—1=1i.

3. Fresnel formula (4.271):

(E(nr) nicosd —npcost,  N2—i  |ale™ iy
= =e )
1

Eo - ny cos ¥y + ny cos ¥, - V240 lalev
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Thereby:

tany = — .

§|_

Fresnel formula (4.273):

1 . .
(E(nr) ny cos  — ny cos V. 2i _|ble™ 20
I

Eo nycos ¥y + njcosd, \/LE +2i  |ble®
Thereby:
2
tang = — = 22
V2
Relative phase shift:
§=2(p—v).

That means:
tan @ — tan y

8
1 — =1t —_ =
an 2 an(p = v) 1 + tan g tan

272 - 1
=12 3
] 1
= tan- = — .

2 V2

If the reflected wave were circularly polarized then it would have to be § = /2
and therewith tan % = tan % = 1. This is not the case. The reflected wave is thus

not circularly polarized!
4. Reflection coefficient (4.283):

1

-

4-1)

R— ‘Eon
Eo
Part 3. leads to:
Eoir ’ -1
Eor | 1q)
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That means:

2 12 2
|Eore|” = |E01r| + ’E(l)llr

2 2
= [ES["+ L[ = 1Bl .
We have to conclude
R =1 (‘total reflection’) .

Solution 4.3.17 ¥,: critical angle of total reflection
b4
H = l9g == 1 = E .
Law of refraction:

. ns
= sind, = o (npy <my).

For ¢, > ¥, the linearly polarized components of the reflected wave, parallel and
perpendicular to the incidence plane, are phase shifted relative to each other by 4.
According to (4.291) § follows from:

§ costh ,/sinz ¥ — sin® U,

tan - = )
2 sin® %

1. Total reflection (4.288):

'( l )
EOI
‘Cl‘) cular ly pOlai ized’ means:

(a)

(EOIr) 1
Eo1 J

iEé_lri = ‘E(lllr

(b)
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(a) is fulfilled if it holds for the incident wave

|E3'1| = ‘Etl)ll

3

which we want to presume here. The sought-after condition for the ratio ny/n;
follows namely directly from the requirement (b), i.e.:

!
=1.

NSARSZ]

tan

This means:

2

cos“ ¥y . .

=— (sin’® ¥ — sin’ Uq)
sin” th
2 .4
. ny . sin® tH
< sin® Vo=—]) = sin® 9 — o -
n cos?

We look for the maximal ratio n, /n; for which this equation still has a solution.
That can be considered as an extreme-value problem:

2

X
y:x_l—x
Q—l— x2 _ 2x _1—2x+xz—xz—2x+2x2
dx (1-x2 1-—x (1 —x)2
_ 1 —4x +2x° LO
(I—x)?
— x(2)—2x0=—%,
2 1 + 1
(xo—1) =3 = X zliﬁ.

Because of xy < 1 only
X0 =

makes sense!
It follows herefrom:

ymax=3—2ﬁ:>(

_ L
2

ny

2
) ~ 0,18 .
1/ max



A Solutions of the Exercises 633

n;)2 1 sin? 91 (1 — 2sin® 9)
N 1 —sin®> %

2 2
— (E) = —2sin* 9, + sin® % |:1 + (n_z) :|
ni ny
2 2
1 na\’ 1\ 1 m\ 2
2 —— [14 (= S -2 N N
- %sm 1Ty + - 3\ +16 + "
1 n 2 n 2 n 4
= sin® 9 = - 1+(—2) + 1_6(_2) +(_2) )
4 ni n ni

Solution 4.3.18 In order to guarantee that the plane wave

~ ei(kr—wr)

is also at A’ and B’ in phase the phase difference on the pathways L and L’ must be
the same (Fig. A.57):

2 nw
kL = —L=L—,
A c
vp = - e
A c
Fig. A.57 B i
iy
A :
: L
s (9
: s D n
c \L n’
19'
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Requirement:
Yoy Yo
kL=kL < Ln=1Ln.

Consider in Fig. A.57 now the two triangles in which L and L' are involved with the
common hypotenuse CD:

/
sinz‘}::; sinﬂ’z:
CD

CD
L sin )
L' sind
This is to be equated with the above requirement:
sin n’
sind’  n
That was to be shown!
Solution 4.3.19
1. We take over the notation from Fig. A.58:
n=e;: surface normal of the aperture o ,
r=(,y,00€0
0: source: Ry = (Xo, Yo, %) ,
P: observer: R = (X,Y,Z7) ,
k= ZT” ;A wavelength of the light .

For the field vector at the point P Kirchhoff’s formula applies (4.322):

E(P) = L/A\ cos(n, Ry) — cos(n, R)
2) RRy

eik(R+R0)/df’ exp(ik@(xlsy/)) .
o

Ais the amplitude of the incident wave. In the arrangement sketched in Fig. A.58
parallel light is realized by the fact that the source of light O and the observer
P are located in the focal planes of lenses. The preconditions of Fraunhofer
diffraction (R — oo, Ry — o0) are therewith fulfilled and it holds according
to (4.321):

o)== (34 2) 7 (5 + 1) = @ e -y B~ po.



A Solutions of the Exercises 635

Fig. A.58

Here we have introduced for abbreviation the direction cosines (see Fig 4.59)

X —Xo
oy =
Ro

Y —Yo
’ ﬂ - E B ﬂ() - R_O .
It is then yet to be calculated:

+A +B
E(P) ~ Cke*®+H0) / A e—ika—a0)Y / dy e~ BB
A —B

C is here an unimportant complex quantity being essentially fixed by the
amplitude and the phase of the incident wave. The integrations are easily done:

E(P) = Cke*(R+Ro) { sin(k(o — ao)A)}

—ik(a — ap)

- { #2_’%) sin(k(p — ﬁo)m}

XA yB

Here it was abbreviated:

xa =k(e —ap)A; yp=k(B—Po)B.
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It results therewith for the required intensity:

I(P) o |E(P)? o { smx“}z { Si“yg}z
XA yB

Discussion:
We consider at first only the diffraction pattern in x-direction.

. sinxy . COSXy
lim = lim 7 =1

x4—0 XA x4—0

x4 = 0 defines the ‘principal maximum’ of the intensity distribution.
* Zeros’:

A
xA:k(a—ao)Aénn & (a—ao)AénE; nez.

e ‘Submaxima’:

d sinxy COSX4  Sinxyg 1 |
—_— = — =0 = tanxy = x4 .
dXA XA XA xﬁ

The heights of the submaxima can be calculated numerically: 0,047 —
0,017 — ....The principal maximum thus strongly dominates. With a
deviation of less than 5 % the area under the I/I-curve is restricted to the
principal maximum (Fig. A.59).

* Distance between the principal maximum and the first zero:

! N A
XA =7 a—oy=—.
A 0=

Fig. A.59
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The angular distance thus becomes larger with decreasing width of the
aperture. Obviously diffraction phenomena are observable only if the linear
dimensions of the diffracting object are comparable with the wavelength A.

The same considerations can be applied for the y-direction. The diffraction image
is then a cross-shaped pattern.
2. Diffraction by a slit:

B> A.

The diffraction image contracts more and more parallel to the y-axis so that
light intensity is practically no longer present outside of 8 = B¢ (center of the
diffraction pattern):

lim (Sin(k(ﬂ — Bo)B)
B—oo \ k(B — Po)B

Finite intensities exist therefore only on the x-axis, in fact exactly as discussed in
the first part of this exercise:

2
) —0 (B#p0).

I sin(k(a — ag)A) \ >
Iy _( k(o — cg)A ) '
Notice, however, that, because of previous assumptions (‘small aperture’),
strictly speaking, B — oo is of course not realizable, but probably B > A.

In the case of perpendicular incidence (Ry o e;) one has oy = cos(e,, e;) =
cosZ = 0 and @ = cos(e,, R) = cosa*. For the angle of emergence & (angle

2

between R and the normal e;) it holds & = 7 — «* and therewith:

A

o =sind .

The minimum condition for the single split then reads according to part 1.:

! .. 27 !
0kA=nm & sind@,—A=nm.

A

This means:

2A sin@, =nA; nez.
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Section 4.4.6

Solution 4.4.1

(a) t>0:
We close the semi-circle in the lower half-plane (Fig. A.60) which then does
not contribute to the integral for R — oo:

+oo . P
e ixt e izt
= / dx 0" = f dZ 0+ .
2 X+1 zZ+1

A pole of first order at zo = —i 0.
Residue:
e—izt
Res = lim (z — =1
20 1@ 7720 (2 =2) z+i0t

Residue theorem:

< Pole is traversed in
mathematically
negative direction

Thus it follows:
O@) = ——(=27i) =1 fort>0.
2
(b) t<O0:
We now close the semi-circle in the upper half-plane (Fig. A.61). But then

there is no pole inside:

= O =0 fort<0.

Fig. A.60

tm 2
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mz

Fig. A.61
—io" Rez
Solution 4.4.2
'l_('
e ’ —iwt

+o0o
1 _ N 1 _
Ve = o5 | O / di> * T (k, @) = 2_712/ gz
—00

k-integration with spherical coordinates,
r = polar axis, % = <t(k, ), d*k = k*dk - sin®} d¥ d.

+1

0o
o1 | -
I 0 2 ikr cos ¥
U(r,t) =e n/k dk—l_cz_kZ/dcosz‘}e
-1

0
E_iwt K - k i it
= — /dkl_cz—kz(e —e )
0

LTr

The integrand is an even function of k

Tk A
7 ikr _—ikr —_ _ T ikr _—ikr
- /dk]_cz_kz(e e ) Z/dkl_cz—kz(e e )
0 —00
Furthermore:
k 1 ( 1 1 )
= = — e + —
k2 — k2 2\k—k k+k
e—iwr 1
= V() = — =1,
r o 4mi
+o0 1 |
I - d]; = + = :ti]_(r .
* / (k—k k+k) ¢
—00
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Fig. A.62

Fig. A.63

No contribution on the semi-circle (Fig. A.62). Inside only one pole of first order:

ky = +(k+i0t).
1 1 - .
Res — ) M| =
o+ [(k—k k+ k) }

= Iy =2mie* .
1_:
The semi-circle when closed in the lower half-plane does not contribute
(Fig. A.63). In the inside of the path C_ there is now the pole:

ko =—(k+i0t),

1 1 z .
Reski (__ + __) e—tkr — elk?’
k—k k+k
= [ =-2mie".

That means all in all:

\Ij(n l) — lei(kr—a)t)
r

That was to be proven!
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Section 4.5.6

Solution 4.5.1

1. We have to prove the assertion:

+ikr

(A+K) S— = —4x8(r) .
r
Thereby (1.69),
1
A - =—474(r),
r
can be used.
@ r#0
Laplace operator in spherical coordinates:
19
A = ;ﬁr + Aﬁ(p
Therewith one finds
A et _ la_zezl:ikr — 2 l o Tk
r r or? r

(b)

Hence, the first condition for the §-function is fulfilled:

+ikr

(A+#) S— =0 for r#0.
The second condition needs some more effort. If f(r) is an arbitrary function
then it holds at first with the result from part (a):

+ikr

/d3rf(r) (A + i) = 1i_1)110/d3rf(r) (A +K) ¢

r

+ikr

r
Ke

Here K, shall be a sphere with its center at r = 0 and the radius ¢. We
estimate:

eTikr 1 1 1 1 1
A = A;(l + ikr — 51<2r2 + g(:l:ikr)3 + ﬁ(:l:ikr)4 + ; H(:I:ikr)")

r

! N SN DU IPTIVIPR <3 [
Ar—I—A(:I:zk SR+ (R + (iR +;n!(ﬂ:zk) r
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LI

1
A=+
r

3
ror
( + (Fik)*r + = (:i:zk)4 2 4 Z —n(n — I)(xik)"r™ )

n=>5

1 k? .3 1, 2
A-———Fik+ =k'r+0O¢) .
r r 2

On the other hand:

+ikr k2

¢ ——:l:lk3 k4r—|—(9(r2) .

k2

r

That justifies the estimation:

Hence we can write:

+ikr :I:zkr

/d3rf(r) (A+12) = 11m/d3rf(r) (A+1) <

= lim / &Erir) (A% + 0(82))
KE

= lim / d*rf(r) (—478(r))
K,

= —4xf(0)
With the results from parts (a) and (b) the assertion is proven!
2. Itis of course also valid:

exp (xik|r —r'|)

2
(A+k) |l‘—l"|

= —4x(r—r').

We insert the given ansatz into the wave equation:

+o00

+00
1 2 —iwt __ _; —iwt
E /da) (A + )I/fw(l‘)e Y. = /da)crw(r)e .

—00 —00
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Fourier-reversal:

wz
(Ar + —) Vo) = (A + &) Yo (1) = =0, (r) .

2
One recognizes immediately with part 1. the solution of this differential equation:

exp (xik|r —r'|)
4 |r — /|

Vo (r) = / d*r o, (r))

Insertion into the ansatz for ¥ (r, t):

+o00
1 exp (xik|r — ')\ _,
, — d d3 / / it .
v(r, 1) —_2n / w (/ 7 aw(r)—4n 1 e
—00

With k = w/u it follows eventually:

o(r.tF1r—r)
4 |r — /|

V(1) = / &>r

% |r — 1’| is the time which the signal needs to come from r/, where it is created,
to r, where it is observed. Causality requires the minus sign. The signal is created
at the point r’ at the ‘retarded time’

tretzt—l|r—r’| )
u

That is the result (4.438).

Solution 4.5.2 According to (4.457) we have for the magnetic induction of the
electric dipole radiation:

ikr 1 '

Bi(r,1) = Kokt j2€ (1 - —) (n X p)e—iwt = Byo(r)e'* =) .
A r kr

Thereby n = 7 and k = 2. The amplitude Bjo(r) is complex:

1 i
B = "2 (1 + ) )

_ HoMr 1 1 iy
= T K@ 5+ e

1/k* 1 u
t = = — = —
an(y) 1/r kr  or
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It holds therewith for the magnetic induction:

B(r,7) o exp (—ia) (t— L_ K)) .
u o

The phase velocity 7 is the velocity of an observer who is moving such that

o(r, 1) Ew(t—g—ﬂ) = const .

w

Differentiating with respect to the time:

r u
0=1——-— ——arctan —
u or
| | 1 ( u)
=1—-=-—-— (=
U 014 A or

—_
Il
<.
S
|-
|
SI\)
< <
N
—_
+
—_
N:l\)
9
v

That yields for the phase velocity

X u
r = —1 >u.
-
1+(%)
In the case of the assumed vacuum: u = c:

r>c.

No contradiction to the Special Relativity since no information is transported by the
phase velocity!

Solution 4.5.3 Current density:
jx, 1) = L™ 8(x)e, .
Because of

_ Moy 3 j(rlytrel)
A(r,t) = ?/d }’/m
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it must be:
A xe,.
No charge density, therefore:

1 /a tre
o(r,1) = /dS/P(r 0) -0,
drepe; [r—1'|

Therewith it follows for the electric field:

E:—qu—A:—A — Exe,.

From symmetry reasons E cannot exhibit a y- or z-dependence. This is then valid
for A, too:

A(r,1) = A(x, t)e; .
The inhomogeneous wave equation simplifies therewith to

PA 1 0°A

P v —toieloe'8(x) .

Solution for x # 0:

A, 1) = Be=w) for x > 0 (to the right propagating wave) ,

" Ce D) for x < 0 (to the left propagating wave) .
The symmetry requires B = C. For the determination of the constant B the
inhomogeneous wave equation is integrated over x from —0% to +07:

+o0t
0A 0A 1 9 / Ad 1ot
— - — - x = — e .
0x +o+ ox —ot u? 02 Hokrlo
—0t

The integral on the left-hand side vanishes and the equation simplifies to
_l_ (Beza)t + Cetwt) — _ﬂO,UvrIOEWt .
u
It remains:

Holr
2iw

B:C:

MI()
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The vector potential is therewith determined:

r (=) >0,
Because of
E(r,1) = —A(r, 1)
and
B(r,?) = curlA(r,?) = exiAZ — eyiAZ = —eyiAz
ady ox ox

it follows eventually:
Electric field strength

1
E(r,7) = —Euo,urulo exp (ia) (t — _)) e. .
Magnetic induction

exp (io (t— %)) forx>0,

1
B(r,7) = EMOHrIOey { —exp (ia) (t + i-i)) forx <0.

Solution 4.5.4

1. Let us start with the Maxwell equations:

curlE; = —B, (A7)
curlH, = j, + D, (A.8)
curlE; = —B, (A.9)
curlH, = j, + D . (A.10)

With (A.8) and (A.10) and the harmonic time-dependence one gets at first:

jl 'Ez —j2 'El = E2 -curlHl —E2 'Dl —E1 -curle +E1 'Dz
= E2 . CllI'lHl — E1 . CllI'lH2 + iwéoérEz . E1 — iw€0€rE1 . E2
= E2 . CllI'lHl — E1 . CllI'lH2 (All)
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It follows from (A.7) and (A.9):

0= H2 . CllI'lEl + H2 'Bl — H1 . CllI'lE2 — Hl . Bz
=H, - curlE; — H; - curlE; — iop,uoHy - Hy + iopopHy - Hy
=H, -curlE; — H; - curlE, . (A.12)

We add together (A.11) and (A.12):
ji*Ex—j,-E; = E;-curlH; — E; - curlH, + H; - curlE; — H; - curlE,
With
div(a xb) =b-curla—a-curlb
this proves the assertion:

ji*Ex—jo-E; = (Ey - curlH; — Hj - curlE;) — (E; - curlH, — H; - curlE))
= div(H; x Ep) —div(H; x Eq) .

2. Dipole approximation, radiation zone (d < A < r) — according to (4.461)
and (4.462):

B(r) ~ %ukzirkr(n X p) (n = E) ,
E(r) ~ u(B(r) xn) .

Dipole moment:

p — /d3r/r/p(r/)

= Exn=uBxn)xn=—u|Bn’>—n(B-n)
~——
=0

1
= B=-nxE,

i.e. here:
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That is used to further evaluate part 1.:

1
/ div (H; x E)d’r = — / div ((n x E;) x E)d’r
u oty !
v 1%
1 1 . 3
= - div —n(Ei . Ej) + Ei (n . Ej) d’r
U oHr —
% =0
1 1
= (E;-E)(n-df),
u oty
v
This leads to:
s ] 1 1
d’r(div(H; x Ez) —div (H; x Ey)) = —— (m-df)(E, -E; —E; - Ey)
) U o fhr v

=0.
With the result from part 1. we thus have:
/d3r(j1 ‘E;—j2-E)) =0
4
ji #0onlyin Vy;j, #Oonlyin Vo with ViNV, =0
= /d3rj1 ‘E;, =/d3rj2-E1 )
Vi 1%

3. According to the ansatz for the dipole approximation the linear dimensions of the
source are small compared to the ‘other’ distances. We can therefore assume to
a good approximation that the macroscopic fields E;, E, are practically constant
over the respective space-regions V>, Vi:

EZ(RI)'/d3le = El(Rz)'/dSV.iz- (A.13)
\4 1%

R, R; are, e.g., the ‘midpoints’ of the volumes V, V,.
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By-calculation:

/d rji = Z/Jj&jd r  (i: Cartesian components)
14
Z/ 3x,

_Z/( ) = laaj )d3

:/&wmw%—/}mwfr

\4 \4
~———

= [ df-(ix) =570
v
The first term vanishes since j is unequal zero only in a finite space region.

Therewith:
/fm:-/m&wfp

14 14
Continuity equation:

/d3rj,- = /x,-[)d3r = —iw/x,-pd3r

Vv Vv Vv

—iwp; (p;: i-th component of the dipole moment)

= /d3rj = —iwp .
v

That is inserted into (A.13):
—iwE; - p1 = —iwE; - p2

That was to be shown!
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Solution 4.5.5
1. Radiation zone: d <K A < r

ikr
el (ngxp)
4 r

Es(r) ~ c¢(Bs(r) x ng) ,

BS (I‘) =

(ES , Bs, ns)Z orthogonal trihedron, pP= d3 rr p(l‘/)l electric dipole moment.
g p
I ime-dependencies:

Bs(r,t) = Bs(l‘)e_iwr s
2. Incident wave
Ei = rliE() Eikni.r ,
1
Bi = —(Ili X El) .
c

The scattering cross section has the dimension of a plane:

o (ns . Ss(ns, ns)) PdSQ
—(ng, ng;m;, ;) = S —
a2 n; - Si(ni, ﬂi)

dQ

We use:

9]
|

1
——Re(E x B*) = Re (E x (nx EY))
210

Z/L()C
E[?

L[Re(nmﬁ) — Re(E*(E-n ))] —n

Z/L()C = Z/L()C ’
Therewith it holds in particular:
T |ns - Es|*
Sq(ng, =ng——,
s(ns, ng) = ng ine
_ . E:|?
Si(ni, ;) = m [9; - Eil = n;[Eo|? ,
Z/L()C Z/L()C
kZ eikr
ns+Es = —1s + [(ns x p) x ng]
ey r
2 ek

= e 7[(175 -p) — (g -ng)(p-ng)] .
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In the radiation zone the fields are transversally polarized, therefore:

Ng+ng =0
K 1
—> -E 2:—— . 2
s - Es| 16n263r2|"5 pl
1 K

do
- d_Q(ns’ ns:Mi, ;) = (ns - p)’.

1672€2 |Eol?

The dependence on (nj, 7;) is of course ‘hidden’ implicitly in the induced dipole
moment p.
Rayleigh law:

d_a Kt oA
dQ

(blue sky, afterglow).

A > d: field E; inside the sphere almost homogeneous ,
T ~ A. quasistationary .

The result from Exercise 2.4.2 can be adopted:

-1
p = 47 &R? (er )Ei

&+ 2
do RS | 1 2( )
dQ - r+2 Ns - Ny

Polarization:

s ~ [(ns X p) x ns] ~ [(ns X 7;) X ng] = n; —ng(ns - ;) .

The scattered wave is in the plane spanned by #; and ng linearly polarized,
perpendicular to ng!
4. Figure A.64 explains itself by the preceding partial results:

(n; - ms)) = cos?,
(m-mg)L =1
1 —cos?d

— P = 1+cos2d



652 A Solutions of the Exercises

Fig. A.64 z
&+
n;
ng
n;
* O
1
i =1s
s
4 Yy
Fig. A.65 P(ﬂ)

1___________ ___________i
| |
! |
! |
! I
! I
! |
' |
' I

/2 )

P has its maximum at % = /2 (Fig. A.65). In this direction the unpolarized
incident radiation has become a completely linearly polarized wave.
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Analytic function, 359, 361, 364, 369, 371-374
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Basic problem
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Boundary conditions
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227,235, 241, 243, 251, 255
Cauchy-Hadamard theorem, 368
Cauchy-Riemann differential equations
Cauchy’s integral formula, 364, 375
Cauchy’s integral theorem, 361, 362, 364
Cauchy’s residue theorem, 374-380
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density, 19, 27, 41, 49, 55, 64, 67, 69, 70,
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216, 227, 289, 396, 401
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Circular birefringence, 352
Circulation, 22-24, 30, 46, 60
Clausius-Mossotti relation, 154
Coercive force, 196
Coherent waves, 317
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Completeness, 116, 281
Completeness relation, 118, 120, 131,
160, 351
Complex analysis, 354-380
Complex function, 355-374
Complex resistance
parallel connection, 242-243
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Continuity equation, 28, 50, 159,
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390, 396
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Convergence generating factor, 286, 352
Convergence in mean, 117
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Coulomb-gauge, 216-217, 230
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Curie temperature, 147, 195
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180, 181, 183-185, 187-190, 199,
203-205, 207, 213, 214, 217,
219-221, 226, 227, 234, 397, 401
Curvilinear integral, 359, 361
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D
d’Alembert operator, 216, 259
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strong, 248, 249

weak, 245, 246, 251
Decomposition theorem, 36-37, 46,
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§—function

derivative, 5, 406

multi-dimensional, 5-7, 285-289
Diamagnetism, 193, 205
Dielectric
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isotropic, 148, 157
Dielectric constant

complex, 294

relative, 148, 154, 157
Dielectric displacement, 145, 154, 160, 192
Diffraction

Fraunhofer, 326, 354

Fresnel, 326, 327
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characteristic, 394
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142, 143, 146, 150, 156, 157, 160,
183, 187, 203, 390, 394, 397, 399
surface density, 82, 159
Dirac’s §-function, 1-7, 39, 45
Dirichlet-boundary problem, 124
Dispersion, 269, 270, 274, 352
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Distribution, 2, 42, 45
Divergence, 18-22, 25, 26, 28, 36, 42, 46, 69,
212,224
Domain, complex, 356

E

Effective resistance, 237, 238
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Eikonal, 342, 346
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Electric conductivity, 167, 168

Electric current, 48, 50, 163—-170, 205, 208,
249
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228, 229, 234, 246, 264-267, 307,
320, 341, 385, 387, 391, 395, 397,
399, 407, 410

Electric power, 169-170

Electric quadrupole radiation, 388, 395,
398-401

Electric tension, 56, 72, 74

Electromagnetic field, 219, 222, 224, 227, 228,
257, 258, 262, 291, 292, 296, 301,
303, 320, 347-349, 387, 389, 390,
392, 395, 396, 399, 401, 405, 409

Electromagnetic potentials, 214-222, 225, 381,
385, 386, 401-403

Electromagnetic waves, 257-354, 381-415

Electromotive force, 208, 228

Electron gas, 168, 352

Electrostatic field energy, 65-69, 93, 158, 161

Electrostatic potential, 67, 69, 70, 72, 76, 81,
96, 102, 108, 130, 137, 138, 160
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290-293, 299, 301, 345, 349, 397
time-averaged, 299, 345, 349
Energy density
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electromagnetic field, 220, 349
magnetic part, 291
time-averaged, 300-301, 344, 349, 392,
399
Energy law of electrodynamics, 218
Energy radiation, 221, 222, 410
Equipotential surface, 56, 79, 87, 102, 115
Essential singularities, 374, 375
Expansion in orthogonal functions,
115-121
Expansion theorem, 120, 127, 369
Extinction coefficient, 297

F

Faraday cage, 102

Faraday’s law of induction, 207-211

Far zone, 78, 86-88, 90

Ferrimagnetism, 196

Ferroelectric, 147, 160

Ferromagnetism, 195, 197, 206

Field-behavior at interfaces, 64—65, 197-198

Field energy, 218-222, 225, 226, 234-235, 410

Field lines, 18, 53, 54, 56, 79, 87, 159, 230,
391

Field momentum, 222-225, 227

Field of n point charges, 54, 55

Flux, 16-19, 26, 27, 31, 40, 41, 4346, 59, 60,
63, 71,75, 78, 209, 229

Force on the local current distribution,
184-187, 381

Fourier integrals, 277-290

Fourier series, 118, 277-289, 349
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Fourier transform, 282, 283, 285-287, 350,
351

Fourier transformation, 278, 283, 285, 286,
382

Frequency, 245, 248-251, 256, 261, 269, 271,
304, 352, 353, 386, 387, 394

Fresnel formulas, 310-312, 318, 353

Fresnel’s mirror experiment, 317, 318

G

Galilean-invariant, 210
Gauge-class, 218

Gauge function, 216, 218

655

Gauge transformation, 177, 205, 215
Gauss-casket, 64, 71, 197, 301
Gaussian system of units, 52
cgs-system, 52
Gaussian wave packet, 271
Gauss theorem, 26-34, 37, 41, 46, 50, 60, 62,
63, 70, 74, 102, 105, 135, 140, 146,
148, 155, 156, 159, 176, 191, 224,
234, 386, 390
for scalar fields, 28
Geometrical optics, 340-342, 346
limiting case, 342
Gradient, 42, 87, 101, 110, 142, 186
Green’s function
retarded, 383, 401
of sphere, 113
Green theorems
first Green identity, 34, 38
Green identities, 33, 46
Green laws, 33
second Green identity, 34, 103, 320
Group velocity, 269-271, 273, 274
Gyromagnetic ratio, 184

H

Harmonic oscillator, 236, 244, 245

Homogeneous Maxwell equations, 214, 215,
222

Homogeneous wave equation, 218, 258-259,
262, 274-276, 278, 287, 289, 292,
295, 320, 348, 349, 384, 385

Huygens’s principle, 319, 336

Hysteresis curve, 195
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Identity theorem
for analytical functions, 371, 372
of power series, 370, 372
Image current, 204
Image force, 111, 112, 115, 134, 160
Impedance, 237, 241
Improper function, 2
Index of refraction, 259, 295, 296, 318, 342,
353
generalized, 296
Induced surface charge density, 110111, 114,
134, 140
Inductance, 235, 240, 243
Induction voltage, 228, 229, 256
Inertial system, 218
Inhomogeneous Maxwell equations, 214, 215,
222
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Inhomogeneous wave equation, 218,
381-386, 413
Insulators, 101, 141, 194, 294, 297,
302, 353
Intensities at reflection and refraction,
306
Interference
constructive, 319, 340
destructive, 319, 331
fringes, 317, 318
of same inclination, 318, 319
Intermediate zone, 388
International system of units, 52
MKSA-system, 52
Isolated singularity, 374

J
Joule heat, 221, 247, 253, 297, 300

K
Kirchhoff approximation, 323,
327
Kirchhoff’s current law, 166, 167
Kirchhoff’s formula, 320-323, 326, 327

L
Laplace equation, 62, 108, 121-125,
127-130, 135, 137, 160, 199, 259,
357
with boundary conditions, 121-123,
160
Lattice vector, 333-335, 338, 339
Laue equations, 338-340
Laurent expansion, 375, 376
Law of conservation of charge, 166
Law of reflection, 305, 308
Law of refraction, 305, 308, 310, 314, 315,
318, 346-347, 354
Legendre equation
generalized, 119
ordinary, 119, 136
Legendre polynomials, 119, 128, 137
associated Legendre functions, 119
Lenz’s law, 193, 229, 230
Liénard-Wiechert potentials, 403
Light rays, 340, 341, 343
Line integral representation of the nabla-
operator, 26, 46
Local-orthogonal trihedron, 344
Lorentz curve, 2, 3, 317
Lorentz force, 175, 219, 222, 352
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Lorenz-condition, 218
Lorenz-gauge, 218, 226, 259

M
Macroscopic field equations, 213
Macroscopic field quantities, 140-150,
188-193
Macroscopic magnetic induction, 188
Magnetic dipole radiation, 395-401
Magnetic field
constant, 171
energy, 234, 235, 247
Magnetic flux, 176, 205, 208-210, 228, 230,
232,233
Magnetic induction, 163, 173-176, 178-188,
197, 198, 205, 207, 209, 211,
214, 215, 226, 227, 229, 230, 232,
233, 254, 256, 257, 263, 341, 343,
347-349, 352, 385, 391, 397, 399,
408
Magnetic moment, 180-188, 191, 192, 194,
195, 200, 202, 205, 395
Magnetic susceptibility, 192, 193
Magnetization, 191, 195-197, 203, 2057
Magnetization-current density, 190, 205
Magnetomechanical anomaly, 184
Malus/law of Malus, 345
Material equations, 214
Maxwell equations
of electrostatics, 59-64, 145, 160
macroscopic, 142, 154, 205
in quasi-stationary approximation, 228
Maxwell’s relation, 295
Maxwell’s supplement, 212-214
Maxwell stress tensor, 223-225, 227
Mean value theorem of integral calculus, 4, 20
Method of image charges, 108115, 139, 140,
158, 160
Miller indexes, 334, 339
Molecular polarizability, 150-154, 161
Moments of charge distribution, 89
Momentum density, 227, 290
Momentum flux, 222, 224
Momentum of electromagnetic field, 222,
227
Momentum theorem, 224
of electrodynamics, 222
Monopole term, 90, 181, 182
Morera theorem, 367
Moving point charges, 401-412
Moving trihedron, 169
Multipole expansion, 88-93, 130, 132, 143,
159, 180, 401
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Mutual inductance, 231, 232, 234, 254
Mutual induction, 228-233

N

Near zone, 78, 87, 388, 389, 394, 395
Néel temperature, 196

Node rule, 166, 204

Non-conductors, 101

Non-ohmic conductors, 167

Normal derivative, 34, 46, 98, 108

(0}

Ohmic conductors, 167

Ohmic load, 170

Ohmic resistance, 167, 235, 239, 243, 247,
249, 255

Ohm’s law, 167-169, 204, 208, 252

Optically denser, 305, 311, 314, 318

Optically rarer, 305, 314, 353

Orientation polarization, 193

Orthogonality relations, 119

Orthonormality, 116, 123, 126, 127

Oscillating sources, 386—389

Oscillator circuit, 243-250, 255, 256

Oscillatory case, 245

P

Paraelectric, 147, 160, 193

Parallel-plate capacitor, 71-73, 75, 84, 111,
157, 159

Paramagnetism, 193-194, 205

Parseval/Parseval relation, 351

Penetration depth, 352

Period, 261, 276-278, 281, 290

Permeability, 171, 192, 203, 231

Permittivity, 148, 157, 294

of vacuum, 53, 171

Phase, 237, 239, 245, 250, 251, 259, 260, 265,
267, 299, 307, 311, 312, 315-318,
323, 326, 338, 342, 353, 354, 413

Phase velocity, 261, 269-271, 273, 275, 276,
298

Phenomenological average, 141

Physical Gauss theorem, 60, 62, 102, 159

Plane of incidence, 305-307, 309, 312, 315

Plane waves, 259-265, 269, 270, 274-278,
287, 291, 303, 321, 341, 352

Point charge, 11, 49, 57, 65, 67, 69, 90, 95,
103, 105, 106, 108-112, 114, 115,
124, 130-135, 158-160, 169, 175,
210, 211, 219, 381, 401, 404, 409
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Poisson equation, 45, 61, 62, 97-100, 102,
103, 110, 113, 121, 123, 159, 178,
200, 204, 216, 217, 231
with boundary conditions, 123-126
Poisson integral, 97, 99, 130, 132, 138, 200
Poisson spot, 319, 327, 329
Polarization
charge, 145, 146, 158, 189
charge density, 145, 158, 189
macroscopic, 144, 160, 192
Polarization of plane waves
circularly polarized, 266, 268, 347, 348,
353
elliptically polarized, 267, 268, 306
linearly polarized, 265, 268, 306, 307, 312,
316, 348, 352
Power density, 170, 219
Power loss, 170, 205, 247
Power series, 7, 8, 136, 368-372, 374
Poynting’s theorem, 221
Poynting vector, 220, 221, 225, 292, 348, 409,
410
Propagation vector, 261, 263, 264, 292, 346
Proposition of Morera, 364

Q
Quadrupole

moments, 85, 92, 93, 97
potential, 85, 87, 483
tensor, 91, 93, 96, 97, 134, 160, 398, 400
Quasi-stationary approximation, 228, 257, 258,
384
Quasi-stationary fields, 227-257

R

Radial equation, 127

Radiation of moving point charges, 401-416

Radiation zone, 388, 389, 392-394, 399, 410

Radius of convergence, 368-370

Reactance, 237, 238

Reciprocal lattice, 333

Reciprocal lattice vector, 334, 338, 339

Reciprocity, 324

Reciprocity theorem of the radiation theory,
414

Reflectance, 313

Reflection coefficient, 313

Relative permeability, 192

Remainder term, 8-10, 45

Remanence, 195

Residue, 377-379

Resonance, 249-251
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Resonant frequency, 250

Retardation, 228, 384, 385, 389, 395,
403, 404

Retarded distance vector, 403

Retarded time, 384, 386

Riemannian sum, 27, 30

S
Scalar magnetic potential, 199, 201-203, 206
Scalar potential, 39, 46, 56-59, 61, 74, 78, 94,
98, 104, 105, 107, 108, 126, 128,
135, 139, 140, 143, 144, 158, 159,
177, 200, 214, 216, 226, 259, 387
Scalar wave equation of optics, 341
Screened point charge, 69
Self-energy, 67
Self-inductance, 231-234, 253, 254
Self-induction, 228-235
Separation
ansatz, 122, 125, 160
method, 121
of variables, 121-126, 135
Sequence of numbers, 355-356
Series of complex functions
absolutely convergent, 365, 368
uniformly convergent, 365, 366, 370
Series-resonant circuit, 243, 244, 246,
248, 249
Settling time, 249
Singular points, 374, 375, 377
Skin depth, 297
Snell’s law, 305, 347
Source density, 19, 45, 46
Specific electric resistance, 168
Spectral function, 282
Spherical capacitor, 73-75, 95, 159
Spherical harmonics, 118, 127, 128, 132-134,
138, 178
Spherical multipole moments, 133, 160
Spherical waves, 274-277, 319, 321, 322, 337,
341, 342, 392
Square-integrable function, 116, 117, 281
Static zone, 388
Step function, 5, 380
Stokes-area, 65, 197, 198, 301, 302
Stokes theorem, 29-33, 43, 46, 60, 65, 176,
210, 211, 302, 346
for scalar fields, 32, 46
for vector fields, 32
Stretched quadrupole, 87, 400
Surface charge density, 69, 102, 110, 114, 134,
137, 138, 140, 146, 148, 168, 187
Surface-current density, 198, 302, 352

Index

Surface element, 13, 15, 16, 40, 322
oriented, 12-15, 45
Surface integral, 1, 12-18, 26, 29, 37, 38, 45,
50, 67, 83, 99, 156, 165, 166, 191,
200, 234, 322, 324, 328, 386, 390
representation of the nabla-operator,
22, 46
Surface normal, 13, 23, 24, 26, 33, 65, 82, 99,
198, 304
Susceptibility, 148, 153, 161, 192-195
Switching processes, 251-254
switch-off process, 253

T

Tangent plane, 13, 45

Taylor expansion of fields, 9

Taylor series, 8, 10, 40, 45, 350

Telegraph equation, 294, 295, 297, 298

Tensor of the second rank, 97, 148

Thread of current, 169, 170, 178, 183, 187,
203, 205, 231, 232

Time average, 238-241, 290, 292, 299,
300, 317, 344, 345, 349, 392, 393,
399

Torque, 80, 81, 159, 163, 175, 184-187, 190,
205

on local current distribution, 184—187

Total internal reflection, 314-317, 353

Transmission coefficient, 313

Transverse gauge, 217

Transverse waves, 263, 264

U
Uniqueness theorem, 34-39, 46

\'%

Vector potential, 39, 46, 176-178, 180, 182,
187, 189, 204, 205, 214, 216, 217,
226, 227, 230, 234, 259, 387-390,
395, 398

Voltage, 56, 72, 74, 76, 95, 96, 164, 167,
228-232, 235, 236, 238-244, 246,
248-251, 253-256, 291

Vorticity, 22, 46

Vorticity flux, 27, 31, 46

w

‘Watt-less current, 240

Wavefront, 260, 261, 276, 319, 341, 342, 345,
346
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Wavelength, 261, 262, 271, 276, 297,
298, 317, 319, 340, 342, 388
Wave packet, 269-274, 278
Wave train, 273, 317
aperiodic, 273

Wave vector, 261, 263, 269, 270, 273, 278,
304, 305, 339, 349

Weight function, 269-271, 278, 288

Weiss domains, 196
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