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Preface

The second edition is an enlarged and updated version of the book I completed in
Canberra in June 1986. There are six new chapters, Uniaxial anisotropy,
Ellipsometry, Periodically stratified media, Neutron and X-ray reflection, Acoustic
waves and Chiral isotropic media. A first edition chapter has been split into two,
dealing with Pulses and Finite beams separately. The chapters on matrix methods
and on numerical methods have been combined into one. The former appendix is
now the chapter Particle waves, preceding that on neutron and X-ray reflection. The
second edition contains 20 chapters, some with their own appendices, compared
with 13 chapters and one appendix in the first edition.

The aim remains the same: to present the theory of reflection and transmission of
waves from and through (mainly) planar stratifications in a simple and physical
way, from first principles. By that I mean from the Maxwell or Schrddinger
equations, for instance. As a theorist, I have naturally favoured exact results and
have emphasized universal conservation and invariance properties. However, many
particular cases are made explicit in graphs and formulae. That’s where the theory
connects with reality (as revealed by experiment), and where one gets a physical
feel for the meaning of the formulae. Applied topics do appear: two examples are
the important phenomenon of attenuated total reflection in Chap. 10, and the
reflectivity of multilayer dielectric mirrors in Chaps. 12 and 13.

I have tried to maintain a logical progression throughout, rather than a historical
one. Nevertheless, due credit is given to the pioneers of the subject of wave
reflection. Rayleigh (John William Strutt, 3rd Baron Rayleigh, 1842-1919) features
prominently, as may be expected given the influence of his work, especially of his
Theory of sound. Even so, some of his reflection papers seem to have been forgotten
and his results keep being rediscovered, often in inferior form. The Rayleigh (or
weak reflection) approximation is an example, and appears frequently throughout
the book.

Rayleigh was of privileged birth and made the most of the consequent oppor-
tunities. Not so privileged was George Green (1793-1841), the baker’s and later
miller’s son. He was almost entirely self-taught, having just one year of formal
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viii Preface

schooling as a child, between the ages of 8 and 9, and becoming a Cambridge
undergraduate when nearly 40. Green’s functions form the basis of the perturbation
theories for long waves in Chap. 3 and for short waves in Chap. 6. No surprise
there. But who talks of the Liouville-Green wavefunctions, or who has heard of
Green’s angle? The former are the high-frequency waveforms dating back to 1837.
Green’s angle, as I have called it in Sect. 1.4, is the acoustic analogue of the
Brewster angle, at which one polarization has zero reflectance from a sharp
interface.

Rayleigh’s use of k for wavenumber has become the standard, and I have built
on that to maintain a consistent notation throughout the book, as far as possible. The
normal and tangential components of the wavevector k are always labelled ¢ and
K; the latter is special in being an invariant for waves in plane-stratified media, with
the laws of reflection and transmission consequent from that invariance. Greek
letters are used (not exclusively, but in preference) for dimensionless quantities.

The book is written for scientists and engineers whose work involves wave
reflection or transmission. Most of the chapters are in the language of electro-
magnetic theory, but many of the electromagnetic results can be applied to particle
waves, specifically to those satisfying the Schrodinger equation. The mathematical
connection between electromagnetic s (or TE) waves and quantum particle waves is
established in Chap. 1. The main results for s waves are translated into quantum
mechanical language in the Chap. 15. There is also a close analogy between
acoustic waves and electromagnetic p (or TM) waves, as shown in Sect. 1.4, and in
detail in Chap. 17. Thus the book, though primarily intended for researchers
working in optics, microwaves or in neutron or X-ray optics, will be of use to
physicists, chemists and electrical engineers studying reflection and transmission of
particles at potential barriers, and also to those working in acoustics, oceanography
and seismology.

Chapter 1 is recommended for all readers: it introduces reflection phenomena,
defines the notation and previews (in Sect. 1.6) the contents of the rest of the book.
The reader can then go to any other chapter in the book, all of which are intended to
be sufficiently self-contained so that only occasional reference to other parts of the
book is needed.

The first edition was written at the Department of Applied Mathematics of the
Australian National University, Canberra. In the Preface I had the pleasure of
thanking two Australians, Barry Ninham and Colin Pask. The second edition was
written in New Zealand, but I again have pleasure of thanking two Australians, this
time Tony Klein and Andrew Wildes, for their suggestions and comments on the
new chapter on X-ray and neutron reflection.

Wellington John Lekner
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Chapter 1
Introducing Reflection

Electromagnetic, acoustic and particle waves all scatter, diffract and interfere.
Reflection is the result of the constructive interference of many scattered or dif-
fracted waves originating from scatterers in a stratified medium. This fundamental
many-body approach is hard to apply (two illustrations are given in Sect. 1.5).
Usually one replaces the collection of scatterers by an effective medium whose
properties are represented, as far as wave propagation is concerned, by a function of
position and frequency (or energy), such as the dielectric function ¢ in the elec-
tromagnetic case, or the effective potential V in the quantum particle case.
Electromagnetic and particle waves then satisfy the same kind of linear partial
differential equation, with ¢ and V playing similar roles.

In a medium with planar stratification the functions ¢ and V depend on only one
spatial variable, and the partial differential equations then separate. Snell’s Law is a
direct consequence of this separability of the spatial dependence, or equivalently, of
the invariance of the reflecting material with respect to translations along the sur-
face. The differential equations, and the elementary reflection properties which
follow from them, are derived for electromagnetic, particle, and acoustic waves in
the first four sections. The many-body, constructive interference, aspect of reflec-
tion is outlined in Sect. 1.5. Finally, Sect. 1.6 previews some of the main results in
Chaps. 2-20.

1.1 The Electromagnetic s Wave

The reflection of a plane electromagnetic wave at a planar interface between two
media is completely characterized when solutions for two mutually perpendicular
polarizations are known. The polarizations conventionally chosen are: one with its
electric vector perpendicular to the plane of incidence (labelled s, from the German
senkrecht, perpendicular), and the other with its electric vector parallel to the plane
of incidence (labelled p).

We consider monochromatic waves, of angular frequency . The reflection of a
general electromagnetic wave (a pulse, for example) can be analysed as that of a
superposition of monochromatic waves. For a given o the time dependence of all
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fields is carried in the factor e ™. (This is the convention in quantum and solid state
physics, and much of optics. In radio and electrical engineering the factor e’” is often
used. With the convention used here the dielectric function has positive imaginary
part in the case of absorption.) We will mostly consider non-magnetic media in this
book. The electrodynamic properties of a medium are then contained in the dielectric
function &(r, @) which is the ratio of the permitivity of the medium at position r and
angular frequency o to that of the vacuum. The wave equations follow from

Maxwell’s two curl equations relating the electric field E and the magnetic field B:

VxE=ioB or VxE=i"B, (1.1)
C
VxB=—itoE o VxB=—isE, (1.2)
C C

(The equations on the left are in SI units, those on the right in Gaussian units; the
difference lies in the positioning of the speed of light c. In reflection studies, theory
and experiment deal in dimensionless ratios, which are independent of the choice of
units. Even the formal distinction disappears from (1.5) onward.)

For a planar interface lying in the xy plane, and an electromagnetic wave
propagating in the x and z directions, the s wave has E = (0, E,,0) and (1.1) gives

——2=i—B,, —2=i—B, (1.3)

and By = 0. The other curl equation gives

OB, B OB, P

az E: c ye (14)

On eliminating B, and B, from (1.3) and (1.4), we obtain a second order partial

differential equation for E,,
O’E,
Ox?

PE, o’
57 Tiah =0 (1.5)

+

For planar stratifications the dielectric function depends on one spatial variable, z.
The partial differential equation is then separable, with

Ey(x,z,1) = ¢ ®VE (), (1.6)

where E(z) satisfies the ordinary differential equation

d’E i
Z c
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n 0

z

Fig. 1.1 Reflection of the electromagnetic s wave at a planar interface between media
characterized by dielectric constants & =n? and & = n?. The figure is drawn the airlwater
interface at optical frequencies, with &, ~ 1, ¢, ~ (4/3)*

The meanings of k, K and g are evident from (1.5), (1.6) and (1.7): k = s'/zw/c is
the local magnitude of the wavevector, K = k, is the component of the wavevector
along the interface, and g = k; is the component of the wavevector normal to the
interface. For a plane wave incident from medium 1 as shown in Fig. 1.1, the
existence of the separation-of-variables constant K (= ki, = k’lx = ky,) implies

8:/2 sin 0; :si/z sin 6] :s;/z sin 0y, (1.8)
where 0, 0’1, and 6, are the angles of incidence, reflection, and transmission (or
refraction).

Thus the fact that ¢ is a function of one spatial coordinate only, and the con-
sequent separation of variables, implies the laws of reflection and refraction: the
angle of reflection is equal to the angle of incidence, and the angles of incidence and
refraction are related by Snell’s Law. The refractive indices of the two media,
defined as coefficients in Snell’s Law n;sin 0; = nysin 0,, are n; = \/¢; and
ny = /€. Note that the laws of reflection-refraction do not depend on the transition
between the two media being sharp: they are valid for an arbitrary variation of &(z)
between the asymptotic values ¢; and &,.

As ¢ attains its limiting values & = n? and & = n3, ¢ = (ew?/c* — Kz)l/ ? takes
the limiting values
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Fig. 1.2 Graphical representation of k> = ¢> +K? and K = k; sin 0, = ky sin 0. The figure is
drawn for the airlwater interface, as in Fig. 1.1. For incidence from the optically denser lower
medium, as the angle of incidence 0, increases the magnitude of the tangential component K of the
wavevector will increase beyond the magnitude k; of the wavevector in the upper medium. No
transmitted wave is then possible, and there will be total internal reflection

w w
qi1 :I’ll—Cosgl, q2 =n2—00392. (19)
c c

(For 0; > 0. = arcsin(ny/n,) there is total reflection, g, is imaginary, and 0, is
complex. This is discussed along with the particle case in Sect. 1.3.) Snell’s Law
and the relationships between the wavevector components are incorporated together
in Fig. 1.2.

We now define the reflection and transmission amplitudes r, and ¢, in terms of
the limiting forms of the solution of (1.7):

eiqlz + 7 eiiqlz — E(Z) — I eiqzz. (l 10)

The reflection amplitude is thus defined as the ratio of the coefficient of e %' to that
of €412, the transmission amplitude as the coefficient of ei%2% when the incident wave



1.1 The Electromagnetic s Wave 5

€17 has unit amplitude. Theory aims to obtain general properties of the reflection
and transmission amplitudes, and to develop methods for calculating these for a
given dielectric function profile. The calculation is simple for the important step

profile

to(z) = { o (2<0) (1.11)

& (z>0)

For this profile we obtain r, and ¢, from the continuity of E and dE/dz at z = 0. (If,
for example, dE/dz were discontinuous, d’E / dz? would have a delta function part,
and (1.7) would not be satisfied.) For the step profile, E is given by the left and right
sides of (1.10) for z<0 and z > 0, respectively. The continuity of E and dE/dz at
the origin gives

1+rs0 :tSO) 1671(1 _VSO) :iq2ts0~ (112)
Thus

q —q 2q,
== 5 tso = .
q1+q2 q1+q2

(1.13)

50

On using (1.8) and (1.9), the expressions (1.13) may be put into the Fresnel forms
(Fresnel 1823)

sin (6, — 0;) 2sin 0, cos 0,
=2 T = 2R PR 1.14
T 0,10 T Sin, 1 0) (1.14)

The phases of the reflected and transmitted waves are specified only when the
phase of the incident wave and the location of the interface are specified. The above
equations are for the discontinuity in &(z) located at z = 0. In general, for the step
located at z3,

2igiz; 41 — 42

o _ elln—g)a 241 (1.15)
q1 T 42

rso = € .
’ q1+q

50

A special situation arises at grazing incidence (0; — m/2,q; — 0), when the
incident and reflected waves are propagating in the same direction. Then the phase
of the reflected wave is well-defined without specification of the interface location,
and rq9 — —1 (even in the case of the total internal reflection, when ¢, is imagi-
nary). The fact that r;, — —1 at grazing incidence is a general property of reflection
from all interfaces, as will be shown in Sect. 2.3.

The classical electromagnetic fields E and B are real quantities, and the complex
notation is used for mathematical convenience. (Complex fields are intrinsic in the
quantum theory of particles, however.) The physical reflected s wave is, for unit
amplitude of the incident wave,


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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0 30 60 90
0

Fig. 1.3 Step profile reflectivity for the s wave. The parameters are for the air|water interface at
optical frequencies, as in Figs. 1.1 and 1.2. The lower curve is for light incident from air; the upper
curve for light incident from water shows total internal reflection for angle of incidence greater
than 0, = arcsin(%) ~ 48.6°

Re{r, e!K—02=90Y — Re(r,) cos (Kx — g1z — wt) — Im(ry) sin (Kx — q1z — i)

The reflected intensity is proportional to the time average of the square of this,
namely

1 1 1
3 [Re(r,)]* + 3 [Im(r,)) = 3 Iryf?

The incident intensity is proportional to the time average of cos®(Kx + g1z — wt),
which is 1/2. Thus, R, = |ry|* is the ratio of the reflected intensity to the incident
intensity. This quantity is called the reflectivity, or reflectance. Figure 1.3 shows R;
for a sharp transition between air and water, with light incident from air, and from
water.

1.2 The Electromagnetic p Wave

We again take the incident and reflected waves propagating in the zx plane, and the
stratifications lying in xy planes. For the p wave, B = (0,B,,0); the Maxwell
equation (1.1) gives

OE, OE W
az 787;: l;By, (116)

while (1.2) implies E, = 0 and
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= = jge—F), —=—ie—E,. (1.17)
c X

Elimination of E, and E, gives

0 (10B, 0 (10B, w
&(EE) +8_Z(Ea_z)+c—23yo. (1.18)

When ¢ is a function of one spatial coordinate z, the laws of reflection and refraction
again follow from the separability of (1.18). We set

By(x,z,1) = & )B(z) (1.19)

where K has the same meaning as for the s wave; then B(z) satisfies the ordinary

differential equation
d (1dB w*  K?
— == ———|B=0 1.20
dz (s dz>+(c2 8) (1.20)

When ¢ is constant (outside the interfacial region), the p wave equation has the
same form as the s wave equation, with the same wavevector component g per-
pendicular to the interface. But within the interface there is an additional term
proportional to the product of de¢/dz and dB/dz. This term may be removed (and
(1.20) converted to the form of the s wave (1.7)) in two ways. The first involves
defining a new dependent variable

€1

b= (—)123 (1.21)

&

(The factor 8}/ % makes identical the limiting forms of » and B in medium 1.) The
equation satisfied by b is

&b, d?e1/2 1d% 3 [1de\*
— +qb=0 2op P e (22 1.22
g2 tob=0 a=a el =t e 3 se) (12

This form of the p polarization equation is useful for special profiles, in particular
the exponential profile, which has Ine¢ linear in z, and the Rayleigh profile, which
has &!/? linear in z. These are discussed in Chap. 2. It is also useful at short
wavelengths, in the derivation of a perturbation theory for the p wave (Chap. 6).

The second transformation which removes the (de/dz)(dB/dz) term is a dilation
of the z variable in proportion to the local value of &(z): we define a new inde-
pendent variable Z by


http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_6
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dZ = edz (1.23)
Then, as may be seen on division of (1.20) by &, the p wave equation reads

B, , lo* K> /q\?
T 0B=0 =T - () (1.24)
This equation, in terms of the dilated z variable, and a reduced normal component
of the wavevector, Q = ¢/¢, will be useful in many applications throughout this
book.

The p wave reflection and transmission amplitudes are defined in terms of the
limiting forms of B(z):

ez _ r e % — B(z) — @tp ez (1.25)
ny

The reason for the factors —1 and n,/n; = (&/ 81)1/ ? multiplying r, and 1, is that
we wish 7, and r, and #, and f, to refer to the same quantity, here chosen to be the
electric field. (This is not the only convention in use: some authors have the
opposite sign on r,.) The electric field components for the p wave are found from
(1.2), (1.19) and (1.25) to have the limiting forms

oy 77 cos 0 €O (e 4 7, € 09)) g2 cos O 1 T,

(1.26)

-1/2 . i(Kx—wt) ( Niq1z —iq1z -1/2 . i(Kx + qrz—ot)
—& “sinb e (" —r,e %)) — E, — —g, '“sinbyt,e .

(1.27)

The x-component of the electric field (tangential to the interface) thus has the
reflection amplitude 7,, while the z-component (normal to the interface) has
reflection amplitude —7,,.

At normal incidence there is no physical difference between the s and p polar-
izations: both have electric and magnetic fields tangential to the interface. For our
geometry, E, is zero at normal incidence, and (1.1) implies OE,/0z = i(w/c)B,.
Thus B, the solution of (1.20) and (1.25), must be proportional to dE/dz, where E is
the solution of (1.7) and (1.10). On substituting dE/dz for B in (1.20) (with K set
equal to zero) the left side becomes

d (1 /dE i w? .
dz | e \ dz2 c?
and this is zero, by (1.7). Thus (1.20) is satisfied by dE/dz at normal incidence. The

proportionality of B and dE/dz at normal incidence, when applied to the limiting
forms (1.10) and (1.25), gives the equality of 7, with r; and of 7, with .
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(Proportionality of B and dE/dz could be replaced by equality of B and
(¢/iw)dE/dz, but then (1.25) would have to be modified by the factor n;.)

At a discontinuity in the dielectric function, B and ¢ 'dB/dz = dB/dZ are
continuous (from (1.20) or (1.24)). For the step profile &y(z) defined by (1.11), B is

equal to

ez _ Oefiqlz (Z < 0)
Bo(z) = { @tpoléiqzz (z > 0) (1.28)

The continuity of B and ¢~ 'dB/dz at the origin gives

1 — po :Z—?l‘po, (129)

. R
10 (1 +rpo> = lQQn—?lpo, (130)

where Q1 = q1/¢&; and O, = ¢2/¢&,. Thus (compare (1.13))

01— ny 20,
—7, =, —1 = ——: 131
"0+ 0 m” T 0+0 (131)
On using (1.8) and (1.9) we obtain the Fresnel forms
tan(6, — 0,) 2sin 6, cos 0; (132)

rPo:tan(92+91)’ o = sin (0, + 01) cos (0, — 0;)

The reflectivity of the p polarization off a discontinuity in the dielectric function is
shown in Fig. 1.4.

From (1.31) we see that the p wave shows zero reflection when Q; = Q», that is
at the Brewster angle

0p = arctan 2. (1.33)
nj

It is apparent from (1.24) that this angle has special significance not only for a sharp
transition between two media, but for diffuse profiles as well. This is because the
wave equation in the dilated variable Z links two media with effective wavevector
components Q, and O, which are equal at this angle. The s and p effective
wavevector components g and Q are shown in Fig. 1.5, which also illustrates the
reason for small p reflectivity at the Brewster angle. The Figure shows g versus z
and Q? versus Z for the hyperbolic tangent profile

1 Z
e(z) ==(e1+&) — 5(81 — &) tanh %’ (1.34)

N —
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0 30 60 90
0

Fig. 1.4 Step profile reflectivity for the p wave, for the air-water interface. The curve for light
incident from air is zero at the Brewster angle arctan(4/3) ~ 53.1°. For incidence from water the
reflectivity is zero at the Brewster angle arctan(3/4) ~ 36.9°, and unity beyond the critical angle
0. = arcsin(3/4) ~ 48.6°

for which the dilated z coordinate is

Z=—(ea+&)z— (& — sz)alncosh(i) . (1.35)

N —

At the Brewster angle 0p,

(0/c)
%ZQ%ZmZ i (1.36)
2
K2 — 2 _ g2 b8 (9) _ 1.37
16205 B eite \e ( )

From (1.24), a general profile &(z) has Q7 at the Brewster angle given by

Q*(0p,2) = _c:;—{g(z) _ S‘SﬁZ} : (1.38)

Thus the bump in Q? at the Brewster angle (see Fig. 1.5) has the analytic form

o? (e —&)(e — &)

— 1.3
2 2(e+&) (1.39)

Q*(0p,2) — Q3 =

The p wave equation in the Z, Q notation has reflection at 0p due to the small
variation in the effective wavevector component Q as given by (1.39). For the step
profile, ¢ equals either ¢; or &, and there is no variation in Q and thus no reflection.
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Fig. 1.5 Squares of the 2
normal wavevector 0 22
component g and of the L£q,

effective normal component O
for the s and p waves. The

®
figure shows ¢*(z) and Q?(Z)
for the hyperbolic tangent
dielectric function profile, at
three angles of incidence. The
upper curve (in each case) is :
for normal incidence, the
middle curve is at the
Brewster angle 0 =
arctan(ny/ny) and the lower
curve is at the critical angle
for total internal reflection,
0. = arcsin(ny /ny). The -5 0 z/a 5
refractive indices n; = 4/3
and n, = 1 approximate the

water|air interface. Water is 5 3
on the left in both diagrams %
©

-3 0 Zia 5

A common explanation for the small reflection of the p polarization at 05 is in
terms of the angular dependence of the dipole radiation from each atom or molecule
which produces the transmitted and reflected waves. The far-field radiation pattern
of a dipole has zero amplitude along the line of oscillation of the dipole (see
Sect. 1.5, (1.78)). We see from (1.32) that r is zero when 0; + 0, = /2, that is
when the refracted and reflected waves are at a right angle (see Fig. 1.6). The
argument goes that at this angle of incidence there is no radiation from the accel-
erated electrons in the material to produce a p-polarized signal in the direction of
specular reflection (upper part of Fig. 1.6). But zero reflection also exists in the
reverse case of material to vacuum (lower figure). In this case the explanation in
terms of electrons radiating along the transmitted beam to produce (or fail to
produce) the reflected beam does not apply. Further, a similar case of zero reflection
at the interface between two unlike media occurs with acoustic waves (as will be
discussed in Sect. 1.4), and in that case the radiation from each scatterer does not
have a dipole character.
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Fig. 1.6 Illustrating complete
transmission of the p wave at
the Brewster angle. In each 2
case 0 = m/2 — Op, so the //’
transmitted and non-reflected P
rays are at right angles 00 &
B| B.7 \ vacuum
~
(%) glass
2
0
2 vacuum
/|
// glass
6 (0
/ B| B
7
/
/
/
/
/

1.3 Particle Waves

In non-relativistic quantum mechanics, the motion of a particle of mass m and
energy &£ in a potential V is determined by Schrddinger’s equation for the proba-
bility amplitude P,

2
—Zh—vqu+vq’=5qf. (1.40)
m

(h is Planck’s constant divided by 2n.) We shall consider reflection at a planar
stratified boundary region between two uniform media characterized by potentials
Vi and V,. Examples of the particles and interfaces to which this description applies
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are: electrons at a junction between two metals (with possibly an oxide layer in
between); neutrons reflecting off a solid or liquid surface; and helium atoms
reflecting at a liquid helium surface. In each of these examples the potential V in the
single-particle equation (1.40) is an effective potential, representing the net effect of
all the interactions between the particle and the scatterers in the medium through
which it moves. An example of how this effective potential is determined is given in
Sect. 1.5.

We again consider plane waves propagating in the zx plane, incident on a planar
interface, with stratification in the z direction. For this geometry, V depends on one
spatial variable z, and W is independent of y. The z, x variable dependence in (1.40)
is then separable, with

Y(z,x) = e®Y(z) (1.41)

(it is usual to suppress the time dependence e ikt ). Substitution of (1.41) into
(1.40) gives an ordinary differential equation for :

A =0 PO =TFE-VERI-K. (14
From (1.41), K is the x-component of the wavevector in either medium, and is an
invariant of the motion, because of the absence of transverse components of the
force, OV /0x = 0 = 9V /Oy. If the angles of incidence, reflection and refraction are
0y, 0}, and 0,, the laws of reflection and refraction follow from the invariance of
K =k =kj, =k

kysin0; = ky sin 0 = kysin 0y, (1.43)

where
i q; = 72 [ ‘i]' ( '44)

As before, g is the component of the wavevector normal to the interface, with
limiting values

kycost, =q1 — q(z) — g2 = ko cos 0. (1.45)

These relations are summarized in Fig. 1.7.

On comparison of (1.7) and (1.42) we see that there is a one-to-one corre-
spondence between the reflection problems for the electromagnetic s wave and
particle waves obeying Schrédinger’s equation, with the replacement
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vacuum

K aluminium

Fig. 1.7 Graphical representation of k> = ¢*> + K? and of K = k; sin ; = kg sin 0y. (We use zero
as subscript since in this example the upper medium is the vacuum; V; is the vacuum potential,
usually taken as zero.) The figure is drawn for electrons at 10eV above the Fermi level in bulk
aluminium, at the aluminium-vacuum interface. & — V; &~ 11.7eV, so & — V| = 21.7eV;
Vo—Er =~ 4.2eV, so £€—Vy~58eV; the ratio of the refractive indices is {(&—V;)/

(E—Vo)P ~ 1.934

&(2) % o %’;’ €= V()] (1.46)

The reflection amplitude r and the transmission amplitude ¢ are defined in terms of
the limiting forms of the solution of (1.42):

e e T y(z) — 1eE, (1.47)
For example, for the potential step

Volz) = { 1‘2 Eig; (1.48)

continuity of ¥ and dy//dz at z = 0 gives the Fresnel-type equations

— 2
P . A L (1.49)
q1+q2 q1+q

Note that, as in the case of electromagnetic waves, the boundary conditions follow
from the differential equations; they are not an additional assumption of the theory.
A refractive index can be defined for particles. From (1.43) and (1.44) we see

that the refractive index is proportional to (£ — V)l/ 2, that is to the square root of
the kinetic energy, or to the local value of the wavevector k. The proportionality to
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(€- V)l/ ? is also a classical result: the equations for the conservation of energy
and transverse momentum for a particle incident at angle 6; onto a planar strati-
fication between media 1 and 2 read

1 1
Emv%—i—vl :E:Emv%—i—vz, (1.50)
nvyq sin 01 = mvp sin 02 . (151)

Equation (1.51) shows that the refractive indices are proportional to v;, which from
(1.50) are equal to [2(€ — V;)/m]"/%. However, partial reflection does not exist for
classical particles: there is either total reflection (when V > & — %m(vl sin 91)2
anywhere), or no reflection (when V<& — %m(vl sin 01)2 everywhere).

In contrast, total reflection occurs in the wave theory only if V, > & — i2K? /2m;
q» is then imaginary, leading to exponential decay of the probability amplitude in
medium 2. Regions of imaginary ¢ (negative ¢> = (2m/h*)(E — V) — K?) where
V> € — KK? /2m), do not lead to fotal reflection when ¢, is real, because of
tunneling. Electromagnetic waves are likewise totally reflected when ¢, is imagi-

nary, that is when &,? /> <K?, or sin’0; > ¢, /¢;. Thus the critical angle for total
reflection is given by

1/2 1/2
-V
0. = arcsin (:) , 0. = arcsin (g — Vj) (1.52)
V
2
60°
V
1
5 z

0

Fig. 1.8 Probability amplitudes, at two angles of incidence, for particle waves incident from the
left onto a linear ramp potential. The energy and potential values are such that 0, = 45°
(V1:V5:€ = 1:3:5). The upper two waves are the real and imaginary parts of the probability
amplitude y for incidence at 30°. The lower curve is the imaginary part of the probability
amplitude for a totally reflected wave, incident at 60°. The real part is not shown, since the real and
imaginary parts of i are proportional to each other in total reflection: Im//Re ) = tan §/2 when
r =e® (Sect. 2.2). The classical turning point zy (where ¢> = 0) is halfway up the ramp
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600 -

|
-
o

0

&

Fig. 1.9 The electromagnetic s wave at two angles of incidence onto a linear dielectric function
profile. The radiation is incident from the left. The dielectric constants are ¢; = 2,¢; = 1, so that
0. = 45°. The lower two waves are the real and imaginary parts of the electric field E(z), at 30°
angle of incidence. The upper curve is the real part of E(z) for a totally reflected wave incident at

60°. The curves are drawn at the level of (cK/ w)2 for each angle of incidence. The wavefunctions
for the electromagnetic s wave and for the particle waves of Fig. 1.8 are the same

in the electromagnetic and particle wave cases. Partial and total reflection of particle
and electromagnetic s waves is compared in Figs. 1.8 and 1.9. Note that at 30°

incidence the net flux at the right of the barrier, q2|t|2, is the same as the net flux on

the left, g1 (1 — |r[*), despite the visible increase in the real and imaginary parts of
the probability amplitude to the right. At 60° incidence the wave is totally reflected.
The probability amplitudes are drawn about the levels £ — K> /2m, the energy
available for motion in the z direction.

1.4 Acoustic Waves

There is an interesting close correspondence between the reflection of sound and the
reflection of the electromagnetic p wave. This will be demonstrated in the simplest
case of fluid, non-viscous media. Dissipation via viscosity and scattering can be
accommodated by the use of a complex sound speed.

Sound waves propagate changes in density and pressure which are usually very
small compared to the mean values. The equations of motion, continuity, and state
can then be linearized by setting

density = 0+ 9,, pressure = p + pg, (1.53)

where ¢ and p are the mean local values of the density and pressure, and g, and p,
are the small excess time-dependent values due to the presence of acoustic waves.
On dropping second order terms in g,, p, and in the velocity of a fluid element, and
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neglecting the force due to gravity apart from its effect on stratification according to
density, one obtains the equation (Bergmann 1946)

) 1
v2pa—v———§v9-vpa:o. (1.54)

Here v* = (0p/8g), is the adiabatic derivative of the pressure with respect to
density, and gives the square of the local phase velocity in the medium.

Consider now the reflection of sound at an interface characterized by a density
profile ¢(z) and an adiabatic pressure derivative (9p/dg), = v*(z). For a plane
monochromatic wave propagating in the zx plane, we have

Palz,x,1) = P(z) eF—0), (1.55)

K is again the component of the wavevector along the interface, and is a constant of
the motion:

Kzgsin& :gsinez, (1.56)
Vi %)

where v, v, are the limiting values of {(8p/8g)x}l/2 in the two media, and 0, 0,

are the angles of incidence and refraction. The differential equation for P is obtained
by substitution of (1.55) into (1.54):

d /1dP )
o0—|(-— | +4°P =0, 1.57
odz <Q dz> 1 ( )

with
2
2 w 2

= : 1.58
q () T (1.58)

q is again the normal component of the wavevector, with limiting values
q1 = (@/vy)cos 0,92 = (w/vz) cos 0,.

The term (dg/dz)(dP/dz) in (1.57) may be removed by introducing a new
dependent variable P/,/g, as Bergmann notes. This is analogous to the transfor-
mation to B/+/¢ discussed in Sect. 1.2. A more fruitful approach is analogous to the
transformation to a dilated z variable in the p wave case: (1.57) has the same form
as the electromagnetic p wave equation

d (1dB »
— | —— B=0
dz <8 dz) +e
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In terms of a new independent variable Z, defined by dZ = odz, (1.57) becomes

d*p
— +0°P=0, 0=

7 (1.59)

LSS

(As defined here, Z and Q no longer have the dimensions of length and of
(Iength)~'; this can be remedied by respectively dividing Z and multiplying Q by
some density, for example (9, + 0,)/2.)

It is clear from the form of (1.59), and the discussion of reflection at the Brewster
angle given in Sect. 1.2, that weak reflection of acoustic waves (zero reflection, in
the case of a sharp transition between the two media) is expected whenever
01 = Q. This holds when

cos 04 _ cos 0, . (1.60)
21V1 2V2

This result was first given (for a sharp interface) by George Green (1838). On
eliminating 0, from (1.60) and Snell’s Law (1.56), one finds that weak reflection
occurs at an angle of incidence 0; = 6 (which we will call Green’s angle) given by

(02)’ = (e)* (1.61)

tan® 0 =
ei(vi —13)

In contrast to the electromagnetic p wave case, weak reflection of acoustic waves
does not happen at a certain angle at a boundary between any two media: the
quantities g,;v; — @,v, and v; — v, must have opposite signs.

At Green’s angle 0 (where Q| = Q,), K? is equal to

k- (Q‘)Z(Qz)z (1.62)
“o-a |\ v/ [

and the common value of Q; and Q, is given by

Qé:“’—z{i—%}- (1.63)

2 2\ 2
0r — @ \vp v

According to (1.59), the acoustic wave in the Z variable then reflects from the bump
in 02, given by

Cli-a) | v ) now)
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One can define an acoustic reflection amplitude r and a transmission amplitude ¢
in terms of the pressure:

eI 4 re?  P(z) — te'® (1.65)

For a sharp transition between media 1 and 2, P and dP/odz = dP/dZ are con-
tinuous at the boundary. (This is evident from (1.57); note that, as in the electro-
magnetic and particle wave cases, the differential equation dictates the boundary
conditions, which are not an additional input to the theory.) Thus, for a sharp
boundary located at the origin,

01— , 20

r==——-, =—. 1.66
01+, 01+ (1.66)
These may be rewritten as
tan 0, — o, tan 0 20, tan 0
,— Qtanth — o tan 1’ . 0, tan b _ (1.67)
0, tan 0, + ¢, tan 0, 0, tan 0, + ¢, tan 0,

Total reflection occurs for angles of incidence greater than

0. = arcsin (ﬂ) (1.68)

V2

0 30 60 90
0

Fig. 1.10 Reflectivity of acoustic waves at a mercury-water interface, according to (1.66). For
sound incident from the slower medium (mercury) total reflection occurs beyond the critical angle
0. ~ 78.21°. Very close is the Green’s angle 0 =~ 78.18°, so the reflectivity changes from zero to
unity in 0.03°. For sound incident from water the Green’s angle is very close to glancing
incidence, 0 ~ 89.12°. Thus again the reflectivity changes from zero to unity very rapidly. The
curves are drawn for py,/pp,0 = 13.57, vug /vi,0 = 0.9789
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0 30 60 90
6

Fig. 1.11 Reflectivity of acoustic waves at a water-carbon tetrachloride interface, obtained from
(1.66). For sound incident from the slower medium (CCly) the Green’s angle is 6 ~ 1.73°, and
total reflection occurs beyond 0, = 38.86°. For sound incident from water the Green’s angle is
0O ~ 2.76°. The curves are drawn for pcey, /pn,0 = 1.595, veey, /vi,o0 = 0.6274

This result follows on setting 6, = 7/2 in (1.56); it holds for any interface, no
matter how diffuse, provided absorption can be neglected. The critical angle 0, will
be close to Green’s angle 0g, if the latter exists, when v; ~ v, The reflectivity of a
step profile then rapidly goes from zero at O to unity at 6. and beyond, as illus-
trated for the mercury-water interface in Fig. 1.10.

When ¢,v; =~ 9,v; the reflectivity at normal incidence is small, and 0g (f it
exists) will also be small. This is the case for carbon tetrachloride and water,
illustrated in Fig. 1.11.

1.5 Scattering and Reflection

Most of the results in this book come from analysis of the differential equations for
waves in material media, the media being characterized by a dielectric function, or
an effective potential, or the density and speed of sound, in the case of electro-
magnetic, particle or acoustic waves. This approach hides the many-body com-
plexity of the real physics: specular reflection, for example, is the result of the
constructive interference of many scattered or re-radiated waves. A discussion of
reflection from this point of view will be given here; it leads to values for the
functions characterizing the media, such as ¢ and V, in terms of the properties of the
particles comprising the system. Such approaches go back to Lorentz (1909),
Darwin (1924) and Hartree (1928) in the electromagnetic case. We will begin with
an adaptation of Fermi’s (1950) argument for the effective potential of a collection
of neutron scatterers, since this is simpler.
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—_—
—

P 0 z axis
—_—r
_—

Fig. 1.12 Reflection of neutrons by a slab of scatterers. The thickness Az of the slab is such that
kAz is small, so that the phase of the plane wave e’<, (incident from the leff) is nearly constant over
the slab

Consider the reflection of a beam of neutrons by a thin slab of material. The
neutrons interact with the nuclei in the slab. For slow neutrons this interaction is
characterized by a length b, the scattering length for neutrons off a bound scatterer.
An incident plane wave e causes each scatterer to radiate a spherical wave
—be'*" /1. The reflected wave is found by summing up the scattered waves from all
parts of the slab. The geometry is illustrated in Fig. 1.12.

If n is the number density of the scatterers, (2npdeAz)n is the number of scat-
terers within an annulus between p and ¢ + dg, where p = /x% + y? is the distance
from the z axis. The reflected wave at P is thus

« b ikr
x//,:/dQZnQAzn (— ¢ ) (1.69)
0

r

For fixed z we have odg = rdr, so that

W, = —2mnbAz /dreik’. (1.70)

-2

The integral over r is not defined as it stands, because we have used ekt as the
incident wave, namely a plane wave extending to infinity in the x and y directions.
In practice the incident wave would be a finite beam, with an amplitude decreasing

with ¢ = (x* + yz)l/ % The resulting integral for , then is well-defined. When such
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decrease is slow on the scale of k! (the beam is many wavelengths wide), the
integral is equal to —e~/ik, and

_ 2m?bAz ik

b= (171)

This is a reflected wave, with reflection amplitude equal to the coefficient of e =<,

We will now show that the reflection amplitude due to a thin slab of thickness Az
and effective potential V is (to lowest order in V)

Az\ 2mV
rl—(g) PR (1.72)

(What follows is heuristic; a rigorous proof is given in Chap. 3; see in particular (3.
14).) Consider the effect of a potential hump, or well, which is small in extent in
comparison with the wavelength. Seen on the scale of the wavelength, the hump
appears as a spike, and its main effect is to create a change of slope in the wave-
function: on integrating (1.42) (at normal incidence) across the hump, we have

22

V(e =) == [ 2R e~ VEIIE. (1.73)

21

For wavelengths long compared to the extent of the hump, y is nearly constant over

its effect, so when z, — z; is small compared to k= h(ZmE)_l/ 2, and the hump is
centred on the origin,
22
, , 2m
V' (22) =¥ (21) zﬁlﬁ(O) dzV(z) (1.74)

21

(The zero of energy has been chosen so that V goes to zero on either side of the
hump.) From (1.47) the left side is equal to ik(z — 1 +7) + O(k?). The assumption
that ¥ remains nearly constant from z; to z; also implies 1+ 7 ~ /(0) ~ . Thus
(1.74) gives

r (%k) 2}1_’;1 /sz(z). (1.75)

21

For V constant inside the hump (of extent Az), and zero outside, this reduces to
(1.72).

We can now give an expression for the effective potential of a collection of
scatterers: (1.71) and (1.72) together imply that this is


http://dx.doi.org/10.1007/978-3-319-23627-8_3
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h2
V=dn <2m> nb (1.76)

The scattered waves interfere constructively to give a reflected and a transmitted
wave, as if the medium were completely homogeneous and acted on the particles
with a potential given by (1.76). We have considered normal incidence; at oblique
incidence the constructive interference of the spherically diverging waves from the
scatterers within the slab is in the specular and straight-through directions.

We now turn to the more complex question of electromagnetic radiation
interacting with the atoms or molecules in a thin slab of material. We will calculate
the field at P in front of a slab, as in Fig. 1.12. The incident electric field propagates
in the z direction, and is taken to be polarized along the x direction,

E = & (E),0,0) (1.77)

When the wavelength is large compared to atomic size, each atom radiates pre-
dominantly as a dipole. For a given atom with dipole p, oscillating at the impressed
angular frequency o, the electric field at r = rr from the atom is (see for example
Jackson (1975), Sect. 9.2)

ikr

E=2"

{kz(f'xp) xf'+[3(f'-p)f'—p](l—%>}, (1.78)

r

where k = w/c. The far field (given by the first term) is a spherically diverging
wave, with E transverse to r. We do not omit the near field, since we do not wish to
assume that kr >> 1. All dipoles are taken to lie along the direction of the incident
electric field, and to have the same strength «E(, where o is the polarizability of an
atom:

p = e " (akE,0,0) (1.79)

The point P is at (0,0, z), with z<0. The contribution to the electric field at P from
a dipole at (x,y,0) is then

oE, ei(krfwl)

X
73

202, 2 . 3x°
kK (y"+2°) + (1 — ikr) r—2_1 (1.80)
with E, and E; odd in x and thus integrating to zero when we sum over the dipolar
fields. Thus the net field at P due to all the dipoles (of number density n) in the thin
slab is, on changing to the cylindrical coordinates ¢ and ¢ and integrating over ¢,
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o0
ikr 2
‘ . 3
EJ™® = e oEynnAz / doo5 {k2<e2 +22%) + (1 — ikr) <£2 - 2> }
r- r
0

' T ik 32
= e "“aEynnAz / dr—- {kz(r2 +2%) + (1 — ikr) (1 — —2> }
I r

(1.81)

The first term is an integral of the form (1.70); the others may be obtained from it by
integration by parts. The result is

E)‘(ﬁp(’les = efi(kZ + “”)ZnikanAon. (1 82)

The reflection amplitude for the slab is the coefficient of Eqe~* (kz+o0) §n (1.82). We
compare this with the result analogous to (1.72) for the reflection amplitude due to a
thin slab of dielectric constant &,

" :%kAz(s— 1). (1.83)

Thus the effective dielectric constant of a slab of atoms of polarizability o« and
number density n is

e~ 1 +4nan. (1.84)

We have neglected the effects of the dipolar fields on each other. When these are
taken into account, the resulting dielectric constant for a uniform medium becomes.

B 1+§nom

& (1.85)

1 —%mon

This expression is known as the Clausius-Mossotti or Lorentz-Lorenz formula
(Lorentz 1909). The result (1.84) is the first-order term in the on expansion of
(1.85). The form of (1.85), with n = n(z), remains valid with a high degree of
accuracy in a stratified medium of polarizable atoms (Castle and Lekner 1980;
Lekner 1983).

1.6 A Look Ahead

In the preceding sections we have introduced the definitions and basic equations for
the reflection of electromagnetic, particle and acoustic compressional waves by
planar stratified media. The remainder of the book is written predominantly in
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electromagnetic notation; a translation of the main results into particle-wave lan-
guage is made in Chap. 15, and Chap. 16 deals with neutron and X-ray reflection.
The final Chaps. 17-20 are on acoustic waves, chiral media, pulses and
wavepackets, and finite beams. Here we preview the chapters, stating and dis-
cussing some of their results and techniques in order to give the reader a feel for the
structure and content of the book.

Chapter 2 contains both general results, true for reflection and transmission at
any transition between two homogeneous media, and some specific results for
exactly solvable profiles. Among the general results are the conservation law

a1(1 = [r2’) = ganaf?, (1.86)

and reciprocity relations such as

1
rn = ——2r%, (1.87)
)
and
@tz = qifa1- (1.88)

The conservation law (1.86), which holds for real gq; and ¢, and in the absence of
absorption within the interface, represents conservation of energy in the electro-
magnetic case, and conservation of probability density current in the particle case.
The relation (1.87) holds under the same conditions, and implies that the reflectance

R= \r|2 is the same from either side of incidence on a nonabsorbing interface. The
relation (1.88) is more general, being valid also in the presence of absorption within
the interface. It implies the equality of the transmittances T1, = (g2/q 1)\t12|2, T =
(q1/42)|121]?, representing the energy or particle flux through the inhomogeneity,
for incidence from medium 1 or from medium 2. (When the polarization subscripts
s and p are omitted, the relation quoted is understood to be valid for either wave.)

For inhomogeneous interfaces extending from z; to zp, with ¢ = ¢; for z <z; and
& = &, the s wave reflection and transmission amplitudes may be expressed in
terms of the values and derivatives of two linearly independent solutions F' and G of
(1.7) within z; <z <2, evaluated at z; and z5:

s =
e 12(F1Ga = GiF>) 1 i) (FIGs = GIF}) +igx(F{ G2 = GiF) — (FiGh — GiFy) - (1.89)
0©142(Fi1G2 = GiF2) +iq\(F1Gy = GiFy) — iq2(F{ Gy = GYF2) + (F1Gy = G F3)’
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ty =
ella-02)2ig, (F,G) — G,F}) (1.90)
0192(F1G2 — Gi1F2) +iqi(F1G), — GiFy) — iqa(F1 G2 — G\ F2) + (F1G), — G| Fy)

Similar expressions can be written down for the p polarization. These results are
useful for specific profiles for which the solutions are known functions, such as the
Airy functions for the linear profile, and the Bessel functions for the exponential
profile. General results may also be deduced from (1.89) and (1.90), for example
that r;, — —1 and ¢, — 0 at grazing incidence, and that r, and ¢, tend to the Fresnel
values (1.15) as Az = z, — z; tends to zero. From the p polarization expressions one
finds that r, — 1 and #, — O at grazing incidence. Thus r,/r, always moves in the
complex plane from + 1 at normal incidence to —1 at grazing incidence, and the
number of principal angles (or ellipsometric Brewster angles), defined by
Re(r,/rs) = 0, is therefore always odd.

Chapter 2 also lists the exact solutions for three dielectric function profiles which
are solvable for both the s and p polarizations, and another (the important hyper-
bolic tangent profile) which is solvable for the s wave only. Two other cases which
are solvable for the s wave case, the sech’(z/a) and the linear profile, are discussed
in Sects. 4.3 and 5.2 respectively, where their solution is relevant to the problem at
hand.

Chapter 3 treats the reflection of long waves, that is those whose wavelength is
large compared to the thickness of the reflecting inhomogeneity. The long-wave
results are obtained from perturbation theories, which in turn derive from exact
integral and integro-differential equations obeyed by the s and p waves. For
example, from the perturbation theory for the s wave one finds that the reflection
amplitude, to second order in the interface thickness, is given by

2q10%/c?
(@1 + )

22
{iil —2q27 _w/c)h%} +oe (1.91)

rs =TIy +
Y q1+q

n
>

where the /,, are integrals of dimension (length)
I = / dz[e(z) — eo(2)]2" . (1.92)
—0

In (1.92), &(z) is the dielectric function profile under consideration, and &y(z) is the
step dielectric function defined in (1.11), which has the reflection amplitude 7
given in (1.13). The integrals 4, depend on the relative positioning of the actual
profile ¢ and the step profile &y. A theory which calculates reflection amplitudes as a
perturbation series about a reference profile (here &) must obtain results for
observables, such as |ry|>, which are invariant to the relative positioning of the
actual and reference profile. If r =rg+ri+rm+ ---,
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R=|r]" = o) +2Re(ryr) + {|r1|* + 2Re(rir)} + -+, (1.93)

and we see from (1.91) that the first order term r; is imaginary in the absence of
absorption or total internal reflection for the s wave. (The same is true for the p
wave, as is shown in Sect. 3.4.) Then there is no term in R of first order in the
interface thickness, for either polarization. The second order term is given by the
expression within the braces in (1.93); from (1.91) we have

2 4/ 4
— 4, w*/c
R, = (‘“ qz) 1442 /4 it e, (1.94)
g1+ q (g1 +q2)

where the integral invariant i, is given by
i =2(e; —&)dy — A3 (1.95)

(The subscript 2 denotes dimensionality (length)2.) The integrals 4; and A, which
enter into 7y and R;, depend on the relative positioning of the actual and reference
profiles, but the combination of integrals which comprise #, is invariant with respect
to the choice of positioning. Similar results are obtained for the observables r, /s,

and R, = |r,,|2:

2i K?
,,m(r_p) Sy TR S (1.96)
(01 + Q) 6162

(01— O :
R = <Q1+Q2>

40,0, {604. w? 2{ <1 l)] K* ) 2}
g\ abk— 5K +{—+— + —1(e1 +¢ —7 4o

a162(Q1+02)* L ¢ Tt PTG T e)" T v [(e1+e2)i> = ]
(1.97)

In (1.97) j, is another second order invariant, and the first order invariant /; is
defined by

I = / dzw: / dz{sl—&-sz—%—s} (1.98)

&

These results show that, in the long wave limit, the observables R,, R,,, and r, /s
take universal form. The integral invariants /j, i;, and i, depend on the profile shape
and extent only. All frequency and angular dependence is contained in the coeffi-
cients of Iy, i1, and i, and is the same for all non-singular profiles. (The degenerate
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case & =& requires special consideration for the ellipsometric ratio r,/rs
however.)

Equations (1.94), (1.96) and (1.97) illustrate how theory answers the question
“what information can be obtained from a given experiment?” From (1.94) we see
that measurement of the s reflectivity in the long wave case can determine only one
characteristic of the interface, the invariant i. Experimental data at different angles
of incidence give no new information (we are assuming that the interface has no
roughness, and the absence of absorption in the interface or substrate), merely the
opportunity to reduce the uncertainty in i;. The same is true for ellipsometry to
lowest order in the interface thickness: one parameter (the invariant I;) can be
determined, at any angle of incidence. The p wave reflectance (1.97) carries more
information, because the direction of the electric field relative to the interface
changes with the angle of incidence. In principle, the values of I7, i and i, may be
determined by intensity measurements at a mimimum of three angles of incidence.

The long wave results described above were obtained from perturbation theory,
the perturbation being the deviation of the actual profile &(z) from the step profile
€0(z). The simplest example of a perturbation theory expression for the reflection
amplitude is that for reflection by a film between like media:

o0
272
= a;zf;g / dz(s — #) ", (1.99)
—0o0

Here ¢y is the common value of g; and ¢»; & is likewise the common value of ¢;
and &. The normal incidence, thin film version of this result has been used in
Sect. 1.5 ((1.72) and (1.83)). Note that /P diverges at grazing incidence (as
qo — 0). This is unphysical: for passive media the reflection amplitude must stay
within the unit circle, and in fact we saw that the exact r, tends to —1 at grazing
incidence.

This troublesome divergence at grazing incidence remains in higher order per-
turbation expressions, but is removed by the variational theory developed in
Chap. 4. The simplest trial function, vy, = €=, leads to the variational expression

w?/c?
~ S 2(2q0)
r:ar = —Z)Oz/(z ) (1.100)

14

2igo /(2q0)

In this expression 4(2qo) is the Fourier integral in (1.99), and ¢(2¢o) is a double
integral defined in Chap. 4. The variational result (1.100) is not divergent at grazing
incidence; in fact it tends to the correct value of —1 as gy — 0, since the integrals 4
and ¢ have the property that ¢(0) = 2*(0). Further, 7' is correct to second order in
the film thickness, whereas " is not. These properties are shared by the varia-
tional expressions, derived in Chap. 4, for s and p wave reflection amplitudes
between unlike media.
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Non-linear, first order differential equations (of the Riccati type) for the reflec-
tion amplitudes are derived in Chap. 5. Two kinds of equations are used: those for a
quantity ¢(z) which tends to re 2% as 7 — —oo, and those for (z), tending to r in
the same limit. For the s wave, the respective equations are

/

' 2igo =T (1 = 1.101

o' +2igo 2q( %), ( )
q/ . .

r= 2 (¥t — pe 29), (1.102)

where primes denote differentiation with respect to z, and the phase integral ¢ is
defined by

Z

P(z) = /qu(C)- (1.103)

The corresponding equations for the p wave reflection amplitudes have Q'/Q
instead of ¢’ /¢ on the right-hand side. From (1.101) it is shown in Sect. 5.4 that R;
has the Fresnel reflectivity as an upper bound for all monotonic profiles:

2
Ry <Ry = <°h qz) (1.104)
q1+q2
A similar bound holds for R, when Q(z) = ¢(z)/&(z) is monotonic.
Integration of (1.102) from z = —oco to 4+ oo gives
o0
q o :
re=— / dz- (¥ — r*(z) e 7). (1.105)
q

The r(z) on the right-hand side is the reflection amplitude of a profile truncated at z.
If the reflection is weak, one can get an approximate expression for r; by omitting
the term proportional to 7> on the right. This is the weak reflection or Rayleigh
approximation,

q
= / dz—— e??. (1.106)
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The corresponding approximation in the p wave case is

2
r[’f—/dzzQe : (1.107)

—00

At normal incidence both (1.106) and (1.107) reduce to

b4
1

Ay [ @t g0=2 [an@, (o)

—00

where n = ¢'/2 is the refractive index. If one makes the further (and drastic)
approximations of replacing 2n by ny + n, and ¢, by (w/c)(n; + ny)z = (ky +k2)z,
(1.108) simplifies to

oo

o — / a4z 3 it + ke (1.109)
ny+ny dz

—0o0

Expressions closely related to (1.109) have been used by Buff et al. (1965) and by
Huang and Webb (1969) in the analysis of reflection from the diffuse interface of a
binary mixture.

The Rayleigh approximation works very well when the reflection is weak, but
fails near grazing incidence. The Rayleigh approximation (1.106) and the long
wave limiting form (1.94) are compared in Fig. 1.13 with the exact reflectivity for
the hyperbolic tangent profile

1 1 :
s(z)zi(sﬁrsz)fi(el — &) tanhz. (1.110)

For this profile the phase integral can be evaluated analytically (see Sect. 6.4),
ir = (n2/3)(e; — &)*a® from Table 3.1, and the exact reflectivity is (from Sect. 2.5)

R, = {—Sinh”(q‘ _QZ)“}Z. (1.111)

sinh (g + ¢2)a

The figure illustrates the strengths and limitations of the long wave and weak
reflection approximations: the long wave expression is good at glancing incidence,
where the effective wavelength 27/q is large, while the Rayleigh approximation is
good near normal incidence, but fails near glancing incidence, since the reflection is
then strong (as always).

The reflection of short waves, that is those whose wavelength is small compared
to the thickness of the interface, is discussed in Chap. 6. In the short wave limit the
reflection properties usually approach the behaviour of classical particles, which are
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0 30 60 90
0

Fig. 1.13 Reflectivity of the s wave by the tanh profile (1.110), for & = 1 and & = (4/3)* and
wa/c = 0.2. For this value of wa/c the distance in which the dielectric function changes over
80 % of its range (from (9¢; +¢,)/10 to (& +9¢,)/10) is about one seventh of the wavelength of
the incident radiation. The curve e is the exact reflectivity (1.111), the dashed curve e/R gives the
ratio of the exact to the Rayleigh reflectivities, and the curve L/e gives the ratio of the long-wave
limiting form (1.94) to the exact value

either totally reflected or not reflected. Away from classical turning points, which
located at the zeros of ¢?(z), approximate solutions of (1.7) are the Liouville-Green
functions

V. = <%>Eei¢7 v = (%)Eeid) (1.112)

(¢ is the phase integral defined in (1.103)). A perturbation theory based on a
Green’s function constructed from vy, gives the first order reflection amplitude

o0
A1 / apeie], 7 (1.113)
s 2 4if’ '

where
1dg 1dg
=——=—— 1.114
V=i d qdd ( )

is a dimensionless function which must be small for the short wave approximation
to hold. The perturbation theory result is closely related to the Rayleigh approxi-
mation (which is the first term of another perturbation approach, the Bremmer series
discussed in Sect. 6.5), as can be seen by writing (1.106) in the form
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rf:—% / doye”®. (1.115)

Unlike the long wave case, the reflection properties of short waves depend on the
detail of the reflecting inhomogeneity, and do not take a universal form. For
example: in the case of the profiles of finite range, which have a discontinuity in

slope at the endpoints z; and z,, both ;{51) and rf give

1 i —i 12
KY:Iie(¢l+¢z>{yle e T (1.116)

where ¢, and ¢, are the values of the phase integral at z; and 25, Ap = ¢, — ¢4,
and ... denotes that exponentially small terms have been omitted. (The function y
changes in value from O to y; at z;, and from 7, to 0 at z;). A similar result holds for
the p wave:

1 . ‘

=g el *4’2){3)1 cos20; e ¢ — 4, cos 20, e’M’} + e (L.117)
i

Both the s and p reflectivities are thus oscillatory functions of A¢, and decay as the

inverse square of the vacuum wavenumber w/c. The dominant part of the s

reflectivity is

1
RS:1_6{y%+y§—2y1y2 cos2Ad )+ -+ - (1.118)

(The p reflectivity has the same form, with ycos 26 replacing y.) This oscillatory
behaviour, with amplitude decreasing with frequency, is characteristic of profiles
with discontinuities in slope or higher order derivatives. Profiles with no such
discontinuities, such as the hyperbolic tangent, show exponential decrease with
wa/c in the short wave limit, a being characteristic of the profile thickness.
Approximations such as (1.116) and (1.117), and the Rayleigh approximation,
fail at grazing incidence, and in the presence of turning points. When there is a
single turning point (¢*> < 0 for z > 7o, say) there is total reflection. For the s wave

20

= e, 8~ Z/dzq(z) —g, (1.119)
0

the phase decrement 7/2 being universal for smooth profiles. In the case of two
turning points (g> <0 for z; <z<z,), the classically forbidden region ¢> <0 is
tunneled through by a portion of the wave. The transmission amplitude then varies
approximately as exp(—2A®), where A® is the increment in the imaginary part of
the phase integral between the turning points:
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AD = /dz|q(z)|. (1.120)

21

Reflection from anisotropic media is considered in Chaps. 7 and 8. Uniaxial
systems are characterized by two dielectric functions &,(z, ) and &.(z, w). The
most general uniaxial reflection problem, with arbitrary orientation of the optic axis
relative to the reflecting surface and the plane of incidence, is discussed in Chap. 8.
In the simplest case where the system retains azimuthal symmetry about the normal
to the interface (Chap. 7), the optic axis is also normal to the interface, and ¢,(z, ®)
and &.(z,w) give the response of the system to electric field components respec-
tively parallel and perpendicular to the interface. The resolution of electromagnetic
waves into s and p components remains valid in this case, with the equations to be
satisfied modified from (1.7) and (1.20) to

d&’E 2

dz2+(8[,i)2—K2)E:0, (1.121)
d (1dB\ (o* K

d_z<£_0d_z>+<c_2_z) —o. (1.122)

Equation (1.121) has the same form as (1.7), with ¢, replacing ¢, but (1.122) differs
from the isotropic case, since it contains both ¢, and ¢,. There are corresponding
changes in the p wave reflection amplitude, and in r, /r,. The ellipsometric ratio, for
example, still takes the form (1.96) in the long wave case, but the invariant [ is

now given by
I = / dz{81+62—8282—£0}. (1.123)
ve

(this applies to the case of an anisotropic thin film between isotropic media 1 and 2.)
For reflection at a sharp boundary between an isotropic medium 1 and an aniso-
tropic medium characterized by ¢, and ¢,, with its optic axis normal to the reflecting
surface, there is zero reflection for the p polarization at

€o(&o — €1) 1/2
0p = arctan{} . (1.124)
81(86 - 81)

In the case of an anisotropic film, characterized by &,(z) and &.(z), on a homoge-
neous anisotropic substrate characterized by &, and &, the form (1.96) is still
valid, with &, replacing ¢, in the factor multiplying /; and
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00
2
&7 — €208 &1 — & €18
I = / dz{l o ‘e — } (1.125)
€1 — &0 &1 — &0 Ee
—00

Ellipsometry is discussed in Chap. 9. The emphasis is on the analysis of what
various ellipsometric configurations measure. We discuss transmission as well as
reflection ellipsometry.

The effect of absorption (the dissipation of electromagnetic energy within the
medium) is discussed in Chap. 10. Absorption is included phenomenologically in
the Maxwell equations by means of a complex dielectric function, & = ¢, + i¢;. This
simple change has far-reaching consequences for reflection properties. In the case
of reflection at the sharp surface of an absorbing medium (a metal, for example), the
Fresnel equations (1.13) and (1.31) retain their form, but now g, = g, +ig; and
0> = 0, +1i0Q; = (qr +iq;)/ (&, + ig;), Where

21 ) ) L
(%) = E{Sr — gy sin” 0; +[(& — & sin® 0, )2+8i2]%}7 (1.126)
i &2
“a_ af2 (1.127)
o cqi/o

The ellipsometric ratio r,/r, no longer has the real axis as its trajectory, but lies
within the upper half of the unit circle:

n _ 4ilg; +a7) — K* +2iq19:K? (1.128)
s (q19- +K2)* + g}q?

Some of the general results derived in Chap. 2 still hold, notably the fact that
rs — —1 and r, — 1 at grazing incidence, and the implication that there is an odd
number of principal angles of incidence at which Re(r,/rs) = 0. The reciprocity
relation (1.88) also holds, and thus the transmittance of an absorbing system is
independent of the direction of propagation of the radiation.

Zero reflection is not possible off an absorbing medium with a sharp boundary,
for either polarization. If however a dielectric layer is deposited on the absorber,
zero reflectance is possible for both polarizations (at different angles of incidence);
this interference-absorption effect thus produces reflection polarizers (Sect. 10.3).

A thin absorbing film on a transparent substrate always decreases the trans-
mittance, but reflectance can be either increased or decreased, depending on the
polarization and whether ¢; <ég, or & > ¢&. For example, the s reflectivity to first
order in the film thickness is given by

a ¢\ 4q1(q — q) @ i
R, = — 3 —Z/dzgi(z)+~~. (1.129)
q1+q2 (g1 +q2)” ¢
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The form (1.96) for the ellipsometric ratio is still valid, with I; complex:

£1628, . 182
I = / dz<81+82—8%+8i2—8r>—|—l / dz[sf—&—s?}gi' (1.130)

—00 —00

An important and dramatic effect due to absorption is that of attenuated total
reflection, discussed in Sect. 10.6. An absorbing layer (typically a metal film)
deposited between two dielectrics can turn a total reflection configuration into one
whose p reflectance is small at resonance, and can be zero for proper choice of
thickness of metal film and angle of incidence. This phenomenon is an
interference-attenuation effect, associated with the resonant excitation of electro-
magnetic surface waves at a metal-dielectric interface.

Chapter 11 deals with the inversion of reflectance and ellipsometric data to
obtain the parameters of the reflector. For example, if the real and imaginary parts
0, and g; of r,/r, are measured at angle of incidence 0, and the interface is known
to be sharply defined on the scale of the wavelength, the real and imaginary parts of
¢ may be found from

o 1 = sin® 0, + sin” 0, tan® 0, (1- Qz)z — 4Q’22—’_4i(12_ Q%)Qi. (1.131)

& [(1—e,)" +0fl
If a model reflection amplitude is constructed as a function of wave vector com-
ponent in medium 1, and analytically continued to negative q; via r(—q1) = r*(q1),
an explicit inversion is possible (Sect. 11.3) to obtain the dielectric function profile
which would give this reflection amplitude in the Rayleigh approximation. In the s
wave case the result is

2x
@z sin? 0; + cos? 0 exp | —4 / dyF,(y)], (1.132)
&1
—00

where x = ¢! [ d{q({) and F; is the Fourier transform of ry:

17 -
F(y) =5 / dgie™ " "ry(q1). (1.133)
—0Q

Matrix and numerical methods are developed in Chap. 12. Any stratified med-
ium may be approximated by a set of homogeneous layers. The matrix methods
connect, via a two-by-two matrix, the coefficients of either the two independent
solutions, or the field amplitude and its derivative, at the entry and exit points of a
layer. In the latter case these matrix relations for a homogeneous layer between z,,
and z,, 4 are as follows: for the s wave, with D = dE/dz,
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E, 1) _ cos d, g,'siné, \ [ Ex
(D,,H) n (—qn sind,  cos oy, D, ) (1.134)
For the p wave, with C = ¢~ 'dB/dz, Q, = g, /é,, the matrix relation is
Bii1) _ cos 9, Q. 'siné, \ { Bx
(Cn+l> N (—Q,, sin &, cos J,, C, ) (1.135)

For a profile approximated by N homogeneous layers, the reflection and trans-
mission properties are determined by the profile matrix, which is a product of N
layer matrices such as those in (1.134) or (1.135). If the elements of the profile
matrix for the s polarization are s;, for example, the reflection and transmission
amplitudes for an interface between media a and b are

_ 2in9aqpS12 + 821 +1qa522 — igps11 (1.136)
’ GaqpS12 — $21 + iqas22 + iqps11’

ty = &P 2i4a . (1.137)
qaqpS12 — S21 +iqaS22 +iqpSti

(Here oo = q,z; and f = qpzy +1, 71 and zy 41 being the boundaries of the inho-
mogeneity.) In the absence of absorption the matrix elements are real. The matrix
formulation, and the results (1.136) and (1.137), remain valid in the presence of
absorption also, but the matrix elements are now complex.

The matrices in (1.134) and (1.135) are unimodular (have unit determinant); this
fact simplifies the treatment of periodically stratified media (Sect. 12.3 and Chap.
13), which in turn has important application to the multilayer dielectric mirrors.
Numerical methods based on the matrix formulation are also discussed in Chap. 12.
Reflection of s waves by an arbitrary layer extending from a to b can be repre-
sented, to second order in the layer thickness, by the s matrix

l—}dzqz(z)(b—z) b—a
“ , (1.138)
— [dzq*(2) 1— [dzq*(2)(z — a)

(This result, and a similar one for the p matrix, are derived in Sect. 12.4.) In Sect.
12.8, a given interface is approximated by a set of layers within which the dielectric
function &(z), and thus also ¢*(z), vary linearly with z. The matrix methods can be
applied without modification to total reflection and tunneling; reflection and
transmission through absorbing layers requires computation with complex matrix
elements, the formalism being otherwise unaltered. Wavefunctions within the
stratification may be obtained as a by-product of the profile matrix calculation.
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Chapter 14 deals with reflection from rough surfaces. A planar stratified surface,
no matter how diffuse, gives specular reflection of an incident plane wave, but
rough surfaces scatter as well as reflect. The Rayleigh criterion for negligible
roughness is (Sect. 14.1)

gh < 1 (1.139)

where g (as always) is the normal component of the wavevector, and / is a measure
of the variation in the height of the surface. When (1.139) is satisfied the surface
will reflect specularly. According to the Rayleigh criterion, for given roughness and
angle of incidence long waves may be reflected specularly and short waves dif-
fusely, or for given roughness and wavelength there may be diffuse scattering near
normal incidence and specular reflection near grazing incidence. Chapter 14 treats
the reflection from corrugated surfaces (diffraction gratings), from liquid metal and
liquid dielectric surfaces (scattering by thermally excited surface waves), in both
cases using the methods of Rayleigh, and gives an outline of the application of the
Helmholtz theorem to the scattering by rough surfaces (the Kirchhoff or surface
integral method).

Chapter 15 adapts the content of the previous chapters to the language of particle
waves obeying the Schrodinger equation. There follow three new chapters on
special topics: 16 Neutron and X-ray reflection, 17 Acoustic waves, and 18 Chiral
isotropic media.

In the last two chapters we finally move away from the assumption that the
incident field consists of unbounded plane waves: the reflection of electromagnetic
pulses and particle wavepackets is considered in Chap. 19, and that of finite beams
in Chap. 20. We find that nearly monochromatic pulses reflect (in the first
approximation) without change of shape, with a time delay Az determined by the
frequency variation of the phase of the reflection amplitude:

ds

At = —.
dw

(1.140)
(The derivative is to be evaluated at the dominant angular frequency of the pulse.)

For example: total reflection at normal incidence has r, = e and the short wave
limiting form is found from (1.119) to be

20

w T
, =22 o) — = 1.141
d c/dzn(z ) 5 ( )
0

where n(z, w) is the refractive index, and zo is the turning point determined by
n(zo, w) = 0. (This formula applies to reflection from the ionosphere, for example,
in which case n> = ¢~ 1 — wﬁ /®?, where m, is the plasma angular frequency,
proportional to the square root of ionospheric electron density.) From (1.140) and
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(1.141) we find that the time delay is the same as for pulse travel to the turning
point and back at the group velocity u(z, w) = dw/dk, where k = nw/c:

Z 20
2
AtzZ/%:—/dz[n—&-w@} (1.142)
u c ow
0 0

The Appendix of Chap. 19 summarises the universal properties of electromagnetic
pulses. The other parts of Chap. 19 deal with the reflection of particle wavepackets,
illustrated by exact solutions.

Pulses are built up from waves of differing frequencies. Bounded beams
(Chap. 20) can be regarded as superpositions of plane waves of differing directions
of propagation. Just as the reflection of pulses is determined by the frequency
dependence of the reflection amplitude, the reflection of beams depends on the
angular dependence of the reflection amplitude. There is a lateral shift on reflection
of a beam of radiation,

do
Av=——2. (1.143)

where K is the lateral component of the wavevector (K = k), and the derivative is
to be evaluated at the dominant value of K for the incident beam. A particularly
interesting case is total reflection at a sharp boundary. For 6; > 0. the phase of the s
wave reflection amplitude is

05y = —2 arctan @, (1.144)
q1
and (1.143) leads to the beam shift
2K Al tan 0,

Ax, = (1.145)

qilg|  m (sin® 0, — sin>6,)"*’

where 1; is the wavelength 27/k; = 2nc/njw in the first medium. This beam shift
is divergent at the critical angle (where g, = 0), and in fact the formula (1.139) fails
there, since (1.143) is derived on the assumption of a slow variation of the phase
shift with angle. In practice (1.145) works well to close proximity of the critical
angle, as discussed in Sect. 20.2. Appendix 1 in Chap. 20 we show that the |g,|
singularity in the phase shift at 0, = ()C+ is universal for nonabsorbing profiles.
Finally, Appendix 2 in Chap. 20 outlines the somewhat surprising polarization
properties of finite electromagnetic beams.
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Chapter 2
Exact Results

We shall first derive general results, namely those valid for an arbitrary interfacial
profile (Sects. 2.1-2.3); some of these results will be restricted to non-absorbing
interfaces and substrates. The remainder of the chapter is devoted to important
special profiles for which the reflection amplitude may be obtained exactly. Both
the general and the specific exact results are useful in testing approximate theories
and numerical calculations.

The title of this chapter is not intended to imply that all other results in the book are
approximate: for example in Chap. 3 we shall be deriving exact integral equations,
and results which are exact (and general) to second order in the interface thickness.

2.1 Comparison Identities, and Conservation
and Reciprocity Laws

In Sects. 1.1 and 1.2 we saw that, for planar stratified media, the s and p wave
equations may be put in the form

d>y

a2 +C]2l//:0» (2.1)

with the reflection and transmission amplitudes defined in terms of the asymptotic
forms of 1 at large negative and positive z:

eN: 4 e T — ) — 1l2* (22)

For the s wave iy = E and g% = ew?/c? — K2. For the p wave, y = b = (e1/¢)"/*B,
and ¢° is given by (1.22):

1d% 3 (1de\’
2 2
=qrt ———=|-— 2.3
B =9ET 242 4 (9 dz) 23)
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For the s wave, the r and ¢ of (2.2) are r, and 7, as defined in (1.10); for the p wave,
from (1.25), r = —r, and t = t,,.
Let IL be the solution for another dielectric function profile &(z), which has the
same limiting values ¢ and &, as &(z):
2

= G =0, %4 e T — 2, (2.4)

We can obtain comparison identities relating r and 7, and ¢ and 7 from the differ-
ential equations and their boundary conditions. The relation between r and 7 is

obtained as follows. We multiply the wave equation for l:ﬁ by ¥, the wave equation
for }y by l:b, and subtract, to get

(w Y_; %) = (¢~ ). 23

We now integrate from a point z; deep inside medium 1, to a point z, deep inside

medium 2 (that is, z; and 7z, are such that { and x} have attained their asymptotic
forms (2.2) and (2.4)). The integral of the left-hand side of (2.5) gives 2iq, (F — r),
all dependence on z; and z, cancelling out. Thus

17 -
VFT(]I_/ dZ(quqz)lpwv (2.6)

where we have replaced z; by —oo and z; by + oo.
Another comparison identity may be obtained, in the same way, for {y and v
(the complex conjugate of V):

2igi (1 — ri*) = 2igatt” = / dz(q* — @)Yy (2.7)

On setting ¢ = ¢ (and thus g = g), we obtain
a1 (1= 1) = galeP. (2.8)

The energy density of a plane electromagnetic wave is proportional to ¢|E |2, and

the speed to 1/4/¢; thus the intensity is proportional to \/¢|E \2. The amount of energy
in the primary wave which is incident on a unit area of the interface in unit time is
proportional to /g cos ;. The energy carried away by the reflected wave is pro-

portional to /¢ cos 0; \r|2, and that carried by the transmitted wave is proportional to
/€ cos (92|t|2. Since c¢q|/w = \/e; cos 0y and cqy/w = /& cos 05, (2.8) expresses
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Fig. 2.1 A strip of unit width
on the boundary is g E,
illuminated by a beam of
width cos 0,; the transmitted
beam has width cos 0, (the
reflected beam is not shown) cos 0

(5]

cos O
1

the law of conservation of energy. The geometry leading to the factors cos 0; and
cos 0, is shown in Fig. 2.1.

In quantum mechanics (2.8) expresses the conservation of the probability density
current. The conservation of energy is guaranteed, since (1.40), which leads to (2.1)
on the substitution ¥ = e®"(z), is the Schrodinger equation for an energy
eigenstate. The probability density current is

h h
=—(Y'V¥Y -¥YVY¥) =—Im(V'V¥Y .
J Zim( \Y VYY) mIm( VYY), (2.9)

and has (for our geometry) zero y component, and a constant x component

K
K

T (2.10)

As  takes the asymptotic forms specified in (2.2), the z component of J takes the
limiting values

I Ji
Aﬂ@—Mﬁgkﬂﬁ%ﬁ (2.11)
m m

Thus the form of the wavefunction guarantees conservation of probability density
current tangential to the (smooth) interface, while (2.8) and (2.11) demonstrate the
conservation of the normal component.

The relation (2.8) is valid only for real g¢: the reality of ¢ was assumed in
obtaining (2.7). The extension of (2.8) to include absorption will be discussed in
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Chap. 10; here we comment only on the case of total internal reflection, when
¢> = i|g2|. Then |r|>= 1 (as we shall see in the next section), so that the left-hand
side of (2.8) is zero. But |¢|* is not zero in general: for example |r,|* takes the value

44t/ (g + \q2|2) for the step profile. When total internal reflection occurs, there is
no energy (or particle flux) propagated into the second medium, and # becomes the
coefficient of an exponentially decaying wave: it is no longer a transmission
amplitude of a propagating wave.

Further comparison identities may be obtained by comparing waves incident from
opposite directions. We define ,; as a solution of (2.1) with asymptotic forms

1€ Ny — e 4y e (2.12)

The previously used y and le, with asymptotics given by (2.2) and (2.4), will now
be referred to as /|, and ¥/, to emphasize that these represent motions originating

in medium 1, and partially transmitted into medium 2. On comparing @12 with /,,,
we find

2i(qati2 — qita1) = / dz(q* — &)YV a- (2.13)
When g = ¢, this gives (for real g, ¢», but possibly complex g within the interface)
the reciprocity relation

GQ2t12 = q1ta1, (2.14)

so that (2.13) can be written in a form similar to (2.6):

o0

- 1 5 ~
ty =ty — Y / dz(q* — @)oo (2.15)

Comparing ¥, with &21 gives a relation like (2.15), with 121/321 in the integrand.
Finally, comparing y,, with ¥/}, gives

—Zi(CI27’21;T2 +Q1f21;rz) = / dz(q2 — éz)wzlxﬁ’fz. (2.16)

On setting g = g, we find
qaraityy +qiristar = 0, (2.17)

which together with (2.14) gives another reciprocity relation,
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Ep (2.18)

The relations (2.17) and (2.18) are valid only in the absence of absorption or total
internal reflection. In that case the 1 — 2 and 1 < 2 reflection amplitudes have
equal absolute value.

The result |r2 |2: |21 |2, implied by (2.18), is remarkable in juxtaposition with our
intuitive picture of particles going up or down a potential gradient (as in Fig. 1.8). In
the semiclassical limit, one might expect stronger reflection for particle waves
moving uphill than for those going downhill. In fact the reflectivity is exactly the
same in the two cases, unless there is total internal reflection.

Some of the above relations were given (in a restricted form) by Stokes (1849),
using the idea of reversing the wavemotions, as illustrated in Fig. 2.2. In the blue
lines of Fig. 2.2, an incident wave of unit amplitude is split into a reflected and a
transmitted wave, with amplitudes rj, and #,. Stokes argued that on reversing the
wavemotions, the amplitudes given in the caption result. On comparing the resul-
tant amplitudes, one gets r%z +tipty; = 1 and ) = —ry2. The first of these, toge-
ther with (2.14), gives q; (1 — r%,) = go13,, which agrees with (2.8) when r, and
t, are real. The second agrees with (2.18), under the same condition. Thus Stokes’
results are valid when the phases associated with r and ¢ are restricted to 0 and .

A modification of Stokes’ argument produces the general results: we replace his
“reversion” by time reversal plus complex conjugation. The effect, shown below, is

12
12

Fig. 2.2 Stokes’ principle of reversion. The solid lines represent an incoming wave of unit
amplitude and reflected and transmitted waves of amplitudes ry3, #;. Reversing the wave motions
leads to two incident waves, of amplitudes rj, from the left, and |, from the right, and a new wave
at lower right (dashed). According to Stokes, the wave at lower left now has amplitude 3, + #1221,
while the wave at lower right has amplitude #1212 + ri2t12
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to give the correct analytical forms of the reversed beams. The first line gives the
original waveforms, the second the time-reversed and complex-conjugated
waveforms.

iKx + iq1z—iwt + iKx—iqyz—iot ¢ iKx + igrz—iwt
)

€ ripe 12€

—iKx—iq z—iwt * —iKx+igiz—iot * | —iKx—igyz—iwt
e q1 +r12e q1 , t12€ q2

Note that we have used the full space-time dependence in the waveforms. The
arguments used above now give

riara it =1, (2.19)
and
rthlz + flkzrm =0. (220)

We now have agreement with the general results derived earlier in this section:
(2.19) with (2.14) reproduces (2.8), and (2.20) is the same as (2.18).

Other comparison identities can be obtained: for the p wave one analogous to
(2.6) will be used in Sect. 3.4, and another analogous to (2.15) will be derived and
used in Sect. 10.5.

2.2 General Expressions for r; and r,

Consider an interface for which ¢ = ¢ for z < z;, and ¢ = ¢ for z > zp; the
thickness Az = z, — z; of the inhomogeneous region can be large. By a limiting
process, the results (to be derived below) for such finite-ranged interfaces can be
extended to continuously varying interfaces. For example: for the hyperbolic tan-
gent dielectric function

o) = % (61 + ) —%(81 — &) tanh[(z — 20)/2d], (2.21)

one can take z; = zo — Az/2, 7o = zo + Az/2, and by making Az/a large enough,
any desired accuracy can be achieved.
For the s wave, E = (0, E(z)e!®~“" 0) where E(z) satisfies
d’E

az7+qu:0. (2.22)
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This second-order linear differential equation has, for arbitrary form of &(z), two
linearly independent solutions. We call these F(z) and G(z) in the region
71 <z<z. Then

eldiz + rse—iqlz (Z<Z1)
E(z) = ¢ aF(z) + fG(z) (21<z2<2) (2.23)
1,e'2? (z> ).

When &(z) has no delta-function singularities (or worse), as we assume here, E and
dE/dz are continuous. Continuity of E and dE/dz at z; and z, gives us four linear
equations in the four unknowns ry, t;, o, f; namely

e 4 pe Y = oF| + PGy,
ig) ("% — ree %) = oF| + PG|
uFy + pG, = t,e' %,
aF) + PGy = igat,e' .

(2.24)

We have written F for F(z;), F} for dF /dz evaluated at z;, etc. Solving for ry we
find

_ i 192(F1G2 = GiF2) +iq\ (F1G)y — GiF;) +iqx (Fi G2 = GiF2) — (FiGy — GiFy).
qlqz(FlGQ — G1F2) +iq1 (FlG’Z — GlFé) - iqz(FiGz — Glle) -+ (FiG,Z - G’lFé)
(2.25)

s

The corresponding expression for the transmission amplitude is
_ 50222, (Fy Gy — GoF)
0192(F1Gy — G\F,) +iqi (F1G, — G1F}) — iqy (F|Gy — G\ F,) + (F{G, — G|F})’
(2.26)

Is

The bilinear form in the numerator of #, is the Wronskian, W, of the solutions F and
G of (2.22), and is a constant:

W = FG' — GF', W = FG" — GF", (2.27)

and F" = —¢*F, G" = —¢*G from (2.22); thus W' is zero and W is independent of z.

Some general properties of r; and ¢, follow directly from the forms of (2.25) and
(2.26), for arbitrary nonsingular profiles.

We first note that in the absence of absorption (¢ real), F' and G may be chosen to
be real. This is because they are solutions of a linear differential equation with real
coefficients: if F is a complex solution of (2.22), so is F'* and therefore so is F* + F,
which is real. Henceforth, ' and G are taken to be real functions, unless otherwise
indicated.
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Total internal reflection occurs when q% <0 (that is, when sin® 01> e /e, as
discussed in Sect. 1.3); when g, = i|g,|, the wave in medium 2 decays exponentially
as e 12 Thus no propagation of the wave into medium 2 takes place, and we
expect the reflection amplitude to lie on the unit circle. This is true, as may be
verified directly from (2.25), which takes the form e*%1% (—f +ig)/(f + ig), with f
and g real, when ¢, = i|qz|. From the last two equations of (2.24) we find that
B/o= —(|q2|F2 + F})/(|g2|G2 + G}), which is real if F and G are chosen to be real.
Thus = aF + G has Im i/ /Re yy = Im o/Re , and it follows from (2.24) that
this ratio is equal to Im r;/(1 + Re ry) = tan(d,/2) when r; = exp id,. The real and
imaginary parts of the wavefunction are proportional to each other in total reflection.
The wave motion normal to the interface is then represented by a standing wave.

The first equality in (2.27) may be regarded as a first order linear differential
equation for G:

, F W
G-5G=1. (2.28)
This has the solution
G@zww/am%) (2.29)

For non-zero W, this is a second solution, linearly independent of F, of the dif-
ferential equation (2.22). Let ] 12 denote f;l > dz/F?(z), and set W = 1. Then

2
F1Gy — GiF; :FlFZ/v
1

2
FIG/Q—GlFé:Fl/Fz—f—FlFé/,
! (2.30)

FiGz — GIIFZ = —FQ/Fl +F1F2

)

F| F
H%—qui—ﬁ+ﬂg

_\m ’d\l\)

As Az tends to zero, the first and last bilinear forms tend to zero, and the second and
third tend to +1 and —1, respectively. Thus the reflection and transmission
amplitudes for an arbitrary non-singular profile of extent Az approach the step
profile values (1.15) as Az — 0.
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For passive media we must have |r2| < 1. After some algebra, the physical

requirement that |r,|*> <1 reduces to W (z;)W(z2) >0, where W is the Wronskian
FG' — GF'. We have seen that W(z;) = W(z2), so this condition is satisfied
identically.

The conservation law g; (1 - |r|2) = ¢ t|* proved in the last section may be

verified directly from (2.25) to (2.26). As in the result |;1,<|2 < 1, the proof involves
the identity

(F\G> — G\F») (F\G, — G|F}) — (F\G, — G\F}) (F\G, — G|F,) = W2, (2.31)

We now turn to the reciprocity laws (2.14) and (2.18), which relate #,; to #;, and
721 to t1p and ryp (the suffix s will be dropped for the moment). The results (2.25)
and (2.26) may be rewritten as

o N
rip = e2lq]Zl B, (232)
2igi W

112261(4111—42&) D

(2.33)

where N is the numerator of (2.25), and D is the denominator common to (2.25) and
(2.26). The corresponding results for r,; and ;| follow from the continuity of E and
dE/dz at z; and z;, where E now has the forms outside the interval [z, z5] as given
by (2.12). We find

g N
r=e 2%5, (2.34)

by = ell@u—nz)
D

(2.35)

The reciprocity law (2.14) follows on comparison of (2.33) and (2.35); note that the
reality of F and G (and thus the lack of absorption within the interface) is not
needed. Both media 1 and 2 must be nonabsorbing, however, for the asymptotic
forms (2.2) and (2.12) to be valid.

The reciprocity law (2.18) follows from (2.32) to (2.34); in this case the reality
of F and G has been assumed in cancelling W with W* and in writing the numerator
of r; as N*, the general expression being

Not = q1q2(F1Gy — G1F) — iqq (FIGIZ — GlFé) — iqz(FiGz — GIZFZ)
Mre,” R 236)
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We now turn to the p wave reflection and transmision amplitudes. For the
standard geometry defined in Chap. 1, B = (0,e/®*~“"B(z), 0) where B(z) satisfies

d /1dB o> K?
— |- ———1|B=0 2.37
dz <8 dz>+<c2 8) (237)

We will derive general expressions for r, and #,, analogous to the results for r; and
t;. Let C(z) and D(z) be two linearly independent solutions of (2.37) within the
interval [z1,z5]. Then

iz _ rpe*ilhz <7
B(z) = VC(Z)I/—’Z_ 0D(z) z1<z<2 (2.38)
(f_f) 1 2>
The form of (2.37) shows that ¢ 'dB /dz must be continuous (discontinuity would
give rise to a delta-function term, which we assume to be absent from &(z)). From
the continuity of B and ¢~'dB/dz at z; and z» we obtain four equations in the four
unknowns 7,,1,,7 and 6. These are, for ¢ continuous at z; and zo,
eiZIIZl _ rpe*inZI — VCI +5D1,
iq (%! +rpe ) = 9C) + 0D,

12
yCy+ 0D, = (i—2> lpelqzzz, (2'39)
21

12
e .
7Cy + 0D, = (f) 1yigre' .

Solving for r, and t,, we find
_ erlllll qqu(ClDz — D1C2) +i([1 (C]D/Q — D]C&) =+ iQ2 (CﬁDz — D/ICZ) — (CIIDIZ — Dllclz)
¢192(C1D; — D1 C2) + iqi (C1 Dy — D1 C}) — gy (CyD, — D\ Co) + (C DSy — D, CY)
(2.40)

-1

<8£> 1/2[ _ eil@iz fquz)Qiql(CZD/z _ ch;)
3 " q1q2(C1Dy — D1 Cy) +iqi (C1D) — D1 Ch) — iqa(C\ D> — D\ D,) + (C\D}, — D', Ch)
(2.41)

All of the general properties derived in Sect. 2.1 may be verified for the p wave. The
proofs are as for the s wave, with a slight difference in the case of the reciprocity
relations (2.14) and (2.18), which we will make explicit. We write (2.40) and (2.41)
as
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o N
—rip = e N, (2.42)

(8_2> l/ztlz — eilmu—qz) 21q1W2_7 (2.43)
€1 D

where N, is the denominator of (2.40), D is the denominator common to (2.40) and
(2.41), and W, = C,D), — D,C), is the Wronskian at z, of the pair of solutions of
(2.37). (The Wronskian for (2.37) is not independent of z, as we shall see shortly.)
The corresponding expressions for a wave incident from medium 2 are

N
—ry = e 2R %7 (.48
1/2 .
o — oilqiz1—q222) 2igy Wy
0) "7 D 2.45
() o .

where

Nai = q1g2(C1D;y — D1 Cy) — iy (C1Dy — D Ch) — iqx (C1D> — D\ C)
- (€D = DI Gy) (2.46)

From (2.37), the Wronskian W = CD’' — DC’ has the derivative

/

W' =cD' —DC" =2w, (2.47)
&

and so W is proportional ¢, or W /¢ is constant. The relation gyt = g1 follows
from (2.43) and (2.45) on using

Wi W,

2.48
) & ( )

which we have just proved. The relation (2.18) or (2.20) follows from (2.42) to
(2.44) provided N»; = N7,. It thus holds in the absence of absorption within the
interface.

On using the identity

(C\D, — D\G,)(C\Dy — D|Cy) — (C1Dy — D1Ch) (C\D2 — D Cr) = Wi W
(2.49)
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we find that ’rp|2 <1 provided (W;/e;)(W2/e;) >0, which follows from (2.48).
Finally, the conservation law ¢ (1 — | rp|2) = C12|t,,}2 follows from (2.40) and

(2.41) on using (2.48) and (2.49).

Generalization of these results to profiles with discontinuities in the dielectric
function is straightforward: see Lekner (1990b) for the electrodynamic case, and
also Sect. 17.1 for acoustic waves.

The case of symmetric stratifications is interesting: suppose that the inhomo-
geneity extends from —z; to z;, and that z = 0 is a plane of symmetry. Then the two
linearly independent solutions [F(z), G(z) or C(z), D(z)] can be taken as even and
odd, for example F(—z) = F(z), G(—z) = —G(z). The reflection amplitudes for a
non-absorbing profile then have a real numerator, in contrast to the non-symmetric
case when both numerator and denominator are complex. Thus zero reflection is
much easier to accomplish for symmetric profiles (Lekner 1990a).

2.3 Reflection at Grazing Incidence, and the Existence
of a Principal Angle

We will show that r; — —1 and r, — + 1 at grazing incidence, exactly and without
ambiguity of phase. A direct consequence is that a principal angle (the ellipsometric
Brewster angle, defined by location of the zero of the real part of r,, /r,) always exists.
These results hold for interfaces with arbitrary dielectric function profiles, for
internal as well as external reflections, and in the presence of absorption within the
reflecting layer or its substrate. In Chap. 7 we shall see that the results also hold for
those anisotropic media for which the s and p wave characterization is adequate. For
the more general anisotropic or chiral cases, see Sects. 9.6 and 18.4.

At grazing incidence, 0; — n/2 and q; = /&((w/c) cos 0; — 0. The functions F
and G in the general expression (2.25) also depend on angle of incidence, through
¢*(2) = e(2)w?/? — K2, where K = \/&1(w/c)sin0; = \/&3(w/c) sin 0. Thus at
grazing incidence ¢*(z;) = &;w?/c* — K* — 0, but this does not imply singular
behaviour of F or G through (2.22). On letting g; — 01in (2.25), we find that ry — —1.

Note that there is usually an arbitrariness of the phase of a reflection amplitude,
associated with the arbitrariness of choice of the origin of coordinates. For example,
the reflection amplitude of a step profile located at z; is given by (1.15):

ryp = X1 ?111 4_-;]; ’ (2.50)

and carries the origin-dependent phase 2g;z;. But as g; — 0, this phase arbitrari-
ness disappears. We have just shown this to be true for all profiles: at grazing
incidence the reflection amplitude is known in magnitude and in phase. The inci-
dent and reflected waves are then both moving parallel to the interface, and there is
no motion perpendicular to the interface to give rise to a phase shift associated with
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the path difference 2z; between the incident and reflected waves. The reality of F
and G, or of g, has not been assumed. Thus there is total reflection at grazing
incidence, with reversal of the electric field, even in the presence of absorption and
irrespective of the sign of & — &;.

A similar result holds for the p wave. On letting q; — 0 in (2.40), we find
r, — ~+ 1. This result, together with (1.27) shows that again the electric field is
reversed on reflection at grazing incidence.

Thus the reflected electric fields of both the s and p waves are exactly out of
phase with the incident electric fields, whether the reflecting surface is metallic or
dielectric, sharp or diffuse, and for internal as well as external reflection. It follows
that Lloyd’s mirror experiment will produce diffraction fringes, with destructive
interference at the mirror’s edge, under these very general conditions. This is in
accord with experiment (Jenkins and White 1950, Sections 13.8 and 28.10).
Section 16.5 deals with neutron Lloyd’s mirror experiments.

The convention in use throughout this book, and established in Chap. 1, has
r, = ry at normal incidence, where the s and p waves are physically indistin-
guishable. Thus the ratio r,/r, = + 1 at normal incidence, and tends to —1 at
grazing incidence. At general incidence r,/rs is a complex number, with no
ambiguity of phase, since in taking the ratio one cancels out the arbitrary phase
factors associated with the choice of origin. The ratio r,/r; is measured by ellip-
sometry. In polarization modulation ellipsometry (Jasperson and Schnatterly 1969;
Beaglehole 1980), it is experimentally most convenient to measure Im(r, /r;) at the
angle where Re (rp / rs) = 0 (the principal angle). The vanishing of the real part of
r,/rs is one of several possible operational definitions of generalized Brewster

angles; other possibilities are locations of minima of }rp}z or of ’rp /¥s |2. For the step
profile, with r; given by (2.50) and

2igin Q1 — Q2

2.51
01+0y’ (2:51)

rpo = —¢€

all these definitions reduce to the Brewster angle (1.33), determined by Q; = Q»,
that is, purely in terms of the dielectric functions of media 1 and 2.

The question arises as to whether the principal angle or ellipsometric Brewster
angle, defined by the location of Re(rp / rs) = 0, always exists (Lekner 1985). The
answer is yes: we have seen that r, /r; moves in the complex plane from the point
+ 1 at normal incidence to the point —1 at grazing incidence, and it follows that it
must cross the line Re(rp / rs) = 0 at least once (and in general an odd number of
times). This is a consequence of the continuity of solutions of linear differential
equations as a function of the parameters of the equations. Here the parameter is the
angle of incidence, appearing in the differential equations through K2. See for
example Birkhoff and Rota (1969), Sections 4 and 10 of Chapter 6. Some particular
paths of r,, /r, in the complex plane as 0, varies are shown in Fig. 2.3; a further case,
illustrating triple principal angles, appears in Fig. 2.4. Both are based on the
homogeneous layer, discussed in the next section.
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Fig. 2.3 Four paths of r,/r, in the complex plane, for a homogeneous layer of thickness Az. The
real and imaginary axes are horizontal and vertical. The curves for four values (%) Az=1,2,3.4
(indicated on the paths) are shown. At normal incidence all paths coincide at + 1, at glancing
incidence they coincide at —1; they cut the vertical axis at the principal angle, where Re(r,/rs) =

0 (solid circles). The diamonds are located at 0y = arctan(e, / 81)1/ 2, the Brewster angle for a film

of vanishing thickness. In the case (@)Az =3 the Brewster and principal angles are nearly

coincident. The curves are drawn for &; = 1, = (4/3)” and &, = (3/2)*, approximating a layer of
water on glass

Fig. 2.4 Illustration of triple principal angles. The curve is the locus of r, /r; in the complex plane,
as a function of the angle of incidence. The thickness of the homogeneous layer is about four
wavelengths, (w/c)Az = 27. The values of ¢;, ¢ and &, are as in Fig. 2.3, representing a layer of
water on glass. The diamond is located at the zero-thickness Brewster angle,
0p = arctan(e, / 31)1/ %, the solid circles at the three principal angles (the first and third crossings
of Re(r,/r;) =0 are nearly coincident). The tangents of the three principal angles are
1.110,1.167,1.497. The last is nearly equal to tan 0 = 1.5
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2.4 Reflection by a Homogeneous Layer

After the step dielectric function profile, the simplest and most commonly occurring
is the two-step profile, representing a homogeneous layer between media 1 and 2
(Fig. 2.5).

In the interval z; <z <z, the s wave equation (2.22) has ¢* = ew?/c* — K?, with
¢ constant. The solutions are thus e*'* or cos gz, sin gz. On matching E and dE/dz
at z; and 7, = z; + Az to e + re 17 and 1,692 respectively, we find

siga 401 — @)c +i(@* — qiqa)s
q(q1 + q@2)c — i(* + q192)s’

ry=¢ (2.52)

Fig. 2.5 a The dielectric (a) €
function profile of a
homogeneous layer.
b Schematics of the multiple

reflection method for £
calculation of the reflection |
and transmission amplitudes I
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ts — ei(‘th*thz) 2QI.q > s (253)
q(q1 +q2)c — i(¢* + qi1q2)s

where ¢ = cos qAz and s = sin gAz. Equivalently, we may substitute F = cos gz,
G =singz in (2.25) and (2.26); for these solutions of (2.22) we have
W =gq, F\G, — G\F, =35, F\G, — G|F} = qc, F|G, — G\F, = —qc, F|G, — G|Fy = ¢*s.

It is instructive to consider another derivation of these results, using the multiple
reflection method shown schematically in Fig. 2.5b. An incident wave of unit
amplitude will produce a reflected wave of amplitude r;; (this being the reflection
amplitude at the step at z;) and a transmitted wave of amplitude #;; within the layer,
this being the transmission amplitude at the step from medium 1 to the layer. This
wave is in turn partly transmitted at z (with amplitude #,7#;,), and partly reflected
(amplitude #.r;2). The reflected wave is then partly transmitted at z;, giving a
reflected wave amplitude #;; 71511, and partly reflected. The continuation of this
process gives

hrtr

re = ript+totn(re +rormrn+ ) = et ————, (2.54)
L —rurn
and
2 it
t, = tlLtL2<1 +rporpn + (rarn)” + - ) = (2.55)
L —rurp

The various reflection and transmission amplitudes are for reflection at a single step,
and can be found from (1.15), and the reciprocity relations (2.14) and (2.18):

rp=ean "4 e T 2ied T8 (5 5g)
q1+q q+q q+q

1y = ellai—9) 2q1 . = eilai—a)z e eilld—a2)z 2_q (2.57)
q1+q q1+q q+q

If we write r = (q1 — q)/(q1 +¢) and ¥’ = (¢ — g2)/(q + g2). s and ¢, reduce to

i r_|_r/e2iqu
ry=¢ q121 W’ (258)
igA
= ei(fim—fhzz) (1 + r)(l + r/)eq ) , (259)

1+ 11 e2iqAz

and these are readily shown to be equivalent to (2.52) and (2.53).
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We see from the above equations that |r,|* and |¢,|* are periodic functions of the
thickness Az of the film, at given ¢p, &, ¢ and angle of incidence. The period in Az is
n/q, which increases from mc/w+/¢ at normal incidence to (nc/w) (s — e1) /? at
grazing incidence. The phase factor Z = ¢?4A? moves on the unit circle in the
complex plane as the thickness of the layer or the angle of incidence change, and r;
is a fractional or bilinear transform of Z, so it too moves on a circle in the complex
plane (in the absence of absorption).

Zero reflection is possible if 7 = r and ¥ = —1 and also if ¥ = —r and
47 — 1. The first of these pairs of conditions holds if ¢> = ¢;¢» and 2¢gAz is an
odd multiple of #. At normal incidence, these give the familiar characteristics of an
antireflection coating:

& =ee and Az=1/4,30/4,... (2.60)

The refractive index of the layer has to be the geometric mean of the refractive
indices of the two outer media, and the thickness has to be equal to an odd multiple
of a quarter wavelength (/ is the wavelength within the layer). At oblique incidence
the condition ¢> = g1¢» can be satisfied only if 2 <¢;&; it then holds at

0, = arcsin{(slsz - 82)/81 (61 +& — 26)}1/2-

The second pair of conditions holds if ¢, = ¢, and 2¢qAz is an even multiple of 7.
These are equivalent to

er=¢& and Az=1/2,2,..., (2.61)

where 4 =2mn/q is the wavelength corresponding to the motion normal to the
interface. At normal incidence this happens when &'/?(w/c)Az = n7 (n an integer).
At oblique incidence a homogeneous film between like media does not reflect the
s polarization at the angles of incidence

0, = arcgin{ (8 _ <ﬁ>2> /81}1/2

An example of reflectivity at normal incidence as a function of layer thickness is
shown in Fig. 2.6. R as a function of angle of incidence will be shown together
with R, in Fig. 2.7.

The reflectivity in Fig. 2.6 displays the periodicity in Az of 7/g, mentioned
above. For the case shown, the maximum of R, is the Fresnel (zero thickness) value

(-G o
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0.04+

0.03

oA
¢

Fig. 2.6 Normal incidence reflectivity of a homogeneous layer as a function of layer thickness. R,
stands for the common value of R, and R, at normal incidence. The refractive index values used
are \/e1 = 1,/e =4/3 and \/&; = 3/2, representing a layer of water on glass

(As usual, n = /¢ denotes the refractive index.) In fact the homogeneous layer
reflectivity is never greater than the Fresnel reflectivity Ry, at any angle of inci-
dence, provided ¢ lies between ¢; and &,. This intuitively plausible result follows
from the equivalence of

R < (u>2 (2.63)

q1+q

to

¢ +a% <7 (4 +9), (2.64)
which in turn is equivalent to

(e—e1)(e—&)<0 (2.65)

Note that the corresponding result for the p wave reflectivity is not true at all
angles: the single-step reflectivity is =zero at the Brewster angle

0, =0 = arctan(sz/sl)l/z, at which angle the homogeneous layer or two-step
reflectivity is not zero (in general). The s wave reflectivity may be written in the
form

2 r42rr cos2gAz + (r)?

Ry = |rs|"= ; 2
1+ 2r7 cos 2qAz + (rr')

(2.66)

(provided r and r’ are real; this requires the absence of absorption within the film,

and 0 < arcsin(e/e,)"/?, 0; < arcsin(ey/¢1)"/?). It thus has extrema when
sin2gAz = 0 (when cos 2qAz = +1). These extrema take the values
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_ 2 —_ 2\ 2
RS+ _ <Q1 612) =Ryo, R = (6]142 CI> ) (2.67)

g1+ 0192 +¢*

Note that R is zero when ¢* = q1q», the antireflection coating condition. At
normal incidence this reads n> = nn,: the refractive index of the layer equal to the
geometric mean of the bounding indices.

R; is less than R;" provided (2.64) holds, that is when ¢ lies between &; and é;.
When ¢ is outside this range, R;’ becomes the minimum value, and R the maximum.
They are equal when ¢ is equal to either ¢; or &;, in which case the layer is non-existent
as far as reflection is concerned.

The p wave reflection and transmission amplitudes are obtained by matching B
and dB/edz at z; and z,; we find

_ o2iqi1z1 Q(Ql - Q2)5+i(Q2 - Qle)S

= 2.68
T 001+ 02)c — i(Q2+ 0100)s (2.68)
1/2
& — oilqiz1—222) 2010 2.69
(a) = 0(01 + 02)c — i(Q2+ 0102)s (2.69)

where Q; = g;/¢&; and Q = g/¢, and ¢ = cos gAz, s = sin gAz as before. The mul-
tiple reflection method gives the alternative forms

i T + r/GZiqu
—r, = el T (2.70)
1/2 iqA
8_2 { = ei(l]121*4222) (1 + r)(l - }.’/)eq : (271)
o P 1 + rre2iaAz ’

where now r=(0; — 0)/(01+0),” =(Q—05)/(Q+Q>). At normal inci-

dence, r, =1, and 1, = t,.

2igAz — 1 and also when ¥ = —r and

Zero reflection occurs when ¥’ = r and e
422 — 1. The equality of 7 and ' holds if Q> = Q;Q,, which at normal incidence
is equivalent to &> = g, as for s wave. The other possibility, ¥ = —r and
e = 1, holds if Q; = Q, and gAz is an integer multiple of 7 (the same condition
can be read off from (2.68)). The equality of Q; and @, is satisfied at all angles if
& = &, or at the Brewster angle 6 = arctan(e;/ 81)1/ 2 for general values of the
dielectric constants ¢;, &;. Zero reflection by a homogeneous layer between like
media has the same condition (2.61) as for the s wave. Zero reflection by a
homogeneous film between unlike media at the Brewster angle for vanishing

thickness, 05 = arctan(e; /61)1/ 2 will occur for thicknesses such that gAz is an
integer times 7. This gives, on using (1.37)
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Fig. 2.7 Angular variation of 1
the s and p reflectivities, for

g1 =16 =03/2)7%c=

(4/3)* and (w/c)Az = 2.

These parameters

approximate a layer of water R
on glass, about one third of a
wavelength thick. The

corresponding r,/r, curve is

one of those displayed in

Fig. 2.3. The dashed curves

are for zero thickness of water 0+
(air|glass only)

0] integer X £18
—Az=—"-———- & = . 2.72
¢ (6—e)'? e+ & (2.72)

We see that zero reflection at 0y is possible for non-zero thickness only if & > ¢,
(which we can call the reduced dielectric constant of the bounding media, in
analogy to the two-body reduced mass m, = mymy/(m| +m,)). Since &, is always
smaller than either of &1, &, this is not a strong constraint. The variation of R, with
angle is compared with that of R; in Fig. 2.7.

R, = |rp|2 has extrema when 2gAz = £1; these take the same form as the
s wave values (2.67):

(0 -0\ (00 -7
R; B (Q1+Q2) =R, R, = (Q1Q2+Q2> ' (2.73)

The extrema are zero when Q; = Q5 [0; = arctan(eg/sl)l/zz 0p), and Q%> = Q10,,
respectively. The extrema are equal (to R,) when Q = Q; or Q,, that is when

1/2

0, = arctan(z/¢;)'/* or when 0, = arcsin(ee,/¢1 (¢ + ¢,))"/%. At these two angles,
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0.5 =

Fig. 2.8 Locus of r,/r, in the complex plane, for light incident from glass onto a layer of water
bounded by air (\/&1 = 3/2,/& = 4/3,& = 1). The thickness of the homogeneous water layer is
such that (w/c)Az =1/2. Note the rapid variation with angle near 0. = arcsin2/3 ~ 41.81°,
where 0.1 degree intervals are indicated (the points neighbouring 0. are at 41.71°, 41.91°). The
value of r,/r; at angle of incidence equal to the zero thickness Brewster angle

Op = arctan(az/sl)l/zz arctan 2/3 ~ 33.69°) is also shown

the reflectivity of the p wave is independent of the thickness of the layer. The
separation of variables constant K? at these angles takes the values

2 2
R= (@ ko (2) 274
c/ e +e c/ et+é&

appropriate to the Brewster angle values at the first or second interface,
respectively.
When incidence is from the medium with higher dielectric constant, fotal

internal reflection occurs for 0 > 0. = arcsin(e,/ 81)1/ 2 For 0; > 0, both rp and ry
lie on the unit circle, and so does r, /rs. The path of p /s starts at + 1 at normal
incidence, as always. At the critical angle it makes a right-angle turn in the complex
plane, moves out to an extremum on the unit circle, and then retraces its path back
to its limiting value of r, /r; at grazing incidence, always —1. An example is shown
in Fig. 2.8.

The reflection and transmission ellipsometry of a homogenous layer is discussed
in Sect. 9.8. The phases of the reflection amplitudes are considered in detail in
Appendix 20.1 of Chap. 20.

2.5 The Tanh, Exp and Rayleigh Profiles

It is possible to construct an infinite number of dielectric function profiles for which
the reflection amplitude at normal incidence is known analytically. For a given
function F, define ¢(w?/c?) as —F"/F in the interval z; < z < z5. A dielectric
function so defined has the normal incidence reflection amplitude given by (2.25)
and (2.30). Continuity of ¢ at z; or z is not demanded. For example, F = 7z gives


http://dx.doi.org/10.1007/978-3-319-23627-8_9
http://dx.doi.org/10.1007/978-3-319-23627-8_20

62 2 Exact Results

the profile &(w?/c?) =p(1 —p)/z%; F = e* gives ¢(w?/c?) = k?, the homoge-
neous layer dielectric function discussed in the last section.

The latter example can be applied to oblique incidence as well, by setting
—F"/F = ¢(w?/c*) — K*. How can one construct other solutions which are valid at
oblique incidence? This was answered by Heading (1965) in the electromagnetic
case. The same question has been examined in quantum mechanics, as the problem
of constructing solvable potentials for the Schrodinger equation, and in acoustics
(construction of solvable velocity profiles) (Bose 1964; Deavenport 1966;
Vasudevan et al. 1967). The method developed consists in transforming an equation
whose solutions are known into the wave equation, and then stating the solutions of
the wave equation in terms of the original equation. This systematic development
has been extended to the electromagnetic p wave by Westcott (1969) (see also
Heading 1970).

We are most interested in profiles which are solvable for both the s and p waves,
to which we will turn shortly. But first we give one example of a profile solvable for
the s wave, which is included in the systematic development, but predates it by
more than 30 years. This is the useful hyperbolic tangent profile (Eckart 1930;
Epstein 1930; Landau and Lifshitz 1965, Sect. 25),

1 1
e(z) = 5(81 +&) — 5(81 — &) tanhi

&1+ 3261/“ &1 &
= = —+ .
l+ed/e  1+eda  14e /e

(2.75)

Figure 2.9 shows this profile, together with the 10-90 thickness Az = (2In9)a,

which extends from the point z; where & = ¢ + % to the point z, where

Az

z

Fig. 2.9 The hyperbolic tangent dielectric function profile (2.75), also known as the Fermi profile.

Here & = 1 and & = (4/3)%, representing the air-water interface at optical frequencies. The
vertical lines and the thickness Az refer to the 10-90 thickness described in the text
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0.02+

Fig. 2.10 The reflectivity at normal incidence, R, = [sinh ma(k, — ky)/sinh ma(k; + k,)]?, for the
hyperbolic tangent profile, as a function of interface thickness. The dielectric function values are as
in Fig. 2.9. The dashed curve is the long-wave expression given in the text

e=¢ + 91%8. (A comparison of the various measures of surface thickness may be
found in Lekner and Henderson 1978.)

Figure 2.10 shows the corresponding reflectivity at normal incidence, to be
derived shortly. Also shown are the leading terms in the long-wave expansion:
R, = Ryo[l — (4n?/3)a*kiky + .. .]. This is an example of a general result to be

derived in Chap. 3. The equation (3.51) reduces, at normal incidence, to

2
_ [ n—ny 4nyny ) 2, .. . . .
R, = (—n1+nz) T any (C) ip + ..., where i, is a profile integral invariant, and

n; = /& as usual. The integral invariant i, = %2(91 — 82)2a2 for the tanh profile,
from Table 3.1.
The s wave equation for the hyperbolic tangent profile (2.75),

d&’E 2
=t (.s“c)—z - K2>E —0, (2.76)

can be transformed to the hypergeometric differential equation by the substitutions
(=~ E={T"w(0), (2.77)
where w({) tends to a constant as { — 0 (z — 00). The function w satisfies

2
C(l—C)Z—W‘f'(l—Zi)’z)(l—C)i—vg—i—(y%—yf)w:O, (2.78)
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where y; = gqia and y, = gpa. (The references quoted above give solutions for
normal incidence; the generalization to oblique incidence is given here.) The
hypergeometric function

of O ala+DBB+1)E
F(“vﬁa?vC)ZI‘FTF‘FW?—F (279)

satisfies the equation

d*F

dCZ—Fb}—(avLﬁle)C]dF—ocﬁF:O, (2.80)

1—
so that w({) is equal to F(i(yi —y2), —i(y1 +y2); 1 — 2iy»;{). To extract the
reflection amplitude we need the limiting form as z — —o0, i.e., as { — —oo. This
is obtained from the formula (Oberhettinger 1964, 15.3.7)

F(a, B;7;0) =—£E;))I;—(£ = Z; (—C)_“F<oc, Lo =yl +a— ﬂ;%) s
TOCE=B)  op TP | '
+ Tar— D F(ﬁ,1+ﬂ 1+ p ’c)’

valid for |arg(—{)|<n. As { — —o0, the leading terms in (2.81), on using the
expansion (2.79), give the limiting form

[(—2iy; el N [ (2iy, e~ } o
i +y))0(L =iy +32))  TEO1 —y2))T(A+i(n —2)) '
(2.82)

(7 or -2

The reflection amplitude is defined as the ratio of the coefficient of e 4! to that of
€12, On using the formula

I'(z)T'(1 —z) = =/ sinnz, (2.83)
we find
I I(2iy)T(=i(y1 +32)) T (=i(y1 — y2)) sinh z(y; — y2) (2.84)
’ [ (=2iy)T(i(y1 +y2))T(i(y1 — y2)) sinh 7(y1 +y2) '

Ratios of the form I'(—iy)/T(iy) can be evaluated by using the infinite product
representation of the gamma function (Whittaker and Watson (1927), Sect. 12.1)

s G 259
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Here y is Euler’s constant, y =~ 0.5772. We find

Fr((_lz) = —exp2i{yy — d(v)}, (2.86)

where
g (2~ arctan?). (2.87)

Thus
ro = exp2i{d(201) — bl +y2) — iy —yo)} STOL =) 5 gy

sinh 7t(y; + y7)

The combination of ¢ functions within the braces simplifies to
= 2 2 2
Zarctan{i : %} (2.89)
n n*+43y;+y;

In this form it is clear that the phase of r; is third order in the interface thickness
when the profile is centred on the origin, and also that |r;| = 1 when g, = i|g|
(total internal reflection).

We have given some detail for this model profile, since it is frequently used and
has the virtue that the reflection amplitude, complete with phase, is expressible in
terms of elementary functions. Another interesting feature is the relationship
between reflection at oblique incidence to that at normal incidence. The solution at
oblique incidence is obtained from that at normal incidence by replacing k; =
VeEi(w/c) by qi = kijcos0; in the formulae above. This is a general property of
dielectric function (or potential energy) profiles of the form

(o1 +22) = 5 o1 — 20 (0 @), (2:90)

NI'—‘

&(z) =

where the function f depends on parameters (such as the length a characterizing the
interface thickness) which are independent of ¢; and &. When this holds,
q* = e’ /c* — K* may be written as

$@) =5 @+ ) ~5 (6} - A (z.a) 291)

l\)l'—*

and information concerning the dielectric constants ¢ and &, the vacuum
wavenumber o/c, and the angle of incidence is contained within the normal
components of the wavevector, g; and ¢,. From (2.90), the function f is given by
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e te—2

f (2.92)

& — &

Any ¢ will give a function f, but only profiles which can be put in the form (2.90)
will have f independent of & and &. We shall shortly see examples of profiles
which do not have this scaling property, and for which the reflection amplitude at
oblique incidence cannot be obtained from the formula for normal incidence.

We now turn to profiles for which both s and p wave solutions may be obtained
analytically, and concentrate on two continuous dielectric function profiles of finite
range: an exponential variation with z of the refractive index or dielectric function,
and a linear variation with z of the reciprocal of the refractive index. The expo-
nential profile was considered by Galejs (1961), Burman and Gould (1963), and
Abelés (1964). The dielectric function is given by

&1 7<2]
e(z) = (8182)1/26Xp{%ln%} 101<z<n (2.93)
& Z>22

where 7 = (z1 + 22)/2 and Az = 75 — 1. A simpler but less symmetric form for ¢ is
¢1expl(z — z1)/a], where a = Az/In(ey/e;). Figure 2.12 shows an exponential
profile representing the air-water interface at optical frequencies.

A change from z to a dimensionless independent variable proportional to the
refractive index,

u= 2a$\/§ =2ka, a=Az/In(e/e)) (2.94)

transforms the s wave equation into Bessel’s equation

Fig. 2.11 The exponential €
function profile, (2.93), with

Vi =1, E =4/3

&9
&
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d’E  1dE (2Ka)
— 4+ — 1-— E=0. 2.95
du? + u du + < u? ) ( )

The general solution within [z1, 23] is oJs(u) + BY;(u), with s = 2Ka. The order
s of the Bessel functions depends on the angle of incidence (it is proportional to
sin0;); both s and u are proportional to the interface thickness. The s wave
reflection and transmission amplitudes may be obtained from (2.25) and (2.26),
with F(z) = Js(u) and G(z) = Y;(u).

The p wave equation reads, in the u variable,

2B 1dB 2Ka)?
d __d_+<1_( 2“) B=0, (2.96)
u

and is satisfied by ouJ, 4+ fuY,(u), where p* = (2Ka)* + 1. The reflection ampli-
tude may be found from (2.40), with C(z) = uJ,(u) and D(z) = uY,(u). It is useful
to work in terms of the cross products

A, =0, ()Y, (u2) = Y, (1), (u2),
Bv - JV(MI)Y\:(MZ) Y\,(Ml).]‘//(btz),
Co = J1 () Vylaz) — V(o) 297
D, = J(u1)Y,(uz) — Y} (ur)J, (u2),

where the primes denote differentiation with respect to u. The p wave reflection
amplitude then reads

] 4 ] B C A
—r, = g¥ha qquAp gk (Bp + t) gk (CI’ + I) — kiky (D + ﬁ + t + miz)
p B .
Dty i (B, + ) = ook (G ) k(0 2+ 52 + )
(2.98)
The s wave result is
ry = eziqlzl q1q2A5 + iq1k2BS + iQ2k1 Cs - k1k2Ds (299)

Q1q2As + iq1ka By — iqoki Cy + kika Dy

At normal incidence s = 0 and p = 1. On using the identities (compare Olver 1964,
9.1.32, 33)

A A
Ay = Dy, BH—M—l:—Co, CH-*IZ —By,
2
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B C A
D+ 24 L Bl g, (2.100)
ui 175) uiuy

we find that both the reflection amplitudes at normal incidence reduce to

_ 2k Ao+ By +iCo — Dy

Tn - - . (2.101)
Ao+ iBy — iCy + Dy
The corresponding reflectivity is
» AGFBy+C+Df — i
Ri=nl"=G—F 5 —m 35 (2.102)
Aj+ By +C5+Dg+ prm

In obtaining (2.102) we have used the identity (2.49), and the fact that the
Wronskian J, (1) Y] (u) — J,(u)Y,(u) is equal to 2/mu. The reflectivity at normal
incidence as a function of interfacial thickness is shown in Fig. 2.12, together with
the long-wave expression as discussed in relation to Fig. 2.10.

The second dielectric function profile for which a solution is known for-both the s
and p waves was first considered by Rayleigh (1880) (for normal incidence only), and
a solution for general incidence of both polarizations was given by Burman and
Gould (1963). For the Rayleigh profile the reciprocal of the refractive index varies
linearly with distance between the interfacial boundaries z; and z,; as usual we have
e =¢ for z<z, and ¢ = & for z > z,. This profile is shown in Fig. 2.13. (The
Rayleigh profile with discontinuities at its boundaries is considered in Lekner 1990c.)

Fig. 2.12 Normal incidence reflectivity for the exponential profile, as a function of the interface
thickness. The values of ¢, and &, are as in Fig. 2.11. The first minimum is at (w/c)Az ~ 2.71. For
the same ¢ and & the similar Rayleigh profile (Figs. 2.13 and 2.14) has its first zero at
(w/c)Az = 2.73. The dashed curve gives the long-wave expression to second order in the
interface thickness
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&

4

1 2

Fig. 2.13 Dielectric function &(z) for the Rayleigh profile. The values & = 1 and & = (4/3)*
approximate air on the left and water on the right (at optical frequencies)

Since ¢ '/? varies linearly with z, it will be useful to work in terms of this

function, which we will call #:

An

Ve (2.103)

e2z) =n(z) =n+(z—-2)

I

— 1
where An =1, —n, =&, —¢,%, Az=2—z1, 1= (,+n,)/2,andZ = (z1 + 22) /2.
At normal incidence the s wave equation becomes, on changing the independent
variable from z to 7,

2
&E (l _ V2> E_o. (2.104)

where

1 w Az 2
2 L (WAL
Vo= (c ’7) . (2.105)

The equation (2.104) has the power-law solutions E, = n%iv, and the reflection
amplitude can be found from (2.25):

9 V_l
2k ; (62) — (2.106)
[(8) 1) -2k | ()

2
The reflectivity at normal incidence takes different forms according as (% ﬁ—;) is

rp=¢€

2
smaller or greater than . When (9 %) <1, v is real and
¢ An
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O o O [ o 6

(2.107)
2
For (%ﬁ—;) > 1,v=ilv|, and
in? (v]In2)
sin v|In
y = Y A (2.108)
Afv[? + sin? (%|v| 1n%—1)
&

At v = 0 these two forms take the common value

(ln;—l)
R(v=0)=———~+—. (2.109)

- 2
16 + (mg)

We note from (2.108) that the reflectivity is zero whenever |v|[In (&/&)| =
2nm (n=1,2,...), that is when

25 1/2

A 1 (2
Y S LS . (2.110)

? Al/[ o 4 In (Q)
&

The reflectivity at normal incidence as a function of interface thickness is shown in
Fig. 2.14.

The exponential profile, which also has discontinuities in slope at its boundaries
and has a similar shape, has minima at points approximated by (2.110) (see the
caption to Fig. 2.12). The reflectivities for both profiles show oscillatory decay with
increasing thickness. The homogeneous layer discussed in the last section, which
has discontinuities in value at the boundaries, has its reflectivity strictly periodic in
the thickness. In contrast, the hyperbolic tangent profile, which is continuous in
value and in all its derivatives, shows a monotonic decrease in reflectivity with
interface thickness.

For oblique incidence, the s wave equation (2.22) for the Rayleigh profile

becomes, in the # variable,
1 2 2
d’E Ll (Kg)
" An

dn?

E=0, (2.111)
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Fig. 2.14 Logarithmic plot of normal incidence reflectivity for the Rayleigh profile, as a function
of the interface thickness, together with the long-wave expression (dashed curve). The values

e =1,6=(4/ 3)2 have been used, representing an air-water interface, in common with
Fig. (2.41). The scale is logarithmic to base 10; for example, —2 corresponds to a reflectivity of
1072, The logarithmic scale emphasizes the zeros in reflectivity, given by (2.110)

and has solutions proportional to n'/2 times a Bessel function of order v and

imaginary argument +iK(Az/An)n. Thus ry may be obtained from the general
formula given in Sect. 2.2.
The p wave is most conveniently discussed in terms of the variable

b = (& /¢)"/*B, which satisfies (1.22):

d2871/2

d*b |
- [qz—az iz }b:O. (2.112)

dz2

Since ¢ !/? is linear for z for the Rayleigh profile, the E and b equations are the

same, except at the end-points z; and z,. There, because of the discontinuity in the
slope of £~1/2, the equation for b contains additional delta-function terms:

gl/2 &2 A {

d2 Az

%5(1—21)—17—125(2—&)}- (2.113)

As a consequence, db/dz is discontinuous at z; and z;. Within the interface, b has
the same Bessel function solutions as the s wave. Expressions for 7, and 7, graphs
of ry,r, and of 1, /s, and a comparison with theory for the reflection of long waves
(to be discussed in the next chapter), are given in Lekner (1982). A generalization
of the theory of Sect. 2.2 to discontinuous profiles is given in Lekner (1990c).
We have concentrated on general results, and on the reflection by four special
profiles, three of which are solvable for both the s and p waves. Discussion of other
special profiles (which are solvable for the s wave only) may be found in Sects. 4.3
and 5.2, in Heading (1965), and in the texts listed in the references for this section.


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_4
http://dx.doi.org/10.1007/978-3-319-23627-8_5
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Other exact and general results appear throughout this book. As regards reflection
by special profiles, we mention in particular the sech? potential (Sect. 4.3), and the
linear profile (Sect. 5.2).
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Chapter 3
Reflection of Long Waves

We have seen in Sect. 2.2 that the reflection amplitudes of an arbitrary profile tend
to the Fresnel values as the thickness Az of the profile tends to zero. An equivalent
limit to consider is that of reflection by a profile of fixed extent, as the wavelength
increases. We might expect the reflection amplitudes to be well represented, in the
long wave limit, by the first few terms of a series in the ratio of the interface
thickness to the wavelength. This expectation turns out to be essentially correct,
with the coefficient of a given power of (w/c)Az depending on the angle of inci-
dence, as well as on the profile characteristics.

In the long wave limit, a given dielectric function profile reflects as a step profile,
plus a small correction which depends on the deviation of the profile from a single
step. The long wave theory treats the deviation as a perturbation; the perturbation
theory of reflection is developed in Sect. 3.1 (for any type of perturbation), and then
used to obtain the long wave expansion in the following sections.

3.1 Integral Equation and Perturbation Theory
for the s Wave

The results of this section hold for the electromagnetic s wave, and for Schrodinger
particle waves. We wish to express i, the solution of

d*y

@ +@Y =0, €94re Nt — ) —1e? (3.1)

in terms of a known function ), the solution of

d? . . ‘
R L (3.2)
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Note that ¢ and gy share the same asymptotic values, g; and ¢,: the reference
dielectric function &(z), or potential Vy(z), must be chosen to tend to the same
limits ¢; and &, as &(z) (or the same V; and V; as V(z)). Write ¢* = g3 + Ag?, and
W =y +W, +Yy+ -+, a series in powers of Ag>. From (3.1) and (3.2), the
correction to v, of nth order in Ag® satisfies the equation

&y,
d ) +q(2)l//n = _qulpnfl (33)
b4
for n=1,2,... To solve (3.3) we need to construct a Green’s function G(z,7)
which satisfies
o2 THR)G=0(-2) (34)

and has the appropriate asymptotic behaviour to make each s, take the limiting
forms given by (3.1), with r = r, and t = ,. When such a Green’s function has

been constructed, the corrections V,,, ... are given by
0@ =~ [ APEIGE () (33)

so that one can solve for ¥/, in terms of the known v, for ¥/, in terms of ¥/, and so
on. An equivalent formulation is to write (3.1) as an integral equation, using (3.4):

V(@) = o(2) - / &/ AP() Gz, () (3.6)

The sequence (3.5) is then obtained by iteration of (3.6). (The reader not familiar
with Green’s functions may verify that (3.6) solves (3.1) by operating on both sides

with 5)—; +¢q3(z), and using (3.4).)
The above is for any reference gy and . For long waves, the natural choice for
qo and Y, are the functions corresponding to the step dielectric function profile

& (Z < 0)
e(z) = {82 (z > 0) )

1 1
=S +e) — 5 (o — a) sen (2)
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for which g takes the values ¢q; and ¢, for z< 0, and

eiQIZ +}"()€7iqlz (Z <0

lpO(Z) = { toeiqzz (Z > O; : (38)

From the continuity of ¥, and dy,/dz at z =0,

_a - 2q,

, — =1+r. 3.9
q1+q 0 q1+q2 0 (3.9)

ro

The appropriate Green’s function G(z, 7)) must satisfy (3.4), and be such that v, as
given by (3.6), have the asymptotic forms of (3.1). We see from (3.4) that G is built up
from the functions e**%?, and that G/ 9z must have a unit discontinuity along the line
z = 7. Foreach of 7 > 0 and /<0, G has three different analytic forms, the dividing
lines being at z = 0, and z = 7. The continuity of G at both boundaries, and the
respective continuity and discontinuity of 9G/dz at z = 0 and 7’ impose conditions on
the coefficients. When the coefficients are evaluated, we find the six analytic forms

! i

z z'=2z
iqyz! . . -
2 (emi027 —ppei®ez) 7
2iq; -
-
. 12 -
el(lhz —q12) -
e
v — ~
i(q1+ q2) -
-
iqpz . .
_ < etz (e—Lqur _ roelqzzl)
"N _ - 2iqy
G(z,z") = =TI : - z
— (e'N? 4 ety
2iqy -
-
7 .
P el(azz-aq121)
- ——————————
- .
. i(q: +q2)
-
- ,
emiqyzr »
o ——(e'N% 4 ryeTiN%)
- 2iqq
(3.10)

From (3.10) and (3.6) we find the analytic form of {y as z — —oo:

0

. . . 1 . / . !
l//(Z) N equz + roe—lqlz _ e—lqlz E / dZ/Aq2<Z/) (equz + roe—tqlz ) lﬁ(z/)
1

—00

/ dZ AP (2 )e ()

0

+o———
i(q1 +q2)

(3.11)
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On comparing (3.11) with the asymptotic form in (3.1), we identify the reflection
amplitude as 7y minus the expression within the braces. The nth order term r, is
therefore

0
i - .
o = 0 / d7 Ag*(7) (e“’lZ + roe‘““z)tp,,_l ()
o N (3.12)
d lqzz
6]1 +612/ Vna@):
0
In particular, the first order term r; is given by
0
1 IA 20N aiqiZ —igi7 2
rl—g dZAq” () (e + roe
1
e N (3.13)
q1+ 612 /

When ¢; = & (and ¢, g, take the common value ¢gg) r; takes the simple form

; [e'e}
ro= dZ Ag? (7 )e 7, 3.14
(=5 [ A (.14)

from which the reflection formulae used in Sect. 1.5 may be obtained.
The general expression for r implicit in (3.11) may be put into a simpler form by
using (3.8) and (3.9):

r— —%/ 4 AP (W (o (D). (3.15)

This formula can be obtained directly from the comparison identity (2.6), but
without the perturbation theory derived above is capable of giving only 7.
We have developed the perturbation series in terms of Ag®. Since ¢*(z) =

e(z)w?/? — K?

2
»
A :C—z(s—so), (3.16)
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and the perturbation is independent of the angle of incidence. This simple result
holds only for the s and particle waves; the more complex p wave perturbation
theory has terms in K2, as we shall see in Sect. 3.4.

3.2 The s Wave to Second Order in the Interface
Thickness

We see from (3.16) that the perturbation Ag? is small, for arbitrary Ae, in the long
wavelength limit. In this section we will obtain corrections to ry in terms of inte-
grals over the difference ¢ — ¢y between the actual and the step profile. It will be
convenient to define the integrals A,, of dimension (length)”, as

Iy = / dz[e(z) — eo(2)]2" . (3.17)

Consider the first order (in Ag?) expression for 7y, as given by (3.13). The integrals
in (3.13) contain a factor Ag*> = (w?/c?)(e — &), assumed to be of short range, by
which we mean that the 4, converge for all n. (This includes profiles such as the
hyperbolic tangent defined in (2.75), for which ¢ — ¢ tends to zero exponentially in
z as 7 — +00.) Let the range of ¢ — gy be characterized by a length Az, an interface
thickness. In the long wave limit, (®/c)Az is a small dimensionless parameter, as
are q;Az and g,Az. We expand the factors e'Z 4 rye ~"9'% and /%% in (3.12) and (3.
13) in powers of gz, to obtain an expansion in the above small parameters. For r
we have, to second order in the interface thickness,

g/

r {;u1+2i6]2/12+ } (3.18)
(q1 +612)2

The corresponding expression for r; is

-2 4/ 4
rzzﬂﬂvﬁ (3.19)
(g1 +q2)

obtained from (3.12) and the result

 2igiw*/c?

(0
i) (thrCIz)2

dit e (3.20)


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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The leading term in r3 is of third order in Az:

 2ig1°/c® 5

ry = B, (3.21)
(@1 +a2)*

and can thus be omitted from the second order expression, which reads

s 2.2\ 92
{il+2iq2/12+ ’(“’/CV“I}+ (3.22)
q1+q2

2iq ? /c?
(q1+42)°

We now need a notation to distinguish between terms which are nth order in qu,
and those which are nth order in Az. We write the latter as r,, (for s wave reflection
amplitude component which is nth order in Az); ry and ry are equal, but from n = 1
onwards r, and ry, are different. In the Az expansion we have

2i 2/.2
= 2l (3.23)
(q1+q2)
—Diarw?/c? 2 /.2
m:M{zqzxﬁ /e /12}. (3.24)
2 1
(g1 +q2) q1tq2

The s wave reflection amplitude is thus determined to second order in the interface
thickness in terms of the two integrals A; and 4, over the difference between the
given profile and the step profile. These integrals depend on the choice of relative
positioning of &(z) and &y(z), as shown in Fig. 3.1.

The result obtained by theory for any observable, such as |rs|2, must be inde-
pendent of an arbitrary choice made in calculating that observable. It follows that

= [0 + ra +ra + - P = |rol” + 2 Re(riyra)

(3.25)
+{Iral? + 2 Re(rgra)  + -+
must be invariant with respect to the choice of relative positioning of &(z) and &y(z).
Consider for example the case where ¢ is real, and also g, is real (thus excluding
total internal reflection). Then ry and ry, are both real, while ry is purely imagi-

nary. The lowest order correction to ’"30 is then the second order term within the
braces in (3.25). From (3.23) and (3.24), this is equal to

4q1qp0*/c*

{‘rsl‘z + 2rsOrx2} = 1
(1 +q2)

[2(e1 — &2)22 — 47 (3.26)
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Fig. 3.1 Dependence of the integral 4, = [~ dz(e — &) on relative positioning of &(z) and the
step function &y(z). The sign of the contributions is indicated; the magnitude of the positive and
negative contributions is equal to the area enclosed between the actual dielectric function profile
and the reference step profile. In the upper diagram the areas are equal, and 4; = 0; such
positioning is always possible when &(z) is real and & # &. The profile drawn is the double
exponential, defined in Sect. 3.6, equation (3.69)

We thus expect the combination 2(g; — &), — /ﬁ to be invariant with respect to
the relative positioning of ¢ and ¢j. This turns out to be true, as we will show in the
next section.

3.3 Integral Invariants

Let &(z) be a function with asymptotic values &(—o0) = ¢ and &(+ 00) = &, and
€0(z) the step function taking values &; for z < 0 and &, for z > 0. Consider the
dependence of the integral

a(s) = [ otz 5) = el (3:27)

on the shift parameter s. (In changing s we change the relative positioning of the
two profiles.) We have
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8

XHMQZ‘/CMdd—%&%Hdd—%@+M&+0"

0
= [ @) @9 + o1 - ) /dzz+s

1

—hrer0)+ ]

l)in(O)S—‘r cee —l—)h[(O)Sn + (81 — 82)

The shift-dependence of the first three integrals is thus

/11 (S‘) = /11 (O) + (81 - 82)5‘,
Ja(s) = 22(0) + 41 (0)s + (&1 — 82)%,

%)

sn+l

n+1

J3(s) = 43(0) +242(0)s + 22(0)s> + (¢1 — &) %
Note that

2(e1 — &2)7a(s) — 23(s) = 2(e1 — &2)42(0) — 27(0),
so that

i2 = 2(81 — 82)/12 — )L%

is invariant with respect to the relative positioning of ¢ and gj. Similarly

i3 = 3(81 — 82)2)»/3 — 6(81 — 82)/12}“1 + 2/1?

Yn+1

_ /xdz[S(Z)—?o( )] [z + <”> Sl _l,_sn:| e — )]

n+1

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

is an integral invariant. There is an infinite hierarchy of such invariants (assuming
the existence of 4, for all n). The general formula has been given by Lekner (1984).

The invariance of i, was suggested on physical grounds, and follows in a
straightforward way from the analysis given above. Nevertheless, the form (3.31) is
not obviously invariant, and it is useful to express i, in a form which is manifestly

invariant:
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o0 o0

h=— / dz / dzfe(z1) — eo(z1 — 22)][e(z2) — €0(z2 — 21)]- (3.33)

—00 —00

This form immediately suggests how other integral invariants may be generated:
multiplication of the integrand in (3.33) by f(z; —z2) will produce integral
invariants, for any f (subject only to the convergence of the integral). An example is
f = e, which produces another set of invariants via its expansion in powers of k
(Lekner 1984, Appendix A).

Any single-valued function of a step function is also a step function. The
invariants developed above thus have endless generalizations. For the p wave, we
will need invariants arising out of integrals over the difference between the recip-
rocals of ¢ and &. We define, in parallel with (3.27),

Ani1(s) = 12 /oo dz LOEZ) — e i S)] 7"

Their transformation properties are the same as those of the A’s: for example

Al (S) = A] (0) + (81 — &‘z)S7
(3.35)

| 4%

Az(s) =\ (0) + A (O)S + (81 — 82)
Thus the analogue of i,

J2 = 2(81 — 82)/\2 — A% (336)

is an integral invariant, etc. We note also that, from (3.29) and (3.35), the difference
I} = Ay — Ay is an invariant. This invariance is made explicit by means of the
identity

I]Allllﬁl{iz/dz(ll)/ dZ(S*SQ):/dZm.
&0 & o &

(3.37)
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The next mixed invariant is

o0

L =¢e& / dz; / dza[e(z1) — eo(z1 — 22)] s(i ) G lfz ) (338)
J s 2 2 ! 3.38

= (81 — 5‘2)(124—/\2) — ;LlAl =

(i +Jo +17).

N =

Finally, we shall need another invariant, related to I, which enters in the expres-

. 2 ..
sions for |r,,’ and r, /rs to second order. This is

jr = / dz, / dzsto(es — 20)[e(zt) — eo(z1 — )] |—— — ———| . (3.39)

¢(z2) ez —21)

—00 —00

34 ‘r,,!z and r, /r, to Second Order

The last section developed the tools which enable us to complete the characteri-
zation of the reflection of electromagnetic waves to second order in the interface

thickness. For the p wave, B = (0,e/®~“)B(z),0), with

d /1dB 2 g2 4 - 12
d (__> n <‘°_ _ _> B=0, e ini B (8_2> 1,5, (3.40)

dz \e dz 2 e &l
A perturbation theory for the p wave will be sketched below. For the first order
results, however, the full perturbation theory with its Green’s function is not nee-

ded. We can obtain the first order results directly from a comparison identity based
on (3.40) and its companion for By:

d (1dBy o’ K? iq1z —ig\z & 2 iq2z

(3.41)

This is (Lekner 1982a, equation (46)),

=t 5 / { ( - ) K2BBo + (& — 80)CC0} (3.42)
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where Q1 = q1/¢&1,C = dB/edz and Cy = saldBo/dz. (Note that Cy is continuous
at the discontinuity of &), while dBy/dz is not.) To first order in the interface
thickness, it is suffices to replace BBy by B3(0) and CCy by C3(0), where, from (1.
28) and (1.31),

20, 2i010,
B = = . 4
O=57 0 “O=570 (3.43)
We obtain
—2i0, [(K?A, 5 }
= — Q51 ¢. 3.44
! (01 + 0,)? { €162 QA (344)

This result and (3.23) are together sufficient to determine r,/r; to first order (in

2 .
, which have no first order terms when ¢

contrast to the expressions for |r,|* and Iy
and ¢, are real). We have

rlzrpo+rp1+rp2+
s rso+ 751+ 7o+ -

2
p0o p1 Ts1 Ip2  Ipllsi TS Fs2
—L{1+<L__>+<L_P_+%__ 4oy, (3_45)
50 po 750 p0 poT's0 o 50

The first order term is given by (for ¢; # &)

2i01K* 1
o (r_P) =10 <r1’_1_> - 71Q—12_1 (3.46)
s/ p0 750 (014 Q)" &182

(on using 70 = (g1 — q2)/(q1 +q2), —1p0 = (Q1 — Q2)/(Q1 + 02)). The special
case of reflection by a thin film between like media (when & = &) will be dis-
cussed in the next section.

For the second order term in r, /rs and |r,, |2 we need r,,. This requires a pertur-
bation theory for (3.40) based on (3.41), which is more complex than the perturbation
theory for the s wave. We will give an outline here; further details may be found in
Lekner (1982a, b, 1984). One constructs a Green’s function G(z,7’) satisfying

9 (190G o® K? ;
o) (27 Jo=oe- 347
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and incorporating the required boundary conditions. This is (compare (3.10))

! I

z z'=2z
: 7
eld22’ ( ; . P
—(e7'% + 1, e“hz)
- po e
2iQ, P
7
7
ei(QZZ'—‘hZ) P 7
P e—— 7
i(Q; + Q) e
7
P glazz

—iqyz! iqpz/
/ 2iQ, (e rpO € )
/

G(z,2") = — z
et iqizr _ —iqqz! -
2iQ, (e'17" = rype™ )/ -
7
e
_ - ei(‘ZzZ—‘hZ’)
- —_—
7 Q1+ Q2)
e
P
- _e—quz/ iq1z _ —iq12
_ 210, (e rpoe )
(3.48)

B(z) satisfies an integro-differential equation

7 , 1 1 , , / / n 109G
B(z) = Bo(z) — / d7 { (m - 8(Z,)>KZB(Z )G(z,2) + (e(2) — &0(2))C(2) @) 87/}’

—00

(3.49)

from which (3.42) may be obtained by taking the limit z — —oo. Considerable

work is required to extract the second order term r,,;. The result for |rp|2 to second
order in the interface thickness is, for real ¢ and ¢»,

2 4 ot »? . 1 1\. K* .
P S A TR T T
e16(01+02)" Lc c LI £1&2

(3.50)

This is to be compared with the simpler expression for the s wave:

4q,qr0* /¢t
e 2, = At (3.51)

(q1 +612)4

The p wave is more complicated, because the orientation of the electric field
relative to the interface changes with the angle of incidence, while for the s
polarization the electric field is always parallel to the interface. Measurement of
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Ry = |r,|* for an interface in the long wave limit can give the value of one invariant,
ip, irrespective of the angle of incidence. Measurement of R,,, at a minimum of three
angles, can give the values of i, j, and 112.

As we saw in (3.46), the invariant /; (complete with sign) can be found from the
ellipsometric determination of 7, /rs to first order in the interface thickness. The
expression for 7,/r to second order is, for & # &,

1

p\ 2[Q1K2/8162 2Q1(K2/8182)2 5 2Q1Q2K2 J2 — (ﬁ + E>i2
rso| — _rpof 2]1+ 3 ]l+ 2 +
(014 02) (01 +02) (01 +02) & — &

s

(3.52)

Note that the first and second order terms vanish at normal incidence (K = 0), as
they must since there r, /rs = 1, identically.

We saw in Sect. 1.2 that an interface is expected to be nearly non-reflecting to
the p wave at the angle of incidence defined by Q; = Q,, namely at the Brewster

angle 0p = arctan(e, /81)1/ 2. In Sect. 2.3 we proved the existence of at least one
ellipsometric Brewster angle, the principal angle 0p, defined as the angle at which
the real part of r,/r, is zero. We can obtain an expression for the difference
A0 = 0p — 0p in the long wave limit. Assume absorption to be absent (real ¢), in
which case I}, i; and j, are real; and take 0 <0,, so g, and Q, are real. Then from
(3.52) we find that, to second order in the interface thickness, Re(r,/ry) is zero
when the expression

M{K—zl +W{jz_ (lei)izH

Tpo + 1
0+ 0) ae & — & & &

is zero. Thus A0 is second order in the interface thickness. On using (1.36) and (1.
37) we find

AH:ML@—GJF1>i2—%<1—1>112}+--- (3.53)

a@-47 U \a e

The reader may have noted divergences in the above expressions when ¢, — é&.
The reflection from interfaces between like media require special treatment, as
discussed in the next section, and also in the context of variational theory in Chap. 4
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3.5 Reflection by a Thin Film Between Like Media

When media 1 and 2 are the same (as for a soap film in air), the formulae given

above for |rx\2 and ’r,,’z take a simpler form, and the formula for r,/r, takes a
different form, since both ry and r, are now zero. Let & now denote the common
value of ¢; and &;, go the common value of ¢; and g5, et cetera. The integrals 4; and
A, are now separately invariant (translating the constant functions & or &, ' makes
no difference), and the second order invariants i, and j, take the values

20 A
ih=—12 jo=-— ;0 L (3.54)

The reflectivities to second order in the interface thickness are now

(3.56)

The ellipsometric ratio r,, /rs cannot be found from (3.45), since now ry and Tpo are
zero. We have

}’_p: pr+trpm+ - :rp_l + 'pals1 — Fs2lp1

2
s rsp+ro+ - s1 s

+ - (3.57)
the leading term now being zero order in the interface thickness:

T, A

2L — cos? 0y — =L sin® 6. (3.58)

s1 Al
This ratio correctly tends to unity as 6, the angle of incidence and refraction, tends
to zero. When A; and A have the same sign, as would normally be the case, there is
an angle at which the film is non-reflecting to the p wave (to lowest order in the film
thickness). This angle is an analogue of the Brewster angle arctan(z,/¢,)"/* for
unlike media. From (3.58), the thin film p wave zero reflection occurs at

)\ 1/2 . 1/2
A 1 dz(e — ) /%0
0y = arctan| — = arctanq —————~"— . 3.59
h = arctan <A1) arc an{ ENECESI (3.59)
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The above results may be compared to the exact formulae for a homogeneous
layer of dielectric constant ¢, with waves incident from (and transmitted into) a
medium with dielectric constant &. From (2.52) to (2.68),

)
ry = CZiqUZI l(q . 30)1 2 ) (360)
2qq0 — i(q* + 43)T
and
(22
—r, = e¥a Q" ~ Q) (3.61)

200 — i(Q*+ Q5)7’

where ¢* = &(w?/c?) — K%, Q = q/¢, and 1 = tan gAz. For the homogeneous film
of thickness Az, 41 = (¢ — &)Az and A = (&/¢) A1, and (3.55) and (3.56) agree
with the reflectivities obtained from (3.60) and (3.61) to second order in Az. The
ratio r,/r; may be written as

2 _if(4a 90
= cK 1_|_l M (3.62)
s o) \&e & 1,%(2+&>T ' '

Qo (0]

The square bracket in (3.62) is equal to cos® 0y — (g/¢) sin? 0y, and is zero at

0y = arctan(e/g) /2 which is the same as the Brewster angle for a sharp boundary
between ¢y and an infinite medium e. It follows that a homogeneous film between
like media is always non-reflecting to the p wave at the same angle, irrespective of
its thickness. An inhomogeneous film, on the other hand, is non-reflecting at 6,
given by (3.59) only to the lowest order in the film thickness.

There is a difficulty associated with the reflectivity formulae (3.55) and (3.56)
which is shared by the first order perturbation expressions

o0
. 2712

e =L [ aefte) — e, (3.63)
2q0

—00

17 11 ,
pert __ - - KZ _ _ 2 21(]01- 64
= / dz{ (80 8) (e so)QO}e (3.64)

((3.63) is the same as (3.14), and (3.64) may be obtained from (3.42), as will be
discussed in Chap. 4). The difficulty occurs at grazing incidence, when 0y — 7/2
and qo = /eo(w/c)cos Oy — 0, and all these expressions are divergent. This
divergence is unphysical (7, and r,, must stay within the unit circle), and persists in
higher order perturbation theory. One of the virtues of the variational expressions
for 7y and 7, to be derived in Chap. 4 is that these are no longer divergent at grazing
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incidence, and in fact take the universal limiting values —1 and + 1 as 6 tends to
7/2 (as shown in Sect. 2.3).

The reader may be puzzled as to how an expression like (3.55), which we have
stated to be exact to second order in the interface thickness, could be divergent (and
wrong) at grazing incidence. This paradox is resolved by considering the order of
the two limiting processes (the long wave limit, and the limit of 0y — 7©/2). An
illustration of the application of these two limits is provided by the profile

e(z) = &9 + Ae sech®(z/a), (3.63)

which will be discussed in detail in Sect. 4.3. The s wave reflectivity depends on
two dimensionless parameters,

o= Ae(w/c)d®, B =qoa. (3.66)
For oo > — 1/4 it is given by
cos? [%(1 +4o<)1/2}

R, = . (3.67)
cos? [% (1 —|—4oc)1/2} + sinh?(nf)

When « and B are both small compared to 1/, this takes the form o/ (rx2 + ,82).
For fixed small o, and f — O (fixed interface thickness and angle of incidence
tending to n/2), Ry — o*>/a* = 1. For a/f — 0, which is the long wave limit
(w/c)o — 0 with 6 fixed, Ry — o/ = [Ae(w?/c?)a/qo]*, and is correctly given
by (3.55), since 4; = 2aAe for this profile.

3.6 Six Profiles and Their Integral Invariants

We have seen that, to second order in the interface thickness, the s wave reflectivity
is characterized by one integral invariant i, while the p wave reflectivity and r, /r;,
are characterized by the invariants I;, i, and j,. Knowledge of these three invariants
is thus sufficient to determine the reflection properties to this order. Conversely,
reflection and ellipsometric studies with wavelengths that are large compared to the
profile thickness can determine no more than these three integrals over the profile.

We shall list six dielectric function profiles and their invariants. Four of these
have been studied already; the others (the linear and double exponential profiles) are
useful simple models in the statistical mechanics and electrodynamics of interfaces.

In the following definitions z; is arbitrary, and 75 = z; + Az. For the first four
profiles Az is the total extent of the interface, while for the double exponential and
hyperbolic tangent profiles Az is a measure of the interface thickness. In the interval
71 <7< 73, the first four profiles take the form
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http://dx.doi.org/10.1007/978-3-319-23627-8_4
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homogeneous layer: ¢(z) = ¢ (aconstant forz; <z<zp)

linear: &(z) = &+ (&2 — &1)(z — 21)/Az (3.68)
-2
Rayleigh: &(z) = [8;1/2 + (8;1/2 - 3;1/2) (z— Z1)/AZi|

single exponential: &(z) = ejexp|In(e2/e1)(z — z1)/AZ]

The double exponential profile (illustrated in Fig. 3.1) has two analytic forms:

e+ (e —e1)exp(z — Az <
ez)=1{ " f( 2= e)exp(z —a)/Az (2<a) (3.69)
e+ 5 (61 — &) exp(zy —2)/Az  (z2>2z1)
The hyperbolic tangent profile is given by
1 1
&(z) = 3 (g1 + &) — 5(81 — &) tanh|[(z — z1)/2Az). (3.70)

The evaluation of invariants is usually made simpler by choosing z; so as to
make A; = 0. For the symmetric profiles (linear, double-exponential, and hyper-
bolic tangent) the required positioning is at the origin (z; = 0). The invariants i, and
J2 then reduce to

b= 2(e — &) / dzfe(2) — e0(2)z (31 = 0) (3.71)
2 =2(e1 — &) / dz[e(z) — eo(z)] % + /% (L1 =0) (3.72)
—00 0

The integrations leading to the invariants are mostly elementary. Further details
may be found in the references to Table 1 of Lekner (1984), and in Appendix C of
that reference. The results are summarized in Table 3.1. The integrals in the j,
expressions for the double exponential and tanh profiles can be evaluated in terms
of the dilog function,

X

dilog(x) = /dy

1

Iny
11—y

However, such evaluation does not lead to simplification of the results.
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Note that all the invariants are symmetric with respect to the interchange of ¢;
and &, and that they are all non-negative when ¢ is positive and lies between ¢; and
& for all z. These properties are evident for /; in the form

&

I = /Oo gzl a) (3.73)

For i, and j, they may be deduced from the definitions (3.33) and (3.39). For
example, the integrands in (3.33) and (3.39) always keep the same sign when ¢ is
positive and min(e;, &) <& <max(e, &).
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Chapter 4
Variational Theory

In the previous chapter we have developed perturbation theories for dealing with
reflection of electromagnetic or particle waves whose wavelength is long compared
to the thickness of the interface. The variational theory of this chapter builds on
these perturbation theories to provide formulae for the reflection amplitudes which
have a greater range of validity, and which do not have the difficulties at grazing
incidence such as the divergence of rP*", as discussed in Sect. 3.5 in relation to
(3.63) and (3.64). The application of variational theory to the short wave case is
also discussed.

4.1 A Variational Expression for the Reflection Amplitude

We shall first give a general formulation of variational theory for reflection of
waves described by the equation

d? ) . » .

= +qy =0, N4 re™N — ) — 1!, (4.1)
and later specialize to the long wave and short wave s and p cases. Suppose that a
perturbation theory has been constructed, based on the solution i, of

d? . 4 .
dzléo +qoo =0, €N 4re N — ) — toe . (4.2)

In particular, a Green’s function G(z,{) is assumed known, satisfying

G .
8722+ng:5(2*€)7 (4.3)

and giving the correct asymptotic forms in the solution of the integral equation
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oo

V() = ol2) - / 4L ARGz OY(O) (4.4)

—00

Af =q* — q(z)). Such Green’s functions are given in Sects. 3.1 and 6.6 for the long
and short wave cases. The results of perturbation theory follow by iteration of (4.4).
Here we adapt Schwinger’s variational method for the tangent of the phase shift
produced by scattering off a central potential (Schwinger 1947; Blatt and Jackson
1949) to the reflection problem. We rewrite (4.4) as

o0

W)+ / 4L A ()G (2 OW(0) = Yo 2), (4.5)

—00

multiply by Ag?(z)y(z), and integrate over the whole range of z. The result is of the
form

S=F (4.6)

S, of second degree in the unknown y, is given by

oo

S = /dquz(z)WZ(z)—i- /dquz(z)lﬁ(z) / dCAG ()G (z, O(0). (4.7)

—00

F, of the first degree in V), is given by
o0
F= [ aa@wemo. 48)

From the comparison identity (2.6), which we can write as

o

r =10 —%/ dz A QY (o(2), (4.9)

we see that, for the exact ,
F =2ig(ro — r). (4.10)

For the exact y we also have § = F. Consider now a shift (in the variational sense)
to a neighbouring function  + oy, where / is the exact solution. The integrals F
and S shift by
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o0

oF = / dz 6y () AP (o (2). (4.11)
55 =2 / dzop(2) AP () wio) + / AAPOGE W)y (412)

From (4.5) the quantity in braces is equal to (z), and so S = 20F. But S = F, so
08/S = 20F /F, or

5(F?/S) = 0. (4.13)

This is the variational principle: the correct i will extremize F2/S. For an
approximate i the extremal value of F? /S approximates F = 2ig, (ry — r) and thus
we have a variational estimate for the reflection amplitude:

P =y — F?/2iq,S. (4.14)

In general one has a parametrized trial function ' (z), which when substituted for

Y gives the values F¥* and S¥. The parameters which extremize (F¥*)®/S¥ then
give the best value (in the space spanned by the trial function) of the reflection
amplitude. However, a useful variational estimate can be obtained without any
variational parameters in , provided ¥ is well chosen.

The simplest choice is '™ = . Denote the corresponding values of F and S
by Fy and Sy, and the resulting variational estimate for r by ry 4+ 7{*. Then

1 = —F3/2iqSo. (4.15)
From (4.7) and (4.8)
So=Fot [ EAP@IE [ AAPOGE DO, (416
while from (4.9) we see that
F() = —2iql}"1, (417)

where r; is the first order term in the perturbation series

r=rot+r+rn+---. (4.18)
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Thus
r1F0 rl
var (419
= T oL L AN I AR O6E i

We will apply this general expression to reflection of the electromagnetic s wave in
the next two sections.

4.2 Variational Estimate for r, in the Long Wave Case

The formulae of the previous section apply directly to the electromagnetic s wave,
with y = E, ¢*> = ew?/c®> — K*. In the long wave case the appropriate starting
point for perturbation theory is the step profile

(4 +2) ~ 5 (43 ~ )sen(a), (4.20)

NIP—‘

q5(2) =
and the corresponding solution

B eldiz roe—iqlz (Z<0)
B = { S 9 (421)

where 7o = (q1 — q2)/(q1 +¢q2) and fo =2qi/(q1 +g2) = 1+ry. The Green’s
function for this case was given in Sect. 3.1 and (3.10). The first order term of
perturbation theory is given by (3.13):

0 00
i . .,
r=— dz Ag? (2) (€% + rge %)™ 4 1+r /dzA 2"’21.
' 2g / 7@ ’ ) 6]1+Q2 0 ) 1

(4.22)

The variational estimate of r,; obtained from (4.19) on substituting (4.21), (4.22) and
the Green’s function of Sect. 3.1, has built into it two important general properties:
it is correct to second order in the interfacial thickness/wavelength expansion, and it
is correct at grazing incidence.

To verify the first statement, we express the expansion of r/* in terms the
integrals

2= / dzfe(2) — 0(2)]" ", (4.23)

defined in Sect. 3.2. We find
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2iqi*/c?
(@1 +q2)°

272
P = g+ {zl 2igais + 2 /e J2 4 } (4.24)
q1+q2
This is correct to second order in the interface thickness, for all positioning of the
reference profile &y(z) (see (3.22)). In contrast, the expansion of r; is correct to this
order only if the relative positioning of ¢ and & is such as to make 4; equal to zero.
Such positioning is in general possible only when ¢; # ¢, and ¢ is real everywhere.
To verify that r}* correctly tends to —1 at grazing incidence (an exact general
result, as shown in Sect. 2.3) we need to consider the & # &, and ¢ = & cases
separately. When &; # &, r; and r{* become proportional to ¢; as g; — 0, while

ro — —1 and so r!* — —1. When ¢ = &, let gy be the common value of ¢g; and

S
¢ As go — 0,r) — i(w/c)* 21 /2q0 and Sy — Fy — (w/c)*/2 /2igo. From (4.19)
we see that | correctly tends to —1 as g tends to zero. This is in contrast to the
divergence of the perturbation expression r; at grazing incidence, as can.be seen by

setting g; = q» = qo in (4.22):

o0
i .
== [ dzAg’(z)e’ " 4.25
is 2q0/ 2Aq(2)e (4.25)

4.3 Exact, Perturbation and Variational Results
for the sech? Profile

The comparative accuracy of the perturbation and variational expressions for the
reflectivity is conveniently demonstrated by the sech? profile

&(z) = &9+ Aesech® z/a, (4.26)

for which the exact, perturbation and variational results can all be found analytically
for the s wave. The s wave equation reads

d’E 2
=t |at As%sechZ zJalE =0, (4.27)
where
CU2 w2

gives the common value at z = oo of the wavenumber component g, perpen-
dicular to the interface, and 0 is the common value of the angles of incidence and
transmission.
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A solution of (4.27) in terms of the hypergeometric function (defined and dis-
cussed in Sect. 2.5) can be found by changing to the variable t = tanh z/a (Epstein
1930; Budden 1961, 1985; Landau and Lifshitz 1965). It is an imaginary power of
sechz/a times a hypergeometric function,

E=(1- 12)’%F(—s —iB,1+s—ip;1 — i/)’;%(l —1)). (4.29)

The dimensionless parameters in (4.29) are

o= As(%)z, B=qoa, s= % [(1 —|—4oc)%—1] (4.30)

As noted in Sect. 3.5, the problem is characterized by the two parameters o (or s)
and f. As z — —o0, 1 — 7 — 2%/, and E tends to ¢%? times a constant (2~), as
required for the reflection problem. The limiting form of E as z — —oo (and
7 — —1,1+41 — 2¢%/%) is found by using the relation between hypergeometric
functions of { and 1 — (,

I'(c)I'(c—a—Db)

I'(c—a)T(c-b)

I'(c)I'(a+b—c¢)
I'(a)T'(D)

F(a,b;c;{) = Fla,b;1+a+b—c;1 =)

(1= Flc—a,c—b;14+c—a—b;1—Y),
(4.31)

which holds for |arg(l — {)|<=m (Oberhettinger 1964). With { = (1 —7)/2 and
1 —{=(1+71)/2 — €%/ this gives

F(_lﬁ) iq0z F(lﬁ) —iqoz -
Cs—ipT+s—ip)° Tt (=) } E.
(4.32)

271 — iﬁ){r

The reflection amplitude 7, is the ratio of the coefficient of e ~'%% to that of €%, and
is therefore given by

. LT (—s —if)I (1 +s—if) _ I'@@p)I(1+s—ip)sinzs
’ (=)l (14 5)I'(—s) L(=ip)I' (14 s+ip) sinn(s +if)

. (4.33)

(The second form is obtained by using I'(z)I'(1 — z) = n/sinnz.) We see that
rg — —1 at grazing incidence (Sect. 2.3), since as f = goa tends to zero,
T'(iB)/T(—if) — —1 (see (2.86)).

We note that s is an integer n when o = n(n+ 1). The reflection amplitude
(4.33) is then zero, for any f (for all angles of incidence). This remarkable
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reflection-less property is explored in Lekner (2007), and also in Sect. 19.2 in the
quantum particle wavepacket context.

The transmission amplitude is the ratio of the coefficients of € in the limiting
forms as z — +oo. We find

. I'(—s—ip)T(1+s—ip) _ r@p)r+s—ip)sinnmif (4.34)
g C(—iB)T(1 — ip) C(—ip)C(1+s+ip)sinn(s+if) '

When s is real (x> — 1/4),

5 cos? [n/Z(l +4a)1/2}
|rs|"=

7 (4.35)
cos? [n/Z(l +4oc)l/2} + sinh? nf

and |r,|*= 1 — |r,|*, which is a special case of the conservation law ¢, (1 - |r|2) =

@2|1]* of Sect. 2.1.
When o = Ae(wa/c)* < — 1/4, s is complex:

(4| — 1)2. (4.36)

1
s:—z—i—ia, 025

On setting z = § +iy in I'(z)I'(1 — z) = n/ sin 7z we obtain

1 2 T
I'i=+i = . 4.37
‘ (2 * ly) cosh my ( )
Using this in (4.33) and (4.34) gives
h? inh?
|rs|2: cosh” g | ‘2 sinh” o (4.38)

5 I = N .
cosh® o + sinh® 7f8 ’ cosh® o + sinh? 7f8

For the comparison with perturbation and variational theories we restrict our-
selves to Ae > 0 (and thus o > 0, s real). The reflectivity is then given by (4.35),
with the corresponding perturbation and variational expressions found from (4.25)
and (4.19):

|ris|*= (mt/ sinh 7f)?, (4.39)
= Il (4.40)
P () + (o)

These expressions are compared in Figs. 4.1 and 4.2. We note that both the first
order perturbation theory and the variational theory based on the free-space
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0.11
R p
n
Vv
e
0
0 1 2
wa
c

Fig. 4.1 Normal incidence reflectivity for the sech®z/a profile, as a function of the profile
thickness. The reflectivities are plotted for ¢y = 1,Ae = 1. For these parameters, the exact
reflectivity is zero at (wa/c)’=2,6,12,...n(n+1). The curve labelled e gives the exact
reflectivity, (4.35); the curve v the variational estimate, (4.40); and the curve p the perturbation
expression, (4.39)

Fig. 4.2 Reflectivity as a
function of the angle of
incidence for the sech® z/a
profile. The exact, variational
and perturbation results are
denoted by e, v and p. The
curves are drawn for
g=1,A¢ =1,wa/c=1

R

L)

wavefunction are good at small values of wa/c. This is to be expected, since the
reflection is then small. Neither theory gives the reflectivity zeros at o =

Ag(wa/c)*= n(n+1) (integer n), but the variational expression is closer to the
exact values at all values of wa/c, and gives the correct unit reflectivity at glancing
incidence.
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4.4 Variational Theory for the p Wave

As in the s wave case, a variational estimate for the reflection amplitude builds on
the corresponding perturbation theory. The long wave perturbation theory for the
p wave was outlined in Sect. 3.4, and will be summarized here. The p wave has
B = (0,eB(z),0), where K has the same meaning as for the s wave, and B

satisfies
d /1dB o’ K?
el B — _Z\B=0 4.41
dz (s dz>+(c2 8) ’ ( )
%
0 = e (e) (2 e, (442)

The required Green’s function satisfies

0 (1 aG) + (“—2—52)0 5z 0), (4.43)

0z \& 0z 2 g

where ¢(z) is the step function profile, and G(z,{) was given in (3.48). B satisfies
the integro-differential equation

o0

B =80~ [ a Av(o{KzB(oG(z, 0+ j—’é%—?} (4.44)
In (4.44) Av =1/¢ — 1 /¢y and
elniz _ rpoefiqlz (Z<0)
BO(Z) = (i—f)itp()eiqzz (Z > 0) (445>

In (4.45) the reflection and transmission amplitudes of the step profile & (z) are

01— & : 204
= 014+0;’ <81> 0 = 01+0; (4.46)

As usual, Q) = ¢q1/¢; and Or = ¢2/¢.
An exact expression for 7, is obtained from (4.44) by extracting the coefficient of

e~ 2 a3 7 — —o0. This is
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r,,:r,,o_%Ql / de(é){KzB(oBOMH%%}

00
1
=Tpo — TQI / d({KZAVBB() - ASCC()} (447)

where A¢ = ¢ — &y, C = ¢ 'dB/d{ and Cy = &y 'dBy/d¢. The first order perturba-
tion theory expression for 7, is obtained by replacing B by By and C by Cj in (4.47).
(This is equivalent to lowest order in Av to replacing dB/d{ by dBy/d{ but is
preferable since C is continuous at a discontinuity in the dielectric function, as can
be seen from (4.41), while dB/d{ is not, and since the resulting reflection amplitude
gives the correct first order term in the interface thickness/wavelength expansion, to
all orders in Av). Thus in the expansion r, =ry+ri+r+ ---,

= / A { KAV — AeC2). (4.48)
2i0y
—00

The variational expression for 7, is obtained by operating on (4.44) with

i d (. dB
AVK’B — — [ Av— }. .
/ dz{ vK"B dz( vdz)} (4.49)

As in the s wave case, the resulting equation can again be put in the form F = S,
where the term of the first degree in B is

r dBdB
F = / dZAV{K2B(Z)BQ(Z) + d_Zd_ZO} = 21Q1 (Vp() - rp) (450)

—00

(the second equality follows from (4.47)). The term of second degree in the
unknown B is

r r dBOG
_ 2 _ 2 e
S = / dz AvK“B{ B / dCAv{K BG + @ aC]
- R (4.51)
dB | dB , 0G dB &G
+ / dZAVd—Z d—zf / dCAV|:K Ba—z+d—é,—azazj|

—00 —00



4.4 Variational Theory for the p Wave 105

We again find 6S = 26F and hence the variational principle 6(F?/S) = 0. Thus the
device of operating on the integral equation with (4.49) produces a variational
estimate

var

FZ
N =r /S

=i (4.52)

in parallel with the corresponding expression for the s wave, (4.14).
The simplest trial function for B(z) is By(z). This gives the values Fy and S, for
F and S, where

Fy= / dz{ AvK*Bj — AeC} = —2iQ1ry. (4.53)

—00

In the evaluation of S we must take care to include the —&(z)d(z — {) singularity in
0*G/0z0¢. We find, for general B,

o o] o]

S= / dz{ AvK’B* — AeC*} — K* / dzAvB / d{AvBG
+ 2K / dzAvB / d{AeCey'0G/O¢ (4.54)

o0

Ae T Ae 0*G
B / o © / ngC<813C>,’

where

0*G 0*G
(ﬂ) ,: ﬂ + 80(2)5(2 - C) (4.55)

is the regular part of 9*G/9z9¢. The value of Sy is found by replacing B with By in
(4.54), and the resulting variational estimate for the reflection amplitude has the
form

Fy
—1r.
So !

var
r, =Tt

(4.56)

This expression gives a reflectivity which is correct to second order in the
interface thickness/wavelength expansion, as may be shown by comparing the
expansion of (4.56) with (3.50) (some reduction is required). Also built-in to the
variational estimate (4.56) is the correct limiting value r, — 1 at grazing incidence
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(Sect. 2.3). The cases of equal and unequal ¢; and ¢, must be considered separately.
When ¢ = &, r,0 = 0 and (Fy/So)r1 — 1 as Qp — 0, Qp being the common value
of O and Q,. When ¢, # &, (Fy/So)r1 — 0 as QO — 0, and rlj‘“ — 1 because

rpo — 1.

4.5 Reflection by a Layer Between Like Media

The variational formulae of Sects. 4.2 and 4.4 simplify considerably in the
important special case of a reflecting layer between like media. As usual we set &
equal to the common value of ¢; and &, and likewise for qo; Ae stands for & — &,
the deviation of the dielectric function from the ambient value. The variational
theory based on long wave perturbation theory then gives r|* in terms of two
integrals,

00
k) = / dze™Ag, (4.57)
oo Z oo
o(k) = / dz Ae{ e / d{Ae+ / die™Aep. (4.58)
—o0 —00 z
In terms of these integrals,
o?/
var 2 A(QQO)
i’s = — 7‘](;2/62 6(2(10) . (459)
1+ Ziq[) i(2q0)
The analogous result for the p wave is
27.(2q0) — K*A(2 2i
rvar _ I:CIO E qO) ( qozﬂ/ 190 , (460)
1+ q30(2q90) —K*E(2q0) —2¢;K*T (290)
2iqo[q3(290)—K>A(2q0)]
where
A(k) = ¢ / dzeAc/e, (4.61)
o0 Z oo
(k) = / dz Ae/el e / d{ Ae/e+ /dCeikCAg/a , (4.62)

—00 —00 Z
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] Z [e¢}

(k) = & / dz Ae/el e / dCAs—/dCe”‘gAs : (4.63)

—00 —00 4

(In both the ¢ and X expressions, the first and second terms are equal because of the
z,{ symmetry of the integrands.) Of the five integrals, A and A are Fourier trans-
forms of A¢ and gAe/e, respectively, and have the dimension of length. The
integrals o, % and I' have dimensions of length squared. At grazing incidence, when
go — 0, the results rf* — —1 and r,* — 1 follow from

a(0) = 72(0), Z(0) = A*(0). (4.64)

At normal incidence, when K — 0 and gy — /g0 ®/c = ko, both reflection
amplitudes tend to

) (2ko)
var 2igg 0
PP == (4.65)
n (2ko) *
L+ 5 e

From (4.60) we see that a layer between like media does not reflect the p wave
(according to both the first order perturbation and variational theories) at an angle

0 = arctan{A(2ko) /A (2ko) }2. (4.66)

This is an approximate extension of the rigorous result obtained in Sect. 3.5, that, to
lowest order in the interface thickness, there is zero reflection of the p wave at

0o = arctan{1; /A, }%. Note that the ratio of 1(2kg) to A(2kp) is not real in general.
Zero reflection at a certain angle is thus characteristic of thin films; as we saw in
Sect. 3.5, it also characterizes homogeneous films of any thickness.

We shall compare the variational and perturbation theories with exact results for
the homogeneous layer with dielectric constant ¢ for z; <z <z, = z; + Az; exact
expressions for the reflection amplitudes are given in Sect. 2.4. In this case A¢ and
A¢/¢ are both constant within the layer, and only the two integrals A and A are
required for the perturbation and variational reflection amplitudes, since

A(k) = %;L(k), (k) = (g—o)za(k), (k) = 0. (4.67)

&

The expression (4.60) then reduces to

w/c 2 £0 i 1
A cos” 0 — 2 sin” 0} A(2qo)
var _ 2V C"”’{ ) (4.68)

r
1+ 21\/_0059 {COSZ 0+ 0 Sln 0} }(223)
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1 .
correctly giving zero reflection at 8 = arctan(e/ey)?. For the integrals 1 and ¢ we
find

M(240) = AeAze ™+ 2)jy (goAz), (4.69)
(2q0) = (AeAz)’e @ T2 {o (g9Az) + i1 (g0Az2) }, (4.70)

where jo(x) = x !sinx and jj(x) =x 2sinx —x !cosx are spherical Bessel
functions.

In the figures below we compare the exact (e), perturbation (p) and variational
(v) expressions for the reflectivity R, at normal incidence as a function of the layer
thickness (Fig. 4.3), R, and R, as a function of the angle of incidence (Figs. 4.4 and
4.5), and r,/r, in the complex plane as a function of the angle of incidence
(Fig. 4.6). The comparison is made for the values gy = 1,¢ = 2(Ae = 1).

In the final figure we show the ellipsometric ratio, r,/r,. In the perturbation

<K) Zetey

theory based on the free space wavefunction, %” ~1-— (w p
s 0

, a real quantity

which starts at unity at normal incidence, and tends to —é&y/¢ at glancing incidence.
(The perturbation expressions for 7, and 7, are given in (4.13) and (4.37) of Lekner
1986, for a general inhomogeneous layer between like media. Equation (4.25) of
this chapter gives ri;.)

Fig. 4.3 Normal incidence
reflectivity for a homogenous
layer, as a function of the
layer thickness Az. The exact 0.2
reflectivity is the labelled e,
the variational result v, and
the perturbation result p. In p
this and the following figures,

g=1and e =2 '

(=]

c
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0 30 60 90
0

Fig. 4.4 Reflectivity for the s wave from a homogeneous layer, as a function of the angle of
incidence, at (w/c)Az = 2. The exact, perturbation, and variational results are denoted by e, v and
p as before. Note that the perturbation theory, based (as is the variational theory) on the free space
wavefunction, is in poor agreement with the exact reflectivity, and fails completely at large angles
of incidence, where the approximate reflectivity exceeds unity

0 30 60 90
0

Fig. 4.5 Reflectivity for the p wave as a function of the angle of incidence, at (w/c)Az = 2. The
exact, perturbation and variational reflectivities are all zero at 6 = arctany/2 =~ 54.7°. Again the
perturbation theory fails completely near glancing incidence
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0.1- v ¢

Im

-1 0 1
Re

Fig. 4.6 The real and imaginary parts of the ratio r,/ry, plotted in in the complex plane, for
(w/c)Az =1, as the incidence varies from normal to glancing. The exact and variational
trajectories are the curves labelled e and v. The perturbation trajectory (p) lies along the real axis
between + 1 and —¢p/e = —1/2. All three trajectories start at + 1 at normal incidence and pass

through the origin at 0 = arctan,/e/&y = arctany/2 ~ 54.7°. Only the perturbation trajectory does
not end at —1 at glancing incidence

4.6 The Hulthén-Kohn Variational Method Applied
to Reflection

We have seen that the adaptation of Schwinger’s variational technique in scattering
theory to reflection has led, with the simplest trial function, to s and p reflection
amplitudes which are correct to second order to the interface thickness, and are
correct at grazing incidence. These desirable features have been obtained at the cost
of some complexity, and we shall now show how the simpler method developed by
Hulthén (1948) and Kohn (1948) for scattering problems may be applied to
reflection.
We begin with the s wave, for which the exact field amplitude E satisfies

—— +@E=0, 94 e E — fel®? (4.71)

(we drop the subscript s except where needed to distinguish the s and p results).
Consider the functional

r d°E
(I)[Et] = / dz E; (K; "rqut) (4.72)

—00
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of the trial function E;, which we take to have the limiting forms
% e E, — 1,67, (4.73)
The trial function differs from the exact E by 0E = E, — E, with
e 4 Sre M7 SE — 51, (4.74)

where or = r, — r and ot = t, — t. We find

doE dE} ) + O(3E)*. (4.75)

O =QE+OE| -DE|= |E———0E—
6 = O[E + OE) []{dzadz

—00

(This result follows on two integrations-by-parts, and the use of the fact that, from
(4.71), ®[E] = 0.) From (4.71) to (4.75) we obtain the result d® = 2ig, ér, which
can be written in the form of a variational principle:

o(® —2ig,r) = 0. (4.76)

In the application of this principle, we use a trial E; and the corresponding 7, and t,,
to evaluate ®[E,|; then from (4.76)

00 = D[E,| = 2ig,(r, — r) + O(OE)* (4.77)
The variational estimate for the reflection amplitude is thus
P =1, — DE]/2iq;. (4.78)

As an example, consider the simplest long-wave trial function E, = E, the step
profile solution given in (4.21). With ¢*> = g3 + Aq* as before,

D[Ey] = / dz AG’E}, (4.79)

—00

which we recognise as the Fy of the previous variational treatment. Thus the trial
function Ey leads to the first order perturbation result (compare (4.17))

F
i =ro— T; =TI+ (4.80)

Similarly, in the short wave case the trial function E; = (gq;/ q)l/ %¢i produces the
perturbation result (6.55):


http://dx.doi.org/10.1007/978-3-319-23627-8_6
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L[ d [dg/dz\ . o
var — — [ dz— (L= i$ 4.81
s 4i / Zdz( ¢ )q © ( )

The corresponding results for the p wave are not as satisfactory: if one defines

the functional
r d (1dB\ [a? K>
DB, = dzBi{ — | — ——— B 4.82
b= [en{i(CR)(=-T)np  ew

of the trial function B;, the variational principle takes the form
O(®+2iQr,) = 0. (4.83)

For the zeroth-order trial function By defined in (4.45),

oo
| ®[By)] ! ,

var _ 20— [ dza {K2B dB } 4.84
"y rpo + 200, Tp0 20, / ZAvy o+ (dBy/dz) (4.84)

This agrees with the perturbation result (4.48) only to lowest order in
Av = 1/¢ — 1/ey. In consequence, (4.84) does not give the correct result to first
order in the interface thickness (given by (3.44)), and does not agree with r}* at
normal incidence.

The adaptation of the Hulthén-Kohn variational method to reflection problems is
thus seen to give results which are inferior, for the simplest trial functions, to that
obtained from adapting the Schwinger method. However, the greater simplicity of
the Hulthén-Kohn method makes possible the use of more sophisticated trial
functions (Joachain 1975, Chap. 10).

4.7 Variational Estimates in the Short Wave Case

We consider the s wave first. The variational theory is built on the perturbation
theory of Sect. 6.5. The appropriate Green’s function is given by (6.69):

Ol—

2i[q(2)q(O)G(z, () = { Ziggﬁg)) B ;%88 iig (4.85)

where ¢ is the phase integral
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2

P(z) = /déq(é) (4.86)

which is discussed in Sect. 6.2. The simplest variational expression uses

Ui =l /qPe? (4.87)

as the trial function. Setting ¥, = tﬁf’ in (4.19) we obtain the variational estimate

P =yl 1+2’_1 / dz g 2AgPe’® / Al g T AG Gz, Op (4.88)
rS

where the numerator is the short wave fist-order perturbation result,

1 r 1 d dQ/dZ i
1 1 2ip
rx ; zq Z ( % )C ( )

—00

On using (4.85) and the expression (6.73), namely

L d <dq/dz>
qu 3 )
Z q

the double integral in (4.88) reduces to

Ul Ay 1\, /°° & 1,
— | dz[ ==+ zqp? )e¥ [ A=+ z ). 4.90
4 Z(dz+2‘”>e Nac 727 (4.90)

Ag* = —

| =

Here, as in Chap. 6, y is the dimensionless function ¢~>dq/dz, and we have used the
fact that

1 d (dq/dz dy 1 ,
=1 Zg 491
a 2dz( q% ) dz ZW ( )

The evaluation of (4.90) involves a triple integration (unless the phase integral ¢
can be evaluated analytically), making it more difficult to apply than the long wave
variational expression.
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http://dx.doi.org/10.1007/978-3-319-23627-8_6
http://dx.doi.org/10.1007/978-3-319-23627-8_6

114 4 Variational Theory

A variational theory for 7, in the short wave case may be derived along the same

1 . .
lines, since b = (¢ /¢)?B satisfies an equation of the same form as E. The results are
however so complex that they are unlikely to have practical value.
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Chapter 5
Equations for the Reflection Amplitudes

For some purposes, both analytical and numerical, it is useful to transform the linear
second order differential equation for the wave amplitude into a non-linear first
order Riccati type differential equation for a quantity related to the reflection
amplitude. The advantage lies in dealing directly with the quantity one wants to
calculate. A disadvantage is the non-linearity of the resulting equations.

Early applications of this approach to the calculation of reflection amplitudes
were by Walker and Wax (1946), Kofink (1947), Brekhovskikh (1949, 1980) and
Schelkunoff (1951). This was preceded by development of related techniques in
scattering theory, beginning with Morse and Allis (1933), and fully covered in
Calogero’s book (1967). Analogous methods were used by Courant and Hilbert
(1953) to obtain the asymptotic forms of Bessel functions.

5.1 A First Order Non-linear Equation for an s Wave
Reflection Coefficient

We first rewrite the second order differential equation for the electromagnetic s
wave (and, equivalently, for particle waves) as a pair of coupled first order equa-
tions: the equation

E'+¢E=0 (5.1)
is equivalent to the pair
E =D, D =-¢E (5.2)

(primes denote differentiation with respect to z). In turn, new functions F and G are
introduced, defined by (5.2) and the equations

E=F+G, D=ig(F-G). (5.3)
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J. Lekner, Theory of Reflection, Springer Series on Atomic, Optical,
and Plasma Physics 87, DOI 10.1007/978-3-319-23627-8_5



116 5 Equations for the Reflection Amplitudes

We shall see shortly that F and G have the character of incident and reflected
waves, tending to a constant times exp(+iqz) as z — —oo. The ratio of these
functions thus tends to r, times exp(—2ig;z) as z — —o0, since r; is defined as the
ratio of the coefficient of exp(—ig;z) to that of exp(+ig;z) as z — —oc.

On substituting (5.3) into (5.2) we obtain a pair of coupled first order equations
for F and G, which may be solved for F’ and G’ to give

!/

F=igF— L (F_ 4
ar - L(r-G) (54
q/
= —ig6+ L (F - G). .
G zqG—l—Zq( G) (5.5)

(When ¢ is constant we see that F and G are proportional to exp(+iq,z)). We now
multiply (5.4) by G, (5.5) by F, subtract, and divide the result by F?, obtaining an
equation for p = G/F:

/

o+ 2igp — 2q—q (1-p?) =0. (5.6)
The limiting forms of p as z — +oo are
rsexp(—2igq1z) — p — 0. (5.7)
The absolute square of p at z — —oo gives the reflectivity:
lp(=00)’ = |rs’=R,. (5.8)

When ¢ is real everywhere, the equation for the complex conjugate of p is

/

p* — 2igp* — Qiq (1-p?) =0. (5.9)

From (5.6) and (5.9) we may obtain an equation for the reflectivity function
R = pp*:

/

R =L Re(p)(1 - R). (5.10)

RS

The boundary conditions on R(z) are
R(c0) =0, R(—o00) =R, (5.11)

On dividing both sides of (5.10) by 1 — R, and integrating from —oco to + oo, we
obtain
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truncated profile

Z I Z
1 ] 2

Fig. 5.1 The functions p(zo) and R(z) correspond to a profile truncated at zo, that is having ¢ = &(z)
for z> 70, and & = &(z9) for z < z9. As zg increases from —oo the reflectivity R(zo) changes from the
value Ry for the full profile to zero (the profile variation need not be monotonic; a linear profile is
illustrated.)

o0

In(1 —R,) = / dz%Re(p). (5.12)

—00

The right-hand side is real, and thus Ry <1, as we proved first in Sect. 2.2. More
generally, (5.10) divided by 1 — R can be integrated from zy to infinity, giving

oo
/

In(1 — R(z)) = / dz%Re(p), (5.13)

20

so that R(z) is less than unity everywhere. This is in accord with the physical

interpretation of |p(z0)|* = R(zo), namely that of the reflectivity of a profile trun-
cated at zg, as shown in Fig. 5.1.

5.2 An Example: Reflection by the Linear Profile

We will illustrate the variation of R with zo for the linear profile of Fig. 5.1

€1 z2<zy
e(z) =< e+ (Ae/A)(z—z1) u<z<z (5.14)
& 222
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As usual, Ae = & — &1, Az = 75 — z;. At the same time we will give some of the
properties of the solutions of (5.1) when ¢ is linear in z (the Airy functions), which
will be useful later as solutions in the neighbourhood of classical turning points

(Sects. 6.7 and 6.8). Within the interval (z;, ;) ¢ is linear in z. As an intermediate
step we make ¢ the independent variable. Equation (5.1) transforms to

CE | (Ao} (oK)
de? Ac ¢ ¢ w

We now transform to the variable x = s¢, where

5= ( 9)§. (5.16)

E=0. (5.15)

Az

Ae| ¢

Equation (5.15) becomes

E=0. (5.17)

This equation has the general solution
E = 0Ai {s(cK/w)z - x} + BB [s(ck/w)2 —x, (5.18)
where Ai and Bi are Airy functions, the solutions of

d2
d—g—CE:O. (5.19)

This is known as the Airy differential equation (Heading 1962, Appendix A.3;
Olver 2010). It has two power series solutions which are convergent for all {:

3 6 9
1.4 1.4.7
g4 e,

f(z:):1+§+ ot (5.20)
204 250 258"
g() =0+ 4—C! + 75 T!C (5.21)

The standard pair of independent solutions are

Ai(0) = aif (0) — 28(0),  Bi(L) = V3leif () + c28(0)], (5.22)
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where

= Ai(0) = Bi(0)/V3 = [ Gﬂlzosssozs...

B (5.23)
¢ = —Ai'(0) = Bi'(0)/V3 = { (;)} = 0.258819...

From the solution (5.18) and the general formula (2.25) we can immediately obtain
the s wave reflection amplitude, care being taken to convert between derivatives
with respect to z and x via

dE AadE Aa dE

24
dz Az de Az (5:24)

The result is

Qi q192(A1By — B1As) + iqy (A1 By — B1AY) +ig» (A/le - B’1A2) — (A}B, — BAS)

,
) q192(A1By — B1As) + iqy (A1By — BiAY) — iqx (A\B, — BAy) + (A\By — B{A))

(5.25)
where
K\? 2
A, —Ai s(c—> —se| = Ai [—s(@) }
[0) %)
(5.26)
ckK\? cqr\?
Ay —Ai s<—> —sey| = Ai [—s(—z) }
[0) 0)
with similar definition of B; and B, in terms of Bi, and
A 2
A = —A—jsAi’ [—s(%) ],etc. (5.27)

The reflectivity at normal incidence is shown in Fig. 5.2. Here we are interested in
the variation of |p(z)|” as z varies between z; and z,. This may be obtained from the
above by treating ¢; as a variable. More instructive in the present context is a
calculation of p = G/F, where the functions F and G are found in terms of the
known E: from (5.3)

1 1 dE 1 1 dE
F=_|E+—— =5 |E-——| 2
s I T A


http://dx.doi.org/10.1007/978-3-319-23627-8_2

120 5 Equations for the Reflection Amplitudes

0.04

0.02

..0. : 2 i == mAz = .6
c

Fig. 5.2 Normal incidence reflectivity of the linear profile, as a function of the layer thickness. As

- 2 . . . .
inFig. 5.1, = 1,6, = (%) , representing an inhomogeneous dielectric layer on glass. The dashed
curve is the long-wave expression to second order in the interface thickness

The condition G = 0 at z = 7, (or & = &) determines the ratio of the coefficients o
and f in (5.18):

«  By—B)/ig

=— —. 5.29
B A= Aigy 529)
The function p(z) and the reflectivity function R = pp* are then obtained from

G iqE — dE/dz
_ o _ne—dr/d 5.30
) =% igE + dE/dz (5:30)

The results are equivalent to (5.25), with z;,¢; being replaced by z,&. Some
reflectivity function curves are shown in Fig. 5.3.

5.3 Differential Equation for a p Wave Reflection
Coefficient

The second order equation for the p wave,

d (1dB w* K?
— (2= — _—\B=0 5.31
dz <s dz>+(c2 s) ’ (5:31)
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Fig. 5.3 Reflectivity function R = pp* for the linear profile of extent Az =z, — z;, with ¢; = 1
and &, = (3/2)%. The curves are drawn for (w/c)Az = 2,3 at normal incidence. Also shown as the

dashed curve is [(ve— \/&2)/(Ve+ \/5)]2 the reflectivity of a step from &(z) to &, which all
such curves approach as z — z,. For the linear profile, &(z) = & + (z — z1)Ag/Az

may be written as a pair of coupled first order equations

1dB ic  f
e, & Ty 5.32
¢ dz ' dg ¢ (5-32)

We now write
iq

On substitution into (5.32), with the usual definition of Q = g/e, we find the
companion relations to (5.4) and (5.5):

F' = iqF — 2% (F - G), (5.34)
G = —igG+ 4 (F - G). (5.35)
20

Thus F and G again have the character of incident and reflected waves as z — —o0,
being proportional to exp(=£ig,z). The ratio p = G/F now has the limiting forms

—rpexp(—2iq1z) — p — 0, (5.36)

and satisfies the nonlinear first order equation

/

o'+ 2igp — 2% (1-p%) =0. (5.37)
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When ¢ is real everywhere, the p reflectivity function R = pp* satisfies

/
R =ZRe(p)(1 - R), (5.38)
Q
with the boundary conditions
R(0) =0, R(—00) =R,. (5.39)

The fact that R, <1 follows from integrating (5.38) over the whole range of z:

/ Z—Re (5.40)

This physically necessary upper bound of unity can be much improved, as we shall
see in the next section.

5.4 Upper Bounds on R, and on R,

It is intuitively plausible that the s wave will reflect less from a monotonically
increasing or decreasing profile than from a step profile with the same values of ¢;
and &;. This is in accord with the long wave result of Chap. 3,

4q1q2(w/c)* i

R‘v = RSO - 1
(g1 +q2)

(5.41)

where the invariant i, was shown to be non-negative if &(z) lies between ¢; and &,.
We will show now that a monotonic profile cannot reflect more of the s wave than
the corresponding step profile, at any angle of incidence:

2
q1 — q2
R, <Ry=(——7]. 5.42

0 <611+612) ( )

To prove this result we write p = |ple”’ in (5.6), and obtain a pair of coupled

equations for the modulus |p| and the phase 0 by separating the real and imaginary
parts:

!
|p|/—2iq(1 - |p|2> cos ) =0, (5.43)
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/
0 +2q+ ;’—q (1o +1p1) sin6 = 0. (5.44)
We can rewrite (5.43) as
/ 1 1 } q
plqe——— =cos 0. 545
o ) = (5:49)
Integrating (5.45) from —oo to oo and using (5.8), we obtain
o0 92

— / dZﬂCOSHZ—/dqq_ICOSQ. (5.46)
qdz

—00 q1

1+|VS|

In
1—|rb|

This holds for any profile. Suppose now that &(z) increases monotonically from ¢;
to &; the normal component of the wavevector then increases monotonically from
q1 1o ¢z, and the right-hand side of (5.46) has the upper bound In(g2/¢;). Thus

— (1
w+q’

1
2, 2o (5.47)
L+|rs] ~ g
and (5.42) follows. The same bound on R holds for monotonic decrease from ¢; to
&.

The corresponding result for the p wave reflectivity cannot be true without
restriction, since we know that the reflectivity due to a sharp interface is zero at the
Brewster angle, whereas an arbitrary interface has a principal angle (or angles)
where Re(r,) = 0, with Im(r,) nonzero in general (Sect. 2.3). Nevertheless a useful
result can be obtained from the p wave equation corresponding to (5.43), namely

=2 (1~ 16F). (5.48)

On integrating this as before we find

o0 (0}
1+|r| do B .
lnl T =- / dZ@COSQ =— / dQ O cos . (5.49)
—00 0

An upper bound of In[max(Q, Q,)/min(Q1, Q)] again follows, provided Q(z) is
monotonic. Thus

R, < (gll - gj) , O monotonic (5.50)
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Suppose ¢(z) is monotonic. Under what circumstances is then Q monotonic also?
We have

2 2
24 _ Loy K
=2 _s(c) e’ (5:51)
and so
dQ*>  de/dz g(w)Z K> (5.52)
i L : :

Thus if de/dz does not change sign, Q* will increase or decrease monotonically
provided ¢ — 2¢; sin® 6, does not change sign. This will be true if 2¢; sin? 0, < g
(61 <45°) and also if 2¢ sin® 0; > &, (we have assumed ¢ < ¢ < &). Thus R, <Ry
is guaranteed for monotonic ¢ at angles of incidence in the ranges

1 &
in20, < - in2 6, > 2. .
sin” 0; < X sin” 60, > 2 (5.53)

Note that the Brewster angle given by sin 05 = & /(&1 + &) lies between these two
limits. In the opposite case, when ¢ > &> &, R, <Ry is guaranteed in the ranges

sin® 0, > % sin? 0, < 2% (5.54)
The Brewster angle again lies between these two limits. Figure 5.4 illustrates the
reflectivity ratios R;/Ryo and R, / Ry, as a function of the angle of incidence, for the
homogeneous layer for which r,/r, was displayed in Fig. 2.4.

Incidentally, the minimum of R, /Rpo in Fig. 5.4 close to 48° is not a true zero,
but results from the near coincidence of Q> = 0,0, (at 47.93°) with the condition
gAz = (m+ Y)m, satisfied for m =9 at 48.21°. Likewise, the dip close to 56°
results from the near coincidence of gAz = mm (at 55.62°) with the Brewster angle
condition for the substrate Q; = Q»(at g = arctan% ~~ 56.31°). More details about
extrema of the reflectances may be found in Sect. 2.4.

5.5 Long Wave Expansions

Systematic approximations based on the non-linear equation for p have been
developed by Brekhovskikh (1949, 1980), and will be outlined here. We have seen
that the physical meaning of p(z)exp(2ig(z)z) is that of the reflection amplitude of a
profile truncated at z (Fig. 5.1). In the long wave limit this would be
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0

0 30 60 90

Fig. 5.4 The ratios R;/Ry and R,/Ry (continuous and dashed curves, respectively) for a
homogeneous layer, with & = 1,& = (4/3)% & = (3/2)%, (w/c)Az = 27, representing a layer of
water (about four wavelengths thick) on glass. These parameters are the same as in Fig. 2.4. Unity
is the upper bound for R;/Ry, at all angles of incidence, and for R, /Rpo for 0; <45°. Unity is
attained by both the s and p reflectivity ratios when gAz = mm, (m integer) that is at angles of
incidence given by sin® 0y = {& — [mnc/wAz]*}/e;. In this case the values m = 11,10,9 and 8
give the angles indicated

21902 42) — 42 (z L&) — @ (5.55)

@) e ax)+q’ q(z)+q

Brekhovskikh writes the exact p(z) in terms of two functions u(z), v(z), in analogy
with (5.55):

_ = a2y (5.56)
qu+qov '

Then from (5.6) and (5.56) it follows that

! /
w_v_ iq{@_ﬂ}_ (5.57)

u v qu  qav
This equation is satisfied by
W =iqyw, vV =iq*u/q. (5.58)

As 7 — 23, p(z) — 0, it being assumed that ¢ = &, for 7> z,. Thus the boundary
conditions on u and v may be taken as

u(z) =1=v(z) (5.59)
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(any nonzero constant other than unity would do as well). The equations (5.58) and
(5.59) are equivalent to

22

u(z) =1 —iqz/de(C), v(z) =1 —qiz/quz(C)u(C). (5.60)

Z

These coupled integral equations may be iterated to give u = > u, and = >_ vy,
starting with uy = 1 = vy. The first iterates are

2

uy(z) = —iqz/dC = —igx(22 — 2), (5.61)
vi(z) = —qiz/décf(é). (5.62)

The nth order is, for n>1,

22 22

un(2) = —ign / v 1(0), val2) = —; / AL (Ot (0)- (5.63)

Z Z

This iteration gives a series in powers of interface thickness/wavelength, and should
thus duplicate the long wave results of Chap. 3. We will verify this to second order,
for a profile of extent Az = z; — z; (it is assumed that ¢ = ¢; for z <z;). For such a
profile, the exact p is given by

qiu(z1) — q2v(z1)
7)) =——F———2. 5.64
plar) qiu(z1) +q2v(z1) (5:64)
To second order we have
22
u(z) =1 - igpAz — /dZ(z — )@+, (5.65)

21

2

v(z1) =1 —q%/dz 7 (z) — /dz(zZ — )¢ @)+ . (5.66)

21
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After some simplification, the reflectivity R, = |p(z1)|* reduces to

22 22 22

4, 4/ 4 d

Ro=Ro+ ROy ) [ alze -z -zt [dele—n) [atte—e)|+ oo
(g1 +q2)

21 <1 21

(5.67)

The quantity within the square bracket in (5.67) is independent of the angle of
incidence, as it should be, since we know from Chap. 3 that the universal form for
the s wave reflectivity is

4q]q42w4
Ri=Rog——S iyt - (5.68)
(q1+42)°

Here i, is the second order invariant of Sect. 3.3:

o0 9] 2
i =2(g — &) / dz(e — &9)z — / dz(e — &) p (5.69)

where &(z) is the step function: gy = ¢; for z<0, gy = &, for z > 0. The integrands
in (5.67) do not go to zero at the end-points z; and z, and thus (5.67) appears to
have no meaning as it stands for profiles which attain the limiting values ¢; and ¢, at
infinity. To convert (5.67) to a universally applicable form we replace ¢ by & —
& + ¢ in the integrands, and use the identities

(&2 — 1) / dz(2z —z1 — 22)80 + /dZ(SO — &) / dl(eop — &) =0,  (5.70)
/dz(Zeo —e—&)=(a—a)(a+z) (5.71)

21

The negative of the quantity within the square brackets of (5.67) then reduces to i,
as given by (5.69), and we have regained the second order s wave result of Chap. 3
in its invariant form.

The p wave results are obtained similarly, but are much more complex. Both
s and p thickness/wavelength expansions will be discussed again briefly in the
chapter on matrix methods.
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5.6 Differential Equations for the Reflection Amplitudes

In the preceding sections we have derived and used generalized Riccati equations
for the quantity p = G/F, which takes the values +r[¢(z), &2]e "% at z for the s and
p waves. Thus as z — —oo, p tends to +r(¢;, &) times an oscillatory function of
unit modulus. As we shall see here, it is sometimes advantageous to work directly
with the reflection amplitude itself. This is particularly so in the short wave limit,
which is discussed briefly here and forms the subject of the next chapter.

A non-linear first order equation for the s wave reflection amplitude may be
obtained as follows: we set

E=fe?+ge7 D= iq(fei¢ — ge_i‘7)), (5.72)

where f and g are functions determined from (5.2) and (5.72), and ¢ is the phase
integral (discussed in detail in Chap. 6),

Z

P(z) = /qu(C)- (5.73)

In this instance it is convenient to choose the normally unspecified lower limit of
integration in (5.73) so as to make ¢(z) — ¢z as z — —oo. For example, if &(z) =
&1 for z<z;, one can locate the origin at z; and set ¢(z) = fé d{q({). We shall see
shortly that f and g tend to constants as z tends to minus infinity; since r; is defined
as the ratio of the coefficient of e~ to that of e'?, for this choice for ¢ the ratio
r = g/f tends to r; as z — —oo. On eliminating E and D from (5.2) and (5.72),
using ¢’ = ¢, we find

/!
P e o (574
¢+ L (g—pe) =0, (5.75)
2q

Thus f and g are changing only where ¢ (and thus g) are changing, verifying that f
and g tend to constants at +00. An equation for r = g/f is obtained by multiplying
(5.74) by g, (5.75) by f, subtracting, and dividing the result by f2. It is

/
r = 2q_q (¥ — Pe %), (5.76)
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with limiting values of r(z) as z — foo given by

rg «—r— 0. (5.77)
We note that, in contrast to the equation (5.6) for p, variation of r occurs only where
the dielectric function is varying.

The analogous equation for the p wave reflection amplitude is obtained by
setting

B=fe +ge ' C=iQ(fe'’ —ge ). (5.78)

The result of eliminating B and C from (5.32) and (5.78) is

I ZQQ’ (F — ge ) = 0, (5.79)
¢+ Z(e—re) =0 (550
20
Thus the p wave reflection amplitude r = —g/f satisfies
r_ %(ezw _ 22, (5.81)
with limiting values
rp—r—0. (5.82)

At normal incidence ¢'/q = ¢ /2¢ = —Q'/Q, and so the equations for the s and
p wave amplitudes are the same, as they must be. On integrating (5.76) and (5.81)
from —oo to + oo we find

® !/

R / dz;]—q(e2i¢ Y (5.83)
oo Q/

= / dzi(em’ — e HP). (5.84)

These exact relationships lead naturally to the approximations of the next section.
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5.7 Weak Reflection: The Rayleigh Approximation

We have seen in Sect. 5.1 that the meaning of |p(zo) \2 is that of the reflectivity of a
profile truncated at zo (i.e., one which has & = &(z) for z < z9). The quantity |r(zo)|*
has the same meaning, and does not exceed unity (compare (5.13)). When the
reflection is weak, as for a monotonic profile in the long wave limit with
|g1 — g2] < q1 + g2, or for a smooth profile in the short wave limit (the absence of
total internal reflection or regions of negative ¢ is assumed in both cases), it is
reasonable to assume that |r(z)|*< 1 everywhere. Good approximations for r, and
r, are then obtained by neglecting the terms in % in (5.83) and (5.84):

% /
e - / dzg—qew (5.85)

o R = /dz—e (5.86)

We have called these Rayleigh approximations, since they were first derived by
Rayleigh (1912). They could also be called the weak reflection approximations, or
associated with the names of Brekhovskikh (1949) or Bremmer (1951), who
independently derived closely related approximations.

The physical basis of (for example) (5.85) can be seen by considering the profile
as a series of small steps. As z changes by dz, the dielectric function changes by Jde¢
and the normal component of the wavenumber by dg. The contribution to the total
reflection amplitude from this change is or = —(5g/2¢)e*?, assuming that the
reflection at all preceding steps is weak enough to be ignored. The contribution
written down above follows from the single-step formula (1.15), namely

_q—(q+9q) o2t
q+(q+9q)

)

with ¢ (the accumulated phase at z) replacing gz. Adding up the contributions Jr
gives, in the limit of a large number of small steps, the result (5.85).

The weak reflection approximations lead to, in the long wave limit, for a profile
located near the origin,

L. q (0}
U T R oy o 5.87
L O ( )
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These expressions are good representations of the exact limiting values (see Sect. 2.
2)

Q1 q O -0
= s =,
q+q2 0>+ 04

(5.88)

r'so

provided these are small compared to unity; that is, provided é = g; /g2 — 1 and
A = (Q,/0; — 1 are small. More precisely, the s wave reflection amplitudes (5.87)
and (5.88) agree to second order in &, both having the leading terms & — 6> A+ -
The Rayleigh expressions fail completely in the long wave limit when ¢ or A are
not small: for sufficiently large or small values of the ratios ¢;/¢, and Q,/0Q; the
expressions (5.87) will give reflectivities greater than 1. Since [Inx|/2 is no smaller
than |(x — 1)/(x+ 1)| for x > 0, the expressions (5.87) give reflectivities which are
never less than the Fresnel values.

On comparing the exact expression (5.83) with the Rayleigh approximation
(5.85), we see that

o0

/
re =rk4 / dzzq—rzefzm5 = r* + Ar,. (5.89)
q

s

—00
Since |r| <1 everywhere,

/

o0
q
Arg| < dz|=—|. 5.90
EN s (5.90)
When ¢(z) is monotonic,
Ar| < l‘ln@. (5.91)
2l ¢

Similar results follow for the p wave, with Q replacing ¢ in (5.90) and (5.91), the
latter holding only if Q is monotonic. Thus simple bounds may be put on the error
in the Rayleigh approximation. An example of the accuracy of 7% is given in the
next section.

5.8 Iteration of the Integral Equation for r

The differential equation (5.76), together with the condition that »r — 0 as z — oo,
may be integrated from z to oo to give
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oo

10 = [ L - e, (592)

Z

Iteration of this non-linear integral equation gives successive approximations for
r(z) and thus for r, = r(—o0). If we label these functions ") (z), then

o0

/ . 2 .
Fnt(z) = — / dCzq—(ez’d’ - [M(g)} e2i0). (5.93)
/ q
The natural starting point for this iteration is (%) ({) = 0, giving

o0

e =- [ arde. (5.94)

z

Thus r§1> = rR, the Rayleigh approximation.
As an example, we apply this method to the Rayleigh profile of Sect. 2.5, for
which the reciprocal of the refractive index is linear in z in the interval (z,22):

e 2(z) =n(z) = m + (z — 21)An/Aq, (5.95)

=
Rl—

where 1, =¢,%,1n, =&, An =1, —n;,Az =z — z;. At normal incidence the
phase integral is given by

Z

A
d(z) = %/dz 7 (z) = %;lnn—nl, (5.96)

21

and ¢'/q = & /2¢ = —i' /n = —An/nAz. Thus

1’72 2ia
O)y== [ gyt (L 5.97
@ =5 [ (1) (5.97)

n

where o stands for the dimensionless parameter (w/c)(Az/An). The Rayleigh
approximation to the normal incidence reflection amplitude is

r,If = r(l)(m) :4*; [(’12/’71)2’&—1} = (Z?) i“sinﬂxlnz(oizz/m)]’ (5.98)
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0.024
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"
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e ——
0 2 WAz 4

c

Fig. 5.5 Exact and weak reflection approximation reflectivities for the Rayleigh profile
(continuous and dashed curves, respectively). The normal incidence reflectivities are shown, for

¢1=1,6p = (4/3)>. The exact and approximate curves have their first zero at
(w/c)Az = 2.733 and 2.730; successive exact and approximate zeros come progressively closer

and gives the reflectivity

- (ot lnmz/m)])z: (sml2 ln<sz/sl>1>2. (5:99)

" 200 200

The exact reflectivity at normal incidence is given by the two formulae (2.107) and
(2.108) according as o is smaller or greater than 1/4. The exact and Rayleigh
approximation normal incidence reflectivities are compared in Fig. 5.5 (Fig. 2.14
showed the reflectivity over a larger range of wAz/c, on a logarithmic scale). The
exact and Rayleigh approximation curves are not distinguishable on this scale for
(w/c)Az greater than unity.
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Chapter 6
Reflection of Short Waves

Consider electromagnetic waves of angular frequency w, incident on a planar
inhomogeneity of thickness (or characterizing length) Az. When (w/c)Az >> 1, and
at normal incidence, there are many wavelengths within the inhomogeneity and (for
smooth profiles) the change in the dielectric function within a wavelength is small.
This is known as the short wave limit. We shall see that at general angle of
incidence the short wave limiting forms are attained when gAz is large. Since
g1 — 0 as 8, — /2, the short wave approximations fail at grazing incidence.
Special techniques are also needed when ¢*(z) passes through zero, and when
£(z) has discontinuities in gradient.

6.1 Short Wave Limiting Forms for Some
Solvable Profiles

It will be useful to look at some profiles for which the reflection amplitude is known
analytically, both to orient ourselves and to have examples for comparison with the
approximate expressions to be derived. We shall see that there is no universal form
for the short wave expressions, in contrast to the long wave case of Chap. 3, where
we showed that (for instance) the s wave reflectivity always takes the form

4q1q00*

Ry, = Ry g’} =+ .. (61)
(g1 +q2)

There is greater variety and complexity in the short wave case, because short waves
are sensitive to details in the dielectric function profile, while long waves are not.
Hyperbolic tangent profile: from (2.88) and (2.89) we have

= 2 22 sinh (y; —
rs = €Xp 2iZarctan (ﬂ 5 N 2y2 2) : 01 =) ) (6.2)
n=1 n n*+3y{+y;/ | sinhn(y; +y,)
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where y; = ¢,Az and y, = g»Az. Suppose €, < &,. Then ¢} < g3, there is no total
internal reflection, and (for large y, — y;)

R, = e 4mahz 4 .. (6.3)

This short wave limiting form, the long wave limiting form

471'2 2
Rs = RsO 1 - quqZ(AZ) + -, (64)

(obtained from (6.1) and the value i, = (7%/3)(¢; — &,)*(Az)* from Table 3.1), and the
exact reflectivity are compared in Fig. 6.1. The much more accurate Rayleigh
approximation is compared, for the same profile, with the exact result in Fig. 6.3.

When &, > €5, ¢i > g3 and for 6, > 6, = arcsin (ex/e))", q; = ilga|, with total
internal reflection. The leading terms of (6.2) for large y; = ¢,Az are thus unity for
6, > 0. and

Ry=e ™% 4 .. (0,<0.) (6.5)
Rayleigh profile: from (2.108) the reflectivity at normal incidence is

sin® [ [v]In(e; /&)

" AP+ sin?[L v In(er /e2)]

where

1/2
oA\ 1 _ _
(cA;/I) — Z s Af/] = 82 12 — 81 1/2. (67)

Fig. 6.1 Normal incidence reflectivity for the hyperbolic tangent profile. The logarithm to base 10
of the reflectivity is plotted. The solid, dashed and dot-dashed curves are respectively the exact,
short wave and long wave forms. The curves are drawn for ¢y = 1, &, = (4/3)?
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(these forms apply for ((w/c)Az)> > (An/2)?, which is the appropriate case in the
short wave limit.) For this profile the (w/c)Az >> 1 limiting form shows oscillatory
decay:

2

sin (E—A—ln I—I)
R, > {——21 =2/ % (6.8)
Note the power law decrease with increasing (w/c)Az, in contrast to the expo-

nential decay for the smoother hyperbolic tangent profile.
Exponential profile: the reflectivity at normal incidence is given by (2.102):

2 2 2 2 8
_ A B G Df — i (69)
A3 +B}+Cl+ D3+

Uiy

n

When (w/c)Az > 1, the variable u = 2Ve(w/c)Az/ In (e4/e,) is large, and we can use
Hankel’s asymptotic expansions (Olver and Maximon 2010, Sect. 10.17)

2\ 12 , 2\ 12
Jo(u) = <) (ecosw — fsinw), Jy(u) = <> (—ysinw — dcosw)

u u

u u

nw)<3)U?agmv+ﬁmmw, %@)(Eauiymwvéﬁmw,
(6.10)

where w = u — /4. The functions a, f, y and ¢ have asymptotic expansions which
are conveniently expressed in terms of v = (8u) "

9 15
OCNI—EUZ‘F"',ﬁ"\‘_U+"','})N1+7[)2+"',(3N3U+"'.
(6.11)

The cross products Ag to Dy, defined in (2.97), are given by
2

Ag = ——— 7 {(omoa + i By) sin(ua — ur) + (o fy — f92) cos(uz — 1)},
TC(M]Mz)
2 . C o\ .
By = ——— 75 {(oup2 + f102) cos(ua — ur) + (Byy2 — 0102) sin(uy — 1)},
TC(M]Mz)
2 .
Co=———7{=(nm+d1;) cos(uy —ur) = (0102 — 71 5) sin(uy — w1)},
TC(M]Mz)
2 .
Do = ———— 75 {072+ 0102) sin(uz — u) + (7,02 — 017,) cos(uz — 1)}
TC(M]Mz)

(6.12)
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The leading terms of the asymptotic expansions give
8
Aj+Bi+Co+ D ~ ——— {14+ 16[v7 +v; — 201008 2(uy —uy)] }. (6.13)
TT“UiUs

The short wave limiting form of R, is thus

R, ~ 4[0% 403 — 20107 €08 2(uy — ur)]

111 1 2 2 ) (6.14)
=— |54+ —=——cos2(ur —uy)|.
16 |u? w3 wuy S

Like the Rayleigh profile expression (6.8), this decreases as the inverse square of
(w/c)Az. The period of the oscillatory term (that is, the change in (w/c)Az during
which the oscillatory term goes through one cycle) is, for large (w/c)Az,

Elns_z
P — 2 €1
e \/5_\/57

while the Rayleigh profile reflectivity has the period

Py = M (6.16)

(8182)1/2111(82/81) .

(6.15)

These expressions look dissimilar, but give similar values provided ¢, and ¢, are not

too different. For example, when & =1 and & = (4/3)%, P, ~2.71 and
Pg >~ 2.73. For small |¢; — &,| the two profiles are both approximately linear in z, and
P, ~ Pp ~ m/(e162)""*.

The short and long wave limiting forms for the exponential profile are compared
with the exact reflectivity in Fig. 6.2.

The three examples discussed in this section are sufficient to show the greater
variety and complexity in the short wave limiting forms compared to the long wave
case, where the reflectivity is always the Fresnel value plus a term proportional to
the square of the interfacial thickness. The long wave limit is simpler because the
difference between the actual profile and a step is sensed only in an averaged or
cumulative way, through integrals over the difference between the two profiles.
When the wavelength is short compared to the profile extent, finer details are
sensed. For example, discontinuities in slope in the Rayleigh and exponential
profiles give a sinusoidal times inverse square dependence of the reflectivity on the
parameter (w/c)Az, in contrast to the exponential decrease with (w/c)Az for the
smooth tanh profile.
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Fig. 6.2 Normal incidence reflectivity for the exponential profile. The solid curve is the exact
reflectivity derived in Sect. 2.5, the dashed curve is the short wave approximation (6.3), and the
dot-dash curve is the long wave approximation (6.4). The dielectric function values are ¢; = 1 and
e = (4/3)°

6.2 Approximate High-Frequency Waveforms

We can consider together the electromagnetic s and p waves and particle waves, as
in Sect. 2.1. The z variation in all three cases is given by solutions of equations of
the form

&y,
— =0. 6.17
TV (6.17)
We assume here that ¢*(z) is everywhere positive; solutions in the neighbourhood
of zeros of ¢* will be discussed in Sects. 6.7 and 6.8.

When ¢ is constant the propagating solutions are e~*". When g varies we may
expect solutions of the form A(z)e*™#®, where the phase integral ¢ is given by

+igz

Z

P(z) = /qu(C)- (6.18)

The phase integral gives the accumulated phase at z, being the sum of phase
differences equal to (2/4) x (path difference), where for motion in the z direction
described by (6.17) the effective local wavelength 4 is 2a/q. Thus g({)d{ is the
increase in the phase on going from ¢ to { + d¢; and (6.18) gives the accumulated
phase at z.
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The x dependence for planar stratified media is contained in the factor ¢’**. Thus
the total spatial phase is

D(z,x) = P(z) + Kx. (6.19)

Wave functions whose dominant z and x dependence is contained in the phase
factor exp i® correspond to geometrical optics rays, or to semiclassical particle
trajectories. For, consider the wavefronts of exp i®. These are surfaces of equal
phase, ®(z, x) = constant. By definition, the rays are normal to the wavefronts, and
will thus have the direction of

VO = (K,O,%) = (K,0,4(z)). (6.20)

Thus the function exp i® can be interpreted as a system of rays propagating in the z,
x plane, with x and z components of the wavevector being K and ¢g(z). This is
precisely the geometrical optics or semiclassical particle picture of propagation in a
medium which is stratified with z.

A sequence of approximations for the solution of (6.17) may be obtained by
setting = exp [~ d(y({). Then y satisfies an equation of the generalized Riccati

type:

d
L g =0 (6.21)
dz

By the short wave limit we mean that for an inhomogeneous region of extent Az, the
normal component of the wavevector g is large compared to (Az)”'. The physical
meaning of gAz > 1 is that the inhomogeneity extends over many wavelengths. In
the zeroth approximation one neglects dy/dz in (6.21), since (if y varies smoothly)

this is of order (gAz)”' smaller in magnitude than the other two terms. Thus
2o = +ig, and

Vo () = 0. (6.22)

In the next approximation we set

dy\ 2 idz/dz\ /2 idg/dz

+ 2 L0 . .

nw =1\—qg — =4+ 1+ ~ + 1 + 6.23
X < q ]Z ) lq 2 q 242 ’ ( )

on the assumption that the dimensionless quantity y = g~2dq/dz is small. The
corresponding wavefunctions ; = exp [“d{y, are thus
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+ o q1 ' ip(z - _ [ 42 V2 —ip(z)
Vi) = (@) 0, yr(o) = (@) et (6.24)

(The square roots of g, and g, are inserted for later convenience.) It is instructive to
compare the differential equations satisfied by the approximate waveforms y{ and
wf with the original wave (6.17). These are

vy idg
d—z2+< )l//o —0, (6.25)
and
&Yy |, dq/dZ? dg/dz
_ 2
e T2 (W e (6.26)

Note that lﬁ0+ and y satisfy different equations, while v/ are two solutions of the
same equation.

The approximate solutions y; go back to Liouville (1837) and Green (1837),
with later contributions by Rayleigh (1912) and Gans (1915). A historical survey
can be found in Heading (1962). The initials WKB or JWKB are often associated
with w7, the initials standing for Jeffreys (1924), Wentzel (1926), Kramers (1926),
and Brillouin (1926). However, as Olver (1974) remarks, the contribution of these
authors was not the construction of the approximation, which was already known,
but the determination of connection formulae for linking exponential and oscillatory
approximations across a zero of ¢* on the real axis. The latter problem is discussed
in Sects. 6.7 and 6.8.

Exact solutions of (6.17) satisfy the flux conservation condition, the physical
basis of which (conservation of energy in the electromagnetic case, and of proba-
bility density current in the particle case) was discussed in Sect. 2.1. The mathe-
maticz;l statement follows directly from (6.17) and its complex conjugate, which for
real g~ is

d2lp*

= +q*yt =0. (6.27)

We multiply (6.20) by w" and (6.28) by v, and subtract. The result is

9 () o -

so that l,b* d‘/’ w%—‘l’z =2iIm (W %) is a constant. For reflection problems the

asymptotic forms of y are
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% | e Ty gt (6.29)

and the fact that Im (¥*dy/dz) is independent of z implies the flux conservation
law

a1 (1= 1r”) = galel. (6.30)

Any approximations to y which satisfy an equation of the form (dzlp / dzz) +3Y =

0 with real ¢*> (as do y7) will have Im(\/*dyr/dz) = constant, and thus conserve
flux. The zeroth approximations y; on the other hand have

Im (5 "dyy /dz) = £4(2), (6.31)

which varies through the interface. This variation is associated with the
absorption-type term idg/dz in (6.25). Nevertheless, we will find it instructive to
examine the zeroth approximations obtained with g for the reflectivity in the short
wave limit.

6.3 Profiles of Finite Extent with Discontinuities in Slope
at the Endpoints

Consider profiles for which g varies continuously in the interval [z, z5], and takes
the values q; for z < z; and ¢, for z > 72,; and let F(z) and G(z) be two linearly
independent solutions of (6.17) within [z, z2]. We showed in Sect. 2.2 that the exact
reflection amplitude is given by

_ Qdima §192(F1G> — GF») +iq) (FI\G, — GiFy) +iqx(F\G> — G\F>) — (F\G, — G,F,) .
0192(F1G2 — G\ F2) +iqi (F1G, — G\F,) — iqa(F|G2 — G\ F2) + (F|G, — G\F)
(6.32)

r

In this section we consider the approximations #* and 7" to r, obtained by setting
F, G equal to v, wy or w1, yy respectively. We assume ¢°(z) to be continuous at z;
and z,; this excludes (for example) the homogeneous layer (or two-step) profile.
Consider r* first, obtained by approximating F by w{ and G by ;. Then
F=¢? F =ige, G=e¢ G = —ige ™. On comparing (6.25) with (6.17),
we see that such an approximation can be good in general only if y = ¢ 2dg/dz is
small within the interface. If ¢*(z) varies smoothly within [z1,21 + AZ], 7 is of order
(gqAz)”". Thus when gAz is large, and the profile is smooth, |r — ¥ is expected to
be small. Let A = ¢(z2) — ¢(z1) = [.7 dzq(z) be the phase difference between z,

and z;. Then
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F1G2 - G1F2 = —2isinAc]§, FlG,2 - G1F/2 = —ZiqZ COSA¢,

F\Gy — G\Fy = 2ig cos Ap, F,G, — G,Fy = —2iq g sin A¢. (633)
On substitution of (6.33) into (6.32) to find ’? we see that the zeroth order
reflectivity is zero. This is the correct short wave limiting value in the absence of
turning points (values of z where ¢*(z) = 0, at which a classical particle or a ray
described by geometrical optics would turn back).

The next approximation is obtained by substituting F = yj and G = y into
(6.32). Using F' = q(i — y/2)F and G' = — q(i + y/2)G, where y stands for the
dimensionless quantity ¢ >dg/dz, we find

Fi1Gy — G1F, = —2isinA¢
FiG, — GF) = iga(—2 cos Ay + 7, sin A)

F.Gy — G\F> = igi (2 cos A + 7, sin Ad) (6.34)
/ / ’ ’ . . 1 .
F\G, — G\F, = iqiqp[-2sinA¢ + (y; — 7,) cos Ap — ERARe) sin Ag].
On keeping first order terms in the small quantities y;, y,, we find
. e2iq111 +iA¢p ) )
rV :4—1-{(“/1 — 72) cos Adp — i(y; +7,) sin Ag}. (6.35)
The corresponding reflectivity is
2 1
R — ’r(l)} :E{y%+y§—2y1yzcos2Aq’>}. (6.36)

We can compare this formula with the short wave limiting forms obtained for the
Rayleigh and exponential profiles in Sect. 6.1. These results were given for normal
incidence, for which ¢ = \/ew/c, and

7(z) = ¢ %dg/dz = (c/w)e'dV/e/dz. (6.37)

For the Rayleigh profile defined by (2.103), y is independent of z at normal
incidence:

—An -1/2 -1/2
Y — An = — 6.38
V (CU/C)AZ7 n 82 81 ) ( )
and
lw Az, g
Ap==———In—. 6.
¢ 2 ¢ An nsz (6.39)

Thus (6.36) is in accord with (6.8).
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For the exponential profile given by (2.93),

_ In(e/e) _1
C 2(w/c)AzE T u’ (6.40)
and
A(]’) (UJ/C)AZ (\/ —\E) = Uy —up. (641)
In(ey/er)

Again the expression (6.36), derived by approximating the solutions by w7, is in
agreement with the exact limiting form (6.14).

It is interesting that the factor ¢~ '/?, which transforms the approximate wave-
forms y; into the better approximations /7, takes us from zero reflectivity to the
useful expression (6.36). This can be better understood by looking at the total
wavefunctions aF + G within the inhomogeneous region, with F, G respectively
given by v, wo and w1, ;. With y given by

eithz + re_i”lz (Z<Z1)
Y(z) = { oF () +BG(z)  (z1<z=22) (6.42)
teiqzz (Z > Zz)

the continuity of y and dy/dz at z; and z, gives us four linear equations in the four
unknowns a, f, r, t. In Sect. 2.2 we found r and 7 (Equations 2.25 and 2.26). The
corresponding formulae for a and S are

o = 2ig e (G, — igrG,) /D, B = —2ig,e% (F, — igF,) /D, (6.43)
where D is the denominator of (6.32). We see at once that 8 = 0 for F = y{, = e,
since F' = igF. Thus there is no backward propagating wave, consistent with zero
reflection. The values of a, f when F = y{ and G = y are

a0y = ei(qul*#’l)7 ﬂO =0. (644)

The corresponding expressions obtained with F = 7, and G =y, are, to first order
in the small quantity 7,

2 /2.
o = (1 _ﬂ) gllaa=o1) B = (ﬂ) ﬂei(mzl—d)ﬁztbz). (6.45)
4 q> 4

The coefficient of the backward propagating wave is now nonzero, and the coef-
ficient of the forward propagating wave has a first order correction term in it.

The transmission amplitude for a profile of finite extent may be found from (2.26)
and (6.34). The result is
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() — 4(q1/g2)" 2l .
dcosAp+ (71— 72) sinAd — i(4sin A — (; — 7,) cos A+ 177, sin Ad)
(6.46)
Thus, to second order in y; and y,,
2 q1 1
‘t(l)’ =l __(V%"‘V% — 29,7, cos 2A¢)]. (6.47)

q 16

On comparing with (6.36), we see that the conservation law g;(1 + |r*) = go|* is
obeyed to this order in y.

Profiles with discontinuities at its boundaries in value as well as in slope can also
be treated by this method (Lekner 1990).

6.4 Reflection Amplitude Estimates from a Comparison
Identity

Let y be the solution of

d , 4 .

d—lf +@Y =0, e fre Ty — relF (6.48)
z

and (p the solution of

= PP =0, €N pFeTT g — et (6.49)

The functions ¢(z) and g(z) have the same asymptotic values ¢, and ¢, at + co. We
showed in Sect. 2.1 that r and 7 are related by

o0
r=¥— %ql dz(q* — @)Yy (6.50)

—00
We will use this identity to obtain approximations for r in the short wave limit.
Consider first the result which comes from substituting J/ = WJ into (6.50), where
v = ¢ is the zeroth approximation to y in the short wave limit. Since v, satisfies
(6.25), ¢* = q* —idg/dz; also 7 =0 since there is no backward propagating
component in g, as can be verified by examining its limiting form as z — —oo.

Thus we have the identity
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o0

1
2q,

—00

d
dzd—pr%* . (6.51)

This is an exact relation, for all g(z) and the corresponding y and /. Contributions
to r come from regions where ¢ is changing; since ¢*(z) = e(z)w*/c* — K>, these are
the regions where the dielectric function is changing.

We saw in Sect. 6.2 that y{ is a fair approximation to y provided the dimen-
sionless quantity y = g~2dg/dz is small. Assuming this is so, the expression

[e'e] q
1 dg 2 1 / ‘
O — — = @tV = - dged¢ 6.52
, o / W) =5, [ da (6.52)
—00 q1

should be a fair approximation to r. We will not discuss the properties of #?, since
there is better theoretical basis for the similar approximation ", which is obtained

from substituting ¥ = ;" = (g1 /q)"/*¢'® into the comparison identity (6.50). (The
factor /g in the expression for W gives the correct coefficient of €' in l} as
7 — —00.) Since y7 satisfies (6.26),

1% 3 [dg\* 1 ,,d (dg/dz
PP 9 2 (Y9 _ 2 Z 2 6.53
T=4q+ 2gdz2 443 (dz) 7+ 27 ( )’ (6:3)

and we obtain the identity
o [ d (dg/dz\ . .
r= (4iy/q) ! / dzd—Z (;13—//2)#6‘”. (6.54)

On approximating by w7} we have another estimate for r, which can be put into
several equivalent forms by integration by parts and a change of variable from z to ¢:

1 7 d dg/dz\ 1 i dg »; 1 /OO dg/dz :
1) — — -~ 2ip 9 2ip - 2ip
r 1 dzdZ ( el )q e > / dzqdze + % dz Pl e

—00 —0o0 —0o0

I N N N A A
N 2/d¢<qd¢)e +8i/d¢(qd¢>e

—00 —

(6.55)

We note that the part equal to —3 [ dgg~'e*? is the Rayleigh (or weak reflection)
approximation of Sect. 5.7, rg. This is the dominant part of #: in the last line of (6.55)
the dimensionless quantity ¢~ 'dg/d¢ is precisely the function y = g~ *dg/dz which has
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to be small for yq and y; to approximate y well. The last term in (6.55) could thus be
omitted in the calculation of the reflection amplitude to lowest order in this quantity.
However, the expression (6.55) came directly from the identity (6.54), and will be
seen to follow from first order perturbation theory in the next section, so there are
reasons both for retaining and for dropping the last term in (6.55).

In the short wave limit the factor e** oscillates rapidly with z, and a smooth
variation of ¢ with z will lead to exponentially small values of the integral. If
however g has discontinuities in any of its derivatives, the main contributions to the
integral come from the neighbourhood of the discontinuities. We will give exam-
ples of these possibilities.

Consider the case of a medium which is inhomogeneous only within the interval
[z1,22], and which has discontinuities in the slope or higher derivatives of ¢ only at
the end points z; and z,. The exponential and Rayleigh profiles are in this category.
In the short wave limit the factor e** oscillates rapidly with z, averaging to an
exponentially small value any slowly varying contribution in the integrals defining
. There will be a contribution in (6.55) arising from discontinuities in slope: we
write (6.55) in the form

7 2 2 2

WUV B L gq/dz>  3(dg/dz) &2t (6.56)
4i q* 2 4

and note that for a profile in which the dimensionless function y = ¢~ 2dg/dz changes

from 0 to y; at z;, and from y, to O at z,, the second derivative term in (6.56) has the

delta function singularities y,0(z — z1) — 720(z — z»). Thus (6.56) takes the value

1 . . ei(¢1 +,)
(6] — 2ipy _ 2, __
r 4 {713 72€ }

4 {Vle_iA¢ - VzelM) }7 (6.57)

plus exponentially small terms from the smooth part of the profile. This expression
gives the same reflectivity as the theory of Sect. 6.3, (Equation 6.36). It is in
agreement with (6.35) in phase as well as in absolute magnitude if ¢; = ¢(z1) = g12;.
This condition is in fact a requirement arising in the setting up of the comparison
identity (6.54), in which the asymptotic form e/?'* was assumed for 1 in the limit as
z — —oo. This requirement fixes the phase function to be

Z

$(z) = q1z1 + /qu(C). (6.58)

21

In the case of a smooth profile, with all of its derivatives continuous everywhere,
the approximation " of (6.55), and its dominant part, the Rayleigh approximation
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o0

dg/dz
rp = — / dz%ez"/’, (6.59)

—00

work well down to surprisingly small values of (w/c)Az. However, these approxi-
mations give, in general, only the correct exponent in the short wave limiting form,
and not the correct prefactor. We shall illustrate with the hyperbolic tangent profile,
for which the phase integral may be evaluated analytically. We have

1 1
7*(2) = 5 (a1 +43) + 5 (43 — q) tanh 2/2Az. (6.60)

In the phase integral

Z

b(2) = / aq(?) (6.61)

0

we transform first to the variable 7 = tanh ({/2Az), and then to the variable
y = gAz. We find

tanh z/2Az qAz
¢) = / dr(l if * lJlrf>y(T) - / & y2{y§ 1y2 Ty 1%}
) J
— )~ S6), y
(6.62)
where
P =30t ed) ) =2y (6.63)

(this form applies for y; < y,, which is the case when &; < &). The Rayleigh
approximation for the reflection amplitude thus becomes

y2 y2

2iy 2iy;
re = — Le200) / dy (M) (Y—_yl> _ Lo / dy i)
2 y \n -y Y+ 2 y

M i

(6.64)
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The long-wave limiting form is (in accord with the results of Sect. 5.7)

L. g
g — —=In—=. 6.65
R 2, (6.65)

The Rayleigh approximation is compared with the exact result in Fig. 6.3.

We see that the Rayleigh approximation gives good agreement with the exact
reflectivity over the entire range of wavelengths. One might expect that at short
wavelengths the agreement becomes perfect. This is not so: the asymptotic value
has been given by Berry and Mount (1972), and they find that the reflectivity
resulting from this approximation is not expression (6.3), but 7°/9 ~ 1.0966 times
that value. The exponential is given correctly, but not the prefactor. The theoretical
reason for such discrepancies was shown by Pokrovskii, Savvinykh and Ulinich
(1958) to lie in the nature of the perturbation series of which 75 is the first term. This
is called the Bremmer series; a related approach is the Brekhovskikh iteration
method of Sect. 5.8. These will be discussed further in the next section. Here we
note only that the discrepancy is usually of little practical importance. For example,
for the hyperbolic tangent profile the correct asymptotic form exp (—4nq,Az) is
better than the Rayleigh approximation only beyond (w/c)Az =~ 2, where the
reflectivity is so small (about 107'") as to be extremely difficult to measure.

0.021

0.01+

0 03 wAz 0.6
c

Fig. 6.3 Reflectivity at normal incidence for the fanh profile. The solid curve is the exact
reflectivity from (6.2), the dashed curve the Rayleigh approximation reflectivity from (6.64). The
values e, = 1, & = (4/3)2 are used, as in Fig. 6.1 (where the long and short wave limiting forms
were shown)
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6.5 Perturbation Theory for Short Waves

As in Sect. 3.1 we wish to express v, the solution of

@ + @Y =0, ey — rel? (6.66)

in terms of a known function & the solution of
L 4P =0, T4t — ) — 7l (6.67)

To do this we need a Green’s function G(z, () satisfying the equation

82

Fr 7G=106(z-0), (6.68)

and giving the appropriate boundary conditions for .
In Sect. 3.1 we used e** to construct G, with go(z) = g, for z < 0 and g, for
z > 0. These functions are appropriate for the long wave case. Here we use 1+ =

(ql/q)l/zei¢, Y = (qz/q)l/ze”'d’ to construct G, these being wavefunctions which
approximate y in the short wave case. The required Green’s function is

i (@Y, () 2 <
B q“”)/ l 1 6.69
@ { qqz)l/z Ui @y () z>¢ (6.69)
This G satisfies (6.68) when z # {, with
7 Pa/d? 3 (dg\?_ 5 1, d (dg/ds
=t ) = 5 P
e 2q 4 (C]dZ> =7t 24 dz ( pE )» (6.70)

because of (6.26). The derivative of G is given by (again using y = ¢~>dg/dz)

0G _ [ ~q(2)(i+9(2)/2G(0) 2=
0z { q@2) (i —y(2)/2)G(z,{) z>¢ (6.71)

When z = {, G takes the value 1/2ig(z). Thus 9G/9z has the required unit discon-
tinuity at z = ¢, leading to the delta function on the right-hand side of (6.68). The
integral equation satisfied by y appropriate to the reflection problem is

oo

W) = ¥it () — / ALG(z, DAF O (D), (6.72)

—00
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where

1 ,,d (dg/dz
2_ 2 -2 L gpdfdg
AT =q —q =-5q dz<q3/2). (6.73)

As 7z — —oo this gives the asymptotic form (on choosing the lower limit of inte-
gration in ¢ to make ¢ — ¢,z as z — —00)

. 1 7
U(z) — 1 ———— [ dlyy (@Y (DA (Ow(0)
: 2i(611112)7£ Hen ! (6.74)
_ igie aigiz L [ o4 d‘l/d5> ()
e dig _4 dCdi(tP/z )

The coefficient of e 17 is the exact reflection amplitude r; the expression above is
equivalent to (6.54), obtained from the comparison identity (6.50). The first order
perturbation result is obtained by setting = w7 on the right hand sides of (6.72)
and (6.74), and reproduces " as given by (6.55). Higher order approximations are
obtained by iteration of the integral equation, as in the long wave case of Chap. 3.
The integral equation (6.72) and the resulting perturbation series are closely
related to the coupled equations derived by Bremmer (1951), and the resulting
Bremmer series. This in turn has an intimate connection with the Brekhovskikh
series of Sect. 5.8, as we shall show by deriving the Bremmer equations from the
results of Sect. 5.6. In (5.74) and (5.75) we put f = q’%F, g = q’%G, to obtain the
coupled, first order, linear differential equations

!/ /
F=%ge ¢ =9 peis, (6.75)

2q 2q

These have the same form as the Bremmer equations (Bremmer (1951), (6.15)); the
relation of F' and G to the Bremmer functions uy and u, is

F = q%e_id’uT, G= q%eid’ul. (6.76)

For waves incident from z= —oco we have G(+o00)=0. If further we set
F(—o00) = 1, then G(—00) = ry, and integrating the equation for G’ from —oo to
+ 00 gives

oo

/
re=— / dzzinez"d’. (6.77)

—00
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When we approximate F' by unity (weak reflection) we regain the Rayleigh
expression for 7.

The Bremmer series, obtained by iteration of the pair (6.75), has been investi-
gated by Bellman and Kalaba (1959) and Atkinson (1960), the latter showing that
the series converges if

I |dg/dz
/dz‘q/z<n
q

(6.78)

When &(z) is monotonically increasing, so is g(z), and (6.78) may be written as

—=h=<x (6.79)

q1

At normal incidence this condition reads e,/e; < €™ ~ 535, a rather weak constraint.
The condition for convergence progressively tightens as the angle of incidence is
increased: taking the example of the air-water interface at optical frequencies,

a=1 e~ (%)2, we find that the inequality (6.79) is satisfied by a factor of more
than three hundred at normal incidence, but is violated at 6; ~ 87.8°, that is at
about 2.2° from grazing incidence. The failure of the short wave approximation
near grazing incidence was implied in Sect. 6.2, where we noted that the function
y = q *dg/dz had to remain small. Near grazing incidence, or near the critical angle
(where respectively g, and g, tend to zero) y becomes large within the interface, and

the short wave perturbation theories fail.

6.6 Short Wave Results for r, and r, /r;

We shall first summarize the results obtained for the s wave, rewriting the results in
electromagnetic notation. The electric field is [0, E(z) exp(Kx — wt), 0], with

¢E i —i i
= +qE=0, " 4re ' —E — ' (6.80)
z

Approximate solutions of (6.80) are

v = (‘;)4’ v = (‘;)¢ o) = / agt),  (681)
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which in fact satisfy

2yt 1&g 3/dg\*
del + lqz + Zd—zz - Z (—> wzlt =0. (682)

The comparison identity (6.54) applied to r;

o [ d (dg/dz\ ..
ry = (4i\/q1) l/dzd—z<;l3//2 )Eeﬁb7 (6.83)

or the perturbation theory of the previous section, lead to the approximation

1 7 d dg/dz\ _1 5
() — 2ip
=g dde ( 7 )q 2277, (6.84)

—00

For the interfaces which extend from z; to z,, and have discontinuities in the slope
of ¢ at the end points but are otherwise smooth, (6.84) gives

i(¢1+2)
(& —i i
V= 4i {re A — e A(b} +o (6.85)

(exponentially small terms from the smooth part of the interface being omitted).
We now wish to derive corresponding results for the p wave, for which

1
B = [0, 8", 0] = [0, (3) hbe"(Kx“’”,O], (6.86)
1
The function b(z) = (&/ 8)%3(2), introduced in Sect. 1.2, satisfies
dzb 2 iq1z —iq1z iq22
a2 +qyb=0, €9 —r,e — b — 1, (6.87)

1 1 2 2
, o, ed (de/dz o adler 5 1d% 3 (de
- £e —f g = —— (=) . (688
“W=9"5 < & T T a1 e (6.88)

(compare (1.22) or (2.3)). For smooth profiles the difference qi - q2 is of order

(Az)™%, and thus smaller by the factor [(w/c)Az]™* in comparison with ¢°. It is
therefore negligible in the short wave case, except at grazing incidence or near
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turning points. For profiles which have discontinuities in their first derivative
(typically at the end points z; and z,), the second derivative has delta functions
contributions at such points.

We first derive a comparison identity linking b and w7}, which satisfies (6.82),
with the lower limit in the integral defining ¢ chosen so that ¢ tends to gz as

Z —> —00;

o=

N — Yt — (ﬂ) i@z +Ad) (6.89)
92

The expression in brackets in (6.82) will again be shortened to §°. The identity
resulting from multiplying (6.87) by w7, (6.82) by b, subtracting, and integrating the
result from —oo to oo is

1 fi -
=g | =i (6.90)
-0

At normal incidence g — k = y/ew/c. Denoting derivatives with respect to z by
primes,

1é' 5 (¢
2 9
- L 91
79 7% 16(8)7 (6:91)
" ! 2
le T (e
2 -2
Pt LR 6.92
D=9 7y 16(.9) (6:92)

Thus the expression (6.90) for r, gives the normal incidence reflection amplitude

I
n = 5 dz y 6.93
" ik, [48 16()]% (6.93)
which is to be compared with the corresponding expression obtained from (6.84):
1 [1d s e
= dz . 6.94
" ik [43 16<)]d/1 (6.94)
—00

These are both identities, but give slightly different values for r,, when b and E are
both approximated by 7.
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At general angle of incidence, (6.90) reads

o " ’ 2 " !’ 2
1 e 3 /¢ q 3/q i
= [ d|=-2(%) L4 2(L b, 6.95
" dig, ZL‘ 2(6) q+2(q)]l (693

and when b is approximated by w7, it leads to

1 0 8// 3 8/ 2 q/r 3 q/ 2
(1):_ e 1= _ 1 7 —1.2i¢p
pod Jofi 3@ e o

For profiles of finite extent which have discontinuities in the slope of &(z) at the
boundaries z; and z,, the dominant short wave contribution comes from these
discontinuities. Then, as in the s wave case, the quantity y = g “dg/dz changes from
0 to vy, at z;, and from vy, to O at z,. The resulting contribution to the integrand of
(6.96) is

1 €0820,0(z — z1) — 9, c0820,0(z — 22), (6.97)

(at z; the g"/g* term has delta function strength y; and the ¢"/eq term has delta
function strength 2y, cos” 6,.) If the profile is smooth everywhere except at z; and
2, the leading term in the short wave limit is

1 ; i
r[()l) — 4_. {Vl CcoS 201621¢1 — Y, COS 20262@2} + - (698)
1

(...denotes exponentially small term terms). This may be rewritten, with

Ap =y — ¢, as

i(¢1 +b2)
€ —i i
) = T{yl cos 201674 — 9, cos 20,0} + .. (6.99)

At normal incidence (6.99) is in agreement with rgl) as given by (6.85), and the ratio

r;l)/rg.l) correctly takes the value +1. At grazing incidence the approximations r."

and rl(,l) both fail, since the assumption that y = ¢~ dg/dz is small compared to unity
cannot hold as q; = v/&(w/c) cos 0; tends to zero. Neither does 7 tend to 1 nor
does " tend to —1 (the correct limiting values at grazing incidence, as shown in
Sect. 2.3), but rg)/rg.l) does tend to the correct limiting value of —1, since the y; term
dominates and cos 26, tends to —1.

The s and p reflectivities in the short wave limit are

2 1
R\ = ”'ﬁ”‘ =16 {77 +75 — 2717, cos 2A¢ |, (6.100)


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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y_ |
R[(, = ‘r(

2
p ‘

1
-1 {77 cos® 20, + 73 cos’ 20, — 2y, 7, cos® 20, cos® 20, cos 2A¢ }.
(6.101)
We will compare these formulae with the exact results for the exponential profile

defined in (2.93), in which the dielectric function ¢ changes exponentially with
z (compare Sects. 2.5 and 6.1) and

1 ,dg?  e?/c? Az
S sdq - 102
'=29 ¢ 2aq3 “Tn (e2/e1)’ (6.102)
A¢p =2a{q> — q1 — K[arctan(g/K) — arctan(q,/K)]}. (6.103)

The reflectivities as a function of angle of incidence are shown in Figs. 6.4 and 6.5.

We see from these figures that the short wave approximations work well at
normal incidence with the rather small value (w/c)Az = 2, but at this value their
accuracy is poor near the Brewster angle and beyond. Thus care must be taken in
the ellipsometric application of the formulae (6.85) and (6.99) in the intermediate
region when the interfacial thickness is of the same order of magnitude as the

0 30 0 60 90

Fig. 6.4 Angular dependence of the s wave reflectivity for the exponential profile, at (w/c)Az =
2 and withe; =1, & = (4/3)2. The solid curve (marked e) is the exact reflectivity obtained from
(2.99); the dashed curve (a) is the short wave approximation (6.100). The ratio RS/Rﬁ.” is also
shown as the dash-dot curve; R\ is about 2 % too large at normal incidence, and about a factor of
2 too large at 60°


http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
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0.01+
R
r
0

Fig. 6.5 Angular dependence of the p wave reflectivity for the exponential profile, at (o/c)Az =
2 and with &, = 1, & = (4/3)*. The solid curve is the exact reflectivity obtained from (2.98); the
dashed curve is the short wave approximation (6.101). Note the vertical scale is enlarged one
hundred times relative to Fig. 6.4. The minima of R, and Rl(,l) are near 49.7° and 48.9°; the
zero-thickness Brewster angle is arctan(4/3) ~ 53.1°

0.5

-0.5-

Fig. 6.6 Exact (solid curve, e) and approximate (dashed curve, a) trajectories of r,/rs in the
complex plane, as a function of the angle of incidence. The curves are drawn from the exponential

profile, with & = 1, & = (4/3)%, (w/c)Az = 3. The curves start at 1 at normal incidence, pass
through their principal angles of 41.9° and 39.7° (where the respective real parts of r,/r, are zero,
points shown on the graph), and end at —1 at glancing incidence

wavelength ((w/c)Az =2 corresponds to a wavelength about three times the
interfacial thickness, giving the normal incidence values y; ~ 1/7 and y, ~ 1/10 for
the profile used in Figs. 6.4 and 6.5).


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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From (6.85) and (6.99) we find that the real and imaginary parts of the ellip-
sometric ratio have the short wave limiting forms

R <rp> M 9% c0s 201 + 93 08 205 — 7,7, (cos 201 + cos 20,) cos 2A¢ (6.104)
e| L) = o
s 7175 — 27172 c08 2A¢)
. (rp> W 91720826, — cos 20,) sin 2A¢ (6.105)
7 7173 = 2717, cos 2A¢

The trajectory of r,/r, in the complex plane, as a function of the angle of incidence,
is shown in Fig. 6.6 for the exponential profile. We see that while the short wave
approximations for the reflectivities work well down to (w/c)Az =2 at normal
incidence, the agreement is poor at intermediate angles even at (w/c)Az = 3.

So far in this section we have given results based on the approximations 7"
", which may be written in the form

1 [e¢} " 3 N\ 2
rgl) = dz lq___(q_) ]q—leZid” (6.106)
: 4i q 2\q

1 0 6// 3 8/ 2 q// 3 q/ 2
== [ gzl 2(2) 2L L 2(L) |, 1629, 6.107
g 4i/ le 2<8> q +2<q> 1{] ¢ ( )
-0

We will compare these with the Rayleigh approximations of Sect. 5.7:

and

x® !
R= / dz L 2. 6.108
A 2 (6.108)
—00
o0
0
K= / dz@ez’¢. (6.109)

By changing the variable of integration temporarily to ¢, integrating by parts, and
changing back, these may be written in the form

o0 " N 2
1 .
K== [ a4 ["— - 2(1) ]q_lez”/’, (6.110)
N q q

" N2 o " N 2
dz [ﬁ_ <‘5> _td 4 +2(q> ]qlew, (6.111)
€ £ eq q q


http://dx.doi.org/10.1007/978-3-319-23627-8_5

6.6 Short Wave Results for r, and 7, /r, 159

When written in this form the difference between the two approximate sets is seen
to lie in the coefficients of the square of the first derivatives, but not in the second
derivative. Thus for profiles with a discontinuity in the first derivative of &, and
consequently a delta function contribution to €” or g”, there is no difference between
the short wave limiting forms of the Rayleigh approximation and those based on the
Liouville-Green waveforms.

At normal incidence the two Rayleigh forms agree, giving

l 0 " 3 ! 2
R [ |22 () ke 112
T8 ) FlE T 2\G o (6.112)

while there is a difference between the expressions (6.106) and (6.107) when
q — \ew/c =k, the two averaging to (6.112):

1 0 8// 5 8/ 27
D — [ dg|= == (=) [P 6.113
—00

1 T g 7 )
) _, — R ~1g2i¢ 114
Ay / dz . 4< ) ke (6.114)

6.7 A Single Turning Point: Total Reflection

The preceding sections have dealt with the case ¢ < &, (or V| > V, in the quantum
particle case), where qz(z) = e(z)a)zlc2 - K is positive everywhere. We now
examine the opposite case where ¢, > &, (or V| < V5), of which examples are: light
incident on an interface from the optically denser medium, radio waves incident on
an ionospheric layer, or particles moving up a potential gradient. This was illus-

trated in Figs. 1.8 and 1.9. For 0; > 6. = arcsin(e;/ 81)% there will be total internal
reflection, since then g3 < 0, and the wave deep inside medium 2 decays expo-
nentially as exp (—|galz). In geometrical optics and classical particle physics the
reflection occurs at the point zo defined by ¢(zo) = 0. This is called the rurning
point: a classical particle turns back at z,, being unable to penetrate into a region
where the kinetic energy of the motion in the z direction would become negative.
Waves do penetrate beyond this point, but decay exponentially for z > z, and there
is no propagating wave at infinity.

For a given profile, the location of the turning point is a function of the angle of
incidence. The location is given by qz(zo) = g(zo)a)z/c2 — K?> = 0, and since
K? = e(w*/c?) sin 6, zo is determined by


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_1
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e(z0) = & sin” 0;. (6.115)

For example, for the hyperbolic tangent profile, for which

g + ¥/ A
o) =22 (6.116)
cos? 0 cos? 0;
0) = Azln—s 1 = Azln—— L 6.117
2(0) = Az sin® 0 — &,/¢; T Sin? 0, — sin? 0, | !

This varies from + oo at 6, to —oo at grazing incidence. Three curves of ¢* versus
z for this profile are shown in Fig. 6.7.

A turning point, and the consequent total reflection, may be present even at
normal incidence if the dielectric function passes through zero. An example is
provided by the dielectric function of an electron plasma, approximating the
electron gas in metals or electrons in the ionosphere. If electron collisions and the
consequent damping are neglected, this takes the form (see for example Budden
1985 or Kittel 1976)

Fig. 6.7 Variation of ¢*(z) with angle of incidence. The curves are drawn for the hyperbolic
tangent profile, with & = (4/3)?, & = 1, (. = arcsin 3/4 ~ 48.59°), representing the water-air
interface at optical frequencies. The turning point for 6, = 75° is circled
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) (2)

w?

e(z,m)=1— , (6.118)
where w,, is the plasma angular frequency, and is a function of z through its
proportionality to the square root of the electron density. For this simplified
dielectric function, there is a turning point at normal incidence at zy given by
,(z0) = w, and at a general angle of incidence at zy(w, 0;) given by

w,(20) = wcos b, (6.119)

(the limiting value & = 1 is assumed in (6.118)). This model will be considered
again, with dissipation included, in Chap. 10. An analogous case of total reflection
at normal incidence occurs for particles when their energy is less than V,, the
potential energy in the second medium.

When total reflection occurs we know that |r|* = 1 (in the absence of dissipation)
so there is little point in calculating the magnitude of r. But there is information in
the phase of r: it gives for example the location of the ellipsometric ratio 7,/r; on the
unit circle, and determines the time of arrival and shape of reflected pulses (as we
shall see in Chap. 19). A simple argument shows that the phase of r, is always a bit
less than 2(¢y — ¢-), where ¢(z) = [“d(q({) is the phase integral, and takes the
limiting form gz + ¢_ as z — —oo, and ¢ is the value of ¢ at z,. The argument is
based on the behaviour of the wave function near a turning point, illustrated in
Fig. 6.8 for the linear profile considered in Sect. 5.2.

Fig. 6.8 Wavefunction E(z) for total internal reflection by the linear dielectric function profile.
The parameters used are ¢ =2, & = 1, ) = 60°. The real and imaginary parts of E(z) are
proportional to each other when there is total reflection: Im(E)/Re(E) = tan (J4/2) when ry = s
(see Sect. 2.2). Only the imaginary part is shown. The turning point z, is half-way down the ramp
at this angle of incidence


http://dx.doi.org/10.1007/978-3-319-23627-8_10
http://dx.doi.org/10.1007/978-3-319-23627-8_19
http://dx.doi.org/10.1007/978-3-319-23627-8_5
http://dx.doi.org/10.1007/978-3-319-23627-8_2
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The fact that the phase of r, is always a bit less than 2(¢o — ¢—) follows from the
shape of the wavefunction near the turning point, where it changes from oscillatory
behaviour to monotonic decay, with a consequent extremum at zo — dz. The zeroth
approximation for the wave is, for z < z,

Er iy =e?) 4 pe 070, (6.120)

This expression fails near z,, but in the short-wave limit its region of validity
approaches it. Since E has an extremum at z, — 0z, we obtain an estimate of r, by
setting dyo/dz = O at this point, where ¢ takes the value ¢y — Jd¢. This gives
ry /2 e?(?=99=¢-) For profiles which can be approximated by a linear variation
near the turning point, it turns out that d¢ takes the universal value n/4 in the short
wave limit:

ry o 2000 5 A0 — ) — g (6.121)

Equation (6.121) is derived by constructing an accurate solution in the neigh-
bourhood of the turning point, on the assumption that ¢*(z) = e(z)w*/c* — K> is
approximately linear near its zero z,

2 - . (1)_2 de
g (2) = (z—20) ()0 (6.122)

¢ \dz

For waves incident from the left and totally reflected, ¢* and & are decreasing
functions of z, and the derivative of ¢ at z, is negative. We set

{=(z—20) [i)—j (—j—i)or, (6.123)

and the wave equation d’E/dz* + ¢°E = 0 transforms, in the neighbourhood of the
turning point, to Airy’s equation

i (E =0. (6.124)

The solutions Ai({) and Bi({) of (6.124) were discussed in Sect. 5.2. Here we need
only the asymptotic forms for large |{]:


http://dx.doi.org/10.1007/978-3-319-23627-8_5
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AI(Q) ~ 3 n it exp | -3¢ (Jarg ¢ <)

AK—{)AJR%Fignkg%j.ﬂ (|arg ¢| <27/3) 6.125)
Bi(0) ~n i Hexp 3] (Jarg [ <7/3)

Bi(-{)~ritHeos 3+ 3] (argl]<2n/3)

The main features of the asymptotics (for real {) can be obtained from the
approximate waveforms y; of Sect. 6.2. For example when ¢ > 0 these are pro-

portional to Zf‘l'* exp [:F%C%]. For more details see Heading (1962, Appendix A3),

Budden (1985, Chap. 8), and Olver (2010).

We are now able to complete the derivation of (6.121) by matching the
approximate solution q’%tpo (wo given by (6.120)), which breaks down in the
neighbourhood of z, to the asymptotic form of the solution Ai({) which is accurate
near 7. (The coefficient of Bi({) goes to zero in the short wave limit, since Bi({)
diverges for large positive {.) For large negative (, Ai({) is, from (6.125), propor-

tional to (—C)_% sin {% (—C)% + ﬂ . The quantity % (—C)% is, from (6.122), (6.123) and

the definition of the phase integral, equal to ¢y — ¢. Also (—C)fﬁ is proportional to
g*. Thus sin(¢y — ¢ + ) must be proportional to yq as given by (6.120), which
proportionality holds when ry is given by (6.121). The result (6.121) is, in essence,
due to Hartree (1931).

The derivation has assumed an overlap of regions of validity of the Airy function
solution, and of the y, form. The Airy function is the solution of the equation (6.124),
which is itself an approximation, valid when (z — zp)(de/dz) is small. On the other
hand, the variable { must be large to ensure the accuracy of the asymptotic forms
assumed in the derivation. As for the short wave form q‘%lﬁo, we know this to fail
when y = ¢g?dg/dz = 1473 (w?/c*)de/dz is not small. We note from (6.122) that the

Ve

forms will exist only if [(w/c)/|d8/dz\o]% is substantially larger than the value of |{]
for which the asymptotic forms become useful. If this is (say) 4, we need (w/c)/|de/dz|o
substantially larger than 8 as a necessary condition for the validity of (6.121).

In the case of total reflection, with g, = i|ga|, it is convenient to set the lower limit
in the phase integral equal to the turning point zy:

quantity is of order unity, and thus overlap of the regions of validity of the two

Z

¢@=/Mﬂ& (6.126)

20
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making ¢y = 0. When the inhomogeneity in dielectric function or potential is finite,
and extends from z=0to z = Az, ¢_ = — [’ dz ¢(z), we can write the phase of r,
in the form

20

5, = 2/dz q(2) —g. (6.127)
0
For the hyperbolic tangent profile
1 1
&(z) = 2 (e1+&) — 2 (&1 — &) tanhz/2Az (6.128)

the phase integral may be evaluated exactly. As in Sect. 6.4 we use the variables
T = tanh z/2Az and then y = gAz. We need ¢ for z < zg; this is given by

yi+y
yr—y

P(y) =2[y2| arctan|yy—2| —yiln (6.129)

To evaluate ¢_, defined by ¢ — gz + ¢— as z — —oo, we set y = y; — dy in (6.129),
using dy — (v2 + [y2|*)/2y1e/%. This gives ¢_:

42

A (6.130)
2+l

d_ =2y arctan 2 — yi In

[y2

The approximate phase of the reflection amplitude is 2(¢y — 5 — ¢_), and we have
chosen to make ¢ zero. At grazing incidence q; = /&¢(w/c) cos 0 tends to zero, so
¢ tends to zero, and (6.121) gives the incorrect limiting value r; — —i (we saw in
Sect. 2.3 that the exact ry always tends to —1 at grazing incidence). The incorrect
glancing value is due to the breakdown of the short wave approximations at grazing
incidence, where even if (w/c)Az is large g Az eventually tends to zero. The
approximate phase is compared in Fig. 6.9 with the exact phase, calculated from
(A26) of Chap. 20, or directly from (2.82).

For profiles of finite extent the short-wave expression (6.127) applies, and is
always incorrectly equal to — 7 at glancing incidence. Lekner (1996) derives an exact
expression from the general result of Sect. 2.2, rewritten in this chapter as (6.32).
(The continuity of the dielectric function at the profile boundaries is assumed.) In
(6.32) we set z; = 0 and ¢, = i|g,|- This gives

_al(F.6) 17,0 +i[(F.6) + lal(F. 6]
’ QI[(F’ G,) + ‘q2|(F’ G)] - i[(FI7G/) + |q2|(F/7G)] .

(6.131)


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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http://dx.doi.org/10.1007/978-3-319-23627-8_2
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Pi/2

Pi/4

Fig. 6.9 The difference between the approximate and exact phases of the reflection amplitude for
the hyperbolic tangent profile, with &, = (4/3)%, & = 1, (w/c)Az = 2 and 5. The phase difference
is plotted as a function of the angle of incidence for 8; > . ~ 48.6°, in the total reflection region

We have used the shorthand notations (F,G) :Fle—Gle,(F , G’) =

F/IGZ — G’1F27et cetera. Since the wave equation is linear, with real coefficients,
F and G may be taken to be real. The modulus of r is clearly unity, and the phase is

(6.132)

0 =2arctan{ (F,G)+lal(F,G) }

a[(F,G) +|q:|(F,G)]

As g1 — 0,0, — £ and ry correctly tends to —1. Lekner (1996) compares the
approximate formula (6.127) with the exact solutions for the exponential profile, for
both s and p polarizations, in the context of Lloyd’s mirror fringes. More detail may
be found in Sect. 16.5, in the chapter on neutron reflection.

The p wave reflection amplitude in the case of total reflection, again assuming
z; = 0 and continuity of the dielectric function at the profile boundaries, has similar
form to the s wave amplitude of (6.131):

__al(F, G)+|q|(F,G)| +i[(F,G) +|a|(F,G)]
! @[(F,G) +a:l(F, G)] = i[(F,G) +a2|(F, G)] -

(6.133)


http://dx.doi.org/10.1007/978-3-319-23627-8_16
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The functions F and G in (6.133) are now solutions of the equation (1.20) or (2.37)
for the magnetic field. As ¢; — 0, 3, — O0(mod 27) and r, correctly tends to 1.

6.8 Two Turning Points, and Tunneling

The penetration of wave motion into a region where ¢* < 0 leads to the possibility
of tunneling, where the classically forbidden region is traversed by a small portion
of the wave, which exits into a region where ¢°> > 0 and propagates on. Such
transmission via tunneling involves an even number of turning points. We will
restrict our consideration to two classical turning points z; and z,, defined by
qz(zl) =0= qz(zz). Our aim is to derive short wave approximations for the reflection
and transmission amplitudes in this case. But first we will show an analytically
solvable example of tunneling, provided by the sech? profile

&(z) = gy + Aesech’z/a, (6.134)
which was discussed in Sect. 4.3, and will again appear as a solvable example in the

reflection and transmission of quantum particle wavepackets (Sect. 19.2). The
s wave equation d’E/dz* + ¢°E = 0 has

>
7(z) = g5 + As(j—zsechZZ/a, (6.135)

where ¢ is the common value at & oo of the wavevector component perpendicular
to the interface,

2 2
2_ W 2_ . @ 2
9o = goc—z — K- = € C—ZCOS 0, (6136)

and @ is the common value of the angles of incidence and refraction. Thus ¢” is
given by

2 A
7 (z) = sow—z cos® 0+ g—gsechzz/a . (6.137)
C 20

When Ag is positive there are no turning points (it is assumed &y > 0), but when Ag
is negative a pair of symmetrically placed turning points come into existence for

0>6 = arccos(—As/so)%. (6.138)


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_4
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Fig. 6.10 The variation of ¢°(z), for the sech? profile, with the angle of incidence. The curves are
drawn for ¢y = 1, Ae = —3/4, for which 0, = 30°. The two turning points for § = 60° are circled.
Negative A¢ corresponds to a positive potential barrier in the quantum particle case

The zeros of qz(z) are at £+ 7, with

Ol

cos 0; + (cos? 0, — cos? 0)
cos 0

20 =aln (6.139)

(When Ae< — g the dielectric function becomes negative near the origin, and
there are two turning points at any angle of incidence. Their location is still given
by (6.138) and (6.139), with 6, now imaginary). The variation of q2 with z and angle
of incidence is shown in Fig. 6.10.

The reflection properties of the sech? profile are characterized by two dimen-
sionless parameters a and S, or s and f, where

—1+(1 +4a)ﬂ. (6.140)

N | —

%= Ad(walc)’, B=qoa, 5=

For negative a there will be tunneling at a large enough angle of incidence. The
transition from no tunneling to tunneling (in quantum particle language, from over

the potential barrier to through the barrier) takes place when f = (—oc)% if
—&y < Ae < 0. We saw in Sect. 4.3 that the reflectivity takes different analytic


http://dx.doi.org/10.1007/978-3-319-23627-8_4
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forms according as oo > — % (s real), in which case R, = |rs|2 is given by (4.35), or
o< —% in which case s is complex and the reflectivity is given by (4.38):

cosh? no

cosh? o + sinh® 8’

(4lel — 1), R, (6.141)

N =

s = ) 10, g =

When o = —ﬁ the reflectivity is R; = [1 + sinh 228" = sech’zp.
Reflectivity contours for the sech® profile in the o, plane are shown in
Fig. 6.11. We note the rapid rise in the reflectivity on passage deeper into the

tunneling region (below the § = (—oc)% dashed curve on the left), and the rapid fall
on passage out of it. The transition in or out of tunneling is interesting. In particle
terms, there is just enough available kinetic energy for the particle to reach the top
of the potential barrier. Classically, it is the transition between total reflection and

zero reflection. Quantum mechanically, the exact reflectivity when f = (—ac)% is
always less than its large-thickness asymptotic value 1/2. On the right-hand side of
the figure, corresponding to positive A¢ or a potential well in the particle case, the
contour pattern is caused by the interplay of resonance reflectivity zeros with strong
reflectivity at grazing incidence (f — 0).

Fig. 6.11 Contours of constant reflectivity for the sech? profile. Grazing incidence, corresponding
to S = goa — 0, generally has high reflectivity. However, for positive a (a positive A¢ or negative
AV in the particle case) there are resonance zeros of reflectivity when
a=n(n+1), n=0,1,2,..., as shown in (4.35). The tunneling region is below the dashed
curve on the left, given by ff = ( —oc)%, which is asymptotic to the Ry = % contour for large |«/, S.

The ¢* curves of Fig. 6.10 at 0 = 0°,30° and 60° correspond to /)’/(—oc)%: 2/V/3, 1, and 1/V/3.
The vertical line at a = —3 relates to Fig. 6.12


http://dx.doi.org/10.1007/978-3-319-23627-8_4
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We shall now derive general but approximate expressions for r, and ¢, when
there are two turning points, and then apply these to the sech® profile, comparing
the reflectivity with (6.141). Away from the turning points, now denoted by z; and

25, the waveforms will be approximated by g 2e* for real ¢, and by |q|7%eiq’ for
imaginary ¢ (in between the turning points). The real and imaginary parts of the
phase integral, ¢ and @, are defined by

Z

Md:/MﬂO+% (e <),

21
Z

®(z) = /dCIq(C)|+<D1 (z1 <2< ), (6.142)

21
Z

M@=/Md®+% (> ).

22

Note that the real part of the phase has the same value ¢; at z; and z,, being
continuous across the tunneling interval (only the imaginary part changes). The
limiting forms of the real part of ¢ are given by

qoz+¢_ — Pp(z) = qoz+ P, (6.143)

as z — *oo (for simplicity we consider the e; = ¢, case).

The method used to obtain the reflection and transmission amplitudes is similar
to that used in Sect. 6.7, namely matching the approximate wave functions across
the turning points. Since the approximate wave functions fail at z; and zp, the
matching is via the locally accurate Airy function solutions across z; and z,. Near z;
the dielectric function is decreasing with z; we approximate ¢ by its leading term
linear in z — z;, and define a local variable (;:

q*(z) ~ (z—zl)w—2 (3—2)1, 4= (z—zl)[w—2 (—3—31];. (6.144)

c? c?

The accurate solutions in the neighbourhood of z; are then Ai({;) and Bi({7). Near z,
the dielectric function is increasing with z and we set

7(2) ~ (z—2) (Z’—; <j—§)2, L=(z—2) {(Z)—; <j—§)2r. (6.145)
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The accurate solutions in the neighbourhood of z, are Ai({>) and Bi({;). We again
assume the existence of regions of overlap, where both the approximate solutions
and the asymptotic forms of the Airy functions hold simultaneously. The condition
for the existence of such regions was discussed in the last section. We use the
asymptotic forms (6.125), the relations

pIS)

2
3y

A
\f\c
—_

—

()i~
Gfmd—¢y (2> ),

b — (I)l (Z>Zl),

%

d) d) (Z<Zl)7
(6.146)
()

- (Z<Z2)a

LI

(=6L) =~

W N W N
wn\.)wll\)

and match at four places (to the left and to the right of both z; and z,). After removal
of all common factors, the four matchings give

¢ 4 e 07) = Aysin(¢ — ¢+ 7/4) + A cos(§) — +7/4),
1
EAleq"_d’ +B1e® ™ = Ae™® + Be?,
1
Ae® 4+ Be® = EAzeq)*(Dz + Bpe®™®

Agsin(¢p — ¢ +7n/4) +Axcos(p — ¢ +1/4) = tsei(¢_¢+).
(6.147)
At each point we equate the coefficients of ¢ or ¢*®. Thus we have eight con-

ditions to determine the eight coefficients ry,A;, B1,A, B,A;, By, t,. The result of
solving for r, and #; is

= e?(91=¢-="/4) tanh(AD + In2) (6.148)
ty, = e+ =9 ) sech(A® + In2), (6.149)
where
22
AD = By — by = /dz\q(z)\. (6.150)

21

(The In 2 comes from the factor % multiplying A; and A, in the tunneling region,
which in turn comes from the first equation in (6.125)). Note that
1 — tanh *x = sech®x, so that the conservation law 1 — |r,|* = |z,|* of Sect. 2.1 is
satisfied by the short-wave approximation (6.148), (6.149) for the reflection and
transmission amplitudes. When A® is large,
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= 1= A% P e, (6.151)
A® may be evaluated analytically for the sech” profile. We have, from (6.135) and
(6.140),

2

AD = /dz|q(z)| = 2/dx[|<x|sech2x— ﬁz}%, (6.152)
0

21

with xq being the value of x = z/a for which the integrand is zero; this corresponds
to zo as given by (6.139). The substitution |ajsech’x = f*y* reduces (6.152) to
elementary form, leading to

AD = (|af—p). (6.153)

This expression holds for negative o, with, —a > *. When —a = /32(8 = 0,) (see
(6.138)) A® is zero, the turning points having merged at the origin. This is the
transition between tunneling and no tunneling discussed in relation to Fig. 6.11.
The approximate treatment given above then fails, since it was based on the
assumption of well-separated turning points. Nevertheless, we note that when
A® = 0 the reflection amplitude according to (6.148) has modulus equal to 3/5.
When |a| and 8 are both large, the exact reflectivity formula (6.141) gives

1

e (6.154)

which is in agreement with (6.151) provided A® is large. When |o] is large but f
small (grazing incidence), (6.141) leads to

1

Ry —.
1+ (2nf) e-2mlP

(6.155)

This is not in agreement with (6.151), the latter having been based on short wave
approximate waveforms which fail at grazing incidence. Thus a large A® is not a
guarantee of the accuracy of (6.151). The approximate reflectance and transmittance

R, ~ tanh?(A® + In2), T, ~ sech’(A®+ In2), (6.156)

are compared with the exact R, of (6.141) and 7T, = 1 — R, in Fig. 6.12.
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0 . . .
0 30 60 90

Fig. 6.12 Reflectivity of the sech® profile as a function of the angle of incidence, shown for
g =1, Ae = f%, wa/c = 2. These dielectric function values are as for Fig. 6.10, and together
with walc = 2 correspond to the vertical line shown in Fig. 6.11, with angle of incidence increasing
downwards. The exact reflectivity R, ((6.141), solid curve) is shown for all angles, while the
approximate reflectivity R,, given by (6.153) and (6.156) is shown by a dashed curve in its range
of applicability, € > 6, = 30°. The ratios R,/R,, and T,/T, = (1 — R,)/(1 — R,) are also shown. The
latter ratio demonstrates the poor accuracy obtained for the tunneling probability, especially near
grazing incidence
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Chapter 7
Simple Anisotropy

Up till now we have assumed the electrodynamics of a non-magnetic stratified
system to be characterized by a single dielectric function &(z). This is often a very
good approximation: for example in the case of monatomic fluids, where a
liquid-vapour interface needs two dielectric functions &,(z) and &.(z) for specifi-
cation of the electrodynamics, the difference between these is small (Lekner 1983).
On the other hand molecular liquids can have strong anisotropy due to orientation
of the molecules, extreme examples being liquid crystals. Historically the first
anisotropy noted was that of Iceland spar (calcite), and Huygens in his Treatise on
Light (1690) gives a remarkably prescient discussion of the possible molecular
(spheroidal corpuscles, as Huygens termed them) arrangements in anisotropic
crystals. Simple examples of reflection in the presence of anisotropy will be dis-
cussed here, with emphasis on the interplay of anisotropy and stratification in their
effect on reflectivities and ellipsometric measurements. The first five sections deal
with a special case of uniaxial anisotropy, where the optic axis is normal to the
reflecting surface (the system has azimuthal symmetry on rotation about the surface
normal). The last Section discusses anisotropy in ionospheric propagation of radio
waves due to the earth’s magnetic field. A full treatment of uniaxial anisotropy will
be given in Chap. 8.

7.1 Anisotropy with Azimuthal Symmetry

When the reflecting system is symmetric with respect to rotation about the normal
to the interface (azimuthal symmetry), the electrodynamics is characterized by
&0(z, ) and &,(z, w), corresponding to the electric field vector aligned respectively
along and perpendicular to the interface. The convention used throughout this book
is that the interface lies parallel to the xy plane, and propagation is in the zx plane;
isotropic systems have ¢, = ¢, Examples of the systems discussed in Sects. 7.1-7.5
are: uniaxial crystals with the optic axis along the surface normal, and the surfaces
of atomic fluids or of molecular fluids in which surface molecular orientation is
symmetric about the surface normal.
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Symmetry with respect to rotation about the surface normal conserves the s and
p wave characterizations: these two polarizations, with E = (0, E,,0) and B =
(0, By, 0) respectively, are together sufficient to represent any plane wave incident
onto such an anisotropic planar stratified medium. To derive equations for the s and
p waves we repeat the analysis of Sects. 1.1 and 1.2, with (1.1) unchanged, and the
dielectric function ¢ in (1.2) now to be interpreted as the diagonal tensor

& 000
e=[0 ¢ O (7.1)
0 0 e
For the s wave (1.1) and (1.2) give
w OE w OFE.
.—Bx:__y7 B _Oa _B = ,V’ 72
e 0z Y e Ox (72)
w OB, OB
_j—e E —__—X_ 7% .
i— oy % o (7.3)
On eliminating B, and B, from (7.2) and (7.3) we find
82Ey BzEy ?
02 + o +s,,7Ey =0. (7.4)

Since the system retains invariance with respect to translation in the x or y direc-
tions, the x dependence of E, is contained in the factor e'Kx as before,

E,(z,x,1) = ¢®E(7). (7.5)

Substitution of (7.5) into (7.4) gives the usual form for the s wave equation,
CC2LPE=0, F =2 K (7.6)
c

Thus all the results we have derived in the last six chapters for the s wave also
apply to the s wave in the presence of azimuthally symmetric anisotropy, with the
replacement of &(z) by &,(z).

The p wave is more complicated, since it samples (at a general angle of inci-
dence) both ¢, and ¢,. The Maxwell equation (1.1) gives

w _% OE,

i—B,

c T 9z ox’ (7.7)

as before, but (1.2) now implies
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R OB, N0 OB
l;SUEx :8—;, Ey :07 —l?g—eEZ :a—xy (78)
Elimination of E, and E, from (7.7) and (7.8) gives
0 (10B, 0 (10B, ?
== — === —B, =0. 7.9
81(60 az)+ax(geax)+c2 » (7.9)
The substitution
By(z,x,1) = ¢ B(z) (7.10)

gives us a modified p wave equation,

d /1dB o* K?

& (80 dz)+<c2 8e>B_ . (7.11)
This differs fundamentally from the isotropic case: (7.11) contains both dielectric
functions, and thus results previously obtained for the p wave cannot be used
directly to obtain results even for this restricted anisotropy.

Anisotropy implies birefringence (double refraction): consider the example of an
electromagnetic wave incident onto a homogeneous azimuthally symmetric ani-
sotropic material. The incident and reflected waves have the z dependence e*%:? as
usual, but the s and p transmitted waves have the z dependence el and e'%%, where
g5 is given in (7.6) and, from (7.11),

2
2 w &o 0

qPZSDC_Z_F_K' (712)

Since g, differs from ¢, the angles 0, and 0, giving the wavevector directions of the
s and p waves are different: K = g; tan 0; = g,tan 0, = g, tan 0, and from (7.6)
and (7.12),

€06, SIN> 0,

g sin® 0 = ¢, sin” Oy = (7.13)

&, sin’ 0, + &, cos? 0,

We shall see in Chap. 8 that for the s (or ordinary) wave the wavevector direction is
always the same as the ray direction, given by the energy flux or Poynting vector
E x B. For the p (or extraordinary) wave, the wavevector and E x B directions are
different. The latter, when the optic axis is normal to the reflecting plane, is given
by
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UK 0
tan 0;, = %R %o 0, (7.14)
Eeqp Ee

We shall see in Sect. 8.2 that the extraordinary ray and wavevector are coplanar
with the optic axis, which here coincides with the normal to the interface. Figure 7.1
shows the wavevector directions; the extraordinary wave ray vector is also shown.
The differences between the three directions is enhanced by index matching: the
Figure is drawn to scale for calcite (n, = 1.658,n, = 1.486, at the sodium yellow
line), immersed in an oil of index n; = 1.48. The angle of incidence is 60°. The
magnitudes of the normal components of the wavevectors are shown on the hori-
zontal axis.

The s and p reflection amplitudes for a sharp interface between an isotropic
medium and an anisotropic medium, characterized by ¢, and ¢, as above, are (for an
interface at z = 0)

q1 — gs 01-0
— . S 7.15
a1 + 4 o) (7:15)

750

where ¢, is given by (7.6), Q1 = qi /&1, and Q = g,/¢,. The p wave reflection
amplitude follows from the continuity of B and (1/¢,)(dB/dz) at the boundary, a

Fig. 7.1 Wavevector and ray
directions in an azimuthally
symmetric anisotropic system,
such as a uniaxial crystal with
its optic axis coincident with
the z-axis. The wavevectors
are solid lines, the
extraordinary ray vector is the
dashed line

calcite
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consequence of the differential equation (7.11). The Brewster angle 6, at which
r, = 0, is given by QO = Q, which leads to

0p = arctan elég = 1) v (7.16)
B e(ee—e)) '

7.2 Ellipsometry of a Thin Film on an Isotropic Substrate

Ellipsometry determines the complex number r,/r,. (Chapter 9 gives details of
various ellipsometric confugurations, and what they measure with general aniso-
tropy; for reflection from isotropic media, and for the simple anisotropy considered
in this chapter, these all give r, /rs). In Sect. 3.5, equation (3.52), we saw that, in the
isotropic case, this ratio is given to lowest order in the interface
thickness/wavelength expansion by

, 2iQK?
)4 E182
tol =) =rpo———5h+ -, (7.17)
<rs) ! (01 +0)°

The invariant I; is given by

Il:/dZWZ/dz{gl—f—ﬁz—%—ﬁ}. (718)

&

For the case of an anisotropic film characterized by ¢, and ¢, (with cylindrical
symmetry about the surface normal) and resting on an isotropic substrate with
dielectric constant &, we shall show that the formula (7.17) remains valid, with

I = / dz{81+82—8182—80}. (7.19)
e

—00

This generalization was given (without proof) by Buff (1966) and independently by
Beaglehole (1980), the latter crediting Abeles (1976). The proof given here follows
Lekner (1983), Appendix A. We begin by deriving an anisotropic generalization of
the comparison identity (3.42). Let &(z) be the step function & = & forz < 0,¢) =
& for z > 0, and By(z) the solution of

d /1dBy o?* K?
— (=20 " \By=0 7.20
dz (so dz ) + <c2 w) 0 (7.20)
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namely
iz _ rpoe_iqlz(z <0)
By(z) = 2 7.21
{0, O
B(z) is the solution of (7.11), with limiting forms
1
. . &\? .
7 — e — B(z) — <> 1,6, (7.22)
&1
We multiply (7.11) by By(z), (7.20) by B(z), and subtract. The result is
d (1 1
- (B()C — BCO) =K(——— BB() — (80 — 80)CCO, (723)
dz g &
where (please note the different subscripts 0 and o)
1dB 1dB
=——2, C= (7.24)

e dz g dz

Integration of (7.23) from z; (deep in medium 1) to z, (deep in medium 2) and use
of (7.21) and (7.22) then gives the identity

r"0+2Q/ {(_——>K2330+( —so)cco}. (7.25)

To lowest order in the interface thickness we may replace B by By(0) and C by
Co(0), as given by (3.43). The result is

U< T PR A NI A WO A G
A Gl I CR RL R B

(7.26)
The s wave reflection amplitude is given by (3.18) on replacing ¢ by &,:
digo?/E [
rs =T+ 6“4/2 / dz(e, —&0) + -+~ (7.27)
(a1+4q2)" .
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The ellipsometric ratio 7, /rs may now be found from (7.26), (7.27), and (3.45):

2ok | [ oo/1 o1 17
r50<r—p> ero—Lz / dZ(———>—— dZ(SU—SO) =+ .-
s (Q] +Q2) & & 8182

—00 —00

(7.28)

The result (7.17, 7.19) follows from generalization of the identity (3.37):

£1& / dz (— — —> — / dz(e, — &) = / dz{61 46 — fér 80}. (7.29)
&0 Ee Ee

—00 —00 —00

Another two equivalent ways of writing /; (given by (7.29)) are

I = / dzw—i— /dz(sg_go)

Ee
- . (7.30)
— %o 0 1 1
_ / Gl e)e—an) / dz(_>.
80 8() 86
—00 —00

The first form of the isotropic ; in (7.18) shows that I; is positive when ¢ lies
between ¢; and ¢;. This is not necessarily so in the presence of anisotropy, even if
both ¢, and ¢, lie between ¢; and ¢,. For example, if on average ¢, is smaller than ¢,,
the first form of (7.30) shows that I} may be negative for sufficiently large aniso-
tropy. In general, if ¢, < ¢, on average, the anisotropy will give the appearance of a
thinner film (a smaller 1), or can even make I; negative. Conversely, if ¢, > ¢, on
average, the anisotropy will increase /;, giving the same signal as a thicker isotropic
film. For a homogeneous anisotropic film we can be more definite: if Az is the film
thickness, I} /Az = &1+ & — & — &&/&., and is positive provided the sum of &,
and ¢1& /¢, is less than the sum of ¢ and &,. The contours of constant I; /Az are
lines of slope —1 in the (&,, &1€2/¢.) plane. In the same plane, the contours of fixed
anisotropy &, — &, are also shown in Fig. 7.2.

We see that I; /Az increases with anisotropy. The &, = ¢, contour has a maxi-

mum value of I; /Az equal to (\/5 — Vel )2. (This is reached when the common
value of ¢, and ¢, is \/€1&;.) Thus if I} is measured, Az for the homogeneous film is

known independently, and /;/Az is found to be bigger than (\/& — \/e1 )2, the
anisotropy must be positive (&, > &,).

For a homogeneous anisotropic film, with its optic axis along the surface normal,
the exact reflection amplitudes may be found by the methods of Sect. 2.4. The
s wave takes the same form as in the isotropic film, with g replaced by g, defined in
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Fig. 7.2 Lines of fixed I, / Az, 3 N xd %2

ranging from —2 to 2, and N N %

contours of fixed anisotropy ~ N N

& — &,, ranging from —1 to 1, N N %

drawn for a homogeneous N N “
anisotropic layer between N A .
media with & = 1, &, = 2, in ~ N N
the (&,, &162/¢.) plane. The &, e e N ~ N

and ¢, values lie between ¢ 12 ~ S N
and &, in the shaded box e N DN W

(7.6). For a homogeneous layer located between z; and z; + Az, the s wave
reflection amplitude is

sigiey 45(@1 — @) +i(@ — )

ry=e ,
’ as(q1 +q2)c — i(q? + q1qo) s

(7.31)

where ¢ = cos ¢;Az and s = sin g;Az. For the p wave, the solutions within the film
are eT7, with qp given by (7.12), and the boundary conditions are the continuity of
Band of C = (1/¢,)(dB/dz) at z; and z,. We find that r,, has the same form as (2.68):

r = eZiqlzl Q(Ql - Q2)0+i(Q2 - Q1Q2)S
! (01 +q2)c —i(Q* + 0102)s

(7.32)

where now ¢ = cos q,Az, s = sinq,Az, and Q = g, /¢,. From (7.31) and (7.32) we
can verify that 7, /rs takes the form (7.17) with I; given by (7.19).

7.3 Thin Film on an Anisotropic Substrate

We now include the possibility of substrate anisotropy, still keeping azimuthal
symmetry in both stratified surface and in the homogeneous substrate (and thus
retaining the s and p characterization of electromagnetic waves). The electromag-
netic response of the system is determined by the three dielectric constants
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€1, 820,82 (the latter two for the substrate) and the two dielectric functions
€0(2), 6.(z) with

&1 — &(2) = €0, & — 8(2) — &. (7.33)
We now need to define two step functions

&1 (Z < O)

7.34
€205 €2¢ (Z > 0) ( )

800(Z)7£0€(Z) = {

The results of the previous section for the s wave need only the modification
& — &g, (for example in (7.27)). For the p wave we use By(z), the solution of

d (i@) + (w—z - K—2> By = 0. (7.35)

dz \ &y, dz 2 g

The modified version of (7.23) is

d 1 1
— (ByC — BCy) = K*[———) — (8, — £0,)CCy , 7.36
2 (BC = BC) = k(1= ) = (o )G (7.36)
with
1 dB, 1 dB
=—2 === 7.37
O e dz & dz (7.37)
and leads to the comparison identity
[
+—1 /d LD\ k2pp + (&9 — £00)CC (7.38)
Py =r, ——— o — €00 ‘ :
r 0 2lQl ¢ €0e e 0 . 0
The appropriate values of By(0) and Cy(0) are now
20, 2i0,0,
By(0) = , Co(0) = , 7.39
o(0) 01+ 0 o0) 01+0 (7.39)
where O = q1/¢1, and Qy = ¢y /2, With
P w2 20 2
qu = 8206‘_2 ——K". (740)

&2
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To lowest order in the interface thickness,

-0 200 2/°° (1 1) 2/°°
= - K | dz[———) - dz(e, — £00)p -
Tp 0, + 04 (Q1+Q2)2 . Z f0. & in 2(&o — €00)

(7.41)

On combining this with the (7.27) modified by replacing &y by &y,, we find the
generalization of (7.28):

oo

2i0:K? 7 11 11 L
oot [ela) - (e e [t

(7.42)
The expression in braces may be written as
1 / & {Szueze —& & — & o 82681]7 (7.43)
€182¢ &0 — &1 &0 — &1 Ee
and thus the form of (7.17) is retained:
- 2iQ, K?
P €182
rso\ — :ro—ill—F"', (744)
<rs> 0+ )

with I; now being given by the integral in (7.43).

For a homogeneous anisotropic film on an anisotropic substrate, the formulae
(7.31) and (7.32) remain valid, with g, being interpreted as go,, and O, as gap /2.
For a homogeneous film of thickness Az, I; /Az is equal to the content of the square
bracket in (7.43).

7.4 General Results for Anisotropic Stratifications
with Azimuthal Symmetry

In the previous two sections we have derived results for the ellipsometric properties
of thin anisotropic films on isotropic and anisotropic substrates, respectively. Here
we examine general properties of reflection by anisotropic stratified media, still
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keeping the constraint of cylindrical symmetry about the normal to the stratification
(the z axis). As in Sect. 2.2 we take the inhomogeneous or interfacial region to be
within the interval [z;,z;]; the results for such finite-ranged interfaces can be
extended to continuously varying unbounded interfaces by a limiting process.
For the s wave the results of Sect. 2.2 follow directly, since anisotropy modifies
the s wave equations only by the replacement of &(z) by ¢,(z). Thus the general
expressions for the reflection and transmission amplitudes, (2.25) and (2.26),

1
remain valid, with g; and g, being the values of g; = (¢,w*/c*> — K?)* for <z
and z>z. In consequence, the result |ry|<1, the conservation law

el (1 — |r5|2) = ¢o|t,|*, and the reciprocity laws all follow. The result that r, — —1

at grazing incidence (Sect. 2.3) also holds, as does the inequality |r,| < |ry| for
monotonic profiles (Sect. 5.4).

The p wave case involves both dielectric functions &,(z) and &,(z), which take
the values ¢ for z<z; and &, &, for z>z,. B(z), the solution of (7.11), now has
the limiting forms

1/2
B(z) =" —ne " (z<z1), B(2) = (882> 1" (22 22) (7.45)
1

The sign of r, and the factor /¢, /&1 multiplying 1, are chosen to make r, and r;,
and 7, and ¢, all apply to electric field components, and to agree at normal incidence.
The electric field components for the p wave are found from (7.8); the effect of
anisotropy of the substrate is the replacement of ¢, by &, in the square root of the
ratio multiplying f, (compare with Sect. 1.2).

For profiles which have ¢, continuous at z; and z,, the equations (2.40) and (2.41)
remain valid, with ¢, replaced by g2, and +/&>/¢1 by /€2, /¢1. The Wronskian of
two solutions of (7.11) is now proportional to ¢, (compare with (2.47) and (2.48)).

Again |rp| <1 and the reciprocity relations remain valid, with g, replaced by ga,.
The conservation law for the p wave now reads

Ch(l - ’rp|2) = ‘12p|tp|2~ (7.46)

L . . 2 2 . . .
The range of validity of the inequality |rp| < ‘rp0| will be examined in the next
section.

7.5 Differential Equations for the Reflection Amplitudes

We shall briefly examine some of the consequences of the non-linear first order
differential equations of Chap. 5. The s wave need not be considered in detail, since
all results remain valid on the replacement of &(z) by &,(z). In the p wave case we set
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1dB_ dC g,

7.47
P PR G (7.47)

in analogy with (5.32). This pair of coupled first order equations is equivalent to
(7.11), with

2

) 0" &
=¢———K 7.48
G =tz (7.48)

The anisotropic version of (5.33) is
B=F+G, C= z P(F - G). (7.49)

0

Elimination of B and C gives equations of the same form as (5.34) and (5.35),

/

F' =ig,F — 20 (F - G), (7.50)
G = o
=—ig,G+ — 20 (F-G), (7.51)

where now Q = ¢,/¢,. The reflection coefficient p = G/F (as distinct from the
reflection amplitude to be discussed shortly) satisfies the equation

/

o'+ 2igyp ZQQ(I—p) 0. (7.52)

We write p = |ple’’; the absolute magnitude |p| satisfies

o

!/
lpl'= 20

(1 —|p| )cos 0. (7.53)

Integration of (7.53) gives the exact result

ln1+’rp = / z—cos@. (7.54)
L= |ry|

For monotonic Q the inequality

01—
B = (Q1+Q2) (7.53)
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follows, with Q; = g1 /&1 and Q> = ¢, /&2,. We have

2
szq_p_lw_z_ K2

- b
& 8 7 &k,

(7.56)

and whether Q is monotonic or not depends on the variation of both ¢, and ¢, with
z, as well as on the angle of incidence.

In Chap. 5 the useful Rayleigh approximations were obtained from differential
equations for the reflection amplitude. We will give their anisotropic generalization
here. There are now two phase integrals:

b, = / AL (0), b, = / a2 g,(0). (7.57)

The differential equation for the s wave reflection amplitude is (5.76) with ¢
replaced by ¢, and ¢ by g,. The equation for the p wave reflection amplitude is (5.
81) with ¢, replacing ¢ and Q = g, /¢,. These equations lead to the Rayleigh or
weak reflection approximations

® !/
R _ qs 2ig
NP U R (e 7.58
Py & F / Z2qse ( )
—00
® /
Ry = / dzzQ—Qezi“b", (7.59)

in parallel with (5.85) and (5.86).

This concludes our preliminary discussion of the optical aspects of reflection by
stratified anisotropic media. Only the very simplest form of anisotropy has so far
been treated: for more general cases (but restricted to systems with sharp bound-
aries) the reader is referred to Landau and Lifshitz (1960, Chap. 11), Born and Wolf
(1970, Chap. 14), and Azzam and Bashara (1977). A full treatment of reflection and
transmission by uniaxial media is given in the next chapter. We shall end this
chapter by considering anisotropy in ionospheric radio propagation.

7.6 Reflection from the Ionosphere

In the days before satellite communication systems, radio propagation round the
earth, using the ionosphere as a reflecting layer, was the only form of long distance
“wireless” communication. The simplest model of the ionosphere, that of a plasma
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of free electrons in a neutralizing background of ions, leads to the dielectric function
(Budden 1985)

e(z,m) =1 — L2, (7.60)

The height dependence of w?, the square of the plasma angular frequency, arises

through its proportionality to the electron density. We noted in Sect. 6.7 that for
waves radiated at 0, to the vertical, this model gives a turning point at height z
given by w,(z0) = wcos 0;. For fixed 0; and ionospheric electron density profile,

with maximum w,(z) equal to w;™, frequencies below @™ /cost; will be

strongly reflected, while those above this value will be weakly reflected. When (for
example) the electron density can be approximated by sech’(z — h)/a, the
resulting reflectivity is that given in Sect. 6.7, with reflectivity contours shown in
Fig. 6.11.

The above assumes absence of electron collisions, and neglect of the earth’s
magnetic field. The effect of dissipation resulting from electron collisions will be
discussed in Chap. 10, while the anisotropy resulting from propagation in the
earth’s magnetic field will be briefly treated here. As in the case of anisotropic
dielectrics, there is double refraction. The magneto-ionic case is more complex,
since for neither of the two polarizations which propagate unchanged do the wave
normal and ray diffractions coincide (Ratcliffe 1959; Budden 1964).

The simplest example of anisotropy arises for wave propagation along the
direction of the earth’s magnetic field, By. This is referred to as the longitudinal
case. Jackson (1962, Sect. 7.9) gives a simple argument which shows that for
transverse electromagnetic waves propagating along B the two waves which
propagate unchanged are left or right circularly polarized, with effective dielectric
constants

>

— 1 _ P
e CE (7.61)

Here wp is the frequency of electron gyration round the magnetic field (the
gyro-frequency), and is proportional to By. The gyro and plasma frequencies can
have comparable magnitudes; Fig. 7.3 shows ¢, and ¢_ for the case where
wp = Wp.

We see from the Figure that there is a dramatic difference between the two
circular polarizations. The 4+ wave (with positive helicity) is strongly reflected for

1 1/2
» <3 { (wé +4w;seczﬁl) - a)B}, (7.62)


http://dx.doi.org/10.1007/978-3-319-23627-8_6
http://dx.doi.org/10.1007/978-3-319-23627-8_6
http://dx.doi.org/10.1007/978-3-319-23627-8_6
http://dx.doi.org/10.1007/978-3-319-23627-8_10

7.6 Reflection from the Ionosphere 189

Fig. 7.3 Dielectric functions 10
&4+ and ¢_ for the two circular
polarizations, shown as a =

function of frequency when e
wp = wp
0
1 2 @
o
P
+ -
- 10 4
while the — wave is strongly reflected in the interval
1 2 220 \'/?
wp <0< 5 (wB + 4w, sec 91) + wg ;. (7.63)

(In these formulae w), stands for the maximum value of the plasma frequency, and
wp for the value attained within the region of maximum electron density.) The
physical reason for the difference in the propagation of the two polarizations is that
one reinforces and the other opposes the precessional motion of the electrons in the
earth’s magnetic field. Heading (1975, Sects. 2.5 and 9.8) gives analytic results for
reflection by an exponential ionosphere, in the longitudinal case.

There are also interesting effects in the transverse case, where propagation is
perpendicular to the earth’s magnetic field. Barber and Crombie (1959) have shown
that the reflection from the ionosphere is greater for very low frequency waves
travelling west to east around the magnetic equator, than for those travelling from
east to west. Exact solutions for this case have been given by Westcott (1970).

The general case, with arbitrary angle between the direction of propagation and
the earth’s magnetic field, is discussed by Heading and Whipple (1952), Heading
(1955, 1963), Ratcliffe (1959), Ginzburg (1964), Booker (1984), Budden (1985).
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Chapter 8
Uniaxial Anisotropy

In Chap. 7 we have treated only the simplest case: reflection by a uniaxial system
which has its optic axis coinciding with the normal to the reflecting surface. It is
time to consider the general case, with arbitrary orientation of the optic axis or axes
(Lekner 1991). As usual we shall take the reflecting surface to be the xy plane
(z=0), and the plane of incidence to be the zx plane, with the z-axis normal to the
crystal face, and directed into it. After the first section the discussion is restricted to
uniaxial media.

8.1 Propagation Within Homogeneous Anisotropic Media

We first formulate the general problem (uniaxial or biaxial). When a plane wave is
incident from an isotropic medium onto the anisotropic medium, there will be a
reflected wave, and (in general) two transmitted plane waves. All components of the
electric and magnetic field vectors E and B have the x and ¢ dependence in the
factor expi(Kx — wt). Because of the translational symmetry in the y direction,
there is no y dependence. Within the anisotropic medium (assumed non-magnetic)
the two curl Maxwell curl equations read, after time differentiation,

VxE=i2B, VxB=-iZD. (8.1)
C C

The electric displacement D is found from E via to the dielectric tensor:

Dx Exx  Exy  Exg Ex
Dy | =1 e &y & E, |. (8.2)
DZ SZ)C SZV SZZ EZ

The dielectric tensor is symmetric: Born and Wolf (1970, Sect. 14.1) show that the
symmetry of the dielectric tensor is related to the form taken by conservation of
energy in the electromagnetic field, and that this symmetry implies the existence of
a principal coordinate system in which the dielectric tensor is diagonal.
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The six equations (8.1) give, after differentiation with respect to x is performed,

—0E,/dz = i2B, —0B,/dz = —i®D,
OE, /07 — iKE, = i®B, OB,/dz — iKB, = —i2D, (8.3)
iKE, = i®B, iKB, = —i®D,

We can eliminate B, to obtain three coupled equations for the components of E:

2
8°E, /82 — iKOE, 9z + (%) D=0 (8.4)
2
OE,/02 — K*E,+ () D, = 0 (8.5)
2
—iKDE, |9z — KE, + (?) D. =0. (8.6)

In the isotropic case (g; diagonal) E| is decoupled from E, and E;.

The differential equations (8.4—8.6) imply boundary conditions to be satisfied at a
discontinuity. The derivative of a discontinuous function would give a delta function,
which cannot be cancelled by any other term in the equation, nor can the derivative of
a delta function be cancelled. Thus from (8.4) it follows that OE,/0z — iKE, and E,
are continuous across a boundary (the continuity of E| is also implied by (8.6)), and
from (8.5) that OE,/0z and E, are continuous. Comparison with (8.3) shows these
conditions to be the continuity of the tangential components of E and B, as expected.
As regards D, we note that iK times (8.4) plus the z-derivative of (8.6) implies

dD, 9z + iKD, = 0, (8.7)

from which we deduce that the normal component of D is continuous, also a
familiar result.

The above equations are for an arbitrary z-stratified anisotropic material. We
now specialize to homogeneous anisotropic media. We wish to find the normal
modes, namely those fields which propagate as plane waves in the medium. Such
modes have all field components with the z-dependence expiqz, g being the
component of the wavevector normal to the surface. Substitution of this functional
form into (8.4-8.6) gives

2
—¢*E. + gKE, + (%) D=0 (8.8)

(P +KIE, + (%)sz 0 (8.9)

2
gKE, — K°E, + (%) D, =0. (8.10)
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The components of D are given as linear combinations of the components of E, by
(8.2). Thus we have three linear homogeneous equations in E|, E, and E_; a solution
is possible only if the determinant of the coefficients, as given in (8.11), is zero:

eul(?)’ ¢ () () 4K
w(@ @) K- e =0 (81D
w@ ek w®) e K

Equation (8.11) is a quatrtic in g. Its four solutions, the normal mode eigenvalues,
correspond to two inward-propagating modes and two backward-propagating
modes. At normal incidence it simplifies into a quadratic for ¢>. The biaxial case at
normal incidence is discussed in the Appendix of Lekner (1994a). The general
uniaxial case is the subject of the following sections.

8.2 Dielectric Tensor and Normal Modes in Uniaxial
Crystals

In the principal coordinate system the dielectric tensor is diagonal, with diagonal
elements ¢,, ¢, and ¢, (giving the dielectric response along the principal axes a, b
and ¢). For uniaxial crystals two of these values are equal. Conventionally ¢, = ¢,
and their common value is ¢,, while &, is called ¢,; the subscripts o and e stand for
ordinary and extraordinary. The direction ¢ is the optic axis. Let o, ff and y be
direction cosines of the optic axis ¢ relative to the cartesian (xyz) laboratory frame:

c=oXx+pfy+yz, (8.12)

where X, ¥ and Z are unit vectors along the x, y and z positive axes. Since ¢ is also a
unit vector,

4 =1 (8.13)

With Ae = ¢, — ¢,, the dielectric tensor in the laboratory frame, shown in (8.2),
reduces to (Lekner 1991, Sect. 3)

& + ?Ae affAe ayAe
afAe e, + [PAe PyAe . (8.14)
ayAe ByAe & + y?Ae



194 8 Uniaxial Anisotropy

The determinant (8.11) now factors into two quadratics, one of which is q2 — qg,
where

7 :e(,e)z—K? (8.15)
The normal components +¢g, of the ordinary wavevector k, have the same simple
form as in the isotropic case, and do not depend on how the uniaxial crystal is
oriented: the expression (8.15) is independent of the direction cosines «, ff and y of
the optic axis. The normal components of the extraordinary wavevector k, do
depend on the direction cosines. They are the solutions of the remaining quadratic,

2
syq2 + 2ayAeKq + ,K* — go¢, (%) = 0. (8.16)

Here and in the following we use the shorthand (Lekner 1992b, 1993)

& = & + y?Ae, &y = & + e,

8;v =g + (2 +92)Ae = ¢, + (1 — f)Ae = & — [Ac. (8.17)
The solutions of (8.16) are
g+ = +q — apKAe/e,, (8.18)
where
= [“V @)2_8“”1(2} ' (8.19)
& ¢

We note here an important difference between the ordinary and extraordinary
waves: if ¢ > ¢, then for 6; > 07, where the ordinary critical angle 6 is given by

sin? 07 = 22| (8.20)
c 81

the wavevector component g, becomes purely imaginary, and there will be no
propagating ordinary wave. But for 0; > ¢ where

(8.21)

only g becomes imaginary. The other part of g., namely —oyKAe¢/e,, remains real
in the absence of absorption. Thus, beyond angle of incidence 67, the extraordinary
wave will have a real and an imaginary part of its normal wavevector component, as
if inside an absorber, and an exponentially damped extraordinary wave can prop-
agate into the medium. This holds unless the product ayA¢ is zero, namely for
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vanishing anisotropy (Ae = 0) or when one of o or y is zero. The latter occurs when
the optic axis lies in the reflecting plane.

For a given g, or ¢., the electric field vectors E° or E° satisfy the homogeneous
equations obtained by putting g = g, or ¢ = ¢, in the matrix of coefficients shown
in (8.11). If this matrix is M, we have ME = 0, from which the field components
can be obtained, up to a common factor. For example, we can set E,/E, = X,
E,/E. =Y. Then ME = 0 becomes a (redundant) trio of inhomogeneous equations
for X and Y. There are three sets of solutions, given in equation (26) of Lekner
(1991), all equivalent since the determinant of the coefficients is zero. Let N, and N,
be normalization factors, determined by giving the square of the electric field vector
some assigned value. Then the ordinary and extraordinary electric field vectors are
found to be

E’ = No(_ﬂ‘ha ogo — VK, ﬁK)7 (8'22)
. o\ 2 o\ 2
E° =N, (aqi —74.K, Be, (;) : V|:80 (;) —qi} - och()- (8.23)

Note that E° is always perpendicular to the optic axis ¢ = (o, 8, 7). The scalar
product of these normal mode field vectors is

E’ - E° = N,N,BK (oK +7q.)(qo — qe)- (8.24)

Thus the ordinary and extraordinary electric fields are orthogonal when the optic
axis lies in the plane of incidence (f = 0), at normal incidence (K = 0), in the
isotropic limit (g, = ¢.), and also when oK + yg, = 0. When the last condition is
satisfied, the extraordinary wavevector (K,0,q,.) and ray direction (given below)
are both that of (y,0, —a), and thus perpendicular to the optic axis («, 5, 7). Also E¢
is then parallel to the optic axis.

The wavevector gives the direction of the normal to the surfaces of constant
phase, and is (K, 0, g) with ¢ = g, or ¢ = g.. The ray vector gives the energy flow
direction, which is that of E x B. From (8.3) we have

w w w
—B,= —qE,,  —B,=qE,—KE.,, —B.=KE,, (8.25)
c ¢ c
so that E x B is proportional to the vector
(K[Ei +E) — qEE,, —KE(E, - qE,E,, q|E;+E)] - KEE) (8.26)

For the ordinary mode the ray direction is that of (K,0,q,), the same as the
wavevector direction. For the extraordinary wave the ray is parallel to the vector
with components
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((qu - VK){OquK - V(go (%)2 - CI§> } + ﬁngm
B(oaK +7q.)(q% — q2), (8.27)
(0ge — 7K) (a2 — 74.K) + Fqeeo ().

The plane containing the optic axis and the extraordinary wavevector has its normal
along the cross product of (o, f8,7) and (K,O0, q.), namely (fq.,7K — og., —pK).
This normal is perpendicular to the ray vector (8.27), so the extraordinary ray and
wavevector are coplanar with the optic axis.

8.3 Uniaxial Crystal Reflection and Transmission
Amplitudes

As usual we decompose the incoming field into its s and p components, with E;
perpendicular to the plane of incidence (the zx plane) and E, lying in it. For the
s polarization the z-dependence of the electric field components is

incoming: (0, 1, 0)e'n?
reflected: (rgpcos Oy, ry, rysinf))e 42 (8.28)
transmitted: 1, (E?, EY, E?)eo + 1, (EX, E, E¢)ei4

The reflection and transmission amplitudes for the s polarization are 7y, ¥y, t5o, tse;
0, is the angle of incidence, and g is the z-component of the incoming wavevector,
g1 = n; ®/c cos 6. In Sect. 8.1 we deduced the boundary conditions to be applied
at the crystal face z = 0, namely the continuity of E,, E,, OE,/0z — iKE, and of
OE,/0z. These four conditions, applied to the waveforms given in (8.28), lead to
four equations linear in the unknowns 7y, 7, s, ts. The solutions can be put in the
form (Lekner 1992b, 1993)

Alqr — q0) +B(q1 — q.)

Vss = 8.29
Alg1 T 40)+ Blar +4.) (825)
o Zﬁ(aqn + VK)(qo - q@)klklzl (8 30)

¥ A(Ql +QO) +B(QI +Qe)

2 k2 . 2\ _ vK k2 .
o [2(k2qe + q19%) — 7K (K2 + quq.)] (8.31)
A(Ql "FQO) +B(QI +qg)
2

Nety = 2001k + d4100) (8.32)

A(q1+ o) +B(q1 +q.)
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In order to obtain compact forms for these amplitudes, the following shorthand is
used (with &1 = n?, &, = n2):

w
kl =n;—
Cc

: k:ng 4 =q +Ktan 0, =K /q;. (8.33)
The coefficients A and B are defined by

A = (aq, — yK){o(k2qe + 0:q2) — 7K (K2 + 1) }, (8.34)
B = Bk2(K: + q1q0).- (8.35)

We note that the reflection amplitudes are independent of the normalization factors
N, and N, of the ordinary and extraordinary electric fields, whereas it is the product
of the transmission amplitudes and the respective field magnitudes N, and N, that
features in (8.31) and (8.32). When the incident field has unit modulus (which is the
choice made here), the amplitudes of the fields transmitted into the crystal are N,t,,
and N.,t,,.

Turning now to the p polarization, the waveforms are

incoming: (cos 0y, 0, — sin 0;)e'* (8.36)
reflected: (1, cos 01, Tpg, 1y sin 0y)e 4% (8.37)
transmitted: ,,(EY, EY, E?)e"* + 1, (EY, Ey, E¢)el= (8.38)

The continuity conditions applied at z = 0 give four linear equations in the four
unknowns 7y, s, 0, Ipe- The solution is

- __Alg1+39.)+B(q1+4.)
w A(q1 +4q0) +B(q1 +q.)

(8.39)

. 2B(eq0 = vK) (g0 — ge)kikg
” A(Ql +CI0) +B(Q1 +QE)

(8.40)

o A(ql +QO) +B(QI +qg)

2(aq, — 7K)(q1 +q0)k1
A(Ql +q0) +B(QI +5Ie)

Nty = (8.42)

The coefficients A’ and B’ are defined by
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A’ = (ag, — yK) [a(k2qe — a:qa2) — vK (K — a:qe)] (8.43)
B = Bk (k; — qiq0)- (8.44)

The formulae given above give explicit closed-form expressions for the reflection
and transmission amplitudes for an arbitrary face of a uniaxial crystal, at any angle
of incidence.

Special geometries are discussed in Lekner (1991, 1992b); here we give only the
simplest, reflection from a basal plane (one perpendicular to the optic axis). An
elementary treatment of this special case was given in Sect. 7.1. The optic axis
coincides with the normal to the reflecting surface, so y*> = 1 and o and B are zero.
The normal component of the extraordinary wavevector is given by

2 2
i =a(2) - 2r =20 () ). (3.45)
c & & ¢
If we take y = —1, corresponding to the optic coinciding with the outward normal,

the normalized field eigenstates are

1

2172
E°=(0,1,0), E°= (qe, 0, —8—”K> q.+ (8—K> (8.46)
€e €e
The cross-reflection amplitudes r,, and 7, are zero, and
ss:(’h—qo, rpsz_Ql. (847)
g1+ 4o 0+0:

In (847) Q=q./¢, evaluated at y> =1 and Q; = q;/e;. In the absence of
absorption ry, is zero at the Brewster angle 0,, given by

feleo—21)

tan? 0, = =22 =1). 8.48
pp & (Se _ 81) (V ) ( )

A real 0,, will not exist when ¢; lies between ¢, and ¢, (for 2 = 1). As noted in

Sect. 7.1, there is no coupling between the s and p (equivalent in this case to the

o and e), so t,, = 0 = t,,. The direct transmission amplitudes are

24, 2n10;

R t”"_no(QHrQ)[

1 —K*(e, — 80)/85}. (8.49)

tSO
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At normal incidence the common values of the nonzero reflection and transmission
amplitudes are

— o 2
M=% and 1 (8.50)

ny+n, ny+n,

8.4 Bounds and Zeros of the Reflection Amplitudes,
the Polarizing Angle

We return to the general case, and summarize first some of the reflection properties
derived in Lekner (1992b). The square of the extraordinary wavevector is bounded

by
2 2
ﬁ:%@)—ﬁ miﬁz%@)—ﬁ. (8.51)
C C

The reflection amplitudes r, and r,, are bounded by

rs(f=0) = i]]ll J_rZ: (optic axis in plane of incidence) (8.52)

rm(ﬁ2 =1)= % (optic axis perpendicular to plane of incidence) (8.53)

I’pp(”))z =1)= % (optic axis normal to reflecting plane) (8.54)
rpp(Ot2 =1)= 0-0 (optic axis along intersection of plane

T 0+0 (8.55)

of incidence and the reflecting plane)

In (8.54) Qu = qc(y* = 1)/ey = Gum/none; in (8.55) Q = q,/non.. The bounds
apply only when all the wavenumbers are real [0; <07, 0¢]. Figure 8.1 shows these
bounds for reflection from calcite in air. The bounds are much wider for calcite in
oil (Fig. 3 of Lekner 1992b), for which the wavefront and ray directions were
shown in Fig. 7.1.

The other reflection and transmission amplitudes are discussed in Lekner
(1992b). Bounds on the Brewster angle at which r,, = 0 are found from (8.54) and

(8.55). These are 0,,(y* = 1) given in (8.45) and
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.\'.s'{ p=0)

-1+ i :
0 30 60 90

e

Fig. 8.1 Bounds on the reflection amplitudes, for sodium yellow light incident from vacuum onto
calcite (n; = 1,n, = 1.658,n, = 1.486). The possible values of the reflection amplitudes lie
within the shaded bands

2 2 éo(€e — &1)
= 1 = .
tan” 0, (« ) P PR—— (8.56)

These bounds are special cases of the more general formula

Eobe — E18;

tan® 0,,(f = 0) = 271 8.57
(= 0) = 2223 (857)
or its equivalent
. 9 Eobe — E18;
0 =0)=——. 8.58
sin”0,, (B ) tte — £ ( )
The expressions (8.57, 8.58) in turn follow from the simple expression
0, — Qi
7 =0)==L_= 8.59
wb=0=5"5 (8:59)
where Q1 = q1/¢; as always, and
) 2
0, =", @=5(2) K2 (8.60)
NoN, ’ c

The possible zeros of the reflection amplitudes are discussed in more detail in
Lekner (1993). It is shown there that when the index of the medium of incidence
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lies between the ordinary and extraordinary indices of the crystal, it is possible for
1y to be zero at an angle O, and that there exist four equivalent orientations of the
crystal optic axis for which r,,, r, and either r, or ry, are simultaneously zero, at
angle of incidence equal to arctan(n,/n;).

There is another angle of interest: the polarizing angle 0,,,, defined as the angle
of incidence at which an incident wave of arbitrary polarization becomes linearly
polarized on reflection. In terms of the reflection amplitudes, 0,, is given by
(Sect. 18.4)

Foplss — Fpstsp =0 (8.61)

This leads to a quartic equation (Lekner 1999), closely related to the quartics
associated with the angles 0,, and 0, discussed in the previous paragraph.

8.5 [External Reflection from an Immersed Crystal

Suppose the crystal is immersed in a liquid of refractive index n; greater than n,.
Then g, becomes imaginary for angle of incidence greater than the ordinary critical
angle 07 = arcsin(n,/n;), as we saw in Sect. 8.2. There will then be strong external
reflection of both polarizations for 0, > ¢9. Likewise when n; is greater than
NNy /Ny, (Where n? =& =&+ 2 Ae, niy =6y =&+ (o2 +7%)Ae) then g will be
imaginary for 0, > 0¢ = arcsin(n.n,/nin,,), and again there will be strong external
reflection. The general case is complicated, but when the optic axis lies in the plane
of incidence (ff = 0), the reflection amplitudes simplify greatly. When ff = 0 the
coefficients B and B’ are both zero, so we have from Sect. 8.3

q1 — 4o A’>
Fge = , op = —\ — 8.62
q1+q rw (A =0 ( )

Also both ry and 7, are zero when f=0. Thus when n; >n, and

0, > arcsin(n,/n;), q, is imaginary, which implies |ry|*= 1. Also g is imaginary
for 0y > arcsin(n,/n;). When this is so, we find after much reduction that |r,,, |2: 1
also.

To sum up: when the optic axis lies in the plane of incidence, the s-wave will be
totally reflected for 0; > arcsin(n,/n;), and the p-wave will be totally reflected for
0, > arcsin(n,/n;). If both inequalities hold, the crystal will reflect all light inci-
dent upon it. Figure 8.2 shows the s and p reflection amplitudes 7y and r,, for
calcite with its optic axis in the plane of incidence and normal to the reflecting
surface (y? = 1), immersed in liquid carbon disulphide. The refractive indices for
sodium yellow wavelength (589 nm) are n; = 1.628, n, = 1.658, n, = 1.486. The
extraordinary critical angle is 0¢ = arcsin(n,/n;) ~ 65.89° (from (8.21), with
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Fig. 8.2 Reflection 1 ——
amplitudes ry, and r,, for Im(PP}!’ ™~
calcite immersed in liquid /

carbon disulphide, in the

diagram shows the
reflectivities Ry, = r; i and

Ry, = |rp,,|2. The latter is 0
unity for 0; > ¢¢, indicated by Re(pp) ss
the dashed vertical line, for
the particular crystal

orientation chosen (given in

the text)

!

upper diagram. The lower rI
I

I
|

30 60 90

30 60 90

7> =1, 2= 0= f§). Beyond this angle of incidence, r,, has an imaginary part. The
real part of r,, passes through zero at the angle at which the imaginary part is unity.
For 0, > 0 the absolute value of r,, is unity, as shown on the lower figure.

8.6 Normal-Incidence Reflection and Transmission

At normal incidence there is no physical difference between the s and p polariza-
tions: for any incident polarization the electric field vector is parallel to the
reflecting surface. Instead of four reflection amplitudes 7y, 75, 75, and ry, the
reflection is characterized by two, which (following Lekner 1992a) we shall call r
and 7. Likewise two transmission amplitudes #, and 7, suffice to characterize the
transmission properties. As before the optic axis is defined in terms of its direction
cosines o, f§ and y with respect to the x, y and z axes. From our previous results of
Sect. 8.2, the normal modes which can propagate as plane waves inside the crystal
are
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E’° = N,(—f,2,0), E° = N, (o, B, —7(1 —7*)Ae/e,). (8.63)

Note that E°-E° =0 (compare the general result (8.24)). The ordinary and
extraordinary wavevectors both lie along the inward normal n = (0,0, 1), and have
magnitudes

) Nl ®

ko =ny,—, ke
c n, c

(n? =g, = & +7%Ae). (8.64)

The vector n x ¢ = (0,0,1) x (o, B,7) = (=B, 2,0) lies in the reflecting plane
z =0, and is parallel to E°. We shall take the direction of E; to define the x-axis, so
E; = (E1,0,0), and let ¢ be the angle between E; and the n x ¢ or E? direction.

Thus, with cos ¢ = —f/(a® + /32)%, sing = o/ (o + ﬁz)%,
E’ = (cos ¢, sin ¢,0), E° = (sin ¢ cos d, — cos ¢ cos d, sin 9), (8.65)

where 0 is the angle between the ray and wavevector directions for the extraordi-
nary wave:

sind = E° - n, tand = —y(1 — yz)%As/&,. (8.66)

(The extraordinary ray direction for normal incidence is that of (apAe, fyAe, «,),
from (8.27) or Lekner (1992a).)

The incident, reflected and transmitted waves, for light incident normally onto an
arbitrary crystal face, are

incident: (1, 0, 0)e:* (ki =m 2)
reflected: (r, ¥, 0)e sz (8.67)
transmitted: 1, E%eoz 4 1 E¢eikez

We apply the continuity of E,, E,, OE,/0z and JE,/Jz at the interface z = 0. This
gives four equations, which can be put in matrix form: define the column vectors

r t, (1
r—(r/)’ t_<[e>’ ll—<0>7 (8.68)
and the matrices

_ (B E 1 _ (ko/ki 0
- (5 B) koo (S 0) e
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M is the mode matrix, formed from the transverse components of the eigenstates
(modes) E° and E°. The four equations arising from the boundary conditions can
now be written as a pair of coupled vector equations in r and t:

utr=Mt, u-r=MK't (8.70)
The solution, expressed in terms of a reflection matrix R, is

r=Ru, t=M'(I+R)u, (8.71)

where [ is the identity (unit 2 X 2 matrix) and R a reflection matrix (more detail is
given in Lekner 1992a)

R= MK\ +1)" (K, — )M~ = (To€0S" @+ 7resin® - (r, = re)cos gsin
(r, —re)cos¢psing r,sin® ¢ +r,cos>¢p )’

(8.72)
Note that R does not contain ¢, even though M does, through E°:
__(cos¢ singcosd
M= (sinqb —cosq’)cosé)' (8.73)

The reflection coefficients r, and r, are the same as the normal incidence reflection
amplitudes for isotropic media with refractive indices n, and n,n./n,, respectively:

_np—n, . ni — Rohe /1y
- ) e — *
n +n, ni +nene/n,

(8.74)

To

When y2 =1 the reflection amplitudes r, and r, are equal. Also r, = (n; —
ne)/(ny +n,) when y = 0.
From (8.71) and (8.72) we find

!

r=r,c08* ¢ +r,sin* ¢, r = (r, — r.) cos ¢ sin ¢. (8.75)

When there is no absorption r, and 7, are real, and thus when the incident light is
linearly polarized (as we have assumed), the reflected light is also linearly polar-
ized, with electric field direction rotated by arctan(r /r). Note that r, which gives
the amplitude of the electric field reflected into the y-polarization when the incident
electric field E; is x-polarized, is zero when E; is either parallel or perpendicular to
E’ (sin ¢ = 0 or cos ¢ = 0). It has maximum amplitude at ¢ equal to odd multiples
of 45°; the maximum value of || at y = 0 (optic axis in the reflecting plane) is
nilne — no|/[(n1 +no) (n1 + ne)].
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The transmission amplitudes are found from (8.71) and (8.72):

t, = (14r,)cos p = —_cos ¢,

ny + n,

te=(1+r,)sind/cosd = — 2" _sin ¢/ cos d.

nin, + n,

(8.76)

If the incident wave is polarized with E; along the E° (or n x ¢) direction, sin ¢ =
0 and only the ordinary wave will propagate into the crystal. Only the extraordinary
wave will be excited when ¢ = £90°.

We have introduced the 2 x 2 matrix method for dealing with normal incidence
partly because it generalizes to the treatment of normal incidence on crystal plates,
as discussed in the next section.

8.7 Normal Incidence on a Uniaxial Plate

We wish to find the reflection and transmission amplitudes for normal incidence on
a crystal plate of thickness Az. We now have backward as well as forward prop-
agation within the plate, and interference between them. We suppose the medium of
incidence to have refractive index n; as before, and the substrate to have index n,.
For incident light linearly polarized along the x direction, the electric fields are

incident (1, 0, 0)e™*
reflected (r, r, 0)e %17
within crystal (aoeik”z + boe*ik”z)E” + (aee”‘“Z + be kRS
transmitted (1, 1, 0)e’2=4) (8.77)

(We have simplified the results by absorbing a phase k,Az into the transmission
coefficients 7 and 7.) The continuity of Ej, E,, OE,/0z and OE,/0z at z =0 and
7z = Az leads to eight equations in the eight unknowns r, ¥, dy, by, Ap, b, t, 1. In
Lekner (1992a) this 8 x 8 problem is reduced to four coupled 2 x 2 problems,
which are then solved in terms of 2 x 2 matrices (these include the mode matrix M
of the previous section, and also K; and its analogue K5). The solutions are

!

r=r,co8> ¢ +r,sin’ ¢, r = (ry, —r.)cos ¢sin ¢, (8.78)

(the same forms as (8.75), but with different r, and r,, defined below), and

/

t = t,cos> ¢ +1,sin’ P, t = (t, — t,) cos ¢ sin ¢. (8.79)
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As in the previous section, ¢ is the angle between the incident electric field E; and
the E° or n X ¢ direction. The component reflection amplitude r, is found to be

ko(ki — ka) cos(k,Az) + i(k2 — kik2) sin(k,Az)
Fo = . : n . (880)
ko (ki + ko) cos(k,Az) — i(k2 — kikz) sin(k,Az)

This is the reflection amplitude for a homogeneous isotropic layer of index n, and
thickness Az (Equation 2.52, with z; = 0). The amplitude r,, obtained by replacing
k, by k, in (8.80), is likewise the reflection amplitude for an isotropic slab of index
non,/n,. An alternative form of (8.80) is

s tes ;’362’7‘"AZ o ki —k,

r o ko - k2
L rprgediha” P01k,

ko + k2

0
r

, (8.81)

o

(expressed in terms of the Fresnel amplitudes 7{ and 79 for reflection at the entry
and exit faces of a slab of index n,).

The component amplitudes #, and 7, are likewise the transmission amplitudes for
isotropic slabs of thickness Az and refractive indices n, and n,n./n, (Equations 2.53
and 2.59)

. ek, (£ )1+ et
" ko(ki + ko) cos(kyAz) — i(k2 + kika) sin(k,Az) 1 + r{rgedikA:
(8.82)

The transmission amplitude 7, is obtained by replacing k, by k., r{ and r5 by r{ and
r5, as for the reflection amplitude r,.

The reflection properties of a uniaxial layer are discussed in detail by Lekner
(1992a). Both r, and r, have the bilinear (or fractional) complex transformation
form

ri+nZz .
T rnZ’ Z = exp2ikAz). (8.83)
Thus as kAz increases Z moves on the unit circle in the complex plane (assuming
non-absorbing crystal and substrate) r, and r, will also move on circles. The
periods of Az of r, and r, are n/k, and n/k,. The Z =1 (Az = 0 or multiples of
n/k, or m/k,) common value of r, and r, is, as expected, the Fresnel amplitude for
a sudden transition from index n; to index ny:

it ki —k
14+rrn k+k

(8.84)

When Z = 1 there will be no reflection if n; = ny. At Z = —1 (kAz an odd multiple
of n/2), r, and r, take the different values obtained by setting k = k, or k, in
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ry —nmn _klkz—kz
1 —rr o klkz-‘rkz '

(8.85)

~ is zero when (none/ny)2 = nino.

The centre of the circles, which in the absence of absorption lie on the real axis,
is at the point (r* +r~)/2. Their radius is (= — r~)/2. Figure 8.3 shows the r,
and r, circles for calcite in air (n; = 1 = ny). The r, circle is fixed, while the r,
circle depends on 7, the direction cosine of the optic axis to the surface normal. All
the circles have the origin (Z = 1) as common point, since this is shared by the
zero-thickness value of the reflection amplitudes (when n; = n;). The other inter-
sections with the real axis are at Z = —1.

The situation is different for n; # n,, and for absorbing substrates. The reflection
amplitudes r, and r, still move on circles, however; examples of a calcite slab on Al
or Si are shown in Fig. 2 of Lekner (1992a).

We now briefly discuss the transmission amplitudes t, and t,. These move on a
quartic in the complex plane; their reciprocals move on ellipses (details may be
found in Lekner 1992a). For incident electric field E; either parallel or perpen-
dicular to n x ¢ (the direction of E°), the exit polarization is the same as that on
entry. These orientations thus give zero transmission between crossed polarizers. In
the general case of a crystal plate between polarizer and analyser, with angle y
between their easy axes, the electric field transmitted through the analyser is, for
incident field of unit amplitude,

Thus 7, is zero when n2 = niny, .

(tcos y+1 sin y)e!k2a=n, (8.86)

Fig. 8.3 The loci of r, and r,
in the complex plane, for
calcite (n, = 1.658, n, =
1.486) in air. The r, circles
(dashed) are drawn for y =0
(inner circle) and for 7? = %
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Since E; defines the x-axis, this is also the polarizer easy axis, and the analyser is at
angle y to the x-axis. The transmitted intensity of a broad beam, measured well
within the beam, is the absolute square of (8.86),

|t|*cos? y + |t/ |2sin2 7+ 2|tt/| Cos y sin y cos [ph(t,/t)] , (8.87)

where we use the modulus-phase notation & = |&|exp[i ph(£)]. When the polarizer
and analyser are crossed (y = 90°), the intensity is

‘/‘2: |t, — t.|*cos® ¢ sin® ¢, (8.88)

which is zero when ¢ is zero or a multiple of 90°. Both ¢, and ¢, depend on the
thickness of the plate, and 7, also depends on y through n,. The absolute square of
their difference which features in (8.88) is

Ity — to*= |t]* + |te|” = 2ltote| cos|ph(z./1,)].- (8.89)

The phase difference between 7, and 1, is often given as (k. — k,)Az (see for
example Born and Wolf (1970), 14.4 (8.15)). From (8.82) we see that, if the entry
and exit planes of the crystal are accurately parallel, it is actually

ph (’—) — ph(t) — ph(t,)

[t
B ko(kl +k2)

klz) + kiky

<= Az)|. .
ko (k1 + ko) tan(k,Az) (8.90)

tan(koAz)} — atn [

The difference between (8.90) and the approximate value (k. — k,)Az is due to
multiple reflections within the crystal (which could be eliminated at a given
wavelength by antireflection coatings). The thin film limit of (8.90) is

hae /) = € =50 Ar 4 0(A2)? (8.91)
prlle /1, _k1+k2 Z Z) .

which differs from the approximate value (k. —k,)Az by the factor
(ke + ko)/(kl +k2)~

We note finally that the characterization of the transmitted light in terms of the
transmission amplitudes 7 and 7 applies to beams which are wide enough to be
accurately represented by the last line of (8.77). For narrow beams passing through
thick crystals there will be complete separation of the o and e rays within the
crystal, and two parallel beams will exit the crystal, perpendicularly polarized in the
E° and E° directions. The transmission amplitudes for these exit beams are ¢, cos ¢
and f, sin ¢b. The identity
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It,[cos® ¢ + |t,[’sin® § = |1, cos® ¢ + 1, sin’ ¢|2 + |ty — t.|*cos® ¢ sin® ¢
(8.92)

shows that for given incident power, the transmitted total power in the two beams is
the same as it would be for a single very broad beam. (The right-hand side of (8.92)

equals |7]* + |t/|2.)

8.8 Isotropic Layer on a Uniaxial Substrate

The optical properties of a homogeneous isotropic layer on an isotropic substrate
are discussed in Sect. 2.4. They are contained in two reflection amplitudes 7, and 7,
and two transmission amplitudes #, and #,. When the isotropic layer rests on an
anisotropic substrate, four reflection amplitudes 7y, 7, 1y and rys, and four
transmission amplitudes Z,, s, %o, Ipe are required.

An example, of considerable geophysical importance, is that of a thin layer of
water on the surface of ice below 0 °C. The compaction of snow, frost heave, rock
fracture, water transport at subzero temperatures, and charge transfer in the elec-
trification of thunder clouds are some of the aspects of premelting of ice discussed
by Dash (1989). Premelting of crystals is widespread, if not universal (Dash 1999).
Reflection anisotropy spectroscopy is covered in the review by McGilp (1995).

The isotropic layer has dielectric constant ¢ = n* and is bounded by the medium
of incidence (¢; = n}) at z= 0, and by a uniaxial substrate (¢, = n?, ¢, = n2) at
7z = Az. The plane of incidence is the zx plane; the direction cosines of the optic axis
of the substrate are the components of the unit vector ¢ = («, f5,7). Thus the
ordinary and extraordinary modes have the wave vectors and electric fields derived
in Sect. 8.2. With the common factor exp i(Kx — wt) suppressed, and an s-polarized
wave of unit amplitude incident at angle 0, the electric fields are

incident: (0, 1, 0)e'*
reflected: (rsp cos 0y, 7y, Ty sin 01>e*i¢IlZ
within layer: (cos 0]ae" +be™'*|, Ae'** + Be™*, —sin 0[ae'” — be™*])
within crystal: t,, B¢ (=89 4 ¢ E0eide(c=A7) (8.93)

Within the layer the inward propagating part has Poynting vector (proportional to
E x B) along (K,0,g), and the outward propagating part has E x B along
(K,0,—q), with proportionality constants A% + a®> and B> + b?, respectively. These
follow from (K = k; sin 0, = ksin 0, g = kcos 0)
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gcosO+Ksind =nw/c=k. (8.94)

There are eight unknowns in (8.93) (ry, ry, a, b, A, B, t,, and f,) and eight
equations follow from the continuity of Ey, E,, 0.E, — iKE, and 0.E, at z = 0 and at
7z = Az. The resulting s to s reflection amplitude may be written in the form of that
for an isotropic layer on an isotropic substrate:

. _NHtfZ
ss 1—~—fﬂ’

fi= le 13, Z = etz (8.95)

The reflection amplitude f; is the Fresnel amplitude at the z = O interface; f is more
complicated (Lekner 1992c, Sect. 4). However, we can see from (8.95) that as Az
changes, Z moves on the unit circle, and thus ry will also move around on a circle
in the complex plane (refer to the discussion in Sect. 8.7; absence of absorption is
assumed). The period Az of this notion is 7/q.

For incident p-polarization, the electric fields are

incident: (cos 01, 0, — sin 0 )e'"'*
reflected: (1, cos 01, Tps, Fppsin Ql)e_iqlz
within layer: (cos 0[ae™* + be %], Ae'" + Be ', — sin O[ae'® — be '*])
within crystal: t,,E°e %) 4 1 EeeiteF=A) (8.96)

Again r,, may be written in the form of r, for an isotropic layer on an isotropic
substrate (Sect. 2.4)

_ F+FZ _0-0 a4
TR FZ "7 0+0; (Ql_.s,’ Q_e>' (8.97)

(F is made explicit in Sect. 4 of Lekner 1992c). Z = ¢*4%% as before; as gAz
changes Z moves on the unit circle, and thus 7,, will move on a circle in the
complex plane (in the absence of absorption within the layer). The off-diagonal
reflection amplitudes ry, and 7, are given in (86) of Lekner (1992c); they also move
on circles in the complex plane as the thickness of the isotropic layer varies, as is
seen in the example of airlwater|calcite at 30° and 60° angle of incidence, shown in
Fig. 1 of that paper.
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In Sect. 8.7 we have discussed the normal incidence case, which was amenable to
2 x 2 matrix treatment. The general case requires 4 x 4 matrix representation, but
an algebraically explicit solution is again possible (Lekner 1994b). The medium
and the substrate have dielectric constants & = n% and & = n%, the crystal has
ordinary and extraordinary indices ¢, and ¢,. For s-polarization incident, and with
the common factor exp i(Kx — wt) suppressed, the electric fields are

incident: (0, 1, 0)e™'*
reflected: (rg, cos 0y, ry, rysin 0,)e "n?
o 4 L - o
within layer: a,E} ¢%* + b,E e """+ q,E e * + b E e'%*
transmitted: (t;, cos 0, ty, —typ, Sin 0,)e’: (e—A2) (8.98)

As usual, qg = kf) — K2, k, = n,w/c. The four plane waves that can propagate
within the crystal have the z-dependence

. » - -
e'd?, g7t ee * and e ?,

+ g wKAe -2 e [, . (0\2_ g2,
g, =*q—"+—,4q —L,—g{aeay(;) —K=¢&y p.

(8.99)

There are eight unknowns, rg, 75, ao, by, e, be, ts and ty,, and eight equations
arising from the continuity of E,, E,, 0.E; — iKE, and 0;E, at z = 0 and at z = Az.
The solution is facilitated by a diagonal phase matrix,

P = diag (eiq”Az, e oAz i Az eiq;Az), (8.100)
and by 4 x 4 mode matrices M and layer matrix
L=MPM™". (8.101)
These same matrices also give the solution (in terms of the matrix elements L;;) for
the p-polarization, for which the fields inside the crystal have the form given in
(8.98), the others being
incoming: (cos 01, 0, —sin 0 )e?
reflected:  (ry, €08 01, Tps, 1y sin0y)e 1% (8.102)

transmitted:  (ty, cos O, t,s, —t,, sin 0;)e

The reflection and transmission amplitudes at oblique incidence and at arbitrary
orientation of the optic axis with respect to the reflecting surface normal are given
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in Sect. 3 of Lekner (1994b). For non-absorbing media they satisfy the energy
conservation conditions

q1 (1 - |rss|2_‘rsp‘2) = 6]2(\&9\2 + ‘tspyz)
a1 (1= [l =[rl*) = @2 (Il + [t

There is much simplification when the optic axis lies in the plane of incidence
(f =0). Then the ordinary electric field vector is perpendicular to the plane of
incidence (the s direction), and from (8.24), E¢ is perpendicular to E°. Thus the s-
polarization converts fully to the ordinary mode, and ry, and f,, are zero. The
reflection amplitude ry is the same as that of an isotropic layer of index n,:

(8.103)

2iq,Az

51+ 52 _d91— 4 s Yo — 2 (8.104)

=—, s , = .
1 4 515,202 "+ T ot @

rSS

The amplitude 7, also takes the isotropic layer form,

— P1 +P232iqu p1L= Q - Ql P = Q2 - Q (8 105)
PP 1+ pype?iate’ T o+0 T ;m+0 '
with the definitions
—a ' —
Ql PR Q2 PR Q Nonte (8 106)

4y = gv(w/c)z — K%, g = (none/e,)q,.

(The value for g given is that taken by the general g defined in (8.19) when f§ = 0;
g, is given in (8.60).) The transmission amplitudes, when the optic axis lies in the
plane of incidence, are

_ (L4 s5)(1 + sp)eftolc
fyy = LA SOU+ so)e ™

1 + slsZeZiz]oAz bl 8 107
- e—ix'yKAzAs/s:. ni (1= pi)(1 —py)eids: ( ’ )
pp ny 1+ pipye?iahs
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Chapter 9
Ellipsometry

Ellipsometry is a sensitive technique based on bringing s and p reflected or
transmitted polarizations into interference. Its main use is in the characterization of
solid surfaces and liquid-vapour or liquid-liquid interfaces. Azzam (1991) has
compiled a selection of papers on ellipsometry. A survey of the various optical
techniques used to study surfaces was given by McGilp (1995). We shall first
consider five reflection configurations, in the general anisotropic case where all of
Tpp» Tsss Tps and rg, may be active (Lekner 1993); reflection ellipsometry of uniaxial
crystals is applied in Sect. 9.9 to the extraction of the ordinary and extraordinary
indices and of the orientation of the optic axis. Reflection from isotropic media,
with only 7, and r, active, will follow as special cases. Transmission ellipsometry
will be considered in Sects. 9.7 and 9.8.

The essence of all reflection ellipsometric methods is as follows. A polarizer
produces a known proportion of in-phase p and s incident waves. The amplitude
and phase of these waves are altered by reflection, as specified by the complex
reflection amplitudes r,,, 7, and 7y, 7y,. The reflected light is passed through an
analyser, which combines the components of the orthogonal p and s polarizations
along the analyser easy direction. The intensity then measured by a detector is the
result of interference of the p and s components and thus contains information about
the relative phases of the reflection amplitudes, as well as about their magnitudes.

9.1 Polarizer-Sample—Analyser

This is the simplest ellipsometer configuration. Let P be the angle between the
polarizer easy axis and the p direction (which is in the plane of incidence, and
perpendicular to the incident ray). The angles P and A are measured from the p and
p’ directions towards the s directions, with the vectors p, s and k (the wave vector)
forming a right-handed triplet. Likewise the p,s and K directions form a
right-handed triplet. Note that the reflected p’ and K directions are different from
the incident ones, whereas the s vector is fixed. Figure 9.1 gives the schematics of
the polarizer—sample—analyser configuration.
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/ polarizer

source o y ‘ detector

Fig. 9.1 The simplest reflection ellipsometry configuration. The polarizer easy axis is at azimuthal
angle P, measured from the p toward the s directions. The analyser easy axis is at azimuthal angle
A, measured from the p’ toward the s directions. The p and p’ directions are antiparallel at normal
incidence, parallel at glancing incidence

Then, on removal of common factors which cancel from ratios of detected inten-
sities, the electric field has p and s components cos P and sin P after passing through
the polarizer. After reflection, the p and s components are

Tpp COS P+ rg, SIN P, rp5cO8 P+ 1y sin P. (9.1)

These components are combined by the analyser. If this is set at angle A to the
(reflected) p direction, the field transmitted by the analyser is

(rpp c0s P+ 1y, sin P) cos A + (7, cos P + ry sin P) sin A
= €08 P cos A[ry, + ry tan P+ (1, + ry; tan P) tan A (9.2)
= cosPcosA [rpp + rpstanA + (rg, + e tan A) tan P] .

We define two ellipsometric ratios (which will serve in all of the configurations we
discuss)

_ IptrptanP _ Iyt rpstanA

Pa (9.3)

Ips + rgstan P’ rgp+rgtanA’

Consider two intensity measurements at analyser angles A; and A;, and fixed
polarizer angle P. Their ratio is

I1(Ay) (cosA1>2

I(A;) - cos A,

2

tan A
ppt tand - (9.4)

Pp + tanAg

Similarly, if two intensity measurements are made at fixed analyser angle A, at two
polarizer angles P; and P,, their ratio will be
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I(Py)  [cosP 2

1(P;)  \cosP,
Measurements of this kind can thus give the absolute squares and the real parts of
pp or of p,, respectively. The signs of the imaginary parts of pp and p, are not

determined. In the isotropic case pp becomes (r,/rs)cotP, and p, becomes
(rp/rs) cotA.

2

tan P
Pat tan (9.5)

pA+tanP2

9.2 Polarizer—-Compensator—-Sample—Analyser

A compensator (or waveplate, or retarder) is a crystal plate, or arrangement of
plates, that produces a known phase difference between two orthogonal compo-
nents. For example, a wave normally incident onto a uniaxial crystal will split into
two orthogonal components that travel in the crystal with phase speeds ¢/n, and
cny/non., where n, and n, are the ordinary and extraordinary refractive indices of
the crystal, and n? =&, = & + 7*A¢, y being the direction cosine of the optic axis
with the inward normal. Section 8.7 gave the transmission amplitudes of the
ordinary and extraordinary modes, and their relative phase allowing for all internal
reflections in (8.90). The phase difference when reflections at the plate surfaces are
removed by antireflection coatings is

S, — 5, =2 ("” - n) Az. (9.6)
C

n,

Consider the polarizer—compensator—sample—analyser configuration, with the
polarizer easy axis at angle P to the p direction, and the compensator with its o
direction at angle C to the p direction. The field components along the o and e
directions are

along o alonge
after polarizer cos(C — P) —sin(C — P) (9.7)
after compensator ¢, cos(C — P) —t,sin(C — P)

We now resolve along the s and p directions. The respective field components are

E, =t,co8 Ccos(C — P) +1,sin Csin(C — P),

E; =t,sinCcos(C — P) —t,cos Csin(C — P). (98)
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After reflection these become

EI’, = rppE, +ryE;, E] = rE; + 1pE,. (9.9)

These reflected components are combined by the analyser, set at angle A to the p
direction. The field transmitted by the analyser is

(rppEp + ropEs) cos A+ (ryEs + rpEp ) sinA. (9.10)
The intensity measured is proportional to the absolute square of the quantity (9.10).
In null ellipsometry this is made zero (in practice minimized) by adjustments of the
angles P, C and A. It is useful to define the complex ratio t and the complex angle D
by
T="t,/t,, tan D = ttan(C — P). (9.11)
Then from (9.8) the ratio of E; to E, is given by
E,/E, = tan(C — D). (9.12)
It follows that the zero of expression (9.10) occurs when
ps = tan(D — C). (9.13)
Thus a null setting of the polarizer—compensator—sample—analyser reflection
ellipsometer determines the real and imaginary parts of
pa = (rpp +rpstanA)/(ry, + r tan A). In the isotropic case (9.13) reduces to
rp/rs =tanAtan(D — C). (9.14)
(Compare (3.33) of Azzam and Bashara (1987).) In null ellipsometry, such as that

just described, one obtains information purely by angle measurement: one does not
measure light intensity, but rather locates its minimum.

9.3 Polarizer-Sample—-Compensator-Analyser

In this configuration the field components along s and along p are cos P and sin P
after the polarizer, and after reflection these become

El;7 = rpp COS P+ ry, sin P, E, = rysinP+ Ips COS P. (9.15)

With the compensator o direction at angle C to p’, the components along the o and e
directions after passing through the compensator are


http://dx.doi.org/10.1007/978-3-319-23627-8_3
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t, (E;, cos C + E; sin C) , t, (E; cos C — E'p sin C) . (9.16)
Thus the electric field transmitted by the analyser set at angle A to the p’ direction is
t(,(E;7 cos C 4 E, sin C) cos(C — A) — 1,(E, cos C — Ez; sin C) sin(C — A).  (9.17)

We again define © = 7, /t,, with the understanding that the complex number 7 can
represent any compensator, and introduce the complex angle D', defined by

tanD = ttan(C — A). (9.18)
The field (9.17) is zero when
pp =tan(D' — C). (9.19)

A null setting of the ellipsometer thus determines the real and imaginary parts of
pp = (rpp +ryptanP)/(rys + rys tan P). In this isotropic case, (9.19) reduces to

r,/rs = tan Ptan(D — C). (9.20)

(Compare (3.55) of Azzam and Bashara (1987).)

9.4 Polarizer-Modulator-Sample-Analyser

We now turn to polarization—modulation ellipsometry (Jasperson and Schnatterly
1969; Beaglehole 1980), in which the polarization state of the light is varied
sinusoidally, with synchronous detection of the intensity by lock-in amplifiers.
When the polarizer pass direction is at angle P to the p direction, the p and s
components are cos P and sin P. The birefringent modulator is oriented so that its o
and e directions lie along p and s respectively. After passing through the modulator
the p and s components are #, cos P and ¢, sin P. The modulator is (for example) a
piezo-electric transducer, consisting of a block of fused quartz through which the
light passes, joined onto a block of crystal quartz which oscillates at its fundamental
frequency of say 50 kHz. The resulting sinusoidal uniaxial strain in the fused quartz
modulates the phase difference between the transmitted o and e components,

8(1) = M sin(Q). (9.21)
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M is the maximum phase shift induced by the modulator, Q/2n the modulation
frequency. In practice the transmission amplitude magnitudes |#,| and |z, | are almost
identical, so the p and s components after passing through the modulator are, up to a
common factor,

cosP and €” sinP. (9.22)
After reflection, the p' and s components are

Ep = TIpp cos P+ iﬁypei‘j sin P

i0 g 23
E; = r,;cos P+ res€ sin P (9.23)
The analyser pass direction is at angle A to the p  direction, so the final field
amplitude is

E,cos A+ E,sinA = cos Pcos A(ry, + ry tan A)(p, + € tan P). (9.24)

The last factor contains the modulation. Let p, = p, + ip;; the detected intensity
is proportional to

02 4 p? 42(p, cos & + p; sin §) tan P + tan* P. (9.25)

The terms cos ¢ and sin d are sinusoidal functions of sinusoidal argument. Being
periodic they may be expanded in Fourier series, the coefficients of which are
Bessel functions (Olver and Maximon 2010, formulae 10.12.1, 2):

cos[M sin Qt] = Jo(M) + 2 i Jon(M) cos(2nQt)
- n=1 9.26
sin[M sin Qs =2 >~ Jop 4 1 (M) sin[(2n + 1)Q] 20

n=0
Therefore the DC, Q and 2Q parts of the intensity are respectively proportional to

p* + p? +2p,Jo(M) tan P+ tan? P
4p,J, (M) tan P sin Q¢ (9.27)
4p,J>(M) tan P cos 2Q¢

Thus polarization modulation ellipsometry, with the modulator placed between the
polarizer and the sample, measures the real and imaginary parts of
pa = (rpp +rpstanA)/(ryy + ros tan A), which reduces to (r,/ry)cotA in the iso-
tropic case.
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9.5 Polarizer-Sample-Modulator-Analyser

This is the final reflection ellipsometer configuration we shall examine. We can
abbreviate the discussion, since it is similar to the preceding configuration. The p’
and s components after reflection are

E, = 1y, cos P+ 1y, sin P, E, = rps cos P+ ry sin P. (9.28)

After the modulator, aligned with its o and e directions along p’ and s, the p and s
components become EI; and E;ei‘s, with 6(¢) given by (9.21) as before (we again

neglect the very small difference in the #, and #, magnitudes). The field amplitude
passing through the analyser is thus

E,cos A+ E,e” sinA = cos Pcos A(r, + ry, tan P)(pp + € tan A). (9.29)
With pp = p, +ip;; the detected intensity is proportional to
p2 + p? +2(p, cos 5+ p; sin §) tan A + tan” A. (9.30)
Hence the DC, Q and 2Q signals are respectively proportional to

P2+ p? +2p,Jo(M) tan A + tan® A
4p;J1 (M) tan A sin Q¢ (9.31)
4p,J>(M) tan A cos 2Q¢

Thus when the modulator is placed between the sample and the analyser, the
polarization modulation ellipsometer measures the real and imaginary parts of
pp = (rpp + ryptan P)/(rys + ry tan P), which reduces to (r,/r,)cotP in the iso-
tropic case.

9.6 Ellipsometric Measurements: The Principal Angle

We have seen that reflection ellipsometry with either compensator or modulator can
determine the real and imaginary parts of pp or of p,. Thus measurements at least
three polarizer or three analyser settings give three ratios of the reflection ampli-
tudes, for example r,,/rs, Fps/Tss and ry,/ry. The individual amplitudes all carry
the same arbitrary phase, which depends on conventions such as the choice of
origin. The common phase factor cancels out in the ratios, which depend on the
angle of incidence, the frequency of the light, the variation of the dielectric func-
tions through the interface and (in the anisotropic case) on the orientation of the
optic axis or axes of the reflector.
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In the isotropic case ellipsometry can determine the real and imaginary parts of
r,/rs. Often it is more useful to find the principal angle 6p at which the real part of
Tp /s is zero, and then measure the imaginary part of rp /rs. For thin films we saw in
Chap. 3 that Im(r,/r,) is proportional (with known proportionality constant, see (3.
46)) to the profile integral invariant

P UL ST

—00

(9.32)

(see Sects. 7.2 and 7.3 for anisotropic generalizations). The integration in (9.32) is
through a dielectric profile &(z), for example that of a vapour-liquid interface
between vapour (¢;) and liquid (&;). For interfaces thin compared to the wavelength
of light being used, this integral invariant is all that can be determined. The prin-
cipal angle at which Re(r,/s) =0 is, for thin films, just the Brewster angle
0p = arctan(n, /ny).

We showed in Sect. 2.3 that, for an arbitrary dielectric profile, at least one
principal angle exists. In general there are an odd number of principal angles. For a
homogeneous nonabsorbing isotropic layer of dielectric constant ¢ and of thickness
Az, Re(r,/rs) is a ratio of two quadratics in cos 2gAz with ¢* = &(w/ ¢)* — K2, and
equating the numerator to zero gives the principal angles (Lekner 2000). In general
the difference between the principal angle 0p and the Brewster angle 03 is second
order in the interface thickness, as shown in Sect. 3.5; (3.53) is of the form

Op — 05 = aeAz)z + 0(%&)4. (9.33)

The proportionality coefficient « is given in terms of integral invariants in (3.53),
and explicitly for the homogeneous layer in Sect. 3 of Lekner (2000).

9.7 Transmission Ellipsometry

We shall consider the normal-incidence transmission ellipsometry of a uniaxial
layer resting on an isotropic substrate. The reflection and transmission amplitudes
for an unsupported uniaxial layer were given in Sect. 8.7. With an isotropic sub-
strate of index n,, the reflection and transmission amplitudes at normal amplitude
after the analyser, assuming unit amplitude field is incident, incidence may be found
in Lekner (1994b). We shall give the electric field for five ellipsometer configu-
rations. The transmitted amplitude depends on the polarizer and analyser angles P
and A and on the compensator or modulator angle C, all measured in the same sense
from the uniaxial layer E° direction, which is perpendicular to the inward normal
n to the crystal, being along the n x ¢ direction (c is the optic axis, as in Chap. 8).
Figure 9.2 shows the configuration and the angles P and A.
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Fig. 9.2 The polarizer—sample (on substrate)—analyser transmission ellipsometry schematics. The
angles P and A are measured from the E° direction, shown as the horizontal line on the sample

9.7.1 Polarizer-Sample-Analyser

After passing through the analyser, the field amplitude is
t,cos PcosA+1,sin Psin A. (9.34)

The intensity, given by the absolute square of (9.34), contains the polarizer and
analyser angles, and |1,], |¢,| and Re(#,t5). The unknowns are the absolute magni-
tudes of ¢, and 7., and their phase difference. Three intensity measurements at
different polarizer and analyser settings, plus an intensity measurement with the
sample absent, are the minimum required to determine the unknowns.

9.7.2 Polarizer-Compensator-Sample-Analyser

Figure 9.3 shows the configuration; the compensator ordinary and extraordinary
field directions (in the latter case, actually the projection of E® onto the crystal
surface, see Sect. 8.6) are at right angles, with the ordinary field at angle C to the E°
direction of the crystal.

The field amplitude after the analyser is

t,E,cosA+t,E,sinA, (9.35)
where, with t; and t; the complex compensator transmission amplitudes,

E, =1,cos(P— C)cos C —t,sin(P — C)sin C (9.36)
E, =t,cos(P — C)sinC+1,sin(P — C) cos C '

In the null setting of the ellipsometer, the intensity is made zero (in practice min-
imized). The intensity will be zero when the real and imaginary parts of (9.35) are
zero. From (9.36) we see that
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Fig. 9.3 The polarizer—compensator—sample—analyser ellipsometer arrangement. The angles P, C
and A are measured from the sample E° direction, shown as the horizontal line on the sample. The
compensator ordinary and extraordinary field directions o and € are shown by solid and dashed
lines on the compensator

E. f,tanC+1,tan(P — C)

. - =tan(C+ D), 9.37

E, ¢ —t tanCtan(P— C) an(C+D) (0:37)
where D is a complex angle defined by
t/

tanD = “tan(P — C). (9.38)

o

Thus a null setting determines the complex ratio 7, /7, in terms of the compensator
transmission amplitude ratio and the angles P, C and A:

E,
ty/te = —E—tanA = —tan(C+ D) tanA. (9.39)
0

9.7.3 Polarizer—-Sample—Compensator—-Analyser

We resolve first along the sample o and e directions. The o and e components of the
field passing through the sample are 7, cos P and ¢, sin P. We now resolve along the
o and e directions of the compensator. The field components are

E,

=t,cos Pcos C + ¢, sin Psin C

A
= —t,co0s Psin C + ¢, sin Pcos C (9.40)

e
After passing through the compensator the o' and € components are t;E; and t;E;
After the analyser the field (along the analyser easy direction) is
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1,E, cos(A — C) +1,E, sin(A — C). (9.41)

00

We again define a complex angle related to the ratio t; / t;:

tanD = 1,/i, tan(A — C). (9.42)

A null setting is obtained when the real and imaginary parts of (9.41) are zero, that
is when E, /JE, = —tanD'. Then the complex ratio 7,/z, is given by

to/te = —tan Ptan(C+ D). (9.43)

9.7.4 Transmission Ellipsometry with a Polarization
Modulator

The action of a modulator (a compensator with a sinusoidally varying phase) has
been discussed in Sect. 9.4. The ratio of the e and o amplitudes passed through the
modulator is

0 5(t) = Msin Q. (9.44)

2
Q

S

M is the maximum phase shift, Q/27 is the modulation frequency. The equalities in
(9.44) are not exact, since the modulas of the ratio 7, /7, is not unity but very close to
it. Also the phase shift is not exactly sinusoidal (Archer et al. 1989). Lekner (1994a)
assumes (9.44) to be true as equalities, for ease of analysis. Then, as in Sects. 9.4
and 9.5, measurement of the DC, Q and 2Q signals with lock-in amplifiers gives the
real and imaginary parts of the relevant ellipsometric ratio, in this case the trans-
mission amplitude ratio ¢, /7, of the sample. Details may be found in Sects. 6 and 7
of Lekner (1994a). Section 8 of that paper discusses the properties of the ratio 7, /1,
and in particular its orbit in the complex plane as the thickness of the crystal plate
increases.

9.8 Reflection and Transmission Ellipsometry
of a Homogeneous Layer

We consider an isotropic homogeneous layer of thickness Az and dielectric constant
¢, bounded by homogeneous media of dielectric constants &; = n} and & = n3, and
focus on the ellipsometric quantities p = r,/r; and T = t,/t;. Isotropy in all media
is assumed here; the optical properties of a uniaxial layer were outlined in Sect. 8.9,
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but only the results for the optic axis lying in the plane of incidence were given
explicitly there.
From Sect. 2.4, the ellipsometric ratios are given by

_ Iy PiApZ 1tsimZ
ry 14+pipZ si+sZ°

(9.45)

__ ni (L=p)(1 —p2)(1+5152)

ty o (L4+s)(1+8)(1+pipaZ)’ (9.46)

T

where s1,p; and s», p, are the reflection amplitudes at the layer boundaries with
media 1 and 2:

S1:611—61 S2:6]—¢12 plZQ—Ql p2:Q2—Q
q1+q’ q+q’ 0+0;’ 0,+0

(9.47)

As usual, g1, g and g, are the normal components of the wavevector medium 1, the
layer, and medium 2; Oy = ¢; /&1, O = g/¢ and Q; = q2/&. In (9.45) and (9.46),
Z = ¢%4%% and moves periodically on the unit circle in the complex plane when g is
real (no absorption, and sin? 0; <¢/e; ). The period in Az is 7/g. The transmission
ratio is a bilinear conformal transformation of the variable Z, and thus t also moves
on circles in the complex plane as the layer thickness increases (Fig. 9.4). The
largest circle is at glancing incidence. More detail may be found in Dorf and Lekner
(1987).
When n; = n, the reflection ellipsometric ratio simplifies to

Qﬁpllfs%Z

(I’ll = nz), (948)

rsigl—p%z

Im(1)

0.02

0+
30°

-0.02

Fig. 9.4 Circular paths of t = 1,/1, in the complex plane at angles of incidence 30°,45° and 60°,
drawn for ny = 1, n = 4/3 and n = 3/2, approximating air|water|glass. At normal incidence #, =
t; and the circle collapses to the point (1,0) shown in the figure
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and thus also moves on circles in the complex plane as the layer thickness Az
increases (at fixed angle of incidence).

In the general case n; # n,, the path of p in the complex plane as Az increases
becomes a closed quartic curve, obtained by eliminating Z from (9.45) by repeated
use of ZZ* = 1 (Lekner (1994c¢), Sect. 4). Lack of absorption is assumed, otherwise
Z spirals in towards the origin as Az increases. The quartic, in x = Re(p) and
y =1Im(p), is even in y. It passes through y = 0 at points (p,,0) on the x-axis,
where

a192 — K*  po
—pz= 1) =N2""2 _I 9.49
pr=pZ=+1) K s (9.49)

(po and sp are the reflection amplitudes of the bare substrate). The point (p_ ,0)
does not depend on the layer properties. The other intersection with y = Im(p) = 0
is at

p_ = p(Z _ _1) _ (q2 +l]1‘]2)(Q1Q2 - Qz) (950)

(¢ — q192)(Q10>+ Q%)

This goes to infinity when g*> = q¢»; together with 2gAz being an odd multiple of
7, ¢*> = qiq leads to r, =0, as seen in Sect. 2.4. The condition ¢*> = g4, is
satisfied at angle of incidence 0y given by

(9.51)

(a real 0 is possible only if & <&;e,).

The quartic curve in the real and imaginary parts of p is simultaneously a quintic
equation in & (Lekner 1994c, Sect. 2), reducing to a cubic in ¢ when n; = n,.

A much simpler inversion of combined reflection and transmission data is
possible (Azzam 1983; Lekner 1994a). Returning to (9.45) and (9.46), we define

nt (1—p)d —p2)
P=pips, S—=sis, t=28 p_LZPOUZP) 9.52
PP 5152 LT (1 4s) (9-52)

Then p = r,/ry and t = nyt,/n;t; may be written as

_ p1+pZ1+S8Z t_flJrSZ
S+ $Z1+PZ] 1+ Pz

(9.53)

The inversion problem consists in the extraction of the unknowns ¢ and Az from
experimental values of p and 7 (or ¢). The solution is as follows: the equality for 7 is
a linear equation for Z = ¢*7%% with solution
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_ -t
Z‘m—ﬁ'

(9.54)

This value for Z is now substituted into the expression for p, thus eliminating the
unknown thickness Az. The remaining equation contains the experimental complex
quantities p and ¢ (or 7), and the unknown dielectric constant ¢, which also appears
in g, since ¢* = &(w/c)* — K2. Substitution for & = (c/w)*(¢*+K?) gives an
equation with the unknown ¢, which after removal of common factors leaves an
equation linear in g* (or equivalently, linear in ¢). Thus a complete unambiguous
solution for the dielectric constant of the layer is obtained. The details are given in
Lekner (1994a), where extraction of the film thickness from (9.54), and stability of
the solutions with respect to experimental error, are also discussed. In the simplest
case of unsupported films (n; = ny) the solution is

)
g1sin“0;

= 9.55

£ cos? 0 —p/t (9:35)

9.9 Reflection Ellipsometry of Uniaxial Crystals

Reflection ellipsometry is capable of determining the ordinary and extraordinary
dielectric constants ¢, and ¢, of a uniaxial crystal, and the orientation of the optic
axis, if at least one clean face of the crystal is exposed. The quantities measured are
the ratios of the four reflection amplitudes 7y, ry,, 1) and r,,, and angles. Figure 9.5
defines the geometry.

If the crystal is nonabsorbing the reflection amplitudes are all real and the four
real numbers ¢, &, y and ¢ (refer to the caption of Fig. 9.5 for the definition of y
and ¢) are found by measuring a minimum of four real quantities (three reflection
amplitude ratios, and one angle). The same method applies to absorbing uniaxial
crystals, but then ¢,, ¢, and the reflection amplitudes are all complex.

In Chap. 8 we characterized the optic axis ¢ by its direction cosines o, f§ and 7:

c= (o, f,7), 4+ =1 (9.56)
The equivalent notation of this section is
¢ = (sin ycos ¢, sinysin ¢, cosy). (9.57)

One first tests whether the crystal is indeed uniaxial, or whether it is isotropic or
biaxial. For uniaxial crystals the ry, and r,, reflection amplitudes are known
(Equations (8.30) and (8.40) of Chap. 8): they have the forms
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Fig. 9.5 Reflection by a
uniaxial crystal: xy is the
reflecting face, zx is the plane
of incidence. The positive z
axis coincides with the inward
normal of the reflecting face.
The optic axis ¢ is at angle y
to the inward normal, and the
plane containing ¢ and the z X
axis cuts the xy plane on the
line ¢, at angle ¢ to the x axis

-

z

ryp = plag, +7K)F, rps = P(ag, — 7K)F. (9.58)

(F is the same for both amplitudes). To be specific, we suppose the ellipsometer is
in one of the polarizer—sample—compensator—analyser or polarizer—sample—modu-
lator—analyser configurations. Then the quantity measured is (see Sects. 9.3 and 9.5)

_ + rg tan P

5
Fps +rygtan P’ (9-59)

Pp

where P is the angle between the polarizer easy and the incident p direction.
Measurement of p, at N different values of the polarizer angle P gives N linear
homogeneous linear equations for the unknowns 7, 75, 7ps and r,,. Only the ratios
of the reflection amplitudes can be found from these experimental values. Three
measurements are thus sufficient to determine the three independent ratios. For
example, if we set P = 0, n/4 and ©/2 (so tan P takes the values 0, 1 and oo) and
measure the corresponding complex numbers p,, p; and p_,

Loy s _Pv7 P Ty P17 Poo (9.60)

b
Tss Tss Po — P1 Tss Po — P1

Extra measurements provide a check on the accuracy of the data. For example, at
P = —7%(tanP = —1) the resulting measurement p_; will be consistent with the
previous measurements p,, p; and p if
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-2
p = PoP1 — 2P0Ps T P1Px . (9.61)

201 = Po — Peo

In practice this consistency relation will not be satisfied exactly, because of
experimental error. For N > 3 measurements there will be N!/(N — 3)!3! solution
sets, which can be averaged to give the reflection amplitude ratios. Alternatively,
one can measure repeatedly at three fixed values of the polarizer angle and average
the pp values obtained at each P, with occasional measurement at a fourth angle to
provide a consistency check.

We return to the determination of the crystal parameters. The crystal is mounted
on a support stage which can be rotated about the normal to the reflecting face (the z
axis in Fig. 9.5). It is important that the stage can be adjusted so that the angle of
incidence does not change on rotation. The ratios ry, /7 and 7, /rss are found first.

1. If these are zero at all values of the azimuthal angle ¢, the crystal is isotropic, in
which case the inversion of r,/r, to obtain the dielectric function ¢ is relatively
straightforward (see Sect. 11.1 of Chap. 11), or the reflection is from a basal
plane (one perpendicular to the optic axis, y = 0, so f =0 in (9.58)). Lekner
(1997) shows how the remaining unknowns ¢, and ¢, may then be found.

2. If the amplitudes ry, and r,, are not identically zero, then from (9.58) they will
have two common zeros as the uniaxial crystal is rotated through 360° about the
surface normal. These zeros occur at f = 0 (¢ = 0 or 7). (If ry, and 7, are not
zero together twice in a full rotation, the crystal is not uniaxial.) When the
crystal is aligned so that 7, and ry, are both zero, the optic axis lies in the plane
of incidence. The known reflection amplitudes for § = O then allow extraction
of the remaining unknowns ¢,, & and y (or y) (see Lekner 1997), in terms of
reflection amplitude ratios at f = 0 and at & = 0(cos ¢ = 0), and of

! o
M:ﬂ:tan;(cos oL (9.62)
rp —Tps VK K

Sensitivity to errors in measurement is explored in Lekner (1997) for reflection by
calcite and selenium, the latter a strongly absorbing crystal. An alternative method
for thin uniaxial samples has been proposed by Yang et al. (1995).
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Chapter 10
Absorption

This chapter deals with the effect of absorption on reflection properties. The
absorption, or dissipation of electromagnetic energy within the medium, can be due
to conductivity (as in metals, and in the ionosphere). However, good insulators can
also be absorbers at high frequencies, where the electromagnetic field energy is
converted to heat via molecular or electronic excitations. The absorption is included
in the Maxwell equation (1.2) by allowing the dielectric function ¢ to take complex
values. In general, the curl of B is the sum of terms proportional to 9E/J¢ and to the
total current density. For non-magnetic media, and fields with the time variation
e~ the form of (1.2) is retained, with the imaginary part of ¢ now proportional to
the conductivity divided by the frequency (Born and Wolf 1970, Sect. 13.1). The
simplest model for conducting media is that of an electron gas, with mean free time
between collisions 7. This leads to the dielectric function (see for example Kittel
1966; Booker 1984; Budden 1985)

G)2

g(w,z) =1 T —|—pia)/r’ (10.1)

where w,, is the plasma frequency. In the ionosphere, for example, ¢ is a function of
height z through the proportionality of w]% to the electron density, as well as through
the dependence of 7 on the electron, ion, and neutral species densities.

We will represent the real and imaginary parts of physical variables such as ¢ by
the subscripts r and i:

e=¢ + ig. (10.2)

The real and imaginary parts of ¢ are directly related to the electronic properties of
the material under study. Either ¢,, ¢;, or the real and imaginary parts of the square
root of ¢ (the complex refractive index) can be used in writing the reflectivity
formulae. We shall use both, with the refractive index notation being particularly
convenient at normal incidence. The relationship between the two is found from
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& + igi = (n, + in;)’? (10.3)
giving
g = nf —n?, &= 2nmn. (10.4)

1

The real and imaginary parts of ¢ are related in their frequency dependence by the
Kramers-Kronig relations: ¢,(w) — 1 and ¢;(w) are Hilbert transforms of each other,
because the response of any system to an arbitrary signal must be causal (see, for
example, Landau and Lifshitz 1960, Sect. 62).

10.1 Fresnel Reflection Formulae for an Absorbing
Medium

For the s wave, with E = (0, E;,0) for propagation in the zx plane,

Ey(z,x,1) = & E(z), (10.5)
with
&’E 2 o’ 2
d2+qE 0, ¢'(x) =e(s) 7 — K" (10.6)

The separation of variables constant K is the component of the wavevector along
the interface, and its invariance leads to Snell’s Law:

\/s_gsmf)l K= \/_—sm(ﬁz (10.7)
C

Here we consider radiation incident from a non-absorbing medium (real ¢;) onto an
absorbing medium (complex ¢&;). Thus the angle of refraction is complex, and has a
formal meaning only. The behaviour of the refracted wave is found from its
waveform

Ey(z,x,1) = e/Kxraz=on, (10.8)
We write ¢, = ¢, + ig; the real and imaginary parts of g, are found from
2
2

2
w > (03} . .2
=6y -K :C—z(sr +ig; — grsin0y). (10.9)

Setting ¢» = g, +iq;, so that ¢3 = ¢> — q* + 2iq,q;, we have
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2 2
2 2 _ W ) w
T —q :C—z(sr —esin®0),  2g.q; =g (10.10)
Thus, for ¢ # 0 and ¢, > 0,
cqr 2 1 .2 ) 2 2 %
<—) =—l¢ —g sin’0, + {(sr — e sin®0y)” + gi] , (10.11)
w 2
i i/2
cai _ &f2 (10.12)
o cq /o

(When ¢ =0 we have either ¢; or g, =0, depending on whether 6, <0, or
0; > 0..) The waveform in the absorbing medium is

Ey(z,x,1) = e 93Kt arsmen), (10.13)

Thus g; must be non-negative, which implies that ¢; and n; must be non-negative.
Surfaces of constant amplitude are planes parallel to the interface (z = constant),
while surfaces of constant real phase are the planes Kx + ¢,z = constant. The normal
to the surfaces of constant phase is at an angle 6, to the normal to the interface, where

K- 2¢; sin® 0, (10.14)

2
tan” 0y = — 2 T
4y & —ersin®0) 4 [(e, — ey sin0))” + &2

The real angle 6, and the angle 0, (in general complex) coincide only for real ¢, or
at normal incidence.

For a sharp boundary between media 1 and 2, represented by a step dielectric
function at z = 0, the continuity of E and dE/dz at the boundary (implied by the
differential equation (10.6)) give the s wave reflection amplitude

P [N O T (" (10.15)
q +q2 g1 +4qr +1iq;

The s reflectivity is thus

(@ —a) + ¢

R, = . .
(ql + qr) + %‘2

(10.16)

At normal incidence this reduces to

S
R, = o) (10.17)
(n1 + n)” +n}

since then g, = n,®/c and ¢; = n;o/c.
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The p wave, which has B = (0, B,,0), has the form
By(z,x,1) = ¢ “B(z), (10.18)

with the same separation of variables constant K as the s wave. The equation

satisfied by B is
d (1dB w?  K?
— |- — —— |B=0. 10.19
dz <& dz>+<c2 a) ( )

At a sharp boundary between two media B and ¢ 'dB/dz are continuous; the
reflection amplitude is thus

01 -0 Q1 —0Qr —1i0Q;
. _ 10.20
"T0 Y0 Q10 +ig;] (10.20)

where Q) = q/¢; and Q) = g»/&. The latter is the ratio of the two complex
quantities g, + ig; and ¢, + i¢;, and thus has the real and imaginary parts

&qr t+ &iq;
0 =0 0=

2 4 g2
&+ ¢

&rqi — &iqr
— 10.21
& +¢? ( )
We note that r; — —1 and r, — -+ 1 at grazing incidence, as in the case of non-
absorbing media. The p reflectivity is

(01 —0,) + @
R, = L 10.22
"0+ 0) + Q? (10:22)

and reduces to (10.17) at normal incidence, where the real and imaginary parts of Q
take the values

n,w/c _ —mo/c

Qr_n%—l—ni27 Q'_nf—kn?'

(10.23)

We shall see later in this section that R, is never greater than Ry for a step profile.
Both R, and R, differ from their zero-absorption Fresnel values by terms second
order in g;.

In the absense of absorption, the p wave reflectivity is zero when Q; = O, (at the
Brewster angle 0 = arctan(ny/ny)). The condition Q; = Q, cannot be satisfied for
absorbing reflectors, since this would imply both Q1 = Q, and Q; = 0. The latter
condition is satisfied at angle of incidence 0; such that
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2 2
&+ ¢

sin ) = ,
2818,

(10.24)

and is thus possible if ¢ > 0 and 8% +sf<281er. But when (10.24) holds, the

condition Q; = O, could be satisfied only if (¢, — s,.)2 + 312 = 0. Thus, when there
is absorption, zero reflection at a single sharp boundary is not possible. When a
dielectric layer is placed over an absorbing medium, zero reflectivity is possible, for
both polarizations (at different angles), as we shall see in Sect. 10.3.

The s and p step profile reflectivities are shown in Fig. 10.1, for a metal (Al) and
a semiconductor (Si) at the visible He—Ne laser wavelength, 4y = 0.633 um. The
minima of R, are determined by a cubic equation in sin” 0y, given in (11.69) at the
end of the next chapter. For the Al and Si reflectances shown in Fig. 10.1, they
occur at about 83° and 76°.

We note the high metallic reflectivities, which are due to wavenumber mismatch:
q is real and g, = g, +ig; has a large imaginary part. An example of this real|
imaginary type of mismatch was seen in total internal reflection in dielectric
materials, where for 6, > 0. = arcsin(n,/n;) the wavenumber normal component
q> is pure imaginary, giving total reflection for both polarizations. We see from
(10.11), (10.12) and (10.16) that when ¢; # O total reflection is not possible for the
s wave (except at grazing incidence, when g¢; — 0). The same result follows for the
p wave from (10.11), (10.12), (10.21) and (10.22).

Fig. 10.1 Reflectivity as a function of the angle of incidence, for the s and p polarizations at
633 nm. The refractive indices are Al: 1.566 + 7.938i, Si: 4.0 + 0.12i. The corresponding dielectric
functions are Al: —60.56 +24.86i, Si: 16.04+0.96i (The Al values are for bulk metal;
vapour-deposited values are different: see Allen 1976)
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The ellipsometric quantity r,/r, is obtained from (10.15) and (10.20). It has the
real and imaginary parts

2 2 2\ (2 2 2
- Y] —-q, —q;)+4 iq19i
Re (r_p> _ {(Ql Qr sz(ql qr ql) +2 QlQ 919 } , (1025)
s [(Ql +0)" + Q,-Z] (g1 —a))” +4i]
(a2 — 2 — 42) — (02 — 0% — O?
Im (’_f’) _, 00 —a - ai) — 0130 er 9 (10.26)
s {(Ql +0,) + Qﬂ [(511 -4q) + q?}
The computation of these quantities is simplified by the identity
2,2
2 2 4 +4
2 — . 10.27

Equivalent and somewhat simpler formulae (in terms of ¢y, ¢,, ¢; and K) are given
in Sect. 11.1.

The trajectories of r,/r, in the complex plane for variable angle of incidence are
shown in Fig. 10.2 for Al and Si at 633 nm. There is rapid variation in the real and
imaginary parts of r,/r, at large angles of incidence, for Al particularly: the paths
cross the real axis at the principal angles of about 83°(Al) and 76°(Si).

The trajectory of r,/r, always lies within the upper half of the unit circle for an
arbitrary absorbing medium with a sharply defined surface. To see this, it is con-
venient to define a complex angle of refraction, 6, = 0, + i);, via

g =& (%)cosaz (10.28)

Al

Si
-1 0 Re 1

Fig. 10.2 The ellipsometric ratio r, /r, in the complex plane; trajectories for Al and Si are shown.
The refractive indices are for 633 nm, as in Fig. 10.1. For a perfect dielectric (no absorption) the
trajectory is the real axis from 1 (at 0°) to —1 (at 90°)
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(this definition is consistent with (10.6) and (10.7)). Then (10.15) and (10.20) may
be written in the Fresnel forms (1.14) and (1.32),

Sil’l(@Q — 01) tan(92 — 91)
=y, —o) o, B 0 10.2
T in(0, +0,)° "7 " tan (0, +0y) (10.29)
and the ellipsometric ratio r,/r, as cos(0» + 0,)/ cos(0, — 0,), or
o cos(0; +0,)cosh 6; — isin(0; + 0,) sinh 0; (10.30)

ry  cos(0; — 0,)cosh 0; +isin(0; — 0,)sinh0;

The fact that R, <R, follows from sinh? 0; < cosh? 0;. The sign of Im(r,/ry) is
opposite to that of ;. From (10.28) we have

(g) (gr +iqi) = (n, +in;)(cos 6, cosh ; — isin 0, sinh 6;). (10.31)

The real and imaginary parts of (10.31) give

¢ (n.qr +niq;)

50, cosh 0; = = rdr 141 10.32
cos 0, cos PR ( )
sin 0, sinh 0; = EM. (10.33)

nr +ni

These relations may in turn be used to find 6, and 0; as a function of the angle of
incidence, 0;. Here we are interested mainly in the sign of 0;, which is that of
niq, — n,q;. We noted below (10.13) that g, and ¢g; are non-negative. Thus, from
(10.10), ¢; is also non-negative, and so is n; (both n, and n; are >0, since
q, = n,o/c, g = n;o/c at normal incidence). It thus follows from (10.11), (10.12)
and (10.33) that 0; is never positive, so that ,/r, always stays in the upper half of
the unit circle.

For non-absorbing dielectrics R), is zero at the Brewster angle. In the presence of
absorption the reflectivity ratio R,/R, has a minimum at what is known as the
pseudo or second Brewster angle. The extraction of the optical constants n, and #n;
(or ¢, and ¢;) from measurements of this angle and of the minimum reflectivity ratio
is discussed by Potter (1969). The equations determining the principal angle of an

absorber, where Re (;—’:) = 0, and also the angle where R, is minimum, are given in
Sect. 11.7.
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10.2 General Results for Reflection by Absorbing Media
In Sect. 2.1 we derived the conservation law
a1 (1= 1r?) = galeP, (10.34)

valid for s and p electromagnetic waves and quantum particle waves in the absence
of absorption. This relation represents conservation of energy in the electromagnetic
case, and conservation of the probability density current in the particle case. In the
presence of absorption the conservation law is no longer valid, since energy or
particles are removed by the absorbing medium. This was noted in Sect. 2.1; it is
mathematically more explicit in the approach of Sect. 6.2, where it is clear that the
derivation of (10.34) depends on the reality of ¢°(z).

The quantity 712 = (g2/ q1)|112|2 is called the transmittance (see the discussion
following (2.8); equivalently one may take the ratio of Im(y*dy/dz) for y, =
t12€"% and W, = €%, as in (2.9)). For an arbitrary inhomogeneous and absorbing
layer between the nonabsorbing media 1 and 2, we showed in Sect. 2.1 that the
reciprocity relation g>t12 = g1 holds. Thus the transmittances for propagation in
either direction through an absorbing layer are equal:

2 1
T = LitpP= D16y = Ty (10.35)
q1 q2

The corresponding result for reflectivities, Rj, = R,;, holds only in the absence of
absorption (Sect. 2.1, (10.18)).

The result (10.34) may be written as 1 — R = T. For an absorbing layer between
nonabsorbing media, the ratio (1 — R)/T is greater than unity, since the conser-
vation law 1 = R+ T is replaced by 1 = R+ T + A, where A represents absorption.
Abelés (1950) has shown that if an arbitrary nonabsorbing layer is inserted in the
front of the absorbing layer, causing the reflectance to change to R’ and the
transmittance to 7", the ratio of 1 — R to T is unaltered:

1-R 1-F
T 1T

(10.36)

This result is proved by matrix methods in Sect. 12.5.

The general formulae for ry, ¢, 7, and 7, given in Sect. 2.2 remain true in the
presence of absorption, with the solutions F;G and C,D now complex. Thus it
remains true that 7, — —1 and r, — 1 at grazing incidence. Since 7, = ry at normal
incidence, it follows that the trajectory of r,/r, still starts at + 1 and ends at —1 in
the complex plane, and consequently there always exists a principal angle (ellip-
sometric Brewster angle) where Re(r,/r;) = 0. In general there can be an odd
number of such angles, as noted in Sect. 2.3.
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10.3 Dielectric Layer on an Absorbing Substrate

The reflection from a homogeneous dielectric layer on a transparent substrate was
discussed in Sect. 2.4. When the substrate is absorbing (typically it is metallic), the
formulae for the reflection amplitudes derived in Sect. 2.4 remain valid, with ¢, =
qr +ig; and Q; = Q, +1iQ;. The fact that g, and O, are complex changes the
reflectivity properties markedly. Of particular interest is the design of reflection
polarizers, in which the reflectance of one of the components of polarization is
extinguished by interference effects, while that of the other is not. See, for example,
Ruiz-Urbieta and Sparrow (1972), Bennett and Bennett (1978), and Azzam (1985).

Consider a non-absorbing homogeneous film, of thickness Az, located between
71 and z; + Az. The light is incident at angle 0; from medium 1, of dielectric
constant ;. The film has dielectric constant ¢, and the refracted ray within it makes
an angle 0 to the normal. Snell’s Law (the invariance of K?) gives
¢, sin? 0, = esin” 0. The substrate has dielectric constant & = &, + ie;. The normal
components of the wavevector in the three media are ¢q;,q, and ¢, = g, +iq;,
where the real and imaginary parts of g, are given by (10.11) and (10.12). The
s wave reflection amplitude for this system is given by (2.58):

! 22iqAz
_ iqiz r+re
ry = e~ _1 n rr/eziqA_z , (1037)
where
Tl ., (10.38)
q1 +q q+q>

are the reflection amplitudes (without phase factors associated with location) for the
ambient-film and film-substrate interfaces. From (10.37), r; will be zero when
¥ = —re %42 on equating the real and imaginary part we find

—2qq;

¢ +q -4
(g+a.) + ¢

= rsin2qAz (10.39)
(a+ar) +a

= rcos2qAz,

The angle of incidence at which zero reflection occurs (and the corresponding
wavevector components to be inserted into (10.39) to determine the appropriate

values of Az) is found from |//|*= r2, which leads to

(@ — q19:)(ar —q1) = ;g (10.40)

This equation reduces to a quadratic in cos?0; (the coefficients are given in
Sect. 10.9), or may solved numerically. For metallic substrates the solution lies near
grazing incidence; for example, for a layer of Al,O; of refractive index 1.6 on
aluminium (with the optical parameters used in Figs. 10.1 and 10.2), zero reflection
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for the s wave occurs at 87.95°. Since the reflectivity is always unity at grazing
incidence, its variation with angle of incidence is necessarily rapid between the
polarizing angle and 90°.

Kitajima et al. (1984) give numerical and experimental examples of the reflec-
tivity near the extinction point as a function of film thickness. The dependence is
strong, so observation of the oblique incidence reflectance during film deposition is
a sensitive thickness monitor.

For the p wave the reflection amplitude is given by (2.70):
r4 rIGZiqu

2iq12)
1 4 rrleiahz’

(10.41)

—r,=e

where now

_0 -0 r,:Q—Qz
0, +0’ 0+0

r

<Qr—ﬂ,Q—g7Qm—@>- (10.42)

€1 & &

The real and imaginary parts of O, are given by (10.21). The condition for zero
p reflectivity is 7/ = —re %92 which is equivalent to the equations derived for the
s wave with Oy, 0, O, replacing qi,q,q> except in the oscillatory functions of
2gAz. The equation analogous to (10.40),

(0> — 010,)(0, — Q1) = 0107, (10.43)

reduces to a sextic in C = cos*0;, and again has a solution close to grazing inci-
dence: for the Al,O3 on Al case, extinction of the p wave occurs at 8; ~ 88.68°.
Azzam (1985) has used the fact that zero reflection occurs near 90° to obtain
approximate but explicit solutions of (10.40) and (10.43). If one keeps just the
constant and linear terms in the quadratic and sextic for cos?0;, the accuracy in the
examples just quoted is about 2 % in the glancing angle.

10.4 Absorbing Film on a Non-absorbing Substrate

The derivation of the reflection and transmission amplitudes for a homogeneous
layer between two homogeneous media given in Sect. 2.4 remains valid when the
layer, the substrate, or both, are absorbing. Here we examine the case when the layer
is absorbing, and the substrate is not. An example is a metallic film on glass.
The s wave results may be obtained from (2.52) and (2.53) or from (2.58) and (2.59).
The latter are more convenient when ¢ (the dielectric constant of the layer) is

complex. We set & = &, +ig;, ¢> = (¢, +iq)’= ew?/c> — K2, to obtain
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A2 1 3
(Cq) :—{g, — g sin® 0; + (& — & sin® 91)2 ""9:‘2} }, (10.44)
w 2
; i/2
g _ &/2 (10.45)
o cq/o

(These formulae are the same as (10.11) and (10.12), but here ¢,, ¢; and g,, g; refer
to a film rather than to a bulk medium.) The reflection amplitude is given formally
by (10.37) and (10.38), with g = g, + ig; now complex. To simplify the analysis
we write

- pei67 e2iads _ p/ei&’7 (10.46)

with p’ including the exponential decay factor e 2447, and ¢ the 2¢,Az phase
increment. Then 7, takes the simple form

. Lot
pet& + p/em

2ig; 21
1+ pplei(5+5’) ’

(10.47)

re=¢

and gives reflectivity

Y 1+ 2pp cos(5+ ) + (pp')?

The transmission amplitude is found from (2.59):

P ei(qm ) (1 4 pei6>(eiqu + e—iqup/ei<5)
o =

1+ pplei®+3) (10.49)
We set f = e 947 ¢ = q,Az 50
ei18 = g~ tibzgitrds — foit (10.50)
and obtain
142 2)(f2 +2p'cos (2 — ')
\ls|2=( +2pcosd+p°)(f* +2p'cos (2¢ —5) + (p'/f) ) (10.51)

1+ 2pp’ cos(d+0") + (pp')?

When the film is “thick”, by which we mean here that the absorption within it is large,
with f = e~ 94¢ < 1, the reflection properties reduce to those of Sect. 10.1 for waves
incident on a semi-infinite absorbing medium. The transmitted flux is then propor-
tional to e2%<. In such a film the effect of interference of multiply reflected light (see
Fig. 2.5) is negligible because of the decrease in the amplitude due to absorption.
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In the absence of absorption the above formulae reduce to those of Sect. 2.4,
with |r,|* and |z,|* periodic functions of Az of period m/q = 1/2, . being the
wavelength within the film associated with motion in the z direction (perpendicular
to the surface). An example was shown in Fig. 2.6. Absorption damps the peri-
odicity, and strong absorption removes the oscillations altogether.

The p wave formulae may be obtained from (2.70) and (2.71), with g and Q now
complex and given by (10.44, 10.45) and (10.21). The results are completely
analogous to the s wave case, with the exception of the 4/(&;/¢;) factor multiplying
t, in (2.71).

Figure 10.3 shows the normal incidence reflectances and transmittances for films
of Al and Si on glass. For both materials the transmittance tends to zero as the film
thickness increases, and the reflectance tends to p* = [(q1 —q,)> + 7/
[(q1 + q,)* + ¢7], with respective values of about 0.91(Al) and 0.36(Si). The
approach to the thick film limit is rapid and monotonic for Al, which has a large
imaginary part of the refractive index. With its small imaginary part of refractive
index, the Si reflectance and transmittance oscillate (because of interference of
forward and backward propagating waves within the film) until the exponential
decay factor e~2%42 dominates. For the examples shown, the limiting absorbance
values A=1—-R—T — 1—R— 1— p? are about 0.09(Al) and 0.64(Si). For
thick films the more weakly absorbing material absorbs more energy, because more
light penetrates into the film, to be absorbed at depth.

R(AD

/7 NI(SH)
# \

/ N

WAz

Fig. 10.3 Reflectance R = |r|* and transmittance T = (q,/¢1)|¢|* for light of wavelength 633 nm
incident normally on films of Si(n = 4.0 4 0.12i) and vapour-deposited Al(n = 1.212 + 6.924i)
on glass (n = 1.5). At normal incidence g; = n;w/c; for large ¢;Az the transmitted intensity varies
as 7242, When Az = ¢/w = Jy/2n, this factor is approximately 107 for Al; the thickness is
then about 0.1 um
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10.5 Thin Inhomogeneous Absorbing Films

So far we have considered homogeneous media, and homogeneous layers of
arbitrary thickness. We now specialize to thin films or interfaces (“thin” now
meaning that the film thickness times w/c is small), which however may have
arbitrary depth dependence in the real and imaginary parts of the dielectric function,
&-(2) and ¢(z).

The presence of absorption within the interface and/or substrate has major effects
on the reflection and ellipsometric properties. We saw in Chap. 3 that for nonab-
sorbing media the reflectivities are unchanged to first order in the interface
thickness/wavelength expansion: the interfacial profile characteristics appear only
in the second order. For absorbing media, the wavenumber components ¢ and
O = g/¢ are complex. The s and p reflection amplitudes to first order in the
interface thickness are given by (3.23) and (3.44):

2i 2/.2
=g+ 2N/ (10.52)
(g1 +q2)
2i KA
Ty =T — i1 2{ - - Q%M} + - (10.53)
(01 +O2)" L a1&2

The integrals Z; and A are given by

i [o/1
)\41 = / dZ(S — 80), Al = &1& / dz ({-‘_ - ;>7 (1054)
20 5

—00 —00

where the step function &y(z), which takes the values ¢ for z<0 and &, for z > 0,
may now be complex, since & may be complex.

We will consider in detail the non-absorbing substrate case (¢ real). The inte-
grals A, and A; are still complex, since the interface is absorbing, with complex
&(z). The s and p reflectivities thus contain first order correction terms proportional
to the imaginary parts of 4; and A;:

4q1(q1 — q2)w?/c?

Ry =Ry — i+, (10.55)
(q1 +CJ2)3
40:(01 — @) [ K? 2r
Ry =Ry — 1L — )02 1y Ay — Q2myg b+ o (10.56)
(01 +02) 1€

(these formulae and the following discussion apply to the nonabsorbing substrate
case only). The step function & is real when ¢, is real, so
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r 1 r &
Imi = dz gi(z), —ImA; = dz——. 10.57
m / 7 &(z2) P mA / 28%_’_812 ( )

The reflectivity corrections are proportional to integrals over the imaginary part of ¢
through the absorbing region, as may be expected. At normal incidence both
(10.55) and (10.56) reduce to

4 —_
_Amlm mm)op (10.58)

R, =Ry
n n (Vl] +n2)3 c

1/2 1/2
where n; = 81/ and ny, = 82/

the inhomogeneous region.

For passive media the absorption term Im ; is non-negative, and so (to first
order in the film thickness) absorption in the film increases the system reflectivity at
normal incidence if n; <n,, and decreases it if n; > n,. This statement remains true
at all angles of incidence for the s wave, but not for the p wave, for which the
correction term in (10.56) changes sign at the Brewster angle 0y = arctan(n, /n;)
(at which Q1 = Q»), and also when

are the real refractive indices of the media bounding

-1
) &1 Il’l’lAl
sin” 0y = |— .
s ! |:82 + Im/11:|

At these two angles for the p wave there is no contribution to the reflectivity in first
order in the film thickness. The first order term is also absent for absorbing films
between like media (&, = &), for both polarizations and at all angles of incidence.

In all cases there is however a first order effect in the transmission: for the s wave
we have from (2.15) that

2iq1? [ c*h
t =t L/CZ‘ (10.59)
(1 +q2)
which gives the transmittance
4 2w?/c*Im A
T, = L |1 = 10 2{1_ / L4 } (10.60)
q1 (g1 +q2) q1 +q2

The p wave result is a little more complicated. To obtain an identity similar to (2.
15) we start with two p wave equations, with dielectric functions ¢ and &, and
incident from media 1 and 2, respectively:

dc K ‘ - -
d—12 + (w_2 B _>B12 =0, €7 —rpe" — By — 10e"", (10.61)
z c P
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dc 2 KM\, - = < <
d21 + (wZ - ~)321 =0, Tae ' By — e P~y (10.62)
z c

Here C stands for ¢~'dB/dz, 1y, for (82/81)1/2112. On multiplying (10.61) by By,
and (10.62) by Bj,, subtracting, and integrating from —oo to + oo, we get the
comparison identity

2i(Q1721 — Qoti2) = / dz{K2 C i)BuBm +(e§)c12621}. (10.63)

This holds for any pair of profiles ¢ and ¢ (with the same limiting values ¢; and &),
and thus also for & = ¢, when the right-hand side is zero. Thus Q)7 = Q»712
(equivalent to gt = qat12, (2.14)), and (10.63) may be rewritten as

o o1y, - o
T =112 _TQz / dZ{Kz (g _;>BIZB21 +(8 — 8)C12C21}. (1064)

We now set ¢ = &, the step function profile. To lowest order in the film thickness, it
suffices to replace B and C by the values taken by By and Cy at the origin:

201 ~ 20, 2i010> - 2i010>
Bp—>——"— , By—>—"—, Cp————, Cy) > ————.
P00t o+ Y o +0 01 +0»

(10.65)
Thus
2i0, K? ]
T N kY I+ 10.66
TR (01 +00)° Llsz Lo (10.66)

The corresponding p wave transmittance is, on using 7o = 20;/(Q; + 02),

Q@ 2 O
T =22, P %2
" o] O i ,
40:10> 2 K
= 1-— —ImA ImA cee s 10.67
(O +Q2)2{ 01 +0» Llsz mAL+ 010 l} - } (10.67)

The imaginary parts of 4; and A; are both positive, so (10.60) and (10.67) show
that, to first order in the film thickness, the transmission through a film is always
decreased by absorption within the film (in contrast to the reflection, which we saw
could be either decreased or increased by absorption). At normal incidence both
(10.60) and (10.67) reduce to
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4
TnZ%{l—
(n +m)

} (10.68)
n +nc

The conservation law R+ T = 1 for non-dissipative media can be generalized to
R+ T+ A =1, where A represents absorption within the system, and is nonnega-
tive for passive media. From (10.55), (10.56), (10.60) and (10.67) we find the
absorptance for the two polarizations:

4 2
A, = zw—zlmil T (10.69)
(@1 +q2)" ¢
4 K>
A, %{—Imm +Q§Im/h} 4o (10.70)
(01 +00)" lara

We now turn to the ellipsometric characterization of thin absorbing films. The
derivation given in Sect. 3.4 remains valid for complex ¢. To first order in the film
thickness we have

2i0:K?%/¢
rso(r—”) — o _@‘7/9182211 T (10.71)
Ts (01 +02)

where the integral invariant I; = A; — 4; is given by

I = / ez el —e) / dz<81+82 —%—s). (10.72)

&

We again consider the simplest case where only the film is absorbing, with & and &,
real. Then, with &(z) = &,(z) + i&;(z),

1828, . &1&
I = / dz(sl + & _s% T —8,) +i / dz(ﬁ3 e — 1>si. (10.73)

—00 —00

Since ¢, has the limiting values ¢; and &, and ¢; is zero outside the absorbing
region, both integrands go to zero at the end-points. For non-absorbing films the
principal angle 0p (the ellipsometric Brewster angle) at which Re(r,/r;) = 0, dif-
fers in second order in the film thickness from 0p = arctany/(&/¢;) (determined by
01 = O»), as we saw in Sects. 3.4 and 9.6. When the film is absorbing there is a
first order correction: from (10.71) we find

(w/c)Im1,

(r +e2)"(2) - (2-2)

AO = 0p — 0 = T (10.74)
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This difference between the principal and the Brewster angles is proportional to
ImA; — Im 4, and may be large even for thin films if & = &;.

The case & = ¢ (absorbing film between optically identical media) requires
special consideration, since then both ry and r,o are zero. The leading term in the
ellipsometric ratio now depends on the ratio of A; to 4;: from (10.52) and (10.53),

A
r—”:rp—l+~--:c05200—7]sin200+---. (10.75)
Iy Fs1 Al

where 0y is the common angle of incidence and transmission. The zero-thickness
Brewster angle is 0z = m/4, while the principal angle at which Re(r,/r;) =0 is
given by

A A + Aid;
COtzesze(Tl)-l-"':W-f—"'. (1076)

Here A; = A, +iA; and A} = A, 4+ i4;, and the real and imaginary parts may be
extracted from (10.54), with &1 = &, = &j. This differs in second order in ¢; from the
angle at which a non-absorbing film has zero reflection of the p wave, given by (3.
59).

10.6 Attenuated Total Reflection, Surface Waves

When light is incident from a dielectric of refractive index n; onto another dielectric
of refractive index n, <n; (for example from glass to air) there will be total
reflection when 0, > 0. = arcsin(n,/n;). This holds for both polarizations, and
irrespective of whether the transition between the dielectrics is sharp or gradual,
provided there is no absorption within the interface. When an absorbing layer
(typically a metal film) is deposited between the two dielectrics, the transmission is
still zero (since o = (e200% /> — k)" is imaginary for 0, > 0,) but the p wave
reflectance can be very much less than total. A sharp resonance in the absorption
can appear, and this is the basis of an experimental technique for the determination
of the optical constants of metal and semiconductor films. The technique is due to
Otto (1968) and Kretschmann and Raether (1968). Otto originally referred to
“frustrated total reflection”; it is now called attenuated total reflection. Two basic
configurations are illustrated in Fig. 10.4.

We will consider the two configurations of Fig. 10.4 in this chapter. The sym-
metric high|low|complex|low|high configuration will be treated in Sect. 12.6, since
it is more easily treated by matrix methods.

For the dielectric|labsorbing layer|dielectric case (upper diagram in Fig. 10.4),
we can use the results of Sect. 10.4, taking account of the fact that ¢, and O,
become imaginary for 6; > 0, = arcsin(ny/n;). The s and p reflectivities have the
form (10.48),
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Fig. 10.4 Two configurations for attenuated total reflection. Prisms are often used instead of the
half-cylinders illustrated. The shaded material is a conductor, with n = n, + in;. The medium of
incidence has the higher index: n; > n,

PP +2pp cos(6 = &)+ (p)°

s, Ry, = , (10.77)
P 14 2pp cos(6+8) + (pp')?
where p, § and p’, ¢ are defined for the two polarizations by
pe = @h—4 ;ei‘ji _1~ % g2z, (10.78)

Cq1+q’ q+q
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o — O — Q7 p;, el — Q-0 Q2iahz.
0 +0 0+0>

pye' (10.79)

The wavenumber normal components g and Q are complex, with real and imagi-
nary parts given as before by (10.44, 10.45) and (10.21). We have

2 2 2 2
polo—a) ta o (01 —-0) + 0 (10.80)

(@ +a)+a " (@G +0)+ 0

We interpret p, and p, as the positive square roots of these expressions, and define
atn(y,x) as the arctangent of y/x placed in the correct quadrant according to the
signs of x and y. The corresponding phases are then

8= an(-2q1q:, 41 — ¢ — q7),
5, = atn(—20,0;, 07 — 0 — 0;). (10.81)

The primed variables take different forms depending on whether 6, is less or greater
than 0. For 0, <0, we find

) ) 172 ) ) 172

! 2z (qr - q2) +q; /I —2qiAz (Qr - QZ) +Qi

pl=e N e T TELL L (10.82)
(9r +q2)" +q; (Qr +02)" +0;

The positive square roots are again understood. The corresponding phases are
5; = quAZ+ atn(Zq,»qL q? +ql2 — q%)7
8, = 2g,Az+ am(20:02, O + 0} — 03). (10.83)

For 6, > 0. we set g, = i|¢q>| and O, = i|Q5|. Then

5y 1/2 Y 172
o = e—zq,-Az{fﬁ +(qi — |g2|) } o= e—zq;Az{Qz +(Qi —10a]) } ’

@ + (q: +qal)? ! 02 +(0; +10a))°
(10.84)
8, = 2q,Az + atn(~2q, |, ¢ + 47 —|aal’),
d, =2q,Az+ atn(—ZQr|Q2|, 0 +0; - |Q2|2)- (10.85)

Figure 10.5 shows the s and p reflectivities for a high refractive index glass|silver
film|lithium fluoride system at Ay = 546nm. The refractive indices are n; =
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Fig. 10.5 Attenuated total reflection for the upper configuration in Fig. 10.4, for incidence from a
high refractive index glass onto a silver film, with a lithium fluoride substrate. The p reflectivity
shows a sharp minimum in the region where total reflection would occur in the absence of the
metal film of thickness Az (the critical angle is 6. = 47°, indicated by the vertical line in the
Figure)

1.9018,n = 0.055 + 3.28i, np = 1.392 (these correspond to those used in Fig. 13b
of Otto 1976). The values of (w/c)Az for the silver film thicknesses of 35 and
55nm are 0.403 and 0.633.

An estimate of the location of the minimum in the p reflectance can be obtained
from the thin film formula (10.53). For 6; > 6. we have Q, = i|Q,|, and (10.53)
gives

4 K?
Ry—1—— 29 [—ImAl +|Q2|21mz1] 4+ (10.86)

! 03 410y Lere

For a homogeneous metallic film of thickness Az this becomes (on using (10.57))

B 40, ( K>

2
R,,flsz_HQ e +|Q2|>8,Az+~-. (10.87)
1 2 r i

This has a minimum when

cK 1/2

(E)zz g sin 0, = % {3\/ —u+ {(3\) — u)” —4uv + 8¢, (u — V)} }a (10.88)

where

(& +¢)e s

- = , 10.89
e +& +6 T e ( )
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For the parameters of Fig. 10.5 these expressions locate the minimum at about 59°.
The actual minima are at smaller angles: the 55nm metal film (for which
(w/c)Az = 0.633) has a reflectance minimum at about 54°. One reason for the lack
of precision in this estimate is that the thin film formulae contain no direct infor-
mation about the complex wavenumber component g = g, +iq; within the
absorber. For metals, ¢, can be large and negative, and ¢; is then much larger than
qr, making the effect of the exp(—2¢;Az) factor in the reflection formulae very
strong. The same comments apply to (10.74), which is accurate for metallic films
only when these are unrealistically thin.

The ellipsometric quantity r,/r; shows remarkable behaviour in the vicinity of
strong attenuated total reflection. It is given by

™ _ _ P, + pr et ) 1+ p,plei® +9) (1090
Fy 1+ ppp;)el'((jp +5]/,) Pseié“' + pg,eiés ’

where the magnitudes and phases of the component amplitudes are given by
(10.78)—(10.85). For thick metal layers the trajectories r,/r; tend to those of
Fig. 10.2; for very thin metal films the trajectories approach those of Fig. 2.9. The
layers of intermediate thickness which show strongly attenuated total reflection
have a variety of trajectories between these two limiting cases. Two examples,
corresponding to those in Fig. 10.5, are shown in Fig. 10.6: note the very rapid
variation with angle near 0. and in the vicinity of the reflection minimum. The
55 nm film gives an r, /r, trajectory which passes close to the origin, corresponding
to the very small R, value shown in Fig. 10.5.

We mentioned in the discussion following (10.89) the reason why the thin film
formulae (10.85-10.89) for the location of the p reflectivity minimum might give
accurate results only for unrealistically thin metal films. Likewise (10.74) predicts a
small negative shift AQ = 0p — 0Op for the silver film case illustrated in Figs. 10.5
and 10.6. For vanishing thickness of silver p = 05 ~ 36°, while for thick silver
layers 0p ~ 65°, an increase of nearly 30°. This large increase is almost complete
when (w/c)Az = 1, and swamps the small predicted decrease even for monolayers
of silver.

The phenomenon of attenuated total reflection is due to the generation of elec-
tromagnetic surface waves in situations where total reflection would occur in the
absence of the metal layer. Consider the simplest possible case of an idealized
conductor with negative dielectric function, for example, ¢ =1 — w,%/w2 with
o < wp, bounded by a dielectric with & > 0. A surface wave solution for the p
polarization is possible: for an interface in the xy plane z = 0, let

i(Kx—ot) ,|qlz
By(z,x,t):{e e (z<0

ei(KX—wl)e—\qﬂZ (Z >0 (1091)

NN
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Fig. 10.6 The ellipsometric ratio r, /7, in the complex plane, for the prism|metal layer|dielectric
configuration illustrated in the upper diagram of Fig. 10.4. The parameters used are those of
Fig. 10.5. The 35 nm silver film has a single principal angle 0p ~ 53.4°, while the 55 nm thick film
shows triple principal angles (0p ~ 53.9°, 55.1°, 63.4°). (The possibility of multiple principal
angles was discussed in Sect. 2.3). As the thickness of silver is increased the indentation near 54°
diminishes, and eventually the trajectory becomes a simple arc in the upper half plane, and crosses
the Re(r,/rs) = 0 axis at Op ~ 65°

This function satisfies (1.18) and its consequent boundary conditions, namely the
continuity of B, and ¢ '0B,/dz at z = 0, provided

2 2
2 W 2 w lq| |42
K —lgl=t—, K-l|pl=a—5, —=-"" (10.92)
C C & &

(note that a surface wave solution for s polarization is not possible, since this would
require |g| = —|qz]|). The first two equations may be regarded as the usual relation
between the tangential and normal components of the wave-number,
K? +q* = ew?/c?, except that q and g, are imaginary and give exponential decay
away from the surface rather than propagation in the z direction. The last relation in
(10.92) can be satisfied if |¢ > e, since |q| = (K* + |£\a)2/02)1/2 >
(K? — 6,0%/¢®)"/*= |g5|. On eliminating |g| and |g»| from (10.92) we find for the

wavevector component K (for propagation along the interface) the dispersion
relation

2 lele @?

= —. 10.93
le] — & ¢? ( )


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_2

10.6 Attenuated Total Reflection, Surface Waves 255

The hypothetical electromagnetic surface wave described above has no real normal
component of its wavevector and thus cannot be coupled into by an incident plane
wave. When incidence is from an optically denser medium, so as to produce total
reflection in the absence of the metal film, strong coupling is possible with p-polar-
ization for a special combination of angle of incidence and thickness of metal. The
modulus of the magnetic field is shown within the silver layer and the lithium fluoride
substrate in Fig. 10.7. Inside the Ag layer the magnetic field equals Ce’® + De ™%, with

C =22 [1 + @ppy] ' D = dp,C, where py = 859 . py = 85%. The
waves decay exponentially inside LiF, since the angles of incidence exceed the critical
angle.

We see that near the angle for minimum reflectivity (here about 53.9°) the fields
peak at the interface between the metal and the second dielectric, as in the idealized
metal|dielectric case discussed above. As usual the fields decay exponentially into
the second dielectric, but at resonance increase (approximately exponentially) into
the metal, as opposed to the usual decay away from the illuminated surface.

The conditions for minimum reflection, and thus maximum absorption within the
metal film, can be seen from (10.77). For R, to be minimum we need p, and p;)

approximately equal, and cos(d, — 5;,) near —1. Since 5; contains the factor
exp(—2¢;Az) it would normally be much smaller than p,, especially as g, is large
for metals. But by varying the angle it is possible to make Q; + Q> zero or very
small, Q; being usually negative for metals (note that 6; > 0. is needed here). Since
O, is small, this makes the factor multiplying exp(—2¢;Az) in p;, large, and
p;) ~ p,. Both angle and metal layer thickness adjustment are involved in attaining

approximate equality of p, and p;,. The other condition, cos (5,, - 5;) ~ —1,

6
55°
Bl
3 54
56°
Ag ' LiF

Fig. 10.7 The modulus of the magnetic field B as a function of z, for the prism|silver|lithium
fluoride configuration, with the Ag layer being 55nm thick. Note the sensitivity to angle of
incidence: in this case even a 1° shift is sufficient to decrease the peak amplitude by a factor of 2.
The parameters are as in Figs. 10.5 and 10.6, and the incident field has unit amplitude. The
boundary between silver and lithium fluoride is marked by the vertical line
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depends mainly on angle, since here the metal thickness enters as ¢,Az, and g, is
small.

These rough arguments can be made more precise. For example, we can ask
whether a certain combination of prism|metal|dielectric can give zero reflection
(total absorption) at some angle and thickness combination. This amounts to sat-
isfying p, = p;, and cos (5p — 5;) = —1 simultaneously. On eliminating Az

between these two relations, we find the condition

an(—2010;, 07 — 02 — 0?) — ain(—20,|02], 0% + 07 — |03])

lg, [0 +(0i —|0a)* (0 —|Q,|)2+Q%}
_lLar, . — (2m+1 10.94
24, H{Q%Jr(QiHQzI)Z 0 —jo) —gzf = Gmrhm (1099

where m is a positive or negative integer, or zero. For the case illustrated in
Figs. 10.5, 10.6 and 10.7 we find that (10.94) is satisfied (with m =0) at

0o ~ 53.9°, and gives the optimum thickness Az = (4¢;) 'In{}, ~ 55.6 nm, where
{}o denotes the contents of the braces in (10.94) evaluated at 0p. For perfectly
attenuated total reflection the trajectory of r,/r, passes through the origin at 6. The
trajectory for the 55 nm thickness of silver shown in Fig. 10.6 passed close to the
origin, but this thickness does not quite give a perfect absorber at 0.

For vapour-deposited Al at 633 nm (refractive index 1.21246.924i, as in
Fig. 10.3) between the same two dielectrics, (10.94) gives 0y ~ 49.5° (again with
m = 0), and an optimum thickness of about 13 nm.

10.7 Attenuated Total Reflection: Second Example

We now turn to the lower configuration in Fig. 10.4, in which the prism is followed
by a low-index material (or an air gap) and then by a metallic substrate. In the
absence of the metal we would have exponential decay of the fields into the second
dielectric for 0; > arcsin(ny/ny), since g, = i|gz| is then imaginary. When the
metal is present, both exponential increase and decrease are possible, these going as
exp(£|qz|z). Attenuated total reflection occurs when the increase dominates, pro-
ducing large fields at the second dielectricjmetal boundary, and thus large
absorption. The reflection amplitudes may be obtained as before. We have, for the
ny|nz|n, + in; configuration with boundaries at z = z; and at z; + Az,

r reteh Q-4 ,_ 4@ —4

. r= r =
1 + rrie?ia:Az’ q+aq’ @ +q’

_ eZiqm

(10.95)

Ts

where
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q; = 0’/ —K* =& (0?/c*) cos’ 0y, g5 = er0*/* — K?, ¢ = e [c* — K*
(10.96)
The real and imaginary parts of g are given by (10.11) and (10.12) or (10.44) and

(10.45). We again set r = pe’® and re¥®5: = p'ei; when ¢, is imaginary p’
includes the exponential factor e 242142 The p wave reflection amplitude is

! A2igr Az
i r+re
r, = e e Ty (10.97)
where now
O -0, O -0 (10.98)

r_Q1+Q27 r_Q2+Q’

with Q1 = q1/¢1, 02 = q2/& and Q = g/¢ has real and imaginary parts given by
(10.21). The amplitudes p, p’ and the phases 6 and &' are defined as for the s wave.
The reflectivities then take the form (10.77). For 0; <0. = arcsin(n,/n;) we have

qQ —q2 :QI_QZ
a+q’ T O+

s

2
p;: {(qZ *Qr) Jrqiz

1/2
, 0y = atn(=2q2qi, 45 — q; — q;) + 2z
(42 +q,)° +q,-2}

L {(Qz ~0,) + @
[ N, B

1/2
, 8, = atn(=20:0i, 03 — 07 — 07) +2:Az
(Q2+Qr)2+Q?} p = atn(-20:01,0; = 07 = 07) + 202z

(10.99)

(In the 0; <0, case it is convenient to set 6, = 0 and allow p,, to carry the change of
sign at the Brewster angle 0 = arctan(ny/n;), where Q1 = Q,.) For angle of
incidence greater than the critical angle, g2 = i|¢q2|, 02 = i|Q2|, and

Ps = 17 55 = atn<72q1‘q2|aq% - |q2|2)a

py=1, 8= atn(—2Q1|Q2\, 0 - |Q2|2), (10.100)

@ + (2] — 1)’ . 2] A 2_ 2 2

— U

py= m e tlelne, d; = atn(2|f12|%a |92|” —q; *%‘>,
p 2 i
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/ 2 + - i2 v — z /

The p wave reflectivity can be zero if p, = p;] and cos (5,, — 5;,) = —1 are

satisfied simultaneously. The angle 0, at which this can happen is (for 6; > 0.)
found from

an(-2011021, 0% — 10:) — an(210210,10: 0} — 02) = 2m+ D).
(10.101)

The thickness of the second dielectric which gives perfectly attenuated total reflection
(that is, total absorption) is given by the following expression evaluated at 6y:

1 02 + (05| — 0i)°
Az = 1 r . 10.102
) “{Q%+<|Q2+Q,-)2} (10:102)

For the high refractive index prism|lithium fluoride|silver system at a wavelength
of 546 nm, with the refractive indices 1.9018, 1.392,0.055 + 3.28i, (10.101) gives
0o ~ 54° (with m = —1) and (10.102) gives Az = 307 nm. There is also zero
reflection of the p wave near grazing incidence, with 6y ~ 89° (again m = —1) and
Az =~ 39.3nm: compare the discussion of reflection polarizers consisting of a
dielectric layer on a metal substrate in Sect. 10.3. The reflectivities are given by
(10.77) and r,/rs by (10.90). Figure 10.8 shows R, for the above combination,

Az =307nm

30 60 920
0

Fig. 10.8 The p reflectivity as a function of angle of incidence, for the lower configuration in
Fig. 10.4, shown for the two thicknesses of the second dielectric (LiF) which give total absorption
of the p wave at one angle. The thicknesses and angles are 307 nm, 54° and 39.3nm, 89°
(at 29 = 546 nm). The substrate is silver. The critical angle 6. &~ 47° is marked by the vertical line
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307nm

-1 \_/6 ]
Re

Fig. 10.9 The ratio r,/r, is the complex plane, for the two dielectric thicknesses which give
perfectly attenuated reflection at one angle. The thicknesses are 39.3 and 307 nm; the
corresponding curves pass through the origin at about 89° and 54° respectively. The 307 nm
diagram shows the triple principal angle phenomenon, as in Fig. 10.6

at the two optimum thicknesses of the second dielectric, which correspond to
(w/c)Az = 3.53 and 0.452. Figure 10.9 shows the corresponding r,/r, curves.

There is wide variety in both the reflectance and the ellipsometric curves as the
thickness of the second dielectric varies. For thin layers of the dielectric the curves
tend to those of Sect. 10.1.

The phenomenon of attenuated total reflection has been treated here purely by
classical electrodynamics. It was seen to be an interference-attenuation effect,
linked to the excitation of electromagnetic surface waves. These are coupled into by
means of the exponential decay or growth in the metallic layer or the second
dielectric which is possible for ; > ... In radio physics the electromagnetic surface
waves sometimes go by the names of Zenneck or Sommerfeld-Zenneck (Barlow
and Brown 1962), or ground waves (Budden 1985). In solid state physics the terms
surface polariton, surface plasmon, or sometimes surface polariton-plasmon or
phonon-polariton are used. There the phenomenon of attenuated total reflection has
many applications: for example the determination of the optical constants of metals
and semiconductors (Otto 1976), and the study of adsorbates (McIntyre 1976). The
literature on the solid state aspects of surface wave phenomena is very large; see for
example the collections of papers edited by Burstein and DeMartini (1974),
Seraphin (1976), Boardman (1982), and Agranovich and Mills (1982).

10.8 Reflection by a Diffuse Absorbing Interface:
The Tanh Profile

In Sect. 2.5 we considered the reflection properties of the hyperbolic tangent profile
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1 1 Z & + e
&(z) 25(81 + &) —5(81 —az)tanh——#

e = i o (10.103)

The s wave reflectivity was shown to be

sinhna(q, — ¢2)) >
Ry = { L — D) (10.104)
sinh ma(q; + q2)

for real g, and unity for imaginary g [g2 = i|gz|for 0 > 0. = arcsin(e,/ 81)1/ 2].
Here we shall discuss reflection by the profile (10.103) when ¢, is complex,
& = & +i¢;. The particular example we have in mind is reflection by an iono-
spheric layer in which the electron density at the lower ionospheric boundary
approximately takes the functional form (10.103). The electron gas dielectric
function (10.1) has the real and imaginary parts

? wﬁ Jort

s _ Gt
w? +1/7?

e =1 &

Since @? is proportional to the electron density, both &, and &; take the form

4
(10.103), and so does &(z) with & = ¢, +ig;, if the variation of 7 through the
inhomogeneity can be neglected.

The theory leading to 7, as given by (2.84) remains valid when &, is complex,
with g, being replaced by g, + ig;. The reflection amplitude in the absorbing case is

thus given by (with y; = ga as before and g,a =y, +iy;)

IQiy)I'(yi —i(yr +y:)I(=yi —i(y1 —yr))sinhz(y; —y, —iy;)
I(=2iy )T (=y;i +i(y1 +y, )T (vi +i(yr —y,))sinhz(y; +y, +iy;)
(10.106)

rg = —

From (2.86) the ratio I'(2iy;)/I'(—2iy;) has modulus unity, and so

. h2 —y, -2 ;
R =|n]>=c2 2n(Y1 yr)+ B (10.107)
sinh” n(y; +y,) + sin” my;

where G is the modulus squared of the gamma function ratios in (10.106):

G — [FOi =i 43 (=yi =i —y))[* (10.108)

F(=yi +i(yr +y ) (yi +i(yr —yr))
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To evaluate G we consider the ratio I'(—z)/I'(z). From the infinite product rep-
resentation (2.85) we have

I'(—z) 2 T <n+z> on
= —¢” el 10.109
I'(z) nl:[l n—z ( )
Thus, with z = x4+ iy,

() = (2 47\

_ A —4x/n
T —° H<7(n_x)2+ 2) e (10.110)

n=1 y

Both I'(—z)/I'(z) ratios in G have the same real part of z, so the exponential factors
cancel and

2 2 2

(n—y)* + 01 =)’

00 2

Gt r,v1) = H(n yl)z + 01 +yr)

ot (nF3i)" + 1+ )
Since q1, g, and g; are all non negative, G is always greater than unity in the
presence of absorption. G tends to 1 as ¢; — 0, and also at grazing incidence where
g1 and thus y; tend to zero.

Figure 10.10 shows the s wave reflectivity for a tanh profile with ¢, = 0.25 and
& = 0.001, corresponding roughly to a frequency a bit above (2/1/3 larger than)
the maximum plasma frequency, with absorption typical of the ionospheric E layer.
In the absence of absorption there would be total reflection for angle of incidence
greater than arcsin(1/2) = 30°, for any layer thickness. Electron collisions decrease
the reflectivity, the decrease being greater for greater thickness of the transition,
there being more penetration into the absorbing region.

1 r_

0 30 60 90
0

Fig. 10.10 The s wave reflectivity as a function of the angle of incidence for the tanh profile with
fixed absorption and varying thickness a (¢; = 1,&, = 0.25,& = 0.001, (w/c)a = 1, 10 and 100)
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An interesting phenomenon appears in the reflection at a gradual transition to
negative ¢,. In the absence of absorption both s and p waves would be totally
reflected. The turning point where ¢?(z) = 0 is given by &(z) = ¢, sin® 0}, and the
s wave shows exponential decay beyond this point. The p wave however has a
singularity at &(z) = 0 arising from the ¢~!dB/dz term in the equation satisfied by
B, and this leads to a logarithmic singularity in B, and infinities in E, and E,.
Absorption removes the infinities, but the fields at the point where ¢,(z) = 0 can
still be large. This problem is discussed by Landau and Lifshitz (1960, Sect. 68) for
real ¢; the effect of absorption is considered by Ginzburg (1964, Sect. 20) and
Budden (1985, Sect. 15.6) who also give references to earlier work.

10.9 Zero Reflection from Dielectric Layer
on Absorbing Substrate

In Sect. 10.3 we mentioned that (10.40) can be reduced to a quadratic in the variable
C = cos?0,, which we write as ¢y +c¢;C+c,C* = 0. The coefficients of the
quadratic are

co=—e(e—g)
e =4e(e—e) (a1 —e)|(e— &) +&] (10.112)
e = 482e(er —5) — &+ + (e — ) +¢]

When C is small, as it is at glancing incidence, the solution is approximately
C = —c¢p/cy. For the example quoted in the text, this gives the glancing angle at
which the s wave reflection is zero as 2.09°, instead of the exact 2.05°. When we
keep only the constant and linear terms in the p-wave sextic, the glancing angles for
zero reflection are 1.32° (approximate) and 1.34° (exact).
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Chapter 11
Inverse Problems

The direct problem in reflection is the calculation of the reflection amplitudes (and
thence the reflectivities and the ellipsometric ratio), given the characteristics of the
reflecting profile. Inverse or inversion problems consist in the estimation of the
profile characteristics, given some experimental reflection or transmission data (or
both). In general, the wider the range of the experimental data (in polarization,
angle, and frequency), the more can be said about the reflecting profile. But the
information is never complete, and if sparse, can be ambiguous. For example:
suppose we measure the s or p reflectivity from a homogeneous layer between two
other homogeneous media, all three refractive indices being known. What can be
said about the thickness of this layer? Only that it has one of an infinity of possible
values, since the reflectivity is periodic in the thickness (see (2.66) and Fig. 2.6).
One measurement does not guarantee the evaluation of one parameter, even if it is
the only unknown in the model.

There can also be measurements which give no profile information whatever,
serving only to verify experimental accuracy or to calibrate the apparatus. An
example is the reflectivity at grazing incidence, this being unity for either polar-
ization, for arbitrary profiles with or without absorption (Sect. 2.3). More surprising
is the fact that null reflectivity at any given angle of incidence, from an interface
between media of given dielectric constants & and &, can be produced in a
non-denumerable infinity of ways. The prescription is to pick any function &(z)
which takes the values & at z= —oco and & at z= +oo, and form ¢*(z) =
&(z)w?/c® — K? (K has the usual meaning, being given by /&1 (w/c) sin 0;]. Then
the profile

ss(z)zs(z)—&—(éy{%—%(%)z} (11.1)

will give zero reflection for the s wave. This was noted by Kofink (1947); the result
follows from the fact that the Liouville-Green approximations to the s
wave-functions both satisfy (6.26), and that ¥, tends to €% as z — —oo, thus
having zero component of the reflected wave (see Sect. 6.2). The analogous result
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for the p polarization is obtained from the equation satisfied by q,jl/ it ¢t = qp,
where ¢, is given by (6.88).

After these cautionary notes we will examine some inverse problems relating to
reflection, beginning with restricted and thus simple examples, and progressing to
more general results. References to related inverse problems in other fields are
given at the end of the chapter.

11.1 Reflection at a Sharp Boundary

The case of a sharp boundary between two homogeneous non-absorbing media is
straightforward: we have

2 2
q1— q2 01— 0
R , ==—], 11.2
K (Ch +6]2> Ry (Ql +Q2) (112)

and thus

@ 1£RZ? Q0 &g 1£R]?

_ CR_an 7 113
o 1FR Q1 aa 1§R)? (113)

with the upper signs to be taken for g, > ¢g; and Q> > Q,, respectively. From the
wavenumber ratios one can extract the dielectric constant ratio & /g via
@ = e (0?/?) — K? = (0 [c*)er cos? 0, ¢5 = ex(?/c?) — K* = (0?/?)(e2 — &

sin? 61). This gives, for example,

& 1£R)
= = sin? 0, 4 cos® 0, 7§/2 . (11.4)
&1 L FRs

The ellipsometric ratio 7, /r; moves on the real axis from + 1 at normal incidence to
—1 at grazing incidence, passing through the origin at 65 = arctan(e;/ 81)1/ 2, from
which the ratio of the refractive indices can be obtained.

When the second medium is absorbing, & = ¢, + i¢;, the wavevector normal
components g, and Q, are also complex, and

_ 2 2 _ 2 2
Rx — (ql Qr)z +q;‘ , Rp _ (Ql Qr)2 +Q; , (115)
(QI + Qr> +qi (Ql + Qr) + Qi

with g,, gi, O,, Q; being given by (10.11), (10.12) and (10.21). Explicit inversion of
(11.5), with the real and imaginary parts ¢ and ¢ of the dielectric function
expressed in terms of Ry, R, and the angle of incidence, is given in Lekner (1997).
As may be expected, no information is gained at normal incidence where R; = R,,,
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and at glancing incidence when both tend to unity. Mathematically, this manifests
itself as a zero/zero instability. For a sharp interface (with both media isotropic) it is
also true for all ¢, and ¢; that Rf = R, at 45° angle of incidence, as may be verified
from (11.2). This again leads to a zero/zero instability. Detailed error analysis
shows that measurement at quite large angles of incidence (between 60° and 80°)
minimises the error multipliers, but that even then the error multipliers are large for
both ¢, and ¢ when the medium is strongly absorbing, for example for metals.
Potter (1969) has developed an inversion procedure based on the values of R, /R
and 0; at the minimum of R, /Ry, this angle of incidence being known as the
pseudo-Brewster angle.

A simple explicit inversion is possible for the real and imaginary parts of &, in
terms of the ellipsometric ratio, variously written as (VasSicek 1960; Aspnes 1976)

r—p:p:tanlpem, (11.6)

s

(The phase difference A = 6, — d, is shown in Fig. 20.5 for a glass-air interface.)
The ellipsometric ratio is given by

- aitq - K?

P 01+ qi—@ q@+K*’ (11.7)
where we have used Q) = q1/¢1, 02 = q2/&; and
&gt — e1qs = (81 — &2)K>. (11.8)
Thus
1+p qiq2 I+p 2 az/elfsinzel
l—p: K2’ (l—p) - sin® 0, tan2 0, ’ (11.9)
and therefore
i—? = sin® 0 + sin?6, tan® 6, <i#>2 (11.10)

This equation gives the real and imaginary parts of & in terms of the real and
imaginary parts of (1+ p)>/(1 — p)*. If we write p = p, +ip;, then
. 1—p? — p?)? — 4p2
i:sinzﬂl—i-sinz@l tan201( p; = pi) 2'0’ , (11.11)
“ (1=, + 02
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. 4(1 = p% — p?)p:
F—:sin201+tan201w (11.12)

:
&
! (1= p,) 402

In terms of the ellipsometric angles i/ and A, these formulae read

, 22 — sin® 2y sin® A
P_:sin201+sin201tan201 cos” 2y — sin lpsmz , (11.13)
€l (1 —sin2y cos A)

; in 4y sin A

% _ gin 0, + tan? 0, — SnAVsin . (11.14)

& (1 —sin2y cosA)

The , A angle representation is ambiguous without the specification of the range of
one of them; we take 0 <y <7/2, in which case tanys = |p|. From (11.6) and
(11.7) we have

(g2 +4q7) — K*

p, =tanycos A = , (11.15)
(@19 + K>’ +giq?
2q19,K>?
p; = tany sin A = . (11.16)
(q19-+K*)" +q1q;

We showed in Sect. 10.1 that r,/r, always lies within the upper semicircle of unit
radius (for a sharp boundary between a dielectric and an absorbing medium). Thus
W <m/4; the value ©/4 is attained at normal incidence and at grazing incidence.
The angle A increases from O at normal incidence to 7 at grazing incidence.
According to Aspnes (1976), the attainable precision in i and A is about dy ~
0A/2 =~ 1 millidegree. Figure 11.1 shows an example of the fractional errors Ag, /e,
and Ag¢;/¢; in ¢, and ¢ as a function of the angle at which measurement is carried
out, assuming the larger random scatter of up to 0.01° in y and 0.02° in A, at all
angles of incidence. The errors diverge at normal incidence, and also at glancing
incidence, since there the ratio p =r, /rs always takes the values 1 and —1,
respectively. The accuracy in ¢, and ¢; is best near the the principal angle 0,, at
which p, = 0. The principal angle for an absorber is determined by a cubic
equation, given in the Note at the end of this chapter. Only the region near 0, is
shown in Fig. 11.1.

The above ellipsometric extraction of ¢, and ¢;, carried out over a range of
frequencies, gives ¢,(), &(w), or n,(w) and n;(w). Another method is to measure
the reflectivity at normal incidence (given in terms of n, and n; by (10.17)). This
determines the modulus |r(w)| of the reflection amplitude r = |r|e®. The phase
0(w) is found from a Kramers-Kronig relation between In|r| and ¢ (extrapolation of
measured reflectivity data is required), and finally n,(®) and n;(w) are found from
r = (n; —n, —in;)/(m + n, + in;). Details of this procedure are given by Wooten
(1972, Chap. 6 and Appendix G).
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0.004 |

0.002 ‘

-0.002 ‘

-0.004 |

Fig. 11.1 Fractional errors A¢, /¢, (dark shading) and Ag;/e; (light shading) in ¢, and ¢; values
deduced from (11.13) and (11.14), on the assumption of uniformly distributed random errors of up
t0 0.01° in Y and 0.02° in A. The “true” values of i and A are calculated from (11.15) and (11.16),
using the bulk Al parameters at 633 nm, &, = —60.56, & = 24.86 (as in Figs. 10.1 and 10.2), for
which 0, ~ 83°, indicated by the vertical line

11.2 Homogeneous Film Between Like Media

An explicit inversion of reflection ellipsometric data for a homogeneous nonab-
sorbing film has been discussed in Sect. 9.8, and also the inversion of combined
reflection and transmission ellipsometric data. Where the media bounding the film
have the same dielectric constant the solution was given by Azzam (1983); the
general case is solved in Lekner (1994a). Both reflection and transmission ellip-
sometric coefficients are used. Here we shall consider a homogeneous film of
thickness Az and dielectric constant ¢, + ig;, embedded in a medium of dielectric
constant &y. From (2.58), (2.59) and (2.70), (2.71) we have

1 — g2 2igAz
P 2T (11.17)
T s 1_p2e2thZ
¢ 1—p2 1—42 2igAz
. el (11.18)
ts 1—s2 1— p262thz
where
s=ta D -Q (11.19)
q0+q Qo +0

are the s and p reflection amplitudes at a step between media with dielectric con-
stants &y and ¢, gp and g being the corresponding real and complex normal com-
ponents of the wavevector. From (11.17) and (11.18) we see that the ratio of the
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transmission and reflection ellipsometric ratios is independent of the thickness of
the layer:

1— 2
L (11.20)
p pl—s?
This equation is to be solved for ¢ = ¢, + i¢;. The identity (Azzam 1979)
s(cos260 —s)
=7 11.21
1 —scos20’ ( )

(which may be verified by solving (11.21) for cos26 and using (11.19) and

¢* = (w/c)* (¢ — & sin® 0)) serves to eliminate p from (11.20), which reduces to a
quadratic for s in terms of the measured 6 and t/p:

cos 20 — (ﬁ) (1+ cos?20)
s —205+1=0, o=
1— (%) cos 20

(11.22)

This has the solutions
si =0+ (= 1) (11.23)

of which one needs to select the root with |s| < 1. That one and only one such root
exists can be seen by writing ¢ = cosh {: then s. = e**. In general, { is complex,
and one takes s or s_ according as Re{ < 0 or Re{ > 0. (In the special case
where Re { = 0 and ¢ is equal to cos(Im {), both roots would have unit modulus.
But for the absorbing media |s\2 cannot be unity except at grazing incidence, where
qo — 0.) Having obtained the complex value of s, the dielectric function may be
found from

1 —\2
L —sin? 0+ 00520< S> . (11.24)
E2) 1+s

This relation is obtained by squaring (1 —s)/(1+s) = gq/qo; compare (11.4).
((11.24), (11.20) and (11.21) are together equivalent to (9.55) in Sect. 9.8, in which
the inversion of p and T when n; # n, is discussed.) It then remains to evaluate the

thickness Az. Since s and p (from the identity (11.21)) are now known, e2igh may
be found from p or t as given by (11.17) or (11.18):

gt — L P05 (11.25)
sp S—pp
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1—p?—1(1 5%

2ighz — . 11.26
S ) 1= %) (11.26)

If the right-hand side of either of these is written as e*(*+)  then
q,A\z = o+ mm, qiAz = B, (11.27)

where m is zero or a positive or negative integer, and g, and g; have been found
from (10.11) and (10.12). Only one of (11.25) and (11.26) and only the second
relation in (11.27) need be used to obtain Az; the others provide a check on the
accuracy. Azzam (1983) gives an example of the application of this technique to the
determination of the thickness and optical parameters of a thin gold foil.

11.3 Inversion of Transmission Ellipsometric Data
for a Homogeneous Nonabsorbing Layer

We wish to find the (real) dielectric constant ¢ and the thickness Az of a layer, from
the real and imaginary parts of the transmission ellipsometry ratio 7,/t,. The full
solution, complete with analysis of the effect of measurement errors, is given in
Lekner (1994a). We shall just give the essence of the inversion method. From
Sect. 2.4 or directly from (9.46) of Sect. 9.8 we have

tﬁ — nl(l *Pl)(l 7172)(1 +81SZZ)
to - m(l+s1)(1+5)(1+pipZ)’

(11.28)

where py, pa2, s1 and s are the Fresnel reflection amplitudes at the n;|n and n|n;
interfaces, given in (9.47), and Z = ¢%9%%, The experimentally determined ratio
t = (ny/m)(t,/t;) = x+ iy can be written as

1+5Z (1—p)d —p2)

t=f——, P= , S =518, = .
f1+PZ Pip2 192 f (1+S1>(1+52)

(11.29)

For nonabsorbing layers Z = e*947 lies on the unit circle (we are excluding the
possibility of total external reflection, with imaginary ¢). Since =
f(1+8Z)/(14 PZ) is linear in Z, we can solve for Z and eliminate it by using
7ZZ* = 1. After some algebraic manipulation this reduces to a quadratic in g2, or

equivalently to a quadratic in ¢, because &(w/ 0)2 = ¢ + K%. When this is solved there
are two roots, each of which in turn will give two values of Z and therefore of Az:

f—t
tP—fS’

exp(igAz) =Z = (11.30)
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To distinguish the physical root from the nonphysical root would require some
knowledge about the likely values of & and Az. This extra knowledge is not
essential, however: for measurements at two or more angles of incidence, the
physical roots will agree (to within experimental error), the nonphysical roots will
not. Figure 1 of Lekner (1994a) illustrates the behaviour of the physical and
nonphysical ¢ and Az, and of the effects of experimental errors. In the limit of thin

films, with gAz small compared to unity (gAz = (21Az/2)(n?> — n? sin? 01)%, where
A is the vacuum wavelength), transmission ellipsometry does not give ¢ and Az
separately, but only the integral invariant for the thin film,

2 :W& (11.31)

This invariant is the same as enters into the first-order expression for the ellipso-
metric ratio r,/r;.

11.4 Inversion of Reflection Ellipsometric Data
for a Homogeneous Nonabsorbing Layer

Again we wish to find the real dielectric constant ¢ and the layer thickness Az, this
time from the real part and the absolute square of the ratio of the reflection
amplitudes,

_ Ty P1ApZ 145192
rs 1+pipaZ si+ 92

(11.32)

It is shown in Lekner (1994b) that both |p|* and Re(p) have the form (quadratic in
cos 2 gAz)/(quadratic in cos2gAz). Thus when |p|* and Re(p) are determined
experimentally, cos 2 gAz satisfies two quadratic equations. The condition that the
two quadratics share a common root implies a relation between the coefficients of
the two quadratics. After removal of common factors (which reduce the degree in
the unknown ¢ by 21), one is left with a quintic in ¢?, or equivalently a quintic in &.
This factors to a quadratic and a cubic when ¢; = ¢, previously discussed in
Lekner (1990). The quintic in &, which is at the same time a quartic plane curve in
x =Re(p) and y =Im(p), may be conveniently expressed in terms of dimen-
sionless variables u, v and w, defined by

@ =qqu, K =qqv, ¢@=qw. (11.33)

The variable u contains the unknown ¢; v and w depend on the angle of incidence

and on the ¢, and ¢, values. The equation, with P2=xr+ y2 =lp 2, reads
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a[r2_(p++p_)x—|—p+p_] [r2_2xe+X%} (1134)

+42(1+vw)(u—w) (uw —2)y? =0 '
All parameters in (11.34) are dimensionless; p, = p(Z = *1), a and x, (which
gives the location of an isolated point of the quartic) may be found in Lekner
(1994b). Once the dielectric constant ¢ has been determined, the thickness of the
layer may also be extracted, except when Z = exp(2igAz) is close to unity. Just as
in the previous section, only the invariant /; of (11.31) may then be extracted.

11.5 Synthesis of a Profile from r as a Function
of Wavenumber

A general solution to the inverse reflection problem (or the inverse scattering
problem in quantum mechanics) has been found by Gelfand and Levitan (1951/
1955) and others. More references are given at the end of this chapter; here we shall
give only a brief description of the theory, discuss some results which follow from
it, and give an approximate but explicit solution which is simple enough to have
practical application.

The inversion procedure assumes the knowledge of the reflection amplitude as a
function of wavenumber (the latter ranging from zero to infinity) and in addition,
coefficients relating to any bound states that may exist. Since experiments generally

give |r|2, not r, and that over a finite range of wavenumbers, we prefer the term
synthesis to inversion in this case: a model reflection amplitude, complete with
phase, can be constructed to have some desired properties, such as high reflectance
in one wavenumber region and low reflectance in another region. The theory then
gives a procedure for synthesising the refractive index profile which will give the
desired reflectance. In the general theory, one constructs an integral equation from
the Fourier transform of the reflection amplitude (analytically continued to negative
wavenumbers). The solution of the integral equation then gives the refractive index
profile. In special cases an explicit solution can be found, for example when the
reflection amplitude is a rational function of the wavenumber (Kay 1960; Jordan
1980). Another special case is the construction of an infinite set of profiles which do
not reflect the s wave, at fixed frequency but for any angle of incidence (Kay and
Moses 1956). The simplest of these is the sech® profile discussed in Sect. 4.3, for
certain special values of its parameters. We saw there that for profile

&(z) = &9+ Aesech’(z/a), (11.35)

the s reflection amplitude was a function of two dimensionless parameters o =
Ag(wa/c)* and B = goa = 8(1]/2(
a> —1/4,

wa/c)cos 0, 0 being the angle of incidence. When
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cos? [% (1 —|—4oc)1/2}
Ry = .
cos? [g (1+ 4a)1/2} + sinh®

(11.36)

This is zero when o = m(m+ 1), m an integer, for any 0, the angle of incidence
appearing only through f.

We now give an approximate solution of a synthesis problem, due to Hirsch
(1979). Only the essence of the method will be given, since we then show how a
more general result can be obtained in a simpler way. The problem is that of
constructing a refractive index profile n(z) = /¢(z) so as to give a desired
reflection amplitude r(k;) at normal incidence. Here the wave is incident from a
medium of unit refractive index, and transmitted into a medium of refractive index
ny. The respective wavenumbers are k; = w/c and k; = ny(w/c). The E field
satisfies

d’E 4 4 ,
—S A nCE =0, efiqpre i E s rer, (11.37)
dz?
The geometric path increment dz is replaced by the optical path increment
dx = ndz. Also E is replaced by the function w = n'/?E. The resulting equation is

W'+ [k —Ux)|w=0, Ulx)= L <”l) . (11.38)

(Throughout this section primes will denote differentiation with respect to x.) Now
E and w are proportional as z and x tend to —oo; if further the refractive index is
taken to be equal to 1 for z < 0 and x is defined by

Z

x:/an(C), (11.39)

0

then x and z are equal for z <0 and r(k;) is the reflection amplitude for w(x) as well
as for E(z). (What we have just done is ensure that the phase of r is the same for
both.) From r(k;) and its analytic continuation to negative k; via r(—k;) = r*(ky),
we form the Fourier transform

i 4
Flx) =5 / dkyr(ky e, (11.40)

The first two terms of U(x) in a series expansion formally equivalent to the
Gelfand-Levitan equation are (Moses 1956)
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d
Uy(x) = —ZaF(Zx) + 4F%(2x). (11.41)

The second relation in (11.38) may be written as
(n'/2)" = n'2U. (11.42)

When U is approximated by U,, this differential equation for n'/?(x) may be
integrated; the solution incorporating the boundary condition n — 1 at —oo and
n — finite constant at + oo is then

2x
ng(x) = expq —2 / dy F(y)p. (11.43)

—00

We note that F(x) is real, and also that since r is the inverse Fourier transform of F,
r(ky) = / dx F(x) e, (11.44)

the final value of the refractive index is approximately
ng(00) = exp{—2r(0)}. (11.45)

As an example of these relations, consider the application of the inverse of
(11.43),

F(2x) = —- (11.46)

We will use (11.46) to obtain the approximate reflection amplitude for the Rayleigh
profile studied in Sect. 2.5, for which n~ ! is linear in z:

n ' (x) = n(z) = n, + (An/Az)z, 0<z<Az (11.47)
For this profile we have, in the interval 0 < z < Ag,

x—gln n’(x)__ﬂ
A ’1, n(x) Az’

F(2x) = %i—z, (11.48)

and so from (11.44) the approximate reflection amplitude is
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L. 1 uoaSink Ax Az (n,
a(ki)) =zIn—=e"* ——— Ax=—In|—=). 11.49
ralks) 20 ki Ax " ( )

This is precisely the Rayleigh or weak reflection approximation result obtained in
Sect. 5.8 for this profile (see (5.98) and Fig. 5.4).

11.6 Inversion of the Rayleigh Approximation

We will now show that this surprising accord is not accidental: the approximate
solution of the synthesis problem given above is identical to the result obtained by
inverting the Rayleigh approximation for the reflection amplitude. The latter was
given in Sect. 5.7; at normal incidence (5.85) and (5.86) reduce to

o]

Z
dn/d¢
ra— / dd)#emd’, ¢ — /dzk(c). (11.50)
n
Thus the Rayleigh approximation gives the reflection amplitude at normal incidence
as the Fourier transform in the ¢ variable of the logarithmic derivative of n'/2. To

keep common notation with the Hirsch inversion we set d¢p = kdz = kydx. Then
(11.50) reads

o]

no
r(ky) ~ — / dx%em'x, (11.51)
and has the inverse
"] /oodk (k) e~ 2% = F(2x) (11.52)
- r = .
2n  2n P )
2x
n(x) = njexpg —2 / dyF(y);. (11.53)

—00

This equation is slightly more general than (11.50), in that n; = 1 has not been
assumed. Discussion of the validity of the Rayleigh approximation, and error
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bounds on the resulting reflection amplitudes, may be found in Sect. 5.7. In general
it is expected to break down when the reflection is strong.

Inversion of the Rayleigh approximation reflection amplitudes is possible for all
angles of incidence for both polarizations. In the s wave case we have, from (5.85)

d¢ =g dxorx = gq;! jdék(é),

o]

q, iq1x
ro(qi) =~ — / dxiezq , (11.54)
which has the Fourier inverse
4 ~ L / dgie 2% r(q)) = Fy(2x). (11.55)
2q 2m
Thus
2x
q(x) = qrexp | —2 / dy Fi(y)] . (11.56)
or
2x
&) ~ sin® 0; + cos® 0, exp | —4 / dy Fy(y) (11.57)
&1

(note the formal similarity with (11.4) and (11.24)). The p wave (5.86) is inverted
using the same variable x:

o0

rp(qi) ~ /dsz—Qez"qlx, (11.58)
gzi/md 0% (q1) = F,(2x) (11.59)
2Q m q1 p\gd1) =1)p ) .

2x
O(x) ~ Q1exp| 2 / dy F,(y) |- (11.60)

Since Q = g/¢ and (cq/w)* = & — & sin® 01, (11.60) gives a quadratic for &(x). We
take the root which agrees with (11.57) at normal incidence:
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o 12 (11.61)
x {1+ |1 —sin?20,exp| 4 / dy F,(y)

A measure of the accuracy of this inversion may be obtained by calculating &, /¢
from (11.57) and (11.61), letting x tend to + oo, and using

/dxF =r,(0 /dxF ) = 1,(0). (11.62)

The long wave limits of the Rayleigh approximations for r and r, are given by (5.
87); when these are substituted in (11.57) and (11.61) the right-hand sides are equal
to &/¢;, at all angles. The true long wave limits, given by (5.88), do not give
agreement between the left and right hand sides. For example, at normal incidence
where r,(0) = r,(0) = (n; —nz)/(n1 +ns), (11.53), (11.57) and (11.61) both give

”lzexpz(”z_”l), (11.63)

n ny +ny

which has an error of the third order in (n, — ny)/(ny +ny).

The inversion formulae (11.57) and (11.61) give &(x), not the required &(z), and
thus need to be complemented by a functional relation between the physical coor-
dinate z and the “optical” coordinate x. This is obtained from the given reflection
amplitude 7, via its Fourier transform F by integrating gdz = g;dx using (11.56):

2x)
/dxlexp 2 / dXQF )Cg . (1164)

11.7 Principal Angle of an Absorber
From (11.7) we find that the zero of p, = Re(r,/ry) is given by

i (q; +47) = K*. (11.65)
Since ¢ = (¢, + iq;)*= (&, + i&:) (w/c)*—K2, we have

@ — @ = &0 —K, 2q,q; = ei(]c). (11.66)
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We square (11.65), and use an identity following from (11.66):
2
(@ +a7)'= [erlo/e) K| + & (o/e)? (11.67)
The result is a cubic equation for K2, or equivalently, a cubic for § = sin’ 0,:

e4e —2(e 48 +eae)S+ (6 +6 +4ee, +e7)S* — 261(e,+1)S” = 0.
(11.68)

Equation (11.68) was obtained by Humphreys-Owen (1961), who also gives a cubic
equation for the angle at which R, given by (11.5), is minimum. This is

(2 + )2 + 2’5+ (24) (2 +2 — 38)S+ 26 (2 + 2 +15,)S" =0
(11.69)

When ¢; is set to zero these cubic equations share a common root, which gives the
Brewster angle:

&r
&1+ ¢

Sp = sin’ 0 = (11.70)
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Chapter 12
Matrix and Numerical Methods

The idea of representing an arbitrary stratification by a series of homogeneous
layers goes back at least to Rayleigh (1912). The problem of wave propagation
through the transition is solved by matching the wave amplitude and derivative at
the boundaries of the uniform layers, and letting the number of layers increase and
their thickness decrease. (In the case of finite number of homogeneous layers, such
as optical coatings, this limiting process is not required.) Rayleigh carried through
the necessary algebra without reference to matrices; Weinstein (1947), Herpin
(1947) and Abelés (1950, 1967) have shown how matrix algebra simplifies and
systematizes this approach. We will give three versions of the matrix method, of
which the last (given in Sect. 12.2) is the closest to that currently in use, but differs
from it in having all matrix elements real in the absence of absorption. This last
method is the one we use in the remainder of this chapter, and in the next.

12.1 Matrices Relating the Coefficients of Linearly
Independent Solutions

We consider the reflection problem for waves satisfying

2
% +q*y =0, elal - pe ety — te'®?, (12.1)

(A change of notation from our usual ¢q;, g, designation of the limiting values of the
normal components of the wavevector is required here, since the subscripts
1,2,...,N,N+ 1 will be needed for quantities belonging to the N layers and N + 1
boundaries.) The function ¢(z) = (w?/c?)[e(z) — &, sin® 0,] is either given by or
approximated by a series of steps. Figure 12.1 shows the corresponding &(z).

Let g, be the value of ¢ in the interval (z,,z,+1). The general solution of
d?y/dz? + ¢*¥ = 0 in this interval may be written as

© Springer International Publishing Switzerland 2016 281
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4 I I z I
1 2 no on+l N N+1

Fig. 12.1 A stack of N homogeneous layers, bounded by media with dielectric constants ¢, and
&. The nth layer extends from z, to z, | and has dielectric constant ¢,. The layer thicknesses need
not be equal

Y, = o € 4 f, e, (12.2)
In the interval (z,_1,z,) the solution is
lpn—l = Op—1 eiqnilz + ﬁnfl e_iqnilz' (123)

Atz =z, we have Y, =, and dy,_, /dz = dy,,/dz; these continuity conditions
imply

O eldn-1%n + ﬁn—l e -1 — o, eldnn + ﬂn efiqnzn’ (12.4)
qn—1 (an—l eithlz’l - ﬁnfl efiqn,lz,,) ={4qn (an eiqnz" - Bn eiiqnzn) . (125)

Solving for o, and f, in terms of o, and f,_;, we find

(oc > % (1 + q;’}—;‘) el(@n-1=qn) % (1 _ %) e~ i(@n-1+dn)zn -

n - 1 _ 1) ai(gn—1 +Gn)zn .

B 3 (1 q,,l>e<q 1+ an)z %(1 i %)e—l(qn,l—q,,)z” B
(12.6)

The two-by-two matrix in (12.6) will be written as M,;; it gives us the coefficients of
the nth layer in terms of the coefficients of the (n — 1)th layer. Note that the
determinant of M, is

qn—1

qn

det M, = (12.7)
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As we shall see shortly, this value is relevant to the conservation law of Sect. 2.1,

qa(l — |r|2) = golt>. (12.8)

To find the reflection and transmission amplitudes r and ¢ we note from (12.1) that

()=m() () =()-() oo
() =u() = (o we)(3) 2w

where the characteristic or profile matrix M is the product of N + 1 two-by-two
matrices,

Thus

M =My \M,...M,.. MxM,. (12.11)

From (12.7) and the fact that the determinant of a product of matrices is the product
of their determinants,

detM = q,/qp, (12.12)

From (12.10) and (12.12) the reflection and transmission amplitudes are given by

det M ¢,
po My, mamn_det M /gy (12.13)
myo myp mpo myps
When ¢ is real everywhere the matrix M,, defined by (12.6) has the form
M, = (“11 “}3), (12.14)
Hip Ay

that is, its elements are related by u,, = uj;, oy = uj,. The product of two such
matrices will also have this property (as may be verified by direct multiplication),
and thus M has this property. Therefore

|I7122|2 — |I’HQ1|2: miimoy — MmNy = detM, (1215)

and the conservation law (12.8) is satisfied by the reflection and transmission
amplitude given by (12.13).


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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The above is for waves originating in medium a and transmitted into medium b.
The reflection and transmission amplitudes for this case are

mag Cla/%
Fap = ——, tap = —.

(12.16)
My myy

For waves incident from medium b the wavefunction has the limiting forms
fpg € e — v — e 17 4 gy, o7 (12.17)

and thus, for the same profile matrix M as before,
Toa\ _pg( O ) = (o m2 ) (0 (12.18)
1 Iha my| My tba

Tpa = ) tha = 1/mas. (12.19)

Thus

Comparison with (12.16) gives the reciprocity relations

qbtab - qgtbay (1220)
and
Ta _ _MizMy Ml (12.21)
Tab s M) s, 1y,

The first of these is the same as (2.14), and the second reduces to (2.18) when ¢ is
real everywhere (see (12.14) and the lines following it).

We now return to the case of waves incident from medium «, and consider a
slightly different formulation which has the advantage of having real matrix ele-
ments when g is real. This is obtained by writing V,, in the interval (z,,z, 1) as

W, = 0y COS gnz + P, sin g,z (12.22)
In the interval (z,-1,z,) the solution is
W, = Oy—1COSqu_12+ P, Sing,_12, (12.23)
and continuity of ¥ and dys/dz at z, now gives

0nCn 4 BoSn = On—1Cn—1 + Bp_1Sn—1, (12.24)


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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Qn(_ansn + ﬁncn) = Qn—l(_an—lsn—l + ﬁn—lcn—l)v (1225)

where ¢, s, and ¢,_1, s,— stand for the cosines and sines of ¢,z, and g,_;z,. On
solving for o, and f, in terms of a,_; and f,_; we now have

%n CnCn—1+ %Snsnfl CnSn—1 — q:;l $nCn—1 n—1 (12 26)
ﬁn N SnCn—1 — q;;l CnSn—1  SpSn—1+ %cncnfl ﬁnfl ' '
The determinant of the two-by-two matrix M, in (12.26) is again g,—1/g,, and so

the determinant of the profile matrix M = My (M,,...M,.. MoM; is q./q» as
before. The reflection and transmission amplitudes are now given by

t _ myp  mpp 1+7r . <12 27)
it my; my i—ir )’ ’

and thus

my —m im im
,— _mu 22+l. 12+l. 21 (12.28)
myy +myy — imyp + iy

. 2(myimyy — mppmyy) 2q4/qp

= . — — : . (12.29)
myy +myy —impy +imyp My + Moy — imMyp + imy

These formulae are not as simple as (12.13), but the advantage of the cosine and
sine representation of i is that the matrix elements m; are real when ¢ is real. This
advantage is shared by the method introduced in the next section.

12.2 Matrices Relating Fields and Their Derivatives

The matrix methods developed above were based on recurrence relations for the
coefficients of two linearly independent solutions within a given layer (chosen to be
et or cos g,z and sin g,z). Here we give the matrices which relate the field and
its derivative, layer to neighbouring layer. This version of the matrix formulation
will be used in the remainder of this chapter, and also in the next chapter (on
periodic stratifications). We will consider the s polarization first. The electric field is
E = (0, €%E(z), 0), with

d&’E . . ‘
e FE=0, &% qre 4 E— e (12.30)
Z
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The second order differential equation for E may be written as a pair of coupled first
order differential equations (as in Sect. 5.1):

dE dD
—=D — = —¢’E. 12.31
© , " q ( )

If g(z) takes the value g, in (z,,z,+1) as before, and E, and D,, are the values of the
field and of its derivative at z,, the solution of (12.31) inz, <z < z,41 18

D, .
E=E,cosqu(z—z,) + q—smqn(z—zn), (12.32)

D = D, o8 q,(z — 2n) — Engy Sin g, (z — 2n). (12.33)

Since E and D are continuous at z,. | (continuity follows from the differential
equation for E, provided ¢* has no delta function singularities), it follows that

Dl‘l .
E, | = E,cos 9, + —sind,, (12.34)
qﬂ
D, 1 = D,cosd, — E,q, sind,. (12.35)
Here
On = qn(Zn+1 — 2n) (12.36)

is the phase increment in propagating from z, to z,;. The relation between the
coefficients at z, | and those at z, is thus

Eii1) _ cos d, g, ' sind, E,\ _ E,
(Dn+1) - (q,lsinén cos d,, )(Dn) _M”(D,,)' (12.37)
The matrix in (12.37) is unimodular (has unit determinant). Note that when
8, = mm, m an integer, the matrix equals (—)" times the unit matrix. This corre-
sponds to the layer thickness z, 1 — z, being an integer (for even m) or half-integer
(for odd m) multiple of the effective wavelength for motion in the z direction,
Az =271/ qy.
Before deriving expressions for r; and #; in terms of the elements of the profile
matrix M = My...M; we will give the corresponding matrix formulation for the p
polarization. This has B = (0, e**B(z), 0) with B(z) satisfying

d (1dB ‘]2 i —i b 12 i
d—Z (Ed_z> + ?B =0, e'de* — e 9z« B — (g tpe"”z. (1238>

We again write the second order differential equation for B as a pair of coupled first
order equations (as in Sect. 5.3):


http://dx.doi.org/10.1007/978-3-319-23627-8_5
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1dB ic  §
e, S g 12.39
edz ’ dz e ( )

If B, and C,, are the values at z,,, within z, < z < 7,1 we have

enCn .
B =B, cosgq, (Z - Zn) + sin Qn(z - Zn) (1240)

n

Bugn

n

C=C,co8qu(z—70) — sin g, (z — zy)- (12.41)

B and C are continuous at a discontinuity in ¢; their continuity at z,, + ; leads to the

matrix relation
By _ oS Oy, Q;'sin g, B,
(Cn+1) a (—Qn sind,  cosd, c, (12.42)

where Q,, = ¢, /&,. The p wave matrix is also unimodular, and equal to (—)" times
a unit matrix when 9, = mn with integer m.

Note that the layer matrices in (12.37) and (12.42) depend on the thickness of
the nth layer and on its dielectric properties. This is in contrast to the boundary
matrices of the last section, where M,, was a function of the boundary position z,
and of the wavenumber components ¢,—; and g, on either side of the boundary. The
N-layer system of Fig. 12.1 can be characterized by N layer matrices or by N + 1
boundary matrices.

The profile matrix in the present case is

M= (m“ ’"12) = MyMy_i...M,.. M>)M;. (12.43)
mpp My

The reflection and transmission amplitudes for the s wave are obtained by matching
the limiting form (12.3) to (12.32) at z; and zy; ;. We will use the notation

o = qaz1, = qpzn+ 1. Then
Ey=e"+re™  Di=igue” —re™), (12.44)

Eyii =1 eiﬂ, Dy, = iq;,tseiﬂ. (1245)

E, 1 E, En 11 E
=M, and =M
(D,,_H) "(Dn Dy D, )’

Since

we have
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t,e'f miy  my e+ re
| = ) . . 12.46
(iqbtse’/” ) (mzl ma) ) (iqa(e’“ — re” %) ( )

Thus
= el qaqpmiz +myy — l:‘]bmll + I:Qam227 (12.47)
Gaqpmiz — My +igpmyy + 1q,m2
4 2
1, = el*P) Ha (12.48)

qaqpmiz — my1 +igpmiy + igaman

(In the numerator of (12.48) we have replaced det M = mmpy — myamy; by unity,
since the matrix M is a product of unimodular matrices.) These formulae have the
same form as (2.25) and (2.26), if a unit Wronskian is assumed in the latter. The
matrix elements my;; are real if ¢ is real, just as in Sect. 2.2 the functions F" and G
may be taken to be real in the same circumstances. When ¢,, ¢, and the matrix
elements are real, the reflectance and transmittance are given by

(Gagqpmiz + my )2 + (gpmy1 — Qam22)2

R, = |r’= : (12.49)
’ ’ (Gagpmin — mzl)2 + (gpmi1 + Qam22)2
b 4q.qp
7, =% p2= Sl - (12.50)
qa (qagoria — ma1)” + (qpmi1 + gamaa)

The corresponding formulae for the p wave may be obtained from (12.38) and
(12.42). We find

_ Qi Qu0pmiz +myy — iQpmyy +iQ.mp
QuQpmiz — myy +iQpmyy +iQuma’

12 ' Y
(8—1’) 1, = el Qa : . (12.52)
€q Q.0pm12 — moy +iQpmyy +iQ M

(12.51)

_rp

The meaning of o and f§ is g,z; and gpzy +1 as before; O, = q,/¢, and Q) = qp/ep.
The matrix elements here are not the same as in (12.47) and (12.48): they are found
by taking the product of the N matrices given by (12.42) instead of (12.37). The
analogous formulae (2.40) and (2.41) are not of precisely the same form, since they
apply to the case of continuous &(z) only. For real ¢ the matrix elements are real,
and in the absence of total reflection the p wave reflectance and transmittance are
given by

o (@uuma tm)’ + (@i — Qomn)” (1253

R, =
! }rp (QuQpmiz — my1)* + (Qpmiy + Qumn )


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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4QaQb )
(QaQpmiz — ma1)” + (Qpmiy + iQumn )’

v, 12_
e |t|

T, = (12.54)

An interesting special configuration is a stack of half-wavelength layers. We
noted above that when a layer has phase increment equal to an integer times 7, the
layer matrix is equal to plus or minus times the unit matrix, depending on whether
the integer is even or odd. We can define an effective wavelength for propagation in
the z direction as 27/q; for propagation in the zx plane the two component
wavelengths are A, = 27/K and /7, = 2m/q, with the total wavelength 1 given by
i = Ay 24 A 2. The condition gdz = mm is equivalent to

0z = ml/2; (12.55)

the layer thickness is an integer times one half of the effective z component
wavelength within the layer. When this condition holds all the multiply reflected
waves are in phase (see Sect. 2.4, and especially Fig. 2.5b). For thick layers this
may happen at several angles of incidence: the condition gdz = mm is satisfied for
angles of incidence

1/2
_ 571
Oa(m) = arcsin{S [mn/g(w/c) d } . (12.56)
Possible values of m lie in the range
lw 1 Lo 1p
——0z(e — &) <m < ——0dze '~ (12.57)
Tc T C

For example, when &, = 1, ¢ = (4/3)%, & = (3/2)* and (w/c)dz =27 (as in
Fig. 5.4), the possible values of m are 8—11. At the corresponding angles 6, (m) the
layer is invisible: the reflectivity of the stack is the same as if the layer were absent.

A stack of N homogeneous layers, each with thickness equal to an integer m,,
times half of the effective wavelength in the layer, namely with g, 0z, = m,n, will
have a profile matrix which is equal to (—)S times the unit matrix, where
S =Y m,. This stack will be invisible as far as reflectivity measurement is
concerned (at the given angle of incidence and frequency). When S is even, the
reflection amplitudes (given by (12.47) and (12.51)), are also identical to that of a
step in the dielectric function from ¢, to &, located at z;. This is remarkable, since
no restriction has been placed on the thickness Az = ZIIV 0z, of the stack. However,
actual layer structures will deviate slightly from the assumed conditions.


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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12.3 Multilayer Dielectric Mirrors at Normal Incidence

High reflectivity mirrors (used, for example, to form the optical cavity of lasers) are
made by depositing alternating layers of high and low dielectric constant materials
on a substrate, as shown in Fig. 12.2.

These mirrors are wavelength-selective, high reflectivity at a particular fre-
quency being obtained by constructive interference of the waves reflected at each
discontinuity in refractive index. Each layer is made a quarter of a wavelength thick
(at the design frequency) so as to make all the reflected waves in phase. For
example: if in Fig. 12.2 the front of the mirror (on the left) is at z = 0, the reflection
amplitude off the first face is (¢, — qn)/(q. + qn), which is real and negative. The
reflection amplitude off the second (high|low) interface is, from (1.15), a positive
fraction times e** (q; — q1)/(qn + qi), where &, = g;6z,. When ), = /2, which
at normal incidence amounts to 0z, = A,/4 where /J; is the wavelength in the
high-index material, this second reflection amplitude is also real and negative.
Similarly, the contribution from the next (low|high) interface will be in phase with
the preceding if dz; = 4;/4. Thus constructive interference is obtained by making
each layer a quarter of a wavelength thick (or in general an odd integer times a
quarter wavelength).

The theory for periodically stratified media will be more fully developed in
Chap. 13. The matrix for a single period is

mi mig\ _ C Sl/éh Ch Sh/CIh

mpp My —qi81 Ci —qnSh Ch (12 58)
_ CiSn 4 Sih .

Cih qi S1Sh qn + qi

—q181Ch — qnShC1  CiCh — %Slsh

Fig. 12.2 Dielectric function profile of a multilayer dielectric mirror, drawn to scale for an (HL)*
configuration, with the refractive indices for the high and low index materials n, = 2.35,
n; = 1.38. These correspond to ZnS and MgF,, at 633 nm (data from Table 1.1 of Yariv and Yeh
1984). The substrate is glass, n, = 1.5. For optimum reflectance at a given frequency the layers are

Ao

a quarter wavelength thick: 6z, = % = (nc/2w)n, ", 6z = % = (nc/20)n;"!


http://dx.doi.org/10.1007/978-3-319-23627-8_1
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Here we consider normal incidence, for which, with subscripts & and [ applied to
the values for the high and low refractive index materials,

¢ = cos 9, s = sin d, 0= n(%) 0z. (12.59)

The matrix elements are the same for the s and the p waves at normal incidence;
Sect. 13.2 deals with the case of general incidence. The reflectivity for an (HL)"
mirror, with light incident from a medium of dielectric constant ¢,, resting on a
substrate of dielectric constant ¢, is obtained by substituting the matrix elements
my; of (12.58) and (12.59) into (12.49).

For a perfect A/4 stack at normal incidence and at the design angular frequency
g, O, = /2 = §; and from (12.58)

ny n;
my = ——, my = ——, mp =0 =myy, (12.60)
ny np

where n, = /¢, and n; = /¢, are the refractive indices of the alternating layers. In
this case the matrix for one period is diagonal, and the profile matrix is equal to

MY = <__7) ! v |- (12.61)
o (-3)

The normal incidence reflectivity at the design frequency is thus

2N
_(_> ~1
ng \ ny

R((D()): 7( >2N

) +1

ng \

2

(12.62)

This tends to unity rapidly with N, the number of high|low strata. For example:
when n, = 1, n, = 1.5, n;, = 2.35 and n; = 1.38 (as in Figs. 12.2 and 12.3) the
N=1,2, 3, 4,5, and 6 stacks give R(wg) ~ 0.392, 0.728,0.896,0.963,0.987
and 0.996.

At normal incidence, but away from the design wavelength, the phase changes
on = np(w/c)dz, and 6; = ny(w/c)dz; remain equal (again for the 4/4 stack) but are
no longer equal to /2. Let 0 = (n/2)(w/wy) denote the common value of ;, and
;. The matrix of one high[low period is now

( cos? § — 2sin? ) ;(J,,H)COS(S““), (12.63)

—2(ny, +ny) cos § sin & cos? § — o sin® &

Figure 12.3 shows the frequency dependence of the reflectivity of an (HL)4 stack at
normal incidence.


http://dx.doi.org/10.1007/978-3-319-23627-8_13
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1 S 2
w
0

Fig. 12.3 Normal incidence reflectivity of a (HL)4 stack of dielectric layers, as a function of the
frequency. The reflectivity is maximum at the design frequency g, where the wavelength in both
the high and low index layers is four times the layer thickness. The reflectivity is periodic in o,
with period 2wg. The refractive indices are as in Fig. 12.2. The vertical lines indicate the
infinite-stack stop band boundaries, as given by (12.65)

We shall see in Sect. 13.2 that the reflectivity depends on the trace of the
single-period matrix, specifically on a phase angle ¢ defined by

1
cos ¢ = = (my, +my) = cos? & — 3 (@ + ﬂ) sin® d. (12.64)

1
2 n; ny

The cross-over from high to low normal incidence reflectivity takes place as cos ¢
increases through —1 from its minimum value of — 3 [(n/n;) + (n;/ny)], the latter

being attained at the design frequency. The value cos ¢ = —1 occurs at the fre-
quencies @ = wy + Aw, where from (12.64) and 6 = (n/2)(w/wy),
A 2 -
A9 _ 2 aresin <”” "’). (12.65)
wo T n,+n

(The high|low stack of Fig. 12.2 has Aw/wg & 0.16748.) Within the band ® =
wo = Aw the value of cos ¢ is below —1, and the reflectivity has a single maxi-
mum. As the number of high[low periods increases, the reflectivity within the band
tends to unity. From zero frequency to wy — Aw, and from wy+ Aw to 2wy (we
stay within one frequency period in this characterization), |cos¢| < 1 and the
reflectivity oscillates. Full discussion of the underlying band structure and of these
oscillations may be found in Sect. 13.2.

A modification of the (HL)" quarter-wave stack gives a narrow band of trans-
mission in the middle of the high-reflectivity region: such a structure is symbolically
represented by (HL)" H> (LH)". As the integer n increases, the pass band in the middle
of the stop band gets narrower. See, for example, Lipson et al. (2010), Sect. 10.3.5.


http://dx.doi.org/10.1007/978-3-319-23627-8_13
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12.4 Reflection of Long Waves

We return now to the problem of reflection by an arbitrary profile, as treated by the
matrix method of Sect. 12.2, and consider the case where the total profile thickness
is small compared to the wavelength of the radiation. The interface is represented
by N homogeneous layers. As N increases to infinity the phase increments J, =
4,07, become infinitesimal. At the start we will keep first and second order terms in
d, in the s wave matrix of (12.37),

_(1=82 gl
M,,—( o 1—52/z>+ , (12.66)

but it will turn out that only the first order terms of M,, play a role as N — oco. We
write (12.66) as

- <1 ;5?>I+qn15 J = qudd + - (12.67)

where [ is the identity (or unit) matrix, and
0 1
(0 0)

M = MyMy_,...M,.. MoM, (12.69)

LN
Il

(‘1) 8). (12.68)

The profile matrix

may be expanded in powers of J,. The fact that
J=0=7 (12.70)
simplifies the result, which reads

1 N 5 N N
_[,_1 _ 2 3
= (1 5 (Sn>1+ (21: 5zn>J (Z q,ﬁz,,)J
. (12.71)

-1
Z qnéZn(sZIJj"‘ 5Z71‘]125le~]) +

=

In the limit as N — oo and dz, — 0, 37 82 — 0 and
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N b
Xpaﬁa/&ﬂm (12.72)
1 a
N-1 N b b
S Szafudzg — / dzf(2) / dce(0), (12.73)
n=1Il=n+1 # i

where a = z; and b = zy 1 denote the left and right boundaries of the stack (see

Fig. 12.1). Since
~ 1 0 ~ 00
JJ(0 0), JJ(O 1>, (12.74)

the limit as N — oo of (12.71) becomes

1—fdzq2(Z)(b—z) b—a
M= ‘o ) (12.75)
— [dz¢*(2) 1 - [dz*(2)(z — a)

The s wave reflectivity is given by (12.49). After some reduction, the result to
second order in the thickness b — a is found to be

’ b
_ (Gu—a 4449, 2 _ 42 —a— 2
Ry = (qa T q',,) t ity [("b @) [ &2 —a=blg (12.76)

b b
+ [dz(q* — q2) [ dl(4? —qi):l o

The substitution ¢g* = ew?/c?> — K? reduces the square bracket in (12.76) to w*/c*
times the angle-independent term

b b b

(65 — &) / dz(22 — a— b)e+ / dz(e — &) / de(e — o). (12.77)

a a a

At this stage the s reflectivity has been reduced to the same form as (5.67). The
subsequent analysis of Sect. 5.5 shows that this is equivalent to the second order
result of Chap. 3, (3.51).

For the p wave, the profile matrix is the product of matrices of the form (12.42),
which to second order in the phase increment J, = g,,0z, is


http://dx.doi.org/10.1007/978-3-319-23627-8_5
http://dx.doi.org/10.1007/978-3-319-23627-8_5
http://dx.doi.org/10.1007/978-3-319-23627-8_3
http://dx.doi.org/10.1007/978-3-319-23627-8_3
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— 1_5i/2 5n/Qn
M, = ( —0,8, 1- 55/2 + , (12.78)

where O, = g,,/&,. We again write M,, in terms of the matrices 7, J and J, and form

the product (12.69) to obtain the profile matrix M. The resulting elements of M are,
after taking the limit of N — oo as before,

= 1= [ de @)/o(2) [ L o0) + -
mn:fbdzs(z)+

. (12.79)
my = — [dz ¢*(z)/e(z) + - -

my =1- jzdz s(z)fdé )/ e(O)+ ---.

The p wave reflectivity is given by (12.53); to second order in the total thickness of
the inhomogeneity this takes the form

2
o — 40,
R, = (QQa +QQ’1) + s oy (5 = Q0)mun — man) (12.80)
+ Q,%Q%m%z +m12m21(Q§ + QZ) +m§1] + -

A substantial reduction of (12.80) is required in order to regain the invariant form
(3.50).

12.5 Absorbing Stratified Media: Some General Results

General theorems for arbitrary stratifications have already been given in Sects. 2.1—
2.3; Sect. 10.2 briefly discussed results for absorbing media. Here we give three
theorems which follow from the matrix analysis of wave propagation through
layered media.

(1) The transmittance of a stratified medium is independent of the direction of
propagation. The transmittance T is defined as the ratio of the energy leaving a unit
area of the interface in unit time to the energy incident on a unit area in unit time.
The transmittance for propagation from a non-absorbing medium a, through an
arbitrary stratification (which may be absorbing), to a non-absorbing medium b, is

Ty =L 1, (12.81)

a


http://dx.doi.org/10.1007/978-3-319-23627-8_3
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_10
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(see the discussion following (2.8) and Fig. 2.1). The equality of T,, and Tj,
follows from (12.16) and (12.19), of which the relevant parts are

=99/ (12.82)
myy

(ii) An arbitrary stratified medium is equivalent to two suitably chosen adjacent
homogeneous layers (Herpin 1947). Equivalence here means that the profile matrix
elements m;; of the two systems are the same. A general profile matrix

M= (m“ m”) (12.83)

mpy My

has four elements (in general complex), which are linked by one constraint, namely
the value of the determinant m,my, — mamy;. The latter is equal to g,/q; for the
boundary matrices defined in Sect. 12.1, and to unity for the layer matrices used
from Sect. 12.2 onward. A single homogeneous layer has the layer matrix

M = cos.51 CIfl sin d; .
—q sin 0, cos 1

This cannot represent (12.83) since it has its diagonal elements equal, and has only
two free parameters (0; and ¢;). The profile matrix for two homogeneous layers 1
and 2 is

q1 51C2 152
C1Cr — =815 el L
M = MM, = % @ " , (12.84)
—C14252 — 241851 C1C2 *qjslsz
where ¢; = cosdy,...,s, = sind,. This has unit determinant and four parameters

(01, g1 and 0,, q7); it is thus sufficiently general to represent (12.83). But note that
the equivalence, established by making the elements of (12.83) and (12.84) equal,
will hold at a given angle of incidence and a given frequency only: as either
changes, so do the parameters of the two-layer system.

(iii) For non-absorbing media the reflectance R and transmittance 7 are related
by R+ T = 1. For an absorbing stratification between two non-absorbing media the
conservation law becomes R+ T +A = 1, where A is the absorptance, a positive
quantity for passive media. Thus the ratio (1 —R)/T =1+A/T is in general
greater than unity. Abelés (1950) has shown that if an arbitrary non-absorbing
layer is inserted in front of the absorbing layer, causing the reflectance to change to
R and the transmittance to T , the ratio of 1 — R to T is unaltered:

1-R 1-FR

= : 12.85
T 77 (12.85)



http://dx.doi.org/10.1007/978-3-319-23627-8_2
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Since (1 —R)/T = 1+A/T, the Abelés result is equivalent to A/T = A'/T': the
absorptance to transmittance ratio is unchanged by the insertion of a non-absorbing
layer in front of the absorber. The unprimed and primed configurations are illus-
trated in Fig. 12.4.

Let m;; be the complex elements of the matrix representing the left-hand con-
figuration in Fig. 12.4, and m;] be those representing the right-hand configuration.

Then from (12.47) and (12.48) we have

R — |dadpr12 +myy — Z:Qbmll + l:CIam22 g (12.86)
qagpMiz — Moy +igpmyy + 1q,mo)
4
T = ] (12.87)
|gagqpmiz — may + igpmy1 + igamoz |
so that
1 —R * * * —1_ %
= Re(m3,miy — mi,mar) — Im(gpmi,min + q, m5,moan). (12.88)

A similar expression holds for (1 — R")/ T , with m;; replaced by m';;, the elements
of M' = MM, where M is the layer matrix for the profile with dielectric function
#(z). The matrix elements of M are

! ~ ~ ! ~ ~
My = myymy +mpmyy My, = MMy + mppmy

(12.89)

I ~ ~ !/ ~ ~
My = My My + My My, = MMy + My,

—] ——y
T T
P p—
D ]
R R'
£ - £ E el > £
. | e 5, . | E2) | elz) | 5

Fig. 12.4 Two configurations which have equal value of the ratio of 1 — R to 7. The dielectric
function &(z) may be complex, while £(z) is real; ¢, and ¢, are real constants
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On using the fact that the elements of M are real, and that M has unit deter-
minant, the expression for (1 — R')/T" reduces to that for (1 — R)/T.

12.6 High Transparency of an Absorbing Film
in a Frustrated Total Reflection Configuration

In Sect. 10.6 we discussed attenuated total reflection, the phenomenon where a
metallic layer or substrate converts a total internal reflection situation into one of
low (or even zero) reflection of the p polarized wave. The physical basis of the
phenomenon is the excitation of surface waves at the metal|dielectric boundaries, as
explained in Sect. 10.6. There we considered the two configurations illustrated in
Fig. 10.4. Here we consider the high|low|complex|low|high dielectric function
configuration of Fig. 12.5. The dielectric function profile corresponding to this
configuration is shown in the lower diagram.

We will calculate R, and T, for the symmetric case where the low-index
dielectric layers have the same thickness I. The profile matrix for this case is

M = MMM, (12.90)

where, from (12.42),

Ml( cos d Q11Sin5l>’ Mm( cos o lein5>' (12.91)

—Qysin 9, cos ; —Qsin o cos 0

Here Q; = q;/&1, 6 = qil, Q = g/¢ and 6 = gd. (The quantities for the metal film
are complex, with ¢ = g, + ig; and so on.) Thus the elements of the profile matrix
M are

miy = (c; = sp)c = asy (% + %)S = my
myy = Qs +20; Lesic — Q7257 0s (12.92)
my = Q7s; Qs — 20icis1¢ — ¢} Os,

where ¢, s and ¢;, s; stand for the cosines and sines of é and §;. From (12.51) and
(12.52) the p reflectance and transmittance are given by

2 2
O,myz + myy

Qmyy — my; + 2iQumy;

R, = (12.93)

407

= . 2
|@2mys — may +2iQmy |

T, (12.94)
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Fig. 12.5 Upper diagram: the high|low|complex|low|high refractive index symmetric configura-
tion. Lower diagram: the corresponding dielectric function profile, for a metal film with complex
dielectric constant ¢ = &, + ig;, sandwiched between two layers of low dielectric constant &, which
in turn are bounded by a material of high dielectric constant ¢,. The profile is drawn to scale for
high refractive index glass (¢, =3.617), lithium fluoride (& = 1.938) and silver (&=
—10.755 4 0.361i) at 546 nm, as in Figs. 10.5, 10.6, 10.7, 10.8 and 10.9

We are most interested in the attenuated total reflection case, for which the angle
of incidence exceeds the critical angle at the high|low interface. Then ¢;, Q; and J;
are positive imaginary, ¢; = cosh|J;| and s; = isinh|J,|. The reflectivity can be zero
if the real and imaginary parts of Qﬁmlz + my; can be made zero simultaneously.
For a given set of materials the variables are the angle of incidence, and the
thicknesses of the low refractive index dielectric and of the metal film. Figure 12.6
gives an example of the p wave reflectance and transmittance for the configuration
shown in Fig. 12.5. Further examples can be found in Otto (1976) (see especially


http://dx.doi.org/10.1007/978-3-319-23627-8_10
http://dx.doi.org/10.1007/978-3-319-23627-8_10
http://dx.doi.org/10.1007/978-3-319-23627-8_10
http://dx.doi.org/10.1007/978-3-319-23627-8_10
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0 30 60 90

Fig. 12.6 Reflectance and transmittance for the p wave, for the configuration of Fig. 12.5 with
[ = 100nm, d = 30nm, at 546 nm vacuum wavelength. The reflectance minimum is near 51.8°,
with R, ~ 1.3 x 107*. The location of the critical angle 0, = arcsin(n;/ny,) &~ 47° for the high|low
interface is indicated by the vertical line

his Fig. 14b, c), and in Dragila et al. (1985). The physical interpretation of the
reflectance minimum in terms of the excitation of surface waves is discussed in
these references and in Sect. 10.6.

12.7 Comparison of Numerical Approaches

Approximate analytical results for the reflection amplitudes have been given in the
long wave and short wave cases (Chaps. 3 and 6). The long wave region of validity
is extended by the perturbation and variational theories in Chap. 4, and the Rayleigh
approximation of Chap. 5 is good at all wavelengths provided the reflection is
weak. All these analytical methods share the drawback that higher-order approxi-
mations rapidly become cumbersome and thus of little practical value. For accurate
results at intermediate wavelengths, and for a profile which is not among the few
exactly soluble, numerical methods are needed.

The next Section describes numerical methods based on the matrix theory of
Sect. 12.2. We do not give details of the direct solution of the wave equation,
because the complications of that approach are greater, as the following outline
shows. Let (z) satisfy

d? . . 4
d—zf +q*y =0, el 4 pe ™7 )y — pei®?, (12.95)

Since r and ¢ are unknown, to integrate the differential equation we change the
boundary conditions to
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http://dx.doi.org/10.1007/978-3-319-23627-8_6
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peite? | Bl ) eith? (12.96)

integrate backward from some z;, at which ¢(z) is close enough to g, and extract o
and f in the region where ¢(z) is close enough to g,. Then the reflection and
transmission amplitudes are found from r = f§/o, t = 1/a. There are two compli-
cations in this method, both avoided by the matrix methods to be given later. The
first is that r,  and a, f§ are in general complex, and thus solutions for both Re i and
Im  are required. The second is that the extraction of the real and imaginary parts
of o and f§ requires matching the real part of \ to

(o + B,) €08 gaz — (2 — B;) sinqaz, (12.97)
and the imaginary part of  to
(2 + B;) cos guz+ (o, — B,) sin quz. (12.98)

For example, by matching at points where g,z is an even and an odd multiple of
7/2, one can obtain the four quantities o, + f3,, o, — f,, o; + f§; and o; — f;, and
hence the real and imaginary parts of o and f.

The complications in the direct solution of the differential equation outweigh (in
our view) the advantage of ready access to a very large literature on the numerical
solution of ordinary differential equations [see, for example, Temme (2010) and the
references listed therein]. The matrix methods we will use, in contrast, evaluate
only real quantities (in the absence of absorption), and the matching is done
automatically: see for example the derivation of the expression for r and ¢ in terms
of the elements of the profile matrix in Sect. 12.2. The calculation of the profile
matrix involves merely the computation of a product of two-by-two matrices, which
is easily programmed.

12.8 Numerical Methods Based on the Layer Matrices

Two kinds of matrices have been introduced: the boundary matrices of Sect. 12.1,
and the layer matrices of Sect. 12.2 onward. The latter are more convenient for
numerical work and will be used here. Figure 12.7 shows the Rayleigh profile

o2) = [+ (5t =) (e—2)/Ad 7 (n<z<awer, Az=avir —21),
approximated by N homogeneous layers.

The nth layer extends from z, to z,41, and in the case illustrated is homoge-
neous, with dielectric constant ¢,. The corresponding layer matrices for the s or p
waves are given by (12.37) and (12.42):
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Z zZ Z Z
1 n n+1 N+1

Fig. 12.7 The Rayleigh profile approximated by a set of five homogeneous layers. The figure is
drawn for n, = 1, n, = 4/3

1 . —1 o3 S
Mn:< C055n qn Slnén) or < COS&” Qn Slna">’ (1299)

—gy sin o, cos 0, —Q,sin d, cos 0,

where 6, = Gu(zn 1 — 20) = qu0zn, G> = 2% /? — K* = @?/c* (&, — &45i0° 0,),
and O, = g, /é&,. To first order in the layer thickness dz, these matrices are

1 OZn 1 €00Zn
< _q}zlézn 1 ) or ( —qiézn/gn 1 ) . (12 100)

As N gets large, the layer thicknesses dz, become small, and the matrices in (12.99)
are well approximated by (12.100). This approximation for the layer matrices is in
fact equivalent to the first order Euler method of solving the differential equa-
tion (12.95). To see this, let u be the real part of ¥, and v = du/dz. The second
order equation for u, d’u/dz?> + ¢g*u = 0, can be replaced by the pair of coupled first

order equations, du/dz = v and dv/dz = —q?u. The discretized version of this pair
is
Up41 — Uy V41l = Vn 2
—_— = —_— = . 12.101
5Zn Vi, 5Z” (’In Un ( )

In matrix form this reads (compare to the first matrix in (12.100))

Up+1 _ 1 5Zn Uy
(> - <_q252n ; )() (12.102)

The matrix method with the profile replaced by a stack of homogeneous layers, and
with the layer matrices calculated to first order in the layer thickness, is thus
equivalent in accuracy to the Euler method.

We will not use this simplest approach, since it is easy to improve on the
homogeneous layer approximation without much complication in the matrices and
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the consequent programming. The improvement consists in approximating the
profile by a set of layers in which the dielectric function varies linearly within each
layer. This is illustrated in Fig. 12.8.

The variation of &(z) in [z,, z,1] is approximated by

8(2) = &0 + (2 — 22) 960/ 020, (12.103)

where 0z, = 7,41 — zn as before, and d¢, = ¢, 1 — ¢,. Let Az =zy .1 — z1 be the
total thickness of the profile. (When the values ¢, and ¢, are attained at minus and
plus infinity, the profile must be truncated at some points z; and zy 4 as discussed
later.) Then if at a given angular frequency  a large enough number N of the layers
is taken so that (w/c)dz, < 1 (or (w/c)Az < N assuming the 0z, are roughly
equal), each layer matrix will be well approximated by its long-wave form as given
in Sect. 12.4 to second order in the layer thickness. (Lekner and Dorf (1987) go to
third order, and also discuss a cubic fit to the dielectric function profile for each
layer.)

For the s wave we find from (12.103) and (12.75) that the elements s; of the
matrix M, representing the nth layer are given by

2
s =1+ (517:)2 I:Kz/z - 65—2(28,1 +8n+1)/6:| )
w2
S12 = 0z, $21 = 0z {Kz - CT(Cn +8n+l)/2:| ) (12.104)

2
s =1+ (5Zn)2 {Kz/z - %(Sn +28"+1)/6} :

The p wave matrix elements p;; to second order in dz, are found from (12.103)
and (12.79): they are

o

Z z Z
| n N+1

Fig. 12.8 Approximation of a profile by layers with linear variation in &. The diagram is drawn for
the Rayleigh profile, with parameters as in Fig. 12.7
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K? (2¢? & ?
pi1 = 1+(5Zn)2[ { LR P —Sn} _6_2(8n+23n+1)/6:|7

40¢, | Os, &n
K? ¢, w?
P12 = 6Zn(8n +8n+l)/27 P21 = 5Zn |:gln 8+l _ C_2:|’ (12105)
K? 2¢2 g ?
_ 2 . _ "%+l n+l1 | %
Pz = 1+(0%,) [458n {Sn—HnH o0&, In &n } c? (2en +8”+1)/6}

In computation it is faster to replace the expressions involving In(g, 1 1/¢,) by the
leading terms in their d¢, /¢, expansion. The resulting matrix elements are

2 K2 CU2
P~ 1+ (32) [§<2an+sn“> —C—2<en+2sn+1>/6],

5Zn(gn + &4 1)

P12 = 2

2
, P21 %(SZn |:K2(1/8n+1/8n+1)/2—652:|, (12106)

,[ K? ?
pn = 14 (6z,) [6 (en+26041) —— (28n+8n+1)/6:|'
En41 c

For comparison with the linear approximations (12.104) and (12.106) we write
down the s and p homogeneous layer matrices (¢ constant within each layer) to
second order in 0z,. These are, from (12.99),

<l - (5ZnQn)2/2 0z, ) <l - (5ZnQn)2/2 €002 )
— 020> 1= (62ugn)’/2 )"\ —0z@2/ea 1 — (32gn)°/2

(12.107)

and are seen to be the degenerate forms of (12.104) and (12.106), obtained by
setting ¢, = ¢, in the linear layer formulae.

The linear layer formulae taken to first order in oz, will be referred to as L1, and
those retaining the terms second order in dz, as L2. It is possible to improve on
these methods, at a given order, by using unimodular matrices (Lekner 1990). We
recall from Sect. 12.2 that the exact layer matrices are unimodular (have unit
determinant); this guarantees energy conservation R+ 7 = 1 (for both polariza-
tions, in the absence of absorption), and reciprocity between the transmission
amplitudes, as expressed for example in (2.14). In general, R + T differs from unity
by a term with factor det(M) — 1. Approximate matrices which are not unimodular
will not give reflection and transmission amplitudes which are energy conserving or
which satisfy the reciprocity relations between the direct and inverse transmission
amplitudes.
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To construct unimodular matrices we can use symmetrisation, as detailed in
Lekner (1990). The s-wave layer matrix given to second order in the layer thickness
by (12.104) may be written in general as

R
<J1 1J2) (12.108)

n+1

Iy = 0z, 112/ dzq* (),

n+1

12:/ dz¢*(2) (zn 11 — 2), (12.109)

n

J2:/ dzq*(z)(z — zu).

n

The following matrix, correct to first-order in the layer thickness, has unit
determinant

1-1,J, /4 I
[+1,,/4 T+hJ/4

0 11,7,/ (12.110)
T+hh/4 T+Li/4

We note the identity [;J; =1, +J,, which follows from (12.109) and
0Zy = Zn+1 — Zn- (The same identity holds also for the p-wave layer matrix whose
elements were given in (12.79).) From this identity it follows that the symmetrised
second-order matrix

1712/2 I

1+h/2 1+hL/2

( 7;/ ”22//2> (12.111)
1+5h/2 1+4)/2

is also unimodular. We shall refer to the numerical methods using linear fit to the

profile and the matrices (12.110) and (12.111) as UL1 and UL2. The results obtained

Table 12.1 Errors in the calculated reflectivities, and values of det(M), for the Rayleigh profile at
normal incidence, with (w/c)Az = 1,n, = 1,n, = 4/3 (air|water)

Method L1 UL1 L2 UL2 C
Error (ppt) —4 -8 -2 +1 -9
det(M) 1.14 1 1.0005 1 1

The profile was approximated by ten layers in each calculation, and a constant step size was used,
0z, = Az/10. The error entries are in parts per thousand, calculated as 1000(R/R, — 1). The letter
L denotes that a linear variation of dielectric function within each layer is used; 1 or 2 denote that
first or second order terms in dz, are retained in each layer matrix. The exact reflectivity R, is given
in (2.108)
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Table 12.2 Calculated normal incidence reflectivities at the first reflectivity zero for the Rayleigh
profile with parameters as in Fig. 12.7 (n, = 1,n, = 4/3, (w/c)Az = 2.73295. . ., from (2.110))

Method L1 UL1 L2 UL2 C
Error (ppm) 21 1.6 5.1 1.3 0.2
det(M) 2.6 1 1.026 1 1

The notation is as in Table 12.1, and again N = 10, but now the error is in parts per million (the
table entries are the calculated reflectivity times 10°)

by the L1, ULI and L2, UL2 methods, for the Rayleigh profile with parameters as in
Figs. 12.7 and 12.8, are shown in Tables 12.1 and 12.2. For comparison we also give
the results, denoted by C, for the unimodular matrices in (12.37) or (12.99) where
each layer has a constant value of the dielectric function.

From these results and similar ones for other profiles we draw the conclusion
that the second order method is preferable to the first order method, and that the
corresponding symmetrized unitary matrices are generally better in numerical
accuracy, and also guarantee energy conservation and reciprocity. The unimodular
homogeneous layer matrices denoted by C in Tables 12.1 and 12.2 are accurate, but
slower to calculate because of their sines and cosines.

Further improvements are possible, by better than linear approximations to &(z)
within each layer, and by going to higher order in dz,. For example, one may
approximate £(z) by a cubic in [z,,z,+ 1] by using the derivatives ¢, and ¢, . , at the

end-points. The formula resulting from matching to ¢ and ¢ at z, and z, | is

! 2 ! !
e(z) m e+ (z—mn)e, + (%) {358,, —02,(2¢, +¢, , 1)}

3 (12.112)

+ (%) {6z4(e, + &, 1) — 206, }.
The method obtained by using (12.112) and calculating the matrix elements to
second order in dz,, was found to be not much better than L2. The cubic third order
formulae are available for extensive numerical work where high accuracy is needed
(Lekner and Dorf 1987).

12.9 Variable Step Size, Profile Truncation, Total
Reflection and Tunneling, Absorption,
and Calculation of Wavefunctions

We now briefly discuss some further aspects of the numerical application of these
matrix methods.

A constant step size dz, = Az/N was chosen in the calculations discussed above.
This is convenient, but not necessary; the matrix formulae given here are valid for
variable step size. However, a constant step size is normally the simplest to
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program, and in most cases is just as accurate as (for example) a variable step size
chosen to make d¢, = &, — &, a constant.

The Rayleigh profile shown in Figs. 12.7 and 12.8, for which the results of
Tables 12.1 and 12.2 were calculated, is an example of a profile of strictly finite
range. For dielectric functions in which the inhomogeneity extends to infinity, such
as the hyperbolic tangent profile

! 1 Eq + Epe%/ N
&(z) :§(8a+8b) _5(8" —sb)tanhi— b

AT Treh (12.113)

profile truncation is necessary for the application of numerical methods. By trun-
cation is meant that ¢ is set equal to ¢, for z < a and to ¢, for z > b, where a and b
are chosen so that e(a) — ¢, and &(b) — ¢, are sufficiently small to cause negligible
error. For example, suppose we take a = —7Az and b = 7Az for the hyperbolic
tangent profile. Since e’ ~ 103, truncation at +7Az can be expected to introduce an
error of the order of one part per thousand. Larger values of |a| and b will introduce
smaller errors, but correspondingly larger numbers of layer matrices will be
required to attain convergence to the truncated profile matrix elements. This is
illustrated in the following table, calculated using the unimodular homogeneous
matrices in (12.37) and (12.99). Truncation at the larger value of |a| and b ulti-
mately gives a more accurate reflectivity, but in the case illustrated the smaller
cut-off gives a better reflectivity up to about 40 layers. This is because the smaller
effective thickness of the profile is better approximated by a given number of layers
(Table 12.3).

The formulae given in this chapter remain valid when ¢(z) is imaginary and
q*(z) <0, as is the case for a range of z values in total internal reflection, and in
tunneling. No change is required in the calculation of the elements of the profile
matrix, which remain real. The reflection and transmission amplitudes are still given
by (12.47) and (12.48) in the s wave case, and by (12.51) and (12.52) in the p wave
case. In total reflection g, and Q; are positive imaginary, and both R, and R, are
unity. The quantity of interest is the phase of the reflected wave, given by

05 = 2qq21 — 2atn[sy1 + |qp|s11, qa(s12]Gs| +522)], (12.114)

0p = 2q,21 — 2atn[Q,(p12|0p| +p22), P21 + |Os] P11, (12.115)

Table 12.3 The ratio of the calculated to the exact reflectivity, for the tanh profile truncated at a
and b, as a function of the number of layer matrices

N 10 20 30 40
—a,b="TAz 0.965 0.991 0.995 0.997
—a,b =9Az 0.944 0.986 0.993 0.996

The values given are for (w/c)Az = 0.2, &, = 1, & = (4/3)?, at normal incidence
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where atn(y, x) is the arctangent of y/x placed in the correct quadrant according to
the signs of x and y.

In the presence of absorption the dielectric function becomes complex. If only
the substrate (characterized by ¢, g, and Q,) is absorbing, the matrix elements
remain real, and only the calculation of the reflectivity from the reflection amplitude
is modified. (The expressions (12.49) and (12.53) for the s and p reflectances no
longer apply.) When however the stratification is itself absorbing, the matrix ele-
ments are complex, and four multiplications of real matrices are needed in place of
one performed in the non-absorbing case: if R+ iS and U + iV represent the real
and imaginary parts of two matrices, their product is

(U +iV)(R+iS) = UR — VS + i(VR + US). (12.116)

Thus calculations involving absorption within the interface are roughly four times
longer than those which do not.

We turn finally to the problem of the calculation of wavefunctions within the
stratification. These are obtained, if required, as a by-product of the calculation of
the elements of the profile matrix. In the s wave case, for example, we have

En+l _ En _ El
(50) csn(5) mmatwon(B). 2

Let v;; be the elements of the product of n matrixes in (12.117). Then
Eyy1 =vnE +vi2Dy (12.118)

gives the wavefunction at z, 1 | in terms of the wavefunction and its derivative at z;.
The latter are given by

E =e"+re ™ Dy = igq(e”™ — rye™™) (12.119)

where o = q,z1, and ry = r, +ir; is the reflection amplitude. The latter is found
first, by calculating the product up to n = N. If the elements v;; and vy, are stored
for all intermediate n, the wavefunction may then be plotted at the completion of the
calculation of r,. From (12.118) and (12.119), we have in the absence of absorption
(real v;) that

Re(E,+1) = vii{(1 +r-)c+ris} +viaga{ric — (L +r,)s}. (12.120)
Im(E, 1) =vu{ric+ (1 —r)s}t +vi2q{(1 — r,)c — ris}, (12.121)

where ¢ = cos« and s = sin a.



References 309

References

Abelés F (1950) Recherches sur la propagation des ondes électromagnétiques sinusoidales dans les
milieux stratifiés. Application aux couches minces. Annales de Physique 5(596-640):706-782

Abelés F (1967) Optics of thin films In: van Heel ACS (ed) Advanced Optical Techniques, Chap 5,
North-Holland

Dragila R, Luther-Davies B, Vukovic S (1985) High transparency of classically opaque metallic
films. Phys Rev Lett 55:1117-1120

Herpin A (1947) Calcul du pouvoir réflecteur d’un systéme stratifié quelconque. Comptes Rendus
225:182-183

Lekner J, Dorf MC (1987) Matrix methods for the calculation of reflection amplitudes. J Opt Soc
Am A: 4:2092-2095

Lekner J (1990) Matrix methods in reflection and transmission of compressional waves by
stratified media. J Acoust Soc Am 87:2319-2324

Lipson A, Lipson SG, Lipson H (2010) Optical physics (4 ed). Cambridge University Press

Otto A (1976) Spectroscopy of surface polaritons by attenuated total reflection. In: Seraphin BO
(ed) Optical properties of solids: new developments, Chap 13. North-Holland

Rayleigh JWS (1912) On the propagation of waves through a stratified medium, with special
reference to the question of reflection. Proc R Soc A86:207-266

Temme NM (2010) Numerical methods. In: Olver FWJ et al (ed) NIST handbook of mathematical
functions, Chap 3. Cambridge University Press

Weinstein W (1947) The reflectivity and transmissivity of multiple thin coatings. J. Opt. Soc.
Amer. 37:576-581

Yariv A, Yeh P (1984) Optical waves in crystals. Wiley



Chapter 13
Periodically Stratified Media

Electron wavefunctions in crystals are modified by interaction of the electrons with
the periodic ionic lattice to such an extent that band gaps appear in the spectrum of
allowed states. This became clear in the early days of quantum mechanics (see for
example Mott and Jones 1936/1958). However, the history of wave propagation in
periodic structures extends back to Newton, who considered elastic waves on a
one-dimensional lattice of masses connected by springs as a model for sound
(Brillouin 1946/1953 gives a brief historical review). Rayleigh (1887, 1917) rec-
ognized the possibility of what are now known as stop bands or band gaps for
waves in periodic structures, particularly in relation to the high reflection (at certain
wavelengths and angles of incidence) by periodically stratified media. The optical
aspects are covered in a monograph on photonic crystals (Joannopoulos et al.
1995). An overview of all kinds of waves in locally periodic media is given by
Griffiths and Steinke (2001); Kinoshita (2008, 2013) surveys the optics of peri-
odically structured biomaterials. This chapter concentrates on electromagnetic
waves. Neutron reflection by period stratifications is discussed in Sect. 16.6.

The modern optics of stratifications was advanced by Abelés (1950); of special
utility is his application of matrices to wave propagation, and use of the theorem
that the Nth power of a unimodular (one with unit determinant) 2 X 2 matrix

M= (’"” m”) (13.1)

npp My
is given by
Sy — Sy_ myaS
MY — mj1oN N—1 129N 7 13.2
( my1Sy mnSy — Sn—1 (132)
sinN¢ 1 1
Sy o’ cos ¢ 2trace 2(m11 + myp) (13.3)

This result is easily proved by induction, on using mjmy; — mamy; = 1 and the
identity (or recurrence relation)
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2SNCOS¢)—SN_1 :SN+1. (134)

The matrices used by Abeles link electric and magnetic field components at suc-
cessive layers of the stratification. For non-absorbing media these matrices are
complex, with real diagonal elements and imaginary off-diagonal elements.
Matrices which link fields and their derivatives (for example E and dE/dz for the
electromagnetic s or TE wave) are entirely real for non-absorbing media, as we saw
in Sect. 12.2. This is both simpler, and four times faster in numerical work (the
matrix product AB = (A, + iA;)(B; + iB;) requires the evaluation of four products if
A and B are complex). The matrices which link fields and their derivatives are also
unimodular. In this chapter we shall follow Lekner (1994) to both simplify and
generalize the existing theory of light propagation in periodically stratified media.
An expression is given for the matrix of a layer with continuous but otherwise
arbitrary dielectric function variation. The eigenvalue equation for the Bloch factor
in a periodic system is shown to be determined by the trace of the matrix of a unit
cell. When the wavelength is long compared to the period of the stratification, the
periodic structure is equivalent to a uniaxial homogeneous medium with its optic
axis normal to the layers and with the ordinary dielectric constant equal to the
average of the dielectric function, while the extraordinary dielectric constant is
equal to the reciprocal of the average of the reciprocal of the dielectric function.

13.1 Electromagnetic Waves in Stratified Media

We consider plane electromagnetic waves incident from a medium of index n; onto
a non-magnetic planar stratification, whose optical properties are contained in the
dielectric function &(z) = n?(z) (n(z) is the local value of the refractive index). For
isotropic media, with scalar rather than tensor dielectric function, any plane wave
can be written as a superposition of an s (or TE) wave and a p (or TM) wave. The s
wave has its electric vector perpendicular to the plane of incidence, the p wave has
its electric vector in the plane of incidence (and its magnetic vector perpendicular to
the plane of incidence: hence its designation as a TM or transverse magnetic). We
have assumed, as usual, that the medium is stratified in the z direction (so that
¢ = ¢&(2)), and have taken the plane of incidence to be the zx plane. Then the s wave
has electric field vector E = (0, E,,0) and the p wave has magnetic vector
B = (0, By,0). It follows directly from the Maxwell curl equations that, for
monochromatic waves of angular frequency o,

E,y(z,x,1) = expli(Kx — o1)|E(z), (13.5)

where K (the x component of the wavevector) is a separation-of-variables constant,
whose existence derives from the planar nature of the stratification, and whose
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constancy implies Snell’s law, as we saw in Chap. 1. The functions E(z) and B(z)
satisfy the ordinary differential equations (see Sects. 1.1 and 1.2)

d’E d /1dB
d—zz+q2E:0, sdz<)+q23—0, (13.6)

where ¢(z) is the local value of the normal component of the wavevector, given by
7 (2) = e(x)w?/? — K.

If 0, is the angle of incidence, and 60, is the angle between the wavevector and the
normal in the homogeneous substrate of index n,,

K =ni(w/c)sinby = ny(w/c) sin B, (13.7)
q1 = ni(w/c)cos by, g2 = m(w/c) cos 0. (13.8)

It follows from the differential equations (13.6) that dE/dz and ¢~ 'dB/dz are con-
tinuous at any discontinuity in &(z) (otherwise delta-function terms would arise in the
second derivatives). A fortiori, E and B are continuous at any discontinuity in &(z).

Consider a stratification extending from z = a to z = b, bounded by homoge-
neous media of indices n; and n,, and suppose at first that &(z) is continuous for
a<z<b. For the s wave, let F(z) and G(z) be two linearly independent solutions of
the second-order differential equation d’E/dz> 4 ¢?E = 0. Then E(z) may be
written as a linear superposition of F and G:

E(z) = fF(z) +gG(2), (13.9)

where f and g are constants. We will use a layer matrix M = {m;;} which links
fields and their derivatives; in the s wave case it is defined by

E, myy my | E,
A a), 13.10
(&)= w2)(2) (1519
where E, and E, represent E(a+) and the derivative of E(z) at z=a+, and

similarly Ej, and E,, stand for E(b—) and the derivative of E at z = b~. From (13.9)
and its derivative we see that

(§> - {? g} ({;) :A({;) (13.11)
(%) - EZ gﬂ ({;) :B(D- (13.12)
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Substitution of (13.11) and (13.12) into (13.10) shows that the layer matrix can be
expressed in terms of the fundamental field and derivative values at the boundaries
of the layer:

M=BA" = w! :((5((;;)) ((gg)) (13.13)
W is the (constant) Wronksian of the two basic solutions F and G,
W=FG -FG, W =0, (13.14)
and
(F,G) = FyGy = GyFy, - (F,G) = FyGy = Gyl (13.15)
(F,G)=F,G,—G,Fy, (F,G)=F,G,—GJF,.
The layer matrix M is unimodular: from the identity (2.31) of Chap. 2,
detM = W2 |(F,G)(F,G) — (F,G)(F,G)| = 1. (13.16)

An important example is that of a homogeneous layer, for which ¢(z) and ¢(z)
are constant. We can then take F' = cos gz, G = singz, for which W = g and

(F,G) = sing, (F,G) = gcosd, (13.17)

(F,G) = —gcosd, (F,G)=q’sind, '
where 0 = g(b — a) is the phase increment across the layer. The layer matrix in this
case is

| cosd g 'siné
M= [—qsiné cos 0 } (13.18)

(The same matrix is obtained by choosing F = exp(igz) and G = exp(—igz).)
The matrix elements m;; determine the reflection and transmission amplitudes 7
and #, of the n;|n(z)|nz structure: we have, from the definition of M,

( tyexp(igab) ): [m“ m12}< exp(iq1a) + ryexp(—iqia) ) (13.19)

iqat, exp(igab my my |\ iqi[exp(iqia) — ryexp(—igia)]

when exp(igz) + ry exp(—iq1z) and t, exp(ig2z) are the forms of E(z) in the medium
of incidence and in the substrate. It follows from (13.19) that (see Sect. 12.2)
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q1gamyn +myy +iqimy — igamyy
. . b)
q1gomyp — Moy +igimy + igamy

ry = exp(2iqia) (13.20)

2iql
q1q2mi2 — myy +iquma + iqomyy

t, = expli(qia — ¢2b)] (13.21)
The form of the differential equation for E(z) is the same as that of the
Schrodinger equation for a particle of energy € and mass m in a potential V(z), with

o)/ o 2;1—’;1 € - V(). (13.22)

Thus the results derived for the electromagnetic s wave apply also to quantum
particle waves in a z-stratified medium, as discussed in Sect. 1.3.

The p wave layer matrix is defined to link the quantities B(z) and ¢~ 'dB/dz which
are continuous at discontinuities of ¢. Let B, and By, stand for B(a + ) and B(b™), and
B, and B, represent the values of ¢ 'dB/dzat z=a+ and z=b". Then

B,\ |mnu mp| (B,
(3) = ] (5). (13.23)
We express B(z) as a linear combination of two independent solutions of the second
equation of (13.6), say C(z) and D(z). Then, by the arguments used above, with

F.F and G,G replaced by C, C and D, D,

D) (C,D

= ( )
M=y (CD 2 13.24
[—(c,m <c7D>} (13:24)
where, for example, (C, D) = C,Dy — D,C), and

U=CD-CD, U=0 (13.25)

(the Wronskian W = CD — C'D is not constant for the p wave; U= W/e is
constant). This matrix is also unimodular, since

detM = U *[(C,D)(C,D) — (C,D)(C,D)] =1 (13.26)

For the homogeneous layer we take C = cos gz and D = sin gz (or exp(igz) and
exp(—igz)) to find that U = Q = ¢/¢ and

—1 .2
M cosd  Q 'sino

" | —Qsind  cosd (13.27)
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The reflection and transmission amplitudes are defined slightly differently for the p
wave if one wishes to retain r, = r, and £, = ¢, at normal incidence, where there is
no physical difference between the s and p waves:

exp(iqiz) — rp exp(—iqiz) < B(z) — %tp exp(igaz). (13.28)
I

Thus the equation analogous to (13.19) reads, from (13.23),

21, exp(igab)
i0 Z—ftp exp(igab

. . (13.29)

B {mn m12} < exp(iqia) — rp exp(—iqia) )

mar ma | \iQ1 [exp(iqia) + rp exp(—iqia)] )’

where Q| = ¢y /&1, and Q> = q»/&,. This gives (Sect. 12.2)

. 010omyp +myy +iQ1myy — iQamy
—r, = exp(2igia - - , 13.30
d p(2iqua) Q10omyp — mypy +iQ1moy + iQamyy ( )

ny . Zin

—1t, = expli(qgia — q2b - - . 13.31
n " plila: 42b)] 010omyy — myy +iQ1mop +1iQomy ( )

It is clear from the definition of the layer matrix that a stratification of any
number N of layers has the matrix

M = MyMy_;.. MoM,. (13.32)

The results for the reflection and transmission amplitudes given above thus apply to
any isotropic stratification. For nonabsorbing media &(z) is real, and the s- and p-
wave basic solutions can be taken to be real (if Y is a solution of a linear differential
equation with real coefficients, then ™ is also a solution and so is ¥ + /*). Thus the
matrices are real in the absence of absorption. Energy conservation in the absence
of absorption is expressed in the algebraic identities

R4+T,=1, R,+T,=1, (13.33)

2 2
where R, = |rs\2, R, = ’rp , Ty = (qz/q1)|ts|2, and T, = (qz/q1)|tp‘ . (The reason
for the g, /q1 factor is discussed in Sect. 2.1; see especially Fig. 2.1.)
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13.2 Periodic Structures, Multilayer Dielectric Mirrors

We now consider periodic stratifications, such as the high-low multilayer mirror
configuration shown in Fig. 13.1. The reflection at normal incidence of this mul-
tilayer was considered in Sect. 12.3, in the maximum reflectivity configuration
(quarter wave stack).

We first discuss propagation of waves in an infinite periodic structure. If one
period has matrix M, the fields and their derivatives at a corresponding point one

period along are given by
lrbn +1 > ( lﬁ >
i =M "], 13.34
( lpn +1 lpn ( )

where  represents E or B and lp/ represents E or B = ¢~ 'dB/dz. In an infinite
structure these positions (one period along from each other) are equivalent, and so
the two vectors in (13.34) are proportional:

lpn +1 ) lp
/ =B ""). 13.35
( wn +1 l//n ( )
The Bloch factor f§ is determined from the condition that (13.35) subtracted from
(13.34), namely,

(Mﬁl)@Z) =0, (13.36)

Fig. 13.1 Dielectric function profile for a (HL)10 dielectric mirror, drawn to scale with n; = 1,
ny =235 (ZnS), n; =138 (MgF,), n, = 1.5 (glass). For maximum reflectivity at normal
incidence and vacuum wavelength A, the layer thicknesses are d, = 1/4n, and d; = 7./4n; (a
quarter-wave stack)
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has a solution other than zero. (I = diag(1, 1) is the 2 x 2 identity matrix.) The
condition for nonzero solutions is det(M — SI) = 0. When trace M = 2 cos ¢ and
detM =1 are used this condition reduces to

B> —2fcosp+1=0. (13.37)
The quadratic (13.37) has solutions
2 1/2 .
+ = - = . .
B cos ¢ £ (cos” ¢ — 1) exp(Lig) (13.38)

Note that . and B_ both have unit modulus if cos? ¢ < 1, but that if cos® ¢ > 1
the solutions are real (in the absence of absorption) and not equal to unity. If the
magnitude of the trace of M exceeds 2, the solutions will grow or decay expo-
nentially: no propagating waves are possible. The condition cos® ¢ > 1 thus gives
the band gaps or stop bands of the structure. The band edges are given by
cos? ¢ = 1; they occur when ¢ is a multiple of 7. When |cos ¢)| > 1, ¢ is complex,
with the real part a multiple of «, and the imaginary part ¢; = Im ¢ given by (in the
absence of absorption, trace M = 2 cos ¢ real)

exp(¢;) = [cos B| + (cos> ¢ — 1)"/2. (13.39)

(There is an ambiguity in the sign of ¢; (which we can ignore here) since when
¢, = nm,cos(¢p, +i¢;) = cosnmcosh ¢,;. See Hardy (1952, pp. 464-465).)

In infinite periodic stratifications the possibility of wave propagation is entirely
determined by the trace of the matrix for a single period. We may expect (and we
shall shortly show this to be true) that finite periodic structures reflect strongly in
the stop bands. The ¢ and ¢, values for the high-low stack of Fig. 13.1, repeated to
infinity, are shown in Fig. 13.2. They are calculated from the matrix of the unit cell,
a high-low bilayer, which for the s wave is given by

( e 611_151> ( Ch Clilsh)
—q151 C —4qnSh Ch

cien — q; \ansisn g esn+ g sicn >
—qiSiICh — gnCiSn - CiCh — 414y, Lsisn

(13.40)

where ¢; = cos 8;, sy = sin §;, q; = (gw?*/c? — Kz)l/z, and the phase increment J; is
qid; where d; is the thickness of the low-index layer; the parameters for the
high-index layer are defined in the same way. One half of the trace of this unit cell
matrix is, for the s wave,

cos ¢, = cicn — Lsisu(qr " qn +ay ' q1)

2 13.41
— cos(d,+64) — Lsun | (@r/an) = (anfa) ] - (1341)
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Fig. 13.2 The imaginary parts of ¢; and ¢, for the ZnS|MgF, high[low structure, as a function of
the angle of incidence. The lower part of the figure is at the design frequency g for high
reflectivity at normal incidence, at which d, = 4;/4 and d; = 4;/4 (the A/4 stack), and thus
On = 1/2 = ;. The upper part is drawn for ® = 1.3w,. We have chosen opposite signs for Im ¢
for the two frequencies for clarity (see the note below (13.39) regarding the sign of Im ¢)

For the p wave the arguments of the trigonometric functions remain unchanged,
but g; is replaced by Q; = ¢;/¢ and g, by O, = gn/ép in the matrix elements. Thus

cos ¢, = cicn — Lsisu(Q Qn + 05 ' Q1)

2
— cos(or+04) ~ b [(@/Q0)"" ~ (@u/0)"]" (1342

Figure 13.2 shows the imaginary parts of ¢ and ¢, as a function of the angle of
incidence ;. When these are non-zero, the corresponding polarizations cannot
propagate in the semi-infinite periodic medium. We see from the Figure that at the
design frequency g for high reflectivity, the infinite high-low stack does not permit
s wave propagation at any angle of incidence, while the p wave can propagate for
0, >53.14°. At w = 1.3w( both polarizations can propagate into the stack near
normal incidence, but at 41.44° the s polarization begins to reflect totally, as does
the p polarization at 59.72°. The band edges at which this happens are given by the
locations of cos? ¢ = 1.

The variation of ¢ as a function of frequency is shown in Fig. 13.3, in which we
plot the real and imaginary parts of ¢ versus @ at normal incidence. The stop band
(cos’>¢p > 1, ¢ complex) is between wy — Aw and wy + Aw, where (Sect. 12.3,
(12.66))

Aw 2 —
A0 _ 2 resin ("” ”’). (13.43)
(o)) T n, +n;


http://dx.doi.org/10.1007/978-3-319-23627-8_12
http://dx.doi.org/10.1007/978-3-319-23627-8_12
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Fig. 13.3 The real and imaginary parts of the band structure parameter ¢ = arccos(% trace M) for
a A/4 stack, as a function of the frequency, drawn for normal incidence onto the high-low stack of
Fig. 13.1. The stop band is centred at the design angular frequency @, with half-width given by
(13.43). It corresponds to the regions where cos? ¢ > 1; in this example, cos p < — 1

(The repeated stack of Fig. 13.1 has Aw/wy ~ 0.16748.) At normal incidence the
phase increments J, and J; for the quarter-wave stack are both equal to
(m/2)(w/wy). Thus cos ¢ is periodic in o, with period 2my. At oblique incidence
the s and p waves have different stop bands, determined by a transcendental
equation to be given in Sect. 13.3, equation (13.67).

We now look at the optical properties of finite periodic structures. The reflection
and transmission amplitudes are given by (13.20) and (13.21) for the s wave, and
(13.30) and (13.31) for the p wave, where in each case m;; are the matrix elements
of the whole structure. Thus for N periods (for example, N bilayers of the high-low
stack) the matrix elements are those of the Nth power of the unit cell matrix, and are
given by (13.2). It is convenient to define the quantity

Sy-1 _ sin[(N — 1)¢]

Sy~ sinNg) oS¢ sin@cotNg), (13.44)

ON —

where cos ¢ is half the trace of the unit cell matrix. Then we have, for the s wave,

_ @1q2mi2 + Mo + g (myy — on) — iqa(my — oy)

- ; , (13.45)
qi1gamiz — myy +iqy (mx — on) + ig2(mi1 — o)

2iq Syt
= N : . (13.46)
qigamip — myy +iq1(mxn — on) +iga(mi — o)

We have omitted the phase factors multiplying r, and t,; these are the same for the p
wave reflection and transmission coefficients, and do not feature in any experiment
that does not compare reflection and transmission phases.
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For non-absorbing media the reflectance and transmittance are given by

Ry = |ry|?
11— 441928y
(q1q2m12)* +m3, + @ (m — on)* + g3 (mi1 — on)” + 291428y
(13.47)
T, =L P=1-R. (13.48)
q1

The p wave has a different unit cell matrix, and thus different ¢» and oy. The
reflection and transmission amplitudes are, again omitting the phase factors,

_y = Q10 +ma +1Q1(ma — on) — iQx(m11 — on) (13.49)
P 010amiy — myy +iQ1(my — oy) +iQx(myy — oy)’ .

2i0,S:!
n, = _ 21015y . (13.50)
n Q10omiy — myy +1Q1 (Mo — ay) + Qx(my; — oy)
For non-absorbing media the reflectance is R, = 1 — T,,, where
q2 2
T, =—|t
! qi ‘ p’
_ 4010,8y°
(0102m12)” + m3, + Q% (my — o)’ + Q3 (myy — o)’ + 2010:53°
(13.51)

The forms for the reflectance and transmittance have been obtained by using
detM =1, trace M = 2cos ¢ (M is the matrix for a unit cell) and the identity

. 2
sin ¢ _
O'IZV—ZO'NCOSQ{)‘FI = [m] :SNZ. (1352)

When N¢ is a multiple of = and (N — 1)¢ is not, oy is infinite and

L an—a _rp_)Ql_QZ. (13.53)
9+ 01+

Ts

These are the reflection amplitudes of the bare substrate. When (N —1)¢ is a
multiple of 7 and N¢ is not, gy is zero and r, and r, are the same as the reflection
amplitudes of a single period of the structure (supported by the substrate). Thus for
large N there will be many passes of the reflectivity through the bare-substrate and
single-period values as the wavelength or angle of incidence varies.
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At the band edges, where cos ¢ = 1 and ¢ is a multiple of =, S2 = N2. Thus
the transmittance goes to zero as N2 at the band edges, and the reflectance is
1 — O(N~?). Within the band gaps cos ¢ = %traceM has magnitude greater than
unity, and ¢ is a multiple of 7 plus an imaginary part given by (13.39):

Im¢ = ln“cos }| + (cos® ¢ — 1)1/2}. (13.54)

Then S% increases exponentially with N,

2 - [Mr (13.55)

N | sinh(Im ¢)

and thus the s and p transmittances tend to zero exponentially with the number of
periods.

The results (13.45)—(13.55) hold for waves in any finite periodic stratification. In
particular the facts that 1 — R = O(N~?) at the band edges, and that inside the stop
bands R approaches unity exponentially with N, are universal. The construction of
the matrices does not assume homogeneity within parts of a unit cell (as is assumed
in Yeh, Yariv and Hong (1977) and Yariv and Yeh (1977), for example).

Figure 13.4 shows the normal incidence reflectivity for a 10-bilayer high-low
stack as a function of frequency, and Fig. 13.5 the s and p reflectivities for the same
10-bilayer stack at ® = wo and w = 1.3wy, as a function of the angle of incidence.
The stack parameters are as in Figs. 13.1, 13.2 and 13.3. The normal incidence
reflectivity for a 4-bilayer stack was shown in Fig. 12.3.

LS
o
0

Fig. 13.4 Frequency dependence of the normal incidence reflectivity of a dielectric multilayer,
drawn for 10 ZnS|MgF, bilayers on glass, as depicted in Fig. 13.1. The multilayer is tuned for high
reflectivity at @ = @ (it is a quarter-wave stack at the design frequency). The vertical lines denote
the stop-band limits, given in (13.43)


http://dx.doi.org/10.1007/978-3-319-23627-8_12
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i}

Fig. 13.5 Reflectivities of a 10-bilayer high-low stack as a function of the angle of incidence, at
o = g and w = 1.3wy. The parameters are as in Figs. 13.1, 13.2, 13.3 and 13.4. The stop band
edges are at 53.1° for the p waves when w = @y, and 41.1° for the s wave and 59.7° for the p wave
when o = 1.3wy, from Fig. 13.2

13.3 Omnidirectional Reflection by Multilayer Dielectric
Mirrors

We have seen that multilayer dielectric mirrors reflect strongly in stop bands, within
which light propagation is not possible in an infinite periodic structure. We have
also seen that certain aspects of reflection by multilayers are universal: for N
periods the transmittance goes to zero as N~2 at the band edges, where the
reflectance is 1 — O(N~2). Within the band gaps the reflectance tends to unity
exponentially with N. Thus not very many periods of the multilayer structure are
needed to give high reflectance. Typical use of dielectric multilayer mirrors has
been at normal incidence; the reflectance for a 10 period stack was shown in
Fig. 13.4, with the (homogeneous) layers a quarter-wavelength thick at the design
frequency:
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;uh )\, /1]
dy 4 an, dp 1 (13.56)

where A is the vacuum wavelength. Then the optical paths are n,d, = nd; = A/4
and maximum reflection (at normal incidence) occurs at angular frequency

c

— 13.57
il (13.57)

wO:—:——:

s
[\

S

=

&
N

The edges of the stop band are at wg + Aw, where Aw/wy was given in (13.43).

The normal incidence results are independent of polarization, but at oblique
incidence the reflectances of the s (TE) and p (TM) polarizations are of course
different. The question arises: is it possible to design a stack to have strong
reflection (perfect reflection, for the infinite stack) for all angles of incidence, and
both polarizations? The answer is yes (Winn et al. 1998; Fink et al. 1998; Chigrin
et al. 1999a, b; Nusinsky and Hardy 2007). Southwell (1999) has given analytical
approximations for an omnidirectional mirror consisting of a quarter-wave dielec-
tric stack. In this section we present improved analytical approximations which give
the band edges of the s and p stop bands at any angle of incidence, on a dielectric
stack which need not be quarter-wave, based on Lekner (2000).

We know from Sect. 13.2 that strong reflection will occur when the trace of the
2 x 2 matrix for one period exceeds 2 in magnitude. (These conditions, one for the
s polarization and one for the p polarization, locate the band edges of the s and p
waves.) For homogeneous layers of high and low refractive indices and n;, and
thicknesses dj, and d, these conditions take the form

|cos d; cos 0, — A sin d; sin 9| > 1, (13.58)

where

d d
51:&\/n,2—n%sin29, 5h:ﬁ\/nﬁ—n%sin20, (13.59)
c c

are the phase shifts of the waves of angular frequency w in traversing the layers of
low and high index, n; is the refractive index of the medium of incidence, and 0 is
the angle of incidence. The function A is frequency-independent, and takes different
forms for the s and p polarizations:

1 1 2 —n?sin® 0
A== <xx + —), x=dn_ IR TP 2 (13.60)
q n; — nysin” 0

1 1 o (m)
A, = 3 <x,,+ xp>’ X, = 0, (n;) Xs. (13.61)
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We assume that n;, > ny, so x; > 1. Note that x, can be less than unity for angles of
incidence greater than 0,
From (13.56), (13.57) and (13.59), a quarter-wave stack at normal incidence has

c 20 207000 | 0 :
where  sin” 0, = njn;/ny(ny +n;), provided

o = = &, (13.62)

T
Ele

and cos J;cos d;, — Asin d;sin§;, becomes cos®§ — % (:’l—’[ + :Tl) sin? 5, which takes

the value —1 at wy + Aw, where Aw is given by (13.43).

13.3.1 Band Edges at Oblique Incidence
Jor a General Stack

At normal incidence the stop band for a quarter-wave stack lies between w; =
wo — Aw and w;” = wy + Aw, where @y and Aw are given by (13.57) and (13.43)
respectively. The quantity cos d;cos o, — Asind;sind;, in (13.58) decreases with
frequency from unity at zero frequency, so the first stop bands lie between fre-
quencies @~ and ™ given by solving the transcendental equation

cos 0;cos O, — Asind;sindy, = —1 (13.63)

numerically for A = A, and A, as given by (13.60) and (13.61). At normal inci-
dence A, = A, and the stop band for both polarizations lies between @, and ' .
The s polarization stop band typically increases in width as the angle of incidence
increases, while the p stop band width decreases. At glancing incidence the p stop
band ranges from o, to w; , and provided

w, <oy (13.64)
there will be a frequency region from w, to @y~ where both s and p polarizations

are strongly reflected (perfectly reflected, in the case of an infinite stack).
At oblique incidence on a general stack, 6, = (w/c)D; and o, = (w/c)Dp,

where
Dy = dj\/n} — n}sin® 0, Dy, = dj\/ni — n}sin® 0. (13.65)

At normal incidence for a quarter-wave stack, the phase increments J; and J;, at the

band edges are both 7t/2 + arcsin (;‘;’jrll), where xo = ny,/n; is the common value of

x, and x, at 0 =0. At all frequencies the phase increments are in the ratio
On/d; = Dy, /D,. We therefore put the phase shifts at the band edges equal to
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2D, bd 2D T
+ . (T + +_ ho (T +
0, " D,+D <2i¢ ) O D, + Dy <2i¢ ) (13.66)

where the angles q’)i are to be found for each polarization. The transcendental
equation (13.63) for the band edges now reduces to an equation for ¢=:

—1 D, — D)\ /m
. + h l +
= _:l: . 1 .
sin ¢ (x-i—l) COS[(DH—D;) (2 ¢ )} (13.67)
In deriving (13.67) from (13.63) we have used
A-1  [x—1\°
S A 13.
A+1 <x—|— 1> (13.68)

(x stands for x, or x;, A stands for A, or A,) and taken a square root on the
assumption that x > 1. No approximation has yet been made. When D), = D; we
obtain a generalization of (13.43):

" . (x—1
= . 1 .
) arcsin <x+ 1) (13.69)

It follows from (13.67) that the stop band width is greatest when D;, = D;, because
then the cosine term then attains its maximum value of unity.

In many cases of interest (D, — D;)/(Dy + D) is a small quantity. Expansion of
the right-hand side of (13.67) gives

2 4
. + x—1 1 Dh_Dl (7[ i)z Dh_Dl
= 1 —= —=+ o 13.70
sin ¢ (erl){ 2<Dh+D, 2597) + 9o, 5p,) [ 137
so that, on using arcsin(S +s) = arcsin(S) +sv'1 — S2 4+ O(s?),

2 2
n . (x—1 x—1(D,—D)\"|n . (x—1
- - Ty
¢” =arcsin (er l) 4./x (Dh +D;) (2 aresn x+1

NN (13.71)
+o(brin)
The band-edge frequencies can then be found from (13.66) and (13.59):
w* :L(fiqbi). (13.72)
Dy+D; \2

As a numerical example, consider the band edges for a tellurium|polystyrene
stack which is quarter-wave at normal incidence (Fink et al. 1998).
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Fig. 13.6 Band edges for a high-low multilayer with n; = 1, n, = 4.6 and n; = 1.6 (Fink et al.
1998), versus 6. At normal incidence the stop band extends from wy — Aw to @y + Aw, with Aw
given by (13.43). The outer band is for s polarization, the darker inner band is for the p
polarization. Omnidirectional reflection occurs in the frequency range between the dashed lines.
The calculations are for a “quarter-wave” stack, with n,d;, = md; = 1/4

Equation (13.43) gives the band edges at normal incidence, exactly.
Equations (13.71) and (13.72) give the band edges at all angles of incidence to such
accuracy that exact and approximate results cannot be differentiated in Fig. 13.6.
The errors in o™ at glancing incidence range from 12 to 268 parts per million.

13.3.2 Refractive Indices for Which Omnidirectional
Reflection Exists

Omnidirectional reflection requires that the s and p band gaps of the multilayer
persist from normal incidence to glancing incidence. This will happen if the cri-
terion (13.64) is satisfied. The region in the (n;, n;,) plane where (13.64) is satisfied
is bounded by the curve where

w, = oy . (13.73)
In terms of the approximate band edge frequencies given in (13.72), this reads

P-4 iter
dpnpry +dimyr; dyny +ding’

(13.74)
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where

rm=1/1—n}/n2, rn=4/1—n3/n2 (13.75)

and <f>0+ is evaluated at normal incidence with xo = ny,/n;, while d); is evaluated at
glancing incidence with x, = (n,/n;)(r1/rn), Dy = dynpry, and Dy = dimyr;. For
quarter-wave stacks, (13.74) reduces to

=t _Fteg

= . 13.76
m+rn 2 ( )

Solution of (13.76) gives a curve in the (n;,n;) plane which is shown in Fig. 13.7.
Above this curve is the omnidirectional reflection region. The minimum value of
np(= 2.265 899 ny) occurs at n; = 1.517 523 ny. The exact equation (13.73), with

w, found from (13.63) or (13.67) at glancing incidence, has (n;,ny),;, at

(1.517 522 ny, 2.265 899 n). In contrast, Fig. 13.3 of Southwell (1999) has a
minimum for its onset of omnidirectional reflection curve at n; ~ 1.45n,
n, /& 2.24 n;. This is due to the fact that his equation for the edges of the bands is
less accurate than the one used here, even for quarter-wave stacks.

It is of interest to widen the search and admit dielectric stacks which are not
quarter-wave at normal incidence. For general stacks we have an extra parameter,
the ratio of the optical thicknesses of the layers at normal incidence: p = nyd),/nd;.
Lekner (2000) finds that the lowest 7, is attained at

Fig. 13.7 Region of omnidirectional reflection of a high-low multilayer. The lower curve shows
the limit of omnidirectional reflection for a quarter-wave stack according to (13.76) with w,
approximated by (13.72, 13.73). The contours labelled 0.1, 0.2 and 0.3 show where the
quarter-wave stack omnidirectional reflection region is 0.1y, 0.2 and 0.3wy wide
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p = 1.362 086, n = 1.492 045n,, ny = 2.246 763 n;. (13.77)
These values are to be compared with the quarter wave stack values found above:

p=1, n = 1.517 522 n,, n, = 2.265 899 n,. (13.78)

13.4 Form Birefringence

A pencil of light entering an anisotropic material, such as a crystal of calcite, is in
general split into two beams: calcite is doubly refracting, or birefringent. The
optical properties of anisotropic materials are characterized by a tensor dielectric
function, as we saw in Chap. 8. For a given angle of incidence of a plane elec-
tromagnetic wave onto a given crystal face, two plane wave modes are possible
within the crystal. For a uniaxial crystal, such as calcite, these are called the
ordinary and extraordinary modes. The configuration of interest in relation to planar
stratified media is one where the optic axis of a uniaxial material coincides with the
surface normal. Then the ordinary and extraordinary modes have wavevectors
(K,0,q,) and (K,0,q,) where (Sects. 7.1 and 8.2)

qi = 80(1)2/6'2 - K2, qg = s,,co2/c2 - (80/86)K2, (13.79)

where ¢, = n2 and ¢, = n? are the ordinary and extraordinary dielectric constants
for the crystal. The electric field vectors of the ordinary and extraordinary modes
are along the directions

Ey~(0,1,0),  E.~[ge 0, —(¢0/e)K]. (13.80)

From Maxwell’s equation for the curl of E we find B, ~ (0, 1, 0). Thus the normal
mode o and e field directions in the crystal correspond to the s and p have char-
acterizations used in isotropic media. (This holds only when the optic axis is normal
to the reflecting surface of the crystal.)

When a narrow beam is incident onto the crystal, it is refracted into two beams,
whose directions are those of E x B, along the Poynting vector for each mode. The
ordinary mode ray direction always coincides with that of the ordinary wavevector
(K, 0, go). The extraordinary ray direction does not coincide with (K, 0, ¢.) in
general. When the optic axis is normal to the reflecting surface, the ray direction of
the extraordinary wave is along [(&,/¢.)K, 0, g.].


http://dx.doi.org/10.1007/978-3-319-23627-8_8
http://dx.doi.org/10.1007/978-3-319-23627-8_7
http://dx.doi.org/10.1007/978-3-319-23627-8_8
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We now consider waves in a periodic stratification made up of isotropic com-
ponent layers. Form birefringence is the name given to the way in which such a
structure behaves like an anisotropic homogeneous medium, in the limit when the
wavelength is large compared to the period (Born and Wolf (1965), Sect. 14.5.2 and
Yariv and Yeh (1984), Sect. 6.8). The equivalent homogeneous medium is uniaxial,
with optic axis normal to the stratifications. To see this, we write the Bloch factor
(which according to (13.38) has eigenvalues eii¢) as eT? where d is the thickness
of one unit cell of the stratification, and q is interpreted as the normal component of
the effective wave vector, which is thus (K, 0, ¢,) and (K, 0, g,) for the s
(TE) and p (TM) polarisations. Since g, and ¢, are different (being determined by
the trace of M, and of M,,), we have a one-to-one correspondence with the normal
components g, and g, of the ordinary and extraordinary waves.

For the high-low stack, cos ¢, and cos ¢,, are given by (13.41) and (13.42). In
the long-wave limit we have ¢;d;<<1 and g;d) <<1; expansion of (13.41) and
(13.42) in powers of g;d; and gq;d;,, with

b, = qs(dp+d)) = q,d, ¢ = e0*/F — K2, (13.81)
2 £,0° &\ o
¢p = apldi+di) = gpd, g, ==75— |~ K", (13.82)
P

for the TE and TM waves (compare the expressions for qf) and qg in (13.79)) gives

Ené€l

& =—. 13.83
P fuer + fien ( )

Es :ﬁl‘o’h +.flgla

In (13.83) f;,,f; are the fractions of the total volume occupied by the high and low
index materials in the medium:

_ f= d
Tdi+d T di+d

i (13.84)

The expressions (13.83) have been obtained by electrostatic considerations (Born
and Wolf 1965), and by Bloch-wave dynamical argument (Yariv and Yeh 1984) as
above. Note that the effective anisotropy ¢, — &, cannot be positive:

(e &) fif
& — & = et fion (13.85)

Thus the “ordinary” s or TE wave experiences a larger effective refractive index
than does the “extraordinary” p or TM wave. Experimental demonstration of form
birefringence may be seen in van der Ziel et al. (1976) and Kitagawa and Tateda
(1985), for example.


http://dx.doi.org/10.1007/978-3-319-23627-8_14
http://dx.doi.org/10.1007/978-3-319-23627-8_6
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The previously known results of the last paragraph apply only to the case where
the unit cell is composed of two homogeneous layers. The long-wave limit can be
generalized to an arbitrary dielectric function profile within the unit cell (Lekner
1994, Sect. 4). To second-order in the cell thickness divided by the wavelength, the
single-period matrix for the s wave is (Chap. 12, (12.76))

|- a6 -2) b-a
M, = a“ , (13.86)
— [dzq?(z) 1— [dzq*(z)(z — a)

(the unit cell extends from z = a to z = b = a+d). Thus

b
1 1
cos ¢, = EtraceMs =1 _E(b - a)/dzqz(z) + - (13.87)

We expand cos ¢ as 1 — 142 (b — a)’+ --- and put
@ =e0? /P — K, ¢ (2) = e(2)0?/c* — K2 (13.88)

Then (13.87) gives

b

& = (&) = bia/dzs(z). (13.39)

a

For the p wave the unit cell matrix is given by (12.80) of Sect. 12.4 to
second-order in the cell thickness:

b b b
1 — [dzlg*(z)/e(2)] [ dLe() Jdze(z)
M= ¢ ., . (13.90)
— [dzq’(2)/e(2) 1= [dze(z) [dCq*(0)/e()
We expand cos¢, =jtraceM, as 1—j3q(b— a4 ---, and set

qﬁ = gw*c® — (&/¢,)K?, to find the same & = (¢) as above, and

b b b b

S~ / dz/e(2) / ae e(0) + / dz &() / dC/e(0),  (13.91)


http://dx.doi.org/10.1007/978-3-319-23627-8_12
http://dx.doi.org/10.1007/978-3-319-23627-8_12
http://dx.doi.org/10.1007/978-3-319-23627-8_12
http://dx.doi.org/10.1007/978-3-319-23627-8_12
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which reduces to

b

i: <%> EblTa/;(i—;. (13.92)

a

The expressions (13.89) and (13.92) for the ordinary and extraordinary dielectric
constants of the equivalent homogeneous but anisotropic medium reduce to (13.83)
in the special case of a unit cell made up of two homogeneous layers.

Thus, in the long-wave limit, any periodically stratified isotropic medium can be
replaced by a homogeneous uniaxial medium, with optic axis normal to the strat-
ification, and &, = (¢), ¢, ' = (¢7'). Since the harmonic mean of a set of positive
quantities is never more than their arithmetic mean, it follows that ¢, will not exceed
&,, provided &(z) is positive everywhere.

The reader may have noticed a curious feature of the proofs given above: the
periodicity of the stratification is used to define a Bloch wavevector via ¢ = gd,
where the cosine of ¢ is half of the trace of the matrix for a unit cell, but the
thickness d of the unit cell drops out of the expressions for the equivalent ordinary

and extraordinary indices of the equivalent homogeneous medium, in the

long-wave limit. Could it be that the ¢, = (&) and ¢, = <s’1 >71 results apply also to
disordered finely layered media? The following argument suggests that they do:
consider a stratification which appears disordered on a fine scale (for example the
nanometer scale), but is actually periodic on a larger scale (for example the period is
in the tens of nanometer range). The above proof then applies, provided the
wavelength of the radiation is larger still (for example hundreds of nanometers). It
seem plausible that non-periodic finely layered media can be represented in the
long-wave limit by an effective uniaxial medium with ¢, and ¢, given by (13.89)
and (13.92); the only difference is that disordered media will scatter more: they will
show reflection from variations in the dielectric function &(z), even in the long-wave
limit.

13.5 Absorbing Periodically Stratified Media

This section examines the reflection by absorbing periodically stratified media.
Stop bands no longer exist in the strict sense, but their remnants influence reflection,
as we shall see. The rapid variation with angle of incidence or wavelength is
smoothed by absorption. On physical grounds we expect that the strong dependence
on N (the number of unit cells, or repetitions of one period of the stratification) will
also be smoothed by absorption. This is shown to be true, and indeed we prove that
provided N exceeds a number which is inversely proportional to the absorption, the
s and p reflectivities attain a universal form, independent of N and of the properties
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of the substrate. In this sense, at least, reflection from an absorbing periodically
stratified medium is simpler than from its non-absorbing idealization.

The idea that absorption will cause a periodically stratified medium to have the
above properties was seen in early papers (Koppelmann 1960; Flannery et al. 1979)
on multilayer dielectric reflectors, which found asymptotic (large N) properties for
the reflectance. Lakhtakia (2011) showed numerically that with absorption the
reflectance of rugate filters approaches a limiting form as N increases, dominated by
the stop band structure. General formulae were derived for the reflection amplitudes
of both polarizations by Lekner (2014), and will be given here.

13.5.1 Refiection of s-Polarized Plane Waves

The results of Sects. 13.1 and 13.2 hold for absorbing media also, since the layer
matrices giving the transmission and reflection properties of the periodic structure
remain unimodular in the presence of absorption. Let the reflecting stratification
contain N periods (of, for example, alternating high-index and low-index identical
bilayers), and let the outer surface of the stratification be the z = 0 plane. Then the
reflection amplitude of the s-wave was given by in Sect. 13.2, (13.45):

_ @1q2mi2 + My +igqi(mxn — oy) — ig2(mi1 — o)
qigamiz — myy +iqi(mxn — on) +iga(mi1 — oy)

. (13.93)

s

Here q; = nj(w/c)cos 0 and g, = ny(w/c) cos 0, are the normal components of
the incident and transmitted wavevectors (0; and 0, are the angles of incidence and
transmission) and

_sin(N —1)¢

oy = SnND = cos ¢ — sin ¢ cot N¢ (13.94)

depends on the angle ¢ defined by

1

1
cos ¢ zitraceM:E(mn-i-mzz)a (13.95)

where M is the 2 x 2 matrix of one period,

M= (’"“ ”“2). (13.96)

nmpy mp

For example, in the special case of a high-low multilayer, consisting of N repeti-
tions of constant refractive index ny, and thickness & followed by constant index n;
and thickness [, the s-wave matrix was given in (13.40):
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C, ~lg C ~lg
M= ( 1 q z) ( h n h)
—qst G —qnSh Ch
L B B (13.97)
- (Clch —q; qnSiSh - <iq;, Shtq; Szch>

—qiSich — CiqnSh - CiCh — qIsiqy, S
The wave-vector normal components ¢; and ¢, are given by
g =g’/ —K* q =e o’/ —K* K= (w/c)nsinb, (13.98)
and we use the shorthand notation
¢ = cos ql, s;=sin ql, c, = cos gyh, s, = singh. (13.99)

In this case, the angle ¢ defined by (13.95) is given by

1
€08 b = cich — 5 18h (a7 an+ gy ). (13.100)

For non-absorbing media, the stop bands are the regions where cos® ¢ > 1.

For absorbing media, the dielectric functions ¢; and ¢, are complex, related to the
complex indices of refraction by & = &, + ie; = (n, +in;)* = n? — n? + 2in,n;. Thus
all of the matrix elements become complex, and ¢ (still defined by (13.3)) is always
complex. As noted above, we expect the reflectance to become independent of the
number of periods N, if N is large enough (how large is specified below). Let
¢ = ¢, +i¢,, and assume for the moment that ¢; > 0. In the definition (13.94) of

oy we have

cosN¢,coshN¢; — isinN¢, sinh N¢p;

sinN¢, coshN¢; + icos N¢, sinh N,

_cosN$,(1+¢) — isinNg, (1 - ) (13.101)
sinNe,(1+¢) + icosNg,(1 — &)

=—i+0(8), &=

cotN¢ =

Thus, for N¢; large and positive, (13.94) and (13.101) give us
oy =cosp+ising+0(e ) =¥+ 0(e ). (13.102)
If ¢, is negative, on the other hand, we obtain

oy =cos —ising+ O(N) = e+ 0(N). (13.103)
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We have thus verified our expectation that the exact number N of the stratifications
becomes unimportant, provided it is large enough to make exp(—2N|Im(¢)|)
negligible.

Similar physical reasoning also leads us to expect that the substrate properties
should become unimportant for the reflectivity, because when there is absorption and
N is ‘large’, the incident wave does not penetrate to the substrate. Hence we expect
q2 = nz(w/¢) cos 0, to drop out of the reflection amplitude (13.1) at the same time as
oy tends to its limit exp(+i¢), independent of N. What is the condition under which
ry becomes independent of ¢,? Let us write the s-wave reflection amplitude as

_ap+f alq+ /)

= = . 13.104
A +B  A(q2+B/A) ( )

It will be independent of g, when fi/o = B/A, namely when
myy +iqi(my — o) _ —ma +iq1(mxn — o) (13.105)

gimp, —i(my — o) qumpp+i(my — o)

Because of the unimodularity of the layer matrix (myimap — mymp; = 1) the
condition (13.105) simplifies to

a® — (my +myp)o+1=0. (13.106)

Since my; +my; = 2cos ¢ from the definition (13.95) of ¢, the solutions of
(13.106) are

op = et (13.107)

in accord with (13.103, 13.104). The physical root of (13.106) is the one with

modulus less than unity. We have thus obtained the result, valid when N|¢;| is large,

that the s-reflection amplitude takes a value independent of N and of ¢, namely
o qimiy —i(my — o)

ry=—= - 13.108
A q1m12—|—l(m11 —O’) ( )

(where ¢ satisfies (13.106)) or equivalently

yo =B matiam —a) (13.109)
B —my +iqi(my — o)

13.5.2 Reflection of p-Polarized Plane Waves

We can abbreviate the discussion here, because the formalism for p(TM)-polarized
incidence is almost the same as for s(TE)-polarized incidence. We shall show only
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the differences. The p-wave reflection amplitude for an N-layer stratification is
given by (13.49):

. Q10omi2 +myy +iQ1(map — an) — iQ2(mi1 — o) , (13.110)

P 0100myy — myy +iQ1(ma — ay) +iQ02(myy — o)

where

01 =qi/e1 = nl_l (9> cosli, Or=q/e; = nz_1 (9) cos 6, (13.111)
c ¢

and the matrix elements m; are to be calculated as specified above (13.42). In the

special case of the same high-low multilayer given as an example for the s-wave,

the matrix for one period becomes

M= ( a Q1151>< Ch Qh15h>7 (13.112)

=051 ¢ —Ohsy, Ch

where ¢; = cosql, s;=singl, ¢, =cosqyh and s, =sing,h as before. The
effective wavenumbers Q; and Q;, are defined by

_

o=% g, =9 (13.113)
€] &n

The angle ¢ defined in (13.95) is thus given by

1
cos ¢, = cicn — 5 150 (Q; ' On + 210, ")- (13.114)

The function ox(¢), which transforms the one-period into the N-period reflection
amplitude, is defined by (13.94) as before, but for the p-wave reflection we use ¢,
which is different from ¢, except at normal incidence. Hence we again have
oy = e 4+ 0(e?M#l), and the reflection amplitude becomes independent of N
for N|¢;| large. Thus, by the reasoning given in the previous section, the substrate
effective wave-number component O, also drops out of the reflection amplitude,
which can be written in the equivalent forms

- Qimiy — i(my —0) _ my +iQ1(ma — 0) (13.115)

Oimpz +i(my — o)  —my +iQi(my —0)

The s and p reflectivities are the absolute squares of the reflection amplitudes:

Ry =1nl, R, =|n| (13.116)
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13.5.3 Application to an Absorbing Quarter-Wave Stack

Koppelmann (1960) appears to have been the first to show that weakly absorbing
multilayer dielectric reflectors have limiting reflectance properties independent of N
for large N. For a high-low stack, with refractive indices nj, + ik;, and n, + ik, at the
design angular frequency w, and quarter-wave layer thicknesses, such that

@ _m/2_n/2 (13.117)

c nyh ml -’

Koppelmann showed that the reflectivity at normal incidence and at w = wy is

2nny (k, +k
R(wo) = 1 7% +O(K2, ks, k). (13.118)
n, —n;

In the absence of absorption the (fundamental) stop band extends over the range
wo — Aw to wy + Aw, where

Aw/wy = (2/n) arcsin[(n, — n;)/ (ny + ny)). (13.119)

Within this range the reflectivity is unity for a non-absorbing infinite stack, and
approaches unity exponentially with N (Sect. 13.2). The value of cos? ¢ exceeds
unity: or example at w = wy, cos ¢ = —(n; +n7)/2nm < — 1. Hence ¢ is com-
plex even in the absence of absorption. Figure 13.8 shows the reflectance of an

Fig. 13.8 Normal incidence reflectivity of a quarter-wave high-low stack, with n; = 1, n, = 2.35
(ZnS), n; = 1.38 (MgF,) and n, = 1.5 (glass). The absorptive (imaginary) parts of the refractive
indices kj,, k; have both been set to 0.01, about two orders of magnitude larger than actual values,
so as to demonstrate the asymmetry in frequency dependence. The frequency range extends from
0.5w0 to 1.5mp; the stop band lies between wy — Aw and wo + Aw, with Aw given by (13.119).
The smooth curve is the large N limit; the oscillatory curve is drawn for N = 30. The vertical lines
indicate the limits of the stop band for an infinite non-absorbing stack
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absorbing stack, calculated for 30 high-low layers, and also from any of the for-
mulae (13.109, 13.110) or (13.115) (all equivalent at normal incidence).

The matrix elements used are as defined in (13.97). Over the frequency range
plotted, the appropriate ¢ value to be used is ¢ . . For example, at & = wy we find,
to first order in ky, kg,

o4 (0)0) = —nl/nh + i(khnl — kﬂ’lh)/l’li, g_ (0)0) = —nh/nl — i(khnl — kﬂ’lh)/l”l[2
(13.120)

For finite N the reflectivity is oscillatory outside of the stop band region, wg —
Aw to wg + Aw. The oscillations increase in number and decrease in amplitude with
N. Inside the stop band the difference between the finite N reflectivity and its
asymptotic value is exponential in N (Sect. 13.2), and is well below visibility in the
example illustrated in Fig. 13.8.

Flannery et al. (1979) have noted that, with absorption, the maximum reflectivity
is obtained at a frequency w,, not equal to wy. By expanding the reflectivity
obtained from (13.116) to first order in the imaginary parts of the refractive indices,
and to second order in @w/wy — 1, and differentiating the result with respect to ,
we obtain

% -1 + 4(](;,71[ — kﬂ’lh)(nh — nl)
wo 72 [ky, (nﬁ + 2n12 —n?)+ k1(2n,21 + ”12 —n?)]

+O(kn, k). (13.121)

To this order, the frequency shift is homogeneous of degree zero in &, k;. Thus
even infinitesimal absorption will shift the maximum away from wo by a finite
amount, which seems paradoxical until one remembers that the whole range wg —
Aw to wy + Aw is a maximum for zero absorption. More details about the reflec-
tivity at @ = @,, and at the location of the stop band edges can be found in Lekner
(2014).

The theory of this section is not restricted to piecewise constant dielectric
functions: an arbitrary periodic dielectric function profile will have (analytically or
numerically) a matrix for one period, with elements depending on the profile,
frequency, angle of incidence and polarization, and the formulae derived here will
give its asymptotic reflection properties.

References

Abeles F (1950) Recherches sur la propagation des ondes électromagnétiques sinusoidales dan les
milieux stratifiés. Application aux couches minces. Annales de Physique 5(596-640):706-782

Born M, Wolf E (1965) Principles of optics, Chap. 14, 3rd edn. Pergamon, Oxford

Brillouin L (1946/1953) Wave propagation in periodic structures. McGraw-Hill, New York;
Dover, New York



References 339

Chigrin DN, Lavrinenko AV, Yarotsky DA, Gaponenko SV (1999a) Observation of total
omnidirectional reflection from a one-dimensional dielectric lattice. Appl Phys A 68:25-28

Chigrin DN, Lavrinenko AV, Yarotsky DA, Gaponenko SV (1999b) All-dielectric
one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous
emission control. J Lightwave Tech 17:2018-2024

Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL (1998) A dielectric
omnidirectional reflector. Science 282:1679-1682

Flannery M, Loh E, Sparks M (1979) Nearly perfect multilayer dielectric reflectors: theory. Appl
Opt 18:1428-1435

Griffiths DJ, Steinke CA (2001) Waves in locally periodic media. Am J Phys 69:137-154

Hardy GH (1952) A course of pure mathematics, 3rd edn. Cambridge University Press, Cambridge

Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals. Princeton University Press,
Princeton

Kinoshita S (2008) Structural colors in the realm of nature. World Scientific, Singapore

Kinoshita S (2013) Bionanophotonics. Taylor and Francis, London

Kitagawa M, Tateda M (1985) Form birefringence of SiO,/Ta,O5 periodic multilayers. Appl Opt
24:3359-3363

Lakhtakia A (2011) Reflection from a semi-infinite rugate filter. J Mod Opt 58:562-565

Lekner J (1994) Light in periodically stratified media. J Opt Soc Am A: 11:2892-2899

Lekner J (2000) Omnidirectional reflection by multilayer dielectric mirrors. J Opt A: Pure Appl
Opt 2:349-342

Lekner J (2014) Reflection by absorbing periodically stratified media. J Opt 16:035104 (4 pp)

Mott NF, Jones H (1936/1958) The theory of the properties of metals and alloys. Clarendon Press,
Oxford; Dover, New York

Nusinsky I, Hardy AA (2007) Omnidirectional reflection in several frequency ranges of
one-dimensional photonic crystals. Appl Opt 46:3510-3517

Rayleigh JWS (1887) On the maintenance of vibrations by forces of double frequency, and on the
propagation of waves through a medium endowed with a periodic structure. Phil Mag 24:145-
159

Rayleigh JWS (1917) On the reflection of light from a regularly stratified medium. Proc R Soc
A93:565-577

Southwell WH (1999) Omnidirectional mirror design with quarter-wave dielectric stacks. Appl
Opt 38:5464-5467

Van der Ziel JP, Ilegems M, Mikulyak RM (1976) Optical birefringence of thin GaAs-AlAs
multilayer films. Appl Phys Lett 28:735-737

Von Koppelmann G (1960) Theory of thin film layers of weakly absorbing materials and their
application as interferometer mirrors. Ann Phys 7:388-396 [in German]

Winn JN, Fink Y, Fan S, Joannopoulos JD (1998) Omnidirectional reflection from a
one-dimensional photonic crystal. Opt Lett 23:1573-1575

Yariv A, Yeh P (1977) Electromagnetic propagation in periodic stratified media. II. Birefringence,
phase matching, and x-ray lasers. J Opt Soc Am 67:438-448

Yariv A, Yeh P (1984) Optical waves in crystals. Wiley, New York

Yeh P, Yariv A, Hong CS (1977) Electromagnetic propagation in periodic stratified media.
I. General theory. J Opt Soc Am 67:423-438



Chapter 14
Rough or Structured Surfaces

We have seen in Chap. 1 that a planar surface, or arbitrary stratification, will give
specular reflection of an incident plane wave. No real surface is perfectly planar,
and thus in practice there is a diffuse or scattered component, as well as a specular
component of the radiation. The rougher the surface, the greater the diffuseness of
the re-radiation from it. A rough surface which is planar on average (for example a
liquid-vapour interface stabilized by a gravitational field) is characterized by at least
two parameters: a length £ giving the typical variation in the height of the surface,
and another length [ giving the scale of correlations between displacements at
different points of the surface. The incident plane wave is characterized by its
wavelength 4 and angle of incidence 6 (measured relative to the mean surface,
assumed planar); the scattered radiation is characterized by two angles ¢ and ¢'.
(We will not consider inelastic scattering by a dynamic surface here, so the
wavelength of the scattered radiation is taken to be that of the incident radiation.)
The characterization of scattered light is thus in terms of at least three lengths 4, i, [,
and three angles 0, 0', ¢'. In the geometrical optics limit (1 < A, ) the surface may
be taken to be locally plane, and thus the scattered light is obtained from the
statistical geometry of the surface by assuming specular reflection from each tilted
element. This is a good description of the reflection of light from large bodies of
water, provided that foam and spray are absent. Cox and Munk (1954), for example,
measured the roughness of the sea surface from photographs of the sun’s glitter.
Longuet-Higgins (1960) has studied in detail the geometry of reflection and
refraction at a random moving surface, of light originating at a point source. The
reflection of extended objects by gently rippled water is discussed in an illustrated
note by Lynch (1985).

This chapter will concentrate on the wave theory of reflection by rough surfaces,
specifically including diffraction effects which arise when the wavelength is com-
parable to the lengths characterizing the surface roughness.
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14.1 Reflection from Rough Surfaces:
The Rayleigh Criterion

From the wave theory point of view, a variation in height in the reflecting surface
by an amount & will be significant if the resulting path difference is comparable to
the wavelength 1. Rayleigh (1879) noted that in the specular case the path differ-
ence is 2hcos 0 for the simple geometry shown in Fig. 14.1.

Since (27/1) cos 8 = g, the normal component of the wavevector of the incident
light, we may write the Rayleigh criterion for the specular reflection off a surface as

2mhcos 0 < L or gh < 1. (14.1)

The factor 7 inserted here is arbitrary: a more precise specification comes when
one takes a particular model of surface roughness. For the Gaussian model con-
sidered in Sect. 14.4 the operative roughness parameter is

R=(q+4)(C), (14.2)

where ¢ and ¢ are the magnitudes of the normal components of the incident and
scattered wavevectors, and <C2> is the mean square surface height variation when
({) = 0. The intensity of specularly reflected radiation is proportional to exp (—R)
in this model; non-specularly scattered light depends both on R and on the product
of the lateral correlation length [ with the change in the lateral component of the
wavenumber.

The Rayleigh criterion (14.1) in terms of path or phase differences indicates that
with a given roughness long waves may be reflected specularly and short waves
diffusely, or that for given roughness and wavelength there may be diffuse scat-
tering near normal incidence and specular reflection near grazing incidence. The

A

Fig. 14.1 Path difference between rays reflecting specularly in the presence and absence of a step
of height h. The path difference between the rays equals (AB+ BB') — AA’ = 2h sec 0 — 2h tan 0
sin 0 = 2h cos 0
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change from diffuse to specular reflection with angle of incidence is apparent with a
plate of ground or smoked glass. Further discussion may be found in Rayleigh’s
lecture on “Polish” (1901) and in Wood (1934), pp. 39-41.

14.2 Corrugated Surfaces, Diffraction Gratings

The simplest roughness to consider is that of a periodic corrugation of a sharply
defined surface at z = {(x):

{(x) = Z (cn cOs npx + s, sin npx) = 3 Z[(Cn — i5,) e + (¢, +isy)e .
(14.3)

The period of the corrugations is d = 27/p. The method to be presented here was
developed by Rayleigh (1896, 1907a) and rests on an assumption (“the Rayleigh
hypothesis”) which will be stated below and discussed again at the end of this
section. Consider a plane wave incident (perpendicularly to the corrugations) at an
angle of incidence 0 relative to the normal to the averaged surface. If k = 27/ is
the total wavenumber in the medium of incidence, the incoming wave is

lﬁ,- _ eik(xsin9+zc059) _ ei(Kerqz). (144)
The specularly reflected wave is
l//0 — Aoeik(x sin)—zcos0) _ A()ei(Kquz). (145)

For reflected spectra of the nth order the wave is represented by terms like (14.5)
with 0,, K,, and g, instead of 0, K and g, where

ksin0, = K, = K +np, kcos0, = q,. (14.6)

The first part of (14.6) is the grating equation giving the direction of the nth order,
which may be written as the condition that the path difference (to a distant point)
between waves originating a distance d apart on the grating is an integral number of
wavelengths:

d(sin 0, — sin 0) = n. (14.7)

The zeroth order (n = 0) is the specularly reflected wave . Since the surface
shape ((x) is expressed as a sum over positive integers n, while the grating
equations (14.6) or (14.7) may have negative n, it is convenient to define the primed
quantities 0/, K’, g/ obtained by changing the sign of n in (14.6), and sum over
positive n:
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ksin0, =K, =K —np, kcosl, =¢.. (14.6')
The spectra of the nth order are represented by

. - e . RV . . _ e A
l//n — Anezk(xsm 0,—zcos 0,) +Aflezk(xsm 0,—zcos0,) _ Anez(K,,x anz) _|_A;let(K”); q,lz).

(14.8)
Since
K +q, =1 = (K) +(d,)", (14.9)
the wavefunction (time dependence e~ is understood)
Y=vit+do+ > ¥, (14.10)
1

satisfies the wave equation (V2 +k%)¥ = 0 outside the reflecting surface. The
Rayleigh hypothesis is that (14.10), which expresses the total wave as a sum of the
incident wave plus all reflected spectral orders, with arbitrary amplitudes Ao, Ay, A,
is complete. That is, it is assumed that (14.10) has sufficient generality to satisfy the
boundary conditions on an arbitrary periodically corrugated surface. More will be
said about this hypothesis later; here we note that evanescent waves, that is those
with

@ =1 — (K+np)’ <0or (¢))°=kK — (K —np)*<0 (14.11)

are to be included in (14.10). These correspond to orders that have “passed off over
the grating horizon”, and decay exponentially with |z|. From (14.6), (14.6") and
(14.9), we see that at normal incidence (K = 0) the maximum visible order is the
integer part of d/2, so that if d < A only the zeroth or specular order will be seen.
At oblique incidence, the maximum visible order is the integer part of 2d/A, since
the maximum value of K is k (attained at grazing incidence), and

(q:l)zz K — (K —np)* (14.12)

will stay positive when K = k for np < 2k or n < 2d/A. Thus if d < 1/2 there will
be only specular reflection, at any angle of incidence, and the corrugated surface no
longer acts as a diffraction grating. (There are near-field effects, but no spectra are
visible in the far-field region.)

The amplitudes of the spectral orders, Ay,A, and A/, are found from the
boundary conditions to be imposed on (14.10) at the surface. The simplest case to
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consider is that of a perfect reflector with the incident wave polarized so that the
electric field lies along the corrugations. The boundary condition for this case is
WY =0 on z={. All of the incident energy is thrown back, and is distributed
between the specular beam and the reflected spectra. (The spectra represented by
evanescent waves do not radiate energy.) The total wavefunction

‘I—'(x, Z) _ ei[(x{eiqz +Aoe—iqz + Z(Aneinpx—iq,,z +A;e—inpx—iq,’1z)} (14_13>
1

is to be zero on z = {(x).

Two methods, both due to Rayleigh, exist for extracting the spectral amplitudes.
We shall give an outline of both. In the first method, Rayleigh expands (14.13) in
powers of { and equates coefficients of exp(zinpx), {(x) being given by (14.3). If
we keep the zeroth and first powers of { in (14.13), ¥(x,{(x)) = O reads

0=1+Ag+ Y (Aue™ +ALe ™) +igl(1 — Ag) + O(L). (14.14)
1

To the zeroth power of {
14+A4A)=0, (14.15)

and all the A, and A/, are zero. To the first power of ( the value Ay = —1 still holds,
and

Ay

= —ig(cy — isn), Al = —iq(cy+isy) (14.16)
To this approximation, the amplitudes of the £n orders are given by the nth Fourier
coefficients of the corrugation. If the corrugation is purely sinusoidal (only ¢ and s
non-zero) only the +1 diffraction orders have amplitudes which are non-zero when
the calculation is taken to the first power of {. Rayleigh (1907a) gives the coeffi-
cients to the second power of (.

We now turn to consider the other (p or TM) polarization, with the electric field
in the incident wave perpendicular to the corrugations. In this case ¥ corresponds
to By, and the electric field is proportional to cur! B, that is to (—9,'¥, 0, 0,'¥'). For a
perfect reflector, the component of the electric field parallel to the (local) surface is
to be zero. The boundary condition is thus

(0¥ — 9, ¥ d{/dx),_,= 0. (14.17)

Y is the total field, again given by (14.13). Expansion in powers of { now gives
Ap = 1 from the coefficients of the zeroth power, and
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A, =i(c, — isn)(qz — nkp)/qn,

. ) 5 , (14.18)
An l(C,,+lSn)(q +I’le)/qn,

from the coefficients of the first power of {, Ay being unchanged to this order. We
note that (in this approximation) the coefficients A, or A/, diverge when g, or ¢/, go
through zero, that is at the passing off of the nth order. Rayleigh shows that the
passing off of an order of the spectrum can have an effect on other orders. For
example: in the special case of normal incidence, and a corrugation for which only
c; and ¢, are non-zero in the Fourier expansion (14.3), calculation of A; to the
second power in { gives

_ ik2€1 _k2C1C2 ( P 2) _ k26‘102 ( P

A +2p%). 14.19
S 247 2q105 2 7’) (14.19)

To this approximation, the coefficient of the first order can diverge when the second
order is passing off. According to Rayleigh (1907a), “we may at least infer the
probability of abnormalities in the brightness of any spectrum at the moment when
one of a higher order is disappearing, abnormalities limited, however, to the case
where the electric displacement is perpendicular to the ruling”. In a subsequent
paper Rayleigh (1907b) used these results to interpret and explain anomalies found
by Wood (1902) under precisely these conditions. There are in fact two types of
Wood’s anomalies: a sharp anomaly, appearing as a sudden change of intensity
along the spectrum at frequencies and indices corresponding to a passing off of a
higher order; and a diffuse anomaly related to resonance in the production of
surface waves in the grating. Grating anomalies and electromagnetic surface modes
are reviewed by Maystre (1982).
Rayleigh’s second method (Rayleigh 1896, 1907a) uses the Jacobi expansion

exp(iocos ) = Jo(a) +2 i i" cosndpJ,(a), (14.20)
1

which follows on substituting # = ie® into the generating function for Bessel
functions (Watson 1944, Sect. 2.1)

o0

exp(aft —17']/2) = i "J,(20) = Jo(o) + Z[t" + (=)'t (o). (14.21)

1

We will demonstrate the method for the simplest case of normal incidence onto a
pure cosine corrugation,

{(x) = acospx (14.22)
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(¢ci =a, all other ¢, and s, are zero in (14.3)). At normal incidence

K =0,q9 =k,qg, = q,, = \/k* — n?p?, and for a cosine corrugation the diffraction
pattern is symmetric, with A, = A. Thus (14.13) becomes

o0
W(x,z) = e+ Age * 2 ZA” cos npxe”“n<, (14.23)
1

If the electric field is parallel to the corrugations, ¥ corresponds to E, and the
boundary condition W(x, {(x)) = 0 reads

exp(io cos px) + Ag exp(—io cos px) +2 Z A, cos npx exp(—ia, cos px) = 0,
1
(14.24)

where a = ka, o, = gna. On applying (14.20) and setting the coefficients of cos npx
equal to zero forn = 0, 1,2, ... one obtains an infinite set of linear equations for the
coefficients A,. The first of these, obtained by equating the coefficient of the term
independent of x to zero, is

(1+ Ag)Jo(a) +2 iAn(_i)"Jn(an) = 0. (14.25)
1

Rayleigh (1907a) obtained the coefficients in the expansion in powers of the
amplitude a of the corrugation up to the third order. The first five are given below
up to the fourth order in a:

1
Ag = —1 4 ooy + gococl(otz — 4oy —|—2oc% — 200100 +oc§)
A1 = —io+ %(O(z +40€O€1 — 30(% +20€10€2),

1 o
Ay = a0 + —(3oczoc1 — ooy — 120(0(% —|—50c? — 60(%0@ + 3oc%oc3 + 6ocloc% — 601 003)

2 48
o, 5 s
Az = ﬁ(oc — 3oy +60102)
Ay = —% (a2a3 + oc? - 30(%0{3 - 3(1101% + 6011 0203)

(14.26)

The infinite set of linear equations for the spectral amplitudes may be solved,
approximately but without assuming o to be small, by truncating at some n = N.
That is, all A, for n > N are set equal to zero, and the linear system is solved for the
N + 1 unknowns Ay, Ay, ...,Ay. The solution is checked by increasing N to see if
this produces an appreciable difference. Another check is to solve the modified but
equally valid systems obtained by multiplying (14.24) by an arbitrary power of
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exp(icospx). For example, the terms independent of x in (14.24) multiplied by
exp(iocos px) or exp(—io cos px) are respectively

o0
Jo(20) + A0 +2 ) " Ayi"Ju(o — o) =0, (14.27)
1
1+ AgJo(20) +2 Y~ Ay(—i)"Tu(et+ 0t,) = 0. (14.28)

1

The preceding analyses were based on the Rayleigh hypothesis, namely on the
assumption that the wave function (14.10) is sufficiently general to satisfy the
boundary conditions on an arbitrary corrugated surface. The hypothesis turns out to
be true for some cases and false in others, but in a restricted least-squares sense it
can always be applied. Petit and Cadilhac (1966) showed that for the pure cosine
corrugation {(x) = acospx, and with ¥ =0 on the boundary, the Rayleigh
hypothesis breaks down for pa > 0.4477432. . , that is when the amplitude a of the
corrugation is greater than about 7 % of its period 27/p. This number comes from
solving the transcendental equation

p—1

which is obtained by considering properties of the solution (14.10) analytically
continued across the boundary z = {(x). Millar (1971) later demonstrated that the
Rayleigh hypothesis is valid for this problem when pa is smaller than the critical
value given above. These papers thus established that there are situations in which
the Rayleigh hypothesis is valid and others in which it is not. From the practical
point of view, the Rayleigh hypothesis may always be used if the coefficients are
determined by satisfying the boundary conditions in the least-squares sense, since it
has been shown that there is a linear combination of N elements of the set of plane
waves in (14.10) that converges on the boundary to the prescribed boundary values,
in the mean-square sense, as N — oo (Yasuura 1971; Millar 1973).

The Rayleigh methods can be used to study scattering by non-periodic surfaces
z={(x) or z={(x,y), since the function { can artificially be made periodic by
repetition of a large section of the surface, and { can then be expanded in a single or
double Fourier series. We noted above (see (14.6), (14.11) and the discussion
following (14.19)) that evanescent waves, with imaginary components of the nor-
mal component of the wavenumber, and corresponding to grating orders that have
“passed off”, are associated with the production of surface waves. A rough surface
thus enables coupling of an incoming plane wave to electromagnetic surface waves.
For metal surfaces this effect is important in the study of surface roughness and of
surface electromagnetic waves in metals (referred to in solid state physics as surface
plasmons or surface polaritons). Reviews of this field may be found in the col-
lection edited by Agranovich and Mills (1982): see in particular the chapters by

pa=(f—p")/2 (14.29)
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Raether (1982) and Maradudin (1982); further references will be given at the end of
this chapter. For smooth surfaces, coupling to electromagnetic surface waves is
possible via attenuated total reflection, as discussed in Sects. 10.6 and 12.6.

14.3 Scattering of Light by Liquid Surfaces

A clean and undisturbed liquid surface, such as that of mercury or water, gives an
impression of perfect smoothness. The liquid surface is however roughened by
thermal excitation of surface waves. Mandelstam (1913) calculated the angular
distribution of the light scattered by the thermally induced fluctuations in a liquid
surface, in the plane of incidence. His calculation is based on expanding the surface
distortion in terms of a double Fourier series,

{(x,y,1) Ze””c (14.30)

(In this section k is a two-dimensional wavevector in the plane of the surface, and

= (x,y) a two-dimensional position vector in the plane.) It follows from the
equations of continuum hydrodynamics that the Fourier components {; are the
normal mode coordinates for the surface vibrations, since the Hamiltonian of the
excitations is, to second order in (,

:‘AZ{ 0,k + ( g+0k2)\ék|2}, (14.31)

where A is the area of the surface, p is the mass density of the liquid, g is the
acceleration due to gravity, and ¢ is the surface tension. Comparison of (14.31) with

the harmonic oscillator Hamiltonian 5 m[(@tx) + w2x2] shows that the effective
mass m; and angular frequency wy of the mode corresponding to {; are given by

pA Wl — ak3

From statistical mechanics of the harmonic oscillator the thermal average of |{|” is

h ha
2\ &
<|é"| > = Do M 27 (14.33)

where /i is Planck’s constant divided by 2n and T is the temperature, expressed in
energy units. When 7 >> fic;, which holds for most of the surface excitations of
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classical liquids but not for those of the quantum liquids He?, He* and H,, (14.33)
gives

) T T
= = . 14.34
<|§k| > mw?  A(pg + ok?) (14.34)

Mandelstam’s calculation was based on Rayleigh’s theory of gratings, as out-
lined in the last section. There we assumed for simplicity that the corrugated surface
was a perfect reflector. This would be a good approximation for the surfaces of
liquid metals, but a very poor approximation if applied to dielectric fluids. We will
therefore give a condensed treatment of Rayleigh’s calculation for reflection and
scattering off a corrugated interface between two media of dielectric functions & and
&. A plane electromagnetic wave of angular frequency o with wavevector in the zx
plane is incident at angle 0 onto a one-dimensionally corrugated surface

{(x) = Lue™, (14.35)

where the sum is over positive and negative integers n but excluding zero. This
Fourier series is equivalent to (14.3) if {, = (¢, — is,)/2 for positive n and
(cy +isy)/2 for negative n. The incident, specularly reflected, and nth order dif-
fracted waves are again given by

W = ei(Kx+¢1Z), Yo = ei(Kx—qZ)7 v, = Anei(l(nx—qﬂ), (14.36)

where the tangential and normal components of the wavevectors are related by
K+ ¢ =e?/?, K= +e(w/c)sinh, gq=+/e(w/c)cosb, (14.37)
K2+ ¢ = e/, K, =e(w/c)sinb,, ¢,=+e(w/c)cosl,, (14.38)

with K, given by the grating equation (14.6) or (14.6"), K,, = K +np. The total
wave on the incidence side of the surface is

n#0

The total wave on the other side is

W=+ Y W, =Boe ™ T#) 4y "Bl (14.40)
n#0 n#0

where

K4+ 3 =80?/P, K=Ve(w/c)sinb, §=Vi(w/c)cos, (14.41)
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K2+ =802/, K,=K+np, §,=Vi(w/c)cosl, (14.42)

We will consider the case where the electric field vector is along the corruga-
tions. Then ¥ and W represent the electric field, and the boundary conditions are

the equality of ¥ and ¥ and of their normal derivatives on z = {(x). The latter
condition implies that

(0.¥ — O, d(/dx)__ = (0.% — 0, Yd(/dx) (14.43)

z=(

(compare (14.17)). The equality of ¥ and of Yonz=_¢_ (x) gives, after removal of
the common factor ¢¥*,

¢ Age 4 " AP = Belt 4N " B ), (14.44)
n#0 n#0

To first order in ( this reads

1+40 = Bo+ Y (Ay — B,)e™ +il(q — gAo — GBo) = 0. (14.45)
n#0

The zeroth order part gives By = 1+ Ay, and the first order part (on using (14.35)
and equating coefficients of ¢”P¥) gives

B,—A, = lén{Q(l _AO) - qBO} (1446)

The boundary condition (14.43) may be written as

9, (¥ —¥) = 0,(¥ — P)dl/dx on z={(x), (14.47)
in which we use
WP { +Age ™ = Boe® 4 Y PN (Aye T Bne@w}. (14.48)
n#0

Thus (14.47) reads, to the first order in (,

q(1 = Ag) — GBo +il[q* (1 +Ao) — 7°Bo)] — Zei"px(fInAn +qnBy)
n#0
= pK(1+ Ao — Bo) Y nl,e"™. (14.49)
n#0
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The zeroth order part of (14.49) is g(1 — Ag) = gBy, and the first order part gives,

on equating coefficients of ¢”* and using the fact that 1+ Ay = By (which makes
the right-hand side of (14.49) zero),

i0,Bo(q* — @) = quAn + G, B (14.50)

The zeroth order parts 1+Ay) =By and g(l —Ag) = gBy give the specular
coefficients

=12 =1 (14.51)
q+q q+q

Thus Ay and By are the Fresnel reflection and transmission amplitudes for a flat
surface (Sect. 1.1). Also (14.46) implies B, = A, (to this order in {) and (14.50)
gives

~ cos 6sin (é — 0)

. q9—4 .
A, = 2i(, — = 2i{,ve(w/c = —.
qun +qn Gnvelo/ )sin00059n+ sin 6 cos 0,

(14.52)

Equation (14.52) gives the angular dependence of the amplitude of the
non-specularly reflected or transmitted radiation due to the Fourier component {,, of

the corrugation. The average intensity is proportional to <|An|2> and thus to

<|C,,|2>; the latter is found from (14.34) on identifying the wavenumber k of the
surface waves with the change in the lateral component of the radiation wavevector.
From (14.42) this is np = K, — K = v/¢(w/c)(sin 0, — sin 0). The intensity (in the
plane of incidence) scattered into the direction 6, by a thermally roughened surface
is thus proportional to

()~ )

This, in essence, is the result of Mandelstam (1913). Andronov and Leontovich
(1926) and Gans (1926) later obtained formulae for the scattered intensity which are
not restricted to the plane of incidence. Bouchiat and Langevin (1978) have
extended these results by including scattering by surface structural and orientational
fluctuations, but still keeping the assumption of a discontinuous interface. Earlier, in
an unpublished thesis, Triezenberg (1973) had in fact constructed a perturbation
theory for light scattering from thermal fluctuations in a thin diffuse interface.
Triezenberg’s results are restricted to the s polarization (electric field perpendicular
to the plane of incidence), and thus are not applicable to ellipsometric data.
Beaglehole (1980) first gave a theoretical expression for the ellipsometric ratio
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Tp /s, to first order in the distortions of an interface. It takes the form (3.46), namely
that obtained for a planar diffuse interface, with

2
2 — 8)% Thinax

1, = 78 Thmax (14.54)
e+¢e mo

where kn,x is a wavenumber cut-off for the thermally excited surface waves. This
result was deduced using the work of Bedeaux and Vlieger (1973) and Kretschman
and Kroger (1975). A more complete theory leading to (14.54) has been given by
Zielinska et al. (1981, 1983). Further discussion may be found in Beaglehole
(1982, 1983).

14.4 The Surface Integral Formulation of Scattering
by Rough Surfaces

The preceding two sections have introduced and applied the Rayleigh method of
calculating scattering by rough surfaces. An alternative method is based on the
Kirchhoff formulation of diffraction theory. It is sometimes called the Kirchhoff
method, although the approach was developed by Antokolskii, Brekhovskikh,
Isakovich, Davis, Beckmann and others. References to the original work may be
found in Beckmann and Spizzichino (1963), Shmelev (1972) and Bass and Fuks
(1979); the outline given below is based on Beckmann’s part of the book by
Beckmann and Spizzichino. A more detailed treatment is given in Chap. 4 of
Ogilvy (1991) and Chap. 7 of Nieto-Vesperinas (2006).

The method to be described is based on the following theorem of Helmholtz
(Baker and Copson 1950, Sect. 4.2): if E is a solution of (V2 + k?)E = 0 whose
first and second partial derivatives are continuous within and on a closed surface S,
R is the distance from a fixed point P and 0, denotes differentiation along the
inward normal to S, then if P lies inside S,

E(P) = i// dS{Ean (f) —fanE}. (14.55)

Thus the solution of the wave equation (V2 +k?)E = 0 at an interior point of a
region can be found in terms of the values of E and 0,E on the boundary of the
region.

Consider now the evaluation of the integral in (14.55) in terms of the (presumed
known) values of E on a rough surface, when the point P is taken to be far from the
surface. If R is the distance to P from a radiating element on the surface, which is at
r relative to an origin near the surface, and k and k' are the wavevectors of the
incoming and scattered radiation, then R ~ Ry — k’.r/ k, where R is the distance
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from the origin to P, and k is the magnitude of k and of k. In the surface integral
(14.55), the spherical wave radiating from the element at  may be approximated as

ikR iRy
€ nC i (14.56)
R "Ry

The unknowns in (14.55), namely the field E and its normal derivatives 0,FE, are
approximated from the field that would be present at a given point on the surface if
the surface were replaced by its tangent plane at that point. If the radiation is excited
by an incident plane wave exp(ik.r), and is assumed to have the electric field locally
along the surface (the latter can only be true in an average sense for a surface with
two-dimensional roughness), then E corresponds to E, when zx is the plane of
incidence. If further the surface is assumed to reflect perfectly, the scattered
intensity which follows from the squared modulus of (14.55) is shown to be pro-
portional to

o0 oo

F? / dx / dy "MK 8K 4 (Ag, 0). (14.57)

—00 —00

Here AK, and AK, are the x and y components of k — k', and Ag = g+ ¢ is the
z component of k — k’. The function y is the expectation value of exp[iAg({; — {5)],
where {; and {, are the vertical displacements of the surface (from a mean value of
zero) at two points separated on the surface by the distance ¢ = \/xZ +y%. The
factor F depends on the angle of incidence 8, and on the direction of the scattered
radiation (0, ¢") with 0 and @' being measured relative to the normal to the aver-
aged surface, and ¢’ being the azimuthal deviation of the scattered radiation from
the specular plane:

1 —cosOcos 8 — sin0sin 0 cos ¢’
cos 0(cos 0+ cos ')

F(0,0,¢") = (14.58)

On transforming the integration variables from x,y to ¢, ¢ via x = gcos ¢,y =
osin ¢, (14.57) becomes

0 2n
F2/ do ¢ 1(Aq, 0 /d¢ei(“cos¢+ﬁ5i"¢), (14.59)
0 0

where o = gAK, and = 9AK,. The integral over ¢ is equal to 27Jo(y/02 4 °);
this follows from the Jacobi expansion (14.20). Thus the scattered intensity is
proportional to
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2nF2/dQ 0 2(Aq, 0)Jo(0AK), (14.60)
0

where AK =, /AK? + AK?. The scattered intensity is seen to depend on both Agq

and AK, the magnitudes of the normal and lateral components of the change in
wavevector due to the scattering, k — k'

An important special case is that of scattering by a normally distributed surface
(Beckmann, Sect. 5.3) for which

1(Ag, 0) = exp{=R[l — C(o)]}- (14.61)

In (14.61) R is the roughness parameter defined in Sect. 14.1,

R = (q+4) () = (Ag)* (&), (14.62)

and C(p) is the correlation function for vertical displacements of the surface,
characterized by a lateral correlation length I:

(O)e) ¢ (14.63)

Clo) = = el )

In this case (1460) becomes
2 2 N _” d — —Qz Jo(0AK 14.6
nF2e ™ EO I 0 Qexp( nlz) O(Q ) ( 4. 4)

The integral in (14.64) is known as Weber’s first exponential integral (Watson
1944, Sect. 13.3), and is equal to (12/2n)exp[—(IAK)* /4n]. The n = 0 term is zero,
except for exactly specular reflection (AK = 0), in which case it diverges. This
divergence is a consequence of having calculated the intensity for an infinite and
perfectly reflecting surface (see also the discussion following (3.34) in Rice 1951).
We omit the n = 0 term; the non-specular intensity is thus proportional to

nF*Pe RZ exp (IAK)? /4n]. (14.65)

The series in (14.65) has the upper and lower bounds

R
/dr
0

= R" _ (1AK)” AK
ex

|
1 nn

(IAK)?
LR

Rexp|— (14.66)
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The lower bound comes from taking the first term in the series, the upper bound
from setting /AK = 0. For a slightly rough surface (small R), (14.65) is approxi-
mately equal to

nF?PRexp|—R — (IAK/2)?). (14.67)

For other than specular reflection the intensity depends on both the mean-square
height variation <C2>, and on the lateral correlation length /.
The specular intensity has to be obtained separately. Beckmann shows that it

depends on (Aq)2<C2> only, being proportional to e~*. Details may be found in
Beckmann (Sect. 5.3) and Chandley and Welford (1975); see also Bennett and
Porteus (1961) for a discussion and experimental test of the e ® law at normal
incidence, and Nieto-Vesperinas and Garcia (1981) for an analysis of the validity of
the surface integral method.

14.5 Absorbing and Rough Surfaces that Are Wet

From early childhood we learn to distinguish wet from dry, not just by touch, but
also by sight. Many objects, notably those with rough and absorbing surfaces, are
darker when wet: they reflect less light. Angstrdm (1925) noted that the ‘reflection
power of the surface of the earth’ needs to be known in order to understand ‘the
heat economy of the earth’s atmosphere and the circulation of energy within it’. He
suggested why a rough absorbing surface reflects less light when wet: diffuse
reflection from the rough surface. If the rough absorbing surface is covered by a

/ e
//
1 /R P
/ #
/ ////

Fig. 14.2 Liquid layer on a rough surface. The fraction of light intensity along paths in the liquid
layer is indicated. The dashed lines indicate light which contributes to the albedo



http://dx.doi.org/10.1007/978-3-319-23627-8_5

14.5 Absorbing and Rough Surfaces that Are Wet 357

thin layer of water, the diffuse reflection leads to internal reflection from the
water-air interface, and thus more absorption.

This idea is illustrated in Fig. 14.2: a fraction 1 — R (R is the reflectivity at the
liquid surface) is transmitted into the liquid layer, a fraction a of this is absorbed at
the solid surface, and (1 — R)(1 — a) reflected. At the liquid surface, there is
probability p of reflection back to the absorbing solid, and so on. (A planar liquid
surface is drawn, but the idea works for an arbitrarily curved or distorted surface).

The probability of absorption by the rough surface is

(1 =R)a
1-(1-a)p’

P (1—R)[a+a(1—a)p+a(1—a)2p2+... - (14.68)

Angstrom evaluated probability p of internal reflection at the liquid surface by
assuming that all of the light with internal angle of incidence greater than the critical
angle 0, = arcsin(1/n) for the liquid is reflected (as it is) and that none incident at
smaller angle is reflected (an approximation). His result, assuming a Lambertian
surface, which has intensity reflected at angle 0 proportional to its area projection
onto the outgoing direction, namely to cos 0, is

p=cos’0. =1—1/n’ (14.69)

The equations (14.68) and (14.69) are together equivalent to Angstrém’s result,
except that he also omitted the (1 — R) factor. The effect of reflection below the
critical angle can be calculated (Lekner and Dorf 1988) but the resulting p is only
about 10 % bigger for water.

The albedo A = 1 — P for a wetted surface is plotted against the corresponding
dry value (no liquid film) in Fig. 3 of Lekner and Dorf (1988). The wet albedo is
found to be smaller than the dry albedo except in the limit of very small absorption.

A very different explanation of the wet-dark effect was given by Bohren (1983)
and Twomey et al. (1986) in terms of multiple scattering by particulate matter. The

Fig. 14.3 A light ray requires just two scatterings at 90° to re-emerge, but six scatterings at 30°
(the shortest possible path is assumed in both cases, with equal distances between scattering).
Enhanced forward scattering increases the likelihood of absorption
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basic idea is that water or other wetting liquids decrease the relative refractive index
and thereby increases the degree of forward scattering. (An extreme case is perfect
index matching, in which case there is no scattering, or equivalently, entirely for-
ward scattering.) In wet sand, for example, each sand grain scatters more in the
forward direction than in dry sand. This is schematically illustrated in Fig. 14.3,
based on Fig. 3 of Bohren’s (1983) paper.

One interesting and verifiable consequence of the multiple scattering explanation
is that the better the match of the liquid refractive index with that of the scatterer,
the more forward bias there is in the scattering, and the darker the wetted substance.
The Bohren papers show sand (n ~ 1.5) wetted with water (n =~ 1.3) and with
benzene (n ~ 1.4). The latter is much darker, because of the closer index match.
The effect of index matching is also in the Angstrém theory through the probability
of absorption a, which is greater when the solid is wetted, because it reflects less. In
fact the multiple scattering approach gives a graph of wet versus dry albedo
(Twomey, Bohren and Mergenthaler, Fig. 5) almost the same as Fig. 3 of Lekner
and Dorf (1988), based on Angstrdm’s idea and its developments.

The two theories, based on such different approaches, clearly apply to different
circumstances. Angstrom’s idea is best for surfaces such as asphalt or concrete, the
Bohren idea of multiple scattering together with enhanced forward scattering
applies best to porous granular materials such as sand. Clothing fabric is an
intermediate case.

14.6 Coherent Backscattering

Suppose that in Fig. 14.3 the wave follows the paths A — B, and simultaneously the
reversed paths B — A as well. (We assume an incoming wave front wider than AB
in both cases.) The two amplitudes corresponding to the direct and reversed paths
will be in phase, and will thus interfere constructively. Thus we can expect
enhanced reflection in the backscattering direction. For perfect coherence and exact
reversal the intensity is expected to peak at twice the nearby intensity, since
coherent superposition of two waves |/ gives intensity |21ﬁ|2, whereas the inco-
herent (random phase) intensity is 2|1p|2. The coherent backscattering effect is
generally weak, and may be difficult to measure because of occlusion of the detector
by the source. Enhanced backscattering is just visible from the air at high altitude
above dry ground, in a narrow angle about the shadow point of the aircraft. Wet
ground and especially clouds give strong backscattering, the ‘glory’, but this is due
to the large backward scattering amplitude of individual dielectric spheres, the
water droplets (Bohren and Huffman (1983); Nussenzveig (2002)). Akkermans
et al. (1986) discuss coherent backscattering by disordered media, and show the-
oretically that the ideal backscattering intensity maximum is twice the background,
as the simple argument given above suggests.

Measurements dating back to the 1920’s showed an anomalously strong reflec-
tance of the lunar surface near full moon; Gehrels et al. (1964) deduced that
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reflection from the moon’s surface can be enhanced by up to a factor two in the
retro-direction. In exploring the possible cause of this enhanced backscattering
Oetking (1966) found that volume scatterers can produce backscattering peaks for
angles of incidence up to 50°. Egan and Hilgeman (1976) saw similar backscattering
effects in photometric standards and paints and Becker et al. (1985) found unusually
strong backscattering from soils at infrared wavelengths. O’Donnell and Mendez
(1987) studied surfaces whose height fluctuations are approximately Gaussian. They
found that when the lateral correlation length is larger than a wavelength and the
surface slopes are mild, the Beckmann theory (Sect. 14.4) gave good agreement with
measured reflectances, provided the angle of incidence was not too large. However,
for stronger slopes, enhanced backscattering was observed. An extensive series of
simulations of scattering from rough surfaces have been carried out by Maradudin
and collaborators (Simonsen et al. 2010a, b, 2011; Nordam et al. 2014).
Well-defined backscattering peaks were found in all of these numerical studies.
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Chapter 15
Particle Waves

In Sect. 1.3 we saw that there is a one-to-one correspondence between the propa-
gation in planar-stratified media of the s polarized electromagnetic wave, and of the
non-relativistic particle wave satisfying the Schrodinger equation

2
—;—VZ‘P—&-V‘P:E‘P. (15.1)
m

(€ and m are particle energy and mass, V is the potential energy, and # is Planck’s
constant divided by 2m). In this chapter we give a representative selection from the
main results derived in the book for the electromagnetic s wave, translated into
quantum mechanical language and notation. The next chapter discusses neutron
reflection, and Chap. 19 deals with the reflection of particle wavepackets.

15.1 General Results

Equation (15.1) may be written as V>W¥ +k*¥ = 0, where

2 _2m

k pu;

€=V (15.2)

is the square of wavevector. We assume that V is a function of one spatial coor-
dinate only, V = V(z), and takes the limiting values V; and V, at z = —oo and
7z = 00. Then

2m
S(E-V) =k — k() — k5

2m
hZ :_2(

£-Vy). (15.3)

For planar stratification the wave equation separates. For propagation in the zx plane
the wavefunction is W = e’X"\/(z), where K is the x-component of the wave vector,
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K =k sin 0y = k; sin0,, (15.4)

0, and 0, being the angles of incidence and refraction. Equation (15.4) gives Snell’s
Law for particle waves, and shows that the refractive index is proportional to

(€- V)l/ 2, that is, to the square root of the kinetic energy of the particle.
The function  satisfies

2

Wy =0, 0 =R K (15.5)

The normal component of the wavevector, ¢(z), has limiting values ¢, =

(& — K2)'* and g, = (K3 — k)" The reflection and transmission amplitudes r
and ¢ are defined by the limiting forms of  as z — Foc:

N7 re M — Y (z) — 1" (15.6)

The left side of (15.6) represents an incident plane wave of unit amplitude, and a
reflected plane wave of amplitude r. With x and time dependence included, the
incident plane wave is expi(Kx+ g1z — £t/h). The factor expi(Kx — Et/h) is
common to all parts of the wavefunction in the propagation of plane waves through
stratified media, and will usually be omitted. The time and x dependence is needed
only in the treatment of wavepackets (Sect. 15.9, Chap. 19), and of finite beams
(Chap. 20).The reflection and transmission amplitudes are found by solving the
wave equation (15.5). In the simplest case of a potential step at (say) z;, where V(z)
changes from V; to V,, ) is given by

_ eiqlz + roe*ithz (Z S Zl)
Y= {toe"qzz C>m); (15.7)

Continuity of W and diy/dz at z; gives the step reflection and transmission
amplitudes

— o2z a1 — 92 fo = ell@i—a)u 241 (15.8)

o , .
q1+q2 q1+q2

Other exactly solvable potential energy profiles will be considered in the next
section. Here we give some results valid for arbitrary profiles. Let V(z) and V(z) be
two potential functions with the same limiting values, V| at —oco and V, at + oc.
Consider the reflection of plane waves by the two profiles, at the same angle of
incidence (the limiting values ¢g; and g, are thus also common to the two reflection
problems). In Sect. 2.1 we showed that the corresponding reflection amplitudes r
and 7 are related by the comparison identities
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rz;—% dz(V — V), (15.9)
q1(1 — ri*) — qott* :;_n; / dz(V—f/)lN*. (15.10)

The second identity holds for real V only. For V = V it gives

a1 (1= 1) = galeP, (15.11)

which expresses the conservation of particle flux at a non-absorbing barrier, since
the probability current density

J=——(V'VY¥Y - YV¥) = %Im(‘I’*V‘I’) (15.12)

h
2im
has x-component 7K /m, and z-component limiting values

h h
ﬂ(1 - |r\2> AN AV (15.13)
m m
Other identities can be obtained (as in Sect. 2.1) by comparing the wave incident
from medium 1 with that incident from medium 2. If these are denoted by the

subscripts 12 and 21 respectively, a comparison identity relating the corresponding
transmission amplitudes is

o0
- im ~ ~
Q2ti2 — g1t = ) / dz(V — V)%llﬁlz. (15.14)
Setting V = V in (15.14) gives
q2t12 = g1z, (15.15)
so that (15.14) may be rewritten as

- im ~ ~
to =t — hz_qz / dZ(V — V)lpzllplz. (1516)
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Comparison of ¥, with y/}, gives, for real V,

@ty +qibify, = —;—n; / dz(V = V) ¥}, (15.17)
For V = V this implies
221ty +qitry, =0, (15.18)
which gives, on using (15.15),
= —ii—zrfz. (15.19)

12

The last relation shows that |ri|*= |r2;|*: the reflectance is the same in either
direction for a non-absorbing barrier of arbitrary profile. A particle wave will be
reflected by the same fractional amount in going up or down a potential gradient, in
the absence of absorption and total reflection.

For a potential energy V(z) which varies only in the interval z; <z <z, with
V=V, for z<z;, and V = V, for z> z,, general expressions for r and ¢ may be
written down in terms of two independent solutions F(z) and G(z) of (15.15). In the
interval (z1,22), ¥ = oF + BG. Also  and / are continuous at z; and z,, assuming
that V(z) has no delta function singularities (or worse) at the end-points. The
continuity conditions give four equations for r,¢, o and f, the solution of which
gives

r =0 {qigs(F\Gs — GiF) +iay (FIGy = GiFy ) +iax (F\Ga = G\ F2 ) = (FiGy = Gy Fy) b/

t = ei(fnm—qzzz)ziqlw/l)7
o = e“%2ig, (G} — iq2Ga) /D, (15.20)
B = —e“92iq,(F} — iqxF>)/D.

In (15.20) W is the Wronskian FG' — GF’ (a constant), and the common denom-
inator D is given by

D =qq>(F1G, — G\ F>) + iqy (F1G) — G F})

—igx(F|G, — G\ F,) + (F|G, — G\ F}). (15.21)
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Some general properties of r and ¢ follow directly from (15.20), as shown in
Sects. 2.2 and 2.3. For non-absorbing interfaces, |r| = 1 when ¢, is imaginary: total
reflection occurs for

B 1/2
0, >0, = arcsin{g — “2} . (15.22)

As the thickness Az = 7z, — z; of the profile tends to zero, r and ¢ tend to the step
(Fresnel) values given in (15.8). The probability density current conservation law
(15.11) follows from (15.20), for non-absorbing interfaces. And finally, at grazing
incidence the reflection amplitude tends to —1, for profiles of arbitrary shape, with
or without absorption, and even for internally reflected waves. Thus Lloyd’s mirror
experiment (discussed for neutron reflection in Sect. 16.5) produces diffraction
fringes with destructive interference at the mirror’s edge, for particle as well as for
electromagnetic waves.
Potential energy profiles of the form

V() = 5 (Vi V2) 5 (Vi — Va)f(z.a). (15.23)

1
2
where the function f depends on parameters (collectively denoted by a) which are
independent of V1, V, and £, have following property. If the reflection amplitude at
normal incidence is known as a function of the limiting magnitudes k; and k, of the
wavevector, the same functional form gives the reflection amplitude at oblique
incidence, with the normal components of the wavevector g, and g, replacing k;
and k, (see Sect. 2.5). The homogeneous, linear, and hyperbolic tangent profiles
have the scaling property (15.23); the exponential and Rayleigh profiles do not.
(These exactly solvable profiles are among those discussed in the next section.)

If V(z) changes monotonically between V; and V5, the reflectivity of this profile
cannot be greater than that of the potential step between V; and V, (at the same
energy and angle of incidence):

2
R< (‘“Jr‘”> . (15.24)
q1 T 4q2

This upper bound was obtained in Sect. 5.4.

15.2 Some Exactly Solvable Profiles

Homogeneous layer. For a potential barrier or well with V constant in
(z1,72),20 = 71 + Az, we have from Sect. 2.4 that
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sigia A1 — @)e +i(@* — qiqp)s

r=e - ,
q(q1 +q2)c — (> +qi1q2)s

(15.25)

= ei(‘]lZl*quZ) quq 3 s (1526)
q(q1 +q2)c — (4> + qiq2)s

where ¢ = k> — K2, 1*k*/2m = £ — V, K = ky sin 0}, ¢ = cos gAz and s = sin Az.
Equivalent formulae may be written down in terms of the reflection amplitudes at
the discontinuities in potential,

_q1—d9 q9— 92

= y 2= : 15.27
: q1 +q 2 q+q2 ( )
These are
2igAz
— liiu e 1528
ree 1+I’1I‘282"‘1AZ7 ( . )
iqAz
_ oilqizai—q22) (1 +}”1)(l +r2)eq
L= — 15.29
© 1 + 7y rye2iahz ( )
Zero reflection is possible if (i) r; = r, and edads — 1 or if (i) 1 = —r, and

e = 1. Condition (i) is satisfied if ¢> = ;g and 2gAz is an odd multiple of 7.
At normal incidence ¢> = q;q, is satisfied if

VZ WV,
E=U=— 12| (15.30)
2V -V, -V,

At oblique incidence g*> = g;g> can be satisfied only if £ > Uj it then holds at one
angle,

12
Hlarcsin{gg U} . (15.31)

-V

The second condition for zero reflection can be satisfied only when V; = V,, and
can hold at more than one angle, given by

2 1/2
hz nm

0, = arcsin
E-V, ’

(15.32)

where 7 is an integer. Conditions (i) and (ii) hold when Az is respectively equal to
an odd or an even multiple of 1/4, where A = 2n/q is the effective wavelength
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within the layer for propagation in the z direction. Zero reflection is not possible in
the tunneling case, E<V.
Provided V lies between V| and V,, the reflectance R = |r|2 of a homogeneous

layer does not exceed the reflectance (g1 — q2)%/(q1 +¢2)* of a single potential
step between the same values V| and V, (at the same energy and angle of inci-
dence). This is a special case of the inequality (15.24): a monotonic profile cannot
reflect more than the corresponding step profile.

From (15.28) and (15.29) we see that for real g, that is when

E—V>(E—V)sin® 0y, (15.33)

the reflectance R and transmittance T = (¢, /q;)|t|* are periodic functions of gAz,
with period ©. The reflectance

B r% +2r1rp cos 2gAz + r%
1 +2r1ry cos 2gAz + (1 ;’2)2

(15.34)

has extrema with respect to Az when cos 2gAz = +1; these are

_ 2 2 2
Rt — (% 42> . R = (flz 511612) . (15.35)
q1+q q9°+q192
R~ is less than Rt when V lies between V| and V,; when V is outside this range,
R becomes the minimum value.

Linear profile. A transition region where the classical force —dV/dz is constant
has the potential energy

Vi z<z1
V) ={ i+ & z—z) 2<z<zn (15.36)
Va 722,

where Az =z — z; and AV =V, — V|. Within (z1,7;) the wave equation (15.5)
for motion normal to the interface can be written in terms of a dimensionless
variable ¢ = ¢*a® as

d?y

a?+f¢:0, (15.37)

where the length a is given by

hZ
a = (2]/)1

1/3
Az
AV) ) (15.38)
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The standard pair of independent solutions of (15.37) are the Airy functions
Ai(—¢&),Bi(—¢&) (definitions and elementary properties of the Airy functions are
given in Sect. 5.2). The reflection and transmission amplitudes may be obtained
from (15.20), care being taken to convert between derivatives with respect to z and
¢ via

W_ A o (AVVay
dz Az d¢ T B2

) @ (15.39)

The linear profile has the scaling property (15.23), the function f being given by

-1 <7
fzz,22) =¢ Qz—z21—2)(2—2) u<z<n (15.40)
1 72 2.

Hyperbolic tangent profile. This may be written in several equivalent ways, the
first of which explicitly shows the scaling property (15.23):

1 1
V(z) :E(Vl +V2) - E(Vl — V») tanhz/2a

ViVt LY
C l4ele Q1 qeifa [ 4ed/a’

(15.41)

The solution for this profile in terms of hypergeometric functions is discussed in
detail in Sect. 2.5. There is no need to translate the formulae given there into
quantum mechanical notation, since they are given in terms of the variables y; =
gqia and y, = gpa and thus can be applied directly to either electromagnetic or
particle waves.

sech? profile. The potential energy is given by

V(z) = Vo + AVsech? > . (15.42)
a

The Schrodinger equation for the probability amplitude  reads

d*y , 2mAV 5z
@ T sech . Y =0. (15.43)

Here g is the limiting value at large |z| of the normal component of the wavevector,
given by
,  2m

% ="7 (£~ Vo) — K* = ki cos* 0, (15.44)
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where

2m

kG E—Vo),K =kosin0. (15.45)

A solution of (15.43) can be found in terms of the hypergeometric function, as
discussed for the electromagnetic case in Sect. 4.3. The solution is characterized by
two dimensionless parameters,

o= —2ma*AV/K*, B = qoa. (15.46)

Formulae for the reflection and transmission amplitudes in terms of o and f are
given in Sect. 4.3. Tunneling can occur for positive AV, when

(€ — Vy)cos> 0 <AV, or pr< —o. (15.47)

Certain negative AV values give zero reflection, at any energy. This remarkable
phenomenon is discussed in detail in Sect. 19.2.
Exponential profile. The potential energy is given by

Vi z<7
Vi) =< E—(E—Vi)exp(z—z1)/a z<z<2 (15.48)
\Z) 2222

where the length a depends on Vi, V, and &, and can be positive or negative:

o= 2=2) (15.49)

ENZEAY
ln(givf)

Transformation to a dimensionless independent variable proportional to the local
magnitude of the wavevector,

m 1/2
u:2ka=2a{ﬁ(5—V)} ) (15.50)
converts (15.5) to Bessel’s equation

(2Ka)?
u2

d? 1d
@y 1dy

1—
du?  udu

Y =0. (15.51)

The general solution within (z;,z) is thus oJ(u) + f¥;(u), where s = 2Ka. Note
that both the order s and the argument u of the Bessel functions are proportional to
the thickness of the inhomogeneity. The order also depends on the angle of inci-
dence, increasing from zero at normal incidence to 2kja at grazing incidence.
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Reflection and transmission amplitudes may be obtained from (15.20), on con-
verting between derivatives with respect to z and u via

dy _ dy
= *a (15.52)

Some reduction of the formulae is possible by using the properties of Bessel
functions. Details are given in Sect. 2.5.

Rayleigh profile. Within this potential transition the local wavelength 27 /k(z) is
linear in z. It is therefore useful to work in terms of a dimensionless variable which
is linear in z,

n(z) = (kA2) ™' = + (z — 21)An/Az. (15.53)
The interface extends from z; to z, = z; + Az, and
Ap=m,—m = (k' —k'')/Az (15.54)
The potential energy is given by

h2

E V= @

(15.55)

At normal incidence the wave equation has a simple power-law solution: on
changing to the variable 5 the equation d*y/dz> 4+ k> = 0 becomes

3
LI A— (15.56)
dn® 2 (An)
and has the solutions .. = '/?>*", where
1
V= i (An) 2. (15.57)

(The parameter v is introduced for mathematical convenience, and to increase
commonality with the results of Sect. 2.5.) On converting between z and 75
derivatives via

dy  Andy

—_—=—— 15.58

dz  Azdy’ ( )
the reflection and transmission amplitudes at normal incidence are found from
(15.20) to be
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‘ Linple" — 1]
— 2!k1Z1 21 1/][9 15 59
I'n € Q"’— 1 —ZVAVI[QV—FI]’ ( . )
. v_1
1, = 7ei(k1Z1*k222) ZWA’/IQZ i , (1560)

0" — 1 —ivAn[e' + 1]

where o is the square of the ratio of the refractive indices,

2 2
N kz) 5 — V2

=) == = . 15.61

¢ <'72> <’<1 &=V ( )

The reflectivity at normal incidence takes different forms, depending on whether

(An)? is greater than or less than four. When (An)” > 4, v is real, and

L(An) (e — 1)

R, = . (15.62)
(¢" — 1)*+ (vAn)*(¢"+ 1)?
When (An)* <4,v = i|v| and
- 201
sin“(5 [v|Ino
= 5 (2|2| 2) . (15.63)
4|v[" + sin*(3|v|Ing)
At v = 0 these two forms take the common value
1 2
R(v=0)=—"2 . (15.64)
16+ In“g

From (15.63) we see that the normal incidence reflectivity is zero when (An)2 <4
and |v|In g is an integer multiple of 27. This happens when the interface thickness
Az takes one of the values

1/2
|k1 — k2| 1 nm 2
Ay — z " =1,2,... 15.65
=k 3 \inGem) TS (15.65)
At oblique incidence the wave equation in the # variable reads
Py 1= (KA
dn? " An

and has solutions proportional to n'/? times Bessel functions of order v and
imaginary argument +i(KAz/A#n)n. The reflection and transmission amplitudes

Y =0, (15.66)
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may thus be obtained from (15.20). A reference to explicit expressions obtained in
this way is given in Sect. 2.5.

References to listings and systematic generation of solvable profiles are given at
the end of Chap. 2.

15.3 Perturbation and Variational Theories

Perturbation theory gives expressions for the unknown function y satisfying (15.5)
and (15.6) (and thus also for its reflection and transmission amplitudes r and ¢) in
terms of some known function V,, satisfying

d : , .
dlpzo F @Yy =0, €4 roe N — iy — 1. (15.67)
z

The solution is given in terms of 1/,(z) and a Green’s function G(z,(), which

satisfies

9*G

57 +q3(2)G = d(z— {), (15.68)

and has the appropriate limiting forms to make /, given by the integral equation

oo

V(@) = o(z) — / AAG Q)G O (), (15.69)

—00

take the limiting forms (15.6). In the above, g and g( share the limiting values ¢; at
—oo and g, at + oo, and

2m

7 (V= Vo). (15.70)

A =q —qp=—
(V and V) also share the limiting values V; and V,, and the equations for ¥ and v,
are to be solved at the same particle energy.) Note that the perturbation Ag? is
independent of energy and of the angle of incidence.
In the long wave case the perturbation is built up from the step potential energy
profile

Vol2) :%(VlJer) f%(vl — Vy)sen(z), (15.71)

for which the wavefunction ¥, and Green’s function G(z, {) are given in Sect. 3.1.
The perturbation theory expression for r,, (the contribution of order (V — V)" to the
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reflection amplitude) is given in (3.12). When Vy(z) is constant
Vi =Va=Vo),r0=(q1 — q2)/(q1 +q2) is zero, and ry is equal to the Fourier
transform of the deviation of the potential from Vj:

oo
o= / dz(V — Vo)ea=., (15.72)
qoh” .

This is divergent at grazing incidence, when gy — 0.
In the short wave case the perturbation theory is constructed from the
Liouville-Green functions of Sect. 6.2:

U = (1)) Pexplid), ¥ = (a2/q) Pexp(—id), () = [ dla(0),
(15.73)

the Green’s function being given in Sect. 6.5. The corresponding first order per-
turbation result for the reflection amplitude is

1 dy 1 .
W == [ dz|-- + Zq)*| ¥ 15.74
r 4i/ z{derzq/}e ) ( )

—00

where the dimensionless function y = g~2dg/dz must be small everywhere for the
perturbation result to be accurate. The short wave perturbation theory thus also fails
at grazing incidence.

Variational expressions for the reflection amplitude may be derived from the
perturbation theories. The general variational principle is 6(F?/S) = 0, where F
and S are first and second order in the unknown :

F= / deAG (2P (o(2), (15.75)
5 / GAP () + / AP (2) / AAR ()G, Q). (15.76)

The variational estimate for the reflection amplitude is

F2
P —

07 2igS

(15.77)

Further details are given in Chap. 4. Here we note only that the variational theory
based on the long-wave perturbation theory removes the grazing incidence diver-
gence which troubles all orders of the perturbation theory when V| = V,.
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15.4 Long Waves, Integral Invariants

In the long wave limit a given potential energy profile reflects predominantly as a
step profile, with a small correction which depends on the deviation of the profile
from the step Vo(z) given by (15.71). This correction can be expressed as a series in
the ratio of the interface thickness to the wavelength of the wave. The reflection
amplitude, written as ry + 7, + r;... where the subscript n here refers to the order
(power) in the interface thickness, is found from the long-wave perturbation theory
of the previous section to be given by

— 2 2i
ro = i C127 n= (_ _T) e 2> (15.78)
q1+q2 /) (g1 +q2)
2m> 2q, { 2m
n=\—|——7392(@1+9)qpm—— K
(hz (q1 +42)3 !
where
o0

. / dz[V(2) — Vo). (15.79)

The integrals u, depend on the relative positioning of the profiles V and V), with
the exception of g, in the case where Vj is a constant (V; = V).

The reflectivity R = |r|2, a measurable quantity, must be independent of the
relative positioning of the actual and step profiles. When ¢(z) is real everywhere, R
differs from Ry = r§ by a term which is of second order in the interface thickness:

R=Ro+|n|*+2rorm+...
4, 2
— Ry — q192 <m

2
(1 +42)" ?) {200 = Va)uo —wi} + . (15.80)

The expression in braces, which we call iy, is invariant to the relative positioning of
V and V. It is the first in an infinite set of integral invariants which may be
constructed from the p,, (see Sect. 3.3). The result (15.80) shows that the reflectivity
takes a universal form in the long wave limit:

a -\ Aaq [(2m\’
R:( ) = 4(—2> bt (15.81)
a1+ q (g1 +q2)" \h

This holds for all non-absorbing profiles V(z) which do not contain delta function
singularities or worse. When V| = V, the u, integral is not needed (to this order)


http://dx.doi.org/10.1007/978-3-319-23627-8_3

15.4 Long Waves, Integral Invariants 371

and y, is separately invariant. The reflectivity is then proportional to y?, and is
independent of the sign of V — Vj, to this order. When Vi # V, and V is real
everywhere it is possible to position the profiles V and V; to make u; = 0. The
second order invariant i, may then be put in the form

o0
. dv
= (V2= Vi) / dZd—ZZz (1 =0), (15.82)

which shows that R — Ry is proportional to (V, — V;) times the second moment of
the force —dV /dz. When V increases or decreases monotonically, i, is positive and
the second order term decreases the reflectivity from that of a step profile, as may be
expected. The last result may be strengthened by writing the second order invariant
as

h=- / dz / dz[V(z1) = Vo(z1 — 2)][V(z2) — Vo(z2 —z1)].  (15.83)

This form shows that i, is positive if V(z) lies between V; and V, for all z, as can be
seen by considering the sign of the integrand for z; <z, and for z; > z,. Thus the
second order term decreases the reflectivity if

min(Vy, V2) < V(z) < max(Vy, Vs). (15.84)

The functional form of i, for the profiles considered in Sect. 3.6 (all but one of
which, the double exponential profile, were transcribed to the quantum mechanical
case in Sect. 15.2) can be obtained from Table 3.1 by the substitution ¢ — & — V.
For example, the homogeneous layer of thickness Az and potential V' has

i2/(A2)*= (Vi = V)(V — Va), (15.85)

and the exponential profile of thickness Az has

Y;;Xz} —(E=W)(€—=V2). (15.86)

E-Vy

ih/(Az)*= {

(The energy dependence in (15.86) comes from the energy dependence of the
potential for the exponential profile, given by (15.48).)

Profiles of the form (15.23), for example the linear, tanh, error function and
double exponential profiles (the last being defined in (3.69)) all have i, proportional

to (V; — Vz)z, provided the function f is continuous.
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15.5 Riccati-Type Equations; the Rayleigh Approximation

The second order differential equation (15.5) is equivalent to a pair of coupled first
order equations in i and /' = di//dz. On setting

W =F+G, V¥ =ig(F-G), (15.87)

we find that F' and G satisfy

!/

q

F=igF—L1(F-¢G 15.88
iq 2q( ), (15.88)

q/
G = —igG+ Z(F ~G). (15.89)

From (15.6) we see that when incidence is from medium 1,F — 4% and G —
re 1% ag 7 — —oo. Thus the ratio ¢ = G/F tends to e 2% times the reflection
amplitude r as z — —o0, and to zero as z — oo. The equation satisfied by g is of the
generalized Riccati type:

/!

g’+2iqg—2q—q(1 —¢*) =0. (15.90)

On writing ¢ = |Q|ei9, separating the real and imaginary parts, and integrating the
equation for |g|" over all z, one finds

L+|r|

In =
1 —|r]

oo q/
- / dz;cos@ (15.91)

(more detail may be found in Chap. 5). From this follows the inequality of Sect. 5.4,
B 2
R< (u) : (15.92)
q1+q>

any non-absorbing monotonic profile cannot reflect more than a step profile
between the same limiting values of potential, at the same energy and angle of
incidence. An alternative approach is to deal directly with the reflection amplitude,
by setting

Y =rfe? +ge Y =ig(fe’ — ge ), (15.93)
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where ¢ is the phase integral defined in (15.73). On using ¢’ = g we find that f and
g satisfy the equations

/
£+ 2%] (f — ge %) =0, (15.94)

!
g+ g—q (g —fe*) = 0. (15.95)

If the lower limit in the integral defining ¢ is chosen so as to make ¢ — ¢z as
z — —00, the ratio g/f tends to the reflection amplitude r as z — —oo, and in fact
may be interpreted as the reflection amplitude r(z) for a profile truncated at z, as
explained in Chap. 5. The equation satisfied by r(z) = g/f is

¥(z) = % (ezi(b — rz(z)e’m’). (15.96)

The reflection amplitude » of the entire profile is thus
% /
r=— / dz L (%0 — 2 (2)e 7). (15.97)

The Rayleigh or weak reflection approximation is obtained by neglecting the term
proportional to 7?(z) in the integrand:

/
o= — / dzgiqew? (15.98)
its long-wave limit is
re— i (15.99)
2 ¢

The Rayleigh approximation works well at all wavelengths, provided the reflection
is weak. It fails whenever the reflection is strong, for example at grazing incidence.
Note that the factor ¢'/q in the integrand of both the exact and the approximate
formulae (15.97) and (15.98) for the reflection amplitude can be written as

qd () —dv/ds

qa 2 K¢ /m

(15.100)
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The contributions to the reflection amplitude are thus weighted by the local value of
the ratio of the force —dV/dz to the kinetic energy of motion normal to the
interface, i°q*/2m.

15.6 Reflection of Short Waves

In Sect. 6.2 we saw that the Liouville-Green functions

Z

1/2 1/2
v = (%) et Y= (%) e o= [ag®  (saon

are approximate solutions of the wave equation (15.5). In fact y* satisfy

dzlﬁi Idy 2
iz +q2{1+§d¢+z}wio, (15.102)

where the dimensionless function y(z) is given by

_dg  dq

-1 _ "9 15.103
IS ke add ( )

If dy/d¢(= g 'dy/dz) and y* are small compared to unity, the functions Y+, and
approximations to » and ¢ resulting from their use, are expected to be accurate.
Since

1 d¢*  -mdV/dz

= = = 15.104
l 2¢° dz Pg ( )

where —dV /dz is the force, /i*q%/2m the kinetic energy and 27/q the effective
wavelength (all relating to change or motion in the z direction),

force x wavelength

4my =

15.105
kinetic energy ( )

Thus 4my is the ratio of the potential energy change in one wavelength to the local
kinetic energy of motion in the z direction.

Short wavelength approximations all depend on 7* and dy/d¢ being small, at
least for most of the range of z. They generally fail at grazing incidence (q; — 0),
and special techniques are needed at discontinuities in the slope of the potential, and
at turning points (where ¢ passes through zero). We will translate, without proof,
some of the results of Chap. 6 into particle-wave language.
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The Rayleigh approximation (15.98), which can be written as

17 1] dv/dz ‘
=—— [ d¢ y¥® =- / dz 2ip 15.106
& 2/ 1 =5 | Ce v e (15.106)

—00 —00

turns out to be closely related to the first order perturbation theory result
17 .
A = —5 / d(y — y*/4i) e, (15.107)

based on the approximate solutions y* and a Green’s function constructed from
them.

When the potential V(z) has discontinuities in its gradient at the profile
boundaries, but is otherwise smooth (as is the case for the linear, exponential and
Rayleigh profiles), (15.106), (15.107), or (15.20) with F = lﬁ+ and G =, all
give the reflection amplitude

o %emwz){ylgm e, (15.108)

where ¢, and ¢, are the values of ¢(z) at z; and zo, Ap = ¢, — ¢, is the change in
the accumulated phase across the profile, and the function y changes from zero to 7,
at z; and from 7, to zero at zp. Exponentially small terms, originating from the
smooth variation in V(z) other than at the end points, are omitted from (15.108).
The resulting reflectivity is

1
Rzﬁ{y%—l—y% — 29,7, ¢08 2A¢ }. (15.109)

The dominant part of the reflectivity thus depends quadratically on the disconti-
nuities in the potential gradient, and shows oscillatory decay with increasing
energy.

Regions where ¢*(z) <0, which are classically inaccessible since the kinetic
energy of motion in the z direction is then negative, occur where

E—-V<(E—V))sin?0;. (15.110)

The locations where ¢*(z) = 0 are called classical turning points. When V, > V;
and 0, > 0. = arcsin[(£ — V1) /(€ — Vl)]l/ ?, total reflection occurs. Interest then
centres on the phase of the reflection amplitude, which determines the time of
arrival and the shape of reflected pulses, as discussed in Sect. 19.1. We write
r = ¢”; the phase ¢ is then given by (in the short wave limit, on reflection from a
profile with a single turning point)
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o0~ 2(pg— ) — /2, (15.111)
where ¢ is the value of the phase integral at the turning point, and ¢ _ is defined by
¢(2) = qiz+d_ as z— —c0. (15.112)

The result (15.111) is derived in Sect. 6.7. A simpler version follows if one takes
the (so far unspecified) lower limit of integration in the definition of ¢ to be the
turning point zo, in which case ¢, = 0. If also the origin z = 0 is chosen such that
g = q for z<0, (15.111) becomes

20

(mz/dzq(z)—g. (15.113)
0

In the case of a potential barrier, (15.110) may hold in an interval between two
turning points, z; and z;. The wave penetrates the classically forbidden region
where ¢*> <0, and a part of it tunnels through to beyond z, where ¢*> > 0. For well
separated turning points, and smooth potential energy barriers with V; = V;, the
reflection and transmission probabilities are given in Sect. 6.8:

R ~ tanh?’(A® + In2), T = sech’(A® + In2). (15.114)

Here A® is the increment in the imaginary part of the phase between the turning
points (and thus gives the exponent of the change in amplitude across the barrier),

22

AG = /dz|q(z)|. (15.115)

21

For large A® the results (15.114) have the limiting forms

R—1—e 24 T 242 (15.116)

)

15.7 Absorption, the Optical Potential

As we saw in Sect. 1.5, a medium containing scatterers can be approximated by an
effective potential V(z). When there is absorption, as for example in the case of
neutrons by means of a nuclear reaction, or in the case of electrons by trapping or
by “annihilation” with hole quasiparticles, the interaction with the medium can be
approximated by a complex potential. This is in close analogy with the electro-
magnetic case, where absorption is represented by an imaginary part in the
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dielectric function or refractive index. Because of the analogy, the complex
potential is referred to as the optical potential in nuclear and atomic physics. For a
medium with z-stratification, the propagation normal to the interface is character-
ized by the wave equation (15.5), with

f&%%gw—WM—K? (15.117)

In the presence of absorption the potential has a negative imaginary part, as we shall
see. Accordingly we set

V=V, iV, (15.118)

with V;>0. The normal component of the wavevector is also complex,
q = ¢, + ig;. From the real and imaginary parts of (15.117) we get

2 o _2m

%—%—#w—m—ﬁ7 (15.119)
2
mﬁzgh. (15.120)

In a homogeneous medium the transmitted wave is proportional to
expi(Kx+ gz) = expi(Kx + ¢,z) exp(—g;z). Both g, and g; are non-negative, and
hence so is V;. The real and imaginary components of ¢, for incidence at angle 0;
from a medium with real potential V;, are found from (15.119) and (15.120) to be
given by

ﬁ:%@—w—w—mmmm+w—w—@—mmwmf+mw}
(15.121)
mV;
= . 15.122
%= 2 ( )

(V; = 0 is a degenerate case; then either ¢; = 0 or g, = 0, depending on whether 6,
is less than or greater than the critical angle 0. given by (15.22).) In a homogenous
absorbing medium (a square well or potential in quantum mechanical terms) the
surfaces of constant amplitude are planes parallel to the interface, while surfaces of
constant real phase are the planes Kx + ¢,z = constant. The normal to these planes
is inclined at an angle 0’2 to the normal to the interface, where 9/2 = arctan(K /q,),
with i°K? /2m = (€ — V;) sin® 0. In general the angle of refraction 0,, defined by
Snell’s Law (15.4), is complex. It is equal to the real angle 0, only at normal
incidence, or when V is real.

At a sharp boundary between a medium with real potential V| and an absorbing
medium with V, =V, — iV}, the reflection amplitude and reflectivity are
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. 2
e @1 =~ p (@1 = 4) 4} (15.123)

r=e ,
q1+q,+iq; (q1 Jrq,)erqi2

(z1 being the location of the interface). The formulae for the homogeneous
absorbing potential barrier are obtained from those of Sect. 15.2 by making ¢
complex. The same is true for the hyperbolic tangent profile, for which formulae in
the absorbing case are given in Sect. 10.7.

The conservation law (15.11) no longer holds in the presence of absorption,
since particles are removed and the probability density current thus decreases into
the absorbing medium. However, the reciprocity law (15.15) remains valid, and so
the transmittance through an arbitrary inhomogeneous absorbing interface (between
two non-absorbing media) is the same in either direction:

92 q1
T12 = —‘l12|2: —|121| = T21. (15124)
q1 q>2

The result that »r — —1 at grazing incidence also holds in the presence of
absorption.

A non-absorbing film on an absorbing substrate can give zero reflection (and
thus total absorption) at an angle given by

(@ - q19:)(@r — a1) = q14; (15.125)

where g1, q, and g, + ig; are the normal components of the wavevector in the first
medium, the film, and the substrate. This case is discussed in Sect. 10.3. Formulae
for the reflectance and transmittance of an absorbing layer on a non-absorbing
substrate are given in Sect. 10.4.

Thin absorbing films between two unlike media (V; # V5) can either decrease or
increase the reflectivity, depending on whether the particles go up or down in
potential. This follows from the general expression for the reflection amplitude to
first order in the film thickness, which, from (15.78), is

2i 2

r:ro—ﬁ ’ZZ“UF... (15.126)

q1 T 4q2

The corresponding reflectivity is
2 o0

— 4 —q2)2

R— (‘“+qz) - ‘(“(q‘ ;’j)h—'f / dz Vi(2) + ... (15.127)
q1 +q2 q1+q2

Since V; is non-negative, we see that an absorbing film will (to first order in the film
thickness) decrease the reflectance if V;<V,, and increase the reflectance if
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Vi > V,. The transmittance is always decreased by absorption, on the other hand.
From (15.16) with V = V; and y = v, we find

2iqy  2myy

_ (15.128)
(@1 +q)

t=1 —

where #o = 2¢1/(q1 + q2). Thus the transmittance to first order in the film thickness
is

4 2 om [
T=Lp= 102 Ly - / dz Vi(z) +...p. (15.129)
@ (qi+a) Qtaxnt

In the presence of absorption the flux conservation law R+ 7 = 1 does not hold.
One can define an absorptance A such that R+ 7 4+ A = 1; A is the probability of a
particle being absorbed within the film. From (15.127) and (15.129) we find that, to
first order in the film thickness,

o0
A:Lzz—'f / dz Vi(2) +. .. (15.130)
(q1+q)" I .

Reflection at a gradual transition between a non-absorbing medium (potential
V1) and an absorbing medium (potential V, = V, — iV;), which would be total when
Vi=0 for 0; > 0. in the Vi<V, case, is less than total in the presence of
absorption. The decrease from unity is greater the thicker the transition region, as a
result of the greater probability of particle penetration into the absorbing region.
The formulae derived for the tanh profile in Sect. 10.7 apply directly to the particle
case.

15.8 Inversion of a Model Reflection Amplitude

An exact inversion, due to Gelfand, Levitan and Marchenko, is possible if the
reflection amplitude is known for all wavenumbers. (References are given in
Chap. 11.) The exact inversion depends on the solution of an integral equation. An
approximate inversion, based on the Rayleigh approximation and Fourier analysis,
was given in Sect. 11.3. This is adapted here to the particle case. The Rayleigh
approximation to the scattering amplitude is, from (15.98),

o0

re— / dquz/;zez"‘/), qs:/dc q(0). (15.131)

—00
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This may be written as the Fourier transform r(g;) of the function —(dg/dx)/2q,
where x = ¢/q;:

/ dxd‘I/d" i, (15.132)
The Fourier inverse of (15.132) is
dg/dx 1 T
q —2igx —
_— ) d 9 =F 2 1 1
12 ss [ dne e = ey, (15.133)

where the reflection amplitude is analytically continued to negative ¢; via
r(—q1) = r*(q1). Thus, on integrating (15.133) from —oo to x,

2x
q(x) ~ grexp | -2 / dy F(y)| - (15.134)

—00
The square of (15.134) gives, on using ¢> = (Zm/hz)(é' -V)-

2x
~ sin® 0 4 cos” 0 exp | —4 / dy F(y)| . (15.135)

—00

E—V(x)
E-Vi

From the definition (15.133) of F, the long wave limit of the reflection amplitude is
/ dy F(y) = r(q1 — 0). (15.136)

A check on the accuracy of the solution (15.135) is thus provided in the limit as
x — oo. The left side of (15.135) then tends to (£ — V2)/(€ — V1); the right side
tends to the same value if the long wave limit (15.99) of the Rayleigh approxi-
mation, r — 1/21n(q;/q2), is substituted. But if the correct limit (g, —
q2)/(q1 + g2) is substituted in the x — oo limit of (15.135), the two sides differ by a
term of order (V, — V,)*.

The approximate inversion formula (15.135), which can be expected to work
well if the reflection is weak at all wavenumbers, must be supplemented by a
relationship between the variable x and the physical depth z. This is obtained by
integrating d¢p = gdz = q,dx, using (15.134):
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72(x) = /x dxy
0

The inverse relation is

2x1

q
q(XI)Nb/dxlexp 2/ dxaF(xp) (15.137)

o0

(@) = 6@ /a1 = g / a ¢(0)
0

15.9 Time Delay in the Reflection of Wavepackets

Sections 19.2 and 19.3 deal in detail with zero, partial or total reflection of quantum
particle wavepackets. Here we consider one aspect, namely the time delay in the
reflection of a wavepacket made up by superposition of plane wave energy

eigenstates, each with time dependence e “"/" which we write as e ™', If

o0

Ui(r) = / doo f(c2)e" (15.138)

—00

represents the incident wavepacket at some reference plane (say z = 0) then,
because of the linearity of Schrodinger’s equation, the reflected wave at the same
plane is made up of a similar superposition, each energy component having
reflected with its own reflection amplitude:

v, (1) = / do r(w)f (w)e ™. (15.139)

When the energy distribution of the incident wavepacket is strongly peaked about
some value &, the wavepacket is nearly sinusoidal, with (1) = A(t)e "’ and an
amplitude function A(¢) which varies slowly over most of its range. (An example of
such a pulse is given in Sect. 19.1.) From the Fourier inverse of (15.138), the
energy (or frequency) distribution function f(w) is given by
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o0
f(w):zi / dr A(r)el @)t (15.140)
Y

and thus the reflected wavepacket is

1 T . T .
00) = 5 / doo r()e ™ / dr A(z)el-o0r. (15.141)
An explicit form for the reflected wavepacket can be obtained on the assumption

that r(w) = |r(w)|e®) is well represented (within the dominant range of energies
which make up the incident wavepacket) by

|r(w)| = |r(wo)], d(w) = do+ (0 — wo)dy, (15.142)

where dp = §(wp) and J;, is the derivative dd/dw = hdd/d€ evaluated at &y. Then
(15.141) gives

Y1) ~ [ (o) |€A (1 — ) ™. (15.143)

The amplitude function of the reflected wavepacket is thus unchanged in shape, but
the wavepacket is delayed by

do
At =06y =h|—| . 15.144
s=15). (15.144)

We will give some applications of this time-delay formula. The simplest case is
that of partial reflection at a potential step, located at z = z;. At normal incidence
the reflection amplitude is

2iky 7 ki —ky

—e - 15.145
" ki + ko ( )

and the time-delay formula (15.144) gives

dkl 221
At =271h— = — 15.146
“ dé u ’ ( )

where u; = fik; /m is the group speed dw/dk = ii'd€/dk in the first medium. The
reflected pulse is delayed by just the time it takes to propagate to the barrier and
back, at the group or wavepacket speed.
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When €<V, there is total reflection. Again considering reflection at a step
located at z;, at normal incidence, we have

ok — ik , L]
— 2k BT RN o o 0i( k) — arctan 2 15.147
r=e ikl exp z( 121 — arctan %) ( )
where
2m 2m
kf:%fw_w@,|bfz%ju@—5) (15.148)
The time-delay formula (15.144) now gives
2 _ 2 _
Ar =" H(E = V) 0h =)= (w el ). (15.149)

The reflected wavepacket is thus delayed by more than the travel time 2z; /u; to and
from the potential step. The increase can be interpreted in terms of penetration to
the depth |k2|71 into the barrier. (This penetration depth diverges as £ tends to V;
from below, but (15.144) is not valid as |k2| — O because the square root singularity
in 0 cannot be approximated by (15.142).)

For total reflection at a gradually rising potential barrier, the phase shift can be
approximated by the short wave formula

5%2/dz k(z,€) — /2 (15.150)
0

(this is the normal incidence form of (15.113)). The time-delay can then be written
in terms of the local value of the wavepacket speed, u = /i~ 'd€/dk = hk/m:

20

d
mmz/ < (15.151)
0

u(z, &)

(The turning point zo is also a function of &, but in the differentiation of ¢ the term
dzp/d€ is multiplied by k(zo, £), which is zero.) The interpretation of (15.151) is
that the wavepacket travels up to the classical turning point zo, where £ = V(z),
and back, at the group velocity u(z, ). In contrast to (15.149), there is negligible
penetration into the classically forbidden region where £ < V/(z), because (15.151)
was derived using the semiclassical formula (15.150). For a linear variation of V
with zin z; < z < z1 + Az, with V rising between V; and V, = V| + AV, (15.151)
gives
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221 1Az
At~ — +2[2 — — 15.152
= 2m(E V) (15.152)

up

Note that the correction to 2z;/u; is the same as the classical time delay
20

2 [ dz/v(z), where mv*(z) = € — V().
21

The time-delay discussed above 1is based on the approximation
8 ~ 8+ (w — wy)d;. Higher order terms in the Taylor expansion of § about wq
lead to pulse spreading and distortion; references to these are given in Sect. 19.1.
(The intrinsic spreading of the wavepacket with time has been neglected here, but is
made explicit in Sects. 19.2 and 19.3, where exact solutions of Schrddinger’s
time-dependent equation are used. This spreading takes place even in a homoge-
neous medium, but can be made small for highly mono-energetic wavepackets.)

References

Many references to quantum mechanical theory are made in Chaps. 1, 2, 16 and 19. Here we give
a few additional references to specific particle reflection and transmission problem, including
tunneling.

Barone A, Paterno G (1982/2005) Physics and applications of the Josephson effect. Wiley, New
York

Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM. J Res Dev (July issue)

Burstein E, Lundquist S (eds) (1969) Tunneling phenomena in solids. Plenum, New York

Edwards DO, Fatouros P, Thas GG, Mrozinski P, Shen SY, Gasparini FM, Tam CP (1975)
Specular reflection of “He atoms from the surface of liquid “He. Phys Rev Lett 34:1153-1156

Edwards DO, Fatouros PP (1978) Theory of atomic scattering at the free surface of liquid *He.
Phys Rev B 17:2147-2159

Lu JR, Lee EM, Thomas RK (1996) The analysis and interpretation of neutron and X-ray specular
reflection. Acta Cryst A 52:11-41

Solymar L (1972) Superconductive tunnelling and applications. Chapman and Hall, London

Stroscio JA, Kaiser WJ (2013) Scanning tunneling microscopy .Academic Press, Boston

Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805—
813


http://dx.doi.org/10.1007/978-3-319-23627-8_19
http://dx.doi.org/10.1007/978-3-319-23627-8_19
http://dx.doi.org/10.1007/978-3-319-23627-8_19

Chapter 16
Neutron and X-ray Reflection

All reflection, whether of particle, electromagnetic or acoustic waves, is the result of
the constructive interference of many scattered waves originating from scatterers in
a planar stratified medium, as we saw in Sect. 1.5. For regular arrays (gratings or
lattices), specular reflection can be viewed as a special case of diffraction: it is the
zero order diffraction peak, and the only one when the wavelength is greater than
twice the lattice spacing. When the latter condition holds, an assembly of scatterers
can be replaced by a medium characterized by a potential V, or dielectric function ¢,
or refractive index n. The same can be done for disordered systems, again in an
averaged sense, except that incoherent scattering is thereby omitted. For
planar-stratified media whose properties depend spatially only on the depth z,
reflection properties follow (in principle, at least) from the knowledge of V(z) or
¢(z) or n(z). We know from Sect. 1.3 that there is a one-to-one correspondence
between electromagnetic s-wave reflection and particle wave reflection, with an
effective dielectric function ¢ = 1 — V/E, where E is the particle energy. We shall
see that because the form of V for neutrons given in Sect. 1.5 and the form of ¢ for
an electron gas given in Sect. 7.6, there is a close correspondence between neutron
and X-ray reflection. A major application of reflection experiments is to the study of
solid surfaces and liquid-vapour interfaces (Penfold and Thomas 1990; Felcher and
Russell 1991; Lu et al. 1996). A review of X-ray and neutron reflection study of
polymers at interfaces is given by Russell (1990). Neutron and X-ray reflection has
the advantage of much shorter wavelengths compared to reflection at visible
wavelengths, and thus the ability to probe down to nanometre scale. A disadvantage
is that the reflection is very weak except near glancing incidence.

The topics covered in this chapter all relate to specular reflection. Non-specular
reflection, discussed in Chap. 14, occurs for any reflectors without an ideal strati-
fication dependent in its properties only on the depth variable z. X-ray and neutron
scattering from rough surfaces has been calculated in the first Born approximation
by Sinha et al. (1988); more recent work on this topic includes Felcher et al. (1994),
and Sentenac and Daillant (Chap. 2) and Daillant, Mora and Sentenac (Chap. 3) in
X-ray and neutron reflectivity, edited by Daillant and Gibaud (2009).

A much wider range of neutron optics is covered in the review by Werner and
Klein (1986), in the monograph by Sears (1989), and in the compilation X-ray and
neutron reflectivity noted above.
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16.1 Common Features of X-ray and Neutron Optics

The dielectric function for a free-electron plasma is
g(w)=1- wﬁ/wz, wf, = 4nne* /m, (16.1)

where 7 is the number of electrons per unit volume. The same form holds for X-rays
interacting with matter, provided @ is not close to one of the atomic excitation
frequencies. Another way of writing (16.1) is as

e()=1-722/* [*=nv/r, (16.2)

where v = 1/n is the volume per electron, and r, = ¢*/mc? ~ 2.818 x 10715 m is
the classical electron radius. (Gaussian units were used in the definitions of w, and
r. above. In SI units € is to be replaced by e?/4me, in both definitions, but (16.2)

does not change.) For water, v ~ 2.99 A3, L~ 577 A and for 1.54 A wavelength

(X-rays of about 8 keV energy), 1 — e~ 7 x 107°. X-ray reflection at normal

incidence is tiny: one must go to glancing incidence to get substantial reflection.

Since ¢< 1, even total reflection is possible, as discussed in the next Section.
Neutron motion is according to Schrédinger’s equation

hz
—mvzw+vq’:m’ (16.3)

where V is the potential energy and E the total energy. Fermi and others (see
Sect. 1.5, Sears 1989, or Lekner 1991 for references) show that the effective
potential for neutrons in a medium consisting of particles off which the neutrons
scatter coherently with bound scattering length b, and where the volume per scat-
terer is v, is

V= (;;)4nb/v = <2F;;>4np, p=b/v (16.4)

(p = b/v is the scattering length density.) The scattering is predominantly due to
nuclei: neutron-electron interaction is much weaker in nonmagnetic media. The
refractive index for particle waves (see Sect. 1.3) is (1 — V/E)"/?. The energy E is
equal to 71%k> /2M, where k =2mn/2, A being the free-space neutron wavelength.
Thus the effective-medium dielectric function for neutrons, the square of the
refractive index, can be written as

e=1-b/mv=1-)%p/n, (16.5)
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and is thus of the same form as (16.2):
e(A)=1-72/1*, L[*=mv/b=r1/p. (16.6)

The neutron wavelength is 1 ~ 9.04 A/(E /meV)l/ %, 50 an 81 meV neutron has a

wavelength of about 1A. For un-magnetized Fe, b~ 9.5fm and v~ 11.8 A’
(Werner and Klein 1986, Table II), so L ~ 625 A, and 1 —e=2.6 x 107°. The
effective potential for neutrons in iron is of the order of 0.2 neV, which is about the
same as the work needed to raise a neutron by two metres in the earth’s gravita-
tional field.

We have seen that not only can the X-ray and neutron interactions with matter be
characterized by the same form of wavelength-dependent dielectric function, but
that in both cases, for typical wavelengths, this differs from unity by parts per
million. Hence only reflection not too far from glancing incidence is important (in
Sect. 2.3 we saw that reflection becomes perfect as the glancing angle tends to zero,
for all reflecting profiles).

Further, it is known (Sect. 1.3) that reflection of particle waves by stratified
media is mathematically the same as reflection of electromagnetic s-waves. Thus we
can treat X-ray s-wave and scalar-interaction neutron reflection together. X-ray
reflection of p-waves is nearly the same as that of s-waves in the regions of interest,
as we shall see shortly.

16.2 Reflection Near the Critical Angle

The dielectric function &(2) = 1 — 2*/L? is less than unity for X-rays, and also for
neutron targets with net positive scattering length. Thus total reflection of X-rays or
neutrons incident from vacuum onto such materials is possible. The critical angle is
close to grazing incidence, and in X-ray and neutron reflection it is usual to work in
terms of glancing angle, this being given the same symbol 6 used for the angle to
the surface normal in optics. Snell’s law for refraction at a boundary media 1 and 2,
in terms of glancing angles 0; and 0,, reads

&1 08> 0; = & cos’ 0. (16.7)

When ¢ =1 and &, =1 — 72 / I2, with L, being the interaction length associated
with the substrate, total reflection will occur for g3 = (21/2)*(e; — cos® 0) =
(2m/2)?(sin? 0 — 2*/13) <0, that is when

sinf < sinf,. = A/L,. (16.8)

From now on we make no use of 6,, and can drop the subscript 1 on 61, so 6 will
always mean 0, the glancing angle of incidence. Waves with 4/ sin 0 > L, will be
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totally reflected. For the examples used above, X-rays of wavelength 1.54 A will
totally reflect from water for 0 < 0. ~ 0.153°, and neutrons of wavelength 1 A will
totally reflect from unmagnetized iron for 0 <0, ~ 0.092°.

Any smooth, non-absorbing planar-stratified medium will reflect totally below
the critical glancing angle 0. = arcsin(4/L,), where L, means the final value taken
by L(z) as the depth z increases into the medium. As in the optical case, we take the
zx plane to be the plane of incidence. Then the incident, reflected and transmitted

plane waves have expi(Kx — wt) for the x and ¢ dependence, with K =k, =

27"cos 0 (incidence from vacuum is assumed in this chapter).
For the electromagnetic s-wave, and for neutrons, the remaining factor of the

probability amplitude is ¥/(z), which satisfies

2 7\ 2
wrev=o f0=(F) bo-wtd. e

The square of the normal component of the wavevector can also be written as

S (Z)z [(;“g)z— (ﬁ;) 2] . (16.10)

where ¢; = (27/) sin 0 is the normal component of the wavevector in the incident
wave.

The form of (16.10) shows that, for a fixed profile L(z) on the same substrate, the
s-wave or neutron reflection properties will be the same for the same value of
sin 0/ sin 6... Thus

S=sin0/sinl. =q1/q. [q.= (2n/2)sin0, = 2n/L,)

is the appropriate variable in plotting the reflectance, since then data taken at
different wavelengths and different angles of incidence can be plotted on one curve
characteristic of a given profile (Lekner 1991).

For negative neutron scattering length (titanium for example) there is no real
critical angle, and the above characterization in terms of the angle variable S =
sin 0/ sin 0, has to be modified. For example, we can define S = 2~ /7v/|b] sin 0,
and then the reflection amplitude for neutrons by a step profile can be written as

ro=(q1—q2)/(q1+q) = (S— V52+1)/(S+ \/SZ—H)
= 7<S+ \/SZ—H)*Z.

For magnetized cobalt, one neutron polarization has a positive total scattering
length, while the other polarization has negative total scattering length. This case is
discussed in Sect. 16.7, with the reflectivities shown in Fig. 16.11.
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For the electromagnetic p wave, with B = (0, By, 0), we have By(z, x, 1) =
B(z)expi(Kx — wt) as in (2.21), with

d (1dB\
— | — B = 16.11
g (h) + @B =0 (16.11)

where ¢*(z) is given by (16.9) or (16.10) as before. The characteristics of the
reflecting profile thus appear in the logarithmic derivative ¢ 'de/dz as well as in
q*(z), and reflectivities will not fall on one curve when plotted against
S = sin 0/ sin 0.. However, we shall see that the difference between the s and p
reflectivities is of order sin®(0. compared to unity, and can be ignored for
short-wavelength X-rays.

For reflection at a step (an interface which is sharp on the scale of the wave-
length) the reflection amplitudes of the s-wave and of neutrons are given by (1.13),
namely ry0 = (1 — q2)/(q1 + ¢q2). For 0 > 6, this gives

ol—
ol—

sin0 — (sin? 0 —sin®0,)° _ S~ (8~ 1)) _ 1 . (16.12)

sin 0+ (sin® 6 — sin’ 06)% 7S+(SZ—1)% {S+(52,1)%]2

rso =

The reflectivity Ry = |rs0|2 is unity for 0 < 6., and falls rapidly as 0 increases
beyond 0,: at sinf = 2sin . the reflectivity is (2 — \/§)4z 5 x 1073, and for
sin 0 >> sin 0., Ry — (sin 0,/2sin 0)*= (q./2q)".

The p-wave reflection amplitude is, from (1.31),

=

sin @ cos? 0, — (sin2 0 — sin? 96)

sinOcos2 0, — (sin2 0 — sin® 90)

(16.13)

}"p():—

ol—

Note that at the critical angle o = 1 and r,0 = —1. (These are the reverse of the
limiting values at grazing incidence, 0 — 0). As discussed following (1.25), the
reflection amplitude for E; is —r,, so (for small 0.) the p-wave dominant electric
field component E, has the incident and reflected waves in-phase at the critical
angle. For the s-wave there is only one component (E,), and the incident and
reflected electric fields are in-phase at 0... (For the variation of the phases of ry and
0 wWhen total reflection exists, see the Appendix of Chap. 20).

The difference between Ry and R, is of order sin® 0., and is negligible for most
X-ray reflection studies. From (16.12) and (16.13) we find

sin? 6, sin? 0 — 1y
T, 70

= 16.14
1 — rysin® 6, sin® Op ( )
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where 0p is the Brewster angle at which the p reflectivity goes to zero. From
(16.13), it given by

sin®0p = 1/(2 —sin®0,) or tan0p = sec0,. (16.15)

03 is close to 45° for X-rays with wavelength small compared to L = (mv/r,)"/%.
Note also that when angles are measured from the surface normal, the last relation
of (16.15) reads tan 0g = sin 0.

Figure 16.1 shows the reflectivity Ry, for neutrons and X-rays, at the sharp
boundary of any medium with positive neutron scattering length b, and R, for
X-rays of 1.54 A and 15.4 A wavelength incident on water (L ~ 577 A), for which
sin 0, ~ 0.00267 and 0.0267, respectively. For the smaller X-ray wavelength the
s and p reflectivities are not distinguishable on this scale. For the larger wavelength
the difference is apparent for sin 0 > 5sin 0, (or R < 107%).

The reflectivity is seen to fall off rapidly as 6 increases from 6,.; (16.12) and
(16.13) show that the behaviour near 0. is dominated by the square root of 0 — 0,
(or equivalently, the square root of A. — A where 1. = L, sin0). Lekner (1991)
shows that this square root singularity is universal for non-absorbing smooth pro-
files. Absorption or surface roughness will round off the reflectivity drop at the
critical angle.
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Fig. 16.1 Logarithmic plot (base 10) of the Fresnel reflectivities Ryy for neutrons with positive
scattering length and for X-rays, and R,y for X-rays reflecting off water. A precisely defined
boundary surface is assumed (inser). The angle variable is S = sin6/sin 0. = q1/q., so the Ry
curve is universal for s-polarized X-rays and for neutrons with a real critical angle (positive
scattering length). The solid curve is Ry, for all neutron or X-ray wavelengths. For /. = 1.54A, Ryo
is indistinguishable from Ry on this graph. The dashed curve is Ry for /. = 15.4A; this goes
through zero at the Brewster angle, at sin0p ~ 26.5sin, (the imaginary part of the X-ray
refractive index, about a 1000 times smaller than the difference between the real part and unity, has
been set to zero. A nonzero imaginary part will make the reflectivity at g nonzero)
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16.3 Reflection by Profiles Without Discontinuities

The following identity is derived in Sect. 5.6:

1 i 199 5ip o —2i¢
L= —— — [ — 1. 16.1
ry 5 / dzg & e r(z) e ] (16.16)

Here ¢(z) is (as always) the normal component of the wavevector in a z-stratified
medium, r(z) is the reflection amplitude for a profile truncated at z (see Fig. 5.1 for
definition of truncation), and ¢ is the accumulated phase at z:

Z

6@ = [ acot0). (16.17)

The Rayleigh (1912) approximation for r, is obtained by dropping the r* term in
(16.16):

1 dg »;
FR=—— / dzq’ld—Zez"P. (16.18)

It can also be called the weak reflection approximation (Sect. 5.7), and works
extremely well for smooth profiles which reflect weakly, as seen for example in
Figs. 5.4 and 6.3. Lekner (1991) discusses various further approximations that can
be obtained from (16.18). Here we give one that is often used in X-ray reflection
(see for example Pershan 1990): we rewrite (16.18) as

dg?/dz 4
rgp = —/dquZe , (16.19)
and replace 442 in the integrand by (g; +¢2)*, where g, = (27/2)sin 0, and ¢3 =
¢% — (21/L,)* from (16.10). In terms of the variable S = sin 0/ sin 0., we can write

q1 = q.S,q> = q.[S* — 1}%. Also, we can define a dimensionless profile shape
function f(z) by

(41 +a3) — % (47 — B3)f (). (16.20)

N —

7 (z) =

(f(z) tends to —1 in the medium of incidence, normally the vacuum, and to +1 deep
in the reflecting substance.) Then (16.19) becomes
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q1 — 42 1df 2idp
R ~ dz ——¢e“'?. 16.21
T +612/ 2dz ( )

Thus the reflection amplitude is written as a product of the Fresnel reflection
amplitude for a step profile, roo = (¢1 — ¢2)/(q1 + ¢2), and the Fourier transform of
the derivative of the profile shape function in the ¢ variable. (Note that

[df &% = fdd)ﬁez“f’.) Since ¢* = ew?/c* — K2, (16.20) is the same as

&(z) = %(81 +é) — % (&1 — &2)f (2), (16.22)

and therefore

fz) = Bt - 260 (16.23)

& — &

For X-rays £(z) = 1 — (2*r,/m)n(z) where n(z) is the local electron density, while

for neutrons the effective dielectric function is &(z) = 1 — (1*/n)p(z), where
p(z) = b(z)/v(z) is the scattering length density, with both n(z) and p(z) being zero
in the vacuum. Thus

f(@)=2n(z)/ma =1 or f(z) =2p(z)/pr—1 (16.24)
in the X-ray and neutron cases. We will use the latter form to avoid possible

confusion between the electron density and the refractive index. Equation (16.21)
now reads

7

_ 1 d .
LAl [ @) by (16.25)
q1+q py dz

One further simplifying assumption is to replace 2¢ by 2¢;z, which is a good
approximation for X-rays and neutrons where g; and g, are nearly equal. Thus
finally the reflection amplitude is approximated as the product of the Fresnel
amplitude and a Fourier transform of the derivative of the scattering length (or
electron) density,

—q 1 dp .
re &t 612_/dz e nigiz (16.26)
q1+q2 Py dz

For a single sharp transition between vacuum and the reflecting material,
dp/dz — p,6(z — z1), where z; gives the reflecting boundary location. Thus
(16.26) correctly gives the Fresnel reflection amplitude in this limit.

As a test of (16.26), consider the reflection by a hyperbolic tangent profile,
f(z) = tanh(z/2a) of Sect. 2.5. The reflection amplitude is, from (2.88),
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. sinh -
. = Qo Sinhmalgr — 4o) (16.27)
sinh na(q; + ¢2)

where @ is a known phase. From (16.24),

1 Z
p(z) = §p2<1 + tanh Z) (1628)
and so
U [ dp . 1 [ 202N g 21qia
- dz 2L iz — d h <_) i - 16.29
02 / ¢ dz ¢ 4a / ©see 2a ¢ sinh 27q a ( )

Thus for the hyperbolic tangent profile, from (16.27) and (16.26, 16.29),

2( 211 )2. (16.30)

sinh 27qa

sinha(qy — qo) |

sinhma(q1 + q2)

q1 — q2
q1+q

Rexact — Rapprox —

3

These reflectivities are compared in Fig. 16.2, which shows R®*" and R*P™* for
X-rays or neutrons reflecting from an interface with a hyperbolic tangent profile, with
two thicknesses of the interface. Note that for this gradual transition between vacuum
and bulk matter the approximation (16.30) works quite well, and has the virtue of also

0
&
% -5 1
=
-10
0

Fig. 16.2 Exact and approximate reflectivities for the tanh profile (inset), as a function of the
angle-wavelength variable S = sin 0/ sin 0.. The values of the dimensionless parameter maq. are
0.1 (upper curve) and 1 (lower curves). The approximate log,,R curve (dashed) is not
distinguishable from the exact reflectivity for the smaller value mag. = 0.1. The reflectivities apply
equally to s-polarized X-rays and to neutrons
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being exact in the zero-thickness limit. At the critical angle, where g; = g, > = 0,
R — | and R®™P™* = (2mg.a/sinh2nq.a)’, with g. = (21/7)sin0. = 2n/L,.
Thus when the dimensionless parameter naq. = 2n°a/L, is small compared to unity,
R¥PP™X g accurate near the critical angle. In Fig. 16.2, we have chosen the values 0.1
and 1 for magq., so for X-rays reflecting from water the corresponding interface
thickness parameter has the values a = L, /2n* ~ 2.9 A and 29 A, respectively. The
10-90 thickness (the distance over which the change in the profile passes through 10
and 90 % of the total) of a tanh profile is (2In9)a & 4.39q; the 10-90 thickness
corresponding to a ~ 2.9 A is about 12.8 A.

16.4 Reflection by Profiles with Discontinuities

We have seen that a version of the weak reflection approximation, (16.26), works
well for a gradual transition between two media. Consider now a homogeneous
layer on a substrate, with

0 z<0
pz) =¢ p 0<z<Az (16.31)
Py 2>Az

The exact reflection amplitude was given in (2.58), which gives the reflectivity

Rexact — r% +2r1r2 cos 2qAZ+ r§ 3 rl = ql — q’ }"2 = q _ q2 . (16.32)
1 +2r1rp cos 2qAz+ (r112) q1+q q+q

From the identity (r1 +r2)/(14+r1m2) = (q1 — q2)/(q1 + g2) it follows that R

coincides with the Fresnel reflectivity whenever cos2q;Az = 1. In terms of the

variable S = sin 0/ sin 0., q1 = q.S,q>» = q.[S* — 1]% and ¢ = q.[S* — p/pz]%.

In evaluating the version (16.26) of the weak reflection approximation we
assume that the outer boundary of the reflecting surface is at z = 0, as specified in
(16.31). The two steps in the scattering length density give delta functions in dp/dz
at z =0 and at z = Az, of strengths p and p, — p. Thus (16.26) gives, for real ¢,

(0> 0,),
Japprox _ (611 - 612) {ﬁ n <1 B ﬁ)eZiqlAz}7 (16.33)
q1+q2) \ P2 P2

2
REPProx — <M> {1 2P <1 - p) (1 — cos 2q1Az)}. (16.34)
q1+q> P2 P2

Both R®**! and R*PP™* are bounded above by the Fresnel reflectivity, in accord with
a general theorem for monotonic profiles (Sect. 5.4). Figure 16.3 compares R*PP™*
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Fig. 16.3 Neutron reflection by a layer of H,O (,0=O.056><10’5A72) on Si

(p =0.215 x 10’51&_2>, as a function of the angle-wavelength variable S = sin 6/ sin 0. The

smooth curve is for bare silicon. The solid curve is R (16.32), the dashed curve is R*PP™*
(16.34). The water layer is 1000A thick. The inser shows the scattering length density profile

and R®*, this time for neutrons reflecting from silicon (L = 1208 A) covered with
a layer of water (L = 2363 A), 1000 A thick.

We see from Fig. 16.3 that the reflectivity given by the version (16.26) of the
weak reflection approximation is in qualitative agreement with R®**', except near
the critical angle. The local minima and maxima are off, because ¢; has replaced g
in the phase factor.

We can do better: Lekner (1991) has developed a sequence of approximations
which have the features that they give exact results for homogeneous layers, and are
correct at and near the critical angle. The simplest of these is

— eZiqla (qlqh - qzqa)c + l(‘lﬂ‘]b _ QI‘IZ)S — eZiqla & . (1635)

ro " =
(9196 + 929a)c — i(qaqp + q192)s Dy

In (16.35) g, and g, are the values of ¢ just inside the outer and inner boundaries of
a stratification, and ¢ = cosA¢ and s =sinA¢, where A¢ is the total phase
increment across the stratification:

b

Ap = p(b) — ¢(a) = /dz q(2). (16.36)

a

Extrema of the reflectivity, obtained as the absolute square of (16.35), occur when
A¢ is a multiple of 7/2. (For a homogeneous layer they occur when gAz is a
multiple of 7/2.)
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When ¢, = g3, ro takes the same form as the exact reflection amplitude for a
homohogenous layer, within which the normal component of the wavevector is g (a
constant);

_ pigadlqr —g2)c+ i(q* — q192)s

r - .
q(q1 +q2)c — i(¢* + q192)s

(16.37)
In (16.37), A¢p = gAz = q(b — a), and ¢ = cos A¢, s = sin A¢ as before.
The zeroth approximation (16.35) is based on the simplest wavefunctions,

Z

YE =, $(2) = / alq(0). (16.38)

The next approximation is based on the Liouville-Green wavefunctions of Sect. 6.2,

o= () P, yr(o = () e (16.39)

The Liouville-Green wavefunctions take into account the variation in normal
component of wavenumber g through the dimensionless function ) introduced in
Chap. 6:

¢? dz \v

dg/dz  2md (b\  4n® dL
_da/dz__2n ( > - T (16.40)
q (qL)” dz

Let y,, 7y, be the values at z = a+ ,z = b—. Then the reflection amplitude takes the
form

No+ N,

_ eZiqla
Do+ Dy ’

r

(16.41)
where Ny, Dy were defined in (16.35), and, from Lekner (1991) or from Sect. 6.3,

1 i 1
Ny =— 3 (919676 + 42Ga74)s + 5%%[(% —Ya)c+ EVa”/bS]v (16.42)

1 i 1
Dy = =5 (019p7 — 429a7a)s = 54aqpl(Vp = Va)C + 5 VaVpS]:
Both 7y and r; give the correct result for a homogeneous layer, and for an arbitrary
layer correctly give unit reflectivity at the critical angle or critical wavelength when
g>» — 0, and at glancing incidence when g; — 0.
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According to the formulae for ry and ry, reflection is mainly the result of dis-
continuities at z = a and b, and of interference between the reflections from these
discontinuities. Discontinuities in slope also contribute to r;, while a gradual
variation of the medium enters the formulae only through the phase increment Ac.

The reflectivities Ry and R, obtained by squaring the modulus of (16.35) and
(16.41), are compared with the exact reflectivity for a profile with linear variation
in p = b/v in Figs. 16.4 and 16.5. Such profiles have ¢> = g7 — 4mp linear in z, and
the Airy functions of Sect. 5.2 are solutions of (16.9). Specifically, the solutions are

Ai(—(), Bi(—(), where
F{qi —(z— a)4ni’2}.

(16.43)

2
3

1

{(z) = [471 A

Ap

Az

3 Az
2 —
:| q (Z) - qu

Ap

0= 5,

In (16.43), Ap = p, — p, is the change in the scattering length density over the
extent Az = b — a of the profile. The exact reflectivity is calculated by substituting
F(z) = Ai(={), G(z) = Bi(={) into ¥ = aF + G, and matching both s and
dy /dz at the boundaries. At z = a we match to €917 + re 4%, at 7 = b to te'®*. The
resulting equations are (with primes denoting derivatives with respect to z)

N 4 rem M = gF, 4 BG,,  iqi (€N — re”%) = ocF; + ﬁG;, (16.44)

log(R)

1 1.2 1.4 1.6 1.8 2
S

Fig. 16.4 Comparison of the exact and approximate reflectivities R., Ry and R; for a profile with
discontinuities in the scattering length density p at its boundaries, and a linear variation in p(z) in
between. The curves for R, and R, are barely distinguishable; Ry is the dashed curve. The
angle-wavelength variable is S = sin 6/ sin 0, = ¢, /q.. The scattering length densities are p, =

0.641, p, = 0.215, p, = 0.805 (units of 107> Afz), corresponding to D,0,Si and Fe respec-
tively. The layer thickness is 500 A
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Fig. 16.5 As for Fig. 16.4, with the scattering length densities p, and p, interchanged: p, =

0.215, p, = 0.641, p, = 0.805 (units of 1073 AfZ); the layer thickness remains 500 A. Note that
Ry (dashed curve) is not as good as in Fig. 16.4, because less of the reflection is now due to the
smaller discontinuities in p at the boundaries

aFy + fGy = te'®?, aF, + BG), = igyte'®? . (16.45)

The symbols have the meaning F,=F(a+), F,=(dF/dz),_,.,...
Gy, = G(b—), G), =(dG/dz),_,_. There are four unknowns in the four equations
(16.44), (16.45): r,t,a, 5. The solution generalizes that given in Sect. 2.2 to profiles
with discontinuities at the boundaries. The reflection and transmission amplitudes are

_ pina D8FGy = GaFy) +ia1 (FuGy, = GuFy) +ig2 (FiGy = GiFy) = (FiG) — G, F)
0192(FaGy — GuFy) +iq1 (FoGy, = GaFy) — iq2(F,Gy — G,Fy) + (F,G), — G,F})
(16.46)

r

t = eiqla—ing
0192(F.Gp, — G.Fy) +iq) (F.G), — G.F}) — iqa(F,Gy — G,F}) + (F,G), — G,F})

These amplitudes have the same form as those given in (2.25) and (2.26) of Chap.
2, but allow for a jump in the effective potential or dielectric function at z = a and
z=>.

To calculate the approximate reflectivities Ry and R; we need A¢, the phase
increment over the inhomogeneity between z = a and z = b. For linear variation in
the scattering length density, this is
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1Az, 5 4

b
A= [ a0 = i@ ) (16.47)

We also need the values of y defined in (16.40) at the boundaries of the profile.
These are

Ap Ap 5
— o=t = dn—"g>. 16.48
Va Tagda s T (16.48)
We see that R is qualitatively correct, and R, is barely distinguishable from the
exact reflectivity. The deep minima in the reflectivities are associated with the
nearby zero of cos A¢ at sin 0/ sin 0, ~ 1.724 (which makes the real part of Ny
zero), close to a zero of the imaginary part of Ny at sin 0/ sin 0, ~ 1.832.

16.5 Total Reflection: Extraction of the Phase in Lloyd’s
Mirror Experiments

We have so far considered partial reflection, for glancing angle 6 greater than the
critical angle. When 0 < 0., the reflectivity is identically unity, and all the infor-
mation about the scattering length density profile p(z) that can be measured is
contained in the phase of the reflected wave. Of course, the absolute phase has no
meaning; one has to measure the relative phase of the reflected and incident waves.
Lloyd’s mirror experiment produces interference fringes between the direct and
reflected beams, and Klein and Opat and collaborators have suggested Lloyd’s
mirror configuration for neutrons (Gudkov et al. 1993), and implemented it for light
(Allman et al. 1993a, b). They used the semiclassical short-wave reflected phase
expression of Sect. 6.7,

2
T

o~ Z/dz q(z) —5 (16.49)
0

It is assumed in the derivation of this expression that the scattering length density
profile p(z) is restricted to z > 0. The classical turning point is at zy defined by
q(z0) = 0. Since ¢*(z) = ¢* — 4np(2), p(z0) = q}/4n. The approximation (16.49)
is known to fail at grazing incidence, where the effective wavelength 27/q is large
(see Fig. 6.9 and the accompanying discussion). In the limit 6 — 0, (16.49) gives
r = e — —i, whereas the correct limit is always —1, as we know from Sect. 2.3.
Lekner (1995, 1996) shows that, for all profiles,
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ino ino 3
§=tn+c0+0(0°) = tntc 0 . (16.50)
sin 0, sin 0.
In total reflection, the normal component of the wavevector in the substrate is

1 1
imaginary: g = i|q2|, |q2| = (4mp, — q%)%: (2n/2)[sin* 0. — sin® 0], and the
exact formula (16.46) gives (we set a = 0 for simplicity),

. _ i [|©|(FGy = GuFy) + (FuG) = GaFy)] = a2l (FiGy = GuFy) = (FiG, = GiF)
ig1[|a2|(FuGy — GaFy) + (FuG) — GuF})] + |02l (F, Gy — G Fy) + (F,G) — G,F})
(16.51)

Equation (16.51) can be written as
r= q1 + lQ — eZiarctan 0/q Q _ |q2|<F(/4Gb — G;Fh) + (F(,lG;J B G:lFl,J)
q1 —iQ 7 |CI2|(FaGb_Gan)+(FaGZ_GaFL).
(16.52)

In the absence of absorption, Q is real. Thus the phase J of the reflection amplitude
r =€ is given by

0 = 2arctan Q/q (16.53)

As gy =(2n/2)sin0; tends to zero, |g:|= (¢ — q%)%—> qc = (47rp2)%:
(2m/A) sin 6., and Q tends to its glancing incidence value Q. Also, for real X,

arctan X = gsgn(X) —x'rox?). (16.54)

Hence we have a proof of (16.50) for reflecting profiles of finite thickness:

3
& = msgn(Qo) — % +0(%> . (16.55)

Equation (16.55) determines the constants ¢ and ¢ in (16.50) to be
c=—4n/2)0Qy", ¢ =—4n/QL, = —4,/Tp,/Qo. Lekner (1995) evaluates the
slope of the reflection phase for the homogeneous layer, the linear profile, and the
hyperbolic tangent profile. The last variation of the scattering length density extends
continuously without bound, but still has the form (16.50). Analytic forms of ¢ for
linear and quadratic profiles are given in Lekner (1996).

For the linear variation of scattering length density we know from Sect. 16.4 that
the functions F' and G are Airy functions, and the reflection phase can be evaluated
exactly from (16.52) and (16.53). Figure 16.6 show the phase for the profile of
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S/n

0 0.2 0.4 0.6 0.8 1
S

Fig. 16.6 The reflection phase J plotted as a function of S = sin 6/ sin 0., for the same material
parameters as the profile of Fig. 16.5, with layer thickness 500 A. The straight line is the
small-angle variation predicted by (16.55), the dashed curve is the short-wave approximation
(16.49), and the full curve is the exact phase (16.53)

Fig. 16.5, and Fig. 16.7 for the same material parameters, but a thicker layer of
2000 A depth. These figures also show the high-frequency approximation (16.49),
in which the integral is to be taken over the real part of g(z). Since ¢*(z) =
41p,S* — 4mp(z) is negative for S = sin 0/ sin 0, <S, = sin 0,/ sin 0. = \/p,/p»>
the real part of the phase integral in (16.49) is zero for S < S,. There is also a change
in analytic form at S, = sin 0,/ sin 0. = +/p,/p,. The phase integral thus has three
forms (Lekner 1995): zero for S§<S,, and

1 Az
/dzq(Z):@A—p(q?—%pa) . Sa<S<Sy,

(SIS

20
/ dzq(z) = 1 A { (41 — 4npa)%—(q% - 47'cpb)%}, Sp<S<1. (16.56)
0

We see that the high frequency approximation (16.49) fails at glancing incidence, as
is expected, since g; — O there, and is not good at the smaller thickness of Az =
500 A in Fig. 16.6, but it is a good approximation (away from glancing incidence)
for Az =2000 A shown in Fig. 16.7. The phase curves are drawn against
S =sinf/sin0,, and are thus universal as regards wavelength and angle of inci-
dence. They differ in the thickness and form of the layer, the operative dimen-
sionless constants being (Az)zp, where the various scattering length densities
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Az=200nm | I
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Fig. 16.7 Reflection phase o for the linear profile. As for Fig. 16.6, but now with four times
greater thickness of the linear variation in density, Az = 2000 A

045 Pp, P2 are substituted for p. These dimensionless constants are all sixteen times
larger when the thickness is quadrupled, improving the agreement with the exact
reflection phase.

In the preceding we explored the properties of the reflection phase d, which
relates to the motion in the z-direction, normal to the reflecting stratification. There
is also a phase difference between the reflected and direct neutron waves due to
motion in the x-direction. Figure 16.8 shows the two paths.

The phase difference between the reflected and direct neutron rays can be broken
up into the straight-path contributions (where the neutrons travel in vacuum), and
the curved part contribution from within the reflecting stratification. The
straight-path phase difference is, with L = D + Ax + d being the horizontal distance
between the source and the detector, and Ax the horizontal component of the curved

path,
2
A, =—f{\/D2+H2+\/d2+h2 — \/L2+(H—h)2}

2 2Hh  (H*+h*)Ax

A . ot 0(L‘3)}. (16.57)

The curved part contributes

AczKAx+5:27nAxcose+5. (16.58)
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0 % h

Fig. 16.8 Lloyd fringe formation in total reflection, with vertical distances enhanced for clarity. If
the total horizontal distance between source and detector is L = D + Ax+d, the direct ray has

length /L2 4 (H —h)>. Since H/D =tan0 =h/d, we have D= (L— Ax)[1+h/H]™",
d = (h/H)D

The tangential component K of the wave vector is a constant of the motion in a
planar stratification. The value of Ax in the ray picture is, from (10.50) of Sect. 10.3,

20 20 20

Ax =~ Z/dzcote(z) = Z/dzizﬁ/L. (16.59)
a(2)  vmJ \/p(z0) - p(2)

0 0 0
The last equality follows from ¢*(z) = ¢2 —4np(z) and 0 = g3 — 4np(z9), the
definition of the classical turning point. The semiclassical value of Ax given in
(16.59) also follows from Ax ~ dé/dK ((10.51) of Sect. 10.3) when o is approx-
imated by (16.49).

The total phase difference between the direct and reflected waves is
A=A;+ A, and the Lloyd mirror fringe intensity is proportional to
|1+ exp(iA)[*= 4 cos? 2. The contribution of the curved part of the reflected ray
itself depends on the scattering length density variation with z, as can be seen from
(16.59). Lekner (1996) gives details for the linear and quadratic variation with z.
The fringe spacing, which correspond to a change of 27 in A, is

_ 2
~ dA/dh’

Ah (16.60)

For a linear profile without discontinuities this is constant, equal to AD/2H; for a
quadratic variation the spacing decreases as & increases. Thus, in principle at least,
neutron scattering density profiles can be distinguished in the Lloyd mirror
experiment (the feasibility of optical refractive index determination has been
demonstrated in Allman et al. 1993a, b). In the neutron Lloyd’s mirror experiment,
the wavelength is smaller and the fringes are closer together. Photographic film
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impregnated with boron 10 or lithium 6 may give better resolution than conven-
tional detectors (Lekner 1995).

Other methods of extracting the phase in neutron reflectometry have been pro-
posed: Majkrzak and Berk (1995) by means of a known reference layer having
three tuneable values of the scattering length density, and de Haan et al. (1995) by
adding to the unknown layer a known ferromagnetic layer. For liquid surfaces and
thin films on liquid surfaces, the phase problem can be treated in the distorted-wave
Born approximation (Blasie et al. 2003).

16.6 Reflection of Neutrons by Periodic Stratifications

It is well known that periodic structures diffract waves strongly into certain
directions determined by the constructive interference of the scattered waves. Planar
periodic structures reflect specularly, as we saw in Chap. 13, and most strongly at
wavelengths and angles of incidence which are such as to combine in phase the
waves reflected from each of the repeated components of the stratification. These
stop bands or Bragg peaks, as they are known, are of finite width (in angle, or
wavelength, or frequency), because the periodic structure which produces the
reflection modifies the propagating waves to such an extent that, if the structure
were infinite, forbidden bands would appear, within which only evanescent
non-propagating waves are possible. The infinite and semi-infinite cases have been
thoroughly explored, for instance in solid-state physics. In neutron reflection
studies, interest lies in finite stratifications with a relatively small number of rep-
etitions of the basic unit, for example nickel-titanium multilayers (Penfold 1991), or
lamellar phases of polyolefin diblock copolymer films (Foster et al. 1992). The
theory is treated in Lekner (1994) and Sears (1997). Figure 16.9 illustrates a
four-fold repetition of a Ni—Ti bilayer.

In Sect. 12.2 we showed that the reflection and transmission amplitudes for a
general stratification are given in terms of the stratification matrix M = {m,j} by

_ QPipa 4192712 +my1 — igamy + iqimy

r . . b}
qi1g2miz — myy +igamyy +iqimy)

(16.61)

igia—igsh 2iqy (myymyy — miamyy)

t=e - . .
qi1qamyy — mpy +igamyy +iqimy

(16.62)

(We have reinstated the matrix determinant det(M) = my;my, — mamy, normally
unity, in the numerator.) We shall compare these with the general formulae (16.46)
in Sect. 16.2, expressed in terms of exact solutions F,G of d*y/dz> + ¢*y = 0
within the reflecting layer, namely
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Ni

Ti

Fig. 16.9 A fourfold repetition of a Ni-Ti bilayer, on a substrate of nickel. The layer thicknesses are
Ni:47.8 A, Ti : 55.7 A. The structure shown is drawn to scale, with bound coherent scattering
lengths b(Ni) = 10.3fin, b(Ti) = —3.4fm, and volumes per atom v(Ni)=11.14 A>, v(Ti) =
17.67 A”. The corresponding scattering length densities are p(Ni) ~ 9.25 x 107° Afz, o(Ti) =~
—1.92 x107¢ Afz, indicated by Ni and 7i on the diagram

_ eZiqla‘th(Fa G)+iq\(F,G') +iq:(F',G) — (F',G')

e F O T (F.O) .Gt ey
t = ina—iab 'qu(FbG/b - ngi) ) (16.64)
0192(F, G) +iqi (F, G') — igx(F', G) + (F', G')
In (16.63) and (16.64) we have used the shorthand notation
F.G, — G,F), = (F,G), F,G, —G,F, = (F,G),
F.G,— G.F, = (F,G), F.G,—GF,=(F,G). (16.65)

The combination W = FG' — F'G is the Wronskian of the solutions; W is inde-
pendent of z. Comparison of (16.61) with (16.63) and (16.62) with (16.64) shows
that the exact matrix elements are (Lekner 1994)

myp = _(FlvG)/Wv mpy = (F7 G)/W7 mp; = _(F,aG/)/W’ ma = (Fv G,)/W'
(16.66)

With the common factor W~! in (16.66), the matrix is unimodular:

det(M) = W {(F,G)(F',G') — (F/,G)(F,G)} = 1. (16.67)
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This result follows from the identity (2.31).

We now consider a periodic stratification, consisting of N repetitions of a fun-
damental unit cell. In the example of Fig. 16.9, N = 4, and the unit cell is a Ni-Ti
bilayer. We know from Chap. 13, (16.1) to (16.4), that if M = {m,j} is the matrix
of one period, the matrix for N periods is

Sy — Sn- m2S,
e S 16.68
ma1Sy mnSy — Sy_1 ( )
in NO 1
N s;?nq) ,  cos® = trace(M) = (my1 +m). (16.69)

In the simplest case of pairs of homogeneous layers, as illustrated in Fig. 16.9, the
unit cell matrix is a product of the unimodular matrices of the two homogeneous
layers:

M= { C qz_lsz] { Ch q,;‘sh]
—q181 Cl —qnSh Ch

_ |ccn— a; ansisn @y cisn+q; ' sicn (16.70)
—qisich — qnCisn <ich — qiqy, “sisn | '
The notation used in (16.70) is as follows: the subscripts £, [ stand for the high and
low values of the scattering length density p = b/v, ¢; = cos J;, s; = sin d;, 6; = qil,
where ¢; is the value of the normal component of the wavevector in the layer where
p = p;, found from q2 = q% — 4np, and likewise for ¢y, sp,, 0, The matrices for the
homogeneous layers follow from (16.66) on setting F' = cos gz, G = sin gz. For this
unit cell matrix the phase @ is given by

1 _ _
cos® = ¢ic;, — ESlSh (‘II lqh +qiq, 1)

= COS(51+5},) — %sm,(wq;/qh — \/qh/ql)z. (1671)

We see that @ is approximately equal to the total phase increment across a single
period, ® =~ J;, + ;. The same approximation holds for a general bilayer (Lekner
1994). The Bragg formula 2d sin 6 = n/, which applies to radiation of wavelength
A incident at glancing angle 0 onto planes of scatterers separated by distance d, can
be written as gd = nm, since the normal component of the wavevector is g =
(27/4) sin 0 (if one assumes the planes of scatterers to be separated by vacuum).
Thus, according to the Bragg formula, reflection maxima occur when the phase
increment gd across one period is a multiple of 7. (This begs the question: when the
medium is not vacuum, but a composite structure, what g should one put into the
Bragg formula?) As we have seen in Sect. 13.2, a semi-infinite periodic stratifi-
cation reflects totally whenever cos @ lies outside the range [—1, 1]. Such regions
correspond to band gaps; the band edges are given by cos?® = 1. When
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cos®> @ > 1 the waves cannot propagate within the periodic structure, and reflection
is perfect for a non-absorbing semi-infinite medium, and strong for finite or
absorbing periodic structures. We conclude that the designation of regions of strong
reflectivity as Bragg peaks is a simplification of (or at best a shorthand for) the
underlying band structure, even though in neutron reflection the stop bands can be
very narrow, as illustrated in the figure below.

Figure 16.10 shows the function cos ® and the reflectivity R for a single bilayer
and a 15-bilayer Ni—Ti stack on a nickel substrate, a part of which was shown in
Fig. 16.9.

To calculate the reflectivity of a periodic structure with N periods, we substitute
the matrix elements of the matrix M" for the complete stratification as given in
(16.68) into the reflection amplitude (16.61). The result is

log(R)

Fig. 16.10 Glancing angle dependence of the function cos ® = (my; + m2)/2 and the reflectivity
R for a 15-bilayer Ni-Ti stack, with parameters as given in Fig. 16.9. Whenever cos®> ® > 1 the
infinite periodic structure has a band gap, and reflects totally; the corresponding imaginary part of
® is shown in the upper graph. The non-oscillatory curve on the lower graph is the Fresnel
reflectivity of the bare substrate, Rr = (gq; — qz)2 /(a1 + qz)z. The smooth oscillatory curve is the
reflectivity of a single period on the same substrate. The graphs are plotted as a function of the
angle variable S = sin 0/ sin .. The diamonds on both graphs indicate the locations of the Bragg
angles, for which S is an integer times 7/g.d, from qid = nn
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_ QPina 192712 +myy — iga(miy — o) +iqi(my — o)

r - - (16.72)
q1qamiy — my +iqa(myy — on) +iqi(ma2 — on)
As in Sect. 13.2, it is convenient to work in terms of the quantity
Sn— in(N —1)®
oy = -l sin( ) =cos® — sin @ cot ND. (16.73)

Sy sin NO

We noted in Sect. 13.2 that when N® is a multiple of 7 and (N — 1)® is not, gy is
infinite and R = |r|*— (g1 — q2)*/(q1 +¢2)*, the Fresnel reflectivity of the bare
substrate. On the other hand, when (N — 1)® is a multiple of 7 and N® is not, gy is
zero, and the reflection amplitude is the same as that of a single period of the
structure (supported by the substrate), namely as given by (16.61) with the matrix
elements of (16.70). Hence the rapid variation of the reflectivity with angle of
incidence for the N = 15 stratification seen in Fig. 16.10.

16.7 Neutron Reflection by Magnetic Materials

The neutron magnetic dipole p interacts with the magnetic field B, the interaction
energy being —p.B. Neutron spin is quantized, with equal and opposite magnetic
moments parallel and antiparallel to the magnetic field, so the magnetic interaction
will add equal and opposite terms to the interaction potential. The result is that two
waves of opposite spin travel with different phase velocities within magnetic media,
just as waves of opposite circular polarization are characterized by different
refractive indices in the case of chiral media (Chap. 18).

It follows from Maxwell’s equations in magnetic media that only the magneti-
zation tangential to the surface of the reflecting medium is active in the
neutron-medium magnetic interaction. Let us suppose, as usual, that the plane of
incidence is the zx plane, and that the outer surface of the magnetic reflector is the
z =0 plane. The simplest case arises when the magnetization is along the y
direction (normal to the scattering plane). Then the magnetic interaction potential is
(Sears (1989) Sect. 3.5, Zabel et al. (2007))

2 hz _.
L boy, ay((.) ’). (16.74)

In (16.74) o, is the y-component Pauli spin matrix, which has eigenvalues =1; M is
the mass of a neutron, and v the volume per scatterer. In this simplest case the total
effective medium-neutron interaction is
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27k’ 27k’
=V, + m — ——— (Dn + m) = . 16.
Ve,=V,+V, e (by + by) e by (16.75)

The subscripts n, m stand for nuclear and magnetic, and the plus sign is associated
with neutron spin parallel to the ambient field, the minus sign with spin antiparallel.
The effective dielectric function replacing (16.5) becomes

52
p=1-"— (b =+ byy) (16.76)

From g, = #sin 0 and ¢3 = q{ — 4nb/v we see that reflection will be total for the

two neutron spin orientations for glancing angles smaller than the critical angles Qf
given by

sin 0 = J/by /7y (16.77)

The scattering lengths by can be quite different: for Fe for example,
b, =9.54, b,, =5.98, b, = 15.52, b_ = 3.56. (The scattering lengths here and
below are in fin = 10~'5 m, from Table 3.4 of Sears 1989.) Thus a range of angles
exists for which one polarization is reflected totally, and the other is not. For
neutrons of 10 A wavelength incident on fully magnetized iron,
0 ~1.17°, 67 ~0.56°.

For Co the antiparallel polarization has a negative total scattering length, and
therefore no critical angle: b, =2.50, b,, =4.64, b, =7.14, b_ = —2.14.
Figure 16.11 shows the reflectivity of the two neutron spin orientations from
magnetized cobalt, assuming a sharp interface. The volume per scatterer in cobalt is

11.1 AS, and 0: ~ (.82° for neutrons with 10 A wavelength. The neutrons with
positive spin orientation have the reflectivity obtained by squaring the step profile
reflection amplitude (16.12) for 6 >0 (and unity for 6 <0 ):

sin 0

114
Ri=[s+($-1)] e (16.78)

For negative spin orientation we can use the formulation of Sect. 16.2, namely

174 1
Ro=[s+(£+1)] , 5= _sinf (16.79)

INTRAES

The analysis of neutron polarization experiments involves correction for the
polarizer and analyser efficiencies, and contamination by unwanted spin states.
These aspects are covered by Wildes (1999, 2006).
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0 0.5 I 1.5
0

Fig. 16.11 Reflectivity of neutrons with 10A wavelength by magnetized cobalt, as functions of
the angle of incidence (in degrees). Those with spin parallel to the magnetic field (upper curve)
reflect totally for 6 < 0. a2 0.82°. Those with spin antiparallel to the magnetic field (lower curve)
have a reflectivity near Hj which is small (about 0.4 %), so the magnetized cobalt acts as a
reflection polarizer
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Chapter 17
Acoustic Waves

Section 1.4 introduced the basics of sound propagation in isotropic media, and
some elementary properties of compressional wave reflection and transmission. An
important aspect noted there was the possibility of zero reflection at a sharp
boundary between two media at the Green’s angle, the acoustic analogue of the
Brewster angle. This chapter will summarize known results in the reflection and
transmission of sound waves. As for electromagnetic and particle waves, there are
relations that must be satisfied by the exact reflection and transmission amplitudes
of acoustic compressional waves in an arbitrary planar stratification. These are the
conservation and reciprocity theorems. We shall also give low-frequency and
high-frequency limiting forms, and an upper bound on the reflectivity. These are
compared with analytic solutions for two special stratifications, both having
exponential variation of density with depth, and linear or exponential variations of
sound speed.

17.1 General Relations for Stratified Media

The linearized equation for the acoustic pressure p is (Bergmann 1946;
Brekhovskikh 1960)

Vp—p 'Vp-Vp—v329p =0, (17.1)

where v* = 9,p, is the adiabatic derivative of the hydrostatic or ambient pressure
p, with respect to the density p. For planar stratifications, p and v are functions of
the depth z only; v(z) is usually referred to as the local value of the phase velocity,
but this is literally true only if the medium changes little in one ‘wave-
length’ = ‘speed’/frequency (Gupta 1965). For a plane monochromatic wave
propagating in the zx plane, solutions of (17.1) have the form

p(z,x,1) = K= p(z), (17.2)
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where o is the angular frequency of the wave and K is the x component of the wave
vector, which is a constant of the motion. The angle 0(z) between the normal to the
wave front and the z axis, and the local sound speed v(z), are related to K via the
generalized Snell’s law,

K =2 sin 0(z) = constant. (17.3)
v(z)
The differential equation for P was given in (1.57):
d /1dP 2 5 ? »
——— )+ P:O7 7) = - K-, 17.4
P o (p dz) q q(2) 0 (17.4)

where ¢(z) is the normal component of the wavevector. Here we consider reflection
and transmission by a bounded stratification between z =a and z = b, with
homogeneous media (for z<a and z > b) above and below. Acoustic parameters
relating to these bounding media will be labeled by the subscripts a or b; thus
qa = (®/v,) cos 8, is the value of the normal component of the wave vector in
medium a. When sound is incident from medium «a and transmitted, via the strat-
ification, to medium b, the pressure variable P(z) takes the forms

Py = €9 +rype 4% (2 < a), Pup = tp€"%(z>b) (17.5)

in media @ and b. When sound is incident from below, the forms taken by P(z) in
media a and b are

Ppy = tpee "%(z<a), Ppo = e 7 4 1 (7 > b). (17.6)
We shall derive general relations linking the reflection amplitudes r,, 75, and the

transmission amplitudes ?,,,,, and their relation to the appropriate acoustic
reflectances and transmittances.

17.1.1 General Results for the Reflection and Transmission
Amplitudes

Let F(z) and G(z) be two solutions of (17.4), and consider their Wronskian
W(F,G) = FG — F'G, (17.7)

where the prime denotes differentiation with respect to z. The derivative of W is
W' = FG" — F'G. From (17.4), F" = (p'/p)F' — ¢*F, and likewise for G, so
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/
W = p—W, In W = In p + constant. 17.8
)
p

Thus W/p is a constant: the Wronskian of the two solutions is proportional to the
local density p(z).

Consider first the Wronskian of P, (z) and Pp,(z). From (17.5) and (17.6) we see
that in medium a this takes the value —2iq,t;,, and in medium b the value —2ig;?,,.
Since W/p is a constant, this proves the reciprocity relation

Qatba = tham (179)
where Q denotes the normal component of the wave vector divided by the density:

_4q(z) _wcosb(z) _da _ @
0(z) = FERECIOR Ou " O . (17.10)

The derivation of (17.9) assumes that there is no attenuation in media a or b
(otherwise the forms (17.5) and (17.6) would, with complex g, or g, show
unacceptable exponential growth).

Total internal reflection is excluded for the same reason. It has not been assumed
that the stratification between the homogenous media a and b is free from atten-
uation. The equality (17.9) demonstrates that the (complex) transmission ampli-
tudes t,, and 1, carry the same phase. It also implies that the transmittance (the
fraction of acoustic intensity transmitted through the stratification) is the same from
above and from below,

Tup = Tpay Where  Tuy = (O/Q)ltas]’s  Toa = (Qu/Op)|tnal”.  (17.11)

To see that the transmittance is T, = (Qp/ Qa)|tab|2, consider the situation in
Fig. 17.1, in which a beam incident from medium a insonifies a strip of unit width
on the z = a boundary. The energy density of a plane wave with complex acoustic
pressure p is proportional to |p|*/pv2, so the energy flux is proportional to |p|*/pv.
For the case shown, the amount of energy in the primary wave that is incident on a
unit area of interface in unit time is proportional to cos 0,/p,v,, while the energy
reflected away in unit time is proportional to |rab|zcos 0./p,va- The energy trans-
mitted in unit time is proportional to |t4|*cos 0/ p,vs. It follows that

_ PgVacosly &

Rab = |¥ab 27 Tab = = tab 2. 17.12
|Fa| oy 05 O Qa| | (17.12)

We next consider the Wronskian of P, and Pj,, assuming the absence of
attenuation everywhere (if P is a solution of (17.4), so is its complex conjugate P*,
provided ¢* is real). This Wronskian takes the value 2iq,7 a1, in medium a, and
—2igptapry, in medium b. Since W/p is constant, we have the reciprocity relation
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medium a

medium b

Fig. 17.1 A strip of unit width on the stratification is insonified by a beam of width cos 0,; the
transmitted beam has width cos 0, (the reflected beams are not shown)

Qarabtza = _thdbrza' (1713)

Together with the reciprocity relation (17.9), this shows that
Toa =~ (tya/ba) Tab (17.14)

which in turn implies the equality of the reflectances R, = |rab|2 and Ry, = |rba|2.
Note that the required reality of g, and g, also excludes total internal reflection: for
example, if the wave is totally internally reflected from medium b, g, is imaginary.

Under the same conditions, the Wronskian of P, and P}, is equal to —2ig,(1 —
|ras|?) in medium a, and —2igy|t,|* in medium b; the constancy of the Wronskian

divided by the density thus implies
Qa<1 - |ra;,|2) = Osltaw|’, (17.15)

which is the energy conservation law
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Ry +Ty=1. (17.16)

(The same equality links Rj, and Tj,.) The analogous results for electromagnetism
and quantum mechanics are derived, by different methods, in Sect. 2.1.

The differential equation (17.4), to be satisfied by the acoustic pressure variable
P(z), is linear and of the second order. Thus, in a general stratification, (17.4) has
two linearly independent solutions, say F(z) and G(z), and P(z) is a linear com-
bination of these within the stratification:

P = uF +1G. (17.17)

Consider the reflection-transmission problem, in which sound is incident from
medium a. Then P is given by (17.5) in media a and b, while within the inho-
mogeneous layer it is given by (17.17). The boundary conditionsatz =aandz = b
are the continuity of P and of p~'dP/dz. (Note that these conditions are implied by
the differential equation (17.4), and are not additional physical input.) These
boundary conditions give four equations in the four unknown constants u, v, r, and
t

e” +re ™ = uF, +vG,, uFy,+vG, = te’ (17.18)
iQ4(e™ — re™™) = uF, +vG,, uFy +VvG, = iQpte”. (17.19)

Here o = g,a, p = gpa; r and ¢ are the reflection and transmission amplitudes for
insonification from medium a (we will drop the ab subscript from now on unless it
is specifically needed); F, stands for F(z,), F, for the derivative of F at z =a
divided by the value of p just inside the stratification, and so on (This notation
allows for possible discontinuity of density at either interface). Solving (17.18,
17.19) we find

y = i LaQ(F.G) + ’Q (F’@ i igb @ G) - (F, @ , (17.20)
0.04(F,G) +iQ4(F,G) —iQ,(F,G) + (F,G)
o E o n xor ]
“—*%@wﬁwﬁﬂﬁigg@@+@cy (17.22)
= i 2004 (Fy — i0vF) S (17.23)

® 0.0s(F, G) +104(F,G) — i0,(F, G) + (F.G)
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In (17.20-17.23), (F,G) = F,Gy — G,F;, (F,G) = F,Gy — G,F,, et cetera. Note
that there is a common denominator to all four expressions. Corresponding results
for electromagnetic waves were given in Sect. 2.2.

If the density p is continuous across both the interfaces at z = a and at = b, the
equations linking the derivatives across the boundaries simplify, and the (17.20-
17.23) may be replaced by a set in which Q, — ., Q» — gy and F — F',G — G'.

In the absence of attenuation or total internal reflection, g is real everywhere.
Then F and G may be chosen to be real, being the solutions of a real differential

equation, and R = |r|* and T = (Q,/Q.)|t|* are given by

R= —— 5 (17.24)
[0.0(F,G) + (F,G)]" + [Qu(F,G) = Os(F, G)]
T 40,05 (FyGp, — F,Gp) (17.25)
[0(F.G) + (F.G)]" + [Qu(F.G) ~ 0y(F.G) )}
By using the identity
S o — (W (W
(F,G)(F,G) — (F,G)(F,G) = (F.G, — F.G,)(FsG, — F;G) = <;>a (;>h,
(17.26)

and the fact that W/p is a constant, the conservation law (17.16) is seen to be
satisfied by (17.24) and (17.25). It also follows from (17.24) that R<1, as can be
seen by writing it in the form

40.05(W/p)*

R PG+ (FOT + [0(F.T) - B FO)T

(17.27)

In total internal reflection (the angle of incidence exceeding the critical angle

. 2 2
arcsin v, /vp), qlz, =@ _K2—=—0o

vi -2 . . . . .
2 2 (\7 — sin” 0, ) is negative, g, is imaginary, and the

b
reflection amplitude takes the form r = ¢2*(iA — B)/(iA + B), so that |r|*= 1. But
note that this is true only in the absence of attenuation, which makes the reflection
less than perfect even if g, is pure imaginary.

At grazing incidence (from medium a) the normal component ¢, =
(w/v,) cos 0, of the wave vector tends to zero. It follows from (17.20) to (17.21)
that

r——-1, t—0 as 0, — 90° (17.28)

(F and G are functionals of ¢*(z) = (w?/v*(z)) — K?, and thus depend on the angle
of incidence through K = (w/v,) sin 0,,; however, this dependence cannot override
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the effect of Q, — 0 in (17.20) and (17.21)). Thus there is perfect reflection and
zero transmission at glancing incidence. The reflected wave is then 180° out of
phase with the incident wave. These statements hold whether or not there is
attenuation in the stratification and/or the bottom medium, and also hold when there
is total internal reflection (g, imaginary).

The reflection and transmission amplitudes for insonification ‘from below’ may
be obtained by applying the boundary conditions to (17.6) with P written in the
form (17.17). They are

Fha = 721[)’ QaQb lQa( ;?) - lQb (ia G) - (fa?) 7 (1729)
0.0y(F + i04(F,G) — i0y(F,G) + (F,G)
tpg = &P 2i0,(FyGs — FiGy) (17.30)

0u0i(F,G) +i0Q4(F,G) — iy (F,G) + (F,G)
Together with r,;, and #,, given by (17.20) and (17.21), they satisfy the reciprocity

theorems (17.9) and (17.14). The corresponding solution for the constants in P =
uF +vG is

2lQb (Gin + lQa a)

—e# —, 17.31
"= 00N F.G) +i0u(F,C) — 0y (F.G) + (7. ) 1730)
y= —ef 210 (Fa+ iQ‘_‘F“> S (17.32)

0.05(F,G) +iQ4(F,G) —iQy(F,G) + (F,G)

The general expressions for reflection and transmission amplitudes derived here
will be used in the next three sections to obtain low-frequency and high-frequency
limiting forms, and exact solutions for certain velocity and density profiles.

17.2 Matrix Methods

The techniques introduced in Chap. 12 may be adapted to acoustic compressional
waves. The method involves taking the product of N 2 x 2 matrices when the
stratification is approximated by N layers. These layers can be chosen to have linear
variation in the acoustic parameters to best represent the actual stratification without
undue complexity in the resulting matrix elements. It is possible to guarantee
unimodularity of the matrices, thus making sure that the energy conservation law
(17.15) or (17.16) and the reciprocity law (17.13) or (17.14) are automatically
satisfied. The accuracy of these methods will be tested in Sects. 17.3 and 17.4
against an exactly solvable model stratification, in which the density and speed of
sound both vary exponentially with depth.


http://dx.doi.org/10.1007/978-3-319-23627-8_12

426 17 Acoustic Waves

The second-order differential equation (17.4) for P(z) may be written as a pair of
coupled first-order differential equations in P and its derivative divided by the
density:

1dpP i §
S _p T _1p (17.33)
p dz dz o

We divide the inhomogeneous stratification lying between z = a and z = b into N
layers, with z, <7<z, in the nth layer, and z; = a, zy+ = b. The integral
versions of (17.33), incorporating the boundary values at z,, are

Z

P(Z):Pn+/dép(C)D(C), D(z)_Dn+/d§q2(§()g(C). (17.34)

Zn Zn

These coupled integral equations can be solved by iteration. We set

P(z) = in(z), D(z) = ZOC:Dj(z), (17.35)
j=0 j=0

and start with P° = P,,D° = D,,. The superscript j gives the degree of the cor-
rection in the thickness 0z, = 7,41 — z,. The first iterates are

Z Z 5
P(z)=D, [ d D) =-p [al©, 17.36
@) / (0. D) / L5 (17.36)

The second-order iterates, evaluated at z,, 1 1, are

Zn+1 n+1 z )
2(ni) = | d lz)=-pP, | d A 17.37
Pl = [ dp@p'@)=-r, [ @) [ L )
D) = [ &P@P @06 =D, [ & @06 [ o). (1739)

To find the matrix relation between P, 1,D, 1 and P,, D, we evaluate (17.35) at
Zn+1. To second order in 0z, = z,+1 — z, We need the integrals
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Il:/ dzp(2), ’2:/ dzp(Z)/qu:((é), (17.40)
il ) Zn41 z
Jl:/ dqu<—(zz>)’ J2:/ dZ‘IZ(Z)/P(Z)Z/de(C)- (17.41)

The second-order matrix which relates P and D at z, . to the values at z, is thus

P,y (1-L L P,
(Dm)‘(—h 1—Jz><Dn>' (17.42)

We note that by interchange of the order of integration J, may be written in the
form

Zn+1 n+1 D)
q°(0)
J = / dzp(z / dl . 17.43
Zn Z
It follows that
L+J, =L (17.44)

Thus the determinant of the 2 x 2 layer matrix in (17.42) is equal to 1 4 IJ,; the
matrices obtained by iterating P and D to second order in dz, have a correction to
unimodularity of order (ézn)4. If we had stopped at first order, the determinant
would have been 1 + 1,J;, and the correction to unimodularity would have been of
second order in 6z,,.

The importance of unimodularity is the link with conservation and reciprocity
laws, as we shall see shortly. Here we note that symmetrized starting values in the
iteration, namely

P’=_-(P,+P,. ), D°=—(D,+D,.1), (17.45)

N =

1
2

improve the unimodularity. Lekner (1990a) shows that, to second order, the matrix
for the layer z, <z7<z,4+ is

1712/2 1

1+5L/2 1+5L/2

M, = < T ”22//2>. (17.46)
T+R2 1+h/2

That this matrix is exactly unimodular follows from the identity (17.44).
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The reflection and transmission amplitudes are found by multiplying together the
layer matrices. To see this, we note that from (17.5)

Pi=¢c"+re ™ Dy =iQ,(e" —re ™), o=quz=qaa, (17.47)

Py, = teiﬁ, Dy, = inteiﬁ, ﬁ =gpiIN+1 = qbb (1748)

The values of P and D are related by the layer matrices:

Py 1 Py Py_q P,
=M = MyMy_ =---=M . 17.49
(DN+1> N(DN> M 1<DN1) <D1> ( )

M is the profile matrix, the ordered product of all the layer matrices:
M = MyMy_,.. M,.. MoM, = (m“ 2 ) (17.50)
my; My
From (17.47), (17.48) and (17.50), we have

te'f myp mpp e 4 re™
. = . . . 17.51
(inlelﬁ> (mzl Mmoo > (iQa(e’“ —re ™) ( )

Solving for the reflection and transmission amplitudes r and ¢ we find

iy QaQpmin + myy +iQumay — iQpmyy
Q.Qpmizr — Moy + iQqma +iQpmyy’

(17.52)

2i0,detM

t=el P . , .
Q,0pm12 — myy + iQ.may + iQpmy

(17.53)

We note the close correspondence between the exact expressions (17.20), (17.21)
and the matrix expressions (17.52), (17.53). The correspondence becomes equiv-
alence in the limit N — oo. In (17.53) det M = my1my, — myymy; is the determinant
of the profile matrix; det M = 1 when the matrix is unimodular.

In the absence of dissipation within any part of the system, and also excluding
total internal reflection, all ¢ and Q values are real. No absorption within the
stratification also implies that all the matrix elements are real. Then the reflectance

R = |r|* and transmittance T = (Q,/Q.)|t|* are given by

(QuQpmiz +m1)* + (Quma — Qpmiy )’
(QaQpmiz — ma1)* + (Qumx + Qpmiyy)*’

R= (17.54)

2
T= 400, (det M) . (17.55)

(0aQpmiz — my1)* + (Qumay + Qpmyy )’
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Since there is no dissipation, the incident intensity must be equal to the sum of the
reflected and transmitted intensities, R+ 7 = 1. From the formulae (17.54) and
(17.55),

40,0, det M (1 — det M)
(QuQpmiz — my1)* + (Qumz + Qpmiy)*

R+T=1- (17.56)

Thus energy conservation requires det M = 1 or det M = 0. The latter is excluded,
as we now show. In the case of representation by homogeneous layers, M is a
product of unimodular matrices: if within z, <z <z, the density p = p, and the
normal component of the wavevector g = ¢q,,, and Q, = g,/p,, the solutions of
(17.33) in this layer are

P(z) = P,cosgn(z — z4) + Q;an sing,(z — z), (17.57)
D(z) = D, cosq, (z — zy,) — Q,P, sin qn(z — zn). (17.58)

Hence the homogeneous layer matrix is unimodular:

_ cosd, 0, l'sing,
Mn B <_Qn Sin 5,1 CcOS 5}1 ) (1759)

M is then the product of unimodular matrices, and detM = 1. Since detM is a
continuous function of the matrix elements, a zero determinant is excluded in the
general case.

Next we compare the reflection and transmission when the wave is incident
“from below’ (from the homogeneous medium b). Equation (17.49) still holds, with
the same M as before, but now

P =re ™ D, =—-iQ./e ™ a=q.z =qaa, (17.60)
Pyii=e P 4re? Dy =—i0(e™ —reP), B=qyzni1 = qub.
(17.61)

(We use the shortened notation r = 7y, t = tap, ¥ = rpe,t = tp, in this section.)
Thus (17.51) is replaced by

—iff /i / a—io
e P+re mpp mpp te

. . = . 17.62
(—in(ell‘ - r'e’ff)> (m21 m22) (i - iQaz'em> ( )

As before, we can solve for the reflection and transmission amplitudes. The results
are
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S o2if QaQpmiz +myy — iQuma +iQpmyy (17.63)

Q,0pmiy — may + iQumaps +iQpmyy

/= eh 210 . (17.64)
Q,0pmip — my +1Qmoo +1i0pmy

The reciprocity law (17.9), here written as Q.7 = Qpt, (which implies the important
result that the transmittances T = (Q,/Q.)|f)> and T' = (Q./Q)|¢|* are equal,
even if there is absorption within the stratification) is seen to be valid on comparing
(17.53) with (17.64), provided detM = 1. The other reciprocity law (17.14),
namely ' = —7r*/f*, which implies that the reflectance is the same from either
side, is valid only in the absence of absorption. It can be verified from the equations
for r, 7 and ¢ given above, independently of the value of det M.

We have shown that unimodularity of M is necessary for energy conservation
and for the reciprocity law T’ = T. If each layer matrix is unimodular, M will be
unimodular, since the determinant of a product of matrices is equal to the product of
their determinants. Thus unimodularity of the layer matrix guarantees these laws,
and is a desirable characteristic in any approximation scheme. We have seen an
example of an approximate layer matrix which is exactly unimodular, given in
(17.46). Section IV of Lekner (1990a) gives the elements of this matrix when the
variation of p and of g within each layer is linearly approximated. The integrals
1,J1,1,J, are then

1
I :E(Szn(pn+pn+l)7 (17.65)
1 2 2 1 2 2

Jl = Eazn(qn/pn +qn+l/pn+l) = Eézn(ann +QnJrlanrl)7 (1766)

1 2 2
12 - EIIJI + (51}1) pnpn+1(Qn - Qn+1)/123 (1767)

_ 1 2 2
Jo=5hhi - (020) " Pupn+1(Cp — @y 1)/ 12. (17.68)

Note that the identity (17.44) is satisfied. Section V of Lekner (1990a) compares
seven algorithms, based on constant or linear approximation of the density and
normal wavenumber component, with or without unimodularity. The unimodular
matrices are numerically superior, as well as avoiding violation of the conservation
and reciprocity laws.
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17.3 Low-Frequency Reflection and Transmission

The low-frequency regime is attained when the dimensionless parameter (w/v)Az is
small compared to unity, where Az = b — a is the thickness of the stratification, and
v some relevant speed, such as v,. Since the parameter (w/v)Az is equal to 21Az/ 4
the low-frequency limit is equally well characterized as the thin-layer or
long-wavelength limit. We first note that as (w/v)Az — 0 the reflection and
transmission amplitudes tend to the sharp-transition values

vigaQa = Qb - itgage_2Qa_ 17.69
0.,+0, 0u+0» (17.69)

rp =€

These are obtained by matching P and p~'dP/dz at the boundaries with the
homogeneous media a and b. As before, Q, = q./p,, O» = q»/pp- The fact that the
equations (17.69) give the low-frequency limits of (17.20) and (17.21) is intuitively
plausible: At long wavelengths the wave is mainly affected by the change in the
acoustical parameters, and is not sensitive to details in the transition between the
two homogeneous media.

An important question is: What are the corrections to (17.69) and to the
reflectance and transmittance? It is natural to express the corrections as power series
in Az (more precisely, as power series in a dimensionless parameter such as
(w/v)Az):

P rot by (17.70)

A variety of techniques for extracting r; and the higher-order corrections are
developed in Chap. 3 and Sect. 12.4. Here we will make use of the results (17.52)
and (17.53), with the matrix elements up to second order in the layer thickness
given by the integrals I, J;, I5,J, in the matrices (17.42) and (17.46).

The corrections to the reflectance R = |r|2 depend on whether there is attenua-
tion or not. If attenuation is negligible within the stratification and in the homo-
geneous media, and in the absence of total internal reflection, all matrix elements
and wavevectors are real, the first-order correction to Ry = |r0|2 is zero, and to
second-order

40,0p 21272, 72 2 2
R=Ry+ —=% I +J7 — 2030, —20,L }. 17.71
0 (Qa—‘rQb)4 {QaQb 1 1 Qa 2 Qb 2} ( )

The low-frequency approximation to the reflectance, namely the expression (17.71),
is shown compared to the exact reflectance in Fig. 17.2, for a stratification in which
both density and sound speed vary exponentially with depth. For this stratification,
all the integrals needed in (17.71) may be found analytically. The exact reflectance
is calculated from the formulae of Sect. 17.5. Also shown is the high-frequency
approximation of Sect. 17.4.


http://dx.doi.org/10.1007/978-3-319-23627-8_3
http://dx.doi.org/10.1007/978-3-319-23627-8_12
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% by
low frequency '~

k Az

a

Fig. 17.2 Reflectance of a stratification in which both density and speed vary exponentially,
versus the layer thickness Az times k, = w/v,: exact from Sect. 17.5, low-frequency
approximation (17.71) and high-frequency approximation given by (17.93). The parameters used
are p, = 2p,, v = (3)Va, With p and v continuous at z = a and at z = b = a + Az. The angle of
incidence is 0, = 30°

Attenuation changes the low-frequency behavior dramatically: whereas the
correction to Ry given in (17.71) is second order in the small parameter (w/v)Az,
attenuation makes one of the first-order contributions to the matrix elements
complex: (17.41) gives

b

2(z) — K? 12— k2 — K+ 2ik.k;

Ji :/dzL /dz ’ Tk (17.72)
p(z) p(2)

a a

The wavenumber has been split into its real and imaginary parts:
w/v(z) = k(z) = k,(z) + iki(z). The consequence is a first-order correction to the
reflectance: |r|*= 3 +2Re(rgr) + - - -. From (17.52) we find

a ior 2i a
o — emg +§z = QITQQb(Jl—QiIl), (17.73)

The reflectivity to first order in the thickness parameter (w/v)Az is thus

b

R=Ry— 80u(0. — 0 /dzk’ + (17.74)
Qa+Qb
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Since &, and k;, the real and imaginary parts of w/v(z) are both non-negative, so the
reflectance is decreased from Ry if Q, > Qp, and increased from R if O, < Q. On
using Q = wcos 0/pv and the constancy of K = wsin6/v (Snell’s law), we find
that Q, > Qy if

(pu0)’ = (o)

2
tan” 0, >
‘ pZ(vy —v3)

(17.75)

For stratifications in which p and v increase together, the right-hand side of (17.75)
is negative, and so Q, > Q) and attenuation in the stratification decreases the
reflectance of long waves from Ry at all angles of incidence. We note in passing that
the equality Q, = Oy, which makes Ry = 0, requires equality in (17.75). The angle
at which this happens is Green’s angle 6, the acoustical analog of Brewster’s angle
in optics (Sect. 1.4, (1.61)). At Green’s angle (if it exists) the first-order correction
to the reflectance vanishes. This is not true of the transmittance T = (Qp/Q,)|t|*
which from (17.53) and (17.72) is, to first order in (w/v)Az,

T:

b
40,00 |, 4 / g @k L (17.76)

0t )] QutO

a

Thus there is a first-order correction to the transmittance at all angles, and the
low-frequency attenuation correction always decreases the transmittance, as
expected. The second-order correction to 7, in the absence of attenuation and using
(17.71) and R+T =1, is

40,0 222 12 2 >
T =Ty — —=4%0 IF4+J7 —20°0, —20:1 . 17.77
0 (Qa b)4 {QaQb 1 1 Qa 2 Qb 2} ( )

The degree of attenuation required for it to dominate the low-frequency cor-
rections may be estimated from (17.71) and (17.74) or (17.77). The first-order and
second-order terms are, respectively, of magnitude k;Az and [(w/v)Az]*, with k; and
v here representing average values within the stratification. Attenuation is corre-
spondingly important in the low-frequency case unless

ki < (w/v)*Az. (17.78)

If there is attenuation in medium b, this will be important at all frequencies,
manifesting itself in the formulae via a complex Qp.


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_1
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17.4 High-Frequency Limiting Forms

Reflection and transmission of high-frequency (or short-wavelength) acoustic
waves is intrinsically more complicated than at low-frequencies, because short
waves are sensitive to details of the stratification while long waves are influenced
by average properties as expressed in integrals over the reflecting inhomogeneity.
There is no universal form of the high-frequency reflectivity, in contrast to the low
frequency case of the previous section. Nevertheless it is possible to give explicit
formulae for the dominant terms in the reflection amplitude in some simple cases.

We first transform (17.4) by defining a new dependent variable p = (p,/ p)%P

(Bergmann 1946). The differential equation satisfied by p(z) is, with primes
denoting differentiation with respect to z,

"3 N 2
qz+P___<P_> ]pzo, (17.79)

i
Pt 20 4\p

At high frequencies the ¢> term is dominant and approximate solutions of (17.79)
are the Liouville-Green functions of Sect. 6.2,

1

pz) = (‘Z‘)ieﬂ‘/’, P(z) = 7d£q(£). (17.80)

The phase integral ¢(z) gives the accumulated phase at depth z; its derivative is
¢' = g. The corresponding approximations to the solutions of (17.4) are

+ _ Qa %ii 4
PE(z) = (Q(Z)> e (17.81)

The Liouville-Green functions p*(z) both satisfy

2 9 3(q g
— === =0. 17.82
“ 2q 4 (‘1) b ( )

In the case of acoustic waves incident from medium a, the limiting forms of p(z) are

"

P+

1
et 4 re " — p(z) — <%> e, (17.83)
b


http://dx.doi.org/10.1007/978-3-319-23627-8_6
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The limiting forms of p* are

o=

et pt () (q_> el +d,) (17.84)
qb

We have chosen the lower limit in the integral defining ¢ so as to make ¢(z) — ¢,z
as z — —o0; ¢ | is a constant phase. We now multiply the differential equation for
pbyp™, that for p™ by p, subtract, and integrate from —oo to + co. The result is a
comparison identity similar to that obtained in Sect. 6.4,

: /OC R <Q’)2 3 (P’>2
r=— dz|[————->(=) +>(=]) |p*. 17.85
4iqq [q p 2\q 2\p ( )

This holds for all stratifications; the reflection amplitude is given as an integral over

1
the derivatives of ¢ = (w/v,) [v2/v* — sin® ,]* and of the density p. The function
pT given by (17.80), while p is unknown. A useful approximation to r at high
frequencies is obtained by replacing p by pt = (qu/q)%ei‘f’ in (17.85):

1 x 2ip | 1 "3 2 3 N 2
DR TR A A (i) + _<p_> . (17.86)
4 g |9 P 2\gq 2\p

A closely related “weak reflection” or Rayleigh approximation is (Lekner 1989)

o0

rR=— / dzeMzQ—Q. (17.87)

—00

This may be put in a form similar to (17.86) by changing to ¢ as integration
variable, integrating by parts, and then changing back:

00

1 ” -1@_17 w4 (40 _Lf (2
R= 2/‘1‘7)e 5] 5\ 0ae) T ) L0

o0 —00 —00
1 7 2ip | 1 " N 2 N 2 (]
— [t q__ﬂ__z(z> +(&> L (17.88)
L q9 14 p q P Pq
—00

Both approximations fail if g is zero, as happens at a classical turning point where
¢> = 0,v* =12/sin* 0,; or if g is small, as at grazing incidence, when g, — 0.


http://dx.doi.org/10.1007/978-3-319-23627-8_6
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As an application of (17.86) or (17.87, 17.88), we will consider the
high-frequency reflection amplitude from a stratification that is smooth except at a
finite number of points z; where there are discontinuities in the derivatives of p or v,
or of both. Under these conditions the dominant terms in the integrands of (17.86)
or (17.87, 17.88) are delta functions at z;, arising from the second derivatives of p
and gq.

Let the density derivative p’ change by Ap] as z passes through z;. This dis-
continuity in the derivative contributes Ap/(z —z) to p”. A discontinuity in the
derivative of g gives a delta function whose strength may be calculated from

dg  1d¢* o*dv? 2d
dq_9 v o (17.89)
dz 2qdz 2q dz g3 dz

A change Av]’. in the derivative of v as z passes through z; thus contributes

f(wz /qﬁ{f)Av]{é(z —zj) to ¢". The integrand near z; thus contains the singular

delta function term originating from ¢”/q* — p”/pq of the form —a;3(z — z;). The
dimensionless strength ¢ of the delta function is determined by the discontinuities
in the derivatives of density and sound speed:

Ao’ 2 AV
g="F L 20V (17.90)
ap gV’
The phase factor exp 2i¢ oscillates rapidly in the high-frequency limit. This ensures
that smooth parts of the integrand average out to near zero, so that

r %iZajepoiqﬁj (17.91)
J

(¢; being the value of the phase integral at z = z;). Since ¢ varies with frequency as

™!, the resulting reflectance is proportional to w2

the phase factors exp 2i¢;.
A simple and important special case is that of a stratification that is smooth

except for discontinuities in the derivatives of p and/or v at the boundaries z = a
and b. The formula (17.91) gives

, with oscillatory terms due to

OIS i(aa exp 2i¢, + o, exp 2ig,,), (17.92)

with the reflectance
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1
RY ~ 6 (02 + 0} + 20,05 cos 2A¢). (17.93)

In (17.93) A¢ is the increment in phase across the stratification,

b b 1

A¢:%—%=/&ﬂd:%/&bé—me. (17.94)

a a

Figure 17.2 showed the high-frequency reflectance (17.93) for the exp-exp strati-
fication discussed in the next section, continuous in p and v at z = @ and z = b. For
this case

p(2) = p e, w(z) = vl (17.95)
The lengths L,, L, are related by the stratification thickness Az = b — a by

Az Az
L=—— L= 17.96
" In(py/p,) In(vy/vy) (17.96)

The strengths of the delta functions in this case are
o, = q;l (L;1 +L;1 sec? 0a> ,0p = —q;l (L;1 +L;1 [1 — (vi/vi) sin’ Ha] 71)‘
(17.97)

Assuming that the angle of incidence is less than the critical angle
0. = arcsin(v,/vp), so that g(z) remains real, the phase increment is

A¢ = L,{KJarctan g, /K — arctanq, /K] — (gr — qa)} (17.98)

As usual, K = (w/v,)sinf, is the tangential component of the wavevector. At
normal incidence K — 0, g, — ®/v4, qr — ®/vp, and (17.97) and (17.98) reduce
to

Va PpVb Vb PpVb
= L o= ——2 . 17.99
%= wAz 8 PaVa b Az . PaVa ( )
LV a
Ap =2 [1 - V—} : (17.100)
Va Vp

Figure 17.3 compares the normal incidence exact reflectance with the high fre-
quency limiting form (17.93), to higher values of the parameter wAz/v, than were
shown in Fig. 17.2. Note that the contributions from the discontinuities in the
derivatives of p and v, which give the characteristic oscillatory decay with fre-
quency, become dominant at quite moderate values of wAz/v,,.
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Fig. 17.3 Reflectance of an
exp-exp stratification. The Rayleigh
notation and parameters are 0.2 ’
the same as in Fig. 17.2,

except that the results here are

for normal incidence and to

higher frequency, and that the R
Rayleigh approximation 0.1
(17.101) is also shown

It is interesting to show in Fig. 17.3 the Rayleigh approximation (17.87), which
correctly incorporates the high-frequency limiting reflectance, and also is good at
low frequencies, provided the reflection is not too strong. From (17.87) to (17.95)
we find, at normal incidence,

1 L\’

Rr = 7 (1 + L> {[Ci(a) - Ci(ﬁ)]2 + [Si(a) — Si(ﬁ)]z}, (17.101)
7

In (17.101), « = 2wL, /v4, p = 2wL, /vy, and Ci and Si are the standard cosine and

sine integrals (Temme 2010),

Z Z

Ci(z):1nz+yf/dtt’1(lfcost), Si(z):/drfl sint. (17.102)
0 0

The low-frequency limit of (17.101) is, in agreement with equation (34) of Lekner
(1989),

1 PpVb :
R — |In——| . 17.103
kT 4 |:npavfl:| ( )

This result may be obtained directly from (17.87), since in the long-wave limit the
phase ¢ is nearly constant over the stratification, so at arbitrary angle of incidence

1 P 1
rR — —an— R = |rz|*— ~ {ln

0.]°
3G, 3 —}. (17.104)

Op



17.4 High-Frequency Limiting Forms 439

The Rayleigh approximation (17.103) differs from the exact normal incidence
low-frequency limit

2
Ry = (M) (17.105)
PpVb T PgVa

by an amount of fourth order in the quantity x = (p,vs — pva)/ (PVe + Pva): The

leading term in the difference Rg — Ry is %x“, and the fractional difference is

Rr/Ro — 1 =3x*+ ---. For the case shown in Fig. 17.3, the ratio x = 5/11, and
there is an appreciable difference between R, and the Rayleigh approximation value
given by (17.103).

17.5 Exact Solutions for the exp-lin and exp-exp
Stratifications

Several variations of the phase velocity are known for which analytic solution of the
acoustic pressure equation (17.4) is possible: exponential decrease of sound speed
with depth (Heller 1953), linear variation of speed (Gupta 1965), and linear vari-
ation of the reciprocal of sound speed (Morris 1970). Here we will give solutions
for exponential variation of density, accompanied by either linear or exponential
variation of the sound speed, following Lekner (1990b). Only the case where both
sound speed and density vary exponentially will be discussed in detail. For expo-
nential density variation, with densities p; at z=a+ and p, at z = b—,

_ Az
pa) = prel e L, = T (17.106)
2 1

When the density is continuous at the boundaries, p; = p, and p, = p,, and we

regain (17.95) and (17.96). The function p = p’%P satisfies (17.79), which for
exponential variation in p reduces to

P+ [qz - (2Lp)’2]p =0. (17.107)

If the speed of sound v(z) is linear in the depth z, d/dz = (Av/Az)d/dv, and
(17.107) may be written in terms of v as independent variable:

d? AZ\? [0? -2
d_vlj+ (A_V) {?—KZ— (2L,) :|p:0. (17.108)
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Comparison with equation 10.13.1 of Olver and Maximon (2010) shows that

solutions of (17.108) are v?(z)M,[sv(z)], where M, is any of the modified Bessel
functions I, K, the order u and “slowness” parameter s being given by

, 1 (wAz)? _|Az|1,2 2]z
=g (AV) s= e e (17.109)

Since the order p changes from real to imaginary when the angular frequency
increases through wy = |Av/Az|, the two frequency ranges (0, o) and (wp,c0)
have to be considered separately. The formulae (17.20) and (17.21) give the
reflection amplitudes r and ¢ in terms of two linearly independent solutions F and G

of (17.4), of the form (pv):M,(sv).
The remainder of this section will be concerned with the exp-exp stratification, in
which the density varies according to (17.106) and the sound speed according to

A
V(Z) = V]e(z*a)/llv7 LV = o VZZ/VT . (17110)

It is understood, as for the density variation, that v, is the sound speed at z = a +,
and v, at z = b—. Equation (17.107) then reads, on transforming to the dimen-
sionless slowness variable ¢ =v;/v=exp(a —z)/L,, and noting that
g = (wz/v%)(g — K2

& d
02—p —l—a—p

h ol 4 [(OL/v)e? = (KL= (Ly/2L,) [p=0. (17.111)

Two linearly independent solutions of (17.111) are the Bessel functions
Ju(¥), Yy (y), where

u:LV[K2+(2Lp)72T, y=yi0, y1=wL,/v. (17.112)

The solutions of (17.4) may thus be taken as

1

1 1
A% (P)2 OLy (a-2jL, P _ o)L
F=|—)J,(y),G=—) Y.(y),y=—e @9 — =gk v (17.115

<P1) x0) P1 «0) Vi P1 )

Equations (17.20) and (17.21) then give the reflection and transmission ampli-
tudes. As noted in Sect. 17.1, if the density p is continuous across both the inter-
faces at z =a and at z = b, the equations linking the derivatives across the
boundaries simplify, and the equations (17.20-17.23) may be replaced by a set in
which Q, — g4, 0, — q» and F — F',G — G'. This is the case for the profile
whose reflectivity is plotted in Figs. 17.2 and 17.3.
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17.6 An Upper Bound on the Acoustic Reflectivity

In Sect. 5.4 we derived bounds on the reflection of s and p polarized electromag-
netic waves. For the s polarization the result is simple: when the profile dielectric
function &(z) increases or decreases monotonically between its boundary values
&4, &, the reflectivity is always less (at the same angle of incidence) than for a sharp
transition between the same values. The p polarization result is more complicated,
since the effective normal wavevector component is Q = ¢/e. The same compli-
cations arise in the reflection of acoustic waves: the effective normal wavevector
component is Q = q/p, and the inequality stated above will hold when Q is
monotonic.

From Sect. 5.4 or from Sect. IV of Lekner (1989), we have an identity for the
reflection amplitude r = |r|e’:

1
In 1+|’"| /dz—cosqs (17.116)
—|r

(A minus sign is missing from the corresponding equation (17) in Lekner 1989.) Let
20 be the dimensionless quantity on the right side of (17.116). Then |r| = tanh o
and

R = |r]*=tanh® 2 < 1. (17.117)

(In the absence of absorption, Q = g/p is either real or imaginary: when v, > vy, it
is imaginary for 0; > 0. = arcsinv; /v, and there is total internal reflection. Hence
0'/Q is real.)

Suppose that Q'/Q has one sign throughout the stratification, which implies that
Q increases or decreases monotonically. Since the cosine of the phase ¢ is bounded
above by + 1 and below by —1, the right side of (17.116) is bounded above by
In Omax / Omins Where Omax and Oy are the greater and lesser of Q, and Q,. Thus, if
0(z) is monotonic,

| | Qmax _ ( Qb>2 17.118
1—|r|*Qmm =< (%70, (17.118)

Thus a profile for which Q is monotonic (or at least does not increase or does not
decrease within the profile), will not reflect more than an abrupt transition between
the same two media, at the same angle of incidence, and at any frequency. (The
reflectance from a step profile is independent of frequency.)

Under what circumstances is Q monotonic? Since Q = ¢q/p,


http://dx.doi.org/10.1007/978-3-319-23627-8_5
http://dx.doi.org/10.1007/978-3-319-23627-8_5

442 17 Acoustic Waves

2 dg? 2 dl dl
QZ(): |:w _K2:| _2( )7 g_ qz npv+K2 ng -

v2(2) 2

= 17.119
dz p? dz ( )

At normal incidence (K = 0), dQ?/dz has the sign of —dIn pv/dz, so if the
product pv of speed and density increases or decreases monotonically, the reflec-
tivity at normal incidence is never greater than that for a sharp interface.

At general incidence, if pv and v both increase or both decrease monotonically,
the reflectivity at any angle will be smaller than the reflectivity (at the same angle)
at an abrupt change between the same bounding media. (In this case there is no
Green’s angle, at which Ry = 0, see (1.61).) If, on the other hand, pv increases
monotonically and v decreases monotonically (or vice versa), the expression within
large parentheses in (17.22) may change sign, in which case there is the possibility
of greater reflection than from a sharp interface.

The exp-exp profile of the previous section is an example in which both p and v
increase monotonically with the depth z, and thus the reflectivity is less than that of
an abrupt transition between the boundary values of density and sound speed,
provided there is no discontinuity of either at either boundary.

Another example is that of reflection from a homogeneous layer of thickness
Az = b — a, within which the speed and density are constant. By the methods of
Sect. 2.4, the reflection amplitude is

) 2igAz _ _
r= ez’q"‘linﬁrrhe —— T, = 2 Q7 ry = 9 Qb. (17.120)
1 +rarb62lqAZ Qa +Q Q+Qb
The reflectivity is the absolute square of r; for real g,,q, and g, this is
2 4 2r, 2gA 2
R = |rf?= Lot b S8 2G0T, (17.121)

1 +2r,rp cos 2gAz + r2r2

For fixed frequency and angle of incidence (fixed g and Q,, Oy, Q), this is a periodic
function of the layer thickness Az, with period 7/q (equal to mv/w at normal
incidence), provided there is no attenuation and g is real. The extrema of (17.121)
occur when cos 2qAz = +1; these extrema take the same form as for the electro-
magnetic p wave given in (2.73):

_ 2 2
_(Qa Qh> P e/ (17.122)

T\t O T Q0+ 0%

The theorem proved above states that if Q(z) is monotonic (which includes the case
of discontinuities all of the same sign), R < Ry. Applied to the problem at hand, this
reads that if Q lies between Q, and Qp, the reflectance must be no greater than R.
The implication is that R, = Ry is greater than R_ when the value of Q is between
Q, and Q. From (17.122), we find that R, is greater than R_ when
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(@*- Q) (@ - ) <0, (17.123)

which is true when Q lies between Q, and Q,, in agreement with the theorem.
It is interesting to compare the exact reflectivity for the homogeneous layer with
the Rayleigh approximation (17.87), which rewrite as

U [ ,,d
rR=—= / dze? —1n Q. (17.124)
2 dz

At z, and z, there are discontinuities in In Q, by the amounts In Q/Q,, and In Q;,/Q.
The derivative of a step function is a delta function of strength equal to the mag-
nitude of the step, so for the homogeneous layer the Rayleigh approximation
reflection amplitude and reflectance are

re = *%{ez"‘f’“ InQ/Qu+¢""1nQ,/Q}, (17.125)

Ry = % {In> 0/ Q4 + In* @)/ Q +2(InQ/Q.)(In 0,/ Q) cos 2gAz}.  (17.126)

(The argument of the cosine follows from ¢, — ¢, = gAz.) Figure 17.4 compares
the normal incidence exact and approximate reflectivities, as a function of the
thickness of the homogenous layer. The parameters are chosen to approximate a
layer of sediment on a seafloor or lake bottom (Hamilton 1980). We note that the
Rayleigh reflectivity is most accurate where the reflection is smallest: in Sect. 5.7
we also used the alternative name weak reflection approximation.

k Az

Fig. 17.4 Normal incidence reflectivity from a homogenous layer, as a function of kAz = ©Az.
The solid curve is the exact reflectivity (17.121); the dashed curve is the Rayleigh approximation
(17.126). The density values used (in g/cm®) are p, = 1, p = 1.7, p, = 2; the corresponding sound
speeds (in km/s) are v, = 1.5,v = 1.7, v;, = 2. The horizontal line shows the upper bound Ry =
Ry of (17.118)
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17.7 Profiles with Discontinuities in Density
or Sound Speed

The exact results (17.20) and (17.21) for the reflection and transmission amplitudes
are general enough to include discontinuities in density and/or sound speed, or in
their derivatives with respect to depth z. The previous section provided one example
(the homogeneous layer), and compared the exact and the Rayleigh approximation
reflectivities. Discontinuities dominate the reflection process, and a perturbation
theory or the Rayleigh approximation do not provide an adequate starting point. An
alternative formulation was given in Lekner (1990c), which leads to results that are
exact in the high-frequency limit, and also exact for the homogeneous layer at all
frequencies. At low frequencies the formulae derived here fail (except for the
homogeneous layer), but there the limiting forms derived in Sect. 17.3 can be used.
The problem being discussed is shown schematically in Fig. 17.5. Note that we now
need to distinguish the densities and speeds just inside the stratification from those
just outside, in the homogeneous media a and b above and below. The densities in
the homogeneous media a and b are denoted by p,, p,, those just inside the
stratification at z = a+,z = b— by p,, p,, and likewise for the sound speeds v.

In special cases one can find analytic solutions of the equation (17.4) for the
acoustic pressure, and then the reflection and transmission amplitudes r and ¢ can be
found exactly from (17.20) to (17.21), modified to allow for the discontinuities in
density or sound speed at the boundaries of the inhomogeneous layer:

o _ i Qa0(F,G) +i04(F,G) +i0,(F,G) — (F,
G F

G
0.0y(F,G) +iQ,(F,G) — iQ,(F,G ok (17.127)

+

|
|
|
0 10
a I a
|
z=a
stratification
z=b
0
b

Fig. 17.5 Schematics of reflection and transmission by an inhomogeneous stratification with
discontinuities in density p and sound speed v at its boundaries. Only the sound-speed profile is
shown
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2iQ,(F2G, — F2G»)
0.0,(F,G)+i04(F,G) —iQy(F,G) + (F,G)’

1= P (17.128)

In (17.127-17.128), o = qqa, f = q»b as before, but now (F,G) = F1G, — G F3,
(F,G) = F\G, — G F,, et cetera.

We are interested in getting approximate r and ¢ for any discontinuous stratifi-
cation of the type shown in Fig. 17.5. To this end we approximate the solutions F
and G by the Liouville-Green waveforms (17.81), except that we now need to insert
the values of density and speed just inside the stratification:

F(z) ~ (%)%e“ﬁ(z), G(z) ~ (%)ée—id’@. (17.129)

The phase integral ¢(z) is the accumulated phase at z defined in (17.80), and
0(z) = q(2)/p(2), Q1 = a1/p1, Q> =a2/ps.

The resulting approximate values of (F,G) to (f, 6) are, with
s =sinA¢,c = cos A¢,
(F,G) = =2is, (F,G)=~iQy(—2c+7,5), (F,G)~iQi(2c+7,s),
(F,G) = i010> <—25+ (71 = 72)e = %VﬁzS)-
(17.130)

In (17.130) A¢ is the phase increment on going through the stratification from a to b:

b b
- va L2 :
Ap = [ dzq(z) = . dz 2 sin” 0, , (17.131)
and 7y,,y, are the (internal) boundary values of the dimensionless function
do/d 1d 1d
(o) = 224 _ 1(q—p). (17.132)
q0 gdz pdz

The function y(z), and its derivative divided by ¢, should be small throughout the
stratification if the Liouville-Green functions (17.129) are to be good approxima-
tions to the exact solutions of (17.4), since from (17.129) and (17.132) we see that
F and G satisfy the equation

d [1dF 5 1dy ?
— | —— 14+ ——+ —|F. 17.133
pdz(pdz)+q(+2qdz+4 ( )
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(The exact acoustic pressure satisfies (17.4), which is (17.133) with y set to zero.)
Thus the approximations based on the Liouville-Green waveforms generally fail at
low frequencies (y is proportional to ') and also whenever ¢ is small, as happens
at grazing incidence, and at classical turning points (zeros of g). We note that
¢ (z) = & V2 [v2/v*(z) — sin® 0,] stays positive, and classical turning points will
not occur, if v(z) <v,/ sin 0,. This inequality excludes both total reflection, which
occurs for sin 0, > v, /vy, and the possibility of ‘tunneling’ through a region of
negative g but with v, <v,/ sin0,.

From (17.130), we find the reflection and transmission amplitudes on substi-
tuting into (17.127) and (17.128). We expand these in powers of y:

r=ro+r+---, t=th+H+---. (17134)
The zeroth-order amplitudes are, again with s = sin A¢, ¢ = cos A¢,

_ 2 (0a0> — 0p01)c — i(QuQp — 0102)s
(0402 + 0p01)c — i(Qu0p + 0102)s’

o

(17.135)

— ei(mfﬁ) 2Qa(Q1Q2)%

(0,02 + 0p01)c — i(QaQb—FQle)s' (17.136)

fo

When Q) = 0, = Q, these reduce to the homogeneous layer values (ry is given in
different form in (17.120))

1ty 0(Q0 — Op)c — 1(0,0p — O%)s

_ 17.137
T 000+ Op)e — i(0.0 + 07)s ( )
th = Ci(a_ﬁ) 20,0 .
0(0u + Op)c — (a0 + 0%)s

(17.138)

Note that an inhomogeneous layer could have Q; = Q»; to zeroth order in 7, the
approximation used here will give the same reflection and transmission amplitudes
as a homogeneous layer, but a correction appears in the first-order terms.

The contributions of first order in 7 to the reflection and transmission amplitudes
are

= 211103012 = 1) + (O + O57)s” + 210 Qoo
[(Qu02 + 0401 )¢ — i(QuQp + 010)s]

. (17.139)

1

iy = e Qa(©102((QuQas + QoQ11)s —i10a(n —32)] 1740

[(QaQs + 0401 )¢ — i(QuQp + 0102)s)
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When there is no discontinuity in Q at either boundary (Q; = Q,and @, = Q), 1o

. 1. .
is zero and ¢, reduces to the perfect transmission value e'*~#)(Q,/Q;)%e™*?, while
r1 takes the value

ri — e2%i(y,e¥8 — y)) /4, (17.141)

which is equivalent to the result (17.92) derived earlier.

The above theory is based on the assumption that y and its derivative dy/d¢ =
g~ 'dy/dz are both small. The approximations thus fail at low frequencies (except
for the homogeneous layer, for which y is identically zero). There we have the
long-wavelength expansions derived in Sect. 17.3. In particular, the reflectance in
the absence of absorption is given by (17.71) in terms of the integrals 1,,Jy, >, J»,
which are explicitly written down for the exp-exp profile in (17.24) of Lekner
(1990c).

We shall compare the results of this section with the exact solution given in
Sect. 17.5 for the exp-exp profile, in which both density and sound speed vary
exponentially within the stratification, according to (17.106) and (17.110). For the
high-frequency expressions (17.137-17.140) we need y,,7, and A¢. From the
defining relation (17.132), and ¢*(z) = w*/v*(z) — K?, we have

2(2) = —¢~! Kw)zldv n lﬂ . (17.142)

vq) vdz ;dz

Into this general expression, we insert the exp-exp profile values

1dv

Idp

1 1
vdz L, pdz L, (17.143)
and then obtain y; and 7, by substituting the values g; and ¢, for g and v, and v, for
v. The phase increment A¢ across the stratification, assuming no absorption and
angle of incidence less than arcsin(v,/vmax) so that g remains real, can be found
analytically for the exp-exp profile (compare (17.98), which holds for profile con-
tinuous in p and v with the bounding media):

1 1
A¢ = L,{K]|arctan g, /K — arctanq, /K] +q; — ¢2} = oL, <— - —) +O0(K?).
V1 V2

(17.144)

The high-frequency reflectivity is calculated from (17.137) to (17.139) as
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\\hi gh frequency

0.6

0.2

. ]u-\\\\!'rcqucnc_\
0 2 4 6
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a

Fig. 17.6 Normal incidence reflectivities for an exp-exp stratification, with discontinuities at its
boundaries, as a function of frequency. The dimensionless parameter k,Az = wAz/v, equals 27
times the thickness of the stratification divided by the wavelength in medium a. The solid curve is the
exact reflectivity, the dashed curves are the low- and high-frequency approximations, as indicated.
The parameters used are p, = 1,p; = 1.5,p, = 1.7,p, = 2.2 (g cm ), and v, = 1.5,v; = 1.7,
v, =23,v, =52 (kms )

Rip = |ro+n[. (17.145)

Figure 17.6 shows the reflectivity from a model exp-exp stratification, with acoustic
parameters chosen to correspond to the Tufts abyssal plain, as presented by
Chapman (1980). The exact reflectivity is obtained from the results of Sect. 17.5,
the low-frequency curve from (17.71), and the high-frequency curve from (17.137),
(17.139), (17.142), (17.143) and (17.145).

We see that the low-frequency approximation is good up to about
wAz/v, = 1(2, > 6Az), while the high-frequency results are good from about
wAz/v, = 2(1, <3Az). In the intermediate region, the errors can be 20 % or more,
and it may be necessary to use the matrix methods of Sect. 17.2 and Lekner
(1990a).

Appendix: Universal Properties of Acoustic Pulses
and Beams

The results of this Appendix are restricted to pulse and beam propagation within
isotropic homogeneous media, within which the acoustic pressure satisfies the wave
equation ((17.1) of this chapter with Vp =0). We also neglect dissipation of
energy or momentum, due either to viscous damping, or to scattering by impurities
or bubbles.
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We begin with a summary of the existing known universal properties of local-
ized acoustic pulses, namely (i) the time invariance of the total energy E,
momentum P, and angular momentum J; of the pulse, and (ii) the inequality
cP, < E. (In this Appendix pulse propagation is along the z-direction, and the speed
of sound is ¢, a constant.)

The conservation of energy, momentum and angular momentum in the absence
of dissipation is as expected, but the inequality cP, < E is in contrast to the sound
quantum ‘phonon’, for which the momentum is unidirectional, and cP = E. The
implication of the inequality cP, < E seems to be that we cannot model the phonon
by any localized pulse wave-function satisfying the wave equation.

Peierls (1983) considered the energy and momentum of localized sound pulses.
However, in calculating the energy and momentum, Peierls made approximations
that removed the transverse localization, and in the long-wave limit his equation (3.
12) gives equality of energy and ¢ times momentum. Lekner (2006a) examined the
energy and momentum densities e(r,7), p(r,#) of a three-dimensionally localized
sound pulse, and the total energy and total momentum

E:/ﬁ%emﬁ,lnz/d%p@o. (17.146)

He showed that E and P are independent of time (are conserved, as expected), and
further, that cP, < E for predominant propagation in the z-direction. Localized
pulses are always converging to or diverging from their focal region, hence there is
a transverse momentum density, integrating to zero. This is the reason for the
inequality, and the prime distinction between pulses and phonons. A consequence
of this universal convergence toward or divergence from the focal region is that the
pulse pressure gradient, density gradient and particle velocity are not purely lon-
gitudinal, as they are for pulses localized in only one dimension. Exact solutions of
the wave equation are used to construct specific examples of localized pulses in
Lekner (2006b).

We may expect that the total angular momentum of a localized sound pulse
should also be constant in time, again in the absence of dissipation. This is indeed
true: the angular momentum density j = r x p integrates to give the total angular
momentum

J:/ﬁ%ﬂnn:/ﬁ%rXMng (17.147)

In the translation of the coordinate system, r — r — a, the total angular momentum
transforms to J — J — a x P. Thus the component of J parallel to P is invariant to
the choice of origin. As before, we take direction of P to define the z-axis; then J, is
the invariant component of interest. Lekner (2006c) has shown that the time
derivative of J is zero, and gives examples of exact localized solutions of the wave
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equation, with analytic expressions for the energy, momentum, and angular
momentum.

There are analogous conserved quantities for acoustic beams, again in the
absence of dissipation. These follow from the conservation of matter, momentum
and angular momentum:

8p+V - (pv) =0, (17.148)
at(pvi) + Zaknki =0 (l7k = xayaz)7 (17149)
%
Ojji + Zak/\ki =0 (i,k=x,,2). (17.150)
x

The tensors IT, A are the momentum flux density and angular momentum flux
density tensors (Lekner 2007; Zhang and Marston 2011). Equation (17.148) may be
written as d;p+ V - p =0, with p the mass density and p = pv the momentum
density.

For monochromatic acoustic beams of angular frequency  the motion every-
where within the sound beam is periodic with period T = 2n/®, and the cycle
average of (17.148) gives V - p = 0, where the bar denotes average over one or any
number of periods, at a fixed point in space. Suppose that the acoustic beam is
propagating in the z direction. Integration of V - p = 0 over the transverse direc-
tions x and y then gives (Lekner 2007)

az/dzrpi:angzo (d*r = dxdy). (17.151)

The meaning of (17.151) is that the longitudinal cycle-averaged momentum content
within a transverse slice of the beam is constant along the beam: P, = i d’rp; is an
invariant. Note that it was conservation of matter which led to the momentum
content beam invariant, not conservation of momentum.

Each component of the conservation of momentum, equation (17.149), leads to
another invariant on cycle averaging. The conservation of angular momentum leads
to three more. Thus the conservation laws give seven universal beam invariants,
just as in the electromagnetic case (Sect. 20.1). Perhaps surprisingly, the
cycle-averaged energy content in a transverse slice of the beam, E' = [ d’r &, is not
an invariant in general. Neither is the angular momentum content, but both are
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constant along the length of the beam for a special class of generalized Bessel
acoustic beams (Lekner 2006d). For generalized Bessel beams one finds cP; <FE,

and, for beams with azimuthal dependence e™?, a proportionality between the
energy and angular momentum contents per unit length of the beam. Beams with

azimuthal dependence e™? are termed acoustic vortex beams by Zhang and
Marston (2011).
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Chapter 18
Chiral Isotropic Media

Optical activity is the ability of some crystals, liquids and gases to rotate the plane
of polarization of light. Optical activity, or rotatory power, is caused by chirality,
either of the molecules making up the substance, or in the helical arrangement of
the atomic or molecular constituents in a crystal. (A chiral object is one which
cannot be superimposed on its mirror image.) In 1811 Arago found that a plate of
quartz produced effects on light polarized by reflection from a pile of glass plates
which are now understood to arise from the rotation plane of polarization of the
light. In five memoirs presented to the Académie des Sciences from 1812 to 1837,
Biot showed that the rotatory power is proportional to the thickness of the quartz
plates (propagation is along the optic axis of the crystals), that the rotation depends

on the wavelength, approximately as A2, and that optical activity appears in liquids
and gases, as well as in crystals. Fresnel conjectured in 1822 that on entering an
optically active medium light is split into two beams of opposite circular polar-
ization which travel with different phase velocities. In 1848 Pasteur demonstrated
that the optical activity of a tartrate solution is related to the form that the crystals of
the tartrate take: crystals of opposite handedness dissolve to give solutions with
opposite rotatory power. References to these early works and further details may be
found in the thorough historical account given by Lowry (1935) in his book on
Optical Rotatory Power. Other historical outlines may be found in Silverman
(1993) and Lindell et al. (1994); a selection of papers on natural optical activity has
been compiled by Lahktakia (1990). Modern electromagnetism begins with
Maxwell and the electromagnetic theory of light, but although he considered the
propagation of light in crystals (Maxwell 1891/1954, Article 794), he did not treat
chiral media.

This chapter deals only with isotropic chiral media (chiral liquids, or cubic chiral
crystals). It is based largely on the work of Silverman and collaborators, and
extensions given by Lekner (1996).
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18.1 Constitutive Relations

The propagation of light in isotropic non-chiral media is describable in terms of a
dielectric function ¢ and a magnetic permeability p which relate the fields D to
E and B to H via D = ¢E and B = pH. The curl equations of Maxwell in non-chiral
media are

cVxE=-0B/0t, ¢V xH=09D/or. (18.1)

All research seen by the author agrees that these are to be retained in chiral media.
All researchers do not agree on the constitutive relations in chiral media, namely on
what replaces D = ¢E and B = pH. The results given in this chapter are based on
the symmetrized Condon set (Condon 1937)

D =¢E —g0H/0r, B = pH+ gdE/or, (18.2)

as advocated by Silverman (1986). (Condon omitted the p; relations with it
included are called symmetrized). Silverman has shown that the constitutive rela-
tions in Born’s Optik (1972), namely

D=¢E+gsV xE, B=,H, (18.3)

lead to reflectances in excess of unity in the vicinity of critical angles. Another
choice, known as the Drude-Born—Fedorov relations, is discussed in Chap. 3 of
Latkhtakia et al. (1989) and in Sect. 1.2.1 of Lindell et al. (1994):

DZSDBF(E+bv XE), B:uDBF(H+bV XH). (18.4)

From the curl equations (18.1) it is clear that (18.2) and (18.4) are equivalent to first
order in g and b.

For monochromatic waves in which the fields have a time dependence given by
the factor exp(—iwt), the relations (18.2) become, on introducing the chiral index

) = wg,
D=¢E+iH, B=pH-ijE. (18.5)

The Drude-Born—Fedorov relations become, with the use of (18.1) and on setting
1= wb/c,

D = ¢ppr(E +ixB), B = pupgr(H — iyD). (18.6)

These relations are equivalent to (18.5) if the dielectric constants and permeabilities
differ by a term second order in the chiral index 7:
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epBF =& — 7" /1, Mpgr=W—7"/e, 1 =7v/(en—7°). (18.7)

The inverse relations are (Lakhtakia et al. 1988; Lindel et al. 1994)
&= 8DBF/(1 - 8DBFHDBF12)» = HDBF/(l - 8DBFHDBFX2)a (18.8)
7 = epprippri/ (1 — 8DBFP‘DBFX2)-
Bassiri et al. (1988) assume a harmonic time dependence, and use the relations
D = egpgE +iéB, H = ifE+B/pgpg. (18.9)

This form was deduced by them from the work of Jaggard et al. (1979), who
calculated the properties of a medium composed of short wire helices. (The effect of
the scattered fields of the helices on each other was neglected.)

The Born relations (18.3) can be eliminated on physical grounds: they predict
reflectances in excess of unity in the vicinity of critical angles, and also a difference
in the normal incidence reflectance of the two circular polarizations which is first
order in the chirality parameter gg, and in disagreement with experiment (Silverman
et al. 1988; Lukyanov and Novikov 1990).

As we shall see in Sect. 18.4, the relations (18.5) lead to normal incidence
reflectances from an achiral—chiral interface which are independent of the chiral
index 7y, while the relations (18.9) give reflectances which contain terms of second
order in the chiral parameter . In Sect. 18.5 it is shown that the chiral index 7y is
related to o, the rotation of the plane of polarization on passing normally through a
chiral plate of thickness d, by

y = 20/2nd. (18.10)

The specific rotation 6/d for AgGaS is large, for example, 0.95° per um at
/. =0.485um, yet even this relatively large value gives y =~ 1.28 x 1073. The
differential reflectance measurement reported by Lukyanov and Novikov (1990)
was on a-LilOj; crystals cut normal to the optic axis, with J/d = 86.8° per mm at
2 =0.63um and y ~ 1.52 x 107*. No difference in the normal incidence reflec-
tance of the two circular polarizations was detected to within 1077, but an effect of
order 7% is smaller than this. Thus experiment does not yet rule out or confirm
normal incidence differential reflectances which are of second order in the chirality
index.

The specific rotation d/d which follows from (18.9) is related to & via

Elgp = 40/2nd. (18.11)

(Bassiri et al. 1988, (18.72)). Comparison of (18.5) and (18.9) identifies {pgpg With
7, and substitution of £ = y/pgpg into (18.9) gives
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D = (eppe +7°/pppe) E+ivH, B = pgpsH — iyE. (18.12)

Thus (18.5) and (18.9) are in agreement if

Ugpg = 1, EBPE = € — yz/u, E=y/n, (18.13)

that is if the Bassiri, Papas and Engheta dielectric function is made to depend on the
square of the chirality index y . If indeed we set egpe = ¢ — */p in the formulae of
Bassiri et al. (1988), we find that for the achiral—chiral interface the normal inci-
dence reflection and transmission amplitudes become independent of y.

We henceforth adopt the constitutive relations (18.2) and (18.5) advocated by
Silverman (1986), with ¢ and u independent of the chiral index y. This is also the
choice made in the monograph by Lindell et al. (1994), and is consistent with
experiment: Silverman et al. (1988) have used optical phase modulation to measure
chiral asymmetries in specular reflection from a gyrotropic medium, and have found
agreement with the reflection amplitudes calculated by Silverman (1986) using
(18.2).

18.2 Reflection and Transmission Amplitudes,
Conservation Laws

The optics of stratified chiral and/or anisotropic media can be quantified in terms of
four reflection and four transmission amplitudes. These can be of two kinds,
depending on whether the wave description is in terms of planar or circular
polarization.

In the case of plane polarized states, the electric field components of the incident,
reflected and transmitted waves are resolved along the p and p’ directions which lie
in the plane of incidence, and the s(=s’) direction perpendicular to the plane of
incidence. If propagation is in the zx plane (the plane of incidence) and in the
direction of positive x, with wavevector components in the (homogeneous) medium
of incidence k; = (K,0,q;), an s-polarized incident wave of unit electric field
magnitude will be

E; = (0,1,0)exp i(Kx +¢12). (18.14)

If 0, is the angle of incidence, the reflected wave electric field will be (by definition
of the reflection amplitudes 7y and r,)

E' = (ryc0s01, ry, rypsind; exp i(Kx — qi2). (18.15)
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For an incident p-polarized wave the incoming and reflected waves are
E, = (cosl,,0, —sin0, )exp i(Kx + q1z), (18.16)
E' = (r,pc0801, rps, rppsindy Jexp i(Kx — qiz). (18.17)

(The reflection amplitude for the x component is r,,, while for the z component it is
—rpp: see equations (1.26) and (1.27) of Sect. 1.2.)

The cause of the reflection is assumed to be a general planar-stratified layer
(which may be chiral and anisotropic) resting on a homogeneous achiral isotropic
substrate, in which the wavevector of the transmitted wave is k, = (K, 0, ¢2). Note
that the component of the wavevector along the stratification (the x component K) is
a constant of the motion, because of translational invariance in the x direction. The
transmitted wave when the incident wave is s-polarized is

E" = (t,,c0805, tyy, —tpsindy)exp i[Kx + g2 (z — d)], (18.18)

where 0, is the angle of refraction in the substrate and d is the total thickness of the
chiral (and possibly anisotropic) layer. The corresponding transmitted electric field
when a p-polarized wave is incident is

E" = (1,,c08 03, 15, —t,,sin0; )exp i[Kx + q2(z — d)). (18.19)

These relations define the transmission amplitudes f, #y,, 1, and .

If the chiral layer is non-absorbing, the reflected plus transmitted fluxes of
energy must add up to the incident flux. The energy density of a plane electro-
magnetic wave in a medium with dielectric constant ¢ and permeability p is pro-

portional to 8|E|2 and the speed is ¢/,/eqi; thus the energy flux is proportional to
\/f:/_,u\E\z The amount of energy in the primary wave which is incident on a unit
area of the interface in unit time is proportional to \/m cos 0, the amount
reflected to \/81/—,[11 cos 0 times the absolute square of the reflected field, and the

amount carried away by the transmitted wave similarly to 4/ /pt, cos 0, times the
absolute square of the transmitted electric field. (See Fig. 2.1 for the geometry
leading to the factors cos; and cosf,.) Thus energy conservation reads, for
incident s and p polarizations,

\/81//11 COS 01 (1 - |rss|2_|rsp}2> =V 82/.“2 cos 02(|tss|2 + |ISI7’2)’
v &1/ 1y cos 0 (1 — |r,,,,|2—|rps|2) = \/&/ [, cos 02(|t,,,,|2+ ’t,,s|2). (18.20)


http://dx.doi.org/10.1007/978-3-319-23627-8_1
http://dx.doi.org/10.1007/978-3-319-23627-8_1
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These relations hold for arbitrary non-absorbing stratifications. When there is
absorption, the difference between the left- and right-hand sides gives the absorp-
tion in the stratification.

An alternative characterization of polarization states is in terms of positive and
negative helicities (opposite circular polarizations). For circularly polarized incident
light we need the reflection and transmission amplitudes r, . ,r, _,r_,,r__ and
ty,t4_,t_,,t__, where, for example, r, _ gives the complex amplitude of the
light reflected with negative helicity when positive helicity light is incident. (We
avoid the left and right circular polarization terminology, because two opposite
conventions are in use.) Let (p, s, k; ) denote a right-handed triplet of vectors for the
incident light, with p and s being unit vectors perpendicular to the direction of
propagation, and, respectively, parallel and perpendicular to the plane of incidence.
Similarly, let (p,s’,Kk}) be a similar triplet for the reflected light (the choice s’ =s
then implies that p’ — —p at normal incidence, and p’ — p at glancing incidence).
Then (p +is)/+/ 2 represents an incident wave of positive helicity and unit mag-
nitude. As usual the zx plane is the plane of incidence, with s = (0,1,0) =¢/,
p = (cos 61,0, —sin6;) and p’ = (— cos 01,0, — sin 61 ). From (18.15) and (18.17),
an electric field of unit magnitude along s reflects to rs — rspp’ , and an electric
field of unit magnitude along p reflects to —r,,p’ +r,,s". The reflected field is
therefore

[(=rp = irgp) P + (s +irss)s]/ /2. (18.21)

From (18.21) we extract the coefficients of positive and negative helicity, namely of
(p' +is)/+/2, to find

ry + = I/Z(V'ss - rpﬁ) - 1/21.("sp +rpx)7
ry_ = —1/2(rss JF"pp) - 1/2i(rsp - rpx)~ (18'22)

Similarly, when the incident wave is (p — is)/+/ 2 (negative helicity), the reflected
field is

[(—rpp + irsp)p’ + (rps — irg)s']/v/2, (18.23)
and the corresponding reflection amplitudes are
r-4 = *1/2(”&? +rpp) + Vai(rsp — ps),
r._ = 1/2(rm — rpp) + Lhi(rg + 1ps)- (18.24)
For all the cases considered in this chapter, ry, = r); and so 4 _ = r_ .

The transmission amplitudes as characterized by helicity are found as follows.
Let (p +is)/+/2 represent the electric fields of incident waves of positive and
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negative helicity, and likewise (p” & is”)/+/2 for the transmitted helicities. When
(p+is)/+/2 is incident, the transmitted field is

[(tp + itep) D" + (15 +itss)s"]//2 (18.25)
The coefficients of positive and negative helicity in (18.25) give
o =1ty + 1) + Yai(typ — tps),
th o =1)a(tpp — tss) + 2i(1sp + ps). (18.26)
Similarly, for negative helicity incident we find
1y = (tyy — 1) = iltyy + 1),
1o = Vo(ty, +155) — Vhi(ty — 1) (18.27)
The inverse relations are as follows:
s = o(re ¢ +r—-) = Vh(ry— +r-1),
rp = —Va(ry v +r—) = 1h(re - +ry),
rgp =Yhi(r v —r——)+Yhi(ro - —r_4),
rps = Vhilry o —r—_) = Va(ry o —r_y). (18.28)
to = 1ot 4 +12) = Vot +1-4),
top = a(t4 4 +1_) + 1ot - +1-4),
typ = —ai(ty o —1--) =it - —1-4),
tps = oi(ts 4 — 1) =ity - — 14 ). (18.29)

Energy conservation relations may also be written down in terms of the helicity
reflection and transmission amplitudes. For incident waves of respectively positive
and negative helicity, energy conservation implies

Verlm os 01 (1= i P=lry-*) = VVea mycos Oa([t + P+ ),
v e1/py cos 91(1 — |r,,|2—|r,+|2) = ey cos Or (|t _|* + e |?). (18.30)
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18.2.1 Differential Reflectance, Ellipsometry

Chiral media in general reflect opposite circular polarizations differently. When a
wave of unit amplitude and positive helicity is incident, the amplitudes of the
reflected waves of positive and negative helicities are r , and r _, respectively.
If the detector is polarization-insensitive, the reflected intensity is proportional to
R =|ro 4" +|rs_|* (This result may be verified by expressing the reflected
wave as

ro (@ 4is) re (P —is) (e +re )P _|_l.(’”++ —ry)s
va V2 V2

Then [E'’= 1(|ro 4 +ro P +1re v —ri ) =|re P +]ro ") Similarly, a
wave of unit amplitude and negative helicity produces a reflected intensity pro-

portional to R_ = |r__|*+|r_, |*. The differential circular reflectance (DCR) is
defined as (Silverman 1986)

R. —R_

DCR=-—"——.
R, +R_

(18.31)

If linearly polarized waves of s or p polarization are incident, and the detector is
polarization-insensitive, the reflected intensities will be proportional to R; =
|rss|2 + |;ﬁv,|2 or R, = ’r,,,,‘z + ‘rm’z, respectively. Differential linear reflectance
(DLR) is defined as (Silverman et al. 1988)

R, —R,
DLR =27,
R,+R,

(18.32)
Silverman and collaborators have made measurements on chiral media of both DLR
(Silverman et al. 1988) and of DCR (Silverman et al. 1988; Silverman and Badoz
1992; Silverman et al. 1992; Badoz and Silverman 1992).

The reflection amplitudes r,, 7,7, and rg, can be used to calculate the
reflection ellipsometric signal, which in the common experimental configurations is
one of the ratios pp or p, defined in Chap. 9:

_ Tpp +ryptanP _ Tpp + 1pstanA

— = . 18.33
Ips + T'ystanP’ Pa Fyp + FystanA ( )

Pp

In (18.33) P is the angle between the polarizer easy axis and the incident p
direction, while A is the angle between the analyser easy axis and the reflected p’
direction. (The p and p’ TM directions lie in the plane of incidence, the s TE
direction is perpendicular to the plane of incidence; all are perpendicular to the
incoming or reflected beams.)


http://dx.doi.org/10.1007/978-3-319-23627-8_9

18.2 Reflection and Transmission Amplitudes ... 461

We note in passing that at the polarizing angle defined by 7,7 = rg1ps (see
Sect. 18.4), pp and p, become independent of the orientations of the polarizer and
analyser, and take the respective values 7, / Tps and rp, / rsp. For the cases considered
in this paper, rg, = 1y, s0 pp and p, are equal at the polarizing angle.

Ellipsometry of chiral media is discussed in more detail in Sect. 5 of Lekner
(1996).

18.3 Wave Propagation in Chiral Media

Let us first consider the general case of chiral inhomogeneous media; ¢, | and y can
all be dependent on position. We will henceforth assume the validity of the two curl
equations (18.1) and of the constitutive relations (18.2). Since the equations are
linear in the fields, we can deal with one Fourier component at a time; we assume a
time dependence e, so that we can use (18.5) and

¢V xE=ioB, ¢V xH=—ioD. (18.34)

The fields B, H and D can be eliminated from (18.5) and (18.34) by substitution of
B = (¢/iw)V x E into H= (B+iyE)/, and then of the latter expression into
D = (¢/w)V x H = ¢E 4 iyH. The result is a second-order equation for E, namely

1 o 2 » y
pv x EVXE :(su—y)c—zE—k? nyE—i—qu(ﬁE). (18.35)

The equation for H has the same form, with E, H and ¢, u interchanged.

When the medium is z-stratified, ¢, ¢t and y are functions of z only. Suppose that
there is a plane wave incident on the stratification, propagating in the zx plane.
Because of the assumed translational invariance in the x and y directions, there will
be no y dependence in any field component, and the x dependence of all field
components is contained in the factor exp(iKx). K is the x-component of the
wavevector, and is a constant of the motion because of the translational invariance
in the x direction. For a z-stratified chiral medium, the three components E\, E,, E,
satisfy the coupled ordinary differential equations

/ w2 ) / /
E-BE 4 (en—?) 2 E -2\ 0E + (v -5 )E | —ik(E - EE,
I c c y w) Cop

:O’
1" ‘u/ ! 2 wz 2 w ! / :u/ .
Ej ——E,+ |(en—7") 5 — K*|Ey+ — |20E,+ (V' — 7= | Ex| — 2i—KE;
n c c u c

:0,
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2 w2 2 . ! N
(e —y )C—Z—K EZ—zKEx+2lzyKEZ:0. (18.36)

(The primes denote differentiation with respect to z.)

Finally, we specialize to a homogeneous chiral medium. In this case ¢, y and y
are constant within the medium. We look for plane wave eigenstates, in which all
field components have the variation exp(igz), where ¢ is the z-component of the
wavevector. The differential equations (18.36) then reduce to the three homoge-
neous linear algebraic equations

w? R0
[(8#—“/ )——q ]Ex — 2i—79E, +¢KE. =0,

2
212 9gE, + [(e,u— Y )w——K2 —q} —Zz—yKE =0,
c

2
gKE, + 2i— yKE + {(g,u—y )——KQ}E =0. (18.37)

A solution with non-zero E is possible only if the determinant of the coefficients of
E,, E, and E, in this set of equations is zero. This gives the condition

K- q —2l—yq qK
2ie 2yq kI —q* —K* —2i2yK | =0, (18.38)
qK 21 29K k- K?
where
2 2 o’
k2= (ep—y )C—2 (18.39)

A similar eigenvalue equation for ¢ is obtained for anisotropic media, as we saw in
Chap. 8. There the matrix of coefficients was symmetric, here it is Hermitian.
Equation (18.38) is a quartic in g, with solutions +¢; and £q_, where

2
w
2 = /_gy:ty)zc—z—Kz =il - K~ (18.40)

The four possible plane waves in the chiral medium have wavevectors

(K,0,+q,) and (K,0,%+q_). (18.41)


http://dx.doi.org/10.1007/978-3-319-23627-8_8
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The two with the upper sign are for waves propagating in the + z direction, the two
with the lower sign are for waves propagating in the —z direction. The square of the
wavevector is

L ? ?

Kz—l—qi:(\/@:ty)?zkiznic—z. (18.42)
Thus there are two effective indices for the chiral medium
ng=.euty=nty, (18.43)

which correspond to waves of positive and negative helicity, as we shall see shortly.
The average of the two indices is n=,/eu, and their product is
2 2
en — 92 = (cky /)"
The electric field eigenstates which correspond to the eigenvalues ¢4 given in
(18.42) are obtained from (18.37) by substituting g+ for g. We find, for the waves
propagating in the + z direction,

E+ N(Q+,ik+,—K), E_N((]_,—ik_,—K), (1844)

where k+ = nyw/c. The corresponding wavevectors are ky = (K, 0, g+ ), and we
see that, for each mode, the electric field eigenstate is perpendicular to the
wavevector. The fields given in (18.44) have a phase difference of 90° between
their y and z, x components. Also k% = K? + g%, so the two eigenstates correspond
to circularly polarized light of positive and negative helicity.

The other fields can be found from E by means of B = (¢/w)k X E, H=
(B+iyE)/u and D = ¢E + iyH. They are

B+ :_in+E+7 B,Zin,E,,
H. — —i/o/uE,, H_ =iVe/iE_, (18.45)

D, =n;e/uE,, D_=n_+/¢/uE_.

The Poynting vectors have the appropriate directions: for example, E . x H?_ is
proportional to k . . The corresponding fields for plane waves propagating in the —z
direction are obtained by replacing g by —¢g and g_ by —g_ inky = (K,0,q+)
and in (18.44). The helicities are then negative for E, ~(—¢ . ,ik.,—K) and
positive for E_ ~ (—¢g_, —ik_, —K).

18.3.1 Eigenstates of Curl

An elegant alternative approach to propagation in homogeneous chiral media is in
terms of two related linear combinations of the E and H fields (Bohren 1974;
Eftimiu and Pearson 1989; Lindell et al. 1994),
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F.=E+iyH, n=+/u/e (18.46)

Provided that 1 is constant in space, the curl equations (18.34) and the constitutive
equations (18.5) together imply that F, and F_ are eigenstates of the curl operator

V x Fi = :l:kiFi, (1847)

where ky. = niw/c = (n+ y)w/c as before. Eigenstates of curl are also known as
Beltrami fields, discussed in a wider context in Chap. 1 of Lakhtakia (1994).

If we write (18.47) collectively as V x F = kF (with F = F. and k = £ky),
plane wave propagation in the zx plane, with F proportional to expi(Kx + gz), is
possible if

—iqFy = kF,, iqF, — iKF. = kF,, iKF, = kF.. (18.48)

These are three homogeneous equations in the field components (Fy, Fy, F;) and a
non-zero solution will exist only if the determinant of their coefficients is zero,
namely if

k iq 0
—ig k iK|=0. (18.49)
0 —iK %

This determinant factors to k(k*> — K> — ¢*). The nonzero values of k are 4k, and
thus we regain (18.42). From (18.45) we see that for the positive helicity wave
H, =E, . /(in) and so F,. =2E_.. For the negative helicity wave H_ =
E_/(—in) and F_ = 2E_. Thus for plane wave eigenstates in homogeneous chiral
media, (18.47) reads

VxE, =k,E,, VxE_ =—kE_, (18.50)

or the same equations with E replaced by H.
For inhomogeneous media the positive and negative helicities are coupled:
(18.47) is replaced by

V x Fi = +[keFs+(2n) 'V x (Fy —F_)]. (18.51)

18.3.2 Boundary Conditions

We shall see that the boundary conditions at an interface between chiral media are
the continuity of the tangential components of E and H. For a z-stratified medium
and plane waves propagating in the zx plane, the curl of E is
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V x E = (=E,, E, — iKE_, iKE,). (18.52)
Since the time derivative of B, which by (18.1) is proportional to V x E, is to be
free of singularity at the interface, it follows that E! and E; are non-singular and
thus that £, and E, are continuous across the interface. Likewise, since the time
derivative of D, which is proportional to the curl of H, is free of singularity at the
interface, H, and H, are continuous across the boundary.

The continuity of E, also follows directly from the last equation in (18.36), while
the terms containing derivatives in the first two equations of (18.36) can be written
as iw/c times

WH) +iyE, and pH,+i)E,. (18.53)

Thus the continuity of E, and H, follows from the differential equations for the
components of E, whereas these differential equations allow discontinuities in E,
and H, across the interface, provided pH; +iyE;, remains non-singular. The pos-
sibility of discontinuities AH, and AE, saﬁsfying UAH, +iyAE, = 0 is eliminated
by the differential equations for H,, H, and H,. These have the same form as those
for the components of E, with H, replacing E,, et cetera, and [ interchanged with &.
They imply that ¢E, + iyH, and ¢E| + iyH, are non-singular, and that H, is con-
tinuous at the boundary. Discontinuities in E, and H, would then have to satisfy
both uAH, + iyAE, = 0 and ¢éAE, + iyAH, = 0. The determinant of the coefficients
of AE, and AH, in these two equations is eu+ yz, which we take to be nonzero,
thus implying AE, = 0 and AH, = 0. We conclude that the continuity of the tan-
gential components of E and H follows from the differential equations, provided
&g+ 7? is not zero.

18.4 Reflection from an Achiral-Chiral Interface

Reflection at the surface of a chiral medium was considered by Silverman (1986),
who derived the reflection and transmission amplitudes on the basis of (a) the
symmetric set of constitutive relations (18.2), and (b) the constitutive relations
(18.3). He showed that the results are not equivalent, with small violations of
energy conservation in case (b) under conditions of total reflection. Here the
reflection and transmission amplitudes are derived on the basis of the symmetric set
of constitutive relations (18.2). As we saw in Sect. 18.1, the Drude-Born-Fedorov
relations (18.5) give equivalent results for time-harmonic waves.
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18.4.1 Wavefunctions

Let a plane wave be incident from an optically non-active medium (dielectric and
permeability constants ¢; and ), at an angle 0, to the interface normal. We wish to
find the four reflection amplitudes ry, 7y, 75, and r,,; which completely characterize
the reflection properties of the interface.

Inside the optically active medium the two plane wave eigenstates which
propagate in the + z direction have electric field vectors

E. =(cos0,,i,—sinf, )exp i(Kx+q+2), (18.54)
E_ = (cosf_,—i,—sin0_)exp i(Kx+¢q_z).

Here 0. are the angles of refraction for the two plane waves of opposite helicity.
Their cosines and sines are given by

cos Oy = qy/ky, sinly =K/ky. (18.55)

For incident s (TE) plane-polarized waves, the incoming and reflected waves have
electric fields given by (18.14) and (18.15). Thus the electric field in medium 1 is

E| = (ry cosOje % e + e "% 1y, sin 010" 1%) ™ (18.56)
The magnetic field H; in medium 1 is given by
H, =B,/ = (¢/iou,)V x Ey. (18.57)

At the boundary z = 0 this takes the value

ny

H,(z=0) =
1( ) Ky

(—[1 = ry] cos 01, —rp, [1 + 1] sin 0y ) ™. (18.58)

Inside the optically active medium, the electric and magnetic fields are

E=t,.E,  +t E_, H=—-ive/u(t;, Ey —t, E_), (18.59)

where 7, and f,_ are the transmission amplitudes for the two circularly polarized
waves in the chiral medium.

18.4.2 Reflection and Transmission Amplitudes

The continuity of the tangential components of E and H across the interface at
z = 0 gives four relations, which can be solved for the four unknowns 7, 7y, ;4
and f,_. We find, with
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2
c; = cos by, ct =cosly =4/1— (ﬂsinﬂl) , (18.60)
nt

cilce +c ) m+m™!
D:C%-i- l( - 2)( )+C+C7a m =/ 8:“1/81:“7

that the reflection and transmission amplitudes when s-polarized light is incident are
given by

, ciles +e ) m—m)
2

—cic_|/D,

ryp = —ici(c4+ —c_)/D, (18.61)
ty+ = —ici(c1 +c¢-/m)/D,
t,— =ici(c1 +c4 /m)/D.
For p polarization incident the incoming and reflected waves have electric fields
(cos 01,0, — sin 0y )exp i(Kx + q12), (18.62)
(rpp €08 01, Fyg, 1y 8i0 01 )expi(Kx — ¢12).

The electric field E; is the sum of these; the magnetic field H, given by (18.57)
takes the value at the z = 0 boundary

H (z=0) = % (Fpscos 01,1 — 1y, 1y sin 0 )X (18.63)
1

The fields inside the chiral medium are now

E:tp+E+ +tp,E7, H-= —i\/ S/ﬂ(tp+E+ —tp,E,). (1864)

The reflection and transmission amplitudes when p-polarized light is incident are
again found from the continuity of the tangential components of E and H:

ci(cy +c— m—m-!
= [ St e )

—cic_|/D,

rps = —ici(c4+ —c_)/D, (18.65)

tyy =ci(ci/m+c_)/D,
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t- =ci(cr/m+cy)/D.

The formulae (18.61) and (18.65) are in accord with those of Silverman (1986), but
are not identical to those of Bassiri et al. (1988), unless we make the identification
(18.13). We note that ry, = r,,. When the chirality is zero, 7y, and r,, are also zero,
while 7y and r,, reduce to the usual Fresnel amplitudes. The diagonal reflection
amplitudes satisfy

1 —r2 =ci(cy +c_+2cim)ei(cy +c )ym~+2c c ]/mD, (18.66)

1— rip =ci[(cy +c)m+2c))][ei(cs +¢-)+2¢c_m]/mD.
For non-absorbing chiral media the right-hand sides of (18.66) are non-negative, so
the ss and pp reflectivities cannot exceed unity. Also the magnitude of rg, = 7, is
less than unity, by inspection.

At normal incidence K — 0 and the cosines ¢; and c4 tend to unity; the
reflection and transmission amplitudes then take values independent of the chirality
parameter v:

1-m

1+ma rspvrps_>07 (1867)

Fssy Tpp —

1 t !
—_ — —_ —
pt 1 ’ s+ 1

The transmission amplitudes for positive and negative helicities follow from the
definitions of 7.+ and 7,4 in (18.59) and (18.64). An incident wave with electric field

vector p=+is transmits to 7, E, +1, E_+it, B, +it, E_ = (1, £it;; )
E; + (tp_ + itx_)E_. Therefore

Ty =ty +ityy, 14 =1, +it,, (18.68)
t,+ == tp+ - l‘l‘s+7 __ = tp, - l.lsf.

The helicity reflection and transmission amplitudes for a sharp achiral-chiral
interface located at z = O are all real when the chiral medium is non-absorbing:

ailes +e)m—m)

Fy— = 2D =Tr—+,
Fv+ = il C+g(q +c,)’ ro_ = (e +C+Z)(Cl — 67)7 (18.69)
ci(c_+c)(1+m™) ci(cy —c)(1—m™)

t++: D , Iy = D )
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_aleste)iemh) cfc-—e)(t—m)

- = A
D * D

(D and m are defined in (18.60).) The normal-incidence limiting values are

m—1

T (18.70)

Fpgoh——— 0, re_roy —

t++7t——*> ) t+—7t—+4)0'

m—+1
At glancing incidence (c; — 0) all the transmission amplitudes go to zero,
ri4,r—_tend to —1, ro _,r_ tend to zero, r,, — 1 and ry — —1. The proba-
bility for photon spin-flip is zero at both normal and glancing incidence. (Helicity is
reversed at normal incidence because of the reversal of the direction of travel of the
light on reflection.)

Reflection near the critical angles Bli given by sin QT = n+/n is discussed in
Sect. 18.5, together with the chiral layer case. There the off-diagonal reflection
amplitudes 7y, 7, and 7, _,7_ . are proportional to the square root of the chiral
index vy, as we shall see.

The energy conservation conditions to be satisfied by the reflection and trans-
mission amplitudes follow from arguments along the lines given in relation to
(18.20), and were first written down by Silverman and Badoz (1989). The helicity
amplitudes satisfy

Verlueos 0, (1= |y P=lro-[*) = Velu(cos 0 |ty o P+ cos0_|r, ),

(18.71)

v &1/ 1y cos 0 (1 — Pl |2> = \/8/#(005 0, 4|+ cos 0_|t__\2>.

Since plane-polarized waves are not eigenstates within the chiral medium, the
corresponding relations involving r, 7y, 7,55 and 7, are of a hybrid form:

Ve cos 0; (1 — |;ﬁvs|2—|r_vp‘2) =2 g/u(cos 0. |t |* + cos 0,|ts,|2),
(18.72)

v/ &1/ 1y cos b, (1 - ‘rppyzf’rps‘z) =2 s/,u(cos 0., |tp+ |2 + cos 9,‘tp,‘2).

The reason for the factor of 2 on the right-hand sides of (18.72) lies in our definition
of the electric fields and of the transmission amplitudes: from (18.54) we see that

|Ei|2: 2, while the incoming s-polarized or p-polarized electric fields are nor-
malized to unity (see (18.14) and (18.16)).
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18.4.3 The Angles Og, 0,,,and 0,

At the boundary between two non-chiral media, zero reflection of a p-polarized
incident wave occurs at the Brewster angle O, where

— 2_1 T
tan2 03 — i (8#1 81#) _ Slu(m ) ; m = Sﬂ. (18.73)
&1 \e1 — &1y e — ey i

The result (18.73) follows from setting to zero the achiral limit of the reflection
amplitude r,, given in (18.65). It is a generalization of familiar formula tan® 65 =
¢/e; of Sect. 1.2, to which it simplifies when p = p,. A physical zero can occur
only when the right-hand side of (18.73) is positive.

For the achiral—chiral interface we can ask for the angle 0,,, at which r,, is zero,
in analogy with the anisotropic crystal case discussed in Sect. 8.4. From (18.65) we
see that this occurs when

2cies —cp)m=ci(cq +c_)(m* —1) (18.74)

The squares of the cosines of the angles of incidence and refraction can be
expressed in terms of 53 = sin?0; (by use of Pythagoras’ theorem, and of Snell’s
law n; sin0; = ny sin 04):

E=1-5, A =1-(n/ns)’s (18.75)

If we square both sides of (18.74), isolate the product ¢  c_, and then square again,
we will obtain an algebraic equation for s%. This turns out to a quartic in s%, or
equivalently a quartic in 77 = tan® 0}, one of the solutions of which gives tan? 0,,,.
When we substitute (18.43) into the quartics, we find that 0,, is given by the
right-hand side of (18.73) plus a term of order 2. Because y is small for natural
optically active media, the second-order difference between 0p and 0,, is usually
not of experimental interest.

Another angle of interest is the polarizing angle at which a monochromatic plane
wave of arbitrary polarization becomes linearly polarized on reflection, mentioned
in Sect. 8.4. For a linearly polarized wave, the angle ¢ between the electric field
vector E and the p direction is given by tan) =s - E/p - E, where p and s are unit
vectors as before. For the reflected wave the azimuthal angle is given by tan¢’ =
s’ -E'/p’ - E' where

E = (p-E)(rpp +rps8) + (s E)(ryp +rys).

Thus
Tps + Fgstang

tan ¢’ = )
Fpp + Fptang

(18.76)
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The condition for ¢ to be independent of ¢ is
Tpplss — Fpstsp = 0. (1877)

The condition (18.77) guarantees that the same polarization azimuth ¢’ will result
for all incident azimuths ¢, namely the ¢’ given by
r, Tys

/ S
tan ¢’ = 22 =
Top Ty

(18.78)

For isotropic non-chiral media, the condition (18.77) reduces to r,,r, = 0, which
for p = p, is satisfied by r,, = 0 at angle of incidence 0p given by tan’ O = ¢/ey,
and gives an s-polarized reflected wave. For chiral media (18.77) implies

2cie-+e)m=ci(cq +c)(m* +1). (18.79)

The same method that we outlined for the r,, = 0 case (which satisfies (18.74))
reduces (18.79) to a quadratic in sin® 0}, or equivalently, to a quadratic in tan’ 0.
As we found for tan® 0,p, the polarizing angle determined by (18.79) is given by
(18.73) plus a term of second order in the chirality parameter y . Thus measurement
of either the Brewster angle or of the polarizing angle is not a viable method of
determining a small y. The full formula for the angle of incidence at which the
reflected light is linearly polarized is

(m? — 1){(1112 —[2n’ n? —n}(n? +n2)] +2(m* + Dnyn_y/ (3 —nd)(n2 — n%)}

A — )2 — )

tan? Opor =

(18.80)

The symbols have their usual meaning: ny = \/g(fiy, ne = Jeu £ p,m = \/ept; /&1 .
As we noted in relation to tan” 0, a physical polarizing angle can occur only
when the right-hand side of (18.80) is positive.

18.5 Optical Properties of a Chiral Layer

The optical properties of a chiral layer are discussed by Basisri et al. (1988),
Jaggard and Sun (1992), Lindell et al. (1994), Silverman and Badoz (1994), among
others. Lekner (1996) gives a first-principles derivation of exact analytic expres-
sions for the reflection and transmission amplitudes. Here we shall just give an
outline of the method and discuss some special cases.
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We consider reflection and transmission by an optically active layer of thickness
d, between the medium of incidence with index of refraction ny = (g1, )1/ % and the
substrate with index n, = (&u,) 12 The layer lies between z = 0 and z = d, and is

characterized by two indices ni = (s,u)l/ *+ . Because of multiple reflections
within the layer, the electromagnetic field inside is made up of four eigenstates or
modes, two propagating in the positive z direction, and two in the negative z
direction. For each direction of propagation there are two possible helicities. The
electric fields have the space and time dependence

E expi(Kx+qsz — o), EP expi(Kx — g2z — ot), (18.81)

where the superscripts f and b denote forward and backward propagation inside the
slab, and ¢, are given by (18.40).

The reflection and transmission amplitudes are found by applying the continuity
of the tangential (x and y) components of E and H at the two boundaries z = 0 and
z =d of the chiral slab. The s wave in the medium of incidence has electric and
magnetic fields given by (18.56) and (18.58). The electric field inside the slab is

E=f,E' +fE" +b E" +b E". (18.82)

There are eight equations (given in Lekner 1996) arising from the boundary con-
ditions, and these determine the eight unknowns (for s-polarization incident),
namely 7y, ¥, tos, tp f - f—, b, b_. Likewise for the p polarization. These
simultaneous equations are solved by using mode, phase and layer matrices, as for
the anisotropic layer (Sect. 8.9). The general solution is given in the Appendix of
Lekner (1996). The conservation laws (18.20) are satisfied by the exact reflection
and transmission amplitudes.

18.5.1 Normal Incidence

The simplest special case is that of normal incidence, for which one obtains

r+rzZ,.7Z_

ST =T rmzoz w0 (18.83)
0 E 2
v \+r'Z,. 7 ’
(1+r(1+7)(Zy —Z2))2
Ips = —lp = .

\+mZ, Z_

In these formulae r and ' are the normal incidence reflection amplitudes at the first
and second interfaces,
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1 - -1 3 ]
= —m7 r/ = m s m = ?ﬂ7 ml = F& (1884)
14+m m +1 LU e

Z. and Z_ are the phase factors for waves of positive and negative helicity
traversing the layer:

Z, =exp(ig+d), Z_ =exp(ig_d). (18.85)

At normal incidence g+ = niw/c, from (18.40) and (18.42). From (18.22), (18.24)
and (18.83) we find that, at normal incidence

Fop =r__= 07 Ty =TF_4 = —Fy= —TIp. (1886)

The normal incidence transmission amplitudes characterized by helicity reduce to
(on using (18.26), (18.27) and (18.83))

1+rn(1+r)Zs 1+r(+r)zZ
t =t =————t— . =t . =0. (18.87
e 1 +mZ.2_ \+mz, z. " i (18.87)

A chiral slab will thus transmit a normally incident pure circularly polarized wave
without mixing in any of the opposite circular polarization. A linearly polarized
wave can be regarded as an equal mix of the two opposite circular polarizations (for
example, p= (p+is)/2+ (p —is)/2). On transmission through the slab, the
positive and negative helicities are phase-shifted by different amounts, so that a
wave of unit amplitude initially linearly polarized along p will after transmission
through the slab have amplitude

(P+i;)t++ N (p—;'s)t, _ (:Izz/(zljzr_/) D(Zs +2) +is(Zs —Z)

1 1+/
- %exp(inwdﬁ) [pcos & — ssin §].
W7, 7_

(18.88)

Here n = (ny +n_)/2 = /e is the average index in the chiral medium, and
=yp—=yp—. 18.89
Y = (18.89)

From (18.88) and (18.89) (which prove (18.10)) we see that the plane of polar-
ization is rotated by J. For propagation along the optic axis of crystalline quartz, for
example, the rotation is 18.8° per mm at 4 =633 nm, so that n, —n_ =
6.6 x 1073 and y ~ 3.3 x 107°.
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We note that at normal incidence the multiple reflections within the slab have no
effect on the rotation of the plane of polarization, although they do affect the amount
of light transmitted. The situation is more complicated at oblique incidence: the
ratio of 74 ;. to 7—_ no longer equals Z, /Z_, and also ¢ _ and ¢_, are not zero.

18.5.2 Optical Properties Near the Critical Angles

Enhancement of chirality effects in the vicinity of the critical angles has been noted
by Silverman and Badoz (1989, 1992), and by Badoz and Silverman (1992). Here
we give the reflection amplitudes for a bulk chiral medium. Section 4.5 of Lekner
(1996) gives the reflection amplitudes for a chiral layer.

If the medium of incidence has refractive index n; greater than one or both of the
indices n.y, there will be an angle of incidence at which only one of the helicities
can propagate within the chiral medium. Suppose that y > 0 (n, > n_). Then the
negative helicity wave will be the first to decay exponentially within the bulk chiral
medium, at angles of incidence greater than the critical angle 0; given by

sinf] =n_/n;. (18.90)

At this critical angle of incidence ¢ =cos0_ is zero, and, with n=
(ny +n_)/2 = /eu as before,

7
-

2
¢y =cosf, = Ve 2 (18.91)

+

At 0; = 0, the reflection amplitudes for the bulk medium, (18.61) and (18.65),
have the following form:

2mey +cy (1 —m?) me 4 )
" e +co(1+m?) c +0(c%),
2mey — ¢y (1 —m?) Ct )
S -1+ 40
"o 2mey +c 4 (1 +m?) +mcl +0(c%),
—2imc 4 icy 5
ps — Fsp = =——+0 . 18.92
r1~ rP 2mcl+c+(l—|—m2) cl + (C+) ( )

Thus 7, and r, are proportional to the square root of the small chirality parameter
7, and measurements at 0; = 0] may be used to determine 7.



References 475

References

Badoz J, Silverman MP (1992) Differential reflection of circularly polarized light from a naturally
optically active medium. SPIE 1746:247-258

Bassiri S, Papas CH, Engheta N (1988) Electromagnetic wave propagation through a dielectric—
chiral interface and through a chiral slab. J Opt Soc Am A 5:1450-1459

Bohren CF (1974) Light scattering by an optically active sphere. Chem Phys Lett 29:458-462

Born M (1972) Optik. Springer, Berlin, p 412

Condon EU (1937) Theories of optical rotatory power. Rev Mod Phys 9:432-457

Eftimiu C, Pearson LW (1989) Guided electromagnetic waves in chiral media. Radio Sci. 24:351—
359

Jaggard DL, Mickelson AR, Papas CJ (1979) On electromagnetic waves in chiral media. Appl.
Phys. 18:211-216

Jaggard DL, Sun X (1992) Theory of chiral multilayers. J Opt Soc Am 9:804-813

Lakhtakia A, Varadan VV, Varadan VK (1988) Field equations, Huygen’s principle, integral
equations, and theorems for radiation and scattering of electromagnetic waves in isotropic
chiral media. J Opt Soc Am A 5:175-184

Lakhtakia A, Varadan VK, Varadan VV (1989) Time-harmonic electromagnetic fields in chiral
media. Springer-Verlag, New York

Lakhtakia A (ed) (1990) Selected papers on natural optical activity, MS15. SPIE Optical
Engineering Press, Bellingham

Lakhtakia A (1994) Beltrami fields in chiral media, World Scientific, Singapore

Lekner J (1996) Optical properties of isotropic chiral media. Pure Appl Opt 5:417-443

Lindell IV, Sihvola AH, Tretyakov SA, Viitanen AJ (1994) Electromagnetic waves in chiral and
bi-isotropic media. Artech House, Boston

Lowry TM (1935) Optical rotatory power. Longmans and Green, 1964 Reprinted New York,
Dover

Lukyanov AY, Novikov MA (1990) Reflection of light from the boundary of chiral gyrotropic
medium. JETP Lett 51:673-674

Maxwell JC (1891/1954) A treatise on electricity and magnetism, section 794. Dover, New York

Silverman MP (1986) Reflection and refraction at the surface of a chiral medium: comparison of
gyrotropic constitutive relations invariant or noninvariant under a duality transformation. J Opt
Soc Am A 3:830-837

Silverman MP, Ritchie N, Cushman GM, Fisher B (1988) Experimental configurations using
optical phase modulation to measure chiral asymmetries in light specularly reflected from a
naturally gyrotropic medium. J Opt Soc Am A: 5:1852-1862

Silverman MP, Badoz J (1989) Large enhancement of chiral asymmetry in light reflection near
critical angle. Opt Commun 74:129-133

Silverman MP, Badoz J (1992) Multiple reflection from isotropic chiral media and the
enhancement of chiral asymmetry. J Electromag Waves Appl 6:587-601

Silverman MP, Badoz J, Briat B (1992) Chiral reflection from a naturally optically active medium.
Opt Lett 17:886-888

Silverman MP (1993) And yet it moves: strange systems and subtle questions in physics,
section 4.3. Cambridge University Press, Cambridge

Silverman MP, Badoz J (1994) Interferometric enhancement of chiral asymmetries: ellipsometry
with an optically active Fabry-Perot interferometer. J Opt Soc Am A 11:1894-1917



Chapter 19
Pulses and Wavepackets

The preceding chapters have dealt with the reflection of monochromatic plane
waves from planar interfaces. Here we consider the reflection and transmission of
electromagnetic pulses and of quantum particle wavepackets by stratified media.
The theory of pulse reflection is simplest for those still having a plane wave spatial
character but bounded in time (or, equivalently, bounded in spatial extent along the
direction of propagation at a given time). Such pulses are built up by a superpo-
sition of plane waves of differing frequencies. We shall find, accordingly, that the
reflection of such pulses is determined by the frequency dependence of the
reflection amplitude. Particularly important is the case of total reflection, where all
the frequency and angle dependence is contained in the phase of the reflection
amplitude, since its modulus is then unity.

Sections 19.2 and 19.3 deal with exact solutions of the time-dependent
Schrodinger equation for wavepackets at potential barriers. The Appendix sum-
marizes the known universal properties of electromagnetic wavepackets.

19.1 Reflection of Nearly Monochromatic Pulses: The
Time Delay

For simplicity (and in this section only) we consider an electromagnetic pulse
which is launched and detected at some fixed position, here taken to be at the plane
z = 0. The initial pulse E;(¢) may be written as a superposition of monochromatic
plane waves by means of the Fourier integral:

o0

E(t) = / dof(w)e ™. (19.1)
—00
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The Fourier inverse of (19.1) is

T

f(a>):2i / dr E;(1)e"™. (19.2)

For example, if the initial pulse is sinusoidal with amplitude A(7),

Ei(t) = A(t)e ", f(w):% / dr A(1)e-o0). (19.3)

If A(z) varies slowly over most of its range, this represents a wavepacket which is
nearly monochromatic. The simplest case is a truncated sine wave, for which
A(t) = Ao when —T/2<t<T/2, and A(¢) = 0 otherwise; then

sin(w — wo)T/2
n(lw—wg)

flw) = A4, (19.4)

Each Fourier component reflects with its own reflection amplitude r(w). Thus if
(19.1) represents the initial pulse at z = 0, the reflected pulse at z = 0 will be given
by

E, (1) = / doo r()f ()e". (19.5)

For a sinusoidal pulse with amplitude A(#) this may be written as

E,(f) = / oo r(w)e 5 / dr A(z)el@=m)e (19.6)

We now specialize further to the case where the modulus of r(w) is slowly varying
compared to the phase, and the frequency variation of the phase is adequately
approximated by the first term in its Taylor expansion about
w : r(w) = |r(w)]e?), with

’

[r(w)] = |r(wo)|, O(w) = do+ (@ — wo)d,. (19.7)

Here 69 = 6(wp) and 5,0 is the derivative do/dw evaluated at wy. (The approxi-
mation (19.7) is particularly suited to the treatment of total reflection, where

|r(w)] = 1.) On substituting (19.7) in (19.6), (27) " times the integral over w
becomes a delta function, which selects the time, T = ¢ — 5;) in the 7 integral. Thus
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E, () ~ |r(wp)[e’®~0A (r - 5;)). (19.8)

The reflected pulse in this approximation is thus decreased in amplitude by |r(wo)|
and phase shifted by Jy. The pulse is unchanged in shape (it has the same time
envelope A), but is delayed by the group delay time

At~ 5, = (%) . (19.9)
wW=wqo

We will consider some examples of the application of (19.9). The simplest case
is that of reflection from a discontinuity in the refractive index. If the discontinuity
occurs at zj, the reflection amplitude at normal incidence is, from (1.15),

r, = etim(o/du M — M (19.10)
ny+np

The phase is thus a constant (0 or =7 depending on the sign of n; — ny), plus
2ny1z1w/c, and the delay time according to (19.9) is 2n1z; /¢, equal to the distance
2z; travelled from z = 0 to z; and back, divided by the speed ¢/n;.

The above example is special because the medium is homogeneous everywhere
except at the discontinuity. In the general case of reflection by a stratified medium
we showed in Sect. 6.7 that in the short wave limit, the phase shift on total
reflection is approximately

5 2o — b — /), (19.11)
where
b= [da©. ¢ = 1im{ [ag©-azy. (02

The lower limit in the phase integral is arbitrary. Itis convenient to set it equal to zg (the
classical turning point, at which ¢ = 0). Then ¢, = 0, and ¢_ may be written as

— —(
Z o 2

o= tim [ dla() —a1) — a2 (19.13)

If g(z) = g1 at and below the observation point z = 0, the phase of the reflection
amplitude becomes

20

o~ [ dzq(z,w) — /2. (19.14)
/
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At normal incidence (vertical propagation in the case of pulses reflected from the

ionosphere),

20

5%9/dzn(z,w)—n/2. (19.15)
c
0

The time delay can be written in terms of the group velocity u(z,w); it is also
estimated by (19.9) as

20 20

dz do 2 on
At=2 N — R — —. 19.1
! /u(z,w) do C/dz[n(z,w)—i—waw] (19.16)
0 0

(The turning point zq is also a function of w, but its derivative is multiplied by
n(zo, ®), which is zero.) The approximate equality of integrals in (19.16) shows that
the pulse travels to the turning point and back at the group velocity

c
n(z, ) + won/dw’

u(z,w) = (19.17)

Hence the name group delay time given to At. Equation (19.17) is equivalent to the
usual definition of group velocity, u = dw/dk, since here k = nw/c. In the sim-
plest model of the ionosphere,

e(z,0) = n*(z,0) = 1 — 02(2)/ 0% (19.18)

)4

then the group velocity u and the phase velocity v = ¢/n are related by
uv = c*. (19.19)

The above derivation of the group delay time is based, in part, on Ginzburg
(1964, Sect. 19.21). An alternative treatment may be found in Budden (1961,
Chap. 10, and 1985, Chap. 5); a general discussion of phase, group, signal and
energy transport velocities is given by Brillouin (1960).

So far we have considered only the linear term in the Taylor expansion

1
d(w) = 3+ (0 — wo)dy + E(w—wo)ég—f—.... (19.20)

The first order term leads to the time delay discussed above; the second and higher
order terms cause pulse spreading and distortion. These effects are discussed by
Budden and Ginzburg in the limit (common in optics and radio) where the pulse is
nearly monochromatic. The opposite extreme is common in underwater acoustics
and in seismology, where explosive sources or sudden crust movements give pulses
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which are strongly localized, and not at all harmonic. There is then no dominant
frequency g, and use of expansions such as (19.20) is not appropriate.
A discussion of this case and further references may be found in Brekhovskikh
(1980, Sect. 19.15).

Particular examples of exact solutions relating to reflection and nonreflection of
highly non-monochromatic particle wavepackets are discussed in the next two
sections.

19.2 Nonreflection of Wavepackets by a Subset
of the sech’ Potentials

We saw in Sect. 4.3 that the sech® profile did not reflect, at any angle of incidence,

when the parameter o = Ag(wa/c)’= n(n+ 1), n a positive integer. In the quantum
particle context, the potential well

R p(p+1)

V(z) = —
@) 2ma? cosh2§

(19.21)

is reflectionless, at any energy, if p is a positive integer. The potential (19.21), or
the equivalent dielectric function profile, was first considered by Epstein (1930) and
Eckart (1930), and is treated in the quantum mechanics texts Landau and Lifshitz
(1965) and Fliigge (1974). The p = 1 form of (19.21) appears as the simplest of a
family of reflectionless profiles (Kay and Moses 1956). We shall show later in this
section that positive integer values of u are special because they give critically
bound states, with delocalized wavefunctions.

When p is a positive integer, there is no reflection at any energy, and thus zero
reflection of any wavepacket formed by superposition of positive energy eigen-
states. Lekner (2007) has reduced the positive energy eigenstates to elementary
form, of which examples are given below.

For positive energies we write E = h*k*/2m, and the Schrédinger equation with
potential energy given by (19.21) reads

&y (o, et }
— + |k + ———=——|¢¥=0. 19.22
dz? { a?cosh? z/a v ( )

The potential is even in z, so parity is a good quantum number, and the two
independent solutions of (19.22) can be taken to be the even and odd functions. For
u = 0 these are proportional to the cosine and sine of kz, as expected:

o _ Sin kz
0 ka

WG = coskz, (19.23)
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For u =1 these are

in k
W = coskz — tanhg S‘Za < (19.24)
—1
Wi = 1+ (k| {kasinkz+ tanh = coske}. (19.25)
a

The even and odd eigenfunctions for ¢ = 1 and y = 2 are shown in Figs. 1 and 2 of
Lekner (2007).

We can superpose the even and odd eigenstates to obtain the reflectionless
energy eigenstates propagating in either the + z or —z directions, for example

Yo =W +ikayy = e, (19.26)

i{l + (ka)z}

= U = [1+ étanhﬂ e, (19.27)

19.2.1 Construction of Reflectionless Wavepackets

We wish to solve the time-dependent Schrodinger equation H® = iiid,® to follow
the passage of a wave packet through the p = 1 potential. In the absence of a
potential (1 = 0) a Gaussian wave packet, starting at ¢ = 0 centred on z = zo,

Do(z,0) = exp{ iko(z — 20) — (z — Z())2/2b2}, (19.28)

is known (Kennard 1927; Darwin 1928) to have the time development

Do (z,1) = M} (19.29)

b 1
———€X ik Z—2Z0—=ut| — -
N "{ °( ’ 2> 207+ )

In (19.29) u = hky/m is the group velocity of the packet, and b gives the spatial
extent of the packet at = 0. Figure 19.1 shows the propagation and spreading of
the free space Gaussian packet.

A corresponding wave packet built up from the nonreflecting energy eigenstates
¥, (k,z) is (Lekner 2007)

a(z — 20 — ikobz)

(Dl(za t) = (DO(Z) t) b2 + lht/m

+ tanh 2 (19.30)
a
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Fig. 19.1 Motion of the |
free-particle Gaussian 57
wavepacket @y (z, ¢) through

its focal region. The

parameters used are zp = —5b, / X
kob = 1. The time varies from

t=—10b/uto +10b/u, : / /
where u = hikg/m is the group -10 ut/b 0 / )

speed. The position varies %
from z = —16b to + 6b.

The focal region is centred on
70 = —5b att = 0. The plot
shows contours of the

probability density |®

‘ 2

where @y is the free-space Gaussian wave packet given in (19.29). The propagation
of the packet through the potential well region is illustrated in Fig. 19.2.

Kiriushcheva and Kuzmin (1998) made a numerical study of wave packet
propagation in the presence of the yt = 1 potential. They found that a wave packet,
constructed to have the form (19.28) at time zero, propagated through the potential
region faster than at the group speed u = fiky/m of the free-space Gaussian solu-
tion, and also was narrower after passing through the potential than the free-space
Gaussian packet. Lekner (2007) examined the speed and width of the ®,(z, 1) wave
packet, given in (19.30).

The envelope of this packet is |®;(z, )|, where

2ab*(z — zo — ut) tanh £ 4 a? [(z —z0)° + k(z]b“}
b* + (hit/m)?

Z
@, (z,1)]*= |@o(z,7)| tanhzg +

)

(19.31)

with

, b —(z—z0— ”t)z
A ) . 1932
|®o(z,1)] R p{[b2+(ht/mb)2]} o

The Gaussian free-space wave packet has, by inspection of (19.32), group speed

1
u = hky/m and width wy(z) = [bz + (ht/mb)zr. The results for the group speed
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Fig. 19.2 Motion of the
non-reflecting wavepacket
®,(z,t) through the potential
region; contours of |®,|* are
plotted. The parameters are as
in Fig. 19.1, and a = b. The
potential Vi (z) is indicated by
the band at z = 0. Note the
constriction in the probability
density as the packet passes
over the potential well,
centred on z =0

-10 10

and wave packet width of (19.31) are in qualitative agreement with the numerical
example given by Kiriushcheva and Kuzmin (1998).

Next we consider the question what is so special about the integer values of u?
The phenomenon of zero reflection of waves is common in optics, acoustics and
quantum mechanics (Lekner 1990). For example antireflection coatings can make
reflection zero at one wavelength, or very small over a range of wavelengths. What
is rare is zero reflection at any wavelength. In optics and acoustics there is zero
reflection by a sharp interface at the Brewster and Green angles (Sects. 1.2 and 1.4)

2 & 2 (szz)z - (P1V1)2
tan” Op = —, tan” Og = ——5 —5——>—, (19.33)

€1 P%(V% —v3)

where ¢, p, v are dielectric constants, densities and sound speeds, respectively. The
reflection of the electromagnetic p-wave and of the acoustic wave is however zero
only in the limit when the step from &, to & or (p;,v) to (p,, v2) is very rapid on
the scale of the wavelength.

Here we have an example of a potential (or dielectric function profile) with a
characteristic length a, and zero reflection for any values of a at any energy,
provided p is an integer. Why?

The potential (19.21) has, for given , the bound states (Landau and Lifshitz 1965)

hZ

2ma?

E, = (u—n)*,  n=0,1,2...[4 (19.34)
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where [y] is the integer part of p. It is shown in Lekner (2007) that the special
property of the integer-u potentials (—7*/2ma®)u(u+ 1)sech’z/a is that they
support a critically-bound state: one that has zero energy and a wavefunction of
infinite range (Lekner 1972). Systems which are near critical binding have special
properties associated with the long range of the wavefunction. This is one reason
for the nonreflecting integer-u sech’ potentials. Another is the V(—z) = V(z)
symmetry of the potential: reflection amplitudes of symmetric profiles automatically
have coincident zeros of their real and imaginary parts, whereas general profiles do
not (Lekner 1990).

The above association between critical binding strengths of the potentials and
zero reflection adds a physical heuristic to the mathematical explanation of
supersymmetric quantum mechanics. In the latter the potentials (19.21) and, with
integer n,

72

W(,u—n)(,u—nJrl)sechzg (19.35)
are shown to be partners in supersymmetric algebra. If one of the partners has zero
reflection amplitude they all do (Cooper et al. 2001, (3.32)). When u is an integer
one of the potentials will be zero, and a null potential does not reflect, so all the
integer-p  potentials are nonreflecting. Cox and Lekner (2008) obtain the
nonreflecting eigenstates of the sech’ potential directly from supersymmetric
considerations.

19.3 Exact Solutions of Total and Partial Reflection
of Wavepackets

Closed-form solutions of the time-dependent Schrédinger equation can be obtained,
describing the propagation of wavepackets in the neighbourhood of the potentials
with spatial dependence 1/z> and §(z), respectively. The first of these forms an
impenetrable barrier and thus causes total reflection. The second gives partial
reflection and transmission. Cox and Lekner (2008) obtained the results for the z—2
potential from supersymmetric quantum mechanics, and the d(z) potential by ele-
mentary methods. We shall just state the results to illustrate total and partial
reflection of wavepackets.
For the impenetrable potential

h2
= 19.
VE) = (19.36)

which forms a barrier at the origin, we shall consider wavepackets that come up to
this barrier from z = —oo and are totally reflected, with zero probability amplitude
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at the z = 0 singularity. In the free particle case we build on the stationary wave
e*> — e~*_ which leads to the wavepacket

Dy(z,1) = Dy (z,7) — Po(—2,1). (19.37)

Cox and Lekner show that the wavepacket in the presence of the potential (19.36) is

(z,1) = (=0.+ 1) [@o(z,1) — Bo(~2,1)

_ |1 z—z—iked? 1 2+ 20 + ikob? (19'38)

= [1 + | ooz — L+ SR @y (—20).
The z~! terms in (19.37) do not cause a singularity at the origin, in fact the leading
term is O(z?). Figure 19.3 shows the propagation and total reflection of this
wavepacket.

The term proportional to ®y(z,#) in (19.38) has maximum probability at z =
z0 +ut and will be dominant at negative times, while the term proportional to
®y(—z,¢) has maximum probability at —z &~ zp + ut and will be dominant at pos-
itive times (assuming that |zo|/b is not too large), since the wavepacket is confined
to z<0.

~10  ut/b

/ / Zr‘rb

-20"

Fig. 19.3 Total reflection of the wavepacket given in (19.38) by the potential 7i*/mz?; the
parameters are as in Fig. 19.1. Note the large probability |CI)|2 near z = —1.5b, ut = 2.8b, greater
than at the centre of the focal region because of constructive interference between the incident and
reflected parts of the wavepacket. The impenetrable potential is centred on z = 0, indicated by the
thick horizontal line
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Next, we consider the partially reflecting delta function potential

K
V(z) = 75(1). (19.39)

We characterize the delta function potential by the reciprocal length x (the mag-
nitude of x gives the strength, and the sign determines whether the potential is
repulsive or attractive):

The delta function causes a discontinuity in the gradient of an energy eigenstate s
at z = 0: setting E = h%k> /2m, the time-independent Schrédinger equation becomes

(=02 +2K8(2)) Y = K. (19.40)
Integrating across the origin from —e¢ to + ¢ and letting ¢ — O gives
Y'(0=) — /' (0+) +2k(0) = 0. (19.41)

Let p and 7 be the plane wave reflection and transmission amplitudes, so that

ikz —ikz
vk ={ St B30 (19.42

Continuity of  at z = 0 implies 1 4+ p = 7, and the discontinuity in the derivative at
z =0 (19.41) gives ik(1 — p) — ikt + 2Kkt = 0, so that
—iK k
= T= .

k+ix’ k+ix

p (19.43)

To construct a wavepacket we superpose the energy eigenstates (19.42) by
integrating over k with some Fourier amplitude. In superposing the energy eigen-
states we can obtain simple results if, as suggested by the form of (19.43), we use
the Fourier amplitude

2.2

F(k) = (k+iK)Fo(k),  Fo(k) = be ko slk—korb”, (19.44)
Then we have (with @y the free-space Gaussian, as before)

1 a P ik ht
7= / dk e 5 Fo (k) = @y (z, 1), (19.45)
—00

and, by differentiation of (19.45) with respect to z,

o]

1 o ik
= / dketszzk ht/Zml-kFO(k) _ 31(1)0 —

—00

z— 20 — tkob?
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/ z/b

-20-

Fig. 19.4 Partial reflection of a wavepacket by the delta function repulsive potential. The
parameters are zo = —5b, kob = 1 and kb = 1. The delta function potential (at zero z) is indicated
by the thick line. The slope in the diagram gives speed; the incident pulse has slope = fiky/m, the
group speed. Note that, for this parameter set, the reflected parts separate into a slower and a faster

group

The superposition of (k,z) given by (19.42), with Fourier amplitude
(k+ir)Fo(k), gives the wavepackets (we remove a factor i)

(-0, +1)Py(z,1) — kDp(—2z,8) z<0
D(z,1) = {_82(1)0(% ) >0 (19.47)
Note that one part of the wavepacket, namely —9,®(z, ¢), is the same on both sides
of the delta function potential. This part propagates straight through the potential.
The other parts at negative z, proportional to the potential strength x, are the
forward-propagating packet ®¢(z,7), and the backward-propagating packet
®y(—z,1). The three parts on the left overlap when near z = 0, producing an
interference maximum, whereas the single transmitted part remains smooth on the
right. Figure 19.4 illustrates the process.

There is a large variety of patterns that result from the reflection of a wavepacket
by a delta function barrier, as described by (19.47). Four lengths characterize the
reflection problem: b,zo,ky ', k~!. The example we have given corresponds to a
highly localized wavepacket, entering its focal region before the barrier. One can
move the focal region, change the localization, and change the barrier strength. For
example, highly delocalized wavepackets give rise to fringes due to interference
between the incoming and reflected waves.
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A reflectance R and transmittance T for the wavepacket as a whole can be
obtained as follows: at large positive time, the part dominant for negative z is
® = —k®(—z,1), while the part for positive z is always ® = —9,®y(z, ). Each of
these has a probability density current J(z,t) = h/mIm{®"(z,¢)0,D(z,1)}.
Integrated over z, at large positive times, these currents are respectively propor-
tional to —(likg/m)x?, (Fiko/m)[k3 + 3/2b%]. From these currents and R+ T = 1 we
deduce

2
_ S CT— 1 5= K .
1+S 1+S k% +3/2b?

R (19.48)

S is the scattering strength of the delta function potential (which is proportional to k),
for a wavepacket characterized by its mean wavenumber ky and minimum width b.
For the parameters used in Fig. 19.4,§ =2/5, R =2/7,T = 5/7. In the plane wave
limit kob > 1 the reflectance and transmittance given in (19.48) become the
plane-wave expressions obtained by taking the absolute squares of p and 7 in
(19.43), evaluated at the dominant wavenumber k.

Notice that 7o, the location of the focal centre of the Gaussian wavepacket at
t = 0, does not enter into (19.48), which was obtained by local integration over
well-separated parts of the wavepacket. In this context we note that the coherence
length of wavepackets remains unchanged on propagation (Kaiser et al. 1983; Klein
et al. 1983); again this result is independent of the location of the focal region.

The reader may have gained the impression that all quantum particle
wavepackets are based on the free-space Gaussian packet @y. This is not necessarily
so: other exact solutions exist, for example one based on the Airy function (Lekner
2009), but these have a more complicated space-time dependence. Three-
dimensional Gaussian wavepacket solutions of Schrédinger’s time-dependent
equation are known (Darwin 1928); these can be made to rotate (Lekner 2008).
No exact results in the reflection of three-dimensional wavepackets by stratified
media are known to the author.

Appendix: Universal Properties of Electromagnetic Pulses

This Appendix surveys the existing known universal properties of electromagnetic
pulses, namely (i) the time invariance of the total electromagnetic energy U,
momentum P and angular momentum J of the pulse, and (ii) the inequality cP, < U.
(Net pulse propagation is taken to be along the z direction.) In both (i) and (ii) the
theorems follow directly from Maxwell’s equations.

The conservation of energy, momentum and angular momentum is no surprise,
but the inequality c¢P, < U implies that all localized electromagnetic pulses have a
zero-momentum frame (not a ‘rest’ frame, waves are never at rest). The above is of
course in contradistinction to Einstein’s light quantum, for which the momentum
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P is purely in one direction, and cP = U (Einstein 1917). The implication seems to
be that we cannot form a model of the photon by any pulse wave-function satisfying
Maxwell’s equations. If the momentum P and energy U formed a four-vector
(cP,U), U? — ¢®P? would be a Lorentz invariant. This holds for point particles, but
not universally for wavepackets. We show however that u> — ¢?p? is universally a
Lorentz invariant, non-negative at all space-time points (x and p are the energy and
momentum densities).

We also discuss the helicity of electromagnetic pulses, and the counter-intuitive
relation between the helicity and angular momentum of certain exactly calculable
examples.

Maxwell’s equations, with the electric and magnetic fields expressed in terms of
the vector potential A(r, ) and scalar potential V(r,t) via

E=-VV-0.,A, B=V xA, (19.49)

and with A and V satisfying the Lorenz condition V.A + 0,V = 0, lead (in free
space) to V and the components of A all satisfying the wave equation

V2 — 2y = 0. (19.50)

Electromagnetic pulses can then be constructed from solutions of (19.50). For
example, the choice V = constant, A = V x (0,0, V) = (8, —0;,0)y gives us the
transverse electric (TE) pulse with

E=-0.,A = (_ayacta axactao)wv B=VxA= (axaza ayazv _8)% - ai)lp
(19.51)

The wave equation (19.50) has an infinity of solutions, for example
W = f(z — ct), with f an arbitrary twice-differentiable function. These solutions,
and also the textbook plane wave expi(k.r —ckt) and spherical waves
r~Lexpik(r + ct), are not localized in space-time. The spherical wave solutions
generalize to r~'f(r #+ ct), with f again any twice-differentiable function. These
spherical wave solutions are singular at the origin.

Bateman (1904) obtained a general solution of the wave equation in integral
form. For solutions with axial symmetry (independent of the azimuthal angle ¢) the

1 . . .
Bateman solution is, with p = (x? +y?) being the distance from the z-axis,

2n

1
v(p,z,t) :%/ dOf(z+ipcos0,ct+ psin ). (19.52)
0

We outline a proof (different from Bateman’s): the wave equation in cylindrical
polars, with no azimuthal dependence, reads



Appendix: Universal Properties of Electromagnetic Pulses 491

1
(af, - ;ap + 02 — af,) Y =0. (19.53)

Carrying out the partial differentiations in (V> — 2)f, and comparing with 93f
shows that

1
(ag + ;ap +02 — af,) f=—-p20f. (19.54)

Operating on (19.52) with V2 — &% therefore gives zero:

2n

—2mp* (V2 - 82) ¢ = / d0 B2f = [0uf) 20” =0. (19.55)
0

On the propagation axis p = 0 the pulse wavefunction becomes
W(0,z,1) = f(z,ct). (19.56)
For example, if the on-axis wavefunction takes the form

ab

Fet) = st i =]

Yo, (19.57)

the corresponding full wavefunction obtained by integrating (19.52) is

ab

Y(p,z,1) = P2 +a—ilz+ct)][b+i(z — cr)]

V. (19.58)

This wavefunction has been obtained by other means (see references in Lekner 2003).

Conservation Laws, Energy-Momentum Inequalities

The energy, momentum and angular momentum densities of an electromagnetic
field, in free space and in Gaussian units, are (Jackson 1975)

1
(E2 +Bz)7 p(r7 t) =-—EX Ba j(rv t) =rx p(l‘, t)'

1
u(r,1) = 8 " Adne

T

(19.59)

E(r,t) and B(r,7) are the real electric and magnetic fields at position r and time 7.
The total energy, momentum and angular momentum at time ¢ of an electromag-
netic pulse are
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U:/d3ru(r,t), P:/d3rp(r,t), J:/d3rj(r,t). (19.60)

It will come as no surprise that these are all conserved quantities: the integrals in
(19.60) are all independent of time. The energy and momenta of electromagnetic
pulses based on the solution (19.58) of the wave equation were evaluated in Lekner
2003. Proofs of the constancy of U and of P were sketched in Lekner (2004b). The
conservation of angular momentum was proved in Lekner (2004a). In all cases, the
proofs follow from taking the time derivatives of the quantities U, P and J defined
in (19.60), applying Maxwell’s free-space equations

V-B=0 V-E=0
VxE+9,B=0 VxB-0E=0 (19.61)
and using elementary analytical techniques.

In order for the quantities U, P and J to exist (let alone be conserved), the
electromagnetic pulse has to be localized. The first evaluation of U for any localized
pulse was in Feng et al. (1999); later evaluation of energy, momentum and angular
momentum for various electromagnetic pulses found (Lekner 2003) that all had
U > cP,, with the transverse momenta P, and Py, zero. Thus these pulses could be
Lorentz-transformed into their zero momentum frames, in which the pulse con-
verges onto its focal region and then diverges from it, maintaining zero net
momentum at all times. The proof that U > cP, for all localized electromagnetic
pulses is elementary (Lekner 2004a): let the total momentum vector P point along
the z direction, and consider the energy and momentum densities u(r, ¢) and p,(r, 7).
From (19.59) we have

8n(u—cp,) =E*+B*—2(E x B),
= E!+E+E?+B2+ B + B — 2(E.B, — E,B) (19.62)
=(E.—B)* +(E,+B.) +E>+B>>0

Equality of U and cP, would require u — cp; to be zero everywhere and at all times,
which from (19.62) requires E, = 0 = B, (purely transverse fields) and also E, =
B, and E, = —B,. The divergence equations in (19.63) then give

—OE,+OE, =0 and 8, +OE, = 0. (19.63)

Thus E, and —E, would be a Cauchy-Riemann pair in the variables x and y, and
satisfy

(0, +E, =0,  (9;+0;)E, =0. (19.64)

Such harmonic functions cannot have a maximum except at the boundary of their
domain, and thus cannot be localized in x and y (for any z and #). For localized
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electromagnetic pulses we therefore always have the total energy greater than ¢
times the net total momentum,

U > cP.. (19.65)

U and P are defined by (19.60) as spatial integrals, which have been shown to be
independent of time in any given inertial frame. If together they formed the
four-vector (cP, U), U?> — ¢>P* would be a Lorentz invariant, the same in all inertial
frames. Such four-vectors exist for point particles, but cannot be associated (in
general) with extended wavepackets. Consider however the squares of the volume
densities, u*(r,t) and p*(r,). From (19.59) we have

) (E* + B2’ 4(E><B)2

(87)°(u? — ?p
= (B +B ) 4E2B2—|—4(E B)’ (19.66)
= (E2 — B%)* + 4(E - B)*

Hence u?> — c¢?p? is everywhere non-negative, and further it is a Lorentz invariant,
since E> — B?> and E - B are Lorentz invariants. We shall return to the Lorentz
transformation of pulses at the end of the Appendix.

Angular Momentum, Helicity

We have seen that the energy U, momentum P and angular momentum J are all
conserved (do not change with time) for any electromagnetic pulse in free space.
The energy and momentum are also independent of the choice of origin of the
spatial coordinates (which are integrated over, see (19.60)). However, the angular
momentum does depend on the choice of origin: in the translation r — r — a,
J — J — a x P. Textbooks make statements such as (Mezbacher 1998, p. 569) ‘the
photon has vanishing mass and cannot be brought to rest in any Lorentz frame of
reference’. As we have seen, any localized electromagnetic pulse satisfying
Maxwell’s equations does have a zero momentum frame (not a ‘rest’ frame). In the
frame where P is zero the angular momentum is independent of the choice of origin,
and thus we can associate an intrinsic angular momentum with a localized elec-
tromagnetic pulse.

Suppose (as we have here) that the net momentum of a pulse is along the
z-direction, P = (0,0, P,). A Lorentz boost at speed ¢>P,/U, along the z-axis, will
bring the pulse to its zero momentum frame. The component J, of the angular
momentum is unchanged in this Lorentz transformation. This is because the
four-tensor of angular momentum J; = X;P; — X;P; (X; and P; represent compo-
nents of the space-time and momentum-energy four-vectors) has the same structure
as the electromagnetic field four-tensor composed of E and P (Landau and Lifshitz
1951, Sect. 2.6)
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(19.67)

where

J41 = —J14 = i(C[PX — XU/C)
Jip = —Joy = i(cth — yU/c) (19.68)
Jiz = —Jza = i(ctP; — zU/c)

For comparison, the field four-tensor, also in the Minkowski notation, is

0 B. —-B, —iE,
-B. 0 B, —iE,
B, —B. 0 —iE.
iE, iE, iE. 0

(19.69)

Since B, is unchanged by a Lorentz boost along the z-axis, J, will also be
unchanged by such a transformation. Thus we can regard the component of the
angular momentum along the momentum (J;, in this Appendix) as the intrinsic
angular momentum of the pulse.

The helicity of the pulse is + 1 if the sign of J, is the same as that of P, (in a
frame with P, # 0), —1 if the signs are opposite. There is no helicity (or the helicity
is zero) if J, is zero.

We shall give some examples of results for electromagnetic pulses based on the
wavefunction (19.10). The first is for the TE + iTM pulse for which

A = v X (0503 lp) = (ayv 7&\’70)lpa (1970)
B=VxA+id,A, E=iB. (19.71)

(Here B(r, 1) and E(r,7) are complex; their real and imaginary parts are separately
solutions of Maxwell’s equations.) The total energy, momentum and angular
momentum found in Lekner (2003) are

na—b

na+b
_r cpP. =147
8 ab

T8 ab

e, vg, J.=0. (19.72)

For this pulse, a Lorentz boost at speed fic, f = cP,/U = (a — b)/(a+b), will
bring the pulse to its zero-momentum frame.
If instead one takes the vector potential to be

A=V x[iy,y,0], (19.73)
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with B and E defined by (19.71) as before, one finds (Lekner 2003)

na+3b

ma—3b nbh

lﬂo, cP 7z =
This example shows that non-zero angular momentum can result from a wave-
function without azimuthal dependence: the curl operator supplies the twist.

More complex exact solutions of the wave equation have been tried, and the
energy, momentum and angular momentum evaluated (Lekner 2004c¢, d). There we
find the surprising result that when the wavefunction ¥ has an ¢™¢ azimuthal
dependence, the helicity is opposite to the sign of m. Since J, is represented by the
operator —ihid in quantum mechanics, J.e™? = ime™?, so there the ™ depen-
dence produces J, = him, the same sign as m. It is not understood physically why
electromagnetic pulses do the opposite.

Figure 19.5a, b and c illustrate a time sequence of a pulse based on ¥ equal to
pe'®/[b+i(z — ct)] times the wavefunction in (19.58), with A given by (19.70), V
constant, and E and B given by (19.51). The total energy, momentum and angular
momentum of the pulse are (Lekner 2004d)

w3a+b , 7 3a —

- Ta
=16 ;2 Vo PEiep wm cJZ:—gzlpg. (19.75)

Lorentz Transformation of Pulses

For point particles of mass M, the energy and momentum are related by
U? = M%c* + P2¢?, and the combination (cP, U) is a four-vector, meaning that it
transforms in the same way as (r,ct). It follows that U? — ¢?P? is a Lorentz
invariant, in this case M>c*.

Electromagnetic wavepackets are extended objects, evolving in space-time, and
the transformation between inertial frames is more complicated. However, as we
have seen in equation (19.66), u*> — c>p? is a non-negative Lorentz invariant, for
any electromagnetic pulse.

Consider the transformation of a scalar wavefunction such as (19.58). A Lorentz
boost along the direction of motion (here along the z-axis) at speed fic leaves the
transverse coordinate p unchanged, and changes z and 7 to z’ and 7"

=@ +Bef),  c=ypcl+p), y=(1-p) % (19.76)

The effect is to change the weight of the z 4 ¢t components of y:

1+

z+ct = | —(7 +ct), Z—ct=

1-p

1-p
1+p

(7 —cf). (19.77)
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Fig. 19.5 The energy density 3
contours and transverse y/b
momentum densities of a =%
helical pulse (wavefunction

given in the text), with

a = 2b. The longitudinal

component p, of the

momentum density is not

shown. The pulse is shown in _'3

its focal plane z = 0, at

ct = —b,0, b, time increasing

upward from the lowest

figure. The pulse is travelling

out of the page toward the

reader. It has negative angular ct=b
momentum about the -3
propagation direction

x/b

v/b

=0

ct=-b
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For the wavefunction in (19.58), a Lorentz boost with = (a —b)/(a+Db) or
(1+p)/(1 = B) = a/b transforms y to (Lekner 2003)

aby,
P2+ [Vab —i(Z +ct')| [Vab+i(zZ —ct')]’

y(r',r) = (19.78)

in which the forward and backward propagations are balanced. Such a choice of 8
brings the TE 4 iTM pulse to its zero momentum frame, as we have seen in (19.70)—
(19.72). Moreover, the energy in the zero momentum frame, Uy = glp?) / Vab, is
equal to the square root of U? — cng, so in this respect the pulse momentum and
energy behave as four-vector components. (U and P, were given in (19.72).)

However, other pulses constructed from the same wavefunction require a dif-
ferent f to bring them to their zero momentum frame, as in the example specified by
(19.73) and (19.74) for which f§ = (a — 3b)/(a + 3b). For this 8 the wavefunction
(19.58) is transformed to

b
W, 1) = abvo . (19.79)
P+ [V3ab — i(2 + ct')] { ab/3 +i(z — cﬂ)]
The transformed momentum is zero, and the transformed energy is
Uo = gwg/\/&zb. (19.80)

This is not (unless a = 3b) equal to the square root of U*> — ¢?P2, for which the

values in (19.74) give
3b
,/U2—c2pgzglp§,/—a3. (19.81)

Thus the same solution of the wave equation can lead to pulses for which the
energy and momenta may or may not behave like four-vectors. In general, the
Lorentz transformation of electromagnetic wavepackets is more complicated than
that of point particles, as may be expected.
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Chapter 20
Finite Beams

Chapters 1-18 have dealt with the reflection of monochromatic plane waves from
planar interfaces. The previous chapter discussed the reflection of electromagnetic
pulses and of quantum particle wavepackets. Here we shall consider transversely
finite beams. The simplest beams to consider are those bounded in space but still
monochromatic. These can be viewed as a superposition of plane waves of the same
frequency but differing propagation directions. We shall find, accordingly, that the
reflection of beams depends on the angular dependence of the reflection amplitude.
Particularly important is the case of total reflection, where all the frequency and
angle dependence is contained in the phase of the reflection amplitude, since its
modulus is then unity. The variation of the s and p phases with angle of incidence is
discussed in Appendix 1, and applied to calculation of the lateral beam shift in
Sect. 20.2. Section 20.3 gives analytic results for the reflection of Gaussian beams.
Appendix 2 summarizes the polarization properties of finite beams. We start by
reviewing the properties of finite beams.

20.1 Universal Properties of Scalar
and of Electromagnetic Beams

This section is concerned with universal properties of scalar and of electromagnetic
beams, by which we mean properties that all physical beams must have (or cannot
have). We begin with a summary of the existing exact solutions.

For monochromatic beams in free space, in which the time dependence of the
complex fields is contained in the factor e, the quantum and acoustical scalar
amplitudes  satisfy the Helmholtz equation

(VP+i)y =0, k=o/c. (20.1)

Also all the components of E and B of an electromagnetic wave satisfy (20.1). This
follows from Maxwell’s equations by expressing the magnetic and electric fields in
terms of the vector and scalar potentials A and V,
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B=VxA, E=-VV-0,A, (20.2)
and choosing the Lorenz gauge
V-A+9,V=0. (20.3)

In free space, V and all components of A then satisfy (20.1) (see for example
Jackson (1975), pp. 218ff), and so do their derivatives such as E and B.

The textbook solutions of (20.1) are the plane wave exp(ik - r) and the spherical
waves exp(=ikr)/r. Physical beams are localized transversely to the direction of
propagation, in contradistinction to the textbook solutions. Deschamps (1971) noted
that a complex shift along the propagating direction (the z-axis, in most of this
chapter) gives an exact solution of (20.1) localized transversely:

eikR
V= R* = +y 4+ (z—ib)* = p* + (z — ib)*. (20.4)

This solution is singular on the circle {p = b, z = 0} and so cannot represent a
physical beam. One can regularize by subtracting the complex-shifted spherically
converging wave exp(—ikR)/R (Sheppard and Saghafi 1998) to obtain

_ sin kR

Yoo =

L = Jo(kR), (20.5)

and generalize to (Ulanowski and Ludlow 2000)

¥im :Jz(kR)P[< R )e ’, (20.6)

but problems remain in the divergence of some invariants (see Lekner (2001) and
below), and in the backward-propagating components associated with the terms
proportional to exp(—ikR)/R.

The Helmholtz equation (20.1) is separable in cylindrical coordinates (p, ¢, z): it
reads

1 1
[aﬁ+;ap+ﬁafb+6§+k2 Y =0. (20.7)
This is solved by J,,(Kp)e™?e* (with K2+ ¢> = k?), and thus also by the gen-

eralized Bessel beams (Lekner 2004b)

k
() = / AKf(K) In(Kp)e™,  K'+q =K. (208)
0
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Note that K is restricted to the interval [0, k], so ¢ = Vk*> — K? is a real mapping
onto [0, k]. These beams are therefore purely forward propagating, by construction.
The amplitude function f(K) can be complex; it is constrained by the necessary
finiteness of integral invariants (see below). We show first how /() is related to
the time-harmonic version of Bateman’s integral solution of the wave equation.

20.1.1 Bateman Integral Solution of the Wave Equation

Bateman (1904) considered integral representations of solutions to the wave
equation (V2 — 83_,) Y = 0. The simplest case is that where the solution is inde-
pendent of the azimuthal angle ¢, in which case his solution reduces to

2n

Y(p,z,t) = %/ dOF(z+ipcos,ct+ psin6). (20.9)
0

We can adapt this to find the general solution of the Helmholtz equation (20.1)
which is independent of the azimuthal angle. For time-dependence e’ = e,
the function F' must take the form

F(z+ipcos0,ct+ psin0) = g(z+ ip cos 0) e ket +psin0) (20.10)
and then the spatial part of ¥ in (20.9) becomes

2n

v(p,z) = %/ d0 g(z +ip cos 0) e krsin?, (20.11)

0

We can verify that this is a solution of the Helmholtz equation as follows. Let
G(p,z,0) = g(z+ipcos0) e * P50 A short calculation shows that (V2 +k%)G =
—p20%G and 50 2n(V? + k)Y = [p20yG)y—[p 209G, = 0. Thus the expression
(20.11) is the most general form of the scalar wavefunction corresponding to axially
symmetric monochromatic beams. Note that on the beam axis (p = 0) we get

¥(0,2) = g(2). (20.12)

Therefore the amplitude function g in (20.11) given by the axial value of the beam
wavefunction.

There is a one-to-one correspondence between (20.11) and the m = 0 general-
ized Bessel beam solution (20.8). Since K> +¢?> = k> we can write Y, (r) as an
integral over ¢ instead of over K:
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k
0

(20.13)

The zero-order Bessel function containing the square root can be rewritten by using
Bessel’s integral (Watson 1966, Sect. 2.21), which transforms (20.13) into

k
l,b( ) /d@ ﬂkﬂsm()/dqh tqz+tpcos()) (2014)
0

Comparison of (20.11) and (20.14) shows that, for the m = 0 generalized Bessel
beams, the amplitude function g is given by

k
g(z+ipcos0) :/dqh Yeld(z+ipcost), (20.15)
0

The axial value of the beam wavefunction is thus equal to the finite Fourier
transform of A(q):

k
¥(0,2) = g(z /dqh e, (20.16)
0

20.1.2 Conservation Laws and Beam Invariants

The energy, momentum and angular momentum densities of an electromagnetic
field in free space are, in Gaussian units, given by

1 1
u(r, 1) :g(E2+B2), p(r,1) *RE x B, j(r,t) =r x p(r,7).
(20.17)

Here E(r, 7) and B(r, ) are the real fields. For monochromatic fields it is convenient
to work in terms of complex fields E(r) and B(r) with the real electric field being
given by

E(r,7) = Re{E(r)e ™'} = {[E,( ) +iE;(r)][cos wr — isin wt]}

E,.(r) cos wt + E;(r) sin wt. (20.18)
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The average of u(r, ) over one period 27/ is

a(r) = 8%{1«:(1«) JE*(r) +B(r) - B(r)}. (20.19)

Likewise the cycle-averaged momentum density is

1

p(r) = 167c

[E(r) x B*(r) + E*(r) x B(r)]. (20.20)

The conservation of energy equation, V - S + d,u = 0, where S = ¢?p is the energy
flux density, has the cycle-average equal to ¢ times

V- = 0Pyt 0y Py + 0:p. = 0. (20.21)

Applying [d*r = [* dx [* dy= [*dpp [[7d$ to (20.21) gives, for trans-
versely finite beams propagating in the z direction (Lekner 2004a)

0, / d*rp. =0, or P.= /dzrpZ = constant. (20.22)

We use the notation P;, since dP, = P; dz is the total z-component momentum
contained in a transverse slice of the beam, of thickness dz. Equation (20.22) states
that the momentum content per unit length, along the direction of net propagation of
the beam, is an invariant. Note that the invariance of the momentum content per unit
length is derived from the conservation of energy (the energy flux density is pro-
portional to the momentum density).

The conservation of momentum equation is expressed in terms of the stress (or
momentum flux density) tensor

11
opi+ > Oty=0, 1= ym [2(E2+Bz)5U—EE BB; (20.23)
J

Taking the cycle average gives Zj 977; =0, and operating with [ d*r gives
2. [ d*r7. =0 (i =x,y,z). Thus momentum conservation leads to three invari-
ants (Lekner 2004a)

1 N
T’,(Z = /dzr%xz _E/d2r EXEZ+BXBZ]7

s
T, = /d FTy = d’r[E,E. + B,B.], (20.24)

yz

2 2
/d rrzzz—/d r\E} +E; —E}+B; + B} —
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Three more invariants follow from the conservation of angular momentum,
Oi + >y Oty = 0, where the angular momentum flux density tensor u, =
Zj > €ikXjTke 18 defined in terms of the momentum flux density tensor t;; (Barnett
2002). These invariants are

Méx = /d2rﬁu = /dzr[yfZZ ,nyz]’

M;,V = /dzr'azy = /dzr[foz _szz]a (20.25)
R I S S ~

Mzz - /d Fiy, = ./d F[X‘Cyz _yfxz]-

Thus there are seven universal invariants of electromagnetic beams, arising from
the conservation of energy, momentum and angular momentum. Perhaps surpris-
ingly, the energy per unit length of the beam, U’ = [ d’ru, is not always an
invariant, although it is constant for the types of generalized Bessel beams dis-
cussed in Lekner (2004b), as is J. = [ d*rj..

The invariants for quantum particle beams and for sound beams also correspond
to conservation laws. In both cases they originate from the conservation of particles
(continuity equation) and conservation of momentum and of angular momentum
(Lekner 2004, 2007).

20.1.3 Non-existence Theorems

In textbooks a light beam is usually represented by a plane wave, with E, B and the
propagation vector k everywhere mutually perpendicular. This ‘beam’ can be
everywhere linearly polarized in the same direction, or everywhere circularly
polarized in the same plane, and its energy is everywhere transported in a fixed
direction at the speed of light. It has been shown (Lekner 2003) that none of these
properties can hold for a transversely finite beam. We shall just state the theorems,
except for the one relating to linear polarization, for which the proof given in
Lekner (2003) is incomplete.

(i) Pure TEM beams do not exist.
(i) Beams of fixed linear polarization do not exist.
(iii) Beams which are everywhere circularly polarized in the same direction do not
exist.
(iv) Beams or pulses within which the energy velocity (Lekner 2002) is every-
where in the same direction and of magnitude ¢ do not exist.

Proof of (ii) Suppose E = (F(x,y,z),0,0), so the beam is linearly polarized along
%, everywhere. Then from the Maxwell curl equations, with e “*' time dependence,
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we have kB =V x E=(0,0,,—0,)F, and ikV x B = (—[63 +02],0,0,, 0,

0,)F = k’E. Hence (6y2 + 02+ k*)F =0 and 9,0,F =0 = 0,0.F. The last two
equations imply F(x,y,z) = f(x) 4+ g(z) + h(y,z), which cannot represent a beam
localized transversely in the x direction.

Appendix 2 gives more detail about the polarization of finite beams.

20.1.4 Focal Plane Zeros

We have seen that electromagnetic beams can be constructed from solutions of the
scalar Helmholtz equation (20.1). In particular the TM, TE, ‘LP’ and ‘CP’ beams
have their vector potentials proportional (respectively) to

(07 07 l//)7 (ay'ﬁv _8x¢’ 0)7 ('107 07 0) and (_i‘/jv ‘//7 0) (2026)

(The quotation marks indicate that the ‘LP’ and ‘CP’ beams are fully linearly and
circularly polarized only in the plane wave limit: compare theorems (ii) and (iii) of
the previous section.)

What are the universal properties of physically acceptable solutions? We have
already seen that seven beam invariants must exist. We also saw that certain
textbook properties of plane wave electromagnetic beams cannot hold for laterally
finite beams. Here we argue that an infinity of zeros of iy must occur in the focal
plane.

The solutions /(r) of the Helmholtz equation are, in general, complex functions
of position, ¥ =, + iy;. The real and imaginary parts , and y; are (in free space)
smooth functions of position. These functions are zero on surfaces S, and S;, and
where these surfaces meet (on curves C in space) both ¥, and ; are zero. If we write

Y(r) = M(r)e™™ = [y? + wﬂ%exp (i arctan %) (20.27)

r

we see that, on any such curve C, the modulus M(r) is zero, and the phase P(r) is
indeterminate. Nye and Berry (1974) called these curves wave dislocations; Chap. 5
of Nye’s (1999) book gives illustrations of such phase singularities.

Lekner (2013) has given a topological argument for the existence of zeros of Y
in the focal plane, on the assumption that the isophase surfaces intersect the focal
plane. At the zeros of s the phase can be any real number excluding integer
multiples of 7, as explained below.

The focal plane is a plane of symmetry for an ideal beam, and can be taken as the
z =0 plane; we can also take the phase of { to be zero at the origin. Then the
isophase surfaces correspond to negative P(r) for z<0 and positive P(r) for z > 0.
The surfaces P = —nn and P = n7 can meet where / is not zero, since the phase
difference is an integer (n) multiple of 27. These isophase surfaces are concave
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-10 -5 0 5 10
kz

Fig. 20.1 Isophase surfaces and surfaces of constant modulus for the jo(kR) beam, (20.5), plotted
for kb = 6. The three-dimensional picture is obtained by rotating about the z-axis. The phase is
shown at intervals of 7/3; it has been chosen to be zero at the origin. The surfaces with phase

1
equal to an integer multiple of © converge onto the circles p = [(X Jk)* + bz] °, where tan X = X.

The other isophase surfaces converge onto the zeros of jo(kR) in the z = 0 plane, namely on the

1
circles p, = [(nn /) + bz} *. The beam axis and focal plane are indicated by the heavy horizontal

and vertical lines

toward the origin, since a physical beam is converging toward the focal region for
7<0 and diverging from it for z > 0. All other isophase surfaces can only meet on
the focal plane if on it there exist curves where \ is zero. On such curves (circles, in
the simplest case) the phase surfaces P = —n/2 and P = + /2 can meet, for
example. The surfaces with 0 <|P| <7 meet on the first zero curve, n<|P|<2n
meet on the next, and so on. Figure 20.1 illustrates the phenomenon, conjectured to
be universal at the focal plane. Because of the topological nature of the above
argument, we expect the zeros to persist even when the beam is perturbed (for
example, focused by an imperfect lens or mirror). The focal plane would then be
distorted to a nearly-planar surface, and the circles of zeros to approximately cir-
cular closed curves, where the perturbed phase surfaces =P meet.

One counter-example to the above conjecture (of the universality of rings of
zeros in the focal plane) appears to be separable spheroidal beams, for which

1
W(En, ¢) = RE)Sn)em with p=b[(2+1)(1 - )],z = béy. The focal
plane z = 0 corresponds to £ = 0 for p <b and n = 0 for p > b. Thus if S(#) is zero
for 7 = 0, = 0 for p > b in the focal plane, and the —P and + P isophase surfaces
can meet anywhere on the focal plane outside of the central disk p <b. However,
such spheroidal wavefunctions have been shown to be non-physical (Boyack and
Lekner 2011).
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20.2 Reflection of Beams: The Lateral Beam Shift

We would expect a lateral beam shift in the case of total reflection from an interface
with gradually decreasing refractive index: the semiclassical or geometric optics
picture is shown in Fig. 20.2. If the angle between the ray and the z axis is 0(z),
geometric optics gives the lateral shift as

20

X0
szZ/dx:/dztanG(z). (20.28)
X1 0

For a sharp transition between media of dielectric constants & and &, with ¢, > &

and 6; > 0, = arcsin(e;/ 81)%, the turning point zo and the beginning of the tran-
sition coincide, and (20.28) gives zero lateral shift. Goos and Hénchen (1947)
however found a non-zero beam shift in this case, with a maximum lateral dis-
placement just beyond the critical angle. This phenomenon is referred to as the
Goos-Hénchen effect. It is universal for wave phenomena: a comprehensive review,
with references to work in optics, acoustics, quantum mechanics and plasma
physics has been given by Lotsch (1970); illustrations of acoustic beam displace-
ment may be found in Brekhovskikh (1980). Figure 20.3 illustrates the lateral
displacement of a beam at a sharp boundary.

We will show that the beam shift in most cases (excluding the immediate
neighbourhood of the critical angle) is well approximated by the formula

Ax = —dd/dK . (20.29)

Here ¢ is the phase of the reflection amplitude, K is the lateral component of the

wavevector (K = &2(w/c) sin 0) and the derivative is to be evaluated at the domi-
nant K value of the incident beam. The two extremes illustrated in Figs. 20.2 and
20.3 are encompassed by (20.29), except at the critical angle where, as is shown in
Appendix 1, é has a square root singularity.

Fig. 20.2 Lateral shift of a ray totally reflected from an inhomogeneous region. The
inhomogeneity begins at z = 0, and the turning point is at zo. The upper medium is optically
denser: dark indicates small refractive index. The entry into the inhomogeneous optically less
dense medium is at (x;,0), the exit point is (x; + Ax, 0), and the turning point is (xo, zo)
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Fig. 20.3 Goos-Hénchen effect: the lateral beam shift in total reflection at a discontinuous
transition

A transversely finite beam may be built up by superposing plane waves with a
spread of propagation directions, centred on the direction of the beam. We consider
only a spread in the angle of incidence: the beam is taken to extend a large distance
in the y direction. It is convenient to characterize the plane wave components by
their lateral wavenumbers K, following Brekhovskikh (1980, Sect. 14.1). The plane
waves expi(Kx + gz — wt), with K> +¢* = g,w?/c?, are solutions of the wave
equation in medium 1, and the incident beam is made up of a superposition of these:

Ei(z,x) = / dKf(K)ei(Kx+qz). (20.30)

—00
When K? > ¢ w?/c?, q is imaginary, implying evanescent waves. This possibility
is excluded here since we will be considering well-collimated beams, with f(K)

1
non-zero only in a narrow range of K about K; = & (w/c) sin 6;.
The reflected beam is obtained by summing over the reflected component plane
waves, each with its own reflection amplitude r(K) = |r(K)|exp id(K):

E(z,x) = / dK £ (K)r(K)eK—), (20.31)

—00

If E; at some reference plane z = 0 is given by Ey(x), then

Eo(x) = / dK f(K)e™, f(K):% / dx Ey(x)e &~ (20.32)

The reflected field at z = 0 is thus given by

i ol 7 "
E.(0,x) = / dKr(K)el’O‘E / dy' Ep(x')e & (20.33)
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We now assume that |r(K)| varies slowly with K compared to the phase J(K) (this
assumption is exact for K > K. = /&;(w/c), when |r(K)| = 1), and also that the
variation of §(K) is well approximated by the linear term in its Taylor expansion
about K:

|r(K)| =~ |r(K7)l, O(K) ~ 6(Ky) + (K — K1) (K). (20.34)

Here §'(K;) stands for d§/dK evaluated at K;. The integral over K in (20.33)
becomes, in this approximation, 2x times a delta function in X', which selects the
value ¥’ = x+ &'(K}). Thus the reflected wave at z = 0 is

E.(0,x) ~ |r(K)|e® K1) Ey(x + 8'). (20.35)

Thus the beam is reduced in amplitude by |r(K})|, phase shifted by  — K;6’, and
moved in the x direction by the distance —&'. The last statement is equivalent to
(20.29). Note that under the approximations (20.34) the beam shape does not
change: the beam is simply translated. This is analogous to the reflection of pulses
considered in Sect. 19.1, where we saw that the corresponding frequency expansion
of the reflection amplitude leads to a time delay, with no change in shape of the
reflected pulse.

We will now apply (20.29) to the cases illustrated in Figs. 20.2 and 20.3. In the
geometrical optics limit the phase is well approximated (except near grazing inci-
dence) by the short wave formula (19.14). On substituting in (20.29) and using
q(z0) = 0, and dg/dK = —K/q = — tan 0, we regain (20.28).

In the sharp transition case, we will consider the region of total reflection. The
s and p phases are discussed in Appendix 1. They are given by (20.63) and (20.67),
which we rewrite in terms of K:

1 1
K2 _ k2 2 & K2 _ k2 2
0y = —2arctan (k% — K§> , Op=-m— 2arctan5 (kf — K§> . (20.36)

Here ki = myw/c and k, = nyw/c are the magnitudes of the total wavevectors in
media 1 and 2. The formula (20.29) gives the beam shifts

2K ) tan 0
Ae A b (20.37)
qila2l T (sin2 9, — sin?0,)*
) 95
Aoy — Az sin (20.38)

' (1+ sin*0,) sin> 0, — sin® 6.’

A1 being the wavelength in the first medium. Near 6. the p wave beam shift is larger
by 1/sin® 0. = &, /ey; near grazing incidence it is smaller by the factor &,/¢;. The
formulae are not applicable at the critical angle or at grazing incidence, since they
were derived by using the truncated Taylor expansion (20.34), which fails at a
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square root singularity. The fact that J; and ¢, always have a term linear in |¢>| =
1
(K* —k3)? near 0, is established in Appendix 1. The behaviour near grazing

incidence, with a term linear in g; = (k,2 — Kz)% is also universal, as may be seen
(for example) from (20.89) on letting ¢; tend to zero. Equations (20.36) and
Fig. 20.4 show these singularities explicitly in the sharp boundary case.

The simple theory which gives the beam shift as Ax = —dd/dK thus fails at the

critical angle and at grazing incidence, the predicted beam shift diverging as
1

(K2 - k%) * and (k% - Kz)_% respectively. (Note however that the shift transverse
to the reflected beam direction is Axcos 6, which stays finite as 6; — 7/2.)

Horowitz and Tamir (1971) have studied the reflection of a Gaussian beam by a
sharp interface, without making an approximation equivalent to (20.34). They find
that the results given in (20.37) and (20.38) are accurate down to
0; — 0. ~ 60 millidegrees when the beam width parameter w is one thousand
wavelengths, and to about 6 millidegrees when w is ten thousand wavelengths. The
definition of w for a Gaussian beam is via the electric field amplitude at the beam
waist (see Sect. 20.3):

E(p) ~ exp|~(p/w)’]- (20.39)

Here p is the distance measured from the beam axis, transversely to the beam
propagation direction. Their analysis gives a beam displacement independent of

angle in the immediate neighbourhood of 6., with magnitude proportional to (w},)%:

-27

Fig. 20.4 Angular dependence of the phases of the s and p wave reflection amplitudes, for a sharp
boundary between glass and air, refractive indices % and 1 (dashed curves), and for a homogeneous
layer of water (refractive index 4/3) between the glass and air, with (w/c)Az = 1/2 (solid curves).
The Brewster and critical angles for the glass-air boundary are indicated; 0p = 33.7°, 0, ~ 41.8°.
Normal incidence is at left, glancing incidence at right
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T (3) (tan 0,)* (w2)?
72 cosl, =

Ax,(0.) = , (20.40)

with the p polarization displacement larger by ¢&;/e,. Note that setting 0, =
0.+ 21 /w in (20.37) and (20.38) (that is, letting the angle of incidence approach the
critical angle to within the diffraction-limited broadening of the beam) gives the
qualitative features of (20.40) for small A, /w:

1 (tan 0, 5 (wa)?
Axs(0.+ A1 /w) mgﬁ% (20.41)
Experimental test of the Tamir-Horowitz prediction is difficult, since to approach
the critical angle closely one must have a highly collimated beam to obtain the
required angular resolution. Laser beams have the required collimation, but the
wavelength is then small, and so is the beam shift. Early data of Wolter (1950) (also
displayed on page 200 of the Lotsch review) are in good agreement with the simple
theory.
The lateral shift on reflection is of importance in waveguides, especially in fibre
optics. See for example White and Pask (1977) and Snyder and Love (1983,
Chap. 10).

20.3 Reflection of Gaussian Beams

In Sect. 20.1 we saw that electromagnetic beams can be constructed from solutions
of the scalar Helmholtz equation (20.1). Equation (20.26) gave the vector potentials
corresponding to TM, TE, ‘LP’ and ‘CP’ beams. In this section we consider
Gaussian beams, which are solutions of the paraxial equation, in which one sets
= eG, and then neglects the term BZZG in the resulting equation for G (to be
given below). This amounts to assuming that the dominant z-dependence of the
beam lies in the e’ factor. For axially symmetric solutions we omit the azimuthal
derivative, so the Helmholtz equation takes the form (20.7), and the equation for G
becomes

(02 +p~'0, +2ik0, + 07)G = 0. (20.42)

The fundamental solution of (20.42) with the 812 term omitted (that is, of the
paraxial equation), gives (Zangwill 2013, Sect. 16.7)

l//G — eikZG _

b kp?
kg — ———— 5. 20.43
b+ize"p{’ ¢ 2(b+iz)} (20.43)
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Alternatively, we can write the Gaussian beam fundamental mode in the modulus
times phase factor form:

b —kbp? , z kzp?
Ve = mexp [2([72 +Z2)] exp z{kz — arctan (Z) + EEEl (20.44)

The arctangent term in the phase causes the phase of the beam to decrease by ©
relative to the plane wave phase kz as the beam passes through its focal region. This
phase lag associated with focusing is universal for waves. It was first noted by Gouy
in 1890.

The length b is the Rayleigh or diffraction length: it gives the longitudinal extent
of the beam focal region directly, as one can see from the modulus exponential in
(20.44). The beam waist size, located at the focal plane (here z = 0) is obtained
from the modulus in the focal plane, exp(—kp®/2b). It is usually written as
wo = /2b/k = \/bJ/n. If we define the beam width w(z) by setting the expo-
nential factor in the modulus equal to exp[—p?/w?(z)], we get

2.2
w(z) = % . (20.45)

Thus w = wy at the beam waist, w?> = ZW% at z = +b, and w* — 27° /kb when
|z] > b. Away from the focal region the beam spreads as a cone of half-angle
arctan+/2/kb. For kb = 2 and 6 this angle is 45° and 30°, respectively.

We need to consider the validity of the paraxial approximation which leads to
the Gaussian beam solution. As noted in Lekner (2001), the quantity n//glvzxpc
should equal —?, but instead equals —k> times

2 4
R (20.46)
K(b+iz)° k(b+iz)” 4(b+iz)

The errors are thus negligible in the regions where
KB +2)>1 and b +2> p. (20.47)

We conclude that if kb is of order unity, the paraxial approximation fails in the focal
region |z| < b. Thus tightly focused beams are not well described by wavefunctions
based on ;. However, we can hope to describe beam reflection by means of ; for
larger kb, and this is what we shall now do.

We shall consider two examples of normal incidence reflection and transmission
of a scalar Gaussian beam at a sharp interface between two media. We are looking
for effective reflection and transmission amplitudes for the central part of the beam.
We cannot hope to find these for the whole beam, since the outer parts of the beam
will reflect differently from the central part. In any case the second inequality in
(20.47) is violated in the focal region when p exceeds b, and the paraxial expression
(20.43) becomes inaccurate.
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20.3.1 Reflection at a Potential Spike (Delta Function)

The simplest example is that of the delta function potential for which exact
wavepacket solutions were discussed in Sect. 19.3. The Helmholtz equation for the
beam reads

(00 +p 710, + 02+ & — 2K6(2) ]y = 0. (20.48)

Approximate (paraxial) solutions of (20.48), everywhere except at z = 0, are the
Gaussian beams

L Ay YR SR A

L S p{k(z ) 2[b+"<2‘“)]}’ (20.49)

l/l_ _ #ex {—lk( +a) —kipz} |
Th—i(zta) P 2(b —iz+a)l )

The first corresponds to a forward-propagating beam with focal plane at z = q,
the second to a backward-propagating beam with focal plane at z = —a (the image
position of the z = a plane with respect to the interface at z = 0). We have chosen
these forms to make ¥ * (p,0) =~ (p,0) for all p. We shall try to find effective
reflection and transmission amplitudes r,¢ such that

Y(p,2) =y +ry (z<0), Y(p,z) =0y (z>0). (20.50)

From the differential equation (20.48), both s and J,} must be continuous at z = 0.
Because of the delta function, 9,y is discontinuous at z = 0 (compare (19.41)):

8z‘p(p’0+) - azlp(paof) = 2Kl//(p70) : (2051)

Since ¥ " (p,0) = ¢~ (p,0) and also d,¥ " (p,0) = 9,y (p,0) for all p, the con-
tinuity of both ¥ and J,y at z = 0 is satisfied by 1+ r = ¢. The condition (20.51)
can however be satisfied exactly only on the beam axis p = 0, by

3 —ix o k—i(a+ib)”"
k+ix —i(a+ib)""’ k+ix —i(a+ib) "

(20.52)

r

These reflection and transmission amplitudes are accordingly for the central part of
the beam; they lose validity for p comparable to or greater than |a + ib|. When
either ka or kb are large (the focal planes far away from the reflecting plane, or wide
beams, both on the scale of the wavelength), the amplitudes tend to the plane wave
values of (19.43).
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20.3.2 Reflection at a Sharp Boundary Between Two Media

We shall take the boundary between the two media in which the wave numbers are
ki, ky to be the z = 0 plane, and the focal plane of the incident beam to be z = a;.
The incident beam is, from (20.49),

v d { ki (2 — ay) kip” } (20.53)
i = e ikiz—a) 77— .
bitie—an) P\ T T i an)]
The reflected beam is obtained by setting z — —z, and taking its focal plane at the
image in the reflecting surface of the incident beam focal plane, namely at z = —a;:
v ke { ik (z+ar) ki } (20.54)
,=———7—€xXpy ~ki(z+a) - .
b —ictar) T ! Y20y — izt ar)]

If a; is negative (focal plane of the incident beam to the left of the reflecting
surface), the focal plane of the reflected beam will be virtual, to the right of the
reflecting surface. The transmitted beam is

thy

Vi = by+i(z—as)

2
exp{ikz(z — ) — m}. (20.55)

The reflection and transmission amplitudes (for the central part of the beam) are r
and . The boundary conditions are the continuity of ¥, 0;, 9, at z = 0, where
v =v;+V,(z<0),y = ¢,(z >0). (If any of these were discontinuous, there
would be resultant delta functions in their derivatives at z = 0.) For the terms in the
exponents proportional in p? to agree at z = 0, we need to set

b2 = (kz/kl)bl, a) = (kz/kl)al. (2056)

The first equation in (20.56) implies that the beam waist (real or virtual), has the
same width wy = 1/2b/k in the incident, reflected and transmitted beams, since
by /ky = by /k;. The location of the focal plane of the transmitted beam is scaled by
the same factor k,/k;. These relations also make, at z = 0, the beam prefactors all
equal to by /(b; — ia;), and the coefficients of —p? in the exponent all equal to
k1/2(b; —ia;). When the equations (20.56) are applied to the transmitted beam
(20.55), we find that the continuity of i and of 0,y is exactly satisfied at z =0
when

147 = elhaha) — gha(-k/k), (20.57)

The other boundary condition (continuity of 0,3 at z = 0) is satisfied to order
(kb)_l when the reflection and transmission amplitudes take the values
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_ (kl —kz) kz[bl — ial] +1 kl — k2{ 2

. = 1+ —+0(7%)}, 20.58
kit+k ) kalby —iay] — 1 ki +ko kb, (by )} ( )

. N . 2k ky —k
ik (1R /) _ a—tkiay (1-K2/K2) ! 1 =" -2
t = 1a1 2k (1 — SYA P i | o(b .
e (lI+r)=e k1+k2{ + kikab, +0(b, )}

(20.59)

The leading expressions in (20.58) and (20.59) make the beam wavefunction and its
first derivatives exactly continuous on the axis of the beam, that is on p = 0. Both
amplitude expressions contain the location a; of the focal plane of the incident
beam. However, we see that the effective reflection amplitude is independent of the
location of the focal plane of the incident beam, provided it is not too distant from
the reflecting surface (a term proportional to a;/b is in the O(bl‘z) term in
(20.58)). The location of the focal plane does determine the phase of the trans-
mission amplitude, as is made explicit in (20.59). For a plane wave reflecting from
an abrupt interface at z = 0, the phase would be zero, as we saw in (1.13) or (1.15),
which give the normal incidence values

ki — k ; 2k,
r= , = .
ki + ko ki + ko

(20.60)

The effective reflection and transmission amplitudes for the central part of the beam,
given by (20.58) and (20.59), do not exactly satisfy the conservation law

ki (1 - |r|2) = kylt|* of Sect. 2.1. There is a difference between the two sides of

order bl‘l, arising from the transfer of flux transversely within the beam.

Appendix 1: Total Internal Reflection: The r,, r, Phases
and Their Difference

In Sect. 20.2 we considered the reflection of bounded beams, with emphasis on the
problem of beam shift. The latter depends on the variation of the phase of the
reflection amplitude with the angle of incidence, and is greatest near the critical
angle where the derivative becomes infinite. We shall give examples of the angular
dependence of the phases of 7, and 7, and then show that a square root singularity
at the critical angle is universal for non-absorbing profiles.

Reflection at a sharp boundary. The s and p reflection amplitudes for a step
profile located at z = 0 are given by (1.13) and (1.31):

Y Nk S (20.61)
Q1 +q 01 +0>
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When medium 1 is optically denser (& > &),q1 > g2 and r, has zero phase (all
phases are modulo 27m) up to the critical angle 0., where ¢>=
(w/ c)2 (32 — g sin’ 01) passes through zero and ¢, changes from real to imaginary:

@ =ig| = i (e1sin 0; — 82)%, [0, > arcsin(sz/el)% = 0] (20.62)
¢

Beyond this angle of incidence |r,| = 1 and

05 = —2arctan(|q2|/q1), (20.63)
where
1
2
|92] = {cos® 0 tan® 0; — sin® 95}%: { (1 - 8—2) tan® 0, — 8—2} ) (20.64)
q1 &1 €]

We note the square root singularity at .., which leads to an infinite value of dd,/d6;
at 0 : in terms of A0 = 0, — 0, this is

3, = —2( 4oz )i(AH)

&1 — &

1=

+0(A0). (20.65)

The s wave phase decreases monotonically from 0 at 6. to —= at grazing incidence,
approaching —m linearly in the glancing angle y =5 — 0;:

1

S, = —n+2( o > p+0(?). (20.66)
& — &

The p wave phase is zero from normal incidence to the Brewster angle 0p =

arctan(e, / 81)% where Q; = 0, and r, changes sign. In the interval 05 <0, <0, we
can set J, equal to + 7 or —n. We take J, = —m, this choice being dictated by
continuity of the phase as a function of interfacial thickness, as the next example
will make clear. Beyond 0, the p wave phase is (from (20.31) with O, = i|0])

|02

£
0, = —m — 2arctan—— = —7 — 2arctanM.

20.67
1 &q1 ( )

The strength of the square root singularity is thus larger for the p phase shift by the
factor & /é&;:

8, = —m—21 (f‘iy(mﬁ +0(AD). (20.68)
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The inverse factor applies as J, tends to —2x at grazing incidence:

5, = —2m+22 ( o )“y +o(R). (20.69)

&1 \&1 — &

Figure 20.4 shows d, and 6, for the sharp boundary between two media, and also
for a homogeneous layer between the same two media (the latter to be discussed
shortly).

The ellipsometric ratio r,/r is equal to exp i(d, — J;) for 0; > 0.. The phase
difference A = 9, — J; is given by

A=—-n+2 (arctan|q2 - arctansl|q2> . (20.70)
q1 & q1

The phase difference has an extremum at the angle of incidence

2 >
O :arctan( &2 ) . (20.71)

& — &
For comparison we list the tangents and sines of 0p, 0. and 0,,:

& 282

tan® 0 = 8—2, tan® 0, = , tan’0,, = , (20.72)
&1 & — & &1 — &
2
sin20p = —2— it 0, =2, sin20, = —2_ (20.73)
&1+ & &1 &1+ é
At the extremum the phase difference A = 6, — J, is given by
A, = 40 — 27, (20.74)
and the ratio of the reflection amplitudes takes the value
. 1
T _ &+ & — 6616 + i4(e182)(e1 — &2) 0, =0,). (20.75)

Iy (81 +82)2

At 0,, the trajectory of r,/r, in the complex plane is farthest to the right on the unit
circle. The phase difference A = 6, — J, is shown in Fig. 20.5, together with that
for a homogeneous layer.

Reflection phases for a homogeneous layer. For a layer of dielectric constant
¢ and of thickness Az, the s and p reflection amplitudes are given by (2.52) and
(2.68):


http://dx.doi.org/10.1007/978-3-319-23627-8_2
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_ i(q? —
y = 41— q)etilg — q192)s (20.76)

g(q1 +q2)c — (> + q1q2)s’

_ O(01 = Q)c+i(Q* — 0100)s
"= 0(01+ 02)c —i(Q*+010)s (20.77)

Here ¢> = (w/c)’ (e — &1 sin? 0;) and ¢ = cos gAz, s = singAz, Q = g/e; the film
extends from z = 0 to Az. When ¢; > ¢ > & we have to consider three ranges of
0,:0,<0.= arcsin(az/sl)%, 0.<60,<0.= arcsin(a/al)%, and 0; > 0. In the first
range ¢, g2, q are all real, in the second g, = i|q>| and ¢, g are real, and in the third
g2 = i|g2| and g = i|g|. Of particular interest to the beam shift to be discussed in the
next section is the behaviour of the phases for 0; slightly above 0. We again find a
square root singularity, with

2l /ase
05(01) = 65(0:) — % +0(\6]2|2), (20.78)
2 ¢
p(0h) = 0p(0c) — 12:1/01 +0(|g2), (20.79)

&2(e1—¢2)

1- (1 - 8%(81_8)) sin” g.Az

where

w? w?
Q%c = 2 (&1 — &), C]? = e (e — &), (20.80)

The phases at the critical angle are given by

05(0,) = 2arctan{ (F & ) tan qCAz}, (20.81)
&1 — &
8,(0.) = —m+ 2arctan{‘gl (8 & ) tan chz}. (20.82)
&\ — &

The numerators in (20.78) and (20.79) are the sharp boundary values, and have
been expressed in terms of Af = 0; — 0, in (20.65) and (20.68). For the s wave the
coefficient of (A())% is larger for the homogenous layer than for the Fresnel case; for
the p wave it can be larger or smaller, depending on the dielectric constants.

Figure 20.4 shows the s and p phase shifts and Fig. 20.5 their difference for
(w/c)Az = 1 Note that there is no square root singularity in d, or J, at 0. where
q passes through zero, the s and p phases having the variation 6 = 5(0’6) +0(q?)
with
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Fig. 20.5 Dependence of A = J, — J, on the angle of incidence, the parameters being as in
Fig. 20.4. Normal incidence is at left, glancing incidence at right. Dashed curve glass|air; solid
curve glass|water|air. The homogeneous film r, /r; ratio was shown in Fig. 2.8

/ [(e — &2) /(&1 — 3)]% }
0s(0.) = —2arctan . , 20.83
( ) t {1 + (e — &2)*(w/c)Az ( )

1=

2e—e)/(e1 — &)
1+ 2 (e~ 82)%(0)/C)AZ

5, (0.) = —m — 2arctan (20.84)

Thus 6. is not a true critical angle, even though g makes a sharp right-angle turn in
the complex plane at 0., just as ¢, does at 0.

Total Reflection by the Hyperbolic Tangent Profile

For 0, <6, the phase for the s polarization is given by (2.89); as 6, is approached
from below the phase tends without singularity to

> 2y3,
5‘Y(00) = ZZaICtan{W}, (2085)

where y;. = qi.a, a being the length characterizing the thickness of the profile, and

q1c = (w/c) (& —82)%. For 0 > 6, an analysis based on (2.84) and using the
infinite product representation of the gamma function (2.85) gives


http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2

520 20 Finite Beams

% 231 (3} + [y t
Oy = 221 arctan{ ( 01+ 2l )} — 2arctan <M>, (20.86)
n

n2 +3y2 — |ya)? tanh 7y;

where y; = q1a, [y2| = |¢2|a. Thus there is again a |¢,| term in the phase just above
the critical angle:

2nalqs|

8 = 05(0.) — +0(43)- (20.87)

tanh maq,.

The expression (20.86) tends to the sharp profile result (20.63) as @ — 0. For large
interfacial thickness the coefficient of |g| in (20.86) tends to —27a, and the strength
of the square root singularity is then proportional to the thickness. At grazing
incidence 6, — —m as before.

The above examples are sufficient to make it plausible that the (6, — 06)% sin-
gularity in the phase shift is a universal property. We shall give a proof for the
restricted class of finite-ranged profiles, for which the s wave reflection amplitude is
given by (2.25), which we write in the form

i q1£I2A+iqlB+iCI2C—D
s qquA—qulB—ZLIzC—FD '

(20.88)

(We again set z; = 0: the inhomogeneity extends from z = 0 to Az; the substrate
has dielectric function ¢,.) When 6; > 6, we have ¢, = i|¢z| and

_ —oa+if

s a—i— iﬁ )

o= |q|C+D, B=qi(lg:|A+B). (20.89)

Thus J; = 2arctan(a/f). The leading terms in o/ff near 0. are

o D g (W\? 2
2= _HA( 0 o0 20.90
-2k (B) +0(If?). (20.90)

where W is the Wronskian of the solutions of the wave equation; we have used the
identity AD — BC = W? equation (2.31). This shows that all such profiles have a
term linear in |g,|, with negative coefficient, leading to a square root singularity:

5s=2arctan<£> 2| (W/B), 2 +0(|Q2|2). (20.91)
qlB c qic 1+<D/qlB)C

(A similar result may be written down for 6, using (2.40), (2.48) and (2.49).) For
the homogeneous layer, with solutions singz and cos gz in 0 <z <Az, we have
W = q,B = qcos qAz,D = ¢° singAz, and (20.91) gives the results contained in
(20.78) and (20.81).


http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2

Appendix 2: Polarization of Electromagnetic Beams 521

Appendix 2: Polarization of Electromagnetic Beams

In most of the book we have considered two linearly polarized waves, the s and p
polarizations of Sects. 1.1 and 1.2. By these designations we mean that the electric
vector E is respectively perpendicular and parallel to the plane of incidence. For
plane waves, the corresponding magnetic vector B is respectively parallel and
perpendicular to the plane of incidence; E and B are perpendicular to the
wavevector, as well as to each other. Plane waves with E and B both circularly
polarized were the eigenstates propagating within chiral media, Chap. 18. Here we
shall discuss the most general polarization of a coherent monochromatic electro-
magnetic wave, and gives examples of the polarization properties of electromag-
netic beams.

A coherent monochromatic light beam is specified by electric and magnetic
vectors varying in space and harmonically in time. In general the polarization
properties of the electric and magnetic vectors differ from each other, in contrast to
the plane wave idealization. Most polarizers act on the electric field, and most
detectors sense the electric field, so it is conventional to refer to the polarization of
the electric field as the polarization. For monochromatic waves of angular fre-
quency o we can write

E(r,1) = Re {E(r)e ™'} = E,(r) cos wr + E;(r) sin o, (20.92)

where E,(r) and E;(r) are the real and imaginary parts of the complex electric field
vector E(r). The magnetic field is expressed in terms of the real and imaginary parts
of the complex vector B(r) in the same way. For a plane wave in vacuum we have
E(r) = E¢ge’*",B(r) = k 'k x E(r) where k = w/c and the wavevector k defines
the direction of propagation. If the constant vector Ey is real (or more generally, if
its real and imaginary parts are collinear), it defines the direction of linear polar-
ization. If the complex vector Ey has equal and perpendicular real and imaginary
parts, as in the plane wave E(r) = Eoe™ (X + iy), the physical electric vector E(r, ?)
rotates at any point in space with angular frequency , and the wave is circularly
polarized. The most general case is that of elliptic polarization, in which the end-
point of the vector E(r, ¢) describes an ellipse in time 27/®, as we shall now show.
For any E(r) = E,(r) + /E;(r) one can write

E, +iE; = (E, +iE;)e”, (20.93)

and y can be chosen so that the real vectors E; and E; are perpendicular. This value
of y and the components E; and E, are given by

2E, - E;
tan2y = fE; (20.94)

r
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E, =E,cosy+E;siny, E, =E;cosy — E,siny. (20.95)
Thus the physical electric field can be written as

E(r,1) = Re{(E| +iE,)e" ™} = E;(r) cos(wt — 7) + Ex(r) sin(wr — ).
(20.96)

When 7 is given by (20.94), the components E; and E, are orthogonal, and have
magnitudes given by

E}\ 1, 2 2 212 2]2
<E§> _E{Er—l-Ei + (B2 B2) +4(E, B . (20.97)

From (20.96), E| and E, give the lengths of the semiaxes of the polarization ellipse.
For linear polarization E, = 0; the condition for linear polarization is therefore
that E,, E; be collinear,

E’E} = (E, - E,)*. (linear polarization) (20.98)

For circular polarization E2 = E3, for which we need E, and E; to be perpendicular
and equal in magnitude:

E,-E; =0and E? = E?. (circular polarization) (20.99)

One spatial function can define the local degree of linear polarization (Lekner
2003), namely

1
2

2og BB +4E B pg)
E4+E; E2+E? CE®@m)?

A(r) (20.100)

A(r) is unity when the real and imaginary parts of E(r) = E,(r) 4 E;(r) are
collinear (the linear polarization condition), and zero when the circular polarization
conditions are met. Equivalently, the eccentricity e of the polarization ellipse
provides the same information:

ef=1-—2="—" (20.101)

This has the same values as A of unity and zero for the limiting cases of linear and
circular polarizations. Yet more polarization measures exist, namely the Hurwitz
(1945) ratio 2EE,/(E? + E3) and the Stokes parameters (Born and Wolf 1999,
Sects. 1.4.2, 10.8.3)
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1
2

So=E+E, Si=El-E, $=2KEE, $=2[EE - E)|
(20.102)

The relation between the degree of linear polarization A and the Stokes parameters
is A2 =1-5%/83.

The remainder of this Appendix gives specific examples of polarization prop-
erties of finite monochromatic electromagnetic beams. A broader range of topics
may be found in Swindell (1975), a collection of reprints of fundamental papers on
polarized light with commentary, and in monographs by Collett (1992), Huard
(1997) and Brosseau (1998).

Examples of Exactly and Approximately Linearly
Polarized Beams

The simplest example is the TM (transverse magnetic) beam, for which the vector
potential is given by the first entry in (20.26), A = A(0,0, ). For this beam B is
transverse to the propagation direction (here along the z axis):

B=V XxA=A4 (a,cl//, —avl,b,O). (20.103)
When  is independent of the azimuthal angle ¢, the complex fields are

B(r) = A()(sin @O, — cos PO, Y, O),

E(r) = i%o (cos ¢, ., sin pd, Dy, 2 + k4). (20.104)

If we take Ay real, and write the complex wavefunction ¥/(p, z) as , + i, the real
and imaginary parts of B(r) are both proportional to (sin ¢, — cos ¢, 0), and are thus
collinear. The magnetic field is therefore everywhere linearly polarized. The electric
field is elliptically polarized, in general.

The dual of the TM beam under the transformation E — B, B — —E (one of a
set of duality transformations that leave the free space Maxwell equations
unchanged) is the TE beam, transverse and linearly polarized in its electric field.
The electric field lines are circles concentric with the beam axis (see Fig. 20.1 of
Lekner 2003, for example). However, both the TM and the TE beams disappear in
the plane-wave limit: as yy — exp ikz the electric and magnetic fields in both the TM
and the TE beams tend to zero.

A beam which does have a plane-wave limit is the ‘LP’ beam, with vector
potential A = Ay(1/,0,0). The magnetic and electric fields are
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B=VxA=A4(0,0.y,-0¥), (20.105)

i

E
k

V(Y- A) +ikA = 20 @+ K, 000, 0.0) (20.106)
In the plane wave limit Yy — exp ikz, B — ikA¢(0,1,0), E — ikAo(1,0,0), which is
the textbook linearly polarized plane wave with E and B transverse and mutually
perpendicular. But note the quotes around ‘LP’: this beam is linearly polarized only
in the plane-wave limit, as we shall now see. We again consider beams with / is
independent of the azimuthal angle ¢, for simplicity. Then

B = ik(0, 0.4, — sin pI, ), (20.107)

iA ‘ _
= 70(0052 PO + sin® pp~ ' O,y + K2,

sin ¢ cos d)[@ﬁlﬁ — p~'9,¥], cos $9,0.).

E
(20.108)

Neither E nor B have real and imaginary parts collinear in general. The electric field
in the x = 0 plane (cos ¢ = 0) is linearly polarized along the x direction, as can be
seen from (20.108). The polarization measure A is given in (20.27) and is plotted
for the ¥y, =jo(kR) beam in Fig. 20.3 of Lekner (2003) for kb =2, and in
Fig. 20.6 for kb = 6. The polarization is linear at the beam centre, and A ~ 1 in the

Fig. 20.6 Degree of linear polarization A in the focal plane z =0 of an ‘LP’ beam with
W = g, kb = 6. The light shading corresponds to linear polarization, dark to circular polarization
(A — 1 and A — 0, respectively). The lateral extent is |kx| <9, |ky| <9
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central region p < b, but, remarkably, there are areas of approximately circular
polarization in the outer part of the beam.

Approximately Circularly Polarized Beams

We wish to construct beams which in the plane wave limit have the circularly
polarized electric field

E(r) = Eie™(1,i,0),
E(r, 1) = Re(E(r)e ™) = Ey(cos(kz — ot), — sin(kz — wt),0). (20.109)

The vector potential A = k~'Ey(iy, —/,0) gives the complex fields
B =k 'Ey[0.,i0., — (0. +i0,) | ¥,

E =Ey[1+k20:(0:+i0,),i+k20,(0: + i),k 20.(d, +10,) |y. (20.110)

Fig. 20.7 Degree of linear polarization A in the focal plane of a ‘CP’ beam with Y = V), kb = 6.
The light shading corresponds to linear polarization, dark to circular polarization (A — 1 and
A — 0, respectively). The lateral extent is |kx| <9, |ky| <9. The beam is completely circularly
polarized on the axis, and approximately so in the central dark region. However, there are circles
of exactly linear polarization in the outer part
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(We have used the fact that y satisfies the Helmholtz equation (20.1).) Both the
magnetic and the electric fields are therefore circularly polarized, with positive
helicity, in the plane wave limit iy — exp ikz. Figure 20.7 shows the polarization
measure A for the electric field of (20.110), with = sinkR/kR, kb = 6, which has
the focal plane zeros shown in Fig. 20.1. We note that the dark central part is
circularly polarized, but the outer region of the beam (where the intensity is very
low) there are circles of linear polarization. More analytic detail may be found in
Section 4 and Appendix B of Lekner (2003).

These examples illustrate the theorems (ii) and (iii) of Sect. 20.1, and show that
finite beams are quite different from the textbook plane waves, not just in having
longitudinal components, but also in their polarization properties.
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Reflection and Transmission Formulae
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General profile

2
q1 (1 - |V|2) = 42|f|2, @l = qiby, T2 = _tTrTZ
12
If F(z) and G(z) are solutions of the s-wave equation < d E +¢?E = 0 in the region
71 £z <25, bounded by homogeneous media 1 and 2,

0192(F\Gsy — G\F») +iq\ (F1G, — G\F,) +iq2 (F\G> — G\ F2) — (F\G, — G\ F,)
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ry = 2"1“1

ty =

Glancing incidence: 0, — n/2, g — 0, ry — —1,1, — 1 (all profiles).
[For ¢ continuous at z; and z, the p wave reflection and transmission amplitudes are
given by (2.40) and (2.41); discontinuities in ¢ give formulae of the form (17.20)
and (17.21).]

Homogeneous layer, thickness Az:
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Equations for the reflection amplitudes
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_ ayKAe  _ g w\ 2
g+ = :|:q — p s q2 = ?—; |:868~/ (z) —SWKZ

/

& = & +7°Ag, &y = &, + 02 Ae
ey = o+ (2 + 7)) Ae = g+ (1 — f)Ae = &, — f*Ac

(o, B,y are the direction cosines of the optic axis, relative to the laboratory coor-

dinate axes) General expressions for reflection and transmission amplitudes for an
isotropic|uniaxial boundary are given in Sect. 8.3.

Chiral isotropic media
D=¢E+iyH, B=pH - E, vy = 10/2nd

The plane of polarization rotates by J on passing normally through a chiral plate of
thickness d.
Plane wave eigenstate normal components

2
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Reflection amplitudes at an achiral|chiral boundary
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Band gaps, 311
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Bateman’s integral solution, 490, 501
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Beltrami fields, 464

Bessel beams, 502
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Boundary conditions (chiral media), 464
Bounds of uniaxial reflection amplitudes, 199
Bragg formula, 412

Bragg peaks, 413

Bremmer series, 151
Brewster angle, 9, 470

C

Calcite, 178

Calculation of wavefunctions, 306

Chiral index, 454

Chirality, 453

Chiral layer, 471

Circularly polarized beams, 525

Circular polarization, 458, 522

Clausius-Mossotti formula, 24

Coherent backscattering, 358

Comparison identities, 42, 145, 179, 247, 364
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Conservation of angular momentum, 492, 504

Conservation of energy, 15, 43, 448, 489, 503,
504

Conservation of momentum, 492, 503

Constitutive relations (chiral media), 454

Corrugated surfaces, 343

Coupled first order equations, 115

Critical angle, 15, 20, 194, 393, 474
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Degree of linear polarization, 522

Delta function potential, 487

Dielectric function profiles, 90

Dielectric layer on absorbing substrate, 241

Dielectric tensor, 191

Differential circular reflectance, 460

Differential equations for reflection amplitudes,
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Differential linear reflectance, 460

Dipolar fields, 23

Direction cosines of optic axis, 193

Discontinuities in slope, 142
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Double exponential profile, 91
Double refraction, 177

E
Effective potential, 22
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Eigenvalue equation, 462
Electromagnetic beams, 499
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Ellipsometric measurements, 221
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