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Preface

During the last decade, life sciences have experienced a major shift from analytical
to integrative approaches that can be globally defined as Systems Biology. In this

overall new landscape, the importance of complex systems and whole-system

approaches has become paramount.

The volume that you have in your hands represents the collective effort of a

group of dedicated and accomplished researchers in the nascent field of systems

biology. Although a rather recent renaissant research endeavor, systems biology

has a long ancestry that goes back as far as Newton, Leibniz, Mendel, Poincaré,

Bernard, Wiener, and von Bertalanffy, amongst many others. The roots are not only

strong but diverse; they encompass mathematics, computer science, physiology,

genetics, engineering, and biology.

Cells, organisms, and ecosystems consist of a large number of usually nonlinearly

interacting parts that exhibit complex behavior while exchanging matter and energy

with their environment. Systems biology represents a holistic approach for analyses

of structural and functional interactions between components rather than individual

elements. Vast data gathering from -omics technologies (i.e., gen-, transcript-, prote-,

and metabol-omics), together with the growing capability of generating computa-

tional models, have allowed for a massive integration and interpretation of new

information. Noninvasive imaging technologies used together with intracellular

probes are increasing our ability to monitor the spatiotemporal dynamics of cellular,

metabolic, and signaling processes in living systems. As such, systems biology can

integrate multiple spatial and temporal scales and has the potential to allow new

insights into fundamental mechanisms involved in, e.g., human health and disease.

Cellular mass–energy transformations comprise networks ofmetabolic and trans-

port processes represented by the metabolome and fluxome, which account for the

complete set of metabolites and fluxes in a cell. The information-carrying networks

include the genome, transcriptome, and proteome that represent the whole set of

genes, transcripts, and proteins, respectively, present in a cell. Signaling networks

mediate between the genome–transcriptome–proteome and metabolome–fluxome

and, as such, play the crucial role of influencing the unfolding of cell function in

space and time.
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Network is a central concept to systems biology. The study of network

properties, and how these control the behavior of cells and organisms, constitutes

a main focus of systems biology. A major unsolved biological problem is to

understand how a cell works and what goes wrong in pathology. However, in

order to achieve this goal we need to unravel how the mass–energy and information

networks of the cell interact with each other while being modulated (activated or

repressed) by signaling networks to produce a certain phenotype or (patho)physio-

logical response. This novel perspective constitutes a distinctive feature of this

volume, thus allowing it to differ from previously published books on systems

biology.

If information is organized data (and we have a plethora), knowledge organized
information, and wisdom organized knowledge, then systems biology is at the

interphase between information and knowledge. We are learning to think and act

systemically, to organize catalogs of data into meaningful information, and to distil

knowledge from that learning process. To what kind of new wisdom is this

emerging knowledge leading us? Although we are far from being there yet, a few

lessons have been learned along the way.

Certainly, life is more complex and far-reaching than our genes, at least by the

numbers. This is one of the first lessons gleaned from sequencing the genome of

species with diverse lineage and evolutionary paths: the number of genes and core

proteomes does not correlate with their apparent complexity. For example, the basic

proteome of the human genome is not much larger than that of the fly and the worm,

but human complexity is. Therefore, where does complexity lie? If diversity and

number of functions cannot be directly connected to genes, then we have at least

two possibilities. One is that genes are subjected to some combinatorial process that

elevates exponentially their numbers (e.g., by alternative splicing), coding diver-

sity, and functional outcomes. Another is the spatiotemporal unfolding of gene

expression that, in interaction with the environment, modifies and is modified in a

combinatorial manner to give rise to multiple functions. The unfolding in space and

time of gene expression would proceed as presciently suggested by the philosopher-

scientist Evelyn Fox Keller who wrote, right at the turn of this century, these words

referring to developmental genetics:

. . .we could describe the fertilized egg as a massively parallel and multilayered processor in

which both programs (or networks) and data are distributed throughout the cell. The roles of

data and program here are relative, for what counts as data for one program is often the

output of a second program, and the output of the first is data for yet another program, or

even for the very program that provided its own initial data. For some developmental

stages, the DNA might be seen as encoding programs or switches that process the data

provided by gradients of transcription activators. Or, alternatively, one might say that DNA

sequences provide data for the machinery of transcription activation (some of which is

acquired directly from the cytoplasm of the egg). In later developmental stages, the

products of transcription serve as data for splicing machines, translation machines, and

so on. In turn, the output from these processes make up the very machinery or programs

needed to process the data in the first place.

More than a decade later we could translate these ideas into the more precise

concept about iteratively interacting networks of mass–energy, information, and

vi Preface



signaling, which is precisely the subject of this book. A basic principle of living

systems is worth noting at this point: unicellular or multicellular organisms make

themselves. This essential defining property of living systems, in general, demands

a circular causality in which these different networks are both input and output data,

i.e., they provide metabolite precursors, second messengers, and transcriptional

factors, and they are supplied with substrates, effectors, and signals—as suggested

by Fox Keller’s quotation. In these circular loops lies the self-determination of the

living, and from their nonlinear dynamics involving feed-back and feed-forward

autocatalysis and other interactions, with their potential for self-organization and

emergent novelties, results the diversity and distinctiveness of life. According to

this perspective then, we should probably look much more into the dynamics of

how these different networks evolve and interact in time and space in order to find

the unique complexity of yeast, mice, flies, worm, or humans.

The book comprises 13 chapters: the first two introductory and the remaining

ones organized in four blocks devoted to the systems biology of signaling networks,

cellular structures and fluxes, organ function, and microorganisms.

Chapter 1 explores the historical roots of the twenty-first century approach to

systems biology tracing from its origins in dynamics and the invention of differen-

tial calculus, physiology, self-organized systems, biochemistry, bioenergetics, and

molecular biology to the currently accepted networks approach. Chapter 2 gives an

overview of the three types of networks involved in the interactive unfolding of the

spatiotemporal organization of living systems: mass–energy, information, and

signaling. Chapter 3 describes a quantitative approach to signaling from the per-

spective of metabolic control analysis. Chapter 4 addresses the novel regulatory

features bestowed by microRNAs to the mass–energy transducing networks.

Chapter 5 analyzes (from a combined experimental–computational approach) the

energetic and redox behavior of mitochondrial networks, along with the signaling

role of reactive oxygen species. Chapter 6 highlights the role of adenylate kinase in

metabolic AMP-dependent signaling involved in cellular sensing of energetic status

and the response to stress. Chapters 7–9 address from different viewpoints the

systems biology of the organization in space and time of cellular macromolecular

structures and its impact on fluxes through mass–energy networks. Chapters 10 and

11 describe systems organization across and between different temporal and spatial

scales from the molecular to the organ levels, namely, as applied to the heart.

Chapters 12 and 13 approach the systems biology of network organization from two

different angles; in the case of yeast the overall temporal organization of

mass–energy, information, and signaling networks exhibited by this unicellular

eukaryote in self-synchronized chemostat cultures is presented and analyzed, as

the sole model example of in vivo deconvolution of the time structure of a living

system at present available, whereas Chap. 13 reviews systems biology approaches

as applied to the engineering of mass–energy transforming networks.

Miguel A. Aon

Valdur Saks

Uwe Schlattner
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Chapter 1

From Physiology, Genomes, Systems, and

Self-Organization to Systems Biology: The

Historical Roots of a Twenty-First Century

Approach to Complexity

M.A. Aon, D. Lloyd, and V. Saks

Abstract Systems Biology represents a new paradigm aiming at a whole organism-

level understanding of biological phenomena, emphasizing interconnections and

functional interrelationships rather than component parts. Historically, the roots of

Systems Biology are multiple and of a diverse nature, comprising theoretical and

conceptual developments, mathematical and modeling tools, and comprehensive

analytical methodologies aimed at listing molecular components.

As a systemic approach, modern Systems Biology is deeply rooted in Integrative

Physiology from which it inherits two big foundational principles: (1) a

non-reductionist, integrative, view and (2) the capability of defining the context

within which genes and their mutations will find meaning.

1.1 From Integrative Physiology to Systems Biology

Yet, biological questions do not end in the gene at all: they start there. (Ball 2004)

(. . .) physiology, or whatever we wish to call that part of the science of the logic of life that
deals with bodily function and mechanism, will not only continue to exist as an identifiable

body of knowledge: it will be indispensable to the proper interpretation of molecular

biology itself. (Noble and Boyd 1993)
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The French physiologist Claude Bernard in his classical: “L’introduction a

l’étude de la médicine expérimentale” (1865) stated that the control of the environ-

ment in which molecules function is at least as important as the identification of the

organic molecules themselves, if not more. In an incisive essay, published almost

20 years ago, Noble and Boyd (1993) put forward the following three aims with

which Physiology should be concerned, beyond merely determining the

mechanisms of living systems: (1) integrative questions of order and control;

(2) self-organization, in order to link how such order may have emerged; and

(3) make this challenge exciting and possible. This is precisely what has happened,

and in the meantime the emergence of System Biology emphasizes interconnections

and relationships rather than component parts.

To describe a biological system we need to know the structure, the pattern of

organization, and the function (Capra 1996; Kitano 2002a). The first refers to a

catalog of individual components (e.g., proteins, genes, transcriptional factors), the

second insert as to how the components are wired or linked between them (e.g.,

topological relationships, feedbacks), and third how the ensemble works (e.g.,

functional interrelationships, fluxes, response to stimuli, growth, division).

The analytical phase of biology has led to a detailed picture of the biochemistry

of living systems and produced wiring diagrams connecting chemical components

and processes such as metabolic, signaling, and genetic regulatory pathways.

Integration of those processes to understand properties arising from their interaction

(e.g., robustness, resilience, adaptation) and ensuing dynamics from collective

behavior have become a main focus of Systems Biology(Noble 2006; Saks

et al. 2009).

Systems Biology started to emerge as a distinct field with the advent of high

throughput, -omics technologies, i.e., gen-, transcript-, prote-, and metabol-omics.

Massive data gathering from -omics technologies, together with the capability for

generating computational models, have made possible the massive integration and

interpretation of information. High throughput technologies combined with the

growing facility for constructing mathematical models of complicated systems

constitute the core of Systems Biology. As such, Systems Biology has the potential

to allow us gaining insights into not only the fundamental nature of health and

disease but also with their control and regulation.

1.2 Dynamics, the Invention of Calculus, and

the Impossibility of Prediction

Newton is considered the inventor of the science of dynamics, and he shares with

Leibniz the invention of differential calculus (Gleick 2003; Mitchell 2009). Born

the year after Galileo—who had launched the scientific revolution—died, Newton

introduced the laws of motion that laid out the foundations of dynamics. These

laws—constant motion, inertial mass, and equal and opposite forces—that apply to

4 M.A. Aon et al.



objects on earth and in heavens as well, gave rise to the notion of a “clockwork

universe.” This led Laplace to assert that given Newton’s laws and the current

position and velocity of every particle in the universe, it would be possible to

predict everything for all time.

Poincaré, one of the most influential figures in the development of the modern field

of dynamical systems theory, described a sensitive dependence to initial conditions in

dealing with the “three body problem”—the motion of a third planet orbiting in the

gravitational field of two massive planets (Poincare 1892). This finding rendered

prediction impossible from knowledge of the situation at an initial moment to deter-

mine the situation at a succeeding moment. Otherwise stated: “. . .even if we knew the

laws ofmotion perfectly, two different sets of initial conditions. . .even if they differ in
a minuscule way, can sometimes produce greatly different results in the subsequent

motion of the system” (Mitchell 2009). The discovery of chaos in two metaphorical

models applied to meteorology (Lorenz 1963) and population dynamics (May 1974),

and two different mathematical approaches—differential continuous and difference

discrete equations, respectively—[see (Gleick 1988) and (May 2001) for historical

accounts] introduced the notion that irregular dynamic behavior can be produced from

purely deterministic equations. Thus, the intrinsic dynamics of a system can produce

chaotic behavior independently of external noise. The existence of chaotic behavior

with its extreme sensitivity to initial conditions limits long-term predictability in the

real world.

The power of using mathematical modeling based on differential calculus was

shown in two papers published in 1952 by Turing and Hodgkin & Huxley (Hodgkin

and Huxley 1952; Turing 1952). Turing employed a theoretical system of nonlinear

differential equations representing reaction-diffusion of chemical species

(“morphogens” because he was trying to simulate morphogenesis). With this

system Turing attempted to simulate symmetry breaking, or the appearance of

spatial structures, from an initially homogeneous situation. This class of “concep-

tual modeling” contrasts with the approach adopted by Hodgkin and Huxley (1952)

in which they modeled electrical propagation from their own experimental data

obtained in a giant nerve fiber to account for conduction and excitation in quantita-

tive terms. The “mechanistic modeling” approach of Hodgkin and Huxley is an

earlier predecessor of the experimental–computational synergy described in the

present book. These two works had a long-lasting influence in the field of mathe-

matical modeling applied to biological systems.

1.3 From Multiple Interacting Elements to

Self-Organization

Systems Biology aims at “system-level understanding of biological systems”

(Kitano 2002b). It represents an approach to unravel interrelations between

components in “multi-scale dynamic complex systems formed by interacting

macromolecules and metabolites, cells, organs, and organisms” (Vidal 2009).

1 From Physiology, Genomes, Systems, and Self-Organization to Systems. . . 5



One of the fundamental problems addressed by Systems Biology is about the

relation between the whole and its component parts in a system. This problem,

that pervades the history of “systems thinking” in biology (Haken 1978; Nicolis and

Prigogine 1977; Von Bertalanffy 1950), begs the central question of how macro-

scopic behavior arises from the interaction between the elementary components of a

system. It represents a connecting thread that different generations of scientists

have formulated and attempted to solve in their own conceptual and methodological

ways with the technologies available at the time (Junker 2008; Skyttner 2007;

Yates 1987).

The notion that variation in any element affects all the others bringing about

changes in the whole system is one of the foundations of systemic thinking.

However, interactions in a biological system are directed and selective: this result

in organization obeying certain spatial and temporal constraints. For example, in

cellular systems molecular components exist either individually or as macromolec-

ular associations or entire structures such as cytoskeleton, membranes, or

organelles. Interactions are at different degrees of organization and can be

visualized at structural or morphological levels assessed on molecular or macro-

scopic scales. However, biological interactions are not random and in organized

systems they follow certain topological properties, i.e., more or less and preferen-

tially connected to each other. For example, molecular–macromolecular functional

interactions are ruled by thermodynamics and stereo-specificity. Finally, function

in biological systems is a dynamic process resulting from interactions between

structurally arranged components under defined topological configurations.

Dynamic organization is the realm where complexity manifests as a key trait of

biological systems. As a matter of fact, biological systems are complex because

they exhibit nontrivial emergent and self-organizing behaviors (Mitchell 2009).

Emergent, self-organized behavior results in macroscopic structures that can be

either permanent (e.g., cytoskeleton) or transient (e.g., Ca2+ waves), and have

functional consequences. Indeed, macroscopically self-organized structures are

dissipative [“dissipative structures”: (Nicolis and Prigogine 1977)], i.e., they are

maintained by a continuous flow of matter and energy. Dissipative structures

emerge as complexity increases from cells to organisms and ecosystems that are

thermodynamically open, thus subjected to a constant flux of exchange of matter

(e.g., substrates in cells) and energy (e.g., sunlight in ecosystems such as forests) far

from thermodynamic equilibrium. Therefore, emergent macroscopic properties do

not result merely from static structures, but rather from dynamic interactions

occurring both within the system and between the system and its environment

(Jantsch 1980).

A remarkable example of the latter is given by the adaptation of an organism’s

behavior to its environment that depends upon biological rhythm generation. The

role of biological clocks in adapting cyclic physiology to geophysical time was

highlighted by Sweeney and Hastings (1960). Timing exerted by oscillatory

mechanisms is foundational of autonomous periodicity, playing a pervasive role

in the timekeeping and coordination of biological rhythms (Glass 2001; Lloyd

1992). Winfree (1967) pioneered the analysis of synchronization among coupled

6 M.A. Aon et al.



oscillators in a network, later refined by Kuramoto (1984) [reviewed in (Strogatz

2003)].Considering idealized systems of nearly identical weakly coupled sinusoidal

oscillators, Winfree found that below a certain threshold of coupling, each oscilla-

tor runs at its own frequency, thus behaving incoherently until a further increase in

coupling overcomes the threshold for synchronization (Winfree 1967, 2002). This

synchronization event was characterized as the analog of a phase transition, reveal-

ing an insightful connection between nonlinear dynamics and statistical physics

(Strogatz 2003).

1.4 Dynamics in Developing Systems

Feedback is a prominent source of nonlinear behavior, and biological systems

exhibit both negative and positive types of feedback. The central importance of

negative feedback as a control device in biological systems was formulated by

Wiener (1948). The discovery of negative feedback devices in a variety of

biological systems revealed the universality and simplicity of this control mecha-

nism, whereby a process generates conditions which discourage the continuation of

that process. End-product inhibition [later renamed “allosteric” inhibition by

Monod and Jacob (1961)] is a prominent example of the latter; Umbarger (1956)

and Pardee and Yates (1956) showed that the end product in the biosynthesis of

isoleucine or pyrimidine inhibited the pathway. Feedback control was highlighted

as a mechanism of avoiding behavioral extremes, echoing the concept of constancy

of the milieu intérieur by Claude Bernard [1865; 1927 translation by Green

(Bernard 1927)] and Walter Cannon’s (1932) notion of homeostasis. Long before

the discovery of feedback inhibition, Max Delbruck had introduced a mathematical

model of mutually inhibiting chemical reactions (Delbruck 1949). By such a system

of cross-feedback, two independent metabolic pathways can switch between stable

steady states under unaltered environmental conditions or as a response to the

stimulus of transient perturbations.

Positive feedbacks like autocatalysis are also ubiquitous in biology; their

importance as a source of instability giving rise to bifurcation and nonlinear

behavior was put forward by Turing (1952) in the context of morphogenesis.

Turing’s pioneer work demonstrated that an autocatalytic reaction occurring in

an initially uniform or isotropic field, when coupled to the transport of matter

through diffusion, can produce symmetry breaking visualized as spatial patterns.

This work was ground breaking because it explained that stable spatial

structures could arise—without assuming a preexistent pattern—through self-

organization arising from bifurcations in the dynamics. This work opened the

way to a reaction-diffusion theory of pattern formation (Meinhardt 1982) rather

than its original goal “to account for the main phenomena of morphogenesis”

(Turing 1952). Later on, Wolpert (1969) proposed “positional information” to

account for the mechanisms by which cells seem to know where they are. In

order to differentiate, cells interpret their position according to the concentration

1 From Physiology, Genomes, Systems, and Self-Organization to Systems. . . 7



of a morphogen in a gradient. Wolpert’s concept of positional information

became important thanks to studies of Nusslein-Volhard and Wieshaus when

they first identified the genes required for the formation of the body plan of the

Drosophila embryo, and then showed how these genes were involved in mor-

phogenesis. A main finding was that even before fertilization a pattern, formed

by the differential distribution of specific proteins and mRNA molecules, is

already established. As a consequence of differential rates of transcription,

gradients in the concentrations of the new mRNA molecules and proteins are

generated. Position along the antero-posterior axis of the Drosophila body plan

is determined by a cascade of events that is initiated by the initial localization of

bicoid mRNA or with the gradient of bicoid protein to which that localization

gives rise (Driever and Nusslein-Volhard 1988a). These authors stated that the

bicoid protein has the properties of a morphogen that autonomously determines

position in the anterior half of the embryo (Driever and Nusslein-Volhard

1988b). This discovery enabled the combination of three keywords: diffusion,

gradient, and morphogen since the distribution of the bicoid protein—a morpho-

gen—is made at a source and both diffuses and is broken down, thereby

generating a gradient.

Another big achievement in the field of developmental dynamics was given by

the realization that the mammalian genome does not undergo irreversible change in

the course of development. Initially, Gurdon (Gurdon et al. 1979) showed that at

least in frogs the nucleus of a fully differentiated cell can be reprogrammed when

transferred into an enucleated zygote. The sheep, Dolly, was the first mammal to be

cloned by transferring the nucleus of an adult cell into an enucleated oocyte of

another of the same species (Wilmut et al. 1997).

1.5 Metabolism—Epigenetics—Genetics: Waddington

and the Epigenetic Landscape

Life requires both nucleic acid and a metabolic system for self-maintenance. The

emergence of living systems as we know them could have come about as a result of

a symbiotic fusion between a rapidly changing set of self-reproducing but error

prone nucleic acid molecules and a more conservative autocatalytic metabolic

system specializing in self-maintenance [Dyson (1985), quoted by Fox Keller

(2000)]. Along this line of reasoning, early on Waddington (1957) had already

introduced the concept of “epigenetic landscape” to describe cellular differentiation

beyond genetic inheritance. Metaphorically, the “epigenetic landscape” can be

visualized as “a mountainous terrain whose shape is determined by . . . the influence
of genes. . .The valleys represent possible pathways along which the development

of an organism could in principle take place. A ball rolls down the landscape, and

the path it follows indicates the actual developmental process in a particular

embryo” (Saunders and Kubal 1989). The epigenetic landscape illustrates the fact

that isolated genes will have little effect on the shape of the landscape, which will
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depend more on the underlying dense gene interactive network. The outcome of a

developmental process (represented by the rolling ball) depends on its dynamic

trajectory, and its path through the different valleys (i.e., differentiation states) can

arise from bifurcations. Morgan (1934) had previously noted that different groups

of genes will come into action as development proceeds.

Waddington (1957) stressed the important implications of time in biology,

distinguishing the biochemical (metabolic), developmental (epigenetic), and evo-

lutionary, as the three realms in which time plays a central role in biology. Later,

Goodwin (1963) adopts the metabolic, epigenetic, and genetic systems as basic

categories for defining a system (e.g., cell) with respect to its environment.

The concept of epigenesis is a precursor of what is now known as “epigenetics,”

a whole new research field. Historically, the term “epigenetics” was used to

describe events that could not be explained by genetic principles. Originally,

Waddington defined epigenetics as “the branch of biology which studies the causal

interactions between genes and their products, which bring the phenotype into

being” [Waddington (1942), quoted in Goldberg et al. (2007)]. Consequently, a

phenotypic effect or an organism following a developmental path is not only

brought about by genetic variation but also by the environment.

Today, we know that in addition to primary DNA sequence information, much of

the information regarding when and where to initiate transcription is stored in

covalent modifications of DNA and its associated proteins. Modifications along

the chromatin involve DNA cytosine methylation and hydroxymethylation, and

acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation of the

lysine and/or arginine residues of histones are thought to determine the genome

accessibility to transcriptional machinery (Lu and Thompson 2012). Recent data

indicate that information about a cell’s metabolic state is also integrated into the

regulation of epigenetics and transcription; cells constantly adjust their metabolic

state in response to extracellular signaling and/or nutrient availability. One of the

challenges is to visualize how levels of metabolites that control chromatin modifiers

in space and time, translate a dynamic metabolic state into a histone map (Katada

et al. 2012).

1.6 The Core of the Living: Biochemistry and Genomes

The elucidation of the basic biochemistry of living systems and the recognition of

its similarity across kingdoms and phyla represent major achievements of the

twentieth century research in biology. The description of metabolic pathways,

mechanisms of energy transduction and of genetic transmission, replication, regu-

lation, and expression stand out as main ones.

The pathways utilized by cells to break down carbohydrates and other substrates

like lipids, roughly divided into glycolysis, respiration, and β-oxidation, were
already known to biochemists by the 1950s. Respiration includes the complete

breakdown of the two carbon unit acetyl-CoA into carbon dioxide—discovered by
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Krebs (1953; Krebs and Johnson 1937)—and the transfer of electron from NADH

to molecular O2 through the respiratory chain to produce water—pioneered by the

discovery of cytochromes that changed their spectroscopic properties in the pres-

ence of O2 (Keilin 1929).

Lipmann (1941) proposed that ATP is the universal carrier of biological energy

when the phosphate bond energy released from its hydrolysis is used to drive most

biochemical reactions that require energy. However, missing from this picture was

the regeneration of ATP that involves the phosphorylation of ADP with energy

provided by the oxidative breakdown of foodstuffs, hence “oxidative phosphoryla-

tion.” This riddle was solved by the “chemiosmotic hypothesis.” As postulated by

Mitchell (1961), the “chemiosmotic hypothesis” proposed that the energy released

by respiration is used by the respiratory enzymes to transport protons across the

mitochondrial membranes building up a proton motive force (pmf) composed of an

electric potential and an osmotic component (Mitchell 1961). This pmf is used by

the ATP synthase to phosphorylate ADP [see (Weber 2005), for a useful historical

and epistemological account]. The system is self-regulated by the availability of

ADP (Chance and Williams 1956).

The fact that DNA is the carrier of biological specificity in bacteria was

demonstrated directly by Avery et al. (1944) and Hershey and Chase (1952).

Watson and Crick (1953) introduced the double helix model of the DNA thus

providing a mechanism for self-replication and fidelity; complementary base-

pairing ensured both replication and conservation. However, “indications that

the cell was involved in the maintenance of genetic stability had begun to emerge

from studies of radiation damage in bacteria and bacterial viruses (phages),

especially from the discovery that certain kinds of damage could be spontaneously

reversed” (Fox Keller 2000).

The association of the sequence of bases in the DNA and a protein came after the

direct demonstration of the synthesis of a polymer string of the amino acid

phenylalanine from a uniform stretch of nucleic acid consisting of a single nucleo-

tide (uridine) (Nirenberg and Matthaei 1961). The central dogma was born; “DNA

makes RNA, RNA makes protein, and proteins make us” (Crick 1957).

In 1961, Jacob and Monod introduced the concept of genetic program, extending
their success, and in analyzing the operon as a mechanism of regulation of enzyme

synthesis in Escherichia coli (Jacob and Monod 1961). This provided a more

general description of the role of genes in embryonic development (Fox Keller

2002). These investigations led to the proposal of “structural” and “regulatory”

genes thereby locating in the genome the program as a means of controlling its own

execution, i.e., structural genes and regulatory elements are coordinated by the

product of a regulatory gene. At present, the genome sequencing of more than

350 species, including Homo sapiens, and the informational content of genes and

proteins systematized in databases constitute a fertile field for data mining and the

ground work for exploring genetic interrelationships within and between species

and their evolutionary meaning.
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1.7 Scaling: A Fundamental Concept in Systems Biology

Size is a crucial biological property. As the size and complexity of a biological

system increases, the relationship among its different components and processes

must be adjusted over a wide a range of scales so that the organism can continue to

function (Brown et al. 2000). Otherwise stated, the organism must remain self-

similar. Self-similarity is a main attribute of fractals—a concept introduced by

Mandelbrot (1977)—therefore the relationships among variables from different

processes can be described by a fractal dimension or a power function. Geometri-

cally, fractals can be regarded as structures exhibiting scaling in space: this is

because their mass as a function of size, or their density as a function of distance,

behave as a power law. If a variable changes according to a power law when the

parameter on which it depends is growing linearly, we say it scales, and the

corresponding exponent is called scaling exponent, b:

Y ¼ YoM
b (1.1)

where Y can be a dependent variable, e.g., metabolic rate; M is some independent

variable, e.g., body mass, while Yo is a normalization constant (Brown et al. 2000).

If b ¼ 1, the relationship represented by (1.1) is called isometric, whereas when

b 6¼ 1 is called allometric—a term coined by Julian Huxley (1932). An important

allometric relationship in biology is the existing between metabolic rate and body

mass, first demonstrated by Kleiber (1932). Instead of the expected b ¼ 2/3

according to the surface law (i.e., surface to volume area), Kleiber showed that

b ¼ ¾ (i.e., 0.75 instead of 0.67), meaning that the amount of calories dissipated by

a warm-blooded animal each day scales to the ¾ of its mass (Whitfield 2006).

Scaling not only applies to spatial organization but to temporal organization as

well. The dynamics of a biological system—visualized through time series of its

variables (e.g., membrane potential, metabolites concentration)—exhibits fractal

characteristics. In this case, short-term fluctuations are intrinsically related to the

long-term trends through statistical fractals. On these bases, we can say that scaling

reflects the interaction between the multiple levels of organization exhibited by

cells and organisms, thus linking the spatial and temporal aspects of their organiza-

tion. The discovery of chaotic dynamics by Lorenz (1963) and criticality in phase

transitions by Wilson (1983) enabled the realization that scaling is a common

fundamental and foundational concept of chaos and criticality as it is with fractals.

1.8 Networks

The concept of networks is basic for understanding biological organization. Specifi-

cally, networks enable address of the problems of collective behavior and large-scale

response to stimuli and perturbations exhibited by biological systems (Alon 2007;

Barabasi and Oltvai 2004). Scaling and topological and dynamical organization of
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networks are intimately related concepts. Networks exhibit scale-free topologies and

dynamics. Topologically, networks are scale free because most of the nodes in a

network will have only a few links and these will be held together by a small number

of nodes exhibiting high connectivity (Barabasi 2003). Dynamically, the scale-free

character of networks manifests as diverse frequencies across multiple and highly

dependent temporal scales (Aon et al. 2012; Lloyd et al. 2012).

The present topological view of networks evolved from multiply and randomly

interacting elements in a system (Erdos and Renyi 1960) to “small worlds” (Watts

and Strogatz 1998) to “scale-free” networks (Barabasi 2003). From the classical

work of Erdos and Renyi based on random graphs, in which every node is linked to

other node irrespective of their nature and connectivity, the “small world” concept

introduced the notion that real networks as disparate as the neural network of the

worm Caenorhabditis elegans, or those of power grids exhibit high clustering (i.e.,

densely connected subgraphs) and short path lengths. Barabasi and collaborators

presented the view that nodes in a network are held together by a small number of

nodes exhibiting high connectivity, rather than most of the nodes having the same

number of links as in “random” networks (Barabasi and Albert 1999; Barabasi and

Oltvai 2004). The “scale-free” organization of networks expresses the fact that the

ratio of highly connected nodes or “hubs” to weakly connected ones remains the

same irrespective of the total number of links in the network (Albert and Barabasi

2002; Helms 2008). Mechanistically, it has been proposed that the scale-free

topology of networks is based on growth and preferential attachment (Albert and

Barabasi 2002; Barabasi 2003).

The networks approach was introduced into biochemistry as metabolic control

analysis (MCA). Independently developed in the second half of the past century by

Kacser and Burns (1973) and Heinrich and Rapoport (1974), MCA represents an

experimental approach with mathematical bases founded on the kinetics of enzy-

matic and transport networks in cells and tissues. MCA deals with networks of

reactions of any topology and complexity to quantifying the control exerted by

each process on systemic and local levels (Fell 1997; Westerhoff et al. 2009).

Metabolic flux analysis (MFA), also called flux balance analysis, represents another

methodological approach to the study of reaction networks (Savinell and Palsson

1992a, b). Developed in the 1990s MFA is based on stoichiometric modeling and

accounts for mass–energy relationships among metabolic network components.

1.9 Systems Biology: A Twenty First Century

Approach to Complexity

Our potential to address and solve increasingly complex problems in fundamental

and applied research has expanded enormously. The following developments

underscore our possibilities to address increasingly complex behavior in complex

systems (Aon et al. 2012; Cortassa et al. 2012):
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• The ability and the computational power to mathematically model very compli-

cated systems, and analyze their control and regulation, as well as predict

changes in qualitative behavior

• An arsenal of theoretical tools (each with its own plethora of methods)

• High throughput technologies that allow simultaneous monitoring of an enor-

mous number of variables

• Automation and accessibility of databases by newly developing methods of

bioinformatics

• Powerful imaging methods and online monitoring systems that provide the

means of studying living systems at high spatial and temporal resolution of

several variables simultaneously

• The possibility of employing detailed enough bottom-up mathematical models

that may help rationalize the use of key integrative variables, such as the

membrane potential of cardiomyocytes or neurons, in top-down conceptual

models with a few state variables.

A Complex Systems Approach integrating Systems Biology with nonlinear

dynamic systems analysis, using the concepts and analytical tools of chaos, fractals,

critical phenomena, and networks has been proposed (Aon and Cortassa 2009). This

approximation is needed because the focus of the integrative physiological

approach applied to biology and medicine is shifting toward studies of the

properties of complex networks of reactions and processes of different nature,

and how these control the behavior of cells and organisms in health and disease

(Cortassa et al. 2012; Lloyd and Rossi 2008; Saks et al. 2007, 2012).

The mass–energy transformation networks, comprising metabolic and trans-

port processes (e.g., metabolic pathways, electrochemical gradients), give rise to

the metabolome and fluxome, which account for the whole set of metabolites and

fluxes, respectively, sustained by the cell. The information-carrying networks

include the genome, transcriptome, and proteome, which account for the whole

set of genes, transcripts, and proteins, respectively, possessed by the cell.

Signaling networks modulate (activating or repressing) the interactions between

information and mass–energy transducing networks, thus mediating between the

genome–transcriptome–proteome and metabolome–fluxome. As such, signaling

networks pervade the whole cellular network playing the crucial role of

influencing the unfolding of its function in space and time. The output of

signaling networks consists of concentration levels of intracellular metabolites

(e.g., second messengers such as cAMP, AMP, phosphoinositides, reactive

oxygen, or nitrogen species), ions, proteins or small peptides, growth factors,

and transcriptional factors.

The underlying difficulty of the question of how the mass–energy and informa-

tion networks of the cell interact with each other to produce a certain phenotype

arises from the dual role of, e.g., metabolites or transcriptional factors; they are at the
same time a result of the mass–energy or information networks while being active
components of the signaling networks that will activate or repress the networks that
produced them (see Chap. 2). The presence of these loops, in which the components
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are both cause and effect, together with their self-organizing properties, constitute

the most consistent defining trait of living systems and the source of their inherent

complexity (Cortassa et al. 2012). Indeed, it is increasingly recognized that the

regulatory state of a cell or tissue, as driven by transcription factors and signaling

pathways, can impose itself upon the dynamics of metabolic state, but the

reciprocal—the feedback of metabolic state on regulatory state—must be equally

true (Katada et al. 2012; Lu and Thompson 2012; McKnight 2010). Along this vein,

one of the main undertakings of this book is to understand how the components and

dynamics of signaling networks affect and is affected by the other cellular

mass–energy and information networks in health and disease to produce a certain

phenotype or a cellular response under defined physiological conditions.
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Chapter 2

Complex Systems Biology of Networks:

The Riddle and the Challenge

Miguel A. Aon

Abstract There is no direct relationship between metabolite, mRNA, protein,

and gene; the expression of a gene is not necessarily correlated with the abun-

dance of the corresponding protein product, and the activity of a protein may

depend on posttranslational modifications, e.g., phosphorylation, redox-modulation/

modification, and acetylation. It is believed that the diverse nature and outcomes of

networks composed of genes, transcripts, proteins, and metabolites remain an

obstacle for tracing the flux from genes to proteins in order to be able to capture

or explain developmental programs or the underlying mechanisms of a disease.

A different approach is needed to address this problem, and accordingly an alter-

native view based on the dynamic integration of three different kinds of networks,

mass–energy, information, and signaling, is proposed and developed in this chapter.

From this perspective, the spatio-temporal expression of mass–energy transforma-

tion and information-carrying networks is modulated by signaling networks

associated with fundamental cellular processes such as cell division, differentiation,

and autophagy. The dynamic network of reaction fluxes (i.e., the fluxome)

represents the ultimate integrative outcome of the whole process. This

approach—which accounts for the basic biological fact that cells and organisms

make themselves—can only be realized by networks connected by overall cyclic

topologies. Thereby, the output of mass–energy/information networks, composed

of proteins, transcriptional factors, metabolites, is at the same time input for

signaling networks which output activates or represses those same networks that

produced them.

(. . .) If the genes are “essentially the same,” what then is it that makes one organism a fly

and another a mouse, a chimp, or a human? The answer, it seems, is to be found in the

structure of gene networks—in the way in which genes are connected to other genes by the

complex regulatory mechanisms that, in their interactions, determine when and where a

particular gene will be expressed. But unlike the sequence of the genome, this regulatory
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circuitry is not fixed: it is dynamic rather than static, a structure that is itself changing over

the course of the developmental cycle. It is just this dynamic system that I am calling the

developmental program.” (Fox Keller 2000)

If regulatory state (transcription factors, signaling pathways, etc.) is accepted to control

metabolic state, is it not also unconditionally certain that metabolic state will reciprocally

control the regulatorystate itself? Understanding this reciprocity, and digging to the bottom

of it, is where the future lies (McKnight 2010)

Cell function can be visualized as the outcome resulting from the unfolding

in space and time of three different kind of interacting networks: mass–energy,

information, and signaling (Fig. 2.1). Mass–energy transformation networks
comprise metabolic and transport processes, e.g., metabolic pathways and electro-

chemical gradients, that give rise to the metabolome. Information-carrying networks
include the genome, transcriptome, and proteome, which account for the whole

set of genes, transcripts, proteins, and their posttranslational modifications,

respectively. Signaling networks, distinct in composition, dynamics, and topology,

modulate by activating or repressing the function in space and time of the

mass–energy/information networks to which they relate, e.g., metabolome, genome.

The overall outcome of this process is the phenotype represented by the fluxome,

which accounts for the whole set of fluxes sustained by a diverse range of processes

Mass-Energy transforma�on Metabolome

FLUXOME

Informa�on carrying-transforma�on 

Genome

Transcriptome

Proteome & PTMs

NETWORKS

Signaling

Fig. 2.1 The fluxome and the overall integration of mass–energy/information and signaling

networks. Signaling networks connect and modulate the mass–energy–information networks.

The fluxome represents the complete ensemble of fluxes in a cell, and as such it provides a true

dynamic picture of the phenotype because it captures, in response to the environment, the

metabolome (mass–energy) in its functional interactions with the information (genome,

transcriptome, proteome, and posttranslational modifications, PTMs) and signaling networks

(Cortassa et al. 2012). As a result of this integration between several cellular processes, the

fluxome represents a unique phenotypic signature of cells (Cascante and Marin 2008).

The double sense of the arrows denote reciprocal interactions and an overall cyclic topology and

connectivity that results in circular causality. Thus, an output from a network (metabolome, e.g.,

ROS or AMP:ATP ratio) is the input of the next network (signaling, e.g., AMPK network), which

after processing will feedback on the same network that produced the initial triggers (e.g., ROS,

AMP), thus modulating their levels.
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associated with vital cellular functions such as division, differentiation, autophagy,

apoptosis/necrosis, or the response to key environmental signals such as starva-

tion or hypoxia. As such, the fluxome provides a true dynamic picture of the

phenotype thereby constituting a unique phenotypic signature of cells (Cascante

and Marin 2008) while integrating a myriad of cellular processes. In the mouse, for

example, there are only ~600 metabolites (i.e., low-molecular-weight intermediates)

(Griffin 2006), when as there are ~10,000 proteins, and ~22,000 protein-encoding

genes (Cortassa et al. 2012). Thus, an unique advantage of fluxomics over genomics

and proteomics is that the former is based on information from metabolites,

which are far fewer than genes or proteins (Gherardini and Helmer-Citterich 2013;

Raamsdonk et al. 2001).

The riddle is schematized in Fig. 2.1 and can be summarized as follows.

Transcriptional factors, proteins, and metabolites are, at the same time, the products

of mass–energy/information networks and their modulators by participating in the

signaling networks that activate or repress the same networks that produced them.

The presence of these control loops, in which network components are both cause

and effect, together with their self-organizing properties sustained by a continuous

exchange of energy and matter with the environment, is where the riddle of the

unique complexity of the living state lies.

2.1 Signaling Networks: Connecting and Modulating

the Mass–Energy-Information Networks

Information (e.g., gene, mRNA, and protein circuits) and signaling (e.g., AMPK,

MAPK) networks can be clearly distinguished, by the following differences (Kiel

et al. 2010):

• Signaling systems operate rapidly (ms to min) whereas transcriptional responses

are slow, ranging from minutes (prokaryotes) to hours (eukaryotes)

• Subcellular localization plays an important role in signaling

• Protein structure and folding are involved in signaling (Mitrea and Kriwacki

2013); these processes are less predictable than DNA conformational changes

present in information networks

• Genetic circuits tend to be noisy because they involve fewer molecules com-

pared with signaling pathways, which usually involve larger number of molecu-

lar steps and thus tend to be less stochastic

• Amplification cascades occur in signaling thus spontaneous activation is avoided

through negative feedback regulation or duplicated triggering signal.

Time-dependent regulation is of utmost importance for cellular responses,

resulting from sudden, transient changes in environmental conditions. The earliest

cellular response to an external cue usually consists in the activation of upstream
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signaling networks, which in turn regulate transcription factors. The modulation of

gene expression therefore represents a later event (Gherardini and Helmer-Citterich

2013). The rapid relaxation provided by molecular mechanisms involved in signal-

ing networks is crucial for fast adaptation (Aon and Cortassa 1997; Aon et al. 2004;

Lloyd et al. 1982). Signaling networks exhibit their own intrinsic dynamics (Bhalla

2003; Bhalla and Iyengar 1999; Eungdamrong and Iyengar 2004) (see Chap. 4).

Several different kinds of dynamic behaviors have been described, among them

ultrasensitivity, bistability, hysteresis, and oscillations (Dwivedi and Kemp 2012;

Kholodenko et al. 2012). Ultrasensitive behavior arises in protein modification

cycles, whereas bistability stems from positive feedback loops, e.g., MAPK

cascades, present in signaling cascades that may result in all- or none responses.

Positive feedback loops alone or in combination with negative feedbacks can

trigger oscillations. Emergent properties such as negative-feedback amplification

could be demonstrated in the Raf-MEK-ERK signaling network with negative

feedbacks. The “negative-feedback amplifier” confers resistance to perturbations

of the amplifier resulting in resistance to inhibitors (e.g., that account for drug

resistance) (Kholodenko et al. 2012).

The output of mass–energy networks is the metabolome as constituted by

the ensemble of intracellular metabolites, e.g., cAMP, AMP, phosphoinositides,

Reactive oxygen species (ROS), or nitrogen (RNS) species (Fig. 2.2). The outcome

of information networks is represented by mRNAs, proteins or small peptides, and

growth and transcriptional factors. Metabolites such as ROS, cAMP, and ADP

exhibit a dual role; on the one hand, they are essential constituents from

mass–energy networks that produce them, but on the other hand, they may act as

intracellular sensors/messengers with allosteric effects (positive or negative) that

react on enzymatic activities present in signaling networks. These dual roles of

metabolites compose crucial cellular mechanisms in response to increasing envi-

ronmental challenges (e.g., oxygen or substrate restriction) or cues (e.g., light,

temperature). For example, the alterations of AMP:ATP ratio in response to

starvation activates the AMPK signaling pathway, and at the same time AMP

functions as an allosteric activator of the AMP kinase within the signaling network

thus contributing to modulation of its dynamics. This results in the activation of

catabolic and repression of anabolic processes thereby modulating the spatio-

temporal unfolding of the mass–energy networks by, e.g., favoring organelle

autophagy over biogenesis.

The spatio-temporal dynamics of the fluxome (Fig. 2.2) changes in response to

signaling networks, through which cells can modulate, suppress, or activate gene

expression (transcription, translation), whole metabolic pathways (e.g., respiration

and gluconeogenesis during carbon catabolite repression), or specific enzymatic

reactions within them.

Signaling networks are characterized by specific: (1) components and

mechanisms; (2) metabolic pathway targeted; (3) conditions for signaling activa-

tion; and (4) physiological response (Cortassa et al. 2012). Each one of these

characteristics can be identified in the AMP-activated protein kinase (AMPK)

signaling pathway.
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Fig. 2.2 The AMP-activated protein kinase (AMPK) signaling network and interactions with

mass–energy and information networks. This figure depicts the main components of the AMPK

signaling network and its interactions with the metabolome, genome-transcriptome-proteome, and

other signaling paths.

AMPK: this network includes the kinase (AMPKK) and the phosphatase (PP2C), representing an

ultrasensitive cellular energy sensor, as it is allosterically modulated by AMP (Hardie and Hawley

2001; Hardie et al. 1999). Environmental stressors such as starvation or hypoxia produce changes

in the metabolome (e.g., rising AMP and falling ATP). An increased AMP binds to sites located on

the γ subunit of AMPK, whereas high concentrations of ATP are inhibitory. Apart from being an

allosteric activator, AMP also inhibits dephosphorylation of AMPK. AMPK is activated 1,000-

fold by the combined effect of activation by its upstream kinases, neuronally enriched calcium/

calmodulin-dependent protein kinase β (CaMKKβ) or LKB1, together with its allosteric stimulator

AMP (Suter et al. 2006).

Targets of the AMPK signaling network are components of the metabolome in glycolysis (PFK-2,

F2,6BP, GLUT), oxidative phosphorylation (ROS), and other pathways; the latter are not indicated

but may comprise fatty acid (FA) oxidation and anabolism, e.g., triacylglycerol synthesis, glycogen,

FAs, protein, and cholesterol. In the feedback from AMPK signaling to the metabolome, the

dashed lines indicate activation through phosphorylation by AMPK-P of PFK-2 and glucose

transport by increasing the levels of glucose transporters (GLUT1 and GLUT4). The increase in

PFK-2 activity augments the level of the allosteric regulator F2,6BP that in turn activates PFK-1;

the activity of the latter is also enhanced by the decrease in ATP. Thus, activation of glycolysis

under ischemic conditions results in alteration of the fluxome as a result of the concerted action of

AMPK signaling and the metabolome.

SIRT1: depicted is the interaction of the AMPK network with SIRT1 and their impact on the

acetylation status of PGC-1α and other transcriptional regulators such as the FOXO family of

transcription factors. Activation of AMPK in muscle by means of pharmacological intervention

(metformin) or physiology (fasting or exercise) triggers an increase in the NAD+/NADH ratio

which activates SIRT1. AMPK induces the phosphorylation of PGC-1α and primes it for

subsequent deacetylation by SIRT1(Canto et al. 2009). Deacetylation of PGC-1α is a key mecha-

nism by which AMPK triggers PGC-1α activity in cultured myotubes and in skeletal muscle.
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2.2 Reciprocal Interactions Between Signaling

and Mass–Energy/Information Networks:

Two Case Studies

2.2.1 The AMPK Signaling Network

This evolutionarily conserved signaling network functions as a cellular switch that

activates catabolic pathways and turns off anabolic processes thereby restoring

cellular energy levels (Poels et al. 2009). In physiological situations, AMPK senses

energy deficiency (in the form of an increased AMP/ATP ratio), but it is also

activated by metabolic stress such as glucose or oxygen deprivation triggering

transient behavior regulation (Fig. 2.2). It has recently been shown that

mitochondria-generated ROS induces autophagy mediated by the AMPK pathway

under starvation conditions (Li et al. 2013). The decline in the responsiveness of

AMPK signaling toward cellular stress with aging impairs metabolic regulation,

increases oxidative stress, and reduces autophagic clearance (Salminen and

Kaarniranta 2012).

The AMPK signaling network is paradigmatic, because the molecular

components and mechanisms involved (i.e., kinetic properties of AMPK toward

main effectors), demonstrating physiological impact as well as conditions in which

the signaling operates, are all well understood and thus clearly identifiable (Fig. 2.2).

As a specific example of the AMPK signaling network function in the context of

ischemia in the heart: (1) components: AMPK allosterically modulated by AMP and

phosphorylation (Hardie and Hawley 2001); (2) targets (changes in the metabolome):

6-phosphofructo-2-kinase (PFK-2) activity, fructose 2,6-bisphosphate (F2,6BP)

Fig. 2.2 (continued) SIRT1 appears to be a mediator of AMPK action on PGC-1α transcriptional

activity. The acute actions of AMPK on lipid oxidation (fluxome) alter the balance between

cellular NAD+:NADH (metabolome), which acts as a messenger to activate SIRT1 (signaling),

and the latter closes the circle by acting on the genome (information) which then again modifies

the fluxome (mitochondrial respiration, lipid oxidation).

Tumor suppressor protein P53:a transcription factor that acts in response to cellular stress signals

(e.g., DNA damage, hypoxia, oxidative, and nitrosative stress) and is redox sensitive because of

the presence of conserved Cys residues that contain redox-sensitive thiol groups (see Fig. 2.3)

(Vurusaner et al. 2012). P53 is also able to inhibit the nutrient-sensitive kinase target of rapamycin

complex 1, mTORC1, by activation of AMPK, which is subsequently followed by induction of

autophagy (Li et al. 2013; Melnik 2012; Poels et al. 2009). The interaction between p53 and TOR

plays an important role in normal cell growth and proliferation (Jones et al. 2005), and it is likely

that the AMPK-dependent induction of autophagy by p53 contributes to its role in tumor suppres-

sion (Poels et al. 2009).

Abbreviations: AMPK AMP-activated protein kinase, CaMKKβ calcium/calmodulin-dependent

protein kinase kinase β, p53 tumor suppression protein, TOR target of rapamycin, PGC-1α
peroxisome proliferator-activated receptor-γ coactivator 1α, PTMs posttranslational modifications
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concentration, and glucose transporters (GLUT1 and GLUT4) levels and trans-

location; (3) conditions for signaling activation: any stress that interferes with

ATP synthesis and readily affects the AMP:ATP ratio, e.g., interruption of blood

supply (ischemia); (4) physiological response (changes in the fluxome): activation

of glycolysis that increases ATP availability (Marsin et al. 2000) [see also Chap. 11

in this book, Chap. 10 in Cortassa et al. (2012) and Fig. 2.2 for further explanation].

2.2.2 ROS-Signaling Networks

Redox signaling can be exemplified by the regulation of protein activity and the

transduction of signals to downstream proteins through oxidative modification of

reactive cysteine (Cys) residues by ROS (Finkel 2000; Paulsen and Carroll 2010).

Cellular functions can be signaled by ROS in essentially two ways (Fig. 2.3):

(1) through direct oxidation of specific Cys or (2) indirectly through changes in

the activity of kinases or phosphatases that in turn modulate protein phosphoryla-

tion. The switch-like nature of the sulfenic acid (SOH) and disulfides that are

formed after the initial reaction of a Cys thiolate with H2O2 and by reaction of

SOH with neighboring Cys or reduced glutathione (GSH), explains their potential

to function as reversible modifications that regulate protein function, analogous to

phosphorylation (Haddad 2004). For example, myofilament activation and contrac-

tile function may be altered during oxidative stress by direct oxidative

modifications of specific sites on contractile proteins or by ROS-induced changes

in the activity of kinases or phosphatases that regulate sarcomeric protein phos-

phorylation (Santos et al. 2011; Sumandea and Steinberg 2011).

Another relevant example is given by the tumor suppressor protein p53, a

transcriptional factor that in response to environmental challenge (e.g., hypoxia,

oxidative stress) can sense cellular redox status. When p53 is oxidized by ROS its

DNA binding capacity is decreased (Sun et al. 2003). Thus, under stressful

conditions, ROS from the metabolome oxidizes p53: the latter when oxidized

decreases its DNA binding capacity (Sun et al. 2003) thus inhibiting gene expres-

sion (genome) (Fig. 2.3). In turn, p53 can influence the metabolome through

decreasing F2,6BP and glucose transporter levels that affect the fluxome by

diminishing glycolysis and stimulating mitochondrial respiration (Fig. 2.2) (Lago

et al. 2011). p53 is also able to interact with the AMPK signaling network inducing

its activation after inhibition of the nutrient-sensitive kinase mTORC1: these effects

are followed by induction of autophagy (Fig. 2.2).

2.2.3 Sensing H2O2 through Cysteine Oxidation

Cells can “sense” changes in redox balance through the specific reactions of H2O2

(D’Autreaux and Toledano 2007; Paulsen and Carroll 2010; Pourova et al. 2010;

Schroder and Eaton 2009). In proteins, the thiol side chain of the amino acid Cys is
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Fig. 2.3 ROS-activated signaling networks and interactions with mass–energy and information

networks. Reactive oxygen species (ROS) can signal cellular functions through direct oxidation of

specific Cys or indirectly through changes in the activity of kinases or phosphatases that in turn

modulate protein phosphorylation. The redox-sensitive family of components from signaling

networks use Cys motifs as redox-sensitive sulphydryl (-SH) switches (Paulsen and Carroll 2010).

ROS-activated signaling networks comprise two distinct protein families—the Mitogen Activated

Protein Kinase (MAPK) and the redox-sensitive kinases (Waris and Ahsan 2006).

MAPKs: serine (Ser)/threonine (Thr) kinases that transduce signals from the cell membrane to the

nucleus in response to a wide range of stimuli, and modulate gene expression through phosphory-

lation of a wide array of transcription factors. MAPKs consist of three family members: the

extracellular signal-regulated kinase (ERK); the c-Jun NH2-terminal kinase (JNK); and the p38

MAPK (Wada and Penninger 2004). MAPKs regulate processes important in carcinogenesis

including proliferation, differentiation, and apoptosis (Waris and Ahsan 2006).

NFκB: the modification of gene expression by ROS has direct effects on cell proliferation and

apoptosis through the activation of transcription factors including MAPK and NFκB pathways.

The NFkB signaling network is significantly altered by dysregulated ROS that activates NFkB

signaling through elimination of the IkB inhibitor. An increase in ROS levels induces the

activation of the IkB kinase (IKK), which in turn phosphorylates IkB, leading to its proteasome-

dependent degradation (Maryanovich and Gross 2012),while releasing NFκB for nuclear translo-

cation and gene transcription (Chiu and Dawes 2012). NF-κB modulates the expression of several

genes involved in cell transformation, proliferation, and angiogenesis, including bcl-2, bcl-xL,
SOD (Chiu and Dawes 2012; Waris and Ahsan 2006). The NFκB link to carcinogenesis derives

from of its roles in inflammation, differentiation, and cell growth (Rahman et al. 2006).

Carcinogens and tumor promoters (e.g., UV radiation, phorbol esters, asbestos, alcohol) activate

NF-κB.
Src and Abl: tyrosine kinases that constitute the signaling pathway leading to H2O2-mediated

tyrosine phosphorylation of PKD that enhances NFkB activation (Storz and Toker 2003).

Protein tyrosine phosphatases (PTPs): regulated by H2O2 through induction of intramolecular

disulfide bond formation that inactivates PTPs (Paulsen and Carroll 2010). The activity of the PTP
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particularly sensitive to oxidation. Thiolate anions (RS-) are intrinsically better

nucleophiles and show enhanced reactivity with H2O2, compared to the thiol form

(Winterbourn and Metodiewa 1999). Thus, the pKa value of the thiol group can

modulate Cys reactivity. Other determinants of Cys reactivity toward H2O2 include

access of the oxidant to its target and the presence of specific binding sites, e.g., low

pKa catalytic Cys from peroxiredoxins or protein tyrosine phosphatases that react

with H2O2with different second-order rate constants likely due to the unique

conformation of their active site (Paulsen and Carroll 2010).

Thus, the initial reaction of a Cys thiolate with H2O2 yields a SOH, which once

formed can lead to formation of additional posttranslational modifications (PTMs).

The stability of a SOH is influenced, in part, by the presence of nearby Cys residues

and by the accessibility of the modification site to GSH (Paulsen and Carroll 2010).

The reaction of SOH with either a neighboring cysteine or GSH will generate a

disulfide bond that, in the case of GSH, corresponds to S-glutathiolation (Mieyal

et al. 2008). Both disulfide products can be reduced back to the thiol by the action of

either the GSH/glutathione reductase or the thioredoxin/thioredoxin reductase

systems (Aon et al. 2012a; Berndt et al. 2007; Ghezzi and Di Simplicio 2009;

Stanley et al. 2011).

SOH can undergo further reaction with H2O2 to generate the SO2H (sulfinic) and

SO3H (sulfonic) oxoforms, though the rates of these reactions are slower than those

observed for a thiolate (Hugo et al. 2009). Both the SO2H and SO3H modifications

are considered irreversible, and the latter is deemed a hallmark of diseases such as

cancer, diabetes, cardiovascular, and neurodegenerative disorders that are associated

with oxidative stress (Aggarwal and Makielski 2013; Andersen 2004; Jeong et al.

2012; Kembro et al. 2013; Klaunig and Kamendulis 2004; Leloup et al. 2011;

Lowell and Shulman 2005). In a subset of eukaryotic peroxiredoxins, the SO2H

modification can be reversed by sulfiredoxin (Biteau et al. 2003). To prevent over

oxidation of critical Cys residues, SOH may be converted to a disulfide or be

S-glutathiolated or form sulfenamide and hypervalent sulfur species (Paulsen and

Carroll 2010).

�

Fig. 2.3 (continued) family (e.g., PTP1B, PTPα) of phosphatases can be SOH-regulated, which is
facilitated by the low pKa of catalytic Cys that can oxidize to SOH with concomitant inactivation.

Protein kinases also undergo redox control.

Tumor suppressor p53: its gene is mutated in 30–50 % of human cancers, representing a

checkpoint protein that elicits cell cycle arrest, DNA repair, and apoptosis in response to stressors

(Sun et al. 2003). To perform its tumor suppressor activity p53 binds, as a tetramer, to DNA

elements within promoters of its target genes and enhances transcription. P53 is sensitive to redox

signaling: oxidation of Cys residues (some of the ten present in p53), and formation of disulfide

bonds inhibits p53 tetramerization and DNA binding activity (Lago et al. 2011; Sun et al. 2003).

P53 stimulates mitochondrial respiration and decreases glycolysis by affecting F2,6BP and the

plasma membrane glucose transporters (Lago et al. 2011).

Abbreviations: NFκB nuclear factor κB, MAPK mitogen-activated protein kinase, PKD protein

kinase D, PKC protein kinase C, Src, Abl tyrosine kinases, IKK IkB kinase, JNK c-Jun N-terminal

kinase, MAP kinase mitogen-activated protein kinase, β-MHC b-myosin heavy chain
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We should also keep in mind that, under oxidative stress, Cys thiols that are not

redox sensors can also become oxidized. Thus, it is important to differentiate true

Cys redox sensors that participate in redox signaling from other Cys that become

oxidized but without biological consequences (Chiu and Dawes 2012).

2.3 Complex Systems Biology of Networks

The intricate networks of reactions and processes within living systems (Figs. 2.1,

2.2, and 2.3) exhibit complex dynamic behavior (Lloyd and Lloyd 1993, 1995;

Lloyd and Stupfel 1991) (see Chaps. 12, 8 and 5). This complexity arises in part

from the existence of multiple topological, structural, as well as functional

interactions among components of these networks organized as molecular

(e.g., enzymes), supra-molecular (e.g., cytoskeleton, respiratory, or enzymatic

supercomplex), and organellar assemblies (e.g., in mitochondria) (see Chaps. 7,

8 and 11). Consequently, a full description of a biological system involves the

structure, the pattern of organization, and the function (Capra 1996; Kitano 2002).

Structure refers to the catalog of individual components (e.g., proteins, genes,

enzymes, transcriptional factors); pattern of organization indicates how the

components are wired (linked) and organized (e.g., topological relationships, mor-

phology, feed-forward, and feed-back), and function implies how the ensemble

works, i.e., unfolding in space and time of functional interrelationships,

mass–energy-information fluxes, response to stimuli, growth, division (Figs. 2.2

and 2.3).

The collective dynamic function of networks is characterized by novel

properties that cannot be anticipated from the behavior of network components in

isolation. These novel properties are called emergent. As a fundamental trait of

complexity, emergence is a manifestation of the interdependent function of pro-

cesses within cells, organs, organisms (see Chap. 10). Ultimately, what we seek is

to understand how function is coordinated in a cell that exhibits spatially distributed

and compartmentalized subsystems, and the dynamics which unfolds simulta-

neously, although in sequentially consecutive temporal scales. Consequently, in

the following, we attempt to dissect key organizational and functional traits of

living cellular systems.

• Function occurs in spatially distributed, compartmentalized, systems in which
process dynamics unfolds in different successive but overlapping temporal
scales

Processes of different nature occur in distinct compartments connected by

transport mechanisms, temporally unfolding on different timescales from few

milliseconds (electric), hundreds of milliseconds (mechanical) to few seconds

(energetic) (see Chaps. 11 and 5).
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• Network organization
Mass–energy/information/signaling networks exhibit an overall loop topol-

ogy. They comprise reaction and transport processes, and some nodes in these

networks represent hubs since they exhibit multiple inputs and outputs while

most nodes only possess a few of them. This feature confers these networks the

trait of “scale-free.” The topologically circular connectivity present in these

networks bestows them with self-making and -maintaining properties that com-

bined with continuous energy and matter exchanges allow them to self-organize

in space and time (Aon and Cortassa 2009; Aon et al. 2012b). Although

constructed with a high degree of redundancy that confers these networks

resilience to attack (Barabasi 2009), under stress they may reach critical

conditions that make them collapse, especially if hubs fail (see Chap. 5).

• Top—down and bottom—up interrelationships (heterarchies)
Cells, tissues, and organs can be viewed as networks within networks. One of

the most distinctive features of these networks is that all components interact one

way or another, constituting a heterarchy (Aon and Cortassa 2012; Aon

et al. 2012b; Lloyd and Rossi 2008; Yates 1993). In a heterarchy, but unlike in

a strict hierarchy, interactions between network components and relevant func-

tional interrelationships (including regulatory ones) flow between levels in both

directions, top-down and bottom-up. This has important consequences for con-

trol and regulation of integrated metabolic and transport networks where every

reaction, metabolite, ion, and process, may contribute, although to differing

extents, to the overall control and regulation of the network (Aon and Cortassa

2012; Cortassa et al. 2012).

• Control is distributed, and operates through “diffuse loops”
Systemic analysis of extensive networks as given by Metabolic Control

Analysis shows that every process (edge, e.g., enzymatic reaction, channel)

controls and is controlled by every other process in the network. However, the

strength of control exerted by different processes may vary significantly, a trait

that relates the fact that control is distributed (see Chaps. 3, 9 and 13). In the case

of nodes (e.g., metabolites, second messengers, cofactors), every node can

regulate other processes and in turn can be controlled (e.g., its concentration)

by a process. The character of “distributed control” relates the fact that different

processes (edges) exert control, and can be “diffuse” as well as direct. A diffuse

control was first described in an integrated computational model of the

cardiomyocyte and corresponds to the control exerted by seemingly indirectly

related processes through shared ubiquitous cofactors such as ATP, ADP, and

Ca2+ (Cortassa et al. 2009a, b).

In networks involving various compartments, not all the control of the flux,

e.g., in an organelle, resides within the organelle itself. In the heart, the control of

mitochondrial respiration is exerted by cytoplasmic and sarcolemmal

membrane-linked processes, e.g., the myofibrillar and Na/K ATPases, in addi-

tion to processes residing in the mitochondrion (Aon and Cortassa 2012). This is

especially true under working conditions, when the interaction between cyto-

plasmic and mitochondrial processes is quantitatively more important.

2 Complex Systems Biology of Networks: The Riddle and the Challenge 29

http://dx.doi.org/10.1007/978-3-642-38505-6_5
http://dx.doi.org/10.1007/978-3-642-38505-6_3
http://dx.doi.org/10.1007/978-3-642-38505-6_9
http://dx.doi.org/10.1007/978-3-642-38505-6_13


• Scaling—Fractal dynamics
Scaling tackles the question of functional coordination in a living cell that

exhibits spatially distributed and compartmentalized subsystems with time

constants in sequentially consecutive and overlapping temporal scales. Scaling

involves both spatial and temporal levels of organization and reveals the inter-

dependence between processes happening at different spatio-temporal

coordinates (Aon and Cortassa 2009; Aon et al. 2012b; Lloyd et al. 2012).

Genome-wide expression (transcriptome, ~5300 transcripts) during the time

frame period provided by the ~40 min ultradian clock revealed the existence

of two blocks of redox superclusters manifested in two phases of ~600 and

~4,700 maximally expressed genes during active respiration (oxidative) and low

respiration (reductive), respectively (Klevecz et al. 2004; Lloyd and Murray

2005) (see also Chap. 12). Within the 40 min time frame of the clock, there is a

10–15 min period conducive to DNA synthesis and replication, a time window

that opens during the reductive phase of the clock cycle: this suggests an

evolutionary strategy to avoid oxidative damage.

A bottom up modeling strategy provides an insight into how scaling arises,

and what it reveals. For the sake of example, during a heartbeat, macroscopic

and measurable properties of the cardiac cell such as action potentials, cell

shortening-relaxation, and concomitant Ca2+ transients emerge from the

integrated dynamic behavior of excitation–contraction and mitochondrial ener-

getics (Aon and Cortassa 2012; Aon et al. 2012b). Underlying key electro-

mechanical macroscopic functional properties, fast ionic currents operating in

the few milliseconds range are revealed. These, in turn, are fueled by relatively

slower (few seconds) mitochondrial energetic processes involving rapid trans-

port processes in different subcellular compartments: sarcolemma, mitochondria,

sarcoplasmic reticulum (see Chaps 5 and 10). The processes involved in the

phenomenon of a heartbeat are simultaneous, and their apparent sequential

nature results from the differential relaxation properties exhibited by the

processes involved. Thus, the scale-free dynamic behavior exhibited by mito-

chondrial network energetic-redox function is based on the simultaneous

operation of processes of different nature (electrical, mechanical, metabolic)

in distinct compartments. Faster to slower temporal relaxation reflects the time

it takes a process to return to the state previous to the stimulation that elicited

the response, e.g., the initial potential depolarization triggered by the opening

of Na channels in the sarcolemma.

The inverse power law behavior of the power spectrum and the invariant

relative dispersion across temporal scales obtained from the analysis of experi-

mentally obtained time series in yeast and cardiac mitochondria support the

existence of scale-free dynamics. The multi-oscillatory behavior of yeast and

heart cells corresponds to statistical fractal dynamics, a behavior consistent with

scale-free dynamics spanning a wide range of frequencies of at least three orders

of magnitude (Aon et al. 2007, 2008; Lloyd et al. 2012). Scale-free temporal

organization for organelle, cell, and organism implies timekeeping occurring

across temporal scales in living systems (Aon et al. 2008; Sasidharan et al. 2012)

(see also Chap. 12).
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2.4 Concluding Remarks

The fundamental complexity and uniqueness of living systems resides in their

capacity for self-making and -repairing (Luisi 2006; Varela et al. 1974). This

distinctive trait is possible to be accomplished through closed loop topologies of

nonlinearly interrelated processes operating in thermodynamically open systems

thereby subjected to continuous energy dissipation and exchange of matter, e.g.,

substrates, and gases.

Another consequence of the self-making ability of living systems is that some

network components (nodes, e.g., metabolites like AMP or TFs such as NFκB)
can be both cause and effect at the same time (or output and input) for the

same network, i.e., mass–energy and information, respectively, in these examples.

A plethora of computational and experimental network-based methods are being

developed and applied to different biological systems including complex diseases

(Cho et al. 2012; Kholodenko et al. 2012; Neph et al. 2012; Przytycka and Cho

2012). It is worth remarking that the data and meaningful information that these

approaches can provide are just the starting point for testable hypotheses.

The dynamic diversity arising from the interactions between spatially distributed

mass–energy/information/signaling networks organized in circularly connected

topologies has potentially explosive combinatorial possibilities. The modulation

exerted by signaling networks on the spatio-temporal unfolding of mass–energy/

information networks, together with the countless available dynamic paths

emerging from these interactions, generates both the uniqueness and diversity of

living creatures. Interestingly, recent findings have highlighted the marked cell type

specificity of human transcriptional regulatory networks, with only ~5 % of overlap

across 41 tested cell types, thereby underscoring the high regulatory diversity

within humans (Neph et al. 2012).
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Chapter 3

The Control Analysis of Signal Transduction

Hans V. Westerhoff, Samrina Rehman, Fred C. Boogerd, Nilgun Yilmaz,

and Malkhey Verma

Abstract This chapter discusses how metabolic control analysis (MCA) and

generalisations thereof such as hierarchical control analysis (HCA) may help to

understand the control of cell function through signal transduction, as well as the

control of signal transduction itself. It reviews the key concepts of MCA paying

attention to their applicability to signal transduction. Control analysis has already

led to major insights into signal transduction such as that control of signalling tends

to be distributed over multiple components and that the phosphatases are as

important as, or more important than, the kinases. Examples of applications of

control analysis in the medical domain are discussed.
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3.1 From Physics to Life Through Systems Biology

For many years, in what has been referred to as the reductionist approach, it was

believed that once all the parts of a living organism would have been characterised,

the whole organism or any subsystem thereof would be understood without further

ado. Obtaining the complete genome sequence of the human was partly driven by

this motivation: knowing all the genes would imply understanding of the

corresponding living system. For cell biology, the system could correspond to the

functioning of a particular cell, the components being all the pathways, genome-

wide, inclusive of signal transduction, gene expression, and metabolism. For

biochemistry, a subsystem might be a particular metabolic pathway, and the

components would be all enzymes and metabolites in that pathway. Such pathways

can now be found as elementary modes or extreme pathways in the consensus

metabolic map of the human (Thiele et al. 2013).

Is the concept that the whole is the sum of the parts always true, always false, or

does it depend on the property one takes into consideration and the type of system at

hand? Well, there are cases where the concept does apply: If the focus of interest

were the mass of an organism, or the number of grams of carbon flowing out of a

system, then the reductionist approach would be perfectly alright; the whole mass is

the sum of the masses of the components and the carbon influx is the simple sum of

the number of grams of carbon flowing through all fluxes into the system. Also, the

sum of all the fluxes that consume leucine or virtually any other metabolite in any

living organism must equal the sum of all the fluxes that produce it, at steady state, a

property defining much of flux and flux balance analysis, which thereby is a

powerful linear methodology leading to analytical solutions (Westerhoff and

Palsson 2004).

In many such cases where the whole equals the sum of the parts, biology has in

common with physics. Biology is also different from physics however: biology

relates to function (Boogerd et al. 2005; Westerhoff et al. 2009b; Kolodkin

et al. 2012), where function is defined by what promotes maintenance and amplifi-

cation in a dynamic environment. This functional aspect requires improving on

physics in terms of accelerating processes that also happen in physics, such as the

breakdown of glucose to lactic acid. It also requires carrying out processes that are

impossible in physics alone. It requires robustness of these processes vis-à-vis

intrinsic noise as well as perturbations or extrinsic noise. And it requires proper

adjustment of processes when conditions change.

The acceleration has been achieved by the evolution of protein-based catalysts,

the concentration of which a living organism can increase by increasing gene

expression. The “impossible processes” have become possible by enzymes and

networks that couple “endergonic” processes, which are uphill in terms of Gibbs

free energy, to other processes that are downhill (Caplan and Essig 1969;

Westerhoff and Van Dam 1987). The synthesis of ATP from ADP and inorganic

phosphate, for instance, is thermodynamically impossible at the intracellular

concentrations of the reactants, yet proceeds because it is coupled to the oxidation
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of NADH through a network of processes that involves the electrochemical poten-

tial difference for protons across the inner mitochondrial membrane (Mitchell

1961). The required robustness towards fluctuations and intrinsic noise is a neces-

sary property of the stable stationary state a system relaxes to; the balancing of

control coefficients and component properties this requires is at the basis of some of

the laws of metabolic control analysis (Westerhoff and Chen 1984). The robustness

against sustained perturbations in parameter values is greatly enhanced by the

feature that biological functions depend on the integral of multiple processes that

would typically be perturbed independently (Quinton-Tulloch et al. 2013).

In all these cases it is particular interactions between processes or substances that

lead to what is essential for biology. These particular interactions deviate from

mainstream physics in that they do not correspond to the simplest case but rather to

the most functional case. They may lead away from Onsager’s precise reciprocity

relations (Westerhoff and Dam 1987) that are valid near equilibrium (Cortassa

et al. 1991). It is these particular cases of physics, away from mainstream physics,

that “systems biology” should focus on.

With all this, is the whole still the sum of the parts, or is it different from that?

Well, physiology continues to be the sum of the parts in the way the parts are active

in vivo and in situ. However, when together, the parts behave in ways that are

different from how they behave in isolation. One reason is that the conditions

in vivo are different from what they are when we characterise the parts in isolation

and the differences matter for the activity of the parts (van Eunen et al. 2010;

Garcı́a-Contreras et al. 2012). However, a second and more important reason is that

these conditions themselves are influenced by the components. This may put in

place a regulatory loop through which a component on itself depends on the

response the other components’ activities exhibit to changes in its behaviour. It is

this aspect of regulatory looping that we cannot measure by assaying each compo-

nent in isolation of all other components, even if we perform this measurement

under otherwise in vivo conditions. It is in this second aspect where the functioning

whole may differ essentially from the sum of the parts functioning in isolation.

We can only evaluate this aspect properly by measuring the components

together, in situ (i.e. by observing physiology), or by measuring their properties,

inclusive of their response properties, in vitro, and then reconstructing their collec-

tive behaviour in silico, i.e. in a computer model (Westerhoff et al. 2009b). The

latter strategy enables understanding as well as observation, as it allows one to

change parameter values in the model and evaluate the consequences. This strategy

is the essence of systems biology: systems biology is about the difference between

the whole and the sum of the parts in isolation (Alberghina and Westerhoff 2005).

Thereby the essence of systems biology are the regulatory loops (or spirals) that

enable a system’s component to influence its own behaviour in ways that depend on

the activity of other components, and this then for all components that are involved.

Since virtually all molecules of a living cell are connected (Wagner and Fell 2001),

this makes systems biology an activity that is in principle genome-wide.

Components interact in various ways. A direct mode of interaction is that of

metabolism, where a substrate and a product of an enzyme in a metabolic pathway
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communicate with each other through their effects on the enzyme’s catalytic rate, or

where a product of a metabolic pathway interacts allosterically with an enzyme near

the beginning of the pathway. More indirectly, a metabolite may activate a protein

kinase that phosphorylates and thereby inactivates an enzyme in the pathway which

affects the concentration of a metabolite, or the metabolite may activate a whole

chain of signal transduction reactions and influences the expression of the gene

encoding one of the enzymes in the pathway that control the concentration of the

metabolite. The latter two cases are examples where signal transduction is involved.

As we mentioned above, it is the looping of the interactions that causes the whole to

differ from the sum of the parts. In our previous analyses we have called systems

engaged in such looping “democratic” control systems. Even though in principle

the DNA level encodes the other levels, the expression of the encoded information

often requires the involvement of those other levels, again causing regulatory

looping, at least in the “democratic” cases that are common to living systems

(Westerhoff et al. 1990; Kahn and Westerhoff 1991).

More, in general, processes in living organisms engage in such regulatory

looping, if not through metabolic, signal transduction, or classical gene expression

networks (Westerhoff et al. 1990), then through RNAs [sense, anti-sense, or micro

(Hendrickson et al. 2009)], or through dynamic ultrastructure (Westerhoff

et al. 1990, 2009a; van Driel et al. 2003). In order to grasp the circular or spiralling

causality that ensues from the looping (Boogerd et al. 2005; Westerhoff

et al. 2009b), one needs to look at the operation and integration of several simulta-

neous processes, as functions of time or all parameters involved. Since the sum of a

negative and a positive effect may be important, the experiments need to be precise

and the analysis quantitative (Westerhoff and Palsson 2004). It is in learning to

appreciate these concentrations of the various levels of cell functioning that systems

biology should help. In this chapter we shall focus on how metabolic control

analysis has done this for signal transduction.

3.2 Control Analysis

Biochemists have used various investigative methods for the identification of what

they referred to as rate-limiting enzymes. These enzymes were envisaged mostly to

reside at the beginning of a pathway and were supposed to catalyse essentially

irreversible reactions (i.e. reactions with very large equilibrium constants). In an

often pronounced but for linear pathways obviously erroneous concept, the rate-

limiting enzyme operated at a lower velocity than the other (downstream) enzymes

in the pathway and therefore “controlled” the pathway. If one wanted to increase

the throughput of the pathway it was supposed then to suffice to increase the amount

of that enzyme only. For many decades these ideas concerning the control of

pathways were presented, and experimental observations were interpreted so as to

fit these generalisations (Thomas and Fell 1998). It was not until various individuals

and groups began to criticise these concepts, began to examine where they came
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from, and began to explore the properties of metabolic pathways composed of

enzymes and transporters exhibiting the known nonlinear kinetics with respect to

the amount of substrates, products, and effectors (Michaelis and Menten 1913) that

a paradigm shift towards systems biology occurred. With the limited computing

power then available, many still approached this through computer simulations. Jim

Burns and Henrik Kacser (Kacser and Burn 1973) were one team, performing

numerical simulations on an analogue computer examining what one should expect

for the dependence of flux on gene dosage. Reinhart Heinrich and Tom Rapoport

(Heinrich and Rapoport 1974) were another team, examining how the flux through a

model of the erythrocyte’s glycolytic pathway would depend on the activities of its

enzymes. Their computations led to the realisation that in biochemical pathways,

because of the presence of back pressure effects of substances downstream on

upstream reactions, there was no a priori reason why all control of pathway flux

should reside in one enzyme, or why one should expect one gene to be dominant in

terms of controlling the pathway flux. Rather one should expect recessiveness for

all enzyme genes (Kacser and Burn 1973). This led to metabolic control analysis

(MCA), a pendant of biochemical systems theory (BST) (Savageau 1976).

Metabolic control analysis has played at least five important roles in biology and

biochemistry, roles that have later become characteristic of systems biology: it has

demonstrated the importance of (1) good definitions (Kholodenko et al. 1995),

(2) quantitative approaches, (3) consensus or standardisation (Burns et al. 1985),

(4) integration of experimental and theoretical work, and (5) principles emerging

from molecular networking (Westerhoff et al. 2009a, b). MCA tells us that qualita-

tive and unfounded statements such as the ones reviewed above in the context of

defining metabolic control have no meaning in biology and thereby only add to

confusion: flux control may well be distributed over all the steps in a pathway and

has been shown to be distributed in almost all biological cases studied, with some

steps having a higher degree of flux control than others.

Good definitions have more than one property, i.e. they should be unequivocal,

operational, and understandable also to the nonexperts. In view of the latter, the

magnitude of the flux control coefficients of a pathway step can be seen as a

percentage of control exerted by that step over the flux of interest. It is also the

percentage change in steady-state flux caused by a 1 % activation of only that step.

In practice, pathway control is shared between all enzymes of the network (i.e. not

only of the pathway), in proportions that differ between pathways. The attractive

and thereby rather persistent, but flawed, concept of “the rate-limiting” step in a

network process has been invalidated experimentally for metabolic (Groen

et al. 1982) and gene expression (Jensen et al. 2000) pathways. For signal transduc-

tion pathways the subtleties in control are not less (Heinrich et al. 2002; Hornberg

et al. 2005a).

Contrary to what is sometimes proposed as MCA is not a mere sensitivity analysis

of fluxes and metabolite concentrations. Where a sensitivity analysis treats the

sensitivities of a fluxwith respect to all parameters (e.g. temperature, enzyme activity,

or Michaelis–Menten constant) equally, MCA starts from the complete set of

sensitivities of a flux [or other state function (Westerhoff and Dam 1987)] for all
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process activities in the system. The corresponding sensitivity coefficients are called

control coefficients. This focus enabled MCA to discover and prove laws that capture

the dependencies of these control coefficients on each other. MCA also defines the

subset of properties of the processes that matter most for the control properties of the

system. This leads to the discovery of another set of laws relating systems properties to

component properties. These laws are absentwhen the processes occur in isolation and

are hence properties of the system only. They are among the first principles discovered

by systems biology [review: (Westerhoff 2008)].

Together these laws enable the prediction of relative control exerted by each step

(enzyme) on the system’s variables (such as fluxes and metabolite concentrations)

on the basis of certain kinetic properties of the component processes. As of the

operational nature of the definitions of the control coefficients, this control can also

be measured experimentally by applying a perturbation to the step being studied and

measuring the effect on the variable of interest after the system has settled to a new

steady state. By virtue of these properties, MCA is an example of systems biology.

In contrast to what its name suggests, metabolic control analysis is not limited to

the topic of metabolism. Its principles and definitions also apply to gene expression

and signal transduction pathways, where similar laws of “hierarchical control

analysis” apply in addition (Kahn and Westerhoff 1991; Westerhoff 2008). As the

methodology also applies to biology outside biochemistry, such as ecology (Getz

et al. 2003), we shall refer to the generalised form of metabolic control analysis as

control analysis.

3.3 The Control Coefficients

Control analysis relies on the proper definition of the system under investigation,

i.e. on specifying what are the system’s borders, which are the (dependent)

variables, which are the parameters (¼independent variables), and which are

process activities (Westerhoff and Dam 1987). The dependencies of the variables

on process activities are quantified in terms of control coefficients. A control

coefficient is the relative measure of the change in a system variable (e.g. flux or

concentration) upon perturbation of the activity of an elemental process (in -

non-channelled pathways corresponding to the enzyme activities) (Westerhoff

and Van Dam 1987). It is mathematically defined (Burns et al. 1985; Kholodenko

et al. 1995) as

Cx
i �

dx
dp

� �
global

@vi
@p

� �
local

� vi
x
¼

d ln x
dp

@ ln vi
@p

; (3.1)

where “x” is the dependent variable (e.g. flux J, concentration X or potential ψ) and
vi is a process activity such as the activity (Vmax in both directions) of an enzyme
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“i”. p is a parameter that affects process i selectively. As indicated by the

parentheses, the derivatives are both partial but in a different sense. The one in

the numerator is that where only one of all process activities in the system is

modulated, but all metabolite concentrations and hence process rates may vary as

a consequence of that modulation; it is a systems property. With the proviso that all

other process activities are not modulated, it can be seen as a total derivative. The

one in the denominator modulates the process activity at constant values of all other

metabolite concentrations that affect the process; like the elasticity coefficient (see

below) it is a component property even though that component property may itself

vary with the system’s state.

The most common control coefficients quantify the control of fluxes or metabo-

lite concentrations. However, any variable of the system will have a control

coefficient defined by equations analogous to Eq. (3.1) (Westerhoff and Dam

1987). There is no need for the system to be at steady state (Westerhoff 2008); if

it is not then x is a function of time, but until now the perturbation in process activity

has been considered to be time independent. As many enzyme-catalysed reaction

rates are proportional to the enzyme concentration (at least in a certain range of

enzyme concentrations), control coefficients can often be written using total

enzyme concentration Ei as parameter (Kacser and Burn 1973):

Cx
i ¼

dx

dEi
� Ei

J
¼ d ln x

d lnEi
: (3.2)

The definition of concentration control coefficient pertains equally to gene

expression, signal transduction, as well as metabolic pathways, as well as to their

integration (Kahn and Westerhoff 1991). In metabolic pathways fluxes are defined

as the amount of a chemical element flowing down the pathway per unit time and

unit biomass. In gene expression pathways, fluxes may be defined as the rate of

synthesis of the mRNA, the rate of synthesis of the protein, and the chemical flux

catalysed by that protein. In a signal transduction pathway it may make sense to

define the ultimate flux as the steady rate of the process that is activated by the final

signalling protein, which could well correspond to the concentration of the signal-

ling state of that protein multiplied by a rate constant.

Figure 3.1 shows flux control coefficients of various enzymes in one, two, and

three reactions’ metabolic pathways. The rate-limiting enzymes in a metabolic

pathway must have a flux control coefficient equal to 1. In this example, this only

occurs in the one-enzyme pathway. Moreover, a rate-limiting enzyme does not

remain rate-limiting upon overexpression. Indeed, most overexpression studies of

enzymes have revealed that large increases of enzyme concentrations are not

accompanied by equivalent increases in pathway flux. Usually, whilst one is

increasing the amount of the hypothetically rate-limiting enzyme, its control over

the pathway flux decreases until it approaches 0 eventually. Concentration control

coefficients of various enzymes in three reactions’ metabolic pathway are shown in

Table 3.1.
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3.4 The Summation Laws

Control analysis has led to the identification of important properties of pathways

at steady state pertaining to the summation of all the control coefficients of a

pathway. For a steady state the sum of flux control coefficients of all the reactions

in any pathway is equal to unity, using various procedures (Kacser and Burn

1973; Heinrich and Rapoport 1974; Westerhoff and Dam 1987; Giersch 1988;

Westerhoff 2008) for the generalisation beyond metabolic pathways and steady

state). This law can be derived by making a simultaneous small relative increase

(δrx � δx/x) in all process rates of a metabolic system. Because the relative rates

of production of each metabolite then increase by the same amount as the relative

rates of its consumption, that metabolite’s concentration remains unchanged and

hence the steady-state condition is maintained. The metabolic flux through the

pathway then increases exactly by the same relative amount “δr”, whereas a

transient time decreases by the fraction “δr”. Mathematically this principle says

that the flux is a homogeneous function of first degree, the metabolite

concentrations are homogeneous functions of zero degree, and transient times

are a function of degree minus 1, of all process activities: The summation laws

are corollary of the Euler theorem for homogeneous functions which is also used

in the derivation of the Gibbs–Duhem law (Westerhoff and Dam 1987; Giersch

1988; Westerhoff 2008). For flux control coefficients:

X
i

CJ
i ¼ 1 (3.3)

for concentration control coefficients:

X
i

CXi

i ¼ 0 (3.4)

Fig. 3.1 One, two, and three reactions’ metabolic pathways and exemplary flux control

coefficients. A, P and enzymes E1, E2, and E3 are present at fixed concentrations that may be

modulated, whereas steady-state flux J and concentrations of B and C are dependent variables

Table 3.1 Concentration

control coefficients in the

three reactions’ metabolic

pathway shown in Fig. 3.1

Metabolites

Enzymes

E1 E2 E3

B 2.65 �1.98 �0.67

C 0.18 0.29 �0.47
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for transient time, and area-under-the-curve control coefficients:

X
i

Cτi
i ¼ �1 (3.5)

where the summations are over all the reactions in the system. This may include not

only the steps in the pathway of interest but also those of other pathways linking

in. Xj may refer to any free variable in the system that does not have the dimension

of time, such as the ratio of the phosphorylated to the non-phosphorylated form of a

signal transduction protein, the ATP/ADP ratio, or the intracellular concentration of

cAMP. Summation laws may be verified for the examples in Fig. 3.1 and Table 3.1.

The summation law proves that systems biology is essential for the understand-

ing of life. Let us look at a linear pathway, where there is but a single steady-state

flux and flux control coefficients are non-negative, and suppose that the flux control

by the third enzyme equals 1. This implies that the first enzyme has no control on its

own flux. The effect that enzyme has on life (which is through the flux that it

enables) is not at all determined by the enzyme catalysing reaction 1, nor by the

gene encoding that enzyme. Figure 3.1 gives other examples where no enzyme fully

controls its own function, but the enzymes do this collectively.

An example from signal transduction can be found in the work of Kolodkin

et al. (2010). They examined the control of the components of the signal transduction

pathways of one nuclear hormone receptor (NR) on the flux through the signalling

pathway of another nuclear hormone receptor. In contrast to cascade process signal-

ling such as in the MAP kinase pathway (Hornberg et al. 2005a, b), in the case of

nuclear hormone receptor signalling the signal flux equals a material flux, i.e. that of

the nuclear hormone receptor itself. The nuclear hormone receptors serve as alter-

native cargos of a single transport system which uses a single transport channel (the

nuclear pore complex, NPC). Hence the nuclear hormone receptors and their signal

transduction pathways compete with one another (Fig. 3.2a). Kolodkin

et al. calculated the extent to which a particular NR pathway flux would be con-

trolled by both its own input, NPC, and output processes and those of the other NRs.

If we first inspect the case with the lowest number of nuclear hormone receptors

(i.e. n ¼ 2 in Fig. 3.2b, c), then we see that the input process of NR1 controlled its

own signal transduction flux for only some 25 %. The control by its own output and

transport processes amounted to some 45 % and 25 %, respectively, the three

controls adding up to 100 %, but all differing from zero. As the number of NRs

using this same channel exceeded 6, the control by the input over its own signal flux

control went up to some 45 % but never got even close to 100 %.

Much of the control, i.e. some �25 %, of the signal flux through the NR1

pathway was carried by the input reactions of the other NR when n ¼ 2. This

control was negative because the processes were competing. The transport and

output processes of the second signal transduction route also controlled the flux

through the first. The flux control coefficients all added up to 100 %, again

suggesting that there was indeed full control but that this control is likely to be

distributed, as is confirmed by the computations.
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The cross control by any one other nuclear receptor pathway disappeared when

the total number of nuclear hormone receptors using the transport protein exceeded

6: when the same transport channel is used by a number of cargoes, the signal

transduction of any one NR systems is robust with respect to perturbations in the

concentration of any single other signal transduction. When this number of active

signal transduction pathways is lower, however, various signal transduction routes

should be expected to be highly dependent on one another, to extents that depend on

various factors, and often in nonintuitive ways. Control is 100 % but may be

distributed.

The summation laws take the place of the intuition-based but in biology faltering

concept of “the rate-limiting” step: For flux they confirm that there must be a

complete rate limitation of 1, which is in line with intuition. However in biology

this rate limitation need not reside in a single step, as confirmed experimentally by
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Fig. 3.2 (a) A number of parallel nuclear hormone receptor signal transduction pathways sharing

the same nuclear pore complex (NPC). The pathways compete with each other for the NPC.

(b) Signal flux control coefficients and their sums showing control of a particular nuclear receptor

transportation flux (path j) by its own three pathway components, i.e. by the input (leading from

the plasma membrane to close to the nuclear membrane), by the NPC itself, and by the output (the

processes leading the nuclear receptor from the inside of the nuclear membrane to the establish-

ment of the complex between DNA and the nuclear hormone). (c) The control of the flux through

that same pathway, but now by the input, NPC, and output processes of a different nuclear

hormone signal transduction pathway. Also here “Input” indicates the flux control coefficient by

the input reaction of this particular nuclear receptor [the reaction between S and Xi, seen in (a)],

“Output” indicates the flux control coefficient by the output reaction of this particular nuclear

receptor (the reaction between Yi and P), while “NPC” refers to the reactions through pore.

“Summation over path j” gives the sum of all these three control coefficients (for many relevant

details, see Kolodkin et al. 2010)
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(Groen et al. 1982). In signal transduction, the situation can become almost bizarre,

with all kinases exerting a control of 1 on the steady metabolic flux and all

phosphatases a control of �1 and the kcat of the enzyme exerting the missing

1 (Kahn and Westerhoff 1991). For concentration they show that the concept that

a single step limits a concentration is always wrong: if any step limits a concentra-

tion then there must be other steps that limit that concentration in the opposite

direction. And for transient times, it reflects the opposite of limitation by a process

activity: a step limits the magnitude of a transient time, e.g. in signal transduction,

because it is too fast rather than too slow. Control of concentrations must be, and

control of flux and transient time may well be, distributed over multiple steps

hereby, but what determines this distribution? Enter the component properties.

But which component properties?

3.5 The Elasticity Coefficients

The elasticity coefficients of an enzyme measure the most important component

property, which is its immediate response to changes in its immediate environment.

Said changes include changes in the concentrations of substrates, products, or alloste-

ric effector, the concentration ratio of phosphorylated to non-phosphorylated form of

signal transduction proteins, and the concentration of a growth factor such as EGF,

pH, and temperature. Mathematically the elasticity coefficient is defined by (3.6):

εJS ¼
@vi
@S

� �
local

� S
J
¼ @ ln vi

@ ln S
; (3.6)

where vi denotes the reaction rate and S denotes any metabolite concentration or

other environmental factor.

3.6 Connections Between System-Level Control and

Molecular Properties

The key systems biology property of control analysis is that it relates the kinetic

properties of the component processes to the functional properties of the system.

The connectivity (Kacser and Burn 1973; Westerhoff and Chen 1984) laws are such

relationships. They relate the control coefficients to elasticity coefficients. The

connectivity theorem for flux control coefficients (Kacser and Burn 1973) is valid

for any free variable X (such as the concentration ratio of the phosphorylated to the

non-phosphorylated form of a signal transduction protein) and any flux J in the

network. It refers to the (multiplicative) products of the flux control coefficient of

all steps by their elasticity coefficients towards X. It states that the sum of all of

these is zero:
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X
CJ
i � εiX ¼ 0: (3.7)

This relationship also applies for the concentration control coefficients

(Westerhoff and Chen 1984), as shown by (3.8) and (3.9):

X
CY
i � εiX ¼ 0; X 6¼ Y (3.8)

with the exception of

X
CX
i � εiX ¼ �1 (3.9)

The connectivity laws empower control analysis with the ability to describe how

fluctuations in the concentrations of network components pathway propagate

through the chain of reactions so as to be annihilated by the system’s response

(Westerhoff and Chen 1984). The kinetic properties of each process attenuate the

perturbation to and from its immediate neighbours (Kholodenko et al. 2002).

The connectivity laws also reflect another characteristic of biological systems,

i.e. that components are determined more by the collective of all processes than by

themselves. For the signal transduction network of Fig. 3.3, one finds for the extent

to which the kinase controls the phosphorylation state of E:

C
EP=E
kinase ¼ �C

EP=E
phosphatase ¼

1

�εkinase
EP=E þ εphosphatase

EP=E

: (3.10)

This shows that it is impossible for kinase to be the only factor in control and that

the control of the kinase depends on properties of both the kinase and the phospha-

tase. If the kinases and phosphatases are product insensitive, the dependence on

kinase properties even drops from the equation, and the extent to which the kinase

affects transcription does not depend on kinase properties. The importance of the

phosphatase also reflects on the response of the transcription rate to changes in the

concentration of the external signal:

Rtranscription
signal ¼

εRNApolymerase

EP=E � εkinasesignal

�εkinase
EP=E þ εphosphatase

EP=E

: (3.11)

The equations also generalise the case of zero-order ultrasensitivity which

requires that both the kinase and phosphatase are insensitive to the fractional

phosphorylation of the signal transduction protein E, leading to elasticity

coefficients close to zero. Ortega et al. (2002) have shown that this situation is

biochemically unlikely. Network topology and component elasticities together

determine the magnitudes of the control coefficients in complex networks of signal

transduction that may include gene expression and metabolism. In a sense systems
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control is the inverse of local properties, but highly significantly it is a matrix

inverse (inverse of the whole) rather than the collection of the individual inverses of

the local properties (Westerhoff and Kell 1987; Kahn and Westerhoff 1991).

3.7 Determination of Control Coefficients

The obvious way of determining control coefficients experimentally is to follow

their definition (see above), i.e. to perturb one step and let the system settle to a new

steady state and then measure the change in the variable of interest. There are many

ways of perturbing the rate of a reaction, each of them with its own advantages and

disadvantages:

1. Alteration of enzyme concentration by genetic means [e.g. Flint et al. 1981;

Dykhuizen et al. 1987; Fell 1992; Niederberger et al. 1992; Jensen et al. 1993)

for further overview] has the disadvantage that other enzyme concentrations

may also change. This then invokes a second type of control coefficient

(Westerhoff and Workum 1990).

2. Titration with inhibitors (e.g. Groen et al. 1982) has the disadvantage that the

in situ efficacy of the inhibitor needs to be assessed.

3. Titration with purified enzyme in vitro (e.g. Torres et al. 1986; Moreno-Sánchez

et al. 2008) has the disadvantage that it only determines the control coefficient in

the in vitro situation.

The perturbation should be specific. Should one desire a complete picture of the

control of the variable in question, then the same procedure will have to be repeated

for each step of the system. In addition, the perturbations should be small—because

the steady state moves when the perturbations are finite, there is an error associated

with large perturbations. However, the effects of small perturbations are usually

also small and difficult to detect accurately. If one wants to use the enzyme

concentration as the parameter to perturb, the rate of reaction must change propor-

tionally with the enzyme concentration. If the relation between rate and enzyme

Fig. 3.3 A simple case of

signal transduction with a

single cascade of a kinase

and a phosphatase effecting

the phosphorylation of

transcription factor E, which
activates RNA polymerase

into transcription. The

external signal S activates the

kinase
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concentration is not linear such as when a process is catalysed by two proteins, or

when proteins are substrates rather than catalysts such as in signal transduction, the

protein concentration-based control coefficients will not conform to the above

summation laws (Van Dam et al. 1993).

The alternative to experimental determination of the measurement of control

coefficient is the computational determination, either from complete replica models

of the network (e.g. Bakker et al. 1999; Conradie et al. 2010), or by inversion of the

matrix of elasticity coefficients (Westerhoff and Kell 1987).

This indicates that the phosphorylation and dephosphorylations processes are

equally important for steady-state signalling. This is clearest for a simple signal

transduction cascade where there is only one kinase and one phosphatase per level:

CXiþ1

phosphatase ¼ �CXiþ1

kinase: (3.12)

3.8 Control and Signal Transduction

Kahn and Westerhoff (1991) developed HCA for signal transduction cascades at

steady state, where extra control laws apply between the cascade levels: The steady-

state degree of phosphorylation of a protein at any next level in the cascade is

controlled by the protein, and the control by that kinase and that phosphatase adds

up to zero:

XnAþ1

iAþ1¼1

CXlevel A

iAþ1;SS
¼ 0: (3.13)

In Table 3.2 this summation law is demonstrated for the signalling pathway

shown in Fig. 3.4.

This kind of signal transduction process is of interest in protein kinase cascades,

such as the MAP kinase pathway. Here the first kinase activates the second by

phosphorylation, which then activates the third, again by phosphorylation, and so

on. The phosphorylated last kinase activates transcription. The above HCA implies

that corresponding protein phosphatases deserve as much interest as the kinases for

the ultimate steady-state levels, a conclusion that breaks with the research history,

which focused on the kinases. Hornberg et al. (2005a, b) extended HCA mathemat-

ically to describe the maximum phosphorylation level obtained in the time-

dependent functioning of the cascade. In this case the same summation law

Table 3.2 Control coefficients of various levels kinases and phosphatases for the degree of

phosphorylation at the next level down, for the signalling pathway shown in Fig. 3.4

Enzymes Kinase 1 Ptase 1 Kinase 2 Ptase 2 Kinase 3 Ptase 3

CXlevelA

iAþ1;SS
0.15 �0.15 0.21 �0.21 0.32 �0.32

Note: Ptase denotes Phosphatase
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continued to apply to the maximum level, but now the kinases collectively were

equally important as the phosphatases collectively, not individually. For all other

points in the transient yet another law was derived mathematically, defining control

by time itself (Westerhoff 2008).

This work had been preceded by an analysis of the cascades in terms of mass

action kinetics by (Heinrich et al. 2002). In this description, the reaction rate for the

phosphorylation of the next kinase in the pathway reads as follows:

viþ1 ¼ kiþ1:xi:ei:ð1� xiþ1Þ:eiþ1 ¼ αiþ1:xi:ei:ð1� xiþ1Þ; (3.14)

where ei represents the total concentration of the ith kinase in the pathway and xi
the fraction of the kinase that is in the phosphorylated, hence active, state. αi+1 is
the pseudo-first-order rate constant. The corresponding phosphatase, at concen-

tration fi+1, would act at a rate as follows:

v�ðiþ1Þ ¼ k�ðiþ1Þ:xiþ1:eiþ1:fiþ1 ¼ βiþ1:xiþ1:eiþ1: (3.15)

The α’s and the β’s were proportional to the kinase and phosphatase activities

(and concentrations) at the corresponding levels. For the steady state of permanent

activation of the pathway, one then finds

xiþ1 ¼ kiþ1:xi:ei
kiþ1:xi:ei þ k�ðiþ1Þ:fiþ1

¼ αiþ1:xi:ei
αiþ1:xi:ei þ βiþ1:eiþ1

: (3.16)

Fig. 3.4 Four steps signal

transduction cascade of

kinases and phosphatases
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Using the above equations for kinases and phosphatases in the consecutive steps

in a signalling cascade, Heinrich et al. (2002) showed that signal amplification is

possible particularly when the level of activation of the pathway (xi in the above

equation) is small. The signal amplification is demonstrated in Fig. 3.5a for the

signalling cascade shown in Fig. 3.4. Signal dampening can also be achieved by

such cascades (Fig. 3.5b). These equations again show, but now in a model-specific

way, that kinases and phosphatases are equally important in determining amplifica-

tion and indeed signal level.

3.9 Examples

3.9.1 Galactose Signalling and Co-response on Galactose
Metabolic Flux in Saccharomyces cerevisiae

Figure 3.6 presents an example where control analysis of signal transduction and

gene expression may lead. Much of this terrain is still unexplored.

3.9.2 Regulatory Strength in Central Nitrogen Metabolism
and Signal Transduction in Escherichia coli

An in silico replica has been constructed for the complete central ammonium

assimilation network of E. coli (Bruggeman et al. 2005). Ammonium assimilation

is regulated by a variety of mechanisms, including interactions with metabolites

(substrates, products, effectors), binding and release of regulatory proteins, and

activities of modifier enzymes that covalently modify crucial proteins/enzymes.

This latter part corresponds to signal transduction and a two-component regulatory

system is involved. However, there are more regulatory links in the network, all of

which, even the metabolic links, transduce signal. Using the replica model, the

regulation of the two ammonium assimilating pathways, i.e. glutamine synthetase-

glutamate synthase (GS-GOGAT) and glutamate dehydrogenase (GDH), was dis-

sected quantitatively. Steady states and transient states of the entire network were

examined, but special attention was given to GS, which is by far the most strongly

regulated enzyme in the network. The wild-type and mutants lacking one of the

important regulatory enzymes/proteins (GS, GOGAT, GDH, ATase, and UTase)

were investigated in silico. Overall, the results of the kinetic model indicated that GS

flux was tuned down at 1 mM ammonium, but that the extent of the decrease

depended on the carbon and nitrogen status. Focusing on the transient short-term

effects on GS activity upon a 0.05–1 mM ammonium upshift, the relative, average

contribution of signal flux through the various direct regulators of GS (ADP, ATP,

glutamine, glutamate, adenylylation state) could be calculated in terms of regulatory

strengths. On a second timescale, signal flow through ADP was most regulating,
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Fig. 3.5 (a) Signal amplification ahead a multicyclic signalling pathway composed of four cycles.

The phosphorylation and dephosphorylation rate constants (ks) used for simulations were:

k3,5,7,9 ¼ 1, k4,6,8,10 ¼ 0.5, and Ri ¼ 0.1. Activation of receptor concentration was modelled as

reported by (Heinrich et al. 2002). Simulated fractional concentrations of activated kinases Xi ~ P
were plotted versus time. The activities of Xi ~ P were normalised with respect to the amplitude of

X4 ~ P. (b) Signal repression along a signalling pathway in which rate constants were k3,5,7,9 ¼ 1,

k4,6,8,10 ¼ 0.5, and Ri ¼ 50
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Fig. 3.6 (a) Galactose signalling for transcriptional regulation of GAL genes in Saccharomyces
cerevisiae adopted from (Verma et al. 2003). D1 and D2 are genes having one and two binding

sites for transcriptional factor in their promoter regions. G4, G80, G3, and G3* represent

transcriptional activator Gal4p, transcriptional repressor Gal80p, signal transducer Gal3, and

activated Gal3 protein. Gal4p and Gal80p form dimers and the Gal4p dimer binds to the binding

sites of genesD1 andD2. Cooperative binding of Gal4p dimer toD2 is represented by parameterm
when one site is already occupied by Gal4p dimer. The repressor Gal80p dimer binds with free

Gal4p and also with the Gal4p bound with genes D1 and D2. K denotes distribution of Gal80p

shuttling between the nucleus and cytoplasm. Activated Gal3p sequesters with Gal80p in
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whereas on a second-to-minute timescale most signal flux into and out of GS turned

to glutamate and the adenylylation state. On a minute timescale it was the

adenylylation state signal flux into GS that dominated. On average for the whole

transient period, some 60 % of the regulation was mediated by signal through the

adenylylation state of GS and some 40 % by ADP, glutamate, glutamine, and ATP

(Bruggeman et al. 2005). Again, i.e. also when it comes down to GS regulation, there

is no single regulatory route, but all of the signal transducing routes contribute to

different degrees on different timescales.

3.10 Medical Implications of Control Analysis

In medical applications the focus of control analysis applications has been to

identify:

1. The enzymes having high flux control coefficients in the pathway influenced by

disease; these are likely to be potent drug targets reducing metabolic flux

through the pathway upon their inhibition.

2. The enzymes having high flux control coefficients in the pathogenic microor-

ganism, for which the enzymes catalysing the homologous reaction in the

complementary human metabolic pathway have a low flux control coefficient;

these can be targeted to suppress the growth of microorganism with minimal

effect on the humans.

3. Bottlenecks of processes important for nutrition; Rigoulet et al. (1988) calcu-

lated the redistribution of flux control coefficients in the TCA cycle in brain

edema. In diabetes it is important to know which enzymes control the carbon

flux into the gluconeogenic pathway. Groen et al. (1983) and Rigoulet

et al. (1987) have shown that pyruvate carboxylase exerts much flux control

and would, therefore, be a potent drug target.

MCA has been used to rank drug targets to suppress Trypanosoma brucei, the
parasite causing sleeping disease. This was done by calculating which steps in

glycolysis needed the least inhibition to achieve a certain inhibition of the glyco-

lytic flux (Bakker et al. 1999). The glucose transporter in the Trypanosoma brucei

�

Fig. 3.6 (continued) cytoplasm to activate the transcription of GAL genes. Ki (i ¼ 1–4) and Kd

values represent dissociation constants for various protein–protein and DNA–protein interactions,

respectively. All the parameters values, genes, and protein concentrations were taken from (Verma

et al. 2003). (b) Simulated fractional protein expression from GAL genes having one and two

binding sites for Gal4p dimer in response to galactose signalling. (c) Schematic of complete

domino model for galactose metabolism in Saccharomyces cerevisiae, adopted from domino

glucose metabolism (Verma et al. 2013). (d) Simulated profile of flux control coefficients for

fractional saturation of galactose permease and galactokinase, enzymes catalysing reaction 1 and

reaction 2, respectively, of domino galactose metabolism. Model parameters were replicated from

domino glucose metabolism (Verma et al. 2013)
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was identified to be the most promising target, followed by aldolase, glycerol-3-

phosphate dehydrogenase, and glyceraldehyde-phosphate dehydrogenase.

Eisenthal and Cornish-Bowden (1998) have suggested that metabolite would accu-

mulate sufficiently to interfere with the action of competitive inhibitors. Following

this reasoning, competitive inhibition of pyruvate export was found more adequate

in their studies. The most promising target the glucose transporter (Bakker

et al. 1999) should however be insensitive to this argument, as the extracellular

glucose concentration will not be affected by such an inhibitor. Also glycolytic and

energy metabolism in cancer has been studied from the control analysis perspective,

leading to new drug targets (Moreno-Sanchez et al. 2010).

Letellier et al. (1998) detailed an important application of MCA in medicine,

i.e. to enzyme deficiencies, in mitochondrial myopathies. MCA explained why flux

is not considerably reduced above a certain threshold activity of the enzyme, and

only after further inhibition, the flux decreased drastically. In case of enzyme

deficiencies, control coefficients can only be used as a guideline. Therefore,

Schuster and Holzhutter (1995) have used kinetic modelling to address the impact

of enzyme deficiencies in erythrocytes.

One of the limitations with current chemotherapies is not that they fail to kill

cancer cells but that they fail to destroy it at doses which are not harmful to normal

cells. The therapeutic window between cytotoxicity in malignant cells versus

normal tissue is too narrow. A key to finding targets where cancer may be differen-

tially sensitive is to try and understand what are the differences in flux control

between cancer and normal cells. Then drugs may be targeted to steps where the

flux control is much higher in the tumour than in healthy tissues. These steps could

be enzymes (Moreno-Sanchez et al. 2010) as well as signal transduction proteins

(Hornberg et al. 2005a).

3.11 Software for Control Analysis

Several programmes are adopting the MCA approach and thus we avail of some

useful tools for various aspects of MCA. Metabolic simulators such as COPASI

(Hoops et al. 2006) are programmes for simulation of steady states and transient

behaviour of biochemical pathways (including several compartments). They pro-

vide features to enable calculation of all the enzyme elasticities and flux and

concentration control coefficients. JWS online (Olivier and Snoep 2004) is a public

model repository enabling the use of realistic models through a web interface.

Control coefficients become available at the clicking of a button and their depen-

dence on network properties can be computed in close to realistic models, including

those of signal transduction.
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3.12 Perspectives

Molecular biological components and the systems in which they function

(e.g. substrates, enzymes, metabolites, genes in a cell, tissue, or organism) and

pathways mediating their functional outcome are many times more complex than

networks and circuits such as the London Underground. Yet, the London Under-

ground is already complex: making sure that one particular station functions effi-

ciently such that each minute one train could depart does not guarantee that indeed

one train will depart per minute. Most likely, many fewer trains will depart because

further down the tube there are other stations that are less efficient, or because at

some stations up the tube excessive numbers of people wish to board or leave the

train, or because the train driver overslept. Network studies reside at the crossroads

of disciplines, from mathematics (graph theory, combinatorics, probability theory)

to physics (statistical thermodynamics, macromolecular crowding), and from com-

puter science (network generating algorithms, combinatorial optimisation) to the

life sciences (metabolic and regulatory networks between proteins and nucleic

acids). The impact of network theory on understanding is strong in all natural

sciences (Barabási and Albert 1999), especially in systems biology with gene

networks (Alon 2007), metabolic networks (Schuster et al. 2002), plant systems

biology, and even food webs (Getz et al. 2003). Yet, biological systems will not be

understood by existing network theory alone. Their properties are much more

complex than the properties of standard networks, for instance in that their networks

adapt and change temporarily, are hierarchical in terms of space, time, and

organisation, and have been optimised through evolution for multiple properties

that we do not yet understand. New network theories are needed and will have to be

more targeted towards understanding biological systems functionally. These will

have to integrate strongly with genomics and molecular data, because different

biological networks may need somewhat different theories, if only because their

objective (evolutionary purpose) is different.
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Chapter 4

MicroRNAs and Robustness in Biological

Regulatory Networks. A Generic Approach

with Applications at Different Levels:

Physiologic, Metabolic, and Genetic

Jacques Demongeot, Olivier Cohen, and Alexandra Henrion-Caude

Abstract MicroRNAs have been discovered in the noncoding nuclear genome.

They inhibit partly in a nonspecific manner the transcription of numerous genes,

and the corresponding “inhibitory noise” prevents the weakest positive interactions

of the genetic regulatory networks to be actually efficient, hence microRNAs

control the number of attractors of these networks, e.g., by frequently forcing

them to have only one or two possible behaviors for fulfilling a precise cell function

(if we identify a network attractor with a precise differentiated cell state). More

specifically, microRNAs have a great influence on the chromatin clock, which

ensures the controlled mode of updating genetic regulatory networks. We analyze

this influence as well as their impact on important functions like controlling the cell

cycle, improving the defenses of a host against pathogens like viruses, and

maintaining the homeostasis of energy metabolism. In the last case, we show the

role of two types of microRNAs, both involved in the control of the mitochondrial

genome: (1) nuclear microRNAs, called mitoMirs, inhibiting mitochondrial genes

and (2) putative mitochondrial microRNAs located in the noncoding part of the

mitochondrial genome that inhibit tRNAs function. We show the complex
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involvement of microRNAs in the ubiquitous p53 regulatory function of cell cycle

control, then their global role in cell respiration homeostasis, in carcinogenesis, and

finally we discuss the influence of microRNAs on the increase of robustness of

genetic networks during evolution.

4.1 Introduction

The whole body physiology as well as cell metabolism are regulated by interaction

networks that bring together as elementary nodes, cells or macromolecules like

genes and their expression products, proteins, or other metabolites. This complex

organization is made out of numerous weak interactions due to physicochemical

forces like electrostatic or van der Waals forces, or to electrical and/or mechanical

forces. The aim of this chapter is to show how mathematical theories like graph

theory, discrete network theory, and dynamical systems theory are necessary to

give a mechanistic description of how a cell works, a tissue or an organ grows,

from the emergent properties of their constituents interacting at different levels of

complexity. The corresponding regulatory networks made of elements (e.g., genes,

proteins, cells,. . .) in interaction control important tissue functions like proliferation

and differentiation and cellular functions like respiration or glycolysis. The

dynamics of these networks depends highly on the relationships and delays between

the kinetics of creation and/or transformation of their elements and then they need

to be described in the framework of Systems Biology.

A system is a set of elements in interaction and the cell (resp. tissue) organiza-

tion is a biological system, considered as a pyramid of components made of

interacting macromolecules (resp. cells). Their observed spatio-temporal behavior

(phenotype) can be explained through several loops of complexity from data

acquisition to reconstruction of regulatory interaction networks (inverse problem)

at different levels, allowing direct predictions by modeling and simulating them in

silico. This complexity deals with kinetic rules (Henri–Michaelis–Menten, Hill,

Monod–Wyman–Changeux, Thomas,. . .) prescribing how macromolecules, cells,

and tissues are connected into integrated regulatory networks with architectural

similarities both inside the cell and at tissue level. The dynamics allowed by these

rules and the corresponding discrete or differential equations allow simulating

trajectories to be compared with the temporal evolutions observed in experiments.

These trajectories can be stable in different mathematical senses that we present in

Sect. 4.2; a system being stable in all senses will be declared robust. In Sect. 4.3, we

consider simple examples such as robust and non-robust systems. In Sect. 4.4,

we examine the consequences of the role of microRNAs in the energetic system of

the cell, at the physiologic vegetative level. In Sect. 4.5, we study the global role

of microRNAs at the level of mitochondrial or chloroplast respiration, in the

genesis of cancer and in the control of the defenses against infectious agents. In

Sect. 4.6, we present a brief perspective about the role of microRNAs in maintaining

robustness in genetic networks.
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4.2 Definitions of the Notions of Stability and Robustness

There exist several definitions of the stability of a dynamical system and we will

give hereafter the most useful. We define a trajectory x(a,t) in a state space E�R
n as

the set of all states observed as the time goes from initial value 0, corresponding to

the state x(a,0) ¼ a, to infinity. The set of states visited when t tends to infinity is

called the limit set of the trajectory starting in a, and is denoted L(a). If the initial
states lie in a set A, then L(A) is the union of all limit sets L(a), for a belonging to A.
Conversely, B(A), called the attraction basin of A is the set of all initial conditions

outside A, whose limit set L(a) is included in A. We will call attractor in the

following a set A such as (1) A ¼ L(B(A)), (2) A is not contained in a wider set B,
such as d(A,B\A) ¼ inf a2A, b2B\ A d(a,b) ¼ 0 and verifying (1), and (3) A does not

contain a strictly smaller subset C verifying (1) and (2). Such an attractor A
associated to its basin B(A) is the exact set of the states “attracting” the trajectories
coming from B(A) outside A.

4.2.1 Definition of the Lyapunov (or Trajectorial) Stability

A trajectory x(a,t) is called Lyapunov stable, if no perturbation at any time t should be
amplified: if b ¼ x(a,t) + ε denotes the perturbed state, then for any s > t, d(x(a,s),
x(b,s–t)) � ε.

4.2.2 Definition of the Asymptotic Stability

A trajectory x(a,t) is called asymptotically stable, if any perturbation at any time

t is asymptotically damped: if b ¼ x(a,t) + ε denotes the perturbed state, then

lims!1d(x(a,s), x(b,s–t)) ¼ 0.

4.2.3 Definition of the Structural Stability with Respect
to a Parameter μ

A dynamical system whose trajectories xp(a,t) depend on a parameter p is called

structurally stable with respect to the parameter p, if no perturbation of p at any time

can provoke a change in number or nature (fixed attractor, called steady state, or

periodic attractor, called limit cycle) of its attractors. p may parametrize the state

transition rule of the system or its architectural characteristics (number of elements,

intensity of interactions).
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4.2.4 Definition of the Structural Stability with Respect
to Updating Modes

A dynamical system is called structurally stable with respect to updating modes, if

no disturbance in the updating schedule, e.g., by passing from the sequential mode

(in which nodes of the network are updated by the state transition rule one after the

other in a given order) to the parallel one (in which all the nodes of the network are

updated by the state transition rule at the same time), can change the number or

nature of its attractors.

4.2.5 Definition of the Resistance to Boundary Perturbations
(Resilience)

A dynamical system having a frontier separating them from its environment is

resistant to boundary perturbations, if no perturbation in state or architecture of the

environmental elements can provoke a change in number or nature of its attractors.

4.2.6 Definition of the Robustness (Resilience)

A dynamical system whose trajectories xp(a,t) depend on a parameter p is said to be
robust (or resilient), if all of its trajectories are asymptotically stable and if it is

boundary resistant and structurally stable with respect to any parameter or updating

schedule perturbation. We will give in the next Section some examples of robust

and non-robust biological networks at different levels, genetic, metabolic,

and physiologic. These networks can be decomposed following their dynamical

typology and we can distinguish between four categories of dynamics, whose

definition will be given hereafter:

– Potential (or gradient, or purely dissipative)

– Hamiltonian (or conservative)

– Mixed potential-Hamiltonian (MPH)

– MPH with principal potential part.

4.2.7 Definition of a Potential Dynamics

A dynamical system has a potential dynamics if the velocity along its trajectories is

equal to the gradient of a scalar potential P defined on the state space E. If the
system is governed by a differential equation defining its state transition rule, we
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have: dx(a,t)/dt ¼ �rP ¼ �gradP ¼ �∂P/∂x, where �∂P/∂x is the vector

(�∂P/∂x1,. . .,�∂P/∂xn) and the state x is a vector of dimension n: x ¼ (x1,. . ., xn).
The system is called dissipative, because the potential P decreases along trajectories

until attractors which are located on the minima of P.

4.2.8 Definition of a Hamiltonian dynamics

A dynamical system has a Hamiltonian dynamics if the velocity along its

trajectories is tangent to the contour lines projected on E from the surface represen-

tative of an energy function H defined on E: dx(a,t)/dt ¼ tangH. If the dimension of

the system is 2, then the vector TangH is equal to (∂H/∂x2, �∂H/∂x1). The system
is said conservative, because the energy function H is constant along a trajectory.

4.2.9 Definition of a Mixed Potential-Hamiltonian Dynamics

A dynamical system has a mixed potential-Hamiltonian dynamics if the velocity

along its trajectories can be decomposed into two parts, one potential and one

Hamiltonian: dx(a,t)/dt ¼ �gradP + tangH. If the set of minima of P is a contour

line of the surface H on E, then its connected components are attractors of the

system.

4.2.10 Definition of a Principal Potential Part Dynamics

A mixed potential-Hamiltonian system has a principal potential part dynamics, if

the ratio tangHk k gradPk k= between the norms of the potential part and the

Hamiltonian one tends to 0 when t tends to infinity.

4.3 Examples of Robust and Non-Robust Regulatory

Networks

We will give as examples in the following some toy models coming from regulatory

networks studied more in details in (Demongeot et al. 2000; Thellier et al. 2004;

Cinquin and Demongeot 2005; Forest and Demongeot 2006; Forest et al. 2006;

Jolliot and Prochiantz 2004; Demongeot et al. 2007a, b, 2008a, 2009a, 2010a,

2011a, b; Glade et al. 2007; Demongeot and Françoise 2006; Ben Amor et al. 2008;
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Demongeot and Waku 2012a; Demongeot and Demetrius (submitted); van der Pol

and van der Mark 1928; http://www.sciencesunivnantesfr_sites_genevieve_tulloue_

index_fichiers_animflash.html).

4.3.1 Example of a Potential Metabolic Network
in Morphogenesis

Metabolic networks used in plant or animal morphogenesis are fully connected

with all interactions inhibitory, except positive auto-loops representing auto-

catalytic processes. Such systems called n-switches (Demongeot et al. 2000;

Thellier et al. 2004; Cinquin and Demongeot 2005) are driven by the differential

equations ruling the concentrations xi of growth hormones [as auxin for plants

like Araucaria trees—see Fig. 4.1 and Forest and Demongeot (2006) and Forest

et al. (2006)—or transduction peptides for animals (Jolliot and Prochiantz 2004)]

in several locations i, the value i ¼ 0 being reserved to the location of the first

growth, 1 to the second growth location,. . . (apex leaves cells for plants and after

first bud cells; medulla primitive cells for animal nervous system and after

bulbar cells) following:

8 i ¼ 0; . . . ; n; dXi=dt ¼ σ þ VaiXi
c=ð1þ Σj¼0;...;najXj

cÞ � μixi;

where σ, V, c, and ai’s are, respectively, a constant entry flux, the Hill’s maximum

velocity, cooperativity, and affinities, and μi’s the degradation rates of hormones.

The dynamics is ruled by the potential:

PðyÞ ¼ �σ
X

iLogyi=2� VLogð1þ Σiaiyi
2cÞ=4cþ Σiμiyi

2=4; where yi
2 ¼ Xi

If we replace Hill’s kinetics by allosteric Monod–Wyman–Changeux kinetics,

the system remains potential (Demongeot et al. 2007a, b; Glade et al. 2007).

In the case of plant morphogenesis, the first attractor observed corresponds to the

steady state values x0* verifyingσ þ Va0x0*
c=ð1þ a0x0*

cÞ � μ0x0* ¼ 0 and xi* ¼ 0,

for i > 0. It corresponds to the growth of the apex, but after a certain time, due to the

negative geotropic plant growth, auxin from apex leaves cells can no more sufficiently

diffuse among the first bud of the plant for inhibiting its cells, then the second steady

state can be expressed, verifying: σ þ Va0x1**
c=ð1þ a0x1**

cÞ � μ0x1** ¼ 0 and

xi** ¼ 0, for i 6¼ 1. An example of such successive bud growths is given by

Araucaria tree (Fig. 4.1, middle).
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4.3.2 Example of a Hamiltonian Genetic Regulatory
Network in Immunology

The network controlling the expression of the RAG (Recombination Activating

Gene), responsible of the rearrangements of the V(D)J region of the chromosome 14

in human, giving birth to the T-cell receptors alpha contains strong connected

components (scc): (1) the subnetwork (given in Fig. 4.2) containing the gene

GATA3 regulating the T helper cell maturation and made of two circuits, one

positive of length 5 and another negative of length 3, tangent on the gene SOCS1

and (2) the subnetwork containing the gene PU.1 and made of two negative circuits

of respective length 6 and 2 (Demongeot and Waku 2012a; Demongeot and

Demetrius (submitted); Demongeot et al. 2011b). The circuits are Hamiltonian

and the conservative energy is the discrete kinetic energy E defined on the circuit

C by:

EðCÞ ¼
X

i2C xiðtÞ � xiðt� 1Þð Þ2=2;

where xi(t) is the Boolean state of the gene i at time t (equal to 1 if the gene is

expressing its protein and 0 if it is in silence) and where the transitions on C are

either the identity (symbol +) or the negation (symbol �). The number of attractors

of the first scc is equal to 3 and of the second equal to 1 [cf. Demongeot and Waku

(2012a), Demongeot and Demetrius (submitted), and Demongeot et al. (2011b) and

numbers in red in Fig. 4.19 of the Mathematical Annex].

X0

Xi

Xi-1

Xn

Xn-1

X1

X2

.

.
.

.

. .

Fig. 4.1 Left: Representation of the interaction graph of an n-switch fully connected with negative
interactions (in black) and positive ones (in red). Middle: Araucaria tree growth. Right: represen-
tation of the potential P in case n ¼ 1: P is associated to the 2-switch defined by μ ¼ 1, c ¼ 2,

V ¼ 2, ai ¼ 0.1, σ ¼ 1. The surface of P is represented on the state space E ¼ (X00X1)
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4.3.3 Example of a Mixed Potential-Hamiltonian Metabolic
Network in Physiology

The van der Pol system has been used since about 80 years (van der Pol and van der

Mark 1928; http://www.sciencesunivnantesfr_sites_genevieve_tulloue_index_

fichiers_animflash.html) for representing the activity of cardiac cells (Fig. 4.3,

bottom) and the differential equations representing its dynamics are defined by:

dx=dt ¼ y; dy=dt ¼ �xþ μ 1� x2
� �

y

If μ ¼ 0, these equations are those of the simple pendulum and if –x and

(1 � x2) are replaced by polynomials in x of high order, they become Liénard

systems (Demongeot et al. 2007a, b; Glade et al. 2007). It is possible to obtain

a potential-Hamiltonian decomposition: dx/dt ¼ �∂P/∂x + ∂H/∂y, dy/dt ¼
�∂P/∂y�∂H/∂x, with H(x,y) ¼ (x2 + y2)/2 �μxy(1 � x2/4 + y2/4)/2. This

decomposition is not unique and allows obtaining an approximation for

the equation of its limit cycle in the form: H(x,y) ¼ c (Demongeot and

Françoise 2006).

Figure 4.3 (top) shows a dynamical system in which H and P have a revolution

symmetry and share contour lines of the corresponding surfaces especially a limit

cycle in the state space E ¼ (x10x2): the system can be assimilated, when the state

has a norm sufficiently big, to the motion of the projection (in green) of a ball (in red)

descending along the potential surface P until its minimal set, which is the contour

line (in green) of a Hamiltonian surface (in red). Figure 4.3 (middle) shows the limit

cycle for different values of the anharmonic parameter μ of the van der Pol equation.
Figure 4.3 (bottom) shows that the rhythm of the potential of an isolated cardiac cell

fits with the solution of a van der Pol equation, justifying the use of this equation to

represent the whole heart kinetics (Van der Pol and van der Mark 1928; http://www.

sciencesunivnantesfr_sites_genevieve_tulloue_index_fichiers_animflash.html).

Fig. 4.2 Left: Immunetwork upstream the gene GATA3 regulating the T helper cell maturation

(Demongeot et al. 2011b). Right: levels of the Hamiltonian discrete kinetic energy for the positive

circuit of length 5 containing the gene GATA3 (in red on the left)
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4.3.4 Example of a Mixed Principal Potential Part Metabolic
Network in High Glycolysis

The upper part of glycolysis contains two key enzymes, the PhosphoFructo-

Kinase (PFK), which can be considered as following a Hill kinetics of order n,
and the Aldolase, which follows a parabolic Hill (Demongeot and Doncescu

µ=0.04 µ=0.4

µ=4

µ=1

x1

x2

µ=0.6

Fig. 4.3 Top: Dynamical system with the Hamiltonian and potential surfaces H and P, showing a
revolution symmetry and sharing contour lines, especially the limit cycle C of the dynamical

system (in green). Middle: simulations of van der Pol system dx1/dt ¼ x2, dx2/dt ¼ �x1 +
μ(1�x1

2)x2, for different values of the bifurcating anharmonic parameter μ (http://www.

sciencesunivnantesfr_sites_genevieve_tulloue_index_fichiers_animflash.html). At the center, we

have a representation of the velocity field for μ ¼ 0.6. Bottom: fit between the isolated cardiac cell
rhythm (in white) and the solution of the van der Pol system (in blue)
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2009a). The substrates of the PFK and Aldolase are respectively fructose-6-phos-

phate and fructose-1,6-diphosphate, of which concentrations are x1 and x2, respec-
tively. The corresponding 2-dimensional differential system is defined by the

following equations:

dx1=dt ¼ J � V1x1
n= K1 þ x1

nð Þ; dx2=dt ¼ V1x1
n= K1 þ x1

nð Þ
� V2x2

2= K2 þ x2
2

� �
; or by changing the variables yi ¼ ðxiÞ2

dy1=dt ¼ J � V1y1
2n= K1 þ y1

2n
� �� �

=2y1;

dy2=dt ¼ V1y1
2n= K1 þ y1

2n
� �� V2y2

4= K2 þ y2
4

� �� �
=2y2

We can find a potential-Hamiltonian decomposition for this new differential

system:

dy1=dt ¼ �@P=@y1 þ @H=@y2 þ Rðy1; y2Þ; dy2=dt ¼ �@P=@y2 � @H=@y1

where we have:P ¼ �J Logðy1Þ=2þ V1Log K1 þ y1
2nð Þ=4nþ V2Log K2 þ y2

2ð Þ=4,
H ¼ �V1

Ð
y1

2n= K1 þ y1
2nð Þdy1½ �=2y2 and R ¼ �V1

Ð
y1

2n= K1 þ y1
2nð Þdy1½ �=2y22,

H and R being negligible in the domain where y2* is sufficiently large and y1*
sufficiently small, which corresponds for example to a large value of the Vmax ratio

V1/V2.

4.3.5 Example of a Robust Network, the Neural
Hippocampus Network

In a toy model of the vegetative system, we can consider two simple networks, each

of them having a regulon structure, i.e., two nodes in interaction with a negative

circuit, one of them being auto-excitable (self-positive or auto-catalytic loop)

[cf. Fig. 4.4, left and Elena et al. (2008) and Demongeot et al. (2002)]. The first

regulon represents the vegetative control of the respiratory system with its inspira-

tory I and expiratory E neurons; the second one describes the vegetative control of

the cardiac oscillator with the cardiomodulator bulbar node CM ruling the activity

of the sinusal node S.

The corresponding dynamics is completely different if we consider the

2 regulons coupled or not, and noised or not. By modeling the transition of neuron

states between time t and (t + dt) by 2 coupled van der Pol differential equations:

dx/dt ¼ y, dy/dt ¼ �x + μ(1 � x2)y, for the respiratory dynamics, where x
represents the activity of neurons E, y the activity of neurons I, and μ is an

anharmonic parameter, and dz/dt ¼ w, dw/dt ¼ �z + η(1�z2)w + k(y)y, for the

cardiac dynamics, where z represents the activity of pace-maker cells S, w the

activity of neurons CM, η the anharmonic parameter, and k(y) the coupling

intensity parameter between inspiratory neurons I and cardiomodulator neurons
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CM. Both respiratory and cardiac systems have indeed their own rhythm, but they

are also coupled directionally: the cardiomodulator CM is coupled to the respiratory

activity (inspiratory neurons I) via bulbar connections, causing a 1/1 harmonic

entrainment in the case of coupling, perturbed in the case of uncoupling and robust

in the case of coupling, by adding a Gaussian white noise to the second member of

the van der Pol equations [cf. Fig. 4.4 Right and Elena et al. (2008) and Demongeot

et al. (2002)].

4.3.6 Example of an Asymptotically Stable and Structurally
Instable Genetic Network Controlling Flower
Morphogenesis

The classical network controlling the flowering of Arabidopsis thaliana
(Demongeot et al. 2010a; Mendoza and Alvarez-Buylla 1998) contains two

strongly connected components and has five asymptotically stable attractors. The

relative sizes of the five attraction basins corresponding to these attractors highly

depend on the state of critical nodes as the gibberellin gene called RGA in Fig. 4.5

(plant hormone responsible of the flower growth).

4.3.7 Example of a Non-Robust (Due to a Sensitivity to the
Initial Conditions) Hamiltonian Population Dynamics
Network

V. Volterra introduced his famous differential system for interpreting the

fluctuations observed in the struggle for life between a prey population of size x
and a predator population of size y (Glade et al. 2007; Volterra 1926a, b, 1931) and

Fig. 4.4 Left: Structure of a single negative regulon with two nodes, N0 self-excitable and N1, and
2 regulons coupled between their respective self-excitable nodes I and CM by a directional edge

with a coupling intensity k( y). Right: Temporal series from simulations of the 2 negative regulons

(neuron I in black and CM in gray), in four cases: (a) regulons are uncoupled without noise;

(b) uncoupled with addition of noise to CM neurons; (c) coupled without noise; (d) coupled with

noise. Parameters of the van der Pol equations are μ ¼ 10, η ¼ 1, with k( y) ¼ 0 when systems are

uncoupled and k( y) ¼ 8 when coupled
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A. Lotka (Lotka 1925) used the same system for representing the kinetics of

bimolecular chemical reactions:

dx=dt ¼ xða� byÞ; dy=dt ¼ yðcx� dÞ

This system is purely Hamiltonian, by changing the variables X ¼ Logx and

Y ¼ Logy (population «affinities») with a Hamiltonian function H equal to:

HðX; YÞ ¼ �ceX þ dX � beY þ aY;

the trajectories being exactly the contour lines of H. These trajectories are

Lyapunov, but not asymptotically, stable. Hence, they are very sensitive to the

initial conditions, which decide what will be the final shape of the temporal

evolution of the system (cf. Fig. 4.6).

4.3.8 Example of a Non-Robust (Due to a Sensitivity to the
Updating Mode) Genetic Network Controlling the Cell
Cycle

The core of the genetic network controlling the cell cycle in mammals (Kohn 1999),

the E2F box, has a strong connected component made of two intersecting positive

circuits, one of length 4 and another of length 3 (Demongeot et al. 2008a, 2009a).

The number and nature of its attractors depend both on the updating mode and

on the state of a boundary node, the microRNA miRNA 159, which inhibits E2F.

Then the system is not robust, essentially due to the occurrence of one periodic

Fig. 4.5 Left: Relative sizes of the five attraction basins of the attractors of the genetic network

controlling the flowering of Arabidopsis thaliana, in case of presence (red) or absence (green) of
RGA regulation. Right: the network
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attractor having an important Attraction Basin Relative Size (ABRS) in sequential

updating mode when miRNA 159 is absent, and 4 periodic attractors when miRNA

159 is active and inhibits E2F (cf. Fig. 4.7).

4.4 MicroRNAs, MitomiRs, and ChloromiRs

4.4.1 Role of MicroRNAs in the General Architecture
of Genetic Regulatory Networks

The microRNAs are parts of the nuclear genome which pertains to the noncoding

genome. They have a partly unspecific role of inhibition, preventing the weakest

part of the genetic regulatory networks to be expressed and hence the appearance of

a too large number of attractors in these networks, i.e., forcing the network to have

only few possible behaviors for fulfilling a precise function. MicroRNAs play an

important role in both specific and nonspecific inhibition in many circumstances of

the cell life, like chromatin clock control and have a big influence on many

metabolic systems. We will first recall the origin of the microRNAs especially

those acting on or pertaining to the mitochondrial (resp. chloroplast) genome called

mitomiRs (resp. chloromiRs) (Bandiera et al. 2011, 2013; Demongeot et al. 2013a,

b, c) and second present successively their role in controlling the energy system

[and more generally homeostasis (Bernard 1865; Cannon 1932)], the chromatin

clock, the morphogenesis and cell cycle, the immunologic system, and finally their

possible influence in cancerogenesis and in robustness maintenance. For example,
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Fig. 4.6 Representation of the trajectories of a Lotka–Volterra system showing a collection of

non-limit cycles (in blue) organized around a center (in red) for different values of the parameters

a, b, c, d (http://www.medownloads.com/download-Lotka-Volterra-146411.htm)
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the expression of the ubiquitous tumor suppressor p53, because involved in many

cell functions (like cell cycle arrest, cellular senescence, apoptosis,. . .), plays a role
in carcinogenesis, and many human tumors present defects in the p53 control

pathway. Hence, we will examine the possible role of the microRNAs controlled

by p53 and those controlling it. Eventually, we will discuss their role in maintaining

the robustness of networks dedicated to a precise function during the evolution.

MicroRNAs are present in almost all genetic regulatory networks acting as

inhibitors targeting mRNAs, by hybridizing at most one of their triplets, hence

acting as translation factors by preventing the protein elongation in the ribosome.

The interaction graph associated to a genetic regulatory network can be inferred

from the experimental data and from the literature, e.g., from the genes

co-expression data, whose correlation networks are built by using for example

directional correlations or logical considerations about the observed fixed

configurations. These correlation graphs are after pruned or completed by orienting,

signing, and valuating their edges, hence creating new connected components.

Interaction graphs architecture contains motifs having positive and negative

circuits, a negative (positive) circuit being a closed path in the graph having an

odd (even) number of inhibitions. These circuits are connected to tree structures:
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Fig. 4.7 Left: Interaction signed digraph modeling the genetic regulation network controlling the

cell cycle in mammals (from Kohn 1999). Black (resp. white) arrows represent activations (resp.
inhibitions), and the frontier genes are surrounded by a red circle. Right: network attractors, in

absence (top) and presence (bottom) of the microRNA miRNA 159, with their Attraction Basin

Relative Size (ABRS), equal to the proportion of initial conditions leading to the attractor, and in

the case of fixed configurations, their Attraction Diameter (AD), equal to the maximal distance in

the hypercube state space E between couples of states of their attraction basin, the gene state being

represented by 0 (gene in silence) or 1 (gene in expression) in the following order: p27, Cdk2,

pCyCE_Cdk2, CyCE_Cdk2, miRNA 159, pCycA_Cdk2, CycA_Cdk2, Rbp-E2F, Rb-E2F, E2F,

Rbp, and Rb
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(1) the upper trees control the circuits, their genes sources being often microRNAs

and (2) the down-trees are controlled by the circuits until their final leaves, in

general genes responsible of the final differentiation of a cell lineage (cf. Fig. 4.8).

The mitomiRs are localized in the nuclear noncoding genome and inhibit key

genes involved in the energy system, like the ATPase or translocase genes, but they

could also be present in the noncoding part of the mitochondrial genome, targeting

the mitochondrial tRNAs, hence causing an unspecific inhibitory noise, which

leaves expressed only the attractors of the dynamics of certain circuits on which

this ubiquitous inhibition is compensated by a sufficient activation from the genes

preceding in the trees or circuits the mitomiR target. In Fig. 4.9, we can see several

situations in which the microRNA can or cannot prevent the attractor to behave as a

periodic limit cycle. This last behavior (Fig. 4.9, right) is observed if the absolute

value of the negative interaction weight related to the microRNA is less than the

value of the preceding positive interaction. In this case, the microRNA has no

influence on the network dynamics. This behavior is similar to the unspecific

Fig. 4.8 The general architecture of a genetic regulatory network with up- and down-trees and

circuits, positive or negative, isolated, tangential, or intersecting
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inhibitory activity the cortex exerts on the sub-cortical structures, which leaves

effective only the sufficiently activated neural networks, as well as the anatomically

identified subthalamic nuclei involved in motor control (Benabid et al. 1992), when

they are co-activated by voluntary conscious and/or sensory unconscious inputs.

Neural versus genetic metaphor seems pertinent because of the structural and

functional analogy of their mathematical models.

We will use to compare microRNAs the normalized circular Hamming distance

(equal to the number, divided by 22, of mismatches, i.e., the number of pairs

different of A–U, U–A, C–G, G–C, G–U, and U–G, the classical pairs due to the

Crick–Watson antisense hybridization, cf. Table 4.1) to the reference palindromic

sequence AL. AL is close to the Archetypal Levin’s tRNA loops sequence

(Demongeot and Moreira 2007) and barycenter of a set of RNA rings of length

22 (like the microRNAs), whose the main characteristics is containing all the amino

acids triplets, then constituting a “matrimonial agency” for amino acids favoring

peptidic bonds as an ancestral ribosome (Hobish et al. 1995; Demongeot et al.

2009b, c). More, AL falls in the 5 % lowest tail part of the distribution of

normalized circular Hamming distances to Rfam, a collection of multiple sequence

alignments covering noncoding RNA families (Griffiths-Jones et al. 2005). Prox-

imity to AL of microRNAs of Tables 4.1 and 4.2 is significant for a distance strictly
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Fig. 4.9 Dynamic behavior of circuits inhibited by the microRNA miR. Left: negative circuit

whose limit cycle is canceled by miR and replaced by a fixed configuration. Middle: positive
circuit whose limit cycle is canceled by miR and replaced by a fixed configuration. Right: positive
circuit whose limit cycle is not canceled by miR
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more than 14, because the random variable equal to the circular Hamming distance

between AL and a random sequence of length 22 is dominated by the Sup of

22 binomial variables B(22,0.375) having 12.6 as mean and 15 as 0.95-confidence

upper-bound (Demongeot and Moreira 2007; Demongeot et al. 2009b).

Table 4.1 RNA sequences withW, the observed number of subsequences of length 5 they shared

with AL, its expectation <WR>, the ratio S ¼ W/<WR> with the significance of its difference

with 1 and standard deviation σR (the number of stars corresponds to the number of standard

deviations of the confidence interval not including the starred value)

RNA type W <WR> S ¼ W/<WR> σR

tRNA conserved domains 3,498 1,262 2.77**** 32

Introns 65,119 44,599 1.46*** 202

snRNA (spliceosomal) 5,421 3,799 1.43*** 59

snRNA 5,478 3,941 1.39*** 59

rRNA 14,213 10,366 1.37*** 97

miRNA 716 540 1.33*** 22

tRNA 12,709 11,376 1.12** 105

Table 4.2 Sequences alignment and distances to AL for miR-20 [resp. miR-181b, miR-93 from

(http://mirdborg/miRDB/; http://mirnamapmbcnctuedutw/)] and its inhibited targets,

RNA-dependent Helicase P68 and Endonuclease CCR4 (resp. Helicase-DNA-binding protein

KIAA1416, Exoribonuclease 2, and DNA Polymerase θ)

q

Star number indicates the significance level l(s) for the anti-matches number to be greater than the

expected value 12.6 + s (SupBinomial (22, 0.375) unilateral test: s ¼ 2,4, l(s) < 5 10�2 �**;

s¼3.4, l(s)<10�2�***; s ¼ 4.4, l(s)<10�3�**** (Demongeot and Moreira 2007; Demongeot

et al. 2009b))
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In Table 4.1, the variable W equal to the observed number of subsequences of

length 5 common to specified sets of RNA sequences and to the reference sequence

AL is calculated for RNA sequences of the database Rfam (Griffiths-Jones

et al. 2005). <WR> is the expected mean of the random variable equal to the

number of subsequences of length 5 common to the sets of RNA sequences and to a

random ring of length 22. The quantity σR denotes the standard deviation of<WR>.

In each case, the value of the ratio S ¼W/<WR> exceeds 1, with a significance less

than 10�3 for the tRNA conserved domains, which justifies the use of AL as

reference sequence, especially for miRNAs and tRNAs. We will introduce in the

following the notion of genetic threshold Boolean random regulatory network

(getBren) with n genes, which is a set N of n random automata as defined in

(Hopfield 1982; Hartwell et al. 1999; Weaver et al. 1999; Kauffman 1969; Thomas

1973; Demongeot et al. 2003) and in the present Mathematical Annex.

4.4.2 MicroRNAs and Chromatin Clock

The genes coding for enzymes involved in the chromatin clock as histone

acetyltransferases, endonucleases, exonucleases, helicases, replicases,

polymerases, etc., called clock genes, can be inhibited by many microRNAs

preventing some blocks of genes to be co-expressed (cf. Fig. 4.10), e.g.,

RNA-dependent Helicase P68 and Endonuclease CCR4 are inhibited by the same

miR-20, Helicase-DNA-binding protein KIAA1416 by miR181b, Exoribonuclease

2 and DNA Polymerase θ by the same miR-93. The influence of microRNAs on

chromatin clock is partly ambiguous: Table 4.2 shows that (1) several steps like

G12 G11

G5G6

G7

G8

G1

G9 G10

G2

G3

G4

G18 G17

G16

G15

G14

G19

G13

G20 G20=0 miRNA

no block
update

G13 and G14
frozen to 0
until G20=1

Fig. 4.10 Influence of the chromatin clock on the genetic network dynamics: the down-tree leaf

G20 expresses or not a chromatin clock’s enzyme, which authorizes or prevents the expression of

the updating block G13-G14
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helicase function can be controlled by several microRNAs like mi-R20 and

miR-181b and (2) several functions like helicase and endonuclease (resp.

exoribonuclease and polymerase) are controlled by the same microRNA miR-20

(resp. miR-93).

4.4.3 MicroRNas and Cellular Energetics: Oxidative
Phosphorylation

The cellular energy system of most of eukaryotic cells is essentially composed of

glycolysis and aerobic oxidation. In eukaryotes, later stages of oxidative phosphor-
ylation occur in mitochondria, with enzymatic steps like ATPase and translocase.

For each of these genes, it is possible to find at least one microRNA inhibiting its

activity (cf. Table 4.3). The microRNAs exert a translational repression preventing

the enzyme synthesis in ribosomes. For example, in (Bandiera et al. 2011) are

presented 2 microRNAs susceptible to hybridize with a perfect anti-match

mitochondrial genes: hsa-miR-1974 and hsa-miR-1977 (Fig. 4.11) target indeed

two mitochondrial tRNA genes, respectively, TRNE and TRNN, which code,

respectively, for ATP8 and ND4L, and the hsa-miR-1978 targets a stretch of a

mitochondrial rRNA sequence called RNR1. ATP8 is the ATP synthase protein 8, a

subunit of the mitochondrial ATPase, and ND4L is a protein which provides

instructions for making NADH. RNR1 is a subunit of the ribonucleotide reductase,

Table 4.3 Sequences alignment and distances to AL for miR136, miR34a, and miR301 (from

(http://mirdborg/miRDB/; http://mirnamapmbcnctuedutw/; http://ferrolab.dmi.unict.it/miro/)) and

their inhibited targets, ATPase and Translocase
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Fig. 4.11 Top: sequence of the nuclear mitomiR 1977: 50_GAUUAGGGUGCUUAGCUG
UUAA_30 presenting 14 mismatches with the 3-loops sequence of the mitochondrial Gly-tRNA

(Demongeot and Moreira 2007): 30_YGAACUUACCGUCAUGGUAAAU_50 made from the

D-loop, Anticodon-loop, and TψC-loop. Bottom: 3D structure with U8-A14 reverse Hoogsteen

pair, and tertiary pairs G18-ψ55, U54-A58 stabilizing, respectively, the sharp turn in D-loop and

the tertiary T structure
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an enzyme that catalyzes the formation of deoxyribonucleotides used in DNA

synthesis from ribonucleotides, favoring the reduction of ATP and GTP, by

increasing dNTP pools and, hence, decreasing the NTP pools necessary for a

correct functioning of metabolisms like glycolysis.

A last but not least putative inhibitory mechanism comes from the regulation of

the tRNA function by hybridizing by RNA sequences, the tRNA loops especially

the tRNA D-loop: in Table 4.4 we see the possibility to hybridize tRNA loops

(especially the D-loop and the A14 turn responsible of the tRNA tertiary structure;

cf. Fig. 4.11) by the nuclear mitomiR 1974 and in Table 4.5, two possibilities of

small mitochondrial RNAs called mito2miRs [C 116, CSBD 353 in Sbisa

et al. (1997); Cui et al. (2007)] coming from the noncoding part of the mitochon-

drial genome, the Lewin’s invariant part of tRNA secondary structure (Bandiera

et al. 2011; Griffiths-Jones et al. 2005) serving as reference template for tRNA

loops hybridization (Lewin et al. 2011; Turner et al. 2005; Sbisa et al. 1997; Cui

et al. 2007; Bandiera et al. 2012). The unspecific inhibitory noise caused by this

possible direct (inside the mitochondrion matrix) new regulation favors as indicated

in the previous section the circuits with sufficiently strong interactions for resisting

to the mitomiR inhibitory influence (Demongeot and Waku 2012b).

4.4.4 MicroRNas and Cellular Energetics: Glycolysis/
Oxidative Phosphorylation Coupling

MicroRNAs inhibit all glycolytic steps (cf. Figs. 4.12 and 4.13, and Table 4.6) and

depending on the intensity of these inhibitions favor at the level of pyruvate

coupling, the entrance in the Krebs cycle, if translocase and ATPase are not

Table 4.4 Alignment of AL with mitomiR 1974 from nuclear noncoding genome with indication

of the D-loop and A14 turn bend in yellow (Bandiera et al. 2011; Demongeot et al. 2013a, b, c;

http://mirdborg/miRDB/; http://mirnamapmbcnctuedutw/)

Table 4.5 Consensus sequences of mito2miRs from mitochondrial noncoding genome (Sbisa

et al. 1997; Cui et al. 2007) and alignment with the Lewin ancestral tRNA D-loop and A14 turn

bend in yellow (R ¼ puric¼¼A or G; Y ¼ pyrimidic¼U, T, or C)
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inhibited and sufficiently present in the mitochondrial inner membrane [cf. Fig. 4.13

and Demongeot et al. (2007c)], or conversely privilege lactacte shuttle [like in brain

astrocytes, in order to feed neurons in lactate (Aubert et al. 2005; 2007)].

Glycolysis (Fig. 4.12) has been modeled by several authors (Aubert et al. 2005,

2007; Boiteux et al. 1975; Demongeot and Seydoux 1979; Hervagault et al. 1983;

Demongeot and Kellershohn 1983; Demongeot and Doncescu 2009b), especially its

central allosteric step ruled by the phosphofructokinase (PFK), which is the key

glycolytic enzyme, because of its highly nonlinear allosteric kinetics and of the

presence as effectors of ATP and ADP (controlled by miR-298 and 29a in

adenylates/guanylates pools regulated by ADK and DNPK, cf. Table 4.7) in a

negative regulatory circuit causing, for critical values of the glucose entry flux J,

oscillations for all glycolytic metabolites, with a period of several minutes (Aubert

et al. 2005; Demongeot and Seydoux 1979). Let us define now by x1, x2, x3, and x4
the concentrations of the successive main metabolites of the glycolysis, respec-

tively glucose, glyceraldehyde-3-P, 1,3-biphospho-glycerate, and phospho-enol-

pyruvate. We assume that steps E2 and E3 of the glycolysis (Fig. 4.12a) are

Michaelian and reversible. The complex E1 includes the allosteric irreversible

kinetics of the phospho-fructo-kinase PFK with a cooperativity n [see Ovadi

(1988), Reder (1988), Ritter et al. (2008), Thellier et al. (2006), and Demongeot

miRNAsmiRNAs 142 221 4659 30142 221 4659 30 321 19 206321 19 206
320320

302302

29a29a

a b

c

Fig. 4.12 (a) Glycolysis main steps with indication (b) of their enzyme control strengths and of

their inhibitory microRNAs (red arrows). E1 denotes the four enzymes of the high glycolysis

(hexokinase HK, phosphoglucose-isomerase PGI, phosphofructo-kinase PFK, and aldolase ALDO),

E2 denotes the glyceraldehyde-3P-dehydrogenase, E3 denotes the three enzymes of the low

glycolysis (phosphoglycerate-kinase, phosphoglycerate-mutase, enolase ENO), E4 denotes the

pyruvate-kinase PK and E5 the three enzymes of the oxidative part of the pentose pathway

(glucose-6P-dehydrogenase G6PDH, 6P-glucono-lactonase, and phosphogluconate-dehydrogenase

PGDH, alternative to phospho-transferase system PTS). (c) Adenylate (guanylate) pool regulated

by ADK (NDK)
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Fig. 4.13 Top: Connection between the glycolysis pathway of neurons and astrocytes through the
lactate flux, controlled by ANT (green) and F1 ATPase (red) inside the mitochondrial inner

membrane. Middle: Glycolysis coupled to oxidative phosphorylation, with indication of the PFK

kinetics with its effectors (activators and inhibitors). Bottom: indication of the main miRs and

mitomiRs acting on ANT (in green), ATPase (in red), and mitochondrial tRNAs (in blue)
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Table 4.6 Sequences alignment of nuclear miRNAs with glycolysis genes (Bandiera et al. 2011,

2013; Demongeot et al. 2013a, b, c)
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and Laurent (1983) for its complex kinetics], and we suppose that both pyruvate-

kinase (E4) and dehydrogenases of the complex E5 are irreversible.

Numerous Vmax Vi’s can be diminished by the action of microRNAs inhibiting

the synthesis of the corresponding enzymes (cf. Fig. 4.12). Let us consider now the

differential system (S1) ruling the glycolysis and the pentose pathway until the

ribulose-5-P:

dx1=dt ¼ J � V1x1
n= 1þ x1

nð Þ; dx2=dt ¼ V1x1
n= 1þ x1

nð Þ�
V2x2= 1þ x2ð Þ þ LαV2x3=ð1þ x3Þ; dx3=dt ¼ αV2x2=ð1þ x2Þ � V3x3=ð1þ x3Þ�
LαV2x3=ð1þ x3Þ þ L0V3x4=ð1þ x4Þ; dx4=dt ¼ V3x3=ð1þ x3Þ � V4x4= 1þ x4ð Þ�

L0V3x4=ð1þ x4Þ

Consider now the change of variables: yi ¼ xi
1=2, dyi=dxi ¼ xi

�1=2=2, where the
yi
0s are ruled by the differential system (S2):

dy1=dt ¼ J � V1y1
2n= 1þ y1

2n
� �� �

=2y1; dy2=dt ¼ ½V1y1
2n= 1þ y1

2n
� ��

V2y2
2= 1þ y2

2
� �þ LαV2y3

2= 1þ y3
2

� ��=2y2;
dy3=dt ¼ αV2y2

2= 1þ y2
2

� �� ðV3 þ LαV2Þy32= 1þ y3
2

� ��
þ L0V3y4

2= 1þ y4
2

� ��=2y3; dy4=dt ¼ V3y3
2= 1þ y3

2
� ��

�V4y4
2= 1þ y4

2ð Þ � L0V3y4
2= 1þ y4

2ð Þ�=2y4
When the attractor is a fixed point, the first enzymatic complex E1 has a stable

stationary state defined by V1y1�2n= 1þ y1�2nð Þ ¼ J. If the steady state value y1* is

reached the first among the other yj*
0s, because V1 is an order of magnitude higher

than the other Vi’s, the motion of y1 is called rapid, and then (S2) becomes (S3):

dy2=dt ¼ �@P�=@y2; dy3=dt ¼ �@P�=@y3 þ @H�=@y3; dy4=dt
¼ �@P�=@y4 þ @H�=@y4

Table 4.7 Sequences alignment of nuclear miRNAs with adenylate/guanylate pool regulated by

genes ADK and NDK (http://mirdborg/miRDB/; http://mirnamapmbcnctuedutw/; Sbisa

et al. 1997; Cui et al. 2007; Bandiera et al. 2012)
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where:

P� ¼ �JLogy2=2þ V2Log 1þ y2
2

� �
=4� LαV2y3

2Logy2=2 1þ y3
2

� �
þ ðV3 þ LαV2ÞLog 1þ y3

2
� �

=4� V3y3
2Logy4=2 1þ y3

2
� �

þ V4 þ L0V3ð ÞLog 1þ y4
2

� �
=4

and

H
� ¼ �LαV2y3

2Logy2=4 1þ y3
2ð Þ þ L’V3y4

2Logy3=2 1þ y4
2ð Þ � V3y3

2Logy4=

2 1þ y3
2ð Þ:

In this case, parameters appearing only in P*, like V4, are modulating the

localization of the fixed point; hence, the values of the stationary concentrations

of the glycolytic metabolites [cf. Demongeot et al. (2007a, 2007b) and Glade et al.

(2007) for a more general approach of the potential-Hamiltonian decomposition].

Let us suppose now that we measure the outflows J1 and J2 (cf. Fig. 4.12). Then
from the system (S1) we can calculate the sharing parameter α (which regulates the

pentose pathway and the low glycolysis dispatching) from the steady-state

equations equalizing the in- and outflows at each step. By denoting the stationary

state x* ¼ {xi*}i ¼ 1,4, we have:

V1x1
�n=ð1þ x1

�nÞ ¼ J; V2x2
�=ð1þ x2

�Þ � LαV2x3
�=ð1þ x3

�Þ ¼ J

ð1� αÞV2x2
�=ð1þ x2

�Þ ¼ J1;V3x3
�=ð1þ x3

�Þ
¼ J2ðV4 þ L0V3Þ=V4

Hence, we can calculate α by using the following formula:

α2J2LV2ðV4 þ L0V3Þ þ α JV4 � J2LV2ðV4 þ L0V3Þð Þ þ J1V4 � J

¼ 0 or α2 � αð1� KÞ þ K0 ¼ 0;

where we have denoted:

K ¼ JV4=J2LV2ðV4 þ L0V3Þ and K0 ¼ ðJ1V4 � JÞ=J2LV2ðV4 þ L0V3Þ:

When the flux of the kth step in a metabolic network has reached its stable

stationary valueΦk, then the notion of control strength Cki exerted by the metabolite

xi on this flux Φk is defined by (Kaczer and Burns 1973; Wolf and Heinrich 2000):

Cki ¼ @LogΔΦk=@LogΔxi

and we have:

8 k ¼ 1; n; Σi¼1;nCki ¼ 1:
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If each metabolite xi is controlled by a set ofmmicroRNAs and letMij denote the

control strength of the microRNA j with concentration mj on xi, i.e., we have:

Mij ¼ ∂LogΔxi/∂LogΔmj, then we get that the product of matrices P ¼ CM is a

matrix whose the sum of coefficients on a line is 1, summarizing the effects of the

microRNAs on the metabolic network. If we calculate the stationary flux increment

ΔΦk resulting from a perturbation Δm from the value m ¼ 0, as:ΔΦk(Δm) ¼ Φk(0)

[exp(ΣjvkjΔmj)�1] � Φk(0)ΣjvkjΔmj, then the general term of P, i.e., the control

strength Pkj exerted by the microRNA j on the flux Φk, can be calculated, if all Δmj

are small as:

Pkj ¼ @LogΔΦk=@LogΔmj � vkjΔmj=ΣjvkjΔmj; where vkj � ½@ΔΦk=@Δmj�=Φkð0Þ

The directed signed graph associated to the incidence (or adjacency) matrix P is the

same as the up-tree part of the interaction graph of a genetic network corresponding

to inhibitions by microRNAs, where the interaction weight of the microRNA j on
the gene expressing the enzyme k is equal to vkj (cf. Mathematical Annex), which

justifies the use of similar tools like the entropy of the network and the subdominant

eigenvalue of the Markovian matrix P, for characterizing the stability and the

robustness of the metabolic network. The molecules controlled by microRNAs

through the expression of their genes are proteins, enzymes, carriers, or membrane

receptors, and the control strength equation can be used to prove that the most

regulated molecules in glycolysis are enzymes like hexokinase, PFK, GPDH, and

ADK, which rule the pool of the energetic molecules, ATP, ADP, and AMP, which

conversely are mainly produced by the glycolysis (Wolf and Heinrich 2000; Ruoff

et al. 2003; Bier et al. 1996; Mourier et al. 2010). In Fig. 4.12, we see that the most

sensitive steps of glycolysis are hexokinase, PFK, and GPDH, inhibited in human

by the microRNAs hsa-miR-19, 4659/320, and 142, respectively.

When oscillations occur, we can use the variables Tki (resp Aki) to quantify the

control by Δxi of the period τk (resp. intensity amplitude Ik) of the kth step flux

(Baconnier et al. 1993), Δxi being the perturbation of the concentration of the ith

“pacemaker” effector (i.e., parameter causing oscillations), from its bifurcation

values xi:

Tki ¼ @Logτk=@LogΔxi and Aki ¼ @LogIk=@LogΔxi:

If ξ is the eigenvalue of the Jacobian matrix of the differential system for

which the stationary state has bifurcated in a limit cycle (Hopf bifurcation), then

τk ¼ 2π/Imξ, and if we consider a 2D potential-Hamiltonian example like:

dx1=dt ¼ �@P=@x1 þ @H=@x2; dx2=dt ¼ �@P=@x2 � @H=@x1;
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then we have:

Imξ ¼ ðΔPÞ2 � 4ðCðPÞ þ CðHÞ þ @2P=@x1@x2ð@2H=@x2
2

��
� @2H=@x1

2Þ þ @2H=@x1@x2 @2P=@x1
2:@2P=@x2

2
� ��j1=2=2;

where ΔP¼@2P=@x1
2þ@2P=@x2

2 is the Laplacian of P and CðPÞ¼@2P=@x1
2@2P=

@x2
2�ð@2P=@x1@x2Þ2 is the mean Gaussian curvature of the surface P, both taken

at the stationary state of the differential system.

Concerning the energy balance in neurons, if the apparent Vmax of the PFK is

diminished in astrocytes due to a lack of ATP (used to inactivate via phosphoryla-

tion the neurotransmitter receptors), then the oscillatory behavior is less frequent

and the production rate of lactate from pyruvate is more important than in neuron,

creating a flux of lactate to neurons. The neurons consume the lactate coming from

the extracellular space, partially replenished by the astrocytes production. That

gives to neurons an ATP level higher than in astrocytes, with an extra-pyruvate

production from lactate, and extra-oxygen and glucose consumption theoretically

predicted and experimentally observed.

This ATP level depends on ATPase and Translocase concentrations, which are in

human under the negative control of 3 miRNAs, the hsa-miR-136, 34 (common), and

301 (cf. Table 4.3) acting as boundary control nodes (http://microrna.sanger.ac.uk)

by regulating the neuronal oxidative system efficacy. These enzymes are located

on the mitochondrial inner membrane surface whose protein content can generate

the ATP/GTP turnover (Bier et al. 1996), as well as the proton leak (Mourier

et al. 2010).

4.4.5 MicroRNAs, Morphogenesis, and Cell Cycle

The Engrailed gene is required for the proper segmentation and maintenance of the

posterior compartment of the Drosophila embryo (Almeida and Demongeot 2012),

but also the Engrailed gene efficiently activates the gene Elk, necessary for the

control of K+ ion channels in excitable cells, and the human Engrailed homologues

encode homeo-domains containing proteins and are implicated in the control of the

pattern formation during the development of the central nervous system. On the top

of Fig. 4.14, we have represented the action of the gene Elk, which controls for

example positively the ability of CA3 cells Yi’s to express their negative feedback

upon the CA1 cells Xi’s inside the hippocampus (Tonnelier et al. 1999), showing

that the same set of genes can be involved from the development phase until the

control of a high level function as the hippocampus memory ability.
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We see in Fig. 4.14 that the gene Engrailed is not isolated, but is located at the

intersection of four important networks: the Engrailed control network centered on

MAPK and controlled by miRNA191, the p53 regulation network (Fig. 4.15), the

c-MyC

Caspases
Apoptosis

Proliferation

Engrailed

GATA-6
MEK

miRNA 302

miRNA 191

miRNA 34

Neurons

p53

Fig. 4.14 Top: Connection between hippocampus neural network and p53 through Engrailed

regulation network, with balance (activations in red, inhibitions in green) between apoptosis and

proliferation. Bottom: Sequential and parallel attractors of the cell cycle network (E2F box)
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cytoskeleton network connected to the Myosin network (in green in Fig. 4.16)

responsible of the control of morphogenetic processes like the gastrulation

(Almeida and Demongeot 2012), the apoptosis and proliferation networks

controlled by the ubiquitous protein p53, inhibited by miRNA302; p53 is a tran-

scription factor of miRNA 34 (Raver-Shapira et al. 2007), which is a translation

inhibitor of E2F in the mammal proliferation box (Kohn et al. 2006) and of ATPase

and Translocase: p53 is indeed the center of a complex regulatory subnetwork, in

activatory or inhibitory relationship with numerous other microRNAs (Fig. 4.15).

The E2F box, the core of the proliferation box (Kohn et al. 2006), presents

several attractors both in sequential and parallel updating modes (cf. Fig. 4.14

bottom), especially the periodic behavior (000000001000, 000000010111), when

its nodes are ordered as follows: p27, Cdk2, pCyCE_Cdk2, CyCE_Cdk2, miRNA

159, pCycA_Cdk2, CycA_Cdk2, Rbp-E2F, Rb-E2F, E2F, Rbp, and Rb. The triple

action (accelerate, stop, and slow down the cell cycle) on the proliferation process is

exerted negatively by the gene GATA-6, which is inhibited 1 time out of 2 by

MAPK, and successively positively and negatively (through p53) by the gene

c-MyC which is activated 1 time out of 2 by Erk. Then, the limit cycle of order

4 brought by the negative circuit of size 2 (MKP/Erk) leads the genes MKP, Erk,

Fig. 4.15 Regulation of protein p53 showing relationships with numerous microRNAs with

inhibiting (green) or activating (red) interactions
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MAPK, Engrailed, GATA-6, c-MyC, p53, miRNA34, Cdk2, E2F, RAS, and

caspases, through the microRNAs miR34 and miR302, to enter in the limit cycle:

ð000000110110; 011000010010; 111101000011; 100111100011Þ:

Then, the E2F/proliferation box is activated 1 time out of 4 and the apoptosis box

1 time out of 2, such as we observe the following cyclic behavior: 4 cells, 4 cells,

3 cells, 2 cells, 4 cells, etc. This dynamic behavior allows the exponential growth of

proliferation compensating exactly in a tissue the linear growth of apoptosis—two

daughter cells replacing two dead cells during one period of the limit cycle, hence

ensuring the conservation of the tissue volume and function. If the double dual

control (acceleration and brake) by c-Myc is no more ensured, a pathologic

proliferation (like in cancerogenesis) or excessive cell death (like in aging) can

occur (Table 4.8).

Fig. 4.16 Engrailed control network with its regulatory environment of up- or down-subnetworks.

The number and nature of attractors of subnetworks are indicated in blue. Green or white-headed
arrows correspond to inhibitions, red or black-headed to activations
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4.5 Global Influence of microRNAs

4.5.1 Physiological Role in Cell Energetics

The unspecific inhibitory noise from the microRNAs has a global resultant on the

intermediary metabolism in, e.g., higher mammals. Their role is essential in the

brake/acceleration balance of the network dynamics preventing artificial attractors

to be expressed, which could lead either to pathologic rhythms, or to steady states

with too high concentrations of certain metabolites.

Following the comparative physiology study about cell consumption of oxygen

by mammals done in (Weibel et al. 1991), let us consider V, the total mitochondrial

volume of muscle and VO2max, the O2 consumption rate per unit mass of whole body

mass M of the mitochondria of these mammals. Table 4.9 shows that nonruminant

Table 4.8 Sequences alignment of nuclear miRNAs with c-Myc and Engrailed genes (http://

mirdborg/miRDB/; http://mirnamapmbcnctuedutw/; Raver-Shapira et al. 2007)

Table 4.9 Comparison between cellular oxygen consumption of mammals (Hainaut and

Hollstein 2000)

VO2max/M (ml.s�1.kg�1) V/M (ml/kg)

Dog 2.29 40.6

Goat 0.95 13.8

Horse 2.23 30.0

Steer 0.85 11.6

Table 4.10 Number of common subsequences of lengths 6 and 7 between the mitochondrial

tRNA loops and the noncoding mitochondrial genomes of bos (total length 8,493 bases) and equus

(total length 4,535 bases) (http://megasunbchumontrealca/ogmp/projects/other/cp_list.html)

Subsequences Observed bos Expected bos Observed equus Expected equus

TACCAC 2 2 0 1

TACCAT 1 2 0 1

ACCGTT 2 2 0 1

ACCATT 1 2 0 1

CTTGAA 1 2 0 1

ATTTGAA 1 0.5 0 0.25

Total 8 10.5 	 6.5 (m 	 2σ) 0 5.25 	 4.6 (m 	 2σ)
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animals like horse (equus) and dog (canis) have an efficacy in O2 consumption

about 2.5 times more than ruminants like steer (bos) and goat (capra). We have then

studied in the noncoding (called d-loop) mitochondrial genome of the nonruminants

if there are less mitomiRs candidates than in those of ruminants.

Table 4.10 shows that such mitomiRs exist and contain long subsequences

(whose length is between 6 and 7 bases) common with the mitochondrial tRNA

loops. On the contrary, these subsequences are totally absent in the noncoding

mitochondrial genome of the nonruminants. These genomes have been extracted

for these different animals from the classical genetic databases dedicated to the

whole mitochondrial (http://megasunbchumontrealca/ogmp/projects/other/cp_list.

html) and chloroplast (http://www.ncbinlmnihgov/nuccore/EF115542; http://www.

ncbinlmnihgov/nuccore/AB042240) genomes: Megasun, from the University of

Montreal (http://megasunbchumontrealca/ogmp/projects/other/cp_list.html), and

Nuccore, from the NCBI (http://www.ncbinlmnihgov/nuccore/EF115542; http://

www.ncbinlmnihgov/nuccore/AB042240).

From Tables 4.10, 4.11, and 4.12, we see that the absence of mitochondrial small

subsequences, we have called mito2miRs, in the noncoding (called d-loop) mito-

chondrial genomes of nonruminants (for a total length of 10,024 bases) susceptible

to hybridize the mitochondrial tRNAs inside the mitochondrion matrix is highly

Table 4.11 Number of common subsequences of length 6 and 7 between the mitochondrial tRNA

loops and the noncoding mitochondrial genomes of capra (total length 1,531 bases) and canis (total

length 3,239 bases) (http://megasunbchumontrealca/ogmp/projects/other/cp_list html)

Subsequences Observed capra Expected capra Observed canis Expected canis

TACCAC 1 0.4 0 0.8

TACCAT 0 0.4 0 0.8

ACCGTT 1 0.4 0 0.8

ACCATT 1 0.4 0 0.8

CTTGAA 0 0.4 0 0.8

ATTTGAA 0 0.1 0 0.2

Total 3 2.1 	 2.9 0 4.2 	 4.1

Table 4.12 Number of common subsequences of length 6 and 7 between the mitochondrial tRNA

loops and the noncoding mitochondrial genomes of ruminants (total length 10,024 bases) and

nonruminants (total length 7,774 bases) (http://megasunbchumontrealca/ogmp/projects/other/

cp_list html). The stars correspond to the statistical significance of the difference between the

ruminants and non ruminants totals of matches

Subsequences

Observed

ruminants

Expected

ruminants

Observed

nonruminants

Expected

nonruminants

TACCAC 3 2.4 0 1.9

TACCAT 1 2.4 0 1.9

ACCGTT 3 2.4 0 1.9

ACCATT 2 2.4 0 1.9

CTTGAA 1 2.4 0 1.9

ATTTGAA 1 0.6 0 0.5

Total 11** 12.7 	 7.1 0** 10 	 6.3

**p<0.01.
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significant (observed number equal to 0 and mean expected number 10 with a

standard deviation equal to 3.2). A classical normal test of equality between

empirical means shows that the number of ruminant mito2miRs is significantly

(with a threshold of 10�3) superior to that of nonruminant. The absence of possibil-

ity of inhibition of the tRNA transcription inside the nonruminant mitochondria can

participate to the better efficacy of the cell respiration in these nonruminants with

respect to the ruminants.

In the same vein, we have analyzed data coming from noncoding chloroplast

genome (http://www.ncbinlmnihgov/nuccore/EF115542; http://www.ncbinlmnihgov/

nuccore/AB042240) of cereals, one belonging to the C4 plants, the sorghum (Sorghum

bicolor), and the other to the C3 plants, the wheat (Triticum æstivum) which represent

the most important cereals in temperate countries. The C4 plants are known to have a

better efficacy of their chloroplast diurnal respiration than the C3 plants, as we can see

on Table 4.13 (Byrd et al. 1992; Farquhar et al. 1980), where the sorghum is shown to

be 1.5 times more efficient that the wheat, by comparing the CO2 consumption rate per

unit surface of whole surface S of the leaves of these cereals.

In these cereals, the CO2 assimilation is usually limited by the capacity of

photosynthetic electron transport to supply ATP and NADPH to regenerate RuBP

(Byrd et al. 1992; Farquhar et al. 1980). Then we can compare as for the animal

mitochondria the presence of subsequences common to the noncoding chloroplast

genome and to the chloroplast tRNA loops.

Table 4.13 Comparison between cellular CO2 diurnal consumption between 2 cereals, sorghum

and wheat (Tang et al. 2012)

VCO2max/S
(mmol s�1 m�2)

Sorghum bicolor 41.1 	 2.8

Triticum æstivum 27.9 	 1

Table 4.14 Number of common subsequences of length 6 and 7 between the chloroplast tRNA

loops and the noncoding chloroplast genomes of sorghum (total length 15,852 bases) and triticum

(total length 16,014 bases)

Subsequences

Observed

sorghum Expected sorghum

Observed

triticum Expected triticum

TACCACT 0 1 0 1

TACCATT 4 1 4 1

TACCGCT 0 1 0 1

TACCGTT 1 1 1 1

ATTTGAA 3 1 4 1

GTTTGAA 1 1 5 1

ATTCGAA 3 1 5 1

GTTCGAA 3 1 3 1

ACTTGAA 0 1 2 1

GCTTGAA 0 1 1 1

ACTCGAA 3 1 3 1

GCTCGAA 1 1 1 1

Total 19** 11.7 	 6.8 (m 	 2σ) 29** 11.6 	 6.8 (m 	 2σ)
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From the Table 4.14, we see that the number of chloroplast small subsequences,

we are calling chloromiRs, in the noncoding chloroplast genome of a C4 plant, the

sorghum (Sorghum bicolor, for a total length of 15,852 bases) susceptible to

hybridize the chloroplast tRNAs inside the chloroplast matrix is highly significantly

less than the same number observed in a C3 plant, the wheat (Triticum æstivum, for

a total length of 16014 bases).

A classical normal test of equality between empirical means shows that the

number of the C4 plant chloromiRs is significantly (with a threshold of 10�3) less

than that of the C3 plant. The diminution of possibility of inhibition of the tRNA

transcription inside the chloroplast of the sorghum can participate to the better

efficacy of the cell diurnal respiration in this C4 plant with respect to the less

efficient C3 plant, the wheat.

4.5.2 Pathological Role in Cancer

For example, we can notice in patients with melanoma the presence of microRNAs

like miR-221 reducing the isomerase activity in melanoma cells (Segura

et al. 2012), hence increasing the high glycolysis rate [and favoring the pentose

phosphate pathway and the Warburg effect (Tennant et al. 2010; Diaz-Ruiz et al.

2011; Demetrius and Simon 2012; Davies et al. 2012)] as well as the proliferative

growth rate of the melanoma cells by targeting c-kit, p27 and p57, and in the

patients with prostate cancer the presence of microRNAs like miR-34a, repressing

the oxidative phosphorylation through the enzymes Translocase and ATPase

(favoring the Warburg effect) and the cell cycle through E2F and CD44, inhibits

the prostate cancer stem cells and prevents metastasis (Liu et al. 2011).

In the numerous papers devoted to microRNAs and cancer, we can notice the

possibility of an under-expression of the microRNA hsa-miR-320 which reduces

the PFK activity (Tang et al. 2012), favoring the high glycolysis rate. Associated

like in the melanoma data with a blockage of the oxidative phosphorylation or with

an over-expression of hsa-miR-19a which inhibits the Pyruvate Dehydrogenase, we

have another example reinforcing the Warburg hypothesis concerning the energetic

origin of cancer. The last example of miR-dependent cancer is the Hepatocellular

Carcinoma (HCC), the major primary liver cancer. The glypican-3 (GPC3) is one of

the most abnormally expressed genes in this cancer, which could play a role in liver

carcinogenesis. In (Maurel et al. 2012; Huang et al. 2012) using a functional

screening, the authors found that miR-96, miR-129-1-3p, miR-219-5p miR-1271,

miR-1291, and miR-1303 differentially control the GPC3 expression in HCC cells.

More precisely, miR-219-5p exerts its tumor-suppressive effect in hepatic carcino-

genesis through its negative regulation of GPC3 expression.

Eventually, we can notice the role of the tumor suppressors like p53, p63, and

p73, which are highly controlled by and are controlling numerous micro-RNAs

[cf. Figs. 4.15 and 4.17 and Boominathan (2010a) and Boominathan (2010b)]. The
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role we have already commented of p53 in the dual regulation of the apoptosis

versus proliferation processes is probably the main origin of its major influence in

carcinogenesis and tumor-suppression, depending on its up- or downregulation by

microRNAs.

4.5.3 Pathological Role in Infectious Diseases

MicroRNAs are closely related to viral genomes (He et al. 2009; Song et al. 2010;

Li et al. 2011; Koparde and Singh 2010; Cullen 2010; Wang et al. 2009) due to a

long co-evolution between hosts, vectors, and pathogens. In Table 4.15 and
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Fig. 4.17 Sequences viewing perfect matches between nuclear microRNA hsa-miR-143 with

viral genomes

Table 4.15 Sequences showing anti-matches between nuclear microRNA hsa-miR-143 with viral

genomes

Table 4.16 Sequences alignment of nuclear miRNAs with pb1-5 H1N1 influenza A gene

(Raver-Shapira et al. 2007; Kohn et al. 2006; Weibel et al. 1991)
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Fig. 4.17, an example shows that microRNA hsa-miR-143 presents numerous

perfect matches with Hamming distance 0 between long subsequences (whose

length is between 7 and 11 bases) it shares with genomes of Dengue and Japanese

encephalitis viruses (Demongeot et al. 2009b, c).

In Table 4.16, several microRNAs (miR-491 and 654) are inhibiting viral H1N1

influenza A proteins like pb1, which is a critical RNA polymerase subunit of the

virus H1N1 influenza A, necessary for the virus replication both in vitro and in vivo

(He et al. 2009; Song et al. 2010; Li et al. 2011).

The microRNAs like miR-491 can also hybridize many strains of several

influenza viruses in conserved viral strains (Table 4.17), proving the possibility of

an unspecific immunologic defense, acting before the immune cell response and

preventing a too rapid early viral replication in human host. It could be interesting

in the future to see the influence of microRNAs on the global dynamics of the

metabolic networks involving proteins like pb1, when their interaction graphs will

be better known (Koparde and Singh 2010; Cullen 2010; Wang et al. 2009).

We will give indications in Sect. 4.6 about the way to study the attractors of the

networks reduced to their strong connected components, which are circuits of genes

isolated, tangential or intersected, on which calculations about the number and

nature of their attractors can be possible.

Table 4.17 The conserved binding site (in blue) of AL with pb1gene compared across a selection

of influenza viral strains (collected from NCBI new release 715 [22/01/2010])
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4.6 Perspective: The General Architecture of a Genetic

Regulatory Network and the Problem of Its Robustness

The general architecture of a genetic regulatory network is given like in Fig. 4.8 or

in Fig. 4.16 by a digraph framework in which the nodes sources are often micro-

RNAs exerting their partly unspecific basic inhibitory influence, and the nodes sink

are important genes controlling vital functions like the RAG (Recombinase

Activating Gene) responsible for the TCR building in the immune system

[cf. Fig. 4.16 and Demongeot and Waku (2012a), Pasqual et al. (2002), Baum

et al. (2004), and Thuderoz et al. (2010)].

The network robustness (or resilience) (Demongeot and Waku 2012a;

Demongeot and Demetrius (submitted); Blanchini and Franco 2011; Lesne

2008; Gunawardena 2010; Waddington 1940; Thom 1972; Cinquin and

Demongeot 2002) can be defined as the capacity to return at its ordinary asymp-

totic dynamical behavior (called attractor) after endogenous or exogenous

perturbations affecting:

– The state of certain of its genes, e.g., in case of specific silencing by micro-RNAs

– The state of its boundary, notably the appearance of new regulations from a

mutation in the noncoding genome giving birth to new micro-RNAs

– Its architecture, by creating new links between proteins needing to take into

account nonlinear interactions (Demongeot and Sené 2011).

A study about the influence of the microRNAs on the robustness of a network

needs the exact counting of the dynamical attractors of this network, then to

know the reduction or on the contrary the amplification factor caused, for

example, by the circuit opening due to the effective inhibition of a gene (until

its possible knockout) by a microRNA, or by the appearance of new genes,

which corresponds to important architectural perturbations. A parameter devoted

to represent the robustness of a biological network is its evolutionary entropy

[cf. Mathematical Annex below and Demongeot et al. (2008b), Demongeot and

Sené (2008), Demetrius (1983, 1997), Kühn (2010), Fogelman Soulié

et al. (1989), Cosnard and Goles (1977), and Demongeot et al. (2012)], defined

as the Kolmogorov–Sinaı̈ entropy of the Markov process underlying the gene

states updating. The microRNAs can have a double opposite influence on this

parameter, causing its increase (and hence that of the network robustness) when

they create an unspecific inhibitory “noise”, dispatching into the gene state space

the probability to have more possible phenotypes, and they can also provoke a

decrease of the robustness, by opening circuits of the strongly connected

components of the network, hence by diminishing the number of positive

circuits, responsible of the attractor number of the whole network.

The example in Fig. 4.16 shows that we can count the attractor number of the

main subnetworks of a functional network like that organized around the gene

Engrailed. These attractor numbers are given in blue in Fig. 4.16, as well as their

nature (steady state or limit cycle). The global attractor of the whole network is
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more difficult to obtain, in particular when two subnetworks create a new strong

connected component, like in the case of the MPK and Cytoskeleton subnetworks

in Fig. 4.16, which creates a new level of complexity that needs further theoreti-

cal research.

In Fig. 4.18, a last example shows that the same function (cell proliferation) is

regulated with progressively more frontier nodes of the regulatory networks, when

passing from C. elegans and D. melanogaster to mammals (Caraguel et al. 2010;

Kohn et al. 2006; Massirer et al. 2012; Herranz et al. 2010). The progressive

appearance during the evolution of many upstream controllers until the mammals

microRNAs and p53 provides to the cell cycle network a robust Rb-E2F control at

the G1/S transition.

4.7 Conclusion

The sensitivity of real biological networks to endogenous or exogenous

perturbations appears dominant in the case of the inhibitory actions exerted by

the microRNAs and we have noticed this influence for many cases. More

systematic studies have to be performed in order to confirm the dominant

influence of boundary negative interactions, thanks to which the Hopfield-like

regulatory interaction networks seem to become more robust, and also to make

more precise their influence on the number of attractors, which is conjectured to

diminish, when microRNAs are multiple on the boundary of the interaction

graph of the network.

For example, MAPK in Fig. 4.14 is inhibited not only by miR-191 but also by

miR-350 (http://mirdborg/miRDB/; http://mirnamapmbcnctuedutw/), which is

also involved in the memory storage and evocation (Smalheiser et al. 2011;

C. elegans

mir - 35- 41  LIN  35

EFL2- DPL1 EFL1- DPL1

CyE1

Cell prolif eration
G1/S transition

Cell prolif eration
G1/S transition

Cell prolif eration
G1/S transition
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PcG p130 p107

E2F6-DP1 E2F5-DP1 E2F4-DP1 E2F3-DP2 E2F2-DP2 E2F1-DP2

Rb

p53

miRNA 34 , miRNA 159

bantam miRNA

dE2F1-dDPdE2F2-dDP

D. melanogaster

RBF2 RBF1

Fig. 4.18 Different control mechanisms of the G1/S transition in different species,

Caenorhabditis elegans, Drosophila melanogaster, and mammals (after Caraguel et al. 2010)
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Ben Amor et al. 2010a, b), and the role of this inhibition could lead to a

restricted number of dynamical behaviors susceptible to be stored and evoked

inside the subnetworks of hippocampus. Many microRNAs are also controlling

morphogenesis of teeth (where miR-140, miR-31, miR-875-5p, and miR-141

were expressed mainly during tooth morphogenesis), feathers or hairs, with

miRs like miR-30 activating Wnt through WWP1 [cf. Fig. 4.16 and Michon

et al. (2012) and Michon et al. (2008)] or miR-16 inhibited by Wnt/ß-catenin

signaling and inhibiting Cdk2 in the proliferation box [cf. Fig. 4.16 and

Takeshita et al. (2010) and Martello et al. (2007)].

More generally, the passage from a random network structure to a small world

(Duchon et al. 2006; Demongeot et al. 2010b, 2011c) during evolution, by increas-

ing the microRNAs number in case of networks controlling the same function (like

the cell cycle), could have contributed to increase network robustness. Eventually,

considering the role of a large inhibition by microRNAs in genetic networks

modeling the chromatin clock, could allow understanding the role of the

state-dependent expression schedule. These two last perspectives would lead to

further investigations and constitute challenges for future work.
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Mathematical Annex

In mathematical modeling, a real genetic regulatory network is called a genetic

threshold Boolean regulatory network (denoted in the following getBren). A

getBren N can be considered as a set of random automata, defined by:

1. Any random automaton i of the getBren N owns at time t a state xi(t) valued in

{0,1}, 0 (resp. 1) meaning that gene i is inactivated or in silence (resp. activated

or in expression). The global state of the getBren at time t, called configuration in
the sequel, is then defined by: x(t) ¼ (xi(t))i 2 {1,n}2Ω ¼ {0,1}n

2. a getBren N of size n is a triplet (W,Θ,P), where:

– W is a matrix of order n, where the coefficient wij 2 R represents the

interaction weight gene j has on gene i. Sign(W ) ¼ (αij ¼ sign(wij)) is the

adjacency (or incidence) matrix of the interaction graph G.
– Θ is an activation threshold vector of dimension n, its component θi being the

activation threshold attributed to automaton i
– M: P(Ω)![0,1]m
m (where P(Ω) is the set of all subsets ofΩ andm ¼ 2n) is a

Markov transition matrix, built from local probability transitions Pi giving the

new state of the gene i at time t+1 according toW,Θ, and configuration x(t) of
N at time t such that:
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8g2 f0;1g;β 2Ω;Pi;g
βðfxiðtþ 1Þ ¼ g xðtÞ ¼ βgj Þ ¼ exp½gðΣj2Niwijβj� θiÞ=T�=Zi;

where Zi ¼ ½1þ exp½ðΣj2Niwijβj� θiÞ=T� , Ni is the neighborhood of the gene i in

the getBren N, i.e., the set of genes j (including possibly i) such that wij 6¼ 0, and

Pi;g
β is the probability for the gene i of passing to the state g at time t+1, from

the state β at time t on Ni. M denotes the transition matrix built from the Pi;g
β ,

s. M depends on the update mode chosen for changing the states of the getBren

automata. For the extreme values of the randomness parameter T, we have:

1. if T ¼ 0, the getBren becomes a deterministic threshold automata network and

the transition can be written as:

xiðtþ 1Þ ¼ hðΣj2NiwijxjðtÞ � θiÞ;

where h is the Heaviside function: h(y) ¼ 1, if y > 0;

h(y) ¼ 0, if y < 0,

except for the case Σj2NiwijxjðtÞ � θI ¼ 0, for which, if necessary, 1 and 0 are

both chosen with probability ½

2. When T tends to infinity, then Pi;g
β ¼ 1=2 and each line of M is the uniform

distribution on Ω.

If the mode of updating the states of the n genes is sequential, the invariant

measure μ expressing the asymptotic state of N is the Gibbs measure on Ω
defined by (Demongeot and Waku 2012a; Demongeot and Demetrius (submit-

ted); Demongeot et al. 2011b, 2008b, 2012; Demongeot and Sené 2008, 2011;

Fogelman Soulié et al. 1989; Cosnard and Goles 1977):

8x 2 Ω; μ fxgð Þ ¼ expððΣi2x; j2Niwijxixj � θiÞ=TÞ=Z;

where Z ¼ Σy2Ω expððΣj2y;k2Njwjkyjyk � θjÞ=TÞ.
We define the random energy U (Demongeot and Sené 2008, 2011;

Demongeot et al. 2008b) and random frustration F (Demongeot and Waku

2012a; Demongeot and Demetrius (submitted)) of a getBren N by:

8x 2 Ω;UðxÞ ¼ Σi; j2f1;ngαijxixj ¼ QþðNÞ � FðxÞ;

where Q+(N ) is the number of positive edges in the interaction graph G of the

network N and F(x) the global frustration of x, i.e., the number of pairs (i,j) where
the values of xi and xj are contradictory with the sign αij of the interaction between

genes i and j:FðxÞ ¼ Σi; j2f1;ngFijðxÞ, where Fij is the local frustration of the pair (i,j)

defined by:

FijðxÞ ¼ 1; if αij ¼ 1; xj ¼ 1 and xi ¼ 0; or xj ¼ 0 and xi ¼ 1;

and if αij ¼ �1; xj ¼ 1 and xi ¼ 1; or xj ¼ 0 and xi ¼ 0;
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Fij(x) ¼ 0, elsewhere.

Eventually, we define the random global dynamic frustration D by:

D xðtÞð Þ ¼ Σi; j2f1;ngDijðxðtÞÞ;

where Dij is the local dynamic frustration of the pair (i,j) defined by:

DijðxðtÞÞ ¼ 1; if αij ¼ 1; xiðtÞ 6¼ hðΣj2NiwijxjðtÞ � θiÞ orαij ¼ �1;

xiðtÞ ¼ hðΣj2NiwijxjðtÞ � θiÞ;

Dij(x(t)) ¼ 0, elsewhere.

Then we prove the following Proposition 1:

Proposition 1. Let us consider the random energy U and the random frustration F
of a getBren N having a constant absolute value w for its interaction weights, null
threshold Θ, temperature T equal to 1 and being sequentially updated, then:

1. U(x) ¼ Σi, j2{1,n}αijxixj ¼ Q+(N)�F(x), where Q+(N) is the number of positive
edges in the interaction graph G of the network

2. Eμ(U) ¼ ∂logZ/∂w, where the free energy logZ is equal to the quantity log(Σy2Ω
exp(Σj2y,k2ywijyjyk)) and μ is the invariant Gibbs measure defined by: 8 x2Ω,
μ({x}) ¼ exp(Σi2x,j2xwijxixj)/Z

3. VarμU ¼ VarμF ¼ �∂Eμ/∂logw, where Eμ ¼ �Σx2Ωμ({x})log(μ({x})) ¼
logZ–wE(U) is the entropy of μ, maximal among entropies corresponding to all
probability distributions ν for the U’s having the same given expectation
Eν(U) ¼ Eμ(U).

Proof. 1. It is easy to check that: U(x) ¼ Q+(N )�F(x),
2. The expectation of U, denoted Eμ(U ), is given by:

EμðUÞ ¼ Σx2ΩΣi2x; j2xαijxixjexp ðΣi2x; j2xwxixjÞ=Z ¼ @ log Z=@w

3. Following Demongeot and Waku (2012a, b and submitted), we have VarμU ¼
VarμF ¼ �∂Eμ/∂logw, and according to Demongeot et al. (2008b),

Demongeot and Sené (2008), Demetrius (1983, 1997), Kühn (2010), and

Fogelman Soulié et al. (1989), Eμ is maximal among the proposed set of

entropies.∎

Proposition 2. Let us consider the getBren N with T ¼ 0, sequentially or synchro-
nously updated, defined from a potential P defined by:

8x 2 Ω;PðxÞ ¼ Σk
txAkxð ÞxkþtxWxþ Θx;
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where A, W, Θ are, respectively, integer tensor, matrix, and line vector. Let
suppose also that:

8i ¼ 1; . . . ; n;Δxi 2 �1; 0; 1f g:

If h denotes the Heaviside function, consider now the potential automaton i
defined by:

xiðtþ 1Þ ¼ hð�ΔP=Δxi þ xiðtÞÞ;

and by the condition xi(t + 1) � 0, if xi(t) ¼ 0, such that the flow remains in Ω.
Then, if the tensor A is symmetrical with vanishing diagonal (i.e., if we have the
equalities: 8 i,j,k ¼ 1,. . .,n, aijk ¼ aikj ¼ akij ¼ ajki ¼ ajik ¼ akji, and aiik ¼ 0), and if
each sub-matrix (on any subset J of indices in {1,. . .,n}) of Ak and W are
non-positive with vanishing diagonal, P decreases on the trajectories of the poten-
tial automaton, for any mode of implementation of the dynamics (sequential, block
sequential, and parallel). Hence, the stable fixed configurations of the automaton
correspond to the minima of its potential P.

Proof. We have, for a discrete function P on Ω:

ΔPðxÞ=Δxi ¼ ½Pðx1; . . . ; xi þ Δxi; . . . ; xnÞ � P x1; . . . ; xi; . . . ; xnð Þ�=Δxi

and the proof, based on the existence of a Lyapunov function proved in Ben Amor

et al. (2008), Demongeot et al. (2006, 2008a), Kühn (2010), Fogelman Soulié

et al. (1989), and Cosnard and Goles (1977), results from the Proposition 1 of

(Cosnard and Goles 1977). ∎

Proposition 3. Let us consider the Hamiltonian getBren which is a circuit with
constant absolute value w for its interaction weights, null threshold Θ, and temper-
ature T equal to 0, sequentially or synchronously updated, whose Hamiltonian H is
defined by:

HðxðtÞÞ ¼
X

i¼1;...;n xiðtÞ � xiðt� 1Þð Þ2=2
¼

X
i¼1;...;nðhðwiði�1Þxi�1ðt� 1Þ � xiðt� 1ÞÞ2=2;

then H equals the total discrete kinetic energy and the half of the global dynamic
frustration D(x(t)). The result remains available if the automata network is a circuit
in which transition functions are Boolean identity or negation.

Proof. It is easy to check that: H(x(t)) ¼ D(x(t))/2.∎

4 MicroRNAs and Robustness in Biological Regulatory Networks. A Generic. . . 105



Proposition 1 is used to estimate the evolution of the robustness of a network,

because from Demongeot and Waku (2012a, b) and Demongeot and Demetrius

(submitted) it results that the quantity E ¼ Eμ—Eattractor, called the evolutionary

entropy serves as robustness parameter (Ben Amor et al. 2008; Demongeot

et al. 2009a, b, 2010a; Demongeot and Waku 2012a, b; Elena et al. 2008; Lesne

2008; Gunawardena 2010), being related to the capacity a getBren has to return to

μ, the equilibrium measure, after endogenous or exogenous perturbation. Eattractor

can be evaluated by the quantity:

Eattractor ¼ �Σk¼1;m�2nμðCkÞ log μðCkÞ;

where m is the number of attractors and Ck ¼ B(Ak)[Ak is the union of the attractor

Ak and of its attraction basin B(Ak). A systematic calculation of Eattractor allows

quantifying the increase in complexity of a network ensuring a dedicated regulatory

function in different species: for example, the increase of the inhibitory sources

with multiple targets in up-trees converging on a conserved subgraph of a genetic

network (e.g., the core regulating the cell cycle in C. elegans, D. melanogaster, and
mammals, cf. Fig. 4.18) causes a decrease of its attractor number (Demongeot and

Waku 2012a; Demongeot and Demetrius (submitted); Caraguel et al. 2010), hence

an increase of its evolutionary entropy, showing that the robustness of a network is

in this case positively correlated with its connectivity (i.e., the ratio between the

numbers of interactions and genes in the network).

Propositions 2 and 3 give examples of extreme cases, where the networks are

either discrete (Cinquin and Demongeot 2005) or continuous (Cinquin and

Demongeot 2002) potential (or gradient) systems, generalizing previous works on

continuous or discrete networks in which authors attempt to explicit Waddington

and Thom chreode’s potential-like (Waddington 1940; Thom 1972), or Hamilto-

nian (Demongeot and Demetrius (submitted); Demongeot et al. 2011b): in

(Demongeot et al. 2012) for example, it is proposed a method for calculating the

number of attractors in case of circuits with Boolean transitions identity or nega-

tion. These results about attractors counting constitute a partial response to the

discrete version of the XVIth Hilbert’s problem and can be approached by using the

Hamiltonian energy levels. For example, for a positive circuit of order 8, it is easy

to prove that, in case of parallel updating, we have only even values for the global

frustration D (they are odd for a negative circuit), corresponding to different values

Table 4.18 Values of the

global frustration D, attractor
numbers and periods for

positive circuits of order

8 with Boolean transitions

identity or negation

D (frustration) Attractor number Attractor period

0 2 1

2 7 8

4 3 4

4 16 8

6 7 8

8 1 2
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of the period of the attractors (fixed configurations, if the period is 1, or limit cycles

of configurations, if the period is strictly more than 1, cf. Table 4.18).

For example, if the common gene PU.1 of the example of the Fig. 4.16 is split

into 2 genes in order to incorporate the negative circuit of order 2 inside the

negative circuit of order 6, it would give birth to a positive circuit of order 8 having

8 attractors, and only one attractor in the case of tangency of the two negative

circuits (Table 4.18 and Fig. 4.19). More generally, the number of observed

attractors (fixed points and cell cycles) in circuits with Boolean transitions identity

or negation can be calculated in case of parallel updating by using Tables given in

(Demongeot et al. 2012) for the cases of isolated, tangential, or intersecting circuits,

generalizing the results of Fig. 4.16 (from Demongeot et al. 2012). We observe a

rapid increase of the number of cell cycles, when the order of the circuits increases

in the network, corresponding in general to an increase of their evolutionary

entropy E. A way to diminish this number is to introduce up-stream inhibitors

like microRNAs.

A last important feature of the getBren dynamics, as we have seen in Sect. 4.4.2,

is the existence of genes influencing directly the opening of the DNA inside the

chromatin, hence allowing or not the gene expression. If these genes are controlled

by microRNAs (Demongeot et al. 2013a, b, c), it is necessary to generalize the

getBren structure by considering that the possibility to update a block of genes at

iteration t is depending on the state of r “clock” genes (i.e., involved in the chromatin

Fig. 4.19 Left: Number of attractors of period p for positive (top) and negative (bottom) circuits of
order n, in case of parallel updating mode (after Demongeot et al. 2012). Right: Total number of

attractors in case of tangent circuits, where (a) the left circuit of order l is negative and the right

circuit of order r is positive and (b) both side circuits are negative
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updating clock) k1,. . ., kr (like histone acetyltransferase, endonucleases,

exonucleases, helicase, replicase, polymerases) depending on s microRNAs, l1,. . .,
ls. Then the transition for a gene i, such as i does not belong to {k1,. . ., kr}, could be
written as:

8g2{0,1}, β2{0,1}n, if 8j ¼ 1,. . .,r, xkj(t) ¼ 1, then:

1. Pi;g
βðfxiðtþ 1Þ ¼ g xðtÞ ¼ βj gÞ ¼ exp½gðΣj2Niwijβj � θiÞ=T =� ½1þ exp½ðΣj2Niwij

βj � θiÞ=T�, if microRNAs l1,. . .,ls are silent

and

2. Pi;0
βðfxiðtþ 1Þ ¼ 0 xðtÞ ¼ βgj Þ ¼ 1, if not.

We can remark that the case (1) implies that: 8j ¼ 1,. . .,s, xlj(t–1) ¼ 0. To make

the transition rule more precise, we can for the sake of simplicity, decide that the

indices k1,. . .,kr of the r “clock” genes are 1,. . .,r and then we have the three

possible following behaviors:

1. If y(t) ¼ Πi¼1,. . .,r xi(t) ¼ 1, then the rule (2) is available

2. If y(t) ¼ 0 and Σs¼t,. . .,t�c y(s) > 0, then x(t+1) ¼ x(t�s*), where s* is the last

time before t, where y(s*) ¼ 1

3. If y(t) ¼ 0 and Σs¼t,. . .,t�c y(s) ¼ 0, then x(t+1) ¼ 0 (by exhaustion of the pool

of genes still in expression)

The dynamical system remains autonomous (with respect to the time t, i.e.,
depends on t only through the set of state variables {x(t�c),. . ., x(t�1)}), but a

theoretical study of its attractors (like in Demongeot et al. 2012), with this state-

dependent updating schedule, is very difficult to perform and will be investigated

further by the community of biomathematicians.
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environmental robustness in biological complex systems. PloS ONE 5:e11793
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Chapter 5

Dynamics of Mitochondrial Redox and

Energy Networks: Insights from an

Experimental–Computational Synergy

Sonia Cortassa and Miguel A. Aon

Abstract Functionally, a cell comprises spatially distributed and compartment-

alized subsystems, the dynamics of which occurs on several temporal scales.

Interactivity in complex spatiotemporally organized cellular systems is funda-

mental to their counterintuitive behavior and one of the main reasons why their

study needs mathematical modeling. But models alone are not enough; what we

ultimately require is a combined experimental–theoretical approach in order to

validate our models as rigorously as possible.

We explore in a detailed example the success of experimental–modeling synergy

leading to the elucidation of the mechanisms involved in synchronized mitochon-

drial oscillations in the heart, and the discovery there of new related mechanisms.

This work involves successive and iterative reciprocal potentiation of the loop via

experiments and computational modeling: simulation–validation and prediction–

experimentation thereby alternate so as to provide a deeper understanding of

complex biological phenomena.

The concept of network has become central in systems biology. Conceptually,

networks can be approached from different angles. One is morphological, in

which mitochondrial spatial organization corresponds to a network because they

exhibit a spatial arrangement with a defined pattern that topologically connects

them in a certain way, for example, in a lattice as in cardiac cells, or reticular

random as in neurons or cancer cells. However, underlying these networks there is

another vast network of metabolic reactions with nodes represented by substrates,

products, ion gradients, and links by enzymes catalyzing reactions between

substrates and products, or transporters and channels modulating the passage of

ions and metabolites across membranes. The metabolic network distributes among
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place during the first 200 ms when the ECME model is stimulated every 2 s. This calculation
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the earlier occurrence of electrical as compared with mechanical (contraction–relaxation) and
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of the heart cell on a slower time scale (few seconds) compared with the electrical processes

(milliseconds), which are followed by mechanical events associated with the force of contraction
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different compartments whose interaction is mediated by transport processes. If we

zoom in within a set of processes we will find even more detailed networks, and the

dynamics is reflected by fluxes occurring in different compartments, e.g., by

channels and pumps in the plasma membrane, sarcoplasmic reticulum, myofibrils,

and mitochondria.

The molecular view analyzes interactions in biomolecular networks involving

different components which result in varied functional outputs: protein–protein,

genetic expression (multi arrays), regulatory (protein–DNA interactions, combina-

torial transcription factors), and signaling (signal transduction pathways through

protein–protein and protein–small molecule interactions) (Cortassa et al. 2012).

From a temporal perspective a highly tuned response exists in energy supply by

mitochondria to the demand by electromechanical processes in the heart operating

in the millisecond range (e.g., action potentials, calcium transients) (Fig. 5.1). This

tight match between energy supply and demand can be more readily fulfilled by the

highly synchronized and robust action of mitochondrial networks. In the heart,

mitochondria constitute an extensive subcellular network, which occupies ~30 % of

the heart cell volume, and appears to be wrapped by the sarcoplasmic reticulum and

in close vicinity with the myofilaments and t-tubules. During maximal workload,

the whole ATP pool in the heart cell is turned over in a few seconds, while ~2 % of

that pool is consumed in each heartbeat. Both constancy and flexibility are required

from the mitochondrial network in response to the changing metabolic demand for

supplying a steady output of ATP to fuel contraction, and to adapt the rate of energy

provision. Whereas under normal physiological conditions the availability of

energy is fine-tuned to match changes in energy demand, under stress this is not

the case.

The idea that mitochondria may function as a coordinated network of oscillators

emerged from studies on living cardiomyocytes subjected to metabolic stress. The

network behavior of mitochondria depends on local as well as global coordination

in the cell, and ROS-induced ROS release is a mechanism that was shown to exert

both local and cell-wide influence on the network. Mitochondrial network organi-

zation may be also essential for the temporal organization of the heart rhythm.

Mitochondrial network energetics, or the functioning of mitochondria as

networks, represents an advantageous behavior for its coordinated action, under

normal physiology, provides overall and usual robustness despite occasional failure

in a few nodes, and improves energy supply during a swiftly changing demand

(Aon and Cortassa 2012). Mitochondrial network energetics along with its remark-

able nonlinear properties together with those of the whole heart itself set the stage

for the appearance of critical phenomena and bifurcations leading to self-organized,

emergent behavior. An amazing example of the latter is given by the existence, at

critical points (mitochondrial criticality), of emergent macroscopic self-organized

behavior escalating from the subcellular to the whole heart, eventually leading to

the death of the animal. The demonstration of the involvement of mitochondrial

oscillations in reperfusion-related arrhythmias after ischemic injury, and of their
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pharmacological reversion, blunting oscillations, and stabilizing the action poten-

tial in different animal models, is strong proof of the involvement of the network

behavior of mitochondrial energetics.

5.1 Experimental–Computational Synergy

In the next sections we will delineate the powerful synergy arising from a combined

experimental and theoretical approach to unravel mechanisms underlying complex

dynamic behavior. Specifically, we will describe how the interaction of computa-

tional modeling and experimental work led to the vision of mitochondria behaving

as networks in architectural, topological, and dynamic senses. We also explore the

physiological and pathophysiological consequences of the network behavior of

mitochondrial function.

Figure 5.2 shows an overall flow diagram of the experimental–computational

synergy. The main driving force underlying the synergy is the continual interaction

between experiment and computational model which gives rise to iterative loops.

The intrinsic dynamic of these loops works as follows: a model is validated as can

be judged from its ability to simulate experimental results; this triggers model

prediction of new, unexpected behavior which elicits experimental verification,

followed by the discovery of novel properties revealed by the experiments which in

turn feedback on the model that can be tested again in its ability to simulate them. If

the model is unable to simulate the new behavior, then modifications (changes

either in the structure of the model, or in the rate expressions or just in parameter

values) are introduced. These changes may take the form of model upgrades to

account for new processes, or different functional relationships between the model

components already in place.

The iterative dynamic of the experiment $ model loop represents the synergy

through theoretical prediction that works as a hypothesis-driven experimental test,

Simula�on - Valida�on

Predic�on - Experimenta�on

Synergy = reciprocal potentiation in successive iterative loops

The experimental – computational synergy

ModelExperiment

Fig. 5.2 The

experimental—

computational synergy
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and the results of which then become a new functional/mechanistic insight into the

behavior of the experimental system. The loop can then reiterate from novel

behavior as experimentally verified, and this can subsequently be further

investigated in order to see if the model in its present form can account for the

new phenomena. If not, then the model is further refined and upgraded.

5.2 Oscillatory Phenomena in Cardiomyocytes: A Case

Study of Experimental–Modeling Synergy

In order to show how the experimental–computational synergy can be used to

address a specific biological problem, we analyze the experimental demonstration

of cell-wide mitochondrial oscillations in living cardiomyocytes (Figs. 5.3 and 5.4).

To understand the mechanism underlying the oscillations, we developed a compu-

tational model of the mitochondrial oscillator (Cortassa et al. 2004). One of the

aims of this modeling was to investigate the role of ROS in the mitochondrial

oscillations described in living cardiomyocytes subjected to oxidative stress

(Aon et al. 2003).

In the heart, under normal physiological conditions, the availability of energy is

fine-tuned to match changes in energy demand. However, under stress this is not the

case. Metabolically stressful conditions such as substrate deprivation, or oxidative

stress, represent a pathophysiological situation under which mitochondrial
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Fig. 5.3 Overview of the experimental—computational synergy as applied to the elucidation of

the mechanisms involved in mitochondrial oscillations in the heart, and the discovery of scale-free

dynamics in the mitochondrial network
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energetics oscillates. Under these conditions the performance mode of mitochon-

drial function becomes a key arbiter of life and death at cellular and organ levels

(Aon et al. 2006a; Gustafsson and Gottlieb 2008; O’Rourke et al. 2005). The idea

that mitochondria could function as a coordinated network of oscillators emerged

from studies in living cardiomyocytes subjected to metabolic stress (Aon

et al. 2003, 2004a, 2006b).
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Fig. 5.4 Cell-wide synchronized mitochondrial oscillations after local generation of ROS.

(a) Cardiomyocyte loaded at 37 �C with tetramethylrhodamine ethyl ester (TMRE,ΔΨm indicator,

upper images) and 5-(-6)-chloromethyl-2, 7-dichlorohydrofluorescein diacetate (CM-H2DCFH,

ROS-sensitive, lower images). By using two-photon laser excitation, and after 10–20 control

images were collected, a small region of a cardiac myocyte (20 � 20 pixels) was excited in a

single flash resulting in rapid loss of mitochondrial membrane potential, ΔΨm (a, white square in
upper left; b, white arrow) and local generation of ROS (a, white square in lower left). Thereafter,
ΔΨm remained depolarized in the flashed area throughout the experiment (see b). The right
images in a show the first whole-cell ΔΨm depolarization (b, asterisk) after a delay time.

(b) Time-line image of TMRE created by analyzing a line drawn along the longitudinal axis

of the cell (shown in a, upper left). The arrow points out the timing of the flash and the

brackets point out the flash region (Upper) and the nucleus (Lower). The synchronous ΔΨm

mitochondrial oscillations are evident as vertical blue bands. The mitochondria that do not

belong to the spanning cluster remained visibly polarized. Reproduced from Aon MA, Cortassa S,

and O’Rourke B. (2004) PNAS 101, 4447–4452

120 S. Cortassa and M.A. Aon



5.2.1 Experimental Studies: A Brief Phenomenological
Description of Mitochondrial Oscillations

The mitochondrial oscillator was first described experimentally under pathophysi-

ological conditions of metabolic stress, e.g., substrate deprivation (Romashko

et al. 1998), or oxidative stress (Aon et al. 2003). The mechanisms underlying the

synchronization and propagation of mitochondrial oscillations in intact

cardiomyocytes were explored in detail employing two-photon laser scanning

fluorescence microscopy (Aon et al. 2003).

Experimentally, oscillations were triggered in a reproducible manner, a key for

studying the underlying mechanisms under controlled conditions. Two-photon

microscopy gives a detailed spatial picture of the mitochondrial network as can

be seen in Fig. 5.4, in which a freshly isolated cardiomyocyte loaded with mem-

brane potential and ROS sensors is shown. The fluorescence spatiotemporal dynam-

ics along a line drawn throughout the longitudinal axis of an individual cell can be

obtained. A time-line image of fluorescence intensity of TMRM or CM-DCF results

in 2D plots that contain the whole spatial and temporal information of the stack of

images. In these pseudo-color plots the blue bars correspond to mitochondrial

membrane potential (ΔΨm,) depolarization, and the yellow zones in between to

ΔΨm repolarization. These 2D plots clearly show that while the oscillations affect

the whole cell, the flashed zone remains depolarized with high ROS (Fig. 5.4), and

oxidized NADH (not shown) (Aon et al. 2003). After about 1 min, whole-cell

mitochondrial oscillations are triggered whereby bothΔΨm and the reduced state of

NADH are synchronized into phase; with each ΔΨm depolarization an associated

burst in the rate of ROS production occurs.

5.2.2 Modeling Studies: A Brief Description
of the Mitochondrial Oscillator

A model describing mitochondrial energetics and Ca2+ handling (Cortassa

et al. 2003) was extended to describe the key features of the proposed mechanism

of mitochondrial oscillations based on our experimental findings (Cortassa

et al. 2004). The addition to this model of a leak of electrons from the respiratory

chain to produce the free radical superoxide, O2
.�, as previously proposed for an

outwardly rectifying inner membrane anion channel (IMAC) modeled after the

centum pS channel in which conductance is O2
.� activated (Borecky et al. 1997),

and a cytoplasmic ROS scavenging system in the cytoplasm, was sufficient to

support limit-cycle oscillations within certain parametric domains of our model

(Cortassa et al. 2004). The normal anion permeability of IMAC would permit the

passage of O2
.� from the matrix to the cytoplasmic side of the inner membrane.

In addition, the IMAC opening probability was assumed to be increased by O2
.�

at an external site.
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According to the postulated mechanism, under oxidative stress, the enhanced

ROS production from the electron transport chain leads to accumulation in the

mitochondrial matrix to critical levels (Aon et al. 2003, 2004a), thereby triggering

the opening of IMAC in a positive feedback loop (Cortassa et al. 2004). According

to this model, a burst in cytoplasmic ROS accompanies ΔΨm depolarization

(Fig. 5.5) as a result of a mixed process of accelerated O2
.� production occurring

concomitantly with a sudden increase in mitochondrial respiration. A pulse of

cytoplasmic O2
.� is released (Aon et al. 2007a; Cortassa et al. 2004).

The mitochondrial oscillator behaves as a relaxation oscillator, composed of

both slow (ROS accumulation in the mitochondrial matrix) and fast (the IMAC

opening and rapid ROS release) processes (Fig. 5.5e).
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Fig. 5.5 Dynamic behavior of energetic and redox variables duringmitochondrial oscillations (a, b)

Shown is the simultaneous recording of the average whole-cell fluorescence of TMRE (a probe

of ΔΨm) and NADH (autofluorescence) (a), and the rate of ROS accumulation (first derivative,

dDCF/dt, of the CM-DCF signal) (b). (c–e) These panels display the simulation of the experimen-

tally observed oscillations in ΔΨm, (c) NADH (d), and ROS (e, superoxide, O2
.�, in the model)

with a mitochondrial oscillator model. The dashed lines are meant to emphasize the phase

relationship between the different signals in the experiment (a, b) and variables in the simulation

(c–e). Notice that, in the experiment as well as in the simulation, the peak in ROS accumulation

occurs concomitantly with ΔΨm depolarization and NADH oxidation during the initial phase

of the oscillation. The model simulation further shows that the spike of O2
.� corresponds to

the release of the free radical accumulated in the mitochondrial matrix. Panels a, b were modified

from Aon, Cortassa, Marban, O’Rourke (2003) J Biol Chem 278, 44735–44. Panels c–e were

reproduced from Cortassa, Aon, Winslow, O’Rourke (2004) Biophys J 87, 2060–73
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5.3 First Iterative Loop: Cell-wide Mitochondrial

Oscillations

Cell-wide synchronized oscillations in mitochondrial NADH, ΔΨm, and ROS

could be reproducibly triggered by a focalized laser flash affecting only a few

mitochondria (Fig. 5.4). We used two-photon scanning laser fluorescence micro-

scopy and a laser flash to induce localized oxidative stress in a few mitochondria

(~50). After a few seconds (~40 s on average), a synchronized cell-wide ΔΨm

depolarization occurred that extended and prolonged into cell-wide oscillations of

the mitochondrial network in all tested energetic/redox variables (ΔΨm, NADH,

ROS, GSH) (Figs. 5.4, 5.5, and 5.7).

We then concentrated on the cellular redox balance affecting the ROS produc-

tion and ROS scavenging capacity of cells (Fig. 5.6). The oscillations could be

slowed by increasing the ROS scavenging capacity of the cell (Fig. 5.6b), or by

Fig. 5.6 Effects of scavengers or inhibitors of ROS production on mitochondrial oscillations.

Recordings of the TMRE signal of myocytes showing cell-wide mitochondrial oscillations after a

laser flash (arrows) in the absence (a) or in the presence of 4 mM N-acetyl-L-cysteine (L-NAC) for
30 min (b), or 10 μg/ml of oligomycin for 60 min (c), or after the acute addition of rotenone

(15 μM) (d). Oscillations in mitochondrial metabolism were triggered as described in Fig. 5.4 (see

also text). Reproduced from Cortassa, Aon, Winslow, O’Rourke (2004) Biophys J 87, 2060–73
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blocking the mitochondrial ATP synthase (Fig. 5.6c). Mitochondrial oscillations

could be interrupted by acute inhibition of mitochondrial ROS production

(Fig. 5.6d), or by blockage of mitochondrial IMAC (Aon et al. 2003); these were

later found to be activated under moderate oxidative stress (Aon et al. 2007b).

In the respiratory chain, oscillations were suppressed when we inhibited electron

transfer complex I (rotenone), III (antimycin A/myxothiazol), or IV (cyanide), or

the phosphorylation machinery F1F0 ATPase (oligomycin) or adenine nucleotide

translocator (ANT, bongkrekic acid). On the other hand, we reinforced the scav-

enging system of cardiac cells by adding a superoxide dismutase mimetic or

N-acetyl cysteine (Aon et al. 2008a). Although we could suppress the mitochondrial

oscillations by preincubation in the presence of ROS scavengers, it took much

longer than respiratory inhibitors to see the effect (1–3 min vs. 1 h) (Aon

et al. 2003). The scavengers also slowed the initial ΔΨm depolarization wave

(Aon et al. 2004a; Cortassa et al. 2004).

Model simulations showed the ability to reproduce the ~100 s oscillatory period

and the phase relationship between ΔΨm and NADH observed experimentally

(Fig. 5.5). The model was also able to simulate other major experimental findings,

including (1) the requirements of ROS to cross a threshold so as to trigger fast ΔΨm

depolarization, (2) the suppressive effect of inhibitors of the electron transport

chain, adenine nucleotide translocator (ANT) and the F1F0 ATPase on ROS pro-

duction and ΔΨm oscillation (Cortassa et al. 2004), (3) the effects of anion channel

inhibitors, and (4) the sensitivity of the oscillator to the level of ROS scavengers.

After validation, the model led to predictions that were tested in the experimental

system. The model anticipated oscillatory behavior of reduced glutathione (GSH),

and that was experimentally demonstrated as well as its phase relationship with

ΔΨm (Fig. 5.7) (Cortassa et al. 2004).
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Fig. 5.7 Glutathione oscillations. (a) Experimental demonstration of GSH oscillations (70 s

period) recorded simultaneously with ΔΨm. Oscillations were triggered after a localized laser

flash as described in Fig. 5.4 in freshly isolated cardiomyocytes loaded with 100 nM tetramethylr-

hodamine methyl ester (TMRM) and 50 μM monochlorobimane, MCB (Cortassa et al. 2004).

Reproduced from Cortassa, Aon, Winslow, O’Rourke (2004) Biophys J 87, 2060–73
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5.4 Second Iterative Loop: Mitochondrial Criticality

and Network Redox Energetics During Oscillations

5.4.1 Mitochondrial Criticality

Under oxidative stress mitochondrial behavior reaches a critical point that we called

mitochondrial criticality (Aon et al. 2004a), an emergent macroscopic response

manifested as a generalized ΔΨm collapse followed by synchronized oscillation in

the mitochondrial network under stress (Fig. 5.4). As the mitochondria approach

criticality, two main questions arise (Aon et al. 2006a): (1) how does the signal

propagate throughout the network? and (2) how does ΔΨm depolarization occur

almost simultaneously in distant regions of the cell?

Applying percolation theory to the problem (see Box 5.1) we found that, prior to

the first global ΔΨm depolarization, approximately 60 % of the mitochondria had

accumulated ROS to a level roughly 20 % above baseline (Aon et al. 2004a), which

was the threshold for activation of the oscillator at the whole cell level. This critical

density of mitochondria (60 %) was consistent with that predicted by percolation

theory (Box 5.1). Moreover, the spatial distribution of mitochondria at the threshold

exhibits a fractal dimension in agreement with theory (Aon et al. 2003, 2004b).

Beyond criticality, self-sustained oscillations in ΔΨm continue as a consequence

of a bifurcation in the dynamics of the system (Cortassa et al. 2004). However, the

spatial pattern of subsequent depolarization of the network will typically follow that

of the original percolation cluster, with some mitochondria always remaining

outside the cluster. Another important feature of the percolation model is that the

global transition can be prevented if the O2
.� concentration reaching the neighbor-

ing mitochondrion is decreased below threshold, either by decreasing O2
.� produc-

tion (e.g., by inhibiting respiration), decreasing O2
.� release (e.g., by inhibiting

IMAC), or increasing the local ROS scavenging capacity (e.g., by increasing the

GSH pool) (Aon et al. 2004a, 2007b; Cortassa et al. 2004).

Box 5.1: Standard 2D Percolation Theory as Applied to Explain

Mitochondrial Criticality

Percolation describes how local neighbor–neighbor interactions among

elements in a lattice can scale to produce a macroscopic response spanning

from one end of the array to the other (Stauffer and Aharony 1994). Such a

“spanning cluster” forms when there is a critical density of elements close to

the threshold for a transition (the percolation threshold). Experimentally, the

“spanning cluster” involved ~60 % of the mitochondrial lattice with increased

levels of ROS (Aon et al. 2004a). This value was consistent with a critical

density of mitochondria at the percolation threshold (pc), which, for a square
lattice in percolation theory, is equal to 0.593 or ~59 % (Feder 1988; Stauffer

and Aharony 1994).

(continued)
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Box 5.1 (continued)

Another signature feature of percolation processes at pc is that they are

organized as fractals. This property implies that local processes can scale to

produce macroscopic behavior. At pc, the mass of the spanning cluster

increases with the size of the lattice, L, as a power law, LDf, with Df as the

fractal dimension (Feder 1988; Mandelbrot 1977; Stauffer and Aharony

1994). Fractal box counting analysis of our data yielded a fractal dimension

of Df ~ 1.82, close to that exhibited by percolation clusters and cytoskeletal

lattices at pc (Df ~ 1.90) (Aon and Cortassa 1994, 1997; Aon et al. 2003;

Feder 1988; Stauffer and Aharony 1994).

Several interesting properties of the mitochondrial response can be

explained when the network is considered as a percolation cluster. First, the

question of the limited diffusivity and lifetime of O2
.� as the triggering

molecule is answered, since the only relevant diffusion distance is the inter-

mitochondrial spacing (~1 μm). As long as there are enough neighboring

mitochondria belonging to the spanning cluster (i.e., they have accumulated

enough O2
.� to approach the percolation threshold) an universal phase tran-

sition will occur (Feder 1988; Schroeder 1991; Stauffer and Aharony 1994)

and mitochondria will depolarize for the first time throughout the cell (Aon

et al. 2003, 2004a).

5.4.2 Modeling Mitochondrial Network Redox Energetics

The mitochondrial oscillator model utilized in the first iterative loop corresponds to

an isolated mitochondrion representing the average behavior of the mitochondrial

population, actually (in the case of the cardiomyocyte or cardiac cell) organized as a

network. Therefore, accounting for the spatial relationships between individual

mitochondria within the network became crucial to simulating the initial depolari-

zation wave that signals the energetic collapse of the mitochondrial network. The

importance of this seminal event in the escalation of failures, from mitochondria

propagating to cells and groups of them, and finally attaining the whole heart, made

it worthwhile (and in fact crucial) to unravel the fundamental mechanisms

involved. More specifically, we wanted to explore whether a reaction–diffusion

mechanism could be responsible of the spreading of failure of individual organelles

to the whole cell. According to our model, wave propagation comprises the

nonlinear dependence of an IMAC opening on O2
.� accumulation in the matrix,

and the free radical autocatalytic release and spreading in the network; we

hypothesized that mechanistically this could be enough to reproduce the wave

phenomenon and the underlying ROS-induced ROS release (RIRR).

In order to achieve this goal we developed a mathematical model of RIRR based

on reaction–diffusion (RD-RIRR) in one- and two-dimensional mitochondrial
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networks (see Box 5.2). The nodes of the RD-RIRR network are comprised of

models of individual mitochondria that include a mechanism of ROS-dependent

oscillation based on the interplay between ROS production, transport, and scaveng-

ing, and incorporating the tricarboxylic acid (TCA) cycle, oxidative phosphoryla-

tion, and Ca2+ handling. Local mitochondrial interaction is mediated by O2
.�

diffusion and the O2
.�-dependent activation of IMAC (Fig. 5.8a).

In a 2D network composed of 500 mitochondria, model simulations reveal ΔΨm

depolarization waves similar to those observed when isolated guinea pig

cardiomyocytes are subjected to local laser flash or antioxidant depletion

(Fig. 5.8b).
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Fig. 5.8 Scheme of the RD-RIRR mitochondrial network model. In the two-dimensional

RD-RIRR model neighboring mitochondria are chemically coupled with each other through

superoxide anion, O2
.�, diffusion. Light and dark gray indicate polarized and depolarized

mitochondria, respectively. Arrows indicate release of O2
.� and its effect on mitochondrial

neighbors. D stands for O2
.� diffusion, and S for O2

.� scavenging by Cu,Zn SOD and catalase.

Reproduced from Zhou, Aon, Almas, Cortassa, Winslow, O’Rourke (2010) PLoS Computational

Biology 6(1): e1000657. doi:10.1371/journal.pcbi.1000657
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Box 5.2: Accounting for ROS-Induced ROS Release Based on

Reaction–Diffusion: Computational Model of a Network Comprised by

500 Mitochondria Based on the ROS-Dependent Mitochondrial

Oscillator

The thin optical sectioning ability of two-photon laser scanning fluorescence

microscopy can be used to examine the behavior of the mitochondrial net-

work in a single plane of a cardiomyocyte (Fig. 5.4) (Aon et al. 2003, 2004a).

To compare the experimental results obtained with optical imaging

experiments in cardiomyocytes subjected to oxidative stress, a mitochondrial

reaction–diffusion ROS-induced ROS release (RD-RIRR) computational

model was developed. Each non-boundary node (mitochondrion) in the

network was considered to have four nearest neighbors for O2
.� interaction

(Fig. 5.8). At each node (j, k) of the 2D network, O2
.� dynamics is described

by the mass balance equation based on O2
.� reaction and diffusion (Zhou

et al. 2010):

@CO2�iðx;y; tÞ
@t

¼DO2�i
@2CO2�i ðx; tÞ

@x2
þ@2CO2�i ðy; tÞ

@y2

� �
þ f ðCO2�i; tÞ

Boundaryconditions :
@CO2�ið0; tÞ

@x
¼ 0;

@CO2�iðX; tÞ
@x

¼ 0

@CO2�ið0; tÞ
@y

¼ 0;
@CO2�iðY; tÞ

@y
¼ 0

Initialconditions : CO2�iðx;y;0Þ¼ gðx;yÞ

(5.1)

where DO2.
- is the cytoplasmic O2

.� diffusion coefficient, X and Y indicate the

total lengths in the dimensions x and y, respectively, and f (CO2.�i , t) ¼
VtO2.�i (t) – VSODO2.

-i (t). VtO2.�i is the rate of O2
.� transport (release) from

the mitochondrion (via IMAC), and VSODO2.-i , the O2
.� scavenging rate by

Cu, Zn superoxide dismutase (SOD). The function g(x,y) describes the distri-
bution of O2

.� at time 0 (the initial condition). The spatial coordinates, x and
y, are subjected to discretization to numerically solve the system by the finite

difference method. Non-flux boundary conditions were used.

To solve this large nonlinear network consisting of 500 (50 � 10)

mitochondria (each node described by 15 state variables), a high-performance

parallel computer was used. To be suitable for parallel computation, Eq. (5.1)

was rewritten in the matrix form using forward Euler method to approximate

the time derivative of CO2.-i at each node (j, k):

CO2�iðj; k; tþ ΔtÞ ¼ CO2�iðj; k; tÞ þ ½DiffO2�iðj; k; tÞ þ f ðCO2�iðj; k; tÞÞ�Δt

(continued)
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Box 5.2 (continued)

Reaction–diffusion theory (pioneered by Turing (1952)), as a basis for

pattern formation in biological or chemical systems, emphasizes the impor-

tance of two components; an autocatalytic reaction producing a local product

(mediator or ‘morphogen’ as originally defined by Turing), and the transport

of this product by diffusion away from the source. This process can give rise

to spontaneous symmetry-breaking and the appearance of self-organized

spatial patterns including waves and oscillations (Aon et al. 1989; Cortassa

et al. 1990; Meinhardt 1982; Nicolis and Prigogine 1977). With respect to the

present model, the reaction consists of the reduction of O2 to produce ROS

(specifically O2
.�) driven by mitochondrial electron donors (e.g., NADH).

The local concentration of O2
.� around the mitochondrion is shaped by

several others factors, including buffering by the antioxidant reactions and

transport of O2
.� across the mitochondrial membrane. Diffusion of the O2

.� to

neighboring mitochondria is shaped by the O2
.� diffusion coefficient, DO2.�,

and the amount of the O2
.� scavenger enzyme superoxide dismutase present,

which consequently determines the rate of propagation of ΔΨm depolariza-

tion through the network. As expected, increasing SOD concentration slowed

down the depolarization wave.

The rate of propagation of the depolarization wave in the model

corresponded to 26 μm s�1 with low DO2.- (of the order of 10�14 cm2 s�1),

which compares well with the experimentally determined 22 μm s�1 at 37 �C
(Aon et al. 2004a). A restricted diffusion range of O2

.� in cells is consistent

with experimental data; however, the actual diffusion coefficient of O2
.� in

cells (with antioxidant systems disabled) has not been determined and is

likely to be influenced by local reactions with other molecules and molecular

crowding around mitochondria, which would decrease the effective volume,

increase the viscosity of the medium, and increase collision probability. This

assumption of restricted diffusion is represented by the low DO2.- in the

model.

5.4.3 Experimental–Theoretical Test of a Main Mechanistic
Assumption of Mitochondrial Oscillations: Superoxide
as a Trigger of ΔΨm Depolarization

The original ROS-dependent mitochondrial oscillator model (Cortassa et al. 2004)

considered cytoplasmic O2
.� as the primary ROS that would increase IMAC open

probability in an autocatalytic process. H2O2 was ruled out because it had been

shown experimentally that superoxide dismutase mimetics, which should enhance

H2O2 accumulation, in fact suppressed the oscillations inΔΨm (Aon et al. 2003). To

test the assumption that O2
.� could directly trigger IMAC opening, we applied

increasing concentrations of potassium superoxide (KO2, an O2
.� donor) to par-

tially permeabilized myocytes. Increasing the exogenous cytoplasmic KO2
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concentration, from 10 to 20 μM, elicited progressive ΔΨm depolarization and

increased the rate of mitochondrial O2
.� accumulation (Fig. 5.9b). Exposure of

the cell to 30 μMKO2 induced an irreversible collapse ofΔΨm, accompanied by the
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Fig. 5.9 Mitochondrial O2
.� and ΔΨm in response to increased exogenous O2

.� Myocytes were

loaded with TMRM (100 nM) and CM-H2DCFDA (2 μM) for at least 20 min and imaged using

two-photon laser scanning fluorescence microscopy. After loading, the excess dye was washed out

and the cells were briefly superfused with a permeabilizing solution (saponin) (Aon et al. 2007).

After permeabilization, the myocytes were continuously perfused with an intracellular solution

containing GSH:GSSG at a ratio of 300:1. The TMRM was included in the medium to avoid

depletion of the probe during depolarization–repolarization cycles. (a) The TMRM and CM-DCF

images of a permeabilized cardiomyocyte at time zero after loading and before (top row image) or
after permeabilization and 5 min imaging under control conditions (Control, second row) or the
presence of KO2, an O2

.� donor (10 μM, third row; 20 μM, fourth row; 30 μM, fifth row), after

3 min equilibration in each case. RIRR-mediated ΔΨm depolarization without a permeability

transition occurs at the two lower concentrations, while loss of the CM-DCF probe (~500 MW)

from the mitochondrial matrix due to PTP opening occurs at 30 μM KO2. (b) The rates of O2
.�

accumulation as a function of KO2 concentration. Slopes were calculated when the linear rate of

change of the CM-DCF signal stabilized under each condition. Reproduced from Zhou, Aon,

Almas, Cortassa, Winslow, O’Rourke (2010) PLoS Computational Biology 6(1): e1000657.

doi:10.1371/journal.pcbi.1000657
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complete release of the O2
.� sensor, indicative of permeability transition pore

(PTP) opening (Fig. 5.9a).

5.4.4 Propagation of Depolarization Through ROS-Induced
ROS Release (RIRR)

RIRR as the basic mechanism of propagation of ΔΨm depolarization and O2
.�

release was also demonstrated in the 2D RD-RIRR mitochondrial network model

(Zhou et al. 2010). Consisting of five hundred (10 � 50) mitochondria, the 2D

RD-RIRR model was parametrically initialized to represent a condition of high

oxidative stress to simulate a mitochondrial network at criticality. Approximately

1 % (6 out of 500) of the mitochondrial network was induced to undergo depolari-

zation (Fig. 5.8b). A local increase in O2
.� concentration and depolarization of

ΔΨm in this area was evident, similar to those processes observed in experiments in

which we applied a localized laser flash to a fraction of the mitochondrial network

(Fig. 5.4). ΔΨm depolarization propagated outward in all directions from the six

perturbed mitochondria and then appeared as a longitudinal wave as the edges of

the array were encountered (Fig. 5.8b, model left panel). Importantly, a wave of

increased O2
.� accompanied the ΔΨm depolarization wave (Fig. 5.8b, model right

panel).

Moreover, the model further contributed to our understanding by showing that

(1) local gradients of cytoplasmic O2
.�, determined by diffusion and scavenger

capacity, play a significant role in determining the rate of propagation of the ΔΨm

depolarization and repolarization waves; and (2) by uncovering a novel aspect of

the synchronization mechanism, i.e., that clusters of mitochondria that are in a state

characteristic of the oscillatory domain of the parametric space can entrain

mitochondria that would otherwise display stable dynamics (Zhou et al. 2010).

While focusing on a specific mechanism of RIRR (i.e., IMAC-mediated), the

model results provided general theoretical support for mitochondrial communica-

tion occurring by way of O2
.� diffusion. The RD-RIRR model simulations confirm

that O2
.� diffusion occurring locally between neighboring mitochondria over a

distance of a few microns is sufficient for propagation and synchronization of

ΔΨm depolarization over a larger distance (Aon et al. 2004a; Zhou et al. 2010).

5.5 Third Iterative Loop: Mitochondrial Network Redox

Energetics Escalates from Subcellular to Cellular Level

The experimental studies had shown that laser flash-induced cell-wide mitochon-

drial oscillations in isolated cardiomyocytes produced shortening of the cellular

action potential (AP) (Akar et al. 2005; Aon et al. 2003). The collapse of ΔΨm
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triggered by ROS was shown experimentally to be coupled to the opening of

sarcolemmal ATP-sensitive potassium (KATP) channels, contributing to electrical

dysfunction during ischemia–reperfusion. KATP channels have a low open proba-

bility under physiological conditions, but are rapidly activated during ischemia or

metabolic inhibition (Lederer et al. 1989; Noma 1983).

Figure 5.10 shows that during the depolarized phase of the oscillation, the AP

interval shortens as a consequence of the activation of sarcolemmal KATP currents

rendering the myocyte electrically inexcitable during the nadir of ΔΨm (Akar

et al. 2005; Aon et al. 2003). The fact that these effects were mediated by ΔΨm

depolarization was indicated by inhibition of the IMAC-mediated mitochondrial

oscillations with 40-chlorodiazepam (40-Cl-DZP) an intervention that concomitantly

reestablished and stabilized the sarcolemmal AP.

Highly nonlinear interactions are involved in the mitochondrial oscillation-

driven inexcitability of the cardiac cell, including communication through transport
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Fig. 5.10 Effects of mitochondrial oscillation on the electrical excitability of the cardiomyocyte

(a) Action potentials (AP, upper panel) evoked by brief current injections were recorded in current
clamp mode during whole-cell patch clamp while simultaneously imaging ΔΨm with TMRE

(lower panel). During a synchronized cell-wide depolarization–repolarization cycle, the AP

shortened in synchrony with fast mitochondrial depolarization, and the cell became unexcitable

in the fully depolarized state (remaining upward spikes are from the stimulus only). Recovery of

ΔΨm coincided with restoration of AP. (b) Temporal correlation between the AP duration at 90 %

repolarization and ΔΨm. The current–voltage relationship of the oscillatory membrane current fits

the profile of the sarcolemmal KATP current (Aon et al. 2003). (c) Simulations of ΔΨm, cytoplas-

mic ATP concentration ([ATP]i) and sarcolemmal KATP current during oscillations triggered by

oxidative stress, and comparison of APs during polarized and depolarized states. Modified from

Aon, Cortassa, Marban, O’Rourke (2003) J Biol Chem 278, 44735–44, and Zhou, Cortassa, Wei,

Aon, Winslow, O’Rourke (2009) Biophys J 97, 1843–1852
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between different subcellular compartments and processes of different nature, i.e.,

metabolic and electromechanical (Fig. 5.1). A comprehensive mathematical model

represents an invaluable tool for addressing this problem. Coupling between the

mitochondrial energy state and electrical excitability mediated by the sarcolemmal

KATP current (IK,ATP) was incorporated into a computational model of

excitation–contraction coupling linked to mitochondrial bioenergetics, and

accounting for mitochondrial RIRR.

The model at this stage produced results that were very similar to the experi-

mental observations. During the phase of mitochondrial depolarization, the AP

shortened by almost 75% (Fig. 5.10) and the intracellular Ca2+ transient amplitude

and force production decreased (Zhou et al. 2009). Mitochondrial depolarization

accelerates KATP current activation because the decreased ΔΨm causes the ATP

synthase to run in reverse, thus consuming cytoplasmic ATP and decreasing the

phosphorylation potential. Tight coupling between the mitochondrial energy state

and the sarcolemmal KATP current is facilitated by the high-energy phosphoryl

transfer reactions of the cytoplasm (Cortassa et al. 2006; Dzeja and Terzic 2003;

Sasaki et al. 2001; Zhou et al. 2009). Most importantly, whole-cell model

simulations demonstrated that increasing the fraction of oxygen diverted from the

respiratory chain to ROS production triggers limit-cycle oscillations of ΔΨm,

redox potential, and mitochondrial respiration through the activation of the

ROS-sensitive IMAC.

5.6 Fourth Iterative Loop: Scale-Free Dynamics

of Mitochondrial Network Redox Energetics

Another model prediction concerned the oscillatory frequency as a function of

the superoxide dismutase (SOD) activity. This prediction resulted from stability

analysis of the model that showed amplitude and frequency modulation of

oscillations when the balance of ROS was changed by increasing SOD

(Fig. 5.11). In the absence of metabolic stress, cardiomyocytes loaded with

tetramethylrhodamine methyl ester (TMRM, ΔΨm fluorescent reporter) display

stable ΔΨm for more than an hour. Using two-photon scanning laser fluorescence

microscopy, cells were imaged every 110 ms and the average fluorescence from the

whole or part of the network, calculated.

Applying power spectral analysis (PSA) and relative dispersional analysis (RDA)

to ΔΨm time series we found that, collectively, cardiac mitochondria behave as a

highly correlated network of oscillators (see Box 5.3). PSA revealed that the ensem-

ble of oscillators represented by the mitochondrial network exhibits many

frequencies across temporal scales, spanning from milliseconds to minutes. This

behavior corresponds to scale-free dynamics, mathematically characterized by an

inverse power law when represented in a log–log plot of power versus frequency

(Fig. 5.12; see also Boxes 5.3 and 5.4). The power spectrum followed a homogeneous

inverse power law of the form 1/fβ with β ~ 1.7 (Aon et al. 2006b).
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The origins of the inverse power law behavior exhibited by 
mitochondrial network dynamics
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Fig. 5.11 Modulation of the oscillation period by the rate of ROS scavenging through SOD, and

inverse power law behavior of the amplitude versus frequency relationship exhibited by the

mitochondrial oscillator. (a) Oscillations with different periods and amplitude in ΔΨm were

simulated with our computational model of the mitochondrial oscillator by changing SOD

concentration (Cortassa et al. 2004). (b) The double log graph of the amplitude versus frequency

(1/period) was plotted from ΔΨm oscillations with amplitudes in the range of 2–124 mV and

periods ranging from 70 to 430 ms, respectively (see Aon et al. 2006, and their Supplemental

Material for more details). (c, d) From the simulations, we selected five oscillatory periods in the

high-frequency domain (between 70 and 300 ms) and one from the low-frequency (1-min period)

domain and attributed each one of them proportionally to a network composed by

500 mitochondria as described in Aon et al. (2006). A matrix containing a total of 500 columns

(mitochondria) and 6,000 rows was constructed. The time steps represented by the rows corre-

spond to a fixed integration step of 20 ms for the numerical integration of the system of ordinary

differential equations. We applied RDA and PSA to the average value of each row of the matrix at,

e.g., time 1, T1, that represents the experimental average value of fluorescent intensity of the ΔΨm

probe (corresponding to mV) obtained every 110 ms from 500 mitochondria (on average) from

each image of our stack
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RDA unveiled the existence of long-term temporal correlation (“memory”)

among oscillators in the network (Fig. 5.12; see also Box 5.3). This led us to

conclude that the behavior in the physiological domain is also oscillatory but

with low-amplitude high-frequency oscillations. These results also indicated that

the oscillators are weakly coupled by low levels of mitochondrial ROS in the high-

frequency domain. We considered the behavior under these conditions to belong to

the “physiological” state, because fluctuations at high-frequency (but restricted

amplitude) range imply depolarization only of between microvolts to a few

millivolts (Fig. 5.11) (Aon et al. 2006b). Decreasing mitochondrial ROS production

at the level of the respiratory chain, or blocking the ROS-induced ROS release

(R-IRR) mechanism by inhibiting the mitochondrial benzodiazepine receptor in the

physiological domain, consistently diminished the extent of correlated behavior of

the mitochondrial network in the high-frequency domain (Aon et al. 2006b).
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Fig. 5.12 Experimental evidence and model simulation of the inverse power law behavior

observed after RDA or PSA of the fluorescence time series of TMRM. Mathematical procedures

and simulations were performed as described in Boxes 5.3 and 5.4, and Fig. 5.11
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Under metabolic stress, however, an imbalance between production and scav-

enging can take ROS over a threshold resulting in strong coupling between

mitochondria through RIRR (Figs. 5.4 and 5.8) (Aon et al. 2003; Zorov

et al. 2000). When subjected to these challenging stressful conditions, the mito-

chondrial network spontaneously organizes into a synchronized cluster with a

dominant low-frequency high-amplitude oscillation that spans the whole cell

(Aon et al. 2004a, 2006b). The RIRR mechanism is effective locally, but long-

range synchronization is due to the attainment of criticality by ~60 % of

mitochondria that form a cluster, the “spanning cluster”, across the cardiomyocyte.

Mitochondria belong to the “spanning cluster” when ROS (more specifically, O2
.�)

attain a threshold in the matrix, after which ΔΨm depolarization ensues, triggering a

similar response in neighboring mitochondria.

Underlying the inverse power law behavior observed experimentally in the

power spectrum is the inverse relationship found in the model simulations of

the double log plot of amplitude versus frequency (Fig. 5.11). Two key factors

contribute to this dependence—the superoxide dismutase (SOD) activity and the

balance between the rate of ROS production and scavenging. In the oscillatory

domain, an increase in the SOD rate results in longer periods and higher amplitude

oscillations (Fig. 5.11).

We hypothesized that if, according to the experimental results, the mitochondrial

networkwere exhibiting amixture of frequencies, then we should be able to simulate

the inverse power law behavior obtained by either PSA or RDA (see Box 5.4). To

test this hypothesis we simulated five different oscillatory periods ranging from

70 ms to 300 ms and one long period (1 min) oscillation (Fig. 5.11). A combination

of 80 % short-period and 20 % long-period oscillations allowed us to simulate the

inverse power law behavior observed experimentally by either PSA or RDA

(Fig. 5.12). This result demonstrated that mixing a relatively few (six) periods of

limit-cycle type of oscillation is enough to explain our experimental data. Using a

similar approach, we were also able to simulate the transition from physiological to

pathophysiological behavior (Aon et al. 2006b). This transition, according to

simulations, and in agreement with experimental data, is effected when at least

60 % of the mitochondrial network dynamics is dominated by the long period, high-

amplitudeΔΨm oscillations (Fig. 5.12) ((Aon et al. 2006b), and their Supplementary

Material).

Box 5.3: Fast Fourier Transform (FFT) Is a Key Mathematical

Procedure Utilized in Power Spectral Analysis (PSA)

FFT of a time series enables the statistical determination of the power

(equivalent to the amplitude squared) of each frequency component of a

signal. When this analytical procedure was applied to the time series of

ΔΨm from the mitochondrial network, a large number of frequencies in

multiple timescales became evident (Aon et al. 2006b, 2008b). Thus,

(continued)
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Box 5.3 (continued)

statistically, the mitochondrial network rather than exhibiting a single “char-

acteristic” frequency shows multiple frequencies, typical of dynamic fractals.
Fractals possess a two-sided nature both as geometric (spatial) and as

dynamic objects. This trait enables techniques commonly applied for character-

ization and quantification of fractals in the spatial domain to be applied to

describe dynamic behavior. The different spatial and temporal scales displayed

by an object (be it a shape or a time series) can be quantified by lacunarity, a

mass-related statistical parameter quantified by the coefficient of variation or

relative dispersion, RD (¼ standard deviation (SD)/mean). RD is a strong

function of scale (Aon and Cortassa 2009) that in the case of self-similar time

series or “dynamic fractals” remains constant (i.e., the object looks the same at

all scales) (West 1999). The determination ofRD at successively larger intervals

from a time series constitutes the basic mathematical procedure for applying

relative dispersional analysis (RDA). RDA of ΔΨm time series from the mito-

chondrial network revealed long-term temporal correlations (“memory”).

Box 5.4: Simulation of the Inverse Power Law Behavior Exhibited by

the Mitochondrial Network of Cardiomyocytes

From the simulations, we selected five oscillatory periods in the high-

frequency domain (between 70 and 300 ms) and one from the

low-frequency (1 min period) domain and attributed each one of them

proportionally to a network composed of 500 mitochondria (i.e., every

100 mitochondria will oscillate with the same period). This number of

mitochondria is similar to that present in a single optical slice of a

cardiomyocyte (~1 μm focal depth) that we analyze by two-photon laser

scanning microscopy with 110 ms/frame time resolution. Our experimental

results could be precisely simulated with a mixture of 80 % short-period and

20 % long-period oscillations.

According to this protocol, we then constructed a matrix: with

mitochondria in columns, and time, Ti, on rows. The final matrix contained

a total of 500 columns and 6,000 rows. The time steps represented by the rows

correspond to a fixed integration step of 20 ms for the numerical integration

of the system of ODEs. The fixed integration step of 20 ms was chosen for the

simulation of all periods within the range of 70–300 ms and 1 min in order to

avoid aliasing effects.

Mito1 Mito2 Mito3 . . .Miton
T0

T1

T2

. . .Tn
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5.7 Mitochondrial Oscillations in the Intact Heart: Testing

the Consequences of Mitochondrial Criticality

We determined if the nonlinear oscillatory phenomena described in single cells can

be observed at the level of the whole heart. Studies performed in permeabilized

cardiomyocytes revealed that the critical state can be induced by partial depletion of

the GSH pool and that the reversible (IMAC-mediated) and irreversible

(PTP-mediated) depolarization of ΔΨm can be distinguished from the cytoplasmic

glutathione redox status. IMAC-mediated ΔΨm oscillation was triggered at a

GSH/GSSG ratio of 150:1–100:1, whereas PTP opening is triggered at a

GSH/GSSG of 50:1 (Aon et al. 2007b). These results pointed out that GSH and

probably also the glutathione redox potential are the main cellular variables that

determine the approach of the mitochondrial network to criticality through an

increase in oxidative stress by the overwhelming of the antioxidant defenses.

Extending the mechanistic findings in permeabilized cardiomyocytes (Aon

et al. 2007b) to the mitochondrial ROS-dependent oscillator described in living

cardiac myocytes (Aon et al. 2003, 2004a), and computational models (Cortassa

et al. 2004) to the level of the myocardial syncytium, we showed that mitochondrial

ΔΨm oscillations could be triggered by ischemia/reperfusion (I/R) or GSH deple-

tion in intact perfused hearts using two-photon scanning laser microscopy

(Slodzinski et al. 2008). These results confirmed that the appearance of oscillatory

behavior is not restricted to isolated cardiomyocytes but also happens in the

epicardium of intact hearts (either flash-triggered or GSH depletion elicited), in

both ΔΨm and NADH (Fig. 5.13).

An important prediction of the percolation model utilized to explain the mecha-

nism of mitochondrial synchronization at criticality is that the global transition can

be prevented if the O2
.� concentration reaching the neighboring mitochondrion is

decreased below threshold. This can be accomplished either by decreasing O2
.�

production (inhibiting respiration), decreasing O2
.� release (inhibiting IMAC), or

increasing the local ROS scavenging capacity (increasing the GSH pool) (Aon

et al. 2004a, 2007b; Cortassa et al. 2004). Within this rationale,ΔΨm depolarization

induced by depleting the GSH pool could induce cardiac arrhythmias even under

normoxic conditions (Aon et al. 2007b, 2009). Indeed, Brown et al. (2010)

demonstrated that systematic oxidation of the GSH pool with diamide in

Langendorff-perfused guinea pig hearts elicited ventricular fibrillation under

normoxia (Fig. 5.14b, d). Experimental evidence further indicating the involvement

of IMAC was noted when the arrhythmias induced by GSH depletion (Brown

et al. 2010) or H2O2-elicited oxidative stress (Biary et al. 2011) were prevented

with the IMAC blocker 4’-Cl-DZP (Fig. 5.14c, e).

138 S. Cortassa and M.A. Aon



Fig. 5.13 Mitochondrial membrane potential oscillations in myocytes of the intact heart. (a, b)

After 2–3 min of normoxic perfusion with Ca2+-free Tyrode’s buffer, the ΔΨm signal (TMRE

fluorescence) became unstable and spontaneous oscillations were observed. Sustained oscillations

in ΔΨm were observed for several minutes in the cell indicated by the yellow dashed line in panel
a. Both intracellular and intercellular heterogeneity of ΔΨm is evident in the epicardial optical

sections. Scale bar in a equals 20 μm. Reproduced from Slodzinski, Aon, O’Rourke (2008) J Mol

Cell Cardiol 45, 650–660
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Fig. 5.14 Representative LV pressure and ECG from guinea pig heart. (a) Control heart after

10 min of baseline perfusion with simultaneous left ventricular (LV), pressure (red), and
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5.8 New Modeling Developments Along the

Experimental–Computational Synergy

The latest version of the isolated mitochondrion model—the mitochondrial

energetic-redox (ME-R) model—includes all four main redox couples NADH/

NAD+, NADPH/NADP+, GSH/GSSG, and Trx(SH)2/TrxSS together with a com-

plete array of antioxidant defenses. All four variables are considered as present in

two compartments: matrix and extra-mitochondrial; the latter compartment com-

prising intermembrane space and cytoplasm (Kembro et al. 2013). Also taken into

account are the NADP+-dependent isocitrate dehydrogenase (IDH2) in the TCA

cycle, and transhydrogenase (THD), two of the three main NADPH sources in

mitochondria. The Trx system involves thioredoxin reductase and peroxiredoxin

whilst the glutaredoxin system accounts for the recovery of glutathionylated

proteins (using GSH as cofactor), superoxide dismutases (SOD) (matrix-located

MnSOD and extra-mitochondrial Cu,ZnSOD), and catalase activity also in the

extra-mitochondrial compartment.

The model by Kembro et al. (2013) has been formulated on the basis of

our mitochondrial energetics version that included pH regulation, ion dynamics

(H+, Ca2+, Na+, Pi), respiratory fluxes from complex I and II, tricarboxylic acid

cycle (TCA cycle) dynamics, adenine nucleotide exchange (ANT), and ATP

synthesis (Wei et al. 2011).

The qualitative dynamic behavior exhibited by the new ME-R model reveals

that, as in former versions (Cortassa et al. 2004; Zhou et al. 2009), the underlying

oscillatory mechanism involves ROS imbalance determined by the interplay

between ROS production and scavenging as the main trigger of oscillations. This

happens irrespective of the bi-compartmental nature of the ME-R model, account-

ing for ROS scavenging in both the matrix and extra-mitochondrial space.

5.9 Conclusions

Experimental–computational synergy involves the reciprocal potentiation of the

loop involving experimental work and mathematical modeling that operates itera-

tively via the multiple simulation–validation and prediction–experimentation

�

Fig. 5.14 (continued) electrocardiogram (ECG, blue). (b) LV pressure and ECG in a heart during

diamide treatment showing the transition to ventricular fibrillation (VF, blue) with concomitant

loss of pump function (red). (c) LV pressure and ECG in a heart during diamide treatment plus

64 μM 4’-ClDzp. (d, e) Simultaneous imaging of ΔΨm (top) and GSH (bottom) in intact guinea

pig hearts using two-photon microscopy after exposure to diamide (D) and diamide + 40

chlorodiazepam, 40-ClDzp (e). The inset Di shows in detail the propagation ofΔΨm depolarization

in the syncytium at the cardiomyocyte level. Reproduced from Brown, Aon, Frasier, Sloan,

Maloney, Anderson, O’Rourke (2010) J Mol Cell Cardiol 48, 673–679
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loops. When applied systematically and rigorously the synergetic loop

of experiment-model enables a deeper understanding of complex biological

phenomena as shown in this chapter. Thorough application of this strategy both

enabled us to formulate the following new concepts and to unravel complex

emergent phenomena exhibited by networks of metabolic and electromechanical

processes in the cardiac cell:

• Mitochondria are organized as a dynamic network of oscillators in the cardiac

myocyte

• The mitochondrial network is synchronized by ROS to different degrees of

coupling strength, either weakly or strongly during physiological or pathophysi-

ological behavior, respectively.

• The mitochondrial network is embedded within other metabolic networks of the

cardiac cell, thereby interacting with metabolic, electrical, and mechanical

processes.

• Emergent phenomena take place in these networks in the form of physiologically

normal long-term correlations involving signaling processes, or as failures that

can propagate from the subcellular to the whole heart producing potentially

catastrophic arrhythmias (see Chap. 10).

• Striking similarities between the cardiac redox control systems and those in the

evolutionarily distant organism, baker’s yeast (Saccharomyces cerevisiae), indi-
cate an ancient commonality of central core metabolic mechanisms (see

Chap. 12), and how a mutually enhanced understanding of these can be gleaned

from comparative studies of different biological systems (Aon et al. 2007c,

2008b; Lemar et al. 2007; Lloyd et al. 2012).
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Chapter 6

Adenylate Kinase Isoform Network: A Major

Hub in Cell Energetics and Metabolic

Signaling

Song Zhang, Emirhan Nemutlu, Andre Terzic, and Petras Dzeja

Abstract The adenylate kinase isoform network is integral to the cellular energetic

system and a major player in AMP metabolic signaling circuits. Critical in energy

state monitoring and stress response, the dynamic behavior of the adenylate kinase

network in governing intracellular, nuclear, and extracellular nucleotide signaling

processes has been increasingly revealed. New adenylate kinase mutations have been

identified that cause severe human disease phenotypes such as reticular dysgenesis

associated with immunodeficiency and sensorineural hearing loss and primary ciliary

dyskinesia characteristic of chronic obstructive pulmonary disease. The adenylate

kinase family comprises nine major isoforms (AK1–AK9), and several subforms with

distinct intracellular localization and kinetic properties designed to support specific

cellular processes ranging from muscle contraction, electrical activity, cell motility,

unfolded protein response, and mitochondrial/nuclear energetics. Adenylate kinase

and AMP signaling is necessary for energetic communication between mitochondria,

myofibrils, and the cell nucleus and for metabolic programming facilitating stem cell

cardiac differentiation and mitochondrial network formation. Moreover, it was

discovered that during cell cycle, the AK1 isoform translocates to the nucleus and

associates with the mitotic spindle to provide energy for cell division. Furthermore,

deletion of Ak2 gene is embryonically lethal, indicating critical significance of

catalyzed phosphotransfer in the crowded mitochondrial intracristae and subcellular

spaces for ATP export and intracellular distribution. Taken together, new evidence

highlights the importance of the system-wide adenylate kinase isoform network and

adenylate kinase-mediated phosphotransfer and AMP signaling in cellular energetics,

metabolic sensing, and regulation of nuclear and cell cycle processes which are

critical in tissue homeostasis, renewal, and regeneration.
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6.1 Adenylate Kinase Isoform Network

Adenylate kinase, a ubiquitous enzyme with a unique property to catalyze the

reaction 2ADP$ATP + AMP, is indispensable for nucleotide biosynthesis and a

sensitive reporter of the cellular energy state, translating small changes in the

balance between ATP and ADP into relative large changes in AMP concentration,

so that enzymes and metabolic sensors that are affected by AMP can respond with

high sensitivity and fidelity to stress signals (Dzeja and Terzic 2009; Dzeja

et al. 1998; Noda 1973; Noma 2005). Moreover, adenylate kinase, via a series of

spatially linked enzymatic reactions, can facilitate propagation of nucleotide

signals in the intracellular, extracellular, and mitochondrial intracristal spaces,

thus coordinating energy transfer events and the response of metabolic sensors

and nucleotide/nucleoside receptor signaling (Carrasco et al. 2001; Dzeja

et al. 1985, 1998, 2002, 2007a, b). A significant progress has been made in defining

dynamics of conformational transitions that are functionally important in adenylate

kinase catalysis (Daily et al. 2010, 2012; Henzler-Wildman et al. 2007).

Distributed throughout the cell and cellular compartments, the adenylate kinase

isoform network delivers β- and γ-high-energy phosphoryls of ATP to ATPases and

monitors ATP/ADP metabolic imbalances (Dzeja and Terzic 2009). In response to

stress adenylate kinase generates AMP signals which are delivered to metabolic

sensors to adjust energy metabolism and cell functions according to changes in

physiological state and energetic environment (Dzeja and Terzic 2003, 2009;

Janssen et al. 2004; Noma 2005; Pucar et al. 2002). Adenylate kinase-mediated

metabolic monitoring and downstream AMP signaling AK ! AMP ! AMP

sensors (including AMPK, K-ATP, and AMP-sensitive metabolic enzymes) net-

work is increasingly recognized as a major homeostatic hub, which is critical in

regulation of diverse cellular processes (Dzeja and Terzic 2009; Noma 2005). So

far, up to nine distinct adenylate kinase isoforms and a number of subforms with

different intracellular localization and energetic-metabolic signaling roles have

been identified (Fig. 6.1) (Amiri et al. 2013; Collavin et al. 1999; Dzeja and Terzic

2009; Dzeja et al. 2011a; Janssen et al. 2000, 2004; Noma 2005; Panayiotou

et al. 2011; Ren et al. 2005; Ruan et al. 2002). The energetic signaling role of

adenylate kinase has gained particular significance after discovery that this enzyme,

through a chain of sequential reactions, facilitates the transfer and utilization of

both β- and γ- phosphoryls of the ATP molecule, thereby doubling the energetic

potential of ATP and cutting in half the cytosolic diffusional resistance for energy

transmission (Dzeja et al. 1985, 1998). Turnover of ATP α-, β-, and γ-phosphoryls
can be followed by 18O-assisted 31P NMR, a versatile technique for measurement of

intracellular dynamics of energy metabolism (Fig. 6.1) (Nemutlu et al. 2012b).

Isotope labeling studies indicate that in intact tissues the highest adenylate kinase-

catalyzed ATP β-phosphoryl turnover is in the kidney, which approximates 98 % of

γ-ATP turnover, followed by the liver (80 %), the heart (15–40 %), and contracting

(10–17 %) or resting (3–5 %) skeletal muscles suggesting a centralized role of

adenylate kinase in tissue energy homeostasis (Dzeja and Terzic 2003, 2007, 2009).
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Fig. 6.1 Adenylate kinase isoform metabolic signaling, energy transfer, and distribution network

(upper panel). Distributed throughout cellular compartments, adenylate kinases facilitate nucleo-

tide exchange, ATP delivery to ATPases, and AMP signal to metabolic sensors. AK2 positions in

the “bottleneck” of the network and its deficiency is embryonically lethal, slowing down the flow

of nucleotides back and forth from cytosol to mitochondria. Adenylate kinase catalyzed turnover

of ATP β-phosphoryls can be followed by 18O-labeling detected by 18O-induced shift in 31P NMR

spectra of ATP (lower panel) (Nemutlu et al. 2012a, b). Different colors indicate different times

(2, 5, 10, and 15 min) of 18O-labeling of ATP α-, β-, and γ-phosphoryls. Turnovers of each ATP

phosphoryl were calculated as described (Nemutlu et al. 2012b)

6 Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and. . . 147



The highest total adenylate kinase activity is in skeletal muscle followed by heart,

brain, kidney, and liver (Borglund et al. 1978), suggesting that flux and enzyme

activity are independent parameters. Therefore, functional activity imposed meta-

bolic flux cannot be predicted from activity measurements or from model

calculations (Nemutlu et al. 2012b).

Three major isoforms, AK1, AK2, and AK3 are localized in the cytosol, the

mitochondrial intermembrane space, and the matrix, facilitating transcellular nucle-

otide exchange (Dzeja et al. 1985; Noda 1973). The existence of the whole family

of adenylate kinases with different expression profiles, substrate specificities, and

kinetic properties provides evidence of specialized functions in specific cellular

processes (Panayiotou et al. 2011). The major cytosolic isoform AK1 is expressed

at high levels in skeletal muscle, brain, and heart, whereas AK2 is expressed in the

mitochondrial intermembrane space of tissues rich in mitochondria like liver,

kidney, heart, and skeletal muscle. AK3 is located in the mitochondrial matrix,

with high expression levels in the liver, heart, and skeletal muscle. Tissue specific

adenylate kinase isoforms AK4 and AK5, with preferential localization in mito-

chondrial matrix and cytosol, respectively, have been cloned (Miyoshi et al. 2009;

Noma 2005; Panayiotou et al. 2010; Van Rompay et al. 1999; Yoneda et al. 1998).

AK4 contains an N-terminal mitochondrial import sequence and is expressed at low

levels in brain, kidney, liver, and heart tissues (Panayiotou et al. 2010). AK5 is

mostly cytosolic or both cytosolic and nuclear depending on the transcript variants.

With two separate active functional domains, AK5 is expressed almost exclusively

in brain, although there is evidence that it exists in other tissues too (Solaroli

et al. 2009; Van Rompay et al. 1999). AK4 protein levels are increased in cultured

cells exposed to hypoxia and in animal models of neurodegenerative diseases (Liu

et al. 2009). Although AK4 might be enzymatically less active, it retains nucleotide

binding capability, interacts with the mitochondrial ADP/ATP translocator, and

serves a stress responsive function, promoting cell survival and proliferation (Liu

et al. 2009). Both AK4 and AK3 are among hypoxia-inducible factor 1 (HIF-1)

regulated genes promoting cell survival (Hu et al. 2006; Semenza 2000). AK5 is

detected in human pancreatic beta-cells and implicated in the regulation of the

K-ATP channel (Stanojevic et al. 2008), while appearance of autoantibodies to

AK5 in refractory limbic encephalitis patients carrying poor prognosis (Tuzun

et al. 2007).

More recently, the existence of an additional AK1 gene product, the

p53-inducible membrane-bound myristoylated AK1β, has been reported and

implicated in p53-dependent cell cycle arrest and nucleotide exchange in the

submembrane space (Collavin et al. 1999; Janssen et al. 2004; Ruan et al. 2002).

In this context, the gene encoding AK1 is downregulated during tumor develop-

ment, which could be associated with lower AK1β levels and cell cycle

disturbances (Vasseur et al. 2005). AK1β also has been demonstrated to be

associated with the nuclear envelope (Janssen et al. 2004) and proteome studies

identify AK1β in epithelium microvilli (Bonilha et al. 2004), suggesting a role in

energy support of nuclear and epithelia transport processes.
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The minor AK6 isoform, also known as transcription factor TAF9 and hCINAP,

is localized in the cell nucleus along with AK5 which associates with centrosomes;

both isoforms are required for cell growth (Noma 2005; Ren et al. 2005; Zhai

et al. 2006). Human AK5 was identified to have two enzymatically active adenylate

kinase domains which could catalyze sequential phosphoryl transfer (Solaroli

et al. 2009). Another isoform, AK7, has a tissue-specific expression pattern and

its activity has been associated with cilia function (Fernandez-Gonzalez

et al. 2009). The next AK8 isoform is the second known human adenylate kinase

with two complete and active catalytic domains within its polypeptide chain, a

feature that previously was shown also for AK5 (Panayiotou et al. 2011). AK8 has

nuclear, nucleoli, and mitochondrial localization (see http://www.proteinatlas.org/

ENSG00000165695). Both AK7 and the full length AK8 have high affinity for

AMP and are more efficient in AMP phosphorylation as compared to the major

cytosolic isoform AK1 (Panayiotou et al. 2011). This property may be advanta-

geous for energetic circuits supporting ciliary motility and cell migration (Dzeja

and Terzic 1998). Recently, a new member of the adenylate kinase family has been

identified and named AK9 (Amiri et al. 2013). This isoform has both cytosolic and

nuclear localization and its significance remains to be determined. Also, the exact

substrate specificity of the AK9 needs to be resolved with pure enzyme preparations

(Amiri et al. 2013).

The significance of the adenylate kinase isoform network and AMP signaling is

highlighted by recent studies indicating that mutations in AK1, AK2, and AK7

genes are associated with severe human disease and that AK1 and AK2 isoforms are

critical in stem cell differentiation as well as for unfolded protein stress response

(Burkart et al. 2010; Dzeja et al. 2011a; Fernandez-Gonzalez et al. 2009; Inouye

et al. 1998; Lagresle-Peyrou et al. 2009; Pannicke et al. 2009). Protein knockdown

using siRNAs indicates that AK1, AK2, and AK5 isoforms are involved in

cardiomyocyte differentiation, mitochondrial biogenesis, and network formation

and for development of cardiac beating area and contractile performance (Dzeja

et al. 2011a). Deficiency of AK2, which is localized to the mitochondrial inter-

membrane space at crossroads of high-energy phosphoryl flux, arrests

hematopoietic stem cell differentiation in humans (Lagresle-Peyrou et al. 2009;

Pannicke et al. 2009) and is embryonically lethal in Drosophila and mice (Fujisawa

et al. 2009; Noma 2005; Zhang et al. 2010b). Absence or reduction of AK2 protein

would interfere with mitochondrial bioenergetics and mitochondria–nucleus ener-

getic communication that could compromise implementation of the leukocyte

developmental program (Lagresle-Peyrou et al. 2009; Pannicke et al. 2009). Indeed,

preliminary data indicate that AK2�/� mouse embryonic fibroblasts (MEFs) have

severely disrupted mitochondrial cristae structure, and display low growth and

proliferation potential (Zhang et al. 2010b). Ak2 deficiency could compromise

evolvement of the mitochondrial network and establishment of metabolic circuits

that are part of developmental programming and execution of cell differentiation

sequences (Chung et al. 2007, 2008, 2010; Dzeja et al. 2011a). Indeed, AK2

regulates cell growth, viability, and proliferation in insect growth and development

(Chen et al. 2012). Moreover, it was discovered that adenylate kinase and
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associated AMPK constitute a major metabolic signaling axis guiding energetics of

cell cycle, stem cell differentiation, and lineage specification; the defects in AMP

metabolic signaling could lead to cardiac malformations (Dzeja et al. 2011a). Thus,

AK2 deficiency disrupts the mitochondrial–cytosolic–nuclear flow of energy and

the developmental metabolic information governing cell differentiation.

The mitochondrial AK2 isoform has the highest affinity (lowest Km) for AMP

(�10 μM) among AMP metabolizing enzymes and is highly concentrated in the

narrow intermembrane space (Dzeja and Terzic 2009; Walker and Dow 1982).

Virtually, all the AMP reaching mitochondria is converted to ADP and channeled

into oxidative phosphorylation maintaining a low cytosolic AMP concentration. In

such a way, adenylate kinase tunes cytosolic AMP signals and guards the cellular

adenine nucleotide pool (Dzeja and Terzic 2009). During intense physical activity

or metabolic stress, such as ischemia, AMP concentration rises, turning on other

AMP-metabolizing enzymes, such as AMP deaminase and 50-nucleotidase, produc-
ing IMP and adenosine. In this regard, a marked elevation of mitochondrial AK2

activity has been demonstrated in hypertrophy in response to increased energy

demand and the necessity to maintain the cellular adenine nucleotide pool (Seccia

et al. 1998).

Muscles of Ak1 knockout mice, with one less phosphotransfer chain, display

lower energetic efficiency, slower relaxation kinetics, and a faster drop in contrac-

tility upon ischemia associated with compromised myocardial–vascular crosstalk

(Dzeja et al. 2007b; Pucar et al. 2000, 2002). A mechanistic basis for thermody-

namically efficient coupling of cell energetics with cellular functions lies in the

unique property of adenylate kinase catalysis which transfers both β- and

γ-phosphoryls of ATP, doubling the energetic potential of ATP as an energy-

carrying molecule (Dzeja et al. 1985, 1998, 2002; Dzeja and Terzic 2003, 2009).

More recently, it was demonstrated that cytoskeleton-based cell motility can be

modulated by spatial repositioning of AK1 enzymatic activity providing local ATP

supplies and “on-site” fueling of the actomyosin-machinery (van Horssen

et al. 2009). Another study suggests that intracellular and extracellular adenylate

kinase play an important role in nucleotide energetic signaling, regulating actin

assembly–disassembly involved in cell movement and chemotaxis (Kuehnel

et al. 2009). Such integrated energetic and metabolic signaling roles place adenylate

kinase in a unique position within the cellular metabolic regulatory network.

New studies published within the past years have uncovered much wider

involvement of adenylate kinase in energy support, metabolic monitoring, and

managing cellular functions with mutations in this enzyme associated with

human diseases (Dzeja and Terzic 2009; Lagresle-Peyrou et al. 2009; Panayiotou

et al. 2011; van Horssen et al. 2009). In addition to mutations of adenylate kinase

isoform 7, AK7, gene which has been found to be associated with primary ciliary

dyskinesia which leads to chronic obstructive pulmonary disease (COPD) in

humans (Fernandez-Gonzalez et al. 2009), new mutations in both adenylate kinases

7 and 8, AK7 and AK8, genes were found associated with ciliary defects and

congenital hydrocephalus (Vogel et al. 2012). Also, recent studies have uncovered

that dysregulation of adenylate kinase AK1-, AK2-, and AK5-mediated energetic
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and AMP metabolic signaling is associated with Alzheimer’s and Huntington

neurodegenerative disorders (Park et al. 2012; Seong et al. 2005) and the patho-

physiological process of temporal lobe epilepsy (Peng et al. 2012). The level of

AK4 is decreased in Parkinson’s disease models in response to Parkin expression

(Narendra et al. 2012). Moreover, AK4 was discovered to be a progression-

associated gene in human lung cancer that promotes metastasis (Jan et al. 2012).

In this regard, new findings indicate that development of feto-placental unit and

reproductive efficiency of women as well as blood glucose and glycated hemoglo-

bin levels depends on the genetic variability of Ak(1)1 and Ak(1)2 phenotypes

(Fulvia et al. 2011; Gloria-Bottini et al. 2011, 2012, 2013). The therapeutic poten-

tial of modulating adenylate kinase activity is demonstrated by the finding that

decreased expression of AK1 in myocardial infarction is restored by resveratrol

treatment, contributing to increase myocardial energetic efficiency (Lin et al. 2011).

Taken together, these new data suggest very fundamental roles of adenylate kinase

isoforms in various human organs to support vital physiological functions, while

dysregulation of adenylate kinase-mediated energetic and metabolic signaling

precipitates disease phenotypes.

6.2 Adenylate Kinase Isoforms in Nuclear and Cell Cycle

Energetics

Many nuclear processes, including DNA replication and cell cycle events such as

mitotic spindle movement, chromosome disjunction, and karyokinesis, also

ATP-dependent chromatin remodeling and gene transcription, as well as initiation

of developmental and regenerative programming, require robust energy supply

(Dzeja and Terzic 2003, 2007, 2009; Folmes et al. 2011a, b, 2012a; Morettini

et al. 2008; Rosenfeld et al. 2009). However, the nucleus is separated from the

cytosolic energetic system, and energy supply routes to nuclear processes, includ-

ing cell cycle and cytokinesis machinery, are largely unknown (Dzeja et al. 2002;

Dzeja and Terzic 2007). In this regard, cells and nuclei of dividing and regenerating

cells in tissues are enriched in energetic and phosphotransfer enzymes to support

high energy needs of genetic reprogramming and cell division cycle (Dzeja and

Terzic 2009; Hand et al. 2009; Noda 1973; Ottaway and Mowbray 1977; Rosenfeld

et al. 2009). Cell life and renewal rate of a cell population depend on balance

between cell division, cell cycle arrest, differentiation, and apoptosis (Mandal

et al. 2010; Walsh et al. 2010). During evolution, cells have developed a conserved

metabolic signaling mechanism controlling cell division, proliferation, and regen-

eration depending on nutrient and energy resources (Collavin et al. 1999; Folmes

et al. 2012a, b; Nakada et al. 2010; Romito et al. 2010). When energy resources are

plenty, cells can grow, proliferate, and regenerate. When energy is low, metabolic

signaling turns on a cascade which activates cell cycle metabolic checkpoints

preventing cell division (Dzeja and Terzic 2009; Gan et al. 2010; Mandal
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et al. 2010). The regulation of these processes is central for maintaining tissue

homeostasis, whereas dysregulation may lead to diseases such as cancer, diabetes,

and neurodegenerative disorders (Dzeja and Terzic 2009; Motoshima et al. 2006). It

has been suggested that dynamics of nuclear–cytosolic protein localization,

phosphorelays of energetic and signaling cascades, and spatially and temporally

controlled proteolysis with protein modification events are overlayed on the net-

work that controls cell cycle progression and differentiation (Domian et al. 1997;

Ptacin and Shapiro 2013).

Phosphotransfer enzyme adenylate kinase facilitates mitochondrial–nuclear

energetic communication (Dzeja et al. 2002) and within the nucleus, embedded

into organized enzymatic complexes of nucleotide-metabolizing and

phosphotransfer enzymes, is involved in maintaining proper nuclear dNTP ratios

and facilitates channeling of nucleotides into DNA replication machinery (Kim

et al. 2005). Imbalances in dNTP ratios affect the fidelity of DNA replication and

repair leading to acquired mutations (Dzeja and Terzic 2007; Kim et al. 2005). In

yeast AK(Adk1p) is bound to chromatin throughout the cell cycle, physically

interacts with pre-replicative complexes, including Orc3p and Cdc14p proteins,

and is required for DNA replication initiation and cell cycle control (Cheng

et al. 2011). Thus, adenylate kinase in the nucleus surveys nucleotide ratios

necessary for error-free DNA replication, while another nuclear protein Rad50,

harboring or having associated adenylate kinase activity, participates in DNA

double-strand break repair (Bhaskara et al. 2007). As AK1 has no known nuclear

localization sequence, the molecular mechanisms of AK translocation to the

nucleus are still obscure (Strobel et al. 2002).

In recent years, nuclear adenylate kinase isoforms have been characterized in

several organisms, such as Drosophila melanogaster (Meng et al. 2008), Saccha-
romyces cereviciae (FAP7) (Juhnke et al. 2000), Caenorhabditis elegans (Zhai

et al. 2006), and Homo sapiens (hCINAP) (Malekkou et al. 2010; Ren et al. 2005).

Moreover, the human isoform (hCINAP) is involved in Cajal body organization,

gene transcription, and cell cycle progression (Santama et al. 2005; Zhang

et al. 2010a). Recent study of nuclear shuttling of adenylate kinase in Trypanosoma
cruzi (TcADKn) has identified its noncanonical nuclear localization signal, being

one of the few atypical NLS that involves the catalytic site of the protein (Walker

domain or P-loop) (Camara Mde et al. 2013). It is postulated that TcADKn enters

the nucleus in an unfolded conformation, being the nuclear localization signal

within the P-loop, and once it enters the nucleus, it folds correctly regarding the

active site inside the protein. TcADKn could be forming a complex with other

proteins, which are recognized by the importin and then enters the nucleus, or it

could be recognized directly by the importing complex (Camara Mde et al. 2013).

TcADKn nuclear export depends on the nuclear exportation adapter CRM1, and its

nuclear shuttling is regulated by nutrient availability, ribosome biogenesis, DNA

integrity, and oxidative stress. Posttranslational modification of AK isoforms (acet-

ylation, myristoylation, glutathionylation, and S-nitrosylation) can play a role in

directing AK to nuclear and other compartments, according to local energetic needs
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(Fratelli et al. 2002; Ginger et al. 2005; Janssen et al. 2004; Klier et al. 1996; Rahlfs

et al. 2009; Shi et al. 2008).

The AK6 isoform was identified to be localized to the cell nucleus, where energy

provision and nucleotide channeling into DNA synthesis play critical roles in

processing genetic information (Dzeja et al. 2002; Ren et al. 2005; Zhai

et al. 2006). However, there is still controversy regarding the AK6 isoform,

which is also known as TAF9 RNA polymerase II possessing ATPase activity

(Santama et al. 2005), suggesting that other adenylate kinase isoforms (AK1 and

AK5) can also subserve nuclear energetic needs (Dzeja et al. 2002; Janssen

et al. 2004; Noda 1973). AK5 may associate with centrosomes (unpublished).

Knockdown of AK6 slows growth and development of C. elegans (Zhai

et al. 2006), while in yeast, a point mutation in the Fap7 gene, an analog of AK6,

reduces growth on glucose (Juhnke et al. 2000). Through biochemical purification

and mass spectrometry analysis, a putative homolog of the S. cerevisiae Rps14

protein was identified as a partner of AK6 (Feng et al. 2012). Most importantly,

aak6 T-DNA insertion mutants had decreased stem growth compared with wild-

type plants. These data indicate that AAK6 exhibits adenylate kinase activity and is

an essential growth factor in Arabidopsis (Feng et al. 2012). In this regard,

TcADKn is involved in ribosome biogenesis, being involved in the processing of

the 18S precursor at site D by directly interacting with TcRps14 (Camara Mde

et al. 2013). Another nuclear protein Rad50, a member of DNA repair RAD50/

MRE11/NBS1 protein complex (MRN), which is essential for sensing and signal-

ing from DNA double-strand breaks, in addition to ATP binding and hydrolysis,

may have intrinsic or associated adenylate kinase activity required for efficient

tethering between different DNA molecules (Bhaskara et al. 2007; Randak

et al. 2012). A mutation affecting ATPase/adenylate kinase activity of Rad50,

necessary for DNA tethering, also abolishes the formation of viable spores

(Bhaskara et al. 2007). Thus, adenylate kinase and adenylate kinase activity-

possessing proteins play a significant role in the energetics of the nucleus which

is separated from major ATP generating processes in the cytosol.

Recently, it was demonstrated that AK1 translocates to the nucleus during cell

division and associates with the mitotic spindle to provide energy for chromosome

disjunction (Fig. 6.2) (Dzeja et al. 2011a). The discovery of nuclear translocation of

AK1 in metaphase is in line with the adenylate kinase role in energy support of

motility of cilia and flagella which have 9 + 2 microtubular structures similar to

those of mitotic spindle (Cao et al. 2006; Wirschell et al. 2004). In mitotic spindles,

AK1 is expected to associate with motor or anchoring proteins as it does with the

Oda5 protein of the dynein complex in flagella to provide “on-site” ATP fueling

capacity (van Horssen et al. 2009; Wirschell et al. 2004). In yeasts, AK1 interacts

with TEM1, a component of the whole network of cell cycle regulation, including

AMN1, BUB2, ARP2, TORC2, BFA1, and many others (Szappanos et al. 2011;

Tarassov et al. 2008). Beside TEM1, AK1 interacts with CLB2, Rad53, SPL2, and

PHO85, which are involved in cell cycle regulation and others (Ho et al. 2002). Our

studies revealed several new candidate proteins for the AK1 and AK2 interactomes

that include cell motility, cell cycle, and cytokinesis-associated proteins, like

6 Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and. . . 153



myosin-9, tubulin, TEM1, DUO1, CBL2, PHO85, IPL1, MAD2, and others. In this

regard, the AK2 isoform, which when mutated causes leukocyte developmental

arrest, in yeasts interacts with DUO1, a component of Dam1 complex, and with a

network regulating cell cycle including IPL1 (Aurora kinase subunit), MAD2,

NAP1, SLJ15, STU2, and others (Tarassov et al. 2008).

The second AK1 gene product, the p53-inducible membrane-bound

myristoylated AK1β isoform, is implicated in p53-dependent cell cycle arrest and

nucleotide exchange in the submembrane space (Collavin et al. 1999; Janssen

et al. 2004; Ruan et al. 2002). Since gene encoding AK1 is downregulated during

tumor development, it could result in lower AK1β levels and cell cycle disturbances
(Vasseur et al. 2005). AK1β also associates with the nuclear envelope (Janssen

et al. 2004) and epithelium microvilli (Bonilha et al. 2004), suggesting a role in

energy support of nuclear and epithelia transport processes.

Developmental deployment and upregulation of the adenylate kinase/AMPK

signaling axis provides a nucleo-cytosolic energetic and metabolic signaling vector

integral to execution of stem cell cardiac differentiation (Dzeja et al. 2011a). Other

studies indicate that adenylate kinase isoforms in the brain may contribute to

neuronal maturation and regeneration (Inouye et al. 1998; Yoneda et al. 1998).

Thus, targeted redistribution of the adenylate kinase-AMPK circuit associated with

cell cycle and asymmetric cell division uncovers a new regulator for cardiogenesis

and heart tissue regeneration.

Recently, using metabolomic technologies, we have discovered that in adult

hearts increased expression of adenylate kinase isoforms (AK1, AK2, and AK1β)
and high energy and AMP signal dynamics, measured by 18O-labeling, is misread

by AMPK as a “low energy” state, inducing blockade of cell cycle metabolic

checkpoint and cardiomyocyte proliferation and renewal (Mandal et al. 2005;

Zhang et al. 2012). Similarly, an excess AMP signaling in the periphery, induced

Fig. 6.2 Adenylate kinase provides energy and metabolic signaling for cell division cycle.

Adenylate kinase translocates to the cell nucleus and associates with the mitotic spindle during

cell division cycle (Dzeja et al. 2011a). Such adenylate kinase redistribution is advantageous for

delivery and on-site regeneration of ATP, thus furnishing high energy needs of mitotic spindle

movements required for chromosome disjunction and completion of cell division cycle through

cytokinesis. AK adenylate kinase
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by both leptin and fructose, convey to the brain false “low energy” signals forcing it

to increase food consumption (Dzeja and Terzic 2009). The uncovered AMP

metabolic flux-sensing mechanism opens new avenues for targeted regulation of

the heart regenerative potential, which is critical for repair of injured hearts. We are

developing approaches to regulate AMP signaling and increase AK1 entry into the

nucleus of adult cardiomyocytes to facilitate nuclear energetics, reentry into cell

cycle, proliferative potential, and regeneration (Dzeja et al. 2011a; Rubart and Field

2006; Walsh et al. 2010).

Accordingly, nuclear translocation of AK1, and in some cases AK2, upon

association with mitotic spindle and cytokinesis apparatus provides local ATP

regenerating capacity (~P) necessary for energy-dependent mitosis and cytokinesis.

AMPK plays a critical role in phosphorylating (�P) and orchestrating cell cycle

components (Dzeja et al. 2011a). At the same time, AK–AMP–AMPK signaling

axis controls the p53/p21/cyclin metabolic cell cycle checkpoint (Mandal

et al. 2010). In adult heart, high energy metabolism, AMP signaling dynamics,

and relatively high AMPK activity might be interpreted as conditions unfavorable

for undergoing mitosis. p53 also regulates membrane-associated AK1β expression

which can provide local signals to membrane-associated AMPK and exert addi-

tional control on the G1/S transition (Collavin et al. 1999). LKB1 is an important

regulator of AMPK and downstream metabolic checkpoint events associated with

cell proliferation (Gurumurthy et al. 2010; Nakada et al. 2010). Moreover, the

AK–AMP–AMPK axis controls GSK3β which inhibits cell cycle progression;

conversely inhibition of GSK3β restarts cardiomyocyte cell cycle (Campa

et al. 2008; Woulfe et al. 2010). Defects in AK1 nuclear translocation and

AMP/LKB1/AMPK signaling could result in polyploidy and insufficient energy,

and signaling to cytokinesis machinery could lead to multinucleation (Jansen

et al. 2009; Liu et al. 2010; Nakada et al. 2010; Walsh et al. 2010). Another

phosphotransfer enzyme thymidine kinase, the activity of which is critical for

dTTP production and DNA replication, is downregulated in adult cardiomyocytes

limiting regenerative potential (Gillette and Claycomb 1974). Thus, energy supply

to nuclear processes is an emerging field in cellular physiology with the potential to

advance our understanding of metabolic requirements and energetic costs of

executing cell division cycle and developmental and regenerative programming.

In summary, accumulating evidence suggests a fundamental role for adenylate

kinase and phosphotransfer enzymes in general in cellular energetics and metabolic

signaling processes. Their importance is highlighted by the wide range of metabolic

rearrangements and compensations in energy and metabolic networks induced by

genetic deficiencies (Dzeja et al. 2011b; Janssen et al. 2000), while uncompensated

deficiency (AK2) is embryonically lethal (Fujisawa et al. 2009; Zhang et al. 2010b).
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Chapter 7

Moonlighting Function of the Tubulin

Cytoskeleton: Macromolecular Architectures

in the Cytoplasm

Judit Ovádi and Vic Norris

Abstract Cells face the enormous challenge of generating a single phenotype that

must be coherent with myriad internal and external conditions. For such

phenotypes to have multifarious but meaningful outputs entails the sensing, and

integration of a wide variety of chemical and physical information, hence the

coordination of metabolic and signaling processes. This sensing, integration, and

coordination are carried out by the complex ultrastructural arrays and moonlighting

functions of the cytoskeletal network. In the cellular context, the direction and

potency of sensing are determined by the structure-related responses of the cyto-

skeletal network to the activity of individual macromolecules in conjunction with

associated metabolites and nucleotides. These responses comprise the binding

(hetero-association) of these macromolecules to the cytoskeleton and the

consequences of this binding on the behavior of both partners, among them the

stability and dynamics of the cytoskeleton, and the catalytic and regulatory

properties of the individual proteins (and/or their specific complexes). The latter

is of specific importance in regulation at a high level of organization via the

formation of microcompartments in linear pathways or at metabolic crossroads.

In addition, key players in many metabolic and signaling pathways are nucleotides

such as ATP and GTP that have a crucial role in cytoskeleton-mediated events.

These issues are illustrated with examples, and the sensing power of dynamic

macromolecular associations is discussed.
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7.1 Macromolecular Associations

Cell compartments are crowded with solutes, soluble macromolecules such as

enzymes, nucleic acids, and structural proteins, and membranes to create complex

structures that continue to be discovered (Fridman et al. 2012). The high protein

density within the large compartments of the cells predominantly determines major

characteristics of cellular environment such as viscosity, diffusion, and heterogene-

ity. The fact that the solvent viscosity of cytoplasm is not substantially different from

that of water is explained by intracellular structural heterogeneity: macromolecular

density is relatively low within the interstitial voids in the cell because many soluble

enzymes are apparently integral parts of the insoluble cytomatrix and/or cytoskeletal

ultrastructures. In other words, macromolecules are not distributed homogeneously

and the cell should not be considered as a “bag.” Indeed, most of the cytoplasmic

proteins have nondiffusing forms or diffuse on the timescale of hours as evidenced

by high voltage electron microscopy [(Ovadi and Saks 2004) and refs therein].

The eukaryotic cytoskeleton, which consists of three filamentous systems, has

many physiological and pathological functions. The dynamic reorganizing ability

of the filamentous structures is highly variable in different cells and tissues; the

precise regulation of microtubular dynamics is critical for cell cycle progression,

cell signaling, intracellular transport, cell polarization, and organismal develop-

ment. The dynamic instability of microtubules in living cells has been analyzed by

microscopy of microinjected or expressed fluorescent tubulin, time-lapse micros-

copy, and analysis of time-dependent, microtubule length changes (Kamath

et al. 2010). The multiple functions of these superstructures are achieved by the

static and dynamic associations of macromolecules and ligands, and by posttrans-

lational modifications. In fact, macromolecular associations resulting from

crowding (Swaminathan et al. 1997) create intracellular superstructures such as

the microtrabecular lattice which is formed by the organization of the microtubule

systems while the soluble enzymes are integral parts of the cytomatrix, a cytoplas-

mic association of enzymes (Minton and Wilf 1981; Porter et al. 1983). The full

range of ultrastructures and functions characteristic of the cytoskeleton and, in

particular, the microtubule system has only been found so far in eukaryotes.

However, different types of filamentous structures have been identified in

prokaryotes (Ingerson-Mahar and Gitai 2012).

One of the best understood of prokaryotic filaments is the tubulin-like FtsZ

protein. This protein assembles into a ring-like structure, the Z-ring, at the site of

cell division (Errington et al. 2003; Romberg and Levin 2003). FtsZ can also

assemble into helices, of unknown function, that are highly dynamic (Thanedar

and Margolin 2004). The FtsZ protein has a structural homology to tubulin

(Lowe and Amos 1998). In vitro, FtsZ can form a wide variety of polymeric

structures, some of which may resemble eukaryotic microtubules, depending on

the presence and concentrations of lipids, divalent ions, GTP, and other proteins

(Alexandre et al. 2002; Gonzalez et al. 2005; Popp et al. 2010; Gundogdu

et al. 2011; Hsin et al. 2012; Martin-Garcia et al. 2012; Hou et al. 2012). As in
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the case of eukaryotic tubulin, the assembly of FtsZ into filaments can be

mediated by accessory proteins such as ZipA. This prokaryotic protein in partic-

ular is considered to resemble typical MAPs (Amos et al. 2004). In addition,

direct interaction between FtsZ and enzymes involved in glucose metabolism the

glucosyltransferase UgtP occurs when the intracellular concentration of

UDP-glucose is high and leads to a partial inhibition of division that is thought

to constitute metabolic sensing (Weart et al. 2007). Direct interaction between

FtsZ and thioredoxin, which helps maintain the intracellular redox potential

(along with its moonlighting activities), may also permit metabolic sensing

(Kumar et al. 2004); such interaction occurs in chloroplasts too (Balmer

et al. 2003). The bacterial actin, MreB, which also interacts with thioredoxin,

forms a helix that changes its location depending on FtsZ (Figge et al. 2004).

Interactions also occur during cell division between FtsZ and a dozen other

proteins involved, for example, in the synthesis of lipids and peptidoglycan

(Norris et al. 2007). Intriguingly, production in a bacterium of S100B, a

human protein that undergoes a calcium-dependent conformational change to

bind to tubulin, results in its colocalization with FtsZ and inhibition of cell

division (Ferguson and Shaw 2004).

Specificity is an important criterion in evaluating the physiological relevance of

enzyme interactions; specific recognition of one protein by another is based on their

surface complementarity. This recognition may depend on the conformational state of

both partners as influenced by ligands and by additional macromolecules. The ensem-

ble of these effects on interactions determines the functions of both the microtubule

system and the proteins/enzymes involved in the metabolic and signaling pathways.

The associations of the glycolytic kinases with the microtubular system are

oligomeric and isoform specific (Partikian et al. 1998), e.g., in the case of the

dissociable muscle PFK isoform, the inactive dimeric form of the enzyme binds to

MTs whilst in the case of brain the active tetrameric form does not bind (Verkman

2002) (Fig. 7.1). Some of these interactions are modulated by key metabolites and

nucleotides, like fructose-phosphates and ATP (Wágner et al. 2001) indicating that

the intra- and intermolecular forces between enzyme subunits and enzyme/MT,

respectively, might control the dynamism and superstructure of the microtubular

network in neuronal or mitotic cells. Such dynamic macromolecular associations

could constitute an innovative control mechanism for energy production via gly-

colysis. In addition, the involvement of these associations in many physiological

functions of the cell makes it likely that when they are perturbed pathological, e.g.,

neurodegenerative, processes result.

7.2 Moonlighting Proteins Display Multiple Functions

Decoding the human genome has made it clear that the straightforward “one gene—
one enzyme” law of classical molecular biology is inadequate since many more

proteins have been identified than protein-coding sequences which account for only
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a very small fraction of the genome (http://www.ornl.gov/sci/techresources/

Human_Genome/faq/genenumber.shtml).

The molecular functions of many of the products of these genes have yet to be

assigned; in addition, the network of all macromolecular interactions at gene and

protein levels is far from being worked out. It requires the integration of many

different kinds of experimental and computational methods. A functional genomic

strategy using metabolome data revealed the phenotypes conferred by silent

mutations (M/2) and the complex mechanisms leading from a single gene mutation

to a highly variable phenotype (Raamsdonk et al. 2001).

The existence of moonlighting proteins is generally acknowledged. Their multi-

ple functions do not result from gene fusions, splice variants, or posttranslational

modifications (Jeffery 2003) but rather from the same protein having different

functions depending on its location in a particular compartment, on its oligomeri-

zation state, or on its interaction with other molecular partners (Fig. 7.2). These

features are not coded in the genome sequences, thus making the prediction of the

moonlighting characteristics of gene products almost impossible. This has not

precluded data on moonlighting proteins accumulating and being categorized

(Sriram et al. 2005).

An excellent example of a classic metabolic enzyme displaying moonlighting

characteristics is glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This gly-

colytic enzyme has distinct functions that depend on its oligomerization state and

location within the cell: the tetramer catalyzes the conversion of 3-

phosphoglyceraldehyde in the cytosol, whereas the monomer catalyzes the release

of uracil from DNA in the nucleus (Meyer-Siegler et al. 1991). The oligomerization

state of this enzyme is modulated by the cellular concentrations of adenosine

triphosphate (ATP) and nicotinamide-adenine-dinucleotide (NAD+), and by its

interactions with potential partners such as function-related glycolytic enzymes

(Olah et al. 2008). The truncated toxic polypeptide derived from the β-amyloid

Fig. 7.1 PFK andMT: ultrastructure-dependent functions. (a): Periodical cross-linking of MTs by

tetrameric PFK formed by dimer–dimer association of PFK bound primarily to MTs. (b): the

addition of aldolase to the partial dissociated PFK prevents further dilution-induced dissociation,

thus the inactivation of PFK. (c): Schematic presentation of multiple interactions in

MT–PFK–aldolase system

168 J. Ovádi and V. Norris

http://www.ornl.gov/sci/techresources/Human_Genome/faq/genenumber.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/faq/genenumber.shtml


precursor protein affects the functions of the dehydrogenase (Mazzola and Sirover

2003) (cf. Fig. 7.2). Cytoskeletal filaments are also targets of GAPDH and involve

microfilaments or microtubules depending on the cell type (Ovadi and Srere 2000).

GAPDH also associates with nucleic acids in the nucleus as well as in the cyto-

plasm. In summary, the different functions of GAPDH can be switched on by

multiple factors so as to activate apparently unrelated pathways (Jeffery 1999).

Unlike classical cases in which moonlighting proteins display distinct physio-

logical functions, there are situations that involve their functions being perverted, a

pathological switch that may put these proteins into a specific subset of moonlight-

ing proteins termed neomoonlighting proteins (Jeffery 2011). This pathological

switch is based on different mechanisms and is characteristic of structurally

unfolded (disordered) proteins with extensive capacity to adopt different

conformations upon binding distinct partners.

Many of the neomoonlighting proteins do not have stable, well-defined 3D

structures; consequently, they are liable to form pathological ultrastructures, such

as fibrils, oligomers, or aggregates with distinct toxicity. Although the molecular

events that initiate formation of these ultrastructures, such as aberrant

protein–protein interactions, are similar in many “disordered diseases,” the out-

come as the clinical symptoms can be very different (Ovadi and Orosz 2009). The

conformational instability of the neomoonlighting proteins can contribute exten-

sively to the complex phenotype of a given disorder. Thus, a full characterization of

the proteome is essential for understanding the pathological mechanisms of human

diseases.

An established example is the Tubulin Polymerization Promoting Protein,

TPPP/p25, a disordered protein that is abundant in the pathological human brain

Parkinson’s

TPPP/p25

MT/membrane

„bundling”

Fig. 7.2 Connection between glycolysis and neurodegenerative disorders: interaction of glyco-

lytic enzymes attached to microtubule/membrane with pathological proteins resulting in mutual

functional effects (Modified Fig. 5 from Ovadi et al. 2004)
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tissue characteristic of synucleinopathies (Kovacs et al. 2004). This protein is

primarily expressed in oligodendrocytes where the tubulin polymerization pro-

moting and microtubule bundling activity of TPPP/p25 are crucial for the

development of projections in the course of differentiation of the progenitor

cells leading to myelinization, requiring the ensheathment of axons for their

normal function in the central nervous system (CNS) (Fig. 7.3). However, its

function is entirely different when it is co-localized and concentrated in neurons

or glia cells with α-synuclein forming pathological inclusions such as Lewy

bodies (Ovadi 2011).

Moonlighting proteins display autonomous, markedly different, functions such

as structural and catalytic functions that are sometimes unrelated. Their interactions

are particularly characteristic of disordered proteins. One of their characteristic

features is that they use regions outside the active site for other functions, such as

regulatory and structural functions (Khersonsky and Tawfik 2010). Moonlighting

proteins are present in diverse organisms (Huberts and van der Klei 2010), and the

implications of their different functions should be considered when trying to

explain the multiple symptoms of single-gene disorders or to predict the

consequences of metabolic engineering (Flores and Gancedo 2011)

Diseases resulting from disordered proteins require unconventional approaches

that do not rely on gene knockouts and that lead to medicines without toxic side

effects. Therefore, certain moonlighting proteins, such as those involved in macro-

molecular ultrastructures and in metabolic and signaling pathways, are potentially

attractive targets for drug therapies. This is because it may be possible to find drugs

that inhibit their pathological but not their physiological functions hence with very

limited, toxic effects.

Fig. 7.3 Moonlighting function of TPPP/p25. (a): colocalization of EGFP-TPPP/p25 with the

microtubule network (red) detected by immunofluorescence; (b): co-enrichment of TPPP/p25 and

α-synuclein in human pathological inclusion visualized by immunohistochemistry of human

pathological brain tissue for α-synuclein
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7.3 Sensor Potency of Enzyme-Decorated Microtubules

Cells are confronted with the challenge of generating a single phenotype that must

be coherent with a huge number of combinations of internal and external

conditions. Generating the meaningful outputs required for these phenotypes entails

sensing and integrating a wide diversity of chemical and physical information, and

hence the coordination of metabolic and signaling processes. We have proposed

that this sensing, integration, and coordination is achieved by the complex

structures and moonlighting functions of the cytoskeletal network (Norris

et al. 2010; Norris et al. 2013).

In this proposal, the direction and potency of the sensing would be determined

by the structure-related changes of the cytoskeletal network in response to the

activity of individual macromolecules—along with associated metabolites and

nucleotides—inside the living cell (Fig. 7.4). These responses comprise the binding

of these macromolecules to the cytoskeleton and the consequences of this binding

on the behavior of both partners, i.e., cytoskeleton dynamics and the catalytic and

regulatory properties of the individual proteins (and/or their specific complexes).

The binding of macromolecules to the cytoskeleton is of specific importance in the

regulation at a higher level via the formation of microcompartments in linear

pathways or at metabolic crossroads. In addition, nucleotides such as ATP and

GTP, which can both influence and respond to cytoskeleton-mediated events, play

key roles in many metabolic and signaling pathways.

If the binding by the cytoskeleton of an enzyme increases its activity, it may well

be that an enzyme that is catalytically active has a higher probability of binding to

the cytoskeleton. Microtubule binding to glycolytic enzymes is known to alter the

catalytic and regulatory properties of several enzymes [see Table 1 in Ovadi

et al. (2004)]. Such binding increases HK activity to enhance the glycolytic flux

in brain tissue (although this does not influence MT dynamics and structure). MT

binding to PFK decreases the activity of the enzyme and results in a periodic cross-

linking of the MTs. (cf. Fig. 7.1). MT binding to PK impedes MT assembly (but

does not influence the activity of the enzyme). Moreover, the binding by MTs of

individual enzymes is influenced by enzyme–enzyme interactions. For example, the

assembly of PFK into an aldolase–PFK complex (where it is no longer subject to

allosteric regulation) counters the association of PFK with MTs (Ovadi et al. 2004).

A two-way relationship exists between cytoskeleton-enzyme association and

nucleoside triphosphate levels in which (1) the changing dynamics of the cytoskel-

etal filaments that result from enzyme association modifies nucleoside triphosphate

levels and (2) changing nucleoside triphosphate levels modify the dynamics and

hydrolytic activity of the cytoskeleton. For example, the efficiency of MT

treadmilling depends on GTP concentration whilst MT dynamics depends on MT

motor proteins (like Kin-I kinesins), which hydrolyze ATP (Moore and Wordeman

2004). Reciprocally, there is some evidence that cytoskeletal dynamics affects the

levels of the nucleoside triphosphates. GTP hydrolysis, for example, depends on

tubulin polymerization and is stimulated by MAPs (Sloboda et al. 1976). Moreover,
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GTP impedes the association of the MAP TPPP/p25 with the MTs in the mitotic

spindle to arrest mitosis (Tirian et al. 2003).

7.4 Enzyme Associations in Energy Production

Cells consist of a large number of nonlinearly interacting constituents exhibiting

complex behavior during the course of their intra- and intermolecular com-

munications. Systems Biology is based on a systemic approach to the analysis of

the structural and functional interactions between components rather than on the

analysis of the individual components themselves. Data gathered from the measured

and computed fluxes through a pathway can be integrated and interpreted to obtain

understanding at the system level. A typical example of a system-level concept is the

metabolite channeling occurring in the microcompartments that comprise enzymes

decrease/increase in MT
dynamics and stability

MT + Enzymes MT- Enzymes

increased/decreased 
metabolic fluxes

enzyme 
activation/inhibition 

metabolite levels

altered energy production
pathological inclusions

re-organization of
enzyme associations

a

b

Fig. 7.4 (a) Microtubule (red rectangles) ultrastructures exist in dynamic equilibrium resulting

from the association with enzymes (green triangles and blue squares). Microtubular systems are

stabilized when these enzymes are either active in catalyzing their cognate reactions (presence of
star) or when these enzymes are inactive (absence of star). (b) The network of interactions

involved in sensing changes in levels of metabolites by the microtubular cytoskeleton. The

black arrows represent the flow of information through the network following a change in

metabolite levels. The dotted red arrow represents the possible pathological consequences of

perturbations in the network
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catalyzing sequential steps in a pathway. This type of analysis has been performed

both theoretically and experimentally, mainly in vitro (Ovadi et al. 2004).

The supramolecular organization of metabolic enzymes and their interactions

with one another and with subcellular structures constitute the basis for cellular

microcompartmentation. Compartmentalized metabolic pathways or segment(s) of

these pathways can overcome diffusive barriers within the crowded intracellular

milieu since metabolism can successfully proceed and even be facilitated by metab-

olite channeling. In such channeling a direct transfer of intermediates from one

enzyme to an adjacent enzyme happens without the need for free aqueous-phase

diffusion. The enhanced probability of intermediates to be transferred from the

active site of one enzyme to the active site of the following enzyme in the pathway

requires stable or transient interactions between these enzymes. The structurally

organized assembly of enzymes associated physically in a non-dissociable, static

multienzyme complex would constitute a metabolon. Such metabolons, containing

enzymes of a part or a whole metabolic pathway, might therefore be fundamental

units in the control of these pathways. The formation of microcompartments is

particularly important at metabolite crossroads where the association of the enzymes

involved in one or other pathway determines the direction of the flux (Ovadi 1991).

Thus, the supramolecular organization of the competing enzymes can control the

behavior of metabolic systems by providing distributed control.

The control of the energy metabolism (e.g., ATP synthesis) is tightly coupled

with several metabolic and signaling pathways [see, for example (Rostovtseva and

Bezrukov 2012)], however, their exact relationship is unclear. Even less informa-

tion is available on the interconnections between the pathological ultrastructures

and energy (ATP) production at the molecular level.

Glucose is the major energy source in brain and is metabolized via glycolysis in

the cytoplasm coupled with oxidation via the Krebs cycle in the mitochondrion

synthesizing ATP as the key fuel for many metabolic and signaling pathways. The

polarization state of the mitochondrial membrane is related to the energy state of

the mitochondria which can be monitored in living cells by fluorescence micros-

copy using tetramethylrhodamine ethyl ester staining (Lehotzky et al. 2004). For

example, K4 cells stably expressing EGFP-TPPP/p25 showed strikingly high fluo-

rescence intensity as compared with control neuroblastoma (SK-N-MC) cells

indicating that the expression of TPPP/p25 did not cause energy impairment but

actually enhanced the membrane potential (Fig. 7.5). Consistent with this, the ATP

concentration was found to be higher in the extract of the K4 cells as compared with

that of control cells. Flux analysis of glucose metabolism in these cells revealed that

the enhanced ATP concentration resulted in increased energy state in K4 cells

(Orosz et al. 2004). The cellular, biochemical, and computation results suggest that

the expression of the neomoonlighting TPPP/p25 protein in K4 cells is controlled

by an unknown mechanism that maintains the amount of this protein below toxic

levels (as revealed by the existence of a stable cell line); these results also suggest

that its expression is coupled with increased energy production.

Mitochondrial impairment has been reported in the case of Huntington’s disease

(HD), a progressive neurodegenerative disorder caused by the insertion of a long
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CAG trinucleotide repeat into the gene encoding the N-terminal segment of the

huntingtin protein. This polyglutamine tail is sticky and binds to GAPDH, a

moonlighting glycolytic enzyme; this binding is probably responsible for the partial

inactivation of this dehydrogenase as detected in the inclusion-containing region of

transgene mice. In fact, energy metabolism in the disease produced by this mutation

affects brain regions (as determined by immunohistochemistry) through changes in

the ATP-producing systems of the cytosolic and mitochondrial compartments. In

contrast to most of the speculation in the literature, our results showed that the

neuronal damage in HD tissue was associated with increased energy metabolism at

the tissue level leading to increased ATP concentration (Olah et al. 2008). More-

over, an increased conversion of glucose into lactate occurred in cytosolic extracts

from the HD brain tissue. A mathematical model of the glycolytic pathway using

the measured kinetic parameters of the individual enzymes and the well-established

rate equations could simulate glycolytic fluxes in control and affected tissue of the

transgene mice (Fig. 7.6). Data analysis from these comparative studies suggested a

mechanism that might account for the observed effects. In the case of HD, GAPDH

may be in closer proximity (perhaps because of binding of the enzyme to

huntingtin) to aldolase thereby facilitating channeling between these enzymes.

Hence, the association between these proteins would result in both an increased

energy metabolism and the formation of pathological inclusions leading to neuronal

damage.

The multifactorial character of molecular-conformational related diseases such

as in the interrelationship between the etiology of metabolic and neurological

disorders has been elucidated. Triosephosphate isomerase deficiency is an autoso-

mal recessive multisystemic genetic disease coupled with hemolytic anemia and

neurological disorder frequently leading to death in early childhood. Recent data

Fig. 7.5 Microscopic and kinetic studies of energy metabolism in K4 cells. (a) Fluorescence
image of K4 cells expressing EGFP-TPPP/p25 fusion protein; nuclei are stained with DAPI. (b and

c) Phase-contrast images of SK-N-MC (mother) cells (b) and K4 cells (stable clone) stained by

tetramethylrhodamine ethyl ester for visualization of hyperpolarization of mitochondrial mem-

brane (red). (Modified Fig.5 from Orosz et al. 2004)
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suggest that it may not be a metabolic disease but, rather, a conformational one. In

fact, various genetic mutations that alter this enzyme have been identified; these

mutations result in decrease in the catalytic activity and likely in its oligomerization

state. However, the mutations do not affect energy metabolism but result in

accumulation of dihydroxyacetone phosphate followed by its chemical conversion

into the toxic methylglyoxal. This results in the formation of advanced glycation

end products and aberrant protein–protein interactions. Such interactions result in

proteins sticking to microtubules and in the formation of aggregation-prone

proteins, a typical trait of molecular conformational disorders.

7.5 Concluding Remark

In the cytoskeletal sensor hypothesis it has been proposed recently that the cyto-

skeleton senses and integrates the general metabolic activity of the cell (Norris

et al. 2013). This potency of the cytoskeleton is related to the association of

metabolic enzymes with the cytoskeleton which results in the mutual ultrastructural

and functional changes presented in this chapter. These changes could be influenced

by the nature of the nucleotides and intermediate metabolites. The evaluation by

mathematical modeling of these complex processes at the molecular level, including

MT dynamics coupled with ligand-mediated enzyme associations, will contribute

enormously to our understanding the moonlighting functions of the enzyme-

cytoskeleton ensemble. Work on this hypothesis is in progress in our laboratory.

Fig. 7.6 Energy metabolism in HD (n171-82q) transgenic mouse. Activation of hexokinase,

enolase, and pyruvate kinase (PK); inhibition of GAPDH; increased glycolytic flux; no alteration

in mitochondrial complexes
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Chapter 8

Metabolic Dissipative Structures

Ildefonso Mtz. de la Fuente

Abstract The self-organization of metabolic processes, such as the spontaneous

dissipative formation of macromolecular structures, the functional coordination

between multienzymatic complexes, and the emergence of molecular rhythms, is

one of the most relevant topics in the post-genomic era. Herein, I analyze some

aspects of self-organization in metabolic processes utilizing information theory to

quantifying biomolecular information flows in bits, an approach that enables the

visualization of emergent effective connectivity structures. Specifically, I deter-

mined the emergent functional integrative processes arising from irreversible

enzymatic steps in yeast glycolysis, and in the systemic metabolic structure.

Experimental observations and numerical studies with dissipative metabolic

networks have shown that enzymatic activity can spontaneously self-organize

leading to the emergence of a systemic metabolic structure, characterized by a set

of different enzymatic reactions always locked into active states, i.e., the metabolic

core, while the remaining catalytic processes are intermittently active. This global

metabolic structure was verified in Escherichia coli, Helicobacter pylori, and
Saccharomyces cerevisiae, and it seems to be a common key feature for all cells.

The observed effective connectivity in both the irreversible enzymatic steps of

yeast glycolysis and the systemic metabolic structure is highly dynamic and

characterized by significant variations of biomolecular causality flows. These

effective connectivity flows reflect the integration of catalytic processes within

multienzymatic systems, and their functional coordination. The resulting functional

integrative structures appear to be fundamental motifs in the dissipative self-

organization and self-regulation of cellular metabolism.
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8.1 Introduction

Cells are complex metabolic systems characterized by continuous transformation

and renewal of macromolecular structures, highly coordinated catalytic behavior,

and emergent spatiotemporal metabolic rhythms.

Several studies about biochemical processes have shown that the concept of self-

organization is central to understanding the formation of the cell’s biomolecular

architecture and its functional metabolic behavior (Glick 2007; Karsenti 2008;

Kauffman 1993). In general, self-organization can be defined as the spontaneous

emergence of macroscopic nonequilibrium dynamic structures, as a result of col-

lective behavior of elements interacting nonlinearly with each other, to generate a

system that increases its structural and functional complexity driven by energy

dissipation (Halley and Winkler 2008; Misteli 2009). Another important ingredient

of metabolic self-organization is given by nonlinear interaction mechanisms

between processes, involving, e.g., autocatalysis, product activation, substrate

inhibition.

It is well established that nonequilibrium states can be a source of order in the

sense that the irreversible processes may lead to a new type of dynamic state in

which the system becomes ordered in space and time. The emergent structures

cannot be directly predicted from the individual properties of their elements,

and this kind of self-organized process occurs only in association with energy

dissipation.

Metabolic self-organization is based on the concept of dissipative structures, and

its theoretical roots can be traced back to Ilya Prigogine (Nicolis and Prigogine

1977). According to this theory, an open system that operates far from thermody-

namic equilibrium is capable of continuously importing matter and energy from the

environment and, at the same time, exporting entropy. Consequently, the system’s

entropy can be either maintained at the same level or decreased, in contrast with the

entropy of an isolated system which tends to increase towards a maximum at

thermodynamic equilibrium. Therefore, the total entropy in an open system can

decrease, and the negative entropy variation can be maintained over time by a

continuous exchange of matter and energy with the environment avoiding the

transition to thermodynamic equilibrium. A dissipative system works as an

energy-transforming mechanism that uses some of the energy inflow to produce a

new form of energy which has a higher thermodynamic value, i.e., lower entropy,

and the negative entropy variation corresponds to a positive variation in the

information of the system. This emergent information increases the complexity of

molecular organization, producing highly ordered macrostructures and functional

dynamic behavior (Ebeling et al. 1986; Klimontovich 1999; Prigogine et al. 1977).

In cells, dissipative self-organization is the main driving force of molecular

order, involved in all fundamental processes, e.g., cell division (Tyson et al. 1996),

mitosis (Bastiaens et al. 2006; Loose et al. 2008), genome organization (Misteli

2009), cell differentiation (Woodford and Zandstra 2012), bacterial chemotaxis
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(Sourjik and Armitage 2010), cytoskeleton dynamics (Huber and Käs 2011;

Mitchison 1992), and systemic metabolic processes (De la Fuente et al. 2008).

Self-assembly is another mechanism of molecular organization, but one which

does not involve continuous energy dissipation, and exhibits a trend towards

thermodynamic equilibrium. On a macroscopic level, self-assembly is driven by

the interplay among local stereospecific interactions between molecular

components, which remain unchanged throughout the assembly process (Kushner

1969; Misteli 2009; Whitesides and Grzybowski 2002). Although self-assembly is a

spontaneous process because the energy of the unassembled elements is higher than

in the self-assembled structure, it is non-dissipative and reversible, constituting an

important natural mechanism for generating molecular order. Worth emphasizing is

that self-assembly may also occur under nonequilibrium conditions, thus coexisting

with dissipative self-organization (Halley and Winkler 2008). Examples of self-

assembly are lipid bilayers (Tresset 2009), protein–protein interactions (Ceschini

et al. 2000; Lee 2008), viral capsid formation (Cadena-Nava et al. 2012), actin

polymerization in aster-like structures (Haviv et al. 2006), and the assembly of the

30S ribosomal subunit (Talkington et al. 2005).

Overall, self-organization is central to describing the complex molecular archi-

tecture of cells, and it together with self-assembly is the main source of biomolecu-

lar order, function, and complexity. Dynamic self-organization underlies

spatiotemporal architecture of cellular processes including functional coordination

between myriad of enzymatic reactions leading to the emergence of molecular

rhythms.

8.1.1 Multienzymatic Complexes

Molecular crowding is prevalent in cells which results in self-organized and

assembled processes. In particular, supramolecular organization of enzymatic

complexes is of special relevance, for their essential catalytic role in cellular

metabolism. Although most enzymes are proteins, a few RNA molecules called

ribozymes or ribonucleic acid enzyme also exhibit catalytic activity (Cech 2000;

Lilley 2005).

Proteomics studies have focused on individual proteins, but homologous or

heterologous protein–protein interactions are the rule in the intracellular milieu

(Pang et al. 2008). Analyses of the proteome of Saccharomyces cerevisiae have

shown that at least 83 % of proteins form complexes comprised by two to eighty-

three proteins. These complexes constitute macromolecular machines with enzy-

matic activity, while forming the structural basis of a modular network of biochem-

ical reactions (Gavin et al. 2002). This kind of organization occurs in all sorts of

cells, both eukaryotes and prokaryotes (Bobik 2006; Ho et al. 2002; Ito et al. 2001;

Sutter et al. 2008; Uetz et al. 2000; Yeates et al. 2008).

Multienzyme complexes may allow for substrate channeling, i.e., direct transfer

of intermediate metabolites from the active site of one enzyme to the next without
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prior diffusion into the bulk medium. Metabolic channeling decreases the transit

time of reaction substrates, thus increasing the speed and efficiency of catalysis by

preventing delays due to diffusion of reaction intermediates and their eventual loss

(Clegg and Jackson 1990; Jovanović et al. 2007; Jorgensen et al. 2005; Negrutskii

and Deutscher 1991; Ovádi and Srere 2000). Substrate channeling may also occur

within channels or on the electrostatic surface of enzymes belonging to complexes

(Milani et al. 2003; Ishikawa et al. 2004).

Additionally, reversible interactions between multienzyme complexes and struc-

tural proteins or membranes occur frequently in eukaryotic cells leading to the

emergence of metabolic microcompartments (Lunn 2007; Monge et al. 2008, 2009;

Saks et al. 2007, 2009. Ovádi and Saks 2004). Microcompartments also happen in

prokaryotes, but in this case they consist of protein “shells” composed of thousands

of protein subunits, some of them being enzymes that belong to specific metabolic

pathways (Fan et al. 2010; Yeates et al. 2007). The dynamics of molecular pro-

cesses that intervene in microcompartmentation and its maintenance remain

unclear.

Multienzyme complexes, substrate channeling, and their integration into func-

tional microcompartments seem to be a central feature of the spatiotemporal

organization of cellular metabolism. This modular organization appears to be

crucial for the regulation and efficiency of enzymatic processes and thus funda-

mental for understanding the molecular architecture of life.

8.1.2 Temporal Self-Organization of Multienzymatic
Processes

Self-organization at the enzymatic level underlies the emergence of functional

structures in the temporal organization of catalytic process. Besides forming com-

plex catalytic associations, enzymes can exhibit molecular rhythms constituting a

key self-organizational trait which allow functional coordination across multiple

enzymatic complexes (De la Fuente et al. 2011). Cellular processes involving

biosynthesis, turnover of molecular components, migration, and division require

temporal organization across many simultaneous timescales (Chandrashekaran

2005; Lloyd and Murray 2005, 2006, 2007). The functional coordination implied

by metabolic rhythms involves spatial and temporal aspects of localization and

dynamics of enzymatic complexes (Hildebrandt 1982; Yates 1993; Aon and

Cortassa 1997; Aon et al. 2000), including their synchronization (Wolf et al. 2000).

Dynamically, cells may exhibit quasi-stationary and oscillatory states. Quasi-

stationarity arises from a slow drifting of metabolites’ concentration over time. In

cells, the proportion between oscillatory and quasi-stationary states is unknown, but

existing evidence suggests that quasi-steady states are less frequent than oscillatory

ones (Lloyd and Murray 2005).
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During the last four decades, extensive studies of biochemical dynamics in both

prokaryotic and eukaryotic cells have revealed that oscillations exist in most of the

fundamental metabolic processes. For instance, specific ultradian oscillations were

reported to occur in free fatty acids (Getty-Kaushik et al. 2005), NAD(P)H concen-

tration (Rosenspire et al. 2001), biosynthesis of phospholipids (Marquez

et al. 2004), cyclic AMP concentration (Holz et al. 2008), ATP (Ainscow

et al. 2002) and other adenine nucleotide levels (Zhaojun et al. 2004), intracellular

glutathione concentration (Lloyd and Murray 2005), actin polymerization (Rengan

and Omann 1999), ERK/MAPK metabolism (Shankaran et al. 2009), mRNA levels

(Zhaojun et al. 2004), intracellular free amino acid pools (Hans et al. 2003),

cytokinins (Hartig and Beck 2005), cyclins (Hungerbuehler et al. 2007), transcrip-

tion of cyclins (Shaul et al. 1996), gene expression (Chabot et al. 2007; Tian

et al. 2005; Tonozuka et al. 2001; Klevecz et al. 2004), microtubule polymerization

(Lange et al. 2004), membrane receptor activities (Placantonakis and Welsh 2001),

membrane potential (De Forest and Wheeler 1999), intracellular pH (Sánchez-

Armáss et al. 2006), respiratory metabolism (Lloyd et al. 2002), glycolysis (Dano

et al. 1999), intracellular calcium concentration (Ishii et al. 2006), metabolism of

carbohydrates (Jules et al. 2005), beta-oxidation of fatty acids (Getty et al. 2000),

metabolism of mRNA (Klevecz and Murray 2001), tRNA (Brodsky et al. 1992),

proteolysis (Kindzelskii et al. 1998), urea cycle (Fuentes et al. 1994), Krebs cycle

(Wittmann et al. 2005), mitochondrial metabolic processes (Aon et al. 2008),

nuclear translocation of the transcription factor (Garmendia-Torres et al. 2007),

amino acid transports (Barril and Potter 1968), peroxidase-oxidase reactions

(Møller et al. 1998), protein kinase activities (Chiam and Rajagopal 2007), and

photosynthetic reactions (Smrcinová et al. 1998).

Experimental observations performed in S. cerevisiae during continuous culture
have shown that most of transcriptome and the metabolome exhibit oscillatory

dynamics (Klevecz et al. 2004; Murray et al. 2007). From transcriptome data, it has

been inferred that at least 60 % of all gene expression oscillates with an approxi-

mate period of 300 min (Tu et al. 2005). Moreover, the entire transcriptome exhibits

low-amplitude oscillatory behavior (Lloyd and Murray 2006) and this phenomenon

has been described as a genome-wide oscillation (Klevecz et al. 2004; Lloyd and

Murray 2005, 2006; Murray et al. 2007; Oliva et al. 2005; Tu et al. 2005). Evidence

that cells exhibit multi-oscillatory metabolic processes with fractal properties has

also been reported. This dynamic behavior appears to be consistent with scale-free

dynamics spanning a wide range of frequencies of at least three orders of magnitude

(Aon et al. 2008).

The temporal organization of the metabolic processes in terms of rhythmic

phenomena spans periods ranging from milliseconds (Aon et al. 2006) to seconds

(Roussel et al. 2006), minutes (Berridge and Galione 1988; Chance et al. 1973), and

hours (Brodsky 2006). Transitions from simple periodic behavior to complex

oscillations, including bursting (oscillations with one large spike and series of

secondary oscillations) (Dekhuijzen and Bagust 1996) and chaotic phenomena

(Olsen and Degn 1985), have often been observed.
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A second kind of temporal metabolic structure is given by circadian rhythms.

With a period close to 24 h (given by the Earth’s rotation) circadian clocks enable

cells to adapt their metabolism to the appropriate time of the day, synchronizing

timing of metabolic reactions with cyclic changes in the external environment

(Schibler and Sassone-Corsi 2002; Schibler and Naef 2005; Dunlap et al. 2004;

Wijnen and Young 2006). Circadian rhythms govern a wide variety of metabolic

and physiological processes in all organisms from prokaryotes to human cells

(Wijnen and Young 2006). In some cells, at least 10 % of all cellular transcripts

oscillate in a circadian manner (Nakahata et al. 2007), and in certain cells it has

been observed that between 80 and 90 % of the transcripts seem to follow a pattern

of circadian expression with a period of 24–26 h (Connor and Gracey 2011).

A third kind of molecular rhythms is given by spatial concentration waves.

When spatial inhomogeneity elicits instabilities in the intracellular medium,

propagating concentration waves can be triggered. This dynamic behavior is not

only closely related to metabolic oscillations but also to synchronization. Biochem-

ical waves are quite common and involve several cellular variables such as intra-

cellular pH, membrane potential, flavoproteins, calcium, and NAD(P)H. They are

linked to central metabolic processes and specific physiological functions, namely,

signal transduction and intercellular communication (Petty 2006). There are several

types of molecular waves and they vary in their chemical composition, velocity,

shape, intensity, and location (Scemes and Giaume 2006; Galas et al. 2000; Guthrie

et al. 1999). Examples of metabolic waves are Na+ and Ca2+ (Bernardinelli

et al. 2004), redox (Romashko et al. 1998), reactive oxygen species (Aon

et al. 2004; Zhou et al. 2010), ATP (Ueda et al. 1990; Newman 2001), pH (Petty

et al. 2000), NAD(P)H (Petty and Kindzelskii 2001), NAD(P)H coupled with

calcium (Slaby and Lebiedz 2009), actin filament assembly during cell locomotion

(Vicker 2002), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (Asano

et al. 2008).

Metabolic rhythms constitute one of the most genuine properties of multi-

enzymatic dynamics. The conditions required for the emergence and sustainability

of these rhythms, and how they are regulated, represent a biological problem of the

highest significance. However, in spite of its physiological importance many

aspects of these spatiotemporal structures, such as their relationship to the cell

cycle, are still poorly understood and thus deserve further attention.

8.1.3 Dissipative Multienzymatic Complexes:
Metabolic Subsystems

Multienzymatic associations can be viewed as dissipative structures in which

molecular rhythms and functional integrative processes can emerge increasing the

efficiency and control of the catalytic reactions involved (De la Fuente 2010; De la

Fuente and Cortes 2012). Self-organization and self-assembly processes allow for
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reversible interactions between multienzyme complexes and other molecular

structures. This may lead to the formation of metabolic microcompartmentation

and channeling resulting from a discrete reactive space where intermediate

metabolites can be protected from being consumed by competing reactions (Milani

et al. 2003). Elsewhere, we have referred as metabolic subsystems these self-

organized multienzymatic complexes, which can be associated with other

noncatalytic biomolecular structures, in which oscillations and quasi-steady-state

patterns can spontaneously emerge (De la Fuente 2010). Thermodynamically,

metabolic subsystems represent advantageous biochemical organizations, forming

unique, well-defined autonomous dynamic systems (De la Fuente 2010).

Nonlinear kinetics, catalytic irreversibility, and the coupling between nonlinear

reactions and diffusion are main source of spatiotemporal self-organization in

metabolic subsystems (Goldbeter 2007; Nicolis and Prigogine 1977). A rich variety

of dynamic patterns emerging from these metabolic subsystems can be associated

with distinct activity regimes, independent of direct genomic control (De la Fuente

et al. 2013).

Overall, a metabolic subsystem constitutes an elemental macromolecular

machine, a catalytic module, which provides an efficient enzymatic activity.

Associations between metabolic subsystems can form higher level complex molec-

ular organizations, as for example it occurs with intracellular energetic units

(ICEU) (Saks et al. 2006) and synaptosomes (Monge et al. 2008).

8.1.4 Dissipative Metabolic Networks

Structural observations have shown that, in cells, the overall enzymatic organiza-

tion is given by modules of multienzyme complexes arrayed as a network (Gavin

et al. 2002). Moreover, the cellular metabolic system behaves like a multi-

oscillatory system (Lloyd 2005; Lloyd and Murray 2005, 2006; Murray

et al. 2007; Roussel and Lloyd 2007; Vanin and Ivanov 2008) comprising mito-

chondrial, nuclear, transcriptional, and metabolic dynamics (Lloyd et al. 2006). In

this context, redox rhythmicity has been suggested as a fundamental dynamic hub

for intracellular temporal coherence (Lloyd and Murray 2007).

To address the function of cellular metabolism from the point of view of self-

organization, the dissipative metabolic network (DMN) concept was proposed

(De la Fuente et al. 1999a, 2008). Essentially, a DMN is a set of metabolic

subsystems interconnected by substrate fluxes and three classes of regulatory

signals: activatory (positive allosteric modulation), inhibitory (negative allosteric

modulation), and all-none type, e.g., enzyme regulation by covalent modification.

In a DMN, the output activity for each metabolic subsystem can be either steady

state or predominantly oscillatory with different activity regimes.

The first model of a DMN put in evidence a singular systemic metabolic

structure, characterized by a set of different metabolic subsystems always locked

into active states (metabolic core) while the rest of the catalytic subsystems
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presented on–off dynamics. In this first numerical work it was also suggested that

the systemic metabolic structure could be an intrinsic characteristic of metabolism,

common to all living systems (De la Fuente et al. 1999a)

During 2004 and 2005, several studies applying flux balance analysis to experi-

mental data contributed evidence that can be interpreted as a systemic functional

structure (Almaas et al. 2004, 2005). Specifically, it was observed that a set of

metabolic reactions belonging to different anabolic processes remained active

under all investigated growth conditions. The remaining enzymatic reactions not

belonging to this metabolic core stayed only intermittently active. These global

catalytic processes were verified for E. coli, H. pylori, and S. cerevisiae (Almaas

et al. 2004, 2005).

The systemic functional structure appears as a robust dynamical system (De la

Fuente et al. 2009), in which self-organization, self-regulation, and long-term

memory properties emerge (De la Fuente et al. 2010). Long-term correlations

have been observed in different experimental studies, e.g., quantification of DNA

patchiness (Viswanathan et al. 1997), physiological time series (Eke et al. 2002;

Goldberger et al. 2002), NADPH series (Ramanujan et al. 2006), DNA sequences

(Allegrini et al. 1988; Audit et al. 2004), K+ channel activity (Kazachenko

et al. 2007), mitochondrial processes (Aon et al. 2008), and neural electrical activity

(De la Fuente et al. 2006; Mahasweta et al. 2003).

8.1.5 Introduction to the Effective Functional Connectivity

Understanding functional coordination and spontaneous synchronization between

enzymatic processes needs a quantitative measure of effective connectivity.

In the field of information theory, transfer entropy (TE) has been proposed to be

a rigorous, robust, and self-consistent method for the causal quantification of

functional information flow between nonlinear processes (Schreiber 2000). TE

quantifies the reduction in uncertainty that one variable has on its own future

when adding another, allowing for a calculation of the functional influence between

two variables in terms of effective connectivity.

The roots of TE are given by the Shannon entropy, which measures the average

information required to determine a random variable X (Cover and Thomas 1991).

The Shannon entropy is defined as

HðXÞ �
X

x

� p ðxÞ log p ðxÞ; (8.1)

where x is one of the possible states which characterize the dynamics of variable X.
For instance, in tossing a coin, the two only possible states are head or tail. pðxÞ
defines the probability (or normalized occurrence) of measuring the variable X in

the state x.
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The amount of information shared between two variables can be quantified by

mutual information:

IðX; YÞ � HðXÞ � HðXjYÞ; (8.2)

which measures how much the uncertainty on variableX is reduced by conditioning

it to another variable Y. Notice that becauseHðXjYÞ ¼ HðX; YÞ � HðYÞ, the mutual

information is a symmetrical measure between the two variables X and Y , i.e.,
IðX; YÞ ¼ IðY;XÞ

In contrast with mutual information, TE is not a symmetrical measure since the

TE fromX toY is different from the one fromY toX. This asymmetry comes from the

fact that to compute the TE one has to define the past and the future on one of the

time series ðsayXÞ and only the past of the other variable ðsay YÞ. The TE is then

defined as

TEðY ! XÞ � HðXfuturejXpastÞ � HðXfuturejXpast; YpastÞ; (8.3)

which allows an easy interpretation of TE. The TE from Y toXmeasures how much

the uncertainty of the Xfuture is reduced by knowing the Ypast and comparing this

number with the situation in which only the Xpast is reducing the uncertainty of

Xfuture. If by adding Ypast the uncertainty of Xfuture is reduced more than adding only

Xpast, there is a nonzero TE from Y to X.
Another interpretation of TE comes from comparing (8.2) and (8.3); the

TE is the mutual information between Xfuture and Ypast conditioning on Ypast , i.e.,

TEðY ! XÞ ¼ IðXfuture; YpastjXpastÞ.
A recent application of TE to irreversible enzymatic steps from yeast glycolysis

has shown that functional integration may emerge under certain experimental

conditions (De la Fuente and Cortes 2012) and in the systemic metabolic structure

(De la Fuente et al. 2011). Specifically, it was possible to quantify biomolecular

information flows in bits between catalytic elements and determine the emergence

of effective connectivity structures. These effective functional structures are

involved both in the integration of catalytic processes belonging to a single meta-

bolic subsystem and in the functional coordination between different metabolic

subsystems.

The following section addresses these studies related with irreversible enzymes

from glycolysis (Sect. 8.2) and in dissipative metabolic networks (Sect. 8.3).
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8.2 Quantitative Analysis of the Effective Functional

Structure in Yeast Glycolysis

Yeast glycolysis is considered one of the prototypical biochemical oscillators, and

one of the most studied metabolic pathways. It was the first metabolic system in

which spontaneous oscillations were observed (Duysens and Amesz 1957; Chance

et al. 1964), and these studies led to the first models of this pathway based on

enzyme kinetics (Goldbeter and Lefever 1972, Goldbeter 1973).

From a structural viewpoint, glycolytic enzymes can interact with structural

proteins and membranes generating metabolic microcompartments. For instance, it

has been observed that the entire glycolytic pathway is associated with the cytosolic

face of the outer mitochondrial membrane (Graham et al. 2007), or forms a

multienzyme complex on the inner surface of the plasma membrane (Campanella

et al. 2008). The interaction of glycolytic enzymes with cytoskeletal proteins has

also been suggested as another mechanism of compartmentation of this pathway

(Clarke and Masters 1975; Waingeh et al. 2006).

Reported evidence shows substrate channeling in glycolytic enzymes (Malaisse

et al. 2004; Shearer et al. 2005). For example, the three irreversible glycolytic

enzymes hexokinase (Malaisse et al. 2004; Zhang et al. 2005), phosphofructokinase

(Cascante et al. 2000; Commichau et al. 2009), and pyruvate kinase (Clarke and

Masters 1975; Commichau et al. 2009; Waingeh et al. 2006) show substrate

channeling or compartmentation. These experimental observations are consistent

with the existence of a glycolytic multienzymatic complex. Mowbray and Moses

(1976) proposed the existence of such a complex from studies performed using cell-

free extracts (Mowbray and Moses 1976).

As in other dissipative structures, the metabolic dynamic patterns of yeast

glycolysis find their roots in the nonlinear regulatory processes, e.g., stoichiometric

autocatalysis, allosteric regulation and product activation (Cortassa et al. 1991;

Goldbeter 2002, 2007), and other sources (Cortassa and Aon 1994; Olsen

et al. 2009).

In yeast glycolysis, it has been shown that an instability-generating mechanism

is given by the regulation of phosphofructokinase, specifically, the positive feed-

back exerted by the reaction products, ADP and fructose-1,6-bisphosphate (Boiteux

et al. 1975; Goldbeter and Lefever 1972; Goldbeter 2002). In yeast extracts,

traveling waves of NADH and protons were observed associated with glycolysis

(Mair et al. 2001). All this evidence shows that yeast glycolysis constitutes an

example of a dissipatively structured enzymatic association that can display

microcompartmentation, substrate channeling, and spatiotemporal dynamic

behavior.

Over the last 30 years a large number of studies have been focusing on the

molecular mechanisms underlying the emergence of self-organized glycolytic

patterns (Dano et al. 1999; De la Fuente et al. 1995; Madsen et al. 2005; Olsen

et al. 2009; Termonia and Ross 1981; Wolf et al. 2000). Nevertheless, and despite
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the significant advances made, we still lack a quantitative description of the

effective functional structures involved in enzymatic activity coordination.

Functional connectivity quantifies how much the dynamics of one variable is

statistically dependent on the dynamics of another. Therefore, although structural

and functional connectivity are obviously related (i.e., structure shapes function),

there is a striking difference between them: it is possible to have two variables

which are functionally related (thus highly correlated) but structurally unconnected.

The reason is because function can go beyond structure through neighbor–neighbor

interactions. In order to quantify the functional structure arising from glycolytic

enzymes catalyzing irreversible steps under dissipative conditions, the effective

connectivity between enzyme and enzyme interactions, which account for the

influence that the activity of one enzyme has on the future of another, was analyzed

by transfer entropy (TE).

8.2.1 Determining the Rates of Irreversible Enzymatic Steps
in Glycolysis

Although the kinetic behavior in vivo of most enzymes is unknown, in vitro studies

can provide kinetic parameters and enzymatic rates. We used the latter strategy; for

hexokinase we adopted a rate equation depending on glucose and ATP (Viola

et al. 1982); for phosphofructokinase and pyruvate kinase a concerted transition

model was applied (Goldbeter and Lefever 1972; Markus et al. 1980).

8.2.2 Modeling Glycolytic Processes Under Dissipative
Conditions

In Fig. 8.1, the classical topological structure characterized by the specific location

of enzymes, substrates, products, and feedback-regulatory metabolites is shown.

When the metabolite S (glucose) feeds the glycolytic system, it is transformed by

the first enzyme E1 (hexokinase) into the product P1 (glucose-6-phosphate). The

enzymesE2 (phosphofructokinase) andE3 (pyruvatekinase) transform the substrates

P01 (fructose 6-phosphate) and P02 (phosphoenolpyruvate) into the products P2
(fructose 1-6-bisphosphate) and P3 (pyruvate), respectively. The steps P1 ! P01 and
P2 ! P0 are reversible. A part of P1 is removed from the pathway with a constant

rate of q1 which is related to the activity of pentose phosphate pathway; likewise, q2
is the constant rate for the sink of the product P3 which is related to the activity of

the pyruvate dehydrogenase complex.

Kinetic modeling with ordinary differential equations (ODE) is commonly used

for studying metabolic systems. Consistently with the theory of dynamical systems,

delays can be modeled by adding to the original variables other auxiliary functional
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variables. By means of using differential equations with delay it is possible to

consider initial functions (instead of the constant initial values of ODE systems) and

to analyze the consequences of parametric variations (De la Fuente and Cortes

2012).

For spatially homogeneous conditions, the time evolution of the glycolytic

system represented in Fig. 8.1 can be described by the following three delay

differential equations:

dα

dt
¼ z1σ1Φ1ðμÞ � σ2Φ2ðα; βÞ � q1α;

dβ

dt
¼ z2σ2Φ2ðα; βÞ � σ3Φ3ðβ; β0; μÞ;

dγ

dt
¼ z3σ3Φ3ðβ; β0; μÞ � q2γ; (8.4)

where the variables α, β, and γ denote the normalized concentrations of glucose-6-

phosphate, fructose 1-6-bisphosphate, and pyruvate, respectively, with the follow-

ing three enzymatic rate functions:

Φ1 ¼ μSKD3 ðK3K2 þ μKm1
KD3 þ SK2 þ μSKD3Þ= ; (8.5)

Φ2 ¼ αð1þ αÞð1þ d1βÞ2
L1ð1þ cαÞ2 þ ð1þ αÞ2ð1þ d1βÞ2

; (8.6)

Φ3 ¼ d2β
0ð1þ d2β

0Þ3
L2ð1þ d3μÞ4 þ ð1þ d2β

0Þ4
(8.7)

and

Fig. 8.1 Multienzymatic instability-generating system in yeast glycolysis. The irreversible stages
correspond to the enzymes E1 (hexokinase), E2 (phosphofructokinase), and E3 (pyruvate kinase).

Metabolite S (glucose) is transformed by the first enzyme E1 into the product P1 (glucose-6-

phosphate). P01 , P2, P02 , and P3 denote the concentrations of fructose 6-phospfate, fructose

1,6-bisphospfate, phosphoenolpyruvate, and pyruvate. q1 is the rate first-order constant for the

removal of P1; q2 is the rate constant for the sink of the product P3. The figure includes the

feedback activation of E2 and the feedback inhibition of E3. The ATP is consumed by E1 and

recycled by E3. Adapted from Fig. 1 in (De la Fuente and Cortes 2012)
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β0 ¼ f βðt� λ1Þð Þ;
μ ¼ h γðt� λ2Þð Þ:

The constants σ1, σ2, and σ3 correspond to the maximum activity of the enzymes

E1, E2, and E3 (Vm1, Vm2, and Vm3) divided by the Michaelis constants Km1, Km2,

and Km3, respectively. The z constants are defined as z1 ¼ Km1/Km2, z2 ¼ Km2/Km3,

and z3 ¼ Km3/Kd3 with Kd3 representing the dissociation constant of P2 by E3. L1
and L2 are the respective allosteric constant of E2 and E3. The constants d’s are
d1 ¼ Km3/Kd2, d2 ¼ Km3/Kd3, and d3 ¼ Kd3/Kd4 (Kd3 and Kd4 are the dissociation

constant of P2 by E3 and the dissociation constant of MgATP, respectively). The c
constant is the nonexclusive binding coefficient of the substrate P1 (De la Fuente

and Cortes 2012).

From a dissipative point of view, the essential enzymatic stages are those that

correspond to the biochemical irreversible processes (Ebeling et al. 1986). To

simplify the model, we did not consider the intermediate part of glycolysis belong-

ing to the enzymatic reversible stages. In this way, the functions f and h are

supposed to be the identity function:

f βðt� λ1Þð Þ ¼ βðt� λ1Þ
h γðt� λ2Þð Þ ¼ γðt� λ2Þ

The initial functions present a simple harmonic oscillation in the following form:

α0ðtÞ ¼ Aþ B sinð2πt=PÞ
β0ðtÞ ¼ Cþ D sinð2πt=PÞ
γ0ðtÞ ¼ Eþ F sinð2πt=PÞ

P ¼ 534 s :

The dependent variables α, β, and γ are normalized by dividing them by Km2,

Km3, and Kd3, the parameters λ1 and λ2 are time delays which correspond to phase

shifts of the initial functions and P is the period (see for more details De la Fuente

and Cortes 2012).

This glycolytic model has been exhaustively analyzed before, revealing a nota-

ble richness of temporal patterns which include the three main routes to chaos

(De la Fuente et al. 1996a, b, 1999b), as well as a multiple coexisting stable states

(De la Fuente et al. 1998a, 1999b), and persistent behavior (De la Fuente

et al. 1998b, 1998c; 1999c).
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8.2.3 Numerical Integration of the Glycolytic Model Under
Sinusoidal Substrate Input Flux Values

In cell-free extracts, a sinusoidal input of glucose can produce periodic, quasiperi-

odic, or chaotic behavior (Markus et al. 1985a, b). Monitoring NADH fluorescence

from glycolyzing baker’s yeast cell-free extracts subjected to sinusoidal glucose

input flux has shown that quasiperiodic dynamics is common at low input

amplitudes whereas chaotic behavior happens at high amplitudes (Markus

et al. 1985a, b). We adopted a similar approach, by analyzing the dynamic behavior

of the glycolytic system considered under periodic input flux with a sinusoidal

source of glucose S ¼ S0 þ A sinðωtÞ. Assuming the experimental value of

S0 ¼ 6mM=h (Markus et al. 1984), after dividing by Km2, the Michaelis constant of

phosphofructokinase, a normalized input flux S0 ¼ 0:033 Hz was obtained (De la

Fuente and Cortes 2012). Under these conditions, different types of dynamic

patterns can be observed as a function of the amplitude A of the sinusoidal glucose

input flux, as bifurcation parameter (De la Fuente et al. 1996b, 1999b).

Figure 8.2 shows different time series of the fructose 1,6-bisphospfate concen-

tration after numerical integration of the glycolytic model (8.4) at different glucose

input flux. A quasiperiodic route to chaos is observed (cf. left panel in Fig. 8.2). For

A ¼ 0.001 the biochemical oscillator exhibits a periodic pattern (Fig. 8.2a). After

increasing the amplitude to A ¼ 0.005 another Hopf bifurcation appears along with

quasiperiodic behavior (Fig. 8.2b). Above A ¼ 0.021, complex quasiperiodic

oscillations take place (Fig. 8.2c), and after a new Hopf bifurcation the resulting

dynamic behavior evolves into deterministic chaos (A ¼ 0.023, Fig. 8.2d), as

predicted (Ruelle and Takens 1971). This behavior corresponds to a typical quasi-

periodic route to chaos, in agreement with experimental data (Markus et al. 1985b).

8.2.4 Measure of the Effective Functional Structure of
Glycolysis

The time series of enzymatic activity obtained were analyzed using the nonlinear

technique of transfer entropy in order to quantify the effective connectivity between

glycolytic irreversible enzymes. We reasoned that the oscillatory patterns exhibited

by metabolic intermediates might have information which can be captured by the

TE measure. TE measures the influences between pairs of time series of catalytic

activity, thus resulting in an asymmetric quantity that defines directionality in time

and cause to effect, allowing to quantify the flow of functional information between

processes behaving nonlinearly (Schreiber 2000).

For the calculation of TE, the different states of each dynamic variable were

obtained simply by rounding the value of the variable at time t to the nearest integer.
Thus, the state probabilities were computed by counting the number of times that

192 I.M. de la Fuente



Fig. 8.2 Dissipative functional structure involved in the integration of catalytic processes. (a–d)
Under dissipative conditions, a quasiperiodic route to chaos emerges in the glycolytic system when

increasing the normalized amplitude of the periodic source of glucose substrate from A ~ 0:001 to

A ~ 0:023. The figure shows the time evolution of the normalized concentration β, fructose
1,6-bisphospfate. (a) Periodic pattern. (b) Quasiperiodic oscillations. (c) Complex quasiperiodic

motion indicating the transition towards chaos. (d) Deterministic chaos. (e–h) Biomolecular

information flows measured in bits between the irreversible enzymes for the same conditions in

the left panel. The strength of effective connectivity is plotted with arrows width proportional to

the transfer entropy divided by its maximum value. The numerical integration of the system was

performed with the package ODE Workbench, which is part of the Physics Academic Software.

Internally this package uses a Dormand–Prince method of order 5 to integrate differential

equations. Adapted from Fig. 2 in (De la Fuente and Cortes 2012)
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each variable was in a given state. The set of all variables is given by α, β, and γ in
(8.4).

The units of TE are in information bits, as the Log function appearing in the

Shannon information is calculated on base 2. All the values were normalized to the

maximum, thus the value of 1.00 corresponding in all cases to the TE between E2

and E3 which was the maximum in the system; the other values represent the ratio

of information with respect to this maximum flow.

In Fig. 8.2 the biomolecular information flows between the irreversible enzymes

of glycolysis are plotted. The values of functional influence obtained range from

0.58�TE�1.00 (with mean � SD¼0.79 � 0.12), which in general terms indicates

a high effective connectivity in the multienzymatic subsystem.

8.2.5 Emergence of an Integrative Functional Structure
in the Glycolytic Metabolic Subsystem

The data showed that the flows of functional connectivity can change significantly

during the different metabolic transitions analyzed, exhibiting high TE values. The

maximum source of information corresponds to the E2 enzyme (phosphofructo-

kinase) at the edge of chaos, when complex quasiperiodic oscillations emerge

(cf. Fig. 8.2). This finding seems to be consistent with other studies showing that

complexity is maximal when a dynamic system operates at the edge between order

(e.g., periodic behavior) and chaos (Bertschinger and Natschlager 2004; Kauffman

and Johnsen 1991).

The level of influence in terms of causal interactions between the enzymes is not

always the same but varies depending on substrate fluxes and the particular

dynamic regime. As a result of the dissipative self-organization, a biomolecular

informative structure emerges in the metabolic subsystem, which is capable of

modifying the catalytic activities of the glycolytic irreversible enzymes. The self-

organization of the metabolic subsystem shapes a functional dynamic structure able

to send biomolecular information between its catalytic elements, in such a way that

the activity of each irreversible enzymatic step could be considered an information

event. Each irreversible catalytic activity depends on the molecular information

given by the substrate fluxes and regulatory signals, performing three simultaneous

functions: as signal receptor, as signal integrator, and as a source of new molecular

information. As a result of the overall process, the enzymatic activities are coordi-

nated, and the metabolic subsystem operates as an information processing system

which, at every moment, defines sets of biochemical instructions that make each

irreversible enzyme evolve in a particular and precise catalytic pattern.

The simulations also show that for all cases analyzed the maximum effective

connectivity corresponds to the transfer entropy from E Z to E Z, indicating the

biggest information flow in this system. The total information flow was also

analyzed as the difference between the TE output from an enzyme minus the total
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TE input (Fig. 8.3). Positive values from that difference mean that that enzyme is a

source of causality flow, while negative numbers are interpreted as sinks or targets.

The maximum source of total transfer information (0.41) corresponds to the E2

enzyme (phosphofructokinase) for A ¼ 0.021, when complex quasiperiodic

oscillations appear in the glycolytic system. For all conditions the enzyme E2

(phosphofructokinase) is the main source of effective influence and the enzyme

E3 (pyruvate kinase) a sink, which can be interpreted as a target from the point of

view of its effective functionality; the enzyme E1 (hexokinase) appears as less

constrained with a flow close to zero. Accordingly, E2 is the major source, E3 is the

major sink, and E1 is a minor source with a value close to zero.

The results of our model revealed in a quantitative manner that the enzyme E Z

(phosphofructokinase) is the major source of causal information and represents the

key core of glycolysis in this model. Biochemically, phosphofructokinase has been

considered a major checkpoint in the control of glycolysis (Gancedo and Serrano

1989; Heinisch et al. 1996). The main reason for this generalization is that phos-

phofructokinase exhibits a complex regulatory behavior that reflects its capacity to

integrate many different signals (Stryer 1995). From a dissipative point of view, this

Fig. 8.3 Total information flows Bars represent the total information flow, defined per each

enzyme as the total outward TE minus the total inward. The functionality attributed for each

enzyme is an invariant and preserved along the route, i.e. E2 is a source, E3 is a sink, and E1 has a

quasi-zero flow. A is the normalized amplitude of the periodic source of glucose substrate.

Adapted from Fig. 3 in (De la Fuente and Cortes 2012)
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enzyme catalyzes a reaction far from equilibrium and its regulation has been

considered an important instability-generating mechanism for the emergence of

oscillatory patterns in glycolysis (Goldbeter 2007). The TE studies give a quantifi-

cation of the effective connectivity and confirm that E2 (phosphofructokinase) is the

key core of the pathway in this glycolytic model.

To summarize, the TE analysis shows the emergence of a new kind of dynamic

functional structure, characterized by changing connectivity flows that reflect

modulation of the kinetic behavior of the irreversible enzymes considered, and

catalytic coordination.

8.3 Self-Organized Catalytic Behavior in Dissipative

Metabolic Networks

Experimental observations (Almaas et al. 2004, 2005) and numerical studies with

dissipative metabolic networks (De la Fuente et al. 1999a, 2008) have shown that

cellular enzymatic activity self-organizes. This spontaneous organization leads to

the emergence of a systemic metabolic structure characterized by a set of different

enzymatic processes locked into active states (metabolic core) while others present

on–off dynamics. Processes at the metabolic core and those exhibiting all-none

dynamics are fundamental traits of the systemic metabolic structure which may be

present in many different types of cells (Almaas et al. 2004, 2005).

Recently, in an attempt to provide a more accurate understanding of the func-

tional coordination between several multienzymatic sets, the catalytic activities of a

dissipative metabolic network were studied using transfer esntropy (De la Fuente

et al. 2011). The results showed that a global functional structure of effective

connectivity emerges, which is dynamic and characterized by significant variations

of biomolecular information flows (De la Fuente et al. 2011).

In this study, a DMN of 18 metabolic subsystems, each one representing a set of

self-organized enzymes (MSb), was first performed. Figure 8.4 illustrates the

organization of substrate fluxes and substrate input fluxes of the DMN. Three

types of biochemical signals were considered in the network: activating (positive

allosteric modulation), inhibitory (negative allosteric modulation), and an all-or-

none type.

For building the DMN, several factors were chosen at random: (1) the number of

flux interactions, (2) the number of regulatory signals, (3) the parameters associated

with the flux-integration functions, (4) the regulatory coefficients of the allosteric

activities, and (4) the values of the initial conditions in the activities of all metabolic

subsystems (De la Fuente et al. 2011).

Since metabolic networks are open systems, we considered substrate input fluxes

from the environment. Here, MSb3 andMSb10 receive the constant substrate inputs

of S1 ¼ 0.54 and S2 ¼ 0.16, arbitrarily fixed.
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Fig. 8.4 Dynamic catalytic behaviors of the dissipative metabolic network. The network

consisting of 18 self-organized multienzymatic complexes (metabolic subsystems) is depicted.

The interconnection by fluxes through the network, and substrate input fluxes are shown. For

simplification purposes, the topological architecture of regulatory signals considered in the

network is not indicated. The network was perturbed by two different external conditions:

(I) two substrate input fluxes S1 and S2 (left column in panel) and (II) only with the stationary

stimulus S1 (right column) (Panel a1). Under condition I, a systemic metabolic structure sponta-

neously emerges in the network in which the enzymatic subsystem MSb12 is always active

(metabolic core) (gray circle) and the catalytic subsystem MSb15 is inactive (black circle),
whereas the rest of enzymatic sets exhibit on–off changing states (white circle) (Panel a1).
Under condition II, the network preserves the systemic metabolic structure exhibiting flux

plasticity which involves persistent changes in all the catalytic patterns (Panels b and c) and

structural plasticity resulting in a persistent change in the dynamic state of the subsystem MSb15

which exhibits a transition from an off (black circle) to an on–off changing state (white circle)
(Panel a2). Enzymatic activities of the MSb12 (metabolic core) exhibit a large number of different

catalytic transitions between periodic oscillations and some steady states (Panel b1). Condition II
produces persistent changes in the catalytic activity of subsystem MSb12 without steady states

(flux plasticity) (Panel b2). Self-regulation the network under external conditions I and II implies

changes in the amplitude of the activities from metabolic subsystem activities (flux plasticity)

(Panels c1, c2). Adapted from Fig. 2 in (De la Fuente et al. 2011)
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When the dynamics of this network was analyzed in the presence of two

simultaneous external stimuli S1 and S2, a systemic metabolic structure emerged

spontaneously. The MSb12 is always in an active state (metabolic core) and the

MSb15 is always inactive whereas the remaining subsystems exhibit intermittent

catalytic activities (on–off changing states) (Fig. 8.4). The active catalytic

subsystems present complex output patterns with large periodic transitions between

oscillatory and steady-state behaviors (105 transitions per period). Figure 8.4b1

displays a representative time series of activities from MSb12 showing

30 transitions between oscillatory and steady-state behavior.

When the external stimulus S2 was removed and only the stationary input flux of

substrate S1 was considered, the network undergoes a drastic dynamic reorganiza-

tion: flux (Almaas et al. 2005) and structural (Almaas et al. 2005; Almaas 2007)

plasticity appear. The former involves persistent changes in all catalytic activities

(see some examples in Fig. 8.4b2, c2), while the latter implies a persistent change in

the state of the MSb15, i.e., under conditions of both stimuli S1 and S2 the MSb15

was in an off state, while the presence of only S1 stimulus MSb15 locks into an

on–off changing dynamics. Despite the drastic catalytic changes observed in the

temporal evolution of the subsystems dynamics, the network preserves the systemic

metabolic structure, i.e., MSb12 is the metabolic core while the remaining

subsystems exhibit intermittent dynamics.

Interestingly, the network adjusts the internal metabolic activities to the new

environmental change (one or two stimuli) by means of flux and structural

plasticities. This kind of behavior has been experimentally observed in several

organisms as an adaptive response to external perturbations (Almaas et al. 2005).

The complex dynamic behavior and transitions exhibited by the network studied are

spontaneous and emerge from the regulatory structure, and nonlinear interactions.

8.3.1 Systemic Functional Structure of Biomolecular
Information Flows

Next, the amplitude of the different catalytic patterns was used to study the

effective connectivity based on transfer entropy.

For the condition corresponding to two simultaneous stimuli, the analyzed graph

of effective connections shows that there are only nine metabolic subsystems with

significant statistical values (Fig. 8.5d1). The arrows in the graph illustrate that the

effective connectivity has directionality and the thickness is proportional to TE

values. The maximum value of TE equal to 0.179 information bits corresponds to

the link from MSb16 to MSb13.

Under conditions in which S2 was removed and only the stationary input flux of

substrate S1 was considered, the TE values obtained are depicted in Fig. 8.5d2. It

can be observed how the structure of the effective information flows is much more

complex under one stimulus: (I) 10 of the 18 enzymatic sets have effective links,
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Fig. 8.5 Systemic functional structure of biomolecular information flows. The biomolecular

information flows between the self-organized multienzymatic complexes (circles) are measured

in bits, and they are responsible for their functional coordination. The arrow’s thickness is

proportional to the TE value except when TE was smaller than 0.1, for which the thickness does
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(II) the density of effective links increases from 10.802 (two stimuli) to 13.580 (one

stimulus), and (III) not only the density increased but the connections were made

stronger (mean values increase from 0.079 to 0.133 and the maximum value of

effective connectivity is 0.377 versus 0.179 molecular information bits).

The metabolic core also manifests qualitative and quantitative changes in the

molecular information flows. Specifically, increasing the TE values and modifying

the connectivity to several subsystems, for example, under stimuli S1 and S2, the

core receives a causal information flow with a TE ¼ 0.116 from MSb8 (Fig. 8.6).

When the substrate input flux S2 is removed, the directionality of the signal reverses

and the core sends an information flow of TE ¼ 0.153 to MSb8 (see Fig. 8.6).

TE analysis reveals that a systemic functional structure of effective information

flows emerges in the network, which is able to modify the catalytic activity of all

the metabolic subsystems. Moreover, the level of information flows is highly

responsive to environmental influences.

8.3.2 Modular Organization of the Biomolecular
Information Flows: Metabolic Switches

Our analyses also showed a modular organization of the effective information flows

in which some sets of catalytic subsystems are clustered forming functional meta-

bolic sub-networks. A detailed study of TE data allows us to infer different modular

organization: (I) a set of effective connections between certain subsystems is

preserved under both external conditions (Module α) (Fig. 8.5a1–a2), (II) a second
sub-network of effective information flows exhibit reverse directionality (Module

β) (Fig. 8.5b1–b2), meaning that the TE connections are preserved but their

direction is inversed, and (III) the third set of connections emerges only in one of

the stimulation conditions (Modules γ and δ) (Fig. 8.5c1–c2).
Under both stimuli S1 and S2, the diversity of the enzymatic behavior is

systemically self-regulated by means of modules α, β, and γ. However, when
only a stationary input flux of substrate S1 is considered, the network undergoes a

dramatic reorganization of all catalytic dynamics exhibiting flux and structural

Fig. 8.5 (continued) not scale with the TE value as it was plotted as thin as possible to be

visualized. The values of TE are statistical significant (p value < 0.05, Bonferroni correction,

n ¼ 50 experiments). The metabolic subsystem activities shape four modules of effective connec-

tivity. Panels a1–a2, the module α is preserved during both external stimuli; Panels b1–b2, a

second sub-network of effective information flows are preserved but with inverted directionality

(Module β); Panels c1–c2, a third class of modules emerges only in one of the external

perturbations considered (Modules γ and δ); Panels d1–d2, all modules together. The transitions

between modules (metabolic switches) provoke permanent changes in all catalytic activities of the

metabolic subsystems, and these metabolic switches are triggered by changes in the external

conditions (I: two stimuli S1 and S2, II: only stimulus S1). Adapted from Fig. 5 in (De la Fuente

et al. 2011)
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plasticity. These drastic changes are self-regulated by means of Module α, an
emergent Module δ, and Module β, but now in this module all the directions of

effective connectivity reverse. Therefore, the transitions between the modules

provoke permanent changes in all catalytic activities of the self-organized enzy-

matic subsystems, and these metabolic switches are triggered by changes in the

external conditions.

Functionally, metabolic switches are discrete transitions between catalytic

modules regulated by systemic dynamics of the biomolecular information flows.

At a molecular level, a switch is a biochemical process in which determined

enzymes can undergo a persistent change in their catalytic status. Experimentally,

it has been observed that the molecular mechanisms involved in a switch depend on

posttranslational modification of enzymatic activities (Miller et al. 2005) such as

phosphorylation (Oesch-Bartlomowicz and Oesch 2003), acetylation (Pasini

et al. 2010), and methylation (He et al. 2005). Molecular switches have been

implicated in several metabolic processes including transcriptional regulation

Fig. 8.6 The dynamical structure of biomolecular information flows modify the catalytic activity
of self-organized multienzymatic complexes. The figure displays the in and out biomolecular

information flows belonging to the metabolic core (gray circle). The white circles represent active
multienzymatic complexes. The metabolic core (the metabolic subsystem 18) depends on the

biomolecular information contained in substrate fluxes and regulatory signals; this core performs

three functions simultaneously: signal reception and integration, and being a source for new

biomolecular information. The dynamical functional structure depends strongly on the external

stimuli (I and II)
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(Lehman and Kelly 2002), Warburg effect (Levine and Puzio-Kuter 2010; Vasseur

et al. 2010), cell cycle (Verkest et al. 2005), epigenetic processes (Lim and van

Oudenaarden 2007), central carbon metabolism (Xu et al. 2008), DNA repair

(He et al. 2005), growth cell metabolism (Tennessen et al. 2011), and T-cell

activation and apoptosis (Perl et al. 2002).

In addition to the network topological structure, characterized by the specific

location of enzymatic subsystems, molecular substrate fluxes, and regulatory

signals, there is a global functional structure of biomolecular information flows

which is dynamic and able to modify the catalytic activities of all participating

enzymatic sets. Systemic metabolic structure not only involves a metabolic core

and self-organized multienzymatic complexes in an on–off mode, but also

determines a sophisticated structure of effective information flows which also

provides integrative coordination and synchronization between all metabolic

subsystems. The functional structure of biomolecular information flows is modular

and the dynamic changes between modules correspond to metabolic switches which

allow for critical transitions in the enzymatic activities. The modules of effective

connectivity and the functional switches seem to be important elements of the

systemic metabolic structure.

8.4 Concluding Remarks

In this work, we have addressed some aspects related with the self-organization of

metabolic processes in terms of information theory. Specifically, we have

quantified biomolecular information flows in bits between catalytic elements that

put in evidence essential aspects of metabolic function. In particular, we have

shown the emergence of effective connectivity structures and the functional coor-

dination between catalytic elements.

As a continuation of these results, in another work we have performed analyses

of different catalytic activities in a dissipative metabolic network based on statisti-

cal mechanics. We calculated the Shannon entropy and the energy function and

found that enzymatic activities are systemically governed by Hopfield-like

attractors with capacity to store functional catalytic patterns which can be correctly

recovered from specific input stimuli. The metabolic attractors regulate the catalytic

patterns, modify the efficiency in the connection between self-organized

multienzymatic complexes, and stably store these modifications (De la Fuente

et al. 2013). In the light of our results, the systemic metabolic structure appears to

operate as a complex information processing system which continuously defines

sets of biochemical instructions that make it to evolve into a particular and precise

catalytic regime for each multienzymatic subsystem (De la Fuente et al. 2013).

At present, we are working on the molecular mechanisms that link the metabolic

information emergent in the systemic metabolic structure with genetic information.

Understanding the principles and quantitative laws that govern the systemic self-

organization of enzymatic processes will be crucial to elucidate the structural and

functional architecture of cellular dynamics.
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Sánchez-Armáss S, Sennoune SR, Maiti D, Ortega F, Martı́nez-Zaguila R (2006) Spectral imaging

microscopy demonstrates cytoplasmic pH oscillations in glial cells. Am J Physiol Cell Physiol

290:C524–C538

Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they

do. Glia 54:716–25

Schibler U, Sassone-Corsi PA (2002) Web of circadian pacemakers. Cell 111:919–22

Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism.

Curr Opin Cell Biol 17:223–9

Shaul O, Mironov V, Burssens S, Van Montagu M, Inze D (1996) Two Arabidopsis cyclin

promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells.

Proc Natl Acad Sci 93(10):4868–72

Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger K et al (2009) Rapid and sustained

nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol

332:1–13

Shearer G, Lee JC, Koo JA, Kohl DH (2005) Quantitative estimation of channeling from early

glycolytic intermediates to CO in intact Escherichia coli. FEBS J 272(13):3260–9

Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–64

Slaby O, Lebiedz D (2009) Oscillatory NAD(P)H waves and calcium oscillations in neutrophils?

A modeling study of feasibility. Biophys J 96:417–28
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Chapter 9

Systems Biology Approaches to Cancer

Energy Metabolism

Alvaro Marı́n-Hernández, Sayra Y. López-Ramı́rez,

Juan Carlos Gallardo-Pérez, Sara Rodrı́guez-Enrı́quez,

Rafael Moreno-Sánchez, and Emma Saavedra

Abstract Application of Systems Biology approaches to energy metabolism of

cancer cells help in the understanding of their controlling and regulatory

mechanisms and identification of new drug targets. Our group built and validated

a kinetic model of tumor glycolysis based on the experimental determination of all

the enzyme/transporter kinetic parameters, metabolite concentrations, and fluxes in

tumor cells. Model predictions enabled to understand how glycolysis is controlled

and allowed identification of the main controlling steps which can be the most

promising therapeutic targets. In this chapter, the model was extended to determine

the contribution on the pathway function of the expression of different glycolytic

isoforms displaying different catalytic properties, a feature commonly observed in

tumor cells subjected to hypoxia. Model predictions now indicated that, by fully

changing the glucose transporter (GLUT), hexokinase (HK), or both, from low- to

high affinity isoforms, the glycolytic flux can be increased (GLUT + HK > GLUT

> > HK); however, this concurred with a marked deregulation of the adenine

nucleotides concentration. To gradually increase glycolytic flux with no alteration

of adenine nucleotides homeostasis, which is closer to the physiological response of

tumor cells, the model indicated that simultaneous expression in different ratios of

GLUT and HK isoforms with different affinities should be accomplished. Mito-

chondrial metabolism is also active and essential for cancer cells. Therefore, a

cancer energy metabolism model, including glycolysis and oxidative
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phosphorylation (Krebs cycle, respiratory chain, Pi/ADP transport, ATP synthase),

should identify the most appropriate sites for successful multi-target therapies.

Abbreviations

ALDO Aldolase

DHAP Dihydroxyacetone phosphate

ENO Enolase

Ery4P Erythrose-4-phosphate

FBP Fructose-1,6-bisphosphate

F6P Fructose-6-phosphate

F2,6BP Fructose-2,6-bisphosphate

CJ
Ei or FCC Flux control coefficient

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

G3P Glyceraldehyde-3-phosphate

G6P Glucose-6-phosphate

GLUT Glucose transporter

HK Hexokinase

HPI Hexosephosphate isomerase

KC Krebs cycle

LDH Lactate dehydrogenase

OxPhos Oxidative phosphorylation

PEP Phosphoenolpyruvate

Pyr Pyruvate

PFK-1 Phosphofructokinase type 1

PFKFB3 Phosphofructokinase type 2 B3

6PG 6-phosphogluconate

PGK Phosphoglycerate kinase

PGAM 3-phosphoglycerate mutase

PYK Pyruvate kinase

TK Transketolase

TPI Triosephosphate isomerase.

9.1 Introduction

Cancer is a very complex disease that arises from the combination of multiple

changes occurring at both genetic and biochemical levels. The existing treatments

against this deadly disease are mostly based on the higher susceptibility of tumor

cells to damage induced by radiation and chemotherapy compared to normal cells.

However, very frequently the treatments have severe side effects on the patients and

in many cases the tumors are refractory to its complete elimination because drug

resistance emerges. For these reasons, it would be convenient to gain understanding
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of the differences between tumor and normal cells at the molecular level in the

search for new therapeutic strategies that can be more selective and effective

against cancer cells (Hornberg et al. 2007; Moreno-Sánchez et al. 2007, 2010;

Kolodkin et al. 2012).

Due to its multifactorial nature, in cancer multiple metabolic and signal trans-

duction pathways and cellular processes are affected, and hence application of

systems biology in cancer research seems highly appropriate for the characteriza-

tion and full understanding of the disease at the cellular, subcellular, and molecular

levels as well as for providing new insights into the underlying biological process

(Hornberg et al. 2006; Baker and Kramer 2011). Furthermore, a systems analysis of

the disease may help in the identification of optimal drug targets at the time in

which pharmaceutical industry has been facing a decline in the production of new

drugs for successful cancer treatment (Soto et al. 2011). For the latter goal, the

integration of Metabolic Control Analysis (MCA) and kinetic modeling, both

“bottom-up” System Biology approaches (Westerhoff 2011), can help in the iden-

tification of promising drug targets by identifying the most controlling steps in

essential metabolic pathways of cancer cells (Hornberg et al. 2007; Moreno-

Sánchez et al. 2008). The advantage of inhibiting the main flux- (and/or metabolite

concentration-) controlling steps of a metabolic pathway, or blocking the most

controlling pathways in a cellular process, is that small changes in their activities

will bring about a more pronounced effect in decreasing the pathway flux, or cell

function, than inhibition of low or noncontrolling steps. This strategy may undoubt-

edly lead to the use of lower inhibitor concentrations, which may decrease undesir-

able side effects on healthy cells.

Most of systems biology studies on tumor cells have been focused on signaling

pathways (e.g. Ca2+, cAMPK/PKA, CaN-NFAT, I-kappaB/NF-kappa B,

JAK-STAT, MAPK, p53, and Smad) due to their role in several essential cellular

activities such as cell proliferation, apoptosis, angiogenesis, metastasis, or invasion

(reviewed by Hübner et al. 2011). In one report, a kinetic model including

148 reactions was constructed for the study of the control of the epidermal growth

factor-induced MAPK pathway. The authors concluded that amongst all the

reactions, only the activity of the protein Raf exerted the highest control (Hornberg

et al. 2005).

Other research groups have considered that the decrease in ATP synthesis in

cancer cells might also be an alternative strategy to affect tumor cells proliferation;

therefore, inhibition of both glycolysis and oxidative phosphorylation (OxPhos) in

these cells emerges as another way to tackle the problem of cancer treatment

(Cascante et al. 2002, 2010; Moreno-Sánchez et al. 2007, 2010; Sheng

et al. 2009; Chen et al. 2012). Notwithstanding their relevance for tumor cell growth

and survival, systems biology studies on glycolysis and/or OxPhos are scarce. In

this chapter we have experimentally assessed and discussed the relevance of

systems biology analysis of the energy metabolism of tumor cells for understanding

the mechanisms that govern this function (i.e., cytosolic ATP supply), and how this

approach may help in identifying drug targets against tumor energy metabolism.
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9.2 Inhibiting Tumor Glycolysis

In most tumor cells the glycolytic flux is 2- to 17-fold higher compared to normal

cells as a consequence of the over-expression of all the glycolytic enzymes and

transporters induced by several oncogenes and the hypoxia-inducible factor-1

(HIF-1). This results in the excretion of large amounts of lactate even under aerobic

conditions, a phenomenon known as the “Warburg effect” of cancer cells (reviewed

by Moreno-Sánchez et al. 2007; Marı́n-Hernández et al. 2009). It is worth recalling

that in addition to contributing to the ATP supply for cellular work, the increased

rate of tumor glycolysis also provides various glycolytic intermediaries which are

precursors for the synthesis of macromolecules (polysaccharides, nucleic acids,

triglycerides, proteins) required for the constant and accelerated cell proliferation.

Moreover, an increased glycolysis may predominate for ATP supply when

mitochondria are damaged (Carew and Huang 2002) and an active mitochondrial

degradation (mitophagy) occurs (Lock et al. 2011) or when tumor cells are under

hypoxic conditions (Xu et al. 2005). In addition, a correlation between increased

glycolysis and tumor resistance to chemo- and radiotherapy has been found

(Fanciulli et al. 2000; Maschek et al. 2004; Xu et al. 2005; Lee et al. 2007).

Therefore, it has been suggested that inhibition of this essential pathway might be

a therapeutic option to increase the effectiveness of chemotherapy and radiotherapy

(Pelicano et al. 2006).

The effect of individual inhibition of various glycolytic enzymes (hexokinase II,

HKII; phosphofructokinase type 2 B3, PFKFB3; glyceraldehyde-3-phosphate

dehydrogenase, GAPDH; lactate dehydrogenase A, LDH-A) or transporters (glu-

cose transporter 1, GLUT1; monocarboxylate transporters, MCT) on tumor survival

has been evaluated using a great variety of inhibitors (Pedersen et al. 2002; Pelicano

et al. 2006; Kumagai et al. 2008; Bartrons and Caro 2007; Evans et al. 2008; Clem

et al. 2008) with poor outcomes. In general, in such studies the targets have been

chosen somewhat randomly and arbitrarily: most research groups focus on targeting

the presumed rate-limiting steps reported on biochemistry textbooks (HK; phos-

phofructokinase type 1, PFK-1; pyruvate kinase, PYK), while others have used

molecular biology tools (knock-down by RNAi, siRNA) to identify the essential or

“key” enzyme (hexosephosphate isomerase, HPI; HKII, PYKM2, LDH-A)/

transporter (GLUT1) for tumor growth (Funasaka et al. 2007; Amann et al. 2009;

Zhou et al. 2010; Kim et al. 2011; Goldberg and Sharp 2012). However, drug target

validation studies suggest that an almost complete pharmacological inhibition is

required in order to obtain similar decreases in flux and pathway function to those

reached by the genetic knockout of the pharmacological target; however, the use of

elevated drug doses promotes toxic side effects in the host. Therefore, promising

drug targets should be those enzymes/transporters for which a lower inhibitor dose

suffices to produce a major effect on the pathway flux (flux-control) and/or the

metabolite concentrations (homeostatic control). Otherwise stated, the steps that

should be targeted are those controlling the pathway function (reviewed in

Hornberg et al. 2007; Hellerstein 2008; Moreno-Sánchez et al. 2010).
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9.3 Glycolysis Fingerprints in Tumor Cells Versus Normal

Cells

Besides the higher glycolytic rate exhibited by tumor cells as compared with

normal ones, the type of isoenzyme expression is another important difference.

HK and PFK-1, which are the main controlling steps of glycolysis in normal cells,

show changes in their regulatory mechanisms in tumor cells. In cancer cells, HK

activity increases 5- to 500-fold (Nakashima et al. 1988; Smith 2000; Pedersen

et al. 2002; Stubbs et al. 2003; Marı́n-Hernández et al. 2006), and it is preferentially

bound to the outer mitochondrial membrane as compared with the tissue of origin or

with other normal cells. Because of this localization, some authors have suggested

that mitochondrial binding will enable HK to decrease its sensitivity to product

inhibition by G6P (Nakashima et al. 1988; Widjojoatmodjo et al. 1990), but this

could not be verified experimentally (Marı́n-Hernández et al. 2006).

In normal cells under aerobiosis, PFK-1 has a main role at the onset of the

Pasteur effect through its allosteric inhibition, elicited by some mitochondrial

intermediaries such as ATP, citrate, and H+, which brings about a decrease of the

glycolytic flux. In contrast, PFK-1 activity increases five times in some tumors

versus normal cells (Vora et al. 1985; El-Bacha et al. 2003) and the expressed

isoform exhibits 5- to 300-fold higher affinity for its allosteric activator F2,6BP

(Oskam et al. 1985; Colomer et al. 1987; Staal et al. 1987), along with one to seven

times lower affinity for ATP and citrate, respectively (Meldolesi et al. 1976; Oskam

et al. 1985; Staal et al. 1987). Furthermore, in cancer cells there is a significant

increase in the F2,6BP concentration due to the higher expression of PFKB-3, a

PFK-2 isoform that maintains an elevated kinase/phosphatase activity ratio leading

to predominating F2,6BP synthesis over its degradation (Yalcin et al. 2009). Con-

sequently, elevated levels of F2,6BP as well as AMP and Pi (also PFK-1 allosteric

activators) are found in cancer cells, which circumvents the inhibitory effect of

ATP, citrate, and H+ on PFK-1 causing the lack of Pasteur effect in tumor cells

(Eigenbrodt et al. 1985; Moreno-Sánchez et al. 2012).

Isoenzyme expression changes in tumor cells indicate differences in the struc-

ture of control of glycolysis compared with normal cells. Hence, a Systems Biology

approach appears to be appropriate for addressing the comprehensive genetic and

biochemical remodeling underlying the well-documented increase in glycolysis

shown by cancer cells. Indeed, several kinetic models of glycolysis in erythrocytes

(du Preez et al. 2008), β-cells of pancreatic islets (Achs et al. 1991), and tumor cells

(Marı́n-Hernández et al. 2011) have been developed. The analysis of this integra-

tive approach as applied to tumor glycolysis is discussed in the next section.
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9.4 Metabolic Control Analysis of Tumor Glycolysis

Metabolic Control Analysis (MCA) is a Systems Biology approach that analyzes

metabolic networks with the goal of elucidating their underlying control and

regulation mechanisms (reviewed by Fell 1997; Moreno-Sánchez et al. 2008,

2010; Westerhoff 2008). On this regard, MCA makes a clear distinction between

control and regulation of metabolism. “Control” indicates the extent to which a

flux through a pathway, or the concentration of an intermediary metabolite, is

altered by changing the activity of one step, or group of steps, and is quantitatively

represented by flux- and concentration- control coefficients. “Regulation” refers to

how the flux of a pathway or a metabolite level is modified through the effect on the

rate of an individual step by cellular factors, including metabolites different to

substrates/products of that step, enzyme activity modulators, and ions, and is

quantitatively represented by the response coefficient (Fell 1997). Initially used

for metabolic pathways at steady state, the MCA principles have been recently

applied to the analysis of time-dependent events and oscillations of metabolic and

signal transduction pathways (Westerhoff 2008). MCA has also been extended to

the regulation of cellular processes by gene expression and termed Hierarchical

Control Analysis (Westerhoff 2008).

MCA studies have demonstrated that the flux control of a particular metabolic

pathway is distributed, i.e., it is shared to different extents by all the participating

steps; thus, the existence of a unique rate-limiting step can be ruled out. MCA

allows to quantifying the degree of control exerted by each enzyme/transporter on

the pathway flux (flux control coefficient; FCC or CJ
ai ) and on the metabolite

concentrations (concentration control coefficient; CCC or C
X

ai ) where J is flux,

X is the concentration of a pathway intermediary, and ai is the activity a in the cells
of the pathway enzyme i. By applying this strategy using both “wet” and in silico

experimentation, the main controlling steps can be identified, thereby becoming

targets with the highest therapeutic potential.

Elasticity analysis, an in vivo experimental approach utilized in MCA to deter-

mine the control coefficients by groups of enzymes, was applied to glycolysis in

AS-30D rat tumor cells (Marı́n-Hernández et al. 2006). The results indicated that

the pathway flux is mainly controlled (71 %) by the glucose transporter (GLUT)

and/or HK; PFK-1 controlled only by 6 %, whereas the rest of the control (25 %)

resided in the enzymes from aldolase (ALDO) to lactate dehydrogenase (LDH).

The low flux control exerted by PFK-1 is in agreement with the different control

distribution exhibited by glycolysis in normal versus tumor cells. These findings

also suggest that PFK-1 inhibition will probably be more harmful to normal than to

tumor cells.

However, a limitation of the flux-control coefficients determined from elasticity

coefficients is that their estimation requires reliable measurements of relatively

small gradual changes in the pathway metabolites. In addition, this strategy did not

allow us to elucidate the GLUT and HK flux control coefficients separately, neither

to calculate the individual control coefficients from the downstream glycolytic steps
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(Marı́n-Hernández et al. 2006). To circumvent these problems, we applied kinetic

modeling combined with MCA to determine the control coefficients of tumor

glycolysis.

9.5 Kinetic Modeling of Glycolysis in Tumor Cells

Kinetic modeling is a bottom-up systems biology approach that constructs detailed

computational descriptions of metabolic/signal transduction pathways in order to

understand how new properties emerge when the pathway components interact with

each other (Westerhoff 2011). In kinetic models of metabolic pathways, each

reaction is defined by a rate equation that includes the kinetic properties of the

individual enzymes/transporters, namely, maximal velocity and the affinity

constants for all the ligands. Kinetic models that also perform MCA have the

advantage of enabling to understand the control and regulation mechanisms of a

pathway which are not possible to elucidate from the kinetic properties of the

individual enzymes (Moreno-Sánchez et al. 2008; van Gend and Snoep 2008;

Cortassa et al. 2009). Recently, we built kinetic models of glycolysis in HeLa

(human cervico-uterine) and AS-30D (rat ascitic hepatoma) tumor cell lines to

identify the main controlling reactions in cells exposed to different environmental

conditions (Marı́n-Hernández et al. 2011).

To build the models it was necessary to experimentally determine in cell-free

extracts under physiological conditions of pH, temperature (pH 7.0 and 37 �C), and
ion composition (high K+), several kinetic parameters, and variables: (a) the affinity

constants for ligands (substrates, products, activators, and inhibitors) of all

enzymes; (b) the maximal enzyme activity (Vmax) for the forward and reverse

reactions within cells; (c) the intracellular intermediary metabolite concentrations;

and (d) the glycolytic flux including its branches to glycogen synthesis/degradation,

pentose phosphate pathway, and mitochondrial pyruvate oxidation. These

determinations were performed under a defined metabolic steady state. The rate

equations for each reaction were obtained from the literature in which parameters

(a) and (b) were used to assign values to their constants. These equations and the

initial concentration of substrates were assembled to construct the kinetic model

using the metabolic simulators GEPASI v 3.3 (Mendes 1993) and COPASI (COm-

plex PAthway SImulator; Hoops et al. 2006). Comparisons of model simulations of

metabolite concentrations and fluxes with the in vivo determinations (variables (c)
and (d ), respectively) were used to validate the kinetic model and predict the in vivo

pathway behavior in two tumor cell lines.

For model refinement, a dynamic interplay between modeling and experimenta-

tion was carried out: model simulations helped to pinpoint what parameters/

variables had to be experimentally reevaluated which were then fed to the model

until simulation results converged with the in vivo pathway behavior. The three

most important modifications performed in the model were: (1) the inhibition of

hexose-6-phosphate isomerase (HPI) by some metabolites of glycolysis and
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pentose phosphate pathway; (2) the incorporation of a complete PFK-1 rate equa-

tion which includes the effect of allosteric modulators; and (3) the inclusion of

phosphate in the GAPDH rate equation. These modifications are further elaborated

below.

In a first attempt, the model rendered lower levels of G6P than those determined

in vivo, and in silico titration of the activity of each enzyme indicated that the rate

of HPI was too high. This prompted us to search for physiological inhibitors for this

enzyme. We found that physiological concentrations of F1,6BP (glycolytic metab-

olite), and 6-phosphogluconate (6PG) and erythrose-4-phosphate (Ery4P)

(metabolites of the PPP oxidative and non-oxidative sections, respectively) could

be potential candidates. Although the inhibitory effect of these metabolites on HPI

was described earlier (Zalitis and Oliver 1967; Chirgwin et al. 1975; Gaitonde

et al. 1989), its relevance was only evident after the glycolytic flux-controlling

property of HPI was elucidated.

Another difficulty found in our preliminary studies was that the simple rate

equation used for PFK-1 (i.e., hyperbolic kinetics or Hill equation) was unable to

describe its in vivo kinetic behavior, because it did not include the interaction with

regulatory metabolites. Given the surprisingly few kinetic studies on PFK-1, it was

necessary to thoroughly characterize its kinetic behavior to formulate a rate equa-

tion in both normal and tumor cells (Moreno-Sánchez et al. 2012). The general form

of the new PFK-1 equation obeys the concerted transition model of Monod,

Wyman, and Changeux (Segel 1975) for exclusive ligand binding (F6P, activators,

and inhibitors) together with mixed-type hyperbolic activation by F2,6BP or AMP

or Pi, and simple Michaelis–Menten terms for ATP and the reverse reaction (bi–bi

random). The inhibitory allosteric effect of ATP (at high concentrations) and citrate

could be reproduced with this equation. Due to the prevalence of the F2,6BP

activating effect over the inhibitory effect exerted by ATP and citrate, a 50-fold

decreased F6P level was obtained with the model.

Another finding of the model was that although GAPDH had a negligible control

on the glycolytic flux, it exerted significant control on the concentration of F1,6BP

and DHAP, depending on the cellular concentration of free Pi. The mechanistic

rationale underlying this homeostatic GAPDH behavior is given by the low affinity

of the enzyme for Pi. The relevance of this finding is readily apparent in the context

of previous models (Bakker et al. 1999; Teusink et al. 2000; Saavedra et al. 2007) in

which it was assumed that Pi was saturating thus irrelevant for regulating GAPDH,

or any other enzyme activity. A recently published kinetic model indeed explored

the important role of Pi in the regulation of glycolysis in bacteria (Levering

et al. 2012). These examples are illustrative of the power of implementing iterative

strategies of modeling-experimentation to generate validated kinetic models that

accurately simulate available experimental data while predicting new behaviors

that help understanding the control and regulatory mechanisms of metabolic

pathways in vivo.

After incorporating into the model the three main changes mentioned above, it

predicted that the main flux and ATP concentration control steps are HK C
J

E i
¼ 0:44

� �
;
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HPI ðCJ
Ei
¼ 0:4Þ and GLUT ðCJ

Ei
¼ 0:2Þ in AS-30D hepatoma cells; and glycogen

degradation ðCJ
Ei ¼ 0:57Þ; GLUT ðCJ

Ei
¼ 0:39Þ and HK ðCJ

E i
¼ 0:08Þ in HeLa cells.

Another relevant finding was that in tumor cells exposed to hypoxia or hypoglycemia

the main controlling steps remained the same with only slight quantitative changes in

the values of the control coefficients (Marı́n-Hernández et al. 2011).

The model enabled identification of mechanisms by which these enzymes and

transporters control the glycolytic flux in each cell type. In AS-30D cells, HK over-

expression, as compared to healthy cells (up to 300-fold), and binding to the

mitochondrial outer membrane could explain the diminished flux control displayed

by this enzyme. Moreover, the HK over-expression and its ambiguous/ubiquitous

character in cancer cells promote increased G6P levels that potently inhibit the

enzyme, thus avoiding excessive ATP consumption that might compromise cell

viability (Marı́n-Hernández et al. 2006). GLUT exerts high flux control as a

consequence of its low in vivo catalytic efficiency (both low Vmax and affinity for

glucose). Despite being one of the fastest enzymes, HPI is also potently inhibited by

physiological concentrations of several glycolytic and PPP intermediates, which is

likely related with its strategic location at the G6P crossroad involving the glyco-

lytic, glycogen, and PP pathways.

The standard concentration of 25 mM glucose present in the culture medium of

HeLa cells promotes glycogen accumulation and over-expression of GLUT1, the

isoform with low affinity for glucose (Km ¼ 9 mM). Consequently, the glycogen

degradation branch exerts high control on the glycolytic flux. In contrast, AS-30D

ascites cells that grow in the intraperitoneal cavity of rats where the glucose

concentration is about 0.026 mM (Rodrı́guez-Enrı́quez et al. 2000) express the

GLUT isoform with high affinity for glucose (GLUT3, Km ¼ 0.5 mM; Rodrı́guez-

Enrı́quez et al. 2009) and maintain a low glycogen content. Under these conditions,

the AS-30D cells rely more on extracellular glucose for glycolysis to proceed,

leading to high HK control and negligible control by glycogen degradation (Marı́n-

Hernández et al. 2011).

9.6 The Pattern of Enzyme Isoforms Expression and the

Control Distribution of Glycolysis

Most of the glycolytic enzymes and transporters in mammalian cells, except for

HPI and triose phosphate isomerase (TPI), have two to four different isoforms, each

one with specific kinetic characteristics (Marı́n-Hernández et al. 2009). It is well
documented that the HIF-1α transcription factor, which is stabilized by low oxygen

conditions and found in high levels in tumor cells, upregulates tumor glycolysis.

This stimulation happens through increasing transcription of a particular set of

glycolytic protein isoforms that have higher affinity for substrates and catalytic

capacity (Vmax) in the forward reaction along with decreased sensitivity to their

reaction products and physiological inhibitors (Marı́n-Hernández et al. 2009).
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To explore the effect of changing isoforms on the glycolytic flux and metabolite

concentrations, the kinetic model of HeLa cells previously reported (Fig. 9.1;

Marı́n-Hernández et al. 2011) was used. The enzymes selected were those whose

genes can be upregulated by HIF-1α under hypoxic conditions (Marı́n-Hernández

et al. 2009). Among them, the catalytically more efficient isoforms of the glucose

transporter (GLUT3;Km
Glu out

¼ 0:52mM) and hexokinase (HKIKmGlu in
¼ 0:03mM),

together with the phosphofructokinase-1 isoform exhibiting the higher affinity for

the main activator F2,6BP (PFK-1-L; KaF2,6BP ¼ 0.53 μM) (Rodrı́guez-Enrı́quez

et al. 2009; Moreno-Sánchez et al. 2012), were manipulated. The in silico results

were compared with those of the initial model built for the normoxic condition

(Marı́n-Hernández et al. 2011) in which GLUT1 (Km
Glu ou t

¼ 9:3mM), HKII

(KmGlu in
¼ 0:1mM), and PFK-1-C (KaF2,6BP ¼ 1 μM) are preferentially expressed

(Rodrı́guez-Enrı́quez et al. 2009; Moreno-Sánchez et al. 2012) (Fig. 9.2).

First, only the Km values for each enzyme were individually modified. The most

important changes were attained when GLUT3 values were included, consisting of

a 39 % increased glycolytic flux and 1.5–3 times increased metabolite

concentrations (Table 9.1). When HK affinity was modified (replacing HKII by

HKI), the flux increased only by 7 %, whereas the metabolites did not significantly

change, except for intracellular glucose (Gluin) and G6P, which as expected

decreased and increased by 63 and 9 %, respectively. When the PFK-1 kinetic

parameters were modified (by replacing PFK-1-C for PFK-1-L), no significant

variation in the flux was observed, in agreement with the low control, determined

by elasticity analysis, that this enzyme has on tumor glycolytic flux (Marı́n-

Hernández et al. 2006). However, increases in the Gluin (16 %), G6P (21 %), and

F6P (44 %) concentrations were observed, indicating that PFK-1 indeed exerts

homeostatic control of glycolysis.

Regarding the flux control coefficients (Table 9.2), significant changes were

attained when GLUT3 or HKII replaced GLUT1 or HKII, respectively. In turn,

changing PFK1-C by PFK1-L induced negligible variation in the control, i.e., CJ
PFK1

values. The decrease in the flux control of glycogen degradation and increase in that

of HK, elicited by GLUT3 “expression” (Table 9.2), both occur because the cells

become more sensitive to changes in the Gluout concentration due to the higher

affinity of GLUT3. Remarkably, the main flux-controlling steps induced by chang-

ing to GLUT3 KmGlu out
or HKI KmGlu in

did not vary (glycogen degradation, GLUT,

and HK), indicating the robust function of the glycolytic pathway under these

conditions. These modeling results also indicated overcapacity of the remaining

glycolytic enzymes, brought about by their over-expression, thus exerting negligi-

ble flux control (Table 9.2).

However, tumor cells exposed to hypoxia not only induce one isoform of one

specific glycolytic enzyme/transporter; instead, they simultaneously express differ-

ent isoforms of several enzymes and transporters. Therefore, the affinities were

changed in the following two combinations (GLUT3 + HKI or GLUT3 + HKI +

PFK-L). In both cases, the flux and metabolite concentrations increased by 65 %
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Fig. 9.1 Pathway reactions included in the kinetic model of glycolysis in HeLa tumor cells

(modified from Marı́n-Hernández et al. 2011). AK adenylate kinase, ALDO fructose 1,6

bisphosphate aldolase, ATPases ATP-consuming processes, DHAP dihydroxyacetone phosphate,

DHases NADH consuming reactions, ENO enolase, Ery4P erythrose-4-phosphate, FBP fructose-

1,6-bisphosphate, F6P fructose-6-phosphate, F2,6BP fructose-2,6-bisphosphate, GAPDH
glyceraldehyde-3-phosphate dehydrogenase, G3P glyceraldehyde-3-phosphate, G6P glucose-6-

phosphate, LDH lactate dehydrogenase, PEP phosphoenolpyruvate, PGAM 3-phosphoglycerate

mutase, PGK 3-phosphoglycerate kinase, PGM phosphoglucomutase, PPP pentose phosphate

pathway, Pyr pyruvate, PYK pyruvate kinase, Rib5P ribose 5-phosphate, TPI triosephosphate

isomerase, TA transaldolase, TK transketolase, Xy5P xylulose 5-phosphate, 2PG
2-phosphoglycerate, 3PG 3-phosphoglycerate, 6PG 6-phosphogluconate
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and two to threefold, respectively (Table 9.1), whereas the flux control distribution

was unchanged, emphasizing the role of GLUT as the main controlling step of

glycolysis (Table 9.2).

These model results suggested that an effective way to increase the pathway flux

is to increase the substrate affinity of the most controlling steps. However, these

latter simulations were accompanied by decreased ADP (and AMP) pools

(Table 9.1). To avoid this unrealistic response, the ATPase reaction, which

accounts for the cellular ATP demand in the model, was increased 10 % to supply

for the extra ADP required (Table 9.1). It is worth reminding that an undesired

consequence of an unrestricted fast flux through the GLUT and HK reactions is

ATP depletion, when such flux exceeds the one through the relatively slower PGK

and PYK reactions (i.e., “turbo effect”; Teusink et al. 1998). The opposite response,

i.e., faster ATP synthesis than consumption, would lead to ADP depletion, which

would also be adverse for glycolysis and lethal for the cell. It is therefore expected

that the cell has strict control on the expression of the different glycolytic enzyme

isoforms.

In the simulations described above it was assumed that there was a complete

shift in the isoform expression. However, cell physiology is not so simple, since

tumor cells express different ratios of several isoforms for a particular enzyme. This

means that for a specific reaction, the Vmax experimentally determined in the cells

Fig. 9.2 Isoform expression of enzymes/transporters in HeLa cells subjected to normoxic or

hypoxic conditions. (a) Western-blot analysis of isoform expression of GLUT, HK, and PFK-1 in

monolayer cells cultured in the presence of 25 mM glucose and exposed to normoxia (N; 21 % O2)

or hypoxia (H; 0.1 % O2) for 24 h (see Marı́n-Hernández et al. 2011, for further description of the

experimental design). (b) Densitometric analysis with respect to α-tubulin. The GLUT1, PFK1-C,
and PFK1-L data were taken from Marı́n-Hernández et al. (2011) and Moreno-Sánchez

et al. (2012). The GLUT3, HKI, HKII, and HIF-1α data were determined in the present study.

The Western-blot analyses were carried out according to published procedures (Rodrı́guez-

Enrı́quez et al. 2009; Moreno-Sánchez et al. 2012)
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results from the combination of distinct catalytic capacities from several isoforms.

Figure 9.2 depicts the changes in the pattern of expression for GLUT, HK, and PFK

isoforms in HeLa cells grown under normoxic and hypoxic conditions. Thereby, in

order to account for isoform ratios and their respective kinetic properties, the rate

equations have to be modified accordingly, to more accurately reproduce in silico

the in vivo tumor glycolysis. To reach this goal, the rate equations of the initial

model (Marı́n-Hernández et al. 2011) were modified as detailed below.

The expression for GLUT was modified according to a double mono-substrate

reversible Michaelis–Menten equation (9.1)

v ¼ Vmf

f1 Gluout½ � � Gluin½ �
Keq

� �

KGluout1 1þ Gluin½ �
KGluin1

� �
þ Gluout

2
4

3
5þ

f2 Gluout½ � � Gluin½ �
Keq

� �

KGluout2 1þ Gluin½ �
KGluin2

� �
þ Gluout

2
4

3
5

0
@

1
A

(9.1)

Table 9.1 Glycolytic flux and metabolite concentrations obtained from a model developed for

HeLa cells

Metabolite

Control

modela
Model with new isoforms

+GLUT3 +HKI +PFK-L bGLUT3 + HKI bGLUT3 + HKI + PFKL

Glu in 0.7 2.1 0.26 0.81 1.3 1.43

G6P 0.78 1.3 0.85 0.94 1.9 2.2

F6P 0.018 0.031 0.02 0.026 0.046 0.07

FBP 0.14 0.46 0.17 0.13 0.94 0.79

DHAP 2.0 3.5 2.1 1.9 4.9 4.5

G3P 0.08 0.13 0.08 0.07 0.19 0.17

1,3BPG 0.0008 0.003 0.001 0.0008 0.005 0.004

3PG 0.006 0.008 0.006 0.006 0.01 0.009

2PG 0.002 0.004 0.003 0.002 0.004 0.004

PEP 0.0002 0.0003 0.0002 0.0002 0.0004 0.0004

Pyr 2.5 2.56 2.5 2.5 2.6 2.6

ATP 8.3 10.8 8.7 8.1 11.1 10.8

ADP 2.2 0.83 2 2.2 0.65 0.84

AMP 1.3 0.15 1.0 1.4 0.086 0.15

NADH 0.005 0.005 0.005 0.005 0.005 0.005

NAD+ 1.34 1.34 1.34 1.34 1.34 1.34

Glycolytic

flux

19.6 27.2 20.9 19.2 32.3 31.5

Metabolite concentrations in mM; flux in nmol lactate min�1(mg cellular protein)�1. Metabolite

concentration (mM) fixed values used for modeling were 0.0042 (F2,6BP), 1.7 (citrate), 7.2 (Pi),

33 (lactate), and 5 mM (glucose)
aThe control model has GLUT 1, HKII, and PFK1-C. In addition, PFK-1 Vmax value was

determined in this study (24.7 nmol/min � mg cellular protein). The PFK1-C and PFK1-L

kinetics parameters used in the model were determined at pH 7.5 in the presence of 140 mM K+

and taken from Moreno-Sánchez et al. (2012)
bThe k value for ATPase was 3.4 � 10�3 min�1
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in which Gluout and Gluin are the extra- and intracellular glucose concentrations,

KGluout1 and KGluout2 are the affinities for extracellular glucose of each GLUT

isoform, Keq is the equilibrium constant of the reaction, Vmf is the maximal velocity

in the forward reaction determined in the cells, and f1 and f2 are the proportion of

each isoform determined by western blot analysis (Fig. 9.2, Table 9.3).

The HK rate was formulated to represent a double random-bisubstrate

Michaelis–Menten equation (9.2), in which A and B are Gluin and ATP, and P

and Q are G6P and ADP, respectively; Ka1 and Ka2 represent the affinity constants
for Gluin of each isoform whereas Kb is the affinity for ATP which did not change in

both isoforms; Kp and Kq are the affinity constants for the corresponding products.

The rate equation for PFK-1 (9.3) obeys a double concerted transition model of

Monod, Wyman, and Changeux for exclusive ligand binding (F6P, activators,

inhibitors) together with mixed-type activation (F2,6BP or AMP or Pi) (Moreno-

Sánchez et al. 2012) and simple Michaelis–Menten terms for ATP and the reverse

reaction. ATP (at high concentrations) and citrate are the allosteric inhibitors. L1
and L2 are the allosteric transition constants; KaF2,6BP1 and KaF2,6BP2 are the

activation constants for F2,6BP; KiCIT1,KiCIT2 KiATP1, and KiATP2 are the inhibition
constants for citrate and ATP; α1, α2 and β1, β2 are the factors by which KF6P

(KF6P1 and KF6P2) and Vmax change, respectively, when an activator is bound to the

active enzyme form (R conformation in the Monod model).

Each isoform ratio was determined (Fig. 9.2) considering that the antibodies

have high specificity for their respective isoforms as previously determined

(Rodrı́guez-Enrı́quez et al. 2009; Moreno-Sánchez et al. 2012) but assuming that

they have similar specificity and detection sensitivity. The sum of the band

intensities for both isoforms was considered the total protein content from which

the corresponding fraction of each isoform was calculated (Table 9.3). These values

are denoted by the coefficient f in the corresponding rate equations.

Table 9.3 Ratios of GLUT, HK, and PFK isoforms in HeLa cells exposed to normoxia or hypoxia

Isoform

Normoxia Hypoxia

% of band intensity Fraction % of band intensity Fraction

GLUT1 41 0.97 108 0.99

GLUT3 1.3 0.03 1 0.01

GLUTtotal 42.3 109

HKI 10.3 0.36 10.8 0.1

HKII 18.3 0.64 98 0.9

HKtotal 28.6 108.8

PFK-C 63 0.95 88 0.46

PFK-L 3 0.05 104 0.54

PFKtotal 66 192
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v ¼ Vmf
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(9.3)

Model simulations indicated a marginal increase of 5–13 % in metabolite

concentration, fluxes, and flux control coefficients under normoxic conditions

compared with the model with no different isoforms (Tables 9.4 and 9.5). This

result contrasted with the changes observed when GLUT3, alone or in combination

with HKI, replaced GLUT1 (Tables 9.1 and 9.2). This behavior can be explained by

the much lower expression of GLUT3 compared to GLUT1 (Fig. 9.2 and

Table 9.3).
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The modified model accounting for isoform ratios showed similar robust behav-

ior, as the model with no different isoforms (Marı́n-Hernández et al. 2011). The

model behavior did not significantly change after altering kinetic parameters

(decreasing by half or increasing by two times) from most glycolytic steps and

PPP flux. Exceptions were given by changes in GLUT, glycogen degradation, and

GAPDH Vm values, which led to variations of 50 % or more in the flux-control

distribution and/or metabolite concentrations. In addition, the FBP or DHAP

concentrations varied between 9 and 100 % in response to changes in ALDO Vm

and Km values or TPI Km values.

The model was sensitive to changes in the ATPase kinetics, revealing that this

step is the weakest component in conferring stability to the pathway. The ATPase

reaction in the present kinetic model accounts for the energy demand represented

by a multitude of ATP-consuming cellular processes such as ion homeostasis (Na+/

K+ ATPase, Ca2+ ATPases, H+ ATPases, MDR ATPases), biosynthesis of proteins,

nucleic acids, lipids, and polysaccharides, and specialized functions (signal trans-

duction, secretion, proliferation). In addition, the rate equation used for the ATPase

reaction has no affinity terms for substrates and products or Keq, but it is rather a

Table 9.4 Glycolytic flux and metabolite concentrations obtained with a kinetic model of

glycolysis in HeLa cells accounting for enzyme isoforms expressed under normoxia or hypoxia

Metabolite

Normoxia Hypoxia

In vivob
Control

model

Model plus
isoform ratios In vivob

Control

modela
Model plus
isoforms ratiosa

Glu in NM 0.7 0.49 NM 0.89 0.81

G6P 1.3 0.78 0.85 1.4 0.82 0.83

F6P 0.5 0.018 0.02 0.5 0.02 0.02

FBP 0.38 0.14 0.16 0.23 0.35 0.38

DHAP 0.93 2.0 2.1 0.54 3.0 3.1

G3P ND 0.08 0.08 NM 0.12 0.12

1,3BPG ND 0.0008 0.001 NM 0.002 0.001

3PG ND 0.006 0.006 NM 0.008 0.008

2PG ND 0.002 0.003 NM 0.003 0.003

PEP 0.32 0.0002 0.0002 NM 0.0002 0.0002

Pyr 8.5 2.5 2.5 4.2 2.6 2.6

ATP 8.7 8.3 8.7 7.9 8.7 8.9

ADP 2.7 2.2 2.0 1.8 1.6 1.9

AMP 0.4 1.3 1.1 NM 0.67 0.96

NADH NM 0.005 0.005 NM 0.005 0.005

NAD+ NM 1.34 1.34 NM 1.34 1.34

Glycolytic flux 16 19.6 20.7 21 26.1 26.8

Metabolite concentrations in mM; flux in nmol lactate min�1 (mg cellular protein)�1

NM not measured, ND not detected (<1 nmol/15 mg cellular protein). The parameters used were

0.0042 (F2,6BP), 1.7 (citrate), 7.2 (Pi), 33 (lactate) mM, and 5 mM (glucose).
aATPase k value was 3.6 � 10�3 min�1. For the hypoxia model simulation, the Vmax values of

GLUT and PFK-1 were 30 and 33.8 nmol/min � mg cellular protein, respectively
bValues were taken from Marı́n-Hernández et al. (2011)
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simple irreversible mass action law. Irrespective of this simplification, the majority

of metabolite concentrations and fluxes simulated by the model were in quantitative

agreement with the in vivo concentrations, except for F6P and PEP, which were

27 and 1,600 times lower, respectively. These remaining discrepancies indicated

that further kinetic experimentation-based refinement of the model is still needed,

mainly at the level of PFK-1, ALDO, PYK, and ATPases. In this regard, it could be

useful to experimentally assess the effects of PFK-1, ALDO, and PYK binding to

microtubules on their respective kinetic properties (reviewed by Cassimeris

et al. 2012), which may account for the significantly lower modeled Fru6P and

PEP concentrations.

An experimentally validated and robust kinetic model can be used to predict the

control distribution under other metabolic steady states such as normoxia versus

hypoxia and normoglycemia versus hypoglycemia. Under these conditions, not

only a change in the isoform expression may occur but also changes in the enzyme

amount (Table 9.3; Fig. 9.2) and Vmax (Marı́n-Hernández et al. 2011) happen.

Indeed, higher levels of metabolites and a 33 % increased flux were obtained

under hypoxia compared to normoxia. Moreover, under hypoxia a higher HK flux

control coefficient was determined at the expense of a decrease in the control of the

glycogen degradation; this behavior is similar to what was observed when GLUT3

was modeled alone or in combination with HKI (Tables 9.1 and 9.2). Again,

including the isoform ratios in the model did not modify metabolite concentrations,

fluxes, and control coefficients, because GLUT3 expression is lower under hypoxia

(Fig. 9.2).

The modeling results described above suggested that the initial assumption

made, which considered that the enzyme activity in cells can be solely attributed

to the predominant isoform expressed, is a convenient simplification that avoids the

use of highly complex rate equations. In this regard, it is worth noting that cells

grown in monolayer cultures maintain a high content of low affinity isoforms

(GLUT1 and HKII) because they are always grown in the presence of excess

(25 mM) glucose, even under hypoxia. Under such hyperglycemic conditions,

cells do not require to express and use high affinity isoforms for glucose transport

and phosphorylation (GLUT3 and HKI). Similarly, changes in GLUT isoform

proportions can be achieved under other stressful conditions. For instance, patho-

logical events such as ischemia, starvation, and mitochondria inhibition increase the

content of GLUT3 in normal cells (Nagamatsu et al. 1994; Vannucci et al. 1996;

Khayat et al. 1998). Same results have been observed in tumor cells, where

hypoglycemia or hypoxia plus hypoglycemia increase the mRNA for GLUT3

(Natsuizaka et al. 2007).

In conclusion, the simplest and perhaps fastest way cancer cells have to modu-

late the glycolytic flux under cyclically varying conditions (e.g. hypoxia/normoxia;

hypoglycemia/normoglycemia) is to change the ratio of enzyme isoform

corresponding to the most controlling steps, without profoundly altering the

installed, house-keeping over-expression pattern of all the pathway enzymes and

transporters. In this regard, the kinetic model predicts that when GLUT3 is

increased (Fig. 9.3), and hence the GLUT3/GLUT1 ratio, which simulates exposure
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of cancer cells to hypoglycemia, the glycolytic flux increases � 20 % with respect

to hyperglycemia, whereas the GLUT flux control coefficient and flux control

distribution remain unchanged (Table 9.2; Fig. 9.3). Therefore, this strategy may

seem useful for increasing the glucose uptake without shifting the entire pattern of

enzyme and transporter isoforms, which may in turn lead to ADP and AMP pools

depletion (Table 9.1; Fig. 9.3). Furthermore, the results presented enable us to gain

understanding about why cancer cells differentially express multiple glucose

transporters.

9.7 Advances in Modeling OxPhos in Tumor Cells

To decrease ATP levels to promote apoptosis in tumor cells, not only glycolysis has

to be blocked but also OxPhos. In this regard, it has been profusely documented in

recent years that ATP supply by mitochondria is as important as glycolysis for

cancer cells (Moreno-Sánchez et al. 2007; Sheng et al. 2009; Chen et al. 2012). In

fact, cells in solid tumors located far from the blood vessels in which a hypoxic

environment prevails are predominantly glycolytic, whereas cells with a predomi-

nant oxidative (i.e. mitochondrial) metabolism localize closer to blood vessels or

Fig. 9.3 Change in flux and

control coefficients as a

function of GLUT isoform

proportions, as predicted by

the model. (a) The glycolytic

flux (J ) and GLUT flux

control coefficient (C
J

GLUT
).

(b) HK and glycogen

degradation (Gly Deg) flux

control coefficients (C
J

HK and

C
J

Gly Deg
) and ATP

concentration. The lines
indicate proportions of each

GLUT isoform found in cells

under hyperglycemia

(Table 9.3) and

hypoglycemia (Marı́n-

Hernández

et al. Unpublished results).

fGLUT3 fraction of GLUT3,

fGLUT1 fraction of GLUT1
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the O2 supply (Sonveaux et al. 2008; Mandujano-Tinoco et al. 2013); fully blood-

irrigated tumors are then dependent on OxPhos for ATP supply. Thus, the

generalized belief, that mitochondrial function is absent or nonfunctional in cancer

cells, has been challenged by abundant experimental evidence (see for reviews

Moreno-Sánchez et al. 2007; Ralph et al. 2010a, b). Consequently, assessment of

OxPhos in cancer cells should not be ignored. In addition, to improve understanding

of the control of ATP supply in cancer cells, our glycolytic model should be

extended to include OxPhos, which will enable us to have a more comprehensive

assessment of the steps that exert the control of energy metabolism. In principle,

this will allow to further substantiate the proposal of a multi-target versus mono-

target therapy of the most flux- and metabolite concentration-controlling reactions.

So far modeling OxPhos in cancer cells has not been reported. However,

advances have been carried out in modeling the Krebs cycle (KC) and OxPhos in

normal cells. Kohn et al. (1979) built a kinetic model of the KC to explain the

sequence of biochemical events that control metabolism of exogenous pyruvate in

perfused rat hearts. This model made an important contribution in providing a

useful repository data of kinetic mechanisms for the KC reactions (Wu et al. 2007).

Another kinetic model of KC in rat liver mitochondrial was used to study the effect

of salicylate on the energy metabolism and establish the mechanisms of the

hepatotoxicity of this compound (Mogilevskaya et al. 2006).

Regarding OxPhos, several mathematical models have been published which

predict the flux-control distribution and the ATP/ADP ratios, electrochemical H+

gradient, and rates of O2 consumption and ATP synthesis in isolated mitochondria

under different metabolic states (reviewed by Mazat et al. 2010). The next step has

been the integral modeling of both KC and OxPhos. With the use of simplified rate

equations for OxPhos reactions, a mathematical model of cardiac mitochondria

metabolism has been developed to predict how ATP supply may be governed by

fluctuations in the matrix concentration of Ca2+, a strong allosteric modulator of KC

dehydrogenases (Cortassa et al. 2003), and the dynamics of other relevant ions such

as Na+, Pi, and H+ (Wu et al. 2007; Wei et al. 2011). Although these models have

been able to reproduce qualitatively and semiquantitatively the in vivo pathway

behavior, several kinetic parameters/variables were adjusted or obtained under

non-physiological experimental conditions, yielding some unrealistic responses

and limiting their use for understanding the controlling/regulatory mechanisms of

the pathway.

The kinetic database of KC and OxPhos in tumor cells is still incomplete

hindering model development. Like in glycolysis, some cancer cells show increased

activity of several KC/OxPhos enzymes (Dietzen and Davis 1993) and expression

of specific isoforms with different kinetic values and regulatory properties to those

of the isoforms expressed in normal cells/mitochondria (Siess et al. 1976). These

changes dissuade the use of the kinetic parameters/variables reported for enzymes/

transporters of normal cells in the modeling of cancer energy metabolism. Then, the

immediate task at hand is to determine the kinetic parameters of each Krebs cycle

and OxPhos enzyme/transporter in isolated mitochondria from cancer cells to build

the corresponding kinetic model.
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9.8 Conclusion

Kinetic modeling is a Systems Biology bottom-up approach that enables us to

understand the controlling mechanisms underlying glycolysis in tumor cells. To

build a reliable and robust kinetic model of a metabolic pathway, it is essential

to use appropriate rate equations for each step or group of steps, in which the kinetic

parameters for the forward and reverse reactions are adequately determined. For

reactions with thermodynamic constraints (i.e., high negative ΔG� values >
�5 kcal/mol), the kinetic parameters of the reverse reaction are difficult to deter-

mine, and henceVmaxreverse
can be replaced by the equilibrium constant Keq in the rate

equation. The use of rate equations that accurately reproduce the enzyme/trans-

porter behavior shields the kinetic modeling from arbitrarily introducing

“adjustments” to the parameters to forcing correct simulation of the in vivo path-

way behavior.

However, a drawback in constructing or extending kinetic models is the over-

whelming amount of experimental data required for validation. That is the main

reason why only few kinetic models have been developed (Hübner et al. 2011) and,

in particular for cancer glycolysis (Marı́n-Hernández et al. 2011). The latter model

has been used to construct a modular model of the most relevant metabolic

processes regulated by the PI3K/Akt signaling pathway in the human embryonic

kidney HEK293 cells (Mosca et al. 2012). Their model could reproduce the

experimentally determined metabolic fluxes and allowed to predict the metabolic

targets that may inhibit tumor cell growth under hyper activation of Akt kinase.

Regarding glycolysis, models that include other levels of regulation such as gene

expression and signal transduction are interesting aspects to be included in the

future for a full understanding of the metabolic circuitry in these pathological cells.

Furthermore, it has been claimed that kinetic parameters determined in cellular

extracts (i.e., in diluted cellular solutions) cannot reflect the kinetic properties of the

enzymes in vivo because the cellular aqueous phases are crowded with

macromolecules, altering the enzyme–substrate and enzyme–product interactions

and in consequence the rate reaction (Agrawal et al. 2008). However, Vopel and

Makhatadze (2012) have demonstrated that the presence of several synthetic

crowding agents (ficoll, dextran 40,000, or albumin) does not significantly perturb

the Km and catalytic turnover number (kcat) of several glycolytic enzymes such as

HK, GAPDH, PGK, and LDH. Then, it seems that macromolecular crowding may

only affect diffusion rates of metabolites (Agrawal et al. 2008). As these rates are

orders of magnitude higher than the enzyme/transporter rate constants, modeling

based on kinetic parameters determined in diluted solutions is expected not to be

significantly modified by macromolecular crowding. This last conclusion is

supported by the relatively elevated accuracy and robustness of the herein shown

glycolytic model developed for tumor cells (Marı́n-Hernández et al. 2011).

Although our model of cancer glycolysis has only considered a few well-defined

steady states, it may serve as a validated platform for constructing large-scale

kinetic models, which can be applied to a wider variety of physiological conditions.
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Moreover, integral kinetic modeling of glycolysis, KC, and OxPhos in cancer cells,

using modular approaches for computational modeling (van Gend and Snoep 2008;

Cortassa and Aon 2012; Mosca et al. 2012), is a future task that will most likely help

to identifying suitable targets in the two exclusive energy provider pathways and

that may lead to envision successful multi-target therapeutic strategies (Moreno-

Sánchez et al. 2010; Mosca et al. 2012).
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Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry.

FEBS J 278:2767–857

Khayat ZA, McCall AL, Klip A (1998) Unique mechanism of GLUT3 glucose transporter

regulation by prolonged energy demand: increased protein half-life. Biochem J 333:713–18

Kim JE, Ahn BC, Hwang MH, Jeon YH, Jeong SY, Lee SW, Lee J (2011) Combined RNA

interference of hexokinase II and (131)I-sodium iodide symporter gene therapy for anaplastic

thyroid carcinoma. J Nucl Med 52:1756–63

Kohn MC, Achs MJ, Garfinkel D (1979) Computer simulation of metabolism in pyruvate-perfused

rat heart. II. Krebs cycle. Am J Physiol 237:R159–R166

Kolodkin A, Boogerd FC, Plant N et al (2012) Emergence of the silicon human and network

targeting drugs. Eur J Pharm Sci 46:190–7

Kumagai S, Narasaki R, Hasumi K (2008) Glucose-dependent active ATP depletion by koningic

acid kills high-glycolytic cells. Biochem Biophys Res Commun 365:362–8

Lee KA, Roth RA, LaPres JJ (2007) Hypoxia, drug therapy and toxicity. Pharmacol Ther

113:229–46

236 A. Marı́n-Hernández et al.



Levering J, Musters MW, Bekker M (2012) Role of phosphate in the central metabolism of two

lactic acid bacteria: a comparative systems biology approach. FEBS J 279:1274–90

Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates

glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–78
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Chapter 10

Network Dynamics in Cardiac

Electrophysiology

Zhilin Qu

Abstract In a network perspective, the heart is a network of cells that are com-

posed of subnetworks of genes, proteins, metabolites, and organelles. In this

chapter, we provide an overview of the networks in the heart and a current

understanding of the network dynamics in the context of cardiac electrophysiology.

We first review current knowledge of the genetic, signaling, and metabolic

networks in the heart and their links to arrhythmias. We then review the emergent

properties from the mitochondrial and calcium release unit networks, the cellular

dynamics arising from integrated subnetworks, and the electrical dynamics arising

from the cellular networks to manifest as normal rhythms and arrhythmias. Finally,

we discuss future challenges and how systems biology approaches can overcome

these challenges to uncover the mechanisms of normal heart rhythms and

arrhythmias.

10.1 Introduction

Arrhythmias are irregular excitations in the heart, the major causes of sudden

cardiac death (Zipes and Wellens 1998). Anti-arrhythmic drugs that block ion

channels have been shown to be ineffective, and some even increase mortality

(CAST 1989; Waldo et al. 1996). Defibrillators, merely based on the fact that the

heart is electrically excitable, are the only effective therapeutics. This raises a

serious question: what have been missed in our understanding of cardiac electro-

physiology? Cardiac excitations are regulated by many factors from different scales

of the heart, ranging from molecular interactions to tissue scale electrical wave

dynamics (Fig. 10.1). At the molecular scale, proteins that form the ion channels

behave randomly due to thermodynamic fluctuations and dynamics, resulting in
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random opening and closing of the ion channels. Genes, proteins, and metabolites

form networks, which regulate intracellular calcium (Ca2+) cycling, action potential

properties, and many other cellular functions. At the subcellular scale, the dynamics

of a single mitochondrion or a single Ca2+ release unit (CRU), such as Ca2+ sparks

or mitochondrial flickers, are collective behaviors of many ion channels. Although

a Ca2+ spark or a mitochondrial flicker exhibits certain randomness, it behaves very

differently from random opening and closing of a single ion channel, which is a

collective behavior arising from the synergistic interactions of many ion channels.

The CRUs, mitochondria, and myofilaments form interacting networks, and novel

dynamics, such as waves and oscillations, emerges from the networks to give rise to

the whole-cell dynamics. A rich spectrum of dynamics have been observed at this

scale in addition to the normal excitation–contraction–metabolism coupling, such

as action potential duration alternans, early afterdepolarizations (EADs) and

delayed afterdepolarizations (DADs), and automaticity. At the tissue scale, cardiac

myocytes and other types of cells form cellular networks to generate and conduct

electrical signals for contraction. Most of these wave dynamics are tissue-scale

emergent properties that cannot be simply derived from single cell properties. In

addition, feedback loops form between scales. For example, fast heart rate or

arrhythmic wave dynamics of the heart may cause ischemia, intracellular Ca2+

and Na+ accumulation, and molecular and cellular remodeling (e.g., as indicated by
the green arrows in Fig. 10.1), which then affect the wave dynamics in the heart.

Therefore, in a network perspective, the heart is a network composed of many

Ion channels

Heart

1D

2D

3D

SR, Mito, & 
MF networks

GeneGene , signalingsignaling
& metabolicmetabolic

networks

Cellular
networks

Fig. 10.1 Schematic plot of

multi-scale and multi-

network perspective of

cardiac electrophysiology
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subnetworks. A defect (such as a gene mutation) may or may not cause erroneous

electrical dynamics at the tissue scale to result in lethal arrhythmias, which depends

not only on the defect itself but also on the network that the defect resides. To

understand how such a complex system works and develop effective therapeutics,

systems biology and multi-scale modeling approaches are needed to elucidate the

underlying dynamics at each scale (or the dynamics of the subnetworks) and how

the dynamics at smaller scales (subnetworks) integrate to result in complex dynam-

ics at larger scales (whole networks).

In this chapter, we provide an overview of the networks in the heart and a current

understanding of the network dynamics in the context of cardiac electrophysiology.

We first review current knowledge of the genetic, signaling, and metabolic

networks and their links to arrhythmias. We then review the emergent properties

from the mitochondrial and CRU networks, the cellular dynamics, and the electrical

dynamics arising from the cellular networks. Finally, we discuss future challenges

and systems biology approaches to overcome these challenges.

10.2 Molecular and Organelle Networks and Network

Dynamics in Cardiac Myocytes

A cell is a spatial entity, which contains not only networks of genes, proteins, and

metabolites but also networks of spatially distributed organelles such as the CRU

network, the mitochondrial network, and the myofilament network. Novel dynam-

ics arise from these networks and from their interactions, which regulate cellular

Ca2+ cycling and action potential dynamics for normal rhythms and arrhythmias of

the heart.

10.2.1 Genetic, Signaling, and Metabolic Networks

Clinical, experimental, and computational studies have begun to reveal the gene,

protein, and metabolic networks that link to cardiac arrhythmias.

Single gene mutations causing cardiac arrhythmias have been widely studied in

the last two decades (Sanguinetti et al. 1995; Napolitano et al. 2012). These

mutations, through altering ion channel conductance and kinetics to change the

action potential and Ca2+ cycling dynamics, cause different diseases, such as long

QT syndrome (Keating and Sanguinetti 2001; Sanguinetti and Tristani-Firouzi

2006; Moss and Kass 2005), Brugada syndrome (Hedley et al. 2009), and catechol-

aminergic polymorphic ventricular tachycardia (Cerrone et al. 2009). However,

these monogenic diseases only account for a very small portion of the sudden

cardiac death syndrome. Gene loci that are associated with common forms of

cardiac diseases and arrhythmias have also been identified (Bezzina et al. 2010;
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Arking et al. 2011; Jeyaraj et al. 2012). However, genes interact with each other and

a genetic network perspective of cardiac electrophysiology is far from known and

how to reveal and study the gene networks related to cardiac diseases is a great

challenge (Weiss et al. 2012).

Many signaling pathways and their roles in cardiac excitation–contraction cou-

pling and arrhythmias have been identified (Wang 2007; Swaminathan et al. 2012;

Grimm et al. 2011), such as the β-adrenergic signaling pathways, the MAPK

signaling pathways, the CaMKII signaling pathways, and the ROS activated sig-

naling pathways. These signaling pathways are interlinked, causing complex effects

that cannot be understood fully by experimental observations only. Mathematical

models have been developed to quantitatively analyze the effects of these signaling

pathways on cardiac diseases. Saucerman et al. (Saucerman et al. 2003, 2004)

developed the first model to quantitatively study the effects of β-adrenergic signal-
ing on cardiac contractility and excitation. In this model (Fig. 10.2), β-adrenergic
stimulation activates cyclic AMP, which then activates protein kinase A (PKA).

PKA phosphorylates L-type Ca2+ channel (LCC) and phospholamban, which

increases the open probability of the LCC and the rate of sarcoplasmic reticulum

(SR) Ca2+ uptake. The model was used to study the effects of isoproterenol on Ca2+

cycling and action potential dynamics (Saucerman et al. 2003, 2004). Other

modeling studies (Hund and Rudy 2004; Hund et al. 2008; Saucerman and Bers

2008; Hashambhoy et al. 2009, 2010) have focused on the effects of CaMKII

singling pathways on intracellular Ca2+ cycling and action potential dynamics.

The synergy between β-adrenergic and CaMKII signaling has also been studied

by computer modeling (Soltis and Saucerman 2010). These studies have provided

important insights into cardiac signaling and diseases.

Cell metabolism is regulated by hundreds of metabolites that form a highly

interconnected complex network (Feist et al. 2009). In cardiac myocytes, the

metabolic network not only provides the energy needed for cardiac contraction

but also affects cardiac electrophysiology. Mathematical models have been devel-

oped to study the dynamics of cardiac metabolism (Cortassa et al. 2003, 2004; Wu

et al. 2007; Dash and Beard 2008; Zhou et al. 2005a, b; Jafri and Kotulska 2006).

Emergent properties such as oscillations (Jafri and Kotulska 2006; Cortassa

et al. 2004; Yang et al. 2008), occur due to the interactions of the metabolites and

feedback loops in the metabolic networks. The metabolic oscillations result in ATP

oscillations, which then causes oscillations in action potential duration due to

opening of the ATP-sensitive potassium channels (O’Rourke et al. 1994; Yang

et al. 2008). The oscillations may be responsible for arrhythmogenesis in

postischemic hearts (Akar et al. 2005).

10.2.2 The CRU Network and Ca2+ Cycling Dynamics

Besides the molecular networks, organelles form spatial networks in cardiac cells

(Fig. 10.3a). CRU network is the primary network generating intracellular Ca2+
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cycling dynamics in cardiac myocytes. The Ca2+ release channel proteins,

ryanodine receptors (RyRs), are clustered proximity to L-type Ca2+ channel

clusters, forming CRUs. A unifying cardiac excitation–contraction coupling in

terms of a CRU is illustrated in Fig. 10.3b (Bers 2002). A ventricular myocyte

contains about 20,000 CRUs. CRUs are coupled via Ca2+ diffusion in the cytosolic

and SR space, forming a three-dimensional (3D) CRU network inside a cell.

A T-tubular system (Fig. 10.3c) facilitates effective communication of the 3D

network with the extracellular space, resulting in synchronous Ca2+ release and

thus synchronous contraction of the cell. Intracellular Ca2+ cycling dynamics

emerging from the CRU network are responsible for the formation of Ca2+ clocks

for sino-atrial nodal cells (Lakatta et al. 2010; Maltsev et al. 2011) as well as Ca2+

waves causing ventricular arrhythmias (Rovetti et al. 2010; Nivala et al. 2012b;

ter Keurs and Boyden 2007).

Ca2+ release in a CRU exhibits a discrete and random behavior, called Ca2+ sparks

(Cheng and Lederer 2008; Cheng et al. 1993). Many experimental studies

(Cheng et al. 1996; Wier et al. 1997; Marchant and Parker 2001; Bootman

et al. 1997) have demonstrated a Ca2+ signaling hierarchy, showing a transition

from Ca2+ sparks to Ca2+ waves and whole-cell Ca2+ oscillations. A question is:

How does the transition from sparks to waves and oscillations occur? Using a CRU

network model we developed recently (Nivala et al. 2012a), we were able to recapit-

ulate this Ca2+ signaling hierarchy (Fig. 10.4a). The amount of Ca2+ released from the

SR due to random opening of one or two RyRs is small, which results in a quark

(labeled as “q” in Fig. 10.4a). When several RyRs happen to randomly open at the

same moment, the amount of Ca2+ released is large enough to initiate Ca2+-induced

Fig. 10.2 Schematics of β-adrenergic singling network, calcium handling, and electrophysiology

of a ventricular myocyte in a model developed by Saucerman et al. (2003)
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Ca2+ release, causing a large release event to result in a spark (labeled as “s” in

Fig. 10.4a). The Ca2+ released in a spark may diffuse to cause its neighboring CRUs

to fire, or neighboring CRUs may fire coincidentally together, forming spark

clusters (labeled as “c” in Fig. 10.4a). When a cluster becomes large enough, it

may propagate as a Ca2+ wave (labeled as “w” in Fig. 10.3a), depending on the

5 mm

Sarcolemma

Mitochondrion

Mitochondrion

Z-lineMyofibrils

Junctional SR

Network SR

T-Tubule
a c

b

Fig. 10.3 (a) Schematic diagram of cellular structure of a ventricular myocyte (Katz 2011). (b). A

T-tubule network image from a rat ventricular myocyte (Soeller and Cannell 1999). (c) Illustration

of cardiac excitation–contraction system. In a normal action potential, voltage-dependent opening

of the LCCs brings Ca2+ into the dyadic space (DS), a very small space between the LCC cluster

and jSR (shaded area). Elevated Ca2+ concentration in the vicinity of the LCCs causes their

inactivation. The RyR channels open stochastically and their open probability is sensitive to Ca2+

in the DS, a process called CICR. Therefore, the RyR channels can be triggered by Ca2+ entry from

the LCCs, high myoplasmic and SR Ca2+, and Ca2+ diffusing from neighboring CRUs. Ca2+

entered from the LCCs and released from the SR diffuses to the myofibrils to signal contraction

and participates in many other signaling processes in the myocytes. Ca2+ is pumped back into the

SR by the sarcoplasmic endoplasmic reticulum Ca2+ ATPase (SERCA) pump and extruded by

Na+–Ca2+ exchange (NCX). Ca2+ is also uptaken by mitochondria through the mitochondrial

uniporter and released from mitochondria via NCX in the mitochondrial membrane and opening of

other channels such as the mitochondrial permeation transition pore. LCC and NCX couple Ca2+

and voltage bidirectionally, but all other currents also affect this coupling either indirectly via their

effects on voltage or directly via Ca2+ regulation of the ion channels
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status of its surrounding CRUs. In another study (Nivala et al. 2012b), we combined

computer simulation, theory, and experiments to show that criticality is responsible
for the transition from local to global Ca2+ signaling, providing a general theoretical

framework for understanding this transition. We calculated the distributions of the

spark cluster sizes in both the computer model and in permeabilized mouse ventric-

ular myocytes (Figs. 10.4b and c). At low Ca2+ loads, the cluster size distribution

was exponential. As the Ca2+ load increased, the distribution changed toward a

power law. We showed that the coupling between the CRUs plays a key role in the

occurrence of power-law distribution. A power-law distribution is an indicator that

a system is in a critical state, such as the critical phenomena of second-order phase

transitions in thermodynamics and statistical physics (Stanley 1971, 1999) and self-

organized criticality observed in many complex nonlinear systems in nature (Bak

et al. 1988; Bak 1997; Turcotte and Rundle 2002). The fact that criticality is the

governing mechanism of the Ca2+ signaling hierarchy has several implications:

(1) Once a system is in a critical state, a tiny perturbation can grow into a

macroscopic fluctuation due to the power-law distribution (Stanley 1971, 1999).

This provides a general theoretical framework for understanding how single chan-

nel fluctuations may lead to macroscopic random oscillations; (2) Ca2+ oscillations

are self-organized activities, which are emergent phenomena of the coupled CRU

network, and do not require the preexistence of pacemaking sites. Due to the

randomness in cluster formation in time and space, the whole-cell Ca2+ signal

exhibits an irregular burst-like behavior (Skupin et al. 2008, 2010); and (3) in

sino-atrial nodal cells of the heart, local Ca2+ release was shown to play a vital
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Fig. 10.4 Transition from sparks to waves in a CRU network. (a) 3D plots showing coexistence of

Ca2+ quarks (q), sparks (s), spark clusters (c), and waves (w) in a slice of the 3D CRU network

model with high Ca2+. A large cluster (left end) eventually evolved in to a wave. (b) Spark cluster
size distributions at low and high Ca2+ concentrations from the computer model. (c) Same as b but

from a mouse ventricular myocyte
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role in pacemaking activity (Lakatta et al. 2003). Local Ca2+ releases generating

Ca2+ waves via criticality may provide a subcellular mechanism accounting for the

fractal (i.e., power law) properties of heart rate variability (Ivanov et al. 1999;

Ponard et al. 2007). (4) Why cardiac arrhythmias occur suddenly and unpredictably

is a key clinical question (Zipes and Rubart 2006). The fact that a small random

noise can result in a macroscopic fluctuation under criticality may provide some

mechanistic insight into sudden cardiac death. In other words, the random and

sudden occurrence of arrhythmias may originate for the random fluctuations at the

single channel through the dynamics of criticality. This hypothesis needs to be

validated in future studies.

10.2.3 The Mitochondrial Network and Spatiotemporal
Depolarization Dynamics

A ventricular myocyte contains about 7,000–10,000 mitochondria. Similar to the

CRU network, mitochondria form a network inside the cell coupled by Ca2+, ATP,

ROS, and many other metabolites. The mitochondrial network generates mitochon-

drial depolarization waves and oscillations (Brady et al. 2004; Aon et al. 2003,

2004; Kurz et al. 2010; Honda et al. 2005), which have also been modeled in

computer simulations (Zhou et al. 2010; Zhou and O’Rourke 2012; Yang

et al. 2010).

Similar to Ca2+ cycling dynamics, the transient single mitochondrial

depolarizations, known as “flickers,” tend to occur randomly in space and time.

A question that needs to be answered is how the transition from random flicking to

whole-cell oscillations occurs. In a recent study (Nivala et al. 2011), we developed a

mathematical model to study how single mitochondrial flickering events self-

organize to cause mitochondrial depolarization waves and whole-cell oscillations.

We developed a Markov model of the inner membrane anion channel in which

ROS-induced inner membrane anion channel opening causes transient mitochon-

drial depolarizations in a single mitochondrion, which occur in a nonperiodic

manner, simulating flickering. We then coupled the individual mitochondria into

a network, in which flickers occur randomly and sparsely (first panel in Fig. 10.5a)

in the network when a small number of mitochondria are in the state of high

superoxide production (determined by the parameter p). As the number of

mitochondria in high superoxide production state increases, short lived or abortive

waves due to ROS-induced ROS release coexist with flickers. When the number of

mitochondria in high superoxide production state reaches a critical number, recur-

ring propagating waves are observed. The origins of the waves occur randomly in

space and are self-organized as a consequence of random flickering and local

synchronization. At this critical state, the depolarization clusters exhibit a power-

law distribution (Fig. 10.5b). In addition, the whole-cell mitochondrial membrane
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potential changes from exhibiting small random fluctuations to more periodic

oscillations as superoxide production rate increases (Fig. 10.5c).

Since when criticality is reached, a random flicker may cause a cascade event,

triggering a macroscopic mitochondrial depolarization event. The massive mito-

chondrial depolarization consumes ATP to a low level that opens the KATP

channels, shortening the action potential. In other words, at criticality, a random

single mitochondrial event may cause a macroscopic cellular event at the cellular

level, which may trigger a sudden arrhythmia event at the tissue scale.

10.3 Cellular Electrophysiology: Dynamics from

a Network of Networks

A cell is a network composed of molecular and organelle networks. The ionic

currents generated by the ion channels and Ca2+ cycling regulate the excitation

dynamics, Ca2+ cycling and the myofilament network generate the force for

0.060.040.020
SOC (mM)

0

2.5

5

7.5

10
20 mm

time (s) p=0.25 p=0.30 p=0.40 p=0.60

p=0.25

p=0.3

p=0.4

Y
(m

V
)

100 s time
Log(cluster size)

Lo
g(

# 
of

 c
lu

st
er

s)
a

b c
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contraction, and the metabolic network provide the energy needed for contraction.

Gene expression and signal transduction regulate excitation, contraction, and

metabolism. However, the proper network dynamics and coupling between the

networks are required for normal cardiac electrophysiology, and aberrations in

one network may cause failure in another one. For example, local stretch affects

Ca2+ release via ROS signaling to potentiate Ca2+ sparks (Prosser et al. 2011) or via

Ca2+-myofilament interaction to generate Ca2+ waves to cause DADs (ter Keurs

et al. 2008); increased myofilament sensitivity to Ca2+ in cardiomyopathy

potentiates arrhythmias (Huke and Knollmann 2010; Baudenbacher et al. 2008);

metabolic stresses may potentiate Ca2+ alternans (Florea and Blatter 2010;

Kockskamper et al. 2005; Huser et al. 2000; Belevych et al. 2009), Ca2+ sparks

(Zhou et al. 2011), and EADs (Xie et al. 2009; Sato et al. 2009); and mitochondrial

depolarization in ischemia causes membrane inexcitability and thus cardiac

arrhythmias (Akar et al. 2005). Therefore, to understand the cellular dynamics of

electrophysiology, a systems biology approach investigating the dynamics of the

coupled networks is needed, and computational modeling is a key component of

this approach.

Many mathematical models of cardiac action potential and excitation–

contraction coupling have been developed (Noble and Rudy 2001; Greenstein and

Winslow 2011). Most of the models included SR and cytosolic Ca2+, and membrane

voltage and ordinary differential equations were used to describe Ca2+ and voltage

dynamics. Some of the models have integrated β-adrenergic and CaMKII signaling.

Cortassa et al. (2006) and Matsuoka et al. (2004) developed multiple compartment

models that integrated excitation, contraction, and metabolism to study the dynam-

ics of excitation–contraction–metabolism (ECM) coupling. Hatano et al. (2011,

2012) developed an ECM coupling model which is a spatially distributed model

taking into account diffusion of ions and metabolites in 3D spaces, described by

partial differential equations.

However, a typical ventricular myocyte contains ~7,000–10,000 mitochondria

and ~10,000–20,000 CRUs or couplons (Franzini-Armstrong et al. 1999). These

organelles are intermingled in space, forming a complex ECM coupling network

with local interactions to cause spatiotemporal dynamics (e.g., waves and

oscillations) of intracellular Ca2+ cycling and metabolism (Cheng et al. 1996;

Lukyanenko and Gyorke 1999; Aon et al. 2004; Brady et al. 2004). In addition,

the elementary Ca2+ release events (e.g., Ca2+ sparks) tend to occur randomly due to

random L-type Ca2+ channel and RyR openings (Cheng and Lederer 2008; Bridge

et al. 1999). Similarly, the mitochondrial membrane potential flickering (De Giorgi

et al. 2000; Thiffault and Bennett 2005) and ROS flashes (Wang et al. 2008;

Pouvreau 2010) also tend to occur randomly at the single mitochondrion level.

Therefore, both spatial distribution and random behaviors needed to be taken into

account for ECM coupling dynamics. As shown in Figs. 10.4 and 10.5, complex

emergent properties arise due to the coupling between the elements and the random

firing of the elements. More importantly, as shown in Figs. 10.4 and 10.5, when the

system is in criticality, a random event at the subcellular scale may trigger a cascade

to result in macroscopic event at the cellular scale, which is the consequence of the
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coupled network of random elements. In recent studies (Cui et al. 2009; Rovetti

et al. 2010; Nivala et al. 2011, 2012a, b), we started to develop models that integrate

random opening of ion channels and the spatial distribution of CRUs and

mitochondria to study the spatiotemporal dynamics. In future studies, models

integrating excitation, Ca2+ cycling, signaling, metabolism, and contraction with

random ion channel opening are needed to reveal the emergent dynamics of cellular

electrophysiology.

10.4 Cellular Networks and Tissue-Scale Excitation

Dynamics

The heart is a network of different types of cells which are electronically coupled

via gap junctional conductance (Fig. 10.6a). Electrical impulses originating from

the sino-atrial nodal region propagate to the atrium and the atrial-ventricular node,

and then the Purkinje network and the ventricles to cause synchronous contraction

of the heart. In normal ventricular tissue, a myocyte is coupled to about

11 myocytes, which is reduced to about six in ischemic tissue (Peters and Wit

1998). Recent studies have shown that fibroblasts may also be coupled to myocytes

(Camelliti et al. 2004a, b).

In normal rhythm of the heart, the electrical impulse in heart is equivalent to a

planar wave (Fig. 10.6b). Complex wave dynamics arise in cardiac tissue as results

of cellular dynamics and coupling between cells (Qu and Weiss 2006; Qu 2011) to

result in cardiac arrhythmias, which includes focal excitations, spiral reentry, spiral

breakup (Fig. 10.6b), and mixture of focal and reentry excitations (Sato et al. 2009).

These dynamics are emergent properties of the myocyte networks, which depend on

the cellular properties and how the cells are coupled.

10.5 Conclusions

In a network perspective, a physiological system (such as the heart) is a network

composed of subnetworks (Fig. 10.1). A biological function is an emergent prop-

erty of the coupled networks, not of a single gene or of a single protein. While

altering any of the elements may cause a change in biological functions, it is

necessary to understand how an element affects other elements in the network,

how properties emerge due to the interactions, and thus one can understand the

underlying mechanisms. Systems biology approaches that combine experimental

biology with computational biology are the likely solutions for dealing with such

complex problems. Moreover, computational modeling becomes even more and

more important since experimental tools are limited for revealing the complex

dynamics. Since the first cardiac action potential model developed by Noble in
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1962 following the Hodgkin–Huxley model (Noble 1962), a great number of

advanced models have been developed and used to study cardiac excitation and

contraction dynamics in single cell, tissue, and whole heart models over the last

four decades, setting the heart to be the most well-modeled organ. Moreover, many

modeling studies are closely combined with experiments, which further enhance

the applicability of these models.

With the experimental and computational studies, our current understanding of

the mechanisms of cardiac arrhythmias has been greatly improved, however,

effective therapeutics that can prevent cardiac arrhythmias are still lacking. Most

of the antiarrhythmic drugs that were developed based on certain mechanistic

insights of arrhythmias are not effective but rather cause more mortality (CAST

1989; Waldo et al. 1996). One can easily argue that we still do not understand the

mechanisms due to the multi-scale complex regulations of the excitation and

contraction dynamics in the heart. A full understanding of the system would be

required to investigate the dynamics at each scale and how the dynamics at one

scale affects the dynamics at another scale using both experimental and computa-

tional approaches. Therefore, systems biology approaches that combine computa-

tional biology and experimental biology are the likely means.

However, there are many challenges ahead. On the experimental side, one of the

major problems is how to obtain the molecular and cellular information accurately

that can be faithfully used in modeling. On the computational side, since one cannot

develop a model of a heart or even a piece of tissue at the scale of molecules due to

computational limitations and complexity, a multi-scale modeling strategy is

needed. However, how to develop such a strategy and maintain the fidelity of

information when changing from one scale to another of modeling is a big chal-

lenge (Qu et al. 2011). One possible solution is to closely combine experiments and

b
Planar wave Focal excitation Spiral wave Spiral Breakup

a

Fig. 10.6 (a) A schematic plot of a cell network reconstructed from real tissue (Spach and

Heidlage 1995). (b) Excitation dynamics in cardiac tissue for normal rhythms (planar wave) and

arrhythmias (focal excitation, spiral reentry, and spiral wave breakup). Arrows indicate directions
of conduction. Voltage changes from low to high as the color changes from blue to red
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modeling in which modeling generates hypothesis for experiments to obtain more

accurate information for model improvement, i.e., an approach that continuous

iterations between experiments and modeling may finally lead us to the true

mechanisms of cardiac excitation and contraction dynamics for normal rhythms

and arrhythmias. Finally, theoretical tools, such as nonlinear dynamics, are needed

to draw general conclusions for the complex system, which is key to design

effective experiments to unravel the complex dynamics, such as the excitation

dynamics in the heart.
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Abstract Integrated mechanisms of regulation of energy metabolism at cellular,

tissue, and organ levels are analyzed from a systems biology perspective. These

integrated mechanisms comprise the coordinated function of three cycles of mass

and energy transfer and conversion: (1) the Randle cycle of substrate supply, (2) the

Krebs cycle coupled with energy transformation in mitochondrial oxidative phos-

phorylation, and (3) the kinase cycles of intracellular energy transfer and signal

transduction for regulation of energy fluxes. These cycles are extended and partially

governed by information transfer systems like those linked to protein kinase

signaling. In the heart, these cycles are closely related to the Ca2+ cycle during

excitation–contraction coupling. According to the view of integrated metabolic

cycles, the phosphocreatine/creatine kinase system represents a most important

subsystem determining the efficiency of regulation of metabolic and energy fluxes

in heart, brain, and oxidative skeletal muscles. It carries about 80 % of the energy

flux between mitochondria and cytoplasm in heart. The substrate uptake, respiration

rate, and energy fluxes are regulated in response to workload via phosphotransfer

pathways and Ca2+ cycling. We propose integrated network mechanisms to explain

the linear relationship between myocardial oxygen consumption and heart work

output under conditions of metabolic stability (metabolic aspect of

Frank–Starling’s law of the heart). The efficiency of energy transfer, force of

contraction, and metabolic regulation of respiration and energy fluxes depend

upon the intracellular concentration of total creatine, which is decreased in heart

failure. The role of creatine, creatine kinase, and adenylate kinase phosphotransfer

and AMP-activated protein kinase (AMPK) signaling systems and their interrela-

tionship with substrate supply and Ca2+ cycles are analyzed. Finally, an introduc-

tion to the AMPK signaling network is provided with a particular emphasis on the

heart in health and disease.

11.1 Introduction

In this chapter, we describe from a systems biology perspective the integration and

regulation of substrate and energy supply in living organisms and the role of the

creatine/creatine kinase (Cr/CK) system. Systems biology focuses on the

mechanisms of interactions between system components at molecular, cellular,
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and organ levels, giving rise to biological function. As such, systems biology

provides basic mechanistic insights about the principles that govern metabolic

behavior in living systems. According to Schrödinger, the metabolic activity of

living systems needs a continuous exchange of metabolites with the surroundings as

a form of extracting free energy from the medium. This process enables cells and

organisms to increase their internal organization such that they are able to perform

biological work from anabolic reactions (Schrödinger 1944). An increase of inter-

nal order implies a decrease of entropy that should be compensated by an entropy

increase in the environment. Catabolic and anabolic reactions are coupled to

mediate biological work (e.g., muscle contraction) through processes of free energy

conversion involving synthesis and utilization of ATP (Fig. 11.1). Coupling

between cellular work, anabolism, and catabolism is achieved by cyclic processes

involving mechanisms of feedback regulation. Herein, we introduce the theory of

integrated metabolic cycles. Cycles of substrate supply (Randle cycle), intracellular

energy conversion (Krebs cycle and mitochondrial oxidative phosphorylation), and

phosphotransfer reactions (kinase cycles) constitute conspicuous examples of both

substrate and energy provision and feedback regulation (Fig. 11.2). These cycles

closely interact with calcium (Ca2+) cycling (Fig. 11.2). Among the kinase cycles, a

key role is played by the Cr/CK system, adenylate kinase, and AMPK in skeletal

muscle, heart, brain, and other cell types (Wallimann et al. 1992, 2011; Schlattner

et al. 2006a, b; Schlattner and Wallimann 2004; Wallimann 1996, 2007; Saks

Fig. 11.1 General scheme of cellular metabolism. Catabolic reactions generating ATP (top),
through coupling to anabolic reactions (biosynthesis, bottom) using ATP, maintain cell structural

organization as an expression of the decrease of internal entropy (ΔSin < 0) and are also the source

of energy for cellular work (Wc). Abbreviations: ΔSex external entropy, ΔSin internal entropy, ΔSt
total entropy, ΔGex variatuion of Gibbs free energy. For further details, see text. Adapted from

(Saks 2007) with permission
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et al. 1978, 2007a, 2010, 2012; Saks 2007; Dzeja and Terzic 2003, 2009). In the

heart, contraction is initiated by excitation-contraction coupling that includes

processes linked to intracellular Ca2+ cycling (Bers 2002; Bers and Despa 2006).

Under physiological conditions, contractile force and cardiac work are regulated by

ventricular filling and sarcomere length-dependent mechanism (Frank-Starling’s

law) at constant amplitude of Ca2+ transients. A main regulatory motif of cardiac

energy fluxes is represented by metabolic feedback regulation through local

changes in Pi, ADP, AMP, Cr, and phosphocreatine (PCr) ratios (Saks

et al. 2006a, 2010, 2012; Bose et al. 2003; Dos Santos et al. 2000; Aliev

et al. 2012). Under conditions of adrenergic stimulation, cardiac Ca2+ cycling in

the cytoplasm and mitochondria becomes most important for energy flux regulation

(Balaban 2002; Griffiths and Rutter 2009; Tarasov et al. 2012; Glancy and Balaban

2012). Control and regulation of mitochondrial respiration by both adenine

nucleotides and Ca2+ have been analyzed in an integrated model of cardiomyocyte

function (Cortassa et al. 2009).

In this work, we aim to analyze regulatory interactions involved in the modula-

tion of energy supply and demand in the network comprised by Randle and Krebs

cycles and phosphotransfer pathways in the heart. Contribution of calcium cycling

to the regulation of energy supply–demand in the heart has been extensively

reviewed elsewhere (Balaban 2002, 2009a, b, 2012; Tarasov et al. 2012; Glancy

and Balaban 2012). The synchronization of the mitochondrial network in cardiac

cells is treated by Cortassa and Aon in Chap. 5.
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Fig. 11.2 General representation of regulation of energy fluxes via metabolic cycles at the cellular

level. The regulatory action that energy transfer cycles, such as the creatine kinase (CK) and

adenylate kinase systems (AK), exert on fuel supply is realized through the Randle cycle and

energy transforming Krebs cycle, coupled to oxidative phosphorylation. Any decrease in the use of

intracellular energy diminishes Krebs cycle activity and tends to favor the accumulation of

substrates

264 V. Saks et al.

http://dx.doi.org/10.1007/978-3-642-38505-6_5


11.2 Structural Basis of Functional Organization of

Cardiomyocyte Metabolism

In adult cardiac cells, mitochondria are localized at the A band level of sarcomeres

between Z-lines close to T-tubular system and sarcoplasmic reticulum (SR). Esti-

mation of the density distribution of mitochondria relative to their centers showed

that neighboring mitochondria in cardiomyocytes are aligned according to a rect-

angle with distance between centers equal to 1.97 � 0.43 μm and 1.43 � 0.43 μm
in the longitudinal and transverse direction, respectively (Vendelin et al. 2005).

High temporal resolution analysis of mitochondrial dynamics in adult

cardiomyocytes (one frame every 400 ms) revealed very rapid fluctuation of center

positions that did not exceed the limit of the organelle (Beraud et al. 2009). These

limited mitochondrial oscillations can be explained by inner membrane conforma-

tional changes likely elicited by changes in volume associated with energetic/redox

states (Hackenbrock 1968; Mannella 2006). In vivo imaging of mitochondrial

dynamics in cardiomyocytes showed separated individual organelles which do

not fuse with each other (Gonzalez-Granillo et al. 2012). Figure 11.3 shows

confocal images of mitochondria and α-actinin distribution in cardiomyocytes

from adult rats. In this figure the fluorescence immunolabelling of α-actinin is

used to mark sarcomeric Z-lines. Individual mitochondria regularly arranged

between Z-lines can be visualized by flavoprotein autofluorescence (Fig. 11.3,

green). The green fluorescence intensity profile shows the peaks distribution

corresponding to mitochondrial fluorescence; the regions of “zero” intensity of

α-actinin (Fig. 11.3 red) indicate intermyofibrillar localization of mitochondria

between Z-lines without apparent fusion/fission (Gonzalez-Granillo et al. 2012).

Possibly, fusion can happen in perinuclear mitochondrial clusters (Kuznetsov and

Margreiter 2009).

Regular arrangement and limited morphodynamics of mitochondria in adult

cardiomyocytes are determined by the cytoskeletal architecture, which includes

myofilaments, inter-myofilaments, microtubules, and other structural proteins.

Tubulin is one of the constituent cytoskeletal proteins with structural, transport,

and metabolic functions (see also Chap. 7). Herein, we will focus on the structural

role of β isotypes of tubulin. Tubulin is a heterodimeric complex formed by two

globular and two C-terminal tails (CTT) of α and β proteins. Globular α and β
proteins can be polymerized into microtubules, while α and β CTT can interact with

other intracellular structures and proteins. Tubulin has additional binding sites that

allow the filaments to join together laterally to form sheets of filaments. About 30 %

of tubulins in adult cardiomyocytes are polymerized and 70 % are in the

heterodimeric state (Tagawa et al. 1998). These two conformational states of protein

are in a dynamic balance driven by polymerization–depolymerization processes

(Sackett 2010). A study of the distribution of β tubulins by fluorescence confocal

microscopy showed that βIV tubulin is polymerized creating a dense mesh of mainly

longitudinally and obliquely oriented microtubules. βIII tubulin co-localizes with

alpha-actinine in Z-lines while βI tubulin forms randomly dispersed short polymers
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and dimers, and βII tubulin co-distributes with mitochondria (Saks et al. 2012;

Gonzalez-Granillo et al. 2012; Guzun et al. 2011a, 2012). These findings are in

agreement with data published first in 1990 by Saetersdal et al. regarding the link

between β tubulin and mitochondria as revealed by immunogold labeling

(Saetersdal et al. 1990). According to this study, β tubulin interacts with

mitochondria through the outer membrane (MOM) creating links between the

organelle and other cellular structures. The contribution of other cytoskeletal

proteins to structural and functional interactions with mitochondria is under inten-

sive investigation. Desmin and plectin are capable of interacting with voltage-

dependent anion channel (VDAC) at MOM (Capetanaki et al. 2007; Capetenaki

2002; Liobikas et al. 2001; Schroder et al. 2002). The 1b isotype of plectin of

cardiomyocytes co-localizes with mitochondria via direct interaction with VDAC,

whereas plectin 1d isotype is specifically associated with sarcomeric Z-disks

(Schroder et al. 2002).

Recently it has been proposed that the T-tubular system, which represents a

network of tubular extensions from the sarcolemma, plays an important role in the
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Fig. 11.3 Fluorescence confocal microscopy of mitochondria and alpha-actinin distribution in

adult rat cardiomyocyte. (a) Regular distribution of individual mitochondria as visualized by

autofluorescence of flavoproteines (green color) in between Z-lines that are labeled with rhoda-

mine immunofluorescent for α-actinin (red color). (b) Analysis of fluorescence intensity along a

selected line: dotted ¼ α-actinin; solid ¼ flavoproteins. Note that peaks of green fluorescence

intensity corresponding to mitochondria are seen in the regions of “zero” intensity of red α-actinin
fluorescence. Reproduced from (Gonzalez-Granillo et al. 2012) with permission
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structural organization of cardiac cell metabolism. The T-tubular system of rat

ventricular cells creates a regular arrangement at the level of Z-line and along

myofibrils (Fig. 11.4c) (Soeller and Cannell 1999). This system becomes disorga-

nized with time in cardiac cells in culture. The functional role of T-tubules was

described to provide a rapid inward spread of electrical excitation and Ca2+ influx

that triggers Ca2+ release from the sarcoplasmic reticulum, as well as supply of each

mitochondrion with oxygen and substrates. By using electron tomography (Hayashi

et al. 2009) identified anatomical couplings between opposing membranes of

T-tubules and sarcoplasmic reticulum (SR), these forming so-called Calcium

Release Units (CRU). A close localization of mitochondria and CRU favors Ca2+

and metabolite microcompartmentation (Saks et al. 2012). Individual mitochondria

localize at the level of the A-band of sarcomeres and at the Z-line they are in close

contacts with jSR and the T-tubular system forming CRUs (Fig. 11.4b). This

junctional cisterns of arrangement separates mitochondria from each other, also

making their fusion unlikely. The 3D reconstruction of the T-tubular system in

cardiac cells (Soeller and Cannell 1999) appears as an elaborated and effective

system of Ca2+, substrate, and oxygen supply from the extracellular medium. Its

discovery about a decade ago profoundly changed our knowledge of the heart cell

structure and the implications for metabolic regulation. As a matter of fact,

according to this architecture no distinction is possible between intermyofibrillar

and subsarcolemmal mitochondria, since both are in close contact with the

T-tubular system. This is in agreement with results obtained from kinetic studies

(Saks et al. 2012) and the fact that no electrical conduction occurs between

individual mitochondria in cardiomyocytes (Beraud et al. 2009; Kuznetsov

et al. 2009; Collins and Bootman 2003; Nivala et al. 2011; Zorov et al. 2000).

Simultaneous measurements of sarcomere and mitochondrial dimensions in situ

along the longitudinal axis of cardiomyocytes identified mitochondria as micron-

sized spheres localized between sarcomeres and distributed throughout the cell in a

crystal-like lattice without any visible fusion. In this organized lattice, transient

mitochondrial depolarizations (flickers), elicited by ROS-induced opening of anion

channels in the inner membrane, may propagate in cells as depolarization waves

(Nivala et al. 2011; Yaniv et al. 2011). However, electron tomographic studies

clearly revealed that there is no mitochondrial reticulum in cardiac cells; instead a

regular lattice containing 5,000–10,000 single mitochondria seems to prevail

(Nivala et al. 2011). In the heart, this forms the structural basis of the mitochondrial

network described by Cortassa and Aon in Chap. 5. Taken together, all the data

described above indicate that mitochondrial respiration depends upon localized

events in their vicinity. These structurally organized functional domains—dubbed

Intracellular Energetic Units (ICEUs) (Saks 2007; Saks et al. 2001, 2012)

(Fig. 11.5)—comprise sites of ATP hydrolysis (myofibrillar ATPases, sarcoplasmic

reticulum ATPase (SERCA), ion pumps) connected to ATP synthesis through

phosphotransfer networks. Energy transduction within ICEUs involving the Randle

and Krebs cycles of fuel supply and oxidative phosphorylation are governed by

energy-demanding reactions. Next, we analyze cardiac energy metabolism from the

perspective of regulatory interactions occurring in metabolic cycles.
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11.3 Substrate Supply and Its Regulation (Randle and

Krebs Cycles)

11.3.1 Mechanisms of Regulation of Fatty Acids Oxidation
in Heart Muscle

Fatty acids are released from triacylglycerol (TAG) by activated lipoprotein lipase

(LPL) and transferred in the cytoplasm bound to proteins. Free fatty acid transfer

across mitochondrial membranes consumes ATP involving FFA conversion into an

Acyl-CoA derivative and the transport-competent acyl-carnitine form by carnitine

palmitoyl transferase (CPT). The MOM-localized CPT1 targeted by malonyl CoA

inhibition constitutes an important regulatory step of β-oxidation of FAs (β-FAO)
(Fig. 11.4) (Saks et al. 2006b). β-FAO is linked to the citric acid cycle and oxidative

phosphorylation through NAD+, FAD, and acyl-CoA. The NADH generated by the

Krebs cycle and β-FAO is oxidized in the electron transport chain. Increased ATP

utilization elicits ATP synthesis driven by the proton motive force, thus decreasing

the NADH/NAD+ ratio. Oxidation of the NADH pool increases the flux through the

Krebs cycle through NAD+-dependent isocitrate and α-ketoglutarate
deshydrogenases, thus decreasing acetyl-CoA (AcCoA) levels. NAD+ can also be

reduced in β-FAO catalyzed by β-hydroxyacyl-CoA dehydrogenase and in the

glycolytic pathway catalyzed by glyceraldehyde phosphate dehydrogenase

(GAPDH). However, the transfer of NADH reduction potential from glycolysis

towards the mitochondrial matrix via the malate–aspartate shuttle, being slower

than direct NAD+ use by β-FAO, will prioritize the latter one (Kobayashi and Neely
1979). Thus, the GAPDH dependence on cytoplasmic NADH/NAD+ ratio

associated with the slow kinetics of malate–aspartate shuttle will rather slow

down glycolysis. An increase in the rate of AcCoA utilization by the Krebs cycle

will thus increase β-FAO. An accumulation of AcCoA does not influence signifi-

cantly the rate of β-FAO due to the equilibrium constant of the reversible thiolase

reaction which is in favor of AcCoA production (Neely and Morgan 1974).

At low ATP demand (decreased workload), the high NADH/NAD+ ratio slows

down the flux through NAD+-dependent dehydrogenases, thus decreasing the rate

of AcCoA oxidation through the Krebs cycle. An increased intra-mitochondrial

AcCoA level is thought to favor its transfer towards the cytoplasm where it is

converted into malonyl-CoA, an inhibitor of CPT-1-controlled FA transport into

mitochondria. Malonyl-CoA levels are also controlled by acetyl-coA carboxylase

(ACC), a cytosolic enzyme catalyzing conversion of AcCoA into malonyl-CoA,

whose inactivation by AMPK during energy stress relieves CPT1 inhibition.

Preferential utilization of FAs involves inhibition of glucose transport, phospho-

fructokinase (PFK), and pyruvate dehydrogenase (PDH) reactions (Hue and

Taegtmeyer 2009; Taegtmeyer 2010; Taegtmeyer et al. 2005). Glucose transport

in muscle cells is realized through GLUT4, the expression of which in the sarco-

lemma is regulated by insulin and other signals. Increased NADH/NAD+ and

268 V. Saks et al.



T-tubule

H

CoQ

+
Pi

H+

e

cytc

H+

H+

e

½½OO22++22HH++

HH22OO

OO22

OO22

OO22

mitochondrion

sarco-
lemma

ADP

myofibril

phosphotransfer
cycles

SR

aaccyyll--CCooAA

aaccyyll--ccaarrnniittiinnee

FFA aaccyyll--CCooAACD36

b-FAO
ETF

NADH

T-tubule

CCOO22

NADH
FADH2

Krebs
cycle

acetyl-CoAPDH

AP

ATP

PCr
Cr

Ca 2+

Ca 2+
3Na+

CRU

ase
ATP

ADP

Ca 2+

SR

TpC

CK

ATP

ATP

ADP

AMP
Pi

ase
ATP

Cr
PCr

AK1AK2

CK

mtCK

VDAC

tubulin
ADP

Cr

CK

ATP

PCr

NNAADD++
NADH

NNAADD++

mal/asp shuttle
OOAAAA mmaallmmaall

NADH

H+

ddeehhyyddrroo--
ggeennaasseess

Ca 2+

Na+ Ca 2+

+

+

-

aacceettyyll--CCooAA

mmaalloonnyyll--CCooAA

MCD

ACC

+ +

+

+ -

ADP AMP��

+

AMPK

enzymes

transporters  and channels       
metabolite flux
signaling flux

ac�va�ng

inhibi�ng

+

-

Y

Randle cycle

CRTCr
+   ?

CPT1

CPT2

PPyyrrGLU GLUT4 PFK2

K+

3Na+

ATP

2K+

ADP

Cr

ase
ATP

CK PCr

OOAAAA

Kinase signaling
circuits

QH2

Fig. 11.4 Metabolic cycles and signaling networks in cardiomyocyte—Intracellular Energy Units

(iEU). Free fatty acids (FFA, upper left) are taken up by a family of plasma membrane proteins

(fatty acid transporter protein, FATP1, fatty acid translocase, CD36), and in the cytoplasm FAs are

associated with fatty acid binding protein (FABP). FFAs are esterified to acyl-CoA via fatty acyl-

CoA synthetase. The resulting acyl-CoA is then transported into mitochondria via carnitine

palmitoyltransferase I (CPT and CPT II). Once inside, acyl-CoA becomes a substrate for the

β-oxidation pathway, resulting in AcCoA production. Each round of β-oxidation produces 1 mole-

cule of NADH, 1 molecule of FADH2, and 1 molecule of AcCoA. AcCoA enters the Krebs cycle,

where it is further oxidized to CO2 with the concomitant generation of 3 molecules of NADH,

1 molecule of FADH2 and 1 molecule of ATP. Glucose (GLU) is taken up by glucose transporter-4

(GLUT-4, at the left middle) and enters the Embden–Meyerhof pathway, which converts glucose

into 2 molecules of pyruvate (PYR). As a result of these reactions, 2 net ATP and 2 NADH are

produced. NADH is transferred into mitochondria via the malate–aspartate shuttle. OAA, oxalo-

acetate; Glut, glutamate; αKG, α-ketoglutarate; ASP, aspartate; MAL, malate. Most of the

metabolic energy derived from glucose can come from the entry of pyruvate into the Krebs

cycle and oxidative phosphorylation via AcCoA. NADH and FADH2 issued from both metabolic

pathways are oxidized in the respiratory chain. Mitochondrial creatine kinase (mtCK) catalyzes

the direct transphosphorylation of intramitochondrial ATP and cytosolic creatine (Cr) into ADP

and phosphocreatine (PCr). ADP enters the matrix space to stimulate oxidative phosphorylation,

while PCr is transferred via the cytosolic Cr/PCr shuttle to be used in the functional coupling

between CK and ATPases (acto-myosin ATPase and ion pumps, black circles). Feedback regula-

tion of substrate supply occurs in the following way: the glucose–fatty acid (Randle) cycle: if

glucose and FFAs are both present, FFAs inhibit the transport of glucose across the plasma

membrane, and acyl-CoA oxidation increases the mitochondrial ratios of AcCoA/CoA and of

NADH/NAD+ which inhibit the pyruvate dehydrogenase (PDH) complex. Citrate from increased

production in the Krebs cycle can inhibit phosphofructokinase (PFK). These changes would slow

down oxidation of glucose and pyruvate (PYR) and increase glucose-6-phosphate (G6P), which
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AcCoA /CoA ratios inhibit PDH. Their inhibitory effect is realized through pyru-

vate dehydrogenase kinase (PDK) that phosphorylates and inhibits PDH (Randle

1998). Citrate that escapes oxidation in the Krebs cycle is transported to the cytosol

where it inhibits PFK and glycolysis (Hue and Taegtmeyer 2009; Taegtmeyer 2010;

Taegtmeyer et al. 2005).

Cell signaling via AMPK provides a parallel control of most of these processes,

including substrate uptake via fatty acid and glucose transporters and flux via

β-FAO and glycolysis (see Sect. 5.5). Activation of AMPK during energy stress

situations stimulates all these activities.

Physiologically, the significance of the Randle cycle is to ensure the provision of

FAs to high-energy demanding organs such as muscle and liver. Also, glucose is

directed to organs such as brain, red blood cells, and other tissues dependent upon

glucose oxidation and possessing relatively small stores of glycogen.

11.3.2 Which Substrate Is Better: Reductionism Versus
Systems Biology

Living cells extract and transform energy from different sources distributing them

between organs, as a function of their energy needs and metabolic potential.

Unfortunately, there is not yet consensus on evaluating the amount of energy that

may be extracted from different carbon sources. A reason for this is differences

between reductionistic and systems biology type of approaches. The reductionist

explanation of the competitive use of different energy sources by distinct organs is

based on the oxygen needed to oxidize the different substrates and considerations of

coupling of oxidative phosphorylation. All electrons from NADH produced in

aerobic catabolism (i.e., from glycolysis and fatty acid oxidation) enter the respira-

tory chain via complex I, or electrons from FADH2 formed in β-FAO are carried via

electron transferring flavoprotein and complex III (Fig. 11.4), resulting in lower

ATP/O ratio. In this way, the yield of 38 ATP for 12 atoms of oxygen consumed

(P/O ¼ 3.16) for glucose (C6H12O6) oxidation and the yield of 129 ATP for

46 atoms of oxygen consumed (P/O ¼ 2.8) for palmitic acid (C16H32O2) oxidation

are assumed to be sufficient to conclude that glucose is the preferential fuel for

living organisms. This conclusion is further corroborated by measurements of

oxygen consumption by direct calorimetry. When one liter of oxygen is used to

burn substrates, the amount of energy obtained is 5.19 kcal/LO2 for glucose and

4.81 kcal/LO2 for palmitic acid (Leverve et al. 2006). However, these calculations

Fig. 11.4 (continued) would inhibit hexokinase (HK), and decrease glucose transport. G6P
glucose 6-phosphate, HK hexokinase, PFK phosphofructokinase, GLY glycogen, F1,6diP fruc-

tose-1,6-bisphosphate, GAPDH glyceraldehyde 3 phosphate dehydrogenase, 1,3DPG 1,3

diphosphoglycerate. AMPK signaling (orange) controls among others substrate uptake and flux

via glycolysis and fatty acid oxidation under conditions of starvation, hypoxia and other triggers of

energy stress. For details see text. Modified from (Saks et al. 2012) with permission
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do not take into account that under aerobic physiological conditions oxygen is not a

limiting factor for energy metabolism, but instead that there are many other factors

to be taken into account in the whole system. And these factors were indeed taken

into account by nature. Regarding the fuel supply to such a high-energy demanding

organ as is the heart, Clark and collaborators were the first to show that glucose

constituted less than 1/4 of the substrates oxidized by the isolated working

frog heart (Clark et al. 1937). These authors were not able to figure out which

substrate(s) were responsible for consuming the remnant oxygen. In 1954, Bing and

collaborators showed that the respiratory quotient (RQ, VCO2/VO2) in post-

absorptive state was about 0.7–0.75 while studying oxygen utilization during the

aerobic metabolism of fats, ketones, and amino acids by human heart (Bing

et al. 1954). This ratio was unchanged following overnight fasting but increased

above 1 after ingestion of a high fat diet. The authors assumed that this increase

could be due to utilization of intramuscular triacylglycerol (TAG) stores (Bing

et al. 1954). Similar data were obtained in skeletal muscle. The average respiratory

quotient (VCO2/VO2) of muscular tissue taken from de-pancreatized dogs was

about 0.7 (Bing et al. 1954).

In the case of working heart, the preferential energy supply by FA can be

understood from calculations specifying energy needs to realize work, energy

content of different substrates per unit mass, and kinetics of reactions in Randle

and Krebs cycles, rather than by oxygen consumed for oxidizing different fuels. A

heart contracting with a frequency of 70 bpm exhibits a stroke volume of 0.07 L

(i.e., cardiac output—5 L/min) that supports a pressure of 13 kPa (equivalent of

120/70 mm Hg) and realizes a work equal to 65 J/min or 93.6 kJ/day. ATP

hydrolysis in the actomyosin reaction releases about 60 kJ/mol under physiological

conditions. For the heart to accomplish a work equivalent to 100 kJ/day about

2.8 mol of ATP are needed (n ¼ W/ΔGATP corrected for the reaction efficiency that

in the case of actomyosin is about 60 %). This amount of ATP can be obtained from

the oxidation of 0.074 mol glucose or 0.02 mol of palmitic acid. For glucose,

supplemented with an equivalent molecular weight of 10 mol of water, 26.5 g

glucose should be oxidized by the heart to perform work equivalent to 100 kJ/day.

For palmitic acid only 5.5 g of this FA are necessary to perform a similar amount of

work. Thus, the content of free energy per gram of mass that can be released during

oxidation and converted into chemical energy in the form of ATP is much higher for

FAs than for carbohydrates due to the much higher content of non-oxidized –C–C–

and –C–H chemical bonds. Depending on the amount of bound water the difference

in carbohydrates can range from three- to ninefold (Newsholme and Start 1973)

(Fig. 11.5b). Thus, the kinetics of mass transfer in substrate supply is much more

favorable when FAs, as compared to glucose, are used as substrates. And this fact

explains the choice made by nature: heart and oxidative skeletal muscle clearly

prefer FAs as substrates (Fig. 11.5a). Their preferred utilization by heart and

oxidative muscle is achieved by multiple regulatory mechanisms involved in the

Randle and Krebs cycles (Fig. 11.4).

Randle et al. (1963) were the first to propose the concept of selective supply of

FAs over glucose for heart muscle (Randle et al. 1963). The glucose–FA cycle or
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Randle cycle outlined the restrictions imposed on muscle glucose metabolism by

FA oxidation (Randle et al. 1963). Further mechanisms of regulation of the

glucose–FA cycle in working heart were described by Neely and Morgan (1974)

with new insights being revealed since then (Hue and Taegtmeyer 2009;

Taegtmeyer 2010; Taegtmeyer et al. 2005). These mechanisms account for changes

in the kinetics of fuels supply, mass transfer, and transformation including glucose

transport and glycolysis, FA transport, β-FAO, and the Krebs cycle in response to

variations in respiration rates and NADH oxidation.

11.4 Phosphotransfer Pathways (Kinase Cycles)

11.4.1 Creatine Biosynthesis and Transmembrane Transport

Creatine biosynthesis occurs in a two-step reaction; first, in the kidney and in

pancreas, the amino acids arginine and glycine are combined to form guanidino

acetic acid (GAA) by the enzyme AGAT (arginine-glycine amino-transferase), and

second, in the liver, where GAA, taken up from blood serum via GABA-2 (gamma-

aminobutyric acid transporte) (Tachikawa et al. 2012), is methylated to generate Cr

by GAMT (guanidine-acetic acid methyltransferase) using SAM (S-adenosine-

methionine) as a substrate (Wyss and Kaddurah-Daouk 2000). Creatine synthesized

in the liver is released into the bloodstream by a still unknown mechanism. Since

creatine is not produced in significant amounts in, e.g., heart, brain, skeletal, and

smooth muscle, where it plays an important functional role, it has to be imported by

these tissues from blood serum, using a specific creatine transporter (CRT) (Beard
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Fig. 11.5 The role of fatty acid oxidation in metabolism. (a) (i) ATP synthesis to oxygen

consumption ratio in mitochondria for glucose and palmitate oxidation and (ii) the Gibbs free

energy of ATP hydrolysis from the actin–myosin reaction obtained from the oxidation of one gram

of glucose in comparison with the oxidation of one gram of palmitate. (b) Comparison of the

myocardial oxygen extraction ratio of carbohydrates (glucose, pyruvate, and lactate) and

non-carbohydrates (fatty acids, amino acids, ketones) in a post-absorptive state and after ingestion

of FAs. In both states FAs oxidation is the prevalent source of energy for the heart [adapted from

Bing et al. (1954) with permission]
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and Braissant 2010). In this way, creatine participates in the regulation of metabo-

lism at the organ level. An increase in total Cr and PCr in cells also increases the

PCr/ATP ratio and thus energy charge (Wallimann et al. 2011). Mutations in either

of the genes coding for AGAT, GAMT (endogenous creatine synthesis), or CRT

(creatine transport) in humans lead to the so-called creatine deficiency syndrome

with a severe neuromuscular and neurological phenotype including developmental

delay of expressive language and cognitive speech, mental retardation, autistic-like

behavior, epilepsy, and brain atrophy (for review, see (Stockler et al. 2007)).

11.4.2 Direct Measurement of Energy Fluxes: Principal Role
of the Phosphocreatine Pathway in Energy Transfer
in the Heart

While Cr has been known for 175 years after its discovery by Michel Chevreul, the

hypothesis of the PCr pathway was formulated by Samuel Bessman (Bessman and

Carpenter 1985; Bessman and Fonyo 1966; Bessman and Geiger 1981) and inde-

pendently by Martin Klingenberg (1970, 1976, 2008; Wallimann 1975; Turner

et al. 1973; Saks et al. 1978) about 50 years ago. An important factual basis of

this hypothesis is given by the observation made by Belitzer and Tsybakova (1939),

who showed that Cr addition stimulated respiration in skeletal muscle

homogenates, resulting in PCr production (Belitzer and Tsybakova 1939). A fun-

damental contribution to the existence of a PCr pathway of energy transfer in heart,

muscle, brain, and other tissues was been made by Theo Wallimann’s group. They

showed that different CK isoenzymes belong to different compartments, with

MtCK in mitochondria and cytosol and MM-CK in myofibrils and the membrane

of sarcoplasmic reticulum. They also resolved the atomic structure of CKs and

characterized interaction mechanisms with neighboring structures (Wallimann

et al. 1992, 2007; Schlattner et al. 1998, 2006a, b; Schlattner and Wallimann

2004; Eder et al. 1999, 2000; Fritz-Wolf et al. 1996). MM-CK was also shown to

localize in the sarcolemmal membrane (Saks et al. 1977). Such in vivo compart-

mentation of CK and ATP in muscle cells represents the cellular basis of the CK

cycle, one of the phosphotransfer pathways of energy transport (Wallimann

et al. 1992, 2007; Schlattner et al. 2006a, b; Schlattner and Wallimann 2004;

Saks 2007, 2008, 2009; Aliev et al. 2012; Saks et al. 2007b). Detailed functional

studies combining the use of mathematical modeling with experimental data have

shown that within myofibrils, and in the subsarcolemmal area, the diffusion coeffi-

cient for ATP is decreased by factor of 105 as compared to water solution (Abraham

et al. 2002; Alekseev et al. 2012; Selivanov et al. 2004). Diffusion limitations result

in ATP compartmentation in cells, where the local ATP and ADP pools are

connected by the phosphotransfer pathways. An equally important and fundamental

contribution was been made by Dzeja and Terzic groups who measured quantita-

tively, using an isotope tracer method, energy fluxes between different cellular
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compartments involving kinase cycles (Dzeja and Terzic 2003, 2009; Dzeja

et al. 1999; Nemutlu et al. 2012). Most effective and informative in bioenergetic

studies of phosphoryl transfer has been the use of 18O transfer (see the Chap. 6).

This method is based on the following two reactions: ATP hydrolysis by water

molecules containing 18O and ATP resynthesis with formation of [18O]γATP
(Dzeja and Terzic 2009; Nemutlu et al. 2012):

ATPþ 18O
� �

H2O ! 18O
� �

Piþ ADP (11.1)

18O
� �

Piþ ADP ! 18O
� �

γATP (11.2)

Paul Boyer used this method for studying the ATP synthase reaction (Boyer

1997). Inclusion of [18O]Pi into [18O]γATP in the presence of uncouplers led him to

the conclusion of the rotational binding change mechanism of mitochondrial ATP

synthesis. Nelson Goldberg, Petras Dzeja, André Terzic, and coworkers have

successfully applied this method for studying the kinetics of phosphoryl-transfer

reactions and energy fluxes in vivo by measuring the rates of the following

reactions (Dzeja and Terzic 2003, 2009; Nemutlu et al. 2012):

Creatine kinase phosphotransfer:

18O
� �

γATPþ Cr ! 18O
� �

PCrþ ADP (11.3)

Adenylate kinase phosphotransfer:

18O
� �

γATPþ AMP ! 18O
� �

βADP þ ADP ! 18O
� �

βATPþ AMP (11.4)

Glycolytic phosphotransfer:

18O
� �

γATPþ Glucose ! 18O
� �

G6Pþ ADP (11.5)

If a direct transfer of ATP from mitochondria to MgATPases happens together

with its immediate hydrolysis for contraction as sometimes proposed in the litera-

ture, only isotope transfer reactions 1 and 2 could be observed. In an excellent series

of studies Dzeja’s group showed that in normal cardiac cells about 80–85 % of

phosphoryl groups are transferred out from mitochondria by the PCr flux, and about

10–15 % by adenylate kinase, with a minor contribution by glycolysis (Dzeja

et al. 1999). In the heart, these fluxes increase linearly with workload energy

demand under conditions of the Frank–Starling law (Saks et al. 2007c). Figure 11.6

shows that PCr fluxes measured experimentally can be quantitatively simulated

with a mathematical model of compartmentalized energy transfer (Dos Santos

et al. 2000; Aliev et al. 2012; Aliev and Saks 1997; Vendelin et al. 2000). This

model was based on the experimental data obtained in studies of mitochondrial PCr

synthesis in permeabilized cardiomyocytes. The role of the adenylate kinase system

becomes important in hypoxia and pathological situations (Dzeja et al. 1999).
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Recently this method has been used in quantitative studies of metabolic cycles in

human health and disease (Dzeja et al. 2011a).

11.4.3 Intracellular Energetic Units and Mitochondrial
Interactosome: Local Signaling and Frank–Starling
Law

In addition to the fundamental structural data from Wallimann and Schlattner and

energy flux determinations by Dzeja and Terzic, another important question

concerns the cellular mechanisms involved in the function of CKs and other

phosphotransfer pathways. This question was addressed by the group of Valdur

Saks utilizing permeabilized cells that enable the study of mitochondrial function in

their natural environment (Saks et al. 1991, 1998, 2007a, d; Saks and Strumia

Fig. 11.6 Comparison of experimental data of energy flux measurements with results of

simulations by mathematical models. ATP flux: the rate of ATP synthesis in mitochondria; CK

flux: energy flux carried into cytoplasm by phosphocreatine measured experimentally by the 18O

transfer method [data summarized from Dzeja and Terzic (2003), Dzeja et al. (1996, 2001, 2007,

2011a), Pucar et al. (2001)]; A–S: Aliev and Saks models of compartmentalized energy transfer

(Dos Santos et al. 2000; Aliev and Saks 1997). The mathematical model of the compartmentalized

energy transfer system in cardiac myocytes includes mitochondrial synthesis of ATP by ATP

synthase, PCr production in the coupled MtCK reaction, the myofibrillar and cytoplasmic CK

reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional

exchange of metabolites between different compartments. The model gives a good fitting with the

experimental data, showing that about 85 % of energy produced in mitochondria as ATP flux is

transferred out of mitochondria as PCr flux, in agreement with the abundant experimental data

reported by Dzeja and colleagues
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1993). A central bioenergetic question in muscle cells relates to the mechanism of

PCr synthesis in mitochondria. This question arises because the equilibrium and

kinetic constants of all CK isoforms would favor only the resynthesis of MgATP

from PCr and MgADP (Saks et al. 2010; Guzun et al. 2009). Kinetic information

available is in agreement with the role of MM-CK at the sites of local ATP

regeneration in myofibrils and membranes of sarcolemmal and sarcoplasmic retic-

ulum, but this is not the case for PCr synthesis in mitochondria. More insight can be

obtained from the classical problem of cardiac physiology—the metabolic aspect of

the basic Frank–Starling law of the heart (Saks et al. 2006c, 2012). Discovered in

1914–1926, the Frank–Starling law states that under physiological conditions

contractile force, cardiac work, and the rate of oxygen consumption increase

manifold with the filling of the left ventricle (Starling and Visscher 1927). Later

it was found that this occurs without any changes in the ATP and PCr levels

(metabolic stability) and Ca2+ transients (Neely et al. 1972; Balaban et al. 1986).

The latter observation excludes any explanation involving a mechanism of control

of mitochondrial respiration by changes in intracellular Ca2+. A Ca2+-mediated

mechanism may be important only in the case of adrenergic activation of the heart

(Tarasov et al. 2012; Balaban 2012). Assuming that ATP, ADP, PCr, and Cr are

related through equilibrium relationships, the observation of metabolic stability was

interpreted to exclude any other explanation of workload dependence of cardiac

oxygen consumption than a mechanism involving the control of mitochondrial

respiration by ADP or Pi only. The popular assumption of CK equilibrium, as in

a mixed bag of enzymes (Wiseman and Kushmerick 1995), however, is in contra-

diction with the experimental evidence (Saks 2008; Guzun and Saks 2010). This

includes recent high-resolution 31P NMR experiments showing that the major part

of adenine nucleotides, notably ATP in muscle cells, exists associated with

macromolecules and that free ADP may be only transiently present in the cytoplasm

(Nabuurs et al. 2010, 2013). We have shown that both high PCr fluxes in the heart

detected by Dzeja and collaborators (Dzeja and Terzic 2003, 2009; Dzeja

et al. 1999; Nemutlu et al. 2012) and the linear dependence of the rate of oxygen

consumption on cardiac work may be explained by local signaling and metabolic

channeling of adenine nucleotides in nonequilibrium CK reactions (Saks

et al. 2012; Guzun et al. 2009; Timohhina et al. 2009). Actually, CK can catalyze

within the same cell either the forward or the backward reaction depending on in

which microcompartment the enzyme is located and where it functions as part of

different multienzyme complexes.

Mechanisms involving the interaction of mitochondria and CKs with other

cellular structures and multienzyme complexes are central for understanding meta-

bolic stability in the heart. This implies a different perspective in the framework of

systems biology. Figure 11.7a shows the localization of the tubulin isotype βII
following the pattern of mitochondrial distribution in cardiac cells (Saks et al. 2012;

Gonzalez-Granillo et al. 2012; Guzun et al. 2011b, 2012). Tubulin βII is part of the
heterodimer tubulin that binds to VDAC in MOM, thus modulating the close

probability of this channel specifically so that it is permeated by Cr or PCr but

limited for ATP or ADP (Guzun et al. 2009; Timohhina et al. 2009). In cardiac
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cells, the heterodimeric tubulin αβII and VDAC form a supercomplex with MtCK

and the ATP synthasome—the mitochondrial interactosome (MI) (Fig. 11.7b)

(Timohhina et al. 2009). Within this supramolecular structure, ATP and ADP

cycle between ATP synthasome and MtCK maintaining oxidative phosphorylation

effectively coupled to the synthesis of PCr. In the MI, MtCK functions

Fig. 11.7 Mitochondrial Interactosome. (a) Confocal image of a cardiomyocyte labeled with

MitoTracker Red for mitochondria; scale bar 14 μm. (b) Scheme depicting the mitochondrial

interactosome, a macromolecular complex formed by the ATP synthasome, in turn constituted by

ATP synthase (subunits in different colors), adenine nucleotide translocase (ANC, orange),
inorganic phosphate carrier (PIC, yellow), coupled to the respiratory complexes (I-IV, purple
circles) in the mitochondrial inner membrane (MIM), octameric mitochondrial CK (MtCK,

backbone structure with dimers in different color) in the intermembrane space (IMS) and the

voltage-dependent anion channel (VDAC, gray-blue) in the mitochondrial outer membrane

(MOM) interacting with cytoskeletal proteins tubulin (gray, surface structure representation)

and putative linker protein (LP, purple). Metabolite fluxes are indicated by arrows in different

colors. For ATP synthase, subunits of the F1 part (greek letters) and F0 part (latin letters) are
indicated, as well as the rotation of the rotor (yellow arrow). For the respiratory chain, proton

pumping (H+, yellow arrows) and some redox centers (FMN, FAD) are indicated, as well as the

two electron carriers coenzyme Q (CoQ/CoQH2) and cytochrome c (cytc). Adapted from

(Timohhina et al. 2009) and (Schlattner et al. 2009) with permission. Art work of the ATP

synthasome in this figure was reproduced with kind permission from P.L. Pedersen and is the

result of the combined efforts of Drs. Young H. Ko and David J. Blum; MtCK structure and

membrane topology is reproduced from (Schlattner et al. 2006b) with permission
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unidirectionally toward PCr synthesis utilizing mitochondrial ATP supplied by

ANT (direct channeling). This process moves ADP back into mitochondria,

because of the differential permeability of VDAC in interaction with tubulin that

impedes ADP release from mitochondria. These coupled reactions of oxidative

phosphorylation and PCr synthesis in MI are effectively regulated by Cr (Fig. 11.8).

In the presence of an extra-mitochondrial ADP trapping system (pyruvate kinase,

PK; phosphoenolpyruvate, PEP), Cr addition rapidly increases the respiration rate

to its maximal value, revealing a preferential accessibility of the ADP produced by

MtCK to matrix ATPase, not to the cytosolic trapping system. Metabolic control

analysis of mitochondrial respiration in permeabilized cardiac cells showed high

flux control coefficients (FCC) for reactions involving ADP recycling coupled to

MtCK and PCr production (Fig. 11.9a). Actually, the sum of control coefficients

exceeds the theoretical value for linear systems by a factor of 4 (Tepp et al. 2011).

This can be interpreted in terms of MtCK-controlled reactions in MI acting as very

effective amplifiers of metabolic signals from cytoplasm (Tepp et al. 2011; Aon and

Cortassa 2012). According to Kholodenko, Westerhoff, and their coworkers, the

sum of the FCC of the metabolic pathway components exceeding one indicates a

direct channeling in the pathway (Moreno-Sanchez et al. 2008). On the contrary, in

isolated heart mitochondria and permeabilized cardiac fibers the sum of FCC of

respiratory chain complexes, ATP synthase, and metabolite carriers, estimated

under conditions of respiration activated by ADP, is close to 1, corresponding to

a linear metabolic pathway (Moreno-Sanchez et al. 2008; Kuznetsov et al. 1996;

Doussiere et al. 1984; Fell and Thomas 1995; Groen et al. 1982). The high

efficiency of energy flux control in MI makes this supercomplex a key site for the

feedback of metabolic regulation of mitochondrial respiration in cardiac cells (Saks

et al. 2012; Tepp et al. 2011).

Figure 11.9b depicts the possible role of both Cr and ADP in the control of

respiration in situ. Extra- and intra-mitochondrial ADP in the regulation of respira-

tion was studied by MgATP titration in the absence or presence of Cr, i.e., activated

MtCK (Saks et al. 2012; Guzun et al. 2009; Guzun and Saks 2010; Timohhina

et al. 2009). The influence of mitochondrial ADP alone on respiration was

estimated by removing extra-mitochondrial ADP through the PEP-PK trapping

system mimicking glycolytic ADP consumption. From Fig. 11.9b we can see that

stimulation of the extra-mitochondrial ADP producing system by MgATP alone

cannot effectively activate respiration. The high apparent Km for exogenous

MgATP (157.8 � 40.1 μM) corresponds to the apparent Km of myofibrillar ATPase

reaction for MgATP. However, when oxidative phosphorylation is stimulated by

both extra- and intra-mitochondrial ADP (in the presence of Cr to activate MtCK

and MM-CK in myofibrils), the respiration rate increases rapidly up to maximal

values and the apparent Km for ATP decreases from 157.8 � 40.1 μM to

24.9 � 0.8 μM. Removal of extra-mitochondrial ADP by PEP-PK provokes an

increase of Km for MgATP up to 2.04 � 0.10 mM. These results show that local

endogenous ADP in ICEUs is an important regulatory factor of respiration but only

in the presence of Cr and activated MtCK. The stimulatory effect of respiration by

endogenous ADP is strongly amplified by functional coupling of MtCK with ANT

278 V. Saks et al.



that increases adenine nucleotides recycling within the MI (Saks et al. 2012; Guzun

et al. 2009; Timohhina et al. 2009; Jacobus and Saks 1982). The loss of

Cr-stimulated respiration in transgenic MtCK-knockout mice confirms the central

role of MtCK in respiration regulation (Kay et al. 2000).

Fig. 11.8 Control of mitochondrial respiration by creatine in permeabilized cardiomyocytes. (a)

Schematic representations of an oxygraph experiment and of a mitochondrion in a permeabilized

cardiac cell, surrounded by cytoskeletal proteins and myofibrils. First, added ATP is hydrolyzed by

cellular ATPases and the ADP produced stimulates respiration. Phosphoenolpyruvate (PEP) and

pyruvate kinase (PK) continuously trap extra-mitochondrial ADP to regenerate ATP. Stepwise

addition of Cr in the presence of ATP stimulates mitochondrial creatine kinase (MtCK) that

controls respiration through continuous intra-mitochondrial re-cycling of ADP from ATP. (b)

Oxygraph recording of Cr stimulated respiration. This experiment enables the estimation of the

apparent affinity of MtCK for Cr. The left scale and the blue trace indicate the oxygen concentra-

tion (nmol O2 ml�1) in the experimental milieu. The right scale and the red trace denote the rate of
oxygen uptake (in nmol O2 min�1 nmol�1 cyt. aa3). Adapted from (Guzun et al. 2009) with

permission
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Taken together this information allows explaining the linear relationship

existing between oxygen consumption and cardiac work by local metabolic feed-

back signaling within ICUEs (Saks et al. 2010, 2012; Aliev et al. 2012) (Fig. 11.10).

Direct flux determination and mathematical modeling show that not more than

10 % of free energy is transported out of mitochondria by ATP flux needed to

equilibrate the information-carrying flux of ADP into mitochondria. According to

this model, ADP released from actomyosin cross-bridges stimulates the local

MM-CK reaction in the myofibrillar space within ICEUs while at the same time

forms a concentration gradient towards mitochondria (Fig. 11.10a–c) (Dos Santos

et al. 2000; Aliev et al. 2012; Aliev and Saks 1997; Vendelin et al. 2000). The

amplitude of displacement of MM-CK from equilibrium, as well as cyclic changes

in ADP, is proportionally increased with workload (Fig. 11.10b, c). The

rephosphorylation of ADP in the MM-CK reaction increases locally the Cr/PCr

ratio that is transferred towards MtCK via the CK/PCr shuttle. Regulation of VDAC

permeability by βII tubulin is a key element mediating the linear response of

mitochondrial respiration to local signaling within ICEUs. When MOM is perme-

able, as in isolated mitochondria, modulation of respiration is impossible because of

saturating ADP concentrations used under these conditions. The latter exceeds

manifold the apparent affinity of oxidative phosphorylation for free ADP

(Km
appADP ¼ 7.9 � 1.6 μM), even in diastolic phase (about 40 μM)

(Fig. 11.11a). On the contrary, when ADP diffusion is restricted at the level of
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Fig. 11.9 The energy flux control in permeabilized cardiomyocytes: creatine stimulation of
mitochondrial respiration. (a) Flux control coefficients for MtCK, adenine nucleotide translocase

(ANT), ATP synthasome (ATPsyn), respiratory complexes I (C I), III (C III), IV (C IV), and

inorganic phosphate carrier (PiC). The right panel shows the sum of flux control coefficients.

Reproduced from (Tepp et al. 2011) with permission. (b) The role of endogenous ADP produced in

MgATPase reactions at different concentrations of MgATP in the regulation of mitochondrial

respiration in permeabilized cardiomyocytes under different conditions: (square)—without ADP

trapping system (PEP-PK) and in the absence of Cr; ( filled circle)—without PEP-PK system but in

the presence of 20 mM Cr (i.e., activated MtCK); (triangle)—in the presence of both trapping

system for free ADP and 20 mM Cr. Reproduced from (Timohhina et al. 2009) with permission
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MOM, as in mitochondria in situ, the apparent Km for free ADP increases to about

370.75 � 30.57 μM and the respiration rate becomes almost linearly dependent on

local ADP concentration. Under these conditions, the initial respiratory rate can be

approximated by its linear dependence on ADP within the range of values

corresponding to the increase in workload (Fig. 11.11b) (Guzun et al. 2009;

Timohhina et al. 2009). Thus, cyclic changes in local ADP concentrations within

the myofibrillar space of ICEUs become an effective regulatory signal due to (1) the

nonequilibrium state of CK reactions, (2) the restricted VDAC permeability to

metabolites elicited by association with βII tubulin, and (3) the presence of
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Fig. 11.10 Mechanisms of regulation of mitochondrial respiration controlled by MtCK and of
energy fluxes in cardiac muscle cells. (a–c) Results from a mathematical model of cardiac energy

metabolism (Vendelin-Aliev-Saks-Dos Santos model). (a,b) Calculated net PCr production rates

in nonequilibrium steady state MtCK reaction (a) and cyclic changes in rates of ATP regeneration

in nonequilibrium myofibrillar MM-CK reaction (b) during contraction cycles at different

workloads corresponding to oscillations of [ADP]c indicated in Fig. 11.11. (c) Mathematically

modeled oscillations of ADP concentrations in the core of myofibrils over cardiac cycle at

workloads equivalent to 750 (black), 1,500 (red) and 2,250 (green) μmol ATP s�1 kg�1.

According to this model, the ATP cyclically produced during contractions (b) is associated with

cyclical oscillations of ADP and Pi concentrations in myofibrils (c) and subsequent PCr production

in the MtCK reaction (a). Reproduced from (Dos Santos et al. 2000; Aliev et al. 2012; Aliev and

Saks 1997; Vendelin et al. 2000) with permission. (d) Schematic representation of feedback

metabolic signaling in regulation of energy metabolism within ICEUs in cardiac cells. Due to

the nonequilibrium MtCK and cyclic MM-CK reactions, intracellular ATP utilization (output) and

mitochondrial ATP regeneration (input) are linked via cyclic fluctuations of cytosolic ADP and

Cr/PCr. See the text for explanation
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Cr. When these conditions are fulfilled, activation of the coupled MtCK within MI

by Cr induces ADP/ATP recycling and increases respiration rate, thus amplifying

the effect of cytoplasmic ADP; under these conditions, the apparent Km for ADP

becomes equal to 50.24 � 7.98 μM (Fig. 11.11a). These data suggest that modula-

tion of respiration by local changes in ADP concentration, under condition of

restriction of adenine nucleotide diffusion across mitochondrial membranes, is

mediated by the structural organization of the MI. The MtCK reaction amplifies

the ADP signal due to its functional coupling with ATP Synthasome (Fig. 11.7),

thus increasing the steady-state rate of adenine nucleotides cycling in mitochondria

and the rate of respiration. The coupled reactions of muscle type MM-CK in

myofibrils and MtCK in mitochondria perform under nonequilibrium conditions

and proceed in opposite directions (Fig. 11.10a–c) (Saks et al. 2012; Guzun

et al. 2009; Guzun and Saks 2010; Timohhina et al. 2009). This mode of function

results in separation of energy fluxes (mass and energy transfer by PCr) and

signaling (information transfer by oscillations of cytosolic ADP concentrations,

Pi and PCr/Cr ratio) that is amplified within the MI. As a result, reactions catalyzed

by different isoforms of compartmentalized CK tend to maintain the intracellular

metabolic stability. The separation of energy and information transfer is illustrated
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Fig. 11.11 The role of restriction of ADP diffusion in the regulation of mitochondrial respiration.
(a) Kinetic analysis of ADP-activated respiration. The ADP concentrations corresponding to

mathematically modeled fluctuations of ADP by Michaelis–Menten graph representation with

colored small arrows (black, red and green), contained in the area of physiological cytosolic ADP
concentration (indicated by a gray box). When MOM is permeable, as in isolated mitochondria (Δ,
Km

appADP—7.9 � 1.6 μM), the regulation of respiration is impossible because of a saturated

ADP concentration for the minimal workload. When the ADP diffusion is restricted at the level of

MOM, as in mitochondria in permeabilized cardiomyocytes (circle, Km
appADP—

370.75 � 30.57 μM), the respiration rates become linearly dependant on ADP concentrations, in

fact also on heart workloads in accordance with the Frank–Starling law (b). This linear dependence

under physiological conditions can be amplified by creatine (see large blue arrows in a) in the

presence of activated MtCK (Square, Km
appADP—50.24 � 7.98 μM). Reproduced from (Guzun

et al. 2009) with permission. (b) The metabolic aspect of the Frank-Starling’s law of the heart is

expressed by linear dependence between the increase of left ventricular end-diastolic volume and

the increase of respiration rates in the absence of measurable changes in the intracellular ATP and

PCr content. Reproduced from (Saks et al. 2006c) with permission
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by the scheme depicted in Fig. 11.10d. This scheme shows feedback regulation of

respiration in vivo according to Norbert Wiener’s cybernetic principles (Saks

et al. 2012; Guzun and Saks 2010): the usage of ATP (or release of free energy of

ATP hydrolysis, ΔGATP, to perform work, marked as output) and ATP regeneration

(or extraction of ΔGATP from substrates by oxidative phosphorylation, denoted as

input) are interconnected via the feedback signaling through oscillations of cyto-

plasmic concentrations of ADP, AMP, Pi, and Cr/PCr amplified within MI. In this

framework, the role of βII tubulin in association with MOM in cardiomyocytes

would be to induce the linear response of mitochondrial respiration to workload-

dependent metabolic signals. This elegant feedback mechanism of regulation of

respiration on a beat-to-beat basis ensures metabolic stability necessary for normal

heart function and explains well the metabolic aspect of the Frank–Starling’s law of

the heart (Saks 2007; Saks et al. 2006a, 2012). Importantly, recycling of adenine

nucleotides within MI when coupled to PCr production significantly decreases ROS

levels ensuring maximal efficiency of free energy transduction in mitochondria

while inhibiting permeability transition pore opening, thus protecting the heart

under stress conditions (Schlattner et al. 2006b; Meyer et al. 2006).

While the mechanisms described above represent local signaling within ICEUs,

important mechanisms of synchronization of mitochondrial activity between

ICEUs and their integration into structurally and functionally organized cellular

systems are described by Cortassa and Aon in Chap. 5. The role of Ca2+ cycle in

maintaining high respiratory activity of mitochondria within ICEUs has been

described by Balaban’s group and studied by mathematical modeling by

Cortassaet al. (2009).

11.4.4 Intracellular Creatine Concentration as a Regulatory
Factor in Heart Energetics

Many experimental and clinical studies have shown that intracellular Cr concentra-

tion is an important factor, determining the efficiency of intracellular energy

transfer in heart cells (Saks et al. 1978, 2012; Wyss and Kaddurah-Daouk 2000;

Nascimben et al. 1996). The results of an earlier work of ours published more than

30 years ago are reproduced in Fig. 11.12. This experiment shows that removal of

Cr from the frog heart cells results in decreased PCr content and diminished

contractile force; all parameters return to their initial value after restoration of Cr

content (Saks et al. 1978). Similar results were recently reported by (Nabuurs

et al. 2013) by assessing morphological, metabolic, and functional consequences

of systemic Cr depletion in skeletal muscle. These data were obtained in a mouse

model deficient in L-arginine:glycine amidino transferase (AGAT�/�) which

catalyzes the first step of Cr biosynthesis. In this work, systemic Cr depletion

resulted in mitochondrial dysfunction and intracellular energy deficiency, as well

as structural and physiological abnormalities. In vivo magnetic resonance
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spectroscopy showed a near-complete absence of Cr and PCr in resting hind limb

muscle of AGAT�/� mice. Compared to wild type, the inorganic phosphate/β-ATP
ratio was increased fourfold, while ATP levels were reduced to nearly half and

overall mitochondrial content was increased. The Cr-deficient AGAT�/� mice

presented with significantly reduced grip strength and suffered from severe muscle

atrophy. Oral Cr administration led to rapid accumulation in skeletal muscle (faster

than in brain) and reversed all muscle abnormalities revealing that the condition of

the AGAT�/� mice can be switched between Cr-deficient and normal simply by

dietary manipulation. The consequences of AGAT deficiency were more pro-

nounced than those of muscle-specific CK deficiency (Nabuurs et al. 2013),

which suggests a multifaceted involvement of Cr in addition to its role in the

PCr–CK system and in muscle energy homeostasis, as, e.g., by direct effects on

biomembranes (Tokarska-Schlattner et al. 2012). It was also shown by the group of

Stefan Neubauer in Oxford that a moderate elevation of total Cr levels in the heart

by approximately 50 % in transgenic mice overexpressing the Cr transporter (CRT)

conveyed significant protection and improved recovery of the hearts upon experi-

mental induction of ischemia/reperfusion (Lygate et al. 2012). In one of their most

important work the Neubauer’s group has shown that a decrease of PCr content in

the heart of patients with dilated cardiomyopathy is accompanied with significantly

increased mortality rates (Neubauer 2007).

The role of altered phosphotransfer pathways in heart pathology of animal

models, as well as human patients, is well documented and has been described in
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a number of reviews (Ingwall and Weiss 2004; Ingwall 2006; Ventura-Clapier

et al. 2002, 2004). Most recently, two younger Chinese patients with acute

myocardial infarction and presenting with muscle MM-CK deficiency have been

diagnosed with somatic mutations in the M-CK gene. These mutants at amino acid

E79 prevent correct folding and dimerization of M-CK. In parallel, correct targeting

of the enzyme to subcellular structures is hampered and enzymatic CK activity

dramatically lowered (Wu et al. 2013). These data with human cardiac infarction

patients have shown that active dimeric MM-CK together with its substrates Cr and

PCr are important for normal heart function.

Thus, the current opinion, supported by a host of data derived from different

experimental approaches and provided by a number of different independent

laboratories, is that Cr and PCr together with microcompartmentalized CK isoforms

are physiologically essential for normal body function, specifically for optimal

performance of skeletal and heart muscle, brain, neuronal cells, skin, retina and

auditory cell, spermatozoa, and other cells of intermittant high-energy requirements

(Wallimann et al. 1992, 2011). This fundamental hypothesis is strongly supported

by the more or less severe phenotypes observed in double and single CK isoenzyme

knockout mice, respectively (Steeghs et al. 1997; Streijger et al. 2005; Heerschap

et al. 2007), as well as by the phenotypes of AGAT and GAMT knockout mice,

presenting with disturbed energy metabolism body weight control, hampered fer-

tility, muscular dystrophy, and cognitive and behavioral impairment, etc. (Nabuurs

et al. 2013; Schmidt et al. 2004; ten Hove et al. 2005; Torremans et al. 2005).

In a most recent, provocative publication, entitled “Life without creatine”,

Lygate and colleagues purport that the phenotype of the GAMT knockout mouse

was basically “normal”. Specifically, they do not find a skeletal or cardiac muscle

phenotype (Lygate et al. 2013). This contradicts the phenotype of the same trans-

genic mouse described earlier (Schmidt et al. 2004; ten Hove et al. 2005; Kan

et al. 2005). Most importantly it is in contrast to the AGAT knockout creatine

deficiency mouse (Nabuurs et al. 2013). This latter AGAT knockout mouse, in

contrast to the GAMT knockout mouse, does not synthesize guanidine acetate

(GAA), which in the GAMT knockout skeletal muscle was shown to be

phosphorylated by CK to form an alternative energy-rich phosphagen, phospho-

GAA, which still can be utilized as high-energy phosphagen, albeit at lower

efficiency (Heerschap et al. 2007). Thus, it will be most important to reevaluate

cardiac energy metabolism and heart phenotype in the GAMT knockout mouse to

completely rule out any compensatory effects of the high concentrations of

phospho-GAA accumulated in these knockout mice and to rule out a still possible

contribution of phospho-GAA as an still alternative energy source. Corresponding

experiments with the pure creatine deficiency AGAT knockout, presenting with a

rather severe phenotype that is reversible by simple creatine supplementation

(Nabuurs et al. 2013), are warranted and should provide some answers to these

pending questions. To get a physiologically more meaningful answer to the true

function of CK in heart it will be paramount to stress the heart to maximal

performance and work output, where one would expect to see the true effects of

creatine deficiency also in this organ.
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In conclusion, until the enigma of the results provided by (Lygate et al. 2013)

(see above) is solved, all available data still indicate that the CK system together

with PCr and Cr is central to the regulatory mechanisms of metabolic and energy

fluxes in those cells under intermitantly fluctuating high-energy requirements,

including the heart (Taegtmeyer and Ingwall 2013).

11.5 The Signaling Network of AMP-Activated Protein

Kinase (AMPK) in the Heart

11.5.1 Protein Kinase Signaling Networks in Metabolic
Control of Cardiac Function

Metabolic cycles as described before provide immediate metabolic feedback for

changes in energy input (nutrient supply) and energy output (workload). They are

particularly important in the heart, an organ that maintains a high degree of

metabolic stability and a particularly well-controlled energy homeostasis. An

additional layer of regulation, which ascertains this metabolic stability, is achieved

by information transfer via protein kinase signaling. All major protein kinase

pathways were shown to play important roles in the heart, controlling contraction

force, contractility, and heart rate in particular during cardiac development, under

prolonged strong stimulation, and under emerging pathological conditions.

The possibly best studied example is the cyclic adenosine nucleotide (cAMP)-

dependent protein kinase A (PKA) (Taylor et al. 2008), together with its homolo-

gous cGMP-dependent protein kinase G (PKG) (Takimoto 2012). Their control of

cardiac contraction strength, ion fluxes, and hypertrophy relies on a precise spatio-

temporal regulation of substrate phosphorylation. In case of PKA, A-kinase anchor-

ing proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) play a

major role in this spatiotemporal organization and the occurrence of cAMP

microdomains (Edwards et al. 2012; Mika et al. 2012; Diviani et al. 2013). This

emphasizes the importance of cellular localization and organization for protein

kinase-mediated information fluxes, as already outlined above for cardiac CK

isoenzymes.

Also some other protein kinase signaling pathways have to be considered as

relevant for cardiac metabolism. Protein kinase B (PKB or Akt) is an essential

component of the growth response of an organism to nutritional input. In the heart,

it participates in the regulation of myocyte growth under physiological conditions

(Walsh 2006; Hers et al. 2011). PKC isoforms regulate cardiac contraction and

hypertrophic responses, as well as other signaling pathways in more pathological

situations such as ischemia and reperfusion injuries (Steinberg 2012). While

calcium-regulated PKD is a more recent addition to the kinome, less well studied

in respect to the cardiovascular system (Avkiran et al. 2008), members of the
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mitogen-activated protein kinase (MAPK) family are prominent regulators of

cardiac function with both protective and detrimental effects (Rose et al. 2010).

The protein kinase most relevant in the context of metabolic stability and energy

homeostasis, however, is AMP-activated protein kinase (AMPK). It has often been

described as a major “signaling hub,” “fuel gauge,” “metabolic sensor,” or “meta-

bolic master switch” because it plays a central role in sensing and regulating energy

homeostasis at the cellular, organ, and whole-body level (Winder and Hardie 1999;

Hardie and Carling 1997). Activation of AMPK is triggered by a diverse array of

signals linked to limited energy availability in physiological and pathological

situations, including extracellular (e.g., hormones, cytokines, nutrients) and intra-

cellular stimuli (e.g., AMP, ADP) (Hardie et al. 2012a). Activation involves

covalent phosphorylations and allosteric binding of AMP or ADP that cooperate

in a complex manner. In general, these regulations are coordinated to activate

AMPK in situations of energy deficits and aim at compensating ATP loss via

accelerated catabolism and inhibited anabolism. However, pleiotropic control

exerted by AMPK affects not only metabolic pathways but also other physiological

functions like cell growth and proliferation, cell polarity and motility, apoptosis,

autophagy, and central appetite control by regulating enzyme activities and gene

transcription. This has made the kinase also a prime pharmacological target for

treating metabolic disorders or possibly also cancer (Hardie 2007; Zhang

et al. 2009; Finckenberg and Mervaala 2010; Inoki et al. 2012; Srivastava

et al. 2012).

Although earlier work on AMPK mainly focused on tissues like liver and

skeletal muscle, more recent research has revealed novel molecular mechanisms

of AMPK regulation and downstream action that are relevant also to cardiovascular

function. Activation of the AMPK pathway plays a particularly important role in

the myocardial response to pathological stimuli like ischemia–reperfusion (Kudo

et al. 1995; Russell et al. 2004), pressure overload (Tian et al. 2001; Kim

et al. 2012), or heart failure (Sasaki et al. 2009). Pharmacological activation of

AMPK also holds promise as a therapeutic strategy for treating cardiovascular

diseases (e.g., Sasaki et al. 2009; Calvert et al. 2008; Shinmura et al. 2007). The

following paragraphs will briefly summarize the key elements of AMPK signaling

with an emphasis on metabolic regulation in the heart. For more complete reviews

of this issue, the reader is referred to some excellent recent overviews dedicated to

general AMPK signaling (Hardie et al. 2012a; Inoki et al. 2012; Carling et al. 2012;

Oakhill et al. 2012) or AMPK functions in the heart (Zaha and Young 2012; Harada

et al. 2012; Ahn et al. 2012; Horman et al. 2012) and other organs [see e.g., a recent

review series in Mol Cell Endocrinol (Steinberg 2013)]. Thus, AMPK signaling

may constitute a fourth module for a systems description of the cardiac metabolic

network.
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11.5.2 Network Elements: AMPK Isoforms and Their
Distribution in Cells and Tissues

AMPK is an evolutionary conserved and ubiquitously expressed serine/threonine

kinase that presents complex structural and functional features. Structurally, it

occurs in vertebrates as an obligatory heterotrimeric complex composed of one

catalytic subunit (α) and two regulatory subunits (β and γ). As a first layer of

complexity, all subunits exist in form of different isoforms (α1, α2, β1, β2, γ1, γ2,
and γ3) and splice variants (of γ2 and γ3), generating multiple heterotrimeric

complexes. The precise physiological significance of these isoforms is not yet

entirely clear. However, there is some evidence that they determine intracellular

distribution, protein recognition, or tissue-specific functions of AMPK, all of which

could provide selectivity for specific subsets of substrates within the ever increasing

list of AMPK substrates (Hardie et al. 2012a, b; Carling et al. 2012).

11.5.2.1 Subcellular Localization

The subcellular distribution and recruitment of AMPK to specific sites are likely an

important factor for its signaling function, but so far only few details are known, in

particular in heart. AMPK is generally observed as a soluble complex with diffuse

cytosolic localization, but at least α2-containing complexes in their activated form

can translocate into the nucleus to phosphorylate important substrates (e.g., tran-

scription factors, histones, histone deacetylases) as seen, e.g., after exercise in

skeletal muscle (McGee et al. 2003, 2008; Suzuki et al. 2007; McGee and

Hargreaves 2008). Minor but important portions of AMPK may associate with

cellular structures like specific membranes, where processes are regulated by

AMPK (e.g., ion channel activity, cell polarity, or cell junction formation) (Forcet

and Billaud 2007; Andersen and Rasmussen 2012; Nakano and Takashima 2012).

Myristoylation of the AMPK β-subunit can localize the kinase complex to

membranes and increases its activability, possibly favoring activation of

membrane-bound complexes (Suzuki et al. 2007; Oakhill et al. 2010).

AMPK may also be recruited into specific complexes via interaction with its

upstream kinases, downstream substrates, or more general scaffolding proteins.

However, the AMPK interactome is only partially known so far from some targeted

and non-biased interaction studies conducted by us and others (e.g., Ewing

et al. 2007; Moreno et al. 2009; Behrends et al. 2010; Klaus et al. 2012), and

more research is needed on this issue, in particular in the heart. AMPK interaction

with LKB1, its major upstream kinase in the heart, could localize AMPK to places

of LKB1 localization, including the mitochondrial surface or E-cadherin in

adherens junctions (Sebbagh et al. 2009). Scaffolding proteins can provide speci-

ficity in cell signaling by isolating activated kinases from bulk signaling and

directing the information flow into specific pathways. In heart, for example,

AMPK competes with p38 MAPK for binding to the scaffolding protein
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TAK-1-binding protein-1, thus blunting p38 activation during ischemia

(Li et al. 2005). Mitochondrial VDAC may represent yet another anchor protein

recruiting AMPK to this organelle (Strogolova et al. 2012). There is also some

evidence that AMPK subunit isoforms determine specific protein interactions. The

β-subunit may in some cases confer substrate specificity, as seen with the yeast and

plant orthologues (Vincent and Carlson 1999; Polge et al. 2008), but also putative

mammalian AMPK interactors (IntAct database, (Kerrien et al. 2012)). We recently

found the β2-isoform interacting with Mu- and Pi-type glutathione transferases

(GSTs) to favor glutathionylation of the α-subunit (Klaus et al. 2013). However,
in case of fumarate hydratase (FH), we identified a specific interaction with

α2-containing AMPK complexes (Klaus et al. 2012).

11.5.2.2 Expression Patterns

AMPK isoforms also show some differences in their tissue- and developmental-

specific expression patterns, also in heart, although the physiological significance is

still uncertain. While the α1β1γ1 complex is probably the most abundant in most

cell types, differences seem to occur in the amount of additional isoforms like α2-
and γ3 in skeletal muscle or β2 and a specific intermediate length γ2 splice variant

(γ2–3B) in the heart (Stapleton et al. 1996; Thornton et al. 1998; Li et al. 2006;

Pinter et al. 2012). There are also pathological and developmental changes in

cardiac AMPK expression. The α2, β2, and γ2 isoforms are all upregulated by

pressure overload or heart failure in rodents, although in patients rather the content

of α1, β1, and γ2 (an intermediate form) increases with different forms of cardio-

myopathy (Tian et al. 2001; Kim et al. 2012). During embryonic development in

rodents, γ1 increases while high levels of γ3 disappear, and the embryonically

predominant full-length γ2 form is replaced by γ2–3B in heart, but by short γ2b in

other tissues (Pinter et al. 2012). These developmental and tissue particularities

may also explain why γ2 gene mutations in the CBS domains cause heriditary

hypertrophic cardiomyopathy (see below) but no other pathological symptoms.

Full-length γ2 and γ2–3B share an N-terminal domain with unknown function

that could localize the AMPK complex to specific compartments or signaling

pathways (Pinter et al. 2012). Total AMPK activity increases after birth,

contributing to the switch to predominant use of fatty acids (Makinde

et al. 1997). AMPK levels may also be determined by ubiquitin-dependent

mechanisms (Qi et al. 2008; Moreno et al. 2010), but its role in the heart is not

known.

11.5.3 Network Elements: Molecular Structure of AMPK

Given the interest in AMPK as a putative drug target in metabolic diseases, recent

years have seen intense efforts to elucidate the molecular structure of AMPK.
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By solving several X-ray structures for AMPK domains and truncated core

complexes, the topology of the heterotrimer, the conserved global fold of large

parts of the subunits, and the putative activation mechanisms could be deduced

(Townley and Shapiro 2007; Amodeo et al. 2007; Xiao et al. 2007, 2011; Chen

et al. 2009; Oakhill et al. 2011). However, a high-resolution structure of full-length

heterotrimeric complex in both active and inactive states is still lacking. The so far

most complete X-ray structure covers most of the α1-subunit except a C-terminal

linker region (although not all of the sequence present is well resolved in the

electron density map), the C-terminal domain of the β2-subunit, and the entire

γ1-subunit (Xiao et al. 2007, 2011).

11.5.3.1 α-Subunit

The catalytic α-subunit contains an N-terminal serine-threonine kinase domain with

an activation loop carrying the critical Thr172 residue. Phosphorylation of this

residue by upstream kinases is essential for AMPK activation and often used as an

indicator for AMPK activity (Hawley et al. 1996). The C-terminal α-domain carries

the motif interacting with the β-subunit and further structural determinants that are

involved in AMPK activation. These include an autoinhibitory domain (AID) and

loop(s) contacting the γ-subunit (called α-hook or α-RIM1 and α-RIM2) (Xiao

et al. 2007; Chen et al. 2009, 2013a; Pang et al. 2007). Their exact roles are,

however, disputed and further structural studies will be necessary to delineate their

function in autoinhibition and α–γ communication. Earlier in vitro studies

suggested that the α2 subunit has a higher sensitivity to allosteric activation by

AMP (Salt et al. 1998).

11.5.3.2 β-Subunit

The regulatory β-subunit is often described as a scaffold for α- and γ-subunits, a
function that indeed is provided by the C-terminal domain. The N-terminal domain

whose structure is not entirely resolved at molecular resolution carries additional

regulatory elements. A glycogen-binding domain (GBD) seems to provide regula-

tion of AMPK by glucose α1–6-branched glycogen that inhibits AMPK activation

(Polekhina et al. 2003; McBride et al. 2009). The N-terminal β-domain may also be

involved in protein interactions of AMPK (see above).

11.5.3.3 γ-Subunit

While α- and β-isoforms are very homologous, γ-subunits and their splice variants

differ in length. They all share the C-terminal part that consists of four

cystathionine β synthetase (CBS) domains that are arranged in tandem in

so-called Bateman domains (Bateman 1997). The symmetrical structure of this
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domain theoretically provides four binding sites for adenylates [referred to as sites

1–4 (Kemp et al. 2007; Hardie et al. 2011)], but only sites 1, 3, and 4 can be

occupied in the mammalian enzyme, while site 2 is nonfunctional. The precise role

of these sites is still unclear. Initial evidence suggested that site 4 binds AMP tightly

in a non-exchangeable manner, while site 1 is a high-affinity site for AMP involved

in allosteric activation (see below) and site 3 represents a lower affinity site

(binding AMP, ADP, and ATP) more involved in regulating α-Thr172 phosphory-

lation (Xiao et al. 2007). A more recent study suggests that also site 4 can bind ATP

(and causes site 3 to be empty) and that both sites 3 and 4 may play a role in

allosteric activation (Chen et al. 2012). The γ2- and γ3-isoforms contain N-terminal

extensions that are subject to truncation by RNA splicing and whose molecular

structure and function are currently unknown. Mutations in the CBS domains of the

AMPK γ2 subunit, expressed at particularly high levels in heart, cause the

Wolff–Parkinson–White (WPW) syndrome, a hereditary cardiomyopathy of vary-

ing severity, involving cardiac hypertrophy, contractile dysfunction, and

arrhythmias. Mutations impair adenylate binding and thus AMPK activation

(Scott et al. 2004; Burwinkel et al. 2005), but the major cause for the cardiomyopa-

thy is the increased AMP-independent basal AMPK activity. This leads to higher

glucose uptake, accumulation of glycogen in cardiac myocytes, and finally

impairment of normal heart muscle development (Burwinkel et al. 2005; Davies

et al. 2006).

11.5.4 Network Connectivity: AMPK Input Signals and
Upstream Regulation

AMPK integrates various intra- and extracellular signals and maintains cross talk

with other signaling pathways, all related to the cellular energy and nutrient state.

This makes the kinase a central signaling hub in sensing and regulating cellular

energetics and ATP-dependent functions. Indeed, most recent research revealed

that AMPK activation is much more complex than initially anticipated and depends

on multiple covalent modifications and allosteric effectors (Fig. 11.13). AMPK

regulation also evolved from a more simple state as, e.g., in the yeast AMPK

homologues that lack allosteric activation by AMP (see below) to the more complex

regulation present in mammals.

11.5.4.1 Covalent Regulation by Phosphorylation

The phosphorylation state at α-Thr172 defines the primary activation of AMPK.

This is determined by the balance of different upstream kinases and phosphatases.

There are potentially three mammalian AMPK upstream kinases, with the major

one in most cell types, including heart, being Liver Kinase B1 (LKB1, also called
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Fig. 11.13 AMPK signaling. Large scheme: Activation of AMPK by intra- and extracellular
metabolic and endocrine signals and major fields of downstream signaling. Activation of AMPK

is determined by upstream kinases (covalent activation by LKB1, CamKKβ, inhibition by Akt and
PKA) and phosphatases. They mediate mainly extracellular signals carrying, e.g., information on

the energy and nutrient state of the cellular environment and the entire organism (endocrine

signals). Covalent activation also depends on some intracellular parameters (Ca2+, possibly also

ROS/RNS). As a second layer of regulation, AMPK is activated by ADP and in particular AMP

(allosteric regulation), both acting as second messengers of cellular energy stress. This signaling is

linked to conversion of nucleotides via the adenylate kinase (AK) and creatine kinase

(CK) reactions. Activated AMPK compensates for ATP loss by accelerating catabolism, inhibiting

anabolism, and further effects on cell motility, growth, proliferation, and others, via regulation of

key enzymes and transcription factors. For further details see text. Insert: Connection of AMPK
signaling and phosphotransfer reactions (CK and AK) (Neumann et al. 2003). Global cellular

concentration changes of phosphocreatine [PCr] and adenine nucleotides ([ATP], [ADP] and

[AMP]), inorganic phosphate [Pi], and creatine [Cr], calculated from the reactions of CK, AK,

and a generalized ATPase at decreasing “high-energy” phosphates (corresponding to a transition

from rest to high work-load). Note that with “high-energy” phosphate consumption, [ATP]

remains constant until more than 80 % of the PCr pool is consumed. Only then, there is a transient

increase in [ADP] and finally [AMP] starts to rise dramatically. The exponential rise in [AMP]

makes this nucleotide an ideal second messenger for a lowered cellular energy state. This

simplified model assumes that the CK and AK reactions work at equilibrium (which is unlikely

to be true in vivo) and does not account for specific subcellular localizations of CK and AK
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STK11). LKB1 is upstream of an entire family of 12 other AMPK-related kinases in

the human kinome, and like AMPK forms heterotrimers with two accessory

subunits, STRADα/β and MO25α/β (Hawley et al. 2003; Woods et al. 2003).

LKB1 has originally been identified as a tumor suppressor whose inactivating

mutations lead to the Peutz–Jeghers syndrome, an inherited susceptibility to differ-

ent human cancers (Alessi et al. 2006). However, LKB1 seems to mostly exhibit

constitutive activity and may thus not be the limiting step in AMPK activation. An

alternative upstream kinase much less expressed in heart is Ca2+/calmodulin-

dependent protein kinase kinase β (CamKKβ) that mediates Ca2+-dependent

AMPK activation (Hawley et al. 2005; Hurley et al. 2005; Woods et al. 2005).

Although such CamKKβ-mediated AMPK activation might anticipate an increas-

ing energy turnover that accompanies a rise in cytosolic Ca2+ during muscle

contraction, its role in the heart is not well understood. More recently, the

transforming growth factor-β-activated kinase-1 (TAK1) that phosphorylates the

yeast AMPK homologue Snf1 was proposed as an AMPK upstream kinase

(Momcilovic et al. 2006; Xie et al. 2006a). Although TAK-1 is present in heart, it

is not activated during ischemia and it is unclear whether it acts via direct AMPK

phosphorylation (Xie et al. 2006a).

Protein phosphatases are possibly the more critical parameter governing the

α-Thr172 phosphorylation state, and this may also apply to the heart. However,

their identity and regulatory role in vivo remain to be confirmed. Both seem to

depend on cell type and/or stimulus. Different phosphatases can act on AMPK,

including PP1, PP2A, and PP2C in vitro (Davies et al. 1995), as well as PP1-R6 in

MIN6 beta cells (Garcia-Haro et al. 2010) and metal-dependent phosphatase

PPM1E/F in HEK-293 cells in vivo (Voss et al. 2011). In heart and endothelial

cells, expression levels PP2C and 2A, respectively, correlate with AMPK activation

(Wang and Unger 2005; Wu et al. 2007).

The α-Thr172 phosphorylation state is further negatively controlled by hierar-

chical phosphorylation at other sites in the AMPK heterotrimer. Phosphorylation at

α1-Ser485 (α2-Ser491) by PKA or at α-Ser173 by PKB/Akt reduces α-Thr172
phosphorylation (Hurley et al. 2006; Horman et al. 2006; Djouder et al. 2010).

Further phosphorylation sites were identified in both α- and β-subunits, many of

them targeted by autophosphorylation, but their functional role remains uncertain.

11.5.4.2 Non-Covalent Allosteric Regulation by AMP and ADP

The activation of AMPK by low cellular energy state is triggered by increased

concentrations of AMP and, as discovered more recently, also of ADP, since the

kinase can sense AMP/ATP and ADP/ATP concentration ratios (Xiao et al. 2011;

Oakhill et al. 2011). In many cell types and in particular in heart, breakdown of ATP

to ADP at the onset of high workload or cellular stress has only minor immediate

effects on ATP levels. Due to the energy buffer and transfer function of the Cr/CK

system (see above), global and local ATP is rapidly replenished (Wallimann

et al. 2011; Neumann et al. 2003). Thus, ATP is not a very suitable signal for
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indicating developing energy deficits. However, minor decreases in ATP levels lead

to more pronounced relative increases in free ADP and even more in AMP due to

the adenylate kinase (AK) reaction (Fig. 11.13). Under these conditions, AK uses

two ADP to regenerate ATP and AMP, thus increasing AMP concentrations from

the sub-micromolar range under resting conditions to the lower micromolar range

(Frederich and Balschi 2002). To lesser extent, AMP levels also depend on

pyrophosphates (cleaving the β-phosphate bond of ATP) and the activity of AMP

degradation pathways [AMP-deaminase and 50-nucleotidase, whose inhibition may

be useful to activate AMPK (Kulkarni et al. 2011)]. As a consequence, a decrease in

ATP levels by only 10 % translates into a 10- to 100-fold increase in AMP, making

AMP an ideal second messenger of energy stress (Fig. 11.13, upper left). Regula-

tion of AMPK activation by the balance between ATP, ADP, and AMP

concentrations resembles to what was put forward by Atkinson 40 years ago as

“energy charge” regulation (Xiao et al. 2011; Oakhill et al. 2011; Atkinson 1968;

Hardie and Hawley 2001).

The molecular basis of allosteric AMPK activation is not yet fully understood,

but certainly involves multiple interconnected mechanisms. The nucleotide ratios

are sensed at the γ-subunit binding sites (sites 1, 3, and 4), which possess high

affinity for AMP and ADP, but less for ATP in its major, Mg2+-complexed form.

AMP or ADP binding to AMPK has several consequences: (1) it makes α-Thr172 a
better substrate for phosphorylation, (2) it protects P-α-Thr172 from dephosphory-

lation, and (3), only in case of AMP, it exerts direct allosteric activation of AMPK

(Xiao et al. 2011; Oakhill et al. 2011; Davies et al. 1995; Suter et al. 2006). All these

effects require close communication between the AMP-binding γ- and the catalytic
α-subunit. The three adenylate binding sites participate differentially in these

mechanisms. Diverging models have been proposed that involve different structural

elements of the α-subunit (Xiao et al. 2011; Chen et al. 2013a). We and our

collaborators have proposed that all these mechanisms involve an AMP-

(or ADP)- induced conformational switch within the full-length AMPK complex

that is not seen in the X-ray structures of AMPK core complexes solved so far

(Chen et al. 2009, 2012; Riek et al. 2008; Zhu et al. 2011).

11.5.4.3 Other Covalent and Non-Covalent Regulations

An increasing number of additional secondary protein modifications adds to the

complex scheme of AMPK activation. Myristoylation at Gly2 in the β-subunit
increases the sensitivity of AMPK for allosteric activation and promotes Thr172

phosphorylation (Oakhill et al. 2010). Acetylation of α-subunits is determined by

the reciprocal actions of the acetylase p300 and the histone deacetylase 1. AMPK

deacetylation promotes its activation via LKB1 interaction (Lin et al. 2012). LKB1

itself is also regulated by acetylation, since deacetylated LKB1 shifts from nucleus

to the cytosol, where it forms active complexes with STRAD (Lan et al. 2008).

Thus, acetylation is a potentially important factor for activating the LKB1–AMPK

pathway (Ruderman et al. 2010), but its role in the heart has not been examined so
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far. Glutathionylation at Cys299 and Cys304 in the α-subunit activates the kinase

under oxidative conditions in cellular models and is favored by binding to certain

GST isoforms (Klaus et al. 2013; Zmijewski et al. 2010). This latter mechanism

may be part of a more general redox regulation of the kinase (Han et al. 2010; Jeon

et al. 2012). ROS and RNS activate AMPK, but it is unclear whether this happens

via increases in [ADP] and [AMP], or whether noncanonical mechanisms at the

level of AMPK (like glutathionylation) or upstream kinases play a role. Vice versa,

AMPK regulates NADPH homeostasis and an entire battery of ROS-detoxifying

enzymes. Another non-covalent allosteric regulator is glycogen as well as other

synthetic branched oligosaccharides that inhibit AMPK activity by binding to the

β-GBD domain (McBride et al. 2009).

11.5.4.4 Upstream Regulation in Cardiac (Patho) Physiology

In the heart, AMPK activity is increased by a wide array of signals acting via

upstream kinases and modulation of adenylate levels under both pathological and

physiological stress and involving various hormones and cytokines (Zaha and

Young 2012). Classical physiological stimuli of AMPK are exercise or hypoxia.

Both also occur in the heart (Coven et al. 2003; Musi et al. 2005; Frederich

et al. 2005) and promote the metabolism of glucose and fatty acids via different

downstream targets (see below). However, it is unclear whether this activation is

due to altered energy state as in skeletal muscle or rather relies on alternative

upstream signaling. AMPK is also involved in the adaptive response of the heart to

caloric restriction (Chen et al. 2013b), but nutrient effects in the heart may be more

complex (Clark et al. 2004). Possibly, within the physiological range, the role of

cardiomyocyte AMPK is different from other cell types, because of the remarkable

metabolic stability of this organ maintained by multiple other mechanisms, including

the metabolic cycles outlined before.

As pathological stimulus, ischemia is the best studied in form of both no-flow

and partial ischemia in isolated perfused animal hearts, as well as regional ischemia

due to coronary ligation in vivo (Russell et al. 2004; Kudo et al. 1996; Wang

et al. 2009; Paiva et al. 2011; Kim et al. 2011a), for a review, see (Young 2008).

They both lead to rapid and lasting AMPK activation. As already mentioned,

besides energetic stress, oxidative stress may be a determinant of such activation,

acting through different forms of ROS (Sartoretto et al. 2011; Zou et al. 2002). In

endothelial cells, it is rather peroxynitrite formation that affects AMPK via the

protein kinase Cζ–LKB1 axis (Zou et al. 2004; Xie et al. 2006b), while in other

non-excitable cells it may be rather a ROS-induced Ca2+ release that triggers the

CamKKβ axis (Mungai et al. 2011). ROS-facilitated glutathionylation of AMPK

(see above) as observed in cellular systems represents yet another direct activation

mechanism, but still has to be verified in cardiomyocytes (Klaus et al. 2013;

Zmijewski et al. 2010). However, the signaling function of ROS may be lost at

more intense oxidative stress that simply inactivates AMPK. In models of

cardiotoxicity induced by the anticancer drug doxorubicine, AMPK has been
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found inactivated in most cases, despite pronounced oxidative, energetic, and

genotoxic stress (Tokarska-Schlattner et al. 2005; Gratia et al. 2012). This is

probably due to activation of PKB/Akt via DNA-damage signaling kinases that

induce the inhibitory cross talk via AMPKα1-Ser485 phosphorylation. In other

situations, also LKB1 may become inactivated (Dolinsky et al. 2009). Stress

resulting from many but not all forms of pressure overload also results in AMPK

activation, mainly increasing glucose uptake and glycolysis (Tian et al. 2001; Li

et al. 2007; Allard et al. 2007; Zhang et al. 2008), as well as changing the gene

expression profile (Hu et al. 2011).

Information about the cellular environment and whole-body energy and nutrient

state is connected to AMPK signaling via endocrine, paracrine, and autocrine

mechanisms. These include a diverse array of hormones and cytokines identified

in noncardiac cells that act via largely unknown cellular signaling cascades on

AMPK upstream kinases, including adiponectin (Shibata et al. 2004), leptin

(Minokoshi et al. 2004), resistin (Kang et al. 2011), ghrelin (Kola et al. 2005),

IL6 (Kelly et al. 2004), and CNTF (Watt et al. 2006). Regulation of AMPK by these

factors partially depends on the tissue. While in peripheral tissues leptin activates

and ghrelin inhibits AMPK in the regulation of fatty acid oxidation and glucose

uptake, their effects in hypothalamus are different, since they inhibit (leptin) or

stimulate (ghrelin) AMPK-controlled food intake [for reviews see (Kahn

et al. 2005; Steinberg and Kemp 2009)]. In the heart, AMPK seems to be involved

in the positive effects of adiponectin for cardioprotection during ischemia and for

reduced cardiac hypertrophy (Shibata et al. 2004, 2005). For example, AMPK

limits accumulation and densification of microtubules that occur in response to

hypertrophic stress (Fassett et al. 2013). Also leptin may modulate AMPK in the

heart, since impaired leptin signaling correlates with reduced AMPK activation and

metabolic defects or reduced postconditioning after ischemia (McGaffin et al. 2009;

Bouhidel et al. 2008). Proinflammatory cytokines like IL-6 rather reduce AMPK

protein and activation (Ko et al. 2009), although there may be opposite effects in

specific tissues like skeletal muscle due to a specific autocrine–paracrine effect

(Kelly et al. 2004). Other cytokines with functions in the heart include macrophage

migration inhibitory factor (MIF), which is involved in AMPK activation during

ischemia and hypoxia and its decrease with age in mice seems to reduce AMPK

activation during ischemia (Miller et al. 2008; Ma et al. 2010).

11.5.4.5 Evolution of Cellular Homeostasis Signaling Circuits

From a phylogenetic perspective, it is interesting to note that AMPK homologues

evolved early with eukaryotic life. However, yeast homologues of AMPK lack the

direct allosteric AMP-activation, although they already possess the ADP-regulation

of the α-Thr172 phosphorylation state (Mayer et al. 2011). Since such lower

eukaryotes neither express a CK/PCr system, it can be concluded that they still

tolerate larger fluctuations in energy state. It seems that those more sophisticated

regulatory circuits evolved only with multicellular life. It will be interesting to
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examine when during metazoan evolution AMP has been established as a second

messenger for energy stress and activation of AMPK. Creatine kinase and other

closely homologous phosphagen kinases have emerged quite early at the dawn of

the radiation of metazoans (Ellington 2001; Ellington and Suzuki 2007). Recently,

besides identifying arginine kinase in unicellular organisms, a novel taurocyamine

phosphagen kinase has been identified even in a unicellular protist (Uda

et al. 2013).

In addition, at least in vertebrates a crosstalk has evolved between AMPK

signaling and the Cr/CK system (Neumann et al. 2003; Ju et al. 2012). Although

AMPK is not directly activated by Cr as postulated earlier (Ponticos et al. 1998;

Ingwall 2002; Taylor et al. 2006), the PCr/Cr ratio will also determine cellular

ATP/ADP ratios via the CK reaction and thus indirectly AMPK activation, as well.

Knockdown of cytosolic CK activates AMPK (Li et al. 2013), and similar control of

AMPK signaling is observed when manipulating the cellular levels of adenylate

kinase isoenzymes (Dzeja et al. 2011b). Such indirect mechanisms may also cause

the additional AMPK activation observed after Cr supplementation in cellular

models of skeletal muscle (Ceddia and Sweeney 2004), in the muscles of patients

undergoing exercise programs in different pathological settings (Alves et al. 2012),

and in Huntington disease models (Mochel et al. 2012), although these findings

need further investigation.

Vice versa, AMPK complexes interact with cytosolic CKs and are able to

phosphorylate them (Ponticos et al. 1998; Dieni and Storey 2009). Since this does

not affect CK enzyme activity, at least in rodents (Ingwall 2002; Taylor et al. 2006)

this phosphosphorylation remained enigmatic. Our most recent unpublished data

indicate that BB-CK phosphorylation by AMPK may determine subcellular locali-

zation of this enzyme which is known to partially associate with ATP-requiring

cellular structures and ATPases. In myocytes, active AMPK may also increase

cellular Cr uptake by positively acting on Cr transporter (Alves et al. 2012; Darrabie

et al. 2011), while an inverse effect was found in kidney epithelial cells

(Li et al. 2010). If the latter cells are under energy stress, either physiological or

pathological, this mechanism would prevent them to spend additional energy

required for Cr uptake from the glomerular filtrate.

11.5.5 Network Connectivity: AMPK Output Signals and
Downstream Regulation

AMPK integrates a large number of signals from inside and outside the cell that

carry information on the nutrient and energy state from the cellular to organism

level with the aim to mount a coordinated response (Fig. 11.13). This response

includes compensation for ATP loss by stimulating catabolic and inhibiting several

anabolic pathways, but also control of many other energy-related biological

checkpoints in cell growth and proliferation, cell motility and polarity, apoptosis,
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autophagy, and central functions like appetite control. To date, about 50 AMPK

substrates have been described in different tissues, including metabolic enzymes,

transcription (co)factors, and other cellular signaling elements. They all are

activated or inactivated by phosphorylation at Thr or Ser residues within a more

or less conserved AMPK recognition motif. We will give here only some examples

pertinent to heart; more complete descriptions can be found in recent reviews

(Hardie et al. 2012a, b; Carling et al. 2012; Steinberg and Kemp 2009).

11.5.5.1 Metabolic Pathways

AMPK control of cellular substrate uptake, transport, and metabolism is the histor-

ically best described and possibly most important function of AMPK, also in the

heart, since it is critical for ATP generation (Fig. 11.5). Activated AMPK stimulates

cellular glucose and fatty acid uptake via translocation of GLUT4 (Kurth-Kraczek

et al. 1999; Yamaguchi et al. 2005) and FAT/CD36 (van Oort et al. 2009), respec-

tively, to the plasma membrane, involving among others phosphorylation of the

Rab-GTPase activating protein TBC1D1 (Frosig et al. 2010). The subsequent

substrate flux via glycolysis is increased by phosphorylation and activation of

6-phosphofructosekinase-2 (PFK2), whose product fructose-2,6-bisphosphate is

an allosteric activator of the glycolytic enzyme 6-phosphofructokinase-1 (Marsin

et al. 2000) and in long term by stimulation of hexokinase II (HKII) transcription

(Stoppani et al. 2002). Substrate flux via fatty acid β-oxidation is increased by

inhibition of mitochondria-associated acetyl-CoA carboxylase (ACC2), whose

product malonyl-CoA is an allosteric inhibitor of carnitine palmitoyltransferase

1 (CPT1), the rate-limiting enzyme for of mitochondrial fatty acid import and

oxidation (Merrill et al. 1997). At the same time, inhibition of cytosolic ACC1

will repress ATP-consuming fatty acid synthesis for which malonyl-CoA is the

precursor (Davies et al. 1992). In other organs with multiple anabolic functions like

liver, several other anabolic pathways like gluconeogenesis or triglyceride and

cholesterol synthesis are inhibited (Bultot et al. 2012; Muoio et al. 1999; Clarke

and Hardie 1990).

Active AMPK also affects gene expression of many of these metabolic enzymes

by phosphorylation of transcription (co)factors and histone deacetylases (HDACs).

Activation of peroxisome proliferator-activated receptor gamma co-activator-1

alpha (PGC-1α) increases the expression of nuclear-encoded mitochondrial genes

that favor mitochondrial biogenesis (Irrcher et al. 2003; Jager et al. 2007), and

further catabolic genes including substrate transporters (e.g., GLUT4). Mainly in

the liver, expression of several genes in anabolic lipogenesis (e.g., ACC1) and

gluconeogenesis is reduced via inhibition of ChREBP or SREBP (Kawaguchi

et al. 2002; Li et al. 2011) and CRTC2 or class II HDACs (Koo et al. 2005;

Mihaylova et al. 2011), respectively. Cellular redox regulation by AMPK also

occurs mainly at the transcriptional level. AMPK directly phosphorylates transcrip-

tion factor FOXO3, which increases transcription of many genes, mainly in oxida-

tive stress defense (Greer et al. 2007) and activates, possibly more indirectly, class
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III deacetylase SIRT1, which deacetylates and thus activates FOXO1/3 and

PGC-1α (Canto et al. 2009).

11.5.5.2 Protein Metabolism, Cell Growth, and Proliferation

AMPK also acts via cross talk with other major cellular signaling hubs. The most

important may be the mammalian target of rapamycin complex 1 (mTORC1) which

is inhibited by activated AMPK via multiple mechanisms, including phosphoryla-

tion of tuberous sclerosis complex protein-2 (TSC2) (Inoki et al. 2003) upstream of

mTORC1, or direct phosphorylating the mTORC1 subunit Raptor (Gwinn

et al. 2008). This reduces the multiple TORC1 functions in stimulation of protein

biosynthesis and cell cycle (Kwiatkowski and Manning 2005) and inhibition of

autophagy (Meijer and Codogno 2007). Autophagy is also directly stimulated by

AMPK-induced phosphorylation of the protein kinase ULK1 (Kim et al. 2011b;

Egan et al. 2011). AMPK further reduces protein synthesis more indirectly by

inhibiting eukaryotic elongation factor 2 kinase (eEF2K) (Browne et al. 2004)

and downregulating ribosomal RNA (Hoppe et al. 2009) and several cyclins

(Wang et al. 2002). Phosphorylation of the tumor suppressor p53 and the cyclin-

dependent kinase inhibitor p27KIP1 will both contribute to cell cycle arrest and

eventual autophagy (Imamura et al. 2001; Jones et al. 2005; Liang et al. 2007).

AMPK also stimulates protein-ubiquitination and proteasome-dependent degrada-

tion (Viana et al. 2008; Solaz-Fuster et al. 2008).

11.5.5.3 Cell Contractility, Dynamics, and Shape

AMPK phosphorylates cardiac troponin I (cTnI) during ischemia and thus increases

its calcium sensitivity, suggesting that AMPK activation improves myocyte con-

traction (Oliveira et al. 2012a). Cellular models also suggest that AMPK controls

microtubule dynamics through phosphorylation of the microtubule plus end protein

CLIP-170 (Nakano et al. 2010) and dynamics of cells and in particular of the

mitotic spindle via different indirect mechanisms that increase phosphorylation of

the non-muscle myosin regulatory light chain (MRLC) (Lee et al. 2007; Banko

et al. 2011).

11.5.5.4 Cellular Ion Homeostasis

The maintenance of ion gradients across cell membranes and intracellular ion

homeostasis are further highly energy-demanding processes. Thus it is little

surprising that AMPK, like CK, might also regulate these processes. Indeed,

different ion transporters are inhibited by AMPK, directly or indirectly, including

cystic fibrosis transmembrane conductance regulator Cl-channel (CFTR) (Hallows

et al. 2003) and ATP-sensitive potassium (KATP) channel (Kir6.2) (Chang
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et al. 2009), and several more cell-type specific ion transporters, like epithelial Na+

channel (eNaC) (Carattino et al. 2005), renal Na+-K+-2Cl- cotransporter (NKCC2)

(Fraser et al. 2007), and neuronal voltage-gated, delayed rectifier K+ channel

(Kv2.1), whose phosphorylation reduces the frequency of highly energy-consuming

action potentials (Ikematsu et al. 2011).

11.5.6 Modeling Signaling Networks in Heart and Beyond

Given the complexity and interconnectivity of cell signaling networks, only

recently emerging systems biology approaches hold promises for understanding

and predicting the higher order properties and behavior of such networks (Arkin

and Schaffer (2011) and following papers of this Cell Leading Edge Review series).

However, the mathematical modeling necessary for such systems approaches is still

in its infancy. Modeling needs a solid base of both quantitative and qualitative data,

including the spatiotemporal component as outlined above. So far, both bottom-up

and top-down systems approaches have been applied to obtain comprehensive

databases of protein kinase signaling. Typically, bottom-up, hypothesis-, or

model-driven approaches were used to study the role of individual components,

also facilitating first studies of dynamic systems properties. More recently, with the

broad availability of “omics” approaches, more top-down so-called hypothesis-free

studies have mapped interactomes and phosphoproteomes of protein kinases,

mainly in yeast (Breitkreutz et al. 2010; Bensimon et al. 2012; Oliveira

et al. 2012b). Such large-scale data are necessary to construct first network models

needed to advance mathematical modeling in this field. Indeed, progress is also

made in the computational methodology and the mathematical description of

signaling pathways (Frey et al. 2008; Ideker et al. 2011; Telesco and Radhakrishnan

2012). However, similar modeling approaches with mammalian cells, in particular

under physiological and pathological conditions relevant to humans, are still scarce

(Benedict et al. 2011; Basak et al. 2012; Rogne and Tasken 2013), except a strong

history of modeling in cardiac electrophysiology (Amanfu and Saucerman 2011).

Such models would be highly valuable for in silico drug target identification, drug

screening, and development (Benedict et al. 2011). Important steps in such

approaches are (1) to establish a network structure, (2) to obtain quantitative

dynamic datasets for basic systems properties, (3) to generate dynamic mathemati-

cal models, and (4) to test and iteratively improve the models by prediction and

experimental verification of systems perturbations (Frey et al. 2008). First models

also including AMPK signaling are currently emerging (Marcus 2008; Sonntag

et al. 2012), but sustained interdisciplinary efforts in the field will be necessary to

obtain models that allow meaningful predictions of AMPK systems behavior.
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Chapter 12

Temporal Partitioning of the Yeast Cellular

Network

Douglas B. Murray, Cornelia Amariei, Kalesh Sasidharan, Rainer Machné,

Miguel A. Aon, and David Lloyd

Abstract A plethora of data is accumulating from high throughput methods on

metabolites, coenzymes, proteins, lipids and nucleic acids and their interactions as

well as the signalling and regulatory functions and pathways of the cellular net-

work. The frozen moment viewed in a single discrete time sample requires frequent

repetition and updating before any appreciation of the dynamics of component

interaction becomes possible. Even then in a sample derived from a cell population,

time-averaging of processes and events that occur in out-of-phase individuals blur

the detailed complexity of single cell.

Continuously grown cultures of yeast spontaneously self-synchronise and

provide resolution of detailed temporal structure. Continuous online monitoring

(O2 electrode and membrane-inlet mass spectrometry for O2, CO2 and H2S; direct

fluorimetry for NAD(P)H and flavins) gives dynamic information from timescales

of minutes to hours. When these data are supplemented with mass spectrometry-

based metabolomics and transcriptomics, the predominantly oscillatory behaviour

of network components becomes evident, where respiration cycles between

increased oxygen consumption (oxidative phase) and decreased oxygen consump-

tion (reductive phase). This ultradian clock provides a coordinating function that

links mitochondrial energetics and redox balance to transcriptional regulation,

mitochondrial structure and organelle remodelling, DNA duplication and chroma-
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tin dynamics. Ultimately, anabolism and catabolism become globally partitioned:

mediation is by direct feedback loops between the energetic and redox state of the

cell and chromatin architecture via enzymatic co-factors and co-enzymes.

Multi-oscillatory outputs were observed in dissolved gases with 12-h, 40-min

and 4-min periods, and statistical self-similarity in Power Spectral and Relative

Dispersional analyses: i.e. complex non-linear behaviour and a functional scale-

free network operating simultaneously on several timescales. Fast sampling (at 10

or 1 Hz) of NAD(P)H fluorescence revealed subharmonic components of the

40-min signal at 20,10 and 3–5 min. The latter corresponds to oscillations directly

observed and imaged by 2-photon microscopy in surface-attached cells. Signalling

between time domains is suggested by studies with protonophore effectors of

mitochondrial energetics. Multi-oscillatory states impinge on the complex

reactome (where concentrations of most chemical species oscillate) and network

functionality is made more comprehensible when in vivo time structure is taken

into account.

12.1 Temporal Aspects of Integrative Yeast Cellular

Function

Whereas our appreciation of the importance of spatial relationships between the

myriad molecular components of living systems is well developed, temporal

aspects of cell organisation are somewhat neglected. The intricate coordination of

reactions, processes and events required during the life of the cell necessitates

understanding across and between multiple timescales. Thus, it is not sufficient to

consider only the slow process of growth and division (or budding in the case of

Saccharomyces cerevisiae), the most evident as observed by simple light micros-

copy and taking a matter of hours (Lloyd et al. 1982b), but we must account for the

integration of events from the membrane-associated biophysical domain (μs–ms),

up through the metabolic timescale (seconds), the biosynthesis of macromolecules,

transcription and translation (minutes), to assembly and remodelling of organelles

(Aon and Cortassa 1997). Whereas spatio-temporal coincidence, convergence and

simultaneity are often evident functional necessities, separation of incompatible

processes must also be accommodated (Lloyd and Rossi 1992, 2008; Lloyd 2006a,

2008; Sasidharan et al. 2012).

Although as a matter of convenience and ease of study, the different time

domains have been considered and researched as being separate; the resulting

concept of hierarchical organisation is a misleading oversimplification. Interactions

between faster and slower processes result in a heterarchical system (Yates 1992;

Murray et al. 2007).
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12.2 Continuous Culture of Yeast: An Ideal System

for Study

Temporal compartmentalisation of the progress of energy generation, metabolic

transformations, synthesis and assembly of membranes and organelles, as well as

the organisation of chromosomal dynamics and the cell division cycle, requires

studies either in single cells or in synchronous populations of cells or organisms.

Whilst the former is even now restricted, the latter is usually problematic because

of limitations associated with the preparation of material without perturbation.

The observation that budding yeasts form stable oscillatory dynamics during

continuous culture was first reported only a year after the DNA double helix

model (Watson and Crick 1953; Finn and Wilson 1954). However it was not until

the early 1990s, when high temporal resolution, computer acquisition became

available that this spontaneous self-synchrony of dense (~5 � 108 organisms/ml)

cultures of S. cerevisiae could readily be monitored (Fig. 12.1) to reveal short

period and multi-timescale oscillatory dynamics (Satroutdinov et al. 1992; Keulers

et al. 1994). The strain primarily employed (IFO-0233, IFO, Institute of Fermenta-

tion, Osaka, Japan) was an acid-tolerant diploid yeast (Naiki and Yamagata 1976).

During batch growth glucose is consumed and the culture produces biomass,

CO2, H2S and ethanol as well as many other fermentation products. The pH is

controlled at 3.4 and air flow rate is kept constant. The air flow rate is calculated

for each reactor according to its specific oxygen transfer coefficient (Mueller

et al. 2012). When ethanol is completely used up, depletion of trehalose and

glycogen in the second stage of this diauxic growth process results in the initiation

of oscillatory respiration, as indicated by 40-min cycles of dissolved O2 and CO2

(Murray 2004). A steady and continuous supply of growth medium at this stage

provides material adequate both for long-term monitoring of the organisms through

many thousands of generations over a period of many months, and discrete time

samples for biochemical analyses. The rapidly responding probes immersed in the

culture give either continuous outputs (e.g. for NAD(P)H fluorescence) or fre-

quently sampled voltages at 0.1–10 Hz (Keulers et al. 1996a; Murray et al. 2007;

Sasidharan et al. 2012). The most convenient readout, dissolved O2, can also be

monitored by membrane inlet mass spectrometry (MIMS) (Roussel and Lloyd

2007) as can CO2, H2S or ethanol. Off-gas measurements for CO2, O2 and H2S

can either be measured by MIMS (Keulers et al. 1996a) or by an array of dedicated

sensors (Murray et al. 2011) to quantify transfer rates. Near-infrared spectroscopy

can be used online for ethanol, glucose, NH3, glutamine and biomass (Yeung

et al. 1999).

The oscillatory state of this autonomously self-sustained system is observed

when the cultures are supplied with glucose, ethanol and acetaldehyde as the main

carbon source (Keulers et al. 1996b), implying mechanistic differences between

respiratory and glycolytic oscillations. It exerts control on the production of

hundreds of metabolites and many transcription factors (Murray et al. 2007). The

genome-wide oscillation in transcription is pivotal (Klevecz et al. 2004; Li and
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Fig. 12.1 The respiratory oscillation in yeast during continuous growth in fermentors where

dissolved oxygen (measured by a dissolved oxygen electrode) is shown in all graphs as a grey
dotted line. Oxygen uptake rate (qO2; a) was calculated from the partial pressure of the O2 in the

fermentor off-gas using a zirconium oxygen sensor. NAD(P)H (b) and oxidised flavin (c) were
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Klevecz 2006). A multidimensional clustering approach identified seven temporal

clusters that formed a coherent growth programme in these data. When compared to

a large compendium of independent datasets, it has been shown that the formation

of these clusters is both transcription factor and chromatin state dependent. This

leads to the conclusion that a simple feedback between energetics and chromatin

state may be one of the primary regulatory loops involved in defining the transcrip-

tional landscape (Machné and Murray 2012). Furthermore, the DNA synthesis is

intimately timed during each respiratory cycle (Klevecz et al. 2004), although the

exact link between the cell division cycle and the respiratory oscillation is unclear,

as DNA synthesis is not limited to one phase of the oscillation. Moreover, respira-

tory oscillations occurred under conditions where changes in DNA synthesis were

not detectable (Slavov et al. 2011).

Periods can range from 35 min to several hours depending on environmental

conditions (Finn and Wilson 1954; von Meyenburg 1969; Sohn and Kuriyama

2001a; Murray and Lloyd 2006; Slavov and Botstein 2011; Machné and Murray

2012). However, the common modes of oscillation appear to be between 40 min

and 5 h. The period is temperature compensated (Murray et al. 2001) and thus its

timekeeping characteristics (Edwards and Lloyd 1978, 1980; Lloyd et al. 1982a;

Marques et al. 1987) place it in the ultradian time domain (as defined by its

characteristic of cycling many times during a day). That similar clock control can

be demonstrated when ethanol medium is used further distinguishes these

oscillations from glycolytic and cell-cycle associated oscillations, both of which

are characterised as having highly temperature-dependent periods (Lloyd 2006a).

Moreover, several other properties of the respiratory oscillation are shared with the

circadian clock, e.g. period sensitivity to Li+ and type-A monoamine oxidase

inhibitors (Salgado et al. 2002).

12.3 Phase Definitions Guided by Real-Time Monitoring of

Redox State

Here, we define the phase of the oscillation by the dissolved O2 trace (Fig. 12.1), as

this is one of the most stable measurements and responds rapidly to changes in

culture concentrations (Murray et al. 1998; Murray 2006). We use the minimum

first derivative of this trace to define the reference start point; the difference

�

Fig. 12.1 (continued) measured using an online flurorimeter. Carbon dioxide excretion rate

(qCO2; d) was calculated from the partial pressure of CO2 in the fermentor off-gas using an IR

sensor. Hydrogen sulphide excretion rate (qH2S; e) was calculated from the partial pressure of H2S

in the fermentor off-gas using a silver nitrate sensor. Heat transfer (f) was calculated by Fourier’s

equation from the reactor temperature and the controlling bath temperature. The grey line
represents the minimum and maximum first derivatives, i.e. the demarcation between the oxidative

(Ox) and reductive (Red) phases (Sasidharan et al. 2012)
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between this and the maximum first derivative is defined as the oxidative phase

(where oxygen uptake and electron flux though the electron transport chain is at a

maximum; Fig. 7.1a). The time between the maximum first derivative and the next

minimum first derivative is defined as the reductive phase (conversely oxygen

uptake rate is lowest).

Nicotinamide nucleotide (NAD(P)H) redox state (Fig. 12.1b), the most useful

single indicator of intracellular redox state (Chance et al. 2005), was maximally

reduced just before dissolved O2 reached maximal values as the culture entered the

reductive phase (Murray et al. 1999). Flavin fluorescence emission (oxidised FAD

and FMN; Fig. 12.1c) indicates predominant coenzyme oxidation during the oxida-

tive phase (Sasidharan et al. 2012). Waveforms of these cofactors are more complex

than those for respiration, but show major phase relationships with dissolved O2 on

a 40-min cycle. Maximum CO2 production rates occurred at the end of the oxidative

phase (Fig. 12.1d), whereas highest H2S production rates were seen as dissolved O2

was attaining its maximum (Fig. 12.1e). Major peaks and troughs of heat transfer

from the culture corresponded closely with maxima and minima in respiration

(Fig. 12.1f) may indicate uncoupling of the electron transport chain from energy

production and accompanying thermogenesis (Lloyd 2003; Jarmuszkiewicz

et al. 2009; Murray et al. 2011). The two shoulders of heat production also separate

the three active periods of transcriptional activity previously described (Klevecz

et al. 2004; Li and Klevecz 2006) and thus may also correlate with chromosomal

rearrangements during the remodelling of the transcriptional landscape (Machné

and Murray 2012).

12.4 Carbon Metabolism

Glucose (Satroutdinov et al. 1992; Keulers et al. 1996a), ethanol (Keulers

et al. 1996b; Murray et al. 1999) or acetaldehyde (Keulers and Kuriyama 1998)

have been used as major carbon sources. Glucose or ethanol gave respiratory

periods of about 40 min, and with 290 mM acetaldehyde as primary carbon source

it was approximately 80 min. Acetaldehyde, acetate, ethanol, dissolved O2 and CO2

production all showed high signal-to-noise ratio oscillation, with acetaldehyde

and acetate approximately in phase with O2 uptake rate (i.e. these products were

elevated during the stages of enhanced respiration). Potentially, inhibitory levels of

acetaldehyde and acetate were never exceeded; ethanol production from acetalde-

hyde occurred periodically during the oscillation and was accompanied by

decreased acetaldehyde conversion to acetate and acetyl-CoA. Diminished rates

of acetaldehyde flux to the TCA cycle may indicate that the decreased respiratory

activity was due to some inhibitory effect on the mitochondrial respiratory chain.

The importance of acetaldehyde (rather than O2 or ethanol) as a specific culture

synchronising agent was suggested (Keulers and Kuriyama 1998), as high aeration

rates leading to loss of CO2 and the volatile aldehyde led to de-synchronisation.

Phase shift experiments (Murray et al. 2003) demonstrated that acetaldehyde was
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indeed a synchronisation agent. However, further work is required to unravel how

carbon metabolism is regulated during the oscillation; specifically, how intracellu-

lar carbon flux distributions develop dynamically through each cycle.

12.5 Sulphur Metabolism

H2S, a potent respiratory inhibitor, reached a maximum (1.5 μM) just prior to

minimal respiration rates (Sohn et al. 2000) and then decreased to 0.2 μM before

the restoration of the high respiration state. Perturbants such as 50 μM glutathione,

50 μM NaNO2 or 4.5 mM acetaldehyde transiently increased H2S levels to more

than 6 μM. Phase shifting of the oscillation by additions of 0.77 μM (NH3)2S

enabled a phase response curve to be obtained (Murray et al. 2003); thus the

easily oxidised, rapidly diffusing gas, H2S, acts as an intercellular messenger that

amplifies the respiratory oscillation. The binuclear Cu-haem reaction centre of

cytochrome c oxidase, the terminal electron transport component of the mitochon-

drial respiratory chain, is likely to be its target (Lloyd 2006b). However, phase-

response curves indicate that it does not act by itself as a synchronising agent.

H2S is evolved as an intermediary metabolite of the sulphur uptake pathway

(Sohn and Kuriyama 2001a). Pulse injection of 100 μM cysteine or methionine

altered the timing of H2S production and perturbed the respiratory oscillation (Sohn

and Kuriyama 2001b). Modelling of the feedback inhibition of sulphate uptake by

cysteine suggests a major contribution to the respiratory oscillations (Wolf

et al. 2001; Henson 2004). Transcript concentration of the high affinity sulphate

permease (SUL2) and all the transcripts of the sulphate assimilation pathway

showed especially high amplitude oscillation, and their peak preceded H2S genera-

tion by 8–10 min (Murray et al. 2007). Hydrogen sulphide production from

cysteine, catalysed by mitochondrial cystathione-γ-lyase in the mitochondria of

mammalian cells, was recently demonstrated to be involved in the regulation of

energy metabolism (Fu et al. 2012). There is a yeast homolog of the protein

responsible (CYS3); however, it is unclear if Cys3p localises to the mitochondria

and if this mechanism of H2S production occurs in yeast.

The network of sulphate uptake and sulphur amino acid production is shown in

Fig. 12.2. This network is intricately interwoven with the regulation of redox state.

A direct product of this network is glutathione, and glutathione reductase is

responsible for NADPH-dependent cycling of the GSH-GSSG system that buffers

the redox state of the cell (Sohn et al. 2005a). Oscillatory dynamics of GSH1 and

GLR1 transcript abundance, activity of glutathione reductase and the pool sizes

of cysteine and glutathione indicated that redox buffering plays a critical role

during the oscillation. Moreover, glutathione addition gave a phase-related pertur-

bation of the respiratory oscillation (Murray et al. 1999; Sohn et al. 2000). The

effects of pulse injection of thiol redox modifying agents (diethylmaleate,

N-ethylmaleimide), of inhibitors of glutathione reductase (DL-butathionine
[S,R]-sulphoxamine) or of glutathione synthesis (5-nitro-2-furaldehyde) further

12 Temporal Partitioning of the Yeast Cellular Network 329



defined the tight coupling between redox state and the regulation of oscillatory

dynamics. Cellular per-oxidative adducts, as measured by the levels of lipid

peroxidation products, oscillates out of phase with levels of dissolved O2 (Kwak

et al. 2003). Pulse addition at minima of dissolved O2 of 100 μM N-acetylcysteine
(which scavenges H2O2 and hydroxyl radicals) perturbed the respiratory oscillation

and attenuated H2S production to 63 % of its normal amplitude in the next 40-min

cycle. Then the respiratory oscillation damped out, only returning after 20 h. The

non-toxic free radical scavenger, ascorbic acid as well as the inhibitor of catalase

(3-aminotriazole) or superoxide dismutase (N,N-diethyldithiocarbamate) suggest

that endogenously produced reactive oxygen species play a role in intracellular

Fig. 12.2 Network derived for sulphur assimilation from the top oscillating (O � 0.750)

transcripts and metabolites. The key provides a guide to the network. Coloured circles represent
transcript abundance, diamondsmetabolites and squares represent the transcription factor activity.
If the transcription factor activity of a node was greater than its transcript concentration, the square
was placed behind the circle, otherwise the square was placed in front of the circle. The nodes are
coloured according to the phase angle (ϕ), and the oscillation strength (O) is indicated by the size

of the node. SLF sulphate, LLCT cystathione, HSER homoserine, OASER o-acetylhomoserine,

OBUT 2-oxobutanoate, AC acetate (Murray et al. 2007)
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signalling during the oscillation. H2O2 (500 μM) added at a minimum of dissolved

O2 both perturbed the respiratory oscillation and elevated H2S production in the

subsequent cycle. Menadione causes the generation of superoxide and perturbed the

oscillation in a similar manner as H2O2 when added at 500 μM.

Further work on the effects of glutathione perturbation on branched-chain and

sulphur-containing amino acids tends to suggest that the observed effects are more

closely related to amino acid metabolism and H2S generation than with cellular

redox state per se (Sohn et al. 2005b). This interpretation was supported by more

in-depth analyses of the transcriptome and metabolome (Murray et al. 2007).

12.6 The Spatio-Temporal Self-Organisation of the

Reactome

With the advent of high-throughput analyses, e.g. microarray-based multiple assays

and mass spectrometric metabolomics, the yeast cellular network is the most fully

characterised among all eukaryotes. During its life cycle and in its response to

environmental challenges (e.g. on exposure to heat), between 20 and 50 % of the

yeast protein coding transcriptome alters (Gasch and Werner-Washburne 2002).

This has been confirmed by genome-wide and metabolome-wide elucidation of

properties of the respiratory oscillations in yeast (Klevecz and Murray 2001;

Klevecz et al. 2004; Li and Klevecz 2006; Murray et al. 2007; Slavov

et al. 2011). The high-throughput methods required new computational approaches

to curate and better understand the implications of vast array of new data.

High-throughput chromatin immuno-precipitates hybridised to DNA microarray

containing the probes for the upstream regulatory sequences or DNA tiling

microarrays (ChIP-chip) revealed that the underlying system structures involved

in global transcription can be profoundly altered in response to environmental

stimuli (Harbison et al. 2004; MacIsaac et al. 2006). The topology of the

protein–protein interaction network has been approached by series of immuno-

precipitation, 2-hybrid and mass spectrometry analyses (Ito et al. 2001; Gavin

et al. 2006; Krogan et al. 2006). More recently, the focus has turned to global

modes of regulation initiated by distinct protein complexes that dynamically mod-

ify chromatin structure (Basehoar et al. 2004; Whitehouse et al. 2007; Tsankov

et al. 2010). In conjunction with this, a concerted effort by the bioinformatics

community has resulted in a series of advances that have revolutionised the

manipulation and correlation of data obtained (e.g. KEGG, SGD or SwissPROT).

Although these advances have led to a deeper understanding of the structure of

the cell network, they have done little to advance our understanding of cellular

dynamics. Moreover, little has been done to combine the derived networks together,

and even less has been done to model large-scale datasets to produce a coherent

view of the formation of cellular phenotypes. With this in mind, we recently

combined computational and statistical network approaches, with high quality

transcriptional and metabolomic data (Fig. 12.3a), to analyse the global landscape
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Fig. 12.3 The transcriptional programme was visualised as a heat map constructed from the

statistical analyses of gene functional ontology (a) (Boorsma et al. 2005). The values were then

plotted against oscillation phase. Biosynthetic processes and respiratory/stress events were clearly

separated during the oscillation (black boxes), occurring (120–180�) out of phase with their
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of the yeast oscillatory phenotype (Murray et al. 2007). This revealed that the entire

biochemical network or reactome self-organises into two distinctive regions:

oxidative and reductive. Transcription during the oxidative phase was almost

exclusively focused on biosynthesis, and a clear temporal programme was initiated

starting with nucleotide biosynthesis and ending with acetate metabolism. This

programme spanned 10–12 min, and metabolical, physiological and morphological

processes (e.g. sulphate uptake (Fig. 12.2), amino acid biosynthesis, S-phase, etc.)

occurred 10–14 min after the peak in their transcriptional activity. Statistical

analysis of transcription factor binding targets and the reconstruction of a yeast

protein–protein interaction map (from multiple sources) implicated the temporal

construction and destruction of a transcription factor complex (Fig. 12.3b), com-

prising Cbf1p (centromere binding factor), Met4p, Met28p, Met31p and Met32p

(methionine regulation factors) and Gcn4p (general control protein involved in

nitrogen catabolite repression); these processes orchestrated the majority of tran-

scriptional changes of sulphate uptake and amino acid synthesis, and by targeting

other transcription factors. The gene targets of the complex formed by these

transcription factors produced the largest amplitude oscillation of the measured

transcripts, and their metabolic products GSH, H2S and S-adenosylmethionine also

oscillated. Network analysis of the oscillatory transcription factor network (com-

prising some 33 transcriptional regulators) indicated that this works by temporally

spacing gene transcription via the formation of multiple input feed-forward genetic

circuits.

Out of phase with oxidative phase transcription, a much larger group of

transcripts (~80 % of the most oscillatory transcripts) showed a peak production

in the reductive phase. Many transcripts encode for proteins that encode mitochon-

drial assembly, respiration, carbohydrate catabolism and the stress response

proteins. Moreover, many of these processes are shown to occur 14–18 min later,

indicating that transcription actually precedes subsequent activity of the gene

products. It was clear from the annotation and statistical analysis of network

structure that this group of transcriptional regulatory proteins controlling the

expression of these processes are the most highly interconnected nodes in the

yeast network. These have complex regulatory patterns and are key components

of the differentiation responses in yeast (for pseudohyphae and spore formation).

However, the regulation of this system, whose targets show a strong oscillatory

pattern and peak in the reductive phase, remained largely enigmatic.

Recently, new computational analyses aimed at elucidating a more global

regulatory system that modulate these transcripts have implicated energetic state

(ATP:ADP ratio) as a key factor (Machné and Murray 2012). When transcript data

�

Fig. 12.3 (continued) respective phenotype of biosynthetic. The heat maps were ordered

according to the phase angle (ϕ) of the measurements’ peak production. Activities of the tran-

scriptional regulators were derived from the statistical analysis of their target transcripts and a ball-
and-stick network representation of the transcriptional regulators (b). See Fig. 12.2 for a guide to

the network. The shaded box indicates a transcription factor complex comprising of Cbf1p and the

Met transcriptional regulators (Murray et al. 2007)
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from two oscillation periods (Tu et al. 2005; Li and Klevecz 2006) were compared

by a Fourier transform model-based clustering approach (Machné and Murray

2012), we could define a temporal programme of five common co-expression

clusters (Fig. 12.4a); there were also two clusters that showed differential expres-

sion between the two periods and two clusters that oscillated but with a lower

signal-noise ratio than the main consensus clusters. For brevity we will concentrate

Fig. 12.4 Clustered phase–phase plot transcript time course profiles for the 0.7-h (Li and Klevecz

2006) and 5-h (Tu et al. 2005) period datasets (a). The black axes represent the phase angles of the
samples, and the grey axes map these phase angles to the real time. The cluster names are given at

the side of the lower panel (b). The transcripts in these clusters were then used to cross-cluster a

collection of 1,327 transcriptome microarray hybridisations (McCord et al. 2007). The hue

represents the normalised rank sum where yellow to red indicates an up-regulation, and cyan to
blue represents a down-regulation of the any target hybridisation compared to the cluster. The

column numbers indicate clusters of hybridisations derived using the SOTA algorithm and plotted

in decreasing order (from left to right) using cluster A as a reference (Machné and Murray 2012)
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on the five consensus clusters. The programme consisted of cell structural and

metabolic changes and as it is cyclical we arbitrarily define the start point as the

minimum first derivative of residual dissolved oxygen concentration (Fig. 12.1a).

Three distinct clusters were observed in the oxidative phase, and two were observed

in the reductive phase. Functionally, the first common oxidative phase cluster

(A) consisted mainly of structural function, e.g. nucleolar synthesis, cytoplasmic

ribosome biogenesis and RNA polymerase I and III. The next common cluster

(AB) was enriched in cytoplasmic ribosomal proteins and translation. The final

oxidative phase cluster comprised mostly of anabolic reactions (B), such as amino

acid biosynthesis. The first reductive phase cluster (C) was enriched mitochondrial

ribosomal transcripts, i.e. coding for a structural component. The final common

reductive phase cluster (D) was primarily a metabolic cluster and comprised of

many catabolic pathways and the genes involved in redox regulation and the

general stress response. Therefore, both the oxidative and reductive phases start

with a structural bias and finish with a metabolic bias. The period differences

observed during the two oscillations (40 min and 300 min) are thought to be due

to differences in growth conditions and strain, and they led an interesting context-

dependent development of temporal gene expression, where the reductive phase

clusters C and D were co-expressed in the 40-min oscillation and the oxidative

phase clusters A, AB and B were co-expressed during the oxidative phase.

Strikingly, when these clusters were compared to a compendium of 1,327

microarray hybridisations (McCord et al. 2007), the oxidative and reductive

phase clusters were differentially expressed in the majority of the array

hybridisations (Fig. 12.4b). This analysis indicates that most of the experiments

carried out in yeast effect a global hitherto unknown regulation that is epitomised

by the respiratory oscillation. Further analysis supported a role for the general

growth rate response where genes up-regulated during rapid growth corresponded

with oxidative phase genes (A, AB and B) and those down-regulated corresponded

with reductive phase genes (C and D) (Brauer et al. 2008; Slavov and Botstein

2011; Machné and Murray 2012). Moreover, the environmental stress response

(Gasch and Werner-Washburne 2002) tended to correlate negatively with the

growth rate response. These analyses support a much more basic mechanism for

gene regulation that switches the system from the “growth” to “stress” responses.

Indeed, it also makes it difficult to define what the “growth” or “stress” responses

are as both these conditions alternate in the stable, unperturbed environment that is

afforded by continuous culture. Implicit in this regulation is an oscillation in ATP:

ADP ratio (Akiyama and Tsurugi 2003; Lloyd and Murray 2007; Machné and

Murray 2012) as this is a major determinant of growth rate and is intricately

interwoven with the redox state of the cell and the membrane status of the

mitochondria. The appropriate chemical and membrane potentials must be

maintained to generate ATP (Chance and Williams 1955; Murray et al. 2011).

Maximum ATP availability occurs at the beginning of the oxidative phase and

minimum ATP availability occurs at the beginning of the reductive phase. There-

fore, we argue that the “growth” and “stress” responses are better described as a

global switch between catabolic and anabolic processes. The oscillation in

12 Temporal Partitioning of the Yeast Cellular Network 335



respiration serves as a mechanism to temporally partition these metabolic networks.

The importance of mitochondrial respiratory control in the generation of

temperature-compensated ultradian clock-driven (epigenetic) oscillatory metabo-

lism in a range of lower eukaryotic organisms (three yeasts and five protists species)

has been experimentally demonstrated (Edwards and Lloyd 1978; Lloyd and Rossi

1992; Murray et al. 2001).

Generally, there is a lack of annotation for many of the reductive phase

transcripts, which in part, may be due to the focus of research activity by the

yeast community on glucose repressed growth, where differentiation programmes

and respiratory catabolism are repressed. Therefore, we analysed the promoter

architectures, i.e. the regional sequence biases, in vitro and in vivo nucleosome

positioning, to reveal significant differences between each cluster (Machné and

Murray 2012). For example the promoters of the genes in cluster A (ribosomal) had

large nucleosome free regions that were enriched with AT containing motifs (well

known to have a lowered affinity for nucleosomes). Local nucleosome positions can

be classified by their “fuzziness”, i.e. as clearly defined positions or poorly defined.

Nucleosome position is dictated by the DNA sequence and enzymatically, e.g. as

the ATP-dependent remodelling complexes RSC and Isw2 complexes (Zhang

et al. 2011). It appears that these act differentially, where the RSC activates

(Lorch et al. 1998) and Isw2 represses transcription of genes (Vincent et al. 2008)

based on their promoter configuration. In our analyses, we show the structural

clusters A and C have very well-defined nucleosomes while clusters B and D

have fuzzy nucleosome positions, presumably related to the development of struc-

ture to function between A to B and C to D. A caveat in in vivo nucleosome

positioning data is that the analyses were almost exclusively carried out in rapidly

growing exponential phase cultures, therefore the measured positioning may well

be context dependent. This model is supported by the strict ATP dependence of

in vitro promoter configurations (Zhang et al. 2011). Therefore, we proposed a

simple dual negative feedback loop involved in the regulation of catabolic and

anabolic processes, which would have a high potential to autonomously oscillate

(Fig. 12.5). When ATP availability is high anabolism is initiated by ATP-dependent

remodelling by the RSC on the anabolic and growth genes in cluster A, AB

and B. The protein products of these genes then produce cellular growth leading

to the down-regulation of these genes as ATP is consumed. In conjunction with this,

increased ATP availability early in the oxidative phase leads to Isw2 remodelling of

nucleosomes over the promoters of the catabolic genes. This leads to a repression of

the catabolic genes during the oxidative phase, leading to a decrease in expression.

Once ATP concentration declines late in the oxidative phase, the nucleosomes relax

and catabolic genes are transcribed. It is apparent that anything which stresses the

cell and causes a drop in ATP production (such as ROS damage of membranes) or

mutations that cause the balance between catabolism and anabolism to be altered,

will cause a rearrangement of chromatin structure, leading to stress and catabolic

transcript production (without the need for specific transcription factors). Indeed,

this model is supported in higher eukaryotes by previously reported in vivo and

in vitro ultradian oscillations in nucleosome remodelling in glucocorticoid and
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oestrogen systems, where pulses of stimulant or ATP caused a damped ultradian

oscillation in nucleosome structure (Métivier et al. 2003; Nagaich et al. 2004).

12.7 Organelle Remodelling: Mitochondrial Changes

During the Respiratory Cycle

Our data indicates that the reaction network is separated into catabolic and anabolic

processes. However, it is currently unclear how biophysical structure and physical

compartmentalisation integrate into this “programme”. The spatio-temporal hetero-

geneity of cellular structure greatly influences every aspect of the reaction kinetics

of the whole cellular network (Hiroi and Funahashi 2006). The reactome therefore

has an intricate relationship with the organisation of DNA, RNA, protein, mem-

brane and organelle structure both in space and time. The metabolites and

transcripts involved in the core amphibolic carbon metabolism (glycolysis, gluco-

neogenesis and the tricarboxylic cycle) include some of the major oscillatory

components of the cell. In a respiring system the mitochondria and the integrity

of its structure are main determinants of the relative rates of the amphibolic

pathways of carbon metabolism. Additionally, the dual negative feedback loop on

Fig. 12.5 The proposed dual negative feedback of energetics on gene expression via chromatin

remodelling. During the oxidative phase (grey) catabolism increases ATP synthesis rate leading to

a high ATP:ADP ratio thereby activating the transcription of anabolic genes. This leads to a

“growth-like” transcriptional response. This is potentially mediated by ATP-dependent nucleo-

some remodelling (RSC), which simultaneously represses the transcription of catabolic genes.

When respiratory activity switches (resulting in the onset of the reductive phase), the protein

products of the anabolic genes, e.g. amino acid and protein synthesis enzymes, lower the ATP:

ADP ratio. This results in a reconfiguration of the promoter structure where the production of

anabolic transcripts decreases and the catabolic transcripts increase, i.e. typically that of a “stress-

like” response. Supporting this concept, the initial response of many cellular stresses is a decrease

in the ATP:ADP ratio caused by disruption of protein, membrane and organelle function
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transcription (Fig. 12.5) indicates mitochondrial activity must be tightly integrated

with the oscillatory dynamics.

The high amplitude excursions of dissolved O2 (80–170 μM) during the respira-

tory oscillations are accompanied by an in-phase modulation of NAD(P)H directly

as continuously monitored in the fermenter by fluorimetry (Murray et al. 1999;

Lloyd et al. 2002b). This key indicator of intracellular redox state (Chance

et al. 2005) is pivotal at the core of the entire cellular network (Lloyd 2003;

Lloyd et al. 2003; Lloyd and Murray 2005, 2006; Murray and Lloyd 2006). Electron

micrographs of thin sections of yeasts rapidly fixed at different stages of the 40-min

cycle showed marked ultra-structural changes in the mitochondria (Lloyd

et al. 2002a, b; Sasidharan et al. 2012). The extremes of conformational state

correspond to those originally described for liver mitochondria (Hackenbrock

1966, 1968) as “orthodox” or “condensed”. In the former, a relatively large matrix

volume with the inner membrane is closely opposed to the outer membrane: this

state was identified at high levels of dissolved O2 (when respiration rate was low).

In the condensed form, the cristae became more clearly defined as the inter-

membrane compartment was larger. This corresponds to the energised state

(Chance and Williams 1955). It has been understood for many years that massive

and rapid changes in ion concentrations between the two mitochondrial

compartments and the cytosol accompany or drive these changes and

protonophores and ionophores that uncouple mitochondrial energy conservation

from electron transport by collapse of inner membrane electrochemical membrane

potential perturb mitochondrial structure (Hackenbrock 1968; Mitchell and Moyle

1969). The determination of total mitochondrial content of cytochromes b, c1, c

and aa3 as measured in difference spectra at 77K showed that any changes were

below the levels of detectability. However, the physiological redox states of

cytochromes c and aa3 in vivo indicated that high respiration was associated with

elevated reduction of these two redox components. Effects of two protonophores

(m-chlorocarbonylcyanide phenylhydrazone, CCCP, and 5-chloro-t-butyl-20-
chloro-40-nitrosalicylanilide, S-13) (Fig. 12.6a, b) were dramatic and similar.

The well-established acceleration of respiratory rates on addition of uncouplers

rapidly drives down the dissolved O2 in the fermenter. At increased concentrations,

the subsequent respiratory cycle was prolonged, and more than five cycles were

required for recovery to the normal cycle time. At higher concentrations both

uncouplers produced very interesting effects that provided new insights (Lloyd

2003). For instance, at 10 μM CCCP the uncoupling effect was more evident and

the dissolved O2 remains low for more than 5 h, during which no oscillation was

observed. Recovery to normal amplitudes required more than 20 h, although the

respiratory oscillations were restored before this, albeit with greatly diminished

amplitude. Another very significant observation was that uncoupler treatment gives

a lasting complex waveform where the 40-min oscillation had an 8-h envelope

waveform, most likely stemming from cell-division cycle dynamics (Fig. 12.6c, d).

Thus, interference with mitochondrial energy generation can induce an alignment

of cell division cycle controls with ultradian clock control (Fig. 12.7). Further
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addition of uncoupler extends cell division time and causes desynchronisation of

the population or causes the clock to stop. Further research is required to delineate

clock interference from loss of cell–cell synchrony.

Fig. 12.6 The pulse addition of (a) ethanol (10 mM), and the protonophores (b) CCCP (2.5 μM)

or S13 (1, 2 and 4 μM) during the respiratory oscillation causes phase and amplitude shifts (Lloyd

2003)
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In terms of the kinetics of mitochondrial processes, it is quite remarkable that

these organelles are characteristically associated with an extremely dynamic poten-

tiality (as determined by their rapid metabolic responses in vitro after extraction

from organisms). However, in vivo they behave quite differently and their changing

properties and functions during an oscillation cycle are evidently constrained

(Lloyd and Edwards 1984; Marques et al. 1987). We have suggested that inside

cells or organisms mitochondria not only display rapid kinetics but also have slower

oscillatory modes that suggest that “they dance to a tune that is played by a piper

performing elsewhere in the cell”. In situ, the mitochondrion is enslaved to the

slower beat of the nucleo-cytosolic system.

12.8 The Multi-Oscillatory State

The use of membrane inlet mass spectrometry to monitor dissolved gas levels

(O2, CO2 and H2S; Fig. 12.8) directly in the continuous culture at 12 s interval

sampling time showed a predominant large-amplitude period of approximately

13.6 h, with superimposed 40 min, and an intermittent 4-min oscillation (Roussel

and Lloyd 2007). A metabolic attractor was constructed using more than 36,000

points collected at 15 s intervals from a single experiment, lasting for 3 months.

Computation of the leading Lyapounov exponent (0.752 � 0.004 h�1; 95 % confi-

dence), which is clearly demarcated from 0, indicated the dynamics on this attractor

was chaotic. This chaotic behaviour was further supported by the Poincaré plots of

data taken from a time frame of weeks during the 40-min cycle, while amplitude

Fig. 12.7 (a) Protonophore

concentration decreases

during continuous dilution of

Saccharomyces cerevisiae
culture. (b) Escalating

consequences over multiple

scales (0.1–10,000 s)
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formed a linear relationship between successive cycles; period showed non-linear

chaotic behaviour (Murray and Lloyd 2006). When the attractors were reconstructed

from the dissolved oxygen data measured in cultures, where conditions were

changed to near the limits that support rapid growth pH (2.8 or below) or

Fig. 12.8 The multi-oscillatory state of S. cerevisiae during synchronised continuous growth.

Relative MIMS signals of the m/z ¼ 32 and 44 components referred to Argon (m/z ¼ 40) versus

time. These mass components correspond, respectively, to O2 (a) and to CO2 (b). Time is given in

hours after the start of fermentor continuous operation (Aon et al. 2008)
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temperature (25 �C and 36 �C), strange attractor-like behaviour with clear bifurca-

tion points was observed.

In order to reveal the “scale-invariant” (fractal or self-similar) features of the

multi-oscillator, well-established approaches previously applied to time series were

employed (Aon et al. 2008). Thus, Relative Dispersional Analyses (RDA) of both

the O2 and CO2 data indicated that the observed multi-oscillatory dynamics corre-

spond to statistical fractals, as judged by the perfect correlation between oscillators

in the 13-h, 40-min and 4-min time domains. Thus, double-log plots exhibit an

inverse power relationship with a fractal dimension Df (¼1.0) implying that RD is

constant with scale (i.e. the time series looks statistically self-similar at all scales).

Long-term memory on timescales from minutes to hour is implicit in this

oscillatory behaviour. Power Spectral Analysis (PSA) also indicated an inverse

power law proportional to 1/fβ, and the value of β ¼ 1.95 is close to that character-

istic of coloured noise, and again is as expected for the time series of a system that

displays deterministic chaos. The fractal nature of a chaotic time series has been

explained previously (Lloyd and Lloyd 1995). Moreover, and most significantly,

these characteristics indicate a functional scale-free statistically self-similar net-

work that operates simultaneously on several timescales (Aon et al. 2008) so as to

provide coherence between time domains. A computational model indicated that

both in yeast and cardiomyocytes, underlying mechanisms of scale-free behaviour

are similar. This scale-free behaviour is supported by wavelet analyses of NAD(P)

H fluorimetry data sampled at 100 Hz (Fig. 12.9) and revealed how the

multioscillatory states correlated during the respiratory oscillation (Sasidharan

et al. 2012). In analysis we revealed a 4-, 12- and 20-min signals, whose amplitude

was modulated according to phase.

The 4-min period had not been observed previously in continuous cultures of

yeast, but may be related to oscillatory autofluorescence emission from NAD(P)H

in both mitochondrial and cytosolic compartments observed in contiguous single-

layered films of cells perfused with buffer-containing glucose (Aon et al. 2007).

Two-photon excitation of cells loaded with appropriate fluorescent probes indicated

oscillations in inner mitochondrial membrane potential (ΔΨm) and superoxide

radical anions (O2
�•) with definite phase relationships with the nicotinamide

nucleotide redox states. The inner membrane anion channel has a peripheral

benzodiazepine receptor, and an inhibitor, 4-Chlorodiazepam, attenuates the oscil-

lation both of the redox state and of the O2
�• as had previously been shown in

cardiomyocytes (Aon et al. 2003; Brown et al. 2008). This out-of-phase relationship

was lost after inhibitor treatment and washout. Superoxide dismutase addition was

ineffective at blocking the oscillations indicating that the signalling function of this

O2
�• serves intracellular rather than an intercellular role (Aon et al. 2008). Thereby,

yeast mitochondrial populations function as a network of coupled oscillators

through metabolite-linked communication (Cortassa et al. 2011). Inhibiting mito-

chondrial respiration at the level of cytochrome oxidase with H2S abates all

oscillatory frequencies including the 40-min-period ultradian clock, therefore

providing proof-of-principle that multi-scale timekeeping is an emergent property

of the overall network involved in metabolism, growth and proliferation in yeast, as
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the overall impact of the perturbation was shown over all temporal scales

(Sasidharan et al. 2012). A similar effect is seen with 40-Cl-diazepam, where addition

to whole yeasts of this inhibitor of IMAC, control of O2
�• efflux from mitochondria,

attenuates the minute period oscillations of ΔΨm and NADP(H) reduction states

(Aon et al. 2007, 2008) as monitored optically. In a continuous culture this inhibitor

decreased the amplitude of oscillations of dissolved O2 (D.B. Murray, unpublished

experiments). Furthermore, the period-lengthening effects of Li+ and monoamine

oxidase (type A) inhibitors on the 40-min yeast clock (Salgado et al. 2002)

echo results seen with a variety of circadian oscillators (Engelman et al. 1976;

Fig. 12.9 Signal processing of the complex signal produced from continuous online measurement

of NAD(P)H initially sampled at 10 Hz (a). Discrete Fourier Transformation (DFT) spectra reveal
that the relation between the amplitude was linear until 0.05 Hz indicating scale-free dynamics in

this region (b); below this we observed a region of coloured noise. Discrete Wavelet Transforma-

tion (DWT) using the Daubechies wavelet was then used to process the signal where windows (W )

that had significant correlation were shown (c). The data was down-sampled to 1 Hz to reduce

computation cost. Continuous wavelet transformation (CWT) using the derivative of Gaussian

wavelet (DOG) of data down-sampled to 0.1 Hz reveals the finer grain temporal events of the

signal (d). The heat map intensity indicates the correlation of the signal to the wavelet. The vertical
line in (a) and (c) represents the time of (NH3)2S addition. (Sasidharan et al. 2012)
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Delini-Stula et al. 1988). Together with the effects of protonophores (Sect. 12.7)

through time domains from milliseconds to cell division times (Fig. 12.7), it becomes

evident that signalling between timescales is mediated either directly or by the

downstream effects of a number of small effector molecules (H+, O2
�•, and H2S).

Redox cycles lie close to core of global scale-free cellular dynamics (Rapkine

1931; Mano 1977; Lloyd and Murray 2005, 2006, 2007; Lloyd et al. 2012). The

significance of scale-free temporal organisation for organelle, cell and organism

timekeeping cannot be overstated as, potentially, what affects one timescale affects

them all: a fundamental property of dynamic fractals (Aon et al. 2008).

12.9 Concluding Remarks

“What are called structures are slow processes of long duration, functions are quick
processes of short duration” (von Bertalanffy, Problems of Life 1952).

The respiratory oscillation percolates through almost every facet of the biochemis-

try and biology of cellular processes, and although transcription feed-forward

protein feedback loops are important for the regulation and long-term stability of

the oscillation, they do not act in isolation. Current dogma dictates that there is a

distinctive hierarchy in cellular processes where DNA forms RNA to form proteins

that biochemically alter other proteins or produce metabolites; however, biological

networks cannot be so conveniently modularised. Therefore, we must conclude that

real biological networks are heterarchical (where theoretically each sub-system is

of equal importance) rather than hierarchical in their organisation (if a hierarchy

does exist co-factors and co-enzymes would surely take the number one spot). This

viewpoint does not preclude hierarchical structure in the sub-systems that comprise

the heterarchy. Therefore, cell fate is dictated by the integrated output of the

reactome rather than by specific structures in the system. Thus a highly

interconnected reactome responds in a redox-phase-dependent manner, which can

robustly adapt to most perturbative influences.

Our data and observations, although incomplete, provide a compelling picture of

the holistic organisation of yeast. In an autodynamic system, where almost every

facet of cell biology oscillates without external perturbation the concept of cause

and effect is meaningless. Cell physiology is organised so that parallel interlocked

events occur throughout all of the constituents of the system, i.e. macromolecules

(DNA, RNA, proteins, lipids) and small molecules (metabolites, gases), as the

organism adapts to the environmental context. At first glance this would appear

to introduce a high degree of complexity to the system. However, our comparative

study on the 1,327 independent array hybridisations illustrates (Fig. 12.4b) if a

condition is changed the transcriptome (and presumably its output) locks into either

anabolic or catabolic modes. Furthermore, ATP availability and utilisation is

implicit in the formation of these transcriptional states. ATP synthesis in respiring

cells is a function of the redox potential and the ability of the mitochondria to
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generate a membrane potential. These processes occur at very different frequencies

and, thus, the physical structure and the chemical state of the cell must be integrated

on multiple timescales. We show that by altering either state we can phase lock the

system into either a catabolic or anabolic mode and that these perturbations

influence the time structure of the entire cell system (Sasidharan et al. 2012).

In conclusion, rather than complexity, a heterarchical oscillatory system can

provide simple rules for the global organisation of the cell, its response to the

environment and the development of the dynamic architecture of the phenotype

(Klevecz and Murray 2001; Chin et al. 2012).
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Machné R, Murray DB (2012) The yin and yang of yeast transcription: elements of a global

feedback system between metabolism and chromatin. PLoS One 7:e37906

MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006) An improved

map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113

Mano Y (1977) Interaction between glutathione and the endoplasmic reticulum in cyclic protein

synthesis in sea urchin embryos. Dev Biol 61:273–86

12 Temporal Partitioning of the Yeast Cellular Network 347

http://dx.doi.org/10.1038/nrm1980-c1


Marques N, Edwards SW, Fry JC, Halberg F, Lloyd D (1987) Temperature-compensated ultradian

variation in cellular protein content of Acanthamoeba castellanii revisited. Prog Clin Biol Res

227A:105–19

McCord RP, Berger MF, Philippakis AA, Bulyk ML (2007) Inferring condition-specific transcrip-

tion factor function from DNA binding and gene expression data. Mol Syst Biol 3:100
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Chapter 13

Systems Biology and Metabolic Engineering

in Bacteria

Johannes Geiselmann

Abstract Complete metabolic maps are currently available for a number of impor-

tant bacteria. Even when these maps are not experimentally confirmed, the topology

of the metabolic network can be reconstructed from the genome sequence. Despite

this extensive information, we still lack a good understanding of metabolic

adaptations, the interactions of metabolism with gene regulation and tools for

predicting the metabolic consequences of modifying the metabolic or genetic

regulatory network of a bacterium. This chapter will briefly review current methods

for analyzing bacterial metabolism from topological models and steady state

techniques, such as flux balance analysis, to dynamical models using ordinary

differential equations. Even though still incomplete, these models can predict the

metabolic behavior of modified organisms. Using these tools, we can create novel

metabolic pathways or optimize the yield of a desired metabolite. Focusing on

Escherichia coli, we present examples of successful metabolic engineering using

such systems-wide, rational approaches, integrating modeling and experiments.

The conjunction of systems biology to metabolic engineering yields new insights

into the fundamental functioning of the cell and opens the path to the biological

production of a large variety of commodity chemicals.

13.1 Metabolism and Systems Biology

Microbes are relatively simple organisms, they grow in very diverse environments

and their genomes are sequenced. For model organisms, such as E. coli or Saccharo-
myces cerevisiae, the metabolic network is very well mapped and many of the genetic

and metabolic regulatory interactions have been characterized. These organisms

are therefore an ideal study object for systems biology with the dual goal of
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(1) understanding the functioning of the organism as a whole and (2) exploiting this

knowledge for applications in biotechnology and synthetic biology.

The basis for understanding the functioning of microbial metabolism is a

complete knowledge of the underlying metabolic network, i.e., the metabolites

and the enzymes that interconvert these metabolites (Fig. 13.1). The next section

argues that current -omics techniques have essentially achieved this goal. Based

on this map, we can investigate the functional properties of the network at two

levels: (1) during balanced growth, a hallmark of microbial physiology and

(2) at transitions between different conditions, the “normal” lifestyle of most

microorganisms. Finally, the metabolic network is, of course, not isolated in the

cell, but embedded in a complex control structure involving metabolic, genetic, and

posttranslational control mechanisms. Much progress has been made recently to

incorporate all these interactions into integrated models, culminating in whole-cell

models of an entire bacterium (Karr et al. 2012b). These models are not solely

intellectual tools for understanding the functioning of an organism; they also form

the basis of many applications in biotechnology (Feist and Palsson 2008).

13.2 Maps of Metabolic Networks in Bacteria

The first step in network reconstruction is the establishment of a reliable model of

the network, i.e., identifying all components (metabolites) and their connections

(enzymes and their reactions). The first metabolic models of the beginning of the

1990s were of limited scope, focusing, for example, on amino acid and nucleotide

metabolism. The advent of the genomic era in the late 1990 has greatly contributed

to the fast growth of the number and size of metabolic models (Kim et al. 2012).

Numerous software tools have now been developed to help deriving a network

Fig. 13.1 The central role of the metabolic network. The metabolic network is central to a systems

biology description of organism functioning. Numerous data sources, genetic, biochemical, and

-omics data, are combined to construct a biochemical reaction network. This network describes

all possible transformations between the metabolites (blue circles) of the organism. The

transformations include inflow (e.g., glucose uptake) and outflow (e.g., acetate secretion) reactions

symbolized by arrows without starting or ending metabolite. The reaction network forms the basis

for all further analyses, from a topological description of the network to dynamical simulations and

parameter estimation by comparison with experimental data
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connectivity and metabolic capacity of the network from genome annotation

(Pitkänen et al. 2010). The preferred model organisms were E. coli and

S. cerevisiae. The latest, integrated model of E. coli comprises almost 12,000

network components and over 13,000 reactions (Thiele et al. 2009). This model

was created by the Palsson group, who has pioneered and is still at the forefront of

the reconstruction of metabolic networks in E. coli and other organisms (Feist

et al. 2009).

The second step after the reconstruction of network components and their

connectivity is the comparison with available experimental data in order to validate

the proposed structure. A prerequisite for the faithful reconstruction of a metabolic

network is thus the availability of high-throughput, quantitative techniques for

measuring the network components and their interactions (Yamada and Bork

2009). Even though the reconstruction of network connectivity is greatly facilitated

by software tools, the automatic detection and repair network inconsistencies

remain very difficult (Pitkänen et al. 2010). The best models still rely on manual

curation.

Furthermore, even for very well studied organisms, such as E. coli, the experi-
mental exploration of the metabolic network still yields surprises. Recently,

Nakahigashi et al. (2009) have detected significant differences between the

predictions derived from the very well established metabolic network of E. coli
and the observed growth phenotypes of double knockout mutants. These additional

reactions of the central carbon metabolism provide an alternative pathway for

glucose breakdown. The remarkable fact about these new reactions is that their

activation does not require any changes in gene expression. Such alternative

pathways are certainly part of the features that convey robustness to metabolic

networks. A purely bioinformatic analysis will almost certainly miss such reactions,

reiterating the need for experimental validation of predicted network structures

even for the best-studied organism. Despite certain shortcomings, these network

reconstruction methods have been applied with great success to well-studied

organisms (Kim et al. 2012), such as E. coli and S. cerevisiae, but also to less

well studied organisms of particular fundamental or biotechnological interest, such

as photosynthetic cyanobacteria (Montagud et al. 2010).

Even though the completeness of the metabolic network cannot be assured, the

quality of current network reconstructions allows to pass on to the next step:

calculating the phenotype produced by a metabolic network. This task consists

essentially in predicting the metabolic fluxes through the network in different

growth conditions. From these fluxes, we can calculate the phenotypes, such as

growth rate, metabolic capacities, and yield of particular metabolite. There are two

major modeling approaches for calculating the “behavior” of a metabolic network

(Chen et al. 2012): (1) steady state, and (2) kinetic. The former can be applied to

microorganisms during balanced growth, whereas the latter allows to assessing

time-dependent responses of a microbe to changes in the environment.
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13.3 Steady State Models

Steady state models attempt to predict the flux distribution during balanced growth,

a condition reached in chemostats and at certain phases of a batch culture. Histori-

cally, most experiments have striven to reach balanced growth, since the constancy

of the composition of the bacterial cell greatly facilitates the interpretation of the

results. However, the constancy of composition is also the major experimental

drawback of balanced growth. In order to obtain the large amount of data necessary

to constrain a mathematical model, the experimental measurements have to be

repeated under many different growth conditions.

A steady state model is a mathematical representation of the intracellular

metabolic flows that can, or cannot, be observed directly. The basis on which all

these models are built is the stoichiometry matrix (equivalent to the connectivity of

the metabolic network, describing all possible reactions and their reaction

stoichiometries) and a set of measured fluxes. These fluxes can be intracellular

fluxes, which need tracer experiments, or uptake fluxes. In general, the combination

of experimental datasets and topological models of the biological network leads to

an under-determined system. Additional constraints have to be imposed in order to

uniquely calculate the (steady state) behavior of the network. These constraints

come from experimental monitoring of flux distribution, usually using 13C-labeling

techniques, or predicting the flux distribution based on an objective function. The

former method is called “metabolic flux analysis” (MFA), the latter “flux balance

analysis” (FBA). Powerful tools for both approaches have been developed. Toya

et al. (2011) have described the principles and available software tools for using

MFA and FBA [see also (Dandekar et al. 2012)]. An excellent review of tools for

constraint-based reconstruction and analysis methods can be found in Lewis

et al. (2012).

Metabolic Flux Analysis (MFA) can be applied to metabolic networks of any

complexity, e.g., cycles, parallel and reversible reactions. Labeling patterns provide

very useful information, directly about the intracellular flux distribution. The

procedure is normally initiated by adding the labeled compound (typically
13C-glucose for central metabolism) to a steadily growing culture. The flux distri-

bution is then derived by comparing the observed labeling pattern of metabolites

with the predictions from an assumed flux distribution. The result is optimized in an

iterative process of model adjustment and comparison to the experimental data. A

limitation of this approach is it requires measuring fluxes under different experi-

mental conditions. This constraint can be somewhat alleviated by parallel labeling

experiments, where the same substrate carries multiple labels, or differently labeled

substrates are added to the culture simultaneously (Crown and Antoniewicz 2012).

With this approach specific fluxes can be measured precisely and efficiently to

validate the proposed structure of a biochemical network. One disadvantage of

multiple labeling is the higher cost of the experiment.

The other, commonly used technique for calculating metabolic fluxes is “flux

balance analysis” (FBA). The principle is well described in Orth et al. (2010) and
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illustrated in Fig. 13.2. Like in MFA, the basis of FBA is the stoichiometry matrix,

i.e., the complete topological description of the metabolic network. The stoichiom-

etry matrix already imposes a first set of constraints on possible flux distributions.

Additional constraints can be added, for example, in the form of maximal and

minimal fluxes for a particular reaction. The second, and crucial, step of FBA

consists on defining an “objective function” that will be maximized. A commonly

used objective function is biomass, which amounts to adding a flux called

“biomass” to the metabolic network. Different reactions can contribute to the

biomass function, and the relative contributions can change according to growth

conditions (Meadows et al. 2010). Mathematically, the constraints and the

objective function form a system of linear equations that can be solved, using linear

programming, to maximize the objective function. Similar to MFA, FBA does not

require any knowledge of kinetic parameters and can rapidly be calculated even for

large networks. Furthermore, prior knowledge of, e.g., reaction constants can be

incorporated into the algorithm in the form of additional constraints.

The calculated optimal flux distribution depends on the choice of the objective

function (Feist and Palsson 2010). Evolutionary arguments favor the biomass

objective function for E. coli and other bacteria, at least for laboratory strains that

have been grown for a long time on commonly used growth substrates. The basic

operation for calculating biomass involves defining the macromolecular composi-

tion of the cell and thus the metabolites necessary for assembling these cellular

constituents. This objective function can be further improved by considering the

energy needed for macromolecular assembly, for example the number of ATP

molecules needed for incorporating amino acids into proteins. Even more detailed

formulations of the biomass include secondary metabolites such as vitamins and

cofactors. Even though the biomass objective function can be calculated with high

precision, different bacteria under different conditions may well be optimized for

Fig. 13.2 Flux Balance Analysis. The axes represent metabolic fluxes. In this example, only three

fluxes are considered. The possible fluxes can adopt any value of v1, v2, and v3. Stoichiometry

constraints and capacity constraints restrict the fluxes. The stoichiometry constraints are imposed

by the reactions of the network, and capacity constraints derive from known limits of the reactions.

For example, we may know that the flux v1 has to lie between two known values: a < v1 < b.
Since these types of constraints are linear, possible fluxes now lie within the straight line

boundaries of a polygonal cone starting at the origin. FBA then maximizes (or minimizes) an

objective function (biomass, ATP production,. . .) that can be any linear combination of the fluxes.

The optimal solution (dark blue point) lies on the edge of the allowable solution space
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different objectives. For example, even for E. coli, at least five different objective
functions, among which maximal biomass, ATP, or CO2 production, are consistent

with the observed flux distribution (Schuetz et al. 2012). Future research on the

“real objective” of a bacterium subjected to a given growth condition will certainly

prove fruitful for fundamental research as well as for biotechnological applications.

Several extensions of the basic FBA have been proposed. As early as 2002, the

MOMA algorithm (minimization of metabolic adjustment) explicitly addressed the

question of the objective function (Segrè et al. 2002). For wild type strains of E. coli
it can reasonably be argued that evolution has optimized for growth (see above).

However, in the case of genetically modified bacteria, where certain genes have

been deleted, presumably not enough time has elapsed for metabolic network

rewiring. In this context, searching for the model that minimally perturbs the fluxes

of the wild type strain has proven more accurate than the pure biomass objective

function. More recent work suggests that bacterial metabolism has been evolution-

arily optimized for two competing goals: optimality under a given condition and

minimum adjustment between conditions (Schuetz et al. 2012).

Several variants and extensions of MFA and FBA have been developed over the

years. Metabolic pathway analysis adopts a pathway centered view and exploits

thermodynamic and biochemical constraints to limit potential metabolic strategies

(Bar-Even et al. 2012). The metabolic network is decomposed into individual

pathways by elementary mode analysis (Trinh et al. 2009), thereby facilitating

the analysis and prediction of cellular phenotypes, and the construction of meta-

bolic networks. Following a related philosophy, resource balance analysis exploits

the modularity of metabolic pathways and obtains good predictions for different

growth phenotypes of Bacillus subtilis (Goelzer et al. 2011). Many of these variants

are summarized in Kim et al. (2012).

MFA and FBA are descriptions of the metabolic system that predict the fluxes of

metabolites across the system. They do not explicitly address the control of these
fluxes. A powerful approach for analyzing the control structure of the metabolic

system is called “metabolic control analysis” (MCA). The key concept is the

“control coefficient” that describes the ratio of the relative change of a metabolic

variable or function (such as a steady state flux or a metabolite concentration) and

the relative change of a parameter of the system (Kremling et al. 2008; Lewis

et al. 2012). The control coefficient can thus quantify, for example, the influence of

enzyme concentrations on the flux of a metabolic pathway. More generally, MCA is

a mathematical framework capable of relating local properties, such as enzyme

activities, to global properties, such as the response of the entire system to an

external perturbation. MCA not only provides a tool for predicting system behavior

but also gives a deeper insight into system functioning by putting the accent on the

underlying control logic. One drawback of MCA is the requirement of extensive

experimental data for determining the system parameters, i.e., the control

coefficients. Recent extensions to MCA, such as optimization-based MCA

(OMCA) (Meadows et al. 2010), reduce the experimental burden by introducing

simplifying assumptions. OMCA supposes that the metabolic network optimizes

homeostasis. The fluxes of the network are thus correlated with metabolite
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concentration and enzyme activities. MCA and its extensions remain very useful

tools for network understanding and they may gain in importance as more quanti-

tative experimental data become available.

13.4 Dynamical Models

The natural habitat of most microorganisms is far from constant, forcing the

microbe to adapt its metabolism to ever changing conditions. Even a typical

batch culture in the laboratory puts the bacterium through cycles of feast and

famine (Ferenci 2001). The same problem arises for production strains in industrial

fermentors. In order to understand and optimize phenotypes under these conditions,

we need to assess the system behavior not only during a particular steady state but

also during transitions between different growth conditions. Otherwise stated, we

need a dynamic description of the metabolic network.

Historically, such models derive from enzyme kinetics, a detailed description of

an enzymatic reaction. The challenge for systems biology is to consider all enzy-

matic reactions of the cell simultaneously. Two approaches are possible for

attaining this goal: (1) bottom-up, where we do precisely that: assemble the

individual component reactions of a metabolic network, and (2) top-down, where

we attempt to put dynamics into a genome-wide steady state model.

Generally, the first modeling approach is formulated as a system of differential

equations, one equation for each enzymatic reaction (Fig. 13.3). This formalism has

the advantage of being very general and leading to very precise predictions of

system dynamics. However, this approach requires knowledge of (1) the topology

of the metabolic and regulatory network, as well as (2) good estimates of all

parameters of the kinetic equations. Such models are therefore limited to well-

known organisms such as E. coli. Once all parameters and equations are assembled,

the system behavior is calculated, “emerging” from the interactions of the individ-

ual components.

Because it is currently impossible to measure all the parameters of all the

enzymatic reactions of an organism, such models focus on specific parts of the

global network, for example, central metabolism. Kremling et al. (2008) have

succeeded in compiling a complete model of glycolysis in E. coli. Such detailed

models enable answering very specific questions. The Kremling model, for exam-

ple, led to the discovery of specific metabolic regulatory mechanisms for system

functioning. They could demonstrate the importance of a feed-forward loop linking

the upper part of glycolysis to pyruvate kinase. Heinemann et al. have extended this

approach and constructed a complete model of the central catabolism of E. coli
(Kotte et al. 2010). One major advantage of such models is that metabolic and

genetic regulatory mechanisms can be integrated seamlessly into a unified system

description (also see below). The surprising result of Kotte and coworkers was that

metabolic adaptations rely on distributed sensing of metabolic fluxes, where

metabolites such as fructose-biphosphate or cAMP play key roles as flux sensors.
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This mode of “environmental detection” allows autonomous metabolic adaptation

to changing environmental conditions, and has important implications for the

construction and functioning of modified or artificial metabolic networks.

These large models of central catabolic pathways in E. coli represent probably
the current limit of the pure differential equation-based approach to modeling the

a

b

Fig. 13.3 Dynamical models of metabolism. While FBA (Fig. 13.2) can predict metabolite

concentrations at steady state, i.e., the long-term behavior of a system in a constant environment,

many important biological phenomena involve the transition between growth conditions. Only

dynamical models can represent the system behavior in these situations. (a) In addition to the

metabolic network (bottom plane in the figure), such models incorporate varying enzyme

concentrations (second plane) and the regulation of gene expression by transcription factors or

other mechanisms of signal transduction (top plane). The different levels of regulation have been

separated here for better visualization, but all mechanisms are intertwined in the cell. For example,

certain metabolites (such as cAMP) affect gene expression by modulating the activity of transcrip-

tion factors (arrows from the bottom plane to the top plane). These models are formulated as a

system of differential equations, one equation per system component. (b) The simulation of such a

model predicts the time-varying concentration of each system component. Starting from a system

at steady state (and therefore constant concentration of all components), an external parameter

(e.g., the carbon source available in the growth medium) is varied at a specific time (indicated by

the dashed vertical line). The rate of change of proteins (transcription factors and enzymes) is slow

(represented by blue lines in the figure), whereas the rate of change of metabolite concentrations

can be very rapid (red line)
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dynamics of metabolic networks, simply because quantitative data about enzymatic

reactions are difficult to obtain. Furthermore, such data are usually measured

in vitro and their relevance for the in vivo situation remains questionable. Attempts

have therefore been made to extend the genomic-scale, steady state metabolic

models by adding dynamics in different ways. As mentioned above, FBA, for

example, strongly depends on the objective function and the constraints imposed

on the system. Since these change during a typical growth experiment, making them

time dependent leads to dynamic flux balancing. Meadows and colleagues have

used this approach to successfully model E. coli fermentation in an industrial

bioreactor, using FBA and time-dependent inputs, such as rate-dependent biomass

composition (Meadows et al. 2010).

In principle, the data used for steady state network analysis could also be used to

derive kinetic constants, and therefore a dynamic model of the network. Classic

dynamical models are formulated as systems of nonlinear differential equations.

Recovering all parameters of such a complicated system seems overambitious.

However, in many situations, the nonlinear differential equation system is well

approximated by lin-log, power-law, or S-system descriptions (Heijnen 2005).

Using high-throughput data (Ishii et al. 2007), where substrate and reactant

concentrations were quantified along with corresponding reaction fluxes in a series

of steady state perturbation experiments, Berthoumieux et al. (2012) explored the

possibility of identifying the parameters of the corresponding lin-log model. They

concluded that even with such an extensive dataset and the linearizing model

simplifications, only four out of 31 reactions, and 37 out of 100 parameters were

identifiable.

Another approach was to take established steady state, genome-scale models and

incorporate available kinetic information (Jamshidi and Palsson 2010). Enzymes

are represented explicitly in this formulation. Different steady state measurements

are used to estimate equilibrium constants, and subsequently kinetic constants of

individual enzymatic reactions. These constants are then incorporated in the kinetic

model using bilinear equations. This model faithfully describes system responses to

external perturbations such as changes in the energy or redox state of the cell. The

modeling algorithm makes extensive use of -omics data. Model construction thus

profits from the vast amount of such data that are publicly available and avoids the

“tedious” measurement of individual reaction constants necessary for the classical

modeling approach. However, classical enzyme kinetic models, when available, are

still a more faithful representation of system kinetics. Important biological phe-

nomena, such as regulatory interactions via metabolites or second messengers,

cannot be represented by the intrinsically linear approximation of FBA. Moreover,

collective phenomena such as self-organization or synchronized oscillations are

certainly beyond the realm of MFA or FBA.
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13.4.1 Systems that Require Dynamical Models

These phenomena can only be adequately represented by nonlinear differential

equations because the system behavior would simply be lost in a linear approxima-

tion. Models of such emergent phenomena are needed not only for understanding

system properties but also for constructing novel systems by methods of synthetic

biology. The first synthetic oscillatory circuit constructed and modeled was proba-

bly the “repressilator,” composed of three regulators that repress each other in a

cyclic arrangement (Elowitz and Leibler 1999). A more complex synthetic,

oscillatory circuit, the “metabolator” combines genetic and metabolic regulations.

The expression of the enzymes that interconvert acetyl coenzyme A and acetyl

phosphate is regulated by the concentration of the second metabolite, acetyl

phosphate (Fung et al. 2005). The nonlinear ODE model of the system correctly

describes the observed oscillatory behavior, predicting properties such as the

frequency of the oscillations as a function of the carbon flux through glycolysis.

The synthetic constructs can be further extended to incorporate cell–cell communi-

cation (Song et al. 2008). An artificial predator–prey construct combines two strains

of E. coli. Both strains produce a toxin molecule that kills the cell transcribing the

corresponding gene. The predator strain sends a diffusible molecule to the prey

strain, eliciting there the production of the toxin. The prey strain produces a

different diffusible molecule that activates the production of an antidote in the

predator strain. The predator thus depends on the prey for survival, but the prey will

be killed in the presence of many predators. The observed population dynamics are

oscillations of the number of predators and prey in anti-phase, as predicted by the

dynamical model. The key to success of all these projects was parameter optimiza-

tion of the system components based on a detailed dynamical model of the synthetic

system. The number of system components was still relatively modest, which

permitted the construction of a complete, nonlinear ODE model.

Intrinsically, nonlinear phenomena also govern major aspects of the “natural”

physiology of the cell. Metabolic oscillations have been observed over 50 years ago

and the first models describing these phenomena were developed soon thereafter

(Song et al. 2008). Such oscillations concern many microorganisms and

metabolites: for example, amidase activity in Pseudomonas aeruginosa, cAMP in

Dictyostelium discoideum, lactose metabolism in E. coli, and glycolytic oscillations
in yeast. This latter phenomenon has been studied in detail experimentally and

theoretically. Continuous cultures of yeast spontaneously synchronize their cell

physiology. During the 40 min of growth (corresponding to one mass doubling) in

constant environmental conditions, the population traverses a cycle comprising a

reductive and an oxidative phase (Klevecz et al. 2004). This metabolic oscillation

affects all major cellular activities, ATP:ADP ratio, transcription, replication, and

cell growth. A recent model proposes that the observed periodicity of cell physiol-

ogy is controlled by ATP-dependent nucleosome remodeling (Thiele et al. 2009).

The alternate anabolic and catabolic phases of the yeast metabolism could strongly

affect the efficiency of biotechnological applications in this organism. However,
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these nonlinearities are not taken into account in current models of the yeast

metabolism or in biotechnological applications aimed at maximizing product yield.

The collective behavior of cells has been exploited in synthetic biology to

stabilize engineered circuits in a noisy cellular environment. Contrary to natural

oscillators, which are extremely robust (Toya et al. 2011), synthetic circuits, such as

the repressilator (Elowitz and Leibler 1999), are very sensitive to fluctuations of

cellular components (noise). In the case of this oscillator, daughter cells may or may

not inherit the phase and frequency of the mother cell’s oscillation. Theory and

modeling tell us that one way to remedy this shortcoming is to couple many

unstable oscillators. The collection of cells should produce stable and precise

oscillations. This prediction has recently been validated experimentally in E. coli
(Prindle et al. 2012). These authors have constructed bacteria containing an

oscillatory circuit responding to arsenite in the medium. Individual cells were

coupled by the transmission of two diffusible molecules: a quorum-sensing mole-

cule acyl-homoserine lactone (AHL) and the redox signaling molecule H2O2,

produced by the periodic expression of NADH dehydrogenase. The bacteria were

placed in a microfluidics device where AHL provided the intra-channel, short-range

communication and H2O2, diffusing rapidly in the gas phase, was responsible for

the coordination between channels. The device produced a very stable oscillation,

coherent across a distance of 5 mm, the frequency of which revealed the concen-

tration of arsenite in the medium. An explicit, partial differential equations model

was used for the construction and optimization of the system. Explicit, dynamical

models, taking into account nonlinear interactions in time and space, are necessary

for understanding and engineering such systems. The increasing number of stan-

dard parts for synthetic biology along with the measurement of relevant parameters

of these parts will allow modeling and construction of large, complex, nonlinear

systems such as the one described above (Prindle et al. 2012).

13.5 Genetic Regulation of Metabolism

The integration of metabolism with gene regulation is important for metabolic

engineering because changing metabolite concentrations affect gene expression,

which, in turn, modulates enzyme activities (Keasling 2012). A complete metabolic

model should therefore include the dynamics of metabolism and the connections to

the genetic network and other regulatory mechanisms. This can be achieved in the

differential equation formalism, for example, the Heinemann model mentioned

above (Heinemann and Sauer 2010). A similar differential equation-based

modeling approach of central nitrogen metabolism in E. coli predicts complex

response patterns of the bacterium to diverse external and internal perturbations

(Yuan et al. 2009). Modeling is here successfully used as a discovery tool of

hitherto unknown regulatory mechanisms.

The improved FBA formalism of (Jamshidi and Palsson 2010) incorporates

regulation into the steady state model, resulting in mass action stoichiometric

13 Systems Biology and Metabolic Engineering in Bacteria 361



simulation (MASS) models. Enzymes, and their changes in activity, are explicitly

represented in the model. However, the model remains a linear model and the

description of regulatory effects is limited to small perturbations of the steady state.

Such a description will never be capable of describing transient behavior or

oscillations. Another promising formalism, termed IOMA (integrated omics meta-

bolic analysis) (Yizhak et al. 2010), uses the stoichiometry matrix as in FBA, but

complements the description by Michaelis–Menten type kinetic rate equations. The

model predictions are compared to proteomic and metabolomic data, and the

optimal solution is obtained by quadratic programming. This methodology

compares very well with other available algorithms for standard data sets in E. coli.
These success stories are not limited to E. coli. Szappanos et al. (2011) built an

integrated model of yeast metabolism, including regulatory interactions, by quanti-

tatively measuring interactions between more than 180,000 gene pairs encoding

metabolic enzymes. They combined the regulatory model with the established

metabolic network and developed a machine learning algorithm for comparing

experimental data with model predictions. See Gerosa and Sauer (2011) and Reaves

and Rabinowitz (2011) for recent reviews on integration of metabolism with

different kinds of cellular regulatory mechanisms.

Enormous progress has been made with integrated models for bacteria with

small genomes, in particular Mycoplasma species. These bacteria have a greatly

reduced genome, containing only between 500 and 700 genes. Because they live in

a relatively constant environment, their metabolism is simpler than that of larger

bacteria such as E. coli or Bacillus subtilis. The integration of experimental data

with a metabolic model ofMycoplasma pneumoniae has shown remarkable predic-

tive power (Yus et al. 2009). The whole genome, integrated model of Mycoplasma
genitalium, a human urogenital parasite containing only 525 genes, has recently

been completed (Karr et al. 2012b). The same group has also developed a generic

tool for assembling such models (Karr et al. 2012a). Even though the task is

simplified by the size of the genome, eventually, models of comparable detail and

predictive power will certainly become available for larger bacteria. The conceptual

tools are largely in place.

13.6 Applications: Modifying Existing Networks and De

Novo Design of Metabolic Pathways

As shown already by several examples above, modeling metabolic networks of

microorganisms, and integrating these networks with regulatory interactions in the

cell has led to new, fundamental functional mechanistic insights in these organisms.

In addition, the knowledge can be used to rationally modify existing networks, or

design networks de novo, for biotechnological applications (Oberhardt et al. 2009).

As early as 2003, an algorithm called OptKnock for determining optimal gene

knockouts to improve specific metabolic functions was developed and successfully
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applied to maximize respiration rates in Geobacter sulfurreducens (Burgard

et al. 2003).

The construction of synthetic pathways is another class of applications that arise

as we build upon knowledge gained from understanding the function of metabolic

networks (Xu et al. 2012). The preferred chassis organisms for these synthetic

biology projects remain E. coli and S. cerevisiae (Na et al. 2010). Utilizing

databases of metabolic reactions similar to the ones employed for the reconstruction

of metabolic networks from genome annotations, Parkya and collaborators pro-

posed the OptStrain algorithm for pathway optimization by eliminating superfluous

reactions or constructing novel pathways in E. coli (Pharkya et al. 2004). The

additional dimension offered by synthetic biology is the possibility to explore

many variants of a particular metabolic pathway. A particularly clever method

has been pioneered by the Church group (Wang et al. 2009), according to which

several billion variants of a given pathway can be explored in parallel within a

couple of days. This strategy of combining synthetic biology with accelerated

evolution has considerably improved the efficiency of the lycopen production

pathway in E. coli. The question of which strategy—rational design of a pathway

and fine-tuning of intermediate reaction steps or combinatorial exploration of a

large number of variants of a particular pathway—is more efficient for the produc-

tion of new chemicals remains open (Yadav and Stephanopoulos 2010). A combi-

nation of both strategies may prove the most promising (see following paragraph).

No matter how sophisticated the rational design of a genetic-metabolic network

may be, there will always be “bugs” when the circuit is constructed in the host cell.

A first remedy would be to devise a method for easily detecting the problems. For

example, the imbalance of metabolic pathways often induces stress responses. The

signature of these responses could be used in future diagnostic tools for strain

optimization (Keasling 2012). Even though nonlinear models of complex systems

are essential for designing gene-metabolic systems, experimental strategies will be

needed for the final optimization of the construct. Recent experimental advances

allow a combinatorial exploration of diverse expression levels of the constituent

enzymes. A high throughput screen is used to select the “best” strain. This strategy

has been used to maximize xylose and cellobiose utilization in yeast

(Du et al. 2012). Xylose is an abundant pentose, but is inefficiently utilized by

ethanol producing yeast strains. Optimal xylose assimilation relies on the balancing

of enzymatic activities and cofactor usage. The best expression levels of the three

key enzymes constituting the xylose assimilation pathway was obtained by screen-

ing strains (based on colony size), each one containing different combinations of

about ten promoters of different strengths placed upstream of each of the three

genes comprising the pathway. The optimized strain improved ethanol yield by

more than 60 % with respect to the reference strain. A decisive advantage of the

experimental approach to optimization over a purely computational approach is the

possibility to adapt to varying behaviors of different strains. Indeed, the transcrip-

tional profile of two different strains optimized for the same pathway is different

(Du et al. 2012). Such fine adjustments are difficult, if not impossible, to predict

from modeling alone. A combination of modeling and combinatorial exploration
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may therefore prove to be the most effective strategy to strain optimization (Yadav

and Stephanopoulos 2010).

In addition to fine-tuning the expression of individual genes, modifying the

global gene expression machinery can prove even more efficient in optimizing

product yield. In a proof of concept study, Alper and Stephanopoulos showed that

mutations in the major sigma factor of E. coli, σ70, outperform traditional metabolic

engineering approaches for improving ethanol tolerance or lycopene production

(Alper and Stephanopoulos 2007). Our recent results in E. coli confirm the impor-

tance of global versus gene-specific regulation (Berthoumieux et al. 2013). We

have measured the relative importance of global versus gene-specific factors for the

regulation of promoter activities at growth transitions. Contrary to the commonly

accepted paradigm that attributes a major importance to gene-specific regulations,

we find that even for global regulators these interactions serve “only” to fine-tune

the transcription of the target gene. These results emphasize the need for developing

global, integrated models of gene expression and metabolism.

13.7 Conclusions and a Prospective

The pace of research in systems biology of microbial metabolism has tremendously

accelerated since the availability of genome sequences and the deluge of -omics

data (metabol-, prote-, transcript-omics). The different modeling approaches,

top-down and bottom-up, are progressing rapidly and both ends will meet in the

near future. Whole-cell models of an organism, including metabolism and all levels

of regulation, have already become a reality. The advances made with small

bacteria, such as M. genitalium, will have to be transposed to larger and more

experimentally accessible bacteria, such as E. coli. These conceptual and experi-

mental advances have already led the way to new fundamental discoveries about

the functioning of microorganisms and the concepts and techniques are being

exploited in biotechnological and industrial applications. The last decade of

research has clearly demonstrated that a true understanding of a biological system

necessarily involves mathematical modeling. Many modeling and experimental

tools are available and are continuously improved. We can now ask many important

questions about the functioning of an organism and obtain the answers.

The promise of combining synthetic biology and metabolic engineering is the

design and construction of microorganisms that transform a starting chemical into a

desired product: microorganisms will serve as “chemical factories.” The tools for

analyzing metabolic networks and calculating potential flux distributions are avail-

able (FBA, etc.). The database of metabolic networks of microorganisms is rapidly

expanding. However, predictive, integrated models of metabolism and genetic

regulation are still scarce. The major challenge for the future consists in developing

such nonlinear models for systems of biotechnological interest. However, reliable

models require good parameter estimates, and obtaining parameters for all cellular

reactions remains a tantamount endeavor. The task is simplified by the development
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of reusable modules, in line with the biobricks of iGEM. The basic modules can be

well characterized and then assembled in different ways to obtain the desired

circuit. The development of computer-aided design (CAD) tools will be necessary

to allow assembly and in silico testing of the new circuit. These CAD tools should

not only help in vector and chromosome construction (as is generally the case

today), but also include functions for predicting fluxes and help in designing the

optimal regulatory interactions. Once assembled in the organism, high throughput

screening methods will have to be used to fine-tune and debug the de novo designed

system. No fundamental obstacles separate us from this future.
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