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                 Abstract     Innate immunity is the fi rst line of defense against invading microorganisms 
in plants. Pathogen-associated molecular patterns (PAMPs) are the classical acti-
vators of immune responses. These are alarm signal molecules are perceived as 
‘nonself’ by plant pattern recognition receptors (PRRs) to switch on the plant 
immune responses. PAMPs are not only detected in pathogens, but also detected in 
nonpathogens and even in saprophytes. The PAMPs are often called as microbe-
associated molecular patterns (MAMPs). MAMPs are molecular signatures typical 
of whole classes of microbes and their recognition by PRRs activates the plant 
innate immunity. Most of the PRRs are receptor-like kinases (RLKs) and RLKs are 
proteins with a “receptor” and a “signaling domain” in one molecule. The extracel-
lular domains of RLKs bind directly to legands to perceive extracellular signals, 
whereas the cytoplasmic kinase domains transduce these signals into the cell. PRRs 
interact with additional transmembrane proteins which act as “signaling amplifi -
ers”. PAMPs induce autophosphorylation of the kinase domain of PRRs and the 
autophosphorylated PRRs are translocated to endosomes. The biogenesis of trans-
membrane PRRs occurs through endoplasmic reticulum (ER) with the aid of 
ER-resident chaperones. The PRR in ER is transported from ER to plasma mem-
brane and  N -glycosylation of PRRs is required for the transport of PRRs. Second 
messengers deliver the information generated by the PAMP/PRR signaling complex 
to the proteins which decode/interpret signals to initiate defense gene expression. 
Calcium ion is a ubiquitous intracellular second messenger involved in various 
defense signaling pathways. Ca 2+  is a master regulator of gene expression in plants. 
Calcium signatures are recognized by calcium sensors to transduce calcium-
mediated signals into downstream events. Guanosine triphosphate (GTP)-binding 
proteins (G-proteins) act as molecular switches in signal transduction system. 
Mitogen-activated protein kinase (MAPK) cascades transduce extracellular stimuli 
into intracellular responses in plants. Reactive oxygen species is a second messen-
ger in transmitting the PAMP signal. Nitric oxide (NO) is a diffusible second 
messenger acting in cellular signal transduction through stimulus-coupled 
S-nitrosylation of cysteine residues. The plant hormones salicylic acid, jasmonate, 
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ethylene, abscisic acid, auxin, cytokinin, gibberellins, and brassinosteroids play 
important role in immune response signaling. Plant hormones activate different 
signaling pathways inducing distinctly different defense genes. These signaling 
pathways can crosstalk with each other and this crosstalk helps the plant to “decide” 
which defensive strategy to follow, depending on the type of attacker it is encounter-
ing. Potential pathogens produce several effectors to nullify the defense responses 
induced by the innate immune system. Pathogens may also hijack some signaling 
systems to cause disease. The war between the plant and pathogen appears to be in 
fi ne-tuning the signaling systems to cause disease or to enhance host defense 
response. Recent advances in our understanding of the molecular basis of plant 
innate immunity have opened new era in developing potential tools in management 
of crop diseases.  

  Keywords     Pathogen-associated molecular patterns (PAMPs)   •   Microbe-associated 
molecular patterns (MAMPs)   •   Plant pattern recognition receptors (PRRs)   • 
  Endocytosis of PRR proteins • PAMP-triggered immunity (PTI) • PAMP-PRR 
signaling complex   

1.1         Classical PAMPs 

    Innate immunity is the fi rst line of defense against invading microorganisms in 
vertebrates and the only line of defense in invertebrates and plants (Silipo et al. 
 2010 ; Zamioudis and Peterse  2012 ). Several elicitors of microbial origin have been 
identifi ed as primary danger/alarm signal molecules to switch on the plant immune 
systems culminating in activation of defense genes (Aziz et al.  2003 ; D’Ovidio et al. 
 2004 ; Cavalcanti et al.  2006 ; Vidhyasekaran  2007 ; Thomma et al.  2011 ). The classical 
general elicitors reported in plant pathogens resemble the pathogen-associated 
molecular patterns (PAMPs), the classical activators of innate immune responses in 
mammals (Nürnberger and Brunner  2002 ; Nürnberger et al.  2004 ; Nürnberger and 
Lipka  2005 ). These historically termed general elicitors have been renamed as 
PAMPs (Jones and Dangl  2006 ; Bent and Mackey  2007 ). PAMPs are often vital for 
microbial survival and are therefore not subject to mutational variation (Gust et al.  2007 ; 
Zhang and Zhou  2010 ). PAMPs are defi ned as evolutionarily conserved building 
blocks of microbial surfaces that directly bind to plant pattern recognition receptors 
(PRRs) and induce defense responses (Nürnberger and Brunner  2002 ; Qutob et al.  2006 ; 
Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ; Thomma et al.  2011 ). The molecular 
signatures in PAMPs are not present in the host and these are perceived as ‘non-self’ 
by plant pattern recognition receptors (Mackey and McFall  2006 ). 

 PAMPs that trigger innate immune responses in various vertebrates and non- 
vertebrate organisms include eubacterial fl agellin, elongation factors, lipopolysac-
charides (LPS) from gram-negative bacteria, viral and bacterial nucleic acids, fungal 
cell wall-derived chitins, glucans, mannans, or proteins and peptidoglycans from 
gram-positive bacteria (Zipfel and Felix  2005 ; Jones and Dangl  2006 ). Similar 
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PAMPs have been detected in a wide range of plant pathogens (Shinya et al.  2007 ; 
Boller and Felix  2009 ; Silipo et al.  2010 ; Tsuda and Katagiri  2010 ; Nürnberger and 
Kufner  2011 ). One of the common features of PAMPs is their presence in a broad 
range of microbial species (Brunner et al.  2002 ). The general structure of lipopoly-
saccharides (LPS) is shared by all gram-negative bacteria (Medzhitov  2001 ) and the 
protein PAMP fl agellin is highly conserved among bacterial taxa (Felix et al.  1999 ). 
Chitin is the widespread, conserved, and intrinsic structure detected in fungi 
(Thomma et al.  2011 ). CBEL (for  C ellulose- B inding  E licitor  L ectin) is a glycopro-
tein PAMP and it occurs widely in the oomycete  Phytophthora  species (Khatib et al. 
 2004 ). The PAMP double-stranded RNA is a structural signature of several groups 
of viruses (Medzhitov  2001 ; Ding  2010 ). 

 PAMPs are exclusively recognized as the molecules involved in triggering innate 
immunity. PAMPs are actually defi ned as the molecules, which bind to plant PRRs 
and induce defense responses (Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ). 
However, most of the PAMPs also have virulence functions besides eliciting defense 
responses (Thomma et al.  2011 ). The well characterized PAMP fl agellin also has a 
role in virulence. Glycosylation of the fl agellin molecule has been shown to be 
required for virulence in  Pseudomonas syringae  pv.  tabaci  (Taguchi et al.  2010 ). 
 P .  syringae  pv.  tabaci  fl agellin mutants affected in their elicitor activity also showed 
reduced virulence in plants due to reduced motility (Naito et al.  2008 ; Taguchi et al. 
 2010 ). The bacterial lipopolysaccharide (LPS) generally acts as PAMP inducing 
defenses (Tellström et al.  2007 ; Aslam et al.  2008 ; Silipo et al.  2008 ; Thomma et al. 
 2011 ). However, changes in composition of LPS affect bacterial virulence, suggesting 
a role for LPS in virulence of pathogens (Newman et al.  2007 ). When the PAMP 
chitin synthesis was disrupted in the fungal pathogen  Botrytis cinerea , virulence of 
the pathogen was drastically reduced (Soulie    et al.  2006 ). Mutation of peptidoglycan 
(PGN) genes reduces the virulence of  Ralstonia solanacearum  and of  Erwinia 
amylovora  (Cloud-Hansen et al.  2006 ), suggesting the role of the PAMP peptido-
glycan in virulence of pathogens. 

 PAMPs are detected not only in pathogens, but also in several nonpathogens, and 
saprophytes. Since the PAMPs are detected in all microbes, the PAMPs are better 
called as microbe-associated molecular patterns (MAMPs) (Viterbo et al.  2007 ; Zhang 
et al.  2007 ; Denoux et al.  2008 ; Aslam et al.  2009 ; Jeworutzki et al.  2010 ; Thomma 
et al.  2011 ; de Freitas    and Stadnik  2012 ). MAMPs are molecular signatures typical 
of whole classes of microbes, and their recognition plays a key role in innate immunity 
(Boller and Felix  2009 ).  

1.2     Plant Pattern Recognition Receptors (PRRs) 

 PAMPs are perceived as alarm/danger signals by cognate plant pattern recognition 
receptors (PRRs) and the PAMP-PRR complex activates the plant immune system 
(Takakura et al.  2004 ; Jones and Dangl  2006 ; Altenbach and Robatzek  2007 ; He 
et al.  2007 ; Wan et al.  2008 ; Iriti and Faoro  2009 ). Several receptors for the PAMPs 
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have been recognized in plasma membrane of plant cells (Nicaise et al.  2009 ; 
Petutschnig et al.  2010 ; Shinya et al.  2010 ; Schulze et al.  2010 ; Segonzac and Zipfel 
 2011 ). The PRRs identifi ed to date are modular proteins harbouring an extracellular 
domain consisting of leucine-rich repeat (LRR) or lysine motifs (LysM) (Saijo 
 2010 ; Segonzac and Zipfel  2011 ). Most of the PRRs are receptor-like kinases 
(RLKs) and the sensors for extracellular molecules consisting of an extracellular 
ligand-binding domain, a single transmembrane domain, and a cytosolic protein 
kinase domain are called RLKs (Seifert and Blaukopf  2010 ). RLKs are proteins 
with a “receptor” and a “signaling domain” in one molecule. The extracellular domains 
of RLKs bind directly to legands to perceive extracellular signals (PAMPs), whereas 
the cytoplasmic kinase domains transduce these signals into the cell (Bi et al.  2010 ). 

 PRRs interact with additional transmembrane proteins which act as signaling 
amplifi ers to achieve their functionality (Zipfel  2009 ). PAMPs bind with PRRs and 
induce conformational alteration in PRRs leading to their activation (Ali et al.  2007 ). 
PAMPs trigger increased transcription of PRR genes and accumulation of PRR 
proteins (Qutob et al.  2006 ; Lohmann et al.  2010 ). Most of the PRRs are receptor 
kinases and the PAMPs induce autophosphorylation of the kinase domain of PRRs 
(Kanzaki et al.  2008 ; Xiang et al.  2008 ). 

 The plasma membrane resident autophosphorylated PRRs are translocated to 
endosomes and it helps to extend the signaling surface ensuring a robust and effi cient 
cellular signaling system (Geldner and Robatzek  2008 ). PAMPs induce ubiquitin- 
proteasome- or clathrin-mediated endocytosis of PRR proteins (Robatzek et al. 
 2006 ; Aker and de Vries  2008 ). PAMP-induced PRR-induced endocytosis has been 
shown to be dependent on phosphorylation of the PRR (Robatzek et al.  2006 ). 
PAMP-induced internalization of PRRs from the plasma membrane is closely 
correlated with their immune function (Bar et al.  2009 ; Saijo  2010 ). The biogenesis 
of trans-membrane PRRs may occur through the endoplasmic reticulum (ER) with 
the aid of ER –resident chaperones (Dodds and Rathjen  2010 ; Popescu  2012 ). After 
biosynthesis of PRR in ER, it is transported from the ER to the plasma membrane. 
 N -glycosylation of PRRs is required for transport of PRRs from ER to plasma 
membrane (Häweker et al.  2010 ). Sustained activation of plasma membrane–
resident PRR signaling is important for mounting robust PAMP-triggered immunity 
(Saijo  2010 ).  

1.3     Second Messengers in PAMP Signal Transduction 

 The plant immune system uses several second messengers to encode information 
generated by the PAMP/PRR signaling complex and deliver the information 
downstream of PRRs to proteins which decode/interpret signals and initiate defense 
gene expression (van Verk et al.  2008 ; Mersmann et al.  2010 ; Boudsocq et al.  2010 ; 
Hwang and Hwang  2011 ). It is still not known how the PAMP signals are transmitted 
downstream of PRR. In plant cells, the calcium ion is a ubiquitous intracellular 
second messenger involved in numerous signaling pathways (Luan  2009 ; McAinsh 
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and Pittman  2009 : Abdul Kadar and Lindsberg  2010 ; DeFalco et al.  2010 ; Hamada 
et al.  2012 ; Stael et al.  2012 ). 

 Guanosine triphosphate (GTP)-binding proteins (G-proteins) are the regulatory 
GTPases, which act as molecular switches in signal transduction system (Yalowsky 
et al.  2010 ; Zhang et al.  2011 ,  2012 ). Two classes of signaling G-proteins, het-
erotrimeric G-proteins and small monomeric G-proteins (Ras/Ras-like small 
GTPases), have been reported. In the Ras superfamily of small GTPases, only the 
Ras and Rho families have been shown to transmit extracellular signals (Gu et al. 
 2004 ). Ras superfamily is named the Ras superfamily because the founding members 
are encoded by human Ras genes initially discovered as cellular homologs of the 
viral  ras  oncogene. Plants do not possess a true Ras GTPase such as those that are 
pivotal signaling in animals. Instead, they have a unique subfamily of Rho- family 
GTPases, called ROPs (Rho-related GTPase of plants). ROP is the sole subfamily 
of Rho GTPase in plants. ROPs are also referred to as RAC (for Ras [rat sarcoma 
oncogene product] related C3 botulinum toxin substrate) proteins (Gu et al.  2004 ; 
Kiirika et al.  2012 ). RAC/ROP small GTPases share a common ancestor with Rho, 
cdc42 and Rac and they are the only Rho-like GTPases in plants (Gu et al.  2004 ). 

 Ca 2+  is a master regulator of gene expression in plants (Galon et al.  2010 ). 
Calcium ion acts as a signal carrier (Allen et al.  2000 ). Calcium signaling is modu-
lated by specifi c calcium signatures. Ca 2+  signatures are generated in the cytosol, 
and in noncytosolic locations including the nucleus and chloroplast through the 
coordinated action of Ca 2+  infl ux and effl ux pathways (McAinsh and Pittman  2009 ). 
Specifi c calcium signatures are recognized by different calcium sensors to transduce 
calcium-mediated signals into downstream events (Reddy et al.  2011 ; Wang et al. 
 2012 ; Hashimoto et al.  2012 ). 

 Mitogen-activated protein kinase (MAPK) cascades are major pathways 
downstream of sensors/receptors that transduce extracellular stimuli into intra-
cellular responses in plants (Hettenhausen et al.  2012 ; Zhang et al.  2012 ). A typi-
cal MAPK signaling module consists of three interconnected protein kinases: a 
MAP kinase kinase kinase (MAPKKK or MEKK [for  M APK/ E xtracellular 
 signal-regulated kinase  K inase  K inase]), a MAP kinase kinase (MAPKK or 
MKK), and a MAP kinase (MAPK or MPK) (Mészáros et al.  2006 ). MAP kinase 
cascade involves sequence of phosphorylation events (Hirt  2000 ). MAPKs func-
tion at the bottom of the three-kinase cascade and are activated by MAPKKs 
through phosphorylation on the Thr and Tyr residues in their activation motif 
between the kinase subdomain VII and VIII. The activity of MAPKKs is, in turn, 
regulated by MAPKKKs via phosphorylation of two Ser/Thr residues in the 
 activation loop of MAPKKs. MAPKKKs receive signals from upstream receptors/
sensors (Ichimura et al.  2002 ; Li et al.  2012 ). 

 The oxidative burst involving rapid and transient production of reactive oxygen 
species (ROS) is a very rapid response, occurring within seconds (Bolwell et al. 
 1995 ) or within a few minutes (Arnott and Murphy  1991 ) of PAMP treatment, suggest-
ing that the oxidative burst may not require  de novo  protein synthesis but involves 
the activation of pre-existing enzymes. NADPH oxidase (Bae et al.  2006 ), peroxi-
dases (Halliwell  1978 ; Lehtonen et al.  2012 ), and xanthine oxidase (Allan and Fluhr 

1.3  Second Messengers in PAMP Signal Transduction



6

 1997 ; Ori et al.  1997 ) have been shown to be involved in triggering ROS production. 
ROS is a messenger in transmitting the PAMP signal. Nitric oxide (NO) has been 
identifi ed as a gaseous second messenger (Besson-Bard et al.  2008 ; Bellin et al. 
 2013 ). NO is a diffusible molecular messenger that plays an important role in the 
plant immune response signal transduction system (Grennan  2007 ). PAMPs trigger 
NO burst within minutes in plant cells (Foissner et al.  2000 ; Lamotte et al.  2004 ; 
Tischner et al.  2010 ). NO acts substantially in cellular signal transduction through 
stimulus-coupled S-nitrosylation of cysteine residues (Benhar et al.  2008 ). It serves 
as a key redox-active signal for the activation of various defense responses (Klessig 
et al.  2000 ).  

1.4     Plant Hormone Signals in Plant Immune 
Signaling System 

 The plant hormones salicylic acid (Mukherjee et al.  2010 ; Dempsey et al.  2011 ; Liu 
et al.  2011a ,  b ), jasmonate (Wang et al.  2009 ; Sheard et al.  2010 ; Bertoni  2012 ), 
ethylene (Boutrot et al.  2010 ; Laluk et al.  2011 ; Nie et al.  2011 ; Nambeesan et al. 
 2012 ), abscisic acid (Yazawa et al.  2012 ), auxin (Fu and Wang  2011 ), cytokinin 
(Choi et al.  2011 ), gibberellins (Qin et al.  2013 ), and brassinosteroids (De Vleeschauwer 
et al.  2012 ) play important role in defense signaling against various pathogens. 
It has been demonstrated that specifi c plant hormone signaling pathways should be 
activated to confer resistance against specifi c pathogens. JA and SA signaling systems 
may differentially contribute for resistance against specifi c pathogens. JA-mediated 
pathway effectively confers resistance against necrotrophic fungal pathogens 
(Berrocal-Lobo and Molina  2004 ; McGrath et al.  2005 ; Zheng et al.  2006 ), while 
SA- mediated pathway confers resistance against biotrophic fungal pathogens and 
also against virus and bacterial diseases in some plants (Thomma et al.  1998 ,  2001 ; 
Thaler and Bostock  2004 ; Nie  2006 ; De Vos et al.  2006 ; Spoel et al.  2007 ; Zheng 
et al.  2006 ,  2007 ). Two forms of induced resistance, systemic acquired resistance 
(SAR) and induced systemic resistance (ISR), have been recognized based on the 
induction of specifi c plant hormone signaling systems (Li et al.  2008 ). SAR refers 
to a distinct signaling pathway mediated by SA (Oostendorp et al.  2001 ), while ISR 
refers to the signaling pathway mediated by JA and ET. SA signaling system acti-
vates not only local resistance, but also systemic acquired resistance (SAR) observed 
in distal (systemic) tissues. SAR is a SA-dependent heightened defense to a broad 
spectrum of pathogens that is activated throughout a plant following local infection 
(Liu et al.  2011a ). SAR is associated with priming of defense (Kohler et al.  2002 ; 
Jung et al.  2009 ; Luna et al.  2011 ) and the priming results in a faster and stronger 
induction of defense mechanisms after pathogen attack (Conrath  2011 ). The priming 
can be inherited epigenetically from disease- exposed plants (Pastor et al.  2012 ) and 
descendants of primed plants exhibit next- generation systemic acquired resistance 
(Slaughter et al.  2012 ; Luna et al.  2011 ). The transgenerational SAR has been 
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recently reported (Luna et al.  2011 ). Thus, SA signal is transduced not only within 
the plant tissues, but also transferred even to the next generations. 

 Plant hormones activate different signaling pathways inducing distinctly different 
defense genes (Spoel et al.  2007 ; Zhang et al.  2007 ; Mitsuhara et al.  2008 ). These 
signaling pathways are not simple linear and isolated cascades, but can crosstalk 
with each other. Both antagonism and synergism between the signaling systems 
have been reported. Cross-talk between defense signaling pathways is thought to 
provide the plant with a powerful regulatory potential, which helps the plant to 
“decide” which defensive strategy to follow, depending on the type of attacker it 
is encountering (De Vos et al.  2005 ). It may also allow pathogens to manipulate 
plants to their own benefi t by shutting down induced defense through infl uences on 
the signaling network.  

1.5     War Between Host Plants and Pathogens 
and the Winner Is ------- ? 

 Plant innate immune systems have high potential to fi ght against viral, bacterial, 
oomycete, and fungal pathogens and protect the crop plants against wide range of 
diseases (Knecht et al.  2010 ; Lacombe et al.  2010 ; Hwang and Hwang  2011 ; Alkan 
et al.  2012 ). However, potential pathogens produce several effectors to nullify the 
defense responses induced by the innate immune system (Wu et al.  2011 ; Akimoto-
Tomiyama et al.  2012 ; Cheng et al.  2012 ). To avoid or suppress or delay the expres-
sion of the defense gene- activating signaling systems, the pathogens secrete several 
effectors into the host cell (Göhre et al.  2008 ; Kim et al.  2010 ; Wu et al.  2011 ; 
Cheng et al.  2012 ). Pathogens may also hijack some signaling systems to cause dis-
ease (de Torres- Zabala et al.  2007 ; Thatcher et al.  2009 ; El Rahman et al.  2012 ). It 
has also been demonstrated that the virulent pathogen may suppress the particular 
defense signaling system which induce the expression of specifi c defense genes 
conferring resistance against the particular pathogen (van Verk et al.  2008 ; 
Koornneef and Pieterse  2008 ; Makandar et al.  2010 ). Activation of some signaling 
systems may induce susceptibility, rather than resistance (Atsumi et al.  2009 ; 
Yazawa et al.  2012 ). To overcome antiviral RNA silencing immunity, plant viruses 
express silencing-suppressor proteins which can counteract the host silencing-based 
antiviral process (Qu and Morris  2005 ; Ding and Voinnet  2007 ; Lewsey et al.  2010 ). 

 The war between the plant and pathogen appears to be in fi ne-tuning the signaling 
systems to cause disease or enhance host defense. Fast and strong activation of the 
plant immune responses aids the host plants to win the war against the pathogens 
(Großkinsky et al.  2011 ). Overexpression or suppression of some specifi c signaling 
systems in the plant immune system has been shown to help the plants to win in the 
arms race between plants and pathogens (Cheung et al.  2007 ; Zhang et al.  2008 ; 
Hwang and Hwang  2010 ,  2011 ; Wu et al.  2010 ). 

 Engineering durable nonspecifi c resistance to phytopathogens is one of the ultimate 
goals of plant breeding. However, most of the attempts to reach this goal fail as a 

1.5 War Between Host Plants and Pathogens and the Winner Is ------- ?
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result of rapid changes in pathogen populations and the sheer diversity of pathogen 
infection mechanisms. Recently several bioengineering and molecular manipula-
tion technologies have been developed to activate the ‘sleeping’ plant innate immune 
system, which has potential to detect and suppress the development of a wide range 
of plant pathogens in economically important crop plants (Lacombe et al.  2010 ). 
Enhancing disease resistance through altered regulation of plant immunity signaling 
systems would be durable and publicly acceptable (Yamamizo et al.  2006 ; Shao 
et al.  2008 ; Gust et al.  2010 ; Lacombe et al.  2010 ). Strategies for activation and 
improvement of plant immunity aim at enhancing host capacities for recognition of 
potential pathogens, at boosting the executive arsenal of plant immunity, and inter-
fering with virulence strategies employed by microbial pathogens (Gust et al.  2010 ). 
Major advances in our understanding of the molecular basis of plant immunity and 
of microbial infection strategies have opened new ways for engineering durable 
resistance in crop plants (Gust et al.  2010 ; Huffaker et al.  2011 ). This book describes 
the most fascinating PAMP-PRR signaling complex and signal transduction 
systems. It discusses the highly complex networks of signaling pathways involved 
in transmission of the signals to induce distinctly different defense- related genes to 
mount offence against different pathogens.     
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          Abstract        Plant innate immunity is a potential basal defense system existing in 
plant kingdom. This system provides powerful weapons to the host plants to fi ght 
against viral, bacterial, fungal, and oomycete pathogens and serves as a surveil-
lance system against invasion of pathogens. It is not active in normal healthy plants 
and it requires specifi c signals to get activated. Pathogen-associated molecular 
patterns (PAMPs) act as alarm/danger signals to trigger the plant innate immune 
responses. When pathogens land on the plant’s surface, plants read the molecular 
fi ngerprints/signatures of pathogens (PAMPs) by binding the PAMPs with cognate 
pattern- recognition receptors (PRRs) residing in plant cell plasma membrane and 
trigger several defense signaling systems. Pathogens contain a wide array of 
PAMPs of diverse chemical structures and every pathogen contains or secretes 
multiple PAMPs. Each PAMP may regulate induction of different defense genes. 
The time of induction, intensity of induction, and duration of induction of the 
defense signals may vary depending on PAMPs. Amount of PAMP available in the 
plant-pathogen interaction site may determine the intensity of induced gene expres-
sion. Each PAMP may regulate distinctly different signaling pathway(s). Sometimes 
different PAMPs may induce the same signaling system, but the intensity of the 
defense signaling gene expression may differ. The same PAMP may behave differ-
ently in different plant system. A single PAMP may not be able to activate all the 
defense signaling- related genes and several PAMPs may be required to activate the 
complex signaling systems. PAMPs may act synergistically or antagonistically in 
inducing defense signaling. Some PAMPs have additive effect, while others show 
antagonistic effect between them. The PAMPs are perceived as danger signals by 
PRRs and the PAMP- PRR complex activates the plant innate immunity. PAMPs 
trigger phosphorylation of PRRs. Fine control of membrane-resident PRR activity 
is essentially achieved by a combination of proper endoplasmic reticulum (ER) 
folding, degradation and traffi cking of PRRs. Strict elimination of the misfolded 
PRR occurs in the absence of the identifi ed ER folding machineries, which would 
avoid precocious immune activation. Pre-recognition membrane traffi c of PRRs 
from the ER to their functional sites, together with post-recognition internalization 
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is crucial for PRR function. The signals generated by PAMPs are perceived by 
PRRs and several second messengers are involved in transmission of the signals 
downstream of the PRRs. Highly complex networks of signaling pathways are acti-
vated by the PAMP-PRR signaling system.  

  Keywords     Innate immunity   •   PAMPs   •   PRRs   •   PAMP-PRR signaling complex • 
Second messengers • Traffi cking of PRRs  

2.1               Classical PAMPs as Alarm Signals 

 Plants are endowed with innate immune system, which acts as a surveillance system 
against possible attack by pathogens (Vidhyasekaran  2004    ,  2007a ; Akira et al.  2006 ; 
Chisholm et al.  2006 ; Boller and He  2009 ; Chen    et al.  2010c ; Dodds and Rathjen 
 2010 ; Tsuda and Katagiri  2010 ; Silipo et al.  2010 ; Drutskaya et al.  2011 ; Zamioudis 
and Peterse  2012 ). Discrimination between self and non-self is a fundamental abil-
ity of the innate immune systems (Sanabria et al.  2008 ; Takken and Tameling  2009 ; 
Ronald and Beutler  2010 ; Saijo  2010 ; Segonzac and Zipfel  2011 ; Dubery et al. 
 2012 ). The immune system is activated on perception of the pathogen-associated 
molecular patterns (PAMP; the pathogen’s signature) of invading pathogens (Dodds 
and Rathjen  2010 ; Keinath et al.  2010 ; Park et al.  2010a ,  b ; Ronald and Beutler 
 2010 ; Shimizu et al.  2010 ; Boutrot et al.  2010 ; Nürnberger and Kufner  2011 ; 
Segonzac and Zipfel  2011 ). PAMPs are the new name given to the classical general 
elicitors identifi ed in various plant pathogens (Jones and Dangl  2006 ; Bent and 
Mackey  2007 ). The classical general elicitors reported in plant pathogens resemble 
the PAMPs reported in mammals (Nürnberger and Brunner  2002 ; Nürnberger et al. 
 2004 ; Nürnberger and Lipka  2005 ; Zipfel and Felix  2005 ; Jones and Dangl  2006 ). 
PAMPs are evolutionarily conserved building blocks of microbial surfaces that 
directly bind to the PRRs and induce defense responses (Nürnberger and Brunner 
 2002 ; Mackey and McFall  2006 ; Qutob et al.  2006 ; Gust et al.  2007 ; Nicaise et al. 
 2009 ; Tsuda and Katagiri  2010 ; Zhang and Zhou  2010 ; Thomma et al.  2011 ). The 
PAMPs are vital for microbial survival (Gust et al.  2007 ; Zhang and Zhou  2010 ). 
The molecular signatures in PAMPs are not present in the host (Mackey and McFall 
 2006 ). Several PAMPs have been detected in fungal, oomycete, bacterial and viral 
plant pathogens (Felix et al.  1999 ; Medzhitov  2001 ; Brunner et al.  2002 ; Boller and 
Felix  2009 ; Silipo et al.  2010 ; Ding  2010 ; Tsuda and Katagiri  2010 ; Thomma et al. 
 2011 ; Nürnberger and Kufner  2011 ). 

 The informations generated by the PAMP alarm/danger signals are perceived by 
the PRRs (Nürnberger and Brunner  2002 ; Qutob et al.  2006 ; Nicaise et al.  2009 ; 
Petutschnig et al.  2010 ; Shinya et al.  2010 ; Schulze et al.  2010 ; Tsuda and Katagiri 
 2010 ; Segonzac and Zipfel  2011 ; Thomma et al.  2011 ). PAMPs are actually defi ned 
as the molecules, which bind to plant PRRs and induce plant immune responses 
(Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ). PAMPs are detected not only in 
pathogens, but also in saprophytes, probably in all microbes. Hence the PAMPs are 
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also called as microbe-associated molecular patterns (MAMPs) (Bittel and Robatzek 
 2007 ; Viterbo et al.  2007 ; Denoux et al.  2008 ; Aslam et al.  2009 ; Boller and Felix 
 2009 ; Erbs and Newman  2009 ; Jeworutzki et al.  2010 ; Thomma et al.  2011 ). 

 The plant immune system uses several second messengers to encode information 
generated by the PAMPs and deliver the information downstream of PRRs to proteins 
which decode/interpret signals and initiate defense gene expression (Snedden and 
Fromm  2001 ; Lecourieux et al.  2006 ; van Verk et al.  2008 ; Mersmann et al.  2010 ; 
Boudsocq et al.  2010 ; Hwang and Hwang  2011 ). Highly complex networks of signal-
ing pathways are involved in transmission of the signals to induce distinctly different 
defense-related genes to mount offence against different biotrophic, hemibiotrophic, 
and necrotrophic pathogens (Zheng et al.  2007 ; Koornneef and Pieterse  2008 ; Gaige 
et al.  2010 ; Gfeller et al.  2010 ; Leon-Reyes et al.  2010 ; Perchepied et al.  2010 ; Katagiri 
and Tsuda  2010 ; Ahmad et al.  2011 ; Choi and Hwang  2011 ; Fernández-Calvo et al. 
 2011 ; Kobeasy et al.  2011 ; Zhu et al.  2011 ; Alkan et al.  2012 ; Cheng et al.  2012 ). 

 Several studies have provided evidences that plant innate immune systems have 
high potential to fi ght against viral, bacterial, oomycete, and fungal pathogens and 
protect the crop plants against wide range of diseases (Mandal et al.  2008 ; Zipfel 
 2008 ; Pitzschke et al.  2009a ,  b ; Véronési et al.  2008 ; D’Amelio et al.  2011 ; Knecht 
et al.  2010 ; Lacombe et al.  2010 ; Molloy  2010 ; Hwang and Hwang  2011 ; Alkan 
et al.  2012 ). Potential pathogens contain several PAMPs and they serve as alarm 
signals to activate the plant innate immunity.  

2.2     Effector-Like PAMPs 

 Pathogens have additional pathogen-only molecules called effectors, besides 
PAMPs (Kwon  2010 ). Effectors are pathogen molecules that manipulate host cell 
structure and function thereby facilitating infection and/or triggering defense 
responses (Hogenhout et al.  2009 ). Effectors are double-edged swords; they enhance 
virulence of pathogens and also trigger resistance in plants carrying cognate defense 
receptors (Zong et al.  2008 ). 

 Effectors induce susceptibility, mostly by suppressing PAMP-induced immune 
responses. The effector proteins target basic innate immunity in plants (Block et al. 
 2008 ; Bartetzko et al.  2009 ; Boller and He  2009 ; Song and Yang  2010 ; Szczesny 
et al.  2010 ). The effector AvrBsT from  Xanthomonas campestris  pv.  vesicatoria  has 
been identifi ed as a suppressor of specifi c plant defense in pepper plants (Szczesny 
et al.  2010 ). The effector XopZ Pxo99  from the rice bacterial blight pathogen interferes 
with host innate immunity during the pathogen infection process in rice (Song and 
Yang  2010 ). The  Pseudomonas syringae  pv.  tomato  DC3000 effector HopF2 inter-
cepts PAMP signaling at the plasma membrane immediately of signal perception. It 
acts as a potent suppressor of early immune-response gene transcription and mito-
gen-activated protein kinase signaling activated by multiple PAMPs (Wu et al. 
 2011 ). LysM domain-containing effector protein Ecp6 of the fungal plant pathogen 
 Cladosporium fulvum  mediates virulence through perturbation of chitin-triggered 
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host immunity. During infection, Ecp6 sequesters chitin oligosaccharides that are 
released from the cell walls of invading hyphae to prevent elicitation of host immu-
nity. Since LysM effectors are widely conserved in the fungal kingdom, this type of 
effector action may be a common strategy of fungal pathogens in suppressing host 
immune systems (de Jonge et al.  2010 ). 

 The PWL proteins are the effectors detected in the rice blast pathogen 
 Magnaporthe oryzae  (Thomma et al.  2011 ) and the effectors were shown to 
have virulence function and suppress host defense responses (Khang et al.  2010 ; 
Valent and Khang  2010 ). The effector ATR13 of the downy mildew pathogen 
 Hyaloperonospora arabidopsidis  suppresses callose deposition triggered by the 
bacterial pathogen  P .  syringae  (Sohn et al.  2007 ). Circumvention of innate immunity 
is crucial for pathogenesis in plants and effectors play important role in suppression 
of plant immunity (Block et al.  2008 ; Schornack et al.  2009 ). 

 While PAMPs are essential for microbial fi tness and survival, effectors specifi -
cally contribute to virulence by targeting host plant innate immunity (Thomma et al. 
 2011 ). However, this type of differentiation of effectors from PAMPs is only blurred 
one, as most of the effectors are also known to trigger innate immunity (Thomma 
et al.  2011 ; Gassmann and Bhattacharjee  2012 ). The effector AvrPto from  P .  syrin-
gae  pv.  tomato  inhibits immune responses in  Arabidopsis  but triggers immune 
responses in some tomato plants carrying resistance proteins Pto, a serine/threonine 
kinase, and Prf, a nucleotide-binding leucine-rich repeat (LRR) protein (Zong et al. 
 2008 ). Plant innate immunity triggered by the effectors is called “effectors- triggered 
immunity (ETI)” (Nürnberger and Kemmerling 2009; Gassmann and Bhattacharjee 
 2012 ), whereas the immunity triggered by PAMP is called “PAMP-triggered immunity 
(PTI)” (Tsuda et al.  2009 ; Tsuda and Katagiri  2010 ; Thomma et al.  2011 ). It is 
diffi cult to distinguish between PAMPs and effectors based on virulence and elicitor 
functions as both of them have the dual virulence and elicitor functions (Cloud- 
Hansen et al.  2006 ; Soulie et al.  2006 ; Newman et al.  2007 ; Naito et al.  2008 ; 
Taguchi et al.  2010 ; Thomma et al.  2011 ). The bacterial PAMPs fl agellin (Naito 
et al.  2008 ; Taguchi et al.  2010 ), lipopolysaccharide (LPS) (Newman et al.  2007 ), 
and peptidoglycan (Cloud-Hansen et al.  2006 ) and the fungal PAMP chitin (Soulie 
et al.  2006 ) have been reported to have a function in virulence of the pathogens. 

 Other differences between PAMPs and effectors include the wide occurrence of 
PAMPs in microbes as against narrow occurrence of effectors in specifi c pathogens. 
PAMPs are generally considered as molecules which are widely conserved across 
genera of microbes, while effectors are specifi c to single or a few related species of 
pathogens (Jones and Dangl  2006 ; Erbs et al.  2008 ). However, it is now known that 
several groups of effector proteins are also widespread (Thomma et al.  2011 ). LysM 
effectors widely occur in the fungal kingdom (Bolton et al.  2008 ; de Jonge and 
Thomma  2009 ; Thomma et al.  2011 ). The effectors harpins are produced by several 
Gram- negative bacteria (Tampakaki et al.  2010 ). The Nep1 – like proteins are the 
effectors that are conserved among oomycetes, fungi, and bacteria (Gijzen and 
Nürnberger  2006 ; Kamoun  2006 ). In contrast with groups of widely conserved 
effectors, some PAMPs are only narrowly conserved (Lee et al.  2009 ). The PAMP 
AxYS22 has been detected only in a few  Xanthomonas  species (Lee et al.  2009 ). 
The PAMP Pep- 13 is conserved only in  Phytophthora  species (Brunner et al.  2002 ). 
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These observations suggest that it may be diffi cult to distinguish effectors from 
PAMPs based on their elicitor function or wide/narrow occurrence. 

 Another major difference between PAMPs and effectors is in induction of 
hypersensitive response (HR). Effectors often induce HR (Wei et al.  1992 ; Ron and 
Avni  2004 ; Zhang and Zhou  2010 ), while the PAMPs do not (Mishina and Zeier 
 2007 ; Thomma et al.  2011 ). However, some of the PAMPs do induce HR. It has 
been demonstrated that the PAMP fl g22 induces an HR in  Arabidopsis , rice, and 
tobacco (Naito et al.  2008 ; Taguchi et al. 2003; Hann and Rathjen  2007 ). CBEL, 
the glycoprotein PAMP from  Phytophthora parasitica var. nicotianae  induces HR 
in tobacco and  Arabidopsis  (Khatib et al.  2004 ). 

 To call an elicitor as a PAMP, it should be present in a broad range of microbial 
species but not in plants, directly bind to plant pattern recognition receptor, and 
activate defense responses (Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ). Based on 
this defi nition of PAMPs, several elicitors previously classifi ed as effectors may 
have to be reclassifi ed as PAMPs. These include harpins produced by bacterial 
pathogens (Tampakaki et al.  2010 ; Boureau et al.  2011 ), Nep1-like proteins from 
bacterial, fungal, and oomycete pathogens (Gijzen and Nürnberger  2006 ; Kamoun 
 2006 ), crinkers produced by oomycete pathogens (Haas et al.  2009 ), avrXa21 
detected in  Xanthomonas  species (Lee et al.  2009 ), Avr4 protein from  Cladosporium 
fulvum  (Sterigopoulos et al.  2010 ; Thomma et al.  2011 ), and Ecp2 from different 
fungal pathogens (Sterigopoulos et al.  2010 ). All these effector proteins have been 
now reclassifi ed as PAMPs (Thomma et al.  2011 ).  

2.3     PAMPs Found Within Effectors 

 Some of the PAMPs may be contained within effectors. The fungal effector ethylene 
inducing xylanase (EIX) is an important factor for the success of  Trichoderma 
viride  as an invasive pathogen (Rotblat et al.  2002 ). EIX is not recognized by its 
enzyme activity as an elicitor. Instead a PAMP composed of fi ve amino acids of a 
surface-exposed β- strand of EIX is essential for its defense response triggering 
activity (Rotblat et al.  2002 ). EIX is a fungal effector that contains a PAMP that is 
recognized by PAMP-receptors (Mackey and McFall  2006 ). The fungal effector 
‘AvrPita’ from the rice blast pathogen  Magnaporthe oryzae  contains a PAMP that 
interacts directly with the LRRs of the rice R-protein, Pi-ta (Jia et al.  2000 ). AvrL567 
effectors from the fl ax rust fungus  Melampsora lini  contain a PAMP (Dodds et al. 
 2006 ). A PAMP is also found within a cell wall transglutaminase from the oomycete 
 Phytophthora sojae  (Brunner et al.  2002 ). A mutation was identifi ed that disrupted 
the defense eliciting activity without altering the enzymatic activity of the protein. 
A 13-aminoacid peptide, called Pep-13, contains the PAMP from within the 
transglutaminase (Brunner et al.  2002 ). A bacterial effector from  Ralstonia sola-
nacearum , POP2, contains a PAMP that directly interacts with the host R-proteins 
RRS1-RRS1-S (Deslandes et al. 2003). 

 The RXLR effector AVR3a of  Phytophthora infestans  has dual function; it activates 
immune system and also suppresses the defense responses induced by the PAMP 
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INF1 secreted by the pathogen  P .  infestans  in potato (Bos et al. 2009, 2010). 
Mutagenesis of the conserved C-terminal tyrosine residue at position 147 in AVR3a 
retained the ability to trigger defense, but lost the ability to suppress the defense 
responses. The results suggest that tyrosine residue at position 147 in the AVR3a 
is the critical factor in suppression of defense responses. Distinct amino acids 
appear to condition the two effector activities (induction and suppression of defense 
responses) in AVR3a (Bos et al. 2009). In the effector protein AvrPtoB of  P .  syrin-
gae  pv.  tomato , the two activities (induction and suppression of plant immunity) 
have been shown to be carried out by distinct domains within the protein 
(Abramovitch et al.  2003 ; Janjusevic et al. 2006).  

2.4     Toxins Acting as PAMPs 

 Microbial toxins constitute a separate class of elicitors produced by oomycete, fungal, 
and bacterial pathogens. These cytolytic compounds function as key virulence 
determinants of pathogens (van’t Slot and Knogge  2002 ; Glazebrook 2005; Gijzen 
and Nurnberger  2006 ) and these toxins can be called effectors. The same toxic com-
pounds also function as PAMPs by acting as nonself recognition determinants for 
the activation of plant innate immune responses (Gijzen and Nürnberger  2006 ). 

 Nep1 (for Necrosis and ethylene-inducing peptide1) from  Fusarium oxysporum  
f. sp.  erythroxyli  and Nep1-like proteins (NLPs) detected in several oomycetes, 
fungi, and bacteria are host nonselective toxins (Mattinen et al.  2004 ; Pemberton 
and Salmond  2004 ; Qutob et al.  2006 ; Staats et al.  2007 ; Kufner et al.  2009 ; Cabral 
et al.  2012 ). The NLPs exert cytolytic activity that causes cell maceration and cell 
death in dicotyledonous plants in a manner that is similar to disease symptom devel-
opment (Kufner et al.  2009 ). NLPs act as positive virulence factors (effectors) during 
infection of plants (Mattinen et al.  2004 ; Pemberton et al.  2005 ; Ottmann et al. 
 2009 ). The NLPs can also activate defense-related responses (Bae et al.  2006 ; Qutob 
et al.  2006 ; Ottmann et al.  2009 ). The NLPs trigger immune responses similar to 
that of classic PAMPs. They mediate the activation of MAPKs, induction of ion 
fl uxes, production of reactive oxygen species, induction of defense-related genes, 
production of phytoalexins and callose deposition. These responses resemble to a 
great extent those triggered by classical PAMPs (Kufner et al.  2009 ). The NLPs act 
like PAMPs in many instances, as they are detected in a wide range of pathogens 
and not in plants and recognize nonself triggering defense responses (Qutob et al. 
 2006 ). However, NLPs differ from classical PAMPs in that the elicitor-active minimal 
motif has not been detected in NLPs and the NLPs are transiently expressed pro-
teins (Qutob et al.  2006 ; Kufner et al.  2009 ; Ottmann et al.  2009 ). 

 The maize pathogen  Fusarium moniliforme  produces a phytotoxin, fumonisin 
(FB1) that elicits cytolysis of plant cells (Gilchrist et al. 1995). FBI also triggers 
accumulation of reactive oxygen species (ROS), deposition of callose, phytoalexin 
synthesis, and defense-related genes (Asai et al.  2000 ).  Fusarium graminearum  and 
 F .  culmorum  produce trichothecene family phytotoxins (Nishiuchi et al.  2006 ). The 

2 PAMP Signaling in Plant Innate Immunity



23

type B trichothecene, deoxynivalenol (DON), is considered as virulence factor in 
infection of plants (Bai et al.  2002 ). The toxin also acts as an elicitor and triggers 
generation of hydrogen peroxide, deposition of callose, accumulation of salicylic 
acid, activation of mitogen-activated protein kinases, and expression of  PR-1  and 
 PR-2  genes (Nishiuchi et al.  2006 ). Another plant pathogen  Alternaria alternata  
f. sp.  lycopersici  produces a phytotoxin, AAL toxin. The AAL toxin triggers cytolysis 
and also triggers expression of defense genes (Gechev et al. 2004). The host- 
selective toxin victorin produced by  Cochliobolus victoriae , the maize victoria 
blight pathogen, induces defense-related responses such as extracellular alkaliniza-
tion, generation of ROS and nitric oxide (NO), and production of phytoalexin (Tada 
et al.  2005 ). Collectively these studies suggest that the cytolytic toxins play dual 
roles in plant-pathogen interactions as virulence determinants (effectors) and as 
nonself recognition determinants (PAMPs) for the activation of plant innate immune 
responses (Qutob et al.  2006 ).  

2.5     PAMP-Induced HAMPs (DAMPs/MIMPs/PAMP 
Amplifi ers/Endogenous Elicitors) 

 Polygalacturonases and cellulases are produced by a wide range of pathogens and 
they act as effectors and also function as general elicitors (Rotblat et al.  2002 ; 
Boudart et al.  2003 ; Poinssot et al.  2003 ). During host-pathogen interaction, many 
pathogens secrete these cell-wall-degrading enzymes (Vidal et al.  1998 ; Furman- 
Matarasso et al.  1999 ; Boudart et al.  2003 ; Poinssot et al.  2003 ). These enzymes 
can themselves function as elicitors (Rotblat et al.  2002 ; Poinssot et al.  2003 ), but 
their enzymatic products are also known to be general elicitors of plant defense 
responses (Shibuya and Minami  2001 ). These enzymes degrade the plant cell wall 
structure and some of the degradation products such as pectin-derived oligogalact-
uronides (OGs) and cellodextrins act as potent elicitors of innate immunity. These 
host- derived elicitors function almost in the same fashion as the PAMPs function 
in plant innate immunity. 

 The host-derived elicitors are called by different names by different authors. 
They are called host-associated molecular patterns (HAMPs) as they are of host 
origin (Galletti et al.  2009 ), damage-associated molecular patterns (DAMPs) as 
they are also induced by cellular damage (Zipfel  2009 ), or endogenous/internal 
elicitors (Ryan et al.  2007 ; Huffaker et al.  2011 ). It was also suggested that these 
plant cell- wall degradation products can be called microbe-induced molecular 
patterns (MIMPs) recognized through receptors as ‘pathogen-induced modifi ed 
self’ (Mackey and McFall  2006 ; Aziz et al.  2007 ). It may be better to call the 
MIMPs as pathogen-induced molecular patterns (PIMPs) as these oligosaccha-
rides are formed during pathogenesis by the production of cell-wall-degrading 
enzymes (Vidal et al.  1998 ; Furman-Matarasso et al.  1999 ; Boudart et al.  2003 ; 
Poinssot et al.  2003 ). Most of the endogenous elicitors have the property of 
inducing expression of their own genes to initiate a feedback mechanism to the 
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original PAMP signals and  therefore they can also be called “PAMP amplifi ers” 
(Huffaker and Ryan  2007 ). 

 Several PAMPs including Flg22, NPP1, and HrpZ and pathogens including  Botrytis 
cinerea ,  Phytophthora infestans , and  Pseudomonas syringae  trigger expression of 
 PROPEP2  gene encoding PROPEP2, the precursor for the endogenous elicitor AtPep2 
(Table  2.1 ; Huffaker et al.  2006 ). Similar induced expression of genes encoding 
PROPEP3 and PROPEP1 due to PAMP and pathogens treatment has also been reported 
(Huffaker et al.  2006 ). Treatment with the bacterial PAMP fl g22 upregulates the tran-
scription of genes encoding PROPEP family precursors for the endogenous elicitors 
AtPeps and PEPR receptors (Zipfel et al.  2004 ; Ryan et al.  2007 ). These endogenous 
elicitors are also induced by fungal pathogen infection (Huffaker et al.  2011 ).

    At Pep family elicitors and the classical PAMPs activate similar downstream 
responses using many of the same molecular components (Ryan et al.  2007 ; Krol 
et al.  2010 ; Postel et al.  2010 ; Qi et al.  2010 ; Yamaguchi et al.  2010 ; Huffaker et al. 
 2011 ). Both the PAMP fl g22 and the endogenous elicitors AtPeps bind specifi c 
LRR receptors and both activate the same downstream signaling events (Yamaguchi 
et al.  2006 ; Huffaker and Ryan  2007 ; Krol et al.  2010 ). The endogenous elicitor 
AtPep1 treatment induces the transcription of FLS2, the PRR for the PAMP fl g22 
(Ryan et al.  2007 ). The receptors for both fl g22 and AtPep1 associate with the inter-
acting receptor partner, BAK1 (Ma et al.  2009 ; Postel et al.  2010 ). Collectively 
these studies suggest that the endogenous elicitors are functionally similar to classi-
cal PAMPs and may act as amplifi ers of PAMP-induced signals.  

2.6     Bacterial PAMPs 

2.6.1     PAMPs from Various Bacterial Structures 

 Several PAMPs have been isolated and characterized from wide range of bacterial 
pathogens. These PAMPs have been purifi ed from bacterial fl agella structure and 
bacterial cell envelope lipopolysaccharides and peptidoglycans. PAMPs have also 

   Table 2.1    PAMPs/pathogens induced expression of the HAMP/endogenous elicitor 
PROPEP2 in  Arabidopsis    

 PAMPs/pathogens 
 Fold change in  PROPEP2  
gene expression 

 PAMP fl g22  21.8 
 PAMP HrpZ  40.8 
 PAMP NPP1  26.9 
 Fungal pathogen  Botrytis cinerea   27.9 
 Oomycete pathogen  Phytophthora infestans   31.2 
 Bacterial pathogen  Pseudomonas syringae   3.2 

  Adapted from Huffaker et al. ( 2006 )  
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been detected in several bacterial proteins including elongation factor proteins, 
cold-shock proteins, harpin proteins, sulfated proteins, and the bacterial superoxide 
dismutase enzyme. PAMPs have also been detected in bacterial rhamnolipids and 
bacterial DNA structure (Table  2.2 ).

2.6.2        PAMPs Detected in Flagella 

2.6.2.1     Flagellin Proteins May Contain Several Distinct PAMPs 

 Bacterial fl agella have been found to be potential sources for the PAMPs, which trig-
ger innate immunity in both plants and animals. The bacterial extracellular fl agella 
are involved in motility of bacteria. The structural components of fl agella include a 
basal body capable of rotary motion, a hook apparatus, and thousands of fl agellin 
monomers that polymerize to form the fl agellar fi lament (Schuster and Khan  1994 ). 
Flagellin is the structural protein that forms the major portion of fl agellar fi laments. 
The protein fl agellin contains PAMPs that can be recognized by some plants, leading 
to activation of defense responses (Felix et al.  1999 ; Che et al.  2000 ; Gómez-Gómez 
and Boller  2002 ; Boller and Felix  2009 ; Nicaise et al.  2009 ). The fl agellin consists of 
a conserved elicitor-active domain that is widespread in bacterial species. Synthetic 
peptides comprising 15–22 aminoacids of the highly conserved domain within N 
terminus of fl agellin acted as elicitors of defense responses at sub-nanomolar con-
centrations in cells of tomato and several other plant species. Peptides comprising 
only the central 8–11 amino acids of the active domain had no elicitor activity but 
acted as specifi c, competitive inhibitors of fl agellin elicitor activity in tomato cells 
(Felix et al.  1999 ). These antagonists suppressed the plant’s response to fl agellin, 
crude bacterial extracts and living bacterial cells (Felix et al.  1999 ). 

 A peptide fl g22, the stretch of 22 amino acids in the N terminus of bacterial 
fl agellin has been identifi ed as the bacterial PAMP epitope (Naito et al.  2007 ; Boller 
and Felix  2009 ). The peptide fl g22 elicits responses in most plant species and is active 

   Table 2.2    PAMPs detected in bacterial pathogens   

 Bacterial PAMPs  Elicitor-active domain(s) 

 Flagellin  fl g22, fl g15 
 Lipopolysaccharides  Lipid A part of lipopolysaccharides, 

O-antigen polysaccharides 
 Peptidoglycans  Muropeptide 
 Elongation factors  elf18 
 Cold shock proteins  CSP22 
 Harpins  C-terminal fragment 
 Ax21  Tyrosine-sulfated protein 
 Bacterial DNA  Nonmethylated CpG sequence 
 Rhamnolipids  – 

2.6  Bacterial PAMPs



26

as the full-length fl agellin. However, fl g22 is recognized by rice but this response 
was weaker than with full-length fl agellin (Takai et al.  2008 ). The results suggest 
that additional PAMP epitopes, besides fl g22 may be present in the full-length fl a-
gellin. A shortened version of fl g22 epitope derived from  Escherichia coli , fl g15, 
was highly active in triggering innate immunity in tomato, but not in  Arabidopsis  
(Robatzek et al.  2007 ). In contrast, fl g22 derived from  Pseudomonas syringae  is 
active in both  Arabidopsis  and tomato (Meindl et al.  2000 ; Bauer et al.  2001 ), sug-
gesting existence of other forms of epitopes similar to fl g22. 

 The fl g22 region of fl agellin is normally buried in the assembled polymer’s tertiary 
structure (MacNab  1996 ). Hence it may be diffi cult for the plant pattern recognition 
receptors (PRRs) to recognize the buried fl g22 epitope in fl agellin. It is not known 
whether plants that do detect fl agellin recognize assembled fl agella shed from the 
bacterium, free fl agella, or fragments of degraded fl agellin (Pfund et al.  2004 ). It is 
suggested that alternative epitopes of fl agellin may be displayed by shed fl agella 
compared with intact fl agellin (Pfund et al.  2004 ).  

2.6.2.2     Flagellin from Different Bacteria May Differ in Their Action 

 Flagellin purifi ed from the incompatible  Acidovorax avenae  N1141 strain induced 
immune responses, whereas fl agellin from the compatible K1 strain induced no 
responses (Takai et al.  2008 ). Flagellin purifi ed from the K1 strain was identical to 
that of the N141 fl agellin, suggesting that N1141 fl agellin has an epitope in addition 
to the fl g22 region capable of eliciting immune responses (Takai et al.  2008 ). 
Flagellins purifi ed from  P .  syringae  pv.  glycinea , an incompatible pathogen for 
tobacco, induced immune responses in tobacco, whereas fl agellin from  P .  syringae  
pv.  tabaci , a compatible pathogen, does not, despite complete amino acid identity 
(Taguchi et al.  2003b ). Flagellins derived from nonadapted bacteria but having iden-
tical protein sequences differentially induce strong defense responses in nonhost 
plants, suggesting that other domains and/or posttranslational modifi cations of 
fl agellin may be involved in triggering immune responses (Taguchi et al.  2003a ,  b , 
 2006 ; Takeuchi et al.  2003 ,  2007 ). The major difference between various fl agellins 
has been suggested to be in the glycosylation sites in fl agellin (Ishiga et al.  2005 ; 
Taguchi et al.  2006 ; Takai et al.  2008 ).  

2.6.2.3     Flg22 Upregulates Several Signals and Signaling Systems Involved 
in Plant Immune Responses 

 Flg22 trigger the upregulation of  Arabidopsis thaliana  genes involved in signal 
perception ( FLS2 ), Ca 2+  infl ux ( CNGC4 ,  DND1 ), calmodulin-mediated signaling 
( CML41 ), mitogen-activated kinase ( MKS1 ,  MPK3 ,  EDR1 ) signaling, phosphatase 
( VSP1 ) signaling, reactive oxygen species (ROS) signaling ( RbohC ,  RbohD ,  RbohF ), 
nitric oxide (NO) signaling ( NOS1 ), salicylic acid (SA) signaling ( NPR1 ,  SID2 , 
 PAD4 ,  EDS1 ,  EDS5 ), jasmonate signaling ( LOX3 ,  OPR3 ,  ERF4 ,  CYP81F2 ,  ACX1 ), and 
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ethylene (ET) signaling ( ACS2 ,  ACS7 ,  ACS8 ,  CTR1 ,  ETR1 ,  ETR2 ,  EIN2 ,  EIN4 , 
 EBF1 ) systems (Denoux et al.  2008 ). PAMPs generally do not induce hypersensitive 
resistance. However, it has been shown that fl g22, as well as fl agellin, induces the 
hypersensitive response (Naito et al.  2008 ).  

2.6.2.4     Some Peptides Derived from Flagellin May 
Not Have Elicitor Activity 

 Several studies suggest that the N-terminal fl g22 region may not be the sole deter-
minant of fl agellin recognition by plants (Che et al.  2000 ; Taguchi et al.  2003b ; 
Tanaka et al.  2003 ). A peptide derived from  Ralstonia solanacearum  fl g22 region 
contains at least one signifi cant change from a consensus sequence derived from 
the fl agellin of many bacteria and it did not trigger defense responses (Pfund et al. 
 2004 ). The Gly to Ala change at position 18 has been shown to reduce the elicitor 
activity of fl g22 in tomato cells by 96 % (Felix et al.  1999 ). Felix et al. ( 1999 ) 
demonstrated that peptides derived from the fl agellins of  Agrobacterium  spp. also 
had no elicitation activity.  

2.6.2.5     Flagellin May Not Be a Major Defense Elicitor in Some Bacteria 

 Flagellin may not be a major defense elicitor in  R. solanacearum  cells applied 
to  Arabidopsis thaliana . Flagellin also was not the primary elicitor of responses 
in tobacco (Pfund et al.  2004 ). Boiled extracts from  R .  solanacearum  con-
tained a strong elicitor of defense-associated responses. However,  R .  sola-
nacearum  flagellin was not that elicitor, because extracts from wild-type 
bacteria and mutants defective in flagellin production all elicited similar plant 
responses. The primary eliciting activity in boiled  R .  solanacearum  extracts 
applied to  Arabidopsis  was attributable to one or more proteins other than 
flagellin (Pfund et al.  2004 ).   

2.6.3     Lipopolysaccharide Components Acting as PAMPs 

 Liposaccharides (LPS) of bacterial pathogens act as PAMPs triggering immune 
responses in both dicots and monocots (Dow et al.  2000 ; Newman et al.  2001 ,  2002 , 
 2007 ; Gerber et al.  2004 ,  2006 ; Desaki et al.  2006 ; Desender et al.  2006 ; Munford 
and Varley  2006 ; Nicaise et al.  2009 ; Erbs et al.  2010 ). LPS induces local and sys-
temic resistance and mobilization/translocation occurs through the xylem in 
 Arabidopsis  (Zeidler et al.  2010 ). LPS from Gram-negative bacterial pathogens are 
a great source of novel monosaccharides with unusual and occasionally astounding 
chemical structures, never found in plants and hence qualify to be recognized as 
PAMPs (Molinaro et al.  2009 ). LPS are amphiphilic macromolecules composed of 
a hydrophilic heteropolysaccharide (comprising the core oligosaccharide and 
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 O -specifi c polysaccharide or  O -chain) covalently linked to a lipophilic moiety 
termed lipid A. LPS not possessing the  O -chain are termed rough LPS or lipooligo-
saccharides (LOSs) (Silipo et al.  2005 ). The polysaccharide moiety contains a long-
chain polysaccharide, called  O -antigen, which is highly variable with respect to 
composition, length, and the branching of its carbohydrate subunits (Knirel  2009 ). 
In contrast, the oligosaccharide core and the lipid A, which form the sheet of the 
membrane, are highly conserved in different bacteria (Holst and Molinaro  2009 ). 
LPS are present in the outer monolayer of the external membrane of almost all 
Gram-negative bacteria. LPS contribute to the structural properties of the cell enve-
lope and play a vital role for bacterial growth (Silipo et al.  2010 ). 

 The lipid A part of LPS has been considered as the PAMP epitope in LPS. The 
lipid A part of LPS is as effective as intact LPS in inducing defense response in 
 Arabidopsis  (Zeidler et al.  2004 ). Phosphorylation and acylation of the lipid A moi-
ety seem to infl uence LPS elicitor activity (Silipo et al.  2008 ). The structure of LPS 
of  Xanthomonas campestris  pv . campestris  ( Xcc ) shows a strong accumulation of 
negatively charged groups in the lipid A inner-core region and has a number of 
novel features, including a galacturonyl phosphate attached at a 3-deoxy-D-manno-
oct- 2-ulosonic acid residue and a unique phosphoramide group in the inner core 
region. Dephosphorylated LPS molecule, which retains a single negative charge on 
the inner core, does not induce any defense response in  A .  thaliana . It suggests a key 
role for the charged phosphate, phosphoramide, and galacturonic residues in LPS 
signaling (Silipo et al.  2005 ). 

 The lipid A moiety is not solely responsible for all of the effects of LPS in plants: 
core oligosaccharide and  O -antigen components can elicit specifi c responses 
(Newman et al.  2007 ).  O -chain in LPS may also act as a PAMP, besides the lipid 
part. Synthetic oligorhamnans, which are common components of  O -chain in LPS, 
can trigger innate immune responses in  Arabidopsis  (Bedini et al.  2005 ). Besides 
activating defenses, LPS can suppress defense responses, probably by chelating cal-
cium ions (Newman et al.  2007 ; Tellstrom et al. 2007; Aslam et al.  2008 ). 

 The  O -antigen of the LPS from many phytopathogenic bacteria comprises a 
rhamnan backbone with the trisaccharide repeating unit [α-L-Rha-(1 → 3)-α-L- 
Rha-(1 → 2)-α-L-Rha-(1 → 3)]. This trisaccharide was synthesized and oligomer-
ized to obtain hexa-and nona-saccharides. These rhamnans were effective in 
elicitation of transcription of the defense-related genes  PR1  and  PR2  (Bedini et al. 
 2005 ). The results suggest that the coil structure containing  O -antigen polysaccha-
rides may also be a plant-recognizable PAMP. 

 Both LPS and LOS have been described in  Xcc , with LOS being the predomi-
nant form in some strains (Dow et al.  1995 ). Both lipid A and the core oligosac-
charide of  Xcc  LOS were able to trigger defense responses in  A .  thaliana  (Silipo 
et al.  2005 ). LOS induced defense responses in two temporal phases, while the 
core oligosaccharide induced only the earlier phase and lipid A induced only the 
later phase (Table  2.3 ; Silipo et al.  2005 ). The results suggest that plant cells can 
recognize lipid A and core oligosaccharide structures within LPS to trigger 
defense responses and that this may occur via two distinct recognition events    
(Silipo et al.  2005 ) (Table  2.3 ).
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2.6.4        Muropeptides and Sugar Backbone Structure 
PAMPs in Peptidoglycans 

 Peptidoglycan, not found in eukaryotes, is an essential and unique component of 
the bacterial envelope that provides rigidity and structure to the bacterial cell. 
Peptidoglycan is found as thick outer layer in the cell wall of Gram-positive bacte-
ria, whereas a relatively thin layer is present in the cell wall of Gram-negative 
bacteria, where it is overlaid with lipopolysaccharides (Erbs et al.  2008 ; Vollmer 
and Born  2009 ). Peptidoglycan from both Gram-positive and Gram-negative 
bacteria is composed of a network of glycan strands that are interlinked by short 
peptides. The glycan chains are formed by alternating  N -acetylmuramic acid 
(MurNAc) and  N -acetylglucosamine (GLcNAc) linked by β-(1 → 4)-glycosidic 
bonds (Cloud- Hansen et al.  2006 ; Erbs et al.  2008 ; Cirillo et al.  2010 ; Silipo et al. 
 2010 ). The presence of the lactyl group of the muramic acid allows for the covalent 
attachment of a short peptide stem that typically contains alternating L- and 
D-amino acids. The structure of the carbohydrate backbone is generally conserved 
in all bacteria, but different degrees of acetylation are the major variations among 
the bacteria (Silipo et al.  2010 ). Glycan strands are frequently deacetylated and/or 
 O -acetylated in bacterial species (Volmmer 2008). The peptide moiety also dis-
plays considerable diversity among the Gram-positive and Gram-negative bacteria. 
In general, the third-position amino acid in Gram-positive bacteria is L-lysine 
(Lys), whereas Gram-negative bacteria possess the  meso -2,6-diaminopimelic 
(DAP) as the third amino acid (McDonald et al.  2005 ). Gram-positive bacteria 
have peptide stems that are usually cross-linked through an interpeptide bridge 
(generally glycine), whereas gram-negative bacteria peptide stems are usually 
directly crosslinked (Erbs et al.  2008 ). 

 Peptidoglycan is located on most bacterial surfaces, which constitute excellent 
targets for recognition by the innate immune system. Peptidoglycan is considered as 
a typical PAMP, because it is widely found in bacteria, structurally stable, displayed 
on the cell surface and not found in plant cells (Gust et al.  2007 ). Peptidoglycans 
from both gram-positive and gram-negative bacteria have been reported to be 
PAMPs (Gust et al.  2007 ; Erbs et al.  2008 ). Perception of gram-positive peptidogly-
cans mostly depends on their sugar backbones (Gust et al.  2007 ), whereas 

    Table 2.3    Relative ability of LOS and lipid A and core oligosaccharide structures within LPS of 
 Xanthomonas campestris  pv.  campestris  in triggering  PR1  gene expression in  Arabidopsis thaliana    

 Time after treatment 

  PR  gene expression (fold regulated) 

 LOS  Core oligosaccharide  Lipid A 

 12 h  131     144  11 
 20 h  5  17  8 
 24 h  1192  11  448 

  Adapted from Silipo et al. ( 2005 )  
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muropeptides derived from gram-negative peptidoglycans are more potent elicitors 
than intact peptidoglycans (Erbs et al.  2008 ). The Gram-positive bacteria-derived 
peptidoglycan triggered immune responses and the peptidoglycan-mediated immu-
nity in  Arabidopsis  has been found to be based upon recognition of the sugar back-
bone in the peptidoglycan (Gust et al.  2007 ). The purifi ed muropeptides of the 
Gram- negative bacterial pathogens ( Xanthomonas campestris  pv.  campestris  and 
 Agrobacterium tumefaciens ) show higher elicitor activity than the peptidoglycan 
preparations from those bacteria, suggesting that the PAMP epitope may reside in 
the muropeptide moiety of the peptidoglycan (Erbs et al.  2008 ). Peptidoglycans in 
the bacterial surface may be degraded to muropeptides by host lysozyme activities. 
The released muropeptides are highly mobile, while the peptidoglycan diffuses only 
slowly (Erbs et al.  2008 ). 

 The structure of muropeptides may differ in different bacterial pathogens. 
Differences in the structures of  X .  campestris  pv.  campestris  ( Xcc ) and  Agrobacterium 
tumefaciens  muropeptides include the presence of a Gly residue replacing Ala in 
the case of  A .  tumefaciens  peptidoglycan and by the lack of an acetyl group in the 
case of  Xcc  peptidoglycan (Erbs et al.  2008 ). The differences observed in the muro-
peptides of the two pathogens would have contributed to the differences in their 
elicitor activity. The elicitor activity of muropeptide of  X .  campestris  pv.  campes-
tris  is very high when compared with that of  A .  tumefaciens  (Fig.  2.1 , Erbs et al. 
 2008 ). The studies suggest that structure and activity of peptidoglycans may vary 
widely (Fig.  2.1 ).

   Peptidoglycan is associated with inner membrane and, in Gram-negative bacteria, 
is shielded by the LPS-containing outermembrane. Peptidoglycans may be released 
during growth process of the bacteria (Cloud-Hansen et al.  2006 ). It is also suggested 
that degradation of bacterial cells by host defenses may contribute to release of 
peptidoglycan (Erbs et al.  2008 ). Some plants possess peptidoglycan- modifying 
lysozymes (Brunner et al. 1998) and these enzymes may release muropeptides which 
may sense the pattern recognition receptors (PRRs) in host plants and activate the 
innate immunity (Erbs et al.  2008 ).  
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  Fig. 2.1    Induction of  PR1  gene in  Arabidopsis  after treatment with  Xanthomonas campestris  pv. 
 campestris  ( Xcc ) and  Agrobacterium tumefaciens  ( At ) muropeptides of peptidoglycans (Adapted 
from Erbs et al.  2008 )       
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2.6.5     elf18 PAMP Epitope in Elongation Factor Tu (EF-Tu) 

 Elongation factor Thermo unstable (EF-Tu) is the abundant bacterial protein and is 
involved in translation of bacterial mRNAs (Zipfel  2008 ). EF-Tu is recognized as a 
PAMP in  Arabidopsis  and other members of the family Brassicaceae (Kunze et al. 
 2004 ). EF-Tu possesses all the characteristics of a typical PAMP; highly abundant, 
high sequence conservation over thousands of bacterial species and vital for microbial 
survival (Zipfel  2008 ). The PAMP epitope has been detected in the N terminus of 
bacterial EF-Tu (Kunze et al.  2004 ; Zipfel et al.  2006 ). A highly conserved 
 N -acetylated 18 amino acid peptide, elf18, is suffi cient to trigger those responses 
induced by full-length EF-Tu. Peptides derived from mitochondrial or plastid EF-Tu 
are inactive as PAMPs, revealing that this perception is specifi c to the infectious 
non-self (Zipfel  2008 ). 

 EF-Tu is mostly intracellular and surface localized in bacterial cell. It lacks 
classical signal and transport sequences for secretion (Zipfel  2008 ). It is still not 
known how EF-Tu inside the bacterial cell is recognized by the plant. Lysis of dying 
bacteria in the plant cell during plant colonization may release suffi cient EF-Tu to 
stimulate the receptor (Zipfel  2008 ).  

2.6.6     Cold-Shock Protein (CSP22) as PAMP 

 Elicitation activity in some bacterial species was attributed to a cold-shock protein 
rather than fl agellin (Felix and Boller  2003 ). An elicitor of defense responses found 
in extracts of  Micrococcus lysodeikticus  was a member of the cold-shock protein 
family (Felix and Boller  2003 ). The highly conserved RNA- binding motif RNP-1 
of bacterial cold shock proteins (CSPs) acts as a PAMP. It triggers defense responses 
in Solanaceous plants. The 22-amino acid core of RNP-1 named CSP22 is recog-
nized as elicitor by Solanaceous plants (Felix and Boller  2003 ).  

2.6.7     Harpins with PAMP and Protein Secretion Structure 

2.6.7.1     Several Different Harpins Are Produced 
by Various Phytopathogenic Bacteria 

 Harpins are acidic, glycine rich, protease sensitive, and heat stable proteins that 
are encoded by  hrp  genes present in several phytopathogenic bacteria including 
members of the genera  Erwinia ,  Pantoea ,  Pseudomonas ,  Xanthomonas , and 
 Ralstonia  (Kvitko et al.  2007 ; Chen et al.  2008 ; Engelhardt et al.  2009 ; Tampakaki 
et al.  2010 ; Boureau et al.  2011 ). Harpins are structurally unrelated proteins that 
are produced and secreted by many bacterial pathogens and that share a number 
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of biochemical features (Engelhardt et al.  2009 ).  Pseudomonas syringae  pv. 
 tomato  DC3000 produces two harpins, HrpZ1 and HrpW1 (Kvitko et al.  2007 ). 
The harpins HrpN Ea  (Wei et al.  1992 ), HrpZ Pss  (He et al.  1993 ), HrpZ Psph , 
(Tampakaki et al. 2000), HrpG Xoo  (Wen and Wang  2001 ), and HpaG Xooc  (Chen 
et al.  2008 ) are produced by  Erwinia amylovora ,  Pseudomonas syringae  pv. 
 syringae ,  P .  syringae  pv.  phaseolicola , and  Xanthomonas oryzae  pv.  oryzae , and 
 X .  oryzae  pv.  oryzicola , respectively.  

2.6.7.2     PAMP May Reside Within the Harpin Structure 

 It has been demonstrated that harpins act as PAMPs triggering plant immune 
responses in several plants (Alfano and Collmer  2004 ; Wu et al.  2011 ). The harpin 
proteins HrpZ1 from  P .  syringae , HrpN from  Erwinia amylovora , and PopA from 
 Ralstonia solanacearum , elicit innate immune responses in a non-cultivar-specifi c 
manner in various plants (Wei et al.  1992 ; He et al.  1993 ; Lee et al.  2001a ; Racapé 
et al.  2005 ; Wu et al.  2011 ). Transgenic  Nicotiana benthamiana  and sugar beet 
plants expressing  hrpG  gene of  P. syringae  pv.  phaseolicola  triggered the activation 
of several defense signaling genes (Pavli et al.  2011 ). The HrpN of  E .  amylovora  
contributes directly or indirectly to callose elicitation on apple leaves (Boureau 
et al.  2011 ). The harpin HrpZ1 triggers several defense signaling systems and 
hypersensitive response (HR) in various plant species (Nürnberger et al.  2004 ; 
Grant et al.  2006 ). 

 A C-terminal fragment of the HrpZ1 protein retained the ability of the harpin to 
trigger plant immunity. Random insertion mutagenesis of HrpZ1 further revealed 
that the C- terminus is important for the PAMP activity of the protein (Engelhardt 
et al.  2009 ). The 24-amino-acid HrpG fragment found in the C-terminal regions 
showed the PAMP activity (Haapalainen et al.  2011 ). These studies suggest that a 
PAMP resides within in the harpin structure.  

2.6.7.3     Harpin-Binding Sites in Plant Membranes 

 The harpin HrpZ1 binds to plant membranes with high affi nity and specifi city, 
suggesting that the activation of plant immunity-associated responses by HrpZ1 is 
receptor-mediated. The binding site found in the microsomes was protease- and 
heat-resistant, suggesting that the binding site may therefore not be a protein at all 
(Engelhardt et al.  2009 ). HrpN harpin from  E .  amylovora  has been shown to bind 
to a small 6.5-kDa plasma membrane-associated protein from apple (HrpN-
interacting protein from  Malus , HIPM) and  Arabidopsis  (AtHIPM) (Oh and Beer 
 2007 ). These studies suggest that harpins possess all important characters of 
PAMPs: wide occurrence in various bacterial species, binding with PRRs and trig-
gering innate immune responses.  
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2.6.7.4     A Specifi c Region in Harpin with Pore Formation Function 
May Be Involved in Delivery of the PAMP Residing Within 
Harpin into Plant Cells 

 Many bacterial pathogens use type-III protein secretion systems (TTSS) to infect 
plants. TTSS are molecular conduits that facilitate the injection of bacterial effec-
tors into plant cells to manipulate host physiology. Harpins from various  P .  syringae  
pathovars form ion-conducting pores, suggesting a role of the harpin proteins in 
effector delivery during infection (Lee et al.  2001b ; Fu et al.  2006 ). The harpin 
HrpZ of  P .  syringae  showed membrane-binding and pore-forming activities  in 
vitro , suggesting that it could be targeted to the host cell plasma membrane 
(Haapalainen et al.  2011 ). HrpZ was found to interact with the lipid phosphatidic 
acid and pore-formation by HrpZ in artifi cial lipid vesicles was found to be depen-
dent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores 
in vesicles prepared from  Arabidopsis thaliana  plasma membrane. These studies 
suggest that the harpin HrpZ is targeted to the host cell plasma membrane and it 
binds with the lipid layer. 

 HrpG forms dimers and higher order oligomers. The oligomerization was mainly 
mediated by a region near the C-terminus of the protein and the same region was 
also found to be essential for membrane pore formation. Phosphatidic acid binding 
appears to be mediated by two regions separate in the primary structure. A 24-amino-
acid HrpG fragment found in the region was shown to be indispensable for the 
oligomerization and pore formation functions (Haapalainen et al.  2011 ). The pore 
formation activity of harpins may facilitate translocation of the PAMP found within 
the harpin structure into plant cells and trigger the expression of genes involved in 
defense signaling systems.   

2.6.8     Ax21 Sulfated Protein as a PAMP 

 Ax21 (activator of XA21-mediated immunity) isolated from the rice bacterial 
blight pathogen  Xanthomonas oryzae  pv.  oryzae  ( Xoo ) has been identifi ed as an 
elicitor and it triggers hypersensitive reaction (HR) in rice cultivars expressing the 
R protein XA21 (Lee et al.  2006b ).  Xa21 was cloned in 1995 as a disease resistance 
gene expressing resistance against wide range of  Xoo  strains and it was the fi rst 
disease resistance gene cloned from rice (Song et al.  1995 ). The sequence of the 
predicted protein encoded by the  Xa21  gene carried both a leucine-rich repeat 
motif and a serine-threonine kinase-like domain, suggesting a role in cell surface 
recognition of a pathogen ligand and subsequent activation of an intracellular 
defense response (Song et al.  1995 ). After 14 years, Lee et al. ( 2009 ) have shown 
that XA21 is a pattern recognition receptor (PRR) and it recognizes a 194-amino 
acid protein designated Ax21 as the pathogen ligand and as a pathogen-associated 
molecular pattern (PAMP). A tyrosine-sulfated 17-amino acid synthetic peptide 
corresponding to the N-terminus of Ax21 was fully active in eliciting 
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XA21-mediated resistance. Cross- linking experiments suggested that Ax21 
directly binds XA21. Ax21 is conserved in most species of  Xanthomonas  and the 
tyrosine sulfation is required for its recognition by XA21 (Shen et al. 2002; Lee 
et al.  2006b ,  2009 ). 

 The PAMP Ax21 protein carries two predicted tyrosine sulfation sites. An 
Ax21- derived synthetic peptide (17-amino acid) containing a sulfated tyro-
sine-22 (axY s 22) is suffi cient for Ax21 activity, whereas peptides lacking tyro-
sine sulfation and peptide variants carrying alanine in place of the tyrosine are 
inactive (Lee et al.  2009 ). The peptide axY s 22 directly binds to XA21 (Lee et al. 
 2009 ). Although all  Xanthomonas oryzae  pv.  oryzae  ( Xoo ) strains tested carry 
ax21 (Lee et al.  2009 ),  Xoo  strains lacking the sulfation and/or secretion systems 
can no longer elicit the XA21-mediated defense response (de Silva et al.  2004 ). 
These results suggest that sulfation on the axY s 22 peptide is critical for XA21/
Ax21 recognition in rice. 

 The sulfated protein Ax21 is secreted by  Xoo  through type I secretion system 
(Zhang and Zhou  2010 ). The genes  raxA ,  raxB , and  raxC  encoding components of 
a bacterial type I secretion system have been detected in  Xoo .  Xoo  mutants carry-
ing knockouts in any of these genes lose the ability to trigger XA21-mediated 
immunity and are no longer able to secrete Ax21 (Lee et al.  2006b ). The genes 
involved in sulfation,  raxST ,  raxR , and  raxP , were also detected in  Xoo . Tha  raxST  
encodes tyrosine sulfotransferase and the  raxR  and  raxP  genes are involved in 
synthesis of 3′-phosphoadenosine 5′-phosphosulfate (PAPS). RaxST may utilize 
PAPS to transfer a sulfuryl group to Ax21 (Lee et al.  2006b ). These results suggest 
Ax21 is sulfated and secreted through the bacterial type 1 secretion system (Park 
et al.  2010b ). 

 Ax21 is present in all sequenced  Xanthomonas  species, in  Xyllella fastidiosa , 
the causal agent of Pierce’s disease on grapes, and in the human pathogen, 
 Stenotrophomonas maltophila  (Lee et al.  2009 ). Thus, Ax21 satisfi es a key aspect 
of the defi nition of PAMPs. A  Xoo  mutant strain lacking Ax21 was unable to trig-
ger XA21-mediated immunity (Park et al.  2010b ). It shows that Ax21 is a PAMP 
triggering defense responses.  

2.6.9     Rhamnolipids as PAMPs 

 Rhamnolipids derived from  Pseudomonas aeruginosa , an opportunistic pathogen of 
plants, were identifi ed as PAMPs recognized by grapevine (Varnier et al.  2009 ). They 
trigger the early signaling events including Ca 2+  infl ux, mitogen-activated protein 
kinase activation and reactive oxygen species production, which are the characteris-
tic components in PAMP-triggered immunity (Varnier et al.  2009 ). The rhamnolipids 
effi ciently protected grapevine against  Botrytis cinerea  (Varnier et al.  2009 ). 
Rhamnolipids potentiate defense responses induced by another PAMP chitosan in 
grapevine (Vatsa et al.  2010 ). Rhamnolipids were able to stimulate defense genes in 
tobacco, wheat, and  Arabidopsis thaliana , besides grapevine (Vatsa et al.  2010 ).  
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2.6.10     Superoxide Dismutase (SOD) as a PAMP 

 A protein of the extracellular proteome of  Xanthomonas campestris  pv.  campestris  
was identifi ed as a PAMP. The protein PAMP was a superoxide dismutase (SodM). 
It elicited H 2 O 2  production in tobacco cell cultures. The amino acid sequence of this 
protein was found to be responsible for the elicitation of the oxidative burst reaction 
(Watt et al.  2006 ).  

2.6.11     Bacterial DNA as PAMP 

 Elicitor activity of bacterial DNA has been demonstrated on the model plant 
 Arabidopsis thaliana .  Eco RI-digested plasmid DNA induced generation of ROS 
generation and deposition of callose, whereas  Sm a1- and  Hap II-digested plasmid 
DNA and  Eco RI-digested herring DNA did not remarkably induce these 
responses (Yakushiji et al.  2009 ). Further, methylation of the CpG sequence of 
plasmid DNA and  Escherichia coli  DNA reduced the level of the defense 
responses (Yakushiji et al.  2009 ). These results suggest that the nonmethylated 
CpG DNA is a  PAMP/MAMP. The non-methylated DNA of the bacteria seems 
to be translocated into the cytoplasm of plant cells by endocytosis, as the endo-
cytosis inhibitors signifi cantly inhibited DNA-induced defense responses 
(Yakushiji et al.  2009 ).  

2.6.12     NEP1-Like Proteins as Bacterial PAMPs 

 Nep1-like proteins (NLPs) have been detected in some bacterial pathogens, 
including  Pectobacterium carotovorum  subsp.  carotovorum  (Mattinen et al. 
 2004 ; Kufner et al.  2009 ) and  P. carotovorum  subsp.  atrosepticum  (Pemberton 
et al.  2005 ). These proteins were shown to be virulence factors (Ottmann et al. 
 2009 ) and these NLPs also trigger immune responses. The NLPs have dual func-
tions, acting both as triggers of immune responses and as toxin-like virulence 
factors (Ottmann et al.  2009 ).   

2.7     Fungal PAMPs 

2.7.1     Chitooligosaccharides as PAMPs 

 Several PAMPs have been detected in various plant fungal pathogens. Chitin, 
(β-1 → 4-linked polymer of  N -acetylglucosamine; GlcNAc), is a major component 
of fungal cell walls. It is not found in plants; however the plants secrete 
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chitin- degrading enzymes (Vidhyasekaran  2007a ). Fungal infection induces the 
expression of chitinases in plant cells, and these chitin-degrading enzymes accumu-
late at the sites of invasion. The chitinases release chitin fragments (chitin oligomers 
or chitooligosaccharides) from fungal cell walls (Eckardt  2008 ). 

 The chitooligosaccharides are the classical PAMPs detected in fungi (Miya et al. 
 2007 ; Hamel and Beaudoin  2010 ;    Lizasa et al.  2010 ) and they are known to trigger 
the plant innate immune responses in a wide range of plants including both monocots 
and dicots (Silipo et al.  2010 ; Shimizu et al.  2010 ; Son et al.  2012 ). Plant cells 
perceive the chitin fragments and the elicitor activity of chitin fragments increases 
with the increase of degree of polymerization up to the octasaccharide. 
 N -acetylchitoheptaose generated from cell walls of the rice blast pathogen 
 Magnaporthe oryzae  has been identifi ed as a potential elicitor triggering defense 
responses in rice cells (Yamaguchi et al.  2002 ). Chitooctaose has been reported to be 
the most potential chitin fragment in eliciting defense responses in plants (Wan et al. 
 2008a ,  b ). However, Petutschnig et al. ( 2010 ) provided evidences that insoluble poly-
meric chitin may also be a potential elicitor. They showed that the chitin receptor 
CERK1 (for  C hitin  E licitor  R eceptor  K inase  1)  binds to polymeric chitin more 
strongly than to chitin oligomers. It suggests that the polymeric chitin is potentially 
an active molecule in chitin signaling and generation of short chitooligomers by 
apoplastic chitinases might not be an absolute prerequisite for chitin recognition. 

 Chitin treatment of rice induced transient membrane depolarization (Kuchitsu 
et al.  1993a ), ion effl ux, cytoplasmic acidifi cation (Kuchitsu et al.  1997 ), transient 
generation of ROS (Kuchitsu et al.  1995 ), protein phosphorylation (Kuchitsu et al. 
 1993b ), and jasmonic acid biosynthesis (Nojiri et al.  1996 ). Chitin oligomers 
induced medium alkalinization and ROS generation in suspension-cultured soybean 
cells (Day et al.  2001 ). Chitin treatment caused an immediate oxidative burst in 
 Physcomitrella patens  (Lehtonen et al.  2012 ). The chitin-induced oxidative burst 
was associated with the induction of alternative oxidase (AOX), lipoxygenase 
(LOX), and NADPH oxidase (Lehtonen et al.  2012 ). 

 Chitin elicits phosphorylation of various proteins. Peck et al. ( 2001 ) identifi ed a 
number of proteins that were phosphorylated within minutes after chitin treatment 
of  Arabidopsis  tissue culture cells. Calcium-dependent protein kinase (CDPK) was 
transiently induced upon chitin elicitation (Zhang et al.  2002a ). The phosphoryla-
tion event necessary for transmission of the chitin signal was completed within the 
fi rst 20 min of chitin addition in  Arabidopsis  (Zhang et al.  2002a ). 

 Mitogen-activated protein kinases play important role in chitin signaling (Zhang 
et al.  2002a ; Wan et al.  2004 ). Perception of PAMPs by receptors leads to the rapid 
activation of MAP kinases including MPK3, MPK4, and MPK6. In particular, MAP 
kinase 3 and 6 (MPK3/MPK6) were shown to be rapidly activated by chitin in 
 Arabidopsis  and their activation depended on upstream MAPK kinases (MKK4 and 
MKK5) (Wan et al.  2004 ). 

 Transcription factors (TF) are critical in reprogramming gene expression in plant 
cells in response to various stimuli. Plant cells reprogram gene expression in 
response to chitin elicitation and 118 TF genes have been shown to be induced by 
chitin in  Arabidopsis  (Wan et al.  2008b ).  
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2.7.2     β-Glucan PAMPs Isolated from Fungal Cell Wall 

 Glucans are important components of cell walls of various fungi and oomycetes. 
Several β-glucan poly- and oligosaccharides seem to be generated from fungal and 
oomycete cell walls at the site of infection through the action of plant β-1,3- glucanases 
(Silipo et al.  2010 ). Most of these β-glucan wall components have been recognized as 
PAMPs (Yamaguchi et al.  2000a ,  b ; Klarzynski et al.  2000 ; Shibuya and Minami 
 2001 ; Silipo et al.  2010 ). These fragments may act differently in different plants. A 
glucan fragment, tetraglucosyl glucitol from  Magnaporthe oryzae  is active in rice 
cells, but not in soybean (Yamaguchi et al.  2000a ,  b ). β-1,3 glucan oligomers with a 
degree of polymerization (DP) 4 and DP 6 trigger defense responses (Inui et al.  1997 ).  

2.7.3     Fungal Cell Wall Ergosterol PAMP 

 Ergosterol is a typical fungal sterol, which is absent in plants. It has been detected 
in cell walls of most fungi (Kasparovsky et al.  2003 , 2004; Laquitaine et al.  2006 ; 
Lochman and Mikes 2006). Ergosterol is perceived by plant cells. It triggers pro-
duction of ROS even at nano-molar concentrations in tobacco and tomato cells. It 
also activates mitogen-activated protein kinases on alfalfa cells (Lochman and 
Mikes 2006). The ergosterol induced oxidative burst and it enhanced NADPH 
oxidase and superoxide dismutase activities (Rossard et al.  2010 ). Based on these 
elicitor activities and wide occurrence in fungal species, and its absence in plants, 
ergosterol has been recognized as a PAMP (Naito et al.  2008 ).  

2.7.4     EIX Protein as PAMP 

 The fungal protein ethylene-inducing xylanase (EIX) is a PAMP inducing defense 
reactions in tobacco and tomato (Bailey et al.  1990 ; Avni et al.  1994 ). EIX is a 
potent elicitor of plant defense responses in specifi c cultivars of tobacco and tomato 
(Bar et al.  2010 ). EIX was shown to specifi cally bind to the plasma membrane of 
both tomato and tobacco responsive cultivars (Hanania and Avni  1997 ). The 
response to EIX in tobacco and tomato cultivars is controlled by a leucine-rich- 
repeat receptor-like-protein (LRR-RLP) encoded by a single locus, termed LeEix 
(Ron and Avni  2004 ).  

2.7.5     Cerebrosides as PAMPs 

 Cerebrosides A, B. and C. categorized as sphingolipids are novel elicitors detected 
in a wide range of pathogens (Koga et al. 1998; Umemura et al. 2000). Sphingolipid 
is a structural component of many eukaryotic cell membranes and has been shown 
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to be essential for normal development of fungi (Levery et al. 2002). Several fungal 
pathogens including several forme speciales of  Fusarium oxysporum  (f. sp.  lycop-
ersici , f. sp.  melonis , f. sp.  cucumerinum , and f. sp.  lactucae ),  Pythium graminic-
ola ,  Glomerella cingulata , and  Sclerotinia cepivorum  contain cerebroside elicitor 
(Umemura et al.  2004 ). The cerebroside elicitor induced defense signaling systems 
and induced resistance against pathogens (Umemura et al.  2004 ). These results 
suggest that cerebroside elicitors are general elicitors and considered as PAMPs 
(Nakashima et al.  2008 ).  

2.7.6     NEP1-Like Proteins as PAMPs 

 A 24-kDa necrosis- and ethylene-inducing protein (Nep1) isolated from culture 
fi ltrates of  Fusarium oxysporum  f. sp.  erythroxyli  has been found to trigger both 
ethylene production and necrosis in numerous dicotyledonous plants (Bailey 
 1995 ; Bailey et al.  1997 ). Nep1 acts as a general elicitor and induces Ca 2+ -
dependent signaling system, changes in K +  and H +  channel fl uxes, accumulation 
of ROS, production of ethylene, enhanced transcription of  PR  genes and callose 
deposition (Jennings et al.  2001 ; Fellbrich et al.  2002 ; Keates et al.  2003 ; Bae 
et al.  2006 ). Nep1-like proteins (NLPs) have been isolated from other fungal 
pathogens including  Verticillium dahliae  (Wang et al.  2004 ),  Botrytis elliptica  
(Statts et al. 2007),  Botrytis cinerea  (Schouten et al.  2008 ; Arenas et al.  2010 ) and 
 Magnaporthe grisea ,  Fusarium graminearum  and  Mycosphaerella graminicola  
(Motteram et al.  2009 ).   

2.8     Oomycete PAMPs 

2.8.1     PEP-13 as an Oomycete PAMP 

 Several different PAMPs have been detected in various oomycete pathogens. A pep-
tide fragment (Pep-13), within an abundant cell wall glycoprotein (GP42) from 
 Phytophthora sojae , has been identifi ed as a PAMP in oomycete pathogens (Halim 
et al.  2004 ). It was found to be necessary and suffi cient for receptor-mediated 
defense gene expression and synthesis of antimicrobial phytoalexins in parsley 
(Nürnberger et al.  1994 ; Hahlbrock et al.  1995 ). GB 42 is a Ca 2+ -dependent TGase 
( R -glutaminyl- peptide :amine-γ-glutamyltransferase), which catalyzes an acyl trans-
fer reaction between peptide-bound glutamine residues and primary amines includ-
ing the ε-amino group of peptide-bound lysine residues, forms intra- or intermolecular 
isopeptide bonds resulting in irreversible protein cross-linking (Brunner et al.  2002 ). 
The PAMP epitope of GP42 has been identifi ed as a surface exposed 13 amino 
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acid spanning domain (Pep-13), which is also essential for TGase activity (Brunner 
et al.  2002 ). Mutational analysis within Pep-13 identifi ed the same amino acids 
indispensable for both TGase and defense-eliciting activity. Several species 
of  Phytophthora  including  P .  cactorum ,  P .  capsici ,  P .  cinnamomi ,  P .  cryptogea , 
 P .  drechsleri ,  P .  infestans ,  P .  nicotianae ,  P .  palmivora ,  P .  parasitica , and  P .  sojae  
possess a gene family encoding GP42 TGase-related proteins. GP42 TGase homo-
logs have been detected in all the 10  Phytophthora  species tested. The peptide 
fragment Pep-13 was found to be highly conserved among all  Phytophthora  species 
tested (Brunner et al.  2002 ). 

 Pep-13 treatment triggered the accumulation of defense-related transcripts 
encoding lipoxygenase, 4-coumarate::CoA ligase and PR protein 1 in potato cells 
and in intact potato leaves (Brunner et al.  2002 ). Plants possess neither orthologs of 
 Phytophthora  TGase nor proteins containing peptide with Pep-13 elicitor activity 
(Brunner et al.  2002 ). Collectively these studies reveal that Pep-13 is a PAMP found 
in  Phytophthora  spp. Pep-13 binds to its receptor, which is a protease- and heat- 
sensitive 100-kDa protein (Nürnberger et al.  1994 ).  

2.8.2     Elicitins as Oomycete PAMPs 

 Elicitins are small lipid binding proteins secreted by the oomycetes  Phytophthora  
and  Pythium  (Bonnet et al.  1996 ; Bourque et al.  1999 ; Baillieul et al.  2003 ; 
Qutob et al.  2003 ; Kawamura et al.  2009 ; Kim et al.  2010 ). Elicitin genes have 
been cloned from  Phytophthora infestans  (Kamoun et al.  1997a ,  b ),  P .  sojae  
(Mao and Tyler  1996 ),  P .  parasitica  (Kamoun et al.  1993a ,  b ),  P .  cinnamomi  
(Duclos et al.  1998 ),  P .  cryptogea  (Panabieres et al. 1995), and  P .  capsici  (Kim 
et al.  2010 ). Elicitins are highly conserved 10-kDa proteins that are secreted in 
culture by all tested  Phytophthora  and  Pythium  species (Kamoun et al.  1993a ,  b ; 
Pernollet et al.  1993 a, b). All the elicitins share a conserved elicitin domain from 
amino acids 1 to 98. 

 The elicitins are grouped into fi ve classes based on their primary structure 
(Vidhyasekaran  2007a ). Class I-A and class I-B comprise 98 amino acid-long 
elicitin proteins. Class I-A elicitins have an acidic pI, while class I-B elicitins 
have basic pI. Class II contains highly acidic elicitins, which possess a short (5–6 
amino acids long) hydrophilic C-terminal tail. Class III comprises elicitins with a 
long (65–101 amino acids long) amino acid C-terminal domain rich in Ser, Thr, 
Ala, and Pro. Elicitins from  Pythium  spp. are classifi ed as a distinct group called 
Py class (Ponchet et al. 1999). They trigger innate immunity in a narrow range of 
plants, including  Nicotiana  species in the Solanaceae and some radish and rape 
cultivars in the Brassicaceae (Ponchet et al. 1999). However, they trigger a wide 
range of defense responses in most  Nicotiana  species and this response is suffi -
cient to protect against infection not only by  Phytophthora  but also by bacteria, 
fungi, and viruses (Tyler  2002 ).  

2.8  Oomycete PAMPs



40

2.8.3     Oomycete Cell Wall Glucans as PAMPs 

 A glucan fragment β-1,6-1,3 heptaglucan from  Phytophthora sojae  induced defense 
responses in soybean and the minimal structural requirements for the elicitation of 
defense responses by this glucan were established as a succession of fi ve β-1,6- 
linked glucosyl residues with two side branches of β-1,3 glucan (Cheong et al. 
1991). A glucan fragment, hexa-β-glucopyranosyl-D-glucitol isolated from the cell 
walls of  Phytophthora megasperma  f. sp.  glycinea , acted as PAMP triggering 
defense responses (Sharp et al.  1984 ). A doubly-branched hepta-β-glucoside gener-
ated from  P .  megasperma  f. sp.  glycinea  glucan is a highly active PAMP (Cheong 
et al. 1991); however its elicitor action is restricted to the plants belonging to the 
family Fabaceae (Cote et al. 2000). β-1,3 glucans induced a variety of defense reac-
tions in a wide range of host plants (Klarzynski et al.  2000 ; Ménard et al.  2004 ; Aziz 
et al.  2003 ). The biological activity of β-1,3 glucans is dependent on the degree of 
polymerization (DP) and decorations carried by the sugar backbone (Inui et al. 
 1997 ; Ménard et al.  2004 ).  

2.8.4     Cell Wall Glycoprotein CBEL with CBD 
Motifs as PAMPs 

 A cell wall glycoprotein named CBEL (for Cellulose-Binding Elicitor Lectin) iso-
lated from the root rot pathogen  Phytophthora parasitica  var.  nicotianae  has been 
identifi ed as an elicitor of defense responses in tobacco (Séjalon-Delmas et al. 
 1997 ; Villalba Mateos et al.  1997 ). It shows cellulose-binding and lectin-like activ-
ities (Villalba Mateos et al.  1997 ). CBEL binds to crystalline cellulose and isolated 
plant cell walls, but it is devoid of enzyme activity on cellulose and various glu-
cans. CBEL was found to be localized in the inner and outer layers of the cell walls 
of the oomycete, and it was present in close contact to the host cell wall during 
infection (Séjalon et al.  1995 ). 

 The protein portion of CBEL is composed of two cysteine-rich domains, each 
containing subdomain homologous to cellulose-binding domains (CBDs) of fungal 
glucan hydrolases. CBDs belong to the Carbohydrate Binding Module 1 family, 
which is found exclusively in fungi and oomycetes (Gaulin et al.  2006 ). CBDs of 
CBEL have been shown to be essential and suffi cient to stimulate defense responses 
and CBDs are considered as a novel class of PAMPs (Gaulin et al.  2006 ). 

 CBEL triggers the expression of various defense genes encoding lipoxygenase, 
peroxidase, sesquiterpene cyclase, and anthranilate synthase and accumulation of 
defense proteins including PR-1, PDF1.2, and hydroxyproline-rich glycoprotein 
(HRGP) (Villalba Mateos et al.  1997 ; Khatib et al.  2004 ). CBEL has been shown to 
be necessary for the structure of the hyphal cell walls (Gaulin et al.  2002 ). CBEL 
homologues have been detected in various  Phytophthora  species and these homo-
logues contain highly conserved CBD motifs (Khatib et al.  2004 ).  
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2.8.5     NEP1-Like Proteins as Oomycete PAMPs 

 Nep1-like proteins (NLPs) have been detected in a wide range of oomycete patho-
gens ( Pythium  spp.,  Phytophthora  spp., and  Hyaloperonospora arabidopsidis ) (Veit 
et al.  2001 ; Fellbrich et al.  2002 ; Qutob et al.  2002 ,  2006 ; Gijzen and Nūrnberger 
2006; Kanneganti et al.  2006 ; Kufner et al.  2009 ; Ottmann et al.  2009 ; Cabral et al. 
 2012 ). They share a high degree of sequence similarity (Pemberton and Samond 
2004; Qutob et al.  2006 ). The NLPs induce defense responses in both susceptible 
and resistant plants (Kanneganti et al.  2006 ). NLPs show important characters of 
PAMPs: they trigger nonself immunity in plants, functional orthologs of NLPs occur 
in a wide range of pathogens, and they are absent in plant genome. The NLPs are 
also required for virulence of the pathogens. NLPs evoke complex defense responses 
in diverse range of dicotyledonous plant species, such as tomato, tobacco, soybean, 
parsley, and  Arabidopsis  (Fellbrich et al.  2002 ; Qutob et al.  2002 ; Kanneganti et al. 
 2006 ; Kufner et al.  2009 ). 

 NLP isolated from the oomycete  Phytophthora parasitica  (NLP Pp ) induced genes 
involved in signal perception ( AtLECRK ,  RKF1 ,  RPK1 ,  BRL3 ,  WAKL7 ,  RFO1 / WAKL  
and genes encoding receptor Ser/Thr kinase and receptor protein kinase), mitogen- 
activated kinase ( MPK3 ,  MPK11 ), ROS signaling ( RbohD ,  RbohF ), SA signaling 
( ICS/SID2 ,  EDS5 / SID1 ) and ethylene signaling ( ACS2 ,  ACS7 ,  EAT1 ,  ERF5 ) sys-
tems (Qutob et al.  2006 ).   

2.9     Viral Elicitors 

2.9.1     Several Viral Components Show Elicitor Function 

 Microbial nucleic acids have been recognized as classical PAMPs in mammals 
(Kawai and Akira  2009 ). Viral proteins and/or nucleic acid products comprise 
an array of PAMP signatures that can engage specifi c PRRs, including Toll-like 
receptors (TLRs) or RIG-1-like receptors (RLRs) in mammals (Liu et al.  2010 ; 
Drutskaya et al.  2011 ). However, no classical PAMPs have been detected in 
plant viruses. Several elicitors have been detected in viruses. A  Tobacco mosaic 
virus  (TMV) coat protein (CP) gene has been reported to code for an elicitor, 
which induced disease resistance in  Nicotiana sylvestris  plants (Culver and 
Dawson  1991 ; Culver et al.  1994 ). The coat protein of  Potato virus X  (PVX) is 
an elicitor (Bendahmane et al.  1995 ). The coat proteins of  Paprika mild mottle 
virus  (PaMMV) and  Pepper mild mottle virus  (PMMoV) act as elicitors induc-
ing host defense genes in  Capsicum  (Gilardi et al.  2004 ; Matsumoto et al.  2008 ). A 
nucleocapsid protein (N) has been identifi ed as an elicitor of  Tomato spotted 
wilt virus  (Lovato et al.  2008 ). 

 A TMV replicase gene product acts as elicitor and it activates defense genes in 
tobacco (Padgett et al.  1997 ). The  Potato virus Y  Nlb-replicase protein has been 
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reported to be the elicitor of a hypersensitive response in tobacco (Fellers et al. 
 2002 ). The helicase domain of the TMV replicase proteins act as elicitors and 
induce the defense response in tobacco (Erikson et al. 1998). A 29 K-movement 
protein (MP) of  Tobacco rattle virus  is considered as an elicitor (Ghazala and 
Varrelmann  2007 ). The P3 protein involved in virus multiplication has been found 
to be an elicitor in  Turnip mosaic virus  (Jenner et al.  2002 ,  2003 ) and in  Soybean 
mosaic virus  (Hajimorad et al.  2005 ). Virion structural proteins have been shown to 
act as elicitor in  Caulifl ower mosaic virus  (Love et al.  2005 ).  

2.9.2     Viral Double-Stranded RNAs May Be PAMPs 

 Small RNA-directed RNA silencing is a major immune system targeting foreign 
nucleic acids of invading pathogens (Ding and Voinnet 2007; Jaubert et al.  2011 ). 
In small RNA-based antiviral immunity, viral double-stranded RNA (vdsRNA) has 
been identifi ed as a PAMP (Ding  2010 ). The RNA silencing pathway in plants 
presents a formidable defense against viral pathogens (Qu and Morris  2005 ). RNA 
silencing is triggered by dsRNA which are commonly generated during plant virus 
replication (Willmann et al.  2011 ). In case of single-stranded RNA (ssRNA) viruses, 
the viral RNA-dependent RNA polymerase (RdRP) encoded by the plant copies a 
plus-sense ssRNA generating a dsRNA molecule (Qi et al.  2009 ; Garcia-Ruiz et al. 
 2010 ; Wang et al.  2010b ). In case of other RNA viruses, the two strands do not anneal 
but can fold into highly structured molecules that have dsRNA regions (Alvarado and 
Scholthof  2009 ). In case of geminiviruses, the RNAs transcribed from their circular 
genomes act as a source of dsRNA (Chellappan et al.  2005 ). Viroids form hairpin 
structures, which contain intervals of dsRNA (Papaefthimiou et al.  2001 ). 

 The plant innate immune system (defense surveillance system) detects the 
presence of dsRNA as aberrant RNA molecule (Wypijewski et al.  2009 ) and gen-
erates small RNAs. The generated small RNAs direct the antiviral machinery to 
cleave and destroy the invading viral genome (Alvarado and Scholthof  2009 ). The 
results suggest that the viral dsRNA may be a PAMP triggering in antiviral 
immune response in plants.   

2.10     Host-Associated Molecular Patterns as Endogenous 
Elicitors 

2.10.1     Oligogalacturonides as HAMPs 

 Besides elicitors of pathogen origin (PAMPs), several elicitors of host origin 
(endogenous elicitors) have also been reported to trigger immune responses. 
These endogenous elicitors are called host-associated molecular patterns 
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(HAMPs). Fragments of pectic polysaccharide homogalacturonan (HGA) called 
oligogalacturonides (OGs) function as danger signals activating plant innate 
immune responses and these OGs are called endogenous elicitors/host-associated 
molecular patterns (HAMPs) (Ryan et al.  2007 ; Caffali and Mohnen  2009 ; Galletti 
et al.  2009 ; Zipfel  2009 ; Huffaker et al.  2011 ). Oligogalacturonides are generated 
by the action of endopolygalacturonases (PGs) secreted by pathogens during the 
infection process. The PGs generate OGs by hydrolyzing pectin. The activity of 
OGs depends on the degree of polymerization (DP). The OG oligomers with a 
degree of polymerization (DP) between 9 and 15 have been shown to be most 
potent inducers of defense responses in several plants (Poinssot et al.  2003 ; Aziz 
et al.  2004 ; Moscatiello et al.  2006 ; Huang et al. 2007). However, in some reports, 
small-sized oligomers have also been shown to induce the accumulation of prote-
ase inhibitor proteins and ethylene synthesis in tomato involved in defense 
responses, while larger oligomers were ineffective (Simpson et al.  1998 ). 

 The formation of a Ca 2+ -dependent “egg box” conformation of OGs has been 
shown to be necessary for the biological activity of oligogalacturonide fragments 
(Cabrera et al.  2008 ). The term “egg box” is used to designate the calcium-induced 
association between chains of homogalacturonides of DP > 8 (Cabrera et al.  2008 ). 
In the egg box model, dimerization of two homogalacturonide rigid chains occurs 
by cooperative bridging of parallel facing chains through Ca 2+  ions. The binding of 
a fi rst calcium cation by two pectin chains facilitates their alignment with respect to 
each other, which in turn allows the easier binding of a next calcium ion, and so on 
along the sequence (Cabrera et al.  2008 ). It has been shown that a minimum DP of 
9 is critical for OGs to form stable egg boxes (Liners et al.  1992 ). At least fi ve 
calcium ions are needed between two pectin chains to allow egg box dimer forma-
tion (Liners et al.  1989 ). 

 Once the generated OGs are of right size, they dimerize, and bind putative 
receptors, which trigger production of extracellular polygalacturonase inhibiting 
proteins (PGIP) that specifi cally recognize and inhibit PGs produced by pathogens 
(Di Matteo et al.  2003 ; Cabrera et al.  2008 ). PGIPs are plant extracellular leucine-
rich repeat proteins that specifi cally bind and inhibit fungal polygalacturonases. 
The interaction with PGIP limits the destructive potential of polygalacturonases 
and might trigger the plant defense responses induced by oligogalacturonides 
(Di Matteo et al.  2006 ). 

 PG inhibition by PGIP delays OG hydrolysis by 24 h (D’Ovidio et al.  2004a ,  b ). 
The egg box formation by OGs progressively increases with time and it needs 
about 10 h for OGs to form fully associated egg boxes (Cabrera et al.  2008 ). The 
major function of PGIP may therefore be to delay OGs hydrolysis enough for the 
oligomers not only to accumulate but also to mature into more bioactive egg boxes 
(Cabrera et al.  2008 ). 

 The egg box conformation of OGs may be specifi cally recognized by the OG 
perception system (Messiaen and Van Cutsem  1999 ). It has been shown that the 
extracellular domain of the transmembrane receptor-like wall-associated kinase 1 
(WAK1) could ionically bind calcium-associated homogalacturonans (Decreux and 
Messiaen  2005 ). Any condition that impaired the formation of egg boxes also 
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impaired the interaction between WAK1 and homogalacturonides (Decreux and 
Messiaen  2005 ). The results suggest that egg box conformation of OGs is the criti-
cal factor recognized by the PRR WAK1 to activate the innate immune system. 

 Cabrera et al. ( 2008 ) suggested that there may be at least two different perception 
systems for egg box dimers. One binds egg box junctions and the other binds egg 
box ends. Perception system 1 may be able to bind OGs in a size-and conformation- 
dependent way. The egg box junctions may be the ligand of this perception system 
1. Perception system 2 may also bind OGs in a size- and conformation-dependent 
way but the ends of the egg boxes may constitute the ligand. Many of the early 
defense responses induced by OGs in  Arabidopsis  cells would depend on this type 
2 perception system. According to the hypothesis of Cabrera et al. ( 2008 ), the modi-
fi cation of the reducing end of the OGs does not hinder egg box formation but it 
prevents egg box binding to the type 2 perception system.  

2.10.2     Cellodextrins as HAMPs 

 Cellulose-derived oligosaccharides may also play an important role in triggering 
innate immune responses (Vidal et al.  1998 ). Cellodextrins (CD), water-soluble 
derivatives of cellulose composed of β-1,4 glucoside residues, have been shown to 
induce a variety of defense responses in grapevine cells (Aziz et al.  2007 ). Degree 
of polymerization determines effi cacy of the CD in inducing defense responses. 
Oligomers of DP 3 and 4 induced a slight production of H 2 O 2 , those of DP5 and 6 
were unable to induce any signifi cant response, while CD of DP > 6 were active. 
DP7 oligomer was 2-fold more active than CD 8 and 9 (Aziz et al.  2007 ). The CD 
oligomers stimulated chitinase and β-1,3-glucanase activities in grapevine cells. 
Overall, the high values were obtained with CD of DP 7–9 (Aziz et al.  2007 ).  

2.10.3      Arabidopsis At Pep Peptides 

 Besides the oligosaccharides, some peptides of host plant origin have been reported 
as endogenous elicitors, which are also called HAMPs.  At Pep1 ( Arabidopsis thali-
ana  elicitor peptide 1), a 23-aa peptide, was identifi ed in soluble extracts of 
 Arabidopsis  leaves as an endogenous elicitor (Huffaker et al.  2006 ; Yamaguchi et al. 
 2006 ; Huffaker and Ryan  2007 ; Krol et al.  2010 ; Shinya et al.  2010 ). Two other 
endogenous elicitors,  At Pep2 and  At Pep3, have also been identifi ed in  Arabidopsis  
and they are distant homologues of  At Pep1. All three elicitors are recognized by the 
PRRs PEPR1 and PEPR2 (Krol et al.  2010 ). Several other homologs of  At Pep1, 
including  At Pep3,  At Pep4,  At Pep5,  At Pep6, and  At Pep7 have been identifi ed in 
 Arabidopsis  (Huffaker et al.  2006 ). 

  At Pep1 and its homologs,  At Pep2-7, are derived from the C-terminal portion of 
their precursor proteins PROPEP1-7, respectively (Huffaker et al.  2006 ). PROPEP1 
is a 92-aa precursor protein.  PROPEP1  belongs to a seven-member gene family 
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( PROPEP2 ,  PROPEP3 ,  PROPEP4 ,  PROPEP5 ,  PROPEP6  and  PROPEP7 ). 
PROPEP1 orthologs have been found in rice, maize, wheat, barley, canola, potato, 
soybean,  Medicago , and poplar plants (Huffaker et al.  2006 ). Transcripts of 
 PROPEP1 ,  PROPEP2  and  PROPEP3  genes were induced by pathogen infection 
and also by PAMPs (Huffaker et al.  2006 ; Huffaker and Ryan  2007 ). 

  At Pep1 activates the expression of its own precursor gene  PROPEP1  (Huffaker 
et al.  2006 ). Because Pep peptides induced the transcription of their own precursor 
genes, it is likely that Pep peptides, which are initially induced by PAMPs, feed 
back into the signaling pathways to generate additional processed peptides to 
further upregulate downstream defense responses (Ryan et al.  2007 ). Thus,  PROPEP  
genes are components of a feedback signaling system that is mediated by the PEPR1 
receptor to amplify the innate immune response of  Arabidopsis .  At Pep1 and its 
homologs ( At Pep2 to  At Pep7) are endogenous amplifi ers of innate immunity of 
 Arabidopsis thaliana .  

2.10.4     Soybean GmSubPep Peptide 

 In soybean, a 12-aa peptide was found to activate transcription of defense genes. The 
HAMP peptide was named  G  lycine   m  ax   Sub tilase  Pep tide (GmSubPep) (Pearce et al. 
 2010 ). The amino acid sequence of the peptide was determined and was found to be 
derived from a member of the subtilisin-like protease (subtilase) family. The sequence 
of the peptide was located within a region of the protein that is unique to subtilases in 
legume plants and not found within any other plant subtilases. GmSubPep peptide is 
processed from a unique region of an extracellular subtilisin- like protease (subtilase) 
(Pearce et al.  2010 ). It was capable of producing a pH change within 10 min and a 
maximal alkalinizing response in 15 min (Pearce et al.  2010 ). Among the suspension-
cultured cells tested from a wide array of species, only the suspension cells produced 
from  Glycine max  (soybean) were capable of producing an alkalinizing response to 
GmSubPep (Pearce et al.  2010 ). The gene encoding this peptide,  Glyma18g48580 , 
has been cloned. The peptide was active at extremely low concentrations. The recep-
tor for this peptide has not yet been isolated (Pearce et al.  2010 ).  

2.10.5     Maize  Zm Pep1 Peptide 

 A pathogen-inducible gene orthologous to the Arabidopsis  AtPROPEP1 gene, which 
encodes the precursor protein of elicitor peptide 1 ( At Pep1), has been identifi ed in 
maize ( Zea mays ) and called  ZmPROPEP1  (Huffaker et al.  2011 ). Both  At PROPEP1 
and  Zm PROPEP1 do not have a conventional signal sequence for export through the 
secretory pathway and both are predicted to localize to the cytosol (Huffaker et al. 
 2011 ).  ZmPROPEP1  encodes a peptide,  Zm Pep1, which is an endogenous elicitor. 
The native length of  Zm Pep1 is predicted to be 23 amino acids similar to the  At Pep 
peptides of  Arabidopsis thaliana . 
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 The  ZmPROPEP1  gene is expressed in response to fungal infection and 
 jasmonic acid. Treatment of maize leaves with  Zm Pep1 induces the expression of 
 ZmPROPEP1  gene (Huffaker et al.  2011 ). Pretreatment with  Zm Pep1 prior to infection 
enhances resistance to the southern leaf blight pathogen  Cochliobolus heterostro-
phus  and the stalk rot pathogen  Colletotrichum gramoinicola  in maize (Huffaker 
et al.  2011 ).   

2.11     Plant Pattern Recognition Receptors 

2.11.1     Structure of PRRs 

 PAMPs are perceived by plants as danger signals and these signals trigger a net-
work of signaling systems activating defense responses. Specifi c receptors for the 
recognition of PAMPs have been identifi ed in the plant cell plasma membrane and 
these receptors are called ‘Pattern Recognition Receptors (PRRs)’. PAMPs are per-
ceived as alarm/danger signals by cognate pattern recognition receptors (PRRs) 
and the PAMP-PRR complex activates the plant immune system (Takakura et al. 
 2004 ; Jones and Dangl  2006 ; Altenbach and Robatzek  2007 ; He et al.  2007 ; Wan 
et al.  2008a ,  b ; Iriti and Faoro  2009 ). Several receptors for the PAMPs have been 
recognized in plasma membrane of plant cells (Table  2.4 ; Mithöfer et al.  2000 ; 
Montesano et al.  2003 ; Fliegmann et al.  2004 ; Ron and Avni  2004 ; Fritz-Laylin 
et al. 2005; Altenbach and Robatzek  2007 ; He et al.  2007 ). The PRRs identifi ed to 
date are modular proteins harbouring an extracellular domain consisting of leu-
cine-rich repeat (LRR) or lysine motifs (LysM) (Table  2.4 ; Saijo  2010 ; Segonzac 

    Table 2.4    Structure of plant pattern recognition receptors (PRRs)   

 PAMP/endogenous elicitor  PRR  Structure 

 fl g22  FLS2  LRR-RLK 
 EFTu  EFR  LRR-RLK 
 Ax21  XA21  LRR-LK 
 Pep1  PEPR1  LRR-RLK 
 PEP2  PEPR2  LRR-RLK 
 EIX1  LeEIX1, LeEIX2  LRR-RLP 
 Chitin  CERK1  LysM-RLK 
 Chitin  CEBiP  LysM-RLP 
 β-glucans  GBP  Glycoside hydrolases 
 Mannose  MBL  Lectin receptor kinase 
 Oligogalacturonides  WAK1  Wall-associated RLK 
 INF1 elicitin  NbLRK1  Lectin-like receptor kinase 
 Capsicein elicitin  NgRLK1  PR5 protein kinase 
 Lipopolysaccharides  Receptor  RLK 
 Peptidoglycan  Receptor  LysM-receptor kinase 
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and Zipfel  2011 ). The PRRs are largely divided into receptor-like kinases (RLKs) 
and receptor- like proteins (RLPs) on the basis of the presence or absence of an 
intracellular kinase domain (Wang et al.  2010a ).

   Most of the PRRs identifi ed are LRR-RLKs (Goff and Ramonell 2007). LRR- 
RLKs are single-pass transmembrane proteins composed of an LRR ectodomain 
(eLRR), a transmembrane domain and a Ser/Thr protein kinase domain related to 
 Drosophila  Pelle (Shiu and Bleecker  2001a ,  b ). The sensors for extracellular mole-
cules consisting of an extracellular ligand-binding domain, a single transmembrane 
domain, and a cytosolic protein kinase domain have been termed RLKs (Seifert and 
Blaukopf  2010 ). Kinases are classifi ed as arginine-aspartate (RD) or non-RD 
kinases. RD kinases carry a conserved arginine (R) immediately preceding the cata-
lytic aspartate (D), while non-RD kinases typically carry a cysteine or glycine in 
place of the arginine (Dardick and Ronald  2006 ). RD kinases are regulated by auto-
phosphorylation of the activation loop, a centrally located domain that is positioned 
close to the catalytic centre. In contrast, non-RD receptor kinases, the activation 
loop is not autophosphorylated. It suggests that the non-RD kinases use alternative 
mechanisms for activation (Dardick and Ronald  2006 ). 

 The PRRs typically carry or associate with non-RD (non-arginine-aspartate) 
kinases to control early events of innate immunity signaling (Chen et al.  2010a ). 
For example, Arabidopsis the PRRs FLS2 and EFR, and the rice PRR XA21 contain 
an intracellular non-RD Ser/Thr kinase (Gómez-Gómez and Boller  2000 ; Zipfel 
et al.  2006 ; Chen et al.  2010a ). However, some PRRs have been identifi ed as RD 
kinases. The PRR for the PAMP elicitin INF1 of  Phytophthora infestans  has been 
identifi ed as a lectin-like receptor kinase and it was designated NbLRK1. NbLRK1 
is a typical RD kinase (Kanzaki et al.  2008 ). The Arabidopsis BRI1-associated 
receptor kinase 1 (BAK1) that associates with FLS2 and EFR is an RD kinase 
(Li et al.  2002 ; Chinchilla et al.  2007a ,  b ). 

 The extracellular domains of RLKs are believed to bind directly to legands to 
perceive extracellular signals (PAMPs), whereas the cytoplasmic kinase domains 
transduce these signals into the cell (Bi et al.  2010 ). Thus, RLKs are proteins 
with a “receptor” and a “signaling domain” in one molecule (Shiu and Bleecker 
 2003 ). Some of the PRRs are RLPs and these include LeEIX1 and LeEIX2, the 
PRRs for the PAMP EIX proteins detected in tomato (He et al.  2007 ). Both RLKs 
and RLPs are characterized by an extracellular domain and a membrane-span-
ning domain. However, RLPs lack an intracellular activation domain and hence, 
require interaction with adaptor molecules for signal transduction (Altenbach 
and Robatzek  2007 ).  

2.11.2     FLS2, the PRR for the PAMP Flagellin (fl g22) 

 The PRR responsible for the PAMP fl agellin (fl g22) recognition in  Arabidopsis 
thaliana  is FLS2 (for  FL AGELLIN- S ENSING  2 ), a leucine-rich repeat receptor- 
like kinase (LRR-RLK) (Chinchilla et al.  2006 ; Sun et al.  2012 ). FLS2 belongs to a 
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subfamily XII of LRR-RK and consists of an extracellular domain with 28 LRR 
motifs, a transmembrane domain, and a cytoplasmic Ser/Thr kinase domain 
(Gómez-Gómez and Boller  2000 ). The  A. thaliana  FLS2 (AtFLS2) LRR domains 
9–15 contribute signifi cantly to fl g22 binding (Dunning et al.  2007 ). The exact 
fl g22-binding site is unknown. Flg22 directly binds to FLS2 and contributes to 
recognition specifi city (Chinchilla et al.  2006 ). FLS2 physically interacts with the 
fl g22 epitope and determines ligand specifi city (Chinchilla et al.  2006 ). 

 The genes similar to  Arabidopsis FLS2  genes have been detected in tomato 
(Robatzek et al.  2007 ), tobacco (Hann and Rathjen  2007 ; Hann et al.  2010 ), and 
 Brassica  species (Dunning et al.  2007 ). FLS2 with extracellular LRR domain has 
been detected in barley, tomato, tobacco, and  Arabidopsis  (Chinchilla et al.  2006 , 
 2007a ; Shen et al.  2007 ). The LRR kinase FLS2, which is homologous to 
 Arabidopsis  FLS2 has been detected in rice (Takai et al.  2008 ; Shinya et al.  2010 ) 
and an  FLS2 - like  gene has also been identifi ed in rice (Takai et al.  2008 ). These 
results suggest that both monocotyledonous and dicotyledonous plants may pos-
sess a fl g22 perception system. 

 Flagellin perception is required for full immunity against bacteria, because 
plants defi cient in FLS2 are more susceptible to adapted and nonadapted bacterial 
pathogens (Zipfel  2009 ). In  Arabidopsis , pretreatment with fl g22 restricts growth 
of the pathogenic bacterium  Pseudomonas syringae  pv.  tomato  DC3000 and  fl s2  
mutants are more susceptible to this bacterium (Zipfel et al.  2004 ). Lack of fl agellin 
recognition allows more growth of the nonadapted bacteria  P .  syringae  pv.  tabaci  
and  P .  syringae  pv.  phaseolicola  (Li et al.  2005b ; de Torres et al.  2006 ). Successful 
bacterial pathogens need to avoid or suppress PAMP-triggered immunity induced 
by fl agellin (Zipfel  2009 ). Some virulence effectors from phytopathogenic bacteria 
do so by directly targeting FLS2 (Göhre et al.  2008 ).  

2.11.3     EFR, the PRR for the PAMP EF-Tu 

 EFR (for EF-Tu RECEPTOR) is the PRR detected in  Arabidopsis  for binding the 
PAMP EF-Tu. It belongs to the same subfamily (LRR-RK XII) as FLS2 (Zipfel 
et al.  2006 ). EFR is a receptor-like kinase (Albert et al.  2010 ) and its structure is 
highly similar to FLS2, with a 21-LRR extracellular domain, a transmembrane 
domain, and a cytoplasmic Ser/Thr kinase domain (Zipfel et al.  2006 ; Albert et al. 
 2010 ). ERF physically interacts with the fi rst 18 amino acids of the N-terminus of 
EF-Tu, the elf peptide (Zipfel et al.  2006 ). No binding of ligand was found with the 
ectodomain lacking the transmembrane domain or with EFR lacking the fi rst 5 of its 
21 LRRs (Albert et al.  2010 ). It suggests that the transmembrane domain and LRR 
ectodomain of EFR are essential for ligand binding. 

 It is suggested that the EFR receptor, which presumably resides in the plasma 
membrane of the plant cells, is exposed to bacterial EF-Tu during infection. It is still 
not known how EF-Tu gets released from the bacterial cells; however, EF-Tu has 
been detected in the secretome of  Xanthomonas campestris  and  Erwinia chrysan-
themi  (Kazemi-Pour et al.  2004 ; Watt et al.  2005 ). 
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 EF-Tu responsiveness was found only in Brassicaceae species (Kunze et al. 
 2004 ). Transient heterologous expression of AtEFR in  Nicotiana benthamiana , a 
plant that normally lacks elf18 responsiveness, restores elf18 binding and responses 
(Zipfel et al.  2006 ). It suggests that downstream signaling components are con-
served between Brassicaceae and Solanaceae (Nicaise et al.  2009 ).  Arabidopsis efr  
mutants are more susceptible to  Agrobacterium tumefaciens  (Zipfel et al.  2006 ). 
EF-Tu is recognized by EFR at the host plasma membrane (Zipfel  2008 ). EFR auto-
phosphorylation has also been reported, suggesting that EFR carries active kinase 
domain (Xiang et al.  2008 ).  

2.11.4     XA21, the PRR for the PAMP Ax21 

 XA21 is a receptor kinase, which consists of LRR, transmembrane, juxtamembrane 
(JM) and intracellular kinase domains (Song et al.  1995 ). XA21 belongs to subfam-
ily XII of the LRR-RKs and is highly similar to EFR. Similar to FLS2 and EFR, 
XA21 possesses a non-RD kinase, whose presence has been correlated with a role 
in innate immunity across kingdoms (Dardick and Ronald  2006 ).  

2.11.5     CERK1, the PRR for the PAMP Chitin 

 Miya et al. ( 2007 ) identifi ed a receptor-like kinase, designated CERK1 (for  C hitin 
 E licitor  R eceptor  K inase  1 ) in  Arabidopsis  as a PRR for the fungal PAMP chitooli-
gosaccharides. Unlike FLS2, EFR, and XA21, CERK1 possesses three extracellular 
Lysine Motif (LysM) domains instead of LRRs (Miya et al.  2007 ; Wan et al.  2008a ). 
The Lysine motif is a ubiquitous protein module found in prokaryotes as well as 
eukaryotes. LysM proteins were fi rst described in bacteria and shown to have bind-
ing capacity for peptidoglycan (PGN), a linear form of alternatively β-1,4-linked 
N-acetyl-muramic acid and GlcNAc (β-1,4 linked N-acetyl-glucosamine) (Zhang 
et al.  2009a ). 

 CERK1 is a plasma membrane protein containing three LysM motifs in the 
extracellular domain and an intracellular Ser/Thr kinase domain with autophos-
phorylation/myelin basic protein (MBP) kinase activity, suggesting that CERK1 
plays a critical role in fungal PAMP perception in plants (Miya et al.  2007 ; Iriti and 
Faoro  2009 ; Petutschnig et al.  2010 ). The CERK1 ectodomain binds chitin and 
partially de- acetylated chitosan directly without any requirement for interacting 
proteins (Petutschnig et al.  2010 ). The three LysM domains have been shown to be 
necessary for chitin binding (Petutschnig et al.  2010 ). 

 CERK1 contains an intracellular serine/threonine kinase domain, which makes it 
an excellent candidate for the  Arabidopsis  chitin receptor. CERK1 may be involved 
in the perception of the chitin oligosaccharide elicitor at the cell surface and the 
transduction of the signal into the cytoplasm via its intracellular serine/threonine 
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kinase activity (Miya et al.  2007 ). These serine/threonine kinases have been considered 
good candidates for playing a role in fungal chitin reception (Eckardt  2008 ; 
Lohmann et al.  2010 ). 

 CERK1 has a higher affi nity for chitin having a longer residue of  N -acetyl 
glucosamine (Lizasa et al.  2010 ). CERK1 is autophosphorylated  in vitro  and chitin 
does not affect the phosphorylation of CERK1 (Lizasa et al.  2010 ). CERK1 binds 
specifi cally and directly to chitin. LysM RLK1 was shown to bind only to chitin, 
and not to colloidal chitosan and peptidoglycan (PGN), although all of them have a 
common backbone, GlcNAc. The results suggest that LysM RLK1 may recognize 
the acetyl group of N-acetylglucosamine residues of chitin and it may be inhibited 
by the bulky peptide group cross-linked to N-acetyl-muramic acid residues of 
peptidoglycan (Lizasa et al.  2010 ). 

 The knock-out mutants for  CERK1  completely lost the ability to respond to 
the chitin elicitor, including MAPK activation, ROS generation, and gene expres-
sion (Miya et al.  2007 ). The complete loss of the gene responses induced by the 
chitin elicitor indicates that CERK1 serves as the ‘master switch’ of the signaling 
cascade. The mutation in  CERK1  gene blocked the induction of almost all 
chitooligosaccharide- responsive genes and led to more susceptibility to fungal 
pathogens but had no effect on infection by a bacterial pathogen (Wan et al. 
 2008b ).  Arabidopsis cerk1  mutants are more susceptible to fungal pathogens 
(Miya et al.  2007 ; Wan et al.  2008b ). Exogenously applied chitooligosaccharides 
enhanced resistance against both fungal and bacterial pathogens in the wild-type 
plants but not in the mutant. These results suggest that CERK1 (LysM RLK1) is 
essential for chitin signaling in plants as part of the receptor complex and is 
involved in chitin-mediated plant innate immunity (Wan et al.  2008a ). 

 CERK1 was also involved in bacterial recognition, as  cerk1  mutants are more 
susceptible to  P .  syringae  pv.  tomato  DC3000 (Gimenez-Ibanez et al.  2009a ). 
 cerk1  mutants, however, were not impaired in their responsiveness to fl g22, 
elf18, LPS, or PGN (Gimenez-Ibanez et al.  2009a ), suggesting that CERK1 is 
involved in the recognition of yet unknown bacterial PAMP. Gimenez-Ibanez 
et al. ( 2009b ) reported reduced activation of a PAMP-induced defense response 
on plants lacking the CERK1 gene after treatment with crude extracts of the 
bacterial pathogen  P .  syringae  pv.  tomato  DC3000. This strengthens the earlier 
fi ndings that CERK1 mediates perception of an unknown bacterial PAMP in 
 Arabidopsis . 

 A LysM receptor-like kinase similar to  Arabidopsis  CERK1 has been detected 
in rice. It was designated OsCERK1 and it showed high homology with  Arabidopsis  
CERK1 (Shimizu et al.  2010 ). OsCERK1 encoded a receptor-like kinase consist-
ing of 624 amino acid residues, containing a signal peptide, an extracellular 
domain, a transmembrane region and an intracellular Ser/Thr kinase domain. Motif 
analysis indicated the presence of one LysM in the OsCERK1 extracellular domain, 
while CERK1 contained three LysM motifs in its extracellular domain (Shimizu 
et al.  2010 ). The expression of  OsCERK1  was up-regulated by elicitor treatment 
(Shimizu et al.  2010 ).  
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2.11.6     CEBiP, the Second PRR for the PAMP Chitin 

 Another PRR protein for the perception of chitin has been recognized in rice and 
designated chitin elicitor-binding protein (CEBiP) (Kaku et al.  2006 ; Shinya et al. 
 2010 ). It is a receptor-like protein (RLP), unlike the PRR OsCERK1, which is a 
receptor-like kinase (RLK). CEBiP contains extracellular LysM motifs for chitin- 
binding but lacks an intracellular kinase domain, which is characteristically present 
in OsCERK1. CEBiP is a transmembrane protein with two extracellular LysM 
domains and a short cytoplasmic tail. It is predicted to have the two LysM domains 
in its extracellular part and a single transmembrane domain. It directly binds the 
fungal PAMP chitin (Kaku et al.  2006 ). 

 CEBiP specifi cally binds the chitin oligosaccharide. Its knock-down transfor-
mants exhibited the suppression of chitin-induced defense responses, suggesting 
that CEBiP functions as receptor for the PAMP (Kaku et al.  2006 ). RNAi experiment 
showed that CEBiP is required for chitin-induced defenses in rice (Kaku et al. 
 2006 ). CEBiP functions as a cell surface receptor for chitin elicitor in rice (Miya 
et al.  2007 ). The predicted structure of CEBiP does not contain any intracellular 
domains, suggesting that an additional component(s) is required for signaling 
through the plasma membrane into the cytoplasm (Miya et al.  2007 ). Although 
CeBiP possesses two LysM domains and a transmembrane region, it does not have 
any domain that could function as a signal transduction module (Kaku et al.  2006 ). 
Since CEBiP lacks a signifi cant intracellular domain, it likely is only a part of the 
chitin receptor complex in rice (Kaku et al.  2006 ). An obvious partner for CEBiP 
would be a membrane-associated receptor-like kinase (Wan et al.  2008a ). 

 Several studies have indicated that rice requires both the types of plasma mem-
brane PRRs CEBiP and OsCERK1 for chitin signaling. The extracellular domain 
of OsCERK1 can interact with that of CEBiP. It appears that CEBiP plays a major 
role in chitin elicitor binding and that OsCERK1 functions as a signal transducer 
through its Ser/Thr kinase activity in rice (Shimizu et al.  2010 ). In the absence of 
chitin oligosaccharides, CEBiP and OsCERK1 mostly exist separately from each 
other, although a major portion of CEBiP appears to exist as homo-oligomers. 
CERK1 may form a heterodimer with CEBiP to bind chitin (Shimizu et al.  2010 ).  

2.11.7     NbLRK1, the PRR for the PAMP INF1 Elicitin 

 The PRR for the PAMP elicitin INF1 of  Phytophthora infestans  has been identifi ed 
as a lectin-like receptor kinase and it was designated NbLRK1. NbLRK1 is a typical 
RD kinase (Kanzaki et al.  2008 ). The gene encoding this receptor,  NbLRK1 , has 
been isolated from  Nicotiana benthamiana  (Kanzaki et al.  2008 ). The structure of 
lectin-like receptor kinases (LRKs) is similar to other plant receptor-like kinases 
with an N-terminal targeting signal, an extracellular domain, a single transmem-
brane (TM) spanning helix, and a highly conserved cytosolic kinase domain. The 
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extracellular domain shows homology to lectin proteins known to bind carbohy-
drates (van Damme et al.  1998 ). NbLRK1 belongs to the class B lectin-like receptor 
kinases (Kanzaki et al.  2008 ). 

 The 31 amino acids fragment of NbLRK1 kinase domain within VIb subdo-
main has been shown to interact with INF1  in vitro . The VIb subdomain of Ser/
Thr kinase is known to contain the catalytic loop with an invariant Asp serving as 
the catalytic base necessary for the kinase function. This site is close to the VII 
and VIII domains where the activation loop is located, which is necessary for 
autophosphorylation of kinases (Dardick and Ronald  2006 ; Kanzaki et al.  2008 ). 
It is suggested that INF1 binding to the VIb subdomain of NbLRK1 alters its 
kinase activity presumably by autophosphorylation (Kanzaki et al.  2008 ). 
NbLRK1 contains a conserved arginine (R) at immediately preceding the invari-
ant aspartate (D) in subdomain VIb. It suggests that NbLRK1 is a typical RD 
kinase (Kanzaki et al.  2008 ). It does not belong to the non-RD kinases known to 
harbor many kinases involved in pathogen recognition receptors signaling 
(Dardick and Ronald  2006 ). 

 INF1 and NbLRK1 proteins also interact  in vitro . INF1 treatment induced 
autophosphorylation of NbLRK1  in vivo . Virus-induced gene silencing of 
NbLRK1 delayed INF1-mediated defense responses in  N .  benthamiana  (Kanzaki 
et al.  2008 ). These results suggest that NbLRK1 recognizes INF1 elicitor and 
transduces the defense signals. 

 NbLRK1 has been found to be localized at plasma membrane in tobacco (Kanzaki 
et al.  2008 ). INF1 is known to be secreted by  P .  infestans  through its N-terminal 
signal peptide and was suggested to localize at the extracellular space of plant tissue 
(Kamoun et al.  1997a ). Tyler ( 2002 ) suggested that plant recognition of elicitins 
takes place inside the plant cells and elicitins would have been transported inside 
plant cells by receptor-mediated endocytosis. The elicitin quercinin of  Phytophthora 
quercina  was reported to be localized inside the cells of host oak plants (Brummer 
et al.  2002 ). Collectively these studies suggest that INF1 protein initially localizes 
in the apoplast but then traffi cks inside plant cells by endocytosis, where it interacts 
with kinase domain of NbLRK1 (Kanzaki et al.  2008 ).  

2.11.8     NgRLK1, the PRR for the PAMP Elicitin Capsicein 

 A PRR for the elicitin capsicein has been identifi ed in tobacco ( Nicotiana glutinosa ) 
and it was designated NgRLK1 (Kim et al.  2010 ). NgRLK1 has a domain structure 
similar to that of all plant RLKs. The extracellular domain of NgRLK1 contains 
both lectin-like and S-locus glycoprotein domains, in addition to a PAN AP domain, 
which is known to mediate protein-protein or protein-carbohydrate interactions. 
Extracellular NgRLK1 was found to interact with the elicitin capsicein. Capsicein 
was found to bind to the intracellular kinase domain of NgRLK1 (Kim et al.  2010 ). 
NgRLK1 was more closely related to the protein kinase homologous to PR5 K from 
 Arabidopsis thaliana  than to the lectin-like receptor kinases. It has been suggested 
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that plant recognition of capsicein occurs in the extracellular and intracellular 
spaces (Kim et al.  2010 ). NgRLK1 is a new type of plant RLK that recognizes 
capsicein (Kim et al.  2010 ).  

2.11.9     LeEIX1 and LeEIX2, the PRRs for the PAMP 
EIX Proteins 

2.11.9.1     Two Different EIX Receptors Exist for Perception of the PAMP 
EIX Signals 

 Two PRRs have been identifi ed in tomato for the perception of the fungal PAMP 
EIX (Ethylene-Inducing Xylanase elicitor). These include LeEIX1 and LeEIX2, 
which contain a leucine zipper, an extracellular LRR domain, a transmembrane 
domain, and a C-terminal domain with an endocytosis signal (Ron and Avni 
 2004 ). These PRRs have been identifi ed as cell-surface receptors without kinase 
domain in plants (Ron and Avni  2004 ; Kaku et al.  2006 ). The two EIX proteins 
are highly similar to each other and have extracellular domains of 31 LRRs. The 
structure of these EIX receptors is similar to a family of receptor-like proteins 
(RLPs) (He et al.  2007 ). These EIX receptors belong to a superclade of leucine-
rich repeat receptor- like proteins with a signal for receptor-mediated endocyto-
sis, which was shown to be essential for proper induction of defense responses 
(Bar et al.  2010 ). LeEIX2 contains the conserved endocytosis signal YxxΦ 
within the short cytoplasmic domain, and mutation in this endocytosis motif 
resulted in abolishment of hypersensitive response (HR) induction in response 
to the PAMP EIX, suggesting that endocytosis plays a key role in mediating the 
signal generated by EIX that leads to hypersensitive response induction (Ron 
and Avni  2004 ).  

2.11.9.2     LeEIX2 Transmits EIX-Induced Signals, Whereas LeEIX1 
Attenuates EIX-Signaling of LeEIX2 

 The tomato PRRs LeEIX1 and LeEIX2 appear to act in distinctly different ways 
in the PAMP-PRR signaling complex. It has been observed that both the PRRs 
are able to bind the PAMP EIX, but only LeEIX2is involved in triggering defense 
responses (Bar et al.  2011 ). LeEIX1 heterodimerizes with LeEIX2 upon applica-
tion of the EIX elicitor. LeEIX1 attenuates EIX-induced internalization and 
signaling of the LeEIX2 receptor. The brassinosteroid co-receptor, BAK1, binds 
LeEIX1 but not LeEIX2. In BAK1-silenced plants, LeEIX2 was no longer able 
to attenuate plant responses to EIX, indicating that BAK1 is required for this 
attenuation. It is suggested that LeEIX1 functions as a decoy receptor for LeEIX2, 
a function which requires BAK1 (Bar et al.  2010 ). For effective signal transduc-
tion, the effective PRR LeEIX2 requires action of the co-receptor BAK1, which 
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may nullify the negative action of LeEIX1 in signal transduction. These studies 
suggest the potential role of BAK1 in signal transduction through the PAMP-
PRR signaling net work.   

2.11.10     Glucan—Binding Proteins 

2.11.10.1     Glucan-Binding Proteins in Soybean and  Medicago truncatula  

 Many β-glucan components of fungal and oomycete cell walls act as PAMPs 
(Shibuya and Minami  2001 ; Silipo et al.  2010 ). A β-glucan-binding protein (GBP) 
has been identifi ed as a PRR in soybean. It lacks a transmembrane domain and pre-
dominantly localizes to the cytoplasmic face of the plant cell wall (Fliegmann et al. 
 2004 ). In  Medicago truncatula , a high-affi nity β-glucan-binding site was character-
ized biochemically. Four full-length clones encoding putative β-glucan-binding 
proteins from  M .  truncatula ,  Mt GBP1, 2, 3, and 4, composing a multigene family 
encoding GBP-related proteins have been identifi ed (Leclercq et al.  2008 ). The 
GBP has been detected in vesicles at the plasma membrane and in the cytoplasm 
and it indicates that GBP may interact with a transmembrane RLK or RLP 
(Fliegmann et al.  2004 ).  

2.11.10.2     Glucan-Binding Protein Contains Two Different Activities: 
Releases β Glucan from β Glucan Polysaccharides and Also 
Acts as a Receptor of β Glucan Signaling 

 GBP represents a soluble extracellular binding protein. It is a member of family 81 
glycoside hydrolases (Fliegmann et al.  2005 ). GBP has been shown to contain two 
different activities. As part of the plasma membrane-localized pathogen receptor 
complex, it binds the PAMP β-glucan, triggering the activation of defense responses. 
Additionally, the GBP is able to hydrolyze β-1,3-glucans present in the cell walls of 
potential pathogens (Fliegmann et al.  2005 ). GBP initially acts on oomycete/fungus- 
derived heptaglucosides as a glucan hydrolase, releasing β-glucans that subse-
quently are perceived by a different domain of GBP (Fliegmann et al.  2004 ).   

2.11.11     Mannose-Binding Lectin Receptors 

 Some mannose-binding lectin (MBL) receptor kinases have been identifi ed as 
PRRs for perception of PAMPs. Function of MBL appears to be pattern recognition. 
MBL recognizes carbohydrate patterns, found on the surface of a large number of 
pathogenic microorganisms. MBL binds to carbohydrates (specifi cally mannose 
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residues). The lectin receptor kinases (LecRKs) contain an extracellular domain of 
mannose specifi c binding lectin and an intracellular Ser/Thr kinase catalytic 
domain (Barre et al.  2002 ). A mannose-binding lectin (MBL) gene,  CaMBL1 , has 
been isolated from pepper ( Capsicum annuum ) leaves (Hwang and Hwang  2011 ). 
The  CaMBL1  gene contains a predicted  Galanthus nivalis  agglutinin-related lectin 
domain responsible for the recognition of high-mannose  N -glycans. The CaMBL1 
protein exhibits binding specifi city for mannose and is mainly localized to the 
plasma membrane. Mannose has been recognized as a PAMP found in fungal 
pathogens (Meyer-Wentrup et al. 2007).  

2.11.12     RLK Receptor for the PAMP Lipopolysaccharides 

 The bacterial PAMP lipopolysaccharide (LPS) was found to bind to tobacco cells 
and become internalized into endocytic vesicles, suggesting a receptor-mediated 
process (Gross et al.  2005 ). It has been suggested that the receptor of the LPS may 
be a receptor-like kinase (RLK) (Sanabria and Dubery  2006 ). Further studies are 
needed to characterize the PRR for the PAMP LPS.  

2.11.13     Peptidoglycan-Binding Proteins 

 The PRR of the PAMP peptidoglycan is still not known. The LysM motif present 
in several receptor kinases and transmembrane proteins in plants can bind pepti-
doglycan (Guan and Mariuzza  2007 ; Zhang et al.  2007b ; Buist et al.  2008 ). It is 
likely that these proteins may function as PRRs for the carbohydrate PAMPs 
(Nicaise et al.  2009 ).  

2.11.14     Pep Receptors for the HAMPs Pep Proteins 

 Two receptors for the perception of  At Pep1 have been recognized in  Arabidopsis . 
The Pep1 receptor, PEPR1, and the gene encoding the receptor have been isolated 
from  Arabidopsis  suspension-cultured cells (Yamaguchi et al.  2006 ). PEPR1 is a 
typical LRR receptor kinase, having an extracellular LRR domain and an intracel-
lular protein kinase domain, and belongs to the LRR XI subfamily of the 15 LRR- 
RLK subfamilies (Shiu et al.  2004 ; Qi et al.  2010 ).  At PEPR1 has guanylyl cyclase 
activity, generating cGMP from GTP, and the cGMP can activate CNGC2-dependent 
cytosolic Ca 2+  elevation (Qi et al.  2010 ). 

 The second Pep1 receptor,PEPR2, has been identifi ed by Yamaguchi et al. 
( 2010 ).It is a plasma membrane LRR receptor kinase and has 76 % amino acid simi-
larity to PEPR1 (Yamaguchi et al.  2010 ). PEPR1 has been identifi ed as a receptor 
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for the HAMPs  At Pep1,  At Pep2,  At Pep3,  At Pep4,  At Pep5, and  At Pep6 and PEPR2 
is a receptor for  At Pep1 and  At Pep2 (Yamaguchi et al.  2010 ). 

 The  pepr1  and  pepr2  mutants affected in PEPR1 and PEPR2 and the wild type 
 Arabidopsis  plants were sensitive to AtPep1, but the double mutant  pepr1 / pepr2  
was completely insensitive.  At Pep1 triggers a receptor-dependent transient depolar-
ization through activation of plasma membrane anion channels. This effect was 
absent in the double mutant  pepr1 / pepr2  (Krol et al.  2010 ). These results suggest 
that a receptor complex consisting of two PRRs (PEPR1 and PEPR2) acts as recep-
tor for  At Pep1. The double mutant also fails to respond to  At Pep2 and  At Pep3, the 
homologues of  At Pep1, suggesting that the receptor complex PEPR1 and PEPR2 is 
responsible for the perception of all three HAMPs (Krol et al.  2010 ). 

 Both PEPR1 and PEPR2 were transcriptionally induced by the HAMP Pep 
peptides (Yamaguchi et al.  2010 ). Methyl jasmonate induced transcription of both 
 PEPR1  and  PEPR2  expression within 30 min, whereas methyl salicylate and 
1- aminocyclopropan-1-carboxylic acid, an ethylene precursor, did not induce 
either PEPR1 or PEPR2 (Yamaguchi et al.  2010 ). The results suggest that JA sig-
naling system may be involved in activation of PEPRs. The receptors may be 
involved in amplifi cation of the innate immune response in  Arabidopsis  induced 
by Pep peptides (Yamaguchi et al.  2006 ).  

2.11.15     WAK1 as a Receptor for the HAMP 
Oligogalacturonides 

 Oligogalacturonides (OGs) released from the plant cell wall are active as 
damage- associated molecular patterns (DAMPs) or host-associated molecular 
patterns (HAMPs) for activation of the plant immune response (Brutus et al. 
 2010 ). The wall-associated kinase 1 (WAK1) has been identifi ed as a receptor of 
OGs (Brutus et al.  2010 ). WAK1 belongs to the huge family of 610 receptor-like 
kinases identifi ed in the  Arabidopsis thaliana  genome (Shiu and Bleecker 
 2001a ,  b ). WAKs display a typical plant Ser/Thr kinase signature and an extra 
cytoplasmic domain (ectodomain) containing several EGF ( E pidermal  G rowth 
 F actor)-like repeats. WAK1 binds  in vitro  to OGs through the N-terminal non-
EGF portion of the ectodomains (Decreux et al.  2006 ; Cabrera et al.  2008 ). 
WAK1 is induced by wounding, bacterial infection, and salicylic acid treatment 
(He et al. 1998,  1999 ; Wagner and Kohorn 2001). WAK1 is up-regulated in 
response to OGs, whereas it is slightly down-regulated by fl g22 (Denoux et al. 
 2008 ). WAK1 was capable to sense OGs  in vivo  and trigger a defense response 
(Brutus et al.  2010 ). The role of WAK1 as a receptor of the HAMP OGs was 
demonstrated by constructing chimeric receptors carrying EFR and WAK1. 
Upon stimulation with OGs, the WAK1 ectodomain was capable of activating 
the EFR kinase domain. Transgenic plants over expressing WAK1 are more 
resistant to  Botrytis cinerea  (Brutus et al.  2010 ).   
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2.12     Transmembrane Proteins Interacting with PRRs 
in PAMP-PRR Signaling Complex 

2.12.1     Signaling Adapters/Amplifi ers in PAMP-PRR 
Signaling Complex 

 Plant pattern recognizing receptors (PRRs) interact with additional transmem-
brane proteins that act as signaling adapters or amplifi ers to achieve full func-
tionality (Zipfel  2009 ). These transmembrane proteins include BAK1 (for  B RI1 
(BRASSINOSTEROID INSENSITIVE1)- A SSOCIATED K INASE1), BIK1 
( B OTRYTIS- I NDUCED  K INASE 1 ), and BIR1 ( B RANCHING  I NHIBITING 
 R ECEPTOR 1 ) (Postel et al.  2010 ; Zhang and Zhou  2010 ; Zhang et al.  2010a ). 
BAK1 is also called SERK3 (for Somatic EMBRYO RECEPTOR KINASE3) and 
it belongs to the LRR-receptor-like kinase (RLK). BAK1 belongs to the LRR type 
II SERK subfamily (Chinchilla et al.  2007b ; Heese et al.  2007 ; Zipfel  2008 ). 
BAK1 is a component of diverse processes, including brassinosteroid signaling, 
light responses, cell death, and plant innate immunity (Chinchilla et al.  2009 ). 
BAK1 was originally identifi ed as a BRI1-associated receptor kinase mediating 
brassinosteroid signaling (Li et al.  2002 ; Nam and Li  2002 ). Brassinosteroids 
(BR), a class of plant hormone with essential roles in plant growth and develop-
ment, are perceived by LRR-RK BRI1, which is structurally similar to the PRR 
FLS2 (Belkhadir et al.  2006 ). BAK1 is a positive regulator of PAMP-triggered 
plant immunity and it acts as an adaptor of multiple LRR-RKs that act in defense 
signaling, including the PRRs FLS2, EFR, PEPR1 and PEPR2 (Chinchilla et al. 
 2007a ,  b ; Ryan et al.  2007 ; Gao et al.  2009a ; Postel et al.  2010 ; Schulze et al. 
 2010 ). It also acts as an adaptor of the receptor kinases BIR1 and SOBIR1, which 
seem to act as part of a presumed PRR complex(es) and/or at a downstream step 
in the signaling cascade (Saijo  2010 ). 

 BAK1 forms a complex with the RLK BIR1 to negatively regulate defense 
responses (Gao et al.  2009a ). BIK1 is a receptor-like cytoplasmic kinase 
(RLCK). The PAMP fl g22 interacts with BAK1 to phosphorylate BIK1, which 
seems to act as positive regulator of the PAMP signaling pathway (Lu et al. 
 2010 ; Zhang et al.  2010a ). BIK1 is an essential component in PAMP signal 
transduction, which links the PAMP receptor complex to downstream intracel-
lular signaling (Lu et al.  2010 ). 

 Zhang et al. ( 2010a ) identifi ed a number of PBS1-like (PBL) RLCKs (cytoplas-
mic receptor-like kinases), including BIK1 and several other PBLs, as components 
in PAMP- signaling pathways. PBL proteins belong to the subfamily VII of cyto-
plasmic receptor-like protein kinases (Zhang et al.  2010a ). PBL1, PBL2, and PBS1 
appear to additively contribute to PAMP- signaling (Zhang et al.  2010a ). AtPHOS32, 
AtPHOS34, and AtPHOS43 are the other signaling components in PAMP-triggered 
immunity (Peck et al.  2001 ; Merkouropoulos et al.  2008 ). Another LRR-RLK, 
ERECTA has been shown to interact with PRRs (Godiard et al.  2003 ; Llorente et al. 
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 2005 ). Identifi cation of extensive engagement of membrane- localized receptors and 
regulators in signaling suggests that these membrane proteins represent a key aspect 
of plant immunity.  

2.12.2     BAK1 Is Required for Proper Functionality of PRRs 

 BAK1 appears to be a key component in plant innate immune system and suppres-
sion of  BAK1  gene expression results in suppression of the plant innate immunity. 
 BAK1 -silenced plants were found to be more susceptible to adapted and non-adapted 
 Pseudomonas  and to the oomycete  Hyaloperonospora parasitica  (Heese et al. 
 2007 ). Arabidopsis  bak1  mutants are also extremely susceptible to necrotrophic 
fungi  Botrytis cinerea  and  Alternaria brassicicola  (Kemmerling et al.  2007 ). These 
results demonstrate the importance of BAK1 in immune signaling. 

 BAK1and/or its homologs have been shown to be required for full function of 
PAMP-PRR signaling complex to activate plant immune responses (Schulze et al. 
 2010 ). Chinchilla et al. ( 2007b ) reported that plants mutated in  BAK1  were strongly 
affected in the PAMP elf18 responses. Arabidopsis  bak1  mutants are largely 
impaired in the PAMP fl g22-induced defense responses (Chinchilla et al.  2007b ; 
Heese et al.  2007 ). Silencing of  NbBAK1 in  Nicotiana benthamiana  results in 
decreased responsiveness to the PAMPs CSP22 and INF1 (Heese et al.  2007 ). 
BAK1 is required for proper functionality of several PRRs including FLS2, EFR, 
CERK1, PEPR1, and PEPR2 (Postel et al.  2010 ; Zhang and Zhou  2010 ). BAK1 was 
identifi ed as a positive regulator of the PRRs FLS2, EFR, and CSP22 (Chinchilla 
et al.  2007a ,  b ; Heese et al.  2007 ; Zipfel  2008 ). It has been demonstrated that BAK1 
forms a complex with FLS2 in a ligand-dependent fashion and is necessary for 
FLS2 signaling (Chinchilla et al.  2007b ; Heese et al.  2007 ). BAK1 interacts with 
PRRs and acts downstream of PRRs. BAK1 has been shown to be dispensable for 
the PAMP fl g22 binding, but it interacts with the PRR FLS2 in a ligand-dependent 
manner shortly after elicitation (Chinchilla et al.  2007b ; Heese et al.  2007 ).  

2.12.3     BAK1 Acts Downstream of PRR Perception by PAMP 

 The BAK1 kinase activity is required for FLS2-mediated signaling but not fl g22 
induced association of FLS2 and BAK1 (Schulze et al.  2010 ). It suggests that BAK1 
acts downstream of FLS2 perception to regulate signaling (Chinchilla et al.  2007b ). 
BAK1 is also required for the activation of another PRR CERK1 in chitin signaling 
(Zhang and Zhou  2010 ). 

 Flg22 perception by FLS2 triggers an interaction between FLS2 and BAK1 
(Chinchilla et al.  2007b ; Heese et al.  2007 ). The fl g22 induced FLS2-BAK1 asso-
ciation occurs within seconds and is accompanied by increased phosphorylation on 
both FLS2 and BAK1 (Schulze et al.  2010 ).  
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2.12.4     BAK1 Functions as an Adapter or Signaling 
Partner for Regulation of PRRs 

 BAK1 is a central regulator of innate immunity in plants (Heese et al.  2007 ). PAMP- 
PRR binding leads to the formation of a molecular platform that involves the recruit-
ment of adaptor proteins to trigger downstream signaling (Heese et al.  2007 ). BAK1 
probably acts as a co-activator of the receptor complex to enhance various signaling 
pathways (Wang et al.  2008a ). Upon PAMP perception, PRR rapidly associates with 
BAK1, thereby initiating downstream signaling. BAK1 acts downstream of several 
PRRs (Nicaise et al.  2009 ). BAK1 acts not only as an adapter of multiple PRRs includ-
ing the PRRs FLS2, EFR, PEPR1 and PEPR2, but also as an adapter of other trans-
membrane proteins BIR1 and SOBIR1. Unlike the direct binding of the PAMP to PRR 
(Chinchilla et al.  2007b ; Kinoshita et al.  2005 ), BAK1 more likely functions as an 
adapter or signaling partner for the regulation of PRRs. Furthermore, BAK1 is required 
for the immune responses triggered by multiple PAMPs including fl agellin, the bacte-
rial elongation factor EF-Tu, peptidoglycans, lipopolysaccharides, cold-shock protein, 
HrpZ (harpin), and the oomycete elicitor INF1 in  Arabidopsis  and tobacco (Chinchilla 
et al.  2007a ; Heese et al.  2007 ; Shan et al.  2008 ). A BAK1 ortholog has been detected 
in rice (Li et al.  2009a ) and it may be involved in the PAMP Ax21-mediated immunity 
(Segonzac and Zipfel  2011 ). Thus, BAK1 appears to associate with multiple PRRs to 
integrate specifi c PAMP perception into convergent downstream signaling. It is still not 
known how the PAMP signal is transmitted from the BAK1-associated receptor com-
plexes at the plasma membrane to intracellular events (Lu et al.  2010 ).  

2.12.5     Rapid Heteromerization and Phosphorylation of PRRs 
and Their Associated Kinase BAK1 

 PRRs form tight complexes with the receptor kinase BAK1 instantaneously after 
ligand binding. FLS2-BAK1 heteromerization occurs almost instantaneously after 
perception of the PAMP fl g22. Flg22 can induce formation of a stable FLS2-BAK1 
complex in microsomal membrane preparations  in vitro  (Schulze et al.  2010 ). 
However, the kinase inhibitor K-252a does not prevent complex formation. The 
results suggest that kinase activity of BAK1 is essential for FLS2 signaling, but not 
for fl g22 induced association of FLS2 and BAK1 (Schulze et al.  2010 ). 

 Schulze et al. ( 2010 ) detected  de novo  phosphorylation of both FLS2 and BAK1 
within 15 s of stimulation with fl g22. Similarly, brassinolide induces BAK1 phos-
phorylation within seconds. Bacterial EF-Tu and AtPep1 induce rapid formation of 
heterocomplexes consisting of  de novo  phosphorylated BAK1 and proteins repre-
senting the ligand-specifi c binding receptors EF-Tu receptor and Pep1 receptor, 
respectively. It is suggested that several LRR-RKs form tight complexes with BAK1 
almost instantaneously after ligand binding and the subsequent phosphorylation 
events are key initial steps in signal transduction (Schulze et al.  2010 ). 
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 BAK1 may be a signal “amplifi er” rather than an integral component of down-
stream signaling pathways (Nicaise et al.  2009 ). BRI1-BAK1 interaction leads to 
the transphorylation of their respective kinase domains and the subsequent 
enhancement of BRI1 signaling output (Wang et al.  2008a ), suggesting that BAK 
is a signal amplifi er rather than an integral component of downstream signaling 
pathways (Nicaise et al.  2009 ). The PRRs for both fl g22 and AtPep1 associate 
with the interacting receptor partner, BAK1, and likely activate cyclic nucleo-
tide-gated calcium channels via receptor guanylyl cyclase activity (Ma et al. 
 2009 ; Postel et al.  2010 ).  

2.12.6     BIK1 

 Downstream of PAMP-PRR-BAK1 signaling complex, several receptor-like 
cytoplasmic kinases (RLCKs) play important role in regulation of the signaling 
pathways. Lacking an apparent extracellular domain, RLCKs more likely func-
tion in signal transduction rather than in signal perception (Lu et al.  2010 ). An 
RLCK member BIK1 (Botrytis-induced kinase 1) plays an important role in 
mediating early fl agellin signaling from the FLS2/BAK1 receptor complex (Lu 
et al.  2010 ). Flg22-induced oxidative burst has been shown to be reduced in  bik1  
mutant  Arabidopsis  plants, suggesting the importance of BIK1 in plant innate 
immune system (Zhang et al.  2010a ). BIK1 was originally identifi ed as a com-
ponent in plant defense against necrotrophic fungal pathogens (Veronese et al. 
 2006 ). 

 Both FLS2 and BAK1 are able to interact with and phosphorylate the receptor- 
like cytoplasmic kinase BIK1, which seems to act as positive regulator of the FLS2 
signaling pathway (Lu et al.  2010 ; Zhang et al.  2010a ). BIK1 forms a complex with 
unstimulated FLS2 in plants, and fl g22 induces a rapid phosphorylation of BIK1 in 
both an FLS2- and BAK-dependent manner (Zhang et al.  2010a ). BIK1 is phos-
phorylated within 1 min upon fl agellin perception (Wu et al.  2011 ). BIK1 is rapidly 
phosphorylated by fl g22 within the fi rst minutes after stimulation, which may hap-
pen instantaneously with the formation of FLS2/BAK1 complex (Lu et al.  2010 ). 

  In vivo  and  in vitro  data suggest that BIK1 associates with both FLS2 and BAK1. 
BIK1 is a substrate of BAK1, whereas BAK1 and FLS2 are also substrates of BIK1, 
suggesting transphosphorylation events between BIK1 and the FLS2/BAK1 
complex. BIK1 is phosphorylated by BAK1, and BIK1 also directly phosphorylates 
BAK1 and FLS2  in vitro . The fl agellin phosphorylation site Thr 287  of BIK1 is 
required for its phosphorylation on BAK1 and FLS2, suggesting that BIK1 is likely 
fi rst phosphorylated upon fl agellin perception and subsequently BIK1 transphos-
phorylates FLS2/BAK1 to propagate fl agellin signaling (Lu et al.  2010 ). BIK1 
appears to function downstream of FLS2/BAK1 complex formation and phosphory-
lation because BIK1 phosphorylation requires not only the presence of both FLS2 
and BAK1, but also their kinase activity (Lu et al.  2010 ). 
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 In addition to phosphorylation, fl g22 induces a dissociation of BIK1 from 
FLS2 (Zhang et al.  2010a ; Lu et al.  2010 ). The flg22-induced BAK1-FLS2 
association is not affected by the ATP-binding site mutant form of BIK1, which 
does not dissociate from FLS2. In contrast, the fl g22-induced phosphorylation of 
BIK1 and BIK1-FLS2 dissociation requires BAK1. Together, these results 
support the proposal that BIK1 acts downstream of FLS2 and BAK1. ATP-
binding site and phosphorylation site mutant forms of BIK1 dominantly 
inhibit PAMP triggered immunity (PTI), indicating that the activated BIK1 
kinase positively regulates PTI signaling. It is possible that the dissociation of 
the phosphorylated BIK1 and PBL1 proteins from FLS2 allows the activation of 
other components downstream of BIK1 and PBL1 (Zhang et al.  2010a ). BIK1 is 
also required for the PAMPs elf18 and chitin-induced responses. BIK1 interacts 
with the PRRs CERK1 and EFR in protoplasts (Zhang et al.  2010a ). BAK1 and/
or its homologs are required for the activation of the receptor kinase CERK1 in 
chitin signaling (Zhang and Zhou  2010 ). The ligand-induced EFR-BAK1 inter-
action has been reported in the PAMP EF-Tu signaling (Schulze et al.  2010 ) and 
BIK1 has been shown to be required for interaction with the EFR (Zhang et al. 
 2010a ). These studies suggest that upon PAMP binding, a complex forms between 
PRR, BAK1, and BIK1. An Arabidopsis  bik1  mutant is severely compromised in 
defense responses induced by fl g22, elf18, and chitin, indicating that BIK1 plays 
a critical role in the integration of signals from multiple PRRs (Lu et al.  2010 ). 
The results demonstrate that BIK1 mediates PAMP- triggered immunity signal 
transduction from multiple PAMP receptor complexes. The BIK1 is an essential 
component in PAMP signal transduction, which links the PAMP receptor 
complex to downstream intracellular signaling (Lu et al.  2010 ). BIK1 may play 
a central role in signal integration from multiple surface-localized receptors 
(Zhang et al.  2010a ).  

2.12.7     PBL Proteins 

 Zhang et al. ( 2010a ) identifi ed a number of the  Arabidopsis  resistance gene PBS1-
like (PBL) cytoplasmic receptor-like kinases (RLCKs) as components in PAMP- 
signaling pathways. PBL proteins belong to the subfamily VII of cytoplasmic 
receptor-like protein kinases. One of the PBL proteins, BIK1, is required for sig-
naling elicited by fl g22, elf18, and chitin and is essential for PAMP-induced resis-
tance to  P .  syringae.  Other members including PBL1, PBL2, and PBS1 also 
contribute to PAMP-triggered defenses. BIK1 is localized to the plasma mem-
brane (Veronese et al.  2006 ). PBS1 and many other PBL proteins may also local-
ize to the plasma membrane, because these proteins possess putative myristoylation 
and palmitoylation sites at the N-terminus (Zhang et al.  2010a ). PBL1, PBL2, and 
PBS1 appear to additively contribute to PAMP- signaling as their corresponding 
mutants showed slightly reduced PAMP-induced responses (Zhang et al.  2010a ). 
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Flg22-induced oxidative burst has been shown to be reduced in  pbl1  mutant 
 Arabidopsis  plants and the reduction was more in  pbl1  and  bik1  double mutant 
plants, suggesting that PBL1 acts additively with BIK1 in plant innate immune 
system (Fig.  2.2 ; Zhang et al.  2010a ).

   PBL1 interacts with unstimulated FLS2 and is phosphorylated upon fl g22 stimu-
lation (Zhang et al.  2010a ). In addition to phosphorylation, fl g22 induces a dissocia-
tion of PBL1 from FLS2 (Zhang et al.  2010a ). The dissociation of the phosphorylated 
PBL1 and also phosphorylated BIK1 from FLS2 allows the activation of other com-
ponents downstream of BIK1 and PBL1 (Lu et al.  2010 ; Zhang et al.  2010a ). BIK1 
and, to a lesser extent, PBL1, PBL2, and PBS1, are required for signaling from 
multiple PAMPs. BIK1, and likely PBS1 and other PBL proteins, directly act down-
stream of FLS2, EFR, CERK1 to trigger immune responses. Thus, the PBL1 and 
PBS1 proteins are key components that integrate signaling from multiple immune 
receptors. It appears that BIK1, PBL1, PBL2, and PBS1, integrate immune signal-
ing from multiple PRRs (Zhang et al.  2010a ).  

2.12.8     ERECTA Protein 

 ERECTA, a LRR- receptor-like protein kinase, is encoded by  erecta  ( er ) gene 
identified in  Arabidopsis  Landsberg  erecta  ecotype (Godiard et al.  2003 ). It is 
a member of the RLK family of transmembrane proteins with a conserved cyto-
plasmic serine/threonine kinase domain and a divergent extracellular LRR 
domain. ERECTA has been shown to interact with LRR-RLKs involved in 
plant innate immunity, potentially PRRs (Godiard et al.  2003 ; Llorente et al. 
 2005 ). It is suggested that ERECTA may function in signal perception and/or 
in transduction (Godiard et al.  2003 ). It is involved in triggering resistance 
against the necrotrophic fungus  Plectosphaerella cucumerina  (Llorente et al. 
 2005 ) and the bacterium  Ralstonia solanacearum  in  Arabidopsis  (Godiard 
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  Fig. 2.2    Flg22-induced oxidative burst in  bik1 ,  pbl1 , and  bik1 / pbl1  mutant  Arabidopsis  plants 
(Adapted from Zhang et al.  2010a )       
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et al.  2003 ). The leucine-rich repeat and the kinase domains of ERECTA were 
specifically required for resistance to  P .  cucumerina , as  er  mutant alleles 
impaired in any of these domains showed enhanced susceptibility to this fun-
gus (Llorente et al.  2005 ).  

2.12.9     AtPHOS32, AtPHOS34, and AtPHOS43 Proteins 

 AtPHOS32, AtPHOS34, and AtPHOS43 are the other signaling components in 
PAMP-triggered immunity. These proteins were shown to be rapidly phosphory-
lated upon fl g22 or chitin treatment (Peck et al.  2001 ; Merkouropoulos et al.  2008 ). 
AtPHOS43 and related proteins in tomato and rice are phosphorylated within min-
utes after treatment with fl agellin or chitin fragments. Phosphorylation of 
AtPHOS43 after fl agellin treatment was dependent on FLS2 (Peck et al.  2001 ). 
AtPHOS32 and AtPHOS34 show similarity to bacterial universal stress protein 
A.AtPHOS32 has been shown to be a substrate of the mitogen-activated kinases 
MPK3 and MPK6 (Merkouropoulos et al.  2008 ). The target phosphorylation site in 
AtPHOS32 is conserved in AtPHOS34 and among orthologues from many plant 
species (Merkouropoulos et al.  2008 ).  

2.12.10     BIR1 

 Upon recognition of the PAMP fl g22, the PRR FLS2 heterodimerizes with 
BAK1 and activates the plant immune responses. Because constitutive activa-
tion of defense responses is detrimental, plant defense signaling pathways must 
be negatively controlled (Gao et al.  2009a ). BAK1 forms a complex with BIR1 
(for  B RANCHING  I NHIBITING  R ECEPTOR  1 ) to negatively regulate defense 
responses (Tang et al.  2008 ; Gao et al.  2009a ). 

 BIR1 is a BAK-1 interacting receptor-like kinase. Knocking out  BIR1  leads to 
activation of constitutive defense responses. A mutant, which suppresses the 
activity of  BIR1  has been obtained. The gene  SOBIR1  (suppressor of  bir1 ) 
encodes another receptor-like kinase whose over expression activates defense 
responses (Gao et al.  2009a ). SOBIR1 functions as a specifi c regulator of resis-
tance activated by  bir1  mutation. SOBIR1 is not required for fl g22-mediated 
defense responses. SOBIR1 and BIR1 did not interact with each other. SOBIR1 
has been shown to be a positive regulator of innate immunity and it activates 
plant immune responses (Gao et al.  2009a ). Transgenic plants over expressing 
 SOBIR1  showed enhanced expression of both  PR-1  and  PR-2  genes. BIR1 
appears to negatively regulate SOBIR1 signaling pathways in  Arabidopsis  (Gao 
et al.  2009a ).   
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2.13     PAMP Triggers Increased Transcription of PRR Gene 
and Accumulation of PRR Protein 

2.13.1     PAMPs Activate Expression of Genes Encoding PRRs 

 PAMPs activate the expression of genes encoding various PRRs. The PAMPs 
NLP Pp  (from oomycete) and Flg22 (from bacteria) induced expression of the recep-
tor genes in plants. They induced several folds the expression of receptor- like 
kinases such as lectin RLKs, S-locus RLKs, LRR-RLKs, wall-associated kinases, 
receptor protein kinase, and receptor Ser/Thr kinase in  A. thaliana  (Qutob et al. 
 2006 ). The LPS from  Burkholderia cepacia  up-regulated the gene encoding a 
receptor-like protein kinase (Sanabria and Dubery  2006 ). Many  Arabidopsis  genes 
encoding RLK and RLP were found to be induced by Flg22 or EF-Tu treatment 
(Zipfel et al.  2004 ). Chitin treatment activated the expression of LysM receptor 
kinase gene family (17 genes) in  Lotus japonica  (Lohmann et al.  2010 ). WAK1 
was up-regulated upon perception of its own ligand, similarly to what has been 
shown for FLS2 and EFR (Brutus et al.  2010 ). Out of a total 216 LRR-RLK in 
 Arabidopsis , 27 were found to be transcriptionally induced upon treatment with 
Flg22 or EF-Tu (Zipfel et al.  2006 ). These results suggest that PAMPs trigger 
enhanced expression of several PRRs (Table  2.5 ).

2.13.2        PRRs Are Activated by Widely Varying PAMPs 

 FLS2 and EFR are induced also by bacterial LPS, fungal chitin, and the oomycete- 
derived NPP1 (Zipfel et al.  2006 ). Overall, these different PAMPs seem to trigger 
changes in a common set of genes, indicating that plants do not distinguish bacteria, 
fungi, and oomycetes on the basis of the signaling signature of their PAMPs. Rather, 

   Table 2.5    PAMP-triggered upregulation of expression of PRR genes   

 PAMP  Upregulated gene  Fold increase in expression  References 

 Flg22   FLS2   2.0  Denoux et al. ( 2008 ) 
 Receptor kinase gene  3.3  Qutob et al. ( 2006 ) 
  AtLECRK   9.8  Qutob et al. ( 2006 ) 
  PROPEP   21.2  Huffaker et al. ( 2006 ) 

 HrpZ   PROPEP   40.8  Huffaker et al. ( 2006 ) 
 Chitin   CEBiP   2.6  Kaku et al. ( 2006 ) 
 NPP1   PROPEP1   26.9  Huffaker et al. ( 2006 ) 
 CBEL   WAK1   –  Khatib et al. ( 2004 ) 
 NLP pp    AtLECRK   7.4  Qutob et al. ( 2006 ) 

  WAK L7   19.5  Qutob et al. ( 2006 ) 
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presence of one type of PAMP seems to serve as an indicator of injury or danger in 
general (Zipfel et al.  2006 ). Treatment with fl g22 upregulates the transcription of 
genes encoding PROPEP family precursors and both PEPR receptors, and AtPep1 
treatment induces the transcription of FLS2, the fl g22 receptor (Zipfel et al.  2004 ; 
Ryan et al.  2007 ).  

2.13.3     PRRs May Act Additively in Perception of PAMP 

 Arabidopsis  efr1 ,  fl s2  and  fl s2 efr1  mutants displayed more severe disease symptoms 
than the wild-type plants and allowed more bacterial growth when spray- inoculated 
with  P .  syringae  pv.  tomato  compared with wild-type plants. It was also observed 
that  efr1  and  fl s2 efr1  mutants were more susceptible to  P .  syringae  pv.  tomato  com-
pared with wild type and  fl s2 , respectively, suggesting that FLS2 and EFR can act 
additively in perception of the PAMPs of this bacterium and triggering innate immu-
nity (Nekrasov et al.  2009 ).  

2.13.4     PRRs Bind with PAMPs for Their Activation 

 The PRRs bind with PAMPs. CERK1 binds polymeric chitin oligomers (Petutschnig 
et al.  2010 ). FLS2 binds with the PAMP fl g22 (Chinchilla et al.  2006 ; Boutrot et al. 
 2010 ). PRRs such as FLS2 and EFR contain conserved cysteine residues fl anking 
the LRR domain, which could form intermolecular disulfi de bridges allowing stable 
homo- and heterodimerization or coupling to signaling molecules (van der Hoorn 
et al.  2005 ; Kolade et al.  2006 ). Chinchilla et al. ( 2006 ) showed that FLS2 itself is 
suffi cient to mediate fl g22 binding and there is no evidence for the involvement of 
additional proteins on fl g22 binding. However, a reduction in the fl uidity of FLS2 
upon stimulation by fl g22 was observed, indicative of the formation of larger 
complexes (Ali et al.  2007 ). The binding of an extracellular ligand (PAMP) induces 
a conformational alteration in PRRs leading to their activation (Ali et al.  2007 ).  

2.13.5     Ethylene Regulates Transcription of PRRs 
on PAMP Perception 

 It is still not fully understood how the PAMP recognition by PRR leads to increased 
transcription of PRR genes. Boutrot et al. ( 2010 ) showed that ethylene is an integral 
part of PAMP-triggered immunity. Plants mutated in the key ethylene-signaling 
protein EIN2 are impaired in all FLS2-mediated responses, correlated with reduced 
FLS2 transcription and protein accumulation. The EIN3 and EIN3-like transcrip-
tion factors, which depend on EIN2 activity for their accumulation, directly control 
FLS2 expression. The results suggest a direct role for ethylene in transcription of 
the PRR FLS2 (Boutrot et al.  2010 ). 
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 Ethylene perception and signaling are crucial for  FLS2  gene transcription 
(Boutrot et al.  2010 ). FLS2 promoter revealed the presence of nine potential EIN3/
EILs binding sites (Boutrot et al.  2010 ), suggesting that EIN3 may bind to the pro-
moter of the  FLS2  gene to infl uence its transcription. EIN3 binds to two positions in 
FLS2 promoter in  Arabidopsis  seedlings treated with ethylene. The results suggest 
that endogenous ethylene controls FLS2 expression transcriptionally through direct 
binding of the transcription factor EIN3 and potentially, EIL1 to the FLS2 promoter 
(Boutrot et al.  2010 ). 

 Flg22 induces MAP kinases, which phosphorylate the ethylene biosynthetic 
enzymes ACC synthases 2 and 6 as well as EIN3, leading to its stabilization (Liu 
and Zhang  2004 ; Yoo et al.  2008 ). It is suggested that in the absence of fl agellin, 
endogenous ethylene may ensure a constitutive level of FLS2 expression. On fl g22 
binding, FLS2 may activate MPK6 that, in turn may phosphorylate ACS2/6 and 
further leads to EIN3 stabilization, resulting in increased ethylene production and 
signaling (Boutrot et al.  2010 ). These studies suggest that endogenous ethylene may 
play an important role in PAMP-triggered expression of PRR genes in plants.   

2.14     PAMPs Induce Phosphorylation of PRRs 

2.14.1     PAMP-Induced Autophosphorylation of PRRs 

 Most of the PRRs identifi ed are receptor kinases and these protein kinase PRRs 
are known to be activated by PAMPs (Segonzac and Zipfel  2011 ). Before activa-
tion, the protein kinases are frequently autophosphorylated (Schlessinger  2000 ; 
Gómez- Gómez et al.  2001 ; Wang et al.  2005 ; Kanzaki et al.  2008 ). The PAMP 
fl g22 induces autophosphosphorylation of the PRR FLS2 and the PRR receptor 
kinase is phosphorylated by its own serine/threonine kinase (Gómez-Gómez 
et al.  2001 ; Wang et al.  2001 ). Mutation of the threonine residue 867 in FLS2 
hampers the autophosphorylation response, suggesting that autophosphoryla-
tion of the FLS2 occurs at threonine residue 867 (Robatzek et al.  2006 ). 
Autophosphorylation of the PRR EFR has also been reported, suggesting that 
EFR carries active kinase domain (Xiang et al.  2008 ). 

 The rice PRR, XA21, recognizes the PAMP, Ax21 ( A ctivator of  X A 21 -mediated 
immunity), which is highly conserved in all sequenced genomes of  Xanthomonas  
and in  Xylella  (Lee et al.  2006a ,  2009 ). It has been shown that the intracellular non-
RD cytoplasmic kinase domain of XA21 contains intrinsic kinase activity (Liu 
et al. 2002). Chen et al. ( 2010b ) showed that XA21 juxtamembrane (JM) domain 
is required for kinase autophosphorylation. Threonine 705 in the XA21 JM domain 
is essential for XA21 autophosphorylation  in vitro  and XA21-mediated innate 
immunity  in vivo . The replacement of Thr 705  by an alanine or glutamic acid abol-
ishes XA21 autophosphorylation (Chen et al.  2010d ,  e ). Threonine residues analo-
gous to Thr 705  of XA21 are present in the JM domains of most RD and non-RD 
plant receptor- like kinases (Chen et al.  2010d ). 
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 XA21 autophosphorylation occurs on multiple residues, some of which stimu-
late XA21 function and others of which inhibit XA21 function. Phosphorylation of 
certain residues on XA21 negatively regulates XA21 function, whereas phosphory-
lation on other residues may be required for activation of XA21 function. 
Autophosphorylation of the XA21 JM residues Ser686, Thr688 and Ser689 is 
important for stabilization of the XA21 protein (Xu et al.  2006a ). The Thr705 resi-
due in the XA21 JM region is required for binding to XA21 binding proteins (XBs) 
including XB3, XB10, XB15 and XB24 (Park et al.  2008 ; Chen et al.  2010d ). The 
replacement of Thr705 residue by an alanine or a glutamic acid abolishes XA21 
autophosphorylation and eliminates the interactions between XA21 and XB3, XB10, 
XB15 and XB24 in rice. These results suggest that after being autophosphorylated, 
Thr705 may transfer its phosphoryl group to another XA21 residue, which would 
activate XA21 (Chen et al.  2010a ; Park et al.  2010b ). 

 The  Phytophthora infestans  PAMP INF1 treatment of  Nicotiana benthamiana  
results in autophosphorylation of the PRR NbLRK1. The autophosphorylation 
signal was stronger at 10 min after INF1 treatment (Kanzaki et al.  2008 ). Ser/Thr 
kinase domain of the tobacco PRR NgRLK1 shows autophosphorylation activity 
(Kim et al.  2010 ). NgRLK1 undergoes a conformational change upon enzymatic 
activation (Kim et al.  2010 ). The PAMP chitin oligomers and chitosan rapidly 
induce autophosphorylation of the PRR CERK1 at multiple residues in the juxta-
membrane and kinase domain (Petutschnig et al.  2010 ). Kinase activity of CERK1 
has been shown to be required for its chitin-dependent  in vivo  phosphorylation. 
The PRR CERK1 binds polymeric chitin oligomers. Subsequently, ligand binding 
leads to phosphorylation of CERK1 in the juxtamembrane and kinase domain 
(Petutschnig et al.  2010 ).  

2.14.2     PRR Autophosphorylation Is Essential for PRR 
to Bind to Its Negative Regulators 

 The activity of PRRs may be negatively regulated by some PRR binding proteins. 
Autophosphorylation of the rice PRR XA21 has been shown to be essential for XA21 
to bind to its negative regulators including XB10 (OsWRKY62) (Peng et al.  2008 ), 
XB15 (a PP2C phosphatase) (Park et al.  2008 ) and XB24 (an ATPase) (Chen et al. 
 2010e ). The replacement of Thr 705  residue by an alanine or glutamic acid abolishes 
XA21 autophosphorylation and eliminates interactions between XA21 and the three 
XA21-binding proteins (XB10, XB15, and XB24) in rice (Chen et al.  2010d ). It sug-
gests that PRR phosphorylation is important in binding these negative regulators. 

 Upon perception of PAMP, the PRR may be dissociated from the negative regula-
tors. This may result in nullifying the function of the negative regulators and activat-
ing the function of PRR. One of the negative regulators in rice, XB24, is an ATPase 
(Chen et al.  2010e ). The activity of the PRR XA21 is negatively regulated by XB24. 
Rice lines silenced for  xb24  display enhanced XA21-mediated immunity (Chen et al. 
 2010e ). Association between XB24 and XA21 is compromised upon inoculation of 
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the rice bacterial blight pathogen  Xanthomonas oryzae  pv.  oryzae , which secretes the 
PAMP Ax21 (Chen et al.  2010e ). The PRR XA21 protein is present on the plasma 
membrane after transit from the endoplasmic reticulum (ER) (Park et al.  2010a ,  b ), 
where it recognizes the PAMP Ax21. XB24 physically associates with XA21 and 
uses ATP to promote phosphorylation of certain Ser/Thr sites on XA21, keeping the 
XA21 protein in an inactive state (Chen et al.  2010e ). Upon recognition of the PAMP 
Ax21, XA21 may be dissociated from the negative regulator XB24 and/or XB24-
promoted autophosphorylation may be removed (Chen et al.  2010e ). When the function 
of XB24 is nullifi ed, the XA21 kinase becomes activated, triggering downstream of 
defense responses (Chen et al.  2010e ). These results suggest that PAMP may activate 
PRR by removing the action of negative regulators of PRR.   

2.15     Negative Regulation of PRR Signaling 

 Improperly regulated plant immune responses can lead to the overexpression of 
defense-related genes and cell death (Park et al.  2008 ; Schweswinger and Zipfel 
 2008 ). It is therefore necessary that the PRR signaling components, as well as the 
PRRs themselves, are tightly regulated. Although PRR-mediated immune responses 
are clearly essential for innate immunity in plants, sustained or highly induced 
immune response can be harmful. It is therefore necessary that PRR signaling 
through non-RD kinases be under tight negative regulation. 

 One important class of negative regulators is protein phosphatase 2Cs 
(PP2Cs).  Arabidopsis  PP2C, kinase-associated protein phosphatase (KAPP) 
interacts with BAK1 and the PRR FLS2 (Gómez-Gómez et al.  2001 ). In 
 Arabidopsis , FLS2 is negatively regulated by KAPP, which blocks activated 
FLS2 signaling and attenuates the downstream innate immune response (Gómez-
Gómez et al.  2001 ). Overexpression of KAPP in  Arabidopsis  results in loss of 
sensitivity to fl agellin treatment, suggesting that KAPP negatively regulates the 
FLS2-mediated immune response (Gómez-Gómez et al.  2001 ). 

 XB15, a PP2C phosphatase, is a PRR binding protein in rice. It dephosphorylates 
autophosphorylated XA21 and negatively regulates the PRR XA21-mediated innate 
immune responses (Wang et al.  2006 ; Park et al.  2008 ). Phosphorylation of certain 
residues is required for activation of XA21 function. These residues may be dephos-
phorylated by XB15 to down-regulate XA21 activity (Park et al.  2008 ). XB15, 
another rice protein, negatively regulates the XA21-mediated innate immune 
response (Park et al.  2008 ). Overexpression of the  Xb15  in an XA21 rice line com-
promised resistance to  X .  oryzae  pv.  oryzae  (Park et al.  2008 ). 

 Another rice PRR binding protein, XB24, is an ATPase and it regulates XA21-
mediated immunity (Chen et al.  2010e ). XB24 displays signifi cant ATP hydrolysis 
activity, while XB24 mutant containing a single aminoacid change Ser154 with Ala 
had only negligible ATPase activity, indicating that amino acid Ser154 is essential 
for its ATPase activity (Chen et al.  2010e ). XB24 promotes autophosphorylation of 
the XA21 protein  in vitro . XB24 is not transphosphorylated by the XA21 protein in 
the absence or presence of X.  oryzae  pv.  oryzae  expressing AX21 (Chen et al. 
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 2010e ). XB24 enhances XA21 autophosphorylation and its ATPase activity is 
required for this function. In plant a silencing of  Xb24  expression enhances XA21-
mediated disease resistance (Chen et al.  2010e ). Association between XB15 and 
XA21 is compromised while the association between XB15 and XA21 is enhanced 
upon Ax21 triggering (Park et al.  2008 ; Chen et al.  2010e ). It is possible that the 
regulation by XB24 occurs before Ax21 recognition while regulation by XB15 
occurs after Ax21 recognition (Park et al.  2010a ,  b ).  

2.16     Translocation of PRRs from Plasma Membrane 
to Endocytic Compartments 

2.16.1     Endocytosis of PRRs 

 Receptor endocytosis appears to be a common phenomenon in plant defense 
 signaling system (Altenbach and Robatzek  2007 ; Chinchilla et al.  2007a ; Robatzek 
 2007 ; Geldner and Robatzek  2008 ; Groen et al.  2008 ; Chen et al.  2010a ). The 
endocytic machinery regulates the space and the time of signal transduction and 
processing in the cell (Irani and Russinova  2009 ). Plasma membrane resident 
receptors may be translocated into endosomes and it helps to extend the signaling 
surface ensuring a robust and effi cient cellular signaling system (Geldner and 
Robatzek  2008 ). Translocation of PRRs from plasma membrane to endocytic com-
partments has been widely reported (Fliegmann et al.  2004 ; Gross et al.  2005 ; 
Robatzek et al.  2006 ; Leborgne-Castel et al.  2008 ). 

 The PRR FLS2 is found localized at the plasma membrane. When activated by 
the PAMP fl g22, FLS2 is translocated to endocytic compartments. The induced 
FLS2 endocytosis is dependent on cytoskeleton and proteasome function. FLS2 
lacks a YxxΦ motif (Y = Tyr, x = any amino acid, Φ = hydrophobic residue), which is 
known to play a role in clathrin-dependent endocytosis, but contains a PEST-like 
motif, which is reported to mediate receptor endocytosis via mono-ubiquitination. 
Single mutations in the PEST-like motif or at a conserved, potentially phosphory-
lated, residue in the JM region impaired FLS2 endocytosis (Robatzek et al.  2006 ). 
Endocytosis of the PRR FLS2 has been shown to be important for the PAMP fl g22- 
induced defense signaling system (Chinchilla et al.  2007b ). 

 The tomato PRR LeEIX2 belongs to a superclade of leucine-rich repeat receptor- 
like proteins (RLP) with a signal for receptor-mediated endocytosis (Bar et al.  2010 ). 
It carries the YxxΦ motif, which is involved in endocytosis, in its C-terminal part. 
Mutation in this endocytosis motif resulted in abolishment of HR induction in 
response to the PAMP EIX, suggesting that endocytosis plays a key role in mediating 
the signal generated by EIX that leads to HR induction (Ron and Avni  2004 ). EIX 
triggers internalization of the LeEIX2 receptor on endosomes, which is dependent on 
an intact cytoskeleton. LeEIX2 is internalized on highly motile endosome 15–20 min 
after EIX application (Bar and Avni  2008 ). Similar swift endocytic process has been 
reported in fl g22-activated FLS2 internalization (Robatzek et al.  2006 ). 
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 EFR is a glycosylated transmembrane protein and therefore needs to enter the 
secretory pathway to mature and to reach its fi nal plasma membrane destination 
(Li et al.  2009b ). It is localized at the PM, albeit with signifi cant amounts of the 
receptor in the endo-membrane compartments (Nekrasov et al.  2009 ; Saijo et al. 
 2009 ; Häweker et al.  2010 ). The bacterial PAMP LPS was found to bind to the 
plasma membrane and to become internalized into vesicles in tobacco suspension- 
cultured cells (Gross et al.  2005 ). LPS uptake was abolished by amantadine, an inhibitor 
of receptor-mediated endocytosis (Gross et al.  2005 ). It suggests that the receptor of 
LPS may be translocated to the vesicle. 

 The β-glucan binding protein (GBP) in soybean is devoid of any transmembrane 
domain. Electron microscopy unraveled localization of GBP at the cytoplasmic face of 
the cell wall and to vesicles at the plasma membrane. It is suggested that GBP interacts 
with a receptor-like protein or RLK that is targeted for receptor-mediated endocytosis 
(Fliegmann et al.  2004 ). The PRR XA21 is localized in plasma membrane and may be 
endocytosed to initiate resistance responses during pathogen infection in rice (Chen 
et al.  2010a ). XA21 is primarily localized to the ER but also to the PM (Park et al. 
 2010a ,  b ). The chaperone complex interacts with rice CERK1 in the endoplasmic retic-
ulum (ER) and mediates its maturation and transport to the PM (Chen et al.  2010c ).  

2.16.2     Clathrin-Mediated Endocytosis 

 The PRRs are translocated to endosomes through two different pathways. The fi rst 
one is clathrin-mediated while the other one is ubiquitination-mediated (Robatzek 
et al.  2006 ). PRRs containing a YxxΦ motif show clathrin-dependent endocytosis, 
whereas the PRRs containing PEST-like motif undergo endocytosis via mono- 
ubiquitination (Gómez-Gómez and Boller  2000 ; Ron and Avni  2004 ; Robatzek 
et al.  2006 ; Bar and Avni  2008 ). 

 Clathrin is a basketlike network of protein molecules that forms on the cell 
membrane in response to the attachment of ligands (PAMPs) to receptors (PRRs). 
It coats the endocytotic vesicles which bud off from the membrane and it becomes 
inside surface of the coated vesicle during endocytosis. Clathrin-mediated endo-
cytosis of PRR has been shown to be dependent on reactive oxygen species 
(ROS) production. 

 The oomycete PAMP cryptogein has been shown to stimulate endocytosis in 
tobacco cells. Internalization of the lipophilic dye FM4-64, which is a marker of 
endocytosis, was stimulated a few minutes after addition of cryptogein to tobacco 
cells. The cryptogein increased clathrin-mediated endocytosis. In the presence of 
cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocy-
tosis are specifi cally blocked upon treatment with tyrphostin, a receptor-mediated 
endocytosis inhibitor (Leborgne-Castel et al.  2008 ). The kinetics of the transient 
increase in clathrin-coated pits at the plasma membrane coincided with that of transi-
tory reactive oxygen species (ROS) production occurring within the fi rst 15 min after 
elicitation. In tobacco cells expressing the NADPH oxidase gene  NtrbohD  antisense 
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cDNA, which are unable to produce ROS when treated with cryptogein, the clathrin-
coated pits stimulation was inhibited. These results indicate that the very early endo-
cytic process induced by cryptogein in tobacco is due to clathrin- mediated endocytosis 
and is dependent on ROS production (Leborgne-Castel et al.  2008 ).  

2.16.3     Ubiquitin-Proteasome System May Be Involved 
in PRR Endocytosis 

 Ubiquitin- and proteasome-mediated degradation of proteins plays an important 
role in endocytosis of PRRs (Robatzek et al.  2006 ; Aker and de Vries  2008 ). The 
main function of the proteasome is to degrade unneeded or damaged proteins by 
proteolysis. Proteasomes regulate the concentration of particular proteins and 
degrade misfolded proteins. Proteins are tagged for degradation by a small protein 
called ubiquitin. Proteins are targeted for degradation by the proteasome (Dreher 
and Callis 2007; Goritschnig et al. 2007). Proteasome inhibitors, such as MG132, 
which could deplete the cell’s pool of freely available ubiquitin moieties, prevented 
fl g22-induced internalization of FLS2 (Robatzek et al.  2006 ). It suggests that 
ubiquitin- proteasome system may be involved in endocytosis of the PRR.  

2.16.4     Phosphorylation of PRR May Be Involved 
in PRR Endocytosis 

 PAMP-induced PRR-mediated endocytosis has been shown to be dependent on 
phosphorylation of the PRR. Only those fl g22 peptides that could activate the FLS2 
receptor were able to target FLS2 for endocytosis (Robatzek et al.  2006 ). Mutation 
of a conserved potentially phosphorylated residue within the juxtamembrane region 
abolished FLS2 internalization. Addition of the protein kinase inhibitor K252a also 
abolished FLS2 internalization (Robatzek et al.  2006 ). The kinase-associated pro-
tein phosphatase interacts with FLS2 in vitro (Gómez-Gómez et al.  2001 ) and the 
protein phosphatase 2A inhibitor cantharidin affected FLS2 subcellular traffi cking 
(Serrano et al.  2007 ). These results suggest that phosphorylation of PRR is involved 
in PRR endocytosis.  

2.16.5     Involvement of EHD in Endocytosis 

 Study of mammalian systems revealed that endocytosis depends on a large number 
of protein-protein interactions mediated by specifi c modules. One such module is 
the EH ( E sp15  H omology) domain. The EHD ( EHD omain) structure generally 
consists of two EF-hands and a helix-loop-helix structure that binds calcium, 
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connected to an anti-parallel beta-sheet (Bar et al.  2010 ). The proteins containing 
the EHD have also been detected in plants (Bar et al.  2008 ). The EHDs isolated 
from  Arabidopsis  (AtEHD1 and AtEHD2) contain an EH domain with two EF 
calcium binding hands, a P-loop (GQYSTGKT) and DTPG with a predicted ATP/
GTP binding site, a bipartite NLS (Nuclear localization signal) and a coiled-coil or 
helical domain, as well as a Dynamin –N motif (Dynamin like GTPase domain) 
(Bar et al.  2010 ). 

 The EHD has been shown to be involved in endocytosis in plants (Bar et al.  2008 ; 
Bar and Avni  2008 ). The plant EHD binds to the PRR and this binding is an important 
factor in internalization of the PRR (Bar and Avni  2008 ). EHD has an inhibitory 
effect on endocytosis in plant cells (Bar et al.  2008 ). 

 It has been shown that  Arabidopsis  EHD2 binds the cytoplasmic domain of the 
LeEix2 receptor and inhibits its internalization and signaling (Bar and Avni  2008 ). 
The ability of plant EHD2 protein to bind the LeEIX2 receptor was mediated by the 
EHD2 coiled-coil. Truncated EHD2 lacking the coiled-coil lost most of the ability 
to attenuate LeEix2 signaling (Bar et al.  2009 ). P-loop in EHDs was required for 
proper membranal localization of AtEHD2 (Bar et al.  2009 ). The results suggest 
that P-loop in EHDs is involved in proper membranal localization of AtEHD2, 
while the coiled-coil mediates the binding to target proteins thereby enabling the 
inhibitory function on endocytosis (Bar et al.  2009 ). 

 EHD2 was found to be specifi c to certain endocytic systems, in particular, in 
internalization of receptor-like proteins possessing a YxxΦ motif. It does not inhibit 
the internalization or signaling of FLS2, a receptor lacking this motif (Bar and Avni 
 2008 ). EFR, the receptor from  Arabidopsis  for the bacterial PAMP EF-Tu also car-
ries YxxΦ motif (Zipfel et al.  2006 ). EHD2 appears to exert its inhibitory effect on 
endocytosis through the actin skeleton (Bar et al.  2009 ).  AtEHD2  expression is 
induced in response to the  Pseudomonas syringae  elicitor syringolin (Michel et al. 
 2006 ). The PAMP would have triggered expression of the endocytosis inhibitory 
protein in order to more tightly control the resultant HR (Bar and Avni  2008 ). 

  NtEHD2  expression is rapidly induced upon EIX treatment in  Nicotiana 
tabacum  leaves, with a peak of 1.6–1.8 times the basal  NtEHD2  expression at 4 h 
after EIX application. However, the level of  NtEHD2  returned to normal at 8 h after 
EIX application (Bar and Avni  2008 ). EIX application triggers  NtEHD2  expression, 
upon which NtEHD2 acts to inhibit the defense response in the short term. Longer 
exposure to the PAMP leads to a ‘full-blown’ defense response including the HR, 
free of the inhibitory infl uence of EHD2, suggesting that a control mechanism based 
on the interplay of different proteins may be at work (Bar and Avni  2008 ). 

 At least two endocytic mechanisms for pattern recognition receptors may exist in 
plant cells, and EHD2 is involved in one such mechanism. EHD2 inhibits signaling 
of LeEix2, probably by inhibiting the endocytosis. The endocytosis mechanism of 
FLS2 appears not to require EHD2 involvement (Bar and Avni  2008 ). Flg22 does 
not induce  NtEHD2  expression (Bar and Avni  2008 ). EHD inhibits PAMP-induced 
endocytosis of PRR lacking a kinase domain, but not the PRR possessing a kinase 
domain (Bar and Avni  2008 ).  

2 PAMP Signaling in Plant Innate Immunity



73

2.16.6     What Is the Role for Endocytosis in PAMP-PRR 
Signaling? 

 PAMP-induced internalization of PRRs from the plasma membrane (PM) is closely 
correlated with their immune function (Robatzek et al.  2006 ; Bar and Avni  2008 ). 
It is still not known whether this endocytosis leads to signal activation or attenuation 
of the PRRs (Saijo  2010 ). Endocytosis may help the exogenous ligands to provoke 
plant responses that are rapid, but transient, to ensure proper defense while preventing 
harm for the host cell by clearing the host cell of exogenous ligand (Geldner and 
Robatzek  2008 ). Translocation of activated cell surface receptors is associated 
with an attenuation of ligand-stimulated responses and also contributes to activate 
downstream signaling cascades (von Zastrow and Sorkin  2007 ).   

2.17     ER-QC (for  E ndoplasmic  R eticulum  Q uality  C ontrol) 
Pathways in Biogenesis of PRRs 

2.17.1     ERQC Mechanisms Monitor Protein Folding in ER 

 In plants, pattern recognition receptors (PRRs) are known to reside in cell surface 
plasma membrane and no cytoplasmic PRRs have been reported so far (Zipfel 
 2009 ; Saijo  2010 ). In animals, extracellular PRRs are translated on the ER mem-
brane, enter the ER lumen, and then are transported to plasma membrane (Akashi- 
Takamura and Miyake  2008 ). Similar mechanism of biogenesis and transport of 
proteins may exist in plants (Li et al.  2009b ; Nekrasov et al.  2009 ; Park et al. 
 2010a ,  b ). The biogenesis of trans-membrane PRRs may occur through the endo-
plasmic reticulum (ER) with the aid of ER-resident chaperones (Dodds and 
Rathjen  2010 ; Popescu  2012 ). After synthesis, proteins must rapidly fold to per-
form their biological activities (Anelli and Sitia  2008 ). ER is highly specialized 
for folding proteins and it greatly enhances protein folding effi ciency (Kleizen 
and Braakman  2004 ). In the ER lumen, chaperones and folding enzymes are abun-
dant and these folding factors in general prevent aggregation and thereby allow 
more effi cient folding of a large variety of proteins (Kleizen and Braakman  2004 ). 
Folding status of client proteins is monitored during their folding and maturation 
by the process called ER-QC (for Endoplasmic  R eticulum  Q uality  C ontrol) 
(Anelli and Sitia  2008 ). Unfolded proteins are retained in the ER until they are 
properly folded, or ultimately destroyed by ER-associated degradation (ERAD) in 
the cytosol (Vembar and Brodsky  2008 ). Plant cells are equipped with several 
ERQC mechanisms to monitor protein folding, allowing export of only correctly 
folded proteins to their fi nal destinations but retaining misfolded proteins in the 
ER (Jin et al.  2007 ).  
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2.17.2     Calnexin (CNX)/Calreticulin (CRT)/UGGT System 

 ER-QC depends on two main different pathways involving different chaperones. 
The fi rst pathway is specifi c to glycoproteins and is dependent on the calnexin 
(CNX)/calreticulin (CRT) cycle that relies on specifi c interaction between CNX/CRT, 
two ER-resident lectin-like chaperones, and Asn-linked monoglucosylated glycans. 
The CNX/CRT-glycan interaction depends on the availability of the terminal glucose 
residue, which is generated through sequential removal of two glucose residues 
of the core glycans on nascent proteins by glucosidases I and II. Eliminating 
the remaining glucose residue by glucosidase II releases the glycoproteins from 
the ER lectins. The released glycoprotein that has successfully acquired its native 
conformation can exit the ER to continue its secretory journey. By contrast, a deglu-
cosylated glycoprotein with an incompletely/improperly folded conformation is 
recognized by the luminal enzyme UDP-glucose:glycoprotein glucosyltransferase 
(UGGT), which specifi cally functions as a folding sensor. UGGT transfers a glucose 
residue from UDP-glucose to glycans (Jin et al.  2007 ). This UGGT-catalyzed 
reglucosylation promotes its reassociation with CNX/CRT lectins to initiate another 
round of CNX/CRT-mediated folding (Williams  2006 ; Jin et al.  2007 ). CNX and CRT 
need assistance of α-glucosidase II as well as UGGT to release and re-bind substrate 
glycoprotein, respectively (Kleizen and Braakman  2004 ). The alternate action of 
glucosidase II and UGGT drives cycles of glycoprotein release from and binding to 
CNX/CRT until the glycoprotein is correctly folded. Terminally misfolded proteins are 
retrotranslocated into the cytosol for proteasome-mediated ER-associated degradation 
(ERAD) in the cytosol (Jin et al.  2007 ).  

2.17.3     BiP/ERdj/SDF2 System 

 The second pathway in ERQC system involves  B inding  P rotein (BiP), also called 
 G lucose- R elated  P rotein 78 (GRP78), which is a member of the heat shock pro-
tein70 (Hsp70) family of chaperones. It activates an adaptive signaling pathway 
termed the “unfolded protein response” (Kleizen and Braakman  2004 ). BiP consists 
of approximately 45 kDa domain at the N-terminus that is predicted to carry ade-
nosine triphosphatase (ATPase) activity and a domain of 25 kDa at the C-terminus 
having a predicted substrate-binding domain (Mayer et al.  2003 ). BiP is localized to 
the ER (Park et al.  2010a ,  b ). BiP interacts with the growing nascent chain of 
substrates containing N-linked glycans, facilitating their translocation into the ER 
(Molinary and Helenius 2000). In addition, it is involved in the ER-QC system by 
which misfolded or unassembled proteins are selectively retained in the ER (Kleizen 
and Braakman  2004 ; Park et al.  2010a ). BiP targets permanently misfolded pro-
teins for ER-associated degradation (ERAD) (Kleizen and Braakman  2004 ). 

 BiP ATPase cycle is controlled by a number of cofactors that regulate either 
ATP hydrolysis or nucleotide exchange. These include Hsp40 proteins, which act 
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as co- chaperones in the ER. All Hsp 40s contain a J domain, named for a conserved 
about 70 amino acid motif in DnaJ, and are often referred to as J domain containing 
proteins or J proteins (Buck et al.  2007 ). DnaJ is a type I Hsp40, and contains an 
N-terminal J domain, a glycine/phenylalanine-rich domain and a cysteine-rich 
domain. DnaJ proteins specifi cally interact with the ATP-bound form of Hsp70s 
(Buck et al.  2007 ). 

 The ER-localised co-chaperone Hsp40 protein ERdj (ER DnaJ like protein) fi rst 
directly binds to the misfolded substrate. ERdj then recruits BiP and activates BiP 
ATPase activity present in its N-terminus, leading to interaction of the C-terminal 
region of BiP with the substrate and the release of ERdj (Jin et al.  2008 ,  2009 ). The 
BiP retention system acts independently of, or subsequent to, the CNX/CRT cycle 
(Buck et al.  2007 ). 

 Another protein SDF2 (for  S tromal  D erived  F actor 2) is also required for PRR 
biogenesis (Nekrasov et al.  2009 ). SDF2 resides in ER protein complex with the 
Hsp40 ERdj and the Hsp70 BiP, which are components of the ER-QC. Loss of SDF2 
results in ER retention and degradation of PRR, suggesting a role for the BiP/ERdj/
SDF2 in ER-QC system (Nekrasov et al.  2009 ). ER protein complex comprising 
stromal-derived factor-2 (SDF2), Erdj3B and BiP is required for the proper biogen-
esis of the PRR EFR (Nekrasov et al.  2009 ).  AtSDF2  is a single copy gene in 
 Arabidopsis  and orthologs exist in all eukaryotes. AtSDF2 is a small protein of 218 
amino acids (24 kDa) consisting of a 23 amino-acid (aa) predicted N-terminal signal 
peptide and three repeats of the MIR domain. MIR domain is named after three of the 
proteins in which it occurs: protein mannosyltransferase, inositol 1,4,5- trisphosphate 
receptor (IP3R) and the ryanodine receptor (RyR). Although many eukaryotic pro-
teins contain MIR domains, SDF2 is the only MIR domain- containing protein in 
plants (Nekrasov et al.  2009 ). SDF2 seems to be required for the function of EFR 
(the PRR for the PAMP elf18) and FLS2 (the PRR for the PAMP fl g22). However, 
the requirement of SDF2 for the function of FLS2 is only to a lesser extent and SDF2 
doesn’t seem to be required for the function of CERK1, the PRR for the fungal 
PAMP chitin (Nekrasov et al.  2009 ). The oxidative burst induced by elf18 was 
strongly diminished in  sdf2  mutant  Arabidopsis  plants and it was less reduced after 
fl g22 treatment. In contrast, the oxidative burst triggered by the fungal PAMP chitin 
was not impaired at all in  sdf2  mutant plants (Nekrasov et al.  2009 ).  

2.17.4     Function of ERD2 in ER-QC 

 Another protein involved in ER-QC is ERD2 (for  E R  R etention  D efective2), the ER 
lumen protein-retaining receptor (Semenza et al.  1990 ). ERD2 binds the ER-escaped 
proteins and retrieves them back to the ER (Li et al.  2009b ). The ERD2b protein is 
highly homologous to the yeast HDEL receptor. Five ERD2 paralogs (ERD2- 
likeproteins or ERPs) have been detected in  Arabidopsis . ERD2b is essential for 
the calreticulin CRT3 accumulation. The retention of soluble ER protein relies 
mainly of the recognition of its C-terminal sorting signal (i.e. HDEL; 
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His-Asp-Glu-Leu tetrapeptide) by ERD2 (Semenza et al.  1990 ).  Arabidopsis erd2b  
mutants show insensitivity to EFR, suggesting the importance of ERD2 in EFR 
function (Li et al.  2009b ). The  erd2b  mutation specifi cally affects CRT3, which 
carries the C-terminal HDEL signal and CRT3 may be a likely substrate for ERD2b 
(Li et al.  2009b ).  

2.17.5     ER Quality Control Components Required 
for Biogenesis of the Pattern Recognition Receptor EFR 

 EFR is the PRR detected in  Arabidopsis  for binding the PAMP EF-Tu (Zipfel et al. 
 2006 ; Albert et al.  2010 ). It is a transmembrane glycoprotein and it needs to transit 
through the secretory pathway to mature and reach their fi nal destination at the 
plasma membrane. The protein is secreted into the ER and undergoes quality con-
trol during folding and maturation in the ER. Several chaperones and enzymes 
resident in the ER take part in the ER-QC process.  Arabidopsis  genes encoding 
glucosidase II, UGGT, CRT3, ERdj3b, and ERD2b have been shown to be required 
for the EFR function and accumulation. SDF2 and STT3A, a subunit of the oligo-
saccharyltransferase complex are also necessary for EFR biogenesis (Li et al.  2009b ; 
Nekrasov et al.  2009 ; Dodds and Rathjen  2010 ). 

 In the ER, the PRR proteins may be modifi ed at glycosylable Asn residues by 
an oligosaccharyltransferase complex (OST). This function specifi cally depends 
on  STT3A  ( Staurosporin and temperature sensitive-3A ) coding for a component 
of the OST complex involved in N-glycosylation of nascent proteins (Nekrasov 
et al.  2009 ). Loss of STT3A-containing OST complex markedly decreases 
accumulation and signaling activity of the PRR EFR (Saijo et al.  2009 ; Häweker 
et al.  2010 ), suggesting the importance of the OST complex in ER-QC. The OST 
complex is involved in N-glycosylation of nascent proteins (Nekrasov et al. 
 2009 ). It covalently attaches a complex polysaccharide containing three terminal 
glucose residues. The glucose moieties may be subsequently trimmed by gluco-
sidases I and II (Dodds and Rathjen  2010 ). A single glucose residue is added 
back by UGGT near regions of protein disorder. Monoglucosylated proteins 
interact with the lectin calreticulin (CRT) to retain misfolded substrates in the 
ER. In this way, UGGT acts as a folding sensor, and glycosylation is intimately 
related to protein maturation. Terminally misfolded proteins are degraded (Dodds 
and Rathjen  2010 ). UGGT mutant alleles that compromise EFR signaling have 
been identifi ed (Li et al.  2009b ). The allele  uggt-3  and a null insertion line 
( uggt-4 ) showed the PAMP elf18 insensitivity confi rming that UGGT is required 
for EFR function (Li et al.  2009b ). 

 Arabidopsis carries three  CRT  genes, including  CRT1 ,  CRT2 , and  CRT3 . The 
 crt3-1  mutant was completely insensitive to elf18, as measured by oxidative burst, 
callose deposition, ethylene production, mitogen-activated protein kinase activation, 
and defense gene activation. Loss of  CRT1  together with  CRT2  compromises EFR 
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function to a certain extent, while loss of  CRT3  alone abrogates EFR function 
completely, suggesting that  CRT3  contributes more to the ER-QC function than the 
other two CRT genes (Li et al.  2009b ). CRT3 has been show n to be an ER-localized 
protein and it is required for EFR protein accumulation (Li et al.  2009b ). A  crt3  null 
mutant did not accumulate EFR protein, suggesting that EFR is a substrate for CRT3 
(Li et al.  2009b ). The  Erd2b  mutant did not accumulate CRT3 protein. ERD2B seems 
to be HDEL receptor for CRT3 that allows its retro-translocation from the Golgi to 
the ER (Li et al.  2009b ). The  crt3  mutants were more susceptible to  P .  syringae  pv. 
 tomato  strains than  efr  mutants. It suggests that EFR is not the only PRR whose func-
tion is compromised by CRT3 mutations (Li et al.  2009b ). 

 Nekrasov et al. ( 2009 ) have demonstrated the requirement of the soluble luminal 
protein Hsp40 ERdj3 for elf18 responses. ERDj3B is an ER-localized member of 
the HSP40 co-chaperone family. Arabidopsis  erdj3b-1  mutant plants were strongly 
affected in the bacterial PAMP elf18-triggered oxidative burst and MAP kinase acti-
vation (Nekrasov et al.  2009 ). SDF2 has also been shown to be required for EFR 
biogenesis (Nekrasov et al.  2009 ).  Sdf2  mutants are strongly impaired in EFR pro-
tein accumulation. The  sdf2  mutant plants were strongly affected in the PAMP 
elf18-triggered oxidative burst and MAP kinase activation. Loss of SDF2 results in 
ER retention and degradation of EFR (Nekrasov et al.  2009 ). However, the  sdf2  or 
 erdj3b  mutants are not completely insensitive to elf18, suggesting that BiP retention 
is less critical than CRT-based ER-QC for EFR proper folding and protein accumu-
lation (Nekrasov et al.  2009 ). 

 SDF2 exists in a complex with ERdj3B and BiP3, in which ERdj3B may act as 
a bridge between SDF2 and BiP-3. As both SDF2 and ERdj3B lack an ER reten-
tion signal, their ER localisation might be due to interaction with BiPs (Nekrasov 
et al.  2009 ). BiP and CRT exist in an abundant large complex in tobacco (Crofts 
et al.  1998 ). CRT3, SDF2, Erdj3B, BiP, and potentially UGGT may exist in the 
same complex to regulate proper EFR folding (Li et al.  2009b ). EFR biogenesis 
may require the SDF2/ERdj3B/BiP complex, in addition to ER-QC mediated by 
CRT3 and UGGT. 

 The other lectin component calnexin has been shown to be not necessary for 
biogenesis of EFR. A double mutant in two calnexin genes,  CNX1  and  CNX2  
showed no impairment in elf18-triggered oxidative burst, or defense gene induction 
(Li et al.  2009b ). These results suggest that calnexins may not be involved in the 
biogenesis of EFR.  

2.17.6     ER Quality Control Components Required 
for Biogenesis of the PRR FLS2 

 The differential requirement of EFR and FLS2 for ER-QC and glycosylation com-
ponents has been reported (Nekrasov et al.  2009 ). Both  crt3  and  uggt  mutants were 
unaltered in oxidative burst triggered by fl g22, suggesting that UGGT and CTR may 
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not have any signifi cant role in biogenesis and accumulation of FLS2 (Li et al. 
 2009b ). Like CRT3 and UGGT, ERD2b is also not required for FLS2 function 
(Li et al.  2009b ). ERD2b is Golgi-localized and it is required for CRT3 protein 
accumulation (Li et al.  2009b ). However, the  erdj3b-1  mutant was impaired in fl g22 
responses. ERDj3B is an ER-localized member of the HSP40 co-chaperone family 
and it may be involved in fl g22 biogenesis (Nekrasov et al.  2009 ). It has also been 
reported that in the ER-QC mutants, EFR levels are greatly reduced while FLS2 
levels remain unaffected, suggesting that ER-QC may not be involved in FLS2 sig-
naling (Saijo  2010 ).  

2.17.7     Role of BiP3 in ERQC of the Rice PRR XA21 

 XA21 is glycosylated and is primarily localized to the ER and also to the plasma 
membrane (Park et al.  2010a ). BiP3, the ER-localized chaperone HSP70, regulates 
XA21 processing and stability. BiP may serve as a PRR chaperone, and it may be 
involved in processing and degradation of XA21 (Park et al.  2010a ). The rice  BiP3  
gene encodes a 666 amino acid protein with an approximately 45 kDa domain at the 
N-terminus that is predicted to carry ATPase catalytic activity and a domain of 
approximately 25 kDa at the C-terminus having a predicted substrate-binding 
domain (Park et al.  2010a ). In  BiP3 -overexpressing rice plants, XA21-mediated 
immunity is down-regulated and XA21 stability is signifi cantly decreased. The 
results indicate that BiP3 regulates XA21 protein stability and processing and this 
regulation is critical for resistance to the bacterial pathogen  Xanthomonas oryzae  
pv.  oryzae  (Park et al.  2010a ). 

 BiPs are known to be involved in targeting unfolded glycoproteins for ER-associated 
degradation (ERAD) activity (Kleizen and Braakman  2004 ). If glycoproteins are 
not able to acquire their native performance within an appropriate time, misfolded 
or unassembled proteins are retained due to the ER-QC system. If unfolded and/or 
misfolded proteins may over accumulate in ER after PRR signaling and the cells 
may either initiate ER-associated cell death or attenuate the signal transduction 
pathway (Park et al.  2010a ). BiP is involved in degradation of these proteins and 
these proteins are ultimately destroyed by ERAD (Kleizen and Braakman  2004 ; 
Meusser et al.  2005 ). 

 The rice PRR XA21 is highly glycosylated and this N-glycosylation is impor-
tant for correct protein folding and ERAD (Kleizen and Braakman  2004 ). It has 
been shown that BiP3 accumulation drives glycosylated XA21 to the ERAD sys-
tem, inhibiting its further processing (Park et al.  2010a ). Fine control of membrane- 
resident PRR activity is essentially achieved by a combination of proper ER 
folding, degradation and traffi cking of PRRs. Strict elimination of the misfolded 
proteins may occur by the action of BiP, which would avoid precocious immune 
activation (Saijo  2010 ).   
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2.18      N -Glycosylation of PRRs 

2.18.1     Glycosylation of PRRs Is Required 
for Binding PAMP Ligands 

  N -glycans attached to ectodomains of plasma membrane PRRs constitute likely 
initial contact sites between plant cells and PAMPs. Under-glycosylated EFR and 
non- glycosylated FLS2 were not able to form functional ligand-binding sites. It 
suggests that LRR glycosylation of these PRRs is required for stably binding their 
elf18 and fl g22 peptide ligands, an essential function for plant immunity (Häweker 
et al.  2010 ). Correct glycosylation also seems to be essential for the PRR EFR 
function. EFR accumulation was signifi cantly reduced when synthesized without 
 N -glucans. EFR N143Q  lacking a single conserved  N -glycosylation site from the 
EFR ectodomain accumulated to reduced levels, lost ability to bind to its ligand, 
and that to mediate elf18-mediated oxidative burst. However, EFR N143Q  in wild 
type cells correctly targeted to the plasma membrane via the Golgi apparatus 
(Häweker et al.  2010 ). 

 EFR requires at least an  N  residue (N143) for stable accumulation and ligand 
binding (Häweker et al.  2010 ). This indicates that proper glycosylation on a particu-
lar site(s) is crucial for EFR function, despite extensive N-glycosylation of the 
receptor. It appears that N143 is located on the convex surface in the middle of the 
LRR domain. It is suggested that N143-glycosylation may mediate interactions 
with ER folding machineries, durable LRR folding, ligand binding and/or combina-
tions there of (Saijo  2010 ). Ligand binding seems to occur in central LRRs 9–15 of 
FLS2 (Dunning et al.  2007 ).  

2.18.2     N-Glycosylation Is Required for Transport of PRRs 
from Endoplasmic Reticulum to Plasma Membrane 

  N -glycans attached to PRRs seem to be critical for the export of proteins from the 
endoplasmic reticulum (ER) to the plasma membrane. The glycosylation of aspara-
gines residues ( N -glycosylation) is an essential, highly conserved co-translational 
modifi cation of secreted proteins occurring in plant cells. The oligosaccharyltrans-
ferase (OST) complex in the endoplasmic reticulum (ER) controls transfer of 
 N -glycans from dolicholpyrophosphate-linked lipid anchors to nascent polypeptide 
chains.  N -glycans attached to polypeptides within ER lumen monitor correct fold-
ing of proteins. Only successfully folded proteins are exported from the ER and 
therefore,  N -glycans are crucial for the transport of glycoproteins from ER to plasma 
membrane (Häweker et al.  2010 ). 

 PRRs are subject to  N -glycosylation (an enzymatic process that attaches glycans 
to proteins), which in turn could be essential for the function of PRRs in triggering 
plant immunity. PRRs require  N -glycosylation to mediate plant immunity (Häweker 
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et al.  2010 ). The PRR EFR accumulation was signifi cantly reduced when synthe-
sized without  N -glycans (Häweker et al.  2010 ). A single  N -glycan plays a critical 
role for receptor abundance and ligand recognition during plant-pathogen interactions 
at the cell surface (Häweker et al.  2010 ). 

 PRRs such as EFR, FLS2, and the co-receptor BAK1 carry multiple putative 
 N -glycosylation sites in their ectodomains. Successful folding in the ER and migra-
tion through the Golgi apparatus occur by  N -glycosylation.  N -glycosylation is 
important for folding and subsequent transport of the PRRs EFR and FLS2 to the 
cell surface (Häweker et al.  2010 ).   

2.19     Signifi cance of PRRs in Innate Immunity 

 Mutations in PRRs often compromise PAMP-induced defense responses and overall 
resistance to pathogens. For example, plants lacking  FLS2  are completely defective 
in fl g22-induced ROS accumulation, MAPK activation, and defense gene expres-
sion (Gómez-Gómez et al.  1999 ; Asai et al.  2002 ).  Arabidopsis  plants mutated in 
FLS2 are more susceptible to the pathogen  Pseudomonas syringae  pv.  tomato  
(Zipfel et al.  2004 ). The FLS2-mediated resistance to this strain is largely attributed 
to PAMP-induced guard cell closure that limits bacterial entry into the leaf tissue 
(Melotto et al.  2006 ). The fl agellin gene  fl iC -induced defenses partially account for 
 Arabidopsis  non-host resistance to  P .  syringae  pv.  tabaci  strain, a non-adapted 
pathogen on  Arabidopsis  (Li et al.  2005b ). 

 The  efr  mutants are completely abolished in all responses to elf18 and show 
enhanced susceptibility to  Agrobacterium tumefaciens  (Zipfel et al.  2006 ).  Cerk1  
mutants not only are insensitive to chitin treatment and display enhanced suscepti-
bility to fungal pathogens (Miya et al.  2007 ; Wan et al.  2008b ), but also are more 
susceptible to  P .  syringae  bacteria (Gimenez-Ibanez et al.  2009a ). Sustained acti-
vation of PRR signaling is important for mounting robust PAMP-triggered immu-
nity (Saijo  2010 ). Collectively these studies demonstrate that PRR function is 
essential in triggering immune responses.  

2.20     PAMPs-Induced Early Signaling Events 
Downstream of PRRs 

2.20.1     PAMPs Trigger Complex Networks 
of Signaling Pathways 

 The plant immune system uses several second messengers to encode information 
generated by the PAMPs and deliver the information downstream of PRRs to pro-
teins which decode/interpret signals and initiate defense gene expression (Snedden 
and Fromm  2001 ; Lecourieux et al.  2006 ; van Verk et al.  2008 ; Mersmann et al. 
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 2010 ; Boudsocq et al.  2010 ; Hwang and Hwang  2011 ). It is still not known how the 
PAMP signals are transmitted downstream of PRR. The genes upregulated or down-
regulated by each PAMP are too many to fi nd out their function in the downstream 
signaling events. Analysis of the  Arabidopsis  transcriptome revealed that more than 
1,000 genes were signifi cantly upregulated or downregulated within 30 min after 
the PAMP fl g22 treatment (Zipfel et al.  2004 ). Denoux et al. ( 2008 ) observed 4,413 
genes with altered expression in response to the PAMP fl g22 in  Arabidopsis  seed-
lings. These genes are involved in activation of several distinct signaling systems in 
 Arabidopsis thaliana  (Fig.  2.3 ; Denoux et al.  2008 ).

   A typical array of early defense responses induced by PAMPs includes distinctly 
different signaling systems and several second messengers. Second messengers are 

Flg22

PAMP Perception:FLS2

Ca2+ influx: DND1. 

Calmodulin gene: CML41

ROS signaling: RbohD, 
RbohC, RbohF

NO signaling: AtNOS1

MAP kinase signaling: 
MPK3, EDR1, MKS1

Phospholipid signaling: 
BON1

SA signaling system: 
PAD4, EDS5/SID1, 
SID2, NPR1, EDS1

JA signaling system: 
LOX3, OPR3, 
CYP81F2, ACX1

Ethylene signaling system: 
ACS2, ACS7, ACS8, ETR2, 
CTR1, EIN4, EIN2, ETR1, 
EBF1

  Fig. 2.3    Flg22-induced expression of genes involved in various immune response signaling sys-
tems (Adapted from Denoux et al.  2008 )       
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molecules that are used by plants to encode information and deliver it downstream 
to proteins which decode/interpret signals and initiate cellular responses (Snedden 
and Fromm  2001 ). Highly complex networks of signaling pathways are involved in 
transmission of the PAMP signals to induce the plant immune responses (Koornneef 
and Pieterse  2008 ; Gfeller et al.  2010 ; Leon-Reyes et al.  2010 ; Perchepied et al.  2010 ; 
Katagiri and Tsuda  2010 ; Choi and Hwang  2011 ; Fernández-Calvo et al.  2011 ). 
These signaling pathways are not simple linear and isolated cascades, but can crosstalk 
with each other (McGrath et al.  2005 ; Flors et al.  2008 ; Koornneef and Pieterse 
 2008 ). Both antagonism (Balbi and Devoto  2008 ; Flors et al.  2008 ) and synergism 
(Mur et al.  2006 ; De Vos et al.  2006 ; Mao et al.  2007 ) between the signaling systems 
have been reported.  

2.20.2     Ca 2+  Signaling System 

 In plant cells, the calcium ion is a ubiquitous intracellular second messenger 
involved in numerous signaling pathways (Lecourieux et al.  2006 ; Zhu et al. 
 2009 ; Ma et al.  2009 ). Calcium ion acts as a signal carrier and the calcium signaling 
is modulated by specifi c “calcium signatures” (Lecourieux et al.  2006 ). Spatial 
and temporal changes in cytosolic calcium ([Ca 2+ ] cyt ) are called “calcium signatures” 
(Luan et al. 2002). These changes may proceed as single calcium transients, 
oscillations, or repeated spikes/waves (Lecourieux et al.  2006 ). Specifi c calcium 
signatures are recognized by different calcium sensors to transduce calcium-medi-
ated signals into downstream events (Harmon et al. 2000; Sanders et al. 2002; 
Reddy and Reddy 2004). The Ca 2+  signature controls diverse cellular processes 
via Ca 2+  sensors which include calmodulins (CaM), CaM-like and CaM-related 
proteins, calcineurin B-like (CBL) proteins, Ca 2+ -dependent protein kinases 
(CDPKs) and Ca 2+ -binding proteins without EF hands (Snedden and Fromm 
 2001 ; Luan et al. 2002; Tomsig et al. 2003; Kang et al.  2006 ; Kobayashi et al. 
 2007 ; Takabatake et al.  2007 ). 

 Several Ca 2+ -permeable channels have been found in plant plasma membranes 
and they have been implicated in plant immune signaling system (White and 
Broadley 2003). Calcium ion channels are integral membrane proteins that are 
involved in transport of solutes across the cell membrane in plants (Maathuis et al. 
1997). Cyclic nucleotide-gated ion channels (CNGCs) have been found in plant cell 
plasma membrane (Kaplan et al. 2007; Baxter et al.  2008 ). CNGCs are involved in 
Ca 2+ -dependent signaling pathways (Talke et al. 2003; Yoshioka et al.  2003 ). 

 PAMPs elicit calcium ion infl ux within 15–30 min after PAMP treatment in plant 
cells, resulting in an immediate increase in Ca 2+  concentration in the cytosol 
(Lecourieux-Ouaked et al.  2000 ; Aslam et al.  2008 ). PAMP perception leads to 
membrane potential depolarization and an increase in cytoplasmic Ca 2+  concentration 
(Lecourieux et al.  2006 ; Aslam et al.  2008 ; Jeworutzki et al.  2010 ). Various PAMPs 
elicit an immediate increase in [Ca 2+ ] cyt  (cytoplasmic calcium ion) concentration 
in plant cells (Lecourieux et al.  2002 ). The PAMP-induced [Ca 2+ ] cyt  elevations 
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predominantly result from a continuous Ca 2+  infl ux through the plasma membrane 
(Hu et al. 2004; Vandelle et al. 2006). 

 The cytoplasmic Ca 2+  spikes (oscillations and waves) result from two opposing 
reactions, Ca 2+  infl ux through channels and Ca 2+  effl ux through pumps and transport 
systems (Hwang et al. 2000). Different messages can be encoded by changing a 
Ca 2+  spike’s magnitude, duration, location, or frequency (Sanders et al. 1999). Ca 2+  
signal is presented by the concentration of Ca 2+  (Trewavas 1999). PAMPs may 
activate Ca 2+  infl ux and the different signals may induce different Ca 2+  concentra-
tions in the cytosol. The changes in [Ca 2+ ] cyt  concentrations are monitored by the 
Ca 2+  sensors and the Ca 2+  signals are subsequently decoded and propagated down-
stream to activate plant defense responses. 

 Activation of Ca 2+ -signaling system by different PAMPs has been demonstrated 
(Lecourieux et al.  2006 ; Aslam et al.  2009 ). The PAMP Flg22 recognized in several 
bacterial pathogens has been shown to induce Ca 2+  infl ux in  Arabidopsis . The PAMP 
activates calmodulin-like gene  CML41  within 1 h after treatment and the peak 
expression of the gene was observed at 12 h (Denoux et al.  2008 ). Cyclic nucleotide- 
gated ion channels (CNGCs) are involved in the Ca 2+ -dependent signaling pathways 
(Talke et al. 2003; Yoshioka et al.  2003 ). Arabidopsis  DND1  codes for a cyclic 
nucleotide-gated channel 2 (CNGC2) (Clough et al. 2000) and Flg22 induces the 
expression of  DND1  in  Arabidopsis  (Denoux et al.  2008 ). Flg22 also activates 
cyclic nucleotide gated channel 4 encoding gene  CNGC4  (Denoux et al.  2008 ). 
These channels have been found to be calmodulin (CaM)-binding proteins 
(Borsics et al. 2007). 

 The fl agellin upregulated the gene encoding Ca 2+ -dependent protein kinase in 
rice cells (Fujiwara et al.  2004 ). Calcium-dependent protein kinases CDPK4, 
CDPK5, CDPK6, and CDPK11 were shown to mediate the PAMP fl g22-triggered 
defense responses, including defense gene expression and ROS production 
(Boudsocq et al.  2010 ). The pathway involving the calcium-dependent protein 
kinases (CDPK) 4/5/6/11 has been proposed to act in parallel to the MAPK path-
ways to control fl g22-dependent gene expression (Boudsocq et al.  2010 ). Flg22 also 
induces the expression of BON1 gene which encodes a calcium-dependent phos-
pholipid binding protein (Denoux et al.  2008 ). It also activated  CCD1  in cultured 
rice cells (Fujiwara et al.  2004 ).  CCD-1  encodes a Ca 2+ -binding protein that shares 
homology with the C-terminal half domain of centrin and centrins are involved in 
Ca 2+  signaling (Takezawa 2000). 

 Several PAMPs are known to trigger Ca 2+  infl ux, as one of the earliest signaling 
systems (Aslam et al.  2009 ). The oomycete PAMP CBEL induces calcium ion 
fl uxes in tobacco cells (Gaulin et al.  2006 ). Each PAMP may elicit different cal-
cium signatures. A comparison of calcium infl ux patterns revealed that Flg22 
induced a rapid (about 2 min) response, usually with two or three minor, decreas-
ing peaks, whereas the elf18-induced calcium infl ux pattern was less defi ned and 
broader (Aslam et al.  2009 ). Eighteen transcripts involved in calcium sensing were 
up- regulated by Nep1 treatment. These genes encoded calcium-binding EF hand 
family proteins, CAM, CAM-binding, CAM-related proteins, and Ca 2+ -ATPases 
(Bae et al.  2006 ). The induction of a transcript encoding CAM-related protein 
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( CmCAL-1 ) was reported in spotted knapweed and dandelion within 15 min in 
response to Nep1 (Keates et al.  2003 ). 

 The signaling cascade initiated by the HAMP AtPep1 leads to expression of 
defense genes in a Ca 2+ -dependent manner (Qi et al.  2010 ). The endogenous 
elicitor AtPep1 after binding with its PRR AtPepR1 activates plant membrane 
inwardly conducting Ca 2+  permeable channels in mesophyll cells, resulting in 
cytosolic Ca 2+  elevation. This activity is dependent on the PRR AtPepR1 as well 
as a cyclic nucleotide- gated channel (CNGC2). The PRR AtPepR1 has guanylyl 
cyclase activity and this activity generates cGMP from GTP. The cGMP activates 
CNGC2- dependent cytosolic Ca 2+  elevation (Qi et al.  2010 ). AtPep-dependent 
expression of defense genes such as  PDF1.2 ,  MPK3 , and  WRKY33 , is mediated 
by the Ca 2+  signaling pathway associated with AtPep peptides and their receptor 
(Qi et al.  2010 ). These studies indicate that downstream from AtPep and AtPepR1 
in a signaling cascade, the cGMP-activated channel CNGC2 is involved in 
AtPep- and AtPepR1- dependent inward Ca 2+  conductance and resulting cyto-
solic Ca 2+  elevation. 

 Although several PAMPs trigger Ca 2+  infl ux, some PAMPs are capable of eliciting 
plant immune responses without triggering Ca 2+  infl ux (Lecourieux et al.  2002 , 
 2006 ; Garcia-Brugger et al.  2006 ). Peptidoglycan and muropeptides are virtually 
ineffective at inducing Ca 2+  infl ux, yet are capable of eliciting other defense 
responses (Erbs et al.  2008 ). The role of Ca 2+  signaling system in plant innate immunity 
is further described in Chap.   4    .  

2.20.3     H +  Fluxes and Extracellular Alkalinization 

 K + /H +  exchange response is another important component in the plant immune 
signaling system (Orlandi et al. 1992; Felix et al.  1999 ). The PAMPs have been 
shown to trigger apoplastic alkalinization combined with cytosolic acidifi cation in 
plant cells (Sakano 2001; Felle et al. 2004). Flagellin purifi ed from  P .  syringae  pv. 
 tabaci  is able to induce medium alkalinization in plant cell cultures from tomato, 
tobacco, potato, and Arabidopsis (Felix et al.  1999 ). The Ca 2+ -dependent protein 
kinase, activated by increased cytosolic Ca 2+  concentration may evoke H +  fl uxes that 
lead to extracellular alkalinization and depolarization of the plasma membrane 
(Schaller and Oecking 1999). 

 The extracellular alkalinization is one of the earliest responses of suspension- 
cultured cells to OGs. Alkalinization results from the inhibition of the plasma mem-
brane proton ATPases (PMA) via a signaling pathway that involves calcium ions 
and a calcium-dependent protein kinase (Schaller and Oecking 1999). In plants, 
PMA is the main electrogenic pump that generates the proton motive force across 
the plasma membrane and PMA inhibition reduces ATP consumption. OG elicitor 
signifi cantly controls proton pumps, K +  channels, and H 2 O 2  production (Lecourieux 
et al.  2005 ,  2006 ).  
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2.20.4     G-Proteins 

 G-proteins (guanosine triphosphate-binding proteins) act as molecular switches in 
signal transduction system (Cabrera-Vera et al. 2003; Zeng et al.  2007 ). Several 
studies using inhibitors and agonists of G-proteins in different plant species have 
suggested that G-proteins are involved in activation of various defense signaling 
systems initiated by PAMPs (Beffa et al. 1995; Gelli et al. 1997; Ono et al. 2001; 
Park et al. 2000). G-proteins trigger changes in cytosolic Ca 2+  concentrations 
(Schultheiss et al. 2003). The G-proteins induce Ca 2+  channel opening in plants 
through the action of PAMPs (Gelli et al. 1997). G-proteins are involved in PAMP- 
activated ROS-mediated signaling system (Park et al. 2000; Suharsono et al. 2002). 
The PAMP fl g22 induces G-protein-activated ROS signaling systems. The gene 
 AGB1 , encoding the β-subunit of G protein in  Arabidopsis , is highly induced after 
fl g22 treatment (Zipfel et al.  2006 ). The  agb1  mutants are impaired in the oxidative 
burst triggered by fl g22, suggesting the importance of G-proteins in ROS signaling 
system (Ishikawa 2009). G-proteins are also involved in salicylate signaling system 
(Beffa et al. 1995), jasmonate signaling system (Zhao and Sakai 2003), ethylene 
signaling system (Fujiwara et al.  2006 ), and abscisic acid signaling system (Liu 
et al.  2007 ). G-protein OsRac1 induces biosynthesis of the important second mes-
senger polyamine (Fujiwara et al.  2006 ). The G-protein may also be involved in 
generation of phospholipid second messengers (Viehweger et al. 2006). G-proteins 
may be involved in Ca 2+  channel opening (Gelli et al. 1997). Protein phosphoryla-
tion precedes Ca 2+  infl ux in tobacco cells treated with a PAMP isolated from the 
oomycete pathogen  Phytophthora cryptogea  (Tavernier et al. 1995). The G-proteins 
modulate the phosphorylation/dephosphorylation system in the plasma membrane 
of tomato cells and transduce the signal (Vera-Estrella et al. 1994a). Phosphorylation 
of proteins involved in G-protein coupled signaling has been reported in tobacco 
cells treated with a bacterial elicitor (Gerber et al.  2006 ). Heterotrimeric G proteins 
are involved in many diverse physiological processes in plants (Temple and Jones 
 2007 ; Chen  2008 ; Gao et al.  2008b ; Oki et al. 2009). The role of G-proteins in sig-
naling system in plant immune responses is further described in Chap.   3    .  

2.20.5     ROS Signaling System 

 The oxidative burst involving rapid and transient production of reactive oxygen 
species (ROS) is one of the most rapid defense responses observed in plants (Faize 
et al. 2004; Asada 2006; Sagi and Fluhr 2006; Vidhyasekaran  2007a ,  b ). The oxida-
tive burst is a very rapid response, occurring within seconds (Bolwell et al. 1995) or 
within a few minutes (Arnott and Murphy 1991) of PAMP treatment, suggesting 
that the oxidative burst may not require  de novo  protein synthesis but involves the 
activation of pre-existing enzymes. NADPH oxidase (Bae et al.  2006 ), peroxidases 
(Halliwell 1978; Lehtonen et al.  2012 ), and xanthine oxidase (Allan and Fluhr 1997; 
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Ori et al. 1997) have been shown to be involved in triggering ROS production. 
Different PAMPs may induce ROS production by different types of enzymes (Allan 
and Fluhr 1997). Cultured cells of rose treated with a PAMP derived from 
 Phytophthora  spp. produced ROS by a NADPH oxidase, whereas the cultured cells 
of French bean treated with a PAMP from  Colletotrichum lindemuthianum  produced 
ROS by the action of a cell wall peroxidase (Bolwell et al.1995, 1998). The tran-
script encoding NADPH oxidase ( AtrbohD ) was up-regulated (7.2 fold) by the 
PAMP Nep1 treatment and it generated ROS in  Arabidopsis  (Bae et al.  2006 ). 
Flagellin treatment triggers the expression of  RbohD  and  RbohC  genes encoding 
NADPH oxidases involved in generation of ROS (Denoux et al.  2008 ). 

 G-proteins regulate the production of ROS by activating the NADPH oxidase 
(Joo et al.  2005 ; Moeder et al. 2005; Wong et al. 2007). MAP kinases may also be 
involved in generation of ROS by activating the NADPH oxidase (Asai et al.  2008 ). 
Calcium-dependent protein kinase (CDPK) has also been shown to phosphorylate 
NADPH oxidase and trigger ROS production (Xing et al. 1997; Blumwald et al. 
1998). Accumulation of ROS requires both Ca 2+  infl ux and protein kinase activity 
(Bolwell et al. 1995; Romeis et al. 1999). 

 ROS plays a central role in launching the defense response (Vandenabeele 
et al. 2003). It interacts with various defense signaling systems and activates Ca 2+  
signaling system, NO signaling system, salicylic acid signaling system, jasmo-
nate signaling system and ethylene signaling system (León et al. 1995; Desikan 
et al. 2001; Vranová et al. 2002; Vandenabeele et al. 2003; Fedoroff 2006; 
Hancock et al. 2006; Torres et al.  2006 ). The functions of ROS in the signaling 
network are described in Chap.   5    .  

2.20.6     Nitric Oxide Signaling System 

 PAMPs are known to trigger nitric oxide (NO) burst within minutes in plant cells 
(Foissner et al. 2000; Lamotte et al.  2004 ). The bacterial PAMP harpin induces NO 
generation in  Arabidopsis  cells (Krause and Durner 2004). The bacterial PAMP 
lipopolysaccharide (Lipid A) generates a rapid burst of NO production in  Arabidopsis  
cells (Zeidler et al.  2004 ). Treatment of tomato cell cultures with the fungal PAMP 
xylanase resulted in a rapid NO accumulation (Laxalt et al. 2007). 

 NO is a gaseous readily diffusible free radical which acts as a messenger in plant 
immune signaling system (Besson-Bard et al. 2008; Wilson et al.  2008 ). NO may be 
synthesized through different pathways (Planchet et al. 2006; Yamasaki and Cohen 
2006; Zhao et al. 2007; Zottini et al. 2007). NO is synthesized predominantly by 
nitric oxide synthase (NOS) (Zhao et al. 2007; Zottini et al. 2007). The PAMP fl g22 
triggered the expression of  AtNOS1  encoding nitric oxide synthase (NOS) (Denoux 
et al.  2008 ). NOS catalyses nitric oxide (NO) production (Crawford et al. 2006), sug-
gesting that the PAMP activates NO signaling system. Polyamines may also be 
involved in NO synthesis (Tun et al. 2006; Besson-Bard et al. 2008) and polyamine 
oxidases or some unknown enzymes may be involved in the generation of NO from 
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polyamines (Yamasaki and Cohen 2006; Besson-Bard et al. 2008). NO may be 
formed also from nitrite by the action of nitrate reductase (Rockel et al. 2002; Bethke 
et al. 2004; Wilson et al.  2008 ). Nitrate reductase transcript and protein levels increase 
in response to a PAMP in potato tubers, suggesting a role for nitrate reductase in the 
synthesis of NO during the plant immune response (Delledonne 2005). NO may also 
be synthesized from nitrite in a nonenzymatic manner (Yamasaki 2000). 

 Ca 2+  signaling system may be involved in activation of NOS-dependent NO 
generation (Lamotte et al.  2004 ). Application of a bacterial PAMP induced NO 
generation that was downstream from an infl ux of extracellular Ca 2+  (Ali et al. 
 2007 ). NO synthesis is regulated by the signaling cascade including cyclic nucleo-
tide gated channel (CNGC)-mediated Ca 2+  currents with a concomitant increase in 
calmodulin (CaM) or calmodulin-like proteins (CML), and phosphorylation events 
(Ali et al.  2007 ; Ma and Berkowitz 2007). MAP kinase signaling cascades may also 
participate in NO production (Asai et al.  2008 ). NO acts in signal transduction 
through stimulus-coupled S-nitrosylation of cysteine residues (Benhar et al. 2008). 

 NO plays an important role in redox signaling system. It induced increased 
expression of catalase, peroxidase, glutathione S-transferase, glutathione-S- 
reductase, glutathione peroxidase, superoxide dismutase, thioredoxin, and glutare-
doxin, which are involved in redox signaling system (Clarke et al.  2000 ; Polverari 
et al.  2003 ; Lindermayr et al. 2005) NO and ROS signaling systems appear to oper-
ate together in triggering innate immune responses (Grennan  2007 ; Asai and 
Yoshioka  2009 ). NO also acts in SA, ethylene, and jasmonate signaling systems. 
NO induces ACC synthase involved in ethylene biosynthesis (Lamotte et al.  2004 ). 
It induces the key enzymes of the JA biosynthesis pathway (del Rio et al. 2004; 
Palmieri et al. 2008). NO also triggers production of salicylic acid (Chamnongpol 
et al. 1998; Durner et al. 1998; Zago et al.  2006 ). SA in turn, activates nitric oxide 
synthesis in  A. thaliana  (Zottini et al. 2007). The role of NO in innate immune 
responses is further described in Chap.  6    .  

2.20.7     Mitogen-Activated Protein Kinase (MAPK) Cascades 

 Mitogen-activated protein kinase (MAPK) cascades are major pathways down-
stream of PAMP/PRR signaling complex that transduce extracellular stimuli into 
intracellular responses in plants (Liu et al. 2003; Pedley and Martin 2005). 
Different PAMPs, including bacterial fl agellin, elongation factor Tu, peptidoglycan, 
lipopolysaccharide, HrpZ1 harpin, and fungal chitin activate MAP kinase signal-
ing system (Wu et al.  2011 ; Bethke et al.  2012 ). A typical MAPK signaling module 
consists of three protein kinases: a MAP kinase kinase kinase (MAPKKK or 
MEKK [for  M APK/ E xtracellular signal-regulated kinase  K inase  K inase]), a MAP 
kinase kinase (MAPKK or MKK), and a MAP kinase (MAPK or MPK) (Mészáros 
et al.  2006 ). MAPKKKs can be activated by various PAMPs (Teige et al. 2004). 
MAPKKK phosphorylates MAPKK, and MAPKK phosphorylates MAPK (Teige 
et al. 2004; Mészáros et al.  2006 ). 
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 PAMP-triggered immunity (PTI) requires a signal transduction from receptors 
to downstream components via the MAPK cascade and many of the known 
PAMPs were shown to activate MAP kinases (Pitzschke et al.  2009a ,  b ). MAPK 
signaling is activated by fl agellin in  Arabidopsis  (Wu et al.  2011 ). The MAPK 
module MEKK1- MKK4/MKK5-MPK3/MPK6 has been proposed to be respon-
sible for fl g22 signal transmission (Asai et al.  2002 ). The involvement of MEKK1 
in fl g22-induced MKK4/MKK5-MPK3/MPK6 signaling is unlikely, since  mekk1  
mutant plants are compromised in fl g22-triggered activation of MPK4, but show 
normal activation of MPK3 and MPK6 (Suarez-Rodriguez et al.  2007 ). The 
PAMP-induced FLS2 activation leads to activation of the MAP kinase pathways 
MEKK4/5 and MPK3/6 and MEKK1-MKK1/2-MPK4, leading to transcription of 
defense-related genes through the WRKY transcription factors WRKY22/29 and 
WRKY25/33 (Nicaise et al.  2009 ). 

 The fl agellin derived peptide fl g22 triggers a rapid and strong activation of 
MPK3, MPK4 and MPK6 (Droillard et al. 2004). MPK3, MPK6, MKK4, and 
MKK5 form a cascade that positively regulates plant defenses (Pitzschke et al. 
 2009a ). Flg22 activates the expression of  MPK3  in  Arabidopsis  (Denoux et al. 
 2008 ). MPK3 has been shown to be required for camalexin accumulation upon 
 Botrytis cinerea  infection (Ren et al. 2008). MPK3 phosphorylates a plant VirE2- 
interacting protein 1 (VIP1), a bZIP transcription factor (Liu et al.  2010 ; Zhang and 
Zhou  2010 ). VIP1 is a direct target of the PAMP-induced MPK3. Upon phosphory-
lation by MPK3, VIP1 relocalizes from the cytoplasm to the nucleus and regulates 
the expression of the  PR1  pathogenesis-related gene (Djamei et al.  2007 ). The 
MPK3 pathway is also involved in JA/ET signaling system (Takahashi et al.  2007 ). 
Inactivation of MPK3 and MPK6 by the  Pseudomonas syringae  effector HopA/1 
and inactivation of MKKs by the  P .  syringae  effector HopF2 severely impair PAMP- 
induced defenses and render plants highly susceptible to nonpathogenic  P .  syringae  
bacteria (Zhang et al.  2007a ; Wang et al.  2010c ). The results suggest that activation 
of MPK3 and MPK6 by the PAMP is an important component in plant immune 
responses. A recent study has shown that fl g22 treatment increases expression of 
another  MPK  gene,  MPK11  in  Arabidopsis  (Bethke et al.  2012 ). 

 Flg22 induces the MAP kinase gene  MPK4  (Suarez-Rodriguez et al.  2007 ; 
Denoux et al.  2008 ). The MPK4 suppresses SA accumulation but induces the JA 
pathway (Brodersen et al. 2006). MPK4 interacts with its substrate MKS1; the latter 
interacts with WRKY transcription factors WRKY25 and WRKY33 (Andreasson 
et al.  2005 ). MPK4, MKS1, and WRKY33 form a complex in the nucleus, and the 
fl g22-induced MPK4 activation releases WRKY33 from the complex. This enables 
WRKY33 to directly activate transcription of PAD3, which encodes a cytochrome 
P450 involved in the phytoalexin camalexin biosynthesis (Qiu et al.  2008b ). MPK4, 
its upstream MAP kinase kinases MKK1 and MKK2, and the MAP kinase kinase 
kinase MEKK1 form a cascade that negatively regulates defenses in  Arabidopsis  
because loss-of-function mutations in this cascade result in constitutive activation 
of defenses (Mėszáros et al.  2006 ; Suarez-Rodriguez et al.  2007 ; Gao et al.  2008a ; 
Qiu et al.  2008a ; Pitzschke et al.  2009b ). 
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 The PAMP-induced MAPKs may act either at upstream or downstream of various 
signaling systems in different plants. ROS (Nakagami et al.  2006 ), NO (Kumar and 
Klessig 2000), JA (Takahashi et al.  2007 ), SA (Zhang and Klessig 1997; Zhang and 
Liu 2001; Uppalapati et al.  2004 ), and abscisic acid (Uppalapati et al.  2004 ; Xiong 
and Yang 2003) have been reported to activate MAPK signaling cascade. 

 Although several studies have shown that MAPK cascades are important compo-
nents in fl agellin signaling system, there are also reports that fl g22 may trigger 
the plant immune responses independent of MAPK cascades. The  bik1  mutant is 
signifi cantly compromised in PAMP-induced resistance, but not the fl g22-induced 
MAPK activation (Zhang and Zhou  2010 ). Transgenic plants expressing  AvrPphB , 
which is capable of cleaving BIK1 and several PHL proteins, also show intact 
Flg22-induced MAPK activation (Zhang and Zhou  2010 ). The Arabidopsis 
 dde2 / ein2 / pad4 / sid2 -quadruple mutant is largely impaired in fl g22-induced resistance, 
but fl g22-induced MAPK activation is comparable to wild-type plants (Tsuda et al.  2009 ). 
These results suggest that Flg22 may trigger immune responses against specifi c 
pathogens through a pathway other than MAPK signaling system. The role of MAPKs 
in plant innate immunity is further described in Chap.   7    .  

2.20.8     Salicylate Signaling System 

 Salicylic acid (SA) is an important signal induced by PAMPs in plant innate 
immune system (Anand et al.  2008 ; Garcion et al. 2008; Mukherjee et al.  2010 ; 
Makandar et al.  2012 ). The PAMP Flg22 induces production of salicylic acid in 
plant cells (Mishina and Zeier  2007 ; Tsuda et al.  2008 ). It induces accumulation of 
SA in  Arabidopsis  (Mishina and Zeier  2007 ). SA is synthesized via both the iso-
chorismate pathway and phenylalanine pathway in  Arabidopsis  (Wildermuth et al. 
2001; Ferrari et al. 2003; Dempsey et al.  2011 ), while it is synthesized predomi-
nantly via the phenylalanine pathway in tobacco (Ogawa et al. 2006). Several regu-
latory proteins including SID2, EDS1, EDS4, EDS5, and PAD4are involved in 
triggering SA production in  Arabidopsis . SID2 is an isochorismate synthase 
(Wildermuth et al. 2001), whereas EDS5exhibits homology to multidrug and toxin 
extrusion (MATE) transporter proteins from animals (Nawrath et al. 2002). EDS5 
is involved in the transport of precursors for SA biosynthesis (Nawrath et al. 2002). 
EDS1 is another regulatory protein (Moreau et al.  2012 ) and it controls SA produc-
tion to amplify defense signals (Eulgem et al. 2004; Song et al. 2004). PAD4 dis-
plays similarity to triacyl glycerol lipases and other esterases (Jirage et al. 1999). 
EDS1 forms distinct complexes with PAD4 (Wiermer et al. 2005; Xing and Chen 
 2006 ) and EDS1 and PAD4 complex transduces ROS-derived signals leading to 
SA production (Mateo et al. 2004; Wiermer et al. 2005). SA signaling consists of 
a linear pathway in which EDS1, PAD4 and EDS4 activate EDS5 and SID2, which 
produce SA (Glazebrook et al. 2003). 

 Another regulatory protein, fl avin-dependent monooxygenase1 (FMO1) may 
also be involved in SA signal amplifi cation (Mishina and Zeier  2006 ). FMO1 may 
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contribute to a signal amplifi cation loop involving ROS, SA, and NPR1 that is 
required to potentiate innate immune system (Mishina and Zeier  2006 ). Another 
protein, GH3.5, has been shown to be involved in SA accumulation in  A. thaliana  
and it possesses adenylation activity on SA (Zhang et al.  2007c ). The protein 
CDR1 has also been shown to take part in SA signaling (Xia et al. 2004). The 
CDR1 may be an aspartic protease. It induces accumulation of SA and also induces 
oxidative burst, suggesting that ROS-mediated SA accumulation is mediated by 
CDR1 (Xia et al. 2004). Several signaling systems, including Ca 2+ - signaling net-
work system (Garcia-Brugger et al.  2006 ), G-proteins (Fujiwara et al.  2006 ), 
MAPK signaling systems (Zhang et al.  2007a ), ROS signaling system (Torres et al. 
 2006 ; Ahn et al.  2007 ), and NO signaling system (Durner et al. 1998) act upstream 
of SA synthesis. 

 Several SA-binding (SAB) proteins have been shown to be involved in accu-
mulation of SA in plants. The fi rst SAB protein identifi ed is the cytosolic (per-
oxisomal) tobacco catalase that reversibly binds SA (Chen et al. 1993). SA 
inhibits H 2 O 2 -degrading activity of catalase and the SA-mediated inhibition of 
catalase may generate H 2 O 2 , which may activate the ROS signaling system 
(Chen et al. 1993). A second specifi c high-affi nity SA-binding protein, SABP2, 
has been identifi ed as a methyl salicylate esterase whose function is to convert 
biologically inactive methyl salicylate to active SA (Kumar and Klessig 2008; 
Vlot et al. 2008; Manosalva et al.  2010 ; Liu et al.  2011a ,  b ). The third SA-binding 
protein, SAB3, identifi ed in tobacco is the chloroplast carbonic anhydrase 
(Slaymaker et al. 2002). It shows antioxidant activity and SA may inhibit the 
antioxidant activity by binding with SABP3. The inhibition of antioxidant 
enzymes may enhance ROS levels (Slaymaker et al. 2002). Azelaic acid is a 
long-distance priming signal (Parker 2009). It primes plants to accumulate SA 
upon infection by pathogens (Jung et al.  2009 ). 

 SA triggers ROS and NO signaling systems (Blee et al.  2004 ; Zottini et al. 2007; 
Kobeasy et al.  2011 ). It also activates MAPK signaling cascade (Uppalapati et al. 
 2004 ; Brodersen et al. 2006). SA elevates NPR1 (for  non-expresser of PR gene1 ), 
which is a master regulator of SA-mediated defense responses (Chern et al.  2008 ). 
SA induces increased expression of several WRKY and ERF transcription factors in 
 Arabidopsis  (Knoth et al.  2007 ; Mao et al.  2007 ; Miao and Zentgraf  2007 ; Zheng 
et al.  2006 ,  2007 ; Zhang et al.  2007d ; Grennan  2008 ; Moreau et al.  2012 ). These 
transcription factors are necessary for the inducible expression of several defense 
genes (Yu et al.  2001 ; Grennan  2008 ). 

 Flg22 activates the transcription factor WRKY7, which is a negative regulator of 
SA-mediated responses in  Arabidopsis  (Denoux et al.  2008 ). Probably the tran-
scription factor would have suppressed the SA- induced defense response. The 
transgenic  Arabidopsis  plants over expressing  WRKY7  showed reduced expression 
of defense-related genes, including  PR1  (Kim et al.  2006 ). 

 Although most of the PAMPs activate SA signaling system, there are also reports 
that SA signaling system may not be necessary to activate the plant immune systems 
against a particular pathogen. Ferrari et al. ( 2007 ) showed that resistance to  Botrytis 
cinerea  induced in  Arabidopsis  by fl g22 was independent of SA signaling.  
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2.20.9     Jasmonate Signaling System 

 PAMPs have been shown to trigger accumulation of jasmonic acid (Wang et al. 
2000; Fabro et al.  2008 ). The fungal PAMP chitosan treatment induced accumulation 
of jasmonic acid in tomato leaves (Doares et al.  1995 ). Several enzymes including 
lipoxygenase, allene oxide synthase, allene oxide cyclase, OPDA reductase 3 
(OPR3) and acyl-CoA oxidase (ACX) are involved in biosynthesis of jasmonic acid 
(JA) (Mei et al.  2006 ; Schilmiller et al. 2006; Balbi and Devoto  2008 ; Delker et al. 
 2007 ; Vidhyasekaran  2007a ). Flg22 induced the activation of JA signaling system. 
It enhanced the expression of  LOX3  and  LOX4  genes encoding lipoxygenases 
(LOX),  OPR3  gene encoding 12-oxophytodienoate reductase (OPR) and  ACX1  
gene encoding acyl-CoA oxidase (ACX) (Denoux et al.  2008 ). The fungal PAMP 
chitosan also activates lipoxygenase, the key enzyme in JA-mediated signaling sys-
tem (Bohland et al.  1997 ; Rakwal et al. 2002). Lipoxygenase activity signifi cantly 
increased in chitosan-treated carrot plants (Jayaraj et al. 2009). The PAMP β-1,3-
glucan induces expression of  LOX  gene encoding lipoxygenase in grapevine (Aziz 
et al.  2003 ; Balbi and Devoto  2008 ) and tobacco cells (Klarzynski et al.  2000 ). The 
PAMP Nep1 rapidly induces genes involved in JA biosynthesis (Bae et al.  2006 ). It 
triggered genes encoding lipoxygenases ( LOX ), 12-oxophytodienoate reductase, 
and allene oxide cyclase ( AOC2 ), which are involved in JA biosynthesis (Bae et al. 
 2006 ). The HAMP oligogalacturonates triggered OPR3 and ACX1, the key enzymes 
involved in biosynthesis of JA (Denoux et al.  2008 ). 

 JA can be metabolized to several derivatives and some of them are involved in 
defense signaling system. Methyl jasmonate is one of these JA derivatives, which 
trigger the immune signaling system (Seo et al.  2001 ). JA is converted to methyl 
jasmonate (MeJA) by the action of jasmonic acid methyl transferase (Wasternack 
2007). The JA amino acid conjugate JA-Ile (jasmonoyl-isoleucine) also has been 
shown to be involved in defense signaling (Kang et al.  2006 ; Katsir et al.  2008 ). 
JA-amino synthetase activates conjugation of JA to an amino acid and this enzyme 
may be involved in JA-Ile biosynthesis (Staswick and Tiryaki 2004). In addition to 
Ile, the JAR family of related GH3 enzymes has the potential to conjugate other 
amino acids, such as Trp, Val, and Leu in tobacco. The JA-Trp, JA-Val, and JA-Leu 
may also participate in JA signaling pathway (Wang et al.  2008c ). 

 G-proteins activated Ca 2+  infl ux and the subsequent Ca 2+  wave may initiate calmod-
ulin-dependent protein kinase cascade, ROS production, and eventually the jasmonate 
biosynthesis (Zhao et al. 2004; Trusov et al. 2006). MAPK cascades may also be 
involved in JA biosynthesis (Lee et al. 2004; Kandoth et al. 2007). NO is involved 
in induction of biosynthesis of JA (Xu et al. 2005; Palmieri et al. 2008). NO induces 
the key enzymes of the JA biosynthesis pathway (del Rio et al. 2004; Grün et al. 
2006; Zago et al.  2006 ). Several PAMPs are known to activate plant innate immu-
nity by triggering the action of several components in the JA signaling system. The 
oomycete PAMP cryptogein induced an increase in lipoxygenase activity and the 
accumulation of JA-responsive proteinase inhibitors in tobacco suggesting the role of 
JA signaling system in the PAMP-mediated disease resistance (Bottin et al. 1994).  
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2.20.10     Ethylene Signaling System 

 Ethylene (ET) signaling system is another important component in plant’s innate 
immune system (Cao et al.  2006 ; Xu et al. 2007; Lin et al.  2008 ; Gaige et al.  2010 ; 
Al-Daoud and Cameron 2011; Sun et al.  2010 ; Zhu et al.  2011 ). Methionine (L-Met) 
is the precursor of ethylene. It is converted to  S -adenosylmethionine ( S -AdoMet) by 
the action of  S -AdoMet synthetase (SAM synthetase) (Wang et al. 2002). Nitric 
oxide (NO) induces SAM synthetase, which catalyzes the conversion of ATP and 
methionine into  S -adenosyl-Met (Zago et al.  2006 ). S-AdoMet is converted to 
1- aminocyclopropane −1-carboxylic acid (ACC) by ACC synthase (ACS) (Chae 
et al. 2003; Peng et al. 2005). Accumulation of ACS isozymes leads to increased 
synthesis of ACC (Liu and Zhang  2004 ) and the ACC is oxidized by ACC oxidase 
(ACO) to form ET (Wang et al. 2002; Vidhyasekaran  2007a ). Both Ca 2+ and NO 
signaling systems are involved in ethylene biosynthesis. The Ca 2+  infl ux activates 
ACC oxidase (Gallardo et al. 1999), whereas NO induces ACC synthase, resulting 
in accumulation of ethylene (Lamotte et al.  2004 ). 

 Downstream components of ET signal transduction system in  Arabidopsis  
include activation of ET receptors. In  Arabidopsis , ethylene is perceived by a family 
of fi ve membrane-bound receptors (ETR1, ERS1, ETR2, EIN4, and ERS2), which 
transmit the signal to downstream effectors (O’Malley et al. 2005; Wang et al.  2006 ; 
Qu et al. 2007; Grefen et al. 2008). Ethylene receptor ETR1 has been shown to 
mediate ROS signaling in  Arabidopsis  (Desikan et al. 2005). ETR1 functions as an 
ROS sensor. ROS up-regulates four ethylene-responsive element-binding proteins 
(EREBPs), the ethylene-responsive transcription factor (ERF1), and a CEO1-like 
protein, which is a potential cofactor of EREBP transcription factors in tobacco 
(Vandenabeele et al. 2003). NO signaling activates  EIN3 , which is involved in acti-
vation of transcription of ethylene-responsive genes (Chang and Stadler 2001). 

 The HAMP oligogalacturonides induced several plant cell membrane-bound 
ethylene receptors such as ETR1, EIN2, ERF1 and ERF4 (Denoux et al.  2008 ). 
Flg22 induced expression of the ethylene receptors ETR1 and EIN4 (Denoux et al. 
 2008 ). In  Arabidopsis , ethylene is perceived by membrane-bound receptors such as 
ETR1 and EIN4, which transmit the signal to downstream effectors (Qu et al. 
2007; Grefen et al. 2008). 

 A MAPK cascade, MAPKKK (CTR1) – MKK9 – MPK3/MPK6, has been 
shown to be an important downstream component in ET signaling system induced 
by PAMPs (Yoo et al.  2008 ). The MAPKKK CTR1 is a negative regulator of 
defense responses. Both the inhibition of CTR1 and activation of MKK9 are 
induced by ethylene signaling (Yoo et al.  2008 ). ET activates JA biosynthesis 
(O’Donnell et al. 1996) and also activates JA-inducible defense gene expression 
(Gu et al. 2002; Brown et al. 2003; Tournier et al. 2003; McGrath et al.  2005 ). 
The PAMP-induced ET also induces Ca 2+  infl ux, which acts at downstream of ET 
(Kwak and Lee 1997). Ca 2+  from intracellular pools, but not Ca 2+  from the apo-
plast, may interact with ET signal transduction (Petruzzelli et al. 2003). The 
CaM binding proteins (EICBPs) isolated from tomato, parsley, and  Arabidopsis  
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have been found to be induced by ET (Reddy et al. 2000). Ca 2+  may play an 
important role in ET signal transduction (Raz and Fluhr 1992; Kwak and Lee 
1997; Gallardo et al. 1999; Reddy et al. 2000). 

 Several PAMPs are known to induce production of ethylene in plant cells. The 
oomycete PAMP cryptogein induced production of ethylene in tobacco cells (Milat 
et al. 1991). The bacterial PAMP fl g22 up-regulated  ACS  genes encoding ACC 
synthase, which is the key enzyme involved in biosynthesis of ethylene (Denoux 
et al.  2008 ). Flg22 induces ET production through activation of ACS6, an ET bio-
synthetic enzyme (Liu and Zhang  2004 ). The PAMP Nep1 induced the expression of 
transcripts encoding ACC synthase and ethylene-responsive element binding fac-
tors (ERF), which are involved in ethylene signaling (Bae et al.  2006 ). The maize 
HAMP  Zm Pep1-treated maize leaves emitted a fi ve-fold increase in ethylene (ET). 
Expression of the gene encoding ACC oxidase also responded to ZmPep1 treatment 
(Huffaker et al.  2011 ). 

 Flg22 treatment up-regulated the expression of the ET-responsive transcription 
factor ERF1 (Ethylene-Responsive element-binding Factor 1) in  Arabidopsis  (Clay 
et al.  2009 ). ERF1 is a downstream component of ethylene signaling system 
(Berrocal-Lobo and Molina  2004 ). ET signaling is required for the full induction of 
ERF1 in response to fl g22 (Clay et al.  2009 ). ERF5, another ethylene-responsive 
element- binding factor, is induced by the fungal PAMP chitin. It induces defense 
against  Pseudomonas syringae  pv.  tomato  in  Arabidopsis  (Son et al.  2012 ). 

 The transcription factor MYB51 is also induced by ET and MYB51 acts down-
stream of ET signaling for the callose response (Clay et al.  2009 ). MYB51 induced 
expression of all known indole glucosinolate (IGS) biosynthetic enzymes. MYB51 is 
involved in the transcriptional activation of IGS biosynthetic gene ASA1. ASA1 
expression is ET-inducible (Clay et al.  2009 ). ASA1 gene expression was also induced 
by Flg22 treatment (Clay et al.  2009 ). The HAMP oligogalacturonide induced the ET 
biosynthesis enzymes ACC synthases (ACS7 and ACS8) (Denoux et al.  2008 ). 

 ET is required for the oxidative burst contributing to plant immunity (Mersmann 
et al.  2010 ). ROS production is triggered by fl g22 in  Arabidopsis . The ROS produc-
tion was diminished in ethylene-insensitive mutants (Mersmann et al.  2010 ). 
Ethylene signaling also regulates accumulation of the FLS2 receptor (Mersmann 
et al.  2010 ).  FLS2  accumulation was reduced in  etr1 and ein2 , indicating a require-
ment of ethylene signaling for  FLS2  expression (Mersmann et al.  2010 ).  

2.20.11     Abscisic Acid Signaling System 

 Abscisic acid (ABA) signaling system is another important component in plant 
immune system activated by PAMPs (Adie et al.  2007 ). PAMPs trigger increases in 
ABA concentrations, inducing disease resistance (Whenham et al. 1986) or suscep-
tibility (Koga et al.  2004 ; Schmidt et al.  2008 ). Xanthoxin is the fi rst cytoplasmic 
precursor for the biosynthesis of ABA. It is converted to abscisic aldehyde by the 
action of a dehydrogenase/reductase encoded by  ABA2 . Abscisic aldehyde is 
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converted to ABA by the action of two enzymes, ABA3 and AAO3.  ABA3  encodes 
the molybdenum cofactor sulfurase that adds the sulfur atom to the molybdenum 
center. The  AAO3  encodes an aldehyde oxidase that requires molybdenum cofactor 
for its activity. Abscisic aldehyde is converted to abscisic alcohol, which in turn is 
converted to ABA through a shunt pathway (Wasilewska et al. 2008). 

 A regulator of G protein signaling (RGS) proteins, RGS1, has been identifi ed in 
 Arabidopsis  (Chen et al.  2006 ). RGS1 signifi cantly stimulated the expression of 
 NCED  encoding the 9- cis -epoxycarotenoid dioxygenase (NCED) enzyme, which 
cleaves 9- cis  xanthophylls to xanthoxin. The NCED is the fi rst committed step for 
ABA synthesis (Chen et al.  2006 ; Wasilewska et al. 2008). RGS1 also triggered 
increased expression of  ABA2  gene (Chen et al.  2006 ), which encodes dehydroge-
nase/reductase involved in conversion of xanthoxin to abscisic acid aldehyde 
(Wasilewska et al. 2008). These results suggest that RGS1 is involved in biosynthesis 
of ABA (Chen et al.  2006 ). 

 ABA regulates several signaling systems, including Ca 2+  signaling complex, 
ROS signaling pathway, and NO signaling system. ABA induces oscillations in 
[Ca 2+ ] cyt  by inducing both Ca 2+  release from intracellular stores and Ca 2+  infl ux from 
the extracellular space (Hamilton et al. 2000; Pei et al. 2000; Klüsener et al. 2002). 
ROS production precedes activation of Ca 2+  infl ux, and H 2 O 2  activates plasma mem-
brane Ca 2+  channels (Coelho et al. 2002). Cytosolic Ca 2+  elevation induced by ABA 
activates slow (S-type) anion channels (Schroeder and Hagiwara 1990; Brault et al. 
2004). ABA activates the plasma membrane anion channels and in several species, 
this response is associated with changes in the cytoplasmic Ca 2+  concentration 
(Marten et al. 2007). The expression of various calcium-dependent protein kinases 
(CDPKs) of tobacco was also upregulated by ABA (Ludwig et al.  2004 ). ABA 
response element binding factors (ABFs) have been shown to be activated by phos-
phorylation by protein kinases (Uno et al. 2000). ABA activates mitogen activated 
protein kinase (MAPK)-mediated signaling system (Gomi et al. 2005; Wang and 
Song 2008). ROS may act upstream of the MAPK cascade in the ABA signaling 
system in maize leaves (Zhang et al.  2006 ). 

 The PAMP fl g22 triggers ABA synthesis in plants (Melotto et al.  2006 ). The 
HAMP oligogalacturonates (OG) induced the enzyme molybdenum cofactor sulfu-
rase (ABA3), which is involved in the biosynthesis of ABA (Denoux et al.  2008 ). 
The PAMP-induced ABA signaling system has been reported to be involved in sto-
matal closure (Hubbard et al.  2010 ). Stomata serve as passive ports of bacterial 
entry during infection. They constitute one entry point for bacteria, which need to 
reach apoplastic spaces to multiply and cause disease (Nicaise et al.  2009 ). The 
stomata in the  Arabidopsis  leaf epidermis have been shown to act as innate immu-
nity gates to actively prevent bacteria from entering the plant leaf (Melotto et al. 
 2006 ). The PAMP fl g22 triggered closure of stomata which occurred within the fi rst 
hour of contact with plant tissue (Melotto et al.  2006 ). Abscisic acid signaling sys-
tem has been reported to be involved in stomatal closure (Hubbard et al.  2010 ). 
Flg22 triggered ABA synthesis, NO production, and OST1 (for  O PEN  ST OMATA 1 ) 
kinase, which are required for stomatal closure. ABA increase was the critical early 
event in stomatal closure induced by fl g22 (Melotto et al.  2006 ).  
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2.20.12     PAMP-Induced Expression of Transcription Factors 

 Transcription factors are the master regulators of expression of genes involved in 
many cellular processes and they regulate the gene transcription processes by mod-
ulating the rate of transcription initiation of target genes (Du et al. 2009). They 
play important role in activating plant immune responses either positively (Liu 
et al.  2007 ; Qiu et al.  2007 ; Moreau et al.  2012 ) or negatively (Li et al. 2007; 
Nurmberg et al. 2007; Kim et al.  2008b ; Sun et al.  2010 ; Moreau et al.  2012 ). In 
 Arabidopsis , there are 72 expressed WRKY genes, and many of them are impli-
cated in the regulation of the plant immune responses positively or negatively via 
modulation of the JA/SA signaling pathways (Eulgem and Somssich  2007 ). WRKY 
proteins are transcription factors that recognize the W-box elements that exist in 
the promoters of many  PR  genes (Ulker and Somssich  2004 ). WRKY transcription 
factors bind to W-box DNA elements (C/TTGACC/T) that are found in the promot-
ers of many defense-related genes, including  PR-1  and  NPR1  (Maleck et al. 2000; 
Yu et al.  2001 ; Eulgem and Somssich  2007 ). Multiple W-box DNA elements were 
predicted in the promoter region of  PEPR1  and  PROPEP1-5  genes in  Arabidopsis  
and therefore, the WRKY transcription factors may play an important role in the 
amplifi cation of the HAMP Pep peptide signal (Yamaguchi et al.  2010 ). WRKY 
transcription factors also regulate the expression of their own genes and/or other 
WRKY genes (Eulgem and Somssich  2007 ). 

 After Flg22 treatment WRKY70 was consistently induced around 20-fold 
in  A .  thaliana . WRKY70 induces expression of SA-responsive PR genes (Li 
et al. 2004). WRKY70 has been shown to function downstream of ROS and SA 
(Knoth et al.  2007 ). The WRKY70 transcription factor acts as a node of conver-
gence for jasmonate- mediated and salicylate-mediated signals in plant defense 
(Li et al. 2004). It modulates the selection of signaling pathways in plant defense 
(Li et al. 2006). 

 Flg22 induces activation of several other transcription factors in  Arabidopsis . 
It activates WRKY33 and WRKY40 transcription factors (Denoux et al.  2008 ). 
These transcription factors function as activators of JA signaling system and repressors 
of SA signaling system (Zheng et al.  2006 ). WRKY33 positively regulates 
JA-mediated responses, while it retards the SA-mediated PR genes expression 
(Zheng et al.  2006 ). The transcription factors WRKY22 and WRKY29 are known 
to function downstream of the FLS2-mediated immune response in  Arabidopsis . 
Overexpression of the AtWRKY29 constitutively activates the plant defense 
response against bacterial invasion (Asai et al.  2002 ). WRKY29, WRKY33, and 
WRKY53 are induced by the HAMP Pep1 and they are positive regulators of 
defense responses (Asai et al.  2002 ; Zheng et al.  2006 ; Murray et al.  2007 ). 

 Nine WRKY genes were induced by the PAMP Nep1 treatment, while WRKY65 
was repressed in  A .  thaliana  (Bae et al.  2006 ). Keates et al. ( 2003 ) detected the 
induction of WRKY18 within 15 min after treatment with the PAMP Nep1. These 
results suggest that PAMPs/HAMPs may trigger the expression of several transcrip-
tion factors and trigger the plant innate immune responses.  
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2.20.13     Hierarchy of PAMP-Induced Signaling Systems 

 Several signaling systems induced by PAMPs have been described widely. Cross- talk 
between these signaling systems has also been reported. However, the exact sequence 
of these signaling events has not been well understood. The hierarchy of early 
signaling events induced by a PAMP in  Nicotiana benthamiana  has been reported 
(Segonzac et al.  2011 ). Two different calcium infl ux inhibitors suppressed the ROS 
burst, activation of MAPKs, and PAMP-induced gene expression. The calcium burst 
was unaffected in plants specifi cally silenced for components involved in ROS burst 
generation, or for MAPKs activated by PAMP treatment. ROS burst still occurred in 
plants silenced for the two MAPK genes,  NbSIPK  and  NtWIPK  or both genes simul-
taneously, demonstrating that these MAPKs are dispensable for ROS production. 
 NbSIPK  silencing is suffi cient to prevent PAMP-induced gene expression but both 
the MAPKs are required for bacterial immunity against two strains of  P .  syringae . 
These results suggest that the PAMP-triggered calcium infl ux is upstream of separate 
signaling branches, one leading to MAPK activation and thence gene expression 
and the other to ROS production (Segonzac et al.  2011 ).   

2.21     Different PAMPs and HAMPs May Induce Similar 
Early Signaling Systems 

 Each pathogen may contain or secrete several PAMPs. For example, bacterial patho-
gens may generally possess the PAMPs fl g22, EF-Tu and lipopolysaccharides. 
Several HAMPs have also been identifi ed in different plants. The multiple and 
highly variable PAMPs and HAMPs have been reported to induce almost similar 
early signaling systems. At 1 h, 2586 and 1672 genes had altered expression levels 
after fl g22 or oligogalacturonides (OGs) treatment, respectively (Denoux et al. 
 2008 ). The transcriptome analysis revealed that both of them induced expression of 
almost same genes involved in Ca 2+ -signaling, ROS signaling, NO signaling, MAPK 
signaling, SA signaling, JA signaling, ET signaling, and ABA signaling systems in 
 Arabidopsis  (Denoux et al.  2008 ). 

 The transcriptome changes observed in  Arabidopsis  30 min after fl g22 and 
60 min after elf26 treatments were highly correlated (Zipfel et al.  2006 ). A clear 
overlap in the sets of genes with altered expression in response to fl g22 and pepti-
doglycan (PGN) was also observed (Gust et al.  2007 ). A large number of genes 
(441 genes) were commonly upregulated in EF-Tu and chitin-treated cells (Wan 
et al.  2008b ). Based on the comparative analysis of microarray data using 
 Arabidopsis  supplied with fl g22, elf18, and chitin (Zipfel et al.  2004 ,  2006 ; Wan 
et al.  2008b ) it was concluded that fl g22, elf18, and chitin signaling share a 
conserved downstream signaling pathway leading to basal resistance. 

 Gene expression in tobacco cultured cells was monitored after application of two 
different PAMPs/MAMPs, PiE (   the PAMP from the cell walls of  Phytophthora infes-
tans ) and TvX (a xylanase MAMP from  Trichoderma viride ) (Suzuki et al.  2007 ). 
There was no substantial difference in the gene expression profi les between cells 
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treated with the two different MAMPs, at least during the early phase of defense 
signaling system (Suzuki et al.  2007 ). Pep1 induced transcriptional induction of 
 MPK3 ,  WRKY29 ,  WRKY33 , and  WRKY53  in  Arabidopsis  (Yamaguchi et al.  2010 ). 
These have been reported to be induced by a fungal PAMP, chitin (Wan et al.  2004 , 
 2008a ,  b ), and bacterial PAMPs fl g22 and elf18 (Zipfel et al.  2004 ,  2006 ). Collectively 
these results suggest that different PAMPs/HAMPs may induce almost same type of 
early signaling related genes. Several studies have revealed that the PAMPs/HAMPs 
activate conserved early basal defense responses (Garcia-Brugger et al.  2006 ; Jones 
and Dangl  2006 ; Qutob et al.  2006 ; Thilmony et al.  2006 ; Ferrari et al.  2007 ). 

 The very early responses induced within seconds or minutes by the PAMPs include 
protein phosphorylation followed by Ca 2+  infl ux, plasma membrane depolarization, 
anion and K +  effl ux, cytosol acidifi cation, activation of MAP kinases, transient pro-
duction of ROS and NO production (Boller and He  2009 ; Boller and Felix  2009 ). All 
these early events are induced by most of the PAMPs (Asai et al.  2002 ; Zhang et al. 
 2002a ,  b ,  c ; Hu et al. 2004; Lecourieux et al.  2005 ; Garcia- Brugger et al.  2006 ; 
Moscatiello et al.  2006 ; Denoux et al.  2008 ). Most PAMPs and HAMPs (but not all) 
induce calcium ion infl ux (Lecourieux et al.  2002 ,  2006 ; Garcia-Brugger et al.  2006 ; 
Denoux et al.  2008 ; Erbs et al.  2008 ; Trouvelot et al.  2008 ; Aslam et al.  2009 ; Qi et al. 
 2010 ). MAPK signaling is activated by multiple PAMPs, including fl agellin, EF-Tu, 
peptidoglycan, lipopolysaccharide, and bacterial HrpZ harpin, and fungal chitin in 
 Arabidopsis  (Wu et al.  2011 ). Production of ROS by various PAMPs and HAMPs has 
been widely reported (Huffaker et al.  2006 ; Denoux et al.  2008 ). 

 The PRRs FLS2 and EFR are induced also by bacterial LPS, fungal chitin, and the 
oomycete-derived NPP1 (Zipfel et al.  2006 ). Overall, these different PAMPs seem to 
trigger changes in a common set of genes, indicating that plants do not distinguish 
bacteria, fungi, and oomycetes on the basis of the signaling signature of their PAMPs. 
Rather, presence of one type of PAMP seems to serve as an indicator of injury or 
danger in general, resulting in plant innate immune systems (Zipfel et al.  2006 ).  

2.22     Magnitude and Timing of Expression of Early Signaling 
Systems May Vary Depending on Specifi c PAMPs 

 Although various PAMPs/HAMPs may induce same set of early signaling events, 
such as the same Ca 2+  infl ux, activation of the same MAPK cascades, and similar 
production and accumulation of ROS and NO, the induction of these events may 
vary in magnitude and timing depending on the specifi c PAMPs/HAMPs. Lecourieux 
et al. ( 2005 ) showed that the PAMPs fl g22, β-1,3-glucan, four different elicitins, and 
harpin, and the HAMP OGs induced changes in Ca 2+  concentration in tobacco cells, 
but these changes in Ca 2+  concentration varied in magnitude and timing, depending 
on the PAMP/HAMP. The proteinaceous PAMPs (fl g22, elicitins, harpin)    induced a 
pronounced and sustainable [Ca 2+ ] nuc  elevation, relative to the small effects of the 
PAMP β-1,3-glucan and the HAMP oligogalacturonides in induction of calcium 
signatures (Lecourieux et al.  2005 ). Aslam et al. ( 2009 ) showed that each PAMP 
may elicit different calcium signature. A comparison of calcium infl ux patterns 
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revealed that fl g22 induced a rapid (about 2 min) response, usually with two or three 
minor, decreasing peaks, whereas elf18-induced calcium infl ux pattern was less 
defi ned and broader (Aslam et al.  2009 ). 

 The PAMPs xylanase and the HAMP OGs activate AtMPK6 with characteristic 
time courses in  Arabidopsis . The OGs elicited a rapid and transient activation of 
AtMPK6, with a maximal activity around 3.5 min and a nearly complete return to 
basal activity after 15 min. The PAMP xylanase induced AtMPK6 activity slowly 
with a maximum at 20 min. The activity decreased slowly thereafter and did not 
reach the basal level within 40 min (Nühse et al.  2000 ). The PAMPs fl g22 and chitin 
also behaved differently in activating AtMPK6 in different time courses (Nühse 
et al.  2000 ). OG induced AtMPK3 activity within 3 min of exposure to the HAMP, 
and the enzyme activity returned to basal levels by 10 min. In contrast, AtMPK3 
activity induced by fl g22, was strong at 3 min, and was still robust at 10 min following 
elicitation (Denoux et al.  2008 ). 

 Different elicitors may induce the same signaling system, but the intensity of 
gene expression may differ. The proteinaceous elicitors (elicitins and harpin) 
induced a pronounced and sustainable [Ca 2+ ] nuc  elevation, relative to the small 
effects of oligosaccharide elicitors (oligogalacturonides and β-1,3-glucan) 
(Lecourieux et al.  2005 ). Both cryptogein and OGs, the two different elicitors, trig-
gered Ca 2+  infl ux in  Nicotiana plumbaginifolia  cells, but the two [Ca 2+ ] cyt  calcium 
signatures differed in both kinetics (lag time, peak time, and duration) and peak 
intensities (Lecourieux et al.  2002 ). 

 Various oligosaccharide elicitors (the PAMP β-1,3-glucan and the HAMPs oligo-
galacturonides [OGs] and cellodextrins [CDs]) induced transient increases in cyto-
solic calcium ion ([Ca 2+ ] cyt ) in grapevine cells almost immediately after treatment 
(Aziz et al.  2007 ). When the cells were treated with CD, a rapid and transient 
increase of [Ca 2+ ] cyt  was observed within 1 min and peaked at 0.6 uM after 2.5 min 
and decreased to 0.32 uM after 8 min. Cytosolic Ca 2+  was then maintained at this 
level for about 4 min, and then decreased slowly to the background level. The Ca 2+  
signature was different in peak time or intensity after treatment with the other two 
oligosaccharide elicitors, OGA and β-1,3-glucan (Aziz et al.  2007 ). 

 Both fl g22 and chitosan induced callose deposition in  Arabidopsis , but both 
responses showed differences in timing (Luna et al.  2011 ). Furthermore, fl g22- and 
chitosan-induced callose differed in the requirement for the NADPH oxidase 
RBOHD, the glucosinolate regulatory enzymes VTC1 and PEN2, and the callose 
synthase PMR4 (Luna et al.  2011 ).  

2.23     PAMPs May Differ in Eliciting Various Defense 
Responses 

 Peptidoglycan (PGN), fl agellin, and chitin induced largely overlapping early signal-
ing patterns. However, defense responses induced by them were not identical. PGN 
treatment resulted for instance in camalexin production whereas application of 
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fl g22 did not (Gust et al.  2007 ). Flg22 triggered the induction of  PR1  and  PDF1.2  
genes encoding the pathogenesis-related proteins PR-1 and PR-10, respectively but 
did not induce  PAL1  encoding the enzyme phenylalanine ammonia-lyase involved 
in biosynthesis of phenolics, lignin, and phytoalexins. In contrast, OGA caused the 
upregulation of  PDF1.2  and  PAL1 , but not  PR-1  and elf18 induced all three  PR1 , 
 PDF1.2 , and  PAL1  genes (Denoux et al.  2008 ; Aslam et al.  2009 ). 

 Two HAMPs of  Arabidopsis ,  At Pep2 and  At Pep5, behaved differently in induc-
ing two different PR proteins in  A .  thaliana . Pep2 induced very high expression of 
 PDF1.2 , while Pep5 was a poor inducer of  PDF1.2 . In contrast, Pep5 induced very 
high expression of  PR-1 , while Pep2 was poor inducer of  PR-1  (Fig.  2.4 ; Huffaker 
and Ryan  2007 ).

   The pathogenesis-related protein-1 encoding gene  PR-1  was induced in 
 Arabidopsis  seedlings that were infi ltrated with the PAMP fl g22 solution. 
However, no induction of  PR1  was observed after addition of the HAMP OGs 
(Denoux et al.  2008 ). The PAMP NIP1 isolated from  Rhynchosporium secalis  
induced accumulation of PR-1, PR-5, PR-9, and PR-10 proteins, but could not 
induce the pathogen- inducible germin-like protein ( OxOLP ), LOX gene ( LoxA ), 
and protease inhibitor gene ( SD10 ) (Steiner-Lange et al.  2003 ). Harpin (HrpN) 
derived from the soft rot pathogen  Erwinia carotovora  subsp.  carotovora  induced 
 PR-1  and  PDF1.2  genes, while another  E. carotovora -derived elicitor polygalac-
turonase (PehA) induced only  PDF1.2  (Kariola et al.  2003 ). The PAMP PGN 
(peptidoglycan) treatment induced camalexin but fl g22 did not (Gust et al.  2007 ). 
While, the fl g22 derived from  Pseudomonas aeruginosa  does not induce cell 
death, fl agellin derived from  P .  syringae  pv.  tabaci  6605 did induce cell death 
(Naito et al.  2008 ). These results suggest that different PAMPs/HAMPs may 
induce distinctly different defense genes. 

 Although various PAMPs differ in inducing different defense genes, some 
PAMPs may behave similarly in inducing certain defense genes. ZmPep1 regulates 
the expression of various defense genes in maize. These include endochitinase, 
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  Fig. 2.4    Differences in ability of AtPep2 and AtPep5 in triggering two different PR proteins 
in  Arabidopsis thaliana  (Adapted from Huffaker and Ryan  2007 )       
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 PR- 4   gene, pathogenesis-related maize seed protein ( PRms ), peroxidase (PEX) 
genes, and  SerPIN  (Serine proteinase inhibitor) gene encoding a Bowman-Birk 
trypsin inhibitor in maize (Huffaker et al.  2011 ).  Rhizopus -derived pectinase elicitor 
(PAMP) also induced increased transcript abundance of all above fi ve defense genes 
to comparable levels as ZmPep1 (Huffaker et al.  2011 ). The HAMP Pep1 induced 
transcription of  PDF1.2 , and  PR-1  genes, which are also induced by Flg22, elf18, 
and chitin (Huffaker et al.  2006 ; Yamaguchi et al.  2010 ). 

 The PAMP-induced stomatal closure appears to be important component in 
induced plant immune responses against bacterial pathogens (Melotto et al.  2006 ; 
Gudesblat et al.  2009 ). The PAMPs, fl g22 (Melotto et al.  2006 ; Zhang et al.  2008b ; 
Zeng and He  2010 ), chitosan, a polymer of β-1,4-glucosamine residues derived 
from fungal chitin (Lee et al.  1999 ; Amborabé et al.  2008 ), and LPS (Melotto et al. 
 2006 ), and the HAMP oligogalacturonide (Lee et al.  1999 ) trigger stomatal closure. 
In contrast, the PAMP peptidoglycan has not been shown to trigger stomatal 
responses (Erbs et al.  2008 ; Zeng and He  2010 ).  

2.24     Synergism and Antagonism in Induction of Plant 
Immune Responses by PAMPs/HAMPs 

2.24.1     Multiple PAMPs May Be Required to Activate the 
Complex Defense Signaling Systems 

 Each pathogen may contain or secrete several PAMPs. Most known PAMPs are 
essential components of a bacterial or fungal cell. Thus, probably every microbe 
bears several PAMPs (Zipfel et al.  2004 ). Several studies have identifi ed the signal-
ing events triggered by individual PAMPs. However, the PAMPs rather being 
released singly  in planta , are likely to be presented as a cocktail, and the different 
PAMPs may interact synergistically or antagonistically in triggering different sig-
naling systems (Aslam et al.  2009 ). A single PAMP may not be able to activate all 
the defense signaling-related genes and several PAMPs may be required to activate 
the complex signaling systems (Zipfel et al.  2004 ). 

 The defense signaling systems may be induced by several types of PAMPs and 
elicitors. Among the 126 genes that were up- or downregulated during incompatible 
rice- Acididovorax avenae  interactions, expression of 45 genes was decreased when 
cultured rice cells were inoculated with a fl agellin-defi cient incompatible strain, 
indicating that approximately 37 % of the 126 genes were directly controlled by 
fl agellin perception. The remaining 81 genes would have been activated by other 
PAMPs (Fujiwara et al.  2004 ). Of the 56 PAMP-induced kinases in  Arabidopsis 
thaliana , only 31 were found to be induced by fl g22 treatment (Thilmony et al. 
 2006 ). These results suggest that several PAMPs may be involved in activation of 
defense signaling system.  
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2.24.2     Different PAMPs May Act Synergistically 

 The different PAMPs may act synergistically in inducing expression of defense 
response. N-acetylchitoheptaose and tetraglucosyl glucitol are the two oligosaccharide 
PAMPs derived from the rice blast pathogen  Magnaporthe grisea  cell walls. The 
two PAMPs were recognized by different receptors. However, they synergistically 
activated phytoalexin biosynthesis in cultured rice cells, suggesting that different 
PAMPs may act synergistically in inducing expression of defense response 
(Yamaguchi et al.  2002 ). There was a signifi cant enhancement of PAMP-induced 
calcium ion infl ux when the following PAMPs were combined, compared with the 
effect of the individual PAMPs: fl g22 + elf18; fl g22 + LOS; fl g22 + core oligosac-
charides; and LOS + core oligosaccharides. These increases were additive, except 
for fl g22 and LOS, where there appears to be synergy (Aslam et al.  2009 ). 

 Harpin (HrpN) and polygalacturonase (PehA) are the two  Erwinia carotovora  
subsp.  carotovora -derived elicitors. Both of them individually did not induce signifi -
cant amount of production of superoxide in  Arabidopsis . In contrast, they triggered 
increased production of superoxide when the two elicitors were applied simultane-
ously (Kariola et al.  2003 ). The harpin elicitor induced both SA and JA/ET signaling 
pathways, as indicated by induction of the SA-signaling system marker gene  PR-1  
and the JA/ET-signaling system marker gene PDF1.2. PehA elicitor induced only JA/
ET signaling system. However, when both the elicitors were applied simultaneously, 
they triggered faster and higher expression of both the SA and JA/ET signaling sys-
tems (Table  2.6 ; Kariola et al.  2003 ). The results suggest that some PAMPs/elicitors 
may act synergistically in induction of defense signaling systems. Some PAMPs have 
additive effect and the fl agellin peptide (fl g22) and elongation factor 18 (elf18) show 
additive effect in inducing defense signaling system (Aslam et al.  2009 ).

2.24.3        Some PAMPs May Show Antagonistic Effect 
in Activating Defense Responses 

 Some PAMPs show antagonistic effect between them. The fl g22 and oligosaccharide 
elicitor (OGA) showed mutual interference between them. OGA suppresses fl g22-
induced defences in  Arabidopsis  (Aslam et al.  2009 ). Reduced calcium infl ux was 

   Table 2.6    Synergistic action of PAMPs/elicitors in induction of different  PR  genes in  Arabidopsis    

  PR  gene 

 HrpN  PehA  HrpN + PehA 

 24 h  48 h  24 h  48 h  24 h  48 h 

  PR1   +  ++  −  −  ++  +++ 
  PDF 1.2   −  −  −  ++  +++  +++ 

  Adapted from Kariola et al. ( 2003 ) 
 −, not detected; +, ++, +++, increased intensity of expression of defense genes  
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observed when  Arabidopsis  was challenged with two PAMPs (fl g22 + peptidoglycan 
[PGN], fl g22 + oligogalacturonides [OGA] and elf18 + OGA) concurrently. Induction 
of ROS by fl g22 was reduced by more than 90 %, whenfl g22 was applied along with 
OGA (Aslam et al.  2009 ).   

2.25     Amount of PAMP/HAMP Determines the Intensity 
of Expression of Defense Signaling Genes 

 The intensity of PAMP-induced expression of various defense signaling systems 
may depend on the amount of PAMP applied to activate the immune systems. The 
intensities of calcium signatures induced by both cryptogein and OGs were shown 
to depend on the PAMP/HAMP concentration (Lecourieux et al.  2002 ). Flg22 
induced the transcription factor gene  WRKY40  in  Arabidopsis  and the induction of 
gene expression increased at increasing concentrations of the elicitor (Fig.  2.5 ; 
Denoux et al.  2008 ). The relationship between increase in concentrations of PAMPs 
and increased upregulation of expression of defense-related genes has been reported 
in barley (Fujita et al.  2004 ), rice (Schaffrath et al.  1995 ), and parsley cells (Davis 
and Hahlbrock  1987 ).

   The HAMP ZmPep1 application induced increased expression of defense genes 
and the induced magnitude of change in transcript abundance was found to be dose- 
dependent. The leaves treated with  Zm Pep1 displayed increased defense gene 
expression with increasing amounts of  Zm Pep1 peptide application (Huffaker et al. 
 2011 ). These results suggest that the expression of defense signaling depends on the 
applied dosage of the PAMP. 

 Dosage required to trigger the plant immune response may differ among differ-
ent PAMPs. At the same concentration (1 μM), fl g22 is more potent than elf18 to 
induce the oxidative burst in  Arabidopsis  leaves (Zipfel et al.  2006 ) and elf26 pep-
tides from  Agrobacterium tumefaciens  and  Erwinia amylovora  are 50 times more 
potent to induce alkalinization of  Arabidopsis  cell culture than elf26 from  P .   syringae   
pv.  tomato  DC3000 (Kunze et al.  2004 ).  
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  Fig. 2.5    Effect of different concentrations of Flg22 in inducing expression of the transcription 
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2.26     Amount of PAMP Available in the Infection Court May 
Determine the Level of Induction of Immune Responses 

 It has been suggested that the amount of PAMP available in the infection court 
may determine the intensity of induced defense gene expression (Lecourieux 
et al.  2002 ; Denoux et al.  2008 ). For example, transgenic tobacco plants express-
ing the  hpaG   Xoo   gene encoding the PAMP harpin Xoo  were obtained by Peng et al. 
( 2004 ). The harpin gene expression varied in the transgenic lines. The line 7 
showed highest expression of the harpin gene while the line 15 showed lowest 
expression of the gene. The line, which showed highest PAMP expression, showed 
greatest expression of the regulatory gene  NPR1  and the defense gene  Chia5  
encoding chitinase. By contrast, the line 15, which showed lowest PAMP expres-
sion, showed lowest expression of the defense gene  Chia5  and the regulatory gene 
 NPR1  (Fig.  2.6 ; Peng et al.  2004 ). High and low expression of other defense genes 
 PR-1a  and  PR-1b  was also correlated with the high and low expression of the 
PAMP gene in the lines 7 and 15, respectively. The line 7 showed highest disease 
resistance, while the line 15 showed lowest disease resistance. These results 
suggest a link between higher level of PAMP in plants and higher level of induction 
of immune responses.

2.27        PAMPs May Trigger Different Signaling Systems 

2.27.1     Some PAMPs May Activate Only Specifi c 
Signaling Systems 

 The PAMPs may activate plant innate immune responses triggering different signal-
ing pathways. Each PAMP/elicitor may regulate distinctly different signaling 
pathway(s). The harpin (HrpN) elicitor derived from the soft rot pathogen  Erwinia 
carotovora  subsp.  carotovora  induced both SA and JA/ET signaling pathways, 
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while  E. carotovora -derived polygalacturonase (PehA) elicitor induced only the JA/
ET signaling system in  Arabidopsis  (Kariola et al.  2003 ). The HAMPs AtPep1 and 
AtPep2 induced both JA/ET and SA signaling pathways in  A .  thaliana . These 
HAMPs triggered expression of  PR-1  (the gene induced by SA) and  PDF1.2  
(the gene induced by JA/ET) genes in  Arabidopsis  (Huffaker and Ryan  2007 ). 
In contrast, ZmPep1, the ortholog of AtPep1, activated de novo synthesis of JA and 
ethylene, and not SA in maize (Huffaker et al.  2011 ). A β-1,3-glucan sulfate elicitor 
induced JA signaling system in grapevine (Trouvelot et al.  2008 ). 

 The PAMP NLP Pp  from  Phytophthora parasitica  strongly induced ethylene 
biosynthesis enzymes ACC synthase (ACS) and ACC oxidase (ACO). However, 
none of the genes encoding JA biosynthetic enzymes, such as lipoxygenase, 
allene oxide synthase, allene oxide cyclase, 12-oxophytodienoate reductase, and 
jasmonate-O   - methyl transferase were altered in potato plants (Qutob et al.  2006 ). 
By contrast, rapid accumulation of transcripts encoding SA biosynthetic enzymes 
such as isochorismate synthase 1 and phenylalanine ammonia-lyase was observed 
(Qutob et al.  2006 ). Collectively these studies indicate that NLP Pp  may activate ET 
and SA signaling pathways, but JA signaling pathway may not be involved in 
NLPpp- mediated signaling system. 

 The PAMP CBEL induced different types of defense responses regulated by dif-
ferent signaling pathways (Table  2.7 ; Khatib et al.  2004 ). It induced the genes  PR-1  
and  PDF1.2  encoding PR-1 and PR-12 defensin proteins, respectively and  ASA1  
encoding anthranilate synthase involved in the biosynthesis of the phytoalexin 
camalexin in  Arabidopsis . Different signaling pathways were involved in the induc-
tion of these defense genes. The induction of  PR-1  was abolished in  NahG  plants, 
which are defi cient in SA signaling, while the induction of  PDF1.2  and  ASA1  genes 
was not altered in NahG plants. The results suggest that expression of PR-1 gene is 
dependent of SA signaling system, but the expression of  PDF1.2  and  ASA1  is inde-
pendent of SA system. The CBEL-induced expression of  PDF1.2  was totally abol-
ished in  coi1  (JA-defi cient) and  ein2  (ET-defi cient) mutants and the PAMP-induced 
expression of  ASA1  was abolished in  coi1  mutants. These results suggest that 
expression of  PDF1.2  is dependent on the PAMP-induced JA/ET signaling systems, 

   Table 2.7    CBEL elicitor induces defense genes through different SA, JA, and ET signaling   

 Plant defense genes 

 CBEL elicitor-induced expression of defense genes in wild-type 
and mutant  Arabidopsis  plants 

 Wild-type 
 SA-defi cient 
mutant 

 JA-defi cient 
mutant 

 ET-defi cient 
mutant 

  ASA1  (anthranilate 
synthase) 

 +  +  −  + 

  PR-1   +  −  +  + 
  PDF1.2  (defensin)  +  +  −  − 

  Adapted from Khatib et al. ( 2004 ) 
 +, expressed; −, not expressed  
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whereas the expression of  ASA1  is dependent on JA signaling system in  Arabidopsis  
(Khatib et al.  2004 ). Collectively, these results suggest that the PAMP CBEL activates 
different hormone signaling systems and triggers various defense responses.

2.27.2        Some PAMPs May Activate Multiple Hormone 
Signaling Systems 

 Some PAMPs may not have any specifi city in activating different hormone signaling 
systems. The PAMP NPP1 from  Phytophthora sojae  triggers ethylene production 
and also SA signaling pathway (Fellbrich et al.  2002 ). Pep-13, a PAMP from 
 Phytophthora , induces the accumulation of both SA and JA and also activates defense 
genes in potato (Halim et al.  2009 ). The PAMP fl g22 induces both SA-dependent 
 PR-1  expression and JA/ET-dependent  PDF1.2  expression in  Arabidopsis  (Gómez-
Gómez et al.  1999 ). Flg22 activates SA, JA and ET signaling pathways and OGs 
also activate these three pathways (Denoux et al.  2008 ). These studies demonstrate 
that different PAMPs may activate various signaling systems and some of them may 
be specifi c in activating specifi c signaling systems.   

2.28     PAMPs May Function Differently in Different Plants 

 The PAMPs may behave differently in different plant system. They may trigger 
variable downstream signaling responses in different plants. Khatib et al. ( 2004 ) 
observed enhanced β-1,3-glucanase activities after infi ltration of CBEL in leaves 
belonging to four different botanical families, i.e. tobacco (Solanaceae),  Arabidopsis  
(Brassicaceae), French bean (Fabaceae) and  Zinnia  (Asteraceae). However, other 
species of the same families such as pea and sunfl ower did not respond to CBEL 
(Khatib et al.  2004 ). 

 The harpin (HrpN ea ) from  Erwinia amylovora  induces increases in anion current in 
apple cells, while it decreases the anion current in  Arabidopsis  cells (Reboutier et al. 
 2007 ). In apple cells, harpin did not trigger any signifi cant H 2 O 2  production, while in 
 Arabidopsis  cells, a rapid transitory increase of H 2 O 2  production was observed within 
30 min of the elicitor treatment (Reboutier et al.  2007 ). These results suggest that the 
PAMPs may trigger defense responses depending on the specifi c host plants.  

2.29     Specifi city of PAMPs in Triggering Immune 
Responses in Plants 

 The PAMPs may trigger immune responses in some specifi c plants. The bacterial 
PAMP CSP22 triggers defense responses specifi cally in Solanaceous plants (Felix 
and Boller  2003 ). The bacterial PAMP EF-Tu triggers immune responses only in 
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members of the family Brassicaceae whereas responsiveness to Ax21 seems 
confi ned to rice (Kunze et al.  2004 ; Zipfel  2008 ; Segonzac and Zipfel  2011 ). 
Flagellin induces resistance in  Arabidopsis , tobacco, tomato, and rice. The PAMP 
rhamnolipids were able to stimulate defense genes in tobacco, wheat, grapevine, 
and  Arabidopsis thaliana  (Vatsa et al.  2010 ). 

 The specifi city of particular PAMP may be due to its specifi city towards its PRR 
in plants. The PRR EFR for the PAMP EF-Tu has been detected in plants belonging 
to the family Brassicaceae. The transfer of EFR from Brassicaceae to Solanaceae 
species confers a broad-spectrum resistance to phytopathogenic bacteria in 
Solanaceous plants (Lacombe et al.  2010 ). The results suggest that EFR is impor-
tant in triggering plant immune responses and its action is not specifi c to particular 
plants. Similarly the PRR  Xa21  gene is detected in rice plants and the PAMP Ax21 
activates plant immune responses in rice. Transgenic  Citrus sinensis  plants express-
ing the rice  Xa21  gene were developed and these transgenic plants also conferred 
resistance against the citrus bacterial pathogen  Xanthomonas axonopodis  pv.  citri  
(Mendes et al.  2010 ). The results suggest that the PRR from one plant species can 
be transferred to another plant species to extend the usefulness of PRRs in manage-
ment of wide-spectrum of pathogens in a wide range of plants.  

2.30     Role of PAMPs and Effectors in Activation of Plant 
Innate Immune Responses 

 Pathogen effectors are proteins and small molecules that alter host-cell structure 
and function. These alterations either facilitate infection or trigger defense 
responses or both (Hogenhout et al.  2009 ; Boureau et al.  2011 ). Effectors are 
double-edged swords that enhance virulence of pathogens in susceptible plants and 
trigger resistance in plants carrying cognate resistance (R) proteins (Zong et al. 
 2008 ). Effector- triggered immunity (ETI) and PAMP-triggered immunity (PTI) are 
two branches of the plant immune system. PTI uses transmembrane PRRs that 
respond to PAMPs, whereas ETI acts largely inside the cell, using polymorphic 
nucleotide binding-leucine-rich repeat (NB-LRR) protein products encoded by 
most  R (resistance) genes (Jones and Dangl  2006 ). These NB-LRR proteins have 
been targeted by breeders for decades to elicit resistance to crop pathogens in the 
fi eld (Tör et al.  2009 ). The ETI was formerly known as gene-for-gene resistance 
(Boller and He  2009 ). 

 Interactions between plants and pathogens can be classifi ed as compatible, 
incompatible, and nonhost interactions. Incompatible interactions are cultivar- 
specifi c and determined by ETI. In contrast, compatible interactions are thought to 
lack ETI. Nonhost interactions refer to those between a plant species and non-
adapted pathogens. Some effectors from nonadapted pathogens also trigger ETI and 
induce HR, typically seen in the incompatible interactions (Zhang et al.  2010b ). 
Effector-triggered immunity results in amplifi cation of PTI and it constitutes the 
second layer of defense (Day and He  2010 ). 
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 Pathogen effectors recognized by NB-LRR proteins activate defense responses 
similar to those activated by PAMPs. However, ETI generally activates them in a 
more prolonged and robust fashion than PTI and usually includes the hypersensitive 
response (HR) (Tsuda and Katagiri  2010 ). The PAMP- and effector- activated 
signaling pathways include Ca 2+  fl uxes, MAP kinase cascade, ROS production, hor-
mone signaling network, and transcriptional reprogramming. The triggered plant 
immune responses include accumulation of pathogenesis-related proteins, deposi-
tion of lignin and callose in the cell wall, and production of anti-microbial com-
pounds (Tsuda and Katagiri  2010 ; Gimenez-Ibanez and Rathjen  2010 ).  

2.31     Effectors May Suppress PAMP-Triggered Immunity 

2.31.1     Inhibition of PAMP-Triggered Immunity 

 Several pathogens are capable of delivering effector proteins into the host cell to 
enhance virulence and these effectors often inhibit PAMP-triggered immunity (PTI) 
(Göhre and Robatzek  2008 ; Song and Yang  2010 ; Szczesny et al.  2010 ; Zhang et al. 
 2010b ; Akimoto- Tomiyama et al.  2012 ). Some effectors may also suppress the 
immune response induced by another effector produced by the same pathogen 
(Szczesny et al.  2010 ). Some pathogens have acquired effectors to collectively over-
come PTI and ETI in their host plants (Zhang et al.  2010b ; Block and Alfano  2011 ). 
The bacterial pathogen  Pseudomonas syringae  suppresses both PTI and ETI by the 
injection of type III effector (T3E) proteins into host cells (Block and Alfano  2011 ). 
Pathogens secrete several effectors (virulence factors, toxins) into the host cell and 
suppress or disable PAMPs-induced signaling pathways. This results in effector-
triggered susceptibility (ETS) (Hauck and Thilmony  2003 ; Li et al.  2005a ; He et al. 
 2006 ; Jones and Dangl  2006 ; Nomura et al.  2006 ; Zhang et al.  2007a ; Göhre et al. 
 2008 ; Cui et al.  2009 ; Hogenhout et al.  2009 ; Wu et al.  2011 ).  

2.31.2     Effectors May Degrade PRRs 

 Major function of effectors is to suppress PAMP-triggered defense responses. Some 
effectors have been shown to degrade the PRRs and inhibit PAMP-triggered immunity. 
Flagellin (fl g22) is the PAMP recognized in several bacterial pathogens including 
 Pseudomonas syringae  pv.  tomato . The PAMP fl g22 is perceived by the PRR FLS2 
in  Arabidopsis . AvrPtoB  is  the effector secreted by the bacterial pathogen. The 
AvrPtoB associates with FLS2 through its N terminus and the interaction is enhanced 
by the PAMP fl g22 activation. The effector AvrPtoB promotes degradation of the 
PRR FLS2. The AvrPtoB has been recognized as an E3 ubiquitin ligase and it 
structurally and functionally mimics E3 ubiquitin ligase (Janjusevic et al. 2006; 
Abramovitch et al.  2006 ). The C-terminal region (residues 400–550) of AvrPtoB 
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encodes an ubiquitin E3-ligase domain and it ubiquitinates the PRR FLS2 to 
promote its degradation (Gimenez-Ibanez et al.  2009b ). E3 ligases play a key role 
in the ubiquitin-proteasome-mediated degradation of protein. The effector catalyzes 
polyubiquitination of the kinase domain of FLS2, resulting in degradation of the 
PRR. The E3 ubiquitin ligase activity of AvrPtoB seems to be required for full 
enhancement of virulence of the bacterial pathogen and degradation of the receptor 
occurs during the bacterial infection (Göhre et al.  2008 ). 

 The effector AvrPtoB also inhibits PTI by targeting another PRR CERK1 
(CHITIN ELICITOR RECEPTOR KINASE 1) for degradation (Gimenez-Ibanez 
et al.  2009a ,  b ). To fi nd out the role of the effector AvrPtoB in inhibiting the PAMP- 
triggered immunity by degrading the PRR CERK1, transgenic  Arabidopsis  plants 
expressing  avrPtoB  from an inducible promoter were developed. Treatment of these 
plants with chitin elicited generation of ROS, induction of defense gene expression 
and deposition of callose into cell walls. All of these responses were suppressed 
effi ciently by prior induction of  avrPtoB  transgene with dexamethasone. The PAMP 
chitin treatment-induced activation of MAPKs was also abolished by AvrPtoB 
(Gimenez-Ibanez et al.  2009b ). These results suggest that FLS2 and CERK1 are the 
targets of AvrPtoB, leading to their degradation (Göhre et al.  2008 ; Shan et al.  2008 ; 
Gimenez-Ibanez et al.  2009b ; Hann et al.  2010 ).  

2.31.3     Effectors May Bind the Receptor Kinase PRRs 
to Block PAMP-Triggered Immunity 

 Virulent pathogens may suppress the defense signal transduction-mediated by plant 
transmembrane receptor kinases, the PRRs (Xiang et al.  2008 ).  Pseudomonas syrin-
gae  effector protein AvrPto suppresses host defenses by directly targeting the trans-
membrane receptor kinases involved in bacterial perception (Zipfel and Rathjen 
 2008 ).  P. syringae  injects two sequence-distinct effectors, AvrPto and AvrPtoB, to 
intercept convergent defense responses stimulated by PAMPs. The AvrPto binds 
receptor kinases, including  Arabidopsis  FLS2 and EFR and tomato LeFLS2, to 
block plant defense responses in the plant cell (Xiang et al.  2008 ). Xiang et al. 
( 2011 ) provided evidences to show that FLS2 is targeted by the  P .  syringae  effector 
AvrPto in plants. AvrPto is a kinase inhibitor that inhibits the PRR receptor kinase 
activity (Xiang et al.  2008 ). The bacterial effector AvrPtoB targets the LysM recep-
tor kinase CERK1 to promote bacterial virulence (Gimenez-Ibanez et al.  2009a ). It 
directly targets the kinase domains of FLS2, CERK1, and Pto (Shan et al.  2008 ).  

2.31.4     Effectors May Prevent Interaction of Co-receptor 
BAK1 with PAMPs 

 PRRs appear to interact with some transmembrane proteins that act as signaling 
adapters or amplifi ers to achieve their full functionality (Zipfel  2009 ). BAK1 is an 
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important transmembrane protein, which interacts with PRRs and acts downstream 
of PRRs. (Chinchilla et al.  2007a ,  b ; Heese et al.  2007 ). BAK1 is a signal amplifi er 
(Nicaise et al.  2009 ). BAK1has been shown to be required for full function of 
PAMP-PRR signaling complex to activate plant immune responses (Schulze et al. 
 2010 ). BAK1 is required for proper functionality of several PRRs including FLS2, 
EFR, CERK1, PEPR1, and PEPR2 (Postel et al.  2010 ; Zhang and Zhou  2010 ). 

 Some effectors block the action of BAK1. The effectors AvrPto and AvrPtoB 
bind to BAK1 and thereby blocking its interaction with the PRR FLS2 resulting in 
suppression of immunity (Shan et al.  2008 ). AvrPtoB binds BAK1 during infection 
and impede BAK1-dependent plant defense responses (Shan et al.  2008 ). AvrPtoB 
directly targets the kinase domains of BAK1 (Shan et al.  2008 ). Suppression of 
BAK1 by AvrPtoB may occur by inhibition of kinase activity and may have broad 
effects through the multiple BAK1-dependent PAMP-signaling pathways (Shan 
et al.  2008 ). AvrPtoB targets BAK1 to disrupt the complex (Hann et al.  2010 ). 
However, Xiang et al. ( 2011 ) provided evidences to show BAK1 is not targeted by 
the  P .  syringae  effector AvrPto in plants.  

2.31.5     Effectors May Target the Receptor-Like Cytoplasmic 
Kinases BIK1 and PBL1 

 Downstream of PAMP-PRR-BAK1 signaling complex, several receptor-like 
cytoplasmic kinases (RLCK) play important role in regulation of the signaling 
pathways. The important RLCKs involved in the signaling complex in Arabidopsis 
include BIK1 (Botrytis-induced kinase 1), PBS1 (AvrPphB susceptible 1), and 
PBS1-like (PBL) proteins. The BIK1 plays an important role in mediating early 
fl agellin signaling from the FLS2/BAK1 receptor complex (Lu et al.  2010 ). 
BIK1 forms a complex with unstimulated FLS2 in plants, and the PAMP fl g22 
induces a rapid phosphorylation of BIK1 in both an FLS2- and BAK-dependent 
manner (Lu et al.  2010 ; Zhang et al.  2010a ; Wu et al.  2011 ). BIK1 links the 
PAMP-PRR signaling complex to downstream intracellular signaling (Lu et al. 
 2010 ). PBS1-like (PBL) cytoplasmic receptor-like kinases (RLCKs) act addi-
tively with BIK1 in plant innate immune system (Zhang et al.  2010a ). PBS 
receptor-like kinases are required for signaling from multiple PAMPs and act 
downstream of FLS2, EFR, and CERK1 to trigger immune responses. It has 
been shown that BIK1 and PBS proteins integrate immune signaling from mul-
tiple PRRs (Zhang et al.  2010a ). 

 Zhang et al. ( 2010a ) presented evidence that several related Arabidopsis 
cytoplasmic receptor kinases, exemplifi ed by BIK1 and PBS1 are cleaved by 
AvrPphB, an effector from the pathogenic bacterium  P .  syringae  (Zhang et al. 
 2010a ). In addition to cleavage of BIK1 and PBS1, AvrPphB targets about 10 PBL 
kinases, including PBL1 and PBL2 (Zhang et al.  2010a ). The effector AvrPphB is a 
cysteine protease that cleaves PBS1 kinase (Ade et al.  2007 ). Plants lacking BIK1 
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and/or PBS1 were compromised in their PTI response to several PAMPs suggesting 
that at least these two targets of AvrPphB are important in PTI and are virulence 
targets of  P .  syringae  (Zhang et al.  2010a ; Lu et al.  2010 ).  

2.31.6     Effectors May Inhibit Autophosphorylation of PRRs 

 Most of the PRRs identifi ed are receptor kinases and the PAMPs induce autophos-
phorylation of these PRRs (Gómez-Gómez et al.  2001 ; Wang et al.  2001 ; Robatzek 
et al.  2006 ; Kanzaki et al.  2008 ; Xiang et al.  2008 ; Chen et al.  2010d ; Kim et al. 
 2010 ; Petutschnig et al.  2010 ). PAMP-induced autophosphorylation of PRRs is 
required for activation of the PRRs (Chen et al.  2010d ; Park et al.  2010a ,  b ). The 
effector AvrPto produced by  P .  syringae  pv.  tomato  interacts  in vivo  with the PRRs 
FLS2 and EFR and inhibits their autophosphorylation in the dose-dependent man-
ner (Xiang et al.  2008 ). The effector thus prevents activation of the function of the 
PRRs. AvrPto inhibits all responses induced by several PAMPs (He et al.  2006 ; 
Hann and Rathjen  2007 ; Xiao et al. 2007). 

 The  P .  syringae  effector HopF2 has been found to be a potent suppressor of early 
immune gene transcription signaling activated by multiple PAMPs, including bacte-
rial fl agellin, ef-Tu, peptidoglycan, lipopolysaccharide and HrpZ1 harpin, and fun-
gal chitin (Wu et al.  2011 ). HopF2 is targeted to the plant plasma membrane through 
a putative myristoylation site and the membrane association appears to be required 
for its PAMP-suppression function (Wu et al.  2011 ). The plasma membrane- 
associated cytoplasmic kinase BIK1is phosphorylated within 1 min upon fl agellin 
perception. Expression of HopF2 in plants potently diminished the fl agellin-induced 
phosphorylation of BIK1 (Wu et al.  2011 ). These results suggest that HopF2 likely 
intercepts PAMP signaling at the plasma membrane immediately of signal percep-
tion by PRR by inhibiting the phosphorylation of the protein kinase BIK1 (Wu et al. 
 2011 ). These studies suggest that the effectors may interfere with the function of 
PRRs by inhibiting autophosphorylation of the PRRs.   

2.32     PAMP-Induced Small RNA-Mediated RNA Silencing 

2.32.1     RNA Silencing Is an Immune System in Plants 

 Small RNAs (sRNAs) are non-protein-coding RNAs of 20 to 30-nucleotide length 
(Ghildiyal and Zamore 2009; Havecker et al. 2010; Kulcheski et al. 2011;  al. 2011). 
These small RNAs have been identifi ed as regulatory RNAs that modulate gene 
expression at both the transcriptional and posttranscriptional levels (Zhao et al. 
2012). They act as sequence-specifi c repressors of target gene expression, either at 
the transcriptional level through DNA and/or histone methylation or at the posttran-
scriptional level through transcriptional cleavage or translational inhibition 
(Ramachandran and Chen 2008a, b). 
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 In general, small RNAs are grouped into two major classes: microRNAs (miRNAS) 
(Carthew and Sontheimer 2009; Katiyar-Agarwal and Jin  2010 ; Cuperus et al. 2010; 
Kulcheski et al. 2011), and small-interfering RNAs (siRNAs) (Llave et al. 2002; 
Song and Joshua-Tor 2006; Chellappan et al.  2010 ; Chen et al.  2010b ; Dunoyer 
et al.  2010 ; Katiyar-Agarwal and Jin  2010 ). Small RNAs are classifi ed into miRNAs 
and siRNAs based on their precursor structures and biogenesis pathways. The miR-
NAs are originated from hairpin-folded single-stranded RNAs transcribed from 
miRNA genes (Bartel  2004 ; Mallory and Vaucheret  2006 ), while siRNAs are pro-
duced usually from long double-stranded RNAs (dsRNAs) (Hamilton et al.  2002 ; 
Narry Kim  2005 ; Chapman and Carrington  2007 ). 

 Small RNAs are involved in a variety of phenomena that are essential for genome 
stability, development, and adaptive responses in biotic and abiotic stresses (Mallory 
and Vaucheret  2006 ; Vaucheret  2006 ; Chen 2009; Kulcheski et al. 2011). Small 
RNA molecules act as mobile signals that direct mRNA cleavage and DNA meth-
ylation in recipient cells (Ciomperlik et al.  2011 ; Molnar et al. 2011). They are key 
regulators of gene expression that guide both transcriptional and post-transcriptional 
silencing mechanisms in eukaryotes (Kulcheski et al. 2011). They function by guiding 
sequence-specifi c gene silencing at the transcriptional and/or post- transcriptional 
level (Vaucheret et al.  2006 ; Chellappan et al.  2010 ; Havecker et al. 2010). They are 
also big contributors to plant innate immunity (Chellappan et al.  2009 ; Dunoyer 
et al.  2010 ; Mosher et al.  2010 ; Molnar et al. 2011). 

 RNA silencing refers to a number of related cellular processes that employ the small 
RNAs to regulate the expression of genetic material in a sequence-specifi c manner (Qu 
et al.  2008 ; Jaubert et al.  2011 ; Zhao et al. 2012). RNA silencing is a conserved mecha-
nism in plants that plays a role in various biological processes including regulation of 
gene expression. RNA silencing also plays a role in genome stability and protects plants 
against invading nucleic acids such as transgenes and viruses (Ellendorff et al.  2009 ). 
RNA silencing is a type of plant immune system conferring resistance against viruses 
and also against bacteria and fungi (Voinnet  2001 ; Katiyar-Agarwal and Jin  2010 ; Zhang 
et al.  2011 ). Plants use RNA silencing as a surveillance mechanism to protect against 
viral (Mlotshwa et al.  2002 ; Garcia- Ruiz et al.  2010 ), bacterial (Katiyar-Agarwal et al. 
 2006 ; Navarro et al.  2006 ,  2008 ; Agorio and Vera  2007 ; Jin  2008 ; Li et al.  2010 ; Zhang 
et al.  2011 ), and fungal pathogens (Lu et al.  2007 ; Ellendorff et al.  2009 ). 

 The important feature of RNA silencing is its ability to spread from cell to cell 
(Chitwood and Timmermans 2010). RNA silencing is a non-cell-autonomous pro-
cess; it spreads both to neighboring cells and systemically over long distances 
(Dunoyer et al.  2010 ). A RNA silencing signal has been shown to move through 
plasmodesmata and the phloem (Molnar et al. 2010). Both exogenous and endoge-
nous siRNAs, as opposed to their precursor molecules, act as mobile silencing sig-
nals between plant cells (Dunoyer et al.  2010 ). The silencing signal may involve 
siRNA duplexes, and not Argonaute1 (AGO1) – bound siRNA single strands. The 
small RNA signaling system has been shown to play important role in host defense 
responses against viral, bacterial, and fungal pathogens. As a counter-defense, 
pathogens encode specifi c proteins that function as suppressors of small RNA- directed 
RNA silencing (Alvarado and Scholthof  2009 ; Lewsey et al.  2010 ; Xie et al.  2010 ; 
Burgyán and Havelda  2011 ; Shimura and Pantaleo 2011). 
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 Small RNAs are generated from dsRNA precursors by the ribonuclease III 
enzyme Dicer (Qu et al.  2008 ). Four paralogs of Dicer (Dicer-like, DCLs) have been 
detected in Arabidopsis. DCL1 excises miRNAs from intergenic stem-loop tran-
scripts to promote cleavage of cellular transcripts carrying miRNA-complementary 
sequences (Bartel  2004 ). DCL2 produces viral-derived siRNAs (Xie et al.  2004 ) 
and siRNAs from antisense overlapping transcripts (Borsani et al.  2005 ). DCL3 
generates DNA repeat-associated siRNAs (Xie et al.  2004 ), whereas DCL4 synthe-
sizes trans-acting siRNAs and mediates RNA interference (Dunoyer et al.  2005 ; Xie 
et al.  2005 ; Howell et al.  2007 ). 

 The generated small RNAs are subsequently incorporated into RNA-induced 
silencing complexes (RISCs). The functions of RISCs are carried out in large part by 
the activity of RNase H-like Argonaute (AGO) proteins (Voinnnet 2009; Jaubert et al. 
 2011 ). Once produced, the miRNAs and siRNAs are recruited by the AGO proteins 
into RISCs to direct the cleavage or translational repression of homologous mRNAs 
(Baulcombe  2004 ; Dunoyer et al.  2010 ). These small RNAs bind to Argonaute nucle-
ases and form base paired structures with their RNA targets. In many instances the 
target RNA is simply degraded, presumably by exonucleases. However, some of the 
targeted molecules, especially those that interact with two different small RNAs are 
degraded through a more complex mechanism. The targeted RNA is fi rst copied into 
dsRNA by an independent RNA polymerase and is then cleaved into siRNAs by a 
Dicer nuclease. The secondary siRNAs are able to guide Argonaute nucleases in deg-
radation of RNA targets (Fagard et al.  2000 ; Narry Kim  2005 ; Szittya et al.  2008 ). 

 RNA silencing operated through the production of small RNAs is an important 
antiviral plant immune system (Voinnet  2001 ; Szittya et al.  2008 ; Garcia-Ruiz et al. 
 2010 ). Certain endogenous small RNAs in plants, including miRNAs and siRNAs, 
are induced or repressed in response to bacterial and fungal pathogen attack and 
subsequently regulate the expression of genes involved in disease resistance and 
defense responses by mediating transcriptional or post-transcriptional gene silenc-
ing (Katiyar-Agarwal et al.  2006 ,  2007 ; Agorio and Vera  2007 ; Jin  2008 ; Navarro 
et al.  2008 ; Li et al.  2010 ). Small RNA signaling system has been shown to be 
involved in PAMP-triggered immune responses. In  Arabidopsis , fl g22 triggered 
rapid changes in transcript levels, including down-regulation of a gene subset, 
potentially by posttranscriptional mechanisms (Navarro et al.  2004 ). The posttran-
scriptional mechanism involves RNA silencing, a sequence-specifi c mRNA degra-
dation process mediated by small RNAs. It suggests that the PAMP-triggered 
down-regulation of genes depends on small RNA-mediated RNA silencing system.  

2.32.2     Flg22 Triggers Accumulation of miRNAs, Which 
Cleave and Down-Regulate Auxin Signaling Genes 

 Flg22 induced a two-fold increase in microRNA (miR393) accumulation in 
 Arabidopsis  seedlings. The up-regulation of miR393 by fl g22 resulted from enhanced 
transcription of  At-miR393a  gene. Flg22 elicited a subset of mRNAs, including TIR1 
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(Transport Inhibitor Response 1) and two of its three functional paralogs, AFB2 and 
AFB3 (auxin signaling F-box proteins 2 and 3). The F-box proteins TIR1, AFB2 and 
AFB3 were specifi cally cleaved by miR393 in a DCL1- dependent manner. A two- to 
threefold reduction in the levels of TIR1, AFB1, AFB2, and AFB3 was observed 
30 min after fl g22 elicitation (Navarro et al.  2006 ). TIR 1 is part of the ubiquitin-
ligase complex SCF TIR1  that interacts with Aux/IAA proteins to promote their degra-
dation. Aux/IAA proteins repress auxin signaling through heterodimerization with 
Auxin Response Factors (ARFs). These transcription factors ARFs bind to auxin-
responsive elements (AuxREs) in promoters of primary auxin response genes and 
activate (or repress) transcription. The PAMP fl g22 triggered events that contributed 
to rapid down-regulation of the primary auxin-response genes  GH3-like ,  BDL/
IAA12 , and  AXR3 / IAA17  (Navarro et al.  2006 ). 

 Transgenic  Arabidopsis  plants over expressing  miR393a  showed resistance to 
the pathogen (Navarro et al.  2006 ). Augmenting auxin signaling through over- 
expressing a TIR1 paralog that is partially refractory to miR393 enhanced suscepti-
bility to the bacterial pathogen, and conversely, repressing auxin signaling through 
miR393 overexpression increased bacterial resistance. These results suggest that 
down-regulation of auxin signaling, resulting in ARF inactivation, is part of a 
PAMP-induced immune response (Navarro et al.  2006 ). It is known that auxin pro-
motes susceptibility to bacterial diseases (O’Donnell et al.  2003a ,  b ). 

 Li et al. ( 2010 ) showed fl g22-triggered accumulation of another microRNA 
called miR160a besides miR393a already reported in  Arabidopsis . Flg22 induces 
miR160a accumulation and represses its target genes  ARF16  and  ARF17  (Li et al. 
 2010 ). ARF proteins bind auxin-responsive elements to activate or repress tran-
scription of primary auxin-response genes. Thus, multiple auxin pathway genes 
may be regulated by miRNAs during PAMP-triggered innate immunity (PTI) 
responses (Li et al.  2010 ).  

2.32.3     Flg22 Suppresses Accumulation of Some miRNAs, 
Which Have a Negative Role in PAMP-Triggered 
Innate Immunity 

 Some of the AGO1-bound miRNAs play a negative role in PTI resistance, 
although AGO1 overall positively regulates PTI resistance. Flg22 suppressed 
 miR398b  and  miR773  accumulation (Li et al.  2010 ). Consistent with this, fl g22 
treatment enhanced the expression of their target genes  COX5b.1 ,  CSD2 , and 
 MET1 . COX5b.1 is a mitochondrial cytochrome c oxidase, CSD2 is a copper and 
zinc-containing superoxide dismutase enzyme that converts superoxide anion to 
hydrogen peroxide and MET1 is a DNA methyltransferase. The  miR398b  and 
 miR773  overexpression plants were compromised in PTI defenses exemplifi ed 
by reduced callose deposition and supported greater  P .  syringae  pv.  tomato  
DC3000 and DC3000  hrcC - strains proliferation, indicating that  miR398b  and 
 miR773  negatively regulate plant disease resistance (Li et al.  2010 ).  
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2.32.4     Importance of miRNA-Directed RNA Silencing 
Pathway in PAMP-Triggered Immunity (PTI) 

 The Argonaute proteins AGO1 and AGO7 and the Dicer-like protein DCL1 have 
been shown to be involved in PTI responses induced by fl g22 (Li et al.  2010 ).  ago1  
and  dcl1  mutants are compromised in PTI responses and fl g22-induced disease 
resistance, indicating that overall AGO1 and DCL1 positively regulate PTI (Li et al. 
 2010 ). The  ago1  and  dcl1  mutants showed defects in one or more of the late 
responses induced by PAMPs. However, these mutants displayed normal MAPK 
activation and transient oxidative burst, the events that occur less than 5 min after 
fl g22 treatment (Li et al.  2010 ). It suggests that the PAMP-induced miRNA- medi-
ated defense gene expression and callose deposition occur independent of MAPK 
activation and oxidative burst (Li et al.  2010 ). 

 The transgenic plants overexpressing  miR160a  exhibited enhanced callose depo-
sition, suggesting that the PAMP triggers innate immune system by activating accu-
mulation of specifi c miRNA (Li et al.  2010 ). The importance of miRNA pathway 
in PAMP-triggered immunity was assessed by employing miRNA-defi cient 
 Arabidopsis  mutants (Navarro et al.  2008 ). The miRNA-defi cient mutants sustained 
growth of non-pathogenic  Pseudomonas fl uorescens  and  Escherichia coli  strains. 
These mutants also restored growth of a type III secretion-defective mutant of 
 Pseudomonas syringae . Some  P .  syringae  effectors suppress transcriptional activa-
tion of some PAMP-responsive miRNAs, miRNA biogenesis, stability or activity 
(Navarro et al.  2008 ). These results suggest that bacterial pathogens have evolved to 
suppress PAMP-triggered RNA silencing to cause disease.  

2.32.5     Small RNAs May Also Be Involved 
in Effector- Triggered Immunity (ETI) 

 It has also been reported that inoculation of plants with incompatible strains  
P .  syringae  pv.  tomato  DC3000 ( avrRpm1 ) and DC3000 ( avrRpt2 ) but not the com-
patible strain DC3000 represses  miR398  levels (Jagadeeswaran et al.  2009 ). It sug-
gests that  miR398 may also be involved in effector-triggered immunity (ETI). One 
of the long siRNAs (IsiRNAs), AtlsiRNA-1, is specifi cally induced by the bacterial 
pathogen  Pseudomonas syringae  pv.  tomato  carrying effector  avrRpt2  (Katiyar-
Agarwal et al.  2007 ).  P .  syringae  pv.  tomato  (avrRpt2)-mediated induction of 
AtlsiRNA-1 specifi cally targets the  AtRAP  gene, which encodes a RNA-binding 
protein containing a putative RNA-binding RAP domain (Katiyar-Agarwal et al. 
 2007 ; Katiyar- Agarwal and Jin  2010 ). Induction of AtlsiRNA-1 leads to down-reg-
ulation of its target,  AtRAP  mRNA. It silences  AtRAP , which encodes a RAP-
domain protein involved in disease resistance (Katiyar-Agarwal et al.  2007 ). AtRAP 
is a negative regulator of both PAMP-triggered immunity (PTI) and effector-triggered 
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immunity (ETI) because the knockout mutant of this gene resulted in enhanced 
resistance to both avirulent  P. syringae  pv . tomato  ( avrRpt2 ) and a virulent strain  P . 
 syringae  pv.  tomato  DC3000 (Katiyar-Agarwal and Jin  2010 ). These results suggest 
that small RNA-directed RNA silencing may play a role in both PTI and ETI.      
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          Abstract        Guanosine triphosphate (GTP)-binding proteins (G-proteins) are the 
regulatory GTPases that have the ability to bind GTP and hydrolyze it to guanosine 
diphosphate (GDP). GDP locks G proteins into their inactive state, while GTP locks 
G-proteins into their activated state. Active or inactive states of G-proteins depend 
on the binding of GTP or GDP, respectively. G-proteins have been found to be key 
players in plant innate immunity. The GTPases act as molecular switches control-
ling the transmission of extracellular signals like pathogen-associated molecular 
patterns (PAMPs) to intracellular signaling pathways. The PAMPs have been shown 
to activate GTP binding to G-protein. The GTPase is normally inactive. The PAMP 
stimulates exchange of GTP for GDP and thus converts the G-proteins from their 
inactive state to their active state. Upon stimulation by an upstream PAMP signal, a 
guanine nucleotide exchange factor (GEF) converts the GDP-bound inactive form 
into the GTP-bound active form through GDP/GTP replacement. Through its effec-
tor domain, the GTP form interacts with specifi c downstream effector proteins. The 
GTP form exhibits a weak intrinsic GTPase activity for GTP hydrolysis, requiring 
a GTPase-activating protein (GAP) for effi cient deactivation. Most small GTPases 
cycle between membrane-bound and cytosolic forms. Only membrane-associated 
GTPases can be activated by GEF and their removal by a cytosolic factor called 
guanine nucleotide dissociation inhibitor (GDI) negatively regulates these GTPases. 

 G-proteins include two major subfamilies: heterotrimeric G-proteins and small 
G-proteins (also called small GTPases). The heterotrimeric G-proteins contain Gα-, 
Gβ-, and Gγ- subunits. The small G-proteins are monomeric G-proteins and they 
appear to be similar to α-subunits, operating without the β-, and γ-subunits. Both 
classes of G-proteins use the GTP/GDP cycle as a molecular switch for signal trans-
duction. Both heteromeric and monomeric small G-proteins trigger immune 
responses by activating several immune signaling systems. These include Ca 2+  chan-
nel activation, K +  channel regulation, generation of reactive oxygen species through 
activation of NADPH oxidase, regulation of redox signaling, activation of nitric 
oxide (NO) signaling system, activation of mitogen-activated protein kinase (MAPK) 
signaling cascade, activation of phospholipases, effl ux of vacuolar H + , biosynthesis 
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of polyamines, biosynthesis of phosphatidic acid and programmed cell death. 
G-proteins also activate various plant hormone signaling systems including salicylic 
acid-, jasmonic acid-, ethylene-, abscisic acid-, auxin-, brassinosteroid-, and gibber-
ellic acid- mediated signaling systems. The different subunits in heterotrimeric 
G-proteins and the monomeric small G-proteins may behave differently in activating 
defense responses against various pathogens. Ability of G-proteins to trigger immune 
responses also varies depending upon the type of invading pathogen.  

  Keywords     GTPases   •   Molecular switches   •   PAMP signal   •   G-proteins • GTPase 
activating protein • GDI • Heterotrimeric G-proteins • Small G-proteins  

3.1               G-Proteins Switch on Plant Innate Immunity 
Signaling Systems 

 Guanosine triphosphate (GTP)-binding proteins (G-proteins) are the regulatory 
GTPases, which act as molecular switches in signal transduction system (Gilman 
 1987 ; Cabrera-Vera et al.  2003 ; Nibau et al.  2006 ; Zeng et al.  2007 ; Fujiwara et al. 
 2009 ; Yalovsky et al.  2010 ; Zhang et al.  2011 ,  2012 ). Plant cells contain many 
G-proteins (Xing et al.  1997 ; Roos et al.  1999 ; Suharsono et al.  2002 ; Morel et al. 
 2004 ; Zeng et al.  2007 ; Yong et al.  2010 ; Zhang et al.  2012 ). Two classes of signal-
ing G-proteins have been reported. These include heterotrimeric G-proteins and 
small monomeric G-proteins (Ras/Ras-like small GTPases) (Gu et al.  2004 ; Perfus-
Barboch et al.  2004 ). In the Ras superfamily of small GTPases, only the Ras and 
Rho families have been shown to transmit extracellular signals (Gu et al.  2004 ). Ras 
superfamily is named the Ras superfamily because the founding members are 
encoded by human Ras genes initially discovered as cellular homologs of the viral 
 ras  oncogene. Plants do not possess a true Ras GTPase such as those that are pivotal 
signaling in animals. Instead, they have a unique subfamily of Rho-family GTPases, 
called ROPs (Rho-related GTPase of plants). ROP is the sole subfamily of Rho 
GTPase in plants. ROPs are also referred to as RAC (for Ras [rat sarcoma oncogene 
product] related C3 botulinum toxin substrate) proteins (Gu et al.  2004 ; Kiirika 
et al.  2012 ). RAC/ROP small GTPases share a common ancestor with Rho, cdc42 
and Rac and they are the only Rho-like GTPases in plants (Gu et al.  2004 ). 

 Many studies using inhibitors and agonists of G-proteins in different plant spe-
cies have suggested that G-proteins are involved in defense signaling initiated by 
pathogen-associated molecular patterns (PAMPs)/elicitors (Legendre et al.  1992 ; 
Beffa et al.  1995 ; Gelli et al.  1997 ; Ono    et al.  2001 ; Park et al.  2000 ; Zhang et al. 
 2011 ,  2012 ). Transgenic tobacco plants that expressed an antisense construct 
derived from a  Medicago sativa  cDNA encoding a G-protein failed to show disease 
resistance-related hypersensitive reaction when infi ltrated with an elicitor (Schiene 
et al.  2000 ). It suggests that the G-protein is involved in defense signaling. 

 Both heteromeric G-proteins and small G-proteins (RAC/ROP small GTPases) 
play an important role in activating various signal transduction systems initiated by 
PAMPs (Fig.  3.1 ; Gao et al.  2010a ,  b ; Kiirika et al.  2012 ). Ca 2+  is a master regulator 
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of gene expression in plants (Galon et al.  2010 ) and it acts as intracellular second 
messenger that is used by plants to encode information and deliver it downstream to 
proteins which decode/interpret signals and initiate defense responses (Abdul Kadar 
and Lindsberg  2010 ; DeFalco et al.  2010 ; Dodd et al.  2010 ; Stael et al.  2012 ). 
G-proteins trigger changes in cytosolic Ca 2+  concentrations (Schultheiss et al. 
 2003 ). The G-proteins induce Ca 2+  channel opening in plants through the action of 
PAMPs (Gelli et al.  1997 ). Protein phosphorylation precedes Ca 2+  infl ux in tobacco 
cells treated with a PAMP isolated from the oomycete pathogen  Phytophthora cryp-
togea  (Tavernier    et al.  1995 ). The G-proteins modulate the phosphorylation/dephos-
phorylation system in the plasma membrane of tomato cells and transduce the signal 
(Vera-Estrella et al.  1994a ). Phosphorylation of proteins involved in G-protein 
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coupled signaling has been reported in tobacco cells treated with a bacterial PAMP 
(Gerber et al.  2006 ). The  Arabidopsis  G-protein GPA1 has been demonstrated to be 
involved in the regulation of inward K +  channels and slow anion channels (Wu and 
Assmann  1994 ; Wang et al.  2001 ; Zhang et al.  2008 ).

   G-proteins are involved in PAMP-activated ROS-mediated signaling system 
(Park et al.  2000 ; Suharsono et al.  2002 ). The PAMP fl g22 induces G-protein- 
activated ROS signaling systems. The gene  AGB1 , encoding the β-subunit of 
G-protein in  Arabidopsis , is highly induced after fl g22 treatment (Zipfel et al.  2004 ). 
The  agb1  mutants are impaired in the oxidative burst triggered by fl g22, suggesting 
the importance of G-proteins in ROS signaling system (Ishikawa  2009 ). G-proteins 
have been shown to be involved in generation of NO which is involved in stomatal 
closure immune responses (Li et al.  2009 ; He et al.  2013 ). G-protein induces 
 biosynthesis of the important second messenger polyamine (Fujiwara et al.  2006 ). 
The G-protein may be involved in generation of phospholipid second messengers 
(Viehweger et al.  2006 ). G-proteins are also involved in salicylate signaling system 
(Sano et al.  1994 ; Beffa et al.  1995 ; Fujiwara et al.  2006 ), jasmonate signaling 
 system (Zhao and Sakai  2003 ; Trusov et al.  2006 ), ethylene signaling system 
(Fujiwara et al.  2006 ; Steffens and Sauter  2010 ), abscisic acid signaling system 
(Liu et al.  2007a ; Gao et al.  2010a ,  b ), gibberellic acid signaling system (Gao et al. 
 2010a ,  b ), brassinosteroid signaling system (Oki et al.  2009 ), and auxin signaling 
systems (Gao et al.  2010b ).  

3.2     Heterotrimeric G-Protein Signaling 

3.2.1     Subunits of Heterotrimeric G-Proteins 

 The heterotrimeric G-proteins contain Gα-, Gβ-, and Gγ- subunits (Fujisawa 
et al.  2001 ; Temple and Jones  2007 ; Trusov et al.  2008 ,  2010 ; Wang et al.  2008 ; 
Zhang et al.  2011 ). Gβ and Gγ are tightly associated as a functional unit, while 
Gα can signal independently or through Gβγ (Zeng et al.  2007 ). In  Arabidopsis  
genome only one gene is present for the Gα and Gβ subunits (Mason and Botella 
 2001 ; Assmann  2002 ; Zeng et al.  2007 ), while three genes have been identifi ed 
for Gγ subunits (Chakravorty et al.  2011 , Thung et al.  2012 ). In addition to a 
single prototypical Gα protein (GPA1),  Arabidopsis  has three unique Gα-like 
proteins, known as Extra Large G-protein 1 (XLG1), XLG2, and XLG3 (Ding 
et al.  2008 ; Zhu et al.  2009 ). The rice genome harbors one gene for each of Gα 
( RGA1 ) and Gβ ( RGB1 ) and two genes for Gγ (RGG1 and RGG2) (Kato et al. 
 2004 ).  TaGA1  and  TaGA2  genes encoding G-protein α subunits have been cloned 
from wheat (Hossain et al.  2003 ). Four Gα, four Gβ, and two Gγ proteins have 
been detected in soybean (Bisht et al.  2011 ). Choudhury et al. ( 2011 ) identifi ed 
10 Gγ proteins and these can be grouped into three distinct families based on 
sequence features: the archetypal Gγ proteins, the prenylation-less Gγ proteins 
and the cysteine-rich Gγ proteins.  
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3.2.2     G-Protein-Coupled Receptor 

 G-proteins physically couple the recognition of extracellular signals like 
 pathogen- associated molecular patterns (PAMPs) with specifi c cell-surface recep-
tors called G-protein coupled receptors (GPCRs) (Colucci et al.  2002 ; Apone et al. 
 2003 ; Chen et al.  2004 ; Gookin et al.  2008 ; Hu et al.  2010 ; Tesmer  2010 ). The 
interaction of GPCRs with heterotrimeric G proteins is an important biological 
 process in activating various defense responses (Hu et al.  2010 ). The most promis-
ing GPCR,  GCR1 , has been cloned from  Arabidopsis thaliana  (Josefsson and Rask 
 1997 ).  Arabidopsis GCR1  encodes a protein with predicted seven-transmembrane-
spanning domain (Chen et al.  2004 ). It has been shown that GCR1 physically inter-
acts with GPA1, the G protein α-subunit (Pandey and Assmann  2004 ).  

3.2.3     Gγ Protein Triggers Plasma Membrane Targeting 
of Gβγ to Trigger Immune Responses 

 The Gγ subunit is an essential part of the heterotrimer, binding tightly to Gβ and 
anchoring the Gβγ dimer to the plasma membrane (Anderson and Botella  2007 ; 
Marrari et al.  2007 ). The G-protein γ subunits are responsible for providing func-
tional selectivity in Gβγ dimer (Trusov et al.  2007 ,  2012 ). The Gγ protein of the 
G-protein heterotrimer is crucial for its proper targeting at the plasma membrane 
and correct functioning (Choudhury et al.  2011 ). Most of the Gγ subunits are small 
proteins of about 8–11 kDa (Trusov et al.  2012 ) and contain a conserved prenylation 
signal at their C-termini, which is a target for posttranslational prenylation (McIntyre 
 2009 ). The heterotrimer formation, together with isoprenylation, is required for 
plasma membrane targeting of Gβγ (Takida and Wedegaertner  2003 ). 

 Variations among the Gγ proteins in their size and presence of prenylation signal 
in the C-terminus have also been reported. The size of the  Arabidopsis  Gγ subunit 
AGG3 is approximately of 25 kDa, and the protein contains a large cysteine-rich 
C-terminus (Chakravorty et al.  2011 ). The rice Gγ subunit RGG2 does not contain 
a C-terminal prenylation signal (Kato et al.  2004 ). 

 All known Gγ proteins contain a signature DPLL/l motif which together with 
few additional conserved amino acids in the middle coiled-coil region is required 
for interaction with the Gβ proteins. Most of the known Gγ proteins also contain a 
CAXX motif at C termini which is isoprenylated, resulting in the targeting of the 
proteins to the plasma membrane (Fukada  1995 ; Clapham and Neer  1997 ). 

 The  Arabidopsis  Gγ proteins AGG1 and AGG2 are involved in regulation of 
defense responses of plants (Mason and Botella  2000 ,  2001 ; Trusov et al.  2007 ). 
The rice Gγ protein RGG1 and soybean GmGγ1 and GmGγ2 proteins are highly 
homologous to the AGG1 protein and contain all the conserved features and motifs 
of Gγ proteins. The rice RGG2 protein has an extra 57 amino acid extension at its N 
terminus (compared to RGG1) and does not contain the signature prenylation motif. 
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The two pea Gγ proteins PGG1 and PGG2 do not contain the highly conserved 
DPLL/1 motif even though a possible prenylation motif is present at its C termini 
(Misra et al.  2007 ).  

3.2.4     Activation of G-Protein Heterotrimer in Elementary 
G-Protein Signaling 

 Heterotrimeric G-proteins are composed of α, β, γ subunits, which exist as associated 
heterotrimers in their inactive state. The heterotrimeric G-protein signaling begins 
with ligand (PAMP signal) binding, which results in a conformational change in a 
G-protein-coupled receptor. Once activated by the GPCR, the Gα protein, which 
 possesses a GDP/GTP-nucleotide-binding site and GTP-hydrolase activity, changes 
its form to a structure that allows exchange of GDP for GTP (Pandey et al.  2010 ). 
The GPCR works as a guanine exchange factor (GEF) for Gα and facilitates the Gα 
subunit to exchange GDP for GTP and become active (Oki et al.  2009 ). GTP binding 
is accompanied by structural rearrangements that disengage the Gβγ interaction and 
result in heterotrimer dissociation. The free subunits then relay signals by interacting 
with downstream proteins called effectors. The GTP-bound Gα separates from the 
associated Gβγ dimer and the freed Gα and Gβγ proteins can then interact with 
downstream effector molecules, alone or in combination, to transduce the signal 
(Pandey et al.  2010 ). Gα and Gβγ independently interact with multiple downstream 
effectors mediating specifi c signal transduction pathways. Subsequent to signal 
propagation, the intrinsic GTPase activity of Gα eventually results in hydrolysis of 
bound GTP to GDP, which inactivates Gα and allows its re- association with the Gβγ 
dimer to reform the inactive G-protein complex (Oldham and Hamm  2008 ; Oki et al. 
 2009 ; Liu et al.  2010 ; Pandey et al.  2010 ; Trusov et al.  2012 ).   

3.3     Small G-Proteins Signaling 

 Small G-proteins (small GTPases) are monomeric guanine nucleotide binding pro-
teins related to the α subunit of heterotrimeric G proteins (Yang  2002 ). All small 
G-proteins belong to Ras superfamily. The small G-proteins constitute the sole 
group of Rho family of small GTPases, called ROPs in plants (Berken  2006 ; Yang 
and Fu  2007 ; Nakashima et al.  2008 ). Rops are also referred to as RAC (Gu et al. 
 2004 ; Kiirika et al.  2012 ). The common features of this super family include four 
guanine nucleotide binding domains and an effector binding domain (Yang  2002 ). 
 Arabidopsis  contains 11  Rac  genes (Yang  2002 ), while rice contains seven  Rac  
genes (Miki et al.  2005 ). Six small G-proteins have been detected in barley 
(Schultheiss et al.  2003 ). 

 The family of Rho GTPases termed either ROPs or RACs is known to act as the 
major molecular switches in multitude of signal transduction pathways in plants 
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(Yalovsky et al.  2010 ; Wu et al.  2011 ). These GTPases act as a simple binary switch 
(the ‘off’ GDP-bound and the ‘on’ GTP-bound states). Shuttling between GDP- 
bound and GTP-bound states is controlled by two major regulators, guanine nucleo-
tide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs catalyze 
GDP release, which is exchanged with GTP, while GAPs enhance GTP hydrolysis, 
thereby accelerating RAC/ROP inactivation (Mucha et al.  2011 ; Wu et al.  2011 ). 

 Upon stimulation by an upstream PAMP signal, GEF, which is also known as a 
G-protein-coupling receptor (GPCR) (Pandey et al.  2010 ), converts the GDP-bound 
inactive form of the small GTPase into the GTP-bound active form through GDP/
GTP replacement (Yang  2002 ). Subsequent to signal propagation, the intrinsic 
GTPase activity results in hydrolysis of bound GTP to GDP. The GTP form exhibits 
a weak intrinsic GTPase activity for GTP hydrolysis, requiring specifi c GTPases 
activating proteins (GAPs) with unique domain composition for effi cient deactiva-
tion (Fig.  3.2 ; Yang  2002 ; Mucha et al.  2011 ).

   Most small G-proteins cycle between membrane-bound and cytosolic forms. 
Only membrane-associated GTPases can be activated by GEF and their removal by 
a cytosolic factor called guanine nucleotide dissociation inhibitor (GDI) negatively 
regulates these GTPases (Yang  2002 ). Activated RAC/ROPs are capable of receiv-
ing a wide variety of inputs and accordingly generating a multitude of specifi c 
inputs (Yang and Fu  2007 ; Liu et al.  2010 ). They interact with immediate cellular 
effectors that interact with cellular components, relaying the signal to the ultimate 
target systems to effect the corresponding signal-induced responses (Wu et al. 
 2011 ). Rho is known to orchestrate a great number of signaling networks through a 
large number of interacting partners in plants (Yang and Fu  2007 ).  

3.4     Heterotrimeric G-Protein Gα May Act Upstream 
of Small G-Protein in Immune Signaling 

 Both the heterotrimeric G-protein and small G-protein may function together and 
trigger immune responses in plants (Suharsono et al.  2002 ). In rice cells it was shown 
that the PAMP signal was recognized by unknown receptor in the plasma membrane 
and transmitted to the heterotrimeric G-protein Gα subunit.  Gα  mRNA accumulation 
was induced by the signals from the receptor. The activated Gα triggered accumula-
tion of the small G-protein OsRac1 mRNA, which in turn strongly induced transcrip-
tion of the defense-related PR10 protein gene  PBZ1  (Fig.  3.3 ; Suharsono et al.  2002 ). 
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  Fig. 3.2    Small GTPases-mediated elementary signal transduction pathway       
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These results suggest the involvement of both the heterotrimeric G-protein Gα 
subunit and small G-protein OsRac1 in defense signaling and the heterotrimeric 
G-protein Gα acts upstream of small G protein OsRac1 in rice cells.

3.5        Different G-Protein Subunits in Heterotrimeric 
G-Proteins Play Distinct Roles in Plant Innate Immunity 

 Heterotrimeric G-proteins contain α, β, and γ subunits and these subunits may 
behave differently in inducing defense responses. For example, the β and γ subunits 
were involved in triggering immune responses against necrotrophic fungal patho-
gens, while the α subunit conferred susceptibility against these pathogens in 
 Arabidopsis . The  Arabidopsis  α subunit  gpa1  mutant exhibited enhanced resistance 
to several necrotrophic fungal pathogens, including  Plectosphaerella cucumerina , 

  Fig. 3.3    Heterotrimeric 
G-protein acting upstream 
of small G-protein in immune 
signaling system in rice cells 
(Adapted from Suharsono 
et al.  2002 )       
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 Alternaria brassicicola , and  Fusarium oxysporum  in  A .  thaliana  (Llorente et al. 
 2005 ; Trusov et al.  2006 ). In contrast, mutations in the  Arabidopsis  β subunit AGB1 
and the Arabidopsis γ subunit AGG1 enhanced plant susceptibility to necrotrophic 
fungal pathogens (Llorente et al.  2005 ; Trusov et al.  2006 ,  2007 ). These results 
 suggest that the Gα subunit is a negative regulator, while Gβ and Gγ subunits are 
positive regulators of disease resistance. 

 Besides the three subunits of the heterotrimeric G-proteins,  Arabidopsis  has three 
unique Gα-like proteins, known as Extra Large G-protein 1 (XLG1), XLG2, and 
XLG3 (Zhu et al.  2009 ).  XLG2  and  XLG 3  were rapidly induced by infection with the 
bacterial pathogen  Pseudomonas syringae , whereas the  XLG1  transcript level was not 
affected by the pathogen infection. The  xlg2  loss-of-function mutation caused 
enhanced susceptibility to  P .  syringae  (Zhu et al.  2009 ). The  xlg2  mutation affected 
pathogen-triggered induction of a small set of defense-related genes (Zhu et al.  2009 ). 
Constitutive overexpression of  XLG2  leads to the accumulation of transcripts from 
multiple defense-related genes. These results suggest that XLG2 is involved in trig-
gering immune responses. In contrast,  xlg1  and  xlg3  mutants showed no difference 
from wild-type in resistance to  P .  syringae , suggesting that XLG1 and XLG3 are not 
involved in triggering defense responses against the pathogen (Zhu et al.  2009 ). 

 AGB1, the sole Gβ subunit in  Arabidopsis  has been found to be a positive regula-
tor in resistance against necrotrophic fungal pathogens. The  agb1  mutant impaired 
in the Gβ subunit shows enhanced susceptibility to these pathogens (Llorente et al. 
 2005 ; Trusov et al.  2006 ,  2009 ). The Gβ subunit forms an obligate dimer with either 
one of the  Arabidopsis  Gγ subunits (γ1/AGG1 and γ2/AGG2). The  agg1 agg2  dou-
ble mutant is as susceptible as  agb1 plants to  Plectosphaerella cucumerina  (Delgado- 
Cerezo et al.  2012 ). This heteromeric G-protein-mediated resistance was found to 
be independent of SA-, JA-, ethylene-, and abscisic acid-mediated signaling path-
ways. However, this G-protein-mediated resistance was found to be modulated by 
cell wall defense responses. The xylose content was lower in  agb1  and  agg1 agg2  
mutants than in wild-type plants, suggesting that cell wall modifi cations may be the 
immune response triggered by Gβ and Gγ subunits of the heteromeric G-proteins 
(Delgado-Cerezo et al.  2012 ). 

 The rice  dl  mutant, which is defi cient in the Gα subunit, exhibited a reduced 
hypersensitive response after infection by the rice blast pathogen  Magnaporthe ory-
zae  (formerly known as  M. grisea ) (Suharsono et al.  2002 , Iwata et al.  2002 ) and 
bacterial blight pathogen  Xanthomonas oryzae  pv.  oryzae  (Komatsu et al.  2004 ). 
These results suggest that the heteromeric Gα subunit may play an important role in 
both fungal and bacterial disease resistance (Izawa et al.  2010 ).  

3.6     Small G-Proteins Activate Plant Innate Immunity 

 The small G-proteins have been reported to play important role in activating immune 
responses against fungal, oomycete, bacterial, and viral diseases in different plants 
(Sano and Ohashi  1995 ; Ono et al.  2001 ; Suharsono et al.  2002 ; Shirasu and 
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Schulze-Lefert  2003 ; Wong et al.  2004 ; Moeder et al.  2005 ; Nakashima et al.  2008 ). 
The small G-protein OsRac1 is involved in basal and R protein-mediated resistance 
to the rice blast fungal pathogen  M. oryzae  and the bacterial blight pathogen 
 X. oryzae  pv.  oryzae  (Ono et al.  2001 ; Suharsono et al.  2002 ). The constitutively 
active  OsRac1  greatly reduced blast and bacterial blight disease development 
(Ono et al.  2001 ). The role of  Medicago truncatula  small GTPase  MtROP9 , orthol-
ogous to  Medicago sativa Rac1 , in the  Aphanomyces  root rot development in 
 M .  truncatula  was studied by silencing the  MtROP9  gene using the RNA interfer-
ence (RNAi) vector (Kiirika et al.  2012 ). MtROP9 knockdown promoted the root rot 
disease development, suggesting the role of the small G-protein in conferring resis-
tance against the oomycete pathogen  Aphanomyces euteiches  (Kiirika et al.  2012 ). 
Transgenic tobacco plants that expressed a dominant negative form of the small 
G-protein OsRac1 from rice showed reduced resistance against  Tobacco mosaic 
virus  (TMV) compared to the wild-type plants, suggesting involvement of OsRac1 in 
triggering resistance against the virus disease in tobacco (Moeder et al.  2005 ).  

3.7     Small G-Proteins May Be Involved in Susceptible 
Interactions 

 Although small monomeric G-proteins/small GTPases are involved in activation of 
immune responses against a wide range of pathogens (Ono et al.  2001 ; Suharsono 
et al.  2002 ; Shirasu and Schulze-Lefert  2003 ; Nakashima et al.  2008 ), they may also 
be involved in disease development process in some plant-pathogen interactions 
(Schultheiss et al.  2003 ). Barley RAC/ROP G-protein family members have been 
shown to be involved in susceptibility to the powdery mildew pathogen  Blumeria 
graminis  f. sp.  hordei . Five Rac/Rop genes were constitutively expressed in the 
 barley leaf epidermis and none of these genes showed enhancement of mRNA 
 abundance after inoculation with  B. graminis  f. sp.  hordei . The small GTPases 
HvRACB, HvRAC3 and HvROP6 proteins were found to be potentially involved in 
the establishment of susceptibility to the barley powdery mildew fungus  B. graminis  
f. sp.  hordei . These small G-proteins may be involved in processes supporting para-
sitic entry into epidermal host cells (Schultheiss et al.  2003 ). Interaction of plant 
RAC homologs with the NADPH oxidase complex appears to regulate activity of 
NADPH oxidase that produces O −  2  in response to pathogen attack (Ono et al.  2001 ). 
In barley, O −  2  production takes place during attack by  B .  graminis  f. sp.  hordei  at sites 
of successful penetration of epidermal cells, but not at sites where fungal penetration 
is prevented (Hückelhoven and Kogel  1998 ). In contrast, H 2 O 2  accumulates in barley 
at sites where penetration by  B. graminis  f. sp.  hordei  is successfully prevented 
(Thordal-Christensen et al.  1997 ; Hückelhoven et al.  2000 ). These results suggest 
that RAC small GTP-binding protein might have activated NADPH oxidase- 
dependent O −  2  production that would have facilitated the fungal penetration. ROS 
has been reported to be involved in both activation and suppression of immune 
responses depending on spatial and quantitative differences in the occurrence of ROS 
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(Levine et al.  1994 ; Jabs et al.  1996 ; Schultheiss et al.  2002 ). Probably, the RAC 
small GTP-binding protein may be required for successful fungal haustorium estab-
lishment in barley-powdery mildew pathogen interactions (Schultheiss et al.  2002 ). 

 Hoefl e et al. ( 2011 ) have reported that the barley small G-protein RACB is 
required for full susceptibility of the leaf epidermis to invasion by  B. graminis  f. sp. 
 hordei . Stable transgenic knockdown of RACB reduced the ability of barley to 
accommodate haustoria of  B .  graminis  in intact epidermal leaf cells. A ROP-GTPase 
activating protein interacting with RACB, MICROTUBULE-ASSOCIATED ROP- 
GTPase ACTIVATING PROTEIN (MAGAP1), has been identifi ed. Under fungal 
attack, MAGPAP1-labeled microtubules built a polarized network at sites of suc-
cessful defense. By contrast, microtubules loosened where the fungus succeeded in 
penetration (Hoefl e et al.  2011 ; Huesmann et al.  2012 ). The results suggest that 
RACB and MAGAP1 may play antagonistic roles in cytoskeleton organization for 
fungal entry.  

3.8     RAR1-SGT1-HSP90-HSP70 Molecular Chaperone 
Complex: A Core Modulator of Small 
G-Protein- Triggered Plant Innate Immunity 

 Molecular chaperones have been reported to participate in the small G-protein- 
mediated signal transduction, besides taking part in the folding of newly synthesized 
proteins (Seo et al.  2008 ). HEAT SHOCK PROTEIN 90 (HSP90), HSP70, 
REQUIRED FOR MLA12 RESISTANCE1 (RAR1), and SUPPRESSOR OF THE 
G2 ALLELE OF SKP1 (SGT1) are components of molecular chaperone complexes 
that are conserved in the plant kingdom. They form a complex with the small 
G-protein Rac1 in rice cells. HSP90, SGT1, and RAR1 functionally co-operate as a 
molecular chaperone complex to transduce plant immune responses (Seo et al.  2008 ). 
SGT1 is a co-chaperone of HSP90 and functions in plant immunity. HSP70 is also a 
target of SGT1 and facilitates its transfer to HSP90 (Seo et al.  2008 ). 

 Receptor for Activated C-Kinase1 (RACK1) has been identifi ed as an interactor 
with Rac1 in rice. Rice contains two  RACK1  genes,  RACK1A  and  RACK1B  and 
RACK1A protein interacts with the GTP form of Rac1 (Nakashima et al.  2008 ). 
RACK1 homologs have been isolated from several plant species (Shirasu and 
Schulze-Lefert  2003 ). RACK1 shares signifi cant homology to the β subunit of 
G-proteins (Adams et al.  2011 ). RACK1 constitutes a component of the Rac1 
immune complex consisting of Rac1, RAR1, SGT1, HSP90, and HSP70 and it 
functions as a scaffolding protein for the immune complex (Fig.  3.4 ; Thao et al. 
 2007 ; Nakashima et al.  2008 ). The abundance of each of the chaperones/cochaper-
ones (HSP90, HSP70, SGT1 and RAR1) present in the immune complex may need 
to be fi nely regulated to ensure a rapid and stable immune response (Nakashima 
et al.  2008 ).

   OsRac1, RAR1, and HSP90 have been found to be functionally related in rice 
cells. OsRAR1-RNA interference (RNAi) rice plants had impaired basal 
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resistance to the rice blast pathogen  M. oryzae  and the bacterial blight pathogen 
 X. oryzae  pv.  oryzae  (Thao et al.  2007 ). Constitutively active  OsRac1  comple-
mented the loss of resistance, suggesting that OsRac1 and RAR1 are functionally 
linked. Studies with OsRAR1-RNAi and treatment with geldanamycin, an HSP90-
specifi c inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-
mediated enhancement of PAMP-triggered immune responses in rice cell cultures. 
It was also shown that the function of HSP 90, but not RAR1, may be essential for 
their association with the Rac1 complex. OsRac1 also regulates RAR1 expression 
at both the mRNA and protein levels. It was found that Rac1, RAR1, HSP90, and 
HSP70 form a complex in rice cells and these proteins play important roles in 
plant innate immunity (Thao et al.  2007 ). 

 Silencing of the co-chaperone genes  RAR1  and  SGT1-2  involved in basal and  R  
gene-mediated defense resulted in susceptibility to  Pseudomonas syringae  in soybean 
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(Fu et al.  2009 ), suggesting the role of these genes in disease development. The  RAR1  
and  SGT1  genes are required for SA accumulation in  Arabidopsis  and both are required 
in a genetically additive manner for induction of disease resistance (Zhou et al.  2008 ). 
Overexpression of  OsRAR1  and  OsSGT1  in rice signifi cantly induced basal resistance 
to both the bacterial pathogen  X. oryzae  pv.  oryzae  and the fungal pathogen  M. oryzae  
(Wang et al.  2008 ). RAR1 and SGT1 together contribute to basal resistance in 
 Arabidopsis . Both RAR1 and SGT1 are required for inducing disease resistance, SA 
accumulation, and lesion formation after pathogen infection. RAR1 and SGT1 trigger 
expression of various SA-regulated defense-related genes including  PR-1 ,  PR-2 ,  PR-5 , 
 RPW8.1 ,  RPW8.2 ,  WRKY6 ,  WRKY29 , and  EDS1  (Zhou et al.  2008 ). 

 RAR1 and SGT1 have also been shown to be involved in JA-mediated signaling 
system. Up-regulation of JA-inducible  PDF1.2  and  JR2  expression was found to be 
compromised in  rar1  and  sgt1  mutants, suggesting that both RAR1 and SGT1 play 
important role in JA signaling system (Kawamura et al.  2009 ). SGT1 is also required 
for the activation of the SCF COI1 -mediated JA response (Gray et al.  2003 ; Lorenzo 
and Solano  2005 ). The Arabidopsis  COI1  gene is required for the JA-mediated 
defense response against pathogens (Xie et al.  1998 ). COI1 protein contains an 
F-box motif and associates physically with AtCUL1, AtRbx1 and the Skp1-like 
proteins ASK1 and ASK2 to assemble SCF  COI1  ubiquitin-ligase complexes (Skp1-
cdc53- F-box protein) (Xu et al.  2002 ). SCF COI1  targets key regulators of JA signal-
ing pathway for ubiquitination and subsequent degradation by the 26S proteasome 
(Kawamura et al.  2009 ). 

 SGT1 and HSP90 are highly expressed in plants infected with pathogens 
(Azevedo et al.  2006 ; Takahashi    et al.  2003a ). HSP90 and HSP70 have a tight func-
tional link (Thao et al.  2007 ). SGT1, which associates with HSP70, is required for 
its nuclear localization (Shirasu  2009 ). Small monomeric G-protein Rac1 forms a 
complex with RAR1, SGT1, HSP90 and HSP70 in rice cells and these proteins play 
important roles in plant innate immunity.  

3.9     PAMP Signal May Convert the G-Proteins 
from Their Inactive State to Their Active State 
to Trigger Immune Responses 

 G-proteins have the ability to bind guanosine-5′-triphosphate (GTP) and hydrolyze 
it to guanosine diphosphate (GDP). GDP locks G proteins into their inactive state, 
while GTP locks G- proteins into their activated state (Gelli et al.  1997 ; Oki et al. 
 2009 ; Pandey et al.  2010 ). Active or inactive states of G-proteins depend on the 
binding of GTP or GDP, respectively (Xing et al.  1997 ; Cabrera-Vera et al.  2003 ). 
Both classes of G-proteins, heterotrimeric G-proteins and small G-proteins, use the 
GTP/GDP cycle as a molecular switch for signal transduction (Xing et al.  1997 ; 
Pandey et al.  2010 ). 

 Heterotrimeric G-proteins act as the specifi c reaction partners of G-protein- 
coupled receptors. The GTPase is normally inactive. In the basic state, the Gα 

3.9  PAMP Signal May Convert the G-Proteins from Their Inactive State…



176

–GDP- Gβγ complex and the receptor that can activate it are separately associated 
with the membrane. On receptor activation, the receptor becomes highly affi ne for 
the G-protein complex. On binding with the complex, GDP dissociates from the 
complex and the free complex has a high affi nity for GTP. Upon GTP binding, both 
Gα –GTP and Gβγ separate from both the receptor and from each other. Both Gα 
–GTP and Gβγ may activate separate effector molecules sending the signal further 
down in the signal transduction chain. The GTPase activated by the intracellular 
receptor domain activates other molecules of the signal transduction chain, either 
via the α unit or the βγ complex (Yang  2002 ; Agrawal et al.  2003 ). 

 G-proteins are located in the cytoplasmic face of the cell plasma membrane 
(Casey  1995 ). Posttranslational lipid modifi cations of  Arabidopsis  Gγ-subunits have 
been shown to be required for plasma membrane targeting (Zeng et al.  2007 ). Many 
G-protein coupled receptors have been identifi ed in plasma membrane (Kaziro et al. 
 1991 ). The PAMPs have been shown to activate GTP binding to G-protein (Gelli 
et al.  1997 ; Zhao and Sakai  2003 ). Binding of the PAMP with a pattern-recognition 
receptor (PRR) activates the G-protein (Kaziro et al.  1991 ; Tsukada et al.  2002 ). The 
PAMP stimulates conformational changes in the G- proteins. It stimulates exchange 
of GTP for GDP and thus converts the G-proteins from their inactive state to their 
active state (Gelli et al.  1997 ; Pandey and Assmann  2004 ).  

3.10     PAMP-Activated G-Proteins Switch on Calcium 
Ion- Mediated Immune Signaling System 

3.10.1     G-Proteins Activate InsP3-Gated Channels 

 Perception of PAMP signals by pattern recognition receptors activates G-proteins. 
One of the earliest events in the immune signaling system appears to be G-proteins- 
triggered transient changes in permeability of the plasma membrane to Ca 2+  and 
infl ux of extracellular Ca 2+  through the membrane (Garcia-Brugger et al.  2006 ; 
Laohavisit et al.  2009 ,  2010 ; Vadassery and Oelmūller  2009 ). G-protein activates 
Ca 2+  channels and enhances Ca 2+  infl ux through Ca 2+ -permeable channels (Wang 
et al.  2001 ; Zhang et al.  2011 ). G-proteins have been shown to be involved in trig-
gering changes in cytosolic Ca 2+  concentrations (Blumwald et al.  1998 ; Schultheiss 
et al.  2003 ). Massive infl ux of Ca 2+  was observed within 15–30 min after PAMP 
treatment in tobacco-cultured cells (Lecourieux-Ouaked et al.  2000 ). The induced 
calcium ([Ca 2+ ] cyt ) elevations predominantly result from a continuous Ca 2+  infl ux 
through the plasma membrane (Hu et al.  2004 ; Vandelle et al.  2006 ). 

 RACK1 is an interactor with the G-protein Rac1 in rice. RACK1 homologs have 
been isolated from several plant species (Shirasu and Schulze-Lefert  2003 ). RACK1 
protein interacts with the GTP form of the G-protein Rac1 (Nakashima et al.  2008 ). 
RACK1 binds to Gβ and occurs in a complex with the Gα and Gγ units (Patterson 
et al.  2004 ). RACK1 binds inositol 1,4,5-trisphosphate (InsP3) receptors and 
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regulates Ca 2+  release by enhancing InsP3 receptor binding affi nity for InsP3. 
Overexpression of RACK1 markedly augments Ca 2+  release, while depletion of 
RACK1 by interference RNA diminishes Ca 2+  release (Patterson et al.  2004 ). 

 InsP3-activated Ca 2+  channel is the important Ca 2+  release channel (Alexandre 
and Lassales  1992 ). InsP3-gated channels release Ca 2+  from the vacuole and 
endoplasmic reticulum (ER) (Berridge  1993 ). The calcium released through this 
channel induces calcium waves and oscillations in the cytosol (Berridge  1993 ). 
Calcium ion acts as a signal carrier (Kudla et al.  2010 ) and calcium signaling is 
modulated by specifi c “calcium signatures”. The specifi c changes in calcium 
transients, oscillations, or repeated spikes/waves are called calcium signatures 
(Lecourieux et al.  2006 ). Collectively the results suggest that G-protein triggers 
the InsP3-activated Ca 2+  channel and modulates Ca 2+  signature – mediated 
immune signaling system.  

3.10.2     G-Proteins Stimulate H + -ATPase and Regulate 
Ca 2+  Channel 

 PAMP-PRR signaling activates G-proteins and the activated G-proteins stimulate 
the plasma membrane H + -ATPase (Vera-Estrella et al.  1994a ,  b ; Xing et al.  1997 ; 
Blumwald et al.  1998 ). The plasma membrane H + -ATPases generate an H + -gradient 
across the plant plasma membrane. The concomitant hyperpolarization of the mem-
brane potential induces the opening of the Ca 2+  channel. The proton gradient creates 
an electrical potential, which drives Ca 2+  uptake through ion channels (Palmgren 
and Harper  1999 ). The results suggest that the G-proteins may also modulate the 
expression of H + -ATPase and activate Ca 2+  signaling.  

3.10.3     G-Proteins Activate Ca 2+  Signaling System Through 
Modulation of Phosphorylation/Dephosphorylation 
System 

 G-proteins may be involved in Ca 2+  channel opening (Gelli et al.  1997 ). Protein 
phosphorylation precedes Ca 2+  infl ux in tobacco cells treated with a PAMP isolated 
from the oomycete pathogen  Phytophthora cryptogea  (Tavernier et al.  1995 ). The 
G-proteins modulate the phosphorylation/dephosphorylation system in the plasma 
membrane of tomato cells and transduce the signal (Vera-Estrella et al.  1994a ). 
Phosphorylation of proteins involved in G-protein coupled signaling has been 
reported in tobacco cells treated with a bacterial PAMP (Gerber et al.  2006 ). 

 The activation of the Ca 2+  channel by PAMPs was modulated by a heterotri-
meric G-protein–dependent phosphorylation of the channel protein in tomato, 
probably by activating protein kinase, and inhibiting protein phosphatase (Gelli 
et al.  1997 ). The activated G-protein transduced the signal by activating 
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phosphorylation/dephosphorylation system in the plasma membrane in tomato 
cells (Vera-Estrella et al.  1994b ). 

 An elicitor-induced increase in ATPase activity was shown to be activated by the 
G-proteins in tomato (Vera-Estrella et al.  1994a ). G-protein has been shown to acti-
vate a membrane-bound phosphatase that mediates the dephosphorylation of the 
host plasma membrane H + -ATPase in tomato (Xing et al.  1997 ). The dephosphory-
lation of H + -ATPase was followed by rephosphorylation by protein kinase and Ca 2+ -
dependent kinase (Xing et al.  1996 ).   

3.11     G-Proteins May Trigger Effl ux of Vacuolar Protons 
into Cytoplasm to Activate pH-Dependent Signaling 
Pathway 

 Transient shifts of intracellular and apoplastic pH appear to be essential steps in 
signal transduction processes (Viehweger et al.  2002 ). Cytoplasmic acidifi cation 
induced by biotic stress is considered as a plant-specifi c trigger for the synthesis of 
defense-related compounds including phytoalexins and other secondary metabolites 
(Sakano  2001 ). Acidifi cation of the cytoplasm increases the expression of mRNAs 
encoding several defense-related enzymes (Lapous et al.  1998 ; He et al.  1998 ). The 
G-protein may activate phospholipase and pH-dependent signal path (Viehweger 
et al.  2006 ). The function of a Gα protein in defense signal transduction system was 
studied by developing transgenic cell cultures of California poppy ( Eschscholzia 
californica ) in which the Gα content was decreased via antisense transformation or 
by the expression of recombinant anti-Gα single-chain antibodies. All transgenic 
cell types were defi cient in two elicitor-triggered early signal events: activation of 
phospholipase A 2  (PLA 2 ), and effl ux of vacuolar protons. The lacking H +  effl ux 
could be restored by adding lysophosphatidylcholine (LPC), a product of PLA 2  
activity, to vacuoles in situ. The results suggest that Gα mediates the stimulation of 
PLA 2  by the elicitor and the resulting peak of LPC initiates a transient effl ux of 
vacuolar protons into the cytoplasm. This results in acidic peak of the cytoplasmic 
pH which may induce the expression of enzymes of phytoalexin production and 
induce resistance against pathogens (Viehweger et al.  2006 ).  

3.12     G-Proteins Switch on ROS Signaling System 

3.12.1     G-Proteins Trigger Generation of ROS to Induce 
Immune Responses 

 G-proteins activate primarily reactive oxygen species (ROS) production and 
 ROS- mediated signaling systems (Park et al.  2000 ; Bokoch and Diebold  2002 ; 
Suharsono et al.  2002 ; Wong et al.  2007 ) to trigger innate immune responses. 
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Both small G-proteins (Yang  2002 ; Schultheiss et al.  2003 ; Morel et al.  2004 ; 
Wong et al.  2007 ; Kiirika et al.  2012 ) and heterotrimeric G-proteins (Zhu 
et al.  2009 ; Zhao et al.  2010 ; Zhang et al.  2011 ) are known to trigger generation 
of ROS. 

 Small monomeric G-proteins (small GTPases) are involved in the regulation of 
ROS generation in the innate immune responses via the activation of NADPH oxi-
dase homologs of plants termed respiratory burst oxidase homolog (RBOH) 
(Agrawal et al.  2003 ; Kiirika et al.  2012 ). A small G-protein from rice, OsRac1, has 
been shown to induce ROS production in rice cells (Kawasaki et al.  1999 ; Ono et al. 
 2001 ; Wong et al.  2007 ). OsRac1 was found to be a positive regulator of disease 
resistance. It activates RBOH-mediated ROS signaling through direct binding of 
Rac1 to the catalytic subunits of the RBOH protein’s N-terminal extension, which 
is specifi c for the plant RBOH proteins (Kawasaki et al.  2006 ; Wong et al.  2007 ; 
Nakashima et al.  2008 ). 

 The small GTPase MtROP9 triggered the expression of  MtRBOH  gene 
involved in ROS generation and conferred resistance against root rot of  Medicago 
truncatula  caused by  Aphanomyces euteiches  (Kiirika et al.  2012 ). Transgenic 
tobacco plants that expressed a dominant negative form of the small G-protein 
OsRac1 from rice showed reduced resistance against  Tobacco mosaic virus  
(TMV) compared to the wild-type plants. The dominant-negative  OsRac1  gene 
in tobacco suppressed ROS accumulation (Moeder et al.  2005 ), suggesting that 
OsRac1 is involved in ROS production. Collectively these results suggest that the 
small G-protein is involved in activating immune responses by activating ROS 
signaling. 

 Heterotrimeric G-proteins are also involved in ROS production. The 
 Arabidopsis  Gα subunit, GPA1, is involved in ROS production (Zhao et al. 
 2010 ). The  Arabidopsis gpa1  mutants have been shown to be disrupted in pro-
duction of ROS (Zhang et al.  2011 ). It has been reported that different subunits 
of a heterotrimeric G-protein may signal ROS production (oxidative burst) in 
different manner. The  Arabidopsis  heterotrimeric G-protein is known to contain 
three subunits, Gα, Gβ, and Gγ. The Gα and Gβ proteins were shown to be nec-
essary component of the biphasic oxidative burst, while only the Gα protein was 
found to be required for the late phase of the oxidative burst in  Arabidopsis 
thaliana  induced by an external signal. The early endogenous ROS production 
induced by the elicitor signal was mediated by both the Gα and Gβ proteins, 
while the extracellular ROS signal induced by the elicitor was generated by 
membrane-bound NADPH oxidases mediated by only the Gα protein (Joo et al. 
 2005 ). In addition to a single prototypical Gα protein (GPA1),  Arabidopsis  has 
three unique Gα-like proteins, known as Extra Large G-proteins (XLG). The 
transgenic  Arabidopsis  plants overexpressing one of the genes encoding XLG 
proteins,  XLG2 , showed constitutive accumulation of transcripts from  RbohC  
and the NADPH oxidase RbohC is known to be involved in ROS production 
(Zhu et al.  2009 ). These studies suggest that both the groups of G-proteins, 
small G-proteins and heterotrimeric G-proteins, trigger immune responses by 
activating ROS production.  
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3.12.2     G-Proteins Switch on Ca 2+  Infl ux – RBOH-Mediated 
ROS Signaling Pathway 

 Numerous Rboh (for respiratory burst oxidase homolog) genes have been isolated 
in plants. All  rboh  genes identifi ed to date possess a conserved N-terminal exten-
sion that contains two Ca 2+  binding EF-hand motifs. A substantial part of the 
N-terminal region of Rboh, including the two EF-hand motifs, is required for the 
Rac GTPases and the N-terminal extension interaction. Cytosolic Ca 2+  concentra-
tion has been shown to regulate Rac-Rboh interaction. Transient coexpression of 
 OsRac1  and  rbohB  enhanced ROS production in  Nicotiana benthamiana , suggest-
ing that direct Rac-Rboh interaction may activate NADPH oxidase activity in plants 
(Fig.  3.5 ; Wong et al.  2007 ; Zhao et al.  2010 ). Collectively these results suggest that 
cytosolic Ca 2+  concentration may modulate NADPH oxidase activity by regulating 
the interaction between Rac GTPase and Rboh.

3.12.3        Interplay Between ROP, RBOH, CDPK, Ca 2+  [cyt] , 
and ROS in G-Protein-Mediated ROS Signaling 

    An interplay between the monomeric small G-protein Rho-like GTPase of plants 
(ROP), the plant orthologs of the respiratory burst NADPH oxidases (RBOH), 
calcium- dependent protein kinase (CDPK), cytosolic calcium transients ( Ca   2+    [cyt]   ), 
and reactive oxygen species (ROS) production has been described (Van Breusegem 
et al.  2008 ). It has been reported that activation of the plasma membrane-localized 
RBOHs involves phosphorylation of two N-terminal Ser by a calcium-dependent 
protein kinase as well as interaction with ROP. RBOH phosphorylation as well as 
binding to calcium synergizes its activation, raising the possibility that it may func-
tion as a calcium sensor (Ogasawara et al.  2008 ; Takeda et al.  2008 ). The  RBOH/
ROP-GTP interaction is regulated by the binding of calcium to two EF-hand motifs 
at the N terminus of the NADPH oxidase (Wong et al.  2007 ). The RBOH activation 
results in production of ROS (Van Breusegem et al.  2008 ). The activation of RBOH 
promotes calcium channel activation and calcium infl ux, thereby stimulating RBOH 
activity and amplifi cation of the initial signal (Takeda et al.  2008 ).  

3.12.4     Phosphatidic Acid Activates G-Protein-Mediated 
Pathway of ROS Generation 

 Phosphatidic acid (PA), a second messenger generated in a phospholipid signaling 
pathway, has been shown to play an important role in Rho-related small G protein 
GTPase-mediated pathway of ROS generation. G proteins activate phospholipase C 
(PLC) and phospholipase D (PLD) (Munnik et al.  1995 ; Ritchie and Gilroy  2000 ) 
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and the phospholipases are involved in ROS generation (Laxalt et al.  2007 ; Guo 
et al.  2012 ). Heterotrimeric G protein α-subunit regulates PLD through a motif anal-
ogous to the DRY motif in G-protein-coupled receptors in  Arabidopsis  (Zhao and 
Wang  2004 ). The activated PLD hydrolyzes phospholipids to produce the lipid 
 second messenger PA (Zhao and Wang  2004 ). 

 PA has been shown to be able to trigger an oxidative burst (Sang et al.  2001 ; Park 
et al.  2004 ). PA is involved in the activation of NADPH oxidase and ROS is 
 generated through the action of NADPH oxidase (Laxalt et al.  2007 ). PA directly 
activates NADPH oxidase by interacting with the enzyme components (Palicz et al. 
 2001 ). It promotes superoxide-generating activity in plants through the activation of 
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NADPH oxidase (Sang et al.  2001 ). PA has been shown to induce ROS in tomato 
cells. Inhibition of the PLC diminished elicitor-induced ROS production (Laxalt 
et al.  2007 ). These results suggest that PA is generated through the action of 
G-proteins-activated phospholipases and the generated PA activates NADPH oxi-
dase involved in generation of ROS (Fig.  3.6 ).

3.12.5        Small G-Proteins May Trigger Accumulation of ROS 
by Suppressing the Action of ROS Scavengers 

 Small G-proteins may act as a suppressor of ROS scavenging, resulting in accumu-
lation of ROS (Wong et al.  2004 ). Metallothioneins are small, ubiquitous Cys-rich 
proteins involved in ROS scavenging. The expression of the metallothionein gene 
( OsMT2b ) was synergistically down-regulated by OsRac1 and PAMPs from 
 Magnaporthe oryzae , the rice blast pathogen.  OsMT2b -overexpressing cells showed 
reduced PAMP-induced H 2 O 2  production. In contrast,  OsMT2b -RNAi-silenced 
transgenic cells showed signifi cantly higher PAMP-induced OsRac1-dependent 
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H 2 O 2  production than the wild-type cells. Transgenic plants overexpressing  OsMT2b  
showed increased susceptibility to the rice bacterial blight pathogen  X. oryzae  pv. 
 oryzae  and the blast pathogen  M .  oryzae  (Wong et al.  2004 ). The results suggest that 
OsRac1 plays a role as a suppressor of ROS scavenging and triggers immune 
responses against bacterial and fungal pathogens.  

3.12.6     G-Proteins Act as Redox Regulators in ROS Signaling 

 The G-protein appears to be a key redox regulator in defense signaling (Ono et al. 
 2001 ; Baxter-Burrell et al.  2002 ). Fujiwara et al. ( 2006 ) detected activation of 
 several redox regulators in cultured rice cells transformed with OsRac1. The induced 
redox regulators included glyceraldehyde-3-P dehydrogenase, NADPH-thioredoxin 
reductase, ferredoxin-NADPH reductase, NADPH dependent oxidoreductase, 
 quinine oxidoreductase, and glutathione-S-transferase (GST1) (Fujiwara et al. 
 2006 ). Redox signaling is known to play an important role in innate immune system 
(Desikan et al.  2005 ; Fedoroff  2006 ). Cytosolic glyceraldehyde-3-phosphate dehy-
drogenases interact with phospholipase D (PLDδ) to transduce the ROS hydrogen 
peroxide signal in  Arabidopsis thaliana  (Guo et al.  2012 ).   

3.13     G-Proteins Activate Nitric Oxide Signaling System 

 Nitric oxide (NO) plays a key role in immune signaling transduction system 
(Lindermayr et al.  2010 ; Perchepied et al.  2010 ; Wang et al.  2010 ). Heterotrimeric 
G-proteins have been shown to be involved in generation of NO (Li et al.  2009 ; He 
et al.  2013 ). The calcium ion sensor protein calmodulin activates GPA1, the 
Gα-subunit of heterotrimeric protein in  Arabidopsis . The activated heterotrimeric 
G-protein in turn activates NADPH oxidases (Li et al.  2009 ). GPA1 has been 
shown to function upstream of the NADPH oxidases AtrbohD and AtrbohF (Zhang 
et al.  2011 ). These NADPH oxidases are involved in the production of H 2 O 2  
(Li et al.  2009 ). The  gpa1  mutants have been shown to be disrupted in production 
of ROS (Zhang et al.  2011 ). The modulation of NO production by Gα protein has 
been shown to require NADPH oxidase-dependent H 2 O 2  generation (Fig.  3.7 ; Li 
et al.  2009 ).

   Stress-induced H 2 O 2  and NO generation were found to be regulated by GPA1, 
the Gα-subunit of heterotrimeric G-protein (He et al.  2013 ). The H 2 O 2  and NO accu-
mulation were nullifi ed in  gpa1  knockout mutants but enhanced by overexpression 
of a constitutively active form of GPA1 (He et al.  2013 ). The results suggest that the 
heterotrimeric protein is involved in NO production. Further it has been demon-
strated that Gα activation of NO production depends on H 2 O 2  (He et al.  2013 ). It 
suggests that the signaling pathway involves G-protein-dependent activation of 
H 2 O 2  production and subsequent NO accumulation. 
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 H 2 O 2 -induced NO production depended mainly on NITRIC OXIDE 
ASSOCIATED 1 (NOA1) (also called NITRIC OXIDE SYNTHASE1 [NOS1]) 
(Li et al.  2009 ). However Bright et al. ( 2006 ) reported that it is NITRATE 
REDUCTASE (NR), not NOA, that is responsible for NO generation in  Arabidopsis  
in response to H 2 O 2 .  

3.14     Close Relationship Between G-Proteins and MAPKs 
in Signal Transduction 

 Both hetrotrimeric and small monomer G-proteins may be required for defense 
 signaling (Zhao et al.  2010 ; Zhang et al.  2011 ,  2012 ; Kiirika et al.  2012 ). Mitogen- 
activated protein kinases (MAPKs) are involved in defense signaling system (Liu 
et al.  2011 ; Mao et al.  2011 ). A close relationship between MAPKs and G-proteins 
in the transduction of external signals into intracellular responses has been reported 
(Lieberherr et al.  2005 ). 

 To study the importance of these two types of G-proteins in defense signaling, 
transgenic rice cell lines in which the small G-protein  OsRac1  gene was specifi -
cally silenced by RNA interference and loss-of-function mutant rice cells 
 containing heterotrimeric Gα mutation were obtained (Lieberherr et al.  2005 ). 
There was a strong reduction of OsRac1 protein level in the transgenic plants and 
these transgenic plants also showed strong reduction in MAPK protein level. In 
the  OsRac1 -RNAi line, the MAPK activity was not induced by an elicitor, 
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suggesting a requirement for OsRac1 for the kinase activity response. In rice cell 
cultures containing the Gα mutation, the MAPK protein level was very much 
reduced, indicating that Gα is also required for the kinase activity response 
(Lieberherr et al.  2005 ). 

 The Arabidopsis extra-large heterotrimeric G-protein  XLG2  overexpression 
lines showed constitutive accumulation of transcripts from  AtMPK3  (Zhu et al. 
 2009 ). MPK3 is involved in MAPK signaling cascade (Mészáros et al.  2006 ). A 
protein- protein interaction of β-subunit of heterotrimeric G-proteins (PsGβ) with a 
MAPK (PsMPK3) has been reported in  Pisum sativum  (Bhardwaj et al.  2011 ). The 
transcription of these two genes also showed co-regulation under abscisic acid 
(ABA) and methyl jasmonate treatments. β-subunit of G-proteins from rice also 
showed interaction with PsMPK3, suggesting that the β-subunit from a heterolo-
gous system also shows interaction with MPK3. MPK3 may function as an effector 
molecule for Gβ subunit of heterotrimeric G-proteins from  Pisum sativum  
(Bhardwaj et al.  2011 ).  

3.15     G-Proteins Induce Biosynthesis of Polyamines 
Which Act as Second Messengers Triggering 
Early Signaling Events 

 Polyamines are polycationic, ubiquitous aliphatic amines that occur in all plant cells 
(Tun et al.  2006 ; Nambeesan et al.  2010 ,  2012 ). The diamine putrescine and the 
polyamines spermidine and spermine are involved in activation of immune signal-
ing. They play important role as second messengers in immune response signaling 
(Walters  2000 ; Takahashi et al.  2003b ,  2004 ; Walters  2003 ; Tun et al.  2006 ; Ozawa 
et al.  2009 ,  2010 ; Szepesi et al.  2011 ). The polyamine biosynthesis is activated dur-
ing pathogenesis (Marini et al.  2001 ; Gardiner et al.  2010 ).  Tobacco mosaic virus  
(TMV) infection resulted in increased concentration of the putrescine and spermi-
dine in tobacco leaves (Torrigiani et al.  1997 ). The polyamines also may accumulate 
during the defense response (Mo and Pus  2002 ; Walters et al.  2002 ; Fujiwara et al. 
 2006 ). Sugar beet plants treated with methyl jasmonate showed increased resistance 
against  Beet mosaic virus  (BtMV) and the increased resistance was associated with 
increased accumulation of polyamines (Haggag et al.  2010 ). Increased levels of 
putrescine, spermidine and spermine were observed in barley leaves inoculated with 
the powdery mildew fungus  Blumeria graminis  f. sp.  hordei  (Cowley and Walters 
 2002a ,  b ). Marini et al. ( 2001 ) showed that hypersensitive response to TMV infec-
tion was accompanied by increase in activities of polyamine biosynthetic enzymes. 

 The polyamines have also been reported to trigger defense responses (Yamakawa 
et al.  1998 ; Walters  2003 ). Polyamines have been shown to be involved in resistance 
against  Ascochyta rabiei  in chickpea (Angelini et al.  1993 ). Tobacco leaves infected 
with TMV showed accumulation of spermine and the accumulated spermine induced 
both acidic PR proteins and resistance to TMV via a salicylic acid- independent path-
way (Yamakawa et al.  1998 ; Hiraga et al.  2000 ). Polyamines may also be involved in 
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conferring susceptibility to some pathogens. Polyamines induced susceptibility to 
the necrotrophic pathogen  Botrytis cinerea  in tomato (Nambeesan et al.  2012 ). 

 The starting point for polyamine biosynthesis is the basic amino acids ornithine 
and arginine, which are decarboxylated by ornithine decarboxylase (ODC) and argi-
nine decarboxylase (ADC), respectively (Walters  2003 ). Decarboxylation of orni-
thine by ODC or arginine by ADC leads to the synthesis of putrescine, which is 
converted to spermidine by spermidine synthase. Spermidine, in turn, is then con-
verted to spermine by spermine synthase (Nambeesan et al.  2012 ). Fujiwara et al. 
( 2006 ) showed the induction of the two key enzymes in biosynthesis of polyamines, 
arginase and spermidine synthase, in rice cells by OsRac1, besides induction of 
S-adenosylmethionine decarboxylase. Arginase produces ornithine which is trans-
formed into putrescine via ornithine decarboxylase, while spermidine synthase con-
verts putrescine to spermidine. S-adenosylmethionine decarboxylase is involved in 
decarboxylation of S-adenosyl methionine. In these reactions, both sperimidine 
synthase and spermine enzymes use aminopropyl residues derived from decarbox-
ylated S-adenosyl-methionine (Fig.  3.8 ; Fujiwara et al.  2006 ; Kresge et al.  2007 ; 
Nambeesan et al.  2012 ).
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  Fig. 3.8    Small G-protein OsRac1-mediated polyamine biosynthesis in rice cells (Adapted from 
Fujiwara et al.  2006 )       
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   The G-protein-triggered synthesis of polyamines is involved in activation or 
 suppression of various signaling systems. Spermine treatment elicited biosynthesis 
of jasmonic acid in lima bean leaves (Ozawa et al.  2009 ,  2010 ). JA treatment 
enhanced polyamine biosynthesis in sugarbeet (Haggag et al.  2010 ). Spermine 
treatment induced calcium infl ux and ROS production (Ozawa et al.  2010 ). 
Polyamines have been found to be a common source of hydrogen peroxide in 
 host- and nonhost hypersensitive response during pathogen infection (Yoda et al. 
 2009 ). Polyamine oxidases are H 2 O 2  producing enzymes (Angelini and Federico 
 1989 ; Angelini et al.  2008 ). Polyamines induce rapid biosynthesis of nitric oxide 
(NO) in  Arabidopsis thaliana  (Tun et al.  2006 ). Polyamines also induced the activi-
ties of various enzymes involved in redox signaling system and the activated 
enzymes included ascorbate peroxidase, glutathione peroxidase, glutathione reduc-
tase, superoxide dismutase and catalase (Ozawa et al.  2010 ). Interaction between 
polyamines and SA signaling system in tomato has been reported (Szepesi et al. 
 2011 ). Polyamines induced susceptibility to the necrotrophic pathogen  Botrytis 
cinerea  in tomato. The polyamine- mediated susceptibility to  B. cinerea  was shown 
to be linked to interference with the functions of ethylene in plant defense 
(Nambeesan et al.  2012 ).  

3.16     G-Proteins Modulate Salicylic Acid Signaling Pathway 

 G-proteins may trigger salicylic acid signaling system (Beffa et al.  1995 ). 
Cholera toxin from  Vibrio cholerae  is a multimeric protein consisting of A1, A2, and 
fi ve B subunits. The A1 subunit catalyses the ADP-ribosylation of Gα, which 
irreversibly blocks the GTPase activity of G-proteins leading to the sustained 
activation of the downstream signaling pathway (Beffa et al.  1995 ). Cholera 
toxin does not activate G-proteins directly; it acts to maintain the active state of 
G-proteins with bound GTP (Beffa et al.  1995 ). Transgenic tobacco plants 
expressing A1 subunit of cholera toxin were developed and tissues of these 
transgenic plants showed accumulation of high levels of salicylic acid (Beffa 
et al.  1995 ). Sano et al. ( 1994 ) reported that expression of a small G- protein in 
transgenic tobacco abnormally induced salicylic acid in response to an external 
stimulus. Transgenic tobacco plants expressing a rice gene encoding small 
GTPase,  rgp1 , showed high accumulation of salicylic acid (Yoda and Sano 
 2003 ; Sano et al.  1994 ). These studies reveal that G-proteins are involved in SA 
biosynthesis. 

 Tobacco plants transformed with the  rgp1 gene showed increase in the mRNA 
levels of genes encoding acidic pathogenesis-related proteins, which are inducible 
by SA (Sano et al.  1994 ). Cultured rice cells were transformed with the rice 
 OsRac1  gene encoding a small G-protein. A salicylic acid induced protein, gluco-
syltransferase IS5a, was found to accumulate in these transformed cells (Fujiwara 
et al.  2006 ). Engineering the  rgp1  gene in tobacco has been shown to increase 
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resistance to  Tobacco mosaic virus  infection by inducing salicylic acid (Sano 
et al.  1994 ). Collectively these studies suggest that G-proteins play an important 
role in SA biosynthesis and signal transduction in plant innate immune responses.  

3.17     G-Proteins Trigger Ethylene Signaling Pathway 

 G-protein may trigger ethylene-dependent signaling pathway. G-proteins have 
been recognized as crucial signal transducers in ethylene-mediated signaling 
(Steffens and Sauter  2010 ). The rice small G-protein OsRac1 induced methionine 
synthase and S-adenosyl-methionine synthase in rice cells (Fujiwara et al.  2006 ). 
Methionine  synthase is involved in conversion of homocysteine to methionine and 
S-adenosyl-methionine synthase catalyses the formation of S-adenosyl-methionine. 
S-adenosyl methionine is a precursor of ethylene and it is converted into 1-amino-
cyclopropane-1-carboxylic acid (ACC) by the action of ACC synthase. ACC is 
oxidized by ACC oxidase resulting in the formation of ethylene (Fig.  3.9 ; Wang 
et al.  2002 ; Vidhyasekaran  2007 ).

Small G-protein

Homoserine

Methionine               
synthase

Activation

S-adenosyl-methionine

Small G-protein S-adenosyl-
methionine 

synthaseActivation

1- Aminocyclopropane -1-
carboxylic acid (ACC)

ACC synthase

Ethylene

ACC oxidase

Methionine

  Fig. 3.9    G-protein – induced 
ethylene biosynthesis       

 

3 G-Proteins as Molecular Switches in Signal Transduction



189

3.18        G-Proteins Switch on Jasmonate Signaling System 

 G-proteins may switch on jasmonate signaling pathway. Inhibitors of G-proteins 
signaling pathway suppressed elicitor-induced increases in lipoxygenase activ-
ity, whereas activators of G-proteins signaling pathway increased lipoxygenase 
activity in Mexican cypress ( Cupressus lusitanica ) cell cultures (Zhao and Sakai 
 2003 ). Lipoxygenase is an important enzyme in the octadecanoid pathway lead-
ing to the biosynthesis of jasmonate (Schaller  2001 ; Zhao et al.  2004 ). Calcium 
ion infl ux and H 2 O 2  production appear to precede increases in lipoxygenase 
activity (Zhao and Sakai  2003 ; Zhao et al.  2004 ). Another important enzyme 
involved in jasmonate biosynthesis is 12-oxo-10,15(Z)-phytodienoic acid 
(OPDA)-reductase, which converts OPDA to jasmonate (Schaller  2001 ). Gβ 
mutants defective in Gβ activity showed lower induction of  OPR1  gene encod-
ing  OPDA  in Arabidopsis. It suggests that Gβ is involved in biosynthesis of 
jasmonate (Trusov et al.  2006 ). The extracellular signals activate the receptor-
coupled G-proteins and then the active G-proteins further switch on Ca 2+  chan-
nel. Ca 2+  infl ux and the subsequent Ca 2+  wave may initiate calmodulin-dependent 
protein kinase cascade, ROS production, and eventually the jasmonate biosyn-
thesis (Fig.  3.10 ; Zhao and Sakai  2003 ; Zhao et al.  2004 ; Trusov et al.  2006 ; He 
et al.  2013 ).

   Defense against the necrotrophic pathogens  Alternaria brassicicola  and 
 Fusarium oxysporum  has been shown to be impaired in  Arabidopsis thaliana  
mutants lacking functional Gβ (Trusov et al.  2006 ). The induction of a number of 
defense-related genes in Gβ-defi cient mutants was severely reduced in response to 
 A. brassicicola  infection. In addition, Gβ-defi cient mutants exhibit decreased sensi-
tivity to a number of methyl jasmonate-induced responses such as induction of the 
plant defensin gene  PDF1.2  (Trusov et al.  2006 ). These results suggest that JA sig-
naling is infl uenced by Gβ functional subunit of heterotrimeric G-protein. In con-
trast, Gα-defi cient mutants did not show any signifi cant reduction in defense 
responses against  A. brassicicola , suggesting JA signaling was not infl uenced by Gα 
(Trusov et al.  2006 ). 

 Heterotrimeric G-proteins are involved in activating defense responses against 
necrotrophic fungal pathogens such as  A. brassicicola  and  F. oxysporum  in  A .  thali-
ana . In contrast, these G-proteins did not activate defense responses against the 
hemibiotrophic bacterial pathogen  Pseudomonas syringae  pv.  tomato  (Trusov et al. 
 2006 ). It is known that JA signaling is involved in conferring disease resistance only 
against necrotrophic fungal pathogens, and not against hemibiotrophic bacterial 
pathogens (Spoel et al.  2007 ; Vidhyasekaran  2007 ; Zheng et al.  2006 ). These results 
provide additional evidences to show that heterotrimeric G-proteins participate in 
JA signaling system.  
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3.19     G-Proteins Switch on Abscisic Acid Signaling System 

3.19.1     G-Proteins May Be Involved in Abscisic Acid 
Biosynthesis 

 G-proteins may regulate ABA signaling system (Pandey and Assmann  2004 ; Pandey 
et al.  2006 ; Liu et al.  2007a ). A regulator of G protein signaling (RGS) proteins, 
RGS1, has been identifi ed in  Arabidopsis  (Chen et al.  2006 ). Transgenic  Arabidopsis  

  Fig. 3.10    Small and heterotrimeric G-proteins- induced jasmonate biosynthesis       
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plants overexpressing RGS1 were developed and RGS1 overexpression signifi cantly 
stimulated the expression of  NCED  encoding the 9- cis -epoxycarotenoid dioxygen-
ase (NCED) enzyme, which cleaves 9- cis  xanthophylls to xanthoxin. The NCED is 
the fi rst committed step for ABA synthesis (Chen et al.  2006 ; Wasilewska et al. 
 2008 ). The transgenic plants overexpressing RGS1 also showed increased expression 
of  ABA2  gene (Chen et al.  2006 ), which encodes dehydrogenase/reductase involved 
in conversion of xanthoxin to abscisic acid aldehyde (Wasilewska et al.  2008 ). 
Abscisic aldehyde oxidase (AAO) catalyses the fi nal step of ABA biosynthesis, 
which converts ABA aldehyde to ABA (Iuchi et al.  2001 ). These results indicate that 
RGS1 is involved in biosynthesis of ABA (Chen et al.  2006 ).  

3.19.2     G-Proteins May Act as Abscisic Acid Receptors 

 The receptor for G-protein called G protein-coupled receptor (GPCR) has also been 
identifi ed as a plasma membrane receptor for the plant hormone abscisic acid (Liu 
et al.  2007a ,  b ). The G-protein receptor, GCR2, has been identifi ed as a plasma 
membrane-localized receptor for ABA in  Arabidopsis  (Liu et al.  2007a ). GCR2 is a 
membrane protein with seven transmembrane helices. The GCR2 genetically and 
physically interacts with the  Arabidopsis  G protein α subunit GPA1 to mediate all 
known ABA responses in  Arabidopsis . This receptor binds ABA with high affi nity 
at physiological concentration. The GCR2 interacts with the Gαβγ complex. 
Binding of ABA to GCR2 results in the release of Gα and Gβγ dimer to activate 
downstream ABA signaling events (Liu et al.  2007a ). 

 Another novel class of GPCR-type G proteins, GTGs has been suggested as 
ABA receptors (Pandey et al.  2009 ). GTG proteins contain GTP binding/GTPase 
activity. GTGs interact with the heterotrimeric G-protein α-subunit, GPA1 and the 
GTP-bound form of GPA1 inhibits the GTPase activity of GTG proteins. The GDP- 
bound GTGs bind ABA stronger than GTP-bound form, thus it might be the active 
form for perceiving and transducing ABA signal (Guo et al.  2011 ).  

3.19.3     G-Proteins May Regulate Inward K +  Channels 
and Slow Anion Channels Activated by ABA 

 In the G protein signaling system, the Gα subunit GPA1, the Gβ subunit (AGB1), 
and the G-protein coupled receptor (GCR1) regulate the downstream events in ABA 
signaling (Pandey et al.  2006 ). GCR1 may interact with GPA1 and the ligand bind-
ing to GCR1 may regulate heterotrimeric G protein signaling via GPA1 and the βγ 
dimer (Eckardt  2004 ). GPA1 acts upstream of the small GTPase Rac in inducing 
disease resistance response in rice (Suharsono et al.  2002 ). 

 The  Arabidopsis  GPA1 has been demonstrated to be involved in the regulation of 
inward K +  channels and slow anion channels activated by ABA (Wang et al.  2001 ). 
Ca 2+ -permeable channels, like inward K +  channels and S-type anion channels are 
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regulated by Gα-dependent pathways. These channels are activated by ABA and 
this activation is lost in  gpa1  mutant lines (Zhang et al.  2011 ). The results suggest 
that ABA activation of these channels is dependent on G-proteins.  

3.19.4     ABA Increases Expression of Genes Encoding 
Heterotrimeric G-Proteins 

 ABA treatment triggered an increase in expression of  BnGβ1 encoding a putative 
G-protein β subunit (Gβ) in  Brassica napus . The expression of  BnGβ1 was induced 
by low ABA concentrations, but high ABA concentrations inhibited the expression, 
suggesting that there might be an ABA-mediated feedback expression of 
 BnGβ1 expression (Gao et al.  2010b ). In contrast, the expression of  BnGA1  encod-
ing Gα G-protein subunit in  B .  napus  was signifi cantly induced by the high 
concentrations of ABA (Gao et al.  2010a ). These results suggest that the hetero-
meric G-protein may participate in ABA signaling system.  

3.19.5     G-Protein May Play a Role in ABA Signaling Between 
ABA Reception and ROS Production 

 The participation of G-proteins in ABA signaling system was demonstrated using 
 Arabidopsis  mutants defi cient in GPA1, the sole canonical  Arabidopsis  Gα subunit 
expression (Zhang et al.  2011 ).  Arabidopsis  mutants defi cient in GPA1 were found 
to be impaired in ABA inhibition of K +  infl ux channels, and in pH-independent 
activation of anion effl ux channels. The  gpa1  mutants were disrupted both in ABA- 
induced Ca 2+ -channel activation, and in production of reactive oxygen species 
(ROS) in response to ABA. These studies further suggested that absence of GPA1 
interrupts ABA signaling between ABA reception and ROS production, with a con-
sequent impairment in Ca 2+ -channel activation (Zhang et al.  2011 ). These results 
strongly suggest that the heterotrimeric G-protein is involved in ABA signaling 
system.  

3.19.6     G-Proteins May Be Involved in Modulation 
of ABA- Induced Stomatal Closure Immune Response 

 G-proteins may be involved in modulation of ABA-induced stomatal closure 
immune response. ABA is known to be involved in stomatal pore closure which 
is a key component in plant immune responses against bacterial pathogens 
(Takahashi et al.  2007 ; Hettenhausen et al.  2012 ; Uraji et al.  2012 ). The 
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 Arabidopsis  small GTPase protein AtRac1 has been identifi ed as a central 
 component in the ABA- mediated stomatal closure (Lemichez et al.  2001 ). ABA 
treatment induced inactivation of AtRac GTPases. In contrast, ABA-treatment-
induced AtRac inactivation was not observed in the  Arabidopsis  ABA-insensitive 
mutant  abi1-1 , which is impaired in stomatal closure. Expression of a dominant-
positive mutant of  AtRac1  blocked the ABA-mediated stomatal closure in wild-
type plants, whereas expression of a dominant-negative AtRac1 mutant 
recapitulated the ABA effects in the absence of the hormone. It was also observed 
that the dominant-negative form of AtRac1 could restore stomatal closure in the 
 abi-1  mutant (Lemichez et al.  2001 ). These results demonstrate that a small 
monomeric G-protein plays a key role in the stomatal closure immune response 
induced by ABA.   

3.20     G-Proteins May Participate in Gibberellic Acid 
Signaling 

 Heteromeric G-protein has been reported to play a role in GA signaling system 
(Iwasaki et al.  2003 ). GA treatment triggered an increase in expression of 
 BnGβ1 encoding a putative G-protein β subunit (Gβ) in  Brassica napus .  BnGβ1  was 
more prominently induced by high concentrations of GA (Gao et al.  2010b ). The 
expression of  BnGA1  encoding a G-protein α subunit of  B .  napus  was induced by 
low gibberellin 3 (GA3) concentrations and higher GA3 concentrations inhibit the 
expression of  BnGA1  (Gao et al.  2010a ). These results suggest that heterotrimeric 
G-proteins may be involved in signaling pathways modulated by GA.  

3.21     G-Proteins Participate in Brassinosteroid Signaling 

 G-proteins also take part in activation of brassinosteroid (BR) signaling system. The 
α subunit of plant heterotrimeric G proteins (Gα) has been shown to participate in 
BR signaling responses in  Arabidopsis  and rice (Ullah et al.  2002 ; Wang et al.  2006 ; 
Gao et al.  2008 ; Oki et al.  2009 ). The expression of the  Brassica napus  heterotri-
meric G protein α subunit ( BnGA1 ) was induced by exogenous application of 
brassinosteroid (Gao et al.  2010a ). 

 Wang et al. ( 2006 ) showed that the rice  d1  mutant was less responsive to 24-epi- 
brassinolide compared to wild-type plants, suggesting that the rice Gα was involved 
in brassinosteroid signaling. Rice Gα has been shown to affect BR signaling cas-
cade, but Gα may not be a signaling molecule in BRI1-mediated perception/trans-
duction (Oki et al.  2009 ). These studies suggest that G-proteins may participate in 
BR signaling system.  
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3.22     Interplay Between G-Proteins and Auxin 
Signaling Systems 

 The auxin signaling system plays an important role in plant innate immunity 
(Fu and Wang  2011 ). The auxin indole-3-acetic acid activates small monomeric 
G-proteins (Rac-like GTPases) and they in turn stimulate auxin-responsive gene 
expression (Tao et al.  2002 ; Xu et al.  2010 ; Wu et al.  2011 ). Addition of exogenous 
auxin to tobacco seedlings stimulates activation of endogenous Rac/Rops (Tao et al. 
 2002 ). It has been demonstrated that overexpressing a wild-type tobacco Rac/Rop 
GTPase, NtRac1, and its constitutively active mutant form activates auxin- 
responsive gene expression (Tao et al.  2002 ). On the other hand, overexpressing 
dominant-negative NtRac1and Rac-negative regulators, or reducing the endogenous 
NtRac1 level, suppresses auxin –induced gene expression (Tao et al.  2002 ). 

 GH3 and DR5 are natural and synthetic auxin-inducible promoters, respectively. 
 GH3-GUS  (β-glucuronidase) and  DR5-GUS  were found to be induced by naphtha-
lene acetic acid (NAA) in transfected protoplasts (Tao et al.  2002 ). Coexpression of 
NtRac1 activated expression of the auxin-responsive genes. The Rac-GTPase regu-
lators Rac-GAP (GTP-ase activating protein) and Rac-GD1 (guanine nucleotide 
dissociation inhibitor) downregulate the activity of the Rac GTPases by maintaining 
them predominantly in the GDP-bound inactive state. Expression of these negative 
regulators in transfected protoplasts counteracted considerably the ability of coex-
pressed NtRac1 to activate auxin –responsive promoters. These results suggest that 
active NtRac1 upregulates a subset of auxin-responsive promoters in transfected 
protoplasts (Tao et al.  2002 ). 

 It has been reported that the tobacco RAC-like GTPase Ntrac1 activates auxin- 
responsive gene expression in the absence of auxin (Tao et al.  2002 ). It suggests a 
signaling role for auxin-regulated gene expression for this small GTPase. The 
dominant- negative mutant forms of NtRac1(NtRac1[DN], with either a D121A or a 
T20N conversion rendering them constitutively in the inactive GDP-bound state) 
and the negative Rac-GTPase regulators Rac GAP and Rac-GDI block auxin- 
induced gene expression in the presence of exogenous auxin, indicating that endog-
enous active NtRacs are important for mediating the auxin signal to responsive 
genes. Further it has been shown that auxin activates NtRacs (Tao et al.  2002 ). 
Collectively these results suggest the existence of a signaling pathway whereby 
auxin-activated NtRacs stimulate downstream responsive gene expression.  

3.23     G-Proteins Activate Defense-Related Enzymes 

 G-proteins may regulate expression of several defense-related enzymes. OsRac1, 
the rice small G-protein, induced several enzymes associated with the phenylpro-
panoid pathway, including caffeic acid- O -methyltransferase (the enzyme involved in 
lignin biosynthesis) and isofl avone reductase (the enzyme involved in phytoalexin 
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biosynthesis) (Fujiwara et al.  2006 ). Cinnamoyl-CoA reductase, a key enzyme in 
lignin biosynthesis, is activated by Rac1 in rice (Kawasaki et al.  2006 ). The G-protein 
would have activated the phenylpropanoid pathway, probably by triggering MAPK 
signaling system (Lieberherr et al.  2005 ; Fujiwara et al.  2006 ). Silencing of the rice 
MAPK, OsMAPK6, reduced the level of phenylalanine ammonia- lyase ( PAL ) 
mRNA in rice (Lieberherr et al.  2005 ). The  PAL  gene is an important defense gene 
and the PAL enzyme represents the entry point of phenylpropanoid pathway for the 
synthesis of phenolics, phytoalexins, lignins (Vidhyasekaran  2007 ).     
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          Abstract        Plant innate immune system is a potential surveillance system against 
possible attack by pathogens. The invading pathogen’s signature (pathogen associ-
ated molecular pattern [PAMP]) is perceived by pattern recognition receptors 
(PRRs) of host plants. The informations generated by the PAMP alarm signals 
 activate the plant innate immune system. The plant immune system uses several 
second messengers to encode information generated by the PAMPs and deliver the 
information downstream of PRRs to proteins which decode and interpret the signals 
and initiate defense gene expression. Calcium ion is an important intracellular 
 second messenger and carries the PAMP signal downstream to initiate immune 
responses. Transient changes in permeability of the plasma membrane to Ca 2+  and 
infl ux of extracellular Ca 2+  through various plasma membrane-resident ion channels 
are the earliest events in defense signaling system. Different PAMPs trigger Ca 2+  
infl ux through activation/‘opening’ of specifi cally different ion channels. Massive 
infl ux of Ca 2+  occurs within a few minutes after PAMP treatment. The PAMP-
activated calcium signaling is modulated by calcium signatures. Ca 2+  signatures 
(single  calcium transients, oscillations, or waves) are generated in the cytosol, and 
in noncytosolic locations including the nucleus and chloroplast through the coordi-
nated action of Ca 2+  infl ux and effl ux pathways. PAMP signals induce an oscillation 
in the cytosolic free Ca 2+  concentration and the information encoded in the induced 
transient Ca 2+  changes is decoded by an array of Ca 2+ -binding proteins that serve as 
Ca 2+  sensors. The Ca 2+  sensors identifi ed in plants include calmodulins (CaMs), 
 CaM- like and CaM-related proteins, calcineurin B-like (CBL) proteins, Ca 2+ -
dependent  protein kinases (CDPKs), and Ca 2+ -binding proteins without EF hands. 
Specifi c calcium signatures are recognized by different calcium sensors to trans-
duce calcium- mediated signals into downstream events. The information encoded 
by specifi c calcium signatures is decoded by an array of sensors and the extracel-
lular signals are transmitted to cellular calcium-dependent effectors. Thus the extra-
cellular PAMP signals are transmitted to the calcium-dependent effectors through 
 calcium sensors resulting in activation of the complex immune signaling network.  

    Chapter 4   
 Calcium Ion Signaling System: 
Calcium Signatures and Sensors 
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4.1               Calcium Signature in Plant Immune Signal 
Transduction System 

 Pathogen-associated molecular patterns (PAMPs) of invading pathogens is recog-
nized by pattern recognition receptors (PRRs) of host plants (Zipfel  2008 ; Boutrot 
et al.  2010 ; Keinath et al.  2010 ; Shimizu et al.  2010 ; Nürnberger and Küfner  2011 ; 
Segonzac and Zipfel  2011 ). Binding of PAMPs to PRRs and subsequent receptor 
kinase activation are key steps in plant innate immunity (Kwaaitaal et al.  2011 ). 
One of the earliest detectable signaling events after PAMP perception is a rapid and 
transient rise in cytosolic Ca 2+  levels through the function of plasma membrane- 
resident Ca 2+  channels (Blume et al.  2000 ; Kwaaitaal et al.  2011 ; Ranf et al.  2011 ). 
In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved 
in numerous signaling pathways (   McAinsh et al.  1995 ; Himmelbach et al.  2003 ; 
Lecourieux et al.  2006 ; Zhu et al.  2007 ; Luan  2009 ; McAinsh and Pittman  2009 ; 
Abdul Kadar and Lindsberg  2010 ;    DeFalco et al.  2010 ; Dodd et al.  2010 ; Hamada 
et al.  2012 ; Stael et al.  2012 ). Second messengers are molecules that are used by 
plants to encode information and deliver it downstream to proteins which decode/
interpret signals and initiate cellular responses (e.g. changes in enzyme activity, gene 
expression, and cytoskeletal rearrangement) (Snedden and Fromm  2001 ). Ca 2+  is a 
master regulator of gene expression in plants (Galon et al.  2010a ,  b ). 

 Calcium ion acts as a signal carrier (Allen et al.  2000 ). Calcium signaling is 
modulated by specifi c calcium signatures. Spatial and temporal changes in cytosolic 
calcium ([Ca 2+ ] cyt ) are referred to as “calcium signature”. These changes may proceed 
as single calcium transients, oscillations, or repeated spikes/waves (Lecourieux 
et al.  2006 ). A combination of changes in all Ca 2+  parameters produced by a particu-
lar signal is called as a Ca 2+  signature (Luan et al.  2002 ). Ca 2+  signatures are gener-
ated in the cytosol, and in noncytosolic locations including the nucleus and 
chloroplast through the coordinated action of Ca 2+  infl ux and effl ux pathways 
(McAinsh and Pittman  2009 ). Specifi c calcium signatures are recognized by differ-
ent calcium sensors to transduce calcium-mediated signals into downstream events 
(Harmon et al.  2000 ; Rudd and Franklin-Tong  2001 ; Sanders et al.  2002 ; Reddy and 
Reddy  2004 ; Reddy et al.  2003 ,  2011a ,  b ; Wang et al.  2012 ; Hashimoto et al.  2012 ). 

 The Ca 2+  signature controls diverse cellular processes via Ca 2+  sensors (DeFalco 
et al.  2010 ). Plant cells employ an array of Ca 2+ -binding proteins that serve as Ca 2+  
sensors. The Ca 2+  binding proteins that function as sensors undergo conformational 
changes upon Ca 2+  binding that allow them to interact with downstream effectors 
(Clapham  2007 ; DeFalco et al.  2010 ; Hashimoto et al.  2012 ). The Ca 2+  sensors 
identifi ed in plants include calmodulins (CaM) (Snedden and Fromm  2001 ; Reddy 
and Reddy  2004 ;    Kang et al.  2006a ,  b ; Takabatake et al.  2007 ), CaM-like and CaM- 
related proteins (Jakobek et al.  1999 ; Rodriguez-Concepcion et al.  1999 ; Reddy 
 2001 ; Snedden and Fromm  2001 ; Luan et al.  2002 ; Lecourieux et al.  2006 ; DeFalco 
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et al.  2010 ), calcineurin B-like (CBL) proteins (Luan et al.  2002 ; Hashimoto et al. 
 2012 ), Ca 2+ -dependent protein kinases (Harmon et al.  2001 ; Harmon  2003 ; Ludwig 
et al.  2004 : Kobayashi et al.  2007 ; Batistić and Kudla  2009 ; Luan  2009 ; Hashimoto 
et al.  2012 ), and Ca 2+ -binding proteins without EF hands (Clark and Roux  1995 ; 
Reddy  2001 ; Tomsig and Cruetz  2002 ; Tomsig et al.  2003 ). 

 The calcium sensor proteins fall into two main classes, referred to as sensor 
relays and sensor responders (Sanders et al.  2002 ; Reddy and Reddy  2004 ). Sensor 
relays include calmodulin (CaM), CaM-related proteins, and calcineurin B-like 
(CBL) proteins. They function through bimolecular interactions. They undergo a 
conformational change induced by Ca 2+  before interacting with and changing the 
activity or structure of the target protein (Lecourieux et al.  2006 ). Sensor responders 
are Ca 2+ -dependent protein kinases (CDPKs) (Cheng et al.  2002 ). They function at 
fi rst through intramolecular interactions and undergo a Ca 2+ -induced conforma-
tional change that alters the protein’s own activity or structure (Harmon et al.  2000 ; 
Harper et al.  2004 ). These two groups of proteins are involved in decoding calcium 
signals (Lecourieux et al.  2006 ; Kudla et al.  2010 ). 

 Changes and oscillations in cytosolic free Ca 2+  concentration are associated with 
transduction of signals in plant cells (Sanders et al.  1999 ,  2002 ). Many biotic and 
abiotic signals elicit transient increases in cytoplasmic free Ca 2+  ([Ca 2+ ] cyt ) concentra-
tion in plants (Luan et al.  2002 ). Increases in Ca 2+ ] cyt  may be mostly due to infl ux of 
external Ca 2+ . However, internal Ca 2+  release may also contribute for increases in 
[Ca 2+ ] cyt  (Staxen et al.  1999 ; Hwang et al.  2000a ,  b ; Karita et al.  2004 ). Cellular Ca 2+  
levels are tightly regulated in plant cells and hence small changes in intracellular Ca 2+  
can provide information for the modifi cation of enzyme activity and gene expression 
(Gong et al.  2004 ). Signals may induce an oscillation in the cytosolic free Ca 2+  con-
centration. The information encoded in transient Ca 2+  changes is decoded by an array 
of Ca 2+  binding proteins giving rise to a cascade of downstream effects, including 
altered phosphorylation and gene expression patterns (Sanders et al.  2002 ; Hashimoto 
et al.  2012 ). Thus the extracellular signals are transmitted to cellular calcium-depen-
dent effectors to activate the transcription of immune response-related genes (Luan 
et al.  2002 ; Sanders et al.  2002 ; Gong et al.  2004 ; Lecourieux et al.  2006 ; Ma and 
Berkowitz  2007 ; Dodd et al.  2010 ; Reddy et al.  2011a ).  

4.2     Upstream Events Leading to Activation 
of Ca 2+  – Permeable Channels 

4.2.1     PAMP-Triggered Ca 2+  Infl ux and Elevations 
in Cytosolic Free Calcium 

 Transient changes in permeability of the plasma membrane to Ca 2+  and infl ux of 
extracellular Ca 2+  through the membrane appear to be one of the earliest events in 
defense signaling system (Atkinson et al.  1996 ; Wendehenne et al.  2002 ; Garcia- 
Brugger et al.  2006 ; Laohavisit et al.  2009 ; Vadassery and Oelmūller  2009 ; 
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Kwaaitaal et al.  2011 ; Vincill et al.  2012 ). Massive infl ux of Ca 2+  was observed 
within 15–30 min after PAMP/elicitor treatment in tobacco-cultured cells 
(Lecourieux-Ouaked et al.  2000 ). The initiation of innate immune responses upon 
the PAMPs (fl g22, elf18 and chitin) recognition by their PRRs (FLS2, EFR and 
CEK1, respectively) has been shown to be due to apoplastic Ca 2+  infl ux via ion 
channels (Kwaaitaal et al.  2011 ). 

 PAMPs/elicitors induce elevations in the cytosolic free calcium ([Ca 2+ ] cyt ) 
(Navazio et al.  2007 ). The induced calcium ([Ca 2+ ] cyt ) elevations predominantly 
result from a continuous Ca 2+  infl ux through the plasma membrane (Mithofer et al. 
 1999 ; Blume et al.  2000 ; Lecourieux et al.  2002 ; Hu et al.  2004 ; Vandelle et al. 
 2006 ). The transient increase of cytosolic Ca 2+  ([Ca 2+ ] cyt ) results from passive Ca 2+  
infl ux from the apoplast and/or from intracellular Ca 2+  stores through dedicated 
channels (Bush  1993 ,  1995 ). High accumulation of Ca 2+  in the cytosol may result in 
cytotoxicity and hence low Ca 2+  concentrations are maintained in the cytosol by the 
action of H + /Ca 2+  antiporters (carriers) and Ca 2+ -ATPases (ATP-dependent Ca 2+  
pumps) (Sanders et al.  1999 ,  2002 ; Zhu et al.  2010 ). These pumps and antiporters 
expel Ca 2+  in an energy-dependent manner from the cytosol to the apoplast and into 
vacuole and endoplasmic reticulum (ER) (Kwaaitaal et al.  2011 ). As a result, Ca 2+  
in the apoplast and intracellular stores is up to 20,000 times higher than in the 
 cytosol. The combination of this concentration gradient and a proton-based electro-
chemical gradient over cellular membranes may be the driving force for the PAMP-
dependent infl ux of Ca 2+  into the cytosol (Bush  1995 ; Kwaaitaal et al.  2011 ).  

4.2.2     PAMP – Activated G-Proteins May Initiate Ca 2+  Infl ux 

 G-proteins may be involved in Ca 2+  channel opening (Gelli and Blumwald  1997 ). 
Protein phosphorylation precedes Ca 2+  infl ux in tobacco cells treated with a PAMP 
isolated from the oomycete pathogen  Phytophthora cryptogea  (Tavernier et al. 
 1995 ). The G-proteins modulate the protein phosphorylation system in the plasma 
membrane of tomato cells and transduce the signal (Vera-Estrella et al.  1994 ). 
Phosphorylation of proteins involved in G-protein coupled signaling has been 
reported in tobacco cells treated with a bacterial elicitor (Gerber et al.  2006 ). 

 An interplay between the monomeric GTPase Rho-like GTPase of plants (ROP), 
the plant orthologs of the respiratory burst NADPH oxidases (RBOH), ROS produc-
tion, and cytosolic calcium transients has been reported (Fig.  4.1 ; Van Breusegem 
et al.  2008 ). GTPase Rac modulates activity of NADPH oxidases (RBOH) (Petry 
et al.  2010 ). The NADPH oxidase – GTPase interaction is regulated by the binding of 
calcium to two EF-hand motifs at the N terminus of the NADPH oxidase (Wong et al. 
 2007 ). The NADPH oxidase activation results in production of ROS (Van Breusegem 
et al.  2008 ; Petry et al.  2010 ). Activation of NADPH oxidase promotes calcium chan-
nel activation and calcium infl ux (Takeda et al.  2008 ). H 2 O 2  and OH°    may serve as 
distinct signals in the regulation of calcium infl ux, due to the existence of calcium 
channels that are distinctively sensitive to the generated H 2 O 2  (Demidchik et al.  2007 ).
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4.2.3        Reactive Oxygen Species (ROS) Regulate Ca 2+  Infl ux 

 Reactive oxygen species (ROS) may regulate Ca 2+  infl ux through plasma membrane 
transport proteins (Mori and Schroeder  2004 ; Laohavisit et al.  2012 ). Elicitor- 
induced H 2 O 2  participates in [Ca 2+ ] cyt  increase, probably through the activation of 
H 2 O 2  – sensitive Ca 2+  channels located in the plasma membrane (Lecourieux et al. 
 2002 ). H 2 O 2  triggers calcium infl ux in tobacco (Takahashi et al.  1998 ; Kawano and 
Muto  2000 ). An external stimulus, such as PAMP, increases activity of NADPH 
oxidase which is involved in ROS production. Activation of the plasma membrane- 
localized NADPH oxidase involves phosphorylation of two N-terminal Ser by a 
calcium-dependent protein kinase as well as interaction with GTPase. NADPH 
phosphorylation as well as binding to calcium synergizes NADPH activation 
(Ogasawara et al.  2008 ; Takeda et al.  2008 ; Petry et al.  2010 ). The increased activity 
of NADPH oxidases induces ROS production. The ROS activates hyperpolariza-
tion- activated Ca 2+  infl ux current (Pei et al.  2000 ; Foreman et al.  2003 ). H 2 O 2  may 
also be produced indirectly by producing more NADPH by means of Ca 2+ /
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CaM- regulated NAD kinase (Harding et al.  1997 ). The indirectly induced H 2 O 2  
production would have activated the Ca 2+  infl ux. 

 The NADPH oxidase-derived ROS stimulates a Ca 2+  infl ux into the cytoplasm. 
The rise in Ca 2+  level in turn activates NADPH oxidase to produce ROS (Takeda 
et al.  2008 ), suggesting a positive feedback regulation of Ca 2+  infl ux – ROS signal-
ing system. Protein phosphorylation has been shown to be a prerequisite for the 
Ca 2+ -dependent activation of  Arabidopsis  NADPH oxidases (Kimura et al.  2012 ). In 
 Arabidopsis , the respiratory oxidase homologue F ( AtrbohF ) encodes NADPH oxidase. 
AtRbohF exhibited ROS-producing activity that was synergistically activated by 
protein phosphorylation and Ca 2+ . The two EF-hand motifs of AtRbohF in the ter-
minal cytosolic region were found to be crucial for its Ca 2+ -dependent activation. A 
protein kinase inhibitor inhibited the Ca 2+ -dependent activation of AtRbohD in a 
dose-dependent manner, suggesting that protein phosphorylation is a prerequisite 
for the Ca 2+ -dependent activation of RbohF (Kimura et al.  2012 ). These results sug-
gest a positive feedback regulation of Ca 2+  and ROS in the Ca 2+  infl ux signaling 
system (Fig.  4.1 ).   

4.3     Ca 2+  Infl ux Channels in Plant Cell Plasma Membrane 

4.3.1     Voltage-Gated Ca 2+ -Permeable Channels 

 Several Ca 2+ -permeable channels have been found in plant plasma membranes and 
they have been implicated in immune response signaling systems (Gaxiola et al. 
 2007 ; Hamilton et al.  2000 ; White and Broadley  2003 ; Ma et al.  2009b ; Qi et al. 
 2010 ; Kwaaitaal et al.  2011 ; Michard et al.  2011 ; Vatsa et al.  2011 ). Calcium ion 
channels are integral membrane proteins that are involved in transport of solutes 
across the cell membrane in plants (Maathuis et al.  1997 ). Diffusion of ions through 
the channel is mostly due to membrane voltage (Miedema et al.  2008 ). Ion channels 
remain in “closed” conformational state and the ion channels “open” in response to 
ligands or to a change in membrane voltage (Maathuis et al.  1997 ). Some channels 
open in hyperpolarizing conditions (i.e. at rather negative membrane voltages, 
inward current) (Schroeder et al.  1994 ). Another class of channels open in depolar-
izing conditions (at relatively positive voltage, outward current) (Tester  1990 ). 
Channels are increasingly activated at more negative and more positive membrane 
voltage (Maathuis et al.  1997 ). Changes in membrane potential are associated with 
the initiation of a number of signal transduction pathways (Ward et al.  1995 ). Most 
of these Ca 2+  channels are not strictly selective for Ca 2+ , and they also facilitate the 
transport of other cations (Very and Sentenac  2002 ). 

 Depolarization-activated Ca 2+ -permeable channels are common in plasma mem-
brane of plant cells. They activate signifi cantly at voltages more positive than about 
−150 to −100 mV. These voltage-gated Ca 2+  channels mediate Ca 2+  infl ux across the 
plasma membrane of cells (Huang et al.  1994 ). Ca 2+  channel opens upon 
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depolarization of the membrane electrical potential (Huang et al.  1994 ; White  2000 , 
 2004 ). Membrane depolarization may be due to the activation of anion channels 
(Sanders et al.  2002 ; Jeworutzki et al.  2010 ). Anion effl ux results in plasma 
 membrane depolarization, which in turn triggers the activation of voltage-depen-
dent Ca 2+  channels that mediate Ca 2+  infl ux (Ward et al.  1995 ). 

 Application of the PAMPs fl g22 and elf18 induced rapid dose-dependent mem-
brane potential depolarizations and pronounced anion currents in  Arabidopsis thali-
ana . The depolarization was superimposed by an increase in cytosolic calcium that 
was indispensable for depolarization. The early immune signaling events induced 
by the PAMPs fl g22 and elf18 were found to involve Ca 2+ -associated opening of 
plasma membrane anion channels (Jeworutzki et al.  2010 ). The elicitor-induced 
Ca 2+  infl ux is inhibited by different anion-channel blockers (Ward et al.  1995 ; Ebel 
and Mithofer  1998 ). It suggests that anion fl ux precedes and controls Ca 2+  infl ux. 
The anion channels may initiate and amplify plasma membrane depolarization, 
which in turn may activate Ca 2+  voltage-dependent channels. 

 It has also been reported that Ca 2+  infl ux is a prerequisite for the activation of 
plasma membrane anion channels in several systems (Ward et al.  1995 ; Jabs et al. 
 1997 ; Wendehenne et al.  2002 ). In cryptogein-treated tobacco cells, the major cal-
cium infl ux did not result from plasma membrane depolarization. Instead, the Ca 2+  
infl ux occurred upstream and it triggered anion effl ux and plasma membrane depo-
larization, which in turn may mobilize some Ca 2+  voltage-dependent channels 
(Pugin et al.  1997 ; Wendehenne et al.  2002 ). Collectively these results suggest that 
initial Ca 2+  -infl ux may be through some voltage-dependent channels, independent 
of anion effl ux and subsequent activation of Ca 2+  infl ux may be through the anion 
effl ux-activated voltage-dependent channels. 

 The outward-rectifying K +  channels found in the plasma membrane of plant cells 
are also Ca 2+ -permeable depolarization-activated channels. These Ca 2+ -permeable 
outward rectifying K +  channels activate signifi cantly at voltages more positive than 
about −50 mV under most physiological conditions and catalyze a large K +  effl ux 
simultaneously with a small Ca 2+  infl ux (White and Broadley  2003 ). These channels 
may play a role in the initial Ca 2+  infl ux into the cytosol. 

 The rice two-pore channel1 (OsTPC1) is a putative voltage-gated Ca 2+ -permeable 
channel (Kurusu et al.  2005 ; Hamada et al.  2012 ). Overexpression of  OsTPC1  
induced several defense-related signaling systems, resulting in induction of oxida-
tive burst and activation of a mitogen-activated protein kinase and hypersensitive 
cell death. Retrotransposon-insertional mutagenesis of  OsTPC1  resulted in suppres-
sion of activation of the MAP kinase and hypersensitive-related cell death (Kurusu 
et al.  2005 ). The OsTPC1 has been shown to play a critical role in hypersensitive 
cell death induced by a fungal xylanase protein (TvX) elicitor in suspension- cultured 
rice cells (Hamada et al.  2012 ). TvX induced a prolonged increase in cytosolic Ca 2+ , 
mainly due to a Ca 2+  infl ux through the plasma membrane. TvX induced production 
of major diterpenoid phytoalexins and the expression of diterpene cyclase genes 
involved in phytoalexin biosynthesis (Hamada et al.  2012 ). These results suggest 
that the Ca 2+ -permeable voltage-gated channels may act as key regulators of defense 
signaling system. 
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 Although membrane depolarization-activated Ca 2+ -permeable channels are 
 common in plants, the presence of hyperpolarization-activated Ca 2+ -permeable 
channels has also been reported in plasma membrane of certain plant cells including 
tomato (Gelli and Blumwald  1997 ) and  Arabidopsis  (Pei et al.  2000 ) cells. 
Hyperpolarization- activated cation channels are activated at voltages more negative 
than about −100 to −150 mV (White and Broadley  2003 ). Reactive oxygen species 
increase the activity of these channels through the activity of NADPH oxidase 
(Pei et al.  2000 ; Murata et al.  2001 ; Foreman et al.  2003 ). Abscisic acid (ABA) 
activates a hyperpolarization- dependent Ca 2+ -permeable channel in the plasma 
membrane of  Arabidopsis  guard cells, leading to Ca 2+  infl ux and to an increase in 
[Ca 2+ ] cyt  (Hamilton et al.  2000 ; Pei et al.  2000 ). ABA has been shown to increase the 
level of ROS in an NADPH- dependent manner and ROS is known to stimulate 
hyperpolarization-activated Ca 2+  infl ux current in the plasma membrane termed I Ca  
(Pei et al.  2000 ). Reactive oxygen species (ROS) has been shown to stimulate 
hyperpolarization-activated Ca 2+ -permeable channels and cause a transient increase 
in cytoplasmic calcium ([Ca 2+ ] cyt ) content in  Arabidopsis  (Pei et al.  2000 ).  

4.3.2     Cyclic Nucleotide-Gated Ion Channels (CNGCs) 

 Cyclic nucleotide-gated ion channels (CNGCs) have been found in plant cell plasma 
membrane (Leng et al.  1999 ; Maathuis and Sanders  2001 ; Sanders et al.  2002 ; 
Kaplan et al.  2007 ; Baxter et al.  2008 ; Ma and Berkowitz  2011 ; Qi et al.  2010 ; 
Abdel-Hamid et al.  2011 ; Moeder et al.  2011 ). Twenty genes encoding putative 
CNGCs have been detected in  Arabidopsis  (Talke et al.  2003 ). The  HLM1  gene 
encodes a cyclic nucleotide-gated channel, CNGC4 in  Arabidopsis  (Balagué et al. 
 2003 ).  AtCNGC11  and  AtCNGC12  genes encode two CNG ion channels involved 
in host defense response (Yoshioka et al.  2006 ).  DND1  gene encodes AtCNGC2 
that allows passage of Ca 2+ , K + , and other cations (Clough et al.  2000 ). A CNG ion 
channel has been identifi ed in barley and it was homologous to the  Arabidopsis  
HLM1. Ten other members of the barley CNG channel gene family have been 
 identifi ed (Rostoks et al.  2006 ). 

 CNG ion channels are heterotetrameric in structure. Six membrane-spanning 
domains fl anked by hydrophilic amino and carboxy terminus have been detected 
in these proteins. A putative cyclic nucleotide binding domain was located in the 
carboxy terminus (Zhong et al.  2003 ). AtCNGC subunits share many similarities 
with voltage-gated outward rectifying K + -selective ion channel proteins, includ-
ing a cytoplasmic N terminus, six membrane-spanning regions, a pore domain, 
and a cytoplasmic C terminus. AtCNGCs are gated primarily by binding of 
cAMP (cyclic adenosine monophosphate) or cGMP (cyclic guanosine-3′,5′-
cyclic monophosphate) rather than by voltage (Yoshioka et al.  2006 ). AtCNGC4 
is activated by both cGMP and cAMP (Balagué et al.  2003 ). Cyclic nucleotides 
cAMP and cGMP have been shown to be linked with Ca 2+  signaling (Moutinho 
et al.  2001 ). 
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 CNGCs are involved in Ca 2+ -dependent signaling pathways (Talke et al.  2003 ; 
Yoshioka et al.  2006 ). The CNGC detected in  Arabidopsis , AtCNGC2, is a plasma 
membrane protein permeable to Ca 2+  (Yu et al.  1998 ). Leng et al. ( 1999 ,  2002 ) and 
Balague et al. ( 2003 ) showed cyclic nucleotide-dependent conductance of Ca 2+  in 
 Arabidopsis . The  atcngc2  knock-out plants showed an altered Ca 2+  signature in 
response to the bacterial PAMP lipopolysaccharide (LPS) (Ma et al.  2009b ). The 
unique position of CNGCs as ligand-gated Ca 2+ -permeable channels suggests that 
they function at key sites where cyclic nucleotide and Ca 2+  signaling pathways 
 interact (Talke et al.  2003 ). 

 The CNGCs contain a C-terminal cyclic nucleotide-binding domain with over-
lapping calmodulin-binding domain. Calmodulin-binding domains are common in 
CNG ion channels and calmodulin binding has been demonstrated for the 
 Arabidopsis  CNGC proteins AtCNGC1 and AtCNGC2 (Kohler et al.  1999 ; Kohler 
and Neuhaus  2000 ). A tobacco plasma membrane calmodulin-binding channel 
 protein (designated NtCBP4) had a putative cyclic nucleotide-binding domain. The 
NtCBP4 calmodulin-binding domain was found to perfectly coincide with an alpha-
C- helix motif of its putative cyclic nucleotide-binding domain. The coinciding 
calmodulin- and cyclic nucleotide-binding domains may serve as a point of com-
munication between calcium and cyclic nucleotide signal transduction pathways in 
plants (Arazi et al.  2000 ). CNGCs that are regulated by calmodulin play essential 
roles in signal transduction (Borsics et al.  2007 ). 

 CNGCs play important role in plant innate immunity signaling (Baxter et al. 
 2008 ; Abdel-Hamid et al.  2011 ; Moeder et al.  2011 ). In  Arabidopsis , the CNGCs 
AtCNGC2 and AtCNGC4 have been shown to trigger hypersensitive reaction (HR), 
an important component of defense signaling pathway.  Arabidopsis  mutants,  dnd1  
(without functional CNGC2) and  dnd2 / HLM1  (without functional AtCNGC4), fail 
to produce HR (Balague et al.  2003 ; Jurkowski et al.  2004 ). AtCNGC11 and 
AtCNGC12 are positive regulators of defense signaling in  Arabidopsis . These two 
AtCNGCs play a role in SA-signaling system dependent on EDS1 and PAD4 
(Yoshioka et al.  2006 ). The chimeric gene  AtCNGC11/12  induced resistance associ-
ated HR-related cell death. The vacuolar processing enzyme (VPE), a caspase-like 
protein, was involved in this process. In VPE-silenced plants, development of cell 
death was much slower and weaker compared to control plants, suggesting the 
involvement of VPE as a caspase in AtCNGC11/12-induced HR-related cell death 
(Urquhart et al.  2011 ).  DND1  negatively regulates disease resistance to bacterial 
pathogens in  Arabidopsis  (Ahn  2007 ). The resistance of  dnd1  mutant against 
 Pectobacterium carotovorum  was dependent on calmodulin and inhibition of Ca 2+  
increment (Ahn  2007 ). 

 The signaling cascade initiated by the host-associated molecular pattern 
(HAMP)/damage-associated molecular pattern (DAMP) AtPep1 leads to expres-
sion of defense genes in a Ca 2+ -dependent manner (Qi et al.  2010 ). The endogenous 
elicitor AtPep1 after binding with its pattern recognition receptor (PRR) AtPepR1 
activates plant membrane inwardly conducting Ca 2+  permeable channels in meso-
phyll cells, resulting in cytosolic Ca 2+  elevation. This activity is dependent on the 
PRR AtPepR1 as well as a cyclic nucleotide-gated channel (CNGC2). The PRR 
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AtPepR1 has guanylyl cyclase activity and this activity generates cGMP from GTP. 
The cGMP activates CNGC2-dependent cytosolic Ca 2+  elevation (Qi et al.  2010 ). 
AtPep-dependent expression of defense genes such as PDF1.2, MPK3, and 
WRKY33, is mediated by the Ca 2+  signaling pathway associated with AtPep 
 peptides and their receptor (Fig.  4.2 ; Qi et al.  2010 ). These studies indicate that 
downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated 
channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca 2+  
 conductance and resulting cytosolic Ca 2+  elevation.

4.3.3        Glutamate Receptor-Like Ion Channels 

 Glutamate receptors (GLRs) comprise another class of ion channel that might 
 provide a calcium-permeable pathway across the plasma membrane (Sanders et al. 
 2002 ; Vatsa et al.  2011 ; Price et al.  2012 ; Vincill et al.  2012 ). The glutamate recep-
tors are ligand-gated non-selective cation channels permeable to calcium (Demidchik 
et al.  2002 ,  2004 ; Kang et al.  2006b ; Tapken and Hollmann  2008 ; Tikhonov and 
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  Fig. 4.2    Activation of CNG channel-mediated Ca 2+  infl ux by the HAMP AtPep1 (Adapted from 
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Magazanik  2009 ; Vatsa et al.  2011 ). The ionotropic glutamate receptor consists of a 
ligand binding domain and a channel-forming domain (Price et al.  2012 ). The iono-
tropic glutamate receptor-like channels possess a large N-terminal extracellular 
domain, three transmembrane regions, a hydrophobic loop defi ning the pore region 
and a cytosolic C-terminal domain (Tapken and Hollmann  2008 ; Kwaaitaal et al. 
 2011 ). Twenty glutamate receptor-like channels have been detected in  A .  thaliana  
genome (Chiu et al.  1999 ,  2002 ; Wheeler and Brownlee  2008 ). Glutamate receptor- 
like genes have been shown to form Ca 2+  channels (Michard et al.  2011 ). Ca 2+  
 permeability of a glutamate receptor channel in  Arabidopsis  has been demonstrated 
(Vincill et al.  2012 ). Exogenous glutamate application triggers a large transient 
elevation in [Ca 2+ ] cyt  and a membrane depolarization in  Arabidopsis  (Dennison and 
Spalding  2000 ). 

 In  A. thaliana  overexpressing a full-length cDNA clone ( RsGluR ) encoding a 
putative glutamate receptor from small radish, glutamate treatment triggered greater 
Ca 2+  infl ux in the root cells of transgenic plants than in those of the wild type. 
Jasmonate-responsive genes including defensins and JA-biosynthetic genes were 
upregulated in the transgenic plants.  RsGluR  overexpression also inhibited growth 
of the fungal pathogen  Botrytis cinerea . The RsGluR is a glutamate –gated Ca 2+  
channel located in the plasma membrane of higher plants and plays a direct or 
 indirect role in defense against pathogen infection by triggering JA biosynthesis 
(Kang et al.  2006a ,  b ). 

 The glutamate receptors were found to be activated by the PAMP cryptogein and 
they were involved in triggering Ca 2+  infl ux (Vatsa et al.  2011 ). The downstream 
event in the glutamate receptor-mediated signaling pathway included NO produc-
tion (Vatsa et al.  2011 ). Kwaaitaal et al. ( 2011 ) showed that the initiation of innate 
immune responses upon the PAMPs fl g22, elf18 and chitin recognition involves 
apoplastic Ca 2+  infl ux via glutamate receptor-like channels in  A .  thaliana . The 
downstream events in the glutamate receptor channels-mediated immune response 
signaling pathway included mitogen-activated protein kinase cascade, activation 
of calcium-dependent protein kinase (CDPK) and accumulation of defense gene 
transcripts (Kwaaitaal et al.  2011 ).  

4.3.4     Annexins as Calcium Transporters 

 Elevation of cytoplasmic free calcium ([Ca 2+ ] cyt ) is a regulatory step in plant innate 
immunity and it relies spatiotemporal control of Ca 2+ -permeable channel activity at 
endomembranes and the plasma membrane (McAinsh and Pittman  2009 ). The 
plant genomes encode multiple potential Ca 2+ -permeable channel subunits that 
could contribute to [Ca 2+ ] cyt  elevation (McAinsh and Pittman  2009 ; Ward et al. 
 2009 ). Plant annexins appear capable of mediating passive, channel-like Ca 2+  
transport (Mortimer et al.  2008 ; Laohavisit et al.  2009 ,  2010 ; Laohavisit and Davies 
 2011 ). Annexins are membrane binding proteins that can form Ca 2+ -permeable 
conductances  in vitro  (Laohavisit et al.  2012 ). Pepper annexin mediates Ca 2+  infl ux 
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into artifi cial vesicles (Hofmann et al.  2000 ). A maize annexin preparation was 
found to promote Ca 2+  infl ux into root epidermal protoplasts (Laohavisit et al. 
 2009 ). It also formed a Ca 2+ -permeable conductance in planar lipid bilayers that 
resembled plant plasma membrane Ca 2+ -permeable nonselective cation channel 
(Laohavisit et al.  2009 ). 

 Laohavisit et al. ( 2010 ) reported that annexins form a ROS-stimulated passive 
Ca 2+  transport pathway in maize.  Arabidopsis  loss-of-function mutant for annexin1 
( Atann1 ) was found to lack epidermal ROS-activated Ca 2+  conductance (Laohavisit 
et al.  2012 ). An ROS-activated Ca 2+  conductance was reconstituted by recombinant 
annexin1 (ANN1) in planar lipid bilayers (Laohavisit et al.  2012 ). The results 
 suggest that annexin1 presents a novel Ca 2+ -permeable transporter providing a 
molecular link between ROS and cytosolic Ca 2+  in plants.   

4.4     Ca 2+  Release Channels Involved in Releasing Stored Ca 2+  
in Vacuole and Endoplasmic Reticulum into Cytosol 

4.4.1     Inositol 1,4,5-Trisphosphate(InsP3)-Activated Ca 2+  
Channel 

 Besides the Ca 2+  infl ux channels, Ca 2+  effl ux channels located in the membrane of 
intracellular organelles have also been shown to be involved in signal transduction 
(Schroeder and Thuleau  1991 ). The plasma membrane Ca 2+  channels allow Ca 2+  
infl ux from the cell wall space into the cytosol, while Ca 2+  release channels allow 
release of stored Ca 2+  in vacuole and endoplasmic reticulum into the cytosol 
(Sanders et al.  1999 ). A number of Ca 2+  release channels have been found in the 
vacuolar membranes. Inositol 1,4,5-trisphosphate (InsP3)-activated Ca 2+  channel is 
the important Ca 2+  release channel (Alexandre et al.  1990 ). InsP3-gated channels 
release Ca 2+  from the vacuole (Alexandre and Lassales  1992 ; Berridge  1993 ) and 
endoplasmic reticulum (ER) (Martinec et al.  2000 ). InsP3 is a second messenger 
that controls many cellular processes by generating internal calcium signals 
(Berridge  1984 ,  1993 ; Berridge and Irvine  1989 ). InsP3 releases calcium through an 
intact intracellular plant membrane by activating a Ca 2+  channel (Alexandre et al. 
 1990 ). It operates through receptors which resemble ryanodine receptors of human 
muscle (Berridge  1993 ). This calcium channel is voltage-dependent and opened 
only on depolarization of the vacuoles (Alexandre et al.  1990 ). The calcium released 
through this channel induces calcium waves and oscillations (calcium signature) in 
the cytosol (Berridge  1993 ). 

 RACK1 (for  R eceptor for  A ctivated  C K inase 1 ) is an interactor which binds 
with phosphorylated active forms of protein kinase C (PKC). It acts as a scaffold 
protein, bringing activated PKC into contact with its various substrates (Shirasu 
and Schulze- Lefert  2003 ; Patterson et al.  2004 ; Nakashima et al.  2008 ). RACK1 
binds InsP3 receptors and regulates Ca 2+  release by enhancing InsP3 receptor 
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binding affi nity for InsP3. Overexpression of RACK1 markedly augments Ca 2+  
release, while depletion of RACK1 by interference RNA diminishes Ca 2+  release 
(Patterson et al.  2004 ).  

4.4.2     Cyclic Adenosine 5′-Diphospho-Ribose (cADPR) 
Gated Channels 

 Cyclic adenosine 5′-diphosphoribose (cADPR) gated channels are another family 
of channels, which release Ca 2+  from the vacuole and endoplasmic reticulum 
(Navazio et al.  2001 ). The cADPR-gated pathway has been shown to be voltage- 
dependent and it does not spontaneously desensitize. It is colocalized with an InsP3- 
gated calcium release pathway in individual vacuoles (Allen et al.  1995 ). cADPR 
elevates cytosolic free calcium in plants (Navazio et al.  2001 ). cADPR-mediated 
induction of abscisic acid-responsive gene expression has been shown to be exerted 
by means of mobilization of internal Ca 2+  stores (Wu et al.  1997 ).  

4.4.3     Slowly Acting Vacuolar (SV) Channel 

 Another class of Ca 2+  release channel type residing in the vacuolar membrane is 
gated by voltage and acts by membrane depolarization (Sanders et al.  2002 ). This 
channel is known as the  S low  V acuolar (SV) channel in reference to its voltage- 
activation kinetics (Hedrich and Neher  1987 ; Hedrich and Marten  2011 ). The SV 
channel is activated by rises in [Ca 2+ ] cyt  and this response potentially endows the 
channel with the capacity to catalyze Ca 2+ -induced Ca 2+  release (Bewell et al. 
 1999 ). The channel is regulated by [Ca 2+ ] cyt  and by phosphorylation (Allen and 
Sanders  1995 ). This channel is downregulated by 14-3-3 proteins (van den 
Wijngaard et al.  2001 ).  

4.4.4     NAADP-Activated Ca 2+  Effl ux Channel 

 A distinct Ca 2+  release channel activated by the nicotinamide adenosine dinucleo-
tide phosphate (NADP) metabolite nicotinic acid adenine dinucleotide phosphate 
(NAADP) has been detected in ER of higher plants (Navazio et al.  2000 ; Patel 
 2004 ). The NAADP potently mobilizes Ca 2+  from ER in red beet ( Beta vulgaris ) 
and caulifl ower (Navazio et al.  2000 ). The exclusively endoplasmic reticulum loca-
tion of the NAADP-sensitive Ca 2+  pathway distinguishes it from the InsP3- and 
cADPR-gated pathways. The NAADP-gated Ca 2+  release pathway was found to be 
independent of cytosolic free Ca 2+  and therefore incapable of operating Ca 2+  – 
induced Ca 2+  release (Navazio et al.  2000 ).   
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4.5     Ca 2+  Effl ux from Cytosol to Vacuole and Endoplasmic 
Reticulum (ER) 

4.5.1     H + /Ca 2+  Antiport System 

 Ca 2+  effl ux from cytosol to vacuole and ER through H + /Ca 2+  antiporters (carriers) 
and calcium ATPases (pumps) may also be involved in signal transduction (Hirschi 
et al.  1996 ; Sanders et al.  1999 ,  2002 ; Zhu et al.  2010 ). Ca 2+  is sequestered into 
vacuoles through the H + /Ca 2+  antiport system that is driven by the proton-motive 
force of the tonoplast H + -translocating ATPase (Schumaker and Sze  1986 ). Ca 2+  
uptake is tightly coupled to H +  loss. At least one Ca 2+  is exchanged for each H +  
(Schumaker and Sze  1986 ). The H + /Ca 2+  exchange in tonoplast vesicles is electro-
genic, generating a membrane potential, interior positive. This exchange depends 
on the pH gradient between the vacuole and cytoplasm. The transmembrane move-
ment of H +  is catalyzed by H + -conducting proteins (Schumaker and Sze  1986 ). 
A H + /Ca 2+  antiporter has been cloned from  Arabidopsis , and the protein has been 
 designated as CAX1 (calcium exchanger 1; Hirschi  2001 ). CAX1 appears to trans-
port cytosol Ca 2+  into vacuole and ER and the Ca 2+  entering into these organelles 
may regulate calcium release channels in them (Hirschi  2001 ). Cell-specifi c vacuolar 
calcium storage mediated by CAX1 has been shown to regulate apoplastic calcium 
concentration (Conn et al.  2011 ). Ca 2+  effl ux systems may also participate in signal 
transduction (Sanders et al.  2002 ).  

4.5.2     Calcium Ion Pumps 

 Calcium ion pumps may also exist in plant cell membrane. These include P-type 
ATPases, which are ATP-fuelled pumps sharing a common enzymatic mechanism 
involving a phosphorylated reaction cycle intermediate, hence P type (Palmgren and 
Harper  1999 ). The pumps become phosphorylated at an aspartate residue in the 
sequence DKTGT. The P-type ATPases directly use ATP to drive ion translocation 
(Sanders et al.  2002 ). More than 40 P-type ATPases have been reported in  A. thali-
ana . Two P-type ATPases, Ca 2+ -ATPases and H + -ATPases, are involved in Ca 2+  
signaling. 

 Plant cells contain two distinct types of Ca 2+  pumps, types IIA and IIB, based on 
protein sequence identities (Axelsen and Palmgren  1998 ). The Ca 2+ -ATPases are 
regulated by binding with calmodulin (Sze et al.  2000 ). ACA2, a type IIB pump 
detected in ER of  Arabidopsis  cells is normally kept in an autoinhibited conforma-
tion and is activated when Ca 2+  induces calmodulin to bind to the N-terminal domain 
of the pump (Harper et al.  1998 ; Hwang et al.  2000a ). This binding of calmodulin 
might have disrupted an inhibitory interaction within the pump, thereby resulting in 
a “release of inhibition” (Hwang et al.  2000a ). It has been demonstrated that a 
CDPK can inhibit the basal and calmodulin-stimulated activities of the Ca 2+  pump 
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ACA2 through phosphorylation at position Ser 45  in the N-terminal regulatory 
domain. Thus there may be a crosstalk between two different Ca 2+  signaling path-
ways (calmodulin and CDPKs), providing a mechanism to control Ca 2+  effl ux 
through opposing inhibitory and stimulatory activities. Factors that shift this balance 
may alter the rate of Ca 2+  effl ux, and thereby alter the magnitude or duration of a 
Ca 2+  signal (Hwang et al.  2000b ). 

 The  Arabidopsis  Ca 2+ -ATPases ACS8 and ACS10 have been shown to form a 
complex with the PRR FLS2 in planta. The mutant  aca8  and  aca10  plants showed 
decreases in the PAMP fl g22-induced Ca 2+  transient increase in cytosol (Frey et al. 
 2012 ), suggesting that Ca 2+ -ATPases modulate the Ca 2+  signaling. 

 Ca 2+ -ATPases have been shown to be involved in plant innate immune responses. 
Programmed cell death (PCD) initiated at the infection sites is a defense response 
against pathogens (Zhu et al.  2010 ). The ER-localized type IIb Ca 2+ -ATPase of 
 Nicotiana benthamiana  ( NbCA1 ) has been shown to function as a regulator of PCD. 
Silencing of  NbCA1  accelerated the PAMP cryptogein-induced cell death. 
Downregulation of  NbCA1  resulted in the modulation of intracellular calcium sig-
naling in response to the PAMP cryptogein treatment (Zhu et al.  2010 ). The results 
indicate that ER-Ca 2+ -ATPase is a component of the calcium effl ux pathway that 
controls PCD in an innate immune response. Disruption of the vacuolar calcium- 
ATPases in Arabidopsis results in the activation of salicylic acid signaling pathway 
involved in innate immune responses, suggesting the role of Ca 2+ -ATPases in innate 
immunity (Boursiac et al.  2010 ).   

4.6     Plasma Membrane H + -ATPases in Ca 2+  Signaling 

 H + -ATPases belong to the large P-type ATPases superfamily. The plasma membrane 
H + -ATPases generate an H + -gradient across the plant plasma membrane. The proton 
gradient energizes many important transport systems in plants. The proton gradient 
also creates an electrical potential, which is used to drive cation uptake through ion 
channels. The plasma membrane H + -ATPase is an H +  pump and is electrogenic, i.e. 
it can establish a membrane potential: positive on the outside, negative on the inside. 
It establishes the pH gradient (acidic on the outside) and creates the plasma mem-
brane potential (typically −100 to −200 mV; negative on the inside) (Palmgren 
 1998 ; Palmgren and Harper  1999 ; Elmore and Coaker  2011 ). H + -ATPases use 
energy from ATP hydrolysis to pump protons from the cytosol to the extracellular 
space (Sondergaard et al.  2004 ). Activation or inhibition of the H + -ATPase modu-
lates membrane potential (Ward et al.  2009 ). Changes in membrane potential alter 
the activities of voltage-gated channels and control ion fl ux at the plasma membrane 
(Haruta et al.  2010 ; Elmore and Coaker  2011 ). 

 Plant H + -ATPases become activated as the C-terminal domain is degraded by 
controlled proteolysis. C-terminus of the ATPase of these pumps may be a regula-
tory domain inhibiting pump activity (Palmgren et al.  1991 ). It has been suggested 
that the C-terminus of the ATPase might block the active site, and that following 
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its displacement the ATPase gets activated (Palmgren and Harper  1999 ). The 
 activation of H + -ATPase appears to be modulated by Ca 2+  infl ux – induced  calcium 
dependent protein kinase (CDPK) (Camoni et al.  1998b ; Schaller and Oecking 
 1999 ). The CDPK phosphorylates H + -ATPase and the phosphorylation site is 
located at the C-terminal domain of H + -ATPase (Camoni et al.  1998b ). The H + -
ATPase was found to be phosphorylated at serine and threonine residues (Schaller 
and Sussman  1988 ). Phosphorylation of H + -ATPase is stimulated by the addition 
of Ca 2+  and by a decrease in pH, from 7.2 to 6.2, suggesting that changes in the 
cytoplasmic Ca 2+  and pH are potentially important elements in modulating the 
kinase-mediated phosphorylation (Schaller and Sussman  1988 ). It is suggested 
that the H + -ATPase might  actually become activated following a dephosphoryla-
tion reaction preceded by phosphorylation reaction by CDPK (Palmgren and 
Harper  1999 ). The elicitor- induced stimulation of the plasma membrane H + -
ATPase was inhibited by okadaic acid, a phosphatase inhibitor, but not by strau-
rosporine, a protein kinase inhibitor in tomato, suggesting that protein 
dephosphorylation was required for increased H + -ATPase activity (Vera-Estrella 
et al.  1994 ). G proteins may be involved in elicitor- receptor binding, which in turn 
may stimulate the H + -ATPase by dephosphorylation (Vera-Estrella et al.  1994 ; 
Xing et al.  1997 ). 

 Regulation of H + -ATPases appears to depend on the presence or absence of 
14-3-3 proteins (Chung et al.  1999 ; Fuglsang et al.  1999 ; Kanczewska et al.  2005 ; 
Ottmann et al.  2007 ; Duby and Boutry  2009 ). An in vitro interaction between a 
phosphorylated CDPK and 14-3-3 isoforms from  Arabidopsis  has been reported 
(Camoni et al.  1998a ). There may be a functional link among phosphorylated 
CDPK, H + -ATPase and 14-3-3 protein in defense signaling (Romeis et al.  2000 ; 
Duby et al.  2009 ). Binding of 14-3-3 proteins to the plasma membrane H + -ATPase 
involves the three C-terminal residues Tyr-Thr-Val and requires phosphorylation of 
Thr (Fuglsang et al.  1999 ; Duby and Boutry  2009 ). The penultimate threonine 
 residue and accompanying mode III motif is widely conserved across H +  – ATPases 
throughout the plant kingdom, suggesting that this mechanism of activation is 
highly conserved (Duby and Boutry  2009 ). Additional phosphorylated residues 
within the C-terminal domain have been reported to affect the enzyme activity 
(Speth et al.  2010 ). 14-3-3 proteins recognize phosphate-bearing amino acid and 
regulate the H + -ATPase enzyme activity (Romeis et al.  2000 ). Phosphorylation of 
the penultimate Thr residue in the C-terminal, autoregulatory domain of the H + -
ATPase results in 14-3-3 protein-dependent activation of the pump (Fuglsang et al. 
 1999 ,  2007 ; Svennelid et al.  1999 ; Maudoux et al.  2000 ). Phosphorylation at a 
 second or additional unidentifi ed sites inhibits the H + -ATPase and this reaction 
appears to be regulated by CDPK (Vera Estrella et al.  1994 ; Xing et al.  1996 ; De 
Nishi et al.  1999 ; Rutschmann et al.  2002 ). 

 PAMPs have been shown to cause either H + -ATPase activation concomitant with 
extracellular acidifi cation and membrane hyperpolarization, or H + -ATPase inactiva-
tion resulting in the depolarization of the plasma membrane (Wevelsiep et al.  1993 ; 
Vera-Estrella et al.  1994 ; Hammond-Kosack et al.  1996 ; Xing et al.  1996 ). 
Depolarization/hyperpolarization of cell membrane may modulate Ca 2+  infl ux in 
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plant cells (White and Broadley  2003 ). Rutschmann et al. ( 2002 ) observed the 
apparent colocalization of the plasma membrane H + -ATPase and the tomato CDPK 
in vivo, suggesting a potential role in the regulation of H + -ATPase pump activity by 
Ca 2+ -induced CDPK. 

 Plasma membrane H +  – ATPase has been reported to play important role in plant 
innate immune responses. The early responses to the PAMP fl g22 treatment include 
dynamic regulation of the plasma membrane H +  – ATPases (Nuhse et al.  2007 ; 
Keinath et al.  2010 ). Perception of fl g22 by the PRR FLS2 results in rapid membrane 
depolarization and alkalinization of the apoplast, probably induced by inhibition of 
H +  – ATPases and activation of anion channels (Jeworutzki et al.  2010 ). Calcium 
infl ux at the plasma membrane occurs very rapidly after PAMP treatment and may 
contribute to plasma membrane H +  – ATPase regulation in plant cells during PAMP-
triggered immunity (Boller and Felix  2009 ; Kim et al.  2010 ). Stimulation of plasma 
membrane ATPase activity induces the accumulation of salicylic acid (SA) and the 
transcription of pathogenesis-related (PR) genes (Schaller and Oecking  1999 ). 
Stomatal closure is an immune response against bacterial pathogens. Bacterial 
PAMPs induce stomatal closure, which is dependent on both SA- and abscisic acid 
(ABA)-biosynthesis and associated signaling components (Melotto et al.  2006 ; 
Zhang et al.  2008 ; Zeng and He  2010 ). It has been reported that down- regulation of 
plasma membrane H +  – ATPase activity via ABA signaling system contributes to 
PAMP-induced stomatal closure (Melotto et al.  2006 ; Merlot et al.  2007 ; Liu et al. 
 2009 ; Elmore and Coaker  2011 ).  

4.7     Anion Channels in Ca 2+  Infl ux and Increase in [Ca 2+ ] cyt  

 Anion channels which mediate Cl −  and NO 3  −  effl ux (Barbier-Brygoo et al.  2000 ; 
Vidhyasekaran  2007 ) have been shown to be involved in defense signaling system. 
Perception of fl g22 by the PRR FLS2 results in activation of anion channels 
(Jeworutzki et al.  2010 ). Activation of NO 3  −  effl ux has been shown to be dependent 
on protein phosphorylation (Binet et al.  2001 ; Wendehenne et al.  2002 ). Protein 
kinases act as positive regulators, while phosphatases negatively control the chain 
of events leading to anion channel activity. Because of the outward-directed anion 
gradients across the plasma membrane, the anion channels drive passive effl uxes 
from the cytoplasm into the extracellular space (Wendehenne et al.  2002 ). Anion 
effl ux results in plasma membrane depolarization (Sanders et al.  2002 ). Membrane 
depolarization induces Ca 2+  infl ux across the plasma membrane (Thuleau et al. 
 1994 ). It has also been shown that Ca 2+  infl ux may activate anion channels and 
increases in cytoplasmic Ca 2+  activate anion channels (Ward et al.  1995 ; Marten 
et al.  2007 ; Suh et al.  2007 ). Cytoplasmic Ca 2+  elevation has been shown to result in 
activation of S-type anion channels via phosphorylation (Schmidt et al.  1995 ; Allen 
et al.  1999 ; Geiger et al.  2010 ). The activated anion channels further intensify Ca 2+  
infl ux which will pave the way for triggering Ca 2+ -mediated signaling system 
(Fig.  4.3 ).
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4.8        K +  Channels in Ca 2+  Infl ux 

 The major function of K +  channels is in regulation of membrane voltage control 
(Maathuis et al.  1997 ). The K +  channels play a role in regulating both the infl ux and 
effl ux of K +  from cells (Maathuis et al.  1997 ). Two types of K +  channels have been 
identifi ed, each with a characteristic voltage dependence, one opens in hyperpolar-
izing (inward rectifying K +  channel, K +  in ) and another opens at depolarizing 
(outward- rectifying K +  channel, K +  out ) conditions. Stimulation of H + -ATPase will 
hyperpolarize the membrane and direct the K +  gradient inward, while anion channel 
activation will depolarize the membrane and enhance the activity of K +  out  channel 
activity (Maathuis et al.  1997 ). 

 Membrane depolarization (White  2000 ) or hyperpolarization (Pei et al.  2000 ) 
triggers Ca 2+  channel activation as part of the Ca 2+  signaling system. K +  channels 
regulate both depolarization and hyperpolarization of cell membrane (Maathuis 
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  Fig. 4.3    Role of anion channels in induction of Ca 2+  infl ux by PAMPs       
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et al.  1997 ) and hence K +  channels play important role in modulation of Ca 2+  signaling 
system. Excessive hyperpolarization or depolarization may result in membrane 
damage and affect signal transduction (Maathuis et al.  1997 ). When excessive 
hyperpolarization occurs, K +  in  channels exhibit a strongly increasing tendency to 
open and K +  uptake through these channels prevents the membrane voltage from 
becoming too negative. When signals induce rapid and excess membrane depolar-
ization, K +  out  channels will open, and the resulting effl ux of K +  will tend to limit the 
extent of the depolarization. In this way, K +  channels will modulate the membrane 
potential and thereby activate Ca 2+  signaling system.  

4.9     K + /H +  Exchange Response in Ca 2+  Signaling System 

 K + /H +  exchange response is an important component in the defense signaling  system 
(Orlandi et al.  1992 ). The elicitors have been shown to trigger apoplastic alkalini-
zation combined with cytosolic acidifi cation in plant cells (Sakano  2001 ; Felle et al. 
 2004 ). Transient shifts of intracellular and apoplastic pH have been reported to be 
essential steps in several signal transduction processes (Felle et al.  2004 ). NAD 
kinase is an important enzyme involved in Ca 2+  signaling and in ROS signaling 
systems. NAD kinase is activated over a pH range of 7.1–6.8. The cytosolic pH in 
unstimulated tobacco cells was 7.5, which changed to lower level after being stimu-
lated. At the acidic pH, NAD kinase was activated resulting in HR-related defense 
responses (Karita et al.  2004 ). 

 The enzyme H + /K + -ATPase is a proton pump which is responsible for the acidi-
fi cation of cytoplasm. The enzyme is a member of the P-type ATPase superfamily, a 
large family of related proteins that transport ions across cell membranes. As an ion 
pump, the H + /K + -ATPase is able to transport ions against a concentration gradient 
using energy derived from the hydrolysis of ATP. A phosphate group is transferred 
from adenosine triphosphate (ATP) to the H + /K + -ATPase during the transport cycle. 
This phosphate transfer powers a conformational change in the enzyme that helps 
drive ion transport. The enzyme transports one H +  in exchange of one K +  (Kuhlbrandt 
 2004 ). The K + /H +  exchange response may be mediated by Ca 2+  infl ux (Atkinson 
et al.  1990 ). The Ca 2+ -dependent protein kinase, activated by increased cytosolic 
Ca 2+ , may evoke ion fl uxes that lead to extracellular alkalinization and depolarization 
of the plasma membrane (Schaller and Oecking  1999 ).  

4.10     PAMPs and DAMPs May Trigger Calcium Ion  
Infl ux/Effl ux Through Different Ca 2+  Channels 

 It has been shown that DND1 (a cyclic nucleotide-gated ion channel, CNGC) is 
important for cytosolic Ca 2+  elevation in response to bacterial PAMP lipopoly-
saccharides (LPS) and the damage-associated molecular pattern (DAMP)/
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host- associated molecular pattern (HAMP)/endogenous elicitor  Arabidopsis  Pep 
peptides (Ma et al.  2009a ,  b ; Qi et al.  2010 ). However, DND1 is not required for 
fl g22 and elf18 activation of Ca 2+  signaling (Jeworutzki et al.  2010 ). Early signaling 
through the  Arabidopsis  PRRs FLS2 and EFR has been shown to involve calcium 
ion- associated opening of plasma membrane anion channels (Jeworutzki et al. 
 2010 ). Glu-receptor-like-type Ca 2+  channels are involved in cryptogein- and fl g22- 
triggered immune responses (Kwaaitaal et al.  2011 ; Michard et al.  2011 ; Vatsa et al. 
 2011 ). The fl g22/FLS2 signaling show greater requirement for intracellular Ca 2+  
stores and inositol phosphate signaling, whereas Pep/PEPR signaling requires 
extracellular Ca 2+  to activate the Ca 2+  signaling system (Ma et al.  2012 ). Ca 2+  
 signaling by the  Arabidopsis thaliana  Pep peptides depends on CGMP-activated 
Ca 2+  channels (Qi et al.  2010 ). These results show the requirement of different Ca 2+  
channels for the different PAMPs to activate Ca 2+  signaling system and innate 
immune responses.  

4.11     Induction of Increases in Concentration, Oscillations 
and Waves in Cytoplasmic Calcium Ion ([Ca 2+ ] cyt ) 

 Various elicitors have been shown to induce biphasic [Ca 2+ ] cyt  perturbations in plant 
cells These elicitors elicit an immediate transient increase in [Ca 2+ ] cyt  in plant cells, 
which is followed by a more prolonged elevation of [Ca 2+ ] cyt  lasting many minutes 
or hours (Lecourieux et al.  2002 ). The sustained increase in [Ca 2+ ] cyt  alone is corre-
lated with the induction of defense responses (Cessna and Low  2001 ; Rudd and 
Franklin-Tong  2001 ; Lecourieux et al.  2002 ). The elicitor-induced [Ca 2+ ] cyt  eleva-
tions predominantly result from a continuous Ca 2+  infl ux through the plasma 
membrane (Hu et al.  2004 ; Vandelle et al.  2006 ). 

 The cytoplasmic Ca 2+  spikes (oscillations and waves) result from two opposing 
reactions, Ca 2+  infl ux through channels and Ca 2+  effl ux through pumps and transport 
systems (Hwang et al.  2000a ,  b ). Different messages can be encoded by changing a 
Ca 2+  spike’s magnitude, duration, location, or frequency (Sanders et al.  1999 ; 
McAinsh and Pittman  2009 ). Ca 2+  signal is presented by the concentration of Ca 2+  
(Trewavas and Malho  1998 ; Trewavas  1999 ). PAMPs/elicitors may activate Ca 2+  
infl ux and the different signals may induce different Ca 2+  concentrations in the cyto-
sol. The different concentrations of Ca 2+  may activate different Ca 2+ -induced pro-
teins (Karita et al.  2004 ). 

 The changes in [Ca 2+ ] cyt  concentrations are monitored by the Ca 2+  sensors, such 
as calmodulins. Varying concentration of [Ca 2+ ] cyt  may differentially regulate the 
calmodulin (CaM)-stimulated expression of CaM-binding proteins. Three types of 
tobacco CaM isoforms have been reported in tobacco. Type I CaM induced NAD 
kinase at 1–5 μM, which is the increased Ca 2+  concentration in stimulated cells. 
Type II CaM activated NAD kinase at lower Ca 2+  concentration of around 0.1 μM, 
which is the cytosolic concentration in unstimulated cells. The type II CaM is 
expressed constitutively and remained unchanged after external stimuli application. 
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Type III CaM did not induce NAD kinase at any Ca 2+  level (Karita et al.  2004 ). Ca 2+  
spike frequency optimizes gene expression (Li et al.  1998 ). Calcium oscillations 
increase the effi ciency and specifi city of gene expression (Dolmetsch et al.  1998 ). 
A combination of changes in all Ca 2+  parameters produced by a particular signal 
determines Ca 2+  signature (Luan et al.  2002 ).  

4.12     Ca 2+  Sensors in Ca 2+  Signal Transduction 

 The calcium signature is perceived by different Ca 2+ -binding proteins (Kudla et al. 
 2010 ). These intracellular Ca 2+ -binding proteins are also known as Ca 2+  sensors. 
The changes in [Ca 2+ ] cyt  concentrations are monitored by the Ca 2+  sensors and the 
Ca 2+  signals are subsequently decoded and propagated downstream to activate plant 
defense responses. Ca 2+  signaling pathways are composed of molecular relays; the 
fi rst runner after Ca 2+  is Ca 2+  “sensor”, which monitors temporal and spatial changes 
in Ca 2+  concentrations. Several Ca 2+  sensors have been identifi ed in plants (Fig.  4.4 ). 
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  Fig. 4.4    Calcium-binding proteins as calcium sensors       
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These include calmodulin (CaM) and CaM-related proteins, which typically 
contain four elongation factor (EF)-hand domains for Ca 2+  binding (Snedden and 
Fromm  2001 ). Calcineurin B-like (CBL) proteins detected in  Arabidopsis  are 
another family of Ca 2+  sensors (Luan et al.  2002 ). Another class of calcium binding 
proteins is Ca 2+ -dependent and calmodulin-independent protein kinases (CDPKs). 
Ca 2+ -dependent protein kinases have protein kinase and calmodulin-like Ca 2+ -
binding domains in a single protein, which allows their direct activation by Ca 2+  
(Hrabak et al.  2003 ). The CDPK proteins function both as Ca 2+  sensors and as 
effectors of their Ca 2+ -sensing activity (Luan et al.  2002 ; Geiger et al.  2010 ). CDPKs 
contain a C-terminal calmodulin-like regulatory domain that functions to couple 
the calcium sensor (calmodulin-like domain) directly to its responder (kinase) 
(Luan et al.  2002 ).

4.13        Calmodulins as Ca 2+  Sensors 

 Calmodulin (CaM) is one of the best characterized Ca 2+  sensors. CaM has no 
 catalytic activity of its own, but upon binding Ca 2+ , it activates numerous target 
proteins involved in a variety of cellular processes (Snedden and Fromm  2001 ; 
Reddy et al.  2011a ). CaMs contain an autoinhibitory domain that occludes the 
active site in the resting state. Ca 2+  binds to a site near or overlapping the autoin-
hibitory domain, thereby releasing it from the active site and activating the protein 
(Luan et al.  2002 ). 

 Calmodulin genes are activated during pathogenesis and transcription of these 
genes occurs within a few minutes of pathogen invasion. Transcription of calmodu-
lin isoform 4 ( GmCaM4 ) is rapidly induced within 30 min after pathogen 
( Pseudomonas syringae  pv.  glycinea ) stimulation in soybean (Park et al.  2007 ). Two 
zing fi nger homeodomain transcription factors, GmZF-HD1 and GmZF-HD2 
 proteins have been shown to activate the  GmCaM4  gene expression in response 
to the bacterial pathogen. The pathogen induced binding of GmZF-HD1 and 
GmZF-HD2 to repeats of ATTA homeodomain binding site in the  GMCaM4  
promoter (Park et al.  2007 ). 

 CaM contains two structurally similar domains connected by a fl exible central 
linker. Each domain of the protein binds two calcium ions with positive cooperativ-
ity. The binding of Ca 2+  transforms the protein into its active form through a reori-
entation of the existing helices of the protein (Zhang and Yuan  1998 ). CaM typically 
contains four elongation factor (EF)-hand domains for Ca 2+  binding (Snedden and 
Fromm  2001 ). The ‘EF hand’ is a helix-loop-helix structure. CaM is an acidic 
EF-hand protein and is composed of 148 amino acids arranged in two globular 
domains connected with a long fl exible helix. Each globular domain contains a pair 
of intimately linked EF hand (Snedden and Fromm  2001 ; Rainaldi et al.  2007 ). 
Ca 2+ -free CaM exhibits a fl at, hydrophilic molecular surface, while the Ca 2+ -
saturated form of the protein contains a Met-rich cavity containing hydrophobic 
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surface in each domain. These hydrophobic surfaces are largely responsible for the 
binding of CaM to its targets. The unique fl exibility and high polarizability of the 
Met residues located at the entrance of each hydrophobic pocket together with other 
hydrophobic amino acid residues create adjustable, sticky interaction surface areas 
that can accommodate CaM targets, which have various sizes and shapes (Zhang 
and Yuan  1998 ). The binding of calcium to calmodulin induces a conformational 
change that exposes hydrophobic binding sites that interact with target proteins, 
altering the activity of those proteins (Harmon  2003 ). 

 Plant cells contain multiple CaM isoforms with varying degrees of sequence 
homology to the single CaM reported in mammals. Several  CaM  genes have been 
isolated from plants (Lee et al.  1995 ,  1999 ; Heo et al.  1999 ; Kim et al.  2009 ). 
Thirteen CaM genes have been detected in tobacco (Takabatake et al.  2007 ). In 
soybean fi ve CaM isoforms with varying degrees of sequence homology to the 
 single mammalian CaM have been identifi ed (Lee et al.  1995 ). Not all, but specifi c 
CaM genes are involved in defense signaling. The tobacco CaM gene,  NtCaM13 , 
was found to induce resistance against the bacterial pathogen  Ralstonia sola-
nacearum , the fungal pathogen  Rhizoctonia solani , the oomycete pathogen  Pythium 
aphanidermatum , and not against  Tobacco mosaic virus  in tobacco, while  NtCaM1  
did not have any role in inducing resistance against the pathogens (Takabatake et al. 
 2007 ). The CaM isoforms have different expression patterns in various plant tissue 
types, suggesting that they play unique roles in the many different Ca 2+  signaling 
pathways of plants (Lee et al.  1995 ,  1999 ; Cho et al.  1998 ; Takabatake et al.  2007 ). 

 Elicitors activate CaM isoforms which participate in Ca 2+ -mediated induction of 
defense response (Heo et al.  1999 ). Upon increase of Ca 2+  to submicromolar levels, 
all CaM molecules are activated. Full activation of the CaM occurs in a narrow 
region of calcium concentration during a signaling event (Luan et al.  2002 ). 
Induction of CaM genes,  SCaM-4  and  SCaM-5  genes in soybean depended on the 
increase of intracellular Ca 2+  level (Heo et al.  1999 ). The constitutive expression of 
these soybeans genes in transgenic tobacco plants constitutively expressed genes 
encoding PR-1a, PR-1b, PR2, PR3, PR4, PR5, class III acidic chitinase and class III 
basic chitinase (Heo et al.  1999 ). The expression of tobacco NtCaM13, which is 
closely related to SCaM4 and SCaM5, was elevated both at the RNA and protein 
level in TMV-infected leaves (Yamakawa et al.  2001 ). 

 Ca 2+ -CaM binds and regulates the activity of a wide range of proteins. Three 
types of tobacco calmodulin (CaM) isoforms originated from 13 genes. These CaMs 
differentially activate target enzymes. Plant NAD kinase was activated most effec-
tively by type II (NtCaM3 – NtCaM12), moderately by type I (NtCaM1 and 
NtCaM2), and weakly by type III (NtCaM13) CaMs. By contrast, NO synthase was 
activated most effectively by type III, moderately by I, and weakly by type II CaMs 
(Karita et al.  2004 ). In soybean, SCaM-4 activates cyclic nucleotide phosphodies-
terase while it is unable to activate the CaM-dependent NAD kinase (Lee et al. 
 1995 ). By contrast, SCaM-1 activates NAD kinase (Lee et al.  1997 ). SCaM-1 
 activates the protein phosphatase calcineurin, while SCaM-4 antagonizes its activa-
tion (Cho et al.  1998 ).  
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4.14     Calmodulin-Binding Proteins 

4.14.1     Function of Calmodulin-Binding Proteins 
in Different Signaling Systems 

 Calmodulin (CaM) is a small (~150 residues), acidic protein comprised of a fl exi-
ble central helical region which joins two globular domains, each with two Ca 2+ -
binding EF-hand motifs (Gilford et al.  2007 ). Upon binding to Ca 2+ , the hydrophobic 
surfaces in each globular domain are exposed which then interact with the charac-
teristic amphiphilic structure, called calmodulin-binding domain (CBD), present in 
calmodulin-binding proteins (CBPs) (Reddy  2001 ; Snedden and Fromm  2001 ; 
Reddy et al.  2002a ,  b ). This interaction leads to conformational changes in CBPs 
and modulation of their activity. The specifi city of a response evoked due to 
 characteristic Ca 2+  signature may depend upon the expression kinetics of CBPs 
(Ali et al.  2003 ). 

 CaM binds to a variety of proteins involved in various signaling systems 
(Fig.  4.5 ). These include proteins involved in pathogen-associated molecular  pattern 
(PAMP) – receptor mediated signaling pathway (receptor-like kinases), Ca 2+  signal-
ing system (CNG ion channels; Ca 2+ -ATPases, Ca 2+ -CaM-dependent kinases), reactive 
oxygen species (ROS) signaling system (NAD kinase,  BAG  gene), redox signaling 
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system (catalase), nitric oxide (NO) signaling system (NO synthase [NOS]), mito-
gen-activated protein kinase (MAPK) cascade (MAPK phosphatases), transcription 
factors (OsCBTs, WRKY7, MYB2, TGA3, CAMTAs, ethylene- responsive genes-
encoded proteins), glucosinolate metabolism (nuclear factors), and MLO proteins 
(receptor-like protein/modulator of defense response).

4.14.2        CaM Binds to CNG Channel Protein 

 Cyclic nucleotide-gated ion channels (CNGCs) are involved in Ca 2+ -dependent sig-
naling pathways (Talke et al.  2003 ; Yoshioka et al.  2006 ). These channels have been 
found to be CaM-binding proteins. CNGCs have a CaM-binding domain near the 
C-terminus suggesting a role for CaM in modulating the activity of these channels 
(Leng et al.  1999 ). Calmodulin binding has been demonstrated for the  Arabidopsis  
CNGC proteins AtCNGC1, AtCNGC2, and AtCNGC10 (Kohler et al.  1999 ; Kohler 
and Neuhaus  2000 ; Borsics et al.  2007 ).  Arabidopsis DND1  codes for a cyclic nucle-
otide-gated channel 2 (AtCNGC2) involved in plant defense responses (Clough et al. 
 2000 ). In bean, three CNGC isoforms (PvCNGC-A, PvCNGC-B, and PvCNGC-C) 
have been shown to be involved in defense responses. These proteins bound CaM in 
a Ca 2+ -dependent manner. Expression of an isoform of CNGCs, PvCNGC was 
induced, whereas the expression of two other isoforms PvCNGC –B and PvCNGC-C 
was repressed in response to incompatible pathogens in bean. It suggests that there 
may be functionally distinct role for each CNGC in plants (Ali et al.  2003 ). CNGCs 
constitute a link between cyclic nucleotide and Ca 2+  signals (Talke et al.  2003 ). High-
affi nity CaM-binding site in tobacco plasma-membrane channel protein coincides 
with cyclic nucleotide-binding domains (Arazi et al.  2000 ).  

4.14.3     Ca 2+ -ATPases as CaM-Binding Proteins 

 Ca 2+ -ATPases are localized in the endomembranes or plasma membrane. They play an 
important role in removing Ca 2+  from the cytoplasm to terminate a signaling event (Sze 
et al.  2000 ; McAinsh and Pittman  2009 ). Among the Ca 2+ -ATPases in plants, type IIB 
Ca 2+ -ATPases are involved in Ca 2+  signaling. These ATPases bind with calmodulin acti-
vated by Ca 2+ . Ca 2+ -CaM interacts with type IIB ATPases to activate the pump by 
releasing an autoinhibitory domain from the active site (Luan et al.  2002 ).  

4.14.4     Protein Kinases as CAM-Binding Proteins 

 Some protein kinases are regulated by CaMs. A chimeric plant Ca 2+ -CaM-dependent 
protein kinase, CCaMK, with a visinin-like Ca 2+  binding domain and a CaM 
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binding domain in one molecule has been identifi ed in lily ( Lilium longifl orum ) 
plants (Patil et al.  1995 ). The predicted structure of CCaMK contains a catalytic 
domain followed by two regulatory domains, a calmodulin-binding domain and a 
visinin- like Ca 2+ -binding domain. The calmodulin-binding region contains three 
Ca 2+ -binding EF-hand motifs and a biotin-binding site (Patil et al.  1995 ). Although 
Ca 2+  can regulate the kinase activity via a visinin-like domain, Ca 2+ -CaM enhances 
the kinase activity toward a substrate and inhibits its autophosphorylation activity, 
suggesting that Ca 2+ -CaM may regulate substrate specifi city in vivo (Takezawa 
et al.  1996 ). CCaMK homologs have been detected in tobacco, apple, maize, and 
 Arabidopsis  (Patil et al.  1995 ; Watillon et al.  1995 ; Lu and Feldman  1997 ).  

4.14.5     Receptor-Like Kinases as CaM-Binding Proteins 

 Some receptor-like kinases (RLKs) have been identifi ed as CaM-binding proteins 
(Charpenteau et al.  2004 ). A CaM-binding protein, AtCaMRLK, has been identifi ed 
as a RLK in  A. thaliana . AtCaMRLK polypeptide shows a sequence characteristic 
of receptor kinases: an amino terminal signal sequence, a domain containing seven 
leucine-rich repeats, a single putative membrane-spanning segment and a protein 
kinase domain. A region of 23 amino acids, located near the kinase domain binds 
CaM in a calcium-dependent manner. The CaM-binding motif of AtCaMRLK was 
found to be conserved in several other members of the plant RLK family, suggesting 
a role for Ca 2+ /CaM in the regulation of RLK-mediated pathways (Charpenteau 
et al.  2004 ). Several RLKs are known to be involved in plant defense responses 
(Navarro et al.  2004 ; Zipfel et al.  2004 ; Benschop et al.  2007 ).  

4.14.6     NAD Kinase as CaM-Binding Protein 

 NAD kinase is the enzyme involved in elevation of NADPH levels in plant cells 
and it has been found to be a calmodulin-binding protein (Harding et al.  1997 ). 
NADPH oxidase triggers ROS production. The calcium-binding protein calmodu-
lin is involved in generation of ROS. Transgenic tobacco plants expressing a for-
eign calmodulin gene showed enhanced NADPH oxidase – dependent production 
of ROS (Harding et al.  1997 ; Harding and Roberts  1998 ). NADPH levels were 
elevated rapidly through the activation of NAD kinase in the stimulated tobacco 
cells. Elicitor treatment also induced burst of ROS in transgenic tobacco cell cul-
tures. Higher levels of NADPH in transgenic calmodulin cells led to a more rapid 
and intense burst of ROS, suggesting the involvement of an NADPH oxidase in 
the CaM-induced ROS production (Harding et al.  1997 ). These studies suggest 
that the calmodulin-binding protein NAD kinase is involved in triggering ROS 
generation which plays an important role in triggering plant immune responses 
(Fig.  4.6 ).
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4.14.7        Catalases as CaM-Binding Proteins 

 CaM binds to and activates some plant catalases in the presence of calcium. Ca 2+ /
CaM may down-regulate H 2 O 2  levels in plants by stimulating the catalytic activity 
of plant catalase. The results suggest that calcium has dual functions in regulating 
H 2 O 2  homeostasis, which in turn infl uences redox signaling in plants (Yang and 
Poovaiah  2002b ). Redox signaling system has been reported to be involved in plant 
defense response against pathogens (Önnerud et al.  2002 ; Cumming et al.  2004 ; 
Fobert and Després  2005 ; Fedoroff  2006 ).  
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4.14.8     NO Synthase as CaM-Binding Protein 

 In  Arabidopsis , a NO synthase (NOS) protein contains CaM-binding motifs and full 
activation of the enzyme needs both Ca 2+  and CaM (Guo et al.  2003 ; Zeidler et al. 
 2004 ). NO synthesis is tightly regulated by a signaling cascade involving Ca 2+  infl ux 
in elicitor-treated tobacco cells (Lamotte et al.  2004 ). NOS is involved in NO pro-
duction, which is stimulated by CaM and changes in [Ca 2+ ]cyt (Guo et al.  2003 ).  

4.14.9     MAPK Phosphatase as a CaM-Binding Protein 

 Mitogen-activated protein kinase (MAPK) cascade is an important signaling 
 cascade involved in defense response (Mészáros et al.  2006 ; Dόczi et al.  2007 ; Hall 
et al.  2007 ). The activity of MAPKs is strictly regulated via phosphorylation of the 
conserved T X Y motif, which is accomplished by a corresponding MAPK kinase. 
After activation, the dephosphorylation and inactivation of MAPK is performed by 
MAPK phosphatases (Theodosiou and Ashworth  2002 ; Yamakawa et al.  2003 ; 
Katou et al.  2005 ). A putative MAPK phosphatase in  Nicotiana tabacum  (NtMKP1) 
has been identifi ed as a CaM-binding protein (Yamakawa et al.  2003 ). In the pres-
ence of free Ca 2+ , NtMKP1 binds to CaMs. The CaM-binding domain was identifi ed 
as a 52-amino acid sequence between the conserved gelsolin and Serrich domain in 
the middle of the NtMKP1 protein (Rainaldi et al.  2007 ). A rice MAPK phospha-
tase, OsMKP1, has been shown to bind calmodulin (Katou et al.  2007 ). These 
results suggest an interaction between Ca 2+ -CaM and a component of the MAPK 
signaling cascade in plants.  

4.14.10     Calmodulin Binding Transcription Activators 
(CAMTAs) 

 One family of CaM-binding proteins, designated as the calmodulin-binding tran-
scription activator (CAMTA) family resembles a group of putative transcription 
activators identifi ed in the human genome (Bouché et al.  2002 ; Galon et al.  2010a , 
 b ). The C-terminal CaM binding domain of CAMTAs mediates interactions with 
calmodulin (Kudla et al.  2010 ). The CAMTA family of proteins contains a tran-
scription activation domain and two types of DNA-binding domains designated 
the CG1 domain and the transcription factor immunoglobulin domain, ankyrin 
repeats, and a varying number of IQ CaM-binding motifs (Bouché et al.  2002 ). 
 Arabidopsis thaliana  contains six  CAMTA  genes ( AtCAMTA1  –  AtCAMTA6 ). 
CAMTAs comprise a conserved family of transcription factors (Bouché et al. 
 2002 ). AtCAMTA homologue is found in rapeseed (BnCAMTA) (Zegzouti et al. 
 1999 ; Bouché et al.  2002 ). 
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 Finkler et al. ( 2007 ) found that the Ca 2+ /CaM-responsive CAMTAs bind to the 
ABA-responsive ABRE  cis  elements in  Arabidopsis , suggesting a link between 
Ca 2+ -responsive transcription factors and ABA-responsive  cis -elements. CAMTA3 
directly interacts with the promoter of the  EDS1  gene, a regulator of salicylic acid 
levels, and represses its expression (Du et al.  2009 ). Ca 2+ /calmodulin binding to 
CAMTA3 is required for the suppression of plant defense, indicating a direct role of 
Ca 2+ /calmodulin in regulating the function of CAMTA3 (Du et al.  2009 ).  

4.14.11     Calmodulin-Binding OsCBT, NtER1, and AtSR1 
Transcription Factors 

 Some transcription factors of the basic helix-loop-helix family were shown to bind 
calmodulin (Onions et al.  2000 ). A CaM-binding transcription factor, OsCBT 
( O  ryza   s  ativa   C aM- b inding  t ranscription factor), has been isolated from rice (Choi 
et al.  2005 ). It contains a CG-1 homology DNA binding domain, three ankyrin 
repeats, a putative transcriptional activation domain, and fi ve putative CaM-binding 
motifs (Choi et al.  2005 ). OsCBT has two different types of functional CaM-binding 
domains, an IQ motif, and a Ca 2+ -dependent motif (Choi et al.  2005 ). 

 Some ethylene-responsive genes-encoded proteins in tobacco, tomato, rapeseed, 
 Arabidopsis  have structural similarity to the rice CaM-binding transcription factor, 
OsCBT (Choi et al.  2005 ). The tobacco early ethylene-responsive gene  NtER1  encodes 
a CaM-binding protein (Yang and Poovaiah  2000 ). One  NtER1  homolog ( AtSR1 ) and 
fi ve related genes ( AtSR2-6 ) have been identifi ed in  Arabidopsis  and they are desig-
nated as  AtSR  (for  A  rabidopsis   t  haliana   S  ignal   R  esponsive ) genes (Yang and Poovaiah 
 2002a ). These six genes exhibit rapid and differential response to signal elicitors such 
as ethylene, jasmonate (JA), salicylic acid, ABA, and H 2 O 2 . Ca 2+ /CaM binds to a 
23-mer peptide in all AtSRs that corresponds to the CaM- binding region of NtER1. 
Each AtSR has a conserved structural feature with a DNA-binding domain in the N 
terminus and a CaM-binding domain in the C terminus. AtSR1 targets the nucleus and 
specifi cally recognizes a novel 6-bp CGCG box (A/C/G) CGCG (G/T/C). The multi-
ple CGCG  cis -elements are found in promoters of various genes involved in ET- and 
ABA signaling systems. The results suggest that AtSR may interact with ET and ABA 
signaling systems (Yang and Poovaiah  2002a ).  

4.14.12     Calmodulin-Binding WRKY Transcription Factors 

 WRKY proteins constitute a large class of transcription factors. More than 70 
WRKY genes have been reported in  Arabidopsis  (Eulgem et al.  2000 ; Robatzek and 
Somssich  2001 ; Dong et al.  2003 ; Bhattarai et al.  2010 ). About 109 WRKY genes 
have been identifi ed in rice (Qu and Zhu  2006 ; Liu et al.  2005 ,  2007 ; Qiu et al.  2007 ). 
The WRKY transcription factor family is defi ned by a domain of 60 amino acids, 
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which contains the amino acid sequence WRKY (tryptophan-arginine-lysine- tyrosine) 
at its amino-terminal end and a putative zinc fi nger motif at its carboxy- terminal 
end. Most of the WRKY proteins contain one WRKY domain, while some of the 
WRKY proteins have two WRKY domains (Eulgem et al.  2000 ; Maeo et al.  2001 ; 
Zheng et al.  2006 ). WRKYs are subdivided into three subgroups (Eulgem et al. 
 2000 ). Members of group I have two WRKY domains, whereas members of groups 
II and III have one WRKY domain. Group III domains contain a Cx 7 CX 23 HXC pat-
tern of zinc ligands which is distinct from the Cx 4–5 CX 22–23 HXH zinc fi nger  pattern 
of group I and group II WRKY domains (Maeo et al.  2001 ; Knoth et al.  2007 ). 
Members of the  Arabidopsis  WRKY group III transcription factors are part of 
 different plant defense signaling pathways (Kalde et al.  2003 ) 

 WRKY is localized to the nucleus of plant cells and recognizes DNA molecules 
containing the  TTGACC  W-box sequence (Zheng et al.  2006 ). The WRKY domain 
binds specifi cally to various W box elements containing a (C/T)TGAC(C/T) core 
sequence. The promoters of a large number of defense-related genes contain W-box 
sequences that are recognized by WRKY proteins and the WRKY transcription factors 
have been shown to be necessary for the inducible expression of these defense genes 
(Eulgem et al.  1999 ,  2000 ; Yu et al.  2001 ; Shimono et al.  2007 ; van Verk et al.  2008 ). 
Several WRKY transcription factors have been shown to be involved in activation 
of SA biosynthesis genes in plant immune responses (van Verk et al.  2011 ). 

 CaM binds to the Ca 2+ -dependent CaM-binding domain of several WRKY tran-
scription factors. CaM binds specifi cally to the Ca 2+ -dependent CaM-binding 
domain of AtWRKY7 transcription factor (Park et al.  2005 ). WRKY7 is a member 
of the WRKYIId subfamily, and all members of this subfamily including WRKY11, 
WRKY15, WRKY17, WRKY21, WRKY39, and WRKY74 were found to interact 
with Ca 2+ /CaM (Park et al.  2005 ). Other WRKYs, WRKY43, WRKY45, WRKY50, 
and WRKY 53, have been shown to interact with different isoforms of CaM in a 
Ca 2+ -dependent manner (Popescu et al.  2007 ). 

 The defense signal salicylic acid induces expression of  WRKY7  gene, suggesting 
that the  WRKY  gene is involved in plant’s defense response. The transcription factor 
WRKY7 negatively regulates the expression of defense-related genes in  Arabidopsis  
(Kim et al.  2006 ). The CaM binding transcription factors WRKY11 and WRKY17 
act as negative regulators of basal resistance in  Arabidopsis thaliana  (Journot- 
Catalino et al.  2006 ). Another transcription factor interacting with CAM is 
WRKY45, which is involved in triggering plant defense responses. Transgenic rice 
plants overexpressing the transcription factor  WRKY45  showed enhanced resistance 
to the blast pathogen  Magnaporthe oryzae  (Shimono et al.  2007 ). All these WRKYs 
are CaM binding proteins.  

4.14.13     Calmodulin-Binding MYB Transcription Factors 

 Several  MYB  transcription factor genes are found in plants. They are characterized by 
the presence of a highly conserved MYB domain at their N-termini (Du et al.  2009 ). 
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MYB transcription factors contain one or more MYB domains (Stracke et al.  2001 ). 
MYB proteins are classifi ed into subfamilies depending on the number of conserved 
repeats of the MYB domain they contain (Mengiste et al.  2003 ). A common feature 
of MYB proteins is the presence of a functional DNA binding domain that typically 
consists of one to three repeats of the MYB domain. The three MYB repeats are 
referred to as R1, R2, and R3. Each repeat is about 50–53 amino acids long and 
encodes three α-helices, with the second and third helices forming a helix-turn- helix 
structure which intercalates in the major groove of DNA when bound to it. MYB 
repeats typically contain regularly spaced tryptophan residues, which build a central 
tryptophan cluster in the three-dimensional helix-turn-helix fold (Du et al.  2009 ). 
MYB transcription factors bind to the  cis -regulatory element such as MYB boxes 
(Laquitaine et al.  2006 ). 

 The R2R3-MYB subfamily of transcription factors is the most common in 
plants (Stracke et al.  2001 ). A soybean CaM, Gm-Cam4, has been reported to 
mediate Ca 2+  signaling response by activating an R2R3-MYB2 transcription fac-
tor (Yoo et al.  2005 ). A grapevine R2R3-MYB transcription factor gene,  VvMYB5a , 
induces the expression of genes controlling the biosynthesis of defense-related 
phenylpropanoids (Deluc et al.  2006 ). The Arabidopsis  BOS1  ( BOTRYTIS 
SUSCEPTIBLE 1 ) gene, which encodes a R2R3-MYB transcription factor, 
induces disease resistance against  P. syringae  and disruption of the gene enhances 
disease symptom development after infection by  P. syringae  (Mengiste et al. 
 2003 ). A R2R3-MYB-like  transcription factor, MYB72, has been shown to be 
involved in triggering defense responses against broad-spectrum of pathogens in 
 Arabidopsis thaliana  (Van der Ent et al.  2008 ).  Arabidopsis  MYB2 has been 
reported to function as transcriptional activator in abscisic acid signaling (Abe 
et al.  2003 ). Several members of the MYB class of transcription factors have been 
shown to bind Ca 2+ /CaM (Popescu et al.  2007 ). Direct interaction of a CaM iso-
form with the transcription factor MYB2 has been reported in  Arabidopsis  
(Yoo et al.  2005 ).  

4.14.14     Calmodulin-Binding TGA Transcription Factors 

 The basic leucine zipper (bZIP) proteins belong to a large family of transcription 
factors. The bZIP family transcription factors contain a basic region for binding 
DNA and a leucine zipper dimerization domain (Jakoby et al.  2002 ). These proteins 
have a conserved region rich in basic amino acid residues that binds to the target 
DNA and contains nuclear localization signals (NLSs) and dimerization or multi-
merization domains. A leucine zipper region, which consists of several heptad 
repeats of hydrophobic residues, is found close to the basic region. The leucine 
 zipper region is alpha-helical and prone to dimer formation via a coiled-coil arrange-
ment (Kuhlmann et al.  2003 ; Meng et al.  2005 ). 

 The TGA class of transcription factors is the important group of bZIP transcrip-
tion factors involved in defense signaling. Members of the TGA family of 
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transcription factors bind tandem repeats of a  cis -element within the promoters 
called activation sequence-1 ( as-1 ), which contains a TGACG motif (Lebel et al. 
 1998 ; Després et al.  2000 ). Several TGA transcription factors have been shown to 
regulate expression of defense-related genes (Kesarwani et al.  2007 ). This family of 
transcription factors recognizes the TGACG/ as-1  elements found in the promoters 
of a variety of plant genes, including those regulating the expression of  Arabidopsis  
and tobacco  PR-1  and the  Caulifl ower mosaic virus  35S promoter (Lebel et al. 
 1998 ; Kim and Delaney  2002 ). The  as-1  elements are responsible for SA respon-
siveness of these promoters. SA treatment increases the TGACG/ as-1  binding activ-
ity. Thus, the TGA transcription factors may play an important role in SA signaling 
system (Zhou et al.  2000 ). Several SA-responsive genes are regulated by bZIP tran-
scription factors of TGA family (Ndamukong et al.  2007 ). Some of the bZIP tran-
scription factors, such as TGA2 and TGA5 in  Arabidopsis , interact with NPR1 and 
recognize the  as-1 cis  element found within the promoter of several  PR  genes (Kim 
and Delaney  2002 ). 

 Transgenic plants overexpressing different TGA transcription factor genes 
have been generated to develop disease resistant plants (Kim and Delaney  2002 ; 
Fitzgerald et al.  2005 ). Transgenic  Arabidopsis  plants containing sense or anti-
sense  TGA5  gene constructs were developed by Kim and Delaney ( 2002 ). None 
of the  TGA5  sense lines showed an apparent increase in  TGA5  transcript levels 
compared to wild-type plants, whereas the  TGA5 -antisense lines showed a large 
increase in  TGA5  transcript accumulation. Increased  TGA5  accumulation in anti-
sense lines may be due to negative autoregulation of the  TGA5  gene (Kim and 
Delaney  2002 ). The transgenic  TGA5 - antisense lines showed reduced induction 
of SA-mediated expression of  PR-1  gene by the oomycete pathogen 
 Hyaloperonospora parasitica . The transgenic antisense lines showed enhanced 
resistance to  H. parasitica  (Kim and Delaney  2002 ). The induced resistance by 
 TGA5  to the pathogen has been suggested to act independent of SA signaling 
system. 

 The rice TGA factor, rTGA2.1, has been shown to bind to defense gene promot-
ers (Chern et al.  2001 ). It binds to oligonucleotides containing the  as-1  like  elements 
from the  PR-1  gene promoter and to the promoter of the rice chitinase gene,  RCH10  
(Chern et al.  2001 ). It appears that  rTGA2.1  negatively regulates a subset of rice 
defense genes (Fitzgerald et al.  2005 ). Transgenic rice plants that have the endoge-
nous rTGA2.1 transcripts silenced via dsRNA-mediated silencing (Sl) were also 
generated. The loss of  rTGA2.1  activity in the Sl lines resulted in reduced disease 
symptom development (Fitzgerald et al.  2005 ). 

 Several TGA proteins have been shown as CaM-binding proteins. TGA3, a 
member of a family of basic leucine zipper (bZIP) transcription factors, has been 
identifi ed as a CaM binding protein that binds the promoter of CaM3 (Jakoby 
et al.  2002 ). Eighteen bZIP family members have been identifi ed as CaM binding 
 proteins in  Arabidopsis  (Popescu et al.  2007 ). An abscisic acid (ABA) – respon-
sive bZIP transcription factor, ABF2, has been shown to bind CaM (Popescu 
et al.  2007 ).  
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4.14.15     Calmodulin-Binding Homeodomain 
Transcription Factors 

 Homeodomain proteins in the homoeobox gene family play important roles as tran-
scription factors in plants (Williams  1998 ). Some of the homeodomain transcription 
factors have been shown to be involved in modulating plant immune responses 
(Park et al.  2007 ). An  Arabidopsis  homeodomain transcription factor, 
OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to 
infection by necrotrophic pathogens (Coego et al.  2005 ). The homeodomain tran-
scription factors have also been reported as calmodulin-binding proteins. In soy-
bean, transcription of calmodulin isoform 4 ( GmCaM4 ) is rapidly induced within 
30 min after pathogen stimulation. The GmCaM4 promoter contains two repeats of 
conserved homeodomain binding site, ATTA (Park et al.  2007 ). Two proteins, 
GmZF-HD1 and GmZF-HD2, belonging to the zinc fi nger homeodomain (ZF-HD) 
transcription factor family have been detected in soybean. These transcription fac-
tors bind to the two repeats of ATTA homeodomain binding site in the calmodulin 
GmCaM4. This binding was induced in response to the pathogen. Regulation of 
GmCaM4 gene by the GMZF-HD transcription factors may be a signifi cant compo-
nent of the plant defense-signaling pathway (Park et al.  2007 ).  

4.14.16     CaM-Binding Protein Involved in Glucosinolate 
Metabolism 

 A nuclear protein, IQ-DOMAIN1 (IQD1), is a CaM-binding protein and integrates 
intracellular Ca 2+  signals towards stimulation of glucosinolate accumulation and 
plant defense (Levy et al.  2005 ).  IQD1  encodes a novel protein that contains puta-
tive nuclear localization signals and several motifs known to mediate calmodulin 
binding, which are arranged in a plant-specifi c segment of 67 amino acids, called 
the IQ67 domain. IQD1 protein is targeted to the cell nucleus and binds to calmodu-
lin in a Ca 2+ -dependent fashion. IQD1 affects expression of multiple genes with 
roles in glucosinolate metabolism. It is suggested that IQD1 is a nuclear factor that 
integrates intracellular Ca 2+  signals to fi ne-tune glucosinolate accumulation in 
response to pathogens (Levy et al.  2005 ).  

4.14.17     CaM Binds with MLO Protein to Regulate 
Defense Response 

 CaM binds with MLO protein, which exhibits a dual role as docking molecule and 
defense modulator for the powdery mildew pathogen (Panstruga and Schulze-Lefert 
 2005 ). MLO has been detected in  Arabidopsis , barley, and rice (Kim et al.  2002a ,  b ; 
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Opalski et al.  2005 ; Panstruga  2005 ). MLO protein resides in the plasma membrane 
and has seven transmembrane domains. MLO interacts constitutively with the 
 cytoplasmic calcium sensor calmodulin (Panstruga  2005 ). A 20-amino acid CaM- 
binding domain has been located in the rice OsMLO C-terminal cytoplasmic tail 
(Kim et al.  2002a ). Loss of calmodulin binding halves the ability of MLO to nega-
tively regulate defense against powdery mildew (Kim et al.  2002b ). The result sug-
gests that MLO is a CAM-binding protein involved in the modulation of defense 
reactions.  

4.14.18     CaM-Binding Protein Involved in HR-Associated 
Cell Death 

 A calmodulin-binding protein, AtBAG2, has been isolated from  Arabidopsis  (Kang 
et al.  2006a ,  b ). The CaM-binding protein contains a central BCL-2-associated 
athanogene (BAC) shown to be involved in programmed cell death involved in host 
defense response. Agents generating ROS induced the  AtBAG6  transcript, indicating 
relationship between CaM and ROS signaling (Kang et al.  2006a ).  

4.14.19     CBP60 Family of Calmodulin-Binding Proteins 

 A plant-specifi c family of CaM binding proteins called CaM60s has been 
detected in several plant species. CBP60s have been identifi ed in  Arabidopsis  
(Reddy et al.  2002b ; Wang et al.  2009 ; Zhang et al.  2010 ), maize (Reddy et al. 
 1993 ), bean (Ali et al.  2003 ) and tobacco (Lu and Harrington  1994 ). Some of 
these CBPs have their CaM binding domain (CBD) at very close to the C-terminal 
ends (Reddy et al.  1993 ,  2002a ; Lu and Harrington  1994 ) and others at the N 
terminus (Wang et al.  2009 ; Zhang et al.  2010 ). Other than the presence of CBD, 
CBP60s do not show sequence similarity to any other known domains (Ali et al. 
 2003 ). 

 The two CaM-binding proteins detected in bean ( Phaseolus vulgaris ), 
PvCBP60-C and PvCBP60-D, were found to be associated with host defense 
responses (Ali et al.  2003 ). A calmodulin binding protein, CBP60g, has been shown 
to be involved in activating SA biosynthesis (Wang et al.  2009 ; Zhang et al.  2010 ). 
 Arabidopsis  CBP60g positively affects the expression of  SID2 , which encodes an 
isochorismate synthase (ICS) that is involved in biosynthesis of SA (Wang et al. 
 2011 ). CBP60g shows DNA binding activity, and it preferentially binds to a DNA 
sequence that contains AATTTT, which is present in the promoter of ICS1. Mutants 
that abolish CaM binding activity of CBP60g did not complement the mutant phe-
notype, suggesting that binding of CaM to CBP60g is essential for its function 
(Wang et al.  2009 ).   

4 Calcium Ion Signaling System: Calcium Signatures and Sensors



241

4.15     Calmodulin-Like Proteins as Ca 2+  Sensors 

 Some CaM-like proteins are also involved in calcium signaling system. Typical 
CaMs are highly similar to animal CaM, whereas CaM-like proteins share 50–75 % 
identity to typical CaM and have CaM activity. A calmodulin-like protein, Hra32, 
involved in defense response has been detected in bean. The predicted Hra32 prod-
uct contains four putative EF-hand calcium-binding domains that are separated by a 
spacing of nine amino acids (Jakobek et al.  1999 ).  Arabidopsis  CaM8 is a CaM-like 
protein. This protein can function as a CaM in Ca 2+  binding, but it appears to interact 
with a more limited set of target proteins compared with typical CaM isoforms 
(Zielinski  2002 ). 

 A tomato gene ( APR34 ) encoding a CaM –like protein has been characterized. 
 APR134 -like genes ( CML42  and  CML43 ) have been isolated from Arabidopsis. 
The  CML43  gene was rapidly induced in disease-resistant  Arabidopsis  leaves. 
Overexpression of  CML43  in  Arabidopsis  accelerated the hypersensitive response 
(Chiasson et al.  2005 ), suggesting the role of the CAM-like protein in plant immune 
response. 

 Centrins are CaM-like proteins with four Ca 2+ -binding EF-hand motifs 
(Lecourieux et al.  2006 ). Centrins have been found to be associated with cytoskel-
eton and a role in microtubule severing and cytoskeleton reorganization has been 
shown (Lecourieux et al.  2006 ). Arrangement of microtubules and microfi laments 
was found to play an important role in the expression of nonhost resistance in barley 
(Kobayashi et al.  1997 ). A rapid and Ca 2+ -dependent disruption of microtubular 
cytoskeleton is associated with disease resistance-associated cell death in a fungal 
elicitor-treated tobacco cells (Binet et al.  2001 ).  CCD-1  mRNA accumulates rapidly 
in elicitor-treated wheat cells (Takezawa  2000 ).  CCD-1  encodes a 14-kDa Ca 2+ -
binding protein that shares homology with the C-terminal half domain of centrin 
(Takezawa  2000 ). These studies showed that centrins are involved in disease resis-
tance responses and in Ca 2+  signaling. 

 Some CaM proteins have additional non-CaM domains and they are called CaM- 
related proteins (Luan et al.  2002 ). Petunia CaM53 is a CaM-related protein. It has 
CaM activity but it contains a polybasic C-terminal domain that is not found in typi-
cal CaMs. This extra domain in CaM53 regulates the cellular localization 
(Rodriguez-Concepcion et al.  1999 ).  

4.16     Calcineurin B-Like Proteins as Ca 2+  Sensors 

 Another family of Ca 2+  sensors consists of proteins similar to both the regulatory 
B-subunit of calcineurin and the neuronal Ca 2+  sensor in animals and these Ca 2+  
 sensors are called calcineurin B-like (CBL) proteins (Luan et al.  2002 ; Batistić 
et al.  2008 ; Hashimoto et al.  2012 ). Calcineurin is a Ca 2+ /calmodulin-dependent 
protein phosphatase belonging to PP2B type (Kudla et al.  1999 ; Trewavas  1999 ). 
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CBLs in  Arabidopsis  are encoded by a multigene family of at least 10 members 
that have similar structural domains with small variations in the length of the cod-
ing regions (Kim et al.  2000 ; Albrecht et al.  2001 ; Luan et al.  2002 ). CBLs have a 
helix-loop- helix structural motif (the EF hands) that acts as the Ca 2+  binding site. 
CBLs contain three EF hands, whereas CaMs contain four EF hands. The EF-hand 
sequence consists of a 12-amino acid loop that uses amino acids at positions 1, 3, 
5, 7, and 12 for interaction with Ca 2+ . The Asp at position 1, Gly at position 6, and 
Glu at position 12 are the most highly conserved amino acids in the loop. Both 
CaMs and CBLs have similar amino acid sequences in their EF-hand motifs. 
However, they do not show signifi cant similarity in their primary amino acid 
sequences (Luan et al.  2002 ). 

 Several CBLs have a conserved myristoylation site in their N-terminal regions. 
The myristoylation site is required for its location to membrane (Batistić et al. 
 2008 ). In the Ca 2+ -free state, the myristoyl moiety in recoverin is inaccessible to 
membranes. The Ca 2+ -induced conformational change exposes the myristoyl group 
and facilitates the association of recoverin with the membrane (Ishitani et al.  2000 ; 
Kim et al.  2000 ; Batistić et al.  2008 ). 

 Unlike CaMs, which interact with a large number of target proteins, CBLs are 
known to interact only with the family of SNF1-like protein kinases. These kinases 
are called as CBL-interacting kinases (CIPKs) and CBL interacts with CIPKs 
through the C-terminal nonkinase domain that contains a conserved region among 
different CIPK members (Batistić et al.  2008 ; Luan  2009 ). Micromolar levels of 
Ca 2+  are required for the interaction of CBL and CIPK (Halfter et al.  2000 ). With at 
least 10 CBLs and 25 CIPKs reported in  Arabidopsis , many functional CBL-CIPK 
pairs can be formed that potentially function in a large array of signaling processes 
involving Ca 2+  signaling (Luan et al.  2002 ; Lecourieux et al.  2006 ; Batistić et al. 
 2008 ).  

4.17     NADPH Oxidase as Calcium-Binding Protein 

 NADPH oxidase, resembling the human neutrophil respiratory burst NADPH 
 oxidase has been detected in plasma membrane fractions in plant cells (Torres et al. 
 2002 ; Yoshioka et al.  2003 ). The respiratory burst oxidase homolog (Rboh) in plants 
has EF-hand calcium-binding motifs in its N-terminal extension. Rboh is an intrin-
sic plasma membrane protein and the extended N-terminal domain of Rboh projects 
into the cytosol (Keller et al.  1998 ). All plant  rboh  genes carry EF-hands that bind 
Ca 2+  and plant Rboh proteins were shown to be stimulated directly by Ca 2+  (Sagi and 
Fluhr  2001 ). Ca 2+ -stimulated Rboh enzymes may be positioned close to Ca 2+  chan-
nels localized on the plasma membrane (Lecourieux et al.  2006 ). The activated 
NADPH oxidase generates superoxide radicals in plant cells, which are converted 
to H 2 O 2  (Sagi and Fluhr  2006 ). These results suggest that Ca 2+  infl ux may activate 
ROS signaling system.  
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4.18     Ca 2+ -Binding Proteins Without EF-Hands 

 Some Ca 2+ -binding proteins do not contain EF-hand structural motifs. These proteins 
contain other Ca 2+ -binding domains such as the C2 domain (Reddy  2001 ). The C2 
domain is a Ca 2+ -phospholipid-binding site, and Ca 2+  binding is coordinated by four 
to fi ve amino acid residues provided by bipartite loops (Rizo and Sudhof  1998 ). 
These domains often mediate Ca 2+ -dependent phospholipid binding. 

 The copines are a family of Ca 2+ -dependent, phospholipids-binding proteins 
(Tomsig and Cruetz  2002 ). Copine proteins (in French, copine means “friend”, 
these proteins are named copine because of their tight association with lipid mem-
branes) contain two protein kinase C conserved 2 (C2) domains in the terminal 
region and a von Willebrand A (VWA) domain in the C-terminal region (Jambunathan 
et al.  2001 ; Jambunathan and McNellis  2003 ; Laxal and Munnik  2002 ). Copines 
bind membrane phospholipids due to the presence of two C2 domains in the 
N-terminal portion that are activated by calcium. C2 domain-containing proteins 
include protein kinase C and phospholipase C. The C-terminal half of the copine 
molecule, called the VWA domain, may be involved in targeted protein-protein 
interactions (Lecourieux et al.  2006 ). Copines have a calcium-dependent phospho-
lipid-binding activity (Tomsig and Cruetz  2000 ). 

 In  Arabidopsis CPN1  ( copine1 ) is a negative regulator of plant defense-related 
hypersensitive response (HR) (Jambunathan et al.  2001 ; Jambunathan and McNellis 
 2003 ). Mutation of the  CPN1  ( COPINE 1 ) gene in  Arabidopsis  results in increased 
resistance to bacterial ( Pseudomonas syringae  pv.  tomato ) and oomyceteous 
( Peronospora parasitica ) pathogens. The mutant showed constitutive expression of 
 PR  genes (Jambunathan and McNellis  2003 ). The results suggest that  CPN1  plays a 
role in disease resistance responses, possibly as a suppressor of defense responses. 
Copines may play a role in membrane traffi cking (Hua et al.  2001 ) and they may 
represent a universal transduction pathway (Tomsig et al.  2003 ). 

 Copines have been suggested to represent a universal transduction pathway for 
calcium signaling because the copines are capable of interacting with a wide vari-
ety of target proteins including a MAP kinase kinase (MEK1), a protein phospha-
tase, a Cdc-42-binding kinase, the transcription factor Myc binding protein, 
ubiquitin conjugating enzyme, and an enzyme involved in exocytosis (homolog of 
SNIP [SNAP- 25 Interacting protein]) (Tomsig et al.  2003 ). The copine binds to a 
domain of the target protein that is predicted to form a characteristic coiled coil. 
The interaction with copines may result in recruitment of target proteins to mem-
brane surfaces and regulation of the enzymatic activities of target proteins (Tomsig 
et al.  2003 ). 

 C2 domain has been detected in all characterized plant phospholipase D enzymes 
(PLDs) (Wang  1999 ,  2001 ). Ca 2+  may associate directly with PLD through the C2 
domain. A positive correlation between increased [Ca 2+ ] cyt  and PLD activity has 
been reported (De Vrije and Munnik  1997 ). It suggests that PLDs may be involved 
in increased [Ca 2+ ] cyt .  
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4.19     Calcium-Dependent Protein Kinases as Ca 2+  Sensors 

4.19.1     Structure of CDPKs 

 Calcium-dependent protein kinases (CDPKs) are involved in Ca 2+  signaling 
(Boudsocq et al.  2010 ; Bush et al.  2010 ). They belong to the CDPK/SnRK family 
of protein kinases (Hrabak et al.  2003 ). The protein kinase activity of CDPK is 
stimulated by binding of calcium or its intrinsic CaM-like domain. The CDPKs 
bind up to four moles of Ca 2+  per mole of enzyme (Lee et al.  1998 ). CDPKs contain 
fi ve domains: amino- terminal variable domain, catalytic domain, autoinhibitory 
domain, CaM-like domain, and a short domain. The amino-terminal variable 
domain varies in length from 40 to 180 amino acids. The catalytic domain is typi-
cal of serine/threonine protein kinases. Adjacent to the catalytic domain is an auto-
inhibitory domain that contains a pseudosubstrate sequence that can interact with 
the active site and inhibit activity. Also in the inhibitory domain is a site that can 
bind to the calmodulin-like domain in the presence of calcium. Binding of the 
CaM-like domain to this site is proposed to contribute to the stimulation of kinase 
activity in the presence of calcium (Yoo and Harmon  1996 ; Harmon  2003 ). The 
calmodulin-like domain is adjacent to the autoinhibitory domain, and contains four 
Ca 2+  binding helix-turn-helix structures known as EF-hands (Lee et al.  1998 ; 
Reddy et al.  2011a ,  b ). Following the calmodulin-like domain is a short domain of 
variable length (Harmon  2003 ; Fig   .  4.7 ).

4.19.2        PAMP/Elicitor Triggers Activation of CDPK 

 The PAMP/elicitor treatment induces Ca 2+  infl ux by activating the ion channels in 
the plasma membrane (Kwaaitaal et al.  2011 ; Ranf et al.  2011 ). The increases in 
Ca 2+  infl ux result in elevation in cytoplasmic Ca 2+  concentration (Luan et al.  2002 ). 
Several biotic stimuli trigger an increase in the concentration of cytoplasmic free 
Ca 2+ , which then acts as a second messenger mediating a variety of cellular 
responses. The cytoplasmic free Ca 2+  concentration under resting conditions is 
maintained at very low levels (10–200 nM), ensuing low CDPK activity. An increase 
in the cytoplasmic calcium results in CDPK activation. CDPKs function as sensors 
of fl uctuations in cytosolic Ca 2+  and initiate downstream signaling events (Harmon 
et al.  2000 ; Hrabak  2000 ; Kobayashi et al.  2007 ; Ito et al.  2010 ). CDPKs require 
Ca 2+  for their activation. CDPKs contain a kinase domain, an autoinhibitory domain 
and a CaM-like domain. The inhibitory domain contains a pseudosubstrate sequence. 
CDPK is autoinhibited by an interaction of the pseudosubstrate site within its junc-
tion domain that blocks the active site of the kinase domain. Binding of Ca 2+  to the 
CaM-like domain of the CDPK causes conformational change that extends to the 
adjacent junction domain and fi nally disengages the autoinhibitor of the active site 
(Huang et al.  1996 ). The release of the pseudosubstrate domain from the active site 
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results in kinase activation (Harmon et al.  2000 ). These results suggest Ca 2+  binding 
to CDPK is essential for the activation of the enzyme. 

 PAMP/elicitor may be involved in enhanced transcription of CDPK genes, prob-
ably through the action of calcium signature. The tobacco CDPK gene  NtCDPK1  
was found to be induced by fungal elicitors (Yoon et al.  1999 ). Two other CDPK 
genes from tobacco,  NtCDPK2  and  NtCDPK3 , showed mRNA up-regulation after 
the application of the Avr9 race-specifi c elicitor (Romeis et al.  2001 ). Fungal elici-
tors triggered the transcription of the tomato  LeCDPK1  gene (Chico et al.  2002 ). A 
CDPK gene in maize,  ZmCPK10 , was induced both during a fungal infection and 
after treatment with fungal elicitors (Murillo et al.  2001 ). Activation of the  ZmCPK10  
gene was very rapid.  ZmCPK10  transcripts could be detected 5 min after elicitation 
and reached maximum levels at 30 min after treatment (Murillo et al.  2001 ). 

 Several CDPKs have been reported in plants.  Arabidopsis thaliana  has 34 genes 
that encode CDPKs (Hrabak et al.  2003 ). Several  CDPK  genes have been detected 
in soybean, rice, tomato, maize, and  Arabidopsis  (Harmon et al.  2001 ). Individual 
isoforms of CDPKs may have different functions and participate in multiple distinct 
signaling pathways (Harmon et al.  2001 ). Depending on the calcium signatures 
(variations in [Ca 2+ ] cyt  concentration, oscillations, and waves), specifi c CDPK isoforms 
are activated (Ludwig et al.  2004 ). 

 The  Nicotiana benthamiana  CDPK, NtCDPK2, induced enhanced ROS produc-
tion and activation of defense-related genes in  N. benthamiana . By contrast, a 
homologous isoform, NtCDPK3, did not induce the HR-associated cell death. The 
results suggest that NtCDPK2 kinase, but not the closely related NtCDPK3 protein, 
is specifi cally involved in the defense response (Ludwig et al.  2004 ). Dependent on 
the incoming signals, NtCDPK2 enzyme activation varied in strength and duration 
(Romeis et al.  2001 ). A short and weak NtCDPK2 activation results in the induction 
of the wound signaling pathway, whereas a much stronger and sustained elicitation 
leads to defense response signaling system (Romeis et al.  2001 ). Several CDPK 
genes have been detected in maize. However, only one specifi c CDPK gene, 
 ZmCPK10  gene is transcriptionally activated in response to both fungal infection 
and treatment with fungal elicitors/PAMPs. This gene was found to be involved in 
activation of defense signaling pathways, leading to the induction of PR genes 
(Murillo et al.  2001 ).  
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  Fig. 4.7    Structure of calcium-dependent protein kinase       
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4.19.3     Stimulation of CDPK Activity by 14-3-3 Proteins 

 14-3-3 proteins have been shown to modulate the activity of CPDK signal trans-
duction pathways. The 14-3-3 proteins are given this nomenclature based on their 
chromatography and electroprofi les. The CDPK isoform CPK1 from  Arabidopsis 
thaliana  is stimulated almost twofold by three different 14-3-3 proteins (Camoni 
et al.  1998b ), suggesting that 14-3-3 proteins may modulate the activity of CDPK 
signal transduction pathways in plants. Protein kinases and phosphatases are 
 regulated by 14-3-3 proteins (Ferl  2004 ). 14-3-3 proteins specifi cally bind and 
activate the  Arabidopsis thaliana  enzyme AtCPK1 in vitro in the presence of Ca 2+  
(Camoni et al.  1998b ). The 14-3-3 proteins play a role in the completion of signal 
transduction events. Phosphorylation may tag the proteins for association with 
14-3-3 and the subsequent binding of 14-3-3s may complete the signal-induced 
changes in the protein activity (Ferl  2004 ). 14-3-3 proteins occur as homo- and 
heterodimers in vitro and in vivo and these dimers may mediate interaction 
between pairs of associated proteins (Jones et al.  1995 ). It has been shown that 
14-3-3 proteins bind to phosphorylated Ser residues present within one of a small 
number of consensus sequences found in many of the proteins with which they 
interact (Yaffe et al.  1997 ).  

4.19.4     Enhancement of CDPK Activity by Phospholipids 

 Specifi c phospholipids enhance in vitro substrate phosphorylation by CDPKs 
(Farmer and Choi  1999 ; Szczegielniak et al.  2000 ). Certain phospholipids, 
including phosphatidic acid, phosphatidylserine, and phosphatidylinositol, act as 
second messengers and enhanced the CDPK activity (Farmer and Choi  1999 ). In 
the presence of Ca 2+ , specifi c phospholipids enhance phosphorylation by CDPKs 
by 2–30 times above that observed with Ca 2+  alone (Harper et al.  1993 ; Farmer and 
Choi  1999 ). Both phosphatidylinositol and lyso-phosphatidylcholine increase 
substrate phosphorylation by CPK1 from  Arabidopsis , while only phosphati-
dylinositol enhances the CDPK autophosphorylation (Binder et al.  1994 ). 
A binding site for phosphatidylinositol has been detected in the N terminus of 
CPK1 (Binder et al.  1994 ).  

4.19.5     CDPKs Target Proteins Involved in Immune Signaling 
System 

 CDPKs target several proteins involved in immune signaling systems (Fig.  4.8 ). 
CDPKs are involved in activation of various Ca 2+ -permeable channels in plant 
cell plasma membrane. Arabidopsis CDPKs CPK6 and CPK3 have been shown 
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to be involved in regulation of anion- and Ca 2+ -permeable channels (Mori et al. 
 2006 ). CDPKs regulate plasma membrane H + -ATPases by phosphorylation 
(Schaller and Oecking  1999 ). Anion channels and H + -ATPases have been shown 
to be involved in Ca 2+  infl ux (Sanders et al.  2002 ; White and Broadley  2003 ). The 
enzyme H + /K + -ATPase is a proton pump which is responsible for the acidifi ca-
tion of cytoplasm. The activation of K + /H + -ATPase is mediated by Ca 2+  infl ux and 
activated by CDPK (Atkinson et al.  1990 ). The CDPK may evoke ion fl uxes that 
lead to extracellular alkalinization and depolarization of the plasma membrane 
(Schaller and Oecking  1999 ). The activation of the Ca 2+  channel by elicitors was 
modulated by a heterotrimeric G-protein–dependent phosphorylation of the 
channel protein in tomato, probably by activating a CDPK and inhibiting a pro-
tein phosphatase (Gelli and Blumwald  1997 ). These results suggest that CDPK 
targets several proteins involved in Ca2+ signaling system for phosphorylation 
and activation.

   CDPKs may be involved in activation of enzymes/proteins involved in various 
defense signaling pathways (Fig.  4.8 ). Plasma membrane-associated NADPH 
 oxidase is a substrate for CDPK (Xing et al.  2001 ). NADPH oxidase is known to 
stimulate ROS production (Kobayashi et al.  2007 ). Overexpression of the 
 Arabidopsis  CDPK gene  AtCPK1  in a heterologous tomato protoplast system 
resulted in an enhanced NADPH oxidase activity and increased production of ROS 
(Xing et al.  2001 ). Two CDPKs in potato, StCDPK4 and StCDPK5, phosphorylated 
Ser-82 and Ser-97 in the terminus of StRBOHB, a potato NADPH oxidase, in a 
calcium- dependent manner. Ectopic expression of the constitutively active mutant 
of StCDPK5, StCDPK5VK, provoked ROS production in  Nicotiana benthamiana  
leaves. The heterologous expression of StCDPK5VK phosphorylated Ser-82 of 
StRBOHB in  N. benthamiana  (Kobayashi et al.  2007 ). These results suggest that 
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  Fig. 4.8    Immune signaling systems regulated by CDPKs       
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the CDPK functions as a calcium sensor and phosphorylates the plasma membrane 
bound NADPH oxidase, which is the key enzyme in ROS signaling system. 

 CDPK activates amino-1-cyclopropane carboxylate synthase, the enzyme 
involved in ethylene biosynthesis (Sebastiá et al.  2004 ).  Arabidopsis  CDPK 
AtCPK32 interacts with ABF4, a transcriptional regulator of ABA-responsive gene 
expression, and modulates its activity (Choi et al.  2005 ). Expression of a grape 
CDPK, ACPK1, in  Arabidopsis thaliana  activates abscisic acid (ABA) signaling 
(Yu et al.  2007 ). Phenylalanine ammonia-lyase (PAL), the key enzyme in phenyl-
propanoid pathway involved in biosynthesis of phytoalexins, has been shown to be 
a substrate of a specifi c constitutively active  Arabidopsis  CDPK expressed in corn 
protoplasts (Cheng et al.  2001 ). The maize CDPK, ZmCPK10, triggers a rapid tran-
scriptional activation of  PRms  encoding PR proteins in maize (Murillo et al.  2001 ). 
Collectively these results suggest that CDPKs may target various enzymes involved 
in plant defense systems.   

4.20     Nuclear Free Calcium Ion ([Ca 2+ ] nuc ) in Ca 2+  Signaling 

 Increases in nuclear free calcium concentration ([Ca 2+ ] nuc ) have been reported to 
occur in plants in response to some external stimuli. The bacterial (harpin) and 
oomycete (elicitins) elicitors induced a pronounced and sustainable [Ca 2+ ] nuc  eleva-
tion (Lecourieux et al.  2006 ; Mazars et al.  2009 ,  2010 ). The [Ca 2+ ] nuc  rise depends 
on free cytosolic calcium ([Ca 2+ ]cyt), 1,4,5-trisphosphate (IP3) and reactive oxygen 
species (ROS) (Lecourieux et al.  2006 ). 

 Levy et al. ( 2005 ) identifi ed an  Arabidopsis  gene,  IQDI  ( IQ-DOMAIN I ), which 
encodes a calmodulin-binding nuclear protein.  IQD1  integrates intracellular Ca 2+  
signals towards stimulation of plant defenses, including accumulation of glucosino-
lates, the secondary metabolites involved in plant defense. CaM, CaM-binding 
 proteins (Bouche et al.  2005 ), CDPK (Damman et al.  2003 ), and Ca 2+ -CaM-
regulated protein phosphatase (Andreeva and Kutuzov  2001 ) have been detected in 
plant nucleus. Ca 2+ -ATPase (Downie et al.  1998 ) and some components of the phos-
phoinositide signaling pathway (Dröbak and Heras  2002 ) have been found to be 
localized to the plant nucleus. The nuclei isolated from tobacco were capable of 
producing H 2 O 2  in a calcium-dependent manner (Astamker et al.  2007 ). The 
[Ca 2+ ] nuc  rise depends on free cytosolic calcium, 1,4,5-trisphosphate (IP3), and ROS 
(Lecourieux et al.  2005 ). The interplay between nuclear and cytosolic calcium elab-
orates a global calcium signature and elicits biological responses (Pauly et al.  2001 ). 
Nuclear calcium may be responsible for the activation of Ca 2+ -dependent proteins in 
the nucleus, and may be involved in the regulation of nuclear activities such as gene 
expression (White and Broadley  2003 ; Mazars et al.  2010 ). It has also been reported 
that the nucleus exhibits a Ca 2+  signature independently of the cytosol in response 
to stresses (Mazars et al.  2010 ).  
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4.21     Downstream Events in Ca 2+  Signaling System 

4.21.1     ROS Generation 

4.21.1.1     Ca 2+  and CDPK–Mediated ROS Generation 

 Several signaling systems are activated by calcium infl ux and transient increase in 
cytosolic calcium levels. Calcium infl ux activates ROS production (Jabs et al. 
 1997 ). NADPH oxidase, resembling the human neutrophil respiratory burst 
NADPH oxidase has been detected in plasma membrane fractions in plant cells 
(Torres et al.  2002 ; Yoshioka et al.  2003 ). The respiratory burst oxidase homolog 
(Rboh) in plants has EF-hand calcium-binding motifs in its N-terminal extension. 
Rboh is an intrinsic plasma membrane protein and the extended N-terminal 
domain of Rboh projects into the cytosol (Keller et al.  1998 ). All plant  rboh  genes 
carry EF-hands that bind Ca 2+  and plant Rboh proteins were shown to be stimu-
lated directly by Ca 2+  (Sagi and Fluhr  2001 ). Ca 2+ -stimulated Rboh enzymes may 
be positioned close to Ca 2+  channels localized on the plasma membrane 
(Lecourieux et al.  2006 ). The activated NADPH oxidase generates superoxide 
radicals in plant cells, which are converted to H 2 O 2  (Sagi and Fluhr  2006 ). 
Calcium-dependent protein kinases (CDPKs) may also play important role in 
ROS generation. The activation of the plasma membrane- located NADPH oxidases 
involves phosphorylation of two N-terminal serine residues by a CDPK (Kobayashi 
et al.  2007 ). Ca 2+  binding on EF-hand domains and phosphorylation by CDPK 
activate the NADPH oxidase enzyme in a synergistic manner to generate ROS 
(Fig.  4.9 ; Ogasawara et al.  2008 ).

4.21.1.2        Calmodulin-Mediated ROS Generation 

 The Ca 2+  sensor protein calmodulin (CaM) also has been reported to be involved 
in Ca 2+ -triggered ROS generation. The pepper CaM gene  CaCaM1  has been 
shown to be involved in ROS generation (Choi et al.  2009 ). Treatment with 
 calcium channel blocker suppressed ROS burst that was triggered by  CACAM1  
expression in pepper and  Arabidopsis , suggesting that calcium infl ux is required 
for the activation of  CaCaM1 -mediated ROS generation in plants (Choi et al. 
 2009 ). An increase in Ca 2+  amount in cytosol triggered by PAMP elicitor stimuli 
is perceived by the calmodulin. The calmodulin gene is strongly induced by the 
Ca 2+  infl ux in  Arabidopsis  (Desikan et al.  2001 ). The complex Ca 2+ /CaM has been 
shown to regulate NAD kinase, which generates NADPH for NADPH oxidase 
activity (Harding et al.  1997 ). Increase in NADPH oxidase activity results in 
 generation of ROS (Desikan et al.  1997 ; Harding et al.  1997 ; Pitzschke et al. 
 2009a ; Mazars et al.  2010 ).   
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4.21.2     NO Generation 

 Nitric oxide (NO) is a key mediator for rapid induction of plant immune responses 
(Bellin et al.  2013 ). Rapid NO production has been shown to be dependent on Ca 2+  
signaling system (Lamotte et al.  2004 ; Ali et al.  2007 ; Courtois et al.  2008 ; Choi 
et al.  2009 ; Ma et al.  2008 ,  2012 ; Vatsa et al.  2011 ). It has been demonstrated that 
different calcium channels involved in calcium infl ux are also involved in NO pro-
duction. The bacterial PAMP lipopolysaccharide (LPS) activates the Ca 2+  infl ux 
through Ca 2+  channels and this Ca 2+  current leads to downstream NO production 
(Ali et al.  2007 ). Plants without functional CNGC2 lack this cell membrane Ca 2+  
current and do not display immune responses (hypersensitive response, HR). The 
impaired HR phenotype to an avirulent pathogen in  cngc2  mutant plants can be 
complemented by the addition of an NO donor (Ali et al.  2007 ). The results suggest 
the importance of the cyclic nucleotide gated channel in induction of NO in the 
immune signaling system (Ali et al.  2007 ). Another type of ion channels involved 
in Ca 2+ infl ux is glutamate receptor (GLR)-like channels Ma et al.  2012 ). The 
 oomycete PAMP elicitor signal cryptogein activates GLR calcium channels trigger-
ing NO production (Vatsa et al.  2011 ). The addition of the Ca 2+  channel blocker 
Gd 3+  or the Ca 2+  chelator EGTA abolished LPS-induced NO synthesis (Ali et al. 
 2007 ). The results indicate that NO synthesis occurs downstream of cytosolic Ca 2+  
elevation. 

 NO synthase (NOS) is the key enzyme involved in NO production. NOS has 
been reported to be a CaM-binding protein. NOS contains CaM-binding motifs and 
full activation of the enzyme needs both Ca 2+  and CaM (Guo et al.  2003 ; Lamotte 
et al.  2004 ; Zeidler et al.  2004 ). CaM dependent NOS production has been reported 
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  Fig. 4.9    Synergistic action of Ca 2+  binding on EF-hand domains of NADPH oxidase and 
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in many plants (Delledonne et al.  1998 ; Courtois et al.  2008 ; Ma and Berkowitz  2011 ). 
The pathogen-induced Ca 2+  signals lead to CaM activation of NOS (Ma et al.  2008 ). 
The use of a CaM antagonist prevents NO generation and induction of immune 
responses. Application of a CaM antagonist does not prevent pathogen- induced 
cytosolic Ca 2+  elevation, suggesting that CaM does not act upstream from Ca 2+ . 
The CaM antagonist and Ca 2+  chelation abolish NO generation. It suggests that 
plant NOS activity is Ca 2+ /CaM dependent. Ma et al. ( 2008 ) suggested that the initial 
pathogen recognition signal of Ca 2+  infl ux into the cytosol activates CaM, which 
then acts to induce downstream NO synthesis, leading to innate immune responses. 

 NOS activity has been reported to be induced by the bacterial PAMP LPS 
(Delledonne  2005 ). LPS-induced NO production is suggested to be dependent on 
NOS enzyme activity and this process is regulated by CaM (Zeidler et al.  2004 ; Ali 
et al.  2007 ). The pepper CaM gene  CaCaM1  has been shown to be involved in NO 
generation (Choi et al.  2009 ). Upon treatment with the CaM antagonist, virulent 
 Pseudomonas syringae  pv.  tomato –induced NO generation was also compromised 
in  CaCaM1  overexpressing plants (Choi et al.  2009 ). 

 It has also been reported that the generated NO can induce cytosolic Ca 2+  increase 
through activation of plasma membrane- and intracellular membrane-localized Ca 2+  
channels during pathogen induced signaling cascades (Ali et al.  2007 ). The bacterial 
PAMP LPS could elicit NO generation in leaf guard cells and facilitate Ca 2+  infl ux 
into the cytosol (Ali et al.  2007 ). NO synthesis occurring during the plant- pathogen 
interactions causes elevation of cytosolic Ca 2+  level (Lamotte et al.  2004 ,  2006 ; 
Vandelle et al.  2006 ; Besson-Bard et al.  2008a ,  b ). It is suggested that the NO 
generated downstream Ca 2+  infl ux may diffuse to neighboring cells and activate new 
Ca 2+  signals, which may amplify the NO generation process (Fig.  4.10 ; Ma et al.  2007 ; 
Ma and Berkowitz  2011 ).

4.21.3        MAPK Signaling System 

 Mitogen-activated protein kinase (MAPK) cascades are major pathways down-
stream of sensors/receptors that transduce extracellular stimuli into intracellular 
responses in plants (Liu et al.  2003 ; Pedley and Martin  2005 ). A typical MAPK 
signaling module consists of three protein kinases: a MAP kinase kinase kinase 
(MAPKKK or MEKK [for  M APK/ E xtracellular signal-regulated kinase  K inase 
 K inase]), a MAP kinase kinase (MAPKK or MKK), and a MAP kinase (MAPK or 
MPK) (Mészáros et al.  2006 ). MAP kinase cascade involves sequence of phos-
phorylation events (Hirt  2000 ). Among the 20 Arabidopsis MAP kinases, MPK3, 
MPK4, and MPK6 are implicated in plant immune responses (Petersen et al.  2000 ; 
Innes  2001 ; Asai et al.  2002 ; Menke et al.  2005 ; Takahashi et al.  2007 ; Gao et al. 
 2008 ; Ren et al.  2008 ; Pitzschke et al.  2009b ; Liu et al.  2011 ). MPK3, MPK6, 
MKK4, and MKK5 form a cascade that positively regulates plant defenses 
(Pitzschke et al.  2009b ). MPK3 has been shown to be required for camalexin accu-
mulation upon  Botrytis cinerea  infection (Ren et al.  2008 ). Inactivation of MPK3 
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and MPK6 by the  P .  syringae  effector HopA/1 and inactivation of MKKs by the 
 P .  syringae  effector HopF2 severely impair PAMP-induced defenses and render 
plants highly susceptible to nonpathogenic  P .  syringae  bacteria (Zhang et al.  2007 ; 
Wang et al.  2010 ). MPK3 and MPK6 have been shown to be required for priming of 
defense responses during induced resistance (Beckers et al.  2009 ). The PAMPs are 
known to activate the expression of MPK3, MPK4, and MPK6 (Asai et al.  2002 ; 
Bethke et al.  2012 ). 

 A typical array of early defense responses induced by PAMPs includes Ca 2+ - 
infl ux and the generation of ROS, nitric oxide, and ethylene. Much of this follows 
the mitogen-activated protein kinase cascades, leading to transcriptional changes of 
many defense-related genes (Zhang and Klessig  2001 ; Asai et al.  2002 ; Aslam et al. 
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 2008 ,  2009 ; Boller and He  2009 ; Boller and Felix  2009 ). The tobacco MAP kinase 
SIPK is activated by the oomycete PAMP, β-megaspermin (Hall et al.  2007 ). The 
SIPK activation induced by the PAMP required external calcium infl ux, suggesting 
that SIPK activation occurs downstream of Ca 2+  infl ux (Hall et al.  2007 ). The signaling 
cascade initiated by the endogenous elicitor AtPep1 leads to expression of  MPK3  
gene involved in MAPK signaling system in a Ca 2+ -dependent manner (Qi et al.  2010 ). 
The MAPK, MPK6 has been shown to act downstream of cytosolic calcium signature 
(Yue et al.  2012 ).  

4.21.4     Salicylate Signaling System 

4.21.4.1     Ca 2+  Signature May Modulate SA Biosynthesis 
and Accumulation Pathway 

 Salicylate (SA) signaling system has been identifi ed as an important downstream 
event of Ca 2+  infl ux (Wang et al.  2010 ; Boursiac et al.  2010 ; Chen et al.  2011 ; 
Truman and Glazebrook  2012 ). Ca 2+  signaling has been reported to play an impor-
tant role in modulation of salicylate signaling system (Du et al.  2009 ; Wang et al. 
 2011 ; Wan et al.  2012 ). Ca 2+  infl ux plays an important role in triggering SA signal-
ing system (Garcia-Brugger et al.  2006 ; Ahn et al.  2007 ). 

 Cytosolic Ca 2+  signals result from a combined action of Ca 2+  infl ux through 
channels and Ca 2+  effl ux through pumps and cotransporters (McAinsh and 
Pittman  2009 ; Ward et al.  2009 ; Boursiac et al.  2010 ). Infl ux occurs down the 
electrochemical gradient through various ion channels, such as voltage-gated 
channels or Ca 2+ -permeable cyclic nucleotide-gated channels (CNGCs) or gluta-
mate-gated ion channels (Qi et al.  2006 ,  2010 ; Moeder et al.  2011 ; Vatsa et al. 
 2011 ; Price et al.  2012 ; Vincill et al.  2012 ). Effl ux requires energy-dependent 
Ca 2+  pumps (autoinhibited Ca 2+ -ATPases (ACAs) and ER-type Ca 2+ -ATPases) 
(McAinsh and Pittman  2009 ; Boursiac et al.  2010 ). The cytoplasmic Ca 2+  signal 
is shaped by the balance of activity between Ca 2+  infl ux and effl ux (Boursiac 
et al.  2010 ). 

 Disruption of the vacuolar calcium-ATPases in  Arabidopsis  results in the activa-
tion of salicylic acid signaling pathway, probably by generating specifi c Ca 2+  signa-
ture in the cytosol (Boursiac et al.  2010 ). A double knockout mutation of the 
vacuolar Ca 2+  pumps ACA1 and ACA11 in  Arabidopsis thaliana  resulted in the 
activation of SA signaling system triggering programmed cell death. Initiation and 
spread of hypersensitive response that protects plants from pathogens could also be 
suppressed by disrupting the production of SA in  Arabidopsis  mutants with 
 combined  aca4/11  mutations and a  sid2  (for  salicylic acid induction-defi cient2 ) 
mutation. SID2 is an isochorismate synthase that is involved in biosynthesis of SA 
(Wildermuth et al.  2001 ). These studies suggest that disruption of the vacuolar 
calcium- ATPases may result in the activation of  SID2  -mediated SA signaling path-
way (Boursiac et al.  2010 ).  
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4.21.4.2     Arabidopsis Calmodulin Binding Protein CBP60g 
Is Involved in SA Biosynthesis 

 A calmodulin binding protein, CBP60g, has been shown to be involved in activating SA 
biosynthesis (Wang et al.  2009 ). Overexpression of CBP60g in  Arabidopsis  caused 
elevated SA accumulation, increased expression of the defense genes, and enhanced 
defense responses, and enhanced resistance to  Pseudomonas syringae  (Wan et al.  2012 ). 
CBP60g has been shown to participate in SA signaling biosynthesis and accumulation 
(Wang et al.  2009 ). It has been suggested that the signal coming from CBP60g may act 
upstream from SA synthesis, as SA levels are reduced in  cbp60g  mutants (Wang et al. 
 2009 ). The effect of  cbp60g  mutant in SA biosynthesis was most similar to that of  pad4  
mutant, suggesting that CBP60 may act upstream of PAD4 (Wang et al.  2009 ). PAD4, a 
key regulator of SA signaling system, contributes to SA levels. The  pad4  mutant plants 
showed reduced accumulation of SA after PAMP treatment (Tsuda et al.  2008 ). PAD4 
is a key regulator acting at upstream of SA (Lippok et al.  2007 ).  Arabidopsis  plants car-
rying  pad4  mutations have a defect in accumulation of SA upon pathogen infection 
(Zhou et al.  1998 ). PAD4 is required for amplifi cation of weak signals to a level suffi -
cient for activation of SA signaling (Jirage et al.  1999 ). The PAD4 protein sequence 
displays similarity to triacyl glycerol lipases and other esterases (Jirage et al.  1999 ). It 
was also observed that the effect of  cbp60g  mutant in SA biosynthesis was almost simi-
lar to that of  sid2  mutant (Wang et al.  2009 ). It suggests that CBP60g may also act 
upstream of SID2, an isochorismate synthase that is involved in biosynthesis of SA 
(Wang et al.  2009 ,  2011 ). Isochorismate synthase encoded by  SID2  is essential for the 
biosynthesis of salicylic acid in response to pathogen challenge (Garcion et al.  2008 ; 
Truman and Glazebrook  2012 ). Both the calmodulin binding protein  CBP60g  and its 
closest homolog, the non-calmodulin binding  SARD1  (for SYSTEMIC ACQUIRED 
RESISTANCE DEFICIENT1), have been shown to bind to the promoter region of  SID2  
(Zhang et al.  2010 ). CBP60g is strongly induced in response to PAMPs treatment (Wang 
et al.  2009 ). Plants carrying  cbp60g  null mutations were compromised in the induction 
of  SID2  and accumulation of SA (Wang et al.  2009 ). A central domain of CBP60g was 
found to bind to an oligomer with the sequence GAAATTTTGG selected from the  SID2  
promoter (Zhang et al.  2010 ). PAMPs triggered signaling is greatly affected by the loss 
of  CBP60g  (Wang et al.  2011 ). Loss of CBP60g severely impacts the plants ability to 
produce SA in response to bacterial inoculation and renders the plant susceptible to 
infection. CBP60 was shown to bind specifi cally to a 10mer oligonucleotide with the 
sequence GAAATTTTGG (Truman and Glazebrook  2012 ). These results suggest that 
the calmodulin binding protein CBP60g binds with  SID2  gene and promotes SA biosyn-
thesis through activation of SID2 (Fig.  4.11 ).

4.21.5         Jasmonate Signaling System 

 Calcium signaling has been shown to act upstream of jasmonate (JA) biosynthesis 
pathway. PAMP elicitor signals activate a receptor-coupled G-protein and the acti-
vated G-proteins further switch on calcium ion channels (Zhao and Sakai  2003 ). 
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Ca 2+  infl ux and subsequent Ca 2+  wave (calcium signature) may activate NADPH 
oxidase and H 2 O 2  production (Zhao and Sakai  2003 ). Calcium ion infl ux – induced 
H 2 O 2  production triggers increases in lipoxygenase activity (Zhao and Sakai  2003 ). 
Lipoxygenase is an important enzyme in the octadecanoid pathway leading to the 
biosynthesis of jasmonate (Fig.  4.12 ; Schaller  2001 ; Vidhyasekaran  2007 ). 
Exogenous application of H 2 O 2  has been found to induce the biosynthesis of endog-
enous jasmonate and initiate the JA pathway triggering downstream defense 
responses (Zhao and Sakai  2003 ). These studies suggest that Ca 2+  infl ux may be 
involved in activation of JA signaling system.

   Calcium-dependent protein kinases (CDPKs) are unique enzymes found in 
plants and they are characterized as [Ca 2+ ] cyt  sensors in plants. The  Arabidopsis  
CDPK CPK6, has been shown to function as [Ca 2+ ] cyt  sensor in the methyl jasmo-
nate (MeJA) signaling (Munemasa et al.  2011 ). CPK6 has been found to be essential 
for the regulation of plasma membrane Ca  2+   – permeable channel activity 
(Munemasa et al.  2011 ). MeJA signaling is involved in stomatal closure (Suhita 
et al.  2003 ), a plant immune response against bacterial pathogens and CPK6 
 functions as a positive regulator of MeJA signaling (Munemasa et al.  2011 ).  
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  Fig. 4.11    Role of calmodulin binding protein CBP60 in induction of salicylic acid biosynthesis 
(Adapted from Wang et al.  2009 ,  2011 ; Wan et al.  2012 )       
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4.21.6     Ethylene Signaling System 

 Ethylene production is an important downstream event in Ca 2+  signaling system. 
Ca 2+  infl ux through Ca 2+  channels results in Ca 2+  waves (calcium signature) in 
 cytosol. The calcium waves-activated calcium-dependent protein kinase (CDPK) 
activates 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme 
involved in biosynthesis of ACC, a precursor for biosynthesis of ethylene (Sebastiá 
et al.  2004 ). The Ca 2+  infl ux is involved in activation of ACC oxidase, which is a key 
enzyme in biosynthesis of ethylene (Fig.  4.13 ; Gallardo et al.  1999 ). ACC oxidase 
activities as well as ethylene production from chickpea seeds were strongly inhib-
ited by EGTA (ethylene glycol-bis (γβ-aminoethyl ether) N,N,N′,N′-tetraacetic 
acid), a selective extracellular calcium ion chelator, indicating that the infl ux of Ca 2+  
is important for the ACC oxidase activity. The EGTA inhibition was restored by 
exogenous calcium ion treatment. Treatment of embryonic axes with either vera-
pamil or LaCl3 (both Ca 2+  channel blockers) or TMB8 (an intracellular Ca 2+  antago-
nist) provoked an inhibition of both ACC oxidase activity and ethylene production 
(Gallardo et al.  1999 ). These results suggest the involvement of calcium ion fl uxes 
and intracellular calcium levels in the activity of the last step of the ethylene biosyn-
thetic pathway.

   Ca 2+  infl ux may play an important role in ethylene signaling system (Raz and 
Fluhr  1992 ; Kwak and Lee  1997 ; Gallardo et al.  1999 ; Reddy et al.  2000 ). Blocking 
of Ca 2+  fl uxes inhibits ethylene-induced gene expression and artifi cial elevation of 
[Ca 2+ ] cyt  induces the expression of ethylene regulated genes in the absence of ethyl-
ene (Kwak and Lee  1997 ; Gallardo et al.  1999 ). Expression of several ethylene- 
inducible defense genes was found to be modulated by Ca 2+ . The induction of acidic 
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  Fig. 4.12    Ca 2+  infl ux/ROS/lipoxygenase-mediated jasmonate biosynthesis       
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and basic PR-1 protein families and chitinase accumulation were found to be 
 inhibited by EGTA, the Ca 2+  chelator. Addition of calcium or application of Ca 2+  
ionophore induced the ethylene-inducible defense-related proteins (Raz and Fluhr 
 1992 ). These results suggest that downstream ethylene signaling system is triggered 
by Ca 2+  signature.  

4.21.7     Abscisic Acid Signaling System 

  Arabidopsis  CDPK AtCPK32 interacts with ABF4, a transcriptional regulator of 
ABA-responsive gene expression, and modulates its activity (Choi et al.  2005 ). 
Expression of a grape CDPK, ACPK1, in  Arabidopsis thaliana  activates abscisic 
acid (ABA) signaling (Yu et al.  2006 ,  2007 ). Analysis of transcriptome changes in 
 Arabidopsis  revealed 230 calcium-responsive genes, of which 162 were upregulated 
and 68 were downregulated. Analysis of upstreams revealed, exclusively in the 
upregulated genes, a highly signifi cant occurrence of a consensus sequence 
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  Fig. 4.13    Ca 2+  infl ux and calcium-dependent protein kinase (CDPK) in downstream biosynthesis 
of ethylene       
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comprising two abscisic acid (ABA)-specifi c  cis  elements, the ABA-responsive 
 element (ABRE, CACGTG [T/C/G]) and its coupling element ([C/A] ACGCG[T/
C/A]). A tetramer of the ABRE  cis  element was suffi cient to confer transcriptional 
activation in response to cytosolic Ca 2+  transients (Yu et al.  2007 ). Thus, for some 
specifi c Ca 2+  transients and motif combinations, ABREs function as Ca 2+ -responsive 
 cis  elements (Kaplan et al.  2006 ; Yu et al.  2007 ). The link between Ca 2+ -responsive 
transcription factors with ABA-responsive  cis -elements suggests a link between 
Ca 2+  signaling and ABA signaling systems. 

 Interaction between Ca 2+  signaling and ABA signaling systems was further 
 demonstrated by showing that calcium-dependent protein kinases (CDPKs) regu-
late ABA signal transduction in  Arabidopsis  (Zhu et al.  2007 ; Geiger et al.  2010 ). 
ABA stimulated two homologous CDPKs (CPK4 and CPK11) in  A .  thaliana . Loss 
of function mutations of  CPK4  and  CPK11  resulted in ABA insensitive phenotypes. 
The CPK4 and CPK11 kinases both phosphorylated two ABA-responsive transcrip-
tion factors, ABF1 and ABF4, in vitro, suggesting that the two kinases may regulate 
ABA signaling through these transcription factors (Zhu et al.  2007 ). These results 
suggest that CDPK/calcium signaling pathway may regulate ABA signaling 
pathways.  

4.21.8     Phytoalexin Biosynthesis 

 Elicitor-induced [Ca 2+ ] cyt  has been shown to be required for the induction of phyto-
alexin production (Stab and Ebel  1987 ; Tavernier et al.  1995 ). Suppression of the 
sustained [Ca 2+ ] cyt  increase in elicitor-treated tobacco cells suppressed the accumu-
lation of transcripts of  PAL , the gene encoding phenylalanine ammonialyase, the 
fi rst committed enzyme in the phenylpropanoid pathway leading to biosynthesis of 
phytoalexins (Lecourieux et al.  2002 ). A prolonged [Ca 2+ ] cyt  elevation is correlated 
with phytoalexin accumulation in elicitor-stimulated soybean or parsley cells 
(Mithöfer et al.  1999 ; Blume et al.  2000 ).   

4.22     Importance of Calcium Signaling System in Activation 
of Plant Innate Immunity 

 Calcium signaling system involves activation of several ion channels, pumps and 
transporters resulting in generation of specifi c calcium signatures. The signals 
 carried by the calcium signatures are transduced to different sensor proteins. Specifi c 
calcium signatures are recognized by different calcium sensors to transduce 
calcium- mediated signals into downstream events. Plant cells employ an array of 
Ca 2+ -binding proteins that serve as Ca 2+  sensors. The Ca 2+  binding proteins that 
function as sensors undergo conformational changes upon Ca 2+  binding that allow 
them to interact with downstream effectors. The calcium sensor proteins fall into 
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two main classes, referred to as sensor relays and sensor responders. The information 
encoded in transient Ca 2+  changes is decoded by an array of Ca 2+  binding proteins 
giving rise to a cascade of downstream effects. Thus the extracellular signals are 
transmitted to cellular calcium-dependent effectors to activate the transcription 
of immune response-related genes. The activation of calcium signaling system 
enhances host defense responses against a wide range of plant pathogens (Lecourieux 
et al.  2006 ; McAinsh and Pittman  2009 ; Abdul Kadar and Lindsberg  2010 ; DeFalco 
et al.  2010 ; Dodd et al.  2010 ; Hamada et al.  2012 ; Hashimoto et al.  2012 ). 

 Thus, Ca 2+  signaling system involves several ion channels, pumps, transporters, 
Ca 2+  sensor proteins, calmodulin-binding proteins, and calcium-dependent protein 
kinases. Activation of any one key component in the calcium signaling pathway 
triggers defense responses against pathogens, suggesting interplay of the different 
components in the signaling pathway. CNGC is an important Ca 2+  channel involved 
in Ca 2+  infl ux into cytosol. Application of cAMP results in CNGC2-dependent 
 elevation of cytosolic Ca 2+  in  Arabidopsis  leaves (Ma et al.  2009a ). Activation of the 
Ca 2+  ion channel by cAMP leads to NO generation, ROS generation, and enhanced 
defense response gene expression (Ma et al.  2009a ). Glutamate receptor gated chan-
nel is another Ca 2+  channel detected in plant cell plasma membrane. In  Arabidopsis 
thaliana  overexpressing a glutamate receptor gene ( RsGluR ) from small radish, 
glutamate treatment triggered greater Ca 2+  infl ux in the root cells of transgenic plants 
(Kang et al.  2006a ,  b ). The increased Ca 2+ infl ux through the glutamate receptor- 
gated channel triggered several defense-related genes including JA-biosynthetic 
genes (Kang et al.  2006a ,  b ). The rice two-pore channel1 (OsTPC1) is a putative 
voltage-gated Ca 2+ -permeable channel (Kurusu et al.  2005 ; Hamada et al.  2012 ). 
Overexpression of  OsTPC1  induced several defense-related signaling systems, 
resulting in induction of oxidative burst and activation of a mitogen-activated 
 protein kinase and hypersensitive cell death (Kurusu et al.  2005 ). Plant annexins 
appear capable of mediating passive, channel-like Ca 2+  transport (Mortimer et al. 
 2008 ; Laohavisit et al.  2009 ,  2010 ; Laohavisit and Davies  2011 ). Annexins are Ca 2+  
transporter involved in Ca 2+  infl ux (Laohavisit and Davies  2011 ). Transgenic 
tobacco plants expressing the annexin gene ( AnnBj1 ) isolated from  Brassica juncea  
showed enhanced defense responses against  Phytophthora parasitica  var.  nicoti-
anae . The transgenic plants showed increased expression of several defense-related 
proteins (Jami et al.  2008 ). 

 Calmodulin (CaM) and calmodulin-like (CML) proteins are the potential Ca 2+  
signal sensor proteins. Activation of the expression of these proteins triggers several 
immune responses and confers resistance against several pathogens. Transgenic 
overexpression of pepper calmodulin gene  CaCaM1  activates ROS and NO genera-
tion, and triggers defense responses against  Xanthomonas campestris  pv.  vesicato-
ria  in pepper leaves (Choi et al.  2009 ). Overexpression of the same pepper  CaCaM1  
gene in  Arabidopsis  enhanced ROS and NO generation and conferred resistance 
against  Pseudomonas syringae  and  Hyaloperonospora parasitica  (Choi et al.  2009 ). 
Overexpression of the pathogen-inducible tobacco calmodulin gene  NtCaM13 , 
which is a component in the Ca 2+  signaling pathway, triggered defense responses 
against the oomycete pathogen  Pythium aphanidermatum , the fungal pathogen 
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 Rhizoctonia solani , and the bacterial pathogen  Ralstonia solanacearum  in tobacco 
(Takabatake et al.  2007 ). Overexpression of the soybean calmodulins GMCaM-4/5 
induces constitutive  PR  gene expression and activates  trans -acting elements that 
bind to  cis -acting elements in the  Arabidopsis PR-1  promoter. The up-regulation of 
 PR  genes by these GmCaM isoforms was found to be dependent on NIM1 
(Nonimmunity1) and unknown transcription factors (Park et al.  2004 ). Constitutive 
expression of soybean CaMs SCaM-4 and SCaM-5 in transgenic tobacco plants 
induced an array of defense-related genes. The transgenic plants showed defense 
responses against the oomycete  Phytophthora parasitica  var. nicotianae, the bacte-
rial pathogen  Pseudomonas syringae  pv.  tabaci , and the viral pathogen  Tobacco 
mosaic virus  (TMV) (Heo et al.  1999 ). 

 Calmodulin-like (CML) proteins also have been shown to trigger Ca 2+  signaling 
system. Overexpression of a tomato CML,  APR134 , in  Arabidopsis  accelerated 
hypersensitive immune response (Chiasson et al.  2005 ). Calmodulin-binding 
proteins (CBPs), another important components in calcium signaling system also 
trigger a series of defense responses. Overexpression of CBP60g in  Arabidopsis  
caused elevated SA accumulation, increased expression of the defense genes, and 
enhanced defense responses, and the transgenic plants showed enhanced resistance 
to  Pseudomonas syringae  (Wan et al.  2012 ). Transgenic potato plants carrying a 
calcium- dependent protein kinase, which induces ROS, show high defense responses 
against the oomycete  P. infestans  (Kobayashi et al.  2007 ). Collectively these studies 
suggest that manipulation of even one component in the Ca 2+  signaling system may 
be able to trigger the entire gamut of immune response signaling systems to confer 
resistance against a wide-spectrum of pathogens.     
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          Abstract        PAMP elicitor signals trigger a rapid and transient production of reactive 
oxygen species (ROS) including hydrogen peroxide (H 2 O 2 ), superoxide (O 2  − ), 
 singlet oxygen ( 1 O 2 ), and hydroxyl radical (OH˚   ). The oxidative burst is often a very 
rapid response induced by elicitor, occurring within seconds to few minutes, sug-
gesting that the process may not require  de novo  protein synthesis but involves the 
activation of pre-existing enzymes. Several enzymes including NADPH oxidases, 
peroxidases, xanthine oxidase, amine oxidases, oxalate oxidase, glycollate oxidase, 
urate oxidase and lipoxygenase have been implicated in the PAMP-induced ROS 
production. H 2 O 2  is generated in apoplasts but accumulates to a greater extent in the 
cytoplasm than in the apoplast. It has been suggested that the apoplastic H 2 O 2  is 
translocated to cytoplasm for participation in the pathogen defense. ROS plays a 
central role in launching the defense response against invading pathogens. ROS 
induces Ca 2+  signaling system, reversible phosphorylation, ubiquitin-proteasome 
signaling pathway, NO signaling system, salicylic acid signaling system, 
 ethylene- mediated signaling system, jasmonic acid signaling system, and abscisic 
acid- mediated signaling system. The ROS signal functions are manifested as a con-
sequence of their ability to act as mobile carriers of an unpaired electron and are 
involved in redox signaling system. Redox signaling occurs when at least one step 
in a signaling event involves one of its components being specifi cally modifi ed by a 
reactive oxygen species. Signaling through the redox active molecule H 2 O 2  has been 
shown to be important in inducing plant defense responses. Expression of several 
transcription factors has been shown to be regulated by H 2 O 2  and these transcription 
factors may be direct targets for redox modifi cation by H 2 O 2 . ROS signaling system 
and cognate redox signaling have been shown to be involved in activation of several 
defense genes. Some pathogens could cause disease mostly by interfering with the 
H 2 O 2  signaling pathway.  

  Keywords     Reactive oxygen species (ROS)   •   PAMP-induced ROS production   • 
  ROS-induced signaling systems   •   Redox signaling • H 2 O 2 -regulated transcription 
factors  
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5.1               Reactive Oxygen Intermediates Involved 
in Oxidative Burst 

 The rapid and transient production of reactive oxygen species (ROS), also called 
oxidative burst or respiratory burst, is one of the most rapid defense responses 
observed in plants due to pathogen-associated molecular pattern (PAMP)/elicitor 
treatment (Yang et al.  1997 ; Grant and Loake  2000 ; Faize et al.  2004 ; Asada  2006 ; 
Sagi and Fluhr  2006 ; Vidhyasekaran,  2007 ; Lehtonen et al.  2012 ). The ROS, 
which are also called as reactive oxygen intermediates (ROI; Grant and Loake 
 2000 ; Pieterse and Van Loon  2004 ), include hydrogen peroxide (H 2 O 2 ), super-
oxide (O 2  − ), singlet oxygen ( 1 O 2 ), and hydroxyl radical (OH˚) (Grant and Loake 
 2000 ; Vidhyasekaran  2007 ). 

 O 2  −  is the fi rst ROS induced by elicitor treatment (Haga et al.  1995 ; Faize et al. 
 2004 ). The superoxide is only short lived and is thought to be produced in the 
outer surface of the cell within a few minutes of elicitor treatment (Sagi and 
Fluhr  2006 ). The half life of O 2  −  is less than a second and is usually rapidly 
 dismutated either nonenzymatically or via superoxide dismutase (SOD) to H 2 O 2 , 
which is relatively stable (Grant and Loake  2000 ). The negatively charged O 2  −  
could traverse the plasma membrane as the neutral hydroperoxyl (HO 2 ) or being 
converted to the membrane-permeable H 2 O 2  (Sagi and Fluhr  2006 ). Protonation 
of O 2  −  can produce the hydroperoxyl radical HO 2  – , which can convert fatty acids 
to toxic lipid peroxides. Moreover, in the presence of divalent metal ions such as 
Fe 2+ , H 2 O 2  can undergo Fenton reaction, producing the hydroxyl radical (OH˚) 
(Grant and Loake  2000 ). Singlet oxygen ( 1 O 2 ) is an excited state of molecular 
oxygen that can be generated in a number of ways including the spontaneous 
dismutation of two O 2  −  radicals (Elstner  1982 ; Scandalios  1993 ). Among the dif-
ferent ROS, H 2 O 2  is the most attractive candidate for defense signaling because 
of its relatively long life and high permeability across membranes (Allan and 
Fluhr  1997 ).  

5.2     Upstream Events in ROS Signaling System 

5.2.1     Enzymes Involved in ROS Generation 

 The oxidative burst is often a very rapid response induced by elicitor, occurring 
within seconds in some systems, such as cultured cells of French bean ( Phaseolus 
vulgaris ) and soybean (Bolwell et al.  1995 ). In other systems, such as rose ( Rosa 
damascena ) cultured cells (Arnott and Murphy  1991 ), it may be delayed for few 
minutes or hours. These observations suggest that the oxidative burst may not 
require  de novo  protein synthesis but involves the activation of pre-existing enzymes. 

 Several enzymes have been implicated in the PAMP/elicitor-induced apo-
plastic ROS production (Fig.  5.1 ). NADPH oxidases, which are inhibited by 

5 Reactive Oxygen Species and Cognate Redox Signaling System…



285

diphenyleneiodonium (DPI) but not by cyanide or azide, and cell wall peroxidases, 
which are inhibited by cyanide or azide but not by DPI (Grant et al.  2000b ; 
Bolwell et al.  2002 ) are the two important groups of enzymes involved in ROS 
production (Suzuki et al.  2011 ; Daudi et al.  2012 ; Lehtonen et al.  2012 ; O’Brein 
et al.  2012 ). The NADPH oxidases or cell wall peroxidases have been impli-
cated in the ROS production in different plant systems. In rose cells H 2 O 2  is 
produced by a plasma membrane NADPH oxidase, whereas in bean cells H 2 O 2  
is derived directly from cell wall peroxidases (Bolwell et al.  1998 ).

   An additional source of ROS may emanate intracellularly from xanthine oxidase 
activity (Allan and Fluhr  1997 ). Xanthine oxidase is a reductase supplying electrons 
to NAD +  to produce NADH (Halliwell and Gutteridge  1989 ) and produces O 2  −  
(Montalbini  1992 ). Amine oxidases can induce ROS production by acting on amines 
as substrates for the enzymes. These are a ubiquitous group of plant enzymes and 
catalyze the oxidation of a variety of monoamines, diamines, and polyamines to the 
corresponding aldehyde and release H 2 O 2  (Tipping and McPherson  1995 ). Oxalate 
oxidase is also a H 2 O 2 -generating enzyme (Zhou et al.  1998 ). Some enzymes, such 
as glycolate oxidase (Rojas and Mysore  2012 ; Rojas et al.  2012 ) and urate oxidase 
(Halliwell and Gutteridge  1989 ), can produce H 2 O 2  (Halliwell and Gutteridge 
 1989 ). Lipoxygenase catalyzes the direct oxygenation of polyunsaturated fatty 
acids and produces O 2  −  (Thompson et al.  1987 ). 

 Different elicitors may induce ROS production by different types of enzymes. 
The cryptogein-induced ROS burst was insensitive to the NO synthase inhibitor 
L-NMMA, whereas L-arginine-induced ROS was sensitive to this inhibitor. 
Cryptogein-induced ROS was signifi cantly inhibited by DPI, whereas L-arginine- 
induced ROS burst remained unaffected (Allan and Fluhr  1997 ). These studies 
 indicated that cryptogein-induced ROS burst is due to the action of NADPH oxi-
dase-type enzymes or xanthine oxidase. The L-arginine-induced ROS may be due 
to the action of peroxidase- or amine oxidase-type enzymes (Allan and Fluhr  1997 ).  

NADPH oxidase

Peroxidase

Xanthine oxidase

Amine oxidase

Oxalate oxidase

Glycollate oxidase

Lipoxygenase

ROS generation

  Fig. 5.1    Enzymes involved in generation and accumulation of ROS in plant cells       
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5.2.2     Early PAMP-Induced Events Leading to Activation 
of NADPH Oxidase to Generate ROS 

 The early PAMP elicitor-induced events include Ca 2+  infl ux, anion effl uxes, 
 cytosolic acidifi cation, plasma membrane depolarization, MAPK signaling 
 cascade activation, calcium-dependent protein kinase (CDPK) activation, and 
protein phosphorylation/dephosphorylation. These events have been shown to 
activate NADPH oxidase homologs of plants termed respiratory burst oxidase 
homolog (Rboh) which is responsible for ROS production (Fig.  5.2 ; Nürnberger 
and Scheel  2001 ; Simon-Plas et al.  2002 ; Wendehenne et al.  2002 ; Apel and Hirt 
 2004 ; Kadota et al.  2004 ; Torres and Dangl  2005 ; Wong et al.  2007 ; Asai et al. 
 2008 ; Zhu et al.  2009 ; Zhao et al.  2010 ; Zhang et al.  2011 ; Kiirika et al.  2012 ). 
The NADPH oxidases are localized to plasma membrane fractions (Keller et al. 
 1998 ) and are stimulated directly by Ca 2+  (Sagi and Fluhr  2001 ). All plant  rboh  
genes carry EF-hands that bind Ca 2+  and plant Rboh proteins were shown to be 
stimulated directly by Ca 2+  (Jabs et al.  1997 ; Sagi and Fluhr  2001 ; Torres and 
Dangl  2005 ; Van Breusegem et al.  2008 ). NO 3  −  effl ux activation seems to be 
essential to induce NADPH oxidase (Wendehenne et al.  2002 ). Anion effl ux has 
been shown to be necessary for the induction of ROS production in parsley (Jabs 
et al.  1997 ) and soybean cells (Ebel et al.  1995 ). Phosphorylation events also 
occur both upstream and downstream of ROS production (Nürnberger and Scheel 
 2001 ; Apel and Hirt  2004 ).

PAMP SIGNAL
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Cl-

effluxes

NO3 
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Plasma 
membrane 
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  Fig. 5.2    PAMP-triggered early signaling events activating NADPH oxidase to produce ROS       
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   The early signaling events induced by PAMPs include the increased expression 
of genes encoding G-proteins. The gene  AGB1 , encoding the β-subunit of G-protein 
in  Arabidopsis , is highly induced after fl g22 treatment (Zipfel et al.  2004 ). The 
PAMP-activated small G-proteins (Morel et al.  2004 ; Wong et al.  2007 ; Kiirika 
et al.  2012 ) and heterotrimeric G-proteins (Zhu et al.  2009 ; Zhao et al.  2010 ; Zhang 
et al.  2011 ) have been shown to trigger generation of ROS. The G-proteins are 
involved in the regulation of ROS generation via the activation of NADPH oxidase 
(RBOH) (Fig.  5.1 ; Agrawal et al.  2003 ; Kiirika et al.  2012 ). The small GTP-binding 
protein Rac2 homologs (called Rho-like proteins) regulate the production of ROS 
by the NADPH oxidase (Kawasaki    et al.  1999 ; Moeder et al.  2005 ; Wong et al. 
 2007 ). Different plant Rac proteins appear to act as either positive or negative regu-
lators of ROS production.  Osrac1  is a positive regulator of ROS production in rice 
(Ono et al.  2001 ), whereas  Ntrac5  acts as negative regulator of ROS production in 
tobacco (Morel et al.  2004 ). In Arabidopsis, heterotrimeric G protein signaling 
mediates the oxidative burst (Joo et al.  2005 ). The  Arabidopsis agb1  mutants are 
impaired in the oxidative burst triggered by fl g22, suggesting the importance of 
G-proteins in ROS production (Ishikawa  2009 ). 

 MAP kinases may be involved in generation of ROS by activating the NADPH 
oxidase (Asai et al.  2008 ). Two different MAPK cascades have been shown to be 
involved in induction of ROS in  Nicotiana benthamiana . The MAPK cascades 
NPK1-MEK2-SIPK/NTF4 and NPK1-MEK1-and NTF6 are involved in activation 
of NADPH oxidase which is involved in production of ROS (Asai et al.  2008 ). The 
MAP kinases may induce the NADPH oxidase at the gene transcriptional level and 
also by post-translational level (Yoshioka et al.  2003 ).  N. benthamiana  MAPK 
kinase induced the NADPH oxidase gene  NbrbohB  at the transcriptional level. At 
the post-translational level, the NADPH oxidase-induced oxidative burst is  controlled 
through phosphorylation activation by its upstream MAP kinase and dephosphory-
lation inactivation by its negative regulator, phosphatase (Yoshioka et al.  2003 ). 
Calcium-dependent protein kinase (CDPK) has also been shown to phosphorylate 
NADPH oxidase (Xing et al.  1997 ; Blumwald et al.  1998 ). Accumulation of ROS 
requires both Ca 2+  infl ux and protein kinase activity (Romeis et al.  1999 ).  

5.2.3     Cell Wall Peroxidases Are Involved in ROS Production 
in Some Plant Systems 

 Cell wall peroxidases have been shown to be involved in ROS production in some 
plant systems (Daudi et al.  2012 ; O’Brein et al.  2012 ). In horseradish ( Armoracia 
lapathifolia ), the accumulation of H 2 O 2  has been suggested to be due to the action 
of peroxidase producing phenolic and NAD radicals which reduce O 2  to superoxide 
(Halliwell  1978 ). In this model, the source of electrons in the apoplast is said to be 
malate, exported across the plasma membrane by a malate/oxalacetate carrier and 
used to reduce NAD +  by apoplastic malate dehydrogenase. H 2 O 2  is formed by the 
dismutation of superoxide (Bolwell et al.  1998 ). 
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 The oxidative burst induced in French bean cultured cells by a fungal elicitor, 
involves an apoplastic peroxidase (Bolwell et al.  1995 ). The O 2 -heme complex of 
peroxidase is reduced to compound III by reductants exported from the cell. Under 
elevated pH conditions, the complex is effectively hydrolyzed to release H 2 O 2 . In 
this model the source of electrons has not been identifi ed, but the release of a reduc-
tant from elicited cells has been observed (Bolwell et al.  1995 ). Bolwell et al. ( 1998 ) 
showed that in bean cells treated with a fungal elicitor, H 2 O 2  was derived directly 
from cell wall peroxidases following extracellular alkalinization and the appearance 
of a reductant. 

 Production of apoplastic ROS by chitin treatment in  Physcomitrella patens  has 
been shown to require peroxidase. The fungal elicitor chitin caused an immediate 
oxidative burst in wild-type  P .  patens  but not in the ∆ Prx34  mutants lacking the 
chitin-responsive secreted class III peroxidase (Prx34), suggesting the requirement 
of peroxidase for the production of ROS (Lehtonen et al.  2012 ).   

5.3     ROS-Scavenging Systems May Be Involved 
in Fine- Tuning Accumulation of ROS 

 Various ROS-scavenging systems, including catalases, ascorbate peroxidases, 
 glutathione, superoxide dismutases are involved in increases in ROS in the plant 
cell (Mittler et al.  2004 ) and in activation of plant defense responses (Mittler et al. 
 1999 ; Klessig et al.  2000 ). It is widely reported that inhibition of catalase leads to 
accumulation of H 2 O 2  (Takahashi et al.  1997 ). Salicylic acid (SA), which inhibits 
catalase, increases accumulation of H 2 O 2  in elicited cells (Delaney et al.  1994 ; 
Willekens et al.  1994 ). Xanthine oxidase and peroxidase also reduce the level of 
catalase and hence increase the production of H 2 O 2  (Milosevic and Slusarenko 
 1996 ). Compartmentalization of both ROS production and activation of ROS-
scavenging systems contribute to fi ne-tuning of ROS levels and their signaling 
properties (Torres et al.  2006 ).  

5.4     Site of Production of ROS 

 Production of ROS induced by various signals has been detected in the apoplast and 
also within cells. Plasma membranes and organelles, such as mitochondria, peroxi-
somes, and chloroplasts have been shown to act as ROS generators (Grant and 
Loake  2000 ; Asada  2006 ; Torres et al.  2006 ; Astamker et al.  2007 ). It has been 
shown that isolated nuclei can also generate H 2 O 2  in response to calcium addition 
(Astamker et al.  2007 ). ROS accumulated within the tobacco cells more rapidly 
than the response outside the cell (Astamker et al.  2007 ). Sang et al. ( 2012 ) showed 
that the PAMP harpin activated NADP oxidase located in the plasma membrane and 
induced generation of ROS in the apoplast. H 2 O 2  was generated in apoplasts in a 
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NADPH oxidase-dependent manner but accumulated to a greater extent in the 
 cytoplasm than in the apoplast. Inhibiting apoplastic H 2 O 2  generation abrogated 
both cytoplasmic H 2 O 2  accumulation and plant resistance to bacterial pathogens 
(Sang et al.  2012 ). These results suggest that the apoplastic H 2 O 2  is translocated to 
cytoplasm for participation in the pathogen defense.  

5.5     Biphasic ROS Production 

 Two phases of ROS induction by PAMPs/elicitors have been reported in plant cell 
suspension cultures. Very rapid responses (within minutes) have been termed phase 
1 (Baker and Orlandi  1995 ) and have been shown to be specifi cally inhibited by 
DPI, calcium infl ux inhibitors, and kinase inhibitors (Baker and Orlandi  1995 ; 
Hammond-Kosac and Jones  1996 ). The phase I responses are not always correlated 
with defense responses. Later ROS production (many hours) is termed phase II and 
it appears to take part in defense signaling system (Allan and Fluhr  1997 ).  

5.6     ROS Plays a Central Role in Triggering Immune 
Responses 

 ROS appears to interact with various defense signaling systems (Fig.  5.3 ). It plays a 
central role in launching the defense response (Vandenabeele et al.  2003 ). ROS 
induces Ca 2+  signaling system, reversible phosphorylation system, ubiquitin- 
proteasome signaling pathway, NO signaling system, salicylic acid signaling sys-
tem, ethylene-mediated signaling system, and jasmonic acid – dependent signaling 

ROS

Ca2+ signaling 

Protein phosphorylation

NO signaling

SA signaling

JA signaling

Ethylene signaling

ABA signaling

  Fig. 5.3    ROS-triggered immune response signaling pathways       
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system (Fig.  5.3 ; Desikan et al.  2001 ; Vranová et al.  2002 ; Gupta and Luan  2003 ; 
Vandenabeele et al.  2003 ; Desikan et al.  2005 ; Fedoroff  2006 ; Hancock et al.  2006 ; 
Torres et al.  2006 ).

5.7        Interplay Between ROS and Ca 2+  Signaling System 

 Increase in Ca 2+  infl ux is known to trigger ROS generation (Desikan et al.  2001 ; 
Choi et al.  2009 ). The Ca 2+  sensor protein calmodulin (CaM) has been suggested to 
be involved in Ca 2+ -triggered ROS generation. An increase in Ca 2+  amount in cyto-
sol triggered by PAMP elicitor stimuli is perceived by the calmodulin. The calmod-
ulin gene is strongly induced by the Ca 2+  infl ux in  Arabidopsis  (Desikan et al.  2001 ). 
The Ca 2+ /CaM complex regulates NAD kinase, which generates NADPH for 
NADPH oxidase activity (Harding et al.  1997 ). Increase in NADPH oxidase activity 
results in generation of ROS (Choi et al.  2009 ; Pitzschke and Hirt  2006 ,  2009 ; 
Pitzschke et al.  2009a ,  b ; Mazars et al.  2010 ). 

 While Ca 2+  infl ux –dependent activation of calmodulin gene is required for ROS 
production, ROS also triggers Ca 2+  infl ux (Levine et al.  1996 ). Intracellular Ca 2+  
concentrations increase in response to oxidative burst (Price et al.  1994 ). A calmod-
ulin gene was strongly induced by H 2 O 2  in  Arabidopsis  (Desikan et al.  2001 ), 
suggesting that ROS is involved in triggering Ca 2+  signaling system. H 2 O 2  has been 
shown to trigger calcium infl ux in tobacco (Kawano and Muto  2000 ). 

 It has been suggested that ROS might have regulated Ca 2+  infl ux through 
plasma membrane transport proteins (Laohavisit et al.  2010 ,  2012 ). The PAMP-
induced H 2 O 2  may trigger [Ca 2+ ] cyt  increase, probably through the activation of 
H 2 O 2  – sensitive Ca 2+  channels located in the plasma membrane (Lecourieux 
et al.  2002 ). The ROS activates hyperpolarization- activated Ca 2+  infl ux current 
(Pei et al.  2000 ; Foreman et al.  2003 ). 

 The NADPH oxidase-derived ROS stimulates a Ca 2+  infl ux into the cytoplasm 
(Takeda et al.  2008 ). H 2 O 2  and OH˚ may serve as distinct signals in the regulation 
of calcium infl ux, due to the existence of calcium channels that are distinctively 
sensitive to the generated H 2 O 2  (Demidchik et al.  2007 ). The rise in Ca 2+  level in 
turn activates NADPH oxidase to produce ROS (Takeda et al.  2008 ), suggesting a 
positive feedback regulation of Ca 2+  infl ux – ROS signaling system. These results 
suggest that a signifi cant amount of cross-talk occurs between ROS and calcium 
signaling systems. 

 ROS may also act as a second messenger activating Ca 2+  signaling (Kwak et al. 
 2003 ). Abscisic acid (ABA) promotes ROS production, activates plasma membrane 
Ca 2+ -permeable channels, and triggers cytosolic Ca 2+  increases in  Arabidopsis thaliana . 
Disruption of NADPH oxidase catalytic subunits genes,  AtrbohD  and  AtrbohF , has 
been shown to impair ABA signaling, ABA promotion of ROS production, ABA-
induced cytosolic Ca 2+  increases and ABA-activation of plasma membrane Ca 2+ -
permeable channels in guard cells (Kwak et al.  2003 ). Application of H 2 O 2  rescued 
Ca 2+  channel activation in the  atrbohD/F  mutants, suggesting that the ROS acts as a 
second messenger activating Ca 2+  signaling (Kwak et al.  2003 ).  
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5.8     Interplay Between ROS and NO Signaling Systems 

 H 2 O 2  production has been shown to be required for NO synthesis. NO synthesis is 
severely reduced in the NADPH oxidase  Arabidopsis  double mutant  atrbohD 
atrbohF , suggesting that endogenous H 2 O 2  production is required for NO synthesis 
(Bright et al.  2006 ). Nitric oxide is often produced at the same time and in the same 
locations in plants as ROS (Neill et al.  2003 ). NO may also react with thiol groups on 
proteins in a process known as S-nitrosylation, to produce a –S-NO group (Hancock 
et al.  2006 ). NO is known to modify the same type of proteins which are modifi ed by 
H 2 O 2  (Lindermayr et al.  2005 ). These results suggest that there may be a competition 
between H 2 O 2  and NO at the level of thiol modifi cation which may determine the 
exact signaling processes that ensue (Hancock et al.  2006 ). It has also been reported 
that ROS activates the mitogen-activated protein kinase MPK6. The ROS-activated 
MAPK modulates nitric oxide biosynthesis in  Arabidopsis  (Wang et al.  2010 ).  

5.9     Interplay Between ROS and MAPK Signaling Systems 

 H 2 O 2  activates MAP kinases that modulate gene expression and transduce cellular 
responses to extracellular stimuli (Desikan et al.  1999 ; Kovtun et al.  2000 ; Samuel 
et al.  2000 ; Pitzschke and Hirt  2006 ,  2009 ; Pitzschke et al.  2009a ,  b ). Activation of 
MAP kinases by ROS has been reported in  Arabidopsis  (Grant et al.  2000a ; Kovtun 
et al.  2000 ; Desikan et al.  2001 ), tobacco (Samuel and Ellis  2002 ), and maize 
(Zhang et al.  2006 ). The MAPKKKs ANP1 and OMTK1 have been shown to be 
activated by H 2 O 2  (Kovtun et al.  2000 ; Nakagami et al.  2004 ).  

5.10     Interplay Between ROS and Salicylic Acid Signaling 
Systems 

 H 2 O 2  stimulates salicylic acid (SA) biosynthesis in tobacco (León et al.  1995 ). SA is 
synthesized in tobacco leaves from benzoic acid (BA) after elicitation (Yalpani et al. 
 1993 ). Elicitors trigger the oxidative burst, which results in production of H 2 O 2 . H 2 O 2  
causes an intracellular accumulation of BA. The conversion of BA to SA is catalyzed 
by benzoic acid 2-hydroxylase (BA2H), an inducible enzyme that is synthesized de 
novo in response to increased BA level (León    et al.  1993 ). BA2H is a soluble Cyt 
P-450 monoxygenase that uses molecular oxygen for the 2- hydroxylation of benzoic 
acid (León et al.  1995 ). The increased 2-hydroxylation activity may be due to the 
additional oxygen arising from the H 2 O 2  degraded by catalase (León et al.  1995 ). The 
catalase-mediated release of molecular oxygen from peroxide may lead to the activa-
tion of BA2H, resulting in enhanced  accumulation of SA (Fig.  5.4 ; León et al.  1995 ).

   An UDP-glucose:SA:glucosyltransferase that converts SA to SA β-glucoside in 
tobacco is up-regulated after 30 min of exposure to external stimulus and it suggests 
the accumulation of SA in elicited tobacco plants at a transcriptional level 
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(Vandenabeele et al.  2003 ). SA is known to bind catalase (Chen et al.  1993 ; Conrath 
et al.  1995 ). This binding inhibits the activity of the enzyme in vitro, and hence it is 
suggested that the inactivation of catalase by SA may increase the levels of H 2 O 2  
(León et al.  1995 ; Torres et al.  2006 ). Several effector proteins involved in SA-induced 
defense responses have been identifi ed. The fi rst protein identifi ed as a salicylic acid-
binding protein is the cytosolic (peroxisomal) tobacco catalase (CAT) that reversibly 
binds SA (Chen et al.  1993 ; Conrath et al.  1995 ). SA inhibits CAT’s H 2 O 2 -degrading 
activity (Durner and Klessig,  1996 ; Wendehenne et al.  1998 ). SA-mediated inhibi-
tion of CAT may generate H 2 O 2 , which may activate the ROS signaling system 
inducing expression of defense genes (Chen et al.  1993 ). ROS signaling system may 
act both in upstream and downstream of SA signaling (Slaymaker et al.  2002 ). 

 Thus H 2 O 2  may increase accumulation of SA and SA may increase accumulation 
of H 2 O 2 . ROS metabolism can affect the function of NPR1 by controlling NPR1 
redox state (Mou et al.  2003 ). NPR1 is an important regulator of responses down-
stream of SA (Mou et al.  2003 ; Zhang et al.  2003 ). It has also been demonstrated 
that calcium-dependent generation of ROS subsequently induces the production of 
salicylic acid and PR genes expression (Chen et al.  2011 ).  

5.11     Interplay Between ROS and Ethylene Signaling 
Systems 

 ROS may function in ethylene signaling system. An increase in H 2 O 2  was able to 
trigger transcriptional changes of genes involved in the biosynthesis of ethylene. 
S-adenosyl-L-methionine synthetase is the fi rst enzyme in the ethylene biosynthesis 
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  Fig. 5.4    ROS-mediated salicylic acid biosynthesis       
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pathway and 1-aminocyclopropane-1-carboxylate (ACC) oxidase is the fi nal stage 
enzyme involved in conversion of ACC to ethylene. Transcript tags coding for both 
the enzymes were up-regulated within 2 h of increase in H 2 O 2 , followed by an 
increase in ethylene-responsive proteins, such as EREBP/AP2 domain proteins 
(Vandenabeele et al.  2003 ). 

 Ethylene receptor ETR1 (for ethylene response 1) can function as an ROS sensor 
(Desikan et al.  2005 ). The ethylene receptor ETR1 involved in ethylene perception 
and signaling has been shown to mediate H 2 O 2  signaling in  Arabidopsis  (Desikan 
et al.  2005 ). Mutation of a Cys residue in the N-terminal region of ETR1 disrupts 
H 2 O 2  signaling in plants (Desikan et al.  2005 ). Four ethylene-responsive element- 
binding proteins (EREBPs), the ethylene-responsive transcription factor (ERF1), and 
a CEO1-like protein, which is a potential cofactor of EREBP transcription factors, 
were found to be up-regulated by H 2 O 2  in tobacco (Vandenabeele et al.  2003 ). 

 Ethylene receptor ETR1 has been shown to mediate H 2 O 2  signaling in  Arabidopsis  
(Desikan et al.  2005 ). ETR1 functions as an ROS sensor. Mutation of a Cys residue in 
the N-terminal region of ETR1 disrupts H 2 O 2  signaling in plants (Desikan et al.  2005 ). 
The transcription factors induced by H 2 O 2  include ethylene-responsive element bind-
ing protein (EREBP) in  Arabidopsis  (Desikan et al.  2001 ). H 2 O 2  up- regulates four 
ethylene-responsive element-binding proteins (EREBPs), the ethylene-responsive 
transcription factor (ERF1), and a CEO1-like protein, which is a potential cofactor of 
EREBP transcription factors in tobacco (Vandenabeele et al.  2003 ).  

5.12     Interplay Between ROS and Jasmonate Signaling 
Systems 

 A very rapid and sustained up-regulation of transcript tags that are involved in the 
production of JA signals was observed in ROS-elicited tobacco plants (Vandenabeele 
et al.  2003 ). Lipoxygenase is a key enzyme in JA biosynthesis. The gene encoding 
lipoxygenase ( Lox1 ) is induced by ROS (Vranová et al.  2002 ). The genes encoding 
lipase, lipoxygenase, 12-oxophytodienoate reductase (12-ODPR), and divinyl ether 
synthase are activated in tobacco leaves accumulating ROS (Vandenabeele et al. 
 2003 ). These results suggest that ROS is involved in induction of JA biosynthesis.  

5.13     Interplay Between ROS and Abscisic Acid (ABA) 
Signaling Systems 

 ABA has been shown to activate ROS signaling system (Hung et al.  2008 ; Wang and 
Song  2008 ; Zhang et al.  2011 ). ABA is shown to induce the production of ROS (Pei 
et al.  2000 ; Zhang et al.  2001 ; Sakamoto et al.  2008 ). H 2 O 2  is synthesized in response 
to exogenous ABA (Guan et al.  2000 ; Pei et al.  2000 ). NADPH oxidase  AtrbohD  
and  AtrbohF  genes function in ROS-dependent ABA signaling in  Arabidopsis  
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(Kwak et al.  2003 ; Wang et al.  2006 ). Calcium-permeable channels are activated by 
ROS and ABA signaling network is involved in the ROS- induced activation of cal-
cium-permeable channels (Pei et al.  2000 ; Murata et al.  2001 ; Trouverie et al.  2008 ; 
Zhang et al.  2011 ). Activation of these channels requires the presence of NAD(P)H 
in the cytosol. Type 2C protein phosphatases (PP2Cs) also play a role in the ABA-
induced ROS-dependent activation of calcium channels (Murata et al.  2001 ). Anion 
channel activation and proton pumping inhibition involved in the plasma membrane 
depolarization induced by ABA in  A. thaliana  suspension cells were shown to be 
ROS dependent (Trouverie et al.  2008 ). H 2 O 2  mediates, at least in part, ABA 
responses including stomatal closure and gene expression (Guan et al.  2000 ; Pei 
et al.  2000 ).  

5.14     ROS Activates Phosphorylation/Dephosphorylation 
Systems 

 Protein phosphorylation plays a central role in plant immune response signaling 
(Peck et al.  2001 ; Nürnberger et al.  2004 ; Zipfel et al.  2004 ; Benschop et al.  2007 ; 
Tena et al.  2011 ). Protein kinases and protein phosphatases and their corresponding 
protein substrates play key roles in signal transduction. The proteins that make up the 
signal transduction pathway are present in the cell prior to the perception of elicitor 
(Benschop et al.  2007 ). These proteins are activated by post-translational modifi ca-
tions and conformational changes. The most widely recognized post- translational 
modifi cation involved in signal transduction is protein phosphorylation (Benschop 
et al.  2007 ). Post-translational protein modifi cation by phosphorylation/dephosphor-
ylation is an important component in defense signaling system (Lecourieux-Ouaked 
et al.  2000 ; Peck et al.  2001 ; Romeis et al.  2001 ; Lecourieux et al.  2002 ,  2006 ). 

 ROS plays important role in triggering phosphorylation of proteins involved in 
defense signaling system. The genes encoding serine/threonine/tyrosine kinases 
involved in protein phosphorylation are induced by H 2 O 2  in  Arabidopsis  (Desikan 
et al.  2001 ) and  Nicotiana tabacum  (Vranová et al.  2002 ; Vandenabeele et al.  2003 ). 
Calcium-dependent protein kinase is induced by ROS in  Arabidopsis  (Desikan et al. 
 2001 ). Phosphorylation induced by MAP kinases has been shown to be involved in 
ROS signaling (Ren et al.  2002 ; Yoshioka et al.  2003 ; Nakagami et al.  2006 ; Zhang 
et al.  2006 ; Xing et al.  2007 ,  2008 ). MAP kinase cascades have been shown to be 
involved in phosphorylation of transcription factors (Asai et al.  2002 ; Nakagami 
et al.  2006 ). Another kinase involved in H 2 O 2  signaling is oxidative signal-inducible 
1 (OXI1) (Rentel et al.  2004 ). One of the genes activated by H 2 O 2  in  Arabidopsis  is 
that encoding a protein Tyr phosphatase (Desikan et al.  2001 ). Protein Tyr phospha-
tases are important signaling enzymes that regulate protein phosphorylation events 
(Fauman and Saper  1996 ). The  Arabidopsis  protein phosphatase 2C enzymes ABI1 
and ABI2 and the protein tyrosine phosphatase AtPTP1 are inactivated by ROS 
(Meinhard and Grill  2001 ; Gupta and Luan  2003 ). These studies suggest that ROS 
is involved in modulating the phosphorylation process in innate immune responses.  
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5.15     Function of ROS in Ubiquitin-Proteasome System 

 Proteasomes are large protein complexes located in the nucleus and the cytoplasm 
(Peters et al.  1994 ). The main function of the proteasome is to degrade unneeded or 
damaged proteins by proteolysis. Proteasomes regulate the concentration of particu-
lar proteins and degrade misfolded proteins. Proteins are tagged for degradation by 
a small protein called ubiquitin (Pickart  2001 ). Ubiquitin- and proteasome- mediated 
degradation of proteins plays an important role in plant defense signaling system 
(Dreher and Callis  2007 ; Goritsching et al.  2007 ; Yao and Ndoja  2012 ). H 2 O 2  
triggers the up-regulation of ubiquitin precursor proteins, ubiquitin-conjugating 
enzymes (E2), and ubiquitin-protein ligases (E3) in tobacco (Vandenabeele et al. 
 2003 ). An Arabidopsis MAPKKK, MEKK1 has been shown to act downstream of 
H 2 O 2.  MEKK1 kinase activity and protein stability was regulated by H 2 O 2  in a 
proteasome- dependent manner (Nakagami et al.  2006 ).  

5.16     ROS May Regulate Expression of Transcription Factors 

 Expression of several transcription factors has been shown to be regulated by H 2 O 2  
(Desikan et al.  2001 ; Vandenabeele et al.  2003 ). These transcription factors may be 
direct targets for redox modifi cation by H 2 O 2  (Hancock et al.  2006 ). The transcrip-
tion factors induced by H 2 O 2  include ethylene-responsive element binding protein 
(EREBP), MYB-related transcription factor, and zinc fi nger transcription factor in 
 Arabidopsis  (Desikan et al.  2001 ) and WRKY 11 in tobacco (Vranová et al.  2002 ). 
Vandenabeele et al. ( 2003 ) identifi ed four main classes of transcription factors 
which are regulating downstream gene expression in ROS signaling system in 
tobacco: MYB family, WRKY, AP2, and SCARECROW. The identifi ed MYB tran-
scription factor was homologous with the N-terminal MYB domain of a JA-dependent 
transcription factor. The induced WRKY transcription factors contained a redox- 
sensitive zinc-fi nger DNA-binding domain. Four EREBP/AP2 and ethylene- 
responsive transcription factor (ERF1) were also up-regulated together with a 
CEO1-like protein. CEO1 is a potential cofactor of EREBP transcription factors 
(Vandenabeele et al.  2003 ). Activation of these transcription factors may result in 
activation of transcription of several defense genes.  

5.17     Redox Signaling System 

 The ROS signal functions are manifested as a consequence of their ability to act as 
mobile carriers of an unpaired electron (Forman et al.  2004 ). In redox signaling, the 
reaction of the ROS with the target protein is reminiscent of on-off signaling associ-
ated with phosphorylation/dephosphorylation events. Redox signaling occurs 
when at least one step in a signaling event involves one of its components being 
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specifi cally modifi ed by a reactive oxygen species through a reaction that is 
 chemically reversible under physiological conditions and/or enzymatically cata-
lyzed (Forman et al.  2004 ). Signaling through the redox active molecule H 2 O 2  is 
important in inducing plant defense responses (Desikan et al.  2005 ). 

 For proteins to perceive the presence of ROS and to act as signal intermediaries 
there should be a direct chemical interaction which leads to signal propagation 
(Hancock et al.  2006 ). It is suggested that the ROS sensors must have some specifi c 
characteristic that enables them to propagate this signal (Hancock et al.  2006 ). 
Modifi cation of thiol residues in the proteins may be the key component in the ROS 
signaling system (Cooper et al.  2002 ; Vranová et al.  2002 ; Foyer and Noctor  2005 ). 
If there are two cysteine residues in the target protein involved in the reaction, a 
disulphide bridge (S-S) may be formed. However, if there is only one cysteine, the 
–SH group may be oxidized to varying degrees. The thiol group may be oxidized to 
sulphenic acid (−SOH), and this may be further oxidized to sulphinic acid (−SO 2 H) 
or sulphonic acid (−SO 3 H). Since, any oxidation of the thiol is dependent on its 
mid- point redox potential and its availability to the oxidant, only a low proportion 
of the –SH groups within any protein will be able to modifi ed in these ways. Thiols 
in different proteins have different mid-point potentials, and hence the proteins will 
be differentially controlled by fl uctuations in the intracellular redox state. Some 
proteins may be regulated earlier, or later than others as the redox state becomes 
more oxidized (Hancock et al.  2006 ). 

 These oxidation states of the –SH group within cysteine may be restored by 
re- reduction. Thioredoxins (Schürmann and Jacquot  2000 ) and glutaredoxins 
(Lemaire  2004 ) may act as protein disulphide reductases as well as re-oxidizing 
–SOH groups (Collin et al.  2004 ). Sulphinic acid groups may be reduced back to 
the sulphenic group by sulphiredoxins. The sulphenic acid group created may 
then be reduced further by thioredoxins or glutaredoxins to regenerate the thiol, 
−SH (Hancock et al.  2006 ). These observations suggest that there are redox groups 
within proteins that can potentially toggle between oxidation and reduction states 
in a rapid and ROS dose-dependent manner, and in doing so the structures of the 
proteins will be altered and such proteins may partake in H 2 O 2 -mediated signaling 
(Hancock et al.  2006 ). 

 It has been suggested that It has been suggested that H 2 O 2  signaling can activate 
responses such as gene expression and reversible protein phosphorylation through 
oxidative modifi cation of reactive Cys residues within proteins (Danon  2002 ). It has 
been suggested that H 2 O 2  signaling can activate responses such as gene expression 
and reversible protein phosphorylation through oxidative modifi cation of reactive 
Cys residues within proteins (Danon  2002 ). It has been suggested that H 2 O 2  signal-
ing can activate responses such as gene expression and reversible protein phos-
phorylation through oxidative modifi cation of reactive Cys residues within proteins 
(Danon  2002 ). Phosphatases contain readily oxidizable active site cysteine residues 
(Stone  2004 ). Since phosphatases are involved in regulation of protein kinases, 
redox regulation of phosphatase activity can, in turn, regulate the activity of its tar-
get protein kinases (Tonks  2005 ). Some protein kinases are directly redox regulated 
by thioredoxins and peroxiredoxins (Veal et al.  2004 ; Fedoroff  2006 ). 
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 NPR1 (for  N onexpressor of  P athogenesis  R elated genes 1), the transcriptional 
regulatory cofactor, is activated by redox signaling in plants (Fedoroff  2006 ). In 
unstressed cells, NPR1 is maintained in the cytoplasm in a large complex compris-
ing disulfi de-bonded intermolecular oligomers (Mou et al.  2003 ). NPR1 is activated 
when SA accumulates in cells in response to stress signals. Upon activation, the 
intermolecular disulfi de bonds are reduced, releasing monomeric NPR1. The 
released NPR1 then moves into the nucleus to interact with TGA transcription fac-
tors and activate defense gene expression (Fedoroff  2006 ). Mutations of either 
Cys82 or Cys216 render the protein both constitutively monomeric and nuclear and 
constitutively activate expression of defense genes (Mou et al.  2003 ). It has also 
been shown that an intramolecular disulfi de bond between Cys260 and Cys266 in 
TGA1 prevents interaction with NPR1 (Després et al.  2003 ). Reduction of the disul-
fi de bond permits TGA1 to interact with NPR1, which in turn stimulates its DNA- 
binding activity (Fedoroff  2006 ). SA promotes the reduction of NPR1 and TGA1 
(Fobert and Després  2005 ), probably by producing H 2 O 2  (Torres et al.  2006 ). Along 
with increase in H 2 O 2 , the transcript levels of genes encoding antioxidant proteins, 
such as peroxidase and glutathione-S-transferases have increased (Joo et al.  2005 ). 
The build-up of antioxidants that enhance the general cellular reducing capacity 
would have reduced the NPR1 complex (Cumming et al.  2004 ). Thus redox signaling 
may be involved in activation of NPR1. 

 The activities of NPR1 and of the TGA factors TGA1 and TGA4 have been 
shown to be modulated by SA-induced oxidoreduction modifi cations of key cyste-
ine residues (Fobert and Després  2005 ). Reduction of two conserved cysteines in 
NPR1 leads to its monomerization and nuclear localization, which is required for 
the activation of pathogenesis-related (PR) genes. Reduction of conserved cyste-
ines in TGA1 and TGA4 enables their interaction with NPR1, which acts as a 
redox- sensitive cofactor in stimulating TGA1 DNA-binding activity (Fobert and 
Després  2005 ). 

 Metallothioneins are small cysteine-rich proteins involved in ROS scavenging 
and metallothionein is down-regulated by OsRac1, a G-protein in rice (Wong et al. 
 2004 ). Down regulation of ROS scavengers may play an important role in redox- 
mediated defense signaling (Wong et al.  2004 ). The induced redox regulators 
detected in rice cells transformed with  OsRac1  included glyceraldehyde-3-P dehy-
drogenase, NADPH-thioredoxin reductase, ferredoxin-NADPH reductase, NADPH 
dependent oxidoreductase, quinine oxidoreductase, and glutathione-S-transferase 
(GST1) (Fujiwara et al.  2006 ). These results suggest that G-proteins may be involved 
in redox signaling system. 

 Thioredoxins are ubiquitous disulfi de reductases that regulate the redox status 
of target proteins. They may act as regulators of scavenging mechanisms and as 
components of signaling pathways in the plant antioxidant network (Dos Santos and 
Rey  2006 ). A thioredoxin has been shown to interact with the disease resistance 
protein Cf-9 and modulate Cf-9 dependent signaling (Fobert and Després  2005 ). 

 Redox enzymes have been shown to be involved in lignin biosynthesis (Önnerud 
et al.  2002 ) and lignifi cation is one of the key defense responses in plants 
(Vidhyasekaran  2007 ). Lignin may be formed by a radical polymerization initiated 
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by redox enzymes. In this system, manganese oxalate works as a diffusible redox 
shuttle, fi rst being oxidized from Mn(II) to Mn(III) by a peroxidase and then being 
reduced to Mn(II) by a simultaneous oxidation of the lignin monomers to radicals 
that form covalent linkages of the lignin. It suggests involvement of a redox shuttle/
peroxidase system in lignin biosynthesis through activation of polymerization of 
monolignols (Önnerud et al.  2002 ).  

5.18     ROS Signaling System May Activate Transcription 
of Defense Genes 

 ROS signaling system and cognate redox signaling have been shown to be involved 
in activation of several defense genes. Redox control of activation of PR genes has 
been reported in plants (Fobert and Després  2005 ). ROS stress induced the PR pro-
tein PRB1-b, and the antimicrobial protein chitinase class 4 in tobacco (Vranová 
et al.  2002 ). Thaumatin-like protein (PR-5 protein) is induced by H 2 O 2  (Desikan 
et al.  2001 ). H 2 O 2  induces PR-1 protein accumulation in tobacco (Neill et al.  2002 ). 
The ROS stress induced various enzymes involved in phytoalexins synthesis, 
including 5-epi-aristoiochene synthase and vestispiradiene synthase in tobacco 
(Vranová et al.  2002 ). H 2 O 2  are capable of inducing expression of phenylalanine 
ammonia-lyase (Neill et al.  2002 ). Lignin biosynthesis is also activated by ROS 
(Vranová et al.  2002 ) and redox signaling system (Önnerud et al.  2002 ).  

5.19     Pathogens May Cause Disease by Interfering 
with ROS Signaling System in Host Plants 

 ROS signaling system is involved in host plant defense. In the genome of the maize 
smut pathogen  Ustilago maydis , an ortholog of  YAP1  (for  Yeast AP-1-like ) from 
 Saccharomyces cerevisae  has been identifi ed (Molina and Kahmann  2007 ). The 
gene is involved in degradation of H 2 O 2 . The Yap1-regulated genes include peroxi-
dase genes and peroxidases are known to degrade H 2 O 2 .  Yap1  gene was found to be 
essential for virulence of  U. maydis  and deletion mutants of this gene were attenu-
ated in virulence. These results suggest that the biotrophic pathogen  U. maydis  
causes the disease by interfering with the H 2 O 2  signaling pathway (Molina and 
Kahmann  2007 ). 

 Another biotrophic fungal pathogen,  Blumeria graminis  f. sp.  hordei , elicits a 
burst of H 2 O 2  in its host barley at sites of germ tube invasion. The fungus produces 
catalase during the infection process. The fungal  catB  gene encoding catalase has 
been characterized. Enhanced numbers of  catB  transcripts were detected at mature 
primary germ tube and appressorium germ tube stages in a susceptible host. Areas 
of H 2 O 2  clearing were observed at sites of fungal invasion (Zhang et al.  2004 ). 

5 Reactive Oxygen Species and Cognate Redox Signaling System…



299

Collectively, these results suggest that the catalase activity of  B. graminis  f. sp.  hordei  
may contribute to the fungal pathogenicity, probably by interfering with ROS 
signaling system (Zhang et al.  2004 ).     
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          Abstract        Nitric oxide (NO) is a diffusible molecular messenger that plays an impor-
tant role in plant immune response signal transduction. The pathogen- associated 
molecular pattern (PAMP) signal molecules trigger a very rapid NO burst in plant 
cells. NO is synthesized predominantly by the enzyme nitric oxide synthase (NOS). 
NOS contains calmodulin (CaM)-binding motifs and full activation of the enzyme 
needs both Ca 2+  and CaM. NO is involved in infl ux of Ca 2+  into the cytosol. It modu-
lates the activity of plasma membrane as well as intracellular Ca 2+  -permeable chan-
nels. NO acts as an important key redox-active signal for the activation of various 
defense responses. Both an oxidative and a NO burst have been reported to occur 
prior to activation of the signal cascade that eventually activates the transcription of 
defense genes. NO and reactive oxygen species (ROS) work in strong partnership 
during induction of the defense genes. A tight interrelationship between NO and SA 
in plant defense has been reported. NO is required for the full function of SA as a 
systemic acquired resistance (SAR) inducer. NO induces the key enzymes of the JA 
and ethylene biosynthesis pathways. NO acts substantially in cellular signal trans-
duction through stimulus-coupled S-nitrosylation of cysteine residues. NO rapidly 
induces reversible  S -nitrosylation of proteins involved in  signal transduction .  This 
redox-based post-translational modifi cation is a key regulator of protein function in 
plant immunity. NO reacts rapidly with glutathione (GSH) to yield S-nitrosoglutathione 
(GSNO). GSNO is a bioactive, stable, and mobile reservoir of NO. It acts synergisti-
cally with SA in SAR. GSNO reductase (GSNOR) is the main enzyme responsible 
for the in vivo control of intracellular levels of GSNO and also the levels of 
 S -nitrosylated proteins. NO bioactivity is controlled by NO synthesis by the different 
routes and by NO degradation, which is mainly performed by the GSNOR. 
S-nitrosothiols (SNOs) also play important role in SAR. GSNOR controls SNO in 
vivo levels and the SNO content positively regulates plant defense responses.  

  Keywords     Nitric oxide (NO) burst   •   Nitric oxide synthase (NOS)   •   Ca 2+  infl ux   
•   Redox-active signal • Systemic acquired resistance (SAR) • S-nitrosylation • 
S-nitrosoglutathione (GSNO) • GSNO reductase (GSNOR)           
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6.1      Nitric Oxide as a Component of the Repertoire of Signals 
Involved in Plant Immune Signaling System 

 Nitric oxide (NO) is a gaseous readily diffusible free radical identifi ed as a signaling 
molecule in animals and plants (Besson-Bard et al.  2008a ,  b ). Nitric oxide (NO) is a 
key mediator for rapid induction of plant immune responses (Bellin et al.  2013 ). It is 
now well-accepted that NO is a component of the repertoire of signals that a plant 
uses to both thrive and survive (Wilson et al.  2008 ). On perception of pathogen asso-
ciated molecular patterns (PAMPs), plant pattern recognition receptors (PRRs) mod-
ulate signaling networks for defense responses that rely on rapid production of 
reactive nitrogen species (RNS) and reactive oxygen species (ROS) (Bellin et al. 
 2013 ). NO is a diffusible molecular messenger that plays an important role in the 
plant immune response signal transduction system (Grennan  2007 ). Involvement of 
NO in defense signaling has been well demonstrated (Durner et al.  1998 ; Delledonne 
et al.  2001 ; Polverari et al.  2003 ; Xu et al.  2004 ; Perchepied et al.  2010 ; Chun et al. 
 2012 ). NO biosynthetic genes  NIA1  and  NIA2  have been shown to induce NO syn-
thesis and defense responses in  Arabidopsis . Expression of the defense-related genes 
was either abolished or delayed in the double mutant. The double mutant  nia1 nia2  
plants were highly susceptible to  Sclerotinia sclerotiorum  (Perchepied et al.  2010 ). 
The transgenic tobacco plants constitutively expressing a mammalian neuronal nitric 
oxide synthase (NOS) involved in NO production exhibited enhanced resistance to a 
spectrum of pathogens, including bacteria, fungi, and viruses (Chun et al.  2012 ). 
Collectively these results demonstrate the role of NO in defense signaling. 

 An oomycete PAMP/elicitor triggers a NO burst within minutes in tobacco cells 
(Foissner et al.  2000 ; Lamotte et al.  2004 ). A transient burst of NO has been observed 
in roots of  Arabidopsis thaliana  as an early response after contact with  Verticillium 
longisporum  (Tischner et al.  2010 ). NO acts substantially in cellular signal trans-
duction through stimulus-coupled S-nitrosylation of cysteine residues (Benhar et al. 
 2008 ). It serves as a key redox-active signal for the activation of various defense 
responses (Klessig et al.  2000 ). NPR1 and TGA1 are key redox-controlled regula-
tors of systemic acquired resistance (SAR) in plants. The translocation of NPR1 
into the nucleus has been shown to be promoted by NO, suggesting that NO is a 
redox regulator of the NPR1/TGA1 system involved in SAR (Lindermayr et al. 
 2010 ). Collectively these studies suggest that NO plays an important role in plant 
innate immunity signaling system.  

6.2     PAMP-Induced Biosynthesis of NO in Plants 

 NO may be synthesized through different pathways (Fig.  6.1 ; Planchet et al.  2006 ; 
Yamasaki and Cohen  2006 ; Zhao et al.  2007 ; Zottini et al.  2007 ). NO is synthesized 
predominantly by the enzyme NOS in mammals (Bethke et al.  2004 ). NOS cataly-
ses NO production from the substrate arginine and requires Ca 2+ /CaM activation 
(Crawford et al.  2006 ).
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   Although studies concerning NO synthesis and signaling in animals are 
 well- advanced, in plants there are still fundamental questions concerning how NO 
is produced and used. There is a range of potential NO-generating enzymes in 
plants, but no obvious plant nitric oxide synthase homolog has yet been identifi ed 
(Neill et al.  2008 ; Wilson et al.  2008 ). The PAMP/elicitor-induced NO in tobacco 
cells has been shown to be reduced by NOS inhibitors, suggesting the occurrence of 
a NOS- like enzyme in plants (Lamotte et al.  2004 ). In  Arabidopsis thaliana , a NOS-
like enzyme, AtNOS1, has been identifi ed and NO levels were found to be lower in 
the  Atnos1  mutants impaired in AtNOS1 expression (Guo et al.  2003 ). Inhibitors of 
mammalian NOS have been found to suppress NO production in plants subjected to 
biotic and abiotic stresses (Zhang et al.  2003 ; Lamotte et al.  2004 ; Zeidler et al. 
 2004 ; Mur et al.  2005 ; Zhao et al.  2007 ; Zottini et al.  2007 ; Mur et al.  2013 ). These 
observations suggest that NOS may be involved in NO generation. However, a clear 
homologue of animal NOS has not yet been identifi ed in plants (Guo et al.  2003 ; 
Crawford et al.  2006 ; Zemojtel et al.  2006 ; Besson-Bard et al.  2008a ,  b ; Wilson 
et al.  2008 ). The plant enzyme displaying NOS-like activity is structurally different 
from classical mammalian NOS (Guo et al.  2003 ). Crawford et al. ( 2006 ) suggested 
that the AtNOS1 from Arabidopsis might act as a GTPase. 

 Polyamines may also be involved in NO synthesis (Fig.  6.1 ; Besson-Bard et al. 
 2008a ). Rapid production of NO was observed in primary leaves of  Arabidopsis  
when the polyamines spermidine and spermine were added to the  Arabidopsis  
seedlings (Tun et al.  2006 ). This conversion might be carried out by unknown 
enzymes or by polyamine oxidases (Yamasaki and Cohen  2006 ; Besson-Bard 
et al.  2008a ,  b ). 
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Nitrate reductase

Nitrite NO3.   Nitrate

2.    Arginine

Ornithine decarboxylase

Polyamine NO

Unknown 
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Nitrous acidNitrogen 
dioxide

  Fig. 6.1    Four different pathways in NO synthesis in plants       
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 NO may be formed also from nitrite by the action of nitrate reductase, which 
 catalyzes the reduction of nitrate to nitrite using NAD(P)H as an electron donor and 
also generates NO from nitrite (Fig.  6.1 ; Yamasaki and Sakihama  2000 ; Desikan et al. 
 2002 ; Morot   -Gaudry-Talarmain et al.  2002 ; Rockel et al.  2002 ; Bethke et al.  2004 ; 
Planchet and Kaiser  2006 ; Wilson et al.  2008 ). NO generation was reduced in ammo-
nium –fed tobacco plants compared to NO 3  −  -fed plants and NO 3  −  -fed plants showed 
enhanced disease resistance against  Pseudomonas syringae  pv.  phaseolicola  (Gupta 
et al.  2013 ). NO production was completely absent in ammonium-grown tobacco cell 
suspensions totally devoid of nitrate (Planchet et al.  2005 ,  2006 ). It indicates that NO 
synthesis is catalyzed through a nitrate/nitrite-dependent pathway rather than an 
L-arginine-dependent NOS mediated pathway in these tobacco cells. Nitrate reductase 
transcript and protein levels increase in response to an elicitor in potato tubers, suggest-
ing a role for nitrate reductase in the synthesis of NO during the defense response 
(Delledonne  2005 ). Treatment of protoplasts prepared from  Nicotiana benthamiana  
leaves with the PAMP elicitin INF1 secreted by the oomycete pathogen  Phytophthora 
infestans  elevated NO production. INF1-induced NO generation was suppressed by an 
NO-specifi c scavenger. Silencing of nitrate reductase (NR) genes signifi cantly 
decreased INF1-induced NO production (Yamamoto- Katou et al.  2006 ). These results 
suggest that nitrate reductase is involved in the PAMP-triggered NO generation. 

 NO may also be synthesized from nitrite in a nonenzymatic manner (Fig.  6.1 ; 
Yamasaki  2000 ). In this process nitrite is protonated to form nitrous acid (HNO 2 ). 
Two molecules of HNO 2  interact through a series of reactions and give rise to NO 
(Yamasaki    and Sakihama  2000 ). The non-enzymatic conversion of nitrite to NO 
occurs in the apoplast at acidic pH in the presence of reductants such as ascorbic 
acid (Bethke et al.  2004 ).  

6.3     Upstream Events in NO Production 

6.3.1     Ca 2+  Infl ux into Cytosol May Be an Early Upstream 
Event in NO Production 

 PAMP elicitor signals trigger a NO burst within minutes in plant cells after the elici-
tor treatment (Foissner et al.  2000 ; Lamotte et al.  2004 ; Tischner et al.  2010 ). The 
rapid NO production has been shown to be dependent on Ca 2+  signaling system 
(Lamotte et al.  2004 ; Ali et al.  2007 ; Courtois et al.  2008 ; Ma et al.  2008 ; Choi et al. 
 2009 ; Vatsa et al.  2011 ; Ma et al.  2012 ). Infl ux of extracellular Ca 2+  through the cell 
membrane appears to be one of the earliest events triggered by the PAMPs 
(Laohavisit et al.  2009 ; Vadassery and Oelmūller  2009 ; Kwaaitaal et al.  2011 ; 
Vincill et al.  2012 ). The massive infl ux of Ca 2+  occurs via different calcium ion 
channels within 15–30 min after PAMP/elicitor treatment (Lecourieux-Ouaked 
et al.  2000 ; Kwaaitaal et al.  2011 ). The generated Ca 2+  current leads to downstream 
NO production (Ali et al.  2007 ). 
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 The different calcium ion channels involved in the calcium infl ux have also been 
found to be involved in NO production. Cyclic nucleotide-gated ion channels 
(CNGCs) have been reported to play important role in NO synthesis. Plants without 
functional CNGC2 lack the cell membrane Ca 2+  current and do not display immune 
responses induced by NO. The hypersensitive response impaired phenotype to an 
avirulent pathogen in  cngc2  mutant plants could be complemented by the addition 
of an NO donor (Ali et al.  2007 ). The results suggest the importance of the cyclic 
nucleotide gated channel in induction of NO in the immune signaling system 
(Ali et al.  2007 ). Another type of ion channels involved in Ca 2+ infl ux is glutamate 
receptor (GLR)-like channels Ma et al.  2012 ). An oomycete PAMP elicitor has been 
shown to activate GLR calcium channels triggering NO production (Vatsa et al. 
 2011 ). The addition of the Ca 2+  channel blocker Gd 3+  or the Ca 2+  chelator EGTA 
abolished the PAMP-induced NO synthesis (Ali et al.  2007 ), suggesting that NO 
synthesis occurs downstream of cytosolic Ca 2+  elevation.  

6.3.2     Role of Calmodulin in NO Production 

 NOS production in plants has been reported to be dependent on calmodulin (CaM), 
a Ca 2+  sensor protein (Delledonne et al.  1998 ; Courtois et al.  2008 ; Ma and Berkowitz 
 2011 ). The pepper CaM gene  CaCaM1  has been shown to be involved in NO gen-
eration (Choi et al.  2009 ). Upon treatment with the CaM antagonist, virulent 
 Pseudomonas syringae  pv.  tomato –  induced NO generation was also compromised 
in  CaCaM1  overexpressing plants (Choi et al.  2009 ). The calmodulin antagonist 
N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7) blocked NO genera-
tion. The effect of W7 was downstream from the Ca 2+  channel, as the elicitor activa-
tion of the channel was demonstrated in the presence of W7 (Ali et al.  2007 ). 

 NO synthase (NOS) is the key enzyme involved in NO production and NOS is a 
calmodulin (CaM)-binding protein. NOS contains CaM-binding motifs and full 
activation of the enzyme needs both Ca 2+  and CaM (Guo et al.  2003 ; Lamotte et al. 
 2004 ; Zeidler et al.  2004 ; Ma and Berkowitz  2007 ). The pathogen-induced Ca 2+  
signals lead to CaM activation of NOS (Ma et al.  2008 ). Application of a CaM 
antagonist prevents NO generation and induction of immune responses. Ca 2+  chela-
tion also abolishes NO generation (Ma et al.  2008 ). Collectively these results sug-
gest that the initial pathogen recognition signal of Ca 2+  infl ux into the cytosol 
activates CaM, which then acts to induce downstream NO synthesis, leading to 
innate immune responses (Fig.  6.2 ).

6.3.3        ROS and ABA Act Upstream of NO Production 

 NO has been shown to act downstream of H 2 O 2  in ABA signaling system (Lü et al. 
 2005 ). ABA-mediated NO generation has been shown to be dependent on ABA-induced 
H 2 O 2  production in  Vicia faba  and  Arabidopsis  (Lü et al.  2005 ; Bright et al.  2006 ). 
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Nitrate reductase, but not nitric oxide synthase, was involved in the ABA-mediated NO 
production and stomatal closure (Bright et al.  2006 ). However, Yan et al. ( 2007 ) showed 
that ABA-induced NO is synthesized by a NOS-like enzyme in  V. faba . ABA-induced 
NO is involved in ABA-induced stomatal closure; stomatal closure is part of plant 

PAMP signal

Activation

Ca2+ channels

Activation 

Ca2+ influx

Cytosolic Ca2+ elevation

Ca2+ sensor calmodulin

NOS

Binding with

NO generation

  Fig. 6.2    Induction of NO 
production through activation 
of Ca 2+  signaling system       
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immune response to restrict bacterial invasion (Melotto et al.  2006 ). It is suggested 
that both H 2 O 2  and NO are synthesized in parallel, in response to ABA (Wang and 
Song  2008 ). Action of both ABI1-1 and ABI2-1 phosphatases occurs downstream 
of NO synthesis (Desikan et al.  2002 ).   

6.4     Nitric Oxide-Target Proteins 

 Several proteomic and transcriptomic studies have led to the identifi cation of numer-
ous NO target proteins (Fig.  6.3 ; Delledonne et al.  2003 ; Polverari et al.  2003 ; 
Lindermayr et al.  2005 ,  2006 ; Grün et al.  2006 ; Belenghi et al.  2007 ; Besson-Bard 
et al.  2008b ). NO targets metal- and thiol-containing proteins, such as catalase and 
peroxidase (Clark et al.  2000 ), glutathione S-transferase, superoxide dismutase, 
thioredoxin, and glutaredoxin and these proteins are involved in redox signaling 
system (Lindermayr et al.  2005 ). NO induced an increased expression of a cDNA 
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  Fig. 6.3    NO-target proteins       
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corresponding to fructose 1-6 bisphosphatase, one of the major targets of the 
 thioredoxin system (Polverari et al.  2003 ). Its expression can lead to an increase 
in total cellular glutathione, which participates in the redox signaling system 
(Voehringer et al.  2000 ). NO activates glutathione-S-reductase and glutathione 
peroxidase which are involved in cell death process (Polverari et al.  2003 ).

   NO triggers the activation of two ubiquitin conjugating enzymes UBC10 and 
Ahus5 (Polverari et al.  2003 ) and ubiquitin system plays an important role host 
defense (Bachmair et al.  1990 ,  2001a ,  b ; Schenk et al.  2000 ). NO is involved in 
induction of proteins involved in hypersensitive cell death. ATAF2, a protein belong-
ing to the NAC domain protein family, involved in cell death is induced by NO 
(Collinge and Boller  2001 ). Caspases are involved in plant cell death and a caspase- 
like activity is detectable in hypersensitively reacting cells following treatment with 
NO donors (Clarke et al.  2000 ). Specifi c caspase inhibitors suppress NO-induced 
cell death (Clarke et al.  2000 ). A gene encoding the cysteine proteinase RD21A is 
shown to be induced by NO at 10 min after treatment and the enzyme is involved in 
cell death activation in  Arabidopsis thaliana  (Swidzinski et al.  2002 ). 

 NO induces key enzymes in the phenylpropanoid pathway. It induces phenylala-
nine ammonia-lyase (PAL) which is the key enzyme in biosynthesis of phenolics 
(Neill et al.  2002 ). Transcription of the genes encoding the enzymes cinnamate-4- 
hydroxylase (C4H) and PAL has been shown to be induced by NO (Durner et al. 
 1998 ). C4H transcription increases following SNP (Sodium nitroprusside, a NO 
donor) infi ltration (Delledonne et al.  1998 ). These results suggest that NO is 
involved in biosynthesis of phenolics. Chalcone synthase (CHS) is involved in the 
synthesis of isofl vonoid phytoalexins and its transcription is also modulated by NO 
(Delledonne et al.  1998 ). NO is involved in phytoalexin synthesis (Romero-Puertas 
et al.  2004 ). It up-regulates phytoalexin production (Modolo et al.  2002 ). NO acti-
vates peroxidases involved in lignifi cation (Huang et al.  2002 ; Polverari et al.  2003 ). 

 NO triggers several pathogenesis-related protein genes. It also induces the 
pathogenesis- related protein gene  Pr1  in tobacco (Durner et al.  1998 ). Expression 
level of  PR-1  gene rises following administration of NO donors or expression of 
recombinant NO-synthase in tobacco (Levine et al.  1994 ). NO is capable of induc-
ing expression of the pathogenesis-related protein PR-1 (Neill et al.  2002 ). NO can 
activate induction of β-1,3-glucanase, the PR-2 protein (Polverari et al.  2003 ). 
NO induces  Pr3  gene encoding a chitinase (Grün et al.  2006 ). It also induces 
various other defense-related proteins including alternative oxidase and glutathione 
S-transferase (Huang et al.  2002 ).  

6.5     Interplay Between NO and Ca 2+  Signaling Systems 

 NO plays important role in Ca 2+  signaling system (Courtois et al.  2008 ). It modu-
lates the activity of plasma membrane as well as intracellular Ca 2+  -permeable chan-
nels (Besson-Bard et al.  2008a ). Almost all types of Ca 2+  channels appear to be 
regulated by NO (Clementi  1998 ). NO released by NO donors induced a transient 
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rise in [Ca 2+ ] cyt  in  Vicia faba  guard cells (Garcia-Mata et al.  2003 ) and in tobacco 
suspension cells (Gould et al.  2003 ; Lamotte et al.  2004 ,  2006 ). Treatment of trans-
genic  Nicotiana plumbaginifolia  cells expressing the Ca 2+  reporter aequorin 
addressed in the cytosol with a NO donor resulted in a rapid and transient elevation 
in [Ca 2+ ] cyt  (Besson-Bard et al.  2008a ). NO scavengers and mammalian NOS inhibi-
tors reduced the increase in [Ca 2+ ] cyt  triggered by elicitors (Lamotte et al.  2006 ; 
Vandelle et al.  2006 ; Besson-Bard et al.  2008a ). These observations suggest that NO 
is involved in infl ux of Ca 2+  into the cytosol. Inhibitors of plasma membrane and 
intracellular Ca 2+  permeable channels have been found to inhibit NO-induced 
increases in [Ca 2+ ] cyt  (Gould et al.  2003 ; Lamotte et al.  2006 ; Vandelle et al.  2006 ), 
suggesting that NO might promote an infl ux of Ca 2+  from the extracellular space and/
or mobilization of Ca 2+  sequestered in intracellular Ca 2+  stores. Ryanodine receptors 
(RYR) may be the main targets for NO (Durner et al.  1998 ; Lamotte et al.  2004 ). 

 The activation of intracellular Ca 2+  channels by NO may be due to the second 
messenger cGMP (guanosine-3′,5′-cyclic monophosphate), produced following the 
activation of soluble guanylate cyclase (GC) (Willmott et al.  1996 ; Hanafy et al. 
 2001 ). cGMP generation activated by NO in plants activates CNGCs, cytosolic Ca 2+  
elevation, and downstream signaling (Ma and Berkowitz  2007 ). NO posttranslation-
ally activates GC (Klessig et al.  2000 ). cGMP activates ADP-ribosylcyclase 
(ADPRC), through a cGMP-dependent protein kinase This results in elevated levels 
of another second messenger, cyclic ADP-ribose (cADPR) (Willmott et al.  1996 ; 
Durner et al.  1998 ; Klessig et al.  2000 ; Minorski  2003 ). 

 cADPR is a Ca 2+  mobilizing metabolite and activates intracellular Ca 2+  release 
channels (Ma and Berkowitz  2007 ). It has been suggested that cADPR mediates 
Ca 2+  release by activating the intracellular Ca 2+  channels ryanodine receptors (RYR) 
in animals and also in plants (Allen et al.  1995 ; Fliegert et al.  2007 ). The NO-mediated 
Ca 2+  transient infl ux is reduced by almost 40 % by the cADPR antagonist 8-bromo- 
cADPR (Besson-Bard et al.  2008a ). cADPR is involved in NO signaling of various 
defense genes. NO-induced accumulation of  PR-1  transcripts in tobacco leaves was 
suppressed in the presence of the cADPR-selective antagonist 8-bromo-cADPR 
(Klessig et al.  2000 ). Vacuum infi ltration of nanomolar concentrations of cADPR in 
tobacco leaf disks triggered the expression of the PR-1 gene, which was suppressed 
by RYR inhibitors (Durner et al.  1998 ). These results suggest that NO-induced 
cADPR is involved in downstream defense signaling system. 

 Together with cADPR, protein kinases may also be involved in mediating 
NO-induced changes in [Ca 2+ ] cyt . Inhibitors of protein kinases, such as staurospo-
rine and K252a reduced the [Ca 2+ ] cyt  triggered by NO in  Vicia faba  guard cells and 
tobacco cell suspensions (Sokolovski et al.  2005 ; Lamotte et al.  2006 ). Treatment 
of  Nicotiana plumbaginifolia  with NO resulted in the activation of a protein kinase 
belonging to SNF1-related protein kinase type 2 (SnRK2) family and the mitogen- 
activated protein kinase SIPK (Besson-Bard et al.  2008a ,  b ). Several other studies 
have demonstrated that artifi cially generated NO stimulated MAPKs including 
SIPK (Clarke et al.  2000 ; Pagnussat et al.  2004 ; Zhang et al.  2007 ). These observa-
tions suggest that NO triggers cellular events in plant cells by causing an increase 
in [Ca 2+ ] cyt . 
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 It has also been shown that a rise in [Ca 2+ ] cyt  induces NO production through 
NOS-like enzyme (Lamotte et al.  2004 ; Corpas et al.  2006 ; Vandelle et al.  2006 ). 
Ca 2+ -dependent NO production induced by an elicitor in  Arabidopsis thaliana  was 
brought about by the activation of the plasma membrane by cyclic nucleotide gated 
channel CNGC2 (Ali et al.  2007 ). Arabidopsis  dnd1  ( d efense  n o  d eath 1) mutants 
without functional CNGC2 lack inward plasma membrane Ca 2+  currents and fail to 
produce NO in response to the bacterial elicitor treatment (Ali et al.  2007 ). These 
results suggest that a complex interaction between NO and Ca 2+  infl ux may exist 
and NO increases [Ca 2+ ] cyt,  while [Ca 2+ ] cyt  increases NO production. 

 It has also been reported that the generated NO can induce cytosolic Ca 2+  
increase through activation of plasma membrane- and intracellular membrane-
localized Ca 2+  channels during pathogen induced signaling cascades (Ali et al. 
 2007 ). The bacterial PAMP LPS could elicit NO generation in leaf guard cells and 
facilitate Ca 2+  infl ux into the cytosol (Ali et al.  2007 ). NO synthesis occurring 
during the plant- pathogen interactions causes elevation of cytosolic Ca 2+  level 
(Lamotte et al.  2004 ,  2006 ; Vandelle et al.  2006 ; Besson-Bard et al.  2008a ,  b ). It is 
suggested that the NO generated downstream Ca 2+  infl ux may diffuse to neighboring 
cells and activate new Ca 2+  signals, which may amplify the NO generation process 
(Ma et al.  2007 ; Ma and Berkowitz  2011 ).  

6.6     Interplay Between NO and ROS Signaling Systems 

 H 2 O 2  and NO are known to operate together in several signaling cascades 
(Delledonne et al.  2002 ; Grennan  2007 ; Wang et al.  2010 ). Both an oxidative and 
a NO burst have been reported to occur prior to activation of the signal cascade 
that eventually activates the transcription of defense genes (Zaninotto et al.  2006 ). 
Potential target of H 2 O 2  in  Arabidopsis  includes glyceraldehyde-3-phosphate 
dehydogenase (GAPDH) that is reversibly inhibited by H 2 O 2.  GADPH has a role 
in mediating ROS signaling in plants as a target of H 2 O 2.  GADPH is also a target 
of NO-mediated S-nitrosylation and is inhibited by NO (Lindermayr et al.  2005 ). 
Since GADPH has been identifi ed as the protein that interacts with both H 2 O 2  and 
NO, it is suggested that it may be the link between these two signaling pathways 
(Grennan  2007 ). Another direct target of H 2 O 2  action is Met adenosyltransferase, 
which is inactivated by H 2 O 2  through reversible and covalent oxidation of a Cys 
residue. The same Cys residue is also a target for NO, which similarly causes 
enzyme inactivation (Hancock et al.  2006 ). 

 MAPK cascade may be involved in production of both NO and ROS (Asai et al. 
 2008 ). The MEK2 – SIPK/NTF4 cascade activates NOS inducing production of NO 
and also activates NADPH oxidase inducing production of ROS (Asai et al.  2008 ). 
ROS have been shown to infl uence the transcription and activation of a number of 
mitogen-activated protein kinases (MAPKs) (Rentel et al.  2004 ). The MAPK sig-
naling pathways are also potential targets for NO, which infl uences the activity of 
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MAP kinases (Neill et al.  2002 ). Death of host cells during HR results from the 
simultaneous, balanced production of NO and ROS (Delledonne et al.  2001 ,  2002 ). 
The cytotoxic effects of NO and ROS derive from the diffusion-limited reaction of 
NO with O 2  −  to form the peroxynitrite anion ONOO – . Peroxynitrite causes oxidative 
damage and protein modifi cations such as Tyr nitration and oxidation of thiol resi-
dues (Radi  2004 ). These results suggest that NO and H 2 O 2  work in strong partner-
ship during induction of the defense genes (Zago et al.  2006 ). NO and H 2 O 2  can 
also act independently in the same signaling pathways with similar downstream 
responses as a consequence (Zago et al.  2006 ).  

6.7     Role of NO in SA, JA, and Ethylene Signaling Systems 

 NO is involved in the production of salicylic acid (Chamnongpol et al.  1998 ; Durner 
et al.  1998 ). NO triggers UDP-glucose:SA:glucosyltransferase that converts SA to 
SA β-glucoside, a conjugated and stable form of SA (Zago et al.  2006 ). SA in turn, 
activates nitric oxide synthesis in  A. thaliana  (Zottini et al.  2007 ). A tight interrela-
tionship between NO and SA in plant defense has been reported. NO donors pro-
duce SA accumulation (Durner et al.  1998 ). NO is required for the full function of 
SA as a SAR (systemic acquired resistance) inducer (Song and Goodman  2001 ). 
Many NO-regulated enzymes, including aconitase or catalase, are regulated by SA 
(Durner et al.  1997 ; Clark et al.  2000 ). Thus NO may be involved in SA signaling 
system. Both NO and SA activated SIPK in tobacco (Kumar and Klessig  2000 ). 
Studies with transgenic  NahG  tobacco revealed that SA is required in the 
NO-mediated induction of SIPK. SIPK may function downstream of SA in the NO 
signaling pathway (Kumar and Klessig  2000 ). 

 NO is involved in induction of biosynthesis of oxylipins and JA. NO induces the 
key enzymes of the JA biosynthesis pathway (Fig.  6.4 ; del Rio et al.  2004 ; Palmieri 
et al.  2008 ). Transcripts encoding lipoxygenase (LOX), 12-oxophytodienoate 
reductase (12-OPR), and diacylglycerol kinase (DAGK), all involved in the biosyn-
thesis of oxylipins and JA, are up-regulated by NO (Grün et al.  2006 ; Zago et al. 
 2006 ). Interaction between NO and JA signaling has been described (Palmieri et al. 
 2008 ). NO induces allene oxide synthase gene ( AOS ) and 12-oxophytodienoate 
reductase gene  OPR3  (Grün et al.  2006 ); both are involved in JA biosynthesis 
(Vidhyasekaran  2007a ,  b ). NO induces the JA-regulated  PDF1.2  gene encoding 
PR12 protein (Grün et al.  2006 ).

   NO induces S-Adenosyl-L-Met synthetase, which catalyzes the conversion of 
ATP and L-Met into the ethylene precursor  S -adenosyl-L-Met (Fig.  6.5 ; Zago et al. 
 2006 ). NO induces ACC synthase involved in ethylene biosynthesis (Lamotte et al. 
 2004 ). Thus, NO is involved in ethylene biosynthesis (Lindermayr et al.  2005 , 
 2006 ). NO activates  ein3 , a gene involved in ethylene perception and transduction 
(Chang and Stadler  2001 ). NO is known to infl uence several ethylene-dependent 
processes in the plant (Leshem et al.  1998 ).
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6.8        Role of NO in Protein  S -Nitrosylation 

 NO rapidly induces reversible  S -nitrosylation of proteins involved in signal trans-
duction .  The addition of an NO moiety to a cysteine (Cys) thiol to form an 
S-nitrosothiol (SNO) is termed S-nitrosylation (Malik et al.  2011 ) .  This redox- 
based post-translational modifi cation is a key regulator of protein function in plant 
immunity (Malik et al.  2011 ). Intracellular NO reacts with various proteins and 
nonprotein thiols to form nitrosothiols (Stamler et al.  2001 ). Most of the NO-modifi ed 
proteins are regulated by  S -nitrosylation. S-Nitrosylation refers to the incorporation 
of the NO moiety to a Cys sulfur atom to form a S-NO bond (Martinez-Ruiz and 
Lamas  2004 ). Protein S-nitrosylation occurs at a single critical Cys residue by 
oxygen- dependent chemical reactions or by the transfer of NO from a nitrosothiol 
to a protein sulfhydryl group (Lindermayr et al.  2005 ). NO can react with sulfhydryl 
groups on proteins, yielding SNOs, which lead to a change in protein function or 
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activity (Grennan  2007 ). Since SNOs interact with intracellular reducing agents, 
such as ascorbic acid or glutathione (GSH), they are highly labile. This lability 
results in tissue half-lives of seconds to a few minutes and therefore provides a very 
sensitive mechanism for regulating cellular processes. Thus S-nitrosylation is 
considered as posttranslational modifi cation which is similar to phosphorylation 
(Lindermayr et al.  2005 ). Like phosphorylation, S-nitrosylation is a precisely tar-
geted and rapidly reversible posttranslational modifi cation (Mannick and Schonhoff 
 2004 ; Astier and Lindermayr  2012 ). S-nitrosylated proteins can be easily denitro-
sylated, as the S-NO bond is labile in a reductive environment. Posttranslational 
modifi cation of proteins by  S -nitrosylation potentially alters function of the pro-
teins. Rapidly reversible  S -nitrosylation of proteins induced by NO is involved in 
signal transduction (Grennan  2007 ). 

 The proteins, which are regulated by nitrosylation, include catalase (Foster and 
Stamler  2004 ), superoxide dismutase, glutathione peroxidase and peroxiredoxin 
(Lindermayr et al.  2005 ) and these enzymes are involved in redox signaling system. 
S-Nitrosylation regulates Met adenosyltransferase involved in ethylene biosynthe-
sis (Lindermayr et al.  2006 ) and metacaspase involved in HR-related cell death 
(Belenghi et al.  2007 ). NO reacts rapidly with glutathione (GSH), the major intra-
cellular low-molecular-mass antioxidant to yield S-nitrosoglutathione (GSNO). 
GSNO is a bioactive, stable, and mobile reservoir of NO and it is an important 
player in plant defense responses against pathogens (Espunya et al.  2012 ). GSNO is 
considered to represent a functionally relevant signaling molecule that might act 
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both as NO reservoir and NO donor (Lindermayr et al.  2005 ) or independently of 
homolytic cleavage to NO (Gaston  1999 ). GSNO acts synergistically with SA in 
SAR (Espunya et al.  2012 ). It has been suggested that GSNO would act as a 
long- distance phloematic signal in SAR (Durner and Klessig  1999 ). 

 GSNO may be broken down by GSNO reductase (GSNOR) (Liu et al.  2001 ; 
Malik et al.  2011 ). GSNOR reduces GSNO, an essential reservoir for NO activity 
(Wünsche et al.  2011 ). It is the main enzyme responsible for the in vivo control of 
intracellular levels of GSNO (Espunya et al.  2012 ). GSNOR controls not only the 
cellular levels of GSNO but also the levels of  S -nitrosylated proteins (Grennan 
 2007 ). NO bioactivity is controlled by NO synthesis by the different routes and by 
NO degradation, which is mainly performed by the GSNOR (Liu et al.  2004 ). 
Mutation of the gene  AtGSNOR1  in  Arabidopsis  controls cellular S-nitrosothiols 
during plant-pathogen interactions (Feechan et al.  2005 ). GSNOR is encoded by a 
single-copy gene in  Arabidopsis thaliana  (Sakomoto et al.  2002 ). 

 GSNOR has been shown to play a role in plant defense response (Rustérucci et al. 
 2007 ). Transgenic  Arabidopsis  plants with decreased amounts of GSNOR (using 
antisense strategy) show enhanced basal resistance against  Peronopora parasitica , 
which correlates with higher levels of intracellular SNOs and constitutive activation 
of  PR-1  gene (Rustérucci et al.  2007 ). SNOs also play important role in systemic 
acquired resistance (SAR). SAR is impaired in plants overexpressing GSNOR and 
enhanced in the antisense plants, and this correlated with changes in the S-nitrosothiol 
content both in local and systemic leaves. The loss of AtGSNOR1 function compro-
mises defense responses in  A. thaliana  (Feechan et al.  2005 ). GSNOR was found to 
be localized in the phloem, suggesting that GSNOR would regulate SAR signal 
transport through the vascular system (Rustérucci et al.  2007 ). A reduction in NO 
accumulation leads to pathogen susceptibility (Delledonne et al.  1998 ; Zeidler et al. 
 2004 ), a decrease in SNOs promotes protection against microbial infection (Feechan 
et al.  2005 ). Collectively these results show that GSNOR controls SNO in vivo levels 
and the SNO content positively regulates plant defense responses. 

 NO mediates the S-nitrosylation of peroxiredoxin II E (PrxII E), a member of the 
peroxiredoxin family consisting of peroxidases that reduce H 2 O 2  and alkyl hydro-
peroxides to H 2 O and the corresponding alcohol using equivalents from thioredoxin 
or glutaredoxins (Dietz  2005 ; Horling et al.  2003 ). During H 2 O 2  reduction, the cata-
lytic Cys residues of peroxiredoxins undergo oxidation and must be reduced by 
electron donors such as thioredoxins, glutaredoxins or cyclophins before the next 
catalytic cycle (Horling et al.  2003 ). S-nitrosylation severely inhibits the peroxidase 
activity of PrxII E, thus revealing a novel regulation mode for peroxiredoxins 
(Romero-Puertas et al.  2007 ). PrxII E possesses peroxynitrite reductase activity and 
S-nitrosylation inhibits this activity (Romero-Puertas et al.  2007 ). 

 Peroxynitrite (ONOO − ) is a toxic reactive nitrogen species generated by the 
interaction of ROS and NO during oxidative burst and PrxII E detoxifi es 
ONOO − (Romero-Puertas et al.  2007 ). S-Nitrosylation inhibits the peroxynitrite 
detoxifi cation activity of PrxII E (Romero-Puertas et al.  2007 ). GSNO was found to 
severely inhibit PrxII E peroxidase activity in a concentration-dependent manner. 
This effect could be reversed by the thiol-specifi c reductant DTT, indicating that 
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GSNO affects PrxII E activity through S-nitrosylation of the Cys residues. GSNO 
has been shown to be able to S-nitrosylate PrxII E in vivo ((Romero-Puertas et al. 
 2007 ). ONOO − is an important signal molecule involved in triggering accumulation 
of PR proteins (Durner et al.  1998 ).  

6.9     Role of NO in Protein Nitration 

 NO can also perform posttranslational protein modifi cations through nitration, 
besides through S-nitrosylation (Zaninotto et al.  2006 ). Peroxynitrite (ONOO − ), the 
reactive nitrogen species is generated by the reaction of NO with superoxide anion 
(O 2  – ) (Bryk et al.  2000 ; Neill et al.  2008 ; Vandelle and Delledonne  2011 ). During 
the hypersensitive reaction (HR), the formation of ONOO − is promoted by the rate 
of NO reaction with O 2  − , which is approximately three times faster than the reaction 
of O 2  − with superoxide dismutase (SOD) forming H 2 O 2  during the oxidative burst 
(Ichiropoulos and al-Mehdi  1995 ). ONOO − generation in tobacco cells treated with 
an oomycete elicitor occurred within 1 h and reached a maximum level at 6–12 h 
after elicitor treatment (Saito et al.  2006 ). Urate, a ONOO − scavenger, abolished 
elicitor-induced ONOO − generation (Saito et al.  2006 ). 

 ONOO − causes protein tyrosine nitration through the nitration of Tyr residues in 
Tyr kinase (Schopfer et al.  2002 ; Radi  2004 ; Romero-Puertas et al.  2008 ). ONOO − donor 
SIN-1 [3-(4-morpholinyl) sydnonimine hydrochloride) treatment induced nitrotyro-
sine-containing proteins in tobacco cells (Saito et al.  2006 ). The number of nitrated 
proteins increased during disease resistance response in  Arabidopsis thaliana  
(Romero-Puertas et al.  2008 ). Protein extracts from leaves of  A. thaliana  treated with 
ONOO − showed a signifi cant increase in nitrated proteins when pretreated with GSNO 
(Romero-Puertas et al.  2008 ). ONOO − was found to induce protein nitration in 
soybean and tobacco (Delledonne et al.  2001 ; Saito et al.  2006 ). 

  S -nitrosylation inhibits the ONOO − detoxifi cation activity of peroxiredoxin II E 
(PrxII E), causing a dramatic increase of ONOO − -dependent nitrotyrosine residue 
formation. The same increase was observed in prxII E mutant line after exposure to 
ONOO − , indicating that PrxII E modulation of ONOO − is important in the signaling 
system (Romero-Puertas et al.  2008 ). ONOO − may have important signaling func-
tions in plants. SIN, an NO donor that provides continuous source of ONOO − was 
found to induce the accumulation of the transcript encoding PR-1 in tobacco leaves 
(Durner et al.  1998 ). 

 Protein nitration alters catalytic activity and interferes with cellular signaling pro-
cesses (Schopfer et al.  2002 ). Protein nitration is a reversible and selective process 
associated with protein Tyr phosphorylation (Klotz et al.  2002 ). Tyr phosphorylation 
may mediate signaling events induced by nitrating agents like ONOO − and depending 
on ONOO − local concentrations, the nitration and phosphorylation of critical Tyr resi-
dues may be competing processes (Brito et al.  1999 ). Several protein phosphatases 
have been characterized in plants, implying that Tyr phosphorylation and dephos-
phorylation also serve important functions in signaling system (Luan  2002 ).  

6.9  Role of NO in Protein Nitration



322

6.10     Role of NO in Salicylic Acid-Regulated Systemic 
Acquired Resistance 

 SA signaling system activates not only local resistance, but also systemic acquired 
resistance (SAR) observed in distal (systemic) tissues. SAR is a SA-dependent height-
ened defense to a broad spectrum of pathogens that is activated throughout a plant 
following local infection (Liu et al.  2011 ). Infection of plants by necrotizing patho-
gens, which induce the accumulation of SA, or treatment of plants with synthetic 
compounds, which are able to trigger SA signaling, causes the induction of a unique 
physiological state called “priming” (Slaughter et al.  2012 ). SAR is associated with 
priming of defense (Kohler et al.  2002 ; Luna et al.  2011 ) and the priming results in a 
faster and stronger induction of defense mechanisms after pathogen attack (Conrath 
 2011 ). The priming can be inherited epigenetically from disease- exposed plants 
(Pastor et al.  2013 ) and descendants of primed plants exhibit next- generation systemic 
acquired resistance (Luna et al.  2011 ; Slaughter et al.  2012 ). The transgenerational 
SAR has been recently reported (Luna et al.  2011 ). 

 NPR1 is an important regulator of SAR downstream of SA (Mou et al.  2003 ; 
Zhang et al.  2003 ). The events downstream of SA include an increase of NO (Zottini 
et al.  2007 ), which may then serve as signaling mediator itself (Krinke et al.  2007 ). 
NO is required for the full function of NPR1 in SA-triggered SAR (Song and 
Goodman  2001 ). Nuclear localization of NPR1 protein is essential for its function 
(Kinkema et al.  2000 ; Meur et al.  2006 ). Without induction, NPR1 protein forms an 
oligomer and is excluded from the nucleus. Redox changes cause monomeric NPR1 
to emerge and accumulate in the nucleus and activate PR gene expression (Kinkema 
et al.  2000 ; Mou et al.  2003 ). 

 Plant immunity requires conformational changes of NPR1 via S-nitrosylation 
and thioredoxin (Tada et al.  2008 ). NPR1 is sequestered in the cytoplasm as an 
oligomer through intermolecular disulfi de bonds. NO-mediated S-nitrosylation of 
NPR1 by S-nitrosoglutathione (GSNO) at Cys156 facilitates the NPR1 oligomer-
ization, which maintains protein homeostasis upon SA induction. Conversely, the 
SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins 
(TRX). Mutants in both NPR1 Cys156 and TRX compromised NPR1-mediated 
disease resistance response. Thus, the regulation of NPR1 is through opposing 
action of NO-dependent GSNO and ROS-dependent TRX (Tada et al.  2008 ). These 
results suggest that NO is involved in the action of NPR1 in triggering SAR. It also 
has been shown that NO-induced nitrosoglutathione could act as a long-distance 
phloematic signal in SAR (Durner and Klessig  1999 ).     
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          Abstract     Mitogen-activated protein kinase cascades are major signal transduction 
systems functioning downstream of pattern recognition receptors upon perception 
of PAMP elicitor signals. The MAPKs transduce extracellular stimuli into intracel-
lular transcription factors through activation of Ca 2+ , ROS, SA, JA, and ethylene- 
dependent signaling systems, and enhance expression of defense-related genes in 
plant innate immune system. A typical MAPK signaling module consists of three 
kinases: a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK), 
and a MAP kinase (MAPK). MAPKs function at the bottom of the three-kinase 
cascade and are activated by MAPKKs through phosphorylation. The activity of 
MAPKKs is, in turn, regulated by MAPKKKs via phosphorylation. MAPKKKs 
receive PAMP signals from upstream receptors/sensors to activate the MAPK 
signaling system. Several distinct MAPK pathways are involved in activating the 
plant immune system. Rather than linear pathways, multiple interconnected MAPK 
 pathways may be required to transmit elicitor signals and integrate defense 
responses. Some MAP kinase cascades are involved in biosynthesis of SA, JA, and 
ethylene, which are key plant hormones modulating plant innate immune systems. 
MAP kinases play important role in interplay and crosstalk of the plant hormone 
signaling systems. Some MAP kinases have been found to be involved in priming 
defense responses in systemic acquired resistance. MAP kinases modulate phos-
phorylation of transcription factors to trigger transcription of defense genes. 14-3-3 
proteins enhance the activity of MAPKKKs in triggering phosphorylation. MAP 
kinases modulate stomatal closure immune responses. Enhanced expression of 
some MAP kinases trigger enhanced defense responses against a wide spectrum 
of viral, bacterial, fungal, and oomycete pathogens. Potential pathogens secrete 
effectors to suppress MAPK signaling system and enhance plant susceptibility.  

  Keywords     MAPK   •   MAPKK   •   MAPKKK   •   Three-kinase cascade • Priming 
• 14-3-3 proteins • Phosphorylation • Effectors  
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7.1               MAPK Signaling Three-Kinase Modules 

 Mitogen-activated protein kinase (MAPK) cascades are major pathways downstream 
of sensors/receptors that transduce extracellular stimuli into intracellular responses in 
plants (Liu et al.  2003 ; Pedley and Martin  2005 ; Tena et al.  2011 ; Hettenhausen et al. 
 2012 ; Zhang et al.  2012a ). A typical MAPK signaling module consists of three inter-
connected protein kinases: a MAP kinase kinase kinase (MAPKKK or MEKK [for 
 M APK/ E xtracellular signal-regulated kinase  K inase  K inase]), a MAP kinase kinase 
(MAPKK or MKK), and a MAP kinase (MAPK or MPK) (Mészáros et al.  2006 ). 
MAP kinase cascade involves sequence of phosphorylation events (Hirt  2000 ). 
MAPKs function at the bottom of the three-kinase cascade and are activated by 
MAPKKs through phosphorylation on the Thr and Tyr residues in their activation 
motif between the kinase subdomain VII and VIII. The activity of MAPKKs is, in 
turn, regulated by MAPKKKs via phosphorylation of two Ser/Thr residues in the 
activation loop of MAPKKs. MAPKKKs receive signals from upstream receptors/
sensors (Ichimura et al.  2002 ; Li et al.  2012 ). 

 MAPKs (MPKs) are serine/threonine protein kinases with two-lobed structure 
(Hirt  2000 ). The active site contains the MAPK-specifi c T-X--Y (threonine-X- 
tyrosine, where X denotes any amino acid) motif that is targeted by MAPKKS 
(MKKs). The MAPKKs are dual-specifi city protein kinases that activate MAPKs 
by phosphorylation of both the threonine and tyrosine residue of the T-X-Y motif 
located between kinase subdomains VII and VIII (Ligterink and Hirt  2000 ; Liu 
et al.  2000 ). MAPKKs are activated themselves by phosphorylation of two con-
served serine or threonine residues (S/TXXXS/T) by MAPKKKs (MEKKs) (Hirt 
 2000 ). MAPKKKs contain different regulatory motifs, proline-rich sequences 
involved in Src homology3 binding, zinc fi nger motifs, leucine zippers, and binding 
sites for G proteins (Hirt  2000 ). MAPKKKs can be activated by various elicitors, 
pathogens and a wide range of stress stimuli (Teige et al.  2004 ). 

 MAP kinase cascade components are abundant in plants. There are more than 80 
putative MEKKS, 10 MKKs, and at least 20 MPKs in  Arabidopsis  (Ichimura et al. 
 2002 ; Jonak    et al.  2002 ; Nakagami et al.  2005 ). MAPKs constitute a large gene 
family with 20 family members in  Arabidopsis , 15 in rice and 21 in  Populus  spp. 
(MAPK Group  2002 ; Hamel et al.  2006 ). Several MAPKKKs, MAPKKs, and 
MAPKs have been identifi ed in tobacco (Zhang and Klessig  1998a ,  b ; Romeis et al. 
 1999 ; Yang et al.  2001 ), tomato (Mayrose et al.  2004 ; Kandoth et al.  2007 ; Stulemeijer 
et al.  2007 ), rice (He et al.  1999 ; Agrawal et al.  2003 ; Cheong et al.  2003 ; Xiong and 
Yang  2003 ), alfalfa (Cardinale et al.  2002 ), pea (Uppalapati et al.  2004 ), and pars-
ley (Ligterink et al.  1997 ). These also include salicylic acid-induced protein kinase 
(SIPK) (Zhang and Klessig  1998b ; Yang et al.  2001 ), wound-induced protein 
kinase (WIPK) (Seo et al.  1995 ; Zhang et al.  2000 ; Jin et al.  2003 ; Waller et al. 
 2006 ), elicitor-responsive MAPK (ERMK) (Ligterink et al.  1997 ), stress- activated 
MAPK (SAMK) (Nakagami et al.  2004 ), and salt-induced MAPK (SIMK) (Nakagami 
et al.  2004 ). Three MAPKKs, MKK1, PRKK, and SIMKK have been isolated from 
alfalfa (Cardinale et al.  2002 ; Nakagami et al.  2004 ), and two MAPKKs, MKK1 

7 Mitogen-Activated Protein Kinase Cascades in Plant Innate Immunity   



333

(also called as MEKI) and MKK2 have been detected in  Arabidopsis  (Ichimura et al. 
 1998 ; Nakagami et al.  2004 ). A MAPKK, NbMKK1, has been detected in  Nicotiana 
benthamiana  and the protein is localized to the nucleus (Takahashi et al.  2007b ). The 
MAPKKKs MEKK1, ANP1 (Arabidopsis NPK1-related 1), and CTR1 (constitutive 
triple-response 1) in  Arabidopsis  and NPK1 (a homolog of ANP1) in tobacco have 
been reported to be the components of MAPK cascade (Kovtun et al.  2000 ; Nakagami 
et al.  2004 ). OMTK1 ( o xidative stress-activated  M AP  t riple  k inase  1 ) is a MAPKKK 
from alfalfa (Nakagami et al.  2004 ). 

 MAPKKKs can feed into multiple MAPK pathways (Fig.  7.1 ). For example, 
in  Arabidopsis  the MAPKKK MEKK1 acts in the MEKK1 – MKK4 – MPK3, 
MEKK1 – MKK4 – MPK6, MEKK1 – MKK5 – MPK3, MEKK1 – MKK5 – 
MPK6, MEKK1 – MKK1 – MPK4, MEKK1 – MKK1 – MPK6, MEKK1 – 
MKK2 – MPK4, and MEKK1 – MKK2 – MPK6 pathways (Ichimura et al.  1998 ; 
Mizoguchi et al.  1998 ; Asai et al.  2002 ; Teige et al.  2004 ; Mészáros et al.  2006 ; 
Takahashi et al.  2007a ). By contrast, MAPKKs usually have restricted substrate 
specifi city, functioning mainly in a single cascade. Four MAPKKs – MKK2, 
MKK3, MKK4, and MKK5 – activate MPK6 in  Arabidopsis  (Takahashi et al. 
 2007a ). MKK2, MKK3, MKK4, and MKK5 interact with MPK6 to constitute 
different MAPK complexes to transduce different signals and cross talk with 
each other (Takahashi et al.  2007a ). The MKK3 activates four MAPKs, MPK1, 
MPK2, MPK7, and MPK14 (Dόczi et al.  2007 ). The MKK2 activates two MAP 
kinases, MPK4 and MPK6 (Brader et al.  2007 ). Another distinct MAP kinase 
module in  Arabidopsis  consists of MEKK1-MKK1 and MKK2-MPK4 (Ichimura 
et al.  1998 ; Mizoguchi et al.  1998 ; Zhang et al.  2012a ). Although MKK1 and 
MKK2 form complexes with identical upstream and downstream kinases, they 
appear to have distinctly different functions. While MKK1 is activated by biotic 
elicitors, MKK2 is activated by abiotic stress signals (Teige et al.  2004 ). MPK4 
is phosphorylated and activated by MKK1 (Huang et al.  2000 ; Matsuoka et al. 

MKK4 MKK4     MKK5    MKK5     MKK1     MKK1    MKK2     MKK2

MEKK1

MPK3     MPK6 MPK3     MPK6     MPK4     MPK6    MPK4     MPK6

  Fig. 7.1    MAPK pathways with the common MAPKKK component MEKK1 in  Arabidopsis 
thaliana        
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 2002 ; Teige et al.  2004 ). MPK4 is activated by both biotic and abiotic stresses 
(Droillard et al.  2004 ; Teige et al.  2004 ). MAPKKs can also activate multiple 
MAPKs in  Medicago , tobacco, and  Arabidopsis  (Yang et al.  2001 ; Asai et al.  2002 ; 
Cardinale et al.  2002 ; Jin et al.  2003 ). The tobacco MAPK kinase, NtMEK2, activates 
three different MAP kinases, SIPK, WIPK, and Ntf4 (Ren et al.  2006 ).

   The MAPKK pair MKK4 and MKK5 seems to mediate elicitor-induced MPK3 
and MPK6 activation (Asai et al.  2002 ). Another MAPKK pair of MKK1 and 
MKK2 was found to interact, phosphorylate, and activate MPK4, while only MKK2 
was able to target also MPK6 (Teige et al.  2004 ). MAPKKs are multifunctional 
entry routes for upstream signal integration as well as bifurcation points for activa-
tion of downstream MAPKs (Teige et al.  2004 ). Different kinases are assembled 
into distinct modules by scaffold proteins. Scaffold proteins are important for 
preventing cross-talk between different cascades and allow a given kinase in more 
than one module without affecting the specifi city of the response (Hirt  2000 ). 

 Several distinct MAPK pathways have been detected in plants (Cardinale et al. 
 2000 ; Pedley and Martin  2005 ; Mészáros et al.  2006 ). Various stimuli differentially 
induce the highly varying MAPK pathways. For example, the  Arabidopsis  MAPKK 
MKK2 is activated by salt and cold stress, but not by the MAMP elicitors fl agellin, 
or laminarin. In contrast, the  Arabidopsis  MKK1 is activated by fl agellin or lami-
narin, but not by salt or cold stress (Teige et al.  2004 ). SA strongly induced p48 and 
p44 MAPKs in pea, while these kinases were not activated by JA (Uppalapati et al. 
 2004 ). Four specifi c MAPK pathways involving MMK2 (for  M  edicago  MAPK2), 
MMK3, SAMK (for  s tress- a ctivated  M APK), and SIMK (for salicylate-induced pro-
tein kinase) in alfalfa were found to be activated to different levels and with different 
kinetics by four different elicitors, chitin, β-glucan, ergosterol, and yeast extract 
(Cardinale et al.  2000 ). Bacterial elicitor strongly activated MPK6 but resulted in 
poor activation of MPK7. MPK6 and MPK7 were both activated by H 2 O 2  (Dόczi 
et al.  2007 ). The tomato MAPKs, LeMPK1 and LeMPK2, were activated in response 
to systemin, four different oligosaccharide elicitors, and UV-B radiation. However, 
another tomato MAPK LeMPK3 was only activated by UV-B radiation (Holley et al. 
 2003 ). The tobacco MAP kinase SIPK is activated both by the oomycete elicitor, 
β-megaspermin and the bacterial elicitor hrpZ psph  (Hall et al.  2007 ). However, SIPK 
activation induced by the oomycete elicitor required external calcium infl ux, whereas 
that induced by the bacterial elicitor does not. It suggests that SIPK activation is 
involved in different elicitor-initiated signaling pathways (Hall et al.  2007 ).  

7.2     MAP Kinases Involved in Plant Immune Responses 

7.2.1      Arabidopsis thaliana  MPK3 and MPK6 Positively 
Regulate Plant Immune Responses 

 The  Arabidopsis  MAP kinases, MPK3 and MPK6, have been implicated in positive 
plant immune responses (Petersen et al.  2000 ; Innes  2001 ; Zhang and Klessig  2001 ; 
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Asai et al.  2002 ; Menke et al.  2005 ; Takahashi et al.  2007a ; Gao et al.  2008 ; 
Ren et al.  2008 ; Pitzschke et al.  2009b ; Liu et al.  2011 ). MPK3, MPK6, MKK4, and 
MKK5 form a cascade that positively regulates plant defenses (Pitzschke et al. 
 2009b ). MPK3 has been shown to be required for camalexin accumulation upon 
 Botrytis cinerea  infection (Ren et al.  2008 ). Inactivation of MPK3 and MPK6 by the 
 P .  syringae  effector HopA/1 and inactivation of MKKs by the  P .  syringae  effector 
HopF2 severely impair PAMP-induced defenses and render plants highly suscepti-
ble to nonpathogenic  P .  syringae  bacteria (Zhang et al.  2007b ; Wang et al.  2010 ). 
MPK3 and MPK6 have been shown to be required for priming of defense responses 
during induced resistance (Beckers et al.  2009 ). 

  Arabidopsis  MPK3 and MPK6 have been shown to be positive regulators of 
plant immune responses. These MAPKs are activated by pathogens, PAMP elici-
tors and DAMPs (endogenous elicitors) (Asai et al.  2002 ; Bethke et al.  2012 ). The 
bacterial PAMP fl g22 and the oligogalacturonides elicitor of host plant origin 
activated MPK3 and MPK6 in  Arabidopsis  (Galletti et al.  2011 ). Analysis of single 
 mapk  mutants revealed that lack of  MPK3  increased basal susceptibility to the 
fungal pathogen  Botrytis cinerea , but did not signifi cantly affect elicitors-induced 
disease resistance. By contrast, lack of MPK6 had no effect on basal resistance 
but suppresses fl g22- and OGs- induced resistance to  B. cinerea . Overexpression 
of the AP2C1 phosphatase led to impaired fl g22- and OGS-induced phosphoryla-
tion of both MPK3 and MPK6 (Galletti et al.  2011 ). These results suggest that 
both MPK3 and MPK6 are involved in plant innate immunity, but their mode of 
action may vary. 

 Root treatment with  N -3-oxo-tetradecanoyl- L -homoserine lactone (HSL) induced 
resistance against  Pseudomonas syringae  pv.  tomato  DC3000 in  Arabidopsis . HSL 
treatment promoted a stronger activation of MPK3 and MPK6 when challenged with 
fl g22, followed by a higher expression of the defense-related transcription factors 
 WRKY22  and  WRKY29 , and the  PR-1  gene (Schikora et al.  2011 ). These studies 
show that MPK3 and MPK6 are involved in triggering induced resistance.  

7.2.2      Arabidopsis thaliana  MPK4 Negatively Regulates 
Plant Immune Responses 

 MPK4, its upstream MAP kinase kinases MKK1 and MKK2, and the MAP kinase 
kinase kinase MEKK1 form a cascade that negatively regulates defenses in 
 Arabidopsis  because loss-of-function mutations in this cascade result in constitutive 
activation of defenses (Petersen et al.  2000 ; Mészáros et al.  2006 ; Suarez-Rodriguez 
et al.  2007 ; Gao et al.  2008 ; Qiu et al.  2008a ; Pitzschke et al.  2009b ). The  mpk4  
plants exhibit constitutive systemic acquired resistance, including elevated salicylic 
acid levels and increased resistance to virulent pathogens (Petersen et al.  2000 ). The 
results suggest that MPK4 may negatively regulate SA signaling system. The induc-
tion of JA-responsive genes was blocked in  mpk4  mutant plants, suggesting that 
MPK4 positively regulates the JA pathway (Petersen et al.  2000 ; Gao et al.  2008 ; 
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Qiu et al.  2008a ; Pitzschke et al.  2009a ). Overexpression of an inactive form of 
MPK4 failed to complement  mpk4  phenotypes, indicating that kinase activity is 
required for MPK4 function (Petersen et al.  2000 ). 

 The ‘Three Kinase Module’ including MPK4 shows that MEKK1 and MKK1/2 
act upstream of MPK4. The  mekk1/mkk1/mkk2  double mutants display similar con-
stitutive defense responses, including elevated levels of SA and ROS, constitutive 
PR gene expression, and pathogen resistance (Petersen et al.  2000 ; Gao et al.  2008 ; 
Qiu et al.  2008b ). It has also been shown that both MPK4 and MEKK1 interact with 
MKK1 and MKK2 in vivo (Gao et al.  2008 ). MEKK1 and MKK1/2 have also been 
shown to be essential for activation of MPK4 (Ichimura et al.  2006 ; Suarez- 
Rodriguez et al.  2007 ; Gao et al.  2008 ). Many defense–related genes were similarly 
deregulated in  mekk1 ,  mkk1/2 , and  mpk4  mutants (Qiu et al.  2008b ; Pitzschke et al. 
 2009a ). Collectively these studies suggest the existence of three kinase module 
involving MEKK1-MKK1/2-MPK4 in  Arabidopsis thaliana .  

7.2.3      Arabidopsis thaliana  MPK11 in Plant Immune 
Responses 

 Flg22 treatment is known to increase  MPK11  expression in  Arabidopsis thaliana  
(Bethke et al.  2012 ). MPK11 is an MPK4 paralog and has overlapping function with 
MPK4 in regulating cell division (Bethke et al.  2012 ). MPK11 transcripts accumu-
late following pathogen infection or treatments with PAMPs, pathogen-derived 
molecules, or resistance-inducing chemicals such as benzothiadiazole.  MPK11  
expression is rapidly induced within 10–15 min after fl g22 treatment. MPK11 inter-
acted with an ethylene response transcription factor (ERF104). MPK11 is activated 
during fl g22 treatment (Bethke et al.  2012 ). MPK11 constitutes a fourth MAPK 
activated by fl g22, in addition to MPK3, MPK4, and MPK6. MPK4 and MPK11 are 
nearly identical at the amino acid sequence level and similar in molecular weight 
(Bethke et al.  2012 ). MPK11 differed in its function from MPK4, although it was 
structurally similar to MPK4. In contrast to reports for  mpk4  (Petersen et al.  2000 ), 
no enhanced expression of  PR  genes such as  PR1 ,  PR2 , or  PR5  was observed in the 
 mpk11 mutant. The levels of SA and its conjugates were not elevated in the  mpk11  
mutant relative to wild-type plants, whereas levels in  mpk4  mutants were at least 
20-fold higher (Bethke et al.  2012 ).  

7.2.4     Arabidopsis MPK9 and MPK12 Positively Regulate 
ROS-Mediated ABA Signaling 

 The MAP kinases MPK9 and MPK12 have been shown to be preferentially 
expressed in stomata guard cells and positively regulate ROS-mediated ABA signal-
ing (Jammes et al.  2009 ). The MAPKs act upstream of anion channels in guard cell 
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ABA signaling. MPK9 and MPK12 function downstream of ROS to regulate ABA 
signaling (Jammes et al.  2009 ). ABA-induced stomatal closure plays an important 
role in bacterial disease resistance. The  mpk9/mpk12  double mutants have been 
shown to be highly susceptible to  P .  syringae  pv.  tomato  DC3000 compared to 
wild-type  Arabidopsis thaliana  plants (Jammes et al.  2011 ). The results suggest that 
the regulation of stomatal apertures by MPK9 and MPK12 contributes to the fi rst 
line of defense against pathogens.  

7.2.5     Soybean GmMPK4 Negatively Regulates SA 
and ROS Signaling Systems 

 Soybean homolog of MPK4, GmMPK4, negatively regulates defense responses. 
Silencing  GmMPK4  resulted in activation of immune responses and it also led 
to elevated levels of SA and H 2 O 2 . In soybean, GmMPK4 is a negative regulator 
of SA, ROS, and defense responses. Thus the functions of MPK4s from 
 Arabidopsis  and soybean are almost similar in negatively activating SA signaling 
system (Liu et al.  2011 ).  

7.2.6     Rice OsMPK6 Positively Regulates Local Resistance 
and Negatively Regulates Systemic Acquired Resistance 

 Rice, OsMPK6, an ortholog of AtMPK4, functions both as an activator and a repres-
sor in conferring resistance against the bacterial blight pathogen  Xanthomonas ory-
zae  pv.  oryzae  (Shen et al.  2010 ). Activation of OsMPK6 resulted in the formation 
of lesion mimics and local resistance to  X .  oryzae  pv.  oryzae , accompanied by the 
accumulation of SA and JA, and the induced expression of SA- and JA-signaling 
genes. By contrast, the knock-out of  OsMPK6  results in increased accumulation of 
SA and enhanced resistance to  X .  oryzae  pv.  oryzae  in systemic tissues. The knock- 
out of  OsMPK6  induces the expression of  PR1a , the marker gene of systemic 
acquired resistance (SAR) when challenged with the pathogen (Shen et al.  2010 ). 
These results suggest that OsMPK6 positively regulates local resistance while it 
negatively regulates systemic acquired resistance against  X .  oryzae  pv.  oryzae  by 
differentially modulating SA and JA signaling pathways.  

7.2.7     Oilseed Rape BnMPK4 Positively Regulates JA-Mediated 
Defense Responses 

 In oilseed rape ( Brassica napus ), overexpression of  BnMPK4  enhances resistance to 
 Sclerotinia sclerotiorum  (Wang et al.  2009 ). The transgenic plants inhibited growth 
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of  S .  sclerotiorum  and constitutively activated  PDF1.2 , the gene activated by JA 
signaling (Wang et al.  2009 ). The results suggest that BnMPK4 positively regulates 
JA-mediated defense response, which might play an important role in resistance to 
 S .  sclerotiorum  in oilseed rape.  

7.2.8     Cotton GhMPK2 Are Involved in Ethylene 
Biosynthesis - Mediated Plant Immune Responses 

 A MAPK gene,  GhMPK2 , has been cloned from cotton and characterized. 
Transgenic tobacco plants overexpressing  GhMPK2  showed enhanced resistance to 
fungal and viral pathogens (Zhang et al.  2011 ). The transgenic plants showed 
enhanced expression of genes encoding ACC synthase (ACS) and ACC oxidase 
(ACO), which are involved in biosynthesis of ethylene. The expression of PR genes, 
 PR1 ,  PR2 ,  PR4 , and  PR5 , was upregulated in the transgenic plants expressing the 
 MAPK  gene (Zhang et al.  2011 ). The results suggest that the cotton MPK2 plays an 
important role in innate immune system.  

7.2.9     Cotton GhMPK7 Triggers SA Signaling System 

 The  MPK7  gene from cotton,  GhMPK7 , has been found to have a role in activat-
ing defense responses in plants. Transgenic  Nicotiana benthamiana  plants 
 overexpressing  GhMPK7  showed broad-spectrum disease resistance. The trans-
genic plants displayed signifi cant resistance against  Colletotrichum nicotianae  
and  Potato virus Y  (Shi et al.  2010 ). The  GhMPK7  transcript was induced by 
pathogen infection and also by different defense-related signal molecules. 
Overexpression of the cotton  MAPK  gene in  N .  benthamiana  induced rapid and 
strong expression of SA pathway genes (Shi et al.  2010 ). The results suggest 
that the GhMPK7 plays an important role in triggering SA signaling pathway in 
plant innate immunity.  

7.2.10     GhMPK16 Activates ROS-Mediated Signaling System 

  GhMPK16  gene has been cloned from cotton and characterized. It showed high 
homology to  Arabidopsis AtMPK16 . The gene transcripts have been shown to 
 accumulate following pathogen infection and treatment with several defense-related 
signal molecules (Shi et al.  2011 ). Transgenic  Arabidopsis  plants overexpressing 
 GhMPK16  showed enhanced resistance against the fungal pathogens  Colletotrichum 
nicotianae  and  Alternaria alternata  and also against the bacterial pathogen 
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 Pseudomonas solanacearum . These  GhMPK16  overexpressing  Arabidopsis  plants 
showed rapid accumulation of ROS and enhanced expression of  PR  genes (Shi et al. 
 2011 ). The results suggest that MPK16 is another MAPK gene involved in plant 
immune responses.  

7.2.11     SIPK and WIPK Activates Plant Immune Responses 
by Modulating SA and JA Signaling Systems 

 Two mitogen-activated protein kinases, salicylic acid-induced protein kinase (SIPK) 
and wound-induced protein kinase (WIPK), are involved in plant immune responses 
(Ren et al.  2006 ; Kallenbach et al.  2010 ; Meldau et al.  2012 ). WIPK and SIPK play 
an important role in JA production and they function cooperatively to control SA 
biosynthesis (Seo et al.  2007 ). Activation of SIPK and WIPK by their upstream 
MAPK kinase (MAPKK), NtMEK2 leads to hypersensitive reaction-like cell death 
in tobacco (Jin et al.  2003 ). WIPK and SIPK have been implicated in TMV resistance 
in tobacco (Kobayashi et al.  2010 ). Silencing of WIPK/SIPK reduced TMV accumu-
lation in tobacco and was correlated with an increase in SA and a decrease in JA. 
The reduction in viral accumulation was attenuated by expressing a gene for an 
SA-degrading enzyme or by exogenously applying JA (Kobayashi et al.  2010 ). These 
results suggest that WIPK and SIPK function to negatively regulate local resistance 
to TMV accumulation, partially through modulating accumulation of SA and JA.   

7.3     MAPK Kinases (MAPKKs) in Plant Immune Responses 

7.3.1     MKK1 in Plant Immune Responses 

  Arabidopsis  MAP kinase kinase MKK1 has been shown to be activated by PAMP 
elicitors. MKK1 is activated in cells treated with fl g22, and it phosphorylates the 
MAPK MPK4. MKK1 negatively regulates the activity of fl agellin-responsive 
genes. The  mkk1  mutant is compromised in resistance to both virulent and avirulent 
 Pseudomonas syringae  strains (Mészáros et al.  2006 ). The results suggest that 
MKK1 plays an important role in plant immune responses. 

 A MAPKK, NbMKK1, identifi ed in  Nicotiana benthamiana  is a potent 
inducer of hypersensitive response (HR)-like cell death (Takahashi et al.  2007b ). 
NbMKK1- mediated cell death was compromised in leaves where NbSIPK 
expression was silenced by virus-induced gene silencing. NbMKK1 and NbSIPK 
physically interact.  Phytophthora infestans  INF1 elicitor-mediated HR was 
delayed in NbMKK1- silenced plants, indicating NbMKK1 is involved in this 
immune response pathway (Takahashi et al.  2007a ). NbMKK1 is also involved in 
inducing resistance against the bacterial pathogen  Pseudomonas cichorii  
(Takahashi et al.  2007b ).  
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7.3.2     Arabidopsis MKK2 Differentially Induces Defense 
Responses Against Different Pathogens 

  AtMKK2  overexpressing transgenic  Arabidopsis thaliana  plants showed enhanced 
susceptibility to the fungal pathogen  Alternaria brassicicola , whereas these plants 
were more resistant to the bacterial pathogens  Pseudomonas syringae  pv.  tomato  
Dc3000 and  Erwinia carotovora  subsp.  carotovora  (Brader et al.  2007 ). To assess 
the downstream events in the MAPK cascade, transgenic  Arabidopsis  plants over-
expressing the MAPKK MKK2 were developed (Teige et al.  2004 ). The MKK2 
overexpressing plants showed altered expression of 152 genes involved in 
 transcriptional regulation, signal transduction, and defense responses (Teige et al. 
 2004 ). The activated genes included transcription factors such as WRKY tran-
scription factors, Myb DNA binding protein, and ethylene-responsive element 
binding factor. The activated genes in the MKK2 overexpressing plants also 
included several genes involved in signal transduction pathways. Several calmod-
ulin and calcium binding proteins were strongly upregulated in the  MKK2  overex-
pressor lines. Genes involved in phosphorylation/dephosphorylation systems 
were also activated in the  MKK2  overexpressing plants. These included  MAPKK5  
gene and protein phosphatase 2C genes. The MKK2 overexpressor lines also 
showed upregulation of several enzymes and targets of the ethylene and jasmo-
nate pathways. The increased expression included JA-mediated defense gene 
 PDF1.2a  encoding defensin, ethylene biosynthesis gene  AtACS-6  encoding ACC 
synthase, and lipoxygenase gene involved in JA biosynthesis (Teige et al.  2004 ). 
Downstream events include activation of calcium/calmodulin signaling system 
(Teige et al.  2004 ), and JA-, SA-, ET-, and ABS- mediated signaling systems 
(Takahashi    et al.  2007a ). In  Arabidopsis , the constitutively active AtMKK2 
increases the expression levels of genes that encode enzymes in ET/JA signaling 
system (Brader et al.  2007 ).  

7.3.3     Arabidopsis MKK3 Positively Regulates Immune 
Responses 

 MKK3 is an upstream activator of MPK1, MPK2, MPK7, and MPK14 (Dóczi 
et al.  2007 ).  Arabidopsis  plants overexpressing  AtMKK3  show increased expres-
sion of  PR  genes (Dóczi et al.  2007 ). These plants showed enhanced disease 
resistance against  Pseudomonas syringae  pv.  tomato  (Dóczi et al.  2007 ). MKK3 
has been shown to play important role in plant innate immunity (Dóczi et al. 
 2007 ). The growth of virulent bacterial pathogen  P .  syringae  pv.  tomato  DC3000 
was increased in  mkk3  knockout plants and decreased in  MKK3 -overexpressing 
plants.  MKK3  overexpression lines showed increased expression of several PR 
genes (Dóczi et al.  2007 ). These results suggest that MKK3 positively regulate 
plant immune responses.  
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7.3.4     Arabidopsis MKK7 Positively Regulates 
SA-Mediated SAR 

 Another MAPKK gene detected in  Arabidopsis ,  MKK7 , positively regulates plant 
basal and systemic acquired resistance. MKK7 has been shown to trigger accumula-
tion of SA and the increases in SA levels resulted in enhanced expression of PR 
genes. Overexpression of MKK7 induced  PR  gene expression and triggered resis-
tance to the bacterial pathogen  Pseudomonas syringae  pv.  maculicola  and the 
oomycete pathogen  Hyaloperonospora parasitica  (Zhang et al.  2007c ). The 
enhanced expression of disease resistance and PR gene expression induced by 
MKK7 was shown to be dependent on SA and NPR1 (Zhang    et al.  2007c ). The 
results suggest that the MAPKK is involved in triggering SA signaling system to 
confer disease resistance. 

 The expression of the  MKK7  gene in  Arabidopsis  was induced by pathogen 
infection. Reducing mRNA levels of  MKK7  by antisense RNA expression blocked 
the induction of SA-dependent systemic acquired resistance (SAR) in plants. 
Ectopic expression of  MKK7  in local tissues induced  PR  gene expression and 
 disease resistance to the bacterial pathogen in systemic tissues (Zhang et al.  2007c ). 
The results suggest that  MKK7  is involved in generating the mobile signal of SAR. 
The homologue of AtMKK7 in tomato, LeMKK4, is involved in  Pto -mediated 
immune responses (Pedley and Martin  2004 ).  

7.3.5     Cotton GhMKK5 Triggers ROS-Mediated Signaling 
Systems 

 A MAPKK encoding gene  GhMKK5  from cotton has been isolated and characterized. 
The expression of  GhMKK5  is induced by pathogen infection and defense- related 
signal molecules. The overexpression of  GhMKK5  in  Nicotiana benthamiana  
showed enhanced resistance against the bacterial pathogen  Ralstonia sola-
nacearum  but the transgenic plants were susceptible to the oomycete pathogen 
 Phytophthora parasitica  var.  nicotianae  (Zhang et al.  2012b ).  GhMKK5 -
overexpressing plants showed enhanced expression of  NtRbohA  gene encoding 
NADPH oxidase involved in accumulation of ROS. The transgenic plants showed 
accumulation of H 2 O 2 , suggesting that MKK5 may be involved in ROS-mediated 
immune signaling system (Zhang et al.  2012b ). GhMKK5 is signifi cantly induced 
by SA, methyl jasmonate and ethephon (Zhang et al.  2012b ). The results suggest 
that GhMKK5 might be involved in the SA or JA/ET signaling pathways. The 
expression of SA signaling system-inducible  PR1a  and  PR5  and JA signaling 
system-inducible  PR-4  genes were greatly elevated in  GhMKK5 -overexpressing 
plants (Zhang et al.  2012b ). Another SA signaling pathway gene  NPR1 , which is 
involved in SAR response, was also signifi cantly increased in  GhMKK5 -
overexpressing plants (Zhang et al.  2012b ).   
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7.4     MAPKK Kinase EDR1 Modulates SA-JA-ET Signaling 

 EDR1 (ENHANCED DISEASE RESISTANCE 1) is a MAPKK Kinase (MAPK-
KKK), which functions at the top of a MAP kinase cascade. The  edr1  ( enhanced 
disease resistance 1 ) gene encodes a putative MAPKKK, which negatively regu-
lates SA signaling system. All  edr1 -associated phenotypes are suppressed by 
mutations that block SA perception ( nim1 ) or reduce SA production ( pad4  and 
 eds1 ). The  NahG  transgene, which lowers endogenous SA levels, also suppressed 
 edr1  (Frye et al.  2001 ). These results suggest that EDR1 plays an important role in 
SA-mediated defense responses. The  ein2  mutation did not suppress  edr1 -mediated 
disease resistance, suggesting that ethylene and JA-induced responses are not 
required for  edr1  resistance (Frye et al.  2001 ).  EDR1  gene has been isolated from 
 Arabidopsis  and putative orthologs of EDR1 have been detected in rice and barley 
(Frye et al.  2001 ). 

 The  edr1  mutant exhibits enhanced resistance against the powdery mildew 
pathogen  Golovinomyces cichoracearum  in  Arabidopsis thaliana  (Frye and 
Innes  1998 ; Frye et al.  2001 ), suggesting that EDR1 acts as a negative regulator 
of defense responses. Plant defensin  PDF  genes are downregulated in  edr1  
mutants. PDF1.2 (PR-12; defensin), is an important pathogenesis-related protein 
involved in plant innate immune responses (Vidhyasekaran  2007 ) and its expres-
sion is triggered by the JA signaling system (Jung et al.  2007 ; Oñate-Sánchez 
et al.  2007 ; Pré et al.  2008 ).  MYC2 / JIN1  encodes a basic helix-loop-helix leucine 
zipper transcription factor and differentially regulates JA-responsive defense 
genes (Lorenzo et al.  2004 ).  MYC2  is involved in repression of  PDF1.2  expres-
sion and  PDF1.2  was highly induced in  edr1myc2  double mutant (Hiruma and 
Takano  2011 ). It has been shown that EDR1 is critical for expression of plant 
defensin genes and the  MYC2 - encoded  transcription factor represses defensin 
expression. Inactivation of  MYC2  fully restored defensin expression in  edr1  
mutants (Hiruma and Takano  2011 ). It suggests that EDR1 cancels MYC2 function 
to regulate defensin expression. 

 The  edr1  mutant of  Arabidopsis  confers resistance against bacterial and fun-
gal pathogens. When the  edr1  plants were inoculated with the powdery mildew 
pathogen  Golovinomyces cichoracearum , the mutant plants showed increased 
expression of several defense-related genes (Christiansen et al.  2011 ). Many of 
the genes with elevated expression encoded WRKY transcription factors. EDR1 
was found to be localized to the nucleus, suggesting that EDR1 could potentially 
interact with transcription factors in the nucleus. Elevated expression of ROS-
related genes was also observed early during infection with the pathogen 
(Christiansen et al.  2011 ). 

 EDR1 kinase domain displays autophosphorylation activity and phosphory-
lates the common MAP kinase substrate myelin basic protein. The EDR1 kinase 
domain also phosphorylates a kinase-defi cient EDR1 protein, indicating that 
EDR1 autophosphorylation can occur via an intermolecular mechanism (Tang 
and Innes  2002 ). 
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 OsEDR1 is a sequence ortholog of  Arabidopsis  EDR1. It has been shown that 
OsEDR1 negatively regulates plant defense responses via the activation of 
ethylene biosynthesis (Shen et al.  2011 ). OsEDR1-suppressing knockout (KO) 
rice plants showed enhanced resistance against the bacterial blight pathogen 
 Xanthomonas oryzae  pv.  oryzae . This resistance was associated with increased 
accumulation of SA and JA, induced expression of SA- and JA-related defense 
genes and suppressed accumulation of 1-aminocyclopropane-carboxylic acid 
(ACC), the precursor of ethylene, and expression of ethylene-related genes. 
Knockout of OsEDR1suppressed the ACC synthase (ACS) gene family, which 
encodes the enzymes of ethylene biosynthesis by catalyzing the formation of ACC. 
The enhanced disease resistance of the OsEDR1-knockout plants was comple-
mented by ACC treatment. ACC treatment decreased SA and JA biosynthesis in 
OsEDR1-knockout plants. In contrast, aminoethoxyvinylglycine, the inhibitor of 
ethylene biosynthesis promoted expression of SA and JA synthesis-related genes 
in OsEDR1-knockout plants (Shen et al.  2011 ). These studies show that OsEDR1 
transcriptionally promotes the synthesis of ethylene that, in turn, suppresses SA- and 
JA-associated defense signaling (Fig.  7.2 ).

OsEDR1

ACC synthase

ACC biosynthesis

Ethylene

  Fig. 7.2    Role of a MAPKKK 
(EDR1) in modulation of 
SA-JA-ET signaling system 
in rice plant immune 
responses (Adapted from 
Shen et al.  2011 )       
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7.5        MAPK Pathways Involved in Defense Signal 
Transduction May Be Interconnected 

 Rather than linear pathways, multiple interconnected MAPK pathways may be 
required to transmit PAMP elicitor signals and integrate defense responses (Pedley 
and Martin  2005 ; Mészáros et al.  2006 ). Two separate MAPK pathways including 
MAPKKK – NtMEK2 – WIPK and MAPKKK – NtMEK2 – SIPK have been 
shown to be involved in defense response signaling in tobacco (Liu et al.  2003 ). 
Both these pathways are interconnected in induction of defense signals. SIPK, 
NtMEK2 and the upstream MAPKKK pre-exist in cells. Upon recognition of 
elicitor signals, NtMEK2 is activated by its upstream MAPKKK, which in turn 
activates the pre- existing SIPK. Activation of SIPK turns on the transcription of 
 WIPK  gene, which leads to the accumulation of WIPK protein. The newly synthe-
sized WIPK protein is then activated by the NtMEK2 which is activated by a puta-
tive MAPKKK (Fig.  7.3 ; Liu et al.  2003 ). WIPK triggers HR-related cell death 
probably by the production of H 2 O 2 . SIPK besides activating synthesis of WIPK, 
activates transcription of various defense genes, particularly 3-hydroxy-3-methyl-
glutaryl CoA reductase ( HMGR ) and phenylalanine ammonia lyase ( PAL ) genes 
encoding key enzymes in the phytoalexin and salicylic acid biosynthesis path-
ways (Yang et al.  2001 ; Liu et al.  2003 ).

   Two independent MAPK pathways, MEKK1 – MKK1 – MPK4 and MEKK1 – 
MKK4/5 – MPK3/6, have been shown to be interconnected in defense signaling 
system in  Arabidopsis  (Mészáros et al.  2006 ). Both these pathways have com-
mon MAPKK, MEKK1, but their MAPKKs differ. The fi rst pathway has MKK1 
as MAPKK, while the second one has the MAPKK pair, MKK4 and MKK5. 
MKK1 specifi cally interacts with, and phosphorylates MPK4 (Teige et al.  2004 ), 
while it cannot phosphorylate the MAPK pair MPK3 and MPK4 (Mészáros 
et al.  2006 ). MKK4/5 can phosphorylate MPK3/4. It has been suggested that 
MEKK1 tethers MPK4 and MKK1 through its N- and C-terminal domains, 
respectively. This would prevent the association of MKK4/MKK5 until MEKK1 
is activated by elicitor  signals and dissociates the MKK1-MPK4 complex 
(Mészáros et al.  2006 ). The activated MEKK1 in the fi rst pathway after sequen-
tial phosphorylation of MKK1 and MPK4 activates the second pathway. The 
MPK4 pathway positively regulates ethylene/JA signaling system and negatively 
regulates SA-mediated signaling system (Petersen et al.  2000 ; Liu and Zhang 
 2004 ). The MPK3/MPK6 pathway is involved in JA/ET signaling system and 
also in activation of WRKY22 and WRKY29 transcription factors (Asai et al. 
 2002 ; Takahashi et al.  2007a ). 

 Another MAP kinase cascade in  Arabidopsis thaliana  involves MEKK1 – MKK2 – 
MPK4/MPK6 (Teige et al.  2004 ). Transgenic  Arabidopsis  plants overexpressing a 
MAPKK, MKK2, were developed (Teige et al.  2004 ). The MAPKK MKK5 also 
showed enhanced expression levels in MKK2 overexpressing plants. MKK5 is an 
 activator of MPK3 and MPK6. Upregulation of  MKK5  in the  MKK2  overexpressor 
lines indicates some level of crosstalk between these two pathways (Teige et al.  2004 ).  
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7.6     14-3-3 Protein Enhances Signaling Ability of MAPKKK 
in Activating Plant Innate Immune Responses 

 14-3-3 Proteins are a group of proteins that have been shown to be involved in 
 regulation of protein kinases and phosphatases (Ferl  2004 ). The 14-3-3 proteins are 
given this nomenclature based on their chromatography and electroprofi les. The 
14-3-3 proteins play a role in the completion of signal transduction events. 
Phosphorylation may tag the proteins for association with 14-3-3 and the subse-
quent binding of 14-3-3s may complete the signal-induced changes in the protein 
activity (Ferl  2004 ). 14-3-3 proteins occur as homo- and heterodimers in vitro and 
in vivo and these dimers may mediate interaction between pairs of associated 
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  Fig. 7.3    Interconnection of two different MAPK pathways to activate immune responses in 
tobacco (Adapted from Liu et al.  2003 )       
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proteins (Jones et al.  1995 ). It has been shown that 14-3-3 proteins bind to 
 phosphorylated Ser residues present within one of a small number of consensus 
sequences found in many of the proteins with which they interact (Yaffe et al.  1997 ; 
Yaffe  2002 ). 

 MAPKKKα is a positive regulator of immunity-associated programmed cell death 
(PCD) in tomato and  Nicotiana benthamiana . A 14-3-3 protein, TFI7, has been identi-
fi ed as a MAPKKKα – interacting protein in tomato (Oh et al.  2010 ). TFI7 protein 
contains a phosphopeptide binding motif, which was found to be essential for the 
interaction with MAPKKKα in vivo and also the PCD-enhancing activity of TFI7. 
A 14-3-3 binding motif, including a putative phosphorylated Ser- 535, is present in the 
C-terminal region of MAPKKKα. An S535A substitution in MAPKKKα reduced 
interaction with TFI7 and both PCD-eliciting ability and stability of MAPKKKα. 
Coexpression of the 14-3-3 protein with tomato MAPKKKα enhanced MAPKKKα 
-mediated PCD. Coexpression TF17 with MAPKKKα in vivo caused increased 
accumulation of the kinase and enhanced phosphorylation of two MAP kinases 
(Oh et al.  2010 ). Collectively, these results suggest that the 14-3-3 protein enhances 
signaling ability of MAPKKKα in activating plant innate immune responses.  

7.7     Role of MAPKs in Priming Plants for Augmented 
Defense Gene Activation 

 Some dormant MAPKs have been suggested to be important components required 
for priming in  Arabidopsis  and the prestress deposition of these inactive kinases 
may be a possible mechanism of priming during development of systemic acquired 
resistance (Beckers et al.  2009 ). MPK3, and functionally redundant MPK6, 
have been found to be important components for full priming in  Arabidopsis . 
The resistance- inducing avirulent strains of  P .  syringae  pv.  tomato  DC3000 and 
 P .  syringae  pv.  phaseolicola  induced SA accumulation and MPK3 expression. Both 
SA and the SA-related compounds benzothiadiazole (BTH) and 4-chloro-SA acti-
vate  MPK3  gene expression and induce priming and SAR. In contrast, another 
SA-related compound 3-hydroxybenzoic acid did not induce  MPK3  gene expres-
sion, priming and disease resistance. This strong correlation between the ability of 
avirulent bacteria and various SA-related compounds to activate  MPK3  gene expres-
sion and their capacity to prime plants for augmented defense gene activation and 
induced resistance suggests that MPK3 plays a role in priming (Beckers et al.  2009 ). 
Similarly another MAPK gene,  MPK6  was also found to be involved in priming 
process. However, the BTH-induced accumulation of  MPK6  transcript and protein 
was less pronounced. Both MPK3 and MPK6 accumulate in an inactive form during 
priming of  Arabidopsis  with BTH (Beckers et al.  2009 ). Both MPK3 and MPK6 
displayed greater activity in  Arabidopsis  plants which are primed and subsequently 
challenged with the virulent  P .  syringae  pv.  maculicola . These two enzymes were 
more strongly activated in primed plants than in nonprimed plants. Priming of 
defense gene expression and induced resistance were lost or reduced in  mpk3  or 
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 mpk6  mutants (Beckers et al.  2009 ). These results suggest that prestress deposition 
of the signaling components MPK3 and MPK6 is a critical step in priming plants for 
full induction of defense responses during induced resistance.  

7.8     PAMP Signals Activate MAP Kinases 

 PAMP and DAMP/HAMP elicitors activate several MAP kinases in plants. A typi-
cal array of early defense responses induced by PAMPs includes Ca 2+  infl ux and the 
generation of ROS, nitric oxide, and ethylene. Much of this follows the activation of 
mitogen-activated protein kinase cascades, leading to transcriptional changes of 
many defense-related genes (Aslam et al.  2009 ; Boller and He  2009 ; Boller and 
Felix  2009 ). PAMP-triggered immunity requires a signal transduction from recep-
tors to downstream components via the MAPK cascade and many of the known 
PAMPs were shown to activate MAP kinases (Pitzschke et al.  2009b ). Four specifi c 
MAPK pathways involving MMK2 (for  M  edicago  MAPK2), MMK3, SAMK (for 
 s tress- a ctivated  M APK), and SIPK (for salicylate-induced protein kinase) in alfalfa 
were found to be activated to different levels and with different kinetics by four dif-
ferent elicitors, chitin, β-glucan, ergosterol, and yeast extract (Cardinale et al.  2000 ). 
The tomato MAPKs, LeMPK1 and LeMPK2, were activated in response to four 
different oligosaccharide elicitors (Holley et al.  2003 ). The tobacco MAP kinase 
SIPK is activated both by the oomycete elicitor, β-megaspermin and the bacterial 
elicitor hrpZ psph  (Hall et al.  2007 ). However, SIPK activation induced by the oomy-
cete elicitor required external calcium infl ux, whereas that induced by the bacterial 
elicitor does not. It suggests that SIPK activation is involved in different elicitor-
initiated signaling pathways (Hall et al.  2007 ). 

 The  Arabidopsis  MKK1 has been shown to be activated by fl agellin or laminarin 
(Teige et al.  2004 ).  Arabidopsis  MPK3 and MPK6 have been shown to be positive 
regulators of plant immune responses. These MAPKs are activated by PAMP elici-
tors and DAMPs (endogenous elicitors) (Asai et al.  2002 ; Bethke et al.  2012 ). The 
bacterial PAMP fl g22 and the oligogalacturonides elicitor of host plant origin acti-
vated MPK3 and MPK6 in  Arabidopsis  (Galletti et al.  2011 ).  Phytophthora infestans  
INF1 elicitor activates NbMKK1 in  Nicotiana benthamiana  (Takahashi et al.  2007b ). 

 The MAPK module MEKK1-MKK4/MKK5-MPK3/MPK6 has been proposed 
to be responsible for fl g22 signal transmission (Asai et al.  2002 ; Bethke et al. 
 2009b ). The PAMP fl g22 triggers a rapid and strong activation of MPK3, MPK4 and 
MPK6 (Droillard et al.  2004 ). The PAMP fl g22 treatment activated MPK11 in 
 Arabidopsis  and MPK11 constitutes a fourth MAPK activated by fl g22, in addition 
to MPK3, MPK4, and MPK6 in  Arabidopsis  (Bethke et al.  2012 ). Flagellin-derived 
fl g22 peptide strongly activated MPK6 but it only poorly activated MPK7 in 
 Arabidopsis  (Dóczi et al.  2007 ).  Arabidopsis  MAP kinase kinase MKK1 is acti-
vated in cells treated with fl g22, and it phosphorylates the MAPK MPK4 (Mészáros 
et al.  2006 ). Thus several studies have shown that MAPK signaling is activated by 
fl agellin in  Arabidopsis  (Tsuda et al.  2009 ; Wu et al.  2011 ). Although such studies 
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have shown that MAPK cascades are important components in the PAMP fl agellin 
signaling system, there are also reports that fl g22 may trigger the plant immune 
responses independent of MAPK cascades in  Arabidopsis . The  bik1  mutant is sig-
nifi cantly compromised in PAMP-induced resistance, but not the fl g22-induced 
MAPK activation (Zhang and Zhou  2010 ).  

7.9     Signals and Signaling Systems Activating MAPK 
Cascades 

 Several MAP kinases have been shown to be involved in inducing resistance against 
bacterial, oomycete, and fungal pathogens (Menke et al.  2004 ; Brader et al.  2007 ; 
Zhang et al.  2007c ). These MAP kinase cascades may induce different signaling 
systems and induce resistance or susceptibility to various types of pathogens (Xiong 
and Yang  2003 ). Various signals activate MAP kinases. Fungal elicitor, H 2 O 2 , SA, 
JA and ethylene activated BWMK1, the MAPK in rice cells (Cheong et al.  2003 ). 
The kinase activity of BWMK1 was rapidly and transiently activated by all these 
defense signals. The activity peaked 5–30 min after treatment. The transcript levels 
of  BWMK1  increased in a delayed manner after activation with the defense signals; 
the increase was observed only 1 to 6 h after treatment (Cheong et al.  2003 ). 
However, BWMK1 protein levels did not change. This indicates that the BWMK1 
protein is maintained at steady-state levels in the cell, which would permit the plant 
to respond rapidly to the external stimuli. The response consumes BWMK1 protein; 
thus the plants produce new  BWMK1  transcripts to maintain the baseline level of 
protein. These observations suggest that BWMK1 activation is primarily achieved 
by post-translational modifi cation (Cheong et al.  2003 ). 

 Several other MAPKs, including ERMK (for  E licitor- r esponsive  M AP K ) 
(Ligterink et al.  1997 ), SIPK (Zhang and Klessig  1997 ; Zhang et al.  1998 ), and 
WIPK (Seo et al.  1995 ) have also shown to be activated by elicitors, SA, and JA. 
The ERMK and WIPK are also activated by post-translational modifi cation (Seo 
et al.  1995 ; Ligterink et al.  1997 ). LeMPK3 is a MAPK involved in defense response 
in tomato and  LeMPK3  was found to be transcriptionally up-regulated by both bac-
terial and fungal elicitors (Mayrose et al.  2004 ). 

 H 2 O 2  activates a MAPKK kinase from alfalfa, OMTK1 (oxidative stress- activated 
MAP triple-kinase 1) (Nakagami et al.  2004 ). JA activates MKK3 – MPK6 cascade 
in  Arabidopsis  (Takahashi et al.  2007a ) and OsBIMK1, a rice MAP kinase (Song 
and Goodman  2002 ). Salicylic acid activates a 48-kD MAP kinase and SIPK in 
tobacco (Zhang and Klessig  1997 ; Zhang and Liu  2001 ) and p48 and p44 MAPKs 
in pea (Uppalapati et al.  2004 ). ABA activates p48 MAPK in pea (Uppalapati et al. 
 2004 ) and rice MAPK gene OsMAPK5 (Xiong and Yang  2003 ). Both nitric oxide 
(NO) and SA activated SIPK in tobacco (Kumar and Klessig  2000 ). Studies with 
transgenic NahG tobacco revealed that SA is required in the NO-mediated induction 
of SIPK. These observations suggest that SIPK may function downstream of SA in 
the NO signaling pathway (Kumar and Klessig  2000 ).  
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7.10     MAPKs May Function Downstream of G-Proteins, 
Ca 2+ , ROS, SA, ABA, and NO Signaling Pathways 

 Silencing of a small GTPase,  OsRac1 , by RNA interference or loss of function 
mutation of the heterotrimeric G-protein α-subunit gene resulted in strong reduction 
of the OsMAPK6 protein levels and of kinase activation by the elicitor in rice 
(Lieberherr et al.  2005 ). These results suggest that both small G protein and hetero-
trimeric G protein act upstream of MAPK in induction of defense genes such as  PAL  
in rice (Lieberherr et al.  2005 ). It has been reported that Gα functions upstream of 
OsRac1 (Suharsono et al.  2002 ) and the MAPK may act downstream of OsRac1 in 
rice (Lieberherr et al.  2005 ). 

 The signaling cascade initiated by the DAMP/HAMP elicitor AtPep1 leads to 
expression of defense genes in a Ca 2+ -dependent manner in  Arabidopsis  (Qi et al. 
 2010 ). The endogenous elicitor AtPep1 after binding with its PRR AtPepR1 acti-
vates plant membrane inwardly conducting Ca 2+  permeable channels in mesophyll 
cells, resulting in cytosolic Ca 2+  elevation (Qi et al.  2010 ). The resulting Ca 2+  signature 
triggers the expression of the MAPK MPK3. The results suggest that AtPep-
dependent expression of  MPK3  is mediated by the Ca 2+  signaling pathway. 

 H 2 O 2  activates a MAPKK kinase from alfalfa, OMTK1 (oxidative stress- activated 
MAP triple-kinase 1) (Nakagami et al.  2004 ). JA activates MKK3 – MPK6 cascade in 
 Arabidopsis  (Takahashi et al.  2007a ) and OsBIMK1, a rice MAP kinase (Song and 
Goodman  2002 ). ABA activates p48 MAPK in pea (Uppalapati et al.  2004 ) and rice 
MAPK gene OsMAPK5 (Xiong and Yang  2003 ). Salicylic acid activates a 48-kD MAP 
kinase and SIPK in tobacco (Zhang and Klessig  1997 ; Zhang and Liu  2001 ) and p48 and 
p44 MAPKs in pea (Uppalapati et al.  2004 ). Both nitric oxide (NO) and SA activated 
SIPK in tobacco (Kumar and Klessig  2000 ). Studies with transgenic  NahG  tobacco 
revealed that SA is required in the NO-mediated induction of SIPK. These observations 
suggest that SIPK may function downstream of SA in the NO signaling pathway (Kumar 
and Klessig  2000 ). Collectively these studies suggest that MAPKs may function down-
stream of G-proteins, Ca 2+  infl ux, ROS, NO, SA, JA, ET, and ABA signaling.  

7.11     Some MAPKs May Act Upstream of SA, JA, 
and ET Signaling Pathways 

 There are also reports that JA or SA or ethylene may not be able to induce expres-
sion of MAPKs and they may act only at downstream of MAPK. JA or SA could not 
activate transcription of  TIPK  ( Trichoderma -induced protein kinase) in cucumber, 
even at high concentrations (Shoresh et al.  2005 ). JA was unable to induce expres-
sion of  LeMPK3  in tomato (Mayrose et al.  2004 ) or activate WIPK or its alfalfa 
homolog, SAMK (Bögre et al.  1997 ; Kumar and Klessig  2000 ). WIPK in tobacco is 
not activated by ethylene (Kumar and Klessig  2000 ). Ethylene did not affect expres-
sion of the tomato LeMPK3 (Mayrose et al.  2004 ). The tomato MAPKs LeMPK1 
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and LeMPK2 function upstream of JA biosynthesis (Kandoth et al.  2007 ). These 
studies suggest that MAPKs may act at upstream of various signaling systems in 
different plants.  

7.12     Some MAP Kinases Act Downstream 
of Phosphoinositide (PI) Signal Transduction Pathway 

 Some MAP kinases have been shown to act downstream of phosphoinositide (PI) 
signal transduction pathway. In this pathway, PI is phosphorylated by phosphati-
dylinositol kinase to form phosphatidylinositol-4-phosphate (PIP), which is 
 phosph orylated by phosphatidylinositol-4-monophosphate kinase to form phospha-
tidylinositol-4,5-bisphosphate (PIP2). The PIP2 is hydrolysed by phospholipase C 
into inositol trisphosphate (IP3) and diacylglycerol (DAG). It has been reported that 
a fungal elicitor induced a rapid and biphasic increase in levels of PIP2 and IP3 in 
pea that was apparent within 15 min (Toyoda et al.  1993 ). Neomycin, a known inhib-
itor of phospholipase C blocked the elicitor-induced accumulation both of IP3 and 
the phytoalexin pisatin. These results suggest that rapid changes in PI metabolism are 
indispensable in the defense signaling system in pea plants (Toyoda et al.  1993 ). In 
another related study, increased activation of two MAP kinases, p44 and p48 kinases, 
by a fungal pathogen elicitor within 15–30 min was observed (Uppalapati et al. 
 2004 ). The elicitor-induced p44 kinase activation was inhibited by a MAPKK inhibi-
tor, PD098059 and this inhibition was correlated with the suppression of elicitor-
induced expression of the defense gene  PAL  encoding phenylalanine ammonia-lyase. 
These observations suggest that the MAPK is involved in defense signaling system 
in pea (Uppalapati et al.  2004 ). Pre-treatment of epicotyls of pea plants with the 
phospholipase C inhibitor neomycin completely suppressed elicitor- induced p44 
kinase activation and subsequent phytoalexin accumulation (Uppalapati et al.  2004 ). 
A DAG kinase which degrades the DAG was shown to activate the p44 kinase. This 
was demonstrated using a DAG kinase inhibitor, R59022, and this inhibitor potenti-
ated the elicitor-induced MAP kinase activities (Uppalapati et al.  2004 ). Toyoda 
et al. ( 2000 ) reported that inhibition of DAG kinase potentiated the  PAL  gene activa-
tion and accumulation of phytoalexin in pea. These results suggest that DAG may act 
as a second messenger and inhibition of breakdown of DAG by DAG kinase may 
increase induction of the defense gene and defense compound. It demonstrates that 
the MAP kinase acts downstream of DAG in the PI metabolism (Fig.  7.4 ).

7.13        MAP Kinase Cascades May Act Either Upstream 
or Downstream of ROS Signaling System 

 ROS may act either upstream or downstream of MAPK pathways The  overexpression 
of a constitutively active MAPK kinase (MAPKK), which activates endogenous 
SIPK and WIPK, induced the  NbrbohB  ( Nicotiana benthamiana respiratory burst 
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oxidase homolog B ) gene encoding a NADPH oxidase inducing ROS in  N .  benthamiana  
(Yang et al.  2001 ). Ren et al. ( 2002 ) reported that the activation of endogenous 
 Arabidopsis  MAPKs by  MEK  transgenes encoding MAPK Kinase under induced 
conditions leads to the generation of H 2 O 2 . Elicitor signals have been shown to 
activate a MAPK (a SIPK ortholog of tobacco), StrbohB ( Solanum tuberosum  
respiratory burst oxidase homolog B) and accumulation of ROS in potato tubers 
(Katou et al.  1999 ; Yoshioka et al.  2001 ). 

 The MAPK pathway might induce the NADPH oxidase at the gene transcrip-
tional level and also by post-translational activation of the enzyme. Yoshioka et al. 
( 2003 ) demonstrated that the  N. benthamiana  MAPKK, MEK, induced the NADPH 
oxidase gene  NbrbohB  at the transcriptional level. It has also been shown that the 
oxidative burst is controlled through phosphorylation activation by its upstream 
kinase and dephosphorylation inactivation by its negative regulator, phosphatase 
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  Fig. 7.4    Activation of MAP kinase in phosphatidylinositol signaling pathway (Adapted from 
Toyoda et al.  2000 ; Uppalapati et al.  2004 )       
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(Yoshioka et al.  2003 ). It suggests that post-translational modifi cation of the 
NADPH oxidase by phosphorylation may also be involved in ROS production. The 
MAPK pathway may also act at downstream of H 2 O 2 , which activates MAPKs 
(SIPK and WIPK in tobacco). The activated MAPKs trigger defense gene activation 
(Fig.  7.5 ; Yang et al.  2001 ; Yoshioka et al.  2003 ).

   The role of MAPK cascade in the generation of H 2 O 2  has been demonstrated in 
 Arabidopsis  (Ren et al.  2002 ). Transgenic Arabidopsis plants expressing active 
mutants of two MAPK kinases, AtMEK4 and AtMEK5, were developed (Ren et al. 
 2002 ). The external signal stimulated the activation of the endogenous MAPKs and 
generation of H 2 O 2  (Ren et al.  2002 ). 

 Some MAP kinase may control H 2 O 2  accumulation by the action of catalase 
(Xing et al.  2008 ). A catalase ( CAT1 ) transcript was induced in an abscisic acid 
(ABA)-dependent way in  Arabidopsis thaliana  and the induction was abolished in 
the T-DNA insertion mutant  mkk1 , a gene encoding a MAPK kinase. Overexpression 
of  AtMKK1  signifi cantly enhanced ABA-dependent  CAT1  expression and H 2 O 2  
 production (Xing et al.  2008 ). Another component in the MAPK cascade, MPK6 
(a MAP kinase) was also involved in signal transduction. The  mpk6  mutant blocked 
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  Fig. 7.5    MAP kinase cascade acting both upstream and downstream of ROS signaling system 
(Yang et al.  2001 ; Yoshioka et al.  2003 )       
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and overexpressing AtMPK6 enhanced the ABA-dependent expression of  CAT1  
and H 2 O 2  production. The activity of AtMPK6 was increased by ABA in an 
AtMKK1-dependent manner. These results suggest an ABA-dependent signaling 
pathway connecting  CAT1  expression through a phosphorylation system including 
AtMKK1 and AtMPK6 (Xing et al.  2008 ). 

 In another study, Xing et al. ( 2007 ) showed that ABA-induced expression of 
 CAT1  catalase is mediated by an  Arabidopsis  MAPK kinase, AtMEK1, by trigger-
ing H 2 O 2  signal production. The  mek1  mutant totally blocked stress-induced  CAT1  
expression and H 2 O 2  production. Overexpression of  AtMEK1  signifi cantly induced 
 CAT1  expression and H 2 O 2  production (Xing et al.  2007 ). These results suggest that 
MAPK pathway acts upstream of H 2 O 2  signaling. 

 An  Arabidopsis  MAPKKK, MEKK1 has been shown to act downstream of H 2 O 2.  
MEKK1 kinase activity and protein stability was regulated by H 2 O 2  in a proteasome- 
dependent manner (Nakagami et al.  2006 ). H 2 O 2  has been shown to activate two 
MAPKs, AtMPK6 and AtMPK3 in  Arabidopsis  (Grant et al.  2000 ; Kovtun et al.  2000 ; 
Desikan et al.  2001 ), through a MAPKKK, AN1 (Kovtun et al.  2000 ). In maize, H 2 O 2  
has been reported to activate a 46 kDa MAPK (Zhang et al.  2006 ). In tobacco, ROS 
induced SIPK and WIPK (Samuel and Ellis  2002 ).  

7.14     MAP Kinases Positively or Negatively Regulate SA 
Signaling System 

 Several MAP kinases are known to positively or negatively regulate SA-signaling 
systems in plants. The  Arabidopsis MKK7  gene encoding MAP kinase kinase 7 
positively regulates SA-signaling system (Zhang et al.  2007c ). The activation- 
tagged  bud1  mutant, in which the expression of MKK7 is increased, accumulates 
SA, exhibits constitutive PR gene expression, and displays enhanced resistance to 
both the oomycete pathogen  Hyaloperonospora parasitica  and the bacterial 
pathogen  Pseudomonas syringae  pv.  maculicola  (Zhang et al.  2007c ). Expression 
of a WIPK-activated transcription factor results in increase of endogenous sali-
cylic acid in tobacco (Waller et al.  2006 ). Salicylic acid levels were 50-fold higher 
in the transgenic plants than those in wild-type plants. The levels of JA did not 
signifi cantly differ (Waller et al.  2006 ). SA pathway genes were more rapidly and 
strongly induced in plants overexpressing a MAPK gene. These tobacco plants 
showed enhanced defense responses against fungal and viral pathogens (Shi et al. 
 2010 ). Collectively these results suggest that the MAPKs may act upstream of SA 
biosynthesis. 

 MPK4 acts as a negative regulator of defense responses through a salicylic acid- 
dependent signaling system (Petersen et al.  2000 ). The  mpk4  knockout mutant 
shows elevated SA levels and constitutively expresses pathogenesis-related (PR) 
genes (Petersen et al.  2000 ). Expression of the bacterial NahG salicylate hydroxy-
lase in  mpk4  plants abolishes PR gene expression, indicating the role of the MAPK 
in SA-mediated signaling system (Petersen et al.  2000 ; Brodersen et al.  2006 ). 
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A substrate for MPK4 has been identifi ed and it was designated MKS1 (for  M AP 
 K inase 4  S ubstrate  1 ) (Andreasson et al.  2005 ). MPK4 interacts with the nuclear 
protein MKS1 that in turn interacts with two WRKY transcription factors, 
WRKY25 and WRKY33 (Andreasson et al.  2005 ). The molecular phenotypes of 
plants over- or under-expressing MKS1 indicate that it mediates some effects of 
MPK4 on SA-mediated resistance responses. The results suggest that the MKS1 is 
required for SA-dependent resistance in  Arabidopsis  (Andreasson et al.  2005 ). The 
transcription factors WRKY25 and WRKY33 may function as downstream com-
ponents of the MPK4-mediated signaling pathway and contribute to repression of 
SA-dependent disease resistance response (Andreasson et al.  2005 ). 

 An  Arabidopsis  MAPKKK, EDR1 ( E nhanced  D isease  R esistance1), negatively 
regulates SA-mediated defense responses (Frye et al.  2001 ). Inactivation of EDR1 
interacting receptors by fungal pathogen – derived elicitor signals activated 
SA-inducible defense responses. The  Arabidopsis  mutant  edr1  showed enhanced 
disease resistance response. These results suggest that the mitogen-activated protein 
kinase is involved in SA-mediated resistance response (Frye et al.  2001 ).  

7.15     MAP Kinase Cascades Activate JA Signaling System 

 Some MAP kinase cascades are involved in jasmonic acid (JA) signaling system. 
The  Arabidopsis  MKK3-MPK6 cascade is involved mainly in JA signaling sys-
tem. This cascade negatively regulates  ATMYC2  function (Takahashi et al. 
 2007a ).  Arabidopsis JIN1  ( J  ASMONATE   IN  SENSITIVE1 , also known as  MYC2  
[ MY  ELO  C  YTOMATOSIS  2  ] ) encodes a basic helix-loop-helix (bHLH) – type 
transcription factor. MYC2 involved in the transcriptional regulation of 
JA-responsive gene expression (Lorenzo et al.  2004 ; Chini et al.  2007 ).  ATMYC2  
plays a predominant role in JA pathway (Boter et al.  2004 ).  ATMYC2  was shown 
to function as a downstream factor of the MKK3-MPK6 cascade in JA signaling 
(Takahashi et al.  2007a ). 

 JAZ (for  JA SMONATE  Z IM [ Z inc-fi nger protein expressed in  I nfl orescence 
 M eristem]-domain) family of transcriptional repressors has been identifi ed as an 
important component in a receptor complex involved in the JA perception process 
(Sheard et al.  2010 ). JAZ proteins have been identifi ed as key regulators of jasmonate 
signaling (Chini et al.  2007 ; Thines et al.  2007 ). JAZ proteins negatively regulate the 
key transcriptional activator of jasmonate responses, MYC2 (Chini et al.  2007 ). 
JAZ proteins interact with MYC2 involved in the transcriptional regulation of 
JA-responsive gene expression (Lorenzo et al.  2004 ; Chini et al.  2007 ). It is sug-
gested that, in the absence of a JA signal, JAZ proteins repress MYC2. Upon sensing 
of the JA signals, JAZ repressors are recruited to the SCF E3 complex for ubiquitina-
tion and subsequent degradation by the proteasome. The removal of these repressors 
then paves the way for MYC2 to regulate JA-dependent gene expression. 

 MYC2 is a master regulator of the JA signaling pathway. MYC2 is required for 
induced systemic resistance (ISR) triggered by benefi cial soil microbes (Kazan and 
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Manners  2013 ). MYC2 function is targeted by pathogens during effector-mediated 
suppression of innate immunity in roots. MYC2 regulates crosstalk between the 
signaling pathways of JA and those of other phytohormones such as ABA, SA, GA, 
and auxin (Kazan and Manners  2013 ). MYC2 orthologs act as ‘master switches’ 
that regulate JA-mediated biosynthesis of secondary metabolites (Kazan and 
Manners  2013 ). 

 The MKK3-MPK6 cascade affects gene expression controlled by JA. The 
JA-responsive  PDF1.2  encoding the PR-12 defensin protein is activated by the MKK3-
MPK6 cascade (Takahashi et al.  2007a ). The tobacco orthologue of the  Arabidopsis  
MPK4, NtMPK4, is activated by SIPKK, a SIPK-interacting MAPK kinase. In 
NtMPK4-silenced tobacco plants, the induction of JA-responsive genes was inhibited, 
suggesting that NtMPK4 activates JA-responsive genes (Gomi et al.  2005 ). 

 The MAPK WIPK-overproducing tobacco plants showed 3- to 4-fold higher 
 levels of JA and methyl jasmonate than in the wild type plants. These WIPK- 
overproducing plants showed constitutive accumulation of PI-II (Proteinase 
Inhibitor-II) transcript accumulation and  PI-II  is a JA-inducible PR gene (Seo et al. 
 1999 ). Rice plants transformed with MK1, a homolog of WIPK from  Capsicum 
annuum , showed a three-fold higher level of JA than the wild type (Lee et al.  2004 ). 
These observations suggest a role for the MAPK in the production of JA and in the 
activation of JA-mediated signaling system. 

 MAP kinase cascades may positively or negatively regulate JA signaling system. 
It has been reported that the induction of jasmonate-responsive genes was blocked 
in  mpk4 Arabidopsis  plants (Petersen et al.  2000 ), suggesting that it positively regu-
lates the JA pathway. AP2C1, an  Arabidopsis  Ser/Thr phosphatase of type 2C is a 
defense signal regulator that inactivates MPK4. The  ap2C1  mutants produce signifi -
cantly higher amounts of JA upon wounding (Schweighofer et al.  2007 ). The result 
provides additional evidence to show that  Arabidopsis thaliana  MPK4 positively 
regulates JA pathway. By contrast, the MPK4 from soybean ( Glycine max ) 
GmMPK4 negatively regulates JA pathway. JA signaling is activated in  GmMPK4 - 
silenced  plants. Signifi cantly, a hallmark JA-responsive gene encoding defensin had 
315-fold change in  GmMPK4 -silenced plants (Liu et al.  2011 ).  

7.16     Some MAP Kinase Cascades Are Involved 
in Biosynthesis of Ethylene and Ethylene-Mediated 
Signaling Systems 

 Some of the MAP kinase cascades have been shown to be involved in biosynthesis 
of ethylene and ethylene (ET)-mediated signaling systems. Activation in tobacco of 
MAP kinase cascades, which include the NtMEK2 MAPKK and the SIPK and 
WIPK MAP kinases, has been reported to cause an increase of ethylene levels (Kim 
et al.  2003 ). The MKK4/5-MPK6 cascade in  Arabidopsis  is involved in ET signal-
ing system (Kim et al.  2003 ; Liu and Zhang  2004 ). MPK6 is phosphorylated by 
MKK4/MKK5. MPK6 is involved in defense signaling system. It has been 
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demonstrated that silencing of MPK6 compromised disease resistance response 
(Menke et al.  2004 ). The  Arabidopsis  CTR1 (Constitutive triple Response 1) is a 
Raf-like kinase considered as a MAPKKK and it controls MPK3/6 activation via 
MKK9 (MAPK kinase9). It negatively regulates ET signaling (Guo and Ecker  2004 ; 
Yoo et al.  2008 ). The  Arabidopsis  MAP kinase MPK4 has been shown to be a 
requirement for induction of a subset of ET-regulated genes (Brodersen et al.  2006 ). 

 The ethylene-dependent defense signaling pathway begins with the induction of 
ethylene biosynthesis. 1-Amino-cyclopropane-1-carboxylic acid (ACC) synthase 
(ACS) is the key enzyme involved in ethylene biosynthesis. S-adenosyl-methionine 
(SAM) is converted to ACC by ACC synthase (Wang et al.  2002 ). ACS is PAMP 
elicitor-inducible enzyme involved in induction of biosynthesis of ethylene 
(Li et al.  2012 ). Another enzyme involved in biosynthesis of ethylene is ACC oxi-
dase. The enzyme oxidatively cleaves the ACC resulting in generation of ethylene 
(Wang et al.  2002 ). 

 Several  ACS  genes have been identifi ed and transcriptional activation of these 
genes contributes to the increase in ACS isozymes in plants (Vogel et al.  1998 ; Chae 
et al.  2003 ; Skottke et al.  2011 ). Phosphorylation of the ACC synthases appears to 
be essential for the activation of these enzymes. In the absence of phosphorylation 
by mitogen-activated protein kinase, the newly synthesized ACC synthases are rap-
idly degraded through ubiquitin-proteasome pathway, resulting in no net increase in 
the ACS proteins (Liu and Zhang  2004 ; Joo et al.  2008 ). ACC synthase isozymes 
have been shown to be substrates for E3 ligases (Dreher and Callis  2007 ). 

 The  Arabidopsis  ACS isoforms ACS2 and ACS6 have been shown to be sub-
strates of MPK3 and MPK6 (Liu and Zhang  2004 ; Han et al.  2010 ). The ACS 
isoforms were shown to be phosphorylated and stabilized by MPK3 and MPK6 
functioning in the MAPK cascade consisting of MEKK1-MKK4/MKK5-MPK3/
MPK6 (Han et al.  2010 ; Li et al.  2012 ). Phosphorylation of the two ACC syn-
thases, ACS2 and ACS6 by MPK3 and MPK6 prevents rapid degradation of 
ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular 
ACS activity (Han et al.  2010 ). The phosphorylation resulted in ACS stability 
and accumulation of ACS isozymes, which led to increased synthesis of ACC 
(Liu and Zhang  2004 ). Another enzyme involved in biosynthesis of ethylene, 
ACC oxidase, oxidatively cleaves the accumulated ACC resulting in generation 
of ethylene (Wang et al.  2002 ). In addition to direct phosphorylation modifi ca-
tion and stabilization of ACS proteins, MPK3 and MPK6 also regulate the 
expression of ACS genes through another MPK3/MPK6 substrate, the WRKY 
transcription factor WRKY 33 (Fig.  7.6 ; Li et al.  2012 ). WRKY33 binds to the 
W-boxes in the  ACS2 / ACS6  promoters in vivo and is directly involved in MPK3/
MPK6-induced  ACS2 / ACS6  gene expression. Regulations of ACS isoforms at 
both transcriptional and post-translational levels by MPK3 and MPK6 seem to 
contribute to the high-level ethylene production in plants challenged by invading 
pathogens (Li et al.  2012 ). These studies suggest that MPK3 and MPK6 not only 
function in the phosphorylation-induced stabilization of ACS2/ACS5 proteins, 
but also signal the  ACS2  and  ACS6  gene activation after  Botrytis cinerea  in 
 Arabidopsis  (Li et al.  2012 ).
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7.17        Involvement of MAP Kinase in Crosstalk Between SA 
and JA/ET Signaling Systems 

 Crosstalk between SA and JA/ET signaling systems has been reported in different 
plant-pathogen interactions. The tobacco basic PR protein gene  NtPRB1b  responds 
positively to JA and ET signaling systems, but negatively to SA (Li et al.  2012 ). The 
MAP kinase MPK4 plays a role in the antagonism between SA and JA signaling 
systems in  Arabidopsis thaliana . The  mpk4  knockout plants exhibit constitutive 
activation of SA-dependent signaling system, but fail to induce JA-dependent 
signaling system (Petersen et al.  2000 ; Brodersen et al.  2006 ). 

 EDS1 and PAD4 are defense regulators and they modulate SA/JA signal antago-
nism as activators of SA but repressors of JA signaling (Wiermer et al.  2005 ; 
Brodersen et al.  2006 ). The function of EDS1 and PAD4 in the antagonistic interaction 
between SA and JA depends on the MAP kinase, MPK4 (Brodersen et al.  2006 ). 
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triggering ethylene 
biosynthesis in  Arabidopsis  
(Adapted from: Li et al. 
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The  mpk4  mutant is impaired in the induction of JA- and ET-responsive genes. The 
SA-repressing and the ET/JA-activating functions depend on the defense regulators 
EDS1 and PAD4 (Brodersen et al.  2006 ). EDS1 and PAD4 participate in defense 
amplifi cation loop that responds to SA and reactive oxygen species (ROS)-derived 
signals (Rustérucci et al.  2001 ). Mutations in  EDS1 / PAD4  affect SA-ET/JA signal 
antagonism as activators of SA but as repressors of ET/JA defenses, and MPK4 
negatively regulates both of these functions (Brodersen et al.  2006 ). 

 MAP kinase acts as a negative regulator of SA signaling and a positive regulator of 
JA signaling in Arabidopsis (Petersen et al.  2000 ). Inactivation of MPK4 in mutant 
 mpk4 Arabidopsis  plants resulted in increased expression of SA-responsive genes 
and suppression of JA-responsive genes (Petersen et al.  2000 ). MAP KINASE4 
SUBSTRATE 1 (MKS1) is the target of MPK4 and phosphorylation of MKS1 by 
MPK4 has been reported to repress SA signaling. MSK1 interacts with the WRKY 
transcription factors WRKY25 and WRKY33 and both of them can be phosphory-
lated by MPK4 (Andreasson et al.  2005 ). Overexpression of both WRKY25 and 
WRKY33 results in repression of SA signaling responses, suggesting that these tran-
scription factors, after activation by phosphorylation by the action of MPK4, suppress 
SA signaling system (Zheng et al.  2006 ,  2007 ). By contrast,  wrky33  mutant plants 
showed reduced expression of JA-responsive genes, suggesting that WRKY33 after 
phosphorylation by MPK4 activates JA signaling system (Zheng et al.  2006 ). These 
studies suggest that MPK4 suppresses SA signaling system, while it activates JA sig-
naling system and it is involved in cross-talk between SA and JA signaling systems.  

7.18     MAPK Phosphatases as Negative Regulators 
of MAP Kinases 

 MAPK cascades include both phosphorylation and dephosphorylation events result-
ing in transient increases in MAPK activity. MAP kinases are dephosphorylated and 
inactivated by protein phosphatases, including tyrosine-specifi c phosphatases, ser-
ine/threonine-specifi c phosphatases, and dual-specifi city MAPK phosphatases 
(MKPs), which are highly specifi c to MAPKs (Keyse  2000 ; Theodosiou and 
Ashworth  2002 ). MAPK phosphatases (MKPs) are negative regulators of MAPKs 
(Katou et al.  2005 ). Overexpression of the tobacco MKP NtMKP1 compromises 
wound-induced SIPK and WIPK, suggesting a role for the MKP in regulating these 
MAPKs in vivo (Yamakawa et al.  2004 ). In  Arabidopsis , the transmission of ROS 
and pathogen signaling by MAPKs involves the coordinated activation of MPK6 
and MPK3. MAPK phosphatase 2 (MKP2) regulates plant immune responses and 
functionally interacts with MPK3 and MPK6. Plants lacking a functional  MKP2  
gene show defense response against the bacterial pathogen  Ralstonia solanacearum  
and by contrast, these plants show enhanced susceptibility against the fungal patho-
gen  Botrytis cinerea  (Lumbreras et al.  2010 ). This MKP2 function appears to be 
linked to differential regulation of MPK3 and MPK6 networks by different types of 
pathogens (Lumbreras et al.  2010 ). 
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 In contrast to many members of the MAPK family, plant MKPs form only a 
small gene family. Only fi ve MKPs have been reported in  Arabidopsis  (Kerk et al. 
 2002 ). This disproportionate ratio of MAPK to MKP suggests that one MKP regu-
lates multiple MAPKs in plants. The Arabidopsis MAPK phosphatase AtMKP1 
specifi cally interacts with AtMPK3, AtMPK4, and AtMPK6 (Ulm et al.  2002 ). The 
tobacco MKP NtMKP1 inactivates salicylic acid-induced protein kinase (SIPK) 
through dephosphorylation of the TEY motif of SIPK (Katou et al.  2005 ). The phos-
phatase activity of NtMKP1 was increased strongly by the binding of SIPK and 
only weakly by another MAPK, WIPK, revealing the specifi city of NtMKP1 (Katou 
et al.  2005 ). 

 MKPs have been shown to negatively regulate JA and ET signaling systems in 
 Arabidopsis thaliana  (Schweighofer et al.  2007 ). An  A. thaliana  Ser/Thr phospha-
tase of type 2C, AP2C1, inactivates the MAPKs MPK4 and MPK6. Mutant  ap2c1  
plants produce signifi cantly higher amounts of JA in response to external stimulus. 
Plants with increased AP2C1 levels display lower activation of MAPKs, reduced 
ethylene production, and compromised innate immunity against  Botrytis cinerea . 
These results suggest that the phosphatase negatively regulates the MAPK pathway 
and ET and JA signaling system (Schweighofer et al.  2007 ).  

7.19     MAP Kinase Cascades Modulate Phosphorylation 
of Transcription Factors to Trigger Transcription 
of Defense Genes 

 MAP kinase cascades have been shown to be involved in phosphorylation of tran-
scription factors, which are involved in transcription of defense genes activated 
through SA- or JA-, or ET- dependent signaling systems. BWMK1 ( B last- and 
 w ounding- activated  M AP K 1 ), a rice mitogen-activated protein kinase is targeted 
to the nucleus. This protein phosphorylates the rice transcription factor OsEREBP1 
( O ryza  s ativa  e thylene- r esponsive  e lement- b inding  p rotein  1 ). EREBPs are known 
to bind to the GCC box DNA motif (AGCCGCC) that is located in the promoter of 
several  PR  genes. In vitro phosphorylation of OsEREBP1 by BWMK1 enhanced its 
ability to bind to the GCC box. Ectopic expression of the BWMK1 in tobacco plant 
induced the expression of a broad spectrum of  PR  genes (Cheong et al.  2003 ). 

 Ethylene response factor6 (ERF6) is another substrate of MPK3/MPK6 and it 
regulates  Arabidopsis  defense gene expression and resistance against  Botrytis 
 cinerea.  Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function 
transgenic plants or in response to  B. cinerea  infection increases ERF6 protein sta-
bility in vivo (Meng et al.  2013 ). Chitin elicitors induced the kinase activity of two 
MAPK genes,  AtMPK6  and  AtMPK3  in  Arabidopsis  (Wan et al.  2004 ). In addition, 
 WRKY22 ,  WRKY29 ,  WRKY33 , and  WRKY53 , which encode four WRKY transcrip-
tion factors that recognize TTGAC(C/T) W-box elements in promoters of several 
defense-related genes, were up-regulated by the elicitor treatment (Wan et al.  2004 ). 
WRKY33 is a pathogen-inducible transcription factor, whose expression is 
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regulated by the MPK3/MPK6 cascade. WRKY33 is a substrate of MPK3/MPK6. 
It has been demonstrated that WRKY33 is phosphorylated by MPK3/MPK6 in vivo 
in response to  Botrytis cinerea  infection in  Arabidopsis . WRKY33 is required for 
MPK3/MPK6-induced camalexin biosynthesis (Mao et al.  2007 ). 

  Nicotiana benthamiana  WRKY8 transcription factor has been shown to be a 
physiological substrate of the MAPKs, SIPK, NTF4, and WIPK (Ishihama et al. 
 2011 ). Clustered Pro-directed Ser residues, which are conserved in group 1 WRKY 
proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs 
in vitro. The interaction of WRKY8 with MAPKs depended on its D domain, which 
is a MAPK-interacting motif, and this interaction was required for effective phos-
phorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA 
binding activity to the cognate W-box sequence (Ishihama et al.  2011 ). Ectopic 
expression of WRKY8 induced defense-related genes. By contrast, silencing of 
WRKY8 decreased the expression of defense-related genes and increased suscepti-
bility to the oomycete pathogen  Phytophthora infestans  and the fungal pathogen 
 Colletotrichum orbiculare  (Ishihama et al.  2011 ). These results suggest that MAPK- 
mediated phosphorylation of WRKY8 has an important role in triggering down-
stream immune responses. 

 The tobacco MAP kinase WIPK phosphorylates and activates NtWIF, a tran-
scription factor. The transgenic tobacco plants overexpressing  NtWIF  exhibited 
constitutive accumulation of transcripts for  PR  genes,  PR-1a  and  PR-2  (Waller et al. 
 2006 ). MPK3 phosphorylates a plant VirE2-interacting protein 1 (VIP1), a bZIP 
transcription factor (Liu et al.  2010 ) .  VIP1 is a direct target of the PAMP-induced 
MPK3. Upon phosphorylation by MPK3, VIP1 relocalizes from the cytoplasm to 
the nucleus and regulates the expression of the  PR1  pathogenesis-related gene 
(Djamei et al.  2007 ). Collectively, these results suggest that phosphorylation of 
transcription factors by MAPKs is an important event in triggering expression of 
defense-related genes.  

7.20     MAPKs Regulate Defense Gene Expression 
by Releasing Transcription Factors in the Nucleus 

 Transcription factor release may be a common theme after MAPK activation to 
control downstream gene expression. MAPKs activate expression of defense-related 
genes. MKS1 (for MAP kinase 4 substrate 1) is a substrate for the  Arabidopsis  
MAPK MPK4. MKS1 interacts with the transcription factors WRKY 25 and 
WRKY33 (Andreasson et al.  2005 ). The interaction of MKS1 with WRKY33 has 
been shown to be dependent on the phosphorylation status of MKS1 induced by 
MPK4 (Qiu et al.  2008b ). In the absence of pathogens, inactivated MPK4 forms a 
ternary complex with MKS1 and WRKY33 in the nucleus, which prevents WRKY33 
from functioning as a transcription factor. MPK4 is activated by the PAMP treat-
ment or pathogen inoculation in  Arabidopsis . Upon activation of MPK4, MKS1 is 
phosphorylated by MPK4. Subsequently, phosphorylated MKS1 and WRKY33 
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proteins are released from MPK4. The unbound WRKY33 targets the promoter of a 
defense-related gene  PAD3  ( PHYTOALEXIN DEFICIENT3 ) for transcriptional 
activation (Qiu et al.  2008a ,  b ). 

 Bethke et al. ( 2009b ) identifi ed a transcription factor of the Ethylene Response 
Factor (ERF) family, ERF104, which interacted with the  Arabidopsis  MAPK 
MPK6. The ERF104 was found to be a nuclear substrate involved in plant defense 
and MPK6 binds with ERF104. The continued binding of MPK6 to ERF104 might 
constrain physical interactions with subsequent ERF104 targets and impringe on its 
role in transcription activation (Bethke et al.  2009b ). The release of ERF104 from 
MPK6 in the nucleus required rapid ET signaling (Bethke et al.  2009b ). Bethke 
et al. ( 2009a ) suggested that the PAMP fl g22 signal network includes one pathway 
for MPK6 to target ERF104 directly through phosphorylation and on a separate 
branch, to stimulate ET production, which triggers a yet unknown mechanism (that 
is dependent on EIN2 and the EIN3/EIL members) for the release of ERF104 from 
MPK6 in the nucleus. The released transcription factor ERF104 may activate tran-
scription of defense genes. These results suggest that transcription factor release 
after MAPK activation in the nucleus controls the downstream gene expression.  

7.21     Role of MAPK Signaling Cascade in Triggering 
Phytoalexin Biosynthesis 

 Phytoalexins are key components in plant defense responses and several elicitors 
are known to trigger production of phytoalexins (Vidhyasekaran  2007 ). MAPK sig-
naling cascades have been shown to activate the phytoalexin camalexin biosynthesis 
(Ren et al.  2008 ). The  Arabidopsis  MAPKKKα/MEKK1-MKK4/MKK5-MPK3/
MPK6 cascade has been shown to trigger the camalexin biosynthesis (Fig.  7.7 ). 
Both MPK3 and MPK6 play important role in triggering biosynthesis of camalexin. 
MPK3/MPK6 cascade coordinates the induction of multiple genes in the camalexin 
biosynthetic pathway. The camalexin biosynthetic genes include the genes encoding 
anthranilate synthase α and β subunits (ASA and ASB), phosphoribosylanthranilate 
transferase (PAT), indole-3-glycerolphosphate synthase (IGPS), tryptophan synthase 
α and β subunits (TSA) and TSB), and the P450 enzymes CYP79B2, CYP79B3, and 
CYP71B15 (PAD3). The induction of all of these genes was partially compromised 
in  mpk3 / mpk6  mutant plants (Ren et al.  2008 ).

7.22        Role of MAPK Signaling Cascade in Stomatal Immune 
Response 

 Stomata serve as passive ports of bacterial entry during infection. They constitute 
one entry point for bacteria, which need to reach apoplastic spaces to multiply and 
cause disease (Nicaise et al.  2009 ). The stomata in the  Arabidopsis  leaf epidermis 
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have been shown to act as innate immunity gates to actively prevent bacteria from 
entering the plant leaf (Melotto et al.  2006 ). The PAMP fl g22 triggers closure of 
stomata which occurs within the fi rst hour of contact with plant tissue (Melotto et al. 
 2006 ). The PAMP-triggered stomatal closure was dependent on several signals and 
signaling systems. The PAMP-induced ABA signaling system has been reported to 
be involved in stomatal closure (Hubbard et al.  2010 ). ABA increase was the critical 
early event in stomatal closure induced by fl g22 (Melotto et al.  2006 ). ROS signal-
ing system is also involved in the stomatal closure. ABA and H 2 O 2  treatments 
induced inhibition of stomatal opening or the promotion of stomatal closure 
(Gudesblat et al.  2007 ; Jammes et al.  2009 ,  2011 ; Hettenhausen et al.  2012 ). NO 
production, activation of OST1 (for  O PEN  ST OMATA 1 ) kinase, Ca 2+  infl ux, and 
modulation of S-type anion channel have been found to be important for induction 
of stomatal closure responses (Melotto et al.  2006 ; Vahisalu et al.  2008 ; Kim et al. 
 2010 ). Flg22 triggered ABA synthesis, NO production, and OST1 (for  O PEN 
 ST OMATA 1 ) kinase, which are required for stomatal closure (Melotto et al.  2006 ). 

MAPKKKα/MEKK1

MKK4/MKK5

MPK3/MPK6

Transcription factors

ASA, ASB, PAT,IGPS,

TSA, TSB, CYP79B2,

CYP71A13, PAD3

Camalexin

Gene activation

Phosphorylation

Phosphorylation

Phosphorylation

  Fig. 7.7    Role of MPK3 and 
MPK6 signaling cascade in 
triggering biosynthesis of 
camalexin in  Arabidopsis  
(Adapted from Ren et al. 
 2008 )       
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 MAPKs also have been found to play important role in the stomatal closure 
immune response. AtMPK9 and AtMPK12 are mainly localized in guard cells, and 
plants silenced in both MAPKs have strong defects in ABA-induced stomatal 
 closure (Jammes et al.  2009 ). AtMPK9 and AtMPK12 redundantly and positively 
control stomatal closure in response to ABA and H 2 O 2  treatment (Jammes et al. 
 2009 ,  2011 ). Silencing AtMPK3 in  Arabidopsis  guard cells reduces H 2 O 2 -induced 
inhibition of stomatal opening or the promotion of stomatal closure (Gudesblat 
et al.  2007 ). 

 A  Nicotiana attenuata  MAPK, NaMPK4, plays an important role in guard cell- 
mediated defense against the bacterial pathogen  Pseudomonas syringae  pv.  tomato  
DC3000. NaMPK4 appears to act downstream of ABA in regulating stomatal 
 closure (Hettenhausen et al.  2012 ). NaMPK4 also has been reported to function 
downstream of ROS to mediate stomatal closure. Knocking down  NaMPK4  of  N . 
 attenuata  compromises the stomatal closure response after supplying H 2 O 2  
(Hettenhausen et al.  2012 ). The results suggest that NaMPK4 acts downstream of 
ROS in stomatal closure response. The S-type anion channel-associated 1 is impor-
tant for stomatal closure in response to ABA, H 2 O 2 , and Ca 2+  (Vahisalu et al.  2008 ; 
Kim et al.  2010 ). Downstream of ABA/ROS, NaMPK4 modulates the activity of 
S-type anion channels, which regulate the stomatal closure response (Hettenhausen 
et al.  2012 ). Supplying irNaMPK4 guard cells with Ca 2+  induced the normal stoma-
tal closure, suggesting the importance of Ca 2+  in stomatal closure (Hettenhausen 
et al.  2012 ). Collectively these studies suggest that ABA- and H 2 O 2 -induced cyto-
solic Ca 2+  ([Ca 2+ ]cyt) signature activates the anion channels, which regulate stoma-
tal closure.  Arabidopsis thaliana  MPK3 also has been shown to be involved in 
stomatal guard cell signaling. It probably acts in signaling downstream of H 2 O 2  in 
the signaling system. MPK3 is activated by abscisic acid and H 2 O 2 , which control 
stomatal closure (Gudesblat et al.  2007 ). These studies suggest that MAP kinase 
signaling cascades are involved in PAMPs-triggered stomatal closure immune 
responses.  

7.23     Effectors Inhibit PAMP-Triggered MAPK Signaling 
to Suppress Plant Immune Responses 

 Plant innate immune systems have high potential to fi ght against a wide range of 
viral, bacterial, oomycete, and fungal pathogens (Lacombe et al.  2010 ; Hwang and 
Hwang  2011 ; Alkan et al.  2012 ). However, potential pathogens produce several 
effectors to nullify the defense responses induced by the innate immune system (Wu 
et al.  2011 ; Cheng et al.  2012 ). To avoid or suppress or delay the expression of the 
defense gene-activating signaling systems, the pathogens secrete several effectors 
into the host cell (Göhre et al.  2008 ; Kim et al.  2010 ; Wu et al.  2011 ; Cheng et al. 
 2012 ). MAP kinase signaling cascades constitute a major immune response system. 
Activation of the MAPK signaling system confers resistance against viral (Shi et al. 
 2010 ,  2011 ; Zhang et al.  2011 ), bacterial (Brader et al.  2007 ; Dóczi et al.  2007 ; 
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Zhang et al.  2007c ,  2012c ; Shen et al.  2010 ; Jammes et al.  2011 ; Schikora et al. 
 2011 ; Hettenhausen et al.  2012 ), fungal (Wang et al.  2009 ; Shi et al.  2010 ,  2011 ), 
and oomycete (Zhang et al.  2007c ) diseases. 

 Pathogens secrete effectors to suppress the immune responses activated by PAMP 
elicitors. The bacterial effectors AvrPto and AvrPtoB act as suppressors of early-
defense gene transcription and MAPK signaling. These effectors intercept multiple 
PAMP-mediated signaling upstream of MAPKKK at the plasma membrane linked to 
the receptor (He et al.  2006 ). The  Pseudomonas syringae  effector HopF2 shows 
mono-ADP- ribosyltransferase activity and it inhibits the MAPKK MKK5 preventing 
the phosphorylation of MPK3 and MPK6 in response to PAMP treatment (Wang et al. 
 2010 ). HopPtoD2 is the effector secreted by  Pseudomonas syringae  pv.  tomato  DC3000 
and it possessed tyrosine phosphatase activity (Espinosa et al.  2003 ). A constitutively 
active MAPK kinase, NtMEK2, is involved in triggering hypersensitive responses. 
The effector HopPtoD2 suppressed the action of NtMEK2 in eliciting defense 
responses. It has been suggested that inactivation of MAPK pathways is a virulence 
strategy by the bacterial pathogen (Bretz et al.  2003 ; Espinosa et al.  2003 ). 

 HopF2 has been found to be a potent suppressor of early immune gene transcrip-
tion and mitogen-activated protein kinase signaling activated by multiple PAMPs, 
including bacterial fl agellin, ef-Tu, peptidoglycan, lipopolysaccharide and HrpZ1 
harpin, and fungal chitin (Wu et al.  2011 ). The conserved surface-exposed residues 
of HopF2 may be essential for its PAMP suppression activity. HopF2 is targeted to 
the plant plasma membrane through a putative myristoylation site, and the mem-
brane association appears to be required for its PAMP-suppression function (Wu 
et al.  2011 ). These results suggest that HopF2 likely intercepts PAMP signaling 
at the plasma membrane immediately of signal perception. Expression of HopF2 
in transgenic plants compromised plant nonhost immunity to bacterial pathogen 
 P .  syringae  pv.  phaseolicola  and plant immunity to the fungal pathogen  Botrytis 
cinerea  (Wu et al.  2011 ). HopF2 severely impairs PAMP-induced defenses and 
render plants highly susceptible to nonpathogenic  P .  syringae  bacteria (Wang et al. 
 2010 ). These results suggest that HopF2 plays important role in suppression of 
function of multiple PAMP signaling. 

 A  Pseudomonas syringae  effector HopAI1 inactivates the MAPKs MPK3 and 
MPK6 to suppress PAMP-induced immunity in plants (Zhang et al.  2007b ). HopAI1 
inactivates MAPKs by removing the phosphate group from phosphothreonine 
through phosphothreonine lyase activity. The inhibition of MAPKs by HopI1 sup-
presses transcriptional activation of PAMP response genes (Zhang et al.  2012c ). The 
HopAI1 has been shown to inhibit MPK4, a negative regulator of defense responses. 
The MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates plant immune 
responses (Kong et al.  2012 ). However, when the MAPK cascade is targeted by 
HopAI1, it positively regulates the basal immunity, probably due to inhibition of 
MPK4 by the effector (Zhang et al.  2012c ).  P .  syringae  effector AvrB interacts with 
and stimulates the activity of MPK4, a negative regulator of plant defense responses, 
thereby perturbing hormone signaling and enhancing plant susceptibility (Cui et al. 
 2010 ). Collectively, these studies suggest that pathogens secrete effectors, which 
suppress the action of MAPKs in triggering plant immune responses.     
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          Abstract     Phospholipids are the sources for production of the second messengers 
phosphatidic acid (PA), diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP 3 ), 
which are involved in defense signaling system. Phospholipase C (PLC) and phos-
pholipase D (PLD) are the key enzymes involved in generation of the phospholipid 
second messengers. G-proteins, Ca 2+  infl ux, nitric oxide (NO), and reactive oxygen 
species (ROS) are involved in PAMP elicitors-triggered activation of PLC and PLD. 
IP 3  is involved in activation of Ca 2+  signaling system. PA is an important second mes-
senger in activating ROS, jasmonate (JA), abscisic acid (ABA) systems and it also 
activates phosphorylation/dephosphorylation in various signaling systems. DAG is 
involved in JA biosynthesis and ROS signaling system. Biphasic production of PA 
and ROS through distinctly different phospholipase pathways has been reported. 
Protein kinases and phosphatases play key roles in phospholipid signaling system.  

  Keywords     Phosphatidic acid (PA)   •   Diacetylglycerol (DAG)   •   Inositol 1,4,5-
trisphosphate (IP3)   •   Phospholipases • Protein kinases • Phosphorylation • Second 
messengers  

8.1               Biosynthesis of Phospholipids-Derived Second 
Messengers 

 Phospholipids are the structural components of cell membranes and they are also 
sources of second messengers involved in defense signaling system. Many different 
phospholipids can be cleaved by phospholipases to generate second messengers 
(Berridge  1984 ; Chasan  1995 ). Phospholipase C (PLC) and phospholipase D (PLD) 
are the key enzymes involved in generation of various phospholipid second mes-
sengers Munnik    et al.  1998b ). In the phospholipase C-mediated pathway for the 
generation of second messengers (Fig.  8.1 ), PLC hydrolyzes the signaling phos-
pholipids (PLs) phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 
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4,5-bisphosphate (PIP 2 ) to generate the second messengers diacylglycerol (DAG) 
and inositol 1,4- bisphosphate (IP2) or inositol 1,4,5-trisphosphate (IP 3 ), respec-
tively. IP 2  can be subsequently phosphorylated to IP 3  (Lanteri et al.  2008 ). The sec-
ond product of PLC activity, DAG, can be phosphorylated to phosphatidic acid (PA) 
through the action of DAG kinase (Munnik  2001 ; Lanteri et al.  2008 ). PA can be 
dephosphorylated to DAG (Munnik et al.  1995 ).

   PA can also be synthesized by the action of PLD (Fig.  8.2 ). PLD hydrolyzes 
structural phospholipids such as phosphatidylcholine (PC) or phosphatidylethanol-
amine (PE) at the terminal phosphodiester bond to produce PA and free head groups 
such as choline (Wang     2001 ). Several specifi c elicitors or pathogen-associated 
molecular pattern (PAMPs) are known to activate PLC/DAG kinase- enzymatic 
pathway and biosynthesis of PA (Van der Luit et al.  2000 ; de Jong et al.  2004 ; 
Yamaguchi et al.  2005 ).

Inositol lipids

Phosphatidylinositol (PI)

Phosphatidylinositol-4-phosphate (PIP)

Phosphatidylinositol-4,5-bisphosphate (PIP2)

Phosphoinositide 3-kinase

Inositol 1,4,5-trisphosphate  (IP3) Diacyl glycerol (DAG)

Phosphatidic acid (PA)

Phospholipase C

  Fig. 8.1    Phospholipase C-mediated pathway in generation of the second messengers IP3, DAG, 
and PA (Adapted from Sang et al.  2001 ; Anthony et al.  2006 )       
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   Laxalt et al. ( 2007 ) demonstrated that NO is required for the production of the lipid 
second messenger PA via the activation of the phospholipase C (PLC) and DAG 
kinase pathway. Treatment of tomato cell cultures with the fungal elicitor xylanase 
resulted in a rapid NO accumulation (Laxalt et al.  2007 ). NO donor S-nitroso N-acetyl 
penicillamine (SNAP) treatment induced PA, PIP, and PIP 2  accumulation within 1 
min after treatment in cucumber, probably through activation of PLC (Lanteri et al. 
 2008 ). NO triggers PA formation also through PLD activation (Lanteri et al.  2008 ). 

 ROS signaling system is also involved in accumulation of PA (Desikan et al. 
 2004 ; Mittler et al.  2004 ). H 2 O 2  induced rapid and transient accumulation of PA in 
suspension-cultured rice cells (Yamaguchi et al.  2004 ). H 2 O 2  directly induced PLD 
in vitro (Yamaguchi et al.  2004 ). H 2 O 2  might act upstream of PA and or even 
upstream of NO (Laxalt et al.  2007 ). There are also reports that H 2 O 2  is required for 
NO production (Lum et al.  2002 ; de Pinto et al.  2006 ). 

 G proteins may activate PLC and PLD (Munnik et al.  1995 ; Ritchie and Gilroy 
 2000 ). Heterotrimeric G protein α-subunit regulates PLD through a motif analogous 
to the DRY motif in G-protein-coupled receptors in  Arabidopsis  (Zhao and Wang 
 2004 ). The activated PLD may hydrolyze phospholipids to produce the lipid second 
messenger PA (Zhao and Wang  2004 ). PLD is regulated by Ca 2+  (Zheng et al.  2000 ). 
Downstream, Ca 2+  infl ux activates PLC, DAG kinase, and PLD. Ca 2+  activates 
NADPH oxidase, which is involved in ROS production (Munnik    et al.  1998a ).  

8.2     Phospholipids in Ca 2+  Signaling System 

 The phospholipids-derived second messenger IP 3  releases Ca 2+  from intracellular 
compartments into the cytosol (Meijer and Munnik  2003 ; Lanteri et al.  2008 ; 
Munnik and Testerink  2009 ). A number of Ca 2+  release channels have been found in 
the vacuolar membranes. IP 3  releases calcium through an intact intracellular plant 

Phosphatidyl choline

Phosphatidic acid (PA) Pyrophosphatidic 
acidPA kinase

Phospholipase D

PA phosphorylase

Diacyl glycerol (DAG)

  Fig. 8.2    Phospholipase D-mediated phosphatidic acid and diacyl glycerol generation pathway 
(Adapted from Sang et al.  2001 ; Anthony et al.  2006 )       
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membrane by activating a Ca 2+  channel (Alexandre et al.  1990 ). It operates through 
receptors which resemble ryanodine receptors of human muscle (Berridge et al. 
 2000 ). This calcium channel is voltage-dependent and opened only on depolariza-
tion of the vacuoles (Alexandre et al.  1990 ). The calcium released through this 
channel induces calcium waves and oscillations in the cytosol (Berridge  1993 ; 
Hisatsune et al.  2005 ). The calcium ion infl ux into the cytosol may activate Ca 2+ -
dependent protein kinases (Munnik et al.  1995 ) and Ca 2+  signaling system (Huang 
et al.  2001 ; Luan et al.  2002 ).  

8.3     Phosphatidic Acid in G Proteins-Mediated 
Signaling System 

 The second messenger PA has been shown to be involved in activation of ROS sig-
naling system. PA induces ROS-induced hypersensitive cell death through G 
proteins- mediated signaling system (Park et al.  2004 ). The plant Rac-like GTPases, 
named ROPs (Rho-related small G proteins) are involved in ROS generation (Yang 
 2002 ). PA activates Rho-related small G protein GTPase-mediated pathway of ROS 
generation (Park et al.  2004 ). The induced ROS generation may be due to activation 
of NADPH oxidase by PA (Park et al.  2004 ).  

8.4     Phosphatidic Acid in ROS Signaling System 

 PA has been shown to be able to trigger an oxidative burst (Fig.  8.3 ; Sang et al. 
 2001 ; de Jong et al.  2004 ; Park et al.  2004 ). PA is involved in the activation of 
NADPH oxidase in macrophages (McPhail et al.  1999 ) and it has been suggested 
that similar activation of NADPH oxidase may also occur in plants and ROS is gen-
erated through the action of NADPH oxidase (Laxalt et al.  2007 ). PA and DAG 
directly activate NADPH oxidase by interacting with enzyme components (Palicz 
et al.  2001 ). PA has been shown to induce ROS in tomato cells. Scavenging of NO 
or inhibition of either the PLC or the DAG kinase enzyme diminished elicitor- 
induced ROS production (Laxalt et al.  2007 ). PA promotes superoxide-generating 
activity in plants through the activation of NADPH oxidase (Sang et al.  2001 ). DAG 
is also able to generate NADPH-dependent superoxide synthesis (Sang et al.  2001 ).

   PA has been shown to bind a protein kinase, 3′-phosphoinositide-dependent 
kinase 1 (PDK1) in  Arabidopsis  and to activate protein kinase AGC2-1 in a PDK- 
dependent manner (Deak et al.  1999 ; Anthony et al.  2004 ). PDK1 is specifi cally 
activated by PLD-generated PA in Arabidopsis cells treated with a fungal elicitor 
(Anthony et al.  2006 ). AGC2-1 is identical to OXI1, a protein kinase implicated in 
oxidative burst-mediated signaling in  Arabidopsis  (Rentel et al.  2004 ). 
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 The oxidative burst mediated by elicitors occurs in two phases (Fig.  8.4 ). The 
fi rst phase shows a rapid (5 min onward) and low ROS production whereas the sec-
ond phase shows a prolonged (3–6 h) and massive ROS production (Lamb and 
Dixon  1997 ). The biphasic ROS generation in rice cells induced by an elicitor was 
associated with the activation of PLC and PLD. The activation of both enzymes was 
shown for the fi rst phase of ROS generation, whereas for the second phase only the 
activation of PLD was observed (Yamaguchi et al.  2005 ). A biphasic accumulation 
of PA has been reported in  Arabidopsis  on recognition of elicitors (Fig.  8.3 ). The 
fi rst wave was attributed to the PLC/DAG kinase pathway and the second to PLD. 
Both the phospholipase pathways acted upstream of ROS formation (Andersson 
et al.  2006 ). PA accumulated rapidly via PLC/DAG kinase pathway in tobacco cells 
treated with an elicitor and PLC activity was required for the rapid ROS accumula-
tion (de Jong et al.  2004 ). The NO-dependent, PLC/DAG kinase-generated PA is 
involved in the induction of ROS production (Laxalt et al.  2007 ).

Elicitor

Activation of PLC-
DAG pathway

Activation of PLD 
pathway

First phase of PA 
accumulation

DAG

NADPH 
oxidase

NADPH 
oxidase

First phase of rapid and low ROS 
production

Second phase of PA 
accumulation

Phosphoinositide-dependent 
kinase 1 (PDK1)

Binds

Activation 

OXI1 protein kinase

NADPH oxidase 

Second phase of prolonged and massive ROS production

  Fig. 8.3    Role of phospholipase pathways in biphasic PA and ROS generation in  Arabidopsis  
(Adapted from Yamaguchi et al.  2005 ; Andersson et al.  2006 )       
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8.5        Phospholipids in JA Signaling System 

 PLD-mediated formation of PA may initiate a lipolytic pathway, consisting of PLD, 
PA phosphatase, and acyl-hydrolyzing enzymes. In this pathway, phospholipids are 
converted sequentially into PA, DAG, and free linoleic acids (Ryu and Wang  1998 ; 
Wang et al.  2000 ). The free linolenic acid is the substrate for JA synthesis (Fig   .  8.4 ).  

8.6     Phospholipid Signaling System in ABA Signaling 
Network 

 Phospholipid signaling system involving phospholipase C, phospholipase D, and 
inositol (1,4,5) trisphosphate (IP3) have all been implicated in ABA signaling. 
Phospholipase D-mediated phosphatidic acid (PA) production has been shown to 
promote ABA-induced gene expression (Zhang et al.  2005 ). Phospholipase Dα-1- 
derived PA regulates a protein phosphatase 2C, ABI1, which is a negative regulator 
of ABA responses in  Arabidopsis  (Zhang et al.  2004 ). ABA treatment promotes an 
increase in PA from phosphatidylcholine. The PA binds to ABI1 and arginine 73 in 
ABI1 is essential for PA-ABI1 binding. Binding of PA to ABI1 protein results in 
anchorage of ABI1 to the plasma membrane and a decrease in ABI1 PP2C activity. 
This membrane tethering reduces the movement of ABI1 from the cytosol into the 
nucleus. The lack of ABA-induced production of PA in  PLDα1 -null cells results in 
a decrease in the association of ABI1 with the plasma membrane in response to 
ABA (Zhang et al.  2004 ). These results suggest that PA produced by PLDα1 inhibits 
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  Fig. 8.4    Role of phospholipases in jasmonate biosynthesis pathway (Adapted from Wang et al. 
 2000 )       
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the function of the negative regulator ABI1, thus promoting ABA signaling. It is 
also shown that ABI1 is a direct target of PA and there is a functional link between 
the two signaling enzymes, phospholipase and phosphatase (Zhang et al.  2004 ). 

 Phospholipase D (PLD) has been shown to be involved in ABA signaling- 
mediated stomatal closure immune response (Uraji et al.  2012 ). Two  Arabidopsis  
PLDs (PLDα1and PLDδ) are involved in ABA stomatal closure signaling in guard 
cells. ABA induced stomatal closure was suppressed in the  pldα1 pldδ  double 
mutant but not in the  pld  single mutants. The  pldα1  and  pldδ  mutations reduced 
ABA-induced phosphatidic acid production. During ABA-induced stomatal clo-
sure, wild-type guard cells ROS and NO and showed increased cytosolic alkaliza-
tion. These changes were reduced in guard cells of the  pldα1pldδ  double mutant 
plants. Inward-rectifying K +  channel currents of guard cells were inhibited by ABA 
in the wild-type but not in  pldα1pldδ  mutant plants (Uraji et al.  2012 ). ABA signal-
ing system has been shown to involve ROS, NO, and phosphatidic acid, the product 
of PLD activity, in  Arabidopsis . PLD seems to act downstream of NO and ROS 
(Distéfano et al.  2012 ). These studies suggest that ABA induces production of phos-
phatidic acid through the action of phospholipase D and the phosphatidic acid act-
ing as a second messenger triggers ROS, NO, and Ca 2+  signaling systems triggering 
stomatal closure immune response.  

8.7     Phosphatidic Acid in Phosphorylation/
Dephosphorylation System 

 PA activates a calcium-dependent protein kinase (CDPK) and a mitogen-activated 
kinase (MAPK) (Munnik et al.  1995 ; Farmer and Choi  1999 ; Lee et al.  2001 ). 
Together with DAG, IP3 activates protein kinase C (Munnik et al.  1995 ; Chasan 
 1995 ). A phosphatidic acid-activated protein kinase C isoform phosphorylates 
p22 phox , an NADPH oxidase component (Regier et al.  1999 ). PA binds with ABI1 
(ABA insensitive1), a protein phosphatase 2C (PP2C) that is a negative regulator of 
abscisic acid (ABA) in  Arabidopsis . The PA binding decreases PP2C activity and 
also appears to reduce its translocation to nuclei in response to ABA by tethering 
ABI1 to the plasma membrane (Zhang et al.  2004 ; Wang  2005 ; Mishra et al.  2006 ). 
These results suggest that activation of PLD inhibits the function of the negative 
regulator ABI1, thus promoting ABA signaling (Wang  2005 ).     
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          Abstract     Protein phosphorylation plays a central role in the plant immune 
response signaling. PAMP signals induce rapid and transient phosphorylation of 
several proteins/enzymes involved in defense signaling system. The proteins that 
make up the signal transduction pathway are present in the cell prior to the per-
ception of PAMP elicitor signal. On perception of the signal these proteins are 
activated by post- translational modifi cations and conformational changes induced 
by phosphorylation. Protein phosphorylation is carried out by different protein 
kinases. PAMP signals are perceived by plant pattern recognition receptors (PRRs), 
which belong to the family of receptor-like kinases (RLKs). The PAMPs have been 
shown to activate the RLKs by autophosphorylation by their own serine/threonine 
kinase. The autophosphorylation of the receptor kinases takes place within few 
seconds to few minutes after PAMP treatment and the autophosphorylated RLKs 
have been shown to be essential for PAMP signaling in plants. Calcium-dependent 
protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs) regulate 
expression of various enzymes involved in ROS, salicylate, jasmonate, ethylene, 
and abscisic acid signaling systems by inducing protein/enzyme phosphorylation. 
Protein kinase C is involved in phosphorylation of some transcription factors. His 
kinase family protein kinase takes part in ethylene signaling system. Protein 
dephosphorylation may also be involved in defense signaling and the phosphatases 
negatively regulate innate immune responses.  

  Keywords     Receptor-like kinases (RLKs)   •   Calcium-dependent protein kinases 
(CDPKs)   •   Mitogen-activated protein kinases (MAPKs)   •   Protein kinase C • His 
kinase family protein kinase • Autophosphorylation • Phosphatases  
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9.1               Protein Phosphorylation Plays Key Roles in Plant 
Immune Signal Transduction 

 Phosphoproteomic studies have established that the information signal is transferred 
to a protein by phosphorylation and this simple modifi cation of the protein causes a 
change in its activity and localization. The incoming signal is transduced to the target 
protein by a protein kinase and the signal alone is responsible for the change in activ-
ity of the target protein (Ferl  2004 ). Phosphatase activity may remove the signal and 
return the protein to its original state, providing only transitional activity of the target 
protein/enzyme. The activated kinases in turn may activate other kinases such that 
cascades of phosphorylation events propagate to enzymatic or structural proteins, 
where their phosphorylation may result in several changes in the activities of these 
proteins (Ferl  2004 ; Vidhyasekaran  2007 ). It has been demonstrated that signals initi-
ate cascades while the protein kinases propagate the signaling processes (Ferl  2004 ). 

 Rapid and transient phosphorylation of several proteins involved in defense 
signaling system has been reported. Phosphorylation of various protein kinases, 
either by autophosphorylation or by other related kinases appears to be the crucial 
factor in triggering phosphorylation of various defense signaling-related proteins. 
Elicitor signals transiently activate various protein kinases within a few minutes 
after application (Romeis et al.  2000 ; Vitart et al.  2000 ). This type of transition from 
nonelicited to elicited form of protein kinase is caused by a phosphorylation event. 

 Protein phosphorylation has been shown to play a central role in the plant 
immune response signaling (Peck et al.  2001 ; Zipfel et al.  2004 ; Benschop et al.  2007 ; 
Tena et al.  2011 ). Protein kinases and protein phosphatases and their corresponding 
protein substrates play key roles in the pathogen-associated molecular pattern 
(PAMP)–plant pattern recognition receptor (PRR) mediated defense signal transduction 
(Benschop et al.  2007 ; Tischner et al.  2010 ).  

9.2     Protein Phosphorylation Is an Early 
PAMP/Elicitor- Triggered Event 

 The proteins that make up the signal transduction pathway are present in the cell 
prior to the perception of elicitor (Benschop et al.  2007 ). These proteins are acti-
vated by post-translational modifi cations and conformational changes. The most 
widely recognized post-translational modifi cation involved in signal transduction is 
protein phosphorylation (Benschop et al.  2007 ; Tischner et al.  2010 ). Early signal-
ing and induction of defense responses are likely mediated through plasma 
membrane- associated proteins. Many membrane-associated proteins have one or 
more phosphorylation sites (Nühse    et al.  2004 ). Very early signaling appears to be 
transient protein phosphorylation. The phosphorylation pattern of proteins was tran-
siently changed within 10 min in  Arabidopsis thaliana  after contact with  Verticillium 
longisporum  conidia (Tischner et al.  2010 ). At least 30 proteins were differentially 
phosphorylated within fi rst 4 min after the bacterial PAMP fl g22 or the fungal 
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PAMP chitin treatment in  Arabidopsis  (Peck et al.  2001 ). Perception of fl g22 
activates MAP kinase activity within minutes and it peaks within 5–10 min and 
diminishes after 60 min in  Arabidopsis  suspension-cultured cells (Nühse et al. 
 2000 ). Transient protein phosphorylation is involved in various defense signal 
transduction systems triggered by PAMPs (Dietrich et al.  1990 ; Felix et al.  1991 ; 
Lecourieux-Ouaked et al.  2000 ; Nühse et al.  2000 ,  2003 ; Peck et al.  2001 ; Romeis 
et al.  2001 ; Lecourieux et al.  2002 ,  2006 ).  

9.3     Protein Phosphorylation Is Carried Out by Different 
Protein Kinases 

 Protein phosphorylation is carried out by different protein kinases. Protein kinase 
superfamily has been classifi ed into fi ve main groups. These include “AGC” group 
(protein kinase A, G, and C group), CaMK group (calcium and calmodulin- dependent 
protein kinase group), CMGC group (cyclin-dependent kinase group), PTK group 
(protein Tyr kinase group), and “other” group. The AGC group is represented by the 
cyclic nucleotide-dependent kinases (protein kinase A [PKA] and protein kinase G 
[PKG]) and the calcium-phospholipid-dependent kinases (protein kinase C [PKC]). 
This group is regulated by cAMP (cyclic adenosine monophosphate), cGMP (cyclic 
guanosine monophosphate), diacylglycerol, and Ca 2+  (Stone and Walker  1995 ). 
Protein kinase C has been reported to induce phosphorylation in soybean (Dröge-
Laser et al.  1997 ) and potato (Després et al.  1995 ; Subramaniam et al.  1997 ). 

 The CaMK group of protein kinases includes the calcium-/calmodulin- dependent 
and SNF1 (Suc nonfermenting1)/AMP-activated protein kinase families. Calcium- 
dependent protein kinases (CDPKs) are the most common protein kinases in plants 
(Ellard-Ivey et al.  1999 ; Harmon et al.  2000 ; Romeis et al.  2000 ,  2001 ; Cheng et al. 
 2002 ; Zhang et al.  2002 ; Harmon  2003 ; Hrabak et al.  2003 ; Boudsocq et al.  2010 ). 
The CDPKs constitute one of the largest families of protein kinases. Thirty-four 
different genes encoding CDPKs have been detected in  A. thaliana  (Harmon et al. 
 2000 ; Cheng et al.  2002 ; Hrabak et al.  2003 ). 

 The CMGC group contains MAPK (mitogen-activated protein kinase), CDK 
(cyclin-dependent kinase), GSK-3 (glycogen synthase kinase-3), and CKII (casein 
kinase II) families. MAPKs are also known as ERKs (extracellular-regulated pro-
tein kinases) and these are Ser-Thr protein kinases activated by dual phosphoryla-
tion. The enzyme responsible for this dual phosphorylation, MAPKK (MAPK 
kinase), represents an unusual class of protein kinases that will phosphorylate on 
Ser, Thr, and Tyr residues (Stone and Walker  1995 ). A MAPK cascade generally 
involves MAP kinase kinase kinase (MAPKK) – MAPKK – MAPK module that 
transduces extracellular signals through the receptors into a wide range of intracellular 
responses (He et al.  2007 ). In this module, a MAPKKK phosphorylates and activates 
a MAPK. Activated MAPK is imported into the nucleus, where it phosphorylates 
and activates specifi c downstream signaling components such as transcription 
factors (Ligterink and Hirt  2000 ). In Arabidopsis, 68 MAPKKKs (MTKs), 10 MAPKKs 
(MKKs), and 20 MAPKs (MPKs) have been identifi ed (He et al.  2007 ). Activation 
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of the MAPK cascades triggers massive transcript changes and confers resistance to 
multiple pathogens (He et al.  2007 ). 

 The CDK (cyclin-dependent kinase) family protein kinases have a regulatory 
subunit, cyclin, and a catalytic subunit, CDK. In addition to their interaction with 
cyclins, CDKs are themselves regulated by protein phosphorylation. Phosphorylation 
of a Thr residue is required for kinase activation, whereas phosphorylation of a Tyr 
residue serves an inhibitory function (Stone and Walker  1995 ). The GSK-3 family 
includes ASKs (Apoptosis signal regulating kinases). ASKs autophosphorylate on 
Ser, Thr, and Tyr. The CKII family protein kinases phosphorylate and promote the 
DNA-binding activity of G-box binding factor 1, a transcription factor that binds to 
the plant G-box promoter element (Klimczak et al.  1995 ). 

 PTK group includes Tyr-specifi c protein kinases, which have not been detected 
in plants (Stone and Walker  1995 ). Several other protein kinases, which do not fall 
into any of the above four groups have been detected in plants. These include pro-
tein kinases belonging to His kinase family. His kinase family protein kinase takes 
part in ethylene signaling system. In  Arabidopsis , ethylene is perceived by a family 
of fi ve membrane-bound receptors (ETR1, ERS1, ETR2, EIN4, and ERS2), which 
transmit the signal to downstream effectors Among them the ETR1 receptor shows 
His kinase activity, while others show Ser/Thr kinase activity (Wang et al.  2006 ). 

 The other group of protein kinases includes receptor-like kinases (RLKs). These 
RLKs are serine/threonine kinases (Shiu and Bleecker  2001a ,  b ). Large numbers of 
RLKs have been detected in plants (Wang    et al.  2005a ,  b ; Benschop et al.  2007 ) and 
at least 340 genes encoding putative RLKs have been detected in  Arabidopsis  
genome (Montesano et al.  2003 ). RLKs are transmembrane proteins that recognize 
an extracellular signal, in the form of a polypeptide ligand. Ligand-binding leads to 
autophosphorylation on the cytoplasmic kinase domain, a requirement for propaga-
tion (Stone and Walker  1995 ).  

9.4     PAMPs/Elicitors Activate Receptor-Like Kinases 

 Plants rely on recognition of elicitors to activate defense signaling. Defense signal-
ing is initiated through interaction of the elicitor with a plasma membrane-localized 
receptor (Zipfel et al.  2004 ; Benschop et al.  2007 ). Most of the receptors belong to 
the huge family of receptor-like kinases/receptor protein kinases (RLKs/RPKs; 
Tena et al.  2011 ). About 610 receptor-like kinases (RLKs) have been identifi ed in 
the  Arabidopsis thaliana  genome (Shiu and Bleecker  2001b ). Several receptor-like 
kinases (RLKs) have been found to be phosphorylated in response to elicitors in 
 A. thaliana  (Benschop et al.  2007 ). For example, the general elicitor fl agellin is 
recognized in  Arabidopsis  through a conserved 22-amino acid sequence (fl g22). 
Recognition involves the receptor-like kinase FLS2, which activates a downstream 
response that includes the production of ROS, ethylene biosynthesis, activation of a 
MAPK cascade, and activation of defense gene expression (Navarro et al.  2004 ; 
Zipfel et al.  2004 ). The PAMP has been shown to activate the receptor kinase by 
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autophosphorylation by its own serine/threonine kinase (Gómez-Gómez et al.  2001 ; 
Wang et al.  2001 ; Robatzek et al.  2006 ). Mutation of the threonine residue 867 
hampers FLS2 response, suggesting that autophosphorylation of the general elicitor 
occurs at threonine residue 867 (Robatzek et al.  2006 ). 

 Activation of other receptor-like kinases by induced autophosphorylation has 
been reported (Nasrallah  2000 ; Gómez-Gómez et al.  2001 ; Wang et al.  2005b ). 
Arabidopsis CERK1 is the receptor of the PAMP chitin. It is involved in the percep-
tion of the chitin oligosaccharide elicitor at the cell surface and the transduction of 
the signal into the cytoplasm via its intracellular serine/threonine kinase activity 
(Miya et al.  2007 ). It contains an intracellular serine/threonine kinase domain 
(Eckardt  2008 ; Lohmann et al.  2010 ). The rice homolog of CERK1, OsCERK1 
encoded a receptor-like kinase consisting of 624 amino acid residues, containing a 
signal peptide, an extracellular domain, a transmembrane region and an intracellular 
Ser/Thr kinase domain. The expression of  OsCERK1  was up-regulated by elicitor 
treatment (Shimizu et al.  2010 ). CERK1 is autophosphorylated  in vitro  (Iizasa et al. 
 2010 ). The autophosphorylated CERK1 has been shown to be essential for chitin 
signaling in plants (Wan et al.  2008a ,  b ). The PRR for the PAMP elicitin INF1 of 
 Phytophthora infestans  has been identifi ed as a lectin-like receptor kinase and it was 
designated NbLRK1. NbLRK1 is a typical RD kinase (Kanzaki et al.  2008 ). The 31 
amino acids fragment of NbLRK1 kinase domain within VIb subdomain has been 
shown to interact with INF1  in vitro . The VIb subdomain of Ser/Thr kinase is known 
to contain the catalytic loop with an invariant Asp serving as the catalytic base nec-
essary for the kinase function. This site is close to the VII and VIII domains where 
the activation loop is located, which is necessary for autophosphorylation of kinases 
(Dardick and Ronald  2006 ; Kanzaki et al.  2008 ). It is suggested that INF1 binding 
to the VIb subdomain of NbLRK1 alters its kinase activity presumably by autophos-
phorylation (Kanzaki et al.  2008 ). INF1 treatment induced autophosphorylation of 
NbLRK1  in vivo  (Kanzaki et al.  2008 ). 

 The importance of phosphorylation of receptor-like kinases in signal transduction 
has been demonstrated by developing mutants with impaired kinase activity (Wang 
et al.  2005a ). Mutation studies with BRI1, a receptor – like kinase in  Arabidopsis  
have revealed that mutations in the kinase domain activation loop nearly abolished 
kinase activity, with respect to both autophosphorylation and protein substrate phos-
phorylation. The results suggest that autophosphorylation of the activation loop of 
BRI1 is required for downstream signaling events (Wang et al.  2005a ). 

 In  Arabidopsis , BAK1 belongs to the LRR-receptor-like kinase (RLK). BAK1 is 
a positive regulator of PAMP-triggered plant immunity and it acts as an adaptor of 
multiple LRR-RKs that act in defense signaling, including the PRRs FLS2, EFR, 
PEPR1 and PEPR2 (Chinchilla et al.  2007b ; Ryan    and Pearce  2003 ; Gao et al.  2009 ; 
Postel et al.  2010 ; Schulze et al.  2010 ). It also acts as an adaptor of the receptor 
kinases BIR1 and SOBIR1, which seem to act as part of a presumed PRR complex(es) 
and/or at a downstream step in the signaling cascade (Saijo  2010 ). Flg22 perception 
by the PRR FLS2 triggers an interaction between FLS2 and BAK1 (Chinchilla et al. 
 2007a ,  b ; Heese et al.  2007 ). The fl g22 induced FLS2-BAK1 association occurs 
within seconds and is accompanied by increased phosphorylation on both FLS2 and 
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BAK1 (Schulze et al.  2010 ). The  de novo  phosphorylation of both FLS2 and BAK1 
has been detected within 15 s of stimulation with fl g22. It is suggested that sev-
eral LRR-RKs form tight complexes with BAK1 almost instantaneously after ligand 
binding and the subsequent phosphorylation events are key initial steps in signal 
transduction (Schulze et al.  2010 ). Collectively, these studies suggest that autophos-
phorylation of receptor-like kinases is an important event in PAMP-activated 
defense response signal transduction system.  

9.5     PAMP/Elicitor Induces Phosphorylation 
of Calcium- Dependent Protein Kinases 

 Phosphorylation of calcium-dependent protein kinases plays an important role in 
plant immune responses. Romeis et al. ( 2000 ) identifi ed a membrane-bound 
calcium- dependent protein kinase (CDPK) that showed a shift in electrophoretic 
mobility from 68 to 70 kDa within 5 min after an elicitor was added in tobacco cell 
cultures. The interconversion of the corresponding CDPK forms could be induced 
in vitro in both directions by treatments with either phosphatase or ATP. CDPK 
activity of the phosphorylated 70-kDa CDPK form was greater than that of nonelic-
ited 68-kD form (Romeis et al.  2000 ). The conversion of the nonelicited CDPK into 
active form was not due to autophosphorylation (Romeis et al.  2000 ). The results 
suggest that phosphorylation of the CDPK results in activation of the kinase to trig-
ger the downstream events in the signal transduction system (Romeis et al.  2001 ). 

 Autophosphorylation of CDPK due to elicitor action has also been reported. 
CDPK is autoinhibited by an interaction of a pseudosubstrate site within its junction 
domain that blocks the active site of the kinase domain. Binding of Ca 2+  to the 
calmodulin-like domain of the CDPK causes a conformational change that extends 
to the adjacent junction domain and fi nally disengages the autoinhibitor of the active 
site (Huang et al.  1996 ).  

9.6     PAMP/Elicitor Triggers Phosphorylation 
of MAP Kinases 

 Mitogen-activated protein kinase cascade involves sequence of phosphorylation 
events. MAPKKK (MEKK) phosphorylates and activates a particular MAPKK 
(MKK) by the phosphorylation of serine/threonine residues in the SXXXS/T motif. 
As a dual-specifi city kinase, MAPKK then activates MAPK through the phosphory-
lation of threonine and tyrosine residues in the TXY motif located between kinase 
subdomains VII and VIII (Ligterink and Hirt  2000 ; Liu et al.  2000 ). The MAP 
kinase itself may be autophosphorylated (Mayrose et al.  2004 ). The tomato MAP 
kinase  LeMPK3  is specifi cally induced at the mRNA level upon treatment with a 

9 Protein Phosphorylation and Dephosphorylation in Plant Immune Signaling Systems   



391

fungal elicitor. The transcript accumulation was followed by an increase in LeMPK3 
kinase activity. The LeMPK3 autophosphorylates in vitro mainly on tyrosine and 
less so on threonine and serine, whereas it phosphorylates myelin basic protein on 
serine and threonine (Mayrose et al.  2004 ). The autophosphorylation of LeMPK3 
may not be suffi cient for its full activation, which requires an upstream MAPKK 
(Mayrose et al.  2004 ).  Arabidopsis  AtMPK4 MAP kinase autophosphorylates in 
vitro on tyrosine residues and is activated by the AtMEK1 MAPKK through phos-
phorylation of threonine residues (Huang et al.  2000 ). Phosphorylation of the MAP 
kinase promotes its homodimerization and nuclear translocation (Khokhlatchev 
et al.  1998 ). The activated MAPK phosphorylates transcription factors (Ligterink 
and Hirt  2000 ). 

 The MAP kinases WIPK and SIPK have been shown to be involved in defense 
signaling system (Liu et al.  2003 ). Reversible phosphorylation/dephosphorylation 
events were involved in the activation of WIPK and SIPK in tobacco cells. The 
protein kinase inhibitor staurosporine inhibited the activation of SIPK and WIPK 
(Zhang et al.  2000 ; Liu et al.  2003 ) and the phosphatase inhibitors calyculin A and 
okadaic acid activated SIPK and induced WIPK expression (Liu et al.  2003 ). These 
results suggest the importance of transient phosphorylation/dephosphorylation 
events in activation of the MAPK pathway. 

 A protein that interacts with SIPK has been identifi ed as a member of the MAP 
kinase kinase family and named as SIPKK. SIPKK phosphorylates myelin basic 
protein in vitro (Liu et al.  2000 ). SIPK is activated exclusively at the posttransla-
tional level by phosphorylation (Liu et al.  2000 ). Fungal elicitors transiently activated 
a 47-kD putative MAPK via tyrosine phosphorylation in tobacco cells (Suzuki and 
Shinshi  1995 ). Activation of this 47-kD kinase was inhibited by staurosporine, a 
protein kinase inhibitor staurosporine and the Ca 2+  channel blocker Gd 2+  (gadolinium) 
suggesting that upstream kinases and Ca 2+  might be involved in the activation of this 
kinase (Suzuki and Shinshi  1995 ).  

9.7     Role of 14-3-3 Proteins in Protein Phosphorylation 

 In some cases, besides the kinases, 14-3-3 proteins complete a multiplex signal- 
induced change in the target protein (Roberts  2000 ; Yaffe  2002 ; Ferl  2004 ). 14-3-3 
proteins physically interact with other protein families by binding with the phos-
phorylated proteins (Ferl  2004 ). 14-3-3 proteins can bind with a large number of 
proteins, since 14-3-3 proteins require relatively simple amino acid sequence for 
their binding (Yaffe et al.  1997 ). 14-3-3 proteins have been detected in different cel-
lular compartments. They are found in cytoplasm, inside chloroplasts and found 
associated with mitochondria and some of them have been detected in plasma mem-
brane (Fuglsang et al.  1999 ; Roberts and Bowles  1999 ). It appears that phosphoryla-
tion cannot cause a change in protein activity, but phosphorylation is the only means 
to connect the signal to the target protein (Ferl  2004 ). With the assistance of 14-3-3 
proteins, phosphorylation signals can reach many additional targets (Ferl  2004 ). 
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14-3-3 proteins exist as dimers and hence they can bring together two different 
proteins, or two different domains within one protein, showing a direct interaction 
between the clients (Yaffe et al.  1997 ).  

9.8     PAMP/Elicitor Triggers Phosphorylation of PEN 
Proteins 

 Three PEN (for  PEN ETRATION) proteins, PEN1, PEN2, and PEN3 have been 
reported to be involved in penetration resistance by limiting pathogen entry into 
host cells (Collins et al.  2003 ; Assad et al.  2004 ; Stein et al.  2006 ). PEN1, also 
called SYP121, is a syntaxin, while PEN2 is a glycosyl hydrolase and PEN3 is an 
ABC (ATP binding cassette) transporter (Collins et al.  2003 ; Lipka et al.  2005 ). 
Expression of the genes encoding these proteins,  PEN1 ,  PEN2 , and  PEN3 , were 
found to be induced in response to elicitor perception in  A. thaliana . Both PEN1 and 
PEN3 were found to be phosphorylated upon elicitor treatment (Benschop et al. 
 2007 ). PEN3 was phosphorylated on two residues in response to the elicitors and 
PEN1 was phosphorylated on the N terminus (Ser-7). These phosphorylation sites 
may be involved in the activation of the PEN proteins (Benschop et al.  2007 ). The 
importance of PEN proteins in defense response was demonstrated by developing 
mutants.  Arabidopsis  mutants,  pen1 ,  pen2 , and  pen3 , supported higher frequency 
of penetration of  Blumeria graminis  f. sp.  hordei  into leaves (Stein et al.  2006 ). 
Elicitor-induced phosphorylation of PEN proteins is involved in early defense 
responses (Collins et al.  2003 ; Stein et al.  2006 ).  

9.9     Protein Phosphorylation Involved in Early Defense 
Signaling Events Triggered by PAMPs/Elicitors 

 Protein phosphorylation/dephosphorylation plays an important role in early signal-
ing events (Fig.  9.1 ). An oomycete elicitor induces calcium ion infl ux, anion effl ux, 
and activation of a plasma membrane NADPH oxidase responsible for a transient 
production of ROS in tobacco. All these effects were inhibited by staurosporine, a 
protein kinase inhibitor, indicating that phosphorylation reactions occurred upstream 
from these effects (Viard et al.  1994 ; Tavernier et al.  1995 ). Phosphorylation of 
proteins involved in G-protein coupled signaling, Ca 2+ /calmodulin-dependent sig-
naling pathways, redox signaling system, and H + -ATPase regulation of intracellular 
pH has been reported in tobacco cells treated with a bacterial elicitor (Fig.  9.1 ; 
Gerber et al.  2006 ).

   PAMP-triggered early events include G proteins modulated protein phosphoryla-
tion/dephosphorylation systems which trigger Ca 2+  infl ux. Phosphorylation of proteins 
involved in G-protein coupled signaling has been reported in tobacco cells treated 
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with a bacterial PAMP (Gerber et al.  2006 ). G-proteins may be involved in Ca 2+  
channel opening (Gelli et al.  1997 ). The activation of the Ca 2+  channel by PAMPs 
was modulated by a heterotrimeric G-protein–dependent phosphorylation of the 
channel protein in tomato, probably by activating protein kinase, and inhibiting 
protein phosphatase (Gelli et al.  1997 ). Protein phosphorylation precedes Ca 2+  
infl ux in tobacco cells treated with a PAMP isolated from the oomycete pathogen 
 Phytophthora cryptogea  (Tavernier et al.  1995 ). The G-proteins modulate the 
phosphorylation/dephosphorylation system in the plasma membrane of tomato cells 
and transduce the Ca 2+  infl ux signal (Vera-Estrella et al.  1994a ,  b ). 

 An elicitor-induced increase in H + - ATPase activity was shown to be activated by 
the G-proteins in tomato (Vera-Estrella et al.  1994a ). G-protein has been shown to 
activate a membrane-bound phosphatase that mediates the dephosphorylation of the 
host plasma membrane H + -ATPase in tomato (Xing et al.  1997 ). The dephosphory-
lation of H + -ATPase was followed by rephosphorylation by protein kinase and Ca 2+ -
dependent kinase (Xing et al.  1996 ). 

 Anion channels are also activated by protein phosphorylation. Protein kinases act 
as positive regulators, while phosphatases negatively regulate anion channel activity 
(Pei et al.  1996 ; Wendehenne et al.  2002 ). The activated anion channels trigger 
Ca 2+ -mediated signaling system (Ward et al.  1995 ). Activation of K +  channel by 
phosphorylation has also been reported (Li et al.  1998 ).  

Activation of G- proteins

Activation of Ca2+ channel opening

Increases in Ca2+ influx

Activation of anion channels

Activation of K+ channels

Induction of NADPH oxidase

Generation of ROS

Regulation of H+-ATPase activity

Phosphorylation -
regulated early 

signaling events

Redox signaling

  Fig. 9.1    Phosphorylation/dephosphorylation – modulated PAMP-triggered early signaling events       
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9.10     Phosphorylation of Proteins Involved in H +  Fluxes 
Induced by PAMP/Elicitor 

 An important target protein of CDPK for phosphorylation is plasma membrane 
H + -ATPase (Piedras et al.  1998 ). Elicitation of tobacco cell cultures with an elicitor 
resulted in changes of H +  fl uxes, detectable as media alkalinization. These fl uxes are 
accomplished by way of inactivation of an H + -ATPase by CDPK (Piedras et al. 
 1998 ). Reversible phosphorylation of an H + -ATPase in tobacco has been reported 
(Xing et al.  1996 ). CDPKs are known to regulate H + -ATPase (Camoni et al.  1998b ; 
Schaller and Oecking  1999 ). A CDPK phosphorylates H + -ATPase of oat roots 
(Schaller et al.  1992 ). 

 Regulation of H + -ATPases appear to depend on the presence or absence of 14-3-3 
proteins (Chung et al.  1999 ; Fuglsang et al.  1999 ). An in vitro interaction between 
a phosphorylated CDPK and 14-3-3 isoforms from  Arabidopsis  has been reported 
(Camoni et al.  1998a ). There may be a functional link among phosphorylated 
CDPK, H + -ATPase and 14-3-3 protein in defense signaling (Romeis et al.  2000 ). 
Binding of 14-3-3 proteins to the plasma membrane H + -ATPase involves the three 
C-terminal residues Tyr-Thr-Val and requires phosphorylation of Thr (Fuglsang 
et al.  1999 ). 14-3-3 proteins recognize phosphate-bearing amino acids and regulate 
the H + -ATPase enzyme activity (Romeis et al.  2000 ).  

9.11     Phosphorylation of Proteins Involved 
in ROS Signaling System 

 Several and different protein kinases induce a sequence of phosphorylation events 
in the production of reactive oxygen species (ROS) and downstream signaling 
events (Fig.  9.2 ; Anthony et al.  2006 ). Elicitors induce very rapid production of 
ROS resulting in the oxidative burst in plant cells. The oxidative burst is mostly 
mediated by NADPH oxidases (Torres et al.  2002 ; Torres and Dangl  2005 ; Davies 
et al.  2006 ). In response to elicitors,  Arabidopsis  leaves produce ROS within 
minutes and this oxidative burst peaks around 10 min. During this period, phos-
phorylation on several different residues in a NADPH oxidase (RBOHD [respira-
tory burst oxidase protein D]) was observed (Benschop et al.  2007 ). CDPK has been 
shown to phosphorylate NADPH oxidase (Xing et al.  1997 ; Blumwald et al.  1998 ). 
Accumulation of ROS requires Ca 2+  infl ux and protein kinase activity (Keller et al. 
 1998 ; Piedras et al.  1998 ; Romeis et al.  1999 ).

   Anthony et al. ( 2006 ) reported the participation of 3-phosphoinositide- dependent 
protein kinase 1 (PDK1), the AGC family protein kinase called oxidative signal- 
inducible 1 (OXI1) protein kinase, the serine/Thr kinase (PTI1-2 for  Pt o kinase 
 i nteractor1-2), and the mitogen-activated kinase MPK6 in ROS signaling system in 
 A. thaliana . OXI1 was identifi ed as a downstream signaling component to the 
PDK1 (Rentel et al.  2004 ). OXI1 is activated by PDK1-mediated phosphorylation 
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(Devarenne et al.  2006 ; Zegzouti et al.  1999 ). PTI1-2 has been found to be an 
interacting partner of OXI1, which is downstream of OXI1. Its sequence closely 
resembled the tomato Pto kinase, which is involved in triggering programmed cell 
death-mediated disease resistance (Anthony et al.  2006 ). H 2 O 2  is produced via 
OXI1-PTI1- 2 pathway (Anthony et al.  2006 ). PDK1 enzyme activity is regulated 
by phosphatidic acid (PA) (Anthony et al.  2004 ). PA is generated via two distinct 
phospholipase pathways, either directly by phospholipase D (PLD) or the sequen-
tial action of phospholipase C (PLC) and diaceylglycerol kinase (Testernik and 
Munnik  2005 ). PDK1 is specifi cally activated by PLD-generated PA (PA PLD ) 
(Anthony et al.  2004 ). The lipids signaling pathways converge via the PDK1-OXI1 
axis (Anthony et al.  2006 ). Thus, three protein kinases (PDK1, OXI1, and PTI1-2) 
are involved in phosphorylation-mediated ROS signaling system in  A .  thaliana  
(Anthony et al.  2006 ). 

 Kinase active PTI1-2 is able to increase the expression of ROS promoters 
indicating that PTI1-2 functions in specifi c ROS signaling pathways (Anthony et al. 
 2006 ). Oxi1 null mutants are impaired in the activation of the MAPKs MPK3 and 
MPK6 upon oxidative stress, suggesting that OXI1 functions downstream of ROS 
but upstream of the MAPK module (Rentel et al.  2004 ). 

PAMP

Phospholipase  D
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  Fig. 9.2    Role    of PDK1 – OXI1 – PTI1 – MAPK mediated phosphorylation events in ROS genera-
tion (Adapted from Rentel et al.  2004 ; Anthony et al.  2004 ,  2006 )       
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 MPK3, MPK4, and MPK6 are all activated by fungal and bacterial elicitors and 
ROS (Kovtun et al.  2000 ; Nühse et al.  2000 ). To assess the potential involvement of 
PDK1 in OXI1-MPK signaling, the expression of PDK1 in OXI1-MPK signaling 
was ablated. The results showed that activation of MPK6 by the elicitor was PDK1- 
dependent (Anthony et al.  2006 ). It suggests that MAPK signaling cascades func-
tion downstream of OXI1 and PTI1-2, resulting in the eventual activation of PR 
genes. MAPK cascades may also play a role upstream and have been implicated in 
the activation of the NADPH oxidase genes (Yoshioka et al.  2003 ). PA has the 
potential to activate targets such as PDK1 and NADPH oxidase simultaneously; and 
both of them trigger ROS by phosphorylation (Anthony et al.  2006 ). 

 The possible role of various phosphorylation events in ROS signaling system is 
presented in Fig.  9.2.   

9.12     Phosphorylation of Proteins Involved 
in Ethylene- Signaling System 

 Protein phosphorylation and dephosphorylation have been shown to be involved in 
the biosynthesis of ethylene. S-adenosylmethionine and 1-aminocyclopropane- 1-
carboxylic acid (ACC) are the precursors of ethylene. S-adenosylmethionine is con-
verted to ACC by ACC synthase (ACS). ACC is oxidized by ACC oxidase (ACO) 
to form ET (Vidhyasekaran  2007 ). Treatment with the protein kinase inhibitors 
staurosporine or K-252 inactivated the ACS activity, whereas protein phosphatase 
inhibitor calyculin A stimulated ACS activity (Spanu et al.  1991 ). These results sug-
gest that phosphorylation/dephosphorylation of ACS is involved in the increased 
activity. Wang et al. ( 2002 ) suggested that ACS is unstable  in vivo  and present at low 
abundance, and phosphorylation of ACS may increase its stability to sustain the 
elevated activity. 

 An oomycete elicitor induced a dramatic increase in ACS activity in parsley cell 
cultures (Chappell et al.  1984 ). Similar increase in ACS activity coincided with 
activation of the MAPK SIPK followed by an increase in ET production in tobacco 
(Kim et al.  2003a ). The protein kinase inhibitor H-7 (1-[5-isoquinolinylsulfonyl]-
2-methylpiperazine) and the protein phosphatase inhibitors vanadate and okadaic 
acid inhibited the induction of ET in pea (Kwak and Lee  1997 ). These results 
suggest that protein phosphorylation/dephosphorylation plays an important role in 
ET signaling system. 

 MAPK cascade has been shown to negatively regulate ethylene signaling by 
constitutive phosphorylation of downstream components that ultimately repress 
the accumulation of EIN3 and its relatives (Ouaked et al.  2003 ). Binding of ethylene 
to the receptors (ETR1, ETR2, EIN4, ERS1, and ERS2) blocks the MAPK cascade 
by failing to activate the MAPKKK protein (CTR1). This in turn allows EIN3 and 
its relatives to accumulate. The accumulated transcription factors induce the 
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transcription of a variety of ethylene-response genes such as the ERFs (Ouaked 
et al.  2003 ). 

 ERFs (ethylene-responsive transcription factors) have been shown to bind 
specifically to the GCC box of the defense genes (Yamamoto et al.  1999 ). 
 Trichoderma viride  xylanase elicitor induced accumulation of mRNA for ERF2 in 
tobacco cells. The elicitor-inducible accumulation of the transcription factor was 
inhibited by staurosporine (an inhibitor of serine/threonine protein kinase) and 
calcyculin A (an inhibitor of protein phosphatase). These results suggest that ERF2 
might play a major role in the elicitor-induced GCC box-mediated transcription of 
defense genes and that both protein kinase and protein phosphatase might be 
involved, as positive regulators in the signal transduction pathway that leads to 
expression of ERF2 and subsequent GCC box-mediated transcription of defense 
genes (Yamamoto et al.  1999 ).  

9.13     Phosphorylation of Proteins Involved 
in Salicylic Acid Signaling System 

 Protein phosphorylation has been shown to be involved in SA-dependent signaling 
system. Okadaic acid blocked SA-induced PR-1 gene expression (Conrath et al. 
 1987 ). Okadaic acid is an inhibitor of phosphorylation of protein kinase and 
hence it suggests that phosphorylation is a component in SA-dependent  PR  gene 
expression.  

9.14     Protein Phosphorylation in ABA Signaling System 

 Protein phosphorylation is the important mechanism for ABA signaling (He and 
Li  2008 ). Specifi c protein kinases are activated in response to ABA and they play 
a positive role in ABA signaling (Li et al.  2000 ; Lu et al.  2002 ; Fujii et al.  2009 ). 
ABA response element binding factors (ABFs) have been shown to be activated 
by phosphorylation by protein kinases (Uno et al.  2000 ). SnRK (for SNF1-related 
protein kinase) family of protein kinases, belonging to calcium-dependent protein 
kinases (CDPKs) are involved in phosphorylation of ABF proteins (Fujii et al. 
 2009 ). The  Arabidopsis  genome contains 38 SnRKs, of which 10 are SnRK2s 
(Hrabak et al.  2003 ). Five of these SnRK2s were shown to be activated by ABA 
and they phosphorylated ABI1, ABF2 and ABF4 (Furihata et al.  2006 ; Yoshida 
et al.  2006 ). SnRK2.2 and SnRK2.3 are the two protein kinases and the effect of 
these protein kinases is mediated by phosphorylating ABFs and regulating ABA-
responsive genes (Fujii et al.  2009 ). In rice, SAPK8, SAPK9, and SAPK10, which 
are homologous with SnRK2.2, SnRK2.3, and SnRK2.6 of  Arabidopsis , were 
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activated by ABA (Kobayashi et al.  2004 ). These SAPKs phosphorylated TRAB1, 
which is a rice ortholog of the  Arabidopsis  ABFs (Kobayashi et al.  2005 ). ABA 
induced the wheat SnRK, PKABA1, at the transcript level. The ABA-induced 
PKAB1 phosphorylated TaABF, the wheat bZIP transcription factor (Johnson 
et al.  2002 ). Several other CDPKs have been shown to be involved in ABA signal-
ing (Sheen  1996 ; Romeis et al.  2001 ; Choi et al.  2005 ). Two Arabidopsis CDPKs, 
AtCPK10 and AtCPK30 activate an ABA-inducible promoter in maize leaf proto-
plasts (Sheen  1996 ). Another CDPK in  Arabidopsis , AtCPK32, interacts with 
C2-C3 conserved region of ABF4 (Choi et al.  2005 ). AtCPK32 has autophos-
phorylation activity and phosphorylates ABF4 in vitro. The CDPK has been shown 
to be an ABA signaling component that positively modulates ABF4 function 
(Choi et al.  2005 ). 

 A calcineurin B-like (CBL) protein kinase CIPK15 interacts with the calcium- 
modulated protein phosphatases ABI1 and ABI2 and a CBL Ca 2+ -binding protein 
ScaBP5. CIPK15 and one of its homologs CIPK2 are involved in ABA signaling as 
negative regulators (Guo et al.  2002 ; Kim et al.  2003b ). The kinase substrate of 
CIPK15 has been identifi ed as an AP2 transcription factor AtERT7 that negatively 
regulates ABA signaling (Song et al.  2005 ). 

 Another SNF1-related protein kinase, AAPK (for ABA-activated protein kinase) 
was detected in broad bean ( Vicia faba ). AAPK is stimulated by ABA and it is a 
positive regulator of ABA response (Li et al.  2000 ,  2002 ; Johnson et al.  2002 ). 
Takahashi et al. ( 2007 ) showed that ABA induced binding of a 14-3-3 protein to 
proteins with molecular masses of 61, 43 and 39 kDa. Autophosphorylation of 
AAPK, which mediates anion channel activation and ABA-induced phosphoryla-
tion of the 61 kDa protein showed similar time courses. AAPK elicits the binding of 
the 14-3-3 protein to the 61-kDa protein in vitro when AAPK was activated by 
ABA. It has also been suggested that the 61 kDa protein may be a substrate for 
AAPK and the 61 kDa protein is located upstream of H 2 O 2  and Ca 2+ , or on Ca 2+ -
independent signaling pathway (Takahashi et al.  2007 ). 

 An ABA-insensitive  Vicia faba  mutant,  fi a  (faba bean impaired in ABA-induced 
stomatal closure) had been isolated. Unlike ABA, H 2 O 2 , and nitric oxide (NO) 
induced stomatal closure in the  fi a  mutant. ABA did not induce production of either 
reactive oxygen species or NO in the mutant. ABA also did not suppress inward- 
rectifying K +  currents or activate AAPK in mutant guard cells. These results suggest 
that FIA functions as an early signal component upstream of AAPK activation in 
ABA signaling in guard cells of  Vicia faba  (Sugiyama et al.  2012 ). 

 Arabidopsis OST1/SRK2E, an Arabidopsis ortholog of  Vicia faba  AAPK, which 
is an ABA-activated, Ca 2+ -independent protein kinase, is involved in ABA signaling 
and it acts upstream of ROS production (Mustilli et al.  2002 ; Yoshida et al.  2002 ). 
Phosphorylation has been shown to function in ABA-induced ROS production and 
I ca  channel activation (Murata et al.  2001 ; Köhler and Blatt  2002 ). 

 ABA activates mitogen activated protein kinase (MAPK)-mediated signaling 
system (Gomi et al.  2005 ; Wang and Song  2008 ). An  Arabidopsis  MAPK, AtMAPK3 
and a rice MAPK, OsMAPK5, have been identifi ed as ABA-activated MAPKs 
(Lu et al.  2002 ; Xiong and Yang  2003 ). It has been found that ABA and H 2 O 2  
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can activate the same MAPK (Desikan et al.  2004 ). ROS may act upstream of the 
MAPK cascade in the ABA signaling system in maize leaves (Zhang et al.  2006 ). 
ABA- induced activation of MAPK was almost fully arrested by pretreatment with 
inhibitors of ROS production, suggesting that ABA-induced H 2 O 2  production 
activates MAPK (Zhang et al.  2006 ).  

9.15     Phosphorylation of Transcription Factors 

 Protein kinases may phosphorylate transcription factors involved in transcription of 
defense genes. Protein kinase C-mediated phosphorylation activates a basic leucine 
zipper transcription factor G/HBF-1, enabling its binding to the chalcone synthase 
 Ch15  promoter from soybean (Dröge-Laser et al.  1997 ). An ERF transcription 
factor, ERF6, regulates  Arabidopsis  defense gene expression and resistance to 
the necrotrophic fungal pathogen  Botrytis cinerea . Phosphorylation of ERF6 by the 
mitogen-activated protein kinases MPK3 and MPK6 has been shown to increase 
ERF6 stability in vivo. The phosphorylated ERF6 activates defense-related 
genes (Meng et al.  2013 ). The WRKY33 transcription factor is phosphorylated by 
MPK3/MPK6 in vivo in response to  B .  cinerea  infection in  Arabidopsis . The phos-
phorylated transcription factor induces the phytoalexin camalexin biosynthesis 
(Mao et al.  2011 ). 

 Phosphorylation of WRKY8 by the MAPKs SIPK, NTF4, and WIPK increased 
the DNA binding activity of WRKY8 to the cognate W-box sequence in  Nicotiana 
benthamiana  (Ishihama et al.  2011 ). The ectopic expression of phosphorylated 
WRKY8 induced defense-related genes (Ishihama et al.  2011 ). The bZIP transcrip-
tion factor VIP1is phosphorylated by MPK3 and the phosphorylated transcription 
factor regulates the expression of pathogenesis-related genes (Djamei et al.  2007 ; 
Liu et al.  2010 ) .   

9.16     Phosphorylation Events Induced by MAP Kinases 
in Various Signaling Systems 

 Phosphorylation induced by MAP kinases have been shown to be involved in ROS 
signaling (Yang et al.  2001 ; Ren et al.  2002 ; Yoshioka et al.  2001 ,  2003 ; Nakagami 
et al.  2006 ;cv Zhang et al.  2006 ; Xing et al.  2007 ,  2008 ), SA signaling (Petersen 
et al.  2000 ; Frye et al.  2001 ; Brodersen et al.  2006 ; Zhang et al.  2007 ); JA signaling 
(Seo et al.  1999 ; Gomi et al.  2005 ; Takahashi et al.  2007 ), and ethylene signaling 
systems (Kim et al.  2003a ; Guo et al.  2002 ; Liu and Zhang  2004 ; Menke et al.  2004 ; 
Brodersen et al.  2006 ). Phosphorylation of various transcription factors involved in 
transcription of defense genes by MAP kinases has also been described (Asai et al. 
 2002 ; Cheong et al.  2003 ; Wan et al.  2004 ; Waller et al.  2006 ).  
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9.17     Dephosphorylation Induced by Phosphatases May 
Negatively Regulate Innate Immune Responses 

 Dephosphorylation may also be involved in defense signaling. CESA1 and 
CESA3 are two cellulose synthase proteins detected in  A. thaliana  and both of 
them were dephosphorylated in response to elicitor treatment (Benschop et al. 
 2007 ). A reduction in CESA3 levels or CESA3 activity was shown to induce JA 
and ethylene accumulation and invoke defense gene expression in  A. thaliana  
(Ellis et al.  2002 ; Cano-Delgado et al.  2003 ). Staurosporine, a protein kinase 
inhibitor, inhibited Ca 2+  uptake, extracellular alkalinization, ROS production, 
and protein phosphorylation induced by an elicitor in tobacco (Lecourieux-
Ouaked et al.  2000 ). In contrast, calyculin A, a protein phosphatase inhibitor 
triggered all the above effects. Protein phosphatase inhibitors calyculin A and 
okadaic acid stimulated the inducible defenses in the absence of elicitors. The 
results suggest that continuous phosphorylation of proteins may occur in the 
non-elicited cells and the inhibition of dephosphorylation may be suffi cient to 
initiate signal transduction (Lecourieux-Ouaked et al.  2000 ). Phosphatase may 
negatively regulate protein kinase in the signaling system. Phosphatases may 
function as negative regulators in defense signaling system (Lecourieux-Ouaked 
et al.  2000 ).     
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          Abstract     Ubiquitin-proteasome system plays important role in the complex PAMP 
signal transduction systems involved in plant innate immunity. JAZ proteins, which 
are activated by jasmonate (JA) signals, act as repressors of JA-dependent transcription 
factors. COI1 protein, a receptor of JA signal, forms a functional E3 ubiquitin ligase 
and is required for removal of repressors of the JA signaling pathway. Ubiquitin 
proteins-cullin-RING ligases negatively regulate biosynthesis of ethylene. Ethylene 
signal transduction terminates in a transcription cascade involving the EIN3/EIL 
and ERF families of transcription factors and ubiquitin ligases regulate the stability 
and expression of these transcription factors. Ubiquitin proteasome may positively 
or negatively regulate SA biosynthesis. A 26S proteosome is involved in triggering 
SA accumulation, probably by removing/degrading an inhibitor of SA biosynthesis. 
Ubiquitin ligases are also involved in regulation of R proteins- mediated defense 
responses. Major function of ubiquitin ligases may be in conferring stability to 
R proteins, probably by degrading the proteins involved in reducing the stability 
of R proteins. Small ubiquitin-like modifi er (SUMO) plays a signifi cant role in 
SA-mediated systemic acquired resistance. Ubiquitin-proteasome is involved in 
triggering defense responses and virulent pathogens may subvert ubiquitin-proteasome 
system to cause disease.  

  Keywords     JAZ proteins   •   COI1 protein   •   Ubiquitin ligases   •   26S proteasome • SUMO   

10.1               Ubiquitin-Proteasome System in Plants 

 Ubiquitin- and proteasome-mediated degradation of proteins plays an important 
role in plant defense signaling system (Dreher and Callis  2007 ; van den Burg et al. 
 2008 ; Trujillo et al.  2008 ; Sahana et al.  2012 ; Yao and Ndoja  2012 ; Yao et al.  2012 ; 
Zhang et al.  2012 ). More than 1,300 genes identifi ed in the  Arabidopsis thaliana  
genome have been shown to be involved in the ubiquitin-proteasome pathway, 
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suggesting that this pathway is one of the most elaborate regulatory mechanisms in 
plants (Vierstra  2003 ; Serrano et al.  2006 ). Proteasomes are large protein complexes 
located in the nucleus and the cytoplasm (Peters et al.  1994 ). The main function of 
the proteasome is to degrade unneeded or damaged proteins by proteolysis. 
Proteasomes regulate the concentration of particular proteins and degrade misfolded 
proteins. Proteins are tagged for degradation by a small protein called ubiquitin. The 
ubiquitin protein is 76 amino acids long and was named due to its ubiquitous nature 
(Pickart and Eddins  2004 ). 

 Ubiquitin acts as a covalent molecular tag and its attachment requires three 
distinct enzymatic activities. Proteins are targeted for degradation by the proteasome 
by covalent modifi cation of a lysine residue that requires the coordinated reactions 
of three enzymes. In the fi rst step, a ubiquitin-activating enzyme, E1, activates ubiq-
uitin C-terminal carboxyl group by adenylation, and then forms a thioester bond 
with cysteinyl sulfhydryl residue on the E1 protein itself. The ubiquitin-activating 
enzyme E1 activates ubiquitin in an ATP-dependent manner (Fig.  10.1 ; Lee et al. 
 2011 ). The adenylated ubiquitin is then transferred to a cysteine of a second enzyme, 
ubiquitin-conjugating enzyme (E2). In the last step, a member of a highly diverse 
class of enzymes known as ubiquitin ligases (E3) recognizes the specifi c protein to 
be ubiquitinated and catalyzes the transfer of ubiquitin from E2 to this target protein 
(Haas et al.  1982 ; Clechanover  1998 ; Pickart and Eddins  2004 ; Smalle and Vierstra 
 2004 ; Dreher and Callis  2007 ). A target protein must be labeled with at least four 
ubiquitin monomers in the form of a polyubiquitin chain before it is recognized by 
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  Fig. 10.1    Ubiquitin–proteasome pathway       
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the proteasome lid (Thrower et al.  2000 ). Ubiquitin-ubiquitin linkages may serve as 
proteolytic signals (Kirkpatrick et al.  2006 ).

   The common 26S proteasome contains one 20S core particle structure and two 
19S regulatory caps. The core is hollow and provides an enclosed cavity in which 
proteins are degraded; openings at the two ends of the core allow the target protein 
to enter. Each end of the core particle associates with a 19S regulatory subunit that 
contains multiple ATPase active sites and ubiquitin binding sites. This structure 
recognizes polyubiquitinated proteins and transfers them to the catalytic core. After 
delivery to the proteasome mediated in part by ubiquitin binding proteins, the 
polyubiquitylated substrate can be deubiquitylated by the proteasome’s regulatory 
cap or associated proteases. The deubiquitylated substrate is fed into the proteolytic 
core of the proteasome where it is cleaved into small peptides (Book et al.  2005 ; 
Zhu    et al.  2005 ; Dreher and Callis  2007 ). 

 E3 ligases play a key role in the ubiquitin-proteasome system (UPS). Two mech-
anistic classes of E3 ligases have been recognized. In case of HECT (for Homologous 
to E6-AP COOH terminus) domain E3 ligases, ubiquitin forms a covalent thioester 
linkage with a cysteinyl sulfhydryl group on HECT protein before being transferred 
to a lysine on the substrate (Downes et al.  2003 ). The other E3 ligase class non- 
covalently interacts with an E2 protein carrying ubiquitin. There are two groups 
within this class, the U-box (UFD2-homology) domain- and RING (for  R eally 
 I nteresting  N ew  G ene) domain-containing proteins (Zheng et al.  2000 ; Pickart 
 2001 ; Andersen et al.  2004 ). Several proteins containing U-box and RING domains 
have been reported in plants. Approximately 61 proteins containing U-box domain 
and more than 450 proteins with one or more RING domains have been identifi ed 
in  Arabidopsis thaliana  (Stone et al.  2005 ). 

 The RING domain has a consensus sequence containing Cys and His 
residues (Cys-X 2 -Cys-X 9-39 -Cys-X 1-3 -His-X 2-3 -Cys/His-X 2 -Cys-X 4-48 -Cys-X 2 -Cys), 
which functions as a binding site for the ubiquitin-conjugating enzyme (E2) inter-
mediate that has a zinc-binding domain formed by conserved Cys and His residues 
(Lee et al.  2011 ). Based on the presence of Cys or His in the fi fth position, the RING 
domains of RING fi nger type proteins can be divided into two types (Borden and 
Freemont  1996 ). 

 Major types of E3 ligases belong to the Skp, Cullin, F-box containing complex 
(SCF complex), which are composed of four primary subunits: SKP1 (for  S -phase 
 K inase-associated  P rotein 1); a cullin family member protein (e.g. CUL1); a RING 
fi nger protein; and an F-box protein (Guo and Ecker  2003 ; Potuschak et al.  2003 ; 
Risseeuw et al.  2003 ; Dreher and Callis  2007 ). Within this complex, the F-box pro-
tein directly binds the substrate through protein-protein interaction domains, the 
cullin binds the RING fi nger protein, together they recruit E2 ubiquitin-conjugating 
enzyme, and SKP1 helps to link the F-box protein and cullin (Deshaies  1999 ). 
The cullins are modifi ed covalently by NEDDB/RUB1, a ubiquitin-like protein, in 
a process called neddylation. This modifi cation stimulates SCF ubiquitin ligase 
activity in plants (Kawakami et al.  2001 ; del Pozo et al.  2002 ). 

 A nucleus-enriched multisubunit protein complex, called “COP9 signalosome 
(CSN)” is known to regulate ubiquitin-proteasome-mediated protein degradation 
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(Feng et al.  2003 ). CSN is commonly present in plants. Several molecular studies 
have shown the presence of six loci,  COP9 ,  FUS/COP11 ,  FUS5 ,  FUS4/COP8 , 
 FUS11 , and  FUS12 , encoding subunits of the COP9 signalosome, which are CSN8, 
CSN1, CSN7, CSN4, CSN3, and CSN2, respectively in plants (Feng et al.  2003 ). CSN 
is associated with multiple SCF-type E3 ubiquitin ligases (Wang et al.  2003 ). CSN 
shows deneddylation activity toward the neddylated cullin subunit of SCF 
complexes, which is important for SCF ubiquitin ligase activity (Yang et al.  2002 ).  

10.2     Ubiquitin-Proteasome in Jasmonate Signaling System 

10.2.1     JAZ Proteins Act as Repressors 
of JA Signaling Pathway 

 Jasmonate (JA) signaling system plays important role in plant innate immunity 
(Lozano-Durán et al.  2011 ; Qi et al.  2011 ; Zhang et al.  2012 ). In the absence of elici-
tor signals, the JA signaling pathway is generally repressed by a family of jasmonate 
ZIM (for  Z ING FINGER PROTEIN EXPRESSED IN  I NFLORESCENCE 
 M ERISTEM) domain (JAZ) proteins (Chini et al.  2007 ; Thines et al.  2007 ), which 
recruit the corepressor TOPLESS through the linker NOVEL INTERACTOR OF JAZ 
(Pauwels et al.  2010 ). JAZ family of proteins and related JAI3 (for  JA SMONATE- 
I NSENSITIVE   3 ) protein have been identifi ed as key suppressors of jasmonate sig-
naling (Chini et al.  2007 ; Thines et al.  2007 ). The JAI3 protein contains a ZIM domain 
and hence it was renamed as JASMONATE ZIM DOMAIN3 (JAZ3; Chini et al. 
 2007 ). Within 30 min of JA treatment, several genes encoding individual members of 
the JAZ protein family showed strong induction in  Arabidopsis  (Mandaokar et al. 
 2006 ). JAZ1 and JAZ3/JAI3 are the repressors of the JA signaling pathway (Chini 
et al.  2007 ; Thines et al.  2007 ). Both JAZ1 and JAZ3/JAI3 each interact with JIN1 
( J ASMONATE  IN SENSITIVE1, also known as MYC2 [ MY ELO C YTOMATOSIS 2] ) 
(Chini et al.  2007 ).  JIN1 / MYC2  encodes a basic helix-loop-helix-type transcription 
factor involved in the transcriptional regulation of JA-responsive gene expression 
(Lorenzo et al.  2004 ). It is suggested that, in the absence of a JA signal, JAZ1 and 
JAZ3 repress JIN1/MYC2. The  Arabidopsis  bHLH transcription factors MYC3 and 
NYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of 
jasmonate response (Fernández-Calvo et al.  2011 ).  

10.2.2     JA Signaling Pathway Is Activated by the Removal 
of the JAZ Repressor Proteins by Ubiquitination 

 Once activated by stress signals, JA is rapidly synthesized and further converted into 
numerous conjugates, including the highly bioactive (+)-7-iso-jasmonoyl-L-isoleucine 
(JA-Ile) (Thines et al.  2007 ; Fonseca et al.  2009 ). Synthesized JA and its bioactive 
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conjugates are perceived by a receptor complex consisting of CORONATINE 
INSENSITIVE1 (COI1), JAZs, and inositol pentakisphosphate (Katsir et al.  2008 ; 
Sheard et al.  2010 ).  COI1  ( coronatine insensitive 1 ) gene has been shown required 
for jasmonate-regulated defense signaling in  Arabidopsis  (Xie et al.  1998 ). The 
 Arabidopsis  null mutant for  COI1-1  is fully insensitive to jasmonates, and the COI1 
protein is required for all JA-dependent responses (Feys et al.  1994 ; Xie et al.  1998 ). 

 The COI1 protein has been identifi ed as an F-box protein, suggesting the involve-
ment of ubiquitin-proteasome-mediated protein degradation in JA signaling (Xie 
et al.  1998 ).  COI1  forms a functional E3 ubiquitin ligase, SCF COI1 , in plants (Devoto 
et al.  2002 ; Xu et al.  2002 ). COI1 is present in the functional SKIP-CULLIN-F-box-
type E3 ubiquitin ligase complex (Devoto et al.  2002 ). COI1 associates physically 
with CUL1, RBX1, and SKP1-like proteins to assemble SCF COI1  complexes (Xu 
et al.  2002 ). A single amino acid substitution in the F-box motif of COI1 abolishes 
the formation of SCF COI1  complexes and affects JA-inducible gene expression. 
These observations suggest that SCF COI1  complex is important for JA signaling (Xu 
et al.  2002 ). 

 The SCF complex is involved in marking proteins with ubiquitin tags to facilitate 
their degradation by the 26S proteasome (Stone and Callis  2007 ). JA-related pheno-
types have been identifi ed in plants with mutations in components of the ubiquitin 
proteasome system and these mutations suggested a linkage between JA signaling 
and ubiquitin-mediated protein degradation (Lorenzo and Solano  2005 ; Moon et al. 
 2007 ). It is suggested that COI1 is required for removal of repressors of the JA 
signaling pathway (Xie et al.  1998 ; Balbi and Devoto  2008 ). 

 The mode of action of SCF COI1  in the JA-regulated defense signaling pathway is 
still not known. It has been shown that several genes such as  Cev ,  Cet ,  Cex  encode 
proteins, which negatively regulate JA pathway. The recessive mutants of these 
genes constitutively activate JA pathway (Ellis and Turner  2001 ; Hilpert et al.  2001 ; 
Xu et al.  2001 ). It is suggested that these genes might encode negative regulators, 
which might act as putative repressors to negatively regulate the expression of their 
downstream target genes that are involved in the JA response (Xu et al.  2002 ). In 
response to external signals, the JA signal might be activated to modify some or 
all of these regulatory proteins, conceivably through phosphorylation or dephos-
phorylation. COI1 could recruit the modifi ed proteins to SCF COI1  for ubiquitination. 
Subsequent degradation of the ubiquitynated substrates by the 26S proteasome 
would result in removal of the putative repressors, leading to the expression of the 
downstream defense genes (Xu et al.  2002 ). 

 Histone acetylation has been demonstrated to be involved in ubiquitin-
proteasome- mediated proteolytic pathway. Regulation of histone deacetylases 
(HDACs) by ubiquitination has been demonstrated (Gaughan et al.  2005 ). It was 
suggested that COI1 may form a functional E3-type ubiquitin ligase in plants to 
regulate expression of a HDAC (Devoto and Turner  2003 ). The interaction of 
COI1 with SKP1-like proteins and HDAC  in planta  has been demonstrated 
(Vierstra  2003 ). 

 Arabidopsis HDA6, was shown to interact with COI1, an F-box protein which 
interacts with SKP1 and cullin proteins to form E3 ubiquitin ligases known as the 
SCF complexes that selectively recruit regulatory proteins targeted for ubiquitination 
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(Devoto et al.  2002 ; Vierstra  2003 ). It suggests that COI1 may form a functional 
E3-type ubiquitin ligase in plants to regulate expression of jasmonate responsive 
genes by targeted ubiquitination of a histone deacetylase (Devoto and Turner  2003 ; 
Zhou et al.  2005 ). 

 Ubiquitin-proteasome-mediated proteolytic pathway may activate JA-inducible 
transcription factors. The COI1 activated four JA-inducible transcription factors, 
which include WRKY18, At1g74930, At3g53600, and AtMYC2 in Arabidopsis. 
These transcription factors positively regulated the jasmonate-mediated signaling 
system (Wang et al.  2008 ; Kazan and Manners  2013 ). Both JAZ1 and JAZ3/JAI3 
each interact with JIN1 ( J ASMONATE  IN SENSITIVE1, also known as MYC2 
[ MY ELO C YTOMATOSIS 2] ) (Chini et al.  2007 ).  JIN1 / MYC2  encodes a basic 
helix-loop-helix-type transcription factor involved in the transcriptional regulation 
of JA-responsive gene expression (Lorenzo et al.  2004 ). It is suggested that, in the 
absence of a JA signal, JAZ1 and JAZ3 repress JIN1/MYC2. Upon sensing of the JA 
signals, JAZ repressors are recruited to the SCF E3 complex for ubiquitination and 
subsequent degradation by the proteasome. The removal of these repressors then 
paves the way for JIN1/MYC2 to regulate JA-dependent gene expression. 

 JA-Ile, but not jasmonic acid itself or MeJA, promotes the interaction between 
SCF COI1 -JAZ complexes (Thines et al.  2007 ). This fi nding suggests that jasmonic 
acid may not be the signal directly responsible for the activation of the JA signaling 
pathway, but possibly it undergoes further modifi cations to be converted to a bio-
logically active signal.  JAR1  ( JASMONATE RESISTANT1 ) encodes a JA-amino 
synthetase, which activates conjugation of JA to Ile (Staswick and Tiryaki  2004 ). 
JA-Ile produced by JAR1 promotes the interaction between JAZ and SCF COI1  and 
takes part in the removal of repressors of JA signaling pathway. SCF COI1  targets key 
regulators of JA signaling pathway for ubiquitination and subsequent degradation 
by the 26S proteasome (Kazan and Manners  2008 ; Melotto et al.  2008 ; Kawamura 
et al.  2009 ). 

 The COP9 signalasome (CSN) has been shown to be necessary for the function 
of SCF COI1  ubiquitin ligase. COP9 signalosome associates physically with SCF COI1  
(Feng et al.  2003 ). Most of the COI1-dependent JA-responsive genes also required 
CSN function, and CSN abundance was shown to be important for JA responses 
(Feng et al.  2003 ). These observations suggest that both CSN and SCF COI1  work 
together to control genome expression and promote JA responses.  

10.2.3     Ubiquitin-Proteasome–Mediated Proteolysis 
in JA Signaling System 

 Downstream events in the JA signaling pathway are controlled by repressors of 
downstream transcriptional networks and the degradation of these repressors is the 
early downstream event (Kazan and Manners  2008 ). Ubiquitin-proteasome- mediated 
proteolysis has been shown to be involved in jasmonate signaling system (Xu 
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et al.  2002 ; Feng et al.  2003 ). Proteome studies have revealed the participation of a 
ubiquitin-conjugating protein in the JA-signal transduction pathway (Hondo et al. 
 2007 ). A cell wall protein fraction (CWP) elicitor derived from the biocontrol agent 
 Pythium oligandrum  induced expression of  LeATL6  gene encoding ubiquitin- ligase 
enzyme E3 and triggered the synthesis of PR-6 and TPI-1 defense-related proteins 
in tomato via JA-dependent signaling system (Hondo et al.  2007 ). The role of the 
ubiquitin ligase3 enzyme in the JA signaling system was demonstrated by overex-
pressing  LeATL6  under the control of the  Caulifl ower mosaic virus  35S promoter in 
tomato plants. Overexpression of the gene induced the defense genes  PR-6  and  TPI-
1  in wild tomato but not in the  jai-1  mutant in which the JA-mediated signaling 
pathway was impaired (Hondo et al.  2007 ). It suggests that LeATL6 may be a part 
of the JA- signal transduction system.  LeATL6  expression was induced by elicitor 
treatment in  jai-1  mutant tomato cells; however, JA-dependent expression of the 
basic PR-6 and TPI-1 genes was not induced in elicitor-treated  jai-1  mutants. These 
results indicated that ubiquitin ligase E3 (LeATL6) may act upstream of JA signaling 
(Hondo et al.  2007 ). 

 The expression of  LeATL6 , which encodes RING-H2 zinc fi nger ubiquitin ligase 
E3 was highly induced in tomato roots treated with the elicitor from  P .  oligandrum  
(Takahashi et al.  2010 ). The target protein of  LeATL6  was identified as 
S-adenosylmethionine decarboxylase (SAMDC) (Takahashi et al.  2010 ), which is 
involved in biosynthesis of polyamines (Kresge et al.  2007 ). Polyamines are known 
to act in the JA-signaling system (Chen et al.  2004 ). The elicitor suppressed the 
activity of SAMDC in treated tomato roots. The interaction of SAMDC with 
LeATL6 and the decreased SAMDC activity may be associated with JA-dependent 
induced resistance in tomato treated with  P .  oligandrum  (Takahashi et al.  2010 ). 

 Two RING-type ubiquitin ligases, RGLG3 and RGLG4, have been found to be 
essential for JA-mediated responses in  Arabidopsis . Both RGLG3 and RGLG4 pos-
sessed ubiquitin ligase activities (Zhang et al.  2012 ). Altered expression of  RGLG3  
and  RGLG4  affected JA-inducible gene expression. The ubiquitin ligases have been 
found to act as upstream modulators of JA signaling (Zhang et al.  2012 ).   

10.3     Ubiquitin-Proteasome in Ethylene Signaling System 

 Ethylene signaling system is an important component in defense signaling (Iwai 
et al.  2006 ; Binder et al.  2007 ; Ralph et al.  2007 ; Dreher and Callis  2007 ). Ubiquitin- 
proteasome proteolytic pathway has been shown to be involved in both regulation of 
ethylene biosynthesis and downstream activation of transcription factors, leading to 
transcription of defense genes. ACC synthase (ACS) isozymes have been shown 
to be substrates for E3 ligases (Dreher and Callis  2007 ). Arabidopsis ethylene over-
production mutants ( eto2  and  eto3 ) are shown to bear mutations in the ACS genes, 
 ACS5  and  ACS9 , respectively (Vogel et al.  1998 ; Chae et al.  2003 ). 

 Bostick et al. ( 2004 ) showed that silencing of two ubiquitin-related proteins, RUB1 
and RUB2, which modify cullin RING ligases and regulate their activity, 
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caused overproduction of ethylene in  Arabidopsis . Similarly, mutation of the RUB- 
conjugating enzyme RCE1 also increased ethylene production (Larsen and Cancel 
 2004 ). These results suggest that ubiquitin proteins-cullin RING ligases negatively 
regulate biosynthesis of ethylene. 

 Ethylene signal transduction terminates in a transcription cascade involving 
the EIN3/EIL ( E THYLENE  IN SENSITIVE  3    / EI    N3   - L IKE) and ERF ( E thylene 
 R esponsive  F actor) families of plant-specifi c transcription factors (Potuschak et al. 
 2003 ; van Loon et al.  2006 ). EIN3 is expressed constitutively, but is unable to accu-
mulate because it is subjected to permanent proteolysis mediated by two 
Arabidopsis SCF complex F box proteins called EBF1 and EBF2 (for  E IN3-
 B inding  F  box protein 1 and 2). The F-box proteins specifi cally recruit the target 
EIN proteins to an SCF ubiquitin ligase for degradation by the proteasome 
(Potuschak et al.  2003 ). EIN3 increases in response to increased levels of ethylene 
(Guo and Ecker  2003 ). EIN3 is rapidly degraded by ubiquitylation by the SCF EBF1/

EBF2 through a proteasome-mediated pathway, but is stabilized upon ethylene treat-
ment (Guo and Ecker  2003 ; Kepinski and Leyser  2003 ). EIN3 becomes stabilized 
after perception of ethylene and acts on its target promoters (Potuschak et al. 
 2003 ). These observations suggest that ethylene signaling action depends on EIN3 
protein stabilization and proteolytic regulation of this protein may affect transcrip-
tion of the defense-related genes (Potuschak et al.  2003 ). 

 ERFs are plant-specifi c transcription factors detected in tobacco, tomato, and 
Arabidopsis. They have been shown to bind nucleotide sequences containing the 
GCC box, the core sequence of an ethylene-responsive element of defense genes 
and regulate the expression of GCC box-mediated transcriptions (Fujimoto et al. 
 2000 ). ERF proteins are grouped into three classes based on amino acid sequence 
identities within the ERF domain. Class I and class III ERFs act as activators, 
whereas class II ERFs act as repressors (Ohta et al.  2000 ; Koyama et al.  2003 ). 
Class II ERF repressors down-regulate the transactivation activity of class I and 
class II ERFs (Fujimoto et al.  2000 ). Ubiquitin-proteasome system has been shown 
to be involved in the repression of class II ERFs (Koyama et al.  2003 ). 

 In tobacco, the ERF3 gene coding for a class II repressor as well as genes for 
activators such as ERF2 and ERF4 were transcriptionally upregulated in response to 
ethylene (Ohme-Takagi and Shinshi  1995 ; Kitajima et al.  2000 ). These ERF genes 
for both activators and a repressor were both rapidly induced by a fungal elicitor 
treatment (Yamamoto et al.  1999 ). A ubiquitin-conjugating enzyme (NtUBC2) was 
found to be involved in the repression activity of ERF3 (Koyama et al.  2003 ). The 
ubiquitin-conjugation activity of NtUBC2 may be involved in the regulation of 
repression activity of ERF3. The NtUBC2 interacted with ERF3 but not with ERF2 
or ERF4. This suggests that the mechanism of regulation of the repression activity 
of ERF3 is distinct from that of the activation activity of ERF2 and ERF4. Since 
ERF repressor can suppress transactivation activity of ERF activators (Koyama 
et al.  2003 ), down-regulation of the repression activity of ERF3 by NtUBC2 may be 
operating for the induction of the GCC box-mediated transcription of defense genes 
(Koyama et al.  2003 ). Thus the interaction between ERF3 and NtUBC2 may be a 
critical step in activating transcription of various defense genes.  
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10.4     Ubiquitin-Proteasome in SA Signaling System 

10.4.1     Ubiquitin-Proteasome May Be Involved in Regulation 
of SA Levels in the SA Signaling System 

 Protein degradation through ubiquitin-proteasome pathway has been shown to play 
an important role in SA-regulated defense signaling. Ubiquitin proteasome may 
positively or negatively regulate SA accumulation. SGT1 (for Suppressor of the G2 
allele of SKP1) associates with SKP1, a component of the SCF-type E3 complexes 
(Kitagawa et al.  1999 ; Liu et al.  2002 ; Peart et al.  2002 ). SGT1 plays key role in 
ubiquitin-proteasome-mediated proteolytic pathway (Seo et al.  2008 ).  SGT1  is 
involved in basal defense response besides effector triggered immunity (ETI). 
Silencing  GmSGT1-2  impaired resistance to virulent bacterial pathogens and systemic 
acquired resistance (SAR) in soybean (Fu et al.  2009 ). Overexpression of 
 OsSGT1  in rice signifi cantly induced basal resistance to both the rice bacterial 
blight pathogen  Xanthomonas oryzae  pv.  oryzae  and the fungal pathogen 
 Magnaporthe oryzae  (Wang et al.  2008 ).  SGT1  genes have been shown to be 
required for SA accumulation in  Arabidopsis  for induction of disease resistance 
(Zhou et al.  2008 ). SGT1 triggers expression of various SA-regulated defense- 
related genes including  PR-1 ,  PR-2 ,  PR-5 ,  RPW8.1 ,  RPW8.2 ,  WRKY6 ,  WRKY29 , 
and  EDS1  (Zhou et al.  2008 ). The results suggest that ubiquitin-proteasome 
mediated proteolytic pathway positively regulates SA levels and triggers SA signal-
ing system triggering defense responses. 

 RPN1a, a 26S proteasome subunit has been shown to be required for SA –
mediated innate immunity in  Arabidopsis  (Yao et al.  2012 ). EDR2 (ENHANCED 
DISEASE RESISTANCE2) negatively regulates SA-based defense response against 
the powdery mildew pathogen  Golovinomyces cichoracearum  (Vorwerk et al. 
 2007 ). Loss-of-function mutations in  EDR2  lead to enhanced resistance against the 
pathogen (Yao et al.  2012 ). Mutations in the gene encoding RPN1a, a subunit of the 
26S proteasome, suppressed  edr2 -associated disease resistance. RPN1a also has 
been shown to be required for  edr1  and  pmr4  (recessive  R  gene)-mediated powdery 
mildew resistance. The  rpn1a  mutant displayed enhanced susceptibility against 
both  G .  cichoracearum  and the bacterial pathogen  Pseudomonas syringae  pv. 
 tomato . The  rpn1a  mutant showed defects in SA accumulation upon  P .  syringae  
pv.  tomato  infection (Yao et al.  2012 ). The results suggest that the 26S proteosome 
is involved in triggering SA accumulation, probably by removing/degrading an 
inhibitor of SA biosynthesis. 

 The pepper E3 ubiquitin ligase RING1 gene,  CaRING1 , has been shown to regu-
late SA accumulation in pepper plants (Lee et al.  2011 ). Overexpression of  CaRING1  
gene in  Arabidopsis thaliana  showed enhanced accumulation of SA, while in 
pepper plants, virus-induced gene silencing of  CaRING1  lowered SA levels. The 
results suggest that  CaRING1  modulates SA levels. The E3 ubiquitin ligase activity 
of  CaRING1  modulated SA signaling in innate immune system. Overexpression of 
 CaRING1  in  A. thaliana  conferred enhanced resistance to the bacterial pathogen 
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 Pseudomonas syringae  pv.  tomato  and to the oomycete pathogen  Hyaloperonospora 
arabidopsidis  infections. In pepper plants, silencing of  CaRING1 conferred enhanced 
susceptibility to avirulent  Xanthomonas campestris  pv.  vesicatoria  infection 
accompanied by reduced expression of SA-dependent  PR-1  gene expression (Lee 
et al.  2011 ). These results suggest that the E3 ubiquitin ligase positively regulates 
SA accumulation and SA-mediated defense responses. 

 By contrast, ubiquitin-proteasome system has been shown to negatively regulate 
SA levels in tobacco. Transgenic tobacco plants expressing an inhibitor of ubiquitin- 
dependent protein degradation have been developed (Conrath et al.  1998 ). These 
plants constitutively accumulated enhanced levels of salicylic acid and/or its 
glucoside. These transgenic plants showed enhanced resistance to  Tobacco mosaic 
virus  (Conrath et al.  1998 ). The results suggest that ubiquitin –proteasome pathway 
negatively regulates SA accumulation in the defense signaling in tobacco.  

10.4.2     Role of an E3 Ubiquitin Ligase, OsRHC1, 
in SA-Dependent NPR1 Signaling 

 A novel RING zinc fi nger protein (OsRHC1) was detected in rice and it was identifi ed 
as an E3 ubiquitin ligase. Its function was dependent on the ubiquitin-mediated 
protein degradation via the 26S proteasome (Cheung et al.  2007 ).  OsRHC1  cDNA 
from rice in transgenic  Arabidopsis thaliana  enhanced the defense response toward 
 Pseudomonas syringae  pv.  tomato , suggesting its role in defense signaling in rice 
(Cheung et al.  2007 ). The defense response effects were neutralized in an  npr1  muta-
tion background, suggesting that the function of OSRHC1 is dependent on presence 
of the key defense regulator NPR1 (Cheung et al.  2007 ). NPR1 is master regulator of 
SA signaling and an important regulator of responses downstream of SA (Mou et al. 
 2003 ; Zhang et al.  2003 ; Chern et al.  2008 ). The activity of NPR1 has been shown as 
a prerequisite for the functioning of OsRHC1. Therefore, it is suggested that OsRHC1 
acts either upstream from the NPR1 in the signal transduction pathway or it acts on 
a negative regulator of the NPR1 pathway (Cheung et al.  2007 ).  

10.4.3     Role of SON1 (F-Box Protein in E3 Ubiquitin-Ligase 
Complex) in SA–Mediated Immune Responses 

 The gene SON1 (for  S uppressor  o f  N IM1-1) was cloned from  Arabidopsis thaliana . 
It was found to encode a protein containing an F-box motif, an element found in the 
E3 ubiquitin-ligase complex. The gene negatively regulates defense signaling system 
(Kim and Delaney  2002 ). The  son1  mutant exhibited resistance response. The  son1  
plants that contain a functional  NPR1  gene revealed a constitutive increase in PR 
genes expression. In contrast,  son1 npr1  double mutant plants do not show induction 
of PR gene expression (Kim and Delaney  2002 ). These results suggest that SON1 
represses NPR1-dependent PR gene expression. SON1, the ubiquitin- ligase, may 
target for degradation of different regulators of PR gene expression. Candidates for 
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such a regulatory factor would be proteins that displace negative transcriptional regu-
lators of PR genes whose expression may be associated with  son1 -mediated defense 
responses. The target of SON1 may be NPR1 itself (Kim and Delaney  2002 ).   

10.5     Ubiquitin-Proteasome in  R -Gene Mediated 
Early Signaling System 

 Several  R  genes encode receptor proteins (Kawchuck et al.  2001 ) and on perception 
of the external stimuli by the receptor, a well-orchestrated signaling system is 
activated. Ubiquitin-proteasome-mediated proteolytic pathway plays an important 
role in the rice R protein XA21-mediated signaling system (Wang et al.  2006 ; Yang 
et al.  2006 ). TheXA21 protein carries both a leucine-rich repeat motif and a serine- 
threonine kinase-like domain, suggesting a role in cell surface recognition of a 
pathogen ligand and subsequent activation of an intracellular defense response 
(Song et al.  1995 ). Lee et al. ( 2009 ) reported that XA21 is a pattern recognition 
receptor (PRR) and it recognizes a 194-amino acid protein designated Ax21 as a 
pathogen-associated molecular pattern (PAMP). 

 A RING domain-containing protein named as XB3 (for XA21 binding protein 3) 
interacts with the rice bacterial blight resistance gene Xa21-encoded protein (Wang 
et al.  2006 ). The RING domain ubiquitinates XB3 protein, indicating that XB3 is an E3 
ubiquitin ligase. XB3 is specifi cally transphosphorylated by the kinase domain of 
XA21 (Wang et al.  2006 ). The activated XB3 may ubiquitinate a third protein and tar-
get its degradation. The degraded protein may be a negative regulator of the defense 
signaling (Wang et al.  2006 ). It is suggested that XB3 protein may be involved in con-
ferring stability to the R protein XA21; otherwise, the XA21 protein would have been 
degraded by a ubiquitin-proteasome-mediated proteolytic pathway. Thus the ubiquitin 
ligase activity of XB3 protein is involved in the  R  gene- mediated signaling system. 

 Cf-9 is a disease resistance gene in tomato conferring resistance against 
 Cladosporiun fulvum . Transgenic tobacco plants expressing this gene were devel-
oped. Upon an elicitor treatment, the gene ACRE276 ( A vr9/ C f-9  R apidly  E licited 
gene 276) was upregulated and the gene encoded an E3 ubiquitin ligase requiring 
an intact U-box domain (Yang et al.  2006 ).  ACRE276  RNA interference (RNAi) 
silencing in tobacco resulted in loss of defense response induced by  Cf  resistance 
genes.  ACRE276  RNAi plants also lost defense responses induced by a viral elicitor 
(Yang et al.  2006 ). Another ACRE gene, ACRE74, was also found to be induced 
upon elicitor treatment in tobacco (González-Lamothe et al.  2006 ). ACRE74 
encodes a U-box E3 ligase homolog, highly related to parsley CMPG1 (Kirsch et al. 
 2001 ) and  Arabidopsis thaliana  PLANT U-BOX20 (PUB20) and PUB21 proteins 
(Azevedo et al.  2001 ), and was called NtCMPG1. The NtCMPG1 was shown to be 
involved in induction of HR (hypersensitive response) in Cf9 tobacco after AVR9 
elicitor infi ltration (González-Lamothe et al.  2006 ). A homolog of CMPG1 was 
detected in tomato and it conferred resistance to the fungal pathogen  Cladosporium 
fulvum . It was shown to be involved in the Pto/AvrPto-mediated bacterial disease 
resistance and Inf1–mediated oomycete resistance responses in tomato 
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(González-Lamothe et al.  2006 ).  CMPG1  gene was also rapidly induced after elici-
tation with the oomycete elicitor Pep-13 in parsley (Kirsch et al.  2001 ). Arabidopsis 
PUB20 expression is induced after treatment with the oomycete pathogen elicitor 
Pmg and bacterial elicitor fl g22 (Heise et al.  2002 ; Navarro et al.  2004 ). These 
results suggest the involvement of U-box E3 ligases in defense signaling system. 

 Another U-box protein was detected in  Arabidopsis  and it was called PUB17 
(PLANT U-BOX17) and it is a homolog of tobacco ARCE276 (Yang et al.  2006 ). 
 Arabidopsis  PUB17 knockout plants lost the  R  genes  RPM1 - and  RPS4 -mediated 
resistance against  Pseudomonas syringae  pv.  tomato . Transiently expressing PUB17 in 
Cf-9 tobacco silenced for  ACRE276  restored defense-related hypersensitive response 
(Yang et al.  2006 ). These observations suggest the U-box E3 ubiquitin ligase PUB17 is 
also involved in defense signaling system. Another U-box protein involved in ubiqui-
tin- proteasome proteolytic pathway is ARC1 in  Brassica napus  (Yang et al.  2006 ). 

 SGT1 (for Suppressor of the G2 allele of SKP1) is a plant disease resistance 
response protein required for the function of multiple  R  genes (Austin et al.  2002 ; 
Azevedo et al.  2002 ; Peart et al.  2002 ; Tör et al.  2002 ; Fu et al.  2009 ; Kud et al. 
 2013 ). It is a co-chaperone in the HSP90-SGT1-RAR1 molecular chaperone com-
plex, a core modulator in plant immunity (Seo et al.  2008 ). SGT1 associates with 
SKP1, a component of the SCF-type E3 complexes (Liu et al.  2002 ). It is required 
for the function of an SCF complex (Kitagawa et al.  1999 ; Peart et al.  2002 ). It 
suggests that SGT1 plays key role in ubiquitin-proteasome-mediated proteolytic 
pathway. SGT1 plays an important regulatory role in early  R -gene-mediated plant 
defense responses (Austin et al.  2002 ; Azevedo et al.  2002 ; Bieri et al.  2004 ; Wang 
et al.  2006 ; Seo et al.  2008 ). SGT1 functions in R protein accumulation in disease 
resistance (Azevedo et al.  2006 ). Silencing of SGT1 in  Nicotiana benthamiana  
results in reduced steady-state levels of R proteins (Azevedo et al.  2006 ). It suggests 
that the major function of SGT1 may be in conferring stability to R proteins, 
probably by degrading the proteins involved in reducing the stability of R proteins. 
It has been shown that SGT1 contributes to the  Prf -mediated defense responses by 
stabilizing Prf protein via its co-chaperone activity (Kud et al.  2013 ).  

10.6     Small Ubiquitin-Like Modifi er (SUMO) 
in Plant Immunity 

10.6.1     Role of SUMOylation in SA Biosynthesis 

 SUMO is a post-translational modifi cation that can be reversibly conjugated to target 
proteins, similar to its well-known cousin Ubiquitin (Miura and Hasegawa  2010 ). In 
contrast to ubiquitinylation, reversible SUMO conjugation only requires the actions 
of the SUMO activating enzymes SAE1/SAE2, the SUMO conjugating enzyme 
SCE1 and SUMO proteases. SUMO conjugation is promoted by SUMO E3 ligases, 
such as SIZ1 or HPY2 (NSE1) (Ishida et al.  2009 ; Miura and Hasegawa  2010 ). 

 SUMOylation plays an important role in SA signaling system. It alters the levels 
of SA in the immune response pathway. Several regulatory proteins are involved in 
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upstream of SA signaling and involved in SA production in  Arabidopsis . Mutations 
in  eds1  (for  enhanced disease susceptibility1 ), or  pad4  (for  phytoalexin-defi cient4 ) 
lead to reduced SA levels in infected leaves (Zhou et al.  1998 ; Gupta et al.  2000 ; 
Feys et al.  2001 ). EDS1 is required for SA production and it controls SA production 
to amplify defense signals (Rustérucci et al.  2001 ; Eulgem et al.  2004 ; Song et al. 
 2004 ). PAD4 is a key regulator acting at upstream of SA (Lippok et al.  2007 ). 
 Arabidopsis  plants carrying  pad4  mutations have a defect in accumulation of SA 
upon pathogen infection (Zhou et al.  1998 ). PAD4 is required for amplifi cation of 
weak signals to a level suffi cient for activation of SA signaling (Jirage et al.  1999 ). 
The PAD4 protein sequence displays similarity to triacyl glycerol lipases and other 
esterases (Jirage et al.  1999 ). It is suggested that EDS1 and PAD4 transduce ROS- 
derived signals leading to SA production (Rustérucci et al.  2001 ; Wiermer et al. 
 2005 ). EDS1 and PAD4 may have a fundamental role in transducing redox signals. 
EDS1 forms several molecularly and spatially distinct complexes with PAD4 
(Wiermer et al.  2005 ; Xing and Chen  2006 ). Another gene  EDS5  encodes a protein, 
which transports precursors for SA biosynthesis. EDS5 exhibits homology to 
multidrug and toxin extrusion (MATE) transporter proteins from animals (Nawrath 
et al.  2002 ). EDS5 expression requires PAD4, placing EDS5 downstream of PAD4 
(Nawrath et al.  2002 ). SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, 
regulates SA-mediated plant immunity. SIZ1 interacts epistatically with PAD4 and 
EDS1 and inhibits the SA biosynthesis pathway (Lee et al.  2006 ).  

10.6.2     Role of SUMOylation in SA-Mediated Systemic 
Acquired Resistance 

 SUMO conjugation suppresses defense signaling in unstressed healthy plants 
without any exposure to PAMP signals or pathogen invasion. Upon pathogen/PAMP 
perception plant innate immune receptors activate various signaling pathways 
that trigger host defenses. SUMO (Small ubiquitin-like modifi er) conjugation is 
essential to suppress defense signaling in non-infected plants. SUMO conjugation 
can transform transcription activators into repressors, thereby preventing defense 
induction in the absence of a pathogen signal (van der Burg and Takken  2010 ). 

 SAR is activated upon recognition of pathogens and activation of SAR requires 
SA, which induces SA-responsive gene expression. The SA-induced changes in 
gene expression have been found to have a link to chromatin remodeling, such as 
histone modifi cations and histone replacement. The recruitment of chromatin- 
modifying complexes to SA-responsive loci controls their basal and SA-induced 
expression (March-Diaz et al.  2008 ; van den Burg and Takken  2009 ,  2010 ; 
Jaskiewicz et al.  2011 ). Basal repression of these loci may require the post- translational 
modifi er SUMO. SUMO conjugation has been reported to control the activity, 
assembly and disassembly of chromatin-modifying complexes to transcription 
complexes (van den Burg and Takken  2009 ). SUMO conjugation determines recruit-
ment and activity of chromatin-modifying enzymes, and thereby indirectly controls 
gene expression (van der Burg and Takken  2010 ). 
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 The  SIZ1  gene, which encodes an  Arabidopsis  SUMO E3 ligase, regulates SAR. 
Mutant  siz1  plants exhibit constitutive SAR characterized by elevated accumulation 
of salicylic acid and increased resistance to  Pseudomonas syringae  pv.  tomato . 
Transfer of the  NahG  gene to  siz1  plants results in reversal of these phenotypes back 
to wild-type. Analyses of the double mutants,  npr1 siz1 ,  pad4 siz1 ,  ndr1 siz1  
revealed that  SIZ1  controls SA signaling (Lee et al.  2007 ). The results suggest that 
SUMOylation suppresses SA signaling at the level of transcription. It is suggested 
that SUMO conjugation of the SA-dependent transcription factors may transform 
the transcription factors into repressors. Pathogen invasion/PAMP application, 
which activates phosphorylation, may revert back the transcription repressors into 
transcription activators (van den Burg and Takken  2010 ). Sumoylation transforms 
an activator into a repressor and phosphorylation induced by MAP kinases may 
convert the repressor into activator. The interaction between sumoylation and phosphor-
ylation may determine the immune response. Plants with disturbed SUMOylation 
levels exhibit constitutive expression of early and late defense genes, increased 
accumulation of SA, and increased disease resistance (Lee et al.  2007 ; van den Burg 
and Takken  2009 ).   

10.7     Pathogens May Subvert Ubiquitin-Proteasome 
System to Cause Disease 

 Ubiquitin-proteasome system has been shown to be involved in plant immune sys-
tem. Many E3 ligase class RING fi nger proteins have been found to be induced in 
plants by pathogen attack and play an important role in plant defense (Zeng et al. 
 2006 ). The fungal PAMP chitin up-regulated the  ATL2  and  ATL6  genes encoding 
RING proteins in  Arabidopsis  (Salinas-Mondragón et al.  1999 ). The bacterial 
PAMP fl g22 upregulated the genes encoding ten putative RING fi nger E3 ligases in 
 Arabidopsis  (Navarro et al.  2004 ). The fungal PAMP N-acetyloligosaccharide has 
been shown to induce the expression of EL5 RING E3 ligase (Takai et al.  2002 ). 
Overexpression of the pepper E3 ubiquitin ligase RING1 gene confers enhanced 
resistance against  Pseudomonas syringae  pv.  tomato  and  Hyaloperonospora arabi-
dopsidis  in  Arabidopsis , which was accompanied by rapid production of SA and 
various PR genes (Lee et al.  2011 ). U-box E3 ligases have also been implicated in 
plant defense response (Zeng et al.  2004 ; González-Lamothe et al.  2006 ; Yang et al. 
 2006 ). Some E3 ubiquitin ligases have been shown to negatively regulate plant 
defense responses (Hong    et al.  2004 ; Trujillo et al.  2008 ; Zhang et al.  2012 ). 

 Recently it has been reported that some pathogens interfere with the ubiquitin- 
proteasome system and subvert the defense responses induced by the proteolysis to 
cause disease. Park et al. ( 2012 ) showed that the rice blast pathogen  Magnaporthe 
oryzae  produces an effector called AvrPiz-t. The effector targets the RING E3 ubiq-
uitin ligase APIP6 to suppress PAMP-triggered immunity in rice. AvrPiz-1 accumu-
lates in the specialized structure called the biotrophic interfacial complex and is 
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then translocated into rice cells. AvrPiz-t suppressed the ubiquitin ligase activity of 
the rice RING E3 ubiquitin ligase. Silencing of the ubiquitin ligase in transgenic 
rice enhanced susceptibility of rice plants to  M .  oryzae , suggesting the role of the 
ubiquitin ligase in disease resistance (Park et al.  2012 ). The results suggest that the 
fungal pathogen causes the disease by suppressing the ubiquitin-proteasome. 

 DNA viruses selectively interfere with CUL1-based SCF ubiquitin E3 ligases to 
cause infection in plants (Lozano-Durán and Bejarano  2011 ; Lozano-Durán et al. 
 2011 ). The DNA viruses redirect ubiquitination by interfering with the activity of 
the COP9 signalosome (CSN) complex. The geminiviral C2 protein interacts with 
CSN5 (COP9 signalosome5), and its expression in transgenic plants compromises 
CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiq-
uitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, 
and abscisic acid) are altered in these plants (Lozano-Durán et al.  2011 ). 
Transcriptomic analysis of the transgenic plants showed that the response to jasmo-
nates is the main SCF-dependent process affected by geminiviral C2 protein. 
Exogenous JA treatment of  Arabidopsis  plants disrupts geminivirus infection sug-
gesting that the suppression of the JA response might be crucial for infection. SCFs 
are key regulators of JA signaling. The capability of viruses to selectively interfere 
with or hijack the activity of these complexes may be a powerful strategy in viral 
infection (Lozano-Durán et al.  2011 ). 

 Sahana et al. ( 2012 ) showed that a cell permeable proteasomal inhibitor facilitated 
an increase in  Papaya ringspot virus  (PRSV) accumulation in the host papaya 
plants. The PRSV viral protein HcPro was found to interact with the α1 subunit of the 
20S proteasome, inhibiting the action of the 20S proteasome. The results suggest 
that inhibition of the host proteasome facilitates the virus accumulation in the host 
plant and the proteosomal catalytic activity is modulated by the viral protein. 
Collectively, these studies suggest that proteasome is involved in virus disease resistance 
and the potential viral pathogens inhibit the proteasome activity and induce the 
disease incidence infection.     
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   G-proteins in Ca 2+  signaling , 165, 176  
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   G-proteins in MAPK signaling , 165, 184, 185  
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   G-proteins in protein phosphorylation , 165  
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  JA/ET signaling pathways , 101, 103–105  
   Jasmonate (JA)-dependent signaling system 
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 CDPK in JA signaling system , 255  
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 JA signaling pathway , 91, 104  
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412, 414  
 NO in JA biosynthesis , 318  
 Phospholipids in JA signaling , 380  
 RAR1 in JA signaling system , 175  
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 MPK4 , 335, 336, 355, 358, 364, 396  
 MPK6 , 334, 335, 346, 355, 356, 358, 362, 

394, 395, 400  

Index



437

 MPK9 , 336  
 MPK11 , 336, 337  
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   miRNA-directed RNA silencing , 114  
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 NO-mediated induction of SIPK , 349  
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   Proteasome , 409–411, 414, 415, 417, 419, 422  
   20S proteasome , 423  
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 Reactive oxygen intermediates (ROI) (cont.) 
 hydroxyl radical (OH˚) , 284  
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 biphasic ROS production , 288, 379  
 Ca 2+  and CDPK-mediated ROS 

generation , 249  
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 chitin-induced oxidative burst , 288  
 cryptogein-induced ROS burst , 285  
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 GMMPK4-regulated ROS signaling 
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 heterotrimeric G proteins-mediated 
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