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Foreword 

The problem of optimal thinning is highly relevant for practical forestry. 
Thinning generates a substantial part of the net revenue, and it shapes the 
future value development of the remaining forest stand. Particularly with re-
gard to the currently observed strong shifts of forest growth, timber prices 
and the compositions of the product classes, a profound theoretical founda-
tion is necessary. Astonishingly, down to the present day, the problem of op-
timal thinning has not been solved satisfactorily. According to my judgment, 
the reason for this is the high degree of complexity of this optimization prob-
lem which is often shrouded.     

In the dissertation, Renke Coordes has solved the problem of optimal thin-
ning. 

He succeeded in presenting a solution with an own methodical approach in 
which the optimum optimorum is not to be found necessarily. Also, Renke 
Coordes consequent applies the Faustmann approach and follows a strong 
economic logic. In the dissertation, Renke Coordes presents a closed eco-
nomic investigation of thinning. It is the best what I have read in this re-
search field during the last decades.  

The dissertation is not only a fairly sizeable theoretical improvement; more-
over, it has guiding character for practical silviculture. Questions on the op-
timal thinning age, the optimal thinning regime, the problem of quality and 
quantity, etc. are answered. In addition, well-known Central European prin-
ciples of silviculture are tested for their theoretical foundation. Furthermore, 
the model as well as the analysis of the dissertation is of value in the broader 
field of natural resource economics.  

I recommend the dissertation warmly for reading and studying to forest sci-
entists as well as to forestry practitioners, and to natural resource econo-
mists, too.   

Peter Deegen  

Professor in the field of Forest Resource Economics,  
University “Technische Universität Dresden”, Germany
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1 Problem 

 

 “It is the great lesson which science has taught us that 
we must resort to the abstract where we cannot mas-
ter the concrete. The preference for the concrete is to 
renounce the power which thought gives us.”  

F. A. von Hayek (1964, p. 12) 

 

Forest owners are observed to harvest trees in even-aged forest stands prior 
to the rotation period. These harvests without the intention of subsequent 
regeneration will be termed thinnings. Although numerous ecological and 
economic effects of thinnings have been discovered, the underlying motives 
of forest owners to thin forest stands have not been studied consistently. 
This is surprising since thinnings are long established and frequently con-
ducted operations in forestry. From this perspective, thinnings are central 
elements of forestry which are directly interlinked with any other forestry 
operation. Regardless of the objectives, then, thinnings, if or when con-
ducted, will influence their achievements crucially.  

Doubtless, thinnings have been subject to forestry science from its very be-
ginning (e.g. Carlowitz 1713, p. 201 ff.; Moser 1757, p. 221 ff.; Pfeiffer 1781, 
p. 143 ff.; Hartig 1791, p. 7 ff.; Cotta 1817, p. 42 ff.; Pfeil 1820, p. 294 ff.; 
Hundeshagen 1821, p. 103 ff.). Since then, countless effects of thinnings have 
been analyzed: on the growth of trees (e.g. Zhang et al. 2006), on other living 
creatures including humans (e.g. Bendz-Hellgren and Stenlid 1998; Rydberg 
and Falck 1998; Kalies et al. 2010; Neill and Puettmann 2013), on the soil 
(e.g. Tang et al. 2005), on the microclimate (e.g. Weng et al. 2007), on the 
water regime (e.g. Serengil et al. 2007), on carbon stocks (e.g. Garcia-Gonzalo 
et al. 2007), on the cash-flow (e.g. Cameron 2002), on the profitability (e.g. 
Hyytiäinen and Tahvonnen 2002), on the biodiversity (e.g. Wilson and 
Puettmann 2007), and on many others.   

R. Coordes, Optimal Thinning within the Faustmann Approach,
DOI 10.1007/978-3-658-06959-9_1, © Springer Fachmedien Wiesbaden 2014



2  Problem 

Due to the immense complexity, thinning effects are often analyzed sepa-
rately. This analytical approach, however, prevents thinnings from being 
studied consistently as a human action. Certainly, potential advantages of 
thinnings come to mind quickly, but what about all the other, potentially dis-
advantageous effects? If thinnings, on the other hand, are beneficial without 
exceptions, why are some forest stands not thinned? From the large set of 
thinning effects, any effect might be used to seemingly explain any observa-
tion. If we infer that a forest owner thins a forest stand in order to improve 
the growth of some trees, we can argue in the same direction with reference 
to any other effect. If thinnings are addressed detached from the correspond-
ing problem, the argumentation remains empty. Therefore, in order to derive 
empirically testable hypotheses, precisely defined conditions are necessary 
which restrict the set of possible explanations unambiguously (Popper 
2002a, p. 36). 

Without recognition of the patterns underlying our problems, it is impossi-
ble to distinguish between the countless things potentially observable 
(Hayek 1964). If we want to know why people sometimes harvest trees in 
exchange for other goods and services while retaining similar trees in other 
situations, why they sometimes do not supply timber for the development of 
a society, why they have incentives to harvest timber which is valuable to 
other people as standing trees (either alive or dead), why they sometimes 
prefer to harvest trees without considering to regenerate new trees or with 
the intention to convert the forest land to a different land use, we need to 
assess how forest owners act under specified circumstances in order to track 
those rules underlying the corresponding situation which induced the unex-
pected or unintended actions. On the basis of this explanation, solutions to 
problems can be outlined which cause to distort the consensus within a so-
ciety.  

The economic approach to these problems followed in this study is two-
staged (cf. Homann and Suchanek 2005). First, the action of the individual is 
analyzed on the action level where individuals are assumed to follow the in-
centives of the situation. Individuals are the indivisible basic units of the 
analysis. As humans, they are assumed to be the only source of value. This 
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“methodological individualism” (Hayek 1942) assigns objectives and actions 
to individuals exclusively. Incentives are valuated comparisons of individu-
als on the basis of expected utilities which define their subjective scale of 
preferences. By preferring actions promising higher utility to actions prom-
ising lower utility, individuals act as if maximizing utility. Finally, a situation 
is the totality of all constraints to the action of individuals as they perceive 
them. The sources of constraints are manifold. Technical constraints are 
given by the ecological possibilities to produce timber while individual con-
straints restrict the opportunities of the individual to achieve intended aims. 
Furthermore, on the action level, all actions of other individuals within the 
society are given as restrictions.  

In the second step of the economic analysis, the interaction of different indi-
viduals is analyzed. On this interaction level, which constitutes the actual 
propositions for solutions to problems in a social world, action theory is ap-
plied to interactions such that the individuals can react to each other with 
the consequence of conflict or cooperation. In contrast to the action theory, 
the results of interaction theory are not ascribed to the objectives but to the 
conditions of the action. Instead, the realization of potential mutual gains 
from exchange is hampered by problems in the incentives and the infor-
mation as each participant perceives them. It is these interaction structures 
of conflict and cooperation, i.e. of dilemma, that form the core of the eco-
nomic analysis as understood in this study (Homann and Suchanek 2005).  

On either level, individuals are assumed to be acting as Homo economici, i.e., 
as rational, self-centered utility maximizer. As a methodological principle 
(Popper 1983), the theoretical construct of the Homo economicus serves to 
focus the attention on the conditions of individual actions. It is thus neither 
a psychological theory about the behavior or thoughts of people nor it is a 
hypothesis about human action, as mistakenly postulated (cf. Kahneman 
2011). Instead, as premises, actions are axiomatically rational by definition. 
The corresponding deductions (e.g. Varian 2010, p. 33 ff.) are thus tautolog-
ical, circular and not testable since irrational actions are non-existent by as-
sumption. Not until the inclusion of the conditions of the action, the eco-
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nomic hypothesis is formed, which is then empirically testable. These exog-
enously given constraints restrict the generality of the rationality assump-
tion in order to separate a set of falsifiable propositions (Popper 2002b, p. 
68 ff.). Although Homo economici might also be normatively justified 
(Buchanan and Brennan 2000, p. 74), the methodological employment in this 
work is purely positive.  

The present study is a contribution to the action theory within forestry sci-
ence. Hence, as exposed above, it serves as a foundation to actual interactive 
problems of conflict or cooperation. In this way, the derived propositions 
serve as hypotheses of individual action in dilemma situations, but not as 
predictions of isolated actions. The Faustmann model (cf. Chapter 3), as the 
most widely employed investment model in forestry science (Chang 2001), 
provides a distinct and consistent explanation for the phenomenon that peo-
ple are observed to harvest and plant trees under precisely delimited condi-
tions within the extended order of free market exchanges. Accordingly, 
prices as carrier of information provide forest owners with information 
about the valuation of goods and services of all other individuals (Hayek 
2002). Through this process, forest owners receive incentives as to how they 
have to coordinate their actions in order to realize their personal objectives 
(Deegen et al. 2011). By harvesting trees, forest owners thus supply timber 
for exchange when it is valuable to other individuals. In this way, forest own-
ers plant trees for the opportunity of future income. Whether these owners 
personally induce or conduct the harvest is irrelevant since they can equally 
sell the forested land which is valuable to other individuals due to the future 
harvest possibilities (Samuelson 1976).  

Nevertheless, the Faustmann model provides no insights into the incentives 
which might induce forest owners to harvest trees prior to the rotation pe-
riod. Instead, all trees share the same optimal harvest age per definition. It 
follows that the Faustmann model is unable to explain elementary opera-
tions within forestry. Thinnings are here not a minor detail. Instead, compre-
hension of their emergence might help clarifying the conditions, for instance, 
under which forest owners are induced to exploit forest stands without con-
cern for subsequent regeneration. Or else, it might provide an explanation 
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for the adjustment of the long-term investment in timber in an uncertain 
world of unanticipated changes or for the incentives which induce forest 
owners to supply more or less conservation services. Without a clear con-
ception of how forest owners will respond to the conditions of a particular 
situation, it will be impossible to detect those reasons which lead to the ob-
served deficiencies. Against this background, an extension of the “Faustmann 
laboratory” (Deegen et al. 2011, p. 363) to include thinnings appears highly 
desirable.  

In order to provide an explanation for that part of human interactions which 
are based on voluntary and bilateral exchanges, the present study is based 
within the Faustmann approach. Thinnings are thus analyzed from the per-
spective of profitable timber production. The explored problem is demar-
cated by the generation of income with the production and sale of timber 
through the investment in tree growth. Since forest owners are assumed to 
act as rational Homo economici (see above), they act as if maximizing their 
intertemporal income with the production of timber as this offers the largest 
set of consumption opportunities (Hirshleifer 1970, p. 47f.). The larger set is 
preferred since it offers the same opportunity as the smaller set while, at the 
same time, providing additional opportunities. In a purely competitive mar-
ket, on the other hand, maximization remains as the only feasible oppor-
tunity.  

From the commitment to the Faustmann approach it follows that the arising 
propositions are restricted to the impersonal exchanges via markets within 
the extended order of human interaction (Deegen 2012). Only within this 
open society (Popper 1966), individuals respond to the abstract rules and 
impersonal signals generated by the “perfect” markets required for the anal-
ysis (cf. Section 3.3.1). On the other hand, the Faustmann model is a market 
model. Its underlying assumptions are the result of bilateral exchanges be-
tween individuals which aggregate to a market as the network of these co-
operative relationships (Buchanan 1964, p. 218). This specific institutional 
framework might be contrasted with the political arena as an alternative in-
stitution for demanding and supplying goods and services (cf. Buchanan 
1999, p. 3). Nevertheless, despite the concentration on the market side of 
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exchanges, at least the distribution of property rights in the Faustmann 
model must be resolved by collective consensus on the constitutional stage 
of politics. This construction guarantees that the owner of the land is the rel-
evant subject of the analysis. In this way, it should be emphasized that the 
classical assumptions underlying the Faustmann model (cf. Section 3.3.1) 
imply specific ranges of application since the rules among individuals are 
fixed just as the physical characteristics (Buchanan and Brennan 2000, p. 
21). Any hypothesis of this analysis may thus only be applied to situations 
within these spheres of human interaction.  

Among the questions which arise within the thus defined limits of the prob-
lem area are: Which incentives motivate forest owners to thin forest stands? 
Under which conditions are forest stands left untreated? When and how are 
thinnings conducted? Which trees will be removed under what condition? 
How often are thinnings conducted and how much timber can be expected 
to be removed at each harvest? How will forest owners adjust the regenera-
tion and the rotation age when thinnings become more or less profitable? 
How will changes in the prices affect the optimal cutting regime? How do 
forest owner respond to unanticipated changes during the rotation period? 
Hopefully, the present study contributes to the elucidation of some of these 
important questions.  

Earlier proposed solutions to the thinning problem of profitable timber pro-
duction often focus on numerical solutions. Among these, whole-stand tim-
ber growth models (e.g. Kilkki and Väisänen 1969; Brodie et al. 1978), stage-
structured timber growth models (e.g. Haight 1987; Solberg and Haight 
1991) and individual tree growth models are employed (cf. Hyytiäinen and 
Tahvonnen 2002, p. 274). Depending on growth specifications, the latter 
may be separated into distance-independent (e.g. Roise 1986; Cao et al. 
2006) and distance-dependent (e.g. Pukkala et al. 1998; Pukkala and Miina 
1998; Vettenranta and Miina 1999) growth models (cf. Hyytiäinen et al. 
2005, p. 120). While the numerical approaches share the advantage of yield-
ing concrete solutions, their applicability is restricted to the empirical values 
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employed. In many of these studies, thinnings increase the intertemporal in-
come from timber production. This raises the suspicion that thinnings are 
defined to be profitable by the underlying assumptions.  

Analytical solutions have been advanced by means of dynamic programming 
(e.g. Schreuder 1971) and optimal control formulations of the thinning prob-
lem (e.g. Näslund 1969; Clark and Munro 1975; Clark and De Pree 1979; 
Cawrse et al. 1984; Betters et al. 1991; Clark 2005, p. 39 ff.). These studies 
offer solutions to the simultaneous determination of optimal thinnings and 
the optimal rotation age. It can be shown that optimal thinnings follow a con-
tinuous, singular path. As a result, thinnings are intensified until the increase 
of the revenues from thinnings are equal to the decrease of the timber value 
at the final harvest.  

The present study attempts to follow a different approach by concentrating 
on thinnings as a result of differing optimal harvest ages of the trees in an 
even-aged forest stand. Hence, the focus lies on a direct extension of the 
Faustmann model (cf. Chapter 3) to include thinnings. In this way, the as-
sumption of the independence of the harvest ages in the Faustmann model 
is relaxed and the implications analyzed. This approach and its deductions 
are new contributions to forestry economic science since they offer concrete 
propositions of whether and how thinnings are expected to be conducted in 
forest stands. The main advantage over other approaches lies in the con-
sistent extension of the Faustmann model as the theoretical basis of the eco-
nomic approach towards the explanation of human interactions concering 
forests in a market environment. The first approach into this direction is cer-
tainly due to Johann Heinrich von Thünen, who constructed a forest thinning 
theory (cf. Thünen 1875, 2009) within the equilibrium setting of the isolated 
state (cf. Thünen 1842, 1966).  

The present study is organized as follows: first, a simple theory of timber 
growth in forest stands is developed which allows an application to the ab-
straction level of the investment models employed (Chapter 2). The exten-
sion of the Faustmann model to include thinnings and two further specifica-
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tions are developed in Chapter 3. This chapter also contains the specifica-
tions of the physical and rule-based assumptions underlying the solution. In 
the analysis in Chapter 4, those logical propositions are deduced from the 
investment model which are necessary for the answers to the posed ques-
tions above. These problems comprise the elaboration of the relevant range 
of thinnings, the optimal thinning regime and the comparative static analysis 
of the model. The propositions are then discussed against the background of 
the problem and its demarcation and conclusions are drawn (Chapter 5). Fi-
nally, the study summarized in Chapter 6. 



 

2 Timber Growth Theory 

Thinnings offer the opportunity to gain access to the control of density in a 
forest stand through the harvest of trees. Typically, timber growth is as-
sumed to be density-dependent, i.e., the change in the timber volume is de-
pendent on the current stock size (cf. Conrad and Clark 1987, p. 62). The 
term “density”, though, is not used consistently in forestry science (Zeide 
2005). Depending on the problem, density might refer to the stem number, 
the basal area, the timber volume, the biomass or various density indices. 
However, in order to derive relevant propositions concerning the influence 
of thinnings on the profitability of timber production, it is necessary to eval-
uate the impact of the removal of some trees on the remaining trees. In order 
to meet the abstraction level of the following investment models (cf. Chapter 
3), a simple growth model is required which offers guidance within the com-
plex structures of forest stands and allows to deduce concrete hypotheses 
about the basic relationships of timber production. Due to the lack of such a 
qualitative model, this chapter tries to outline density-dependent timber 
growth in even-aged and pure forest stands with the help of some basic the-
ories of natural science.  

In view of the problem to define density, the proposed model follows a dif-
ferent approach. It analyzes the relationship between the stand age and the 
initial density, which is the number of plants at the beginning of a rotation 
cycle. In this way, density – however defined (Zeide 2005) – is the conse-
quence of the magnitudes of both these characteristics. In effect, density is 
introduced into timber growth by the initial density. The initial density is 
convenient for several reasons. First, it is a tangible, easily assessable and 
logical variable as it represents a concrete action of forest management. Sec-
ond, all commonly applied density measurements arrange the initial densi-
ties at the moment of the establishment in the same order as long as the re-
generated trees are all equal, i.e., those stands with the highest number of 
trees at the beginning of the rotation are inevitably the densest stands at that 
moment, which makes it meaningful to speak of dense stands. Third, the ini-

R. Coordes, Optimal Thinning within the Faustmann Approach,
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tial density is directly related to thinnings as both focus on the relevant ac-
tions: to purposefully increase or to decrease the number of trees in the 
stand.  

Timber growth, or the change in the timber volume over the age, denotes a 
growth function as it describes the temporal behavior of the timber volume 
in the system of a forest stand. Density-dependent timber growth might then 
comprise both positive and negative relationships between simultaneously 
growing trees. The proposed model, however, focusses solely on the negative 
relationship which might be termed competition as this term is frequently 
defined by its harmful effects on the involved individuals (cf. Begon et al. 
1990, p. 197). The restriction of the diverse mutual interdependencies be-
tween trees solely to the negative influences on the timber volume, though, 
might only be acceptable in pure stands as trees of the same species might 
not occupy different ecological niches thus competing for the same niche. In 
mixed stand, mutually reinforcing timber growth might evolve when differ-
ent tree species are intermingled in specific ways.  

A basic assumption might be necessary in order to justify timber growth at 
all. If it is assumed that trees maximize their individual fitness by producing 
many, healthy and widespread seeds within their species-specific reproduc-
tive strategy which are capable of establishing maximal reproductive off-
spring in turn, timber growth might be derived thereof. In order to produce 
and disseminate these seeds, trees must develop large and high crowns with 
a large photosynthetic mass in comparison to their neighboring trees which 
guarantees to utilize enough resources for a large number of healthy seeds 
that can be easily spread by wind or animals from their raised position on 
the tree. The productive mass, again, can only be supplied and supported by 
timber. It should be noted that this assumption might not hold for mixed for-
est stands (Pretzsch 2009, p. 340 f.).  



The Homogenous Stand 11 

2.1 The Homogenous Stand 

Homogeneous timber growth or a homogeneous forest stand is defined as 
equal timber volumes of all trees in the stand at equal ages. As a conse-
quence, all trees necessarily share equal timber increments and equal im-
pacts upon each other as, otherwise, the timber volumes will diverge at some 
age. Trees might be growing homogeneously when they are all of the same 
age, of equal genetic constitution, are growing on equally fertile land and in 
an equal climate, are evenly distributed and treated.  

Timber production focusses on the timber volume of a stand Q as the means 
to generate an income stream. Since a forest stand is composed of different 
trees, the timber volume of a stand is the sum of the volumes of each tree  
belonging to the stand, i.e., 

where  is the number of trees (stem number) in the stand, and  is the index 
for each tree. In a homogeneous stand, every tree has exactly the same tim-
ber volume. The calculation of the timber volume thus simplifies to 

Accordingly, the timber volume of stand depends on the stem number and 
the volume of one tree. 

2.1.1 Stem Number 

The stem number is the number of trees in a stand. It is the direct conse-
quence of the initial density. The latter is the number of trees when a stand 
is established. While the alternatives to establish a stand are numerous – e.g. 
planting, sowing, natural regeneration, or even coppicing – it is irrelevant for 
the purpose in this paragraph how the trees have been established. In the 
homogeneous stand, only the number of plants matters since all trees are 

[2-1] 

[2-2] 
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distributed evenly and are of the same age, which might not apply neces-
sarily to all regeneration techniques.  

Just after a stand has been established, the stem number is equal to the initial 
density. Thereafter, though, both might diverge. Due to natural regeneration 
from seeds of adjacent stands or even from trees of the same stand, the stem 
number might increase. Since these phenomena are highly dependent on the 
vicinity of a stand, they have to be excluded from this analysis in order to 
focus on the basic relationships occurring in all stands. On the other hand, 
the stem number might also decrease after initial stand establishment. The 
reasons for the death of trees are even more various; e.g., fungal or insect 
infestation, browsing damage, forest management operations, vandalism, air 
pollution, etc. Since all these sources are again highly dependent on the vi-
cinity of a stand, they have to be excluded. The only relevant source for the 
displacement of trees that is solely influenced by the processes within a 
stand is density-dependent mortality. This phenomenon, which is also re-
ferred to as natural mortality or self-thinning (Zeide 1985), might reduce the 
stem number during the development of the stand (cf. Weiskittel et al. 2011, 
p. 139 ff.). For convenience, density-dependent mortality will be simply 
termed mortality hereafter.  

As long as mortality has not occurred, the stem number equals the initial 
density. After mortality has taken place, the stem number is less than the in-
itial density. The relation between stem number and density-dependent 
mortality in forests has been examined first by Reineke (1933). In his empir-
ical study, he found indications of an exponentially decreasing relationship 
between the number of trees per unit area and their average diameter in 
fully-stocked and untreated stands. As a result, he derived an age-independ-
ent density index thereof. Although his investigations gave rise to controver-
sial discussions, the index is widely accepted in forest mensuration science 
(Zeide 2005). Various studies have since then observed similar relationships 
for different tree species, locations and site qualities (e.g. Zeide 1995; 
Pretzsch 2000; Inoue et al. 2004).  
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Analogous observations were made by Yoda et al. (1963). They found de-
creasing weights of herbaceous plants with an increasing number of plants. 
Consequently, they derived the “-3/2th power law of self-thinning” which 
describes the relation between the average living plant mass and the plants 
per unit area. The analyses of both Reineke (1933) and Yoda et al. (1963) can 
be transformed into each other by substituting plant mass for diameter 
(White 1981); in this way, the former is special case of the latter. 

Eventually, the reciprocal changes in tree size and tree number have been 
derived allometrically (cf. Mohler et al. 1978; Tang et al. 1994; Zeide 2004; 
Pretzsch and Biber 2005). As the size of the trees in a fully-stocked stand 
increases, the number of plants has to decrease in order to supply enough 
space for each individual. By the same token, it is possible to show a very 
similar relationship between equal volumes of balls and their numbers when 
lying close to each other on a fixed area, on the one hand, and the number 
and size of trees, on the other (Pretzsch 2009, p. 406 ff.). The size of a tree 
may be either measured in volume or living plant mass as these units are 
isometrically related (White 1981).  

If it is necessary, then, for trees to grow in size over the age, the number of 
trees has to decrease once the stand is fully stocked, i.e., once a maximum of 
photosynthetically active mass is reached. The positive change in the size of 
a tree with respect to the age is assumed to be given for all relevant situa-
tions. Necessarily, trees increase their diameters as long as they are alive 
when old sapwood cells are no longer functional. Their capabilities to 
achieve this, though, are limited. Single trees and untreated stands exhibit a 
typical growth pattern (Assmann 1970): beginning to grow on a low level 
with an increasing acceleration, culminating at some age, and growing with 
a decreasing acceleration afterwards. At some point, they might even reduce 
their size due to decay. However, this stage of the development of a stand can 
be ignored in an analysis of profitable timber production.  

In a perfectly homogenous stand, however, there is no reason why single 
trees should be eliminated due to density-dependent mortality. Since the 
timber growth of all trees is equal in every aspect, no tree has any advantage 
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over any other tree which could then be expanded (proportional or dispro-
portional) to depress their neighbor until his death. Therefore, all trees 
would be dying off simultaneously when the small photosynthetic mass is 
unable to maintain the growing metabolism of the tree. For instance, this 
stagnation phase in timber growth can be observed in comparatively dense 
and almost homogeneously growing stands (e.g. pine plantations) where the 
timber increments tend to cease.  In consequence, density-dependent mor-
tality has to be assumed as exogenously given and to take place on a regularly 
distributed random basis at any age in which some crucial density factor (de-
fined as a combination of tree size and number of trees) is reached. Mortality 
thus occurs when a stand enters a zone of imminent competition-mortality 
(Drew and Flewelling 1977). According to the self-thinning line (White 
1981), mortality takes place in the initially densest stands first while it never 
occurs in comparatively sparse stands (Valentine 1988).  

In summary, the stem number in this approach is determined by the age  of 
the stand and its initial density , i.e., 

2.1.2 Diameter 

The second determinant of the timber volume of a homogeneous stand is the 
timber volume of a single tree . Since the growth of a tree is a phenomenon 
in a highly complex ecosystem, myriads of factors influence the formation of 
timber (cf. Oliver and Larson 1996, p. 21 ff.). In order to focus the analysis on 
the relevant aspects, the factors which are working independently of the vi-
cinity of a stand have to be isolated.  

In forest mensuration science the timber volume of a tree is typically calcu-
lated as (cf. West 2009, p. 36) 

[2-3] 

[2-4] 
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where  is the height of the tree,  its stem diameter and  a taper reduc-
tion factor which reduces the volume of a cylinder generated by  and  to 
the volume equivalent of the shape of the tree. According to this calculation, 
the diameter, the height, and the taper reduction factor are three basic de-
terminants of the tree volume. This separation is convenient as the last two 
determinants are only negligibly affected by the initial density.  

As various empirical observations (e.g. Altherr 1966; Petersen and 
Spellmann 1993; Mäkinen and Hein 2006) as well as analytical considera-
tions (e.g. Oliver and Larson 1996, p. 335; Pretzsch 2009) reveal, tree height 
is hardly affected by the initial density. Although there is a tendency of higher 
trees in more densely planted stands, the differences are insubstantial and 
negligible for the purposes of this work. Nevertheless, in actual forest stands, 
this proposition does only apply to the dominant height, which is the average 
height of the tallest trees in a stand. In homogeneous stands, though, all trees 
are of the same height. The shape of a tree, on the other hand, is definitely 
influenced by the initial density (Assmann 1970, p. 57ff). If comparing the 
shape of solitary grown trees with those cultivated in densely planted stands, 
the differences are obvious, especially for deciduous trees. However, the re-
duction factors might be assumed to be of equal magnitude as the timber in-
crements are only differently distributed on the stem such that solitarily 
growing trees grow thicker stem bases but thinner upper sections. In this 
way, the independence of the taper reduction factor from the initial density 
must follow from the limited supply of resources.  

In consequence, since tree height and reduction factors are constant over 
varying initial densities, they will not affect the qualitative differences be-
tween stands of the same age. Only the diameter is influenced by both age  
and initial density  of a stand, i.e.,  

[2-5] 
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Since this analysis only focuses on growing trees, the diameter increases 
with an increasing age of a stand. Furthermore, it is irrelevant where the di-
ameter is evaluated as long as it is the same for all trees and the taper reduc-
tion factor is adjusted.  

The relationship between stand density and tree diameter might be explored 
with the help of the pipe model theory. Although elaborated analytically by 
Shinozaki et al. (1964a; 1964b), empirical observations of the relationship 
between diameter increment and assimilation organs are already made by 
Pressler (1865) or Huber (1928). Pressler (1865) pointed out that the area 
of timber increment in any part of the stem is proportional to the leaf area 
above this part. Shinozaki et al. (1964a) found a linear relation between the 
weight of assimilation organs and the weight of non-photosynthetic tissue. 
They concluded that every unit of assimilation mass is supported by a unit of 
non-photosynthetic tissue. Therefore, the form of a plant is a consequence of 
the assemblage of unit pipes.  

In the case of trees, Shinozaki et al. (1964a) made another important obser-
vation. For any part of a tree which lies below all photosynthetic organs, the 
constant ratio between photosynthetic and non-photosynthetic mass does 
not hold. They understood this phenomenon as the consequence of the accu-
mulation of disused pipes. Pipes can become inoperable for various reasons; 
e.g., senescence, embolisms, seasonal activity. Since a tree is unable to dis-
pose disused pipes, they are preserved in the interior of the stem as heart-
wood, and, therefore, do not share a functional relationship with the active 
photosynthetic organs. Consequently, the relationship is only valid for the 
active non-photosynthetic tissue of the tree, the sapwood. Numerous empir-
ical observations (e.g. Kaufmann and Troendle 1981; Withehead et al. 1984; 
Kimmins 1987; Vertessy et al. 1995; Scott et al. 1998; Eckmüller and Sterba 
2000) underlie this conclusion for various tree species and sites. It also sev-
ered as a basement for several, more sophisticated growth models (e.g. 
Waring et al. 1982; Valentine 1985; Deleuze and Houllier 1995; Mäkelä 
2002).  
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As a tree grows in size, newly formed sapwood cells have to support newly 
formed photosynthetic organs as well as they have to replace disused pipes. 
This “secondary growth” (Nultsch 2001, p. 296) forms the timber volume as 
a byproduct of the need to grow. It might be interrupted periodically or ir-
regularly due to climatic changes. The important implication for this study, 
however, is that the stem diameter, as a fundamental determinant of the tim-
ber volume, is a function of the photosynthetic mass of the tree. Since this 
mass is concentrated on the crown surface, the potential of a tree to produce 
timber volume is dependent on the potential to expand its crown.  

The space which the crown of a tree can possibly occupy is called the poten-
tial growing area (Assmann 1970, p. 101), or area potentially available 
(Brown 1965). Naturally, this concept might be extended to include the rhi-
zosphere. However, as both areas are correlated, it is not necessary for the 
purposes of this work. Since the trees in a homogeneous stand are of equal 
height, this might also be reduced to the potential ground coverage of a tree. 
In the clear setting of a homogeneous stand, each tree has the same potential 
ground coverage which determines its diameter growth because the trees 
are distributed evenly over the area. Therefore, higher initial densities offer 
limited opportunities for crowns to expand freely. As the trees grow in size, 
each tree occupies more and more of its potential growing area until it is 
filled out and the canopy is thus closed.  

The potential growing area, though, is not a homogenous source of re-
sources. This is particularly evident when comparing a nearly solitarily 
growing tree and one out of a closed stand. A further extension of the poten-
tial growing area will hardly promote the timber increment of the former, 
but will substantially raise the increment of the latter. Furthermore, the ef-
fect varies with the tree height. The detailed reaction of trees due to enlarge-
ments of the potential ground coverage cannot be evaluated here; it is not 
even necessary. The only relevant aspect is that the function relating en-
larged growing areas to increment reactions is strictly monotonically in-
creasing within the competitive domain; i.e., a comparatively larger growing 
area gives rise to both higher crown surfaces and timber volumes if solitary 
growth is ruled out. Without any competition between the trees of the stand 
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(solitary growth), the increment reaction function has to be constant be-
cause genetics and site constraints make it impossible to convert more re-
sources into photosynthetic mass. The threshold of competition was empir-
ically analyzed, for instance, for Loblolly pine (Pinus taeda L.) by Clason 
(1994) or Zhang et al. (1996), and for Norway spruce (Picea abies L.) by 
Lässig (1991).  

Eventually, lower initial densities give rise to thicker tree, and vice versa, if 
trees compete for resources. By inference, solitary growth maximizes the 
timber volume of a single tree as it is provided with the maximal possible 
supply of resources that a site can offer and the tree can utilize. The same 
analysis remains valid for other diameters, such as branch diameter. There-
fore, all branch diameters respond equally to the stem diameter to changes 
in the growing area as they represent, along with their associated photosyn-
thetic mass, small trees within the tree.  

2.1.3 Stand Volume 

As equation [2-2] reveals, the timber volume of a stand depends on the stem 
number  and the timber volume of a tree of the stand . In turn, both de-
terminants vary with the age and the initial density. Therefore, it holds that 

According to the argumentation in the preceding sections, higher stem num-
bers and larger diameters increase, lower stem numbers and smaller diam-
eters reduce stand volume, ceteris paribus. However, higher initial densities 
give rise to higher stem numbers but smaller diameters since they reduce 
the potential growing area, and vice versa. Therefore, both effects on the 
stand volume are related oppositely with respect to the initial density (cf. 
von Thünen 1875, p. 90; 2009, p. 92). In order to evaluate which effect pre-
vails when, the conclusions of the preceding paragraphs have to be put to-
gether.  

[2-6] 
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At the beginning of a rotation period, the stem number effect predominates 
inevitably. The timber volume advantage of a denser stand is then propor-
tional to the stem number advantage. A stand with twice as many stems has 
twice the timber volume since all trees have the same stem volume. This pro-
portionality will hold as long as the trees grow solitarily. Especially for com-
paratively low initial densities, this will persist for quite some time. Eventu-
ally, as the trees grow in height and width, they will begin to influence each 
other through the competition for resources. In initially dense stands, this 
will happen sooner after the regeneration. For initially less dense stands, the 
boundary of solitary growth is reached disproportionately sooner after 
dense stands since the trees grow in height thus influencing each other 
through sidelight. Forest stands at sites of low soil quality or growing in a 
disadvantageous climate, though, might inevitably grow solitarily as some 
scarce resources restrict the availability of those which are more abundant. 
When competition begins, trees cannot maintain their solitary growth as the 
availability of resources is limited. As worked out in the preceding section, 
smaller potential growing areas will result in less rapidly growing diameters. 
Therefore, the stem number advantage diminishes over the age.  

Nevertheless, as long as no tree is displaced, the stem number effect will 
dominate; i.e., higher initial densities lead to higher stand volumes. In order 
to produce more timber volume, any tree in a less dense stand has not only 
to outgrow a tree of a denser stand, but, moreover, has to compensate for the 
increments of the additional trees in the denser stand. For a stand with twice 
as many trees, each tree has to compensate for the growth of two trees in the 
less dense stand. Since one tree has the same potential growing area of two 
trees in this case, the denser stand can benefit from the availability of the 
resources in a shorter time since initially denser stands reach the age of can-
opy closure earlier. According to the pipe model theory, more timber is pro-
duced by two trees on the same area than by one tree since the area is filled 
out in a shorter time by photosynthetic mass, which demands the formation 
of additional sapwood cells. This holds as long as the trees are distributed 
evenly and the additional timber volume due to the enlarged occupation of 
the potential growing area is not increasing at an increasing rate, which can 
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be dismissed due to the increasingly negative influence of competition. As a 
consequence, more trees will yield a larger timber volume other things being 
equal.  

Given that denser stands are capable of utilizing the available resources 
more comprehensively in the same time, they reach the crucial density factor 
for mortality earlier. Comparing two stands with adjacent initial densities 
before mortality has taken place, the denser stand comprises a higher stem 
number, smaller diameters and a larger timber volume due to the prevailing 
stem number effect. When a tree in the denser stand is displaced due to den-
sity-dependent mortality, both stands have the same stem number. Since the 
trees of the initially less dense stand have larger diameters due to the larger 
potential growing area, they henceforth combine a larger timber volume. 
While mortality subsequently reduces the stem number in both stands alter-
nately, the initially less dense stand will maintain the comparative advantage 
although the difference might be very small. In summary, after mortality has 
taken place, the diameter effect predominates. In this way, density-depend-
ent mortality marks the point of “crossover” (Oliver and Larson, 1996, p. 
339) between the timber volumes of initially more and less dense stands. It 
should be emphasized that the preceding argument refers to the standing 
timber volume or stumpage volume. The reasoning is different for the total 
growth performance. Since the latter comprises the standing timber volume 
as well as the timber volume of dead (and removed) trees, the reasoning im-
plies a higher total growth performance for initially denser stands as the po-
tentially available resources of the stand can be utilized more comprehen-
sively.  

Since the emphasis lies on the timber volume, it can be inferred that stands 
with a higher timber volume realize a higher mean increment over the pe-
riod. Timber increments of trees and untreated forest stands, however, fol-
low a distinct course (Pretzsch 2009, p. 395 f.). Originating from negligible 
amounts, the increments culminate at an age depending on the ecological 
characteristics of the tree species as well as site characteristics, and decrease 
afterwards. The location of the inflection point of the timber volume, though, 
is also dependent on the initial density. For a solitarily growing tree, the age 
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of increment culmination is determined by its genetics and the site charac-
teristics. At the same time, this is the highest possible age for the culmination 
of a stand. Once a tree is in competition for resources, it cannot maintain the 
increasing growth of a solitarily growing tree before the culmination. If it is 
assumed that the competition in an even-aged stand intensifies monoton-
ically from its beginning on, the inflection point of the growth function moves 
to younger ages the denser a stand is initially established.  

The way competition intensifies with increasing age decides when the incre-
ment culminates. Because competition begins weakly with the struggle for 
sidelight, the solitary increments are at first not influenced significantly. Ac-
cordingly, the inflection point is only shifted slightly towards younger ages. 
The denser a stand is initially established, the earlier competition begins, and 
the earlier the increment will thus be reduced substantially. This, again, has 
to lead to an even earlier increment culmination. While the competition in-
tensity depends on the age and the initial density, the increment culmination 
follows a very similar pattern as the threshold of mortality, and has to be 
located somewhere in its surrounding.  

Out of this, it cannot be concluded when the timber volume increment cul-
minates exactly, particularly, because height increment, basal area incre-
ment, timber volume increment, and others, all seem to peak at different ages 
(Pretzsch 2009). But it is sufficient to assume for this study that the timber 
volume increment reaches its maximum before the threshold of mortality. 
This is surely the case for stands with a relatively low initial density because 
density-dependent mortality might never occur. On the other hand, mortal-
ity and increment culmination for initially dense stands might nearly coin-
cide. Therefore, once mortality has taken place, timber volume increment is 
decreasing over the age.  

2.1.4 Thinnings 

Thinnings are defined as the removal of trees without subsequent regenera-
tion. They thus necessarily influence the timber volume of the stand. Princi-
pally, thinnings extend the potential growing area of the remaining trees in 
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the same way as a reduction of the initial density. In contrast to the latter, 
though, the effect of a thinning is less pronounced than the effect of a reduc-
tion in the initial density for three reasons. First, for equal harvest ages, the 
time period for the response is shorter. Second, older trees might be less re-
sponsive due to senescence and growing metabolisms (Nyland 2002, p. 389 
ff.). In general, younger trees respond to changes more intensely than older 
ones. And third, the growing areas of the remaining trees might be irregu-
larly shaped due to the fixed positions of the trees. These growing areas are 
inhomogeneous sources of resources since their availability decreases with 
rising distance from the stem (cf. Section 2.1.2). However, if it is assumed 
that the reaction of the remaining trees due to the enlargement of the poten-
tial growing area in even-aged stands is equable, a basic reaction pattern can 
be established.  

By definition, thinnings reduce the stem number of a stand. Therefore, they 
reduce the stand volume proportionally to the number of trees removed at 
the age of the thinning. Since the potential growing area is enlarged, the di-
ameter growth of the remaining trees is forced hereafter due to crown ex-
pansions, which will increase the stand volume in turn. In the set up homog-
enous stand, any thinning extends the potential growing area of all remain-
ing trees equally, i.e., in the same way as reductions of the initial density. This 
surely conflicts with observable evidences since the established trees are 
bound to their location. However, if thinnings are assumed to be conducted 
on a regularly distributed basis, this assumption might serve as an accepta-
ble heuristic. As a consequence, any thinning shifts the thresholds of compe-
tition and mortality exposed in the preceding paragraphs evenly towards 
older and initially denser stands (Vanclay 1994, p. 182 ff.). The intensity of 
these shifts is dependent on the intensity of the thinning, defined here as the 
number of trees removed. Equally, more frequently conducted thinnings will 
gradually shift the thresholds. The more and the more often trees will be re-
moved and the stronger the reaction of the remaining trees, the more the 
threshold will be shifted. Therefore, the intensity and the frequency of thin-
nings have the same qualitative effect since both enlarge the potential grow-
ing area when they are increased. 
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Independent of the stand age, the frequency, and the intensity, any thinning 
thus shifts the thresholds of competition and mortality (Powers et al., 2010). 
The thresholds may be delayed or the stand is put back before the threshold 
when it has already passed them by. If younger stands react more intensely 
to enlargements of the potential growing space, the thresholds will be shifted 
only slightly in comparison to older stands since the latter are incapable of 
utilizing the enlarged resource availability. The more often and/ or the more 
intense thinnings are conducted, the more the thresholds are shifted because 
the potential growing spaces are more enlarged.  

In consequence, thinnings might reduce or increase the stand volume at the 
rotation age in the same way as the initial density. The total growth perfor-
mance, on the other hand, cannot be increased with the aid of thinnings for 
the same reasons and within the same range as for the initial density (cf. Sec-
tion 2.1.3). The opportunity to increase the stand volume is only given for 
combinations of rotation ages and initial densities that lay beyond the 
threshold of mortality. If stands in which mortality will never take place are 
thinned, the stand volume will be reduced. Conversely, if thinnings are con-
ducted in stands where mortality will potentially occur, stand volume can be 
increased, in particular, if the thinning regime is conducted in a way that the 
threshold of mortality shifted by the thinnings intersects the rotation age. If, 
for instance, thinnings are conducted as anticipating mortality, the thinned 
stand will have a higher stand volume for the same reason as a lower initial 
density. However, even a more intense as well as a less intense thinning re-
gime might increase the stand volume. Within the range of solitary growth, 
any thinning will have no effect on the development of the timber volume of 
the remaining stand first since trees are not influencing each other.  

In summary, thinnings can be interpreted as ex post reductions of the initial 
density. While their influence is thus qualitatively equivalent, the intensity 
of the responses of the remaining trees is weaker since older trees might be 
less responsive and the time interval of possible adaptions on the part of the 
remaining trees might be shorter.  
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2.1.5 Summary 

The preceding argumentation is summarized in Figure 2.1. In order to dis-
tinguish the relations shown here from functional relations, Figure 2.1 is set 
up in the form of a table where the rows and columns are continuously 
merged into each other. In this way, the columns on the horizontal axis de-
note increasing stand ages while the rows on the vertical axis denote increas-
ing initial densities. The functional relationship behind Figure 2.1 could be 
expressed by a third axis which denotes the timber volume. Since the growth 
processes were evaluated only qualitatively, this axis remains indefinite. 
Therefore, Figure 2.1 is the two-dimensional projection of the timber volume 
as a function of the stand age and the initial density.  

In Figure 2.1 the dotted curve delimits the range of solitary growth. Within 
this range, trees do not influence each other’s growth; i.e., no competition 
takes place. The higher the initial density, the earlier competition will arise. 
For some very low initial densities, trees will not influence each other at any 
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Figure 2.1 A graphical representation of the timber growth theory 
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age. Within the solitary range, the differences in the timber volume at equal 
ages are proportional to the differences in the initial densities. The solid 
black curve shows the threshold of density-dependent mortality. It is not the 
self-thinning line since it does not illustrate the development of the stem 
number. As worked out in the preceding paragraphs, the higher the initial 
density, the earlier mortality will occur. The threshold of mortality marks the 
boundary of the ranges of predominance of the stem number, and of the di-
ameter effect respectively. Beyond the threshold of competition and before 
mortality takes place, stands originating from a higher initial density accu-
mulate a higher timber volume though disproportionately less than the dif-
ferences in the stem numbers since each tree comprises a smaller timber vol-
ume. Finally, the solid grey line marks the timber volume increment culmi-
nation. As argued above, it is independent of the initial density when trees 
grow solitarily. When competition takes place, it peaks the earlier the ini-
tially denser the stands are established. 

Thinnings will cause both the competition and the mortality threshold to 
shift away from the origin. The extent of the shift depends on the age of the 
trees and the number of trees removed. The younger the trees and the more 
trees are removed, the greater the shift. In order to maximize the timber vol-
ume at a particular age, the initial density must be chosen in a way that mor-
tality has just not occurred yet. The reverse, though, is not true. The age that 
maximizes timber volume for a particular initial density may emerge before 
or after mortality has taken place depending on the genetically and site spe-
cifically determined age of decay.  

Figure 2.1 might equally be converted into a set of derivatives describing the 
changes in the timber volume of a single tree and the stand due to changes 
in the age and the initial density. Table 2-1 shows the corresponding changes 
within the ranges of solitary and competitive growth and of competitive 
growth with mortality separated by the thresholds of competition and of 
mortality. Most changes in the variables, especially those within the mortal-
ity range, are unambiguous. The second order derivatives with respect to the 
initial density are negative when solitary growth maximizes the timber 
growth of single trees. Ambiguous, though, are the changes in the timber in- 
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Table 2-1  Changes in stem diameter, tree volume and stand volume due to changes 
in the stand age and the initial density as derived from the timber growth theory 
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crements within the ranges of solitary and competitive growth without mor-
tality. As for the increment culmination with respect to the stand age (cf. Sec-
tion 2.1.3), the cross derivatives of age and initial density might be positive, 
negative or zero as Chang (1983, p. 269) has pointed out. After density-de-
pendent mortality has initiated, the cross-derivative must be non-negative 
as, otherwise, timber volumes of stands with different initial densities might 
cross again.  

2.2 The Heterogeneous Stand 
In contrast to homogeneous forest stands, trees in heterogeneous forest 
stands might accumulate different timber volumes at equal ages. However, 
heterogeneous stands must be restricted to even-aged and pure stands in 
this analysis. While the basic ecological theories employed above do equally 
apply the mixed and uneven-aged stands, additional characteristics would 
have to be considered. For instance, mutually reinforcing timber growth 
might occur in mixed stands when different tree species occupy different 
ecological niches, whereas density-dependent mortality might occur at any 
age in the uneven-aged stand.  

Naturally, differing timber volumes are rooted in differing timber incre-
ments. In the simplest case, a heterogeneous stand consists of two parts or 
classes of trees with differing timber volumes but equal tree timber volumes 
within each class. At the other end of the range, each tree of the stand might 
grow to a different timber volume over an equal period. In general, the tim-
ber growth of trees in a stand differs for every individual. Especially in stands 
with long rotation periods growing on untreated sites, the differences might 
become significant.   

The cause of heterogeneity of timber volumes might be traced back to dis-
similar genetic constitutions and irregular site characteristics (Assmann 
1970, p. 41). Differences in both features lead to unequal timber growth. By 
inference, in order to establish homogeneous stands, clones with identical 
genetics are usually planted on ploughed, leveled and fertilized land. Differ-
ences in the genetic constitution might refer to both the variability within a 
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species as well as to the different genetic codes of different species. The site 
characteristics comprise all effects on the macro- and the micro-level of the 
soil, the climate and the biotic factors. Before competition between the trees 
arises, these factors determine the differences between the trees. Since the 
concept of the forest stand implies more or less uniform growth conditions, 
the differences between the trees in pure stands are usually small during the 
phase of solitary growth. 

In the course of the stand development, however, competition between the 
trees of the stand might reinforce the differences. Trees with a competitive 
advantage, which must not be correlated with the timber volume, become 
predominant since the advantage enables them to expand their access to the 
contested resources at the expense of the inferior growing tree. Depending 
on the competing species, the intra-competitive advantage might be propor-
tionally or disproportionally expandable due to size-symmetries (cf. 
Schwinning and Weiner 1998). As a result, the differences between the trees 
increase after the threshold of competition has been exceeded until some 
trees die off due to the absence of available resources. Typically, the higher 
the initial density, the less shade-tolerant the species and the more vigorous 
the tree growth, the faster stands are differentiating and the earlier mortality 
takes place (Oliver and Larson 1996, p. 217 ff.).   

In this way, density-dependent mortality is an endogenous process due to 
the heterogeneous growth conditions and not an exogenously determined 
detail as in the homogeneous stand. Since trees respond to competition with 
reductions of the diameter increments first while reductions of the height 
increments do not follow until competition has intensified severely (cf. Sec-
tion 2.1.2), density-dependent mortality is anticipated by tree height differ-
entiations. Hence, dominant tree height of the remaining trees remains un-
affected by competition. However, for heterogeneous stands, the develop-
ment of the timber volume might not be deduced in an equally clear way. For 
instance, density-dependent mortality might occur earlier in initially less 
dense stands when some trees are more handicapped as in the initially 
denser stand. In this case, the self-thinning line is a curve rather than a 
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straight line in the log-scale (Weller 1987). This transmission of the age-in-
dependent Reineke- and Yoda-model to an age-dependent stand develop-
ment model, though, might cause misunderstandings as White (1981) has 
pointed out. He clearly differentiates between the self-thinning line of 
Reineke (1933) and the competition-density effect; the latter leads to curves 
that approach the self-thinning line asymptotically. In the homogeneous 
stand both curves coincide. Nevertheless, the basic development remains 
valid if extreme forms of competitive disadvantages are excluded. In these 
cases, the area might have to be separated into two stands with more uni-
form growth conditions.  

In heterogeneous stand, though, different thinning methods might be applied 
(cf. Nyland 2002, p. 407 ff.). These different methods of selecting trees to be 
thinned surely influence the development of the timber volume and the 
thresholds of competition and mortality (cf. Bradford and Palik 2009; 
Powers et al. 2010). Removals of more vigorously growing trees and the de-
liberate protection of less vigorously growing trees might shift the mortality 
and competition thresholds less intense than the consequent removal of in-
ferior trees. Since a comparatively large amount of resources is released 
when trees with large crowns are removed, the timber volume of a stand is 
reduced in the short and the long run as not all of these resources might be 
utilized by the remaining trees due to large gaps in the canopy. In this way, 
thinnings from above lead to lower stand volumes than thinnings from be-
low.  

2.3 Empirical Reference 

From the proposed timber growth model, hypothesis might be derived 
which can be tested against the background of empirical observations. These 
might include: 

1. Density-dependent mortality marks the crossover effect (Oliver and 
Larson 1996, p. 339). As a consequence, higher initial densities accumu-
late larger timber volumes at comparatively low stand ages while lower 
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initial densities lead to higher standing timber volumes in higher ages if 
the stands are growing untreated. In order to produce the maximal vol-
ume of standing timber, a stand has to be regenerated with an initial 
density where mortality has just not yet occurred when the stand is har-
vested.  

2. The maximal total growth performance is expected in stands with the 
highest initial densities.  

3. Thinnings increase the standing timber volume when they shift the 
threshold of mortality towards the harvest age. Thinnings decrease the 
standing timber volume when they shift the threshold of mortality away 
from the harvest age.  

The analysis of the impact of the initial density upon the timber volume of a 
stand has been a subject of forestry science since its very beginning. Various 
empirical studies have been conducted subsequently. A serious problem of 
experimental plots in forestry, though, is their long time horizon. Especially 
in temperate climates, potential rotation ages are long in comparison to the 
development of the environment and the society. In order to analyze some 
different initial densities and their influence in combination with the rota-
tion age under a plot design with three repetitions, two to three centuries 
might pass by. Within this period, not only the biological conditions can vary 
substantially but also the objectives of the scientists entrusted with these 
plots.  

For instance, the social development can be witnessed by the designs of the 
plots. Whereas older plots of Norway spruce (Picea abies L.) in the nine-
teenth and the beginning of the twentieth century have been more con-
cerned with comparatively high initial densities (> 3000 plants/ha; cf. Busse 
and Jaehn 1925), more recent experiments analyze less dense stands (- 2000 
plants/ha; cf. Mäkinen and Hein 2006).  

Another serious methodical problem for the testing of deductive hypotheses 
is the wide range of different thinning regimes that have been carried out in 
the course of the evolution of the various experimental stands. Since virtually 
no thinning regime has been applied identically in two otherwise similar 
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plots, the obtained results can hardly be compared. The results are therefore 
often interpreted in the light of a somehow defined density index (e.g. in 
terms of basal area, stem number, etc.). As a consequence of the large 
number and variety of empirical studies, some results seem to contradict 
each other.  

Due to the different empirical observations, two patterns of timber growth 
have been put forward (cf. Oliver and Larson 1996, p. 339). According to the 
constant-yield effect, different initial densities eventually converge to the 
same timber volumes. The crossover effect, on the other hand, supposes that 
timber volumes of stands developed out of lower initial densities eventually 
exceed the timber volume of initially denser stands. Similarly, various 
growth models which have been parameterized with compilations of empir-
ical data (simulators) develop crossover patterns (O'Hara and Oliver 1988). 
The different growth patterns have been summarized by Zeide (2001), who 
seemed to found evidence for both optimal and increasing relationships be-
tween density – however defined (Zeide 2005) – and timber volume.  

The proposed timber growth theory provides an explanation for the crosso-
ver effect (cf. Oliver and Larson 1996, p. 339) while it conflicts with the con-
stant-yield effect. Accordingly, the stem number effect dominates the diam-
eter effect as long as all trees remain in the stand such that higher initial den-
sities lead to higher timber volumes. The occurrence of density-dependent 
mortality, on the other hand, marks the crossover. Hence, optimal and in-
creasing relationships between density and timber volume are not mutually 
contradictory, but are dependent on the initial density and the thinning re-
gime in relation to the stand age. When comparing stands evolving out of a 
range of relatively high initial densities at relatively advanced ages, i.e., after 
mortality has taken place, initially less dense stands accumulate a larger 
stand volume. On the contrary, when evaluating the same stands at compar-
atively younger ages, or a range of stands of comparatively low initial densi-
ties, the maximum timber volume is found in the initial denser stands. For 
stands in a range of comparatively low initial densities, the maximal stand 
volume will be located in the denser and unthinned stands for a wide range 
of stand ages. In this way, the model offers an explanation for both increasing 
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timber volumes with an increasing density (e.g. for low initial densities, short 
rotation ages and/ or severely thinned stands) as well as an optimum course 
(e.g. for high initial densities, long rotation ages and moderately thinned or 
unthinned stands).  

For Norway spruce (Picea abies L.), for instance, these interrelations might 
be reconstructed. In the nineteenth and at the beginning of the twentieth 
century, experimental plots were typically designed with relatively high 
planting densities. When these plots were evaluated at a relatively young 
age, the initially densest stands comprised the highest timber volume 
(Vanselow 1950). Some years later, the maximal stand volume had been 
found in less dense stands while mortality has taken place (Vanselow 1956). 
Similar results can be seen in the report of Busse and Jaehn (1925) and for 
European beech (Fagus sylvatica L.) in Schwappach (1911). In more recent 
experiments, relatively low plantings densities have been investigated. In 
this case, the maximal volume had been found in the densest stands (cf. 
Kramer and Spellmann 1980; Petersen and Spellmann 1993; Mäkinen and 
Hein 2006). Gizachew et al. (2012) conclude that the opportunity to produce 
more timber with initially denser stands might be restricted to the early 
stand development. Nevertheless, in all observations, the highest total 
growth performance has been located in the densest stands. Oliver and 
Larson (1996, p. 339 ff.) give many more examples for the crossover effect 
which can be tested for the occurrence of density-dependent mortality.  

Concerning thinnings, the growth model does not exclude an increasing or 
optimum pattern between the thinning regime and the stand volume. When 
initially dense stands are thinned severely or moderately at a younger or 
even an older age, the stand volume at a comparatively high rotation age will 
be higher than without thinnings. For lower initial densities, only moderate 
thinnings in a younger age can increase the stand volume at the same age. 
For short rotation ages and/ or initially less dense stands, it is not possible 
to increase the stand volume by thinnings. These deductions do not conflict 
with observations in experimental plots. For instance, as Mäkinen and 
Isomäki (2004) observed for comparatively low ages in Norway spruce 
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stands, thinnings of different intensities did not increase total growth per-
formance and equally reduced the standing timber volume slightly while in-
creasing the mean stem diameter and reducing, i.e. postponing, natural mor-
tality. For comparatively high stand ages of Norway spruce and European 
beech, by contrast, Pretzsch (2005) found both increasing merchantable tim-
ber volumes for a moderate thinning intensity and decreasing merchantable 
timber volumes for heavy thinning intensities compared to light thinnings. 
In the former case, the threshold of mortality might have been shifted to-
wards the age of observation while, in the latter case, the comparatively in-
tense thinning caused the threshold of mortality to be shifted away from the 
age of observation.  

Finally, the constant-yield growth patterns (cf. Oliver and Larson 1996, p. 
339) might be explained by the comparatively high degree of heterogeneity 
in the development of old forest stands. When the differences between the 
timber volumes of stands with unequal initial densities are only small, stands 
might seem to converge to the same timber volumes over a wide range of 
initial densities if extremely low densities are excluded. Since more random 
events might occur over longer stand ages, the differences might become in-
distinct in this range. In the model approach, the observation that the differ-
ences are small over wide ranges of initial densities is caused by the alternate 
mortality after the threshold of mortality has been crossed. Nevertheless, the 
growth model theory in this chapter is not restricted to these ranges but ap-
plies to any range of initial densities and stand ages.



 

3 Investment Model 

The correct formulation of the problem of a forest owner willing to maximize 
his intertemporal income with the production of timber within a partial equi-
librium was first presented by Martin Faustmann (1849) although his inten-
tion then has been to construct a formula for the calculation of the forest land 
value. The corresponding Faustmann formula combines the relevant aspects 
of profitable timber production by the cyclic regeneration and harvesting of 
an even-aged stand. In its original version, it constitutes the net present 
value of bare forest land, often referred to as the land expectation value 
(Amacher et al. 2009, p. 20) after Faustmann ( ), of an infinite, periodic 
sequence of payments at different stand ages less the net present value of 
operation costs, i.e., in a modern notation, 

Any period covers the costs for the establishment or the regeneration of the 
stand at the beginning of a rotation period, the sum of the  revenues from 
selling the timber volume of each thinning  at the stand age  for a net 
timber price , and the revenues from the sale of the harvested stand volume 

 at the rotation age  at the net timber price . In this setting, all payments 
are prolonged to the rotation age with the help of the discount factor 

, where  is the annual interest rate. If it is assumed that the sequence 
of payments is equal in each rotation period, the infinite chain of rotation 
periods is converted into a present value via a capitalization sequence. More-
over, the present value of annual costs  at the interest rate  have to be sub-
tracted.  

In deductive analyses of the profitability of timber production, the original 
version of the Faustmann formula [3-1] is often simplified for the derivation 
of a correct solution in a partial equilibrium (e.g. Samuelson 1976; Johansson 
and Löfgren 1985, p. 73 ff.; Amacher et al. 2009, p. 11 ff.). In order to account 
for the characteristics of timber growth, the discrete discounting is usually 

[3-1] 

R. Coordes, Optimal Thinning within the Faustmann Approach,
DOI 10.1007/978-3-658-06959-9_3, © Springer Fachmedien Wiesbaden 2014
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transformed into its continuous counterpart with  as the continuous inter-
est rate. Furthermore, annual costs are ignored since they are assumed to be 
independent of the rotation age and, therefore, irrelevant for any qualitative 
analysis. Finally, thinnings are ignored or assumed to be exogenously deter-
mined and constant. Therefore, the analytical land expectation value ( ), 
which constitutes the Faustmann model, can be written as  

In this simplified version, timber growth  is assumed to be dependent solely 
on the rotation age of the stand, i.e.,  

This assumption serves as a heuristic approach for a general analysis. Since 
timber growth is the consequence of myriads of factors in a highly complex 
ecosystem (Oliver and Larson 1996, p. 41 ff.), all negligible influences are ex-
cluded in order to focus on the relevant aspects of profitable timber produc-
tion (cf. Johansson and Löfgren 1985, p. 77f.). The fact that timber volume 
production is dependent on the corresponding area (cf. Chapter 2), i.e. 

 where  is the area, is simply regarded for by setting  
(Johansson and Löfgren 1985, p. 75). In this way, the Faustmann model pro-
vides an analysis on the forest stand level as the basic management unit 
within forests which is assumed to offer more or less uniform management 
conditions.  

3.1 Thinning model 

The LEV gives the net present value of bare forest land per unit area. Accord-
ingly, the timber growth function  gives the timber volume per unit area. 
As described in Paragraph 2.1, this stand volume is composed of the trees 
which are growing on the unit area. Depending on the extent of the unit area, 

[3-2] 

[3-3] 
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the timber volume may thus comprise one or many trees. If the timber vol-
ume of a single tree is denoted by  and the number of trees is , the stand 
volume in [3-3] might be rewritten as 

All trees in the Faustmann model [3-2] share the same rotation age due to 
the uniform discounting of the timber value. As a consequence, all tree vol-
umes vary with the rotation age which is inevitably equal for all trees. This 
assumption might be dropped when an individual rotation age  is attached 
to each tree. Since the growth of each tree might depend on the harvest of 
previously removed trees (cf. Section 2.1.4), the growth function is given by  

where the subscripts to the harvest ages indicate the temporal order of har-
vests such that  is the harvest age of the corresponding tree  denoted in 
the superscript of the growth function , and  are the harvest ages 
of potentially previously harvested trees with .  

If the harvest of a previously cut tree is followed by the regeneration of the 
bare patch of land it leaves behind, the subsequent stand is uneven-aged. By 
contrast, thinnings are commonly understood as the harvest of trees without 
the opportunity or the objective to regenerate the created gap. In order to 
analyze the profitability of the latter, the sum in [3-4] has to be inserted in 
the Faustmann model [3-2] while considering [3-5] and the necessary ad-
justment of the discount factors, i.e., 

[3-4] 

[3-5] 

[3-6] 
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where  is the number of trees within a rotation period. In this way, the har-
vest of trees prior to the rotation age is possible while the stand is regener-
ated only after the harvest of the last tree at the rotation age . This con-
struction necessarily results in an even-aged stand if the regeneration is en-
sued with equally old trees.  

The objective of any forest owner willing to maximize his intertemporal prof-
its (cf. Chapter 1) is then 

Restricting all growth functions to be at least twice continuously differentia-
ble, [3-7] constitutes a nonlinear optimization problem which can be solved 
by employing the Lagrange function  in connection with the Kuhn-Tucker 
necessary maximum conditions. These take the general form of 

If , then  and thus  . If , the prob-
lem is either transformed to classes of trees with equal harvest ages and the 
same form of maximum conditions as [3-10] or it is reduces to the 
Faustmann model [3-2] as all trees share the same rotation age. Hence, as 
long as the constraint is satisfied, the attention is restricted to interior solu-
tions which can be analyzed with unconstrained maximization techniques.  

 

[3-7] 

[3-8] 

 [3-9] 

[3-10] 
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For an unconstrained maximum, the necessary condition is given by 

where  are the optimal harvest ages of each tree which maximize the 
. The necessary condition for a maximum thus comprises  equations 

with  unknowns.  

In order to obtain the required partial derivatives, the objective function [3-
6] can be rewritten as 

Accordingly, the relevant components of the first order partial derivatives 
are separated. The latter take the general form of 

[3-11] 

[3-12] 

[3-13] 

  

[3-14] 

  

[3-15] 
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where the subscripts to the functions indicate partial derivatives and  might 
be any tree between 1 and .  

In order to ensure that a point which satisfies condition [3-11] is a maximum, 
the second order condition for a local maximum has to be fulfilled. It requires 
that 

where 

is the th leading principal minor of the Hessian determinant to [3-11] and  
is the number of trees in the stand. According to Young’s theorem, the matri-
ces in the sufficient condition [3-16] are symmetric.  

The corresponding second order partial derivatives are 

[3-16] 

[3-17] 

[3-18] 

  

[3-19] 
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The partial cross-derivatives take the general form of  

The presented model is restricted in its domain and in the range of its func-
tions. The corresponding constraints are addressed in Section 3.3.2. 

3.2 Model extensions 

The model presented in the preceding Paragraph 3.1 is subject to almost all 
of the analyses in this study in order to guarantee a consistent approach to 
the problem. It allows concentrating on the basic influence thinnings exert 
on the land expectation value. However, while the model is reduced to work 
in this simplified manner, many extensions might be devised. Extensions, 
though, only refer to modifications of the model structure while specifica-
tions of parameters are made in the analysis directly.  

The model is extended into two directions. On the one hand, the initial den-
sity is introduced as an endogenous variable. Since the initial density directly 
controls the number of trees in a stand, this extension might be vital for a 
comprehensive analysis of the influence of thinnings on the profitability of 
timber production. On the other hand, the model is extended towards a more 

[3-20] 

[3-21] 

  

[3-22] 



42  Investment Model 

general uneven-aged setting. In view of the various opportunities to specify 
and restructure the model, these two extensions should be understood as 
examples. The extensions shall explore both the limits and the internal logic 
of the model.  

3.2.1 Initial Density 

In the original Faustmann formula [3-1] as well as in its analytical version 
[3-2], the initial density is implicitly regarded as a constant in the regenera-
tion costs. However, the production theory of the previous chapter indicates 
the dependency of the timber volume on the initial density (cf. Section 2.1.1). 
For instance, initially denser stands offer numerous opportunities to thin as 
more trees are available. A general model including the scale of the invest-
ment was proposed by Hirshleifer (1970, p. 91). Its explicitly forestry related 
counterpart has been presented by Hyde (1980, p. 52). Lastly, Chang (1983) 
comprehensively analyzed the influence of the initial density on the profita-
bility of timber production with a more specific model. In his work, he ex-
tended the Faustmann model [3-2] for the planting (as an initial) density  
as an endogenous variable.  

In this sense, the timber volume of each tree is varying with the initial density 
 next to its own and all previously conducted harvest ages within the rota-

tion period, i.e.,  

Furthermore, the initial density helps determining the regeneration costs 
since (cf. Chang 1983, p. 268) 

where  are the variable regeneration costs while  represent the fixed re-
generation costs. Applied to the thinning model [3-6], this results in 

[3-23] 

[3-24] 
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Yet, the initial density exerts another influence in this model as it determines 
the numbers of trees available for harvest. Put differently,  

In order to eliminate  in the upper bound of the summation index, [3-25] is 
rewritten as 

The second term in the second bracket might constitute the class of trees cut 
at the rotation age. In this case, . If these trees grow iden-
tically, then 

with the result that 

[3-25] 

[3-26] 

[3-27] 

 
[3-28] 

[3-29] 
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With the initial density, the equation system constituting the necessary con-
dition [3-11] is extended by one equation, i.e., 

where  is the optimal initial density in the sense that it constitutes a max-
imum of the . The corresponding first order conditions are analogous to 
[3-13] - [3-15] with the difference that each timber growth function refers to 
[3-23] and the LEV to [3-29]. The additional first order condition is given by 

The third term in the second bracket might now be added to the summation 
index as 

such that the trees which have been previously assumed to belong to the ro-
tation class do not necessarily share the same harvest ages and growth func-
tions to any further extent.  

The second order sufficient condition requires that  

with 

[3-30] 

[3-31] 

[3-32] 

[3-33] 
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as the symmetrical Hessian determinant to equation system [3-30] and  as 
the number of trees in the stand.  

In the same way as for the necessary condition [3-30], the corresponding 
second order partial derivatives [3-18] - [3-20] have to be adjusted for [3-
23] and [3-29] whereas the additional derivative is 

The additional cross partial derivatives take the general form of 

Constraints to the range of the functions are specified in Section 3.3.2. 

3.2.2 Uneven-aged stands 

The thinning model [3-6] is constructed in order to exclude the opportunity 
to regeneration the patch of bare land which a thinning leaves behind instan-
taneously. This is probably the common understanding of thinnings. If, on 

[3-34] 

[3-35] 

[3-36] 

  

[3-37] 
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the other hand, the harvest of less than all trees of a stand is followed by the 
regeneration of bare patches, the resulting stand will be uneven-aged. This 
opportunity can be included in the model by integrating the capitalization 
sequence into the sum, adjusting the indices and assigning the prorated re-
generation costs to each tree, i.e., 

where  is the land expectation value of an uneven-aged stand. Here,  
is the number of trees which might possibly occur in different rotation peri-
ods; however not all of these might be present at the same time. The index  
denotes the temporal order of the harvests.  

In this setting, the harvest of a tree might not only influence the remaining 
trees but also those trees which are not even present in the stand at the har-
vest since the potential harvest might shape their growing conditions differ-
ently. Therefore, 

The necessary condition is analogous to [3-13] - [3-15]. The first order par-
tial derivative with respect to the harvest of any tree k takes the general form 
of 

The derivation of the second order condition has been omitted as the focus 
in this study lies on the even-aged thinning model [3-6].  

[3-38] 

[3-39] 

[3-40] 
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3.3 Assumptions and Constraints 

The maximization of the objective function, namely [3-7], is only meaningful 
in a clearly defined setting. Otherwise, any derived hypothesis is empty in 
substance as auxiliary hypotheses might in principle immunize any refuta-
tion. With the intention of preventing any inconsistencies within the inter-
pretation of the results, assumptions are necessary which delimit the scope 
of the analysis. Additionally, constraints on the domain and range of the in-
volved functions should guarantee the reference to observable problems.   

3.3.1 The Faustmann Laboratory 

In order to provide a correct solution in a precisely delimited environment, 
the analysis of this study is conducted in a partial equilibrium of forestry. In 
contrast to a general equilibrium of all markets, a partial equilibrium is re-
stricted to a specific range of human interactions; i.e., in this study, interac-
tions concerning profitable timber production. The analysis follows then a 
ceteris paribus approach (cf. Marshall 1922, p. 363; Samuelson 1983, p. 19); 
namely, all other things are held constant. The precise separation between 
the artificially created equilibrium and the remainder of human interactions 
is ensured by exogenously determined prices of selected goods. The prices 
evolve and the goods are discovered by factors outside of the partial equilib-
rium. Whether the prices and goods are determined within an equilibrium 
or not is of no interest as long as the selected interactions satisfy the pre-
scribed assumptions. Surely, the severity of the assumptions might demand 
equally severe assumption for other interactions. The partial equilibrium im-
plies, moreover, that changes in the selected interactions do not affect all 
other interactions. Naturally, both implications restrict the applicability of 
the results obtained if they are not considered against the background of the 
underlying assumptions.  

An equilibrium is understood here as a state of the model where the selected 
variables show no inherent tendency to change (cf. Machlup 1958, p. 9). The 
selection of the variables defines the range of application. Propositions can 
only be raised with regard to these variables. The inherence guarantees the 
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balance of internal forces and, by inference, the invariability of external 
forces. Owing to the lack of change, the analysis of the states of equilibria is 
often referred to as statics.  

The equilibrium per se, though, serves only as a preliminary. With its artifi-
cially created invariability, it ensures, on the one hand, that without exoge-
nously introduced changes in the parameters the state of balance remains, 
and, on the other hand, that with exogenously introduced changes these are 
the sole cause of the adjustment process followed by the unbalancing inter-
ference. The assurance that all adjustment processes have been considered 
is provided by the attainment of a new equilibrium with no further adjust-
ments due to the missing inherent tendency to change. The created equilibria 
thus serve as “methodological devices” (Machlup 1958, p. 5) to guarantee 
that other factors are absent and all changes are considered. As a conse-
quence, the empirically testable and interpersonally traceable hypotheses 
(Popper 2002b, p. 23) in a world of unanticipated changes refer to the change 
within this mentally constructed laboratory. In this way, the equilibrium the-
ory infers that movements towards equilibria are the consequence of exoge-
nous disturbances. Since disturbances occur within a time period, the hy-
potheses might equally, in the sense of physics, be termed dynamic (Machlup 
1959; Popper 2010, p. 424).  

The “Faustmann laboratory” (Deegen et al. 2011, p. 363) is the suitable par-
tial equilibrium for the analysis of timber production. It is built with the help 
of the classical stringent, or “heroic” (Samuelson 1976, p. 470), assumptions 
(cf. Johansson and Löfgren 1985, p. 74f.; Amacher et al. 2009, p. 18), which 
are capable of producing a correct solution. First, capital markets are as-
sumed to be operating in a way that the forest owner is able to transform any 
income stream at an exogenously given, known and certain market interest 
rate (perfect capital market). This construction allows separating the con-
sumptive preferences of the forest owner from his productive opportunities 
to generate income (cf. Fisher 1930, p. 125 ff.). In this way, the analysis can 
be concentrated solely on the productive optima with no further regards to 
consumption as the realization of the overall optimum becomes an inde-
pendent two-stage process (Hirshleifer 1970, p. 63).  
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Second, and analogously to first, the market of forest land is assumed to op-
erate in a way that the forest owner can buy and sell any amount of forest 
land (usually termed perfect land market). This assumption ensures that the 
forest owner has an incentive to regenerate a forest stand even if the rotation 
period exceeds his personal life span, for he has always the opportunity to 
sell the forest stand at the price that equals the capitalized income stream 
generated from the management of the forest stand. In combination with the 
perfect capital market, which together guarantee the partial equilibrium 
analysis, the time horizon of the regeneration investment becomes infinite 
as the highest forest price can only be obtained if all future rotation periods 
are considered. In this precise sense, the Faustmann model might be termed 
sustainable as the continual production of timber for all future generations 
is regarded by the current management. Besides, since the basic object of the 
analysis is the forest stand as a more or less uniform management unit, ex-
ternal factors, such as interdependencies with other stands of the forest or 
with surrounding land in general, have to be assumed not to affect the opti-
mality through constructions as the linear forest (Johansson and Löfgren, 
1985 p. 112 ff.) or the normal forest viewed in the long-term stationary state 
(Tahvonen and Viitala 2006).  

Third, prices for timber and regeneration inputs as well as timber yields and 
interest rates are known and their rate of change is constant. In this study, 
though, the rate of change is assumed to be zero such that prices and yields 
are constant. The Faustmann laboratory, though, has not been abandoned 
when prices and yields change at a constant nonzero rate over the age since 
the relative investment alternatives remain equal in every period. While 
these aspects surely affect the results of the analysis, they do not violate the 
partial equilibrium setting. Biotechnological improvements or timber price 
increases at constant rates might thus be included with no loss of generality. 
Constantly changing prices and the infinite time horizon lead to equally long 
rotation periods which allow capitalizing all future income streams by an in-
finite sequence where any addition of more rotation periods become obso-
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lete. It should be emphasized, however, that these classical assumptions im-
ply specific ranges of application since the rules among individuals are fixed 
just as the physical characteristics (cf. Chapter 1).  

Due to the prescribed knowledge of future investment situations, the thus 
set up model is purely deterministic. In empirical studies, however, it is ob-
served that the investment parameters change over time (cf. Duerr 1993, p. 
346). While stochastic relationships might introduce risk as a model compo-
nent, uncertainty remains. In this way, age and time are synchronized in the 
Faustmann model such that the influence of unanticipated changes is held 
constant. The stringent assumptions thus convert the complex social prob-
lem into a computable maximization algorithm. From Chapter 1, though, it 
must be recalled that this clear result of the action theory serves only as a 
preliminary for the actually relevant interaction theory.  

In the environment of the partial equilibrium of profitable timber produc-
tion, the objective of the rational forest owner constructed in Chapter 1 be-
comes the maximization of the land expectation value through the variation 
of the harvest ages as the selected, relevant variables. Since the land expec-
tation value is the present value of the income stream generated by timber 
production, higher land expectation values offer a larger set of consumption 
opportunities for the forest owner (cf. Chapter 1).  

3.3.2 Range Constraints 

The presented model [3-6] is restricted by plausibility constraints concern-
ing its domain and the range of the involved functions and investment pa-
rameters. As already comprised in the model derivation, cf. [3-7], the domain 
of the land expectation value is restricted to positive harvest ages. While it is 
virtually impossible for  to take negative values as this implies to harvest 
trees in the past, a harvest age of zero would amount to the constantly plant-
ing and immediate harvesting of the stand. If this could earn a positive rent, 
the wealth obtainable with the production of timber is infinite. Since infinite 
wealth is not observed, [3-7] can only yield an interior solution.  
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In the analysis, the investment parameters ,  and  are assumed to be pos-
itive. Though net timber unit revenues might be negative,  refers to the tim-
ber price. Variable harvest costs are introduced later. Similar, the continu-
ous, real market interest rate  is assumed to be positive. Although situations 
might be constructed where zero or even negative real interest rates would 
probably be prevailing, this would imply that there are no or just disadvan-
tageous opportunities for the alternative use of resources. These situations, 
however, are rare and seldom long lasting (cf. Fisher 1930, p. 89). Moreover, 
the LEV is assumed to be positive at least in its maximum. Otherwise, timber 
production is unprofitable on the whole and thus not an object of economic 
investigation.  

The timber volume functions are assumed to be at least twice continuously 
differentiable. Furthermore, they are restricted to positive values and incre-
ments, i.e.,  

Accordingly, the analysis is limited to positive timber volumes as there are 
no negative quantities. Besides, the timber increment of each tree is required 
to be positive. Though negative growth is conceivable due to decay, only pos-
itive increments are relevant in a homogeneous stand as there is always the 
opportunity to regenerate the stand in order to yield positive increments or 
timber production as a whole is unprofitable.  

Next to these plausibility constraints, the timber volume function is re-
stricted by the sufficient condition [3-11]. Explicitly, it imposes limitations to 
the growth and thinning impact accelerations, which, however, are quite 
complex. In effect, these limitations demand that trees are not harvested be-
fore the age where the value growth acceleration outweighs the interest on 
the value increment adjusted for thinning impacts. In order to illustrate this 
point, the thinning model [3-6] might be simplified to comprise only two har-
vest ages (indicated by ) such that the maximization problem is given 
by 

[3-41] 
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where  is the rotation age and  is the potential thinning age. The neces-
sary condition for a maximum comprises then a system of two equations, i.e.,  

with  as the optimal thinning age and  as the optimal rotation age. In or-
der to constitute a maximum, both second order derivatives must be nega-
tive semidefinite. Employing the necessary condition [3-43] and [3-44], 
these demand that 

[3-42] 

[3-43] 

[3-44] 

 

[3-45] 

 
[3-46] 
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Accordingly, for constant timber prices, the timber volume acceleration rate 
of the trees cut at the rotation age must be equal to or less than the rate of 
interest. For the optimal thinning ages, this acceleration rate is adjusted for 
the potential impact and its acceleration on the remaining trees. If these 
characteristics hold for every age within the relevant domain, the LEV gives 
rise to a strictly quasi-concave function where the point satisfying the neces-
sary condition determines the unique global maximum. In connection with 
[3-41], the sufficient conditions ensure that the timber growth rates, i.e. 

, are declining since they exceed the acceleration rates, namely 
.  

Finally, there might be restrictions to the impact of previously conducted 
harvests on the timber volume of remaining trees within a rotation period. 
In pure stands, the impact is typically negative or at least zero, i.e.,  

The restriction of the diverse mutual interdependencies between trees 
solely to the negative influences on the timber volume, though, might only be 
acceptable in pure and competitive stands as trees of the same species might 
not occupy different ecological niches thus competing for the same niche. In 
this way, competition is defined by its harmful effects on the involved indi-
viduals (cf. Begon et al. 1990, p. 197). Without competition, the impact is 
zero. In mixed stands, on the other hand, it is conceivable that the different 
competition strategies of different tree species might improve each other’s 
timber growth during the joint growth phase. Assumption [3-47], though, is 
not necessary for the analysis below (cf. Section 5.1.2). Nevertheless, it helps 
to concentrate on the relevant interdependencies in homogeneous forest 
stands. 

[3-47] 



 

4 Analysis 

In a partial equilibrium, defined by the stringent assumptions concerning 
market performances as well as future price and growth developments (cf. 
Paragraph 3.3), the optimal management regime for an income maximizing 
forest owner is indicated by the simultaneous satisfaction of the equation 
system [3-11] which constitutes the first order condition for a maximum of 
the . In this way, the optimal harvest ages define the optimal cutting re-
gime. However, in order to derive tangible indicators, this chapter tries to 
explore the implications for relevant problems of timber production, which 
follow from the equilibrium system. These include: when to harvest a tree 
prior to or at the rotation age (cf. Paragraph 4.1) and under which invest-
ment situations this separation becomes relevant (cf. Paragraph 4.2); how 
intense or frequent trees are harvested prior to the optimal rotation age and 
in which order they are optimally cut (cf. Paragraph 4.3); which influence is 
based on the harvest costs, how many trees are initially regenerated and 
what is the optimal timber volume of the stand (cf. Paragraph 4.4); how do 
changes in the investment situation influence the optimal harvest ages (cf. 
Paragraph 4.5).   

4.1 Optimal Harvest Ages 

Optimal harvest ages are defined as the solutions to the first-order necessary 
condition [3-11] for a maximum of the  with respect to harvest ages as-
suming the second-order sufficient condition [3-16] to hold. In principle, two 
different forms of optimal harvest ages occur in the thinning model [3-6]. On 
the one hand, the optimal harvest age of all trees which are cut instantane-
ously before the regeneration of the stand is termed the optimal rotation age 
(Section 4.1.1). One the other hand, the optimal harvest ages of all trees har-
vested without instant regeneration are the optimal thinning ages (Section 
4.1.2).  

R. Coordes, Optimal Thinning within the Faustmann Approach,
DOI 10.1007/978-3-658-06959-9_4, © Springer Fachmedien Wiesbaden 2014
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4.1.1 Optimal Rotation Age 

The optimal rotation age is determined by the optimal harvest age  of last 
tree within the rotation period in a maximum of the LEV. According to [3-11], 
this requires condition [3-15] to be equal to zero, which yields after rear-
ranging   

As a result, the optimal rotation age is attained when the marginal revenue 
given by the value increment of the last tree to be cut equals the marginal 
cost given by the interest on both the timber value of the last tree and the 

, with the former known as the cost of holding the trees and the latter 
the cost of holding the land. In a partial equilibrium (cf. Section 3.3.1), the 

 defines the most profitable land use as the infinite income stream gen-
erated with the production of timber. Hence, the interest on the  is equiv-
alent to the land rent. The incentives to clear-cut a forest stand are thus given 
by poor value increment of the timber or high cost of either or both the tim-
ber and the land value.  

Condition [4-1] bears resemblance to the Faustmann-Pressler-Ohlin (FPO) 
theorem (Johansson and Löfgren 1985, p. 80) which states the necessary 
condition for the maximization of the Faustmann model [3-2] with respect 
to the rotation age , i.e., 

which is a function of the optimal Faustmann rotation age . In either con-
dition, timber value increment is pitted against the interest on the timber 
value and on the land value. The distinctions between the FPO theorem and 
the maximum condition for the optimal rotation age of the thinning model 
[4-1], however, are threefold. On the one hand, condition [4-1] is a function 
of  equations in contrast to [4-2] which is only dependent on . Second, con-
dition [4-1] refers to the timber volume of a single tree  while the  the-
orem is determined with the help of the timber volume of the stand . Third, 

[4-1] 

[4-2] 
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the land rent is determined by the  associated with thinning model [3-6] 
or the Faustmann model [3-2], respectively.  

In order to reveal the differences for the location of the optimal rotation age, 
[4-1] and [4-2] are rewritten in terms of rates as 

In either way, the timber value growth rate is required to equal the rate of 
interest in sum with the land rent in relation to the employed timber value. 
The value growth rates on the left hand sides both represent the change in 
the timber value in relation to the timber value itself. Contrary to [4-3], the 
FPO theorem captures all trees of the stand. Its corresponding value growth 
rate refers to the mean of the growth rates of each tree. In the case of a ho-
mogeneous stand, , and , cf. [3-4]. As  can thus be cancelled 
out of the left hand side of [4-4], the value growth rate of one tree remains as 
in the case of condition [4-3]. In a heterogeneous stand, the relative form of 
the FPO theorem [4-4] balances the arithmetic mean of all individual value 
growth rates of each tree. By way of contrast, the number of trees in the stand 
is relevant for the relative land rent, i.e., the second terms on the right hand 
side of both [4-3] and [4-4]. In the FPO theorem, the land rent is set in rela-
tion to the timber value of the stand, whereas in [4-3] the land rent is dis-
persed over the value of one tree only.  

Figure 4.1 illustrates the determination of the optimal rotation age graph-
ically with respect to [4-3]. The solid black curve represents the value growth 
rate. Typically, it decreases monotonically at a decreasing rate (cf. Section 
3.3.2). The relative land rent might take the course of the dashed grey curve. 
It is equally decreasing monotonically as the land value is a positive constant 
determined by the maximal LEV, whereas the timber value increases over 
the relevant range (cf. Section 3.3.2). The intersection point of the value 

[4-3] 

[4-4] 
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growth rate with the sum of the relative land rent and the rate of interest 
(solid grey curve) marks the optimal rotation age . 

4.1.1.1 Comparison of Optimal Rotation Ages 

How is the optimal rotation age of the thinning model [3-6] related to the 
optimal rotation age with respect to the Faustmann model [3-2]? Put differ-
ently, how do thinnings influence the optimal rotation age? In order to assess 
the difference between both approaches, the Faustmann model [3-2] might 
be rewritten as 

In contrast to the thinning model, all trees are harvested at the rotation age 
T. The FPO theorem [4-2] in the converted notation is then 

 [4-5] 

rates 

 

 

r  

 

age 

Figure 4.1 The isolated determination of the optimal rotation age 
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or, written in rates, 

If thinnings are integrated as an exogenously given, additional income 
stream independent of the harvest ages of the remaining trees and occurring 
at a given age of , the Faustmann model in [4-5] would be extended as 

The corresponding maximum condition is adjusted to lead to 

If the additional income  is positive, the optimal rotation age decreases as 
the cost side increases while the marginal revenues remain unchanged. 
Therefore, it pays to clear cut the stand more frequently in order to obtain 
the additional income more often. For a negative additional income stream, 
the optimal rotation age increases.   

If thinnings occur in the form that some of the  trees are cut prior to the 
rotation age, i.e., at the age , while leaving the remaining trees unaf-
fected, for instance, through the collection of dead wood, the  is  

 [4-6] 

 [4-7] 

 [4-8] 

 [4-9] 

 [4-10] 
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The maximum condition written in rates is then 

In contrast to [4-7], the timber value at the rotation age comprises only 
 trees. In a homogenous stand, the value growth rate remains unaf-

fected as the number of trees is cancelled out. In heterogeneous stands, the 
value growth rate in [4-11] is higher than in [4-7] if less vigorously growing 
trees are cut previously and lower for the thinning of more vigorously grow-
ing trees. The right hand side of [4-11] is necessarily higher if  
since the denominator is lower. Together, the optimal rotation age in [4-11] 
is less than in [4-7] for homogenous stands and equal land rents. If the land 
rent with thinnings decreases or the mean growth rate increases, the change 
in the rotation age depends on the corresponding magnitudes.  

Finally, in the thinning model with interdependencies [3-6], the optimal ro-
tation age for  trees is determined according to, cf. [4-3] in con-
nection with [4-11],  

In contrast to [4-11], [4-12] is a function of all harvest ages. However, the 
change in the rotation age also depends on the corresponding magnitudes. 
For homogeneous, competitive and equivalent stands, the value growth rate 
increases compared to [4-7] as they generate additional increments while 
they decrease the timber volume at the rotation age (for more details cf. Sec-
tion 4.4.4). This tends to lengthen the optimal rotation age. However, the cost 
side increases likewise since the timber value is reduced while the  in-
creases for profitable thinnings, which tends to shorten the optimal rotation 
age. In summary, the change in the optimal Faustmann rotation age due to 
the introduction of profitable thinnings is ambiguous and depends on the 
magnitude of the changes involved.  

 [4-11] 

 [4-12] 



Optimal Harvest Ages 61 

4.1.2 Optimal Thinning Age 

The optimal thinning age is determined by the optimal harvest age  of a 
tree within the rotation period in a maximum of the LEV which is not fol-
lowed immediately by the regeneration of the stand. According to [3-11], this 
requires condition [3-14] to equal zero, which yields after rearranging   

As a result, the optimal thinning age is determined by the equality of the tim-
ber value increment of the corresponding tree with the interest on the tim-
ber value of the tree as well as the present value of the impacts of a post-
ponement of the harvest of the th tree on all remaining trees. Since the ad-
ditional impacts on the timber growth functions of all remaining trees are 
negative in a competitive and equivalent forest stand (cf. Section 3.3.2), the 
minus in front of the second term on the right hand side of [4-13] turns into 
a plus thus constituting the impaired growth of the remaining trees due to a 
postponement of the thinning into opportunity costs of not harvesting the 
tree. Accordingly, there might be three incentives to thin a stand: to liquidate 
low value increments, to earn an alternative income, to improve the growth 
of the remaining trees. Or vice versa, obtaining an additional income in terms 
of timber value increment is priced by the yield of the alternative investment 
and the impaired growth of all remaining trees.  

Analogous to [4-3] and [4-4], condition [4-13] might be rewritten in rates, 
i.e., 

From this perspective, the optimal thinning age is determined by the equality 
of the value growth rate with the rate of interest and the present value of the 
impacts of a postponement of the harvest on the remaining trees in relation 
to the value of the thinned tree, or shortly, the present value of the impact 

[4-13] 

[4-14] 
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rate. A comparison of conditions [4-3], [4-4], and [4-13] emphasizes the sim-
ilarity between the determinations of the optimal harvest ages. In each case, 
the value growth rate of a tree is balanced with the rate of interest. Addition-
ally, the sum of all additional impacts on future harvest ages is included on 
the cost side.  

Figure 4.2 displays the isolated determination of the optimal thinning age 
according to [4-14] graphically. The solid black curve represents a typical, 
monotonically decreasing course of the value growth rate of a tree. At some 
age, the growth rate intersects the rate of interest from above. The dotted 
grey curve shows a hypothetical course of the additional impact of a post-
ponement of the thinning. The impact rate, thereby, decreases monotonically 
over the stand age for a competitive and equivalent stand as the nominator 
is constant or decreases while the denominator increases, cf. Section 3.3.2. 
In this example, the impact rate is assumed to be negative thus turning the 
minus in front into a plus. Added to the rate of interest, both denote the cost 
side of postponing the thinning of the tree illustrated by the solid grey curve. 

 

rates 

r 

 

age 

 

Figure 4.2 The isolated determination of the optimal thinning age 
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The intersection point with the growth rate marks the optimal thinning age 
. Before the intersection, the value growth rate of the tree exceeds the sum 

of the interest rate and the relative influence on the remaining trees. After 
the intersection, it pays to transform the timber value and its growing area 
into the next best alternative use.  

4.2 The Relevance of Thinnings 

Thinnings are denoted as relevant if at least one investment situation, de-
fined by the investment parameters (cf. Chapter 1), exists for which at least 
one tree is cut prior to the rotation age. In contrast, thinnings are termed 
irrelevant when all trees share the same optimal harvest age necessarily and 
independent of the investment situation. In this case, the thinning model [3-
6] would be reduced to the Faustmann model [3-2]. In the thinning model [3-
6], though, the isolated condition for the optimal rotation age comprises only 
one tree, cf. e.g. [4-3]. However, the optimal rotation age in the thinning 
model refers to the simultaneous fulfillment of all equations in the system 
constituting the first-order necessary condition [3-11]. Hence, there might 
be more than on tree to be cut at the rotation age.  

In order to analyze this implication, the first order condition for the tree to 
be harvested before the last tree, i.e., , is rewritten as, cf. [3-14],   

Accordingly, the optimal second last harvest age within the rotation period 
is determined by the equality of the value growth rate on the left hand side 
and the rate of interest and the present value of the impact rate on the last 
tree to be cut. Isolating the rate of interest on one side of [4-3] and [4-15], 
both trees  and  are cut at the same age, i.e., , if 

[4-15] 

[4-16] 
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Condition [4-16] exemplifies the basic incentives for conducting thinnings. 
In order to separate the different aspects, the implications are first analyzed 
with reference to the homogenous stand (Section 4.2.1) and subsequently in 
the more complex context of the heterogeneous stand (Section 4.2.2).  

4.2.1 In the Homogenous Stand 

In a homogeneous forest stand (cf. Paragraph 2.1), trees of the same age 
grow equally. In this case, the difference on the left hand side of [4-16] equals 
zero leaving [4-16] as 

since  for  in the homogenous stand. Accordingly, the 
two last trees in the stand are both cut at the rotation age if the land rent 
equals the negative of the impact of a postponement of the thinning on the 
last tree.  

This approach can be generalized for the homogenous stand. If the rotation 
class, i.e., all trees to be cut at the rotation age, comprises  trees, 
the optimal rotation age is determined by the equality of, cf. [4-3], 

while the optimal harvest age of the last tree  considered to be thinned is, 
cf. [4-14], 

[4-17] 

 

[4-18] 

 

[4-19] 
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This th tree is thus added to rotation class of the homogenous stand, i.e., 
,  if 

since  for  in the homogenous stand.  

According to [4-20], the thinning and rotation classes are separated by the 
inversely proportional relationship between the impact of a postponement 
of the thinning on one of the trees in the rotation class (left hand side) and 
the square of the number of trees in the rotation class multiplied with the 
land rent  (right hand side). As long as the land rent in relation to the number 
of trees does not fall short of the potential influence of a postponed thinning, 
all trees are cut at the rotation age. Conversely, all trees for which the addi-
tional thinning impact outweighs the relative land rent are thinned. Thin-
nings are thus relevant in the homogenous stand if the additional thinning 
impact exceeds the relative land rent, i.e., if  

Accordingly, whether thinnings are conducted in a homogeneous stand or 
not is determined by the impact on the remaining trees, but not by the liqui-
dation of unsatisfactory growth rates or alternative investment opportuni-
ties as these are not part of the right hand side of [4-21]. If condition [4-21] 
is satisfied for at least one tree in the stand, thinnings are relevant as the  
might be increased by the harvest of trees prior to the rotation age. If the 
rotation class would only comprise a single tree, i.e., , condition [4-
20] would be reduced to [4-17].  

 

 

[4-20] 

 [4-21] 
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Condition [4-21] provides some general implications for the homogenous 
stand. At first, the basic prerequisites for thinnings to be relevant are inter-
dependencies between the trees of a stand regarding their timber growth. If 
the harvest of a tree does not influence the timber growth of the remaining 
trees, i.e., if trees are growing solitarily, thinnings cannot increase the  in 
any investment situation. In this case, the right hand side of [4-21] turns zero. 
In order to be satisfied, either or all the interest rate, the  and/ or the 
tree number must be negative. However, since all three components are nec-
essarily positive for any meaningful analysis of profitable timber production 
(cf. Section 3.3.2), [4-21] will not be satisfied for any tree. Therefore, all trees 
are cut at the rotation age.  

Without interdependencies between the trees, the optimal thinning condi-
tion [4-14] is reduced to the solution for a single optimal rotation or duration 
(cf. Hirshleifer 1970, p. 82ff) as the second term on the right hand side turns 
zero. In this case, it pays to hold the tree until its value growth rate equals 
the rate of interest. However, in the homogenous stand, this implies the op-
timal thinning age to exceed the optimal rotation age since the latter is, ac-
cording to [4-3], determined with the help of the relative land rent, which is 
necessarily positive (cf. Section 3.3.2). Hence, the optimal rotation age is lo-
cated before the intersection point of the value growth rate and the interest 
rate in Figure 4.1. The difference is the same as between the optimal duration 
and the rotation age (Hirshleifer 1970, p. 86; Samuelson 1976, p. 481; 
Johansson and Löfgren 1985, p. 81). An optimal thinning age exceeding the 
optimal rotation age conflicts with the model approach, cf. [3-7], as regener-
ation would take place before the harvest of the last tree. Since in the homog-
enous stand growth and interdependencies between the trees are reciprocal, 
all trees would be cut at the rotation age.  

Referring to the timber growth theory summarized in Figure 2.1, thinnings 
are thus irrelevant for all combinations of the initial density and the rotation 
age which are located within the range of solitary growth marked by the dot-
ted curve. However, persistent solitary growth is irrelevant for profitable 
timber production in general. Within the range of solitary growth in a homo-
geneous stand, another tree planted will raise the timber volume at any age 
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proportionally to the rise in the stem number (cf. Section 2.1.3). Hence, a 
doubling of the initial density would double the timber volume within this 
range. These correlations give rise to constant returns to scale (cf. Varian 
2010, p. 341f.) since the  is then linear homogeneous with respect to the 
initial planting density. If  denotes the growth of a tree in dependence of the 
rotation age ,  the corresponding timber price,  the variable regeneration 
costs of one tree and  the initial density, any modification of the tree num-
ber by an arbitrary factor  will modify the  proportionately since  

If the  is positive, any increase of the initial density will raise the  in 
this setting. Consequently, for any maximal , the forest stand is regener-
ated at least at a density that will result in competition between the trees at 
the end of the rotation. With fixed regeneration costs, the same reasoning 
remains valid although these might lead to negative s for low initial den-
sities.  

As a result, thinnings are invariably relevant in the homogenous stand since 
stands will only be managed in a way that mutual interdependencies be-
tween the trees will arise during the rotation period. However, in view of the 
fact that every stand development begins with a more or less long period of 
solitary growth, thinnings are irrelevant during these ages. When any poten-
tial postponement of a thinning has no effect on the other trees during this 
period, i.e., as long as the threshold of competition has not been crossed, it 
always pays to hold all trees in the homogenous stand as they offer growth 
rates considerably higher than the next best alternative. Although thinnings 
within the solitary growth range extend the unbounded growth for the re-
maining trees, the alternative of yielding a value increment during this time 
is superior in all circumstances because the remaining trees will grow to the 
same size and quality with or without the additional trees.  

 [4-22] 
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While interdependency between the trees of a homogenous stand are neces-
sary for thinnings to be profitable, not all forms of interdependencies are rel-
evant. In case trees improve each other’s value growth, they are growing 
complementarily, i.e., . This form of interdependence amounts to the 
same results regarding the relevance of thinnings as the absence of interde-
pendencies. If the timber value of the remaining trees is impaired by a har-
vest of a tree prior to the rotation age, it always pays to hold the tree until 
the rotation age provided all trees grow equally. Therefore, only the negative 
relationship between the postponement of a thinning and the timber value 
of a remaining tree offers an argument for thinnings. With reference to the 
timber volume, this relationship is referred to as competition, which is fre-
quently defined by its harmful effects on the involved individuals (cf. Begon 
et al. 1990, p. 197). The exclusive presence of competition, though, might 
only be acceptable in pure stands (cf. Section 3.3.2). In mixed stands, on the 
other hand, both competitive and complementary growth might be present.  

Beyond the threshold of competition in Figure 2.1, thinnings are thus rele-
vant as they might increase the LEV in some situations. Beyond the threshold 
of mortality, i.e., the solid black curve Figure 2.1, thinnings become obliga-
tory for homogeneous and equivalent forest stands since trees could be dy-
ing off which could be removed with profit (cf. Section 3.3.2). The relevant 
range of thinnings is thus delimited by the thresholds of competition and 
mortality in Figure 2.1. For positive interest rates, thinnings will be con-
ducted somewhere in-between provided condition [4-21] is satisfied for at 
least one tree. As the interest converges to zero, condition [4-13] demands 
the timber value increase due to thinnings to equal the lost timber increment 
which is just satisfied along the threshold of mortality in Figure 2.1. 

Though competition is a necessary condition for thinnings to be relevant in 
the homogenous stand, it is not sufficient for thinnings to be conducted prof-
itably. On the one hand, the negative competitive effects need to exceed po-
tential positive effects. On the other hand, according to [4-21], they must also 
exceed the land rent in relation to the number of trees in the rotation class. 
For given land values and tree numbers, the more intense the competition 
for resources, i.e., the higher the potential impact of a harvest of a tree on the 
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timber value of the remaining trees, the more likely thinnings are profitable 
as the right and side of [4-21] increases.  

The potential sources for intensified competition between trees in a stand 
are various. On the other hand, the intensity of competition is regulated by 
the initial density, i.e., the number of trees at the beginning of the rotation. 
High densities, such as natural regeneration might produce, will increase the 
portion of thinned trees in contrast to comparatively low planting densities 
as competition between the trees increases (cf. Section 2.1.1). Likewise, the 
intensity of competition is dependent on the tree species. The effect of a har-
vest of a shade-tolerant tree on its conspecifics is usually greater than that in 
stand of shade-intolerant trees due to asymmetric competition pressures in 
older age classes. As a consequence, more trees are thinned in a shade-toler-
ant stand with the same number of trees, all other things being equal. Simi-
larly, competition intensities might be site specific. Forest stands at sites of 
low soil quality or growing in a disadvantageous climate might grow with 
large spacing between the trees as some scarce resources restrict the ap-
plicability of others. In these cases, thinnings might hardly influence the re-
maining trees. Thus, all trees will be cut at the rotation age provided they are 
growing homogenously. 

The previous examples are illustrated in Figure 4.3 for imaginary courses of 
both sides of [4-21]. The abscissa represents increasing tree numbers as 
originated from the initial density. As the number of trees increases, the po-
tential to improve the growth of remaining trees (dashed curves) increases 
likewise, however not necessarily at an increasing rate. Additionally, more 
shade-tolerant tree species or sites of higher quality, for instance, might in-
crease this potential as exemplified by the dashed grey curve.  

The other factor separating between thinning and rotation trees in the ho-
mogenous stand is the land rent in relation to the square of the number of 
trees in the rotation class, cf. [4-21]. As the number of trees in the stand  
increases for constant , the land rent is spread over more trees. Conse-
quently, the left hand side of [4-21] decreases as the denominator increases. 
This relation is indicated in Figure 4.3 by the solid lines. Due to the power 
function in the denominator, the curve decreases at a decreasing rate. The 
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value of the curve depends on the land rent. Factors affecting the land rent 
thus tend to induce shifts as illustrated by the black and grey solid curves in 
Figure 4.3.  

Nevertheless, changes in the investment parameters give rise to adjustments 
on both sides of [4-21] as the optimal use of the land is modified. For in-
stance, higher timber prices not only increase the land value and the value of 
the improved timber growth of the remaining trees but also changes the tim-
ber growth as the optimal harvest ages are adjusted. Changes in the interest 
rate will decrease the land value while increasing the interest and simulta-
neously altering the impact on the remaining trees indirectly through ad-
justed optimal harvest ages. The same applies to changes in the regeneration 
cost.  

The intersection point between both curves in Figure 4.3 marks the optimal 
allocation between thinning and rotation trees. All trees at or to the left of 
the intersection are cut at the rotation age while trees to the right are 

Figure 4.3 The optimal amount of trees  in the rotation class in a homoge-
nous forest stand 
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thinned. If the number of trees in the stand coincides or falls short of the in-
tersection point, thinnings are irrelevant as all trees are necessarily cut at 
the rotation age. Depending on the actual course of the curve, changes in the 
investment situation will shift the optimal amount of trees to be thinned. 
Whenever thinnings are irrelevant in a given situation, the thinning model 
[3-6] reduces to the Faustmann model [3-2]. Therefore, it might be argued 
that the Faustmann model refers to all circumstances which lead to equal 
harvest ages of all trees, such as low competition pressures and high land 
rents. Density-dependent growth relations, though, are not disregarded im-
plicitly in the Faustmann model [3-2] as these might be built into the timber 
volume functions although it is impossible for the forest owner to gain con-
trol over the density. 

In case the rotation class comprises only a single tree, the whole land rent is 
concentrated on one tree thus increasing the left hand side of [4-21]. The 
second last tree would then be cut prior to the rotation age only if it exerts 
an exceptionally high impact on the last tree in order to satisfy [4-21]. In 
most situations, though, it is not optimal to leave only a single tree until the 
rotation age because of the unprofitable solitary growth of the last tree. How-
ever, if the stand is fairly small and/ or the trees are huge, it might pay to cut 
the second last tree prior to the rotation age.  

Analogously to the determination of the optimal rotation age in Figure 4.1 
and of the optimal thinning age in Figure 4.2, respectively, Figure 4.4 illus-
trates the determination of the optimal rotation age with reference to poten-
tial optimal thinning ages for two hypothetical situations A and B, cf. [4-18] 
and [4-19]. In situation A, the optimal rotation age without any thinnings is 
located at  since the rate of cost equals the rate of revenue according to 
[4-18].  without thinnings is equivalent to the optimal Faustmann rota-
tion age  in [4-2]. However, Figure 4.4 indicates an incentive to cut parts 
of the stand earlier as the relative influence on the remaining trees intersects 
the value growth rate before the optimal rotation age is reached, cf. [4-19]. 
Therefore, thinnings are relevant in this situation. If thinnings are conducted, 
the optimal rotation age  might change and differ from , cf. [4-3].  
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In situation B, the optimal rotation age is . It is equivalent to the optimal 
Faustmann rotation age  in [4-2] since thinnings are irrelevant. Although 
there is a considerable potential to improve the growth of the remaining 
trees by a thinning as well as there is the opportunity to transform the timber 
value of the thinning to the next best alternative investment (cf. the dashed 
curve), it is not enough to sacrifice the growth in value of the th tree. Hence, 
the relative costs of a thinning intersect the value growth rate, cf. [4-19], after 
the optimal rotation age. As this situation conflicts with the model approach, 
all trees are cut at the rotation age.  

4.2.2 In the Heterogeneous Stand 

The heterogeneous stand is characterized by potentially diverging timber 
volumes of equally old trees (cf. Paragraph 2.2). In the heterogeneous stand, 
condition [4-16] might equally be generalized for any tree . If the rotation 

A  

B  
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Figure 4.4 Comparison of the relative land rent and the impact rate for two hypo-
thetical situations A and B 
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class comprises  trees, the optimal rotation age is determined by 
the equality of, cf. [4-3], 

while the optimal harvest age of the last tree  considered to be thinned is 
given by, cf. [4-14], 

This th tree is added to rotation class of the homogenous stand, i.e., 
,  if 

If condition [4-25] holds for all trees in the stand, thinnings are irrelevant as 
they cannot possibly increase the LEV in any investment situation. The same 
applies if the right hand side of [4-25] outweighs the left hand side since this 
implies the optimal thinning age to outlast the optimal rotation age which 
conflicts with the model assumptions, cf. [3-7]. Therefore, for thinnings to be 
relevant in the heterogeneous stand, it must hold for at least one tree that 

Accordingly, the difference between the mean value growth rate of the rota-
tion class and the growth rate of the last tree considered to be thinned has to 
exceed the sum of the land rent in relation to the timber value of the rotation 
class and the sum of the impacts of a thinning of the th tree in relation to its 
timber value.  

[4-23] 

[4-24] 

 [4-25] 

 [4-26] 



74  Analysis 

The right hand side of [4-26] is similar to the conditions for relevant thin-
nings in the homogeneous stand, cf. [4-20] and [4-21]. Both express the land 
rent and the impact of a postponed thinning on the remaining trees in rela-
tion to the timber value of the stand and to the value of the thinned tree, re-
spectively. The timber values, though, are not necessarily of equal amount in 
the heterogeneous stand. Therefore, they do not cancel out of [4-26], but, in-
stead, are weighed up against each other. In spite of the differences, the right 
hand side of [4-26] can be analyzed analogously to [4-21]. With reference to 
the homogeneous stand, it would be negative for at least one tree if thinnings 
are relevant and zero or positive for irrelevant thinnings. In contrast to the 
homogeneous stand, cf. [4-21], the left hand side of [4-26] might be nonzero 
for equally old trees. If the th tree, which might be added to the rotation 
class, is growing in value at a higher, lower or equal rate than the mean of the 
rotation class, the left hand side is negative, positive or zero. In view of this, 
the question arises whether all three situations are feasible. 

If two homogeneous and equally old stands are compared, of which one is 
growing in value persistently at a higher rate than the other stand, it cannot 
be determined which stand is harvested earlier. Although one stand is prom-
ising a higher value growth rate, it might be optimal to harvest it before the 
other stand is cut. This situation may arise since the growth rate is defined 
only with respect to the timber value, cf. [4-3]. Accordingly, it does not cap-
ture all relevant aspects of profitable timber production. This can be seen if 
the FPO theorem [4-2] is rewritten to yield either 

 

 

 

 

[4-27] 
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In each case, only adjusted growth rates are relevant for the determination 
of the optimal rotation age . If, for instance, comparatively high growth 
rates are combined with equally low regeneration costs, it might pay to cut 
the more vigorously growing stand sooner. By inference, even when stands 
are growing at equal rates, they are not necessarily cut at the same age. These 
aspects are the consequence of the dependence of the income stream of prof-
itable timber production on both timber and land value.  

If the two stands are not separated but intermingled as two tree classes in 
one stand, and if this stand can only be regenerated after both classes are cut, 
the optimal rotation age would be determined by the FPO theorem adjusted 
for the second stand, i.e., 

where  is the rotation age,  is the timber volume of the class cut at the 
rotation age, and  is the  of the merged stand, cf. [4-3]. The optimal 
harvest age of the second class, however, would be determined according to 
the optimal thinning condition in Section 4.1.2. If, furthermore, it is assumed 
that the harvest of one class of the stand leaves the other class unaffected, 
the optimal thinning age is determined by 

where  is the thinning age, and  is the timber volume of the thinning class 
of the stand. Condition [4-29] is equivalent to the solution of the one-rotation 
or duration problem (cf. Hirshleifer 1970, p. 82ff).  

In this setting, the relative land rent, which had to be borne by the thinning 
class before the merging, has been added to the land rent of the rotation class 
in [4-30]. Since the opportunity to regenerate the thinning class after it is 
been harvested has vanished, the opportunity cost of postponing the harvest 
decrease which in turn increases the optimal harvest age. Conversely, the 

 [4-28] 

 [4-29] 
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additional cost comprised in the land value in [4-30] decreases the optimal 
harvest age of the rotation class in contrast to its separated harvest age.  

For equal value growth rates, the optimal harvest age of the thinning class 
would exceed the optimal harvest age of the rotation class in the same way 
as the optimal duration age exceeds the optimal rotation age, ceteris paribus 
(Hirshleifer 1970, p. 86; Samuelson 1976, p. 481; Johansson and Löfgren 
1985, p. 81). As this conflicts with the assumption that regeneration is linked 
with the rotation age, both classes would be cut at the rotation age simulta-
neously. Equally, both are cut at the same age if the differences in the value 
growth rates between both classes are small enough to be exceeded or offset 
by the relative land rent in [4-30]. However, if the differences in the value 
growth rates exceed the relative land rent, i.e., if 

the optimal harvest ages in the combined stand will differ. Yet, that class with 
the higher growth rate will always be cut at the rotation age regardless of the 
specific investment situation. If the left hand side is negative, [4-30] cannot 
be satisfied since the right hand side is necessarily positive (cf. Section 3.3.2).  

Figure 4.5 illustrates the relationship between two persistently diverging 
growth rates of two homogenous growing classes of trees or of two single 
trees, respectively. Depending on each harvest age, the differences between 
both rates might be positive, negative, or zero. It is zero only if the less vig-
orously growing class is cut prior; e.g., at the age of  in Figure 4.5 if  is the 
harvest age of the second class. In case the harvest age is less than  for a 
given , the difference between both rates as specified in [4-30] is negative 
since all points above A are of higher value than C in Figure 4.5. Likewise, if 
the harvest age of the less vigorously growing class is higher than  and less 
or equal to the given age , the difference between the rates is positive. 
Therefore, if  is the optimal rotation age in a stand of two independently 
growing classes, the optimal thinning age will exceed  since the left hand 
side of [4-30] is only then positive. Invariably, though, the less vigorously 

 [4-30] 
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growing class will not be harvested after the other class is cut as all points 
above B or C necessarily exceed A or D.  

Condition [4-30] can easily be generalized for the heterogonous stand where 
all trees might grow differently at equal ages. If the harvest ages of each tree 
are independent of each other, condition [4-30] is analogous to [4-26] with-
out interdependencies, explicitly, 

As a result, and in contrast to the homogenous stand, trees might be har-
vested prior to the rotation age in the heterogeneous stand if their growth 
rate is less than the mean growth rate of the trees cut at the rotation age 
whereas the difference simultaneously exceeds the relative land rent. Or vice 
versa, it is necessary for thinnings to be relevant in a heterogeneous stand of 
independently growing trees that some trees grow in value at a lower rate 

 [4-31] 

rates 

age 

 

 

Figure 4.5 An example of the two diverging value growth rates 
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than the trees at the rotation age, and it is sufficient that the difference be-
tween the growth rates exceeds the relative land rent additionally. Thus, it 
might be profitable to harvest trees even within the range of solitary growth 
in Figure 2.1.  

As a consequence for the heterogeneous stand, the opportunity arises to cut 
trees with unsatisfactorily low value growth rates prior to the rotation age. 
However, these trees will be harvested at a higher age than the same trees in 
a homogenous stand. By inference, trees with equal growth rates will be cut 
at the same age if the harvest ages are independent of each other. In the het-
erogeneous stand, though, trees might share equal growth rates however 
growing differently. In this case, both the timber value and the increment of 
one tree are multiples of the other tree.  

The preceding analysis remains valid if the impact of a postponement of a 
thinning on the rotation class is positive since, then, the right hand side of [4-
26] is necessarily positive as well. If this impact is accretive to the remaining 
timber values, or if these positive impacts outweigh or compensate the neg-
ative effects, it remains unprofitable to cut more vigorously growing trees 
previously. For positive impacts, the relevant range for thinnings is short-
ened, ceteris paribus, as the difference between the growth rates must exceed 
the sum of the relative land rent and the value of the thinning impacts.  

In the presence of competition, the impact of a postponement of the harvest 
reduces the timber volume of the remaining trees. If the overall impact of a 
postponement is negative, the right hand side of [4-26] might be positive, 
zero, or negative depending on the investment situation. If the thinning im-
pact is negative but less than or equal to the relative land rent, the right hand 
side is positive. In this case, the preceding analysis can be applied analo-
gously. Nevertheless, the relevant range for thinnings is extended as the 
claim to the difference between the growth rates is reduced; i.e., even small 
differences might justify thinnings. Moreover, only less vigorously growing 
trees will be cut previously. 
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If, however, the impact of a postponement of a thinning is negative and out-
weighs the relative land rent thus turning the right hand side of [4-26] neg-
ative, it might pay to cut more vigorously growing trees sooner as the left 
hand side might become negative while simultaneously satisfying inequality 
[4-26]. Under these conditions, the value increase of the less vigorously 
growing trees due to a thinning might justify the sacrifice of the compara-
tively high value growth rates of the thinned trees. Accordingly, it might pay 
to cut the superior growing trees of the stand sooner. Under these condi-
tions, thinnings are only relevant when a comparatively strong competition 
pressure is prevailing.  

The preceding analysis is summarized in Figure 4.6. The relevant range of 
thinnings, as determined by condition [4-26], is pictured by the dashed line 
in Figure 4.6. Each axis framing the figure denotes increasing rates of one 
term of [4-26] with equal scales. The axes denoting terms on the same side 
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Figure 4.6 The relevant range of thinnings  
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of [4-26] are opposing each other in opposite direction. Hence, the horizontal 
arrow within the range generated by the axes represents all points for which 
the left hand side of [4-26] is zero, i.e., homogeneous stands. All points above 
and below denote heterogeneous stands as the growth rates differ. The ver-
tical arrow represents all points where the right hand side of [4-26] is zero. 
The directions of the arrows are marked with the predominant characteris-
tic. For all combinations of the rates on right of the separation line, some 
trees will be harvested prior to the rotation age, i.e., . All combina-
tions on or to the left of the separation line will result in an equal harvest age 
of all trees, i.e., . 

In summary, for thinnings to be relevant, two necessary conditions must ei-
ther or both be satisfied: heterogeneity concerning differences in the value 
growth rates and competitive pressure concerning the negative impact on 
the timber value of remaining trees. If both conditions are not satisfied for 
any tree in the stand, thinnings are irrelevant. This situation prevails in ho-
mogeneous stands of solitarily growing trees. However, in order to be suffi-
cient, both necessary conditions must be set in relation to the relative land 
rent. In the homogenous stand (horizontal double arrow in Figure 4.6), the 
existence of competitive pressure alone is not enough to induce thinnings, 
but must outweigh the relative land rent, which is accomplished to the right 
of the origin. In situations in which the relative land rent outweighs the com-
petitive pressure (left half of Figure 4.6) only an increasing heterogeneity 
might induce thinnings. On the other hand, heterogeneity is double-sided 
since either the more or the less vigorously growing class or tree can be 
thinned. In case the more vigorously growing class or tree is cut previously 
(lower half of Figure 4.6), the competitive pressure must outweigh the rela-
tive land rent for thinnings to be profitable.  

4.3 Optimal Thinning Regime 

The optimal thinning regime is typically referred to as the program of the 
series of thinnings throughout a rotation period (cf. Nyland 2002, p. 448). 
Since the thinning model [3-6] is maximized with respect to the harvest ages 
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of each tree, these concepts are derived from the individual harvest ages of 
the trees of the stand. In this way, the thinning regime describes the relation-
ship between the optimal thinning ages. Therefore, whenever thinnings are 
relevant, the question arises in which specific way thinnings will be con-
ducted most profitably.  

Basically, the optimal thinning regime expresses the temporal order of the 
optimal thinning ages. Accordingly, trees might either be thinned at the same 
or at successive ages. This distinction gives rise to two fundamental ques-
tions: under which conditions are thinnings intensified such that some trees 
share equal optimal harvest ages (Sections 4.3.1 and 4.3.2)? And which trees 
have to be cut first, or subsequently respectively (Sections 4.3.3 and 4.3.4)?  

4.3.1 Optimal Thinning Intensity 

The thinning intensity might be interpreted as the number of trees removed 
at the same age. In terms of the simultaneous equation system of the neces-
sary condition [3-13] - [3-15], the thinning intensity thus demands the satis-
faction of two or more optimal thinning age conditions at the same age. Since 
the index of the summation in the thinning model [3-6] indicates the tem-
poral order of harvests (cf. Paragraph 3.1), the optimal thinning conditions 
for two successively considered trees  and  can be written as, cf. [4-
14], 

Since in a maximum all conditions are satisfied simultaneously, [4-32] and 
[4-33] can be subtracted resulting in 

[4-32] 

[4-33] 

[4-34] 
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If condition [4-34] is satisfied for , both trees  and  are har-
vested at the same age, which might be equivalent to a more intense thinning. 
In order to analyze the consequences of this proposition, condition [4-34] is 
viewed from the two perspectives of the homogenous and heterogeneous 
stand.  

In a homogenous stand, all trees of the same age grow equally (cf. Paragraph 
2.1). Therefore, if both optimal harvest ages coincide in the homogeneous 
stand, i.e., if , both trees share the same value growth rate as 

 and . In this case, the left hand side of [4-34] is zero 
thus reducing the expression to 

Rewriting [4-35] while considering again that  and  for 
 gives 

as the condition for a more intense thinning in the homogeneous stand. 

According to condition [4-36], a thinning is conducted more intensively in a 
homogenous stand if the postponement of the thinning does not influence 
the value of the next tree to be thinned, i.e., if the th and st tree grow 
independently of each other. The thinning will be even more intense if con-
dition [4-36] applies to more trees, i.e., , etc. If the condition is never 
satisfied during the rotation period, the thinning intensity is an empty con-
cept in this setting as all trees thinned are cut at different ages necessarily. 
This situation occurs when the harvest of any tree in the stand influences all 
remaining trees. In this case, it always pays to postpone the harvest of the 
next tree to be cut in order to earn the additional increment generated by the 

[4-35] 

 

 

[4-36] 
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thinning. If, on the other hand, [4-36] is valid for all trees, all of them are cut 
at the same age, i.e. the rotation age (cf. Section 4.2.1), since the stand is then 
growing solitarily.  

In a heterogeneous stand, the growth rates of two equally old trees might 
diverge since either or both the timber increment and/ or the timber volume 
might differ (cf. Paragraph 2.2). As a consequence, the growth rates do not 
necessarily cancel out of condition [4-34]. Rearranging [4-34] for  
with reference to [4-36] yields 

Both trees  and  are harvested at the same age if condition [4-37] 
holds. The left hand side gives the difference between the value growth rates. 
It is positive if the second tree to be considered, i.e., , is growing in value 
at a higher rate than the th tree, negative in the opposite case and zero for 
equal growth rates. The first term on the right hand side is the change in the 
timber value due to a postponement of the thinning of the th tree in relation 
to its timber value, which was left in condition [4-36] for the homogeneous 
stand. The second term on the right hand side gives the present value of the 
differences between the influences of each tree on the remaining trees in re-
lation to their timber value.  

If the trees of a heterogeneous stand grow solitarily, the right hand side of 
[4-37] is zero as there is no opportunity to influence the timber value of the 
remaining trees. In this case, the condition for a more intense thinning would 
demand the growth rates to be of equal magnitude. In a heterogeneous stand, 
this situation might arise either when some trees are growing homogene-
ously or when the value increment of some trees is proportionally higher in 
relation to the employed timber value, e.g., if both the increment and the tim-
ber value are twice as high. If thinnings are relevant, those trees will be 
thinned at the same age.  

[4-37] 
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In contrast, when all trees are distinguished by different value growth rates 
in a stand of solitarily growing trees, no two trees will be cut at the same age. 
Therefore, thinnings will not be more intense than the timber volume of one 
tree. In a homogeneous stand of solitarily growing trees, the difference be-
tween the growth rates of equally old trees is always zero. Therefore, the 
condition for a more intense thinning is satisfied for all trees, i.e., all trees 
will be cut same aged. However, this will be the optimal rotation age as ana-
lyzed in Section 4.2.1.  

In a heterogeneous and competitive forest stand, the right hand side of [4-
37] might be positive, negative or zero. The second term on the right hand 
side is zero in the homogenous stand since the equality of the growth of 
equally old trees implies equal impacts on the remaining trees. Therefore, 
only the influence between the considered trees remains as the relevant as-
pect, cf. [4-36]. This might be nonzero in a competitive stand. In the hetero-
geneous stand, the second term on the right hand side of [4-37] might equally 
be zero when the impact rates on the remaining trees are of the same mag-
nitude. However, if the impact rates diverge, they might be just as high as to 
compensate the impact between the considered trees given by the first term 
on the right hand side. In this case, the right hand side might be zero in the 
competitive stand.  

If the impact rates of both trees  and  on all other trees are equal, i.e., 
if the second term on the right hand side of [4-37] is zero, and if the harvest 
ages of both trees are interdependent, i.e., if the first term on the right hand 
side is nonzero, both trees will only be cut at the same age if their value 
growth rates differ. If the trees compete in value, i.e., if , the more 
vigorously growing tree will be cut sooner, and vice versa for .  

Severe thinnings might lead to subsequent phases of solitary growth. As al-
ready indicated in the preceding Paragraph 4.2, these are ruled out for opti-
mal thinning ages. Solitary growth implies that the interdependencies be-
tween the trees vanish. However, since they have been existent before, con-
dition [4-36] will not hold for all intensities in the homogeneous stand. If the 
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interdependencies are positive or if condition [4-36] applies to all trees, thin-
nings are irrelevant as all trees will be cut at the rotation age. In the hetero-
geneous stand, trees with differing growth rates will be only cut at the same 
age in the presence of interdependencies. As the interdependencies decrease 
towards solitary growth, some trees will be cut beforehand.  

In summary, the optimal thinning intensity is determined by the equality of 
both sides of [4-37]. Accordingly, the reasons to thin a stand more intensively 
are given by equal and independent or unequal and interdependent growth. 
Trees with equal growth rates are only cut at the same age if they are grow-
ing independently of each other, or if the difference in the additional impacts 
on all remaining trees compensates for the loss of an additional increment 
on the other thinned trees. Trees with differing growth rates might be cut at 
the same age if the loss of value growth is compensated for by an additional 
increment on the remaining trees. The more vigorously growing tree is 
thinned together with the less vigorously growing tree because its impact on 
the remaining trees is proportionally greater. And the less vigorously grow-
ing tree is harvested together with the more vigorously growing tree as it 
hardly influences the remaining trees.  

Other characterizations of the thinning intensity focus on different criteria. 
For instance, the intensity often refers to the timber volume or basal area 
removed. If expressed as a percentage, both approaches denote equal inten-
sities in the homogeneous stand since all trees comprise equal timber vol-
umes at equal ages. In the heterogeneous stand, the approaches might di-
verge as the percentage might either refer to comparatively many and thin 
or to comparatively few but thick trees. If the intensity refers to an absolute 
amount, thinnings are intensified for equal numbers of trees harvested at 
each age in the homogeneous stand while the number of trees in a heteroge-
neous stand might vary.  
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4.3.2 Optimal Thinning Frequency 

In analogy to the interpretation of the thinning intensity from the preceding 
paragraph, the thinning frequency can be understood as the frequency of dif-
ferent thinning ages in a stand. In this way, the thinning frequency is the mir-
ror image of the thinning intensity. If a stand is thinned more intensively, i.e., 
if more tree share the same optimal thinning age, the stand is thinned less 
frequently, and vice versa. Therefore, the more often the condition for a more 
intense thinning [4-36], or [4-37] respectively, is not satisfied, the more fre-
quently the stand is thinned.  

Viewed from this angle, the thinning frequency is the number of thinnings 
occurring during the rotation age. However, there are often other notions 
which are related to the frequency of the thinning. This might be the thinning 
interval as the time period between two thinnings and, in the heterogeneous 
stand, the type or method of thinning as the order of harvest of differently 
growing trees. Both aspects will be treated in the following sections. Here, 
only the thinning frequency is analyzed.  

In the homogenous stand, thinnings are conducted more frequently if condi-
tion [4-36] does not hold, i.e., if the postponement of the harvest of any tree 
influences the value of the next tree to be cut. However, in the case of a pos-
itive interrelation, the harvest of the th tree will be postponed necessarily 
at least to the harvest age of the st tree. Since the trees are growing 
homogeneously, only positive impacts prevail, and all trees will therefore be 
cut at the rotation age, as analyzed in Section 4.2.1. In view of this, the con-
dition for a more frequent thinning in the homogenous stand is, cf. [4-36], 

If condition [4-38] is satisfied, the th tree will be cut prior to the st 
tree. If [4-38] holds for all trees in the stand, each tree to be thinned will be 
harvested at a different age. In this case, the thinning frequency might be 
viewed as an empty concept as the stand will be thinned as frequent as pos-
sible, i.e., as numerous as the trees to be thinned. If condition [4-38] is not 

 [4-38] 
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satisfied for any tree, all trees will be cut at the same age, namely, the optimal 
rotation age.  

Figure 4.7 illustrates the divergence between two optimal thinning ages in 
the homogeneous stand. Since Figure 4.7 displays a homogeneous stand, all 
living trees share the same growth rates at equal ages. The th tree is cut at 

 since the value growth rate (black curve) equals the relative impact on 
the remaining trees in addition to the rate of interest (grey curve) at this age. 
On the contrary, the st tree will be cut at a later age since its value 
growth rate is above its relative impact on the remaining trees. The jump in 
the growth rate is induced by the additional increment by virtue of the re-
moval of the th tree. Without this impact on the st tree, both trees will 
be cut at the same age.  

Analogously, in the heterogeneous stand, trees are cut at different ages if 
condition [4-37] does not hold. Since the marginal revenues of holding the 

st tree have to outweigh its associated marginal costs if the tree has not 
reached its optimal harvest age yet, it must hold that 
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Figure 4.7 Two deviating optimal thinning ages in the homogeneous stand 
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Otherwise, the order of harvests denoted in the summation index is con-
fused. If condition [4-39] is satisfied, then the th tree is harvested prior to 
the st tree. Accordingly, in order to be harvested at a higher age, the 
difference in the value growth rate of the st tree to the value growth 
rate of the th tree must outweigh both the impact rate between both trees 
as well as the difference in the impact rates of each tree on all remaining 
trees.   

As analyzed in the preceding Section 4.3.1, the right hand side of [4-39] might 
be positive, negative or zero in the heterogeneous stand. Consequently, thin-
nings are conducted more frequently if trees growing at equal rates either 
are in competition or differ in their impact on the remaining trees. Likewise, 
more thinnings will be conducted if the differences in the value growth of 
trees are not compensated by positive impacts of the less vigorously growing 
trees or by high negative impacts of the more vigorously growing trees.  

Figure 4.8 illustrates the occurrence of deviating optimal thinning ages in a 
heterogeneous stand. At the first optimal thinning age , growth rates and 
relative impacts on the remaining trees of the other two trees  and 

 diverge. The higher growth rates might be reinforced by the harvest of the 
th tree, or independent of it. At the second optimal thinning age , the 

more vigorously growing tree is harvested as its high impact rate compen-
sates for its high growth rate. The other tree is not influenced by the thinning 
in this illustration as its value growth rate remains unchanged. However, 
since its impact on the remaining trees is comparatively low, thinnings are 
conducted more frequently by postponing the harvest of the  tree.  

As a result, the thinning frequency is determined by the interaction of heter-
ogeneous growth and negative interdependencies. Heterogeneous stands 
are thinned frequently unless strong interdependencies compensate the dif-
ferences in the growth rates. The more independently trees are growing and 
the less heterogeneously, the less frequently the stand is thinned. Trees to be 

[4-39] 
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thinned in overall heterogeneous and solitarily growing stands as well as 
trees to be thinned in homogenous and overall competitively growing stands 
are all harvested at different ages. 

4.3.3 Optimal Thinning Interval 

The optimal thinning interval denotes the time elapsed between two thin-
nings. Naturally, this concept is only meaningful if thinnings are more or less 
frequent such that some optimal thinning ages diverge. In this qualitative ap-
proach, the length of the thinning interval can only be assessed in relation to 
other intervals within the same rotation period. In this way, the thinning in-
tervals might be decreasing, increasing or constant over the stand age if the 
intervals between two thinnings become shorter, longer or remain un-
changed.  

Figure 4.8 Deviating optimal thinning ages in a heterogeneous stand  
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Basically, the sequence of the thinning intervals is determined by two suc-
cessive thinning intervals which are in turn determined by three harvest 
ages, i.e., 

Denoted as rates, both sides of the equations are strictly monotonously de-
creasing functions at decreasing rates. The value growth rates on the left 
hand side are decreasing due to the sufficient condition [3-16] which re-
stricts the attention of the maximization to the domain where the accelera-
tion rates are less than the growth rates (cf. Section 3.3.2). Likewise, the im-
pact rates are monotonously decreasing since the greatest impact on the re-
maining trees is exerted the earlier the tree is cut while it is constant during 
the phase of solitary growth. However, since the denominator is necessarily 
increasing (cf. Section 3.3.2), the impact rate is decreasing even within the 
solitary range.  

At a maximum of the LEV, equations [4-40] - [4-42] are satisfied simultane-
ously. Isolating the rate of interest in all three conditions and equating sub-
sequent harvests yields 

[4-40] 

[4-41] 

[4-42] 

[4-43] 

 
[4-44] 
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Subtracting [4-43] from [4-44] leads to 

Accordingly, it must hold that the difference in the differences in the value 
growth rates equals the differences in the differences of the impacts on the 
remaining trees.  

In the homogeneous stand, the left hand side of [4-45] is necessarily positive 
if the value growth rates are monotonously decreasing at decreasing rates 
and if the intervals between the harvest ages are of equal or of decreasing 
length. This setting, however, does only remain valid as long as the interre-
lations between the thinned trees do not differ substantially as otherwise the 
differences might be compensated. By inference, if the left hand side of [4-
45] is negative, the thinning interval must be increasing over the stand age. 
Therefore, if the right hand side is negative necessarily, constant or decreas-
ing thinning intervals can be excluded. The right hand side is negative when-
ever the impact rate of the st tree is higher than the mean of the th and 
the nd tree. This applies either or both if the opportunity to influence 
the remaining trees is increasingly reduced due to already conducted thin-
nings and/ or if the impact rates are decreasing substantially.  

Figure 4.9 illustrates this argument. It displays a situation where the optimal 
thinning interval is constant as determined by the intersection points of the 
value growth rates (black curves) and the impact rates in addition to the in-
terest rates (grey curves). As a result, both sides of [4-45] are positive. The 
optimal thinning interval tends to decrease if the thinning induced reduc-
tions of already conducted thinnings, i.e., the gaps between the grey curves, 

 

 [4-45] 
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shrink. The same applies if the slopes of the impact rates decrease after each 
conducted thinning. In either way, both the value growth rate and the impact 
rate are decreasing at decreasing rates. Therefore, the comparatively high 
reactivity of younger stands might be compensated by the comparatively 
high value growth while the opposite might apply in older stands. In view 
this approach, the optimal thinning interval cannot be specified in general. 
Both increasing and decreasing as well as constant thinning intervals are 
conceivable depending on the specific investment situation.  

In the heterogeneous stands, thinnings might be conducted without mutual 
interdependencies between the trees (cf. Section 4.2.2). In this case, the right 
hand side of [4-45] is zero. In order to satisfy the equality, the left hand side 
has to turn zero likewise as is the case when all trees are thinned when their 
value growth rate equals the rate of interest. If younger stands produce more 
trees of low value growth as older stands, the thinning interval must increase 
over the age, and vice versa. With competitive pressure, the heterogeneity in 
the value growth rates might be compensated by the impact rates. Hence, 

Figure 4.9 A constant optimal thinning interval 
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less vigorously growing trees with comparatively low impact rates and more 
vigorously growing trees with comparatively high impact rates might be cut 
in increasing, decreasing or constant intervals. For instance, the increasing 
thinning interval in Figure 4.8 turns into a decreasing interval if the impact 
rate of the nd tree has a lower slope, if the impact rate of the th tree is 
higher or if value growth rate is lifted by previously conducted thinnings.  

4.3.4 Optimal Thinning Method 

The optimal method or type of thinning usually denotes the order of harvests 
of the trees in a stand on the basis of some classification of the trees (cf. e.g. 
Smith et al. 1997). These classifications might be based on different criteria. 
For instance, there might be crown, height, diameter or quality criteria. In 
view of the model approach of this study (cf. Paragraph 3.1), trees might be 
classified according to their value growth rates as these help determining the 
optimal harvest ages, cf. [4-3] and [4-14]. Accordingly, trees growing in value 
at high rates at a specific age denote high tree classes, and trees growing at 
low value rates low tree classes. Other classification criteria, on the other 
hand, such as the timber or value increment, might cause ambiguities as dif-
ferent classifications might be applied in the same investment situation. The 
classification does not refer to specific trees, but the membership to the clas-
ses is variable and dependent on the age. Thus, trees might belong to differ-
ent classes during the rotation age. Typically, all trees of a stand belong to 
the same class at the very beginning of the rotation period of an even-aged 
stand as factors of differentiation (cf. Paragraph 2.2) have not been effective 
yet. 

Based on this classification, two different types of thinnings might be distin-
guished: the harvest of less vigorously growing trees prior to more vigor-
ously growing trees, and the reverse case. In the simplified approach em-
ployed hitherto, the development of the tree value is only dependent on the 
development of the timber volume such that timber value growth rates equal 
timber volume growth rates (  might be cancelled out of the value growth 
rates). Therefore, trees are classified in the order of their volume growth 
rates. In this case, a connection might be set-up to the classical silvicultural 
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thinning methods. Typically, these are defined in terms of the tree classes 
according to Kraft (1884; cf. Smith et al. 1997, p. 99 ff.). Thereafter, trees are 
classified with reference to their relative dominance. The latter is deter-
mined by crown and position criteria such as crown size, vitality and shape 
as well as tree height. The higher a tree in relation to the other stand mem-
bers, and the larger and healthier its crown, the higher is its degree of domi-
nance. High tree classes comprise dominating trees with voluminous, 
healthy crowns while dominated trees in low tree classes have compara-
tively small, squeezed or dying back crowns.  

The objective of this often termed “natural” (Assmann 1970, p. 83) classifi-
cation scheme might be interpreted to organize trees in classes of equal 
“growth energy” (Assmann 1970, p. 84). Naturally, bigger crowns give rise 
to greater absolute timber increments due to the pipe model theory (cf. Sec-
tion 2.1.2). However, Assmann (1970 p. 99) gives evidence that the Kraft 
(1884) classes not only arrange trees according to their timber increments 
but to their timber volume growth rates (cf. also Magin 1952). In this way, 
trees of higher classes produce disproportionately more timber volume such 
that their comparatively higher timber volume is overcompensated. This dis-
proportional production of timber in relation to the employed timber vol-
ume follows from the higher efficiency of dominant trees to utilize resources 
(cf. Boyden et al. 2008; Campoe et al. 2013; Gspaltl et al. 2013).   

If the Kraft (1884) classes arrange the trees in the order of their volume 
growth rates, and if the Kraft (1884) classes serve to define the silvicultural 
thinning methods, the harvest of less vigorously growing trees prior to more 
vigorously growing trees might be termed thinning from below (equivalent 
to low thinnings, cf. Smith et al. 1997, p. 99 f.). The opposite case, when more 
vigorously growing trees are harvested previously, might refer to either 
crown or selection thinnings (Smith et al. 1997, p. 102 ff.) specified by the 
tree classes remaining in the stand. For simplicity, these thinning methods 
are termed thinnings from above in the following. Depending on the number 
of trees thinned simultaneously, different grades or intensities of these thin-
ning methods might be distinguished where increasing portions of the upper 
or lower growth rate distribution are removed. 
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The allocation of trees to classes implies homogeneity within the classes 
since these trees are treated equally. Moreover, when the tree classes are 
assumed to be intensively intermingled on the stand area, the trees within a 
class are growing more or less independently of each other. If this applies, 
the whole class is optimally harvested if one of its trees has reached its opti-
mal harvest age (cf. Section 4.2.1). Therefore, removals of parts of a tree class 
imply either interdependent growth of its trees or heterogeneity within the 
class. In the former case, the optimal thinning intensity in the homogeneous 
stand has to be considered while in the latter case the condition for the opti-
mal thinning intensity in the heterogeneous stand additionally applies (cf. 
Section 4.3.1).  

In a homogenous stand, the concept of thinning methods is irrelevant. Since 
all trees are growing equally at equal ages, there is no distinction between 
more or less vigorously growing trees. Thinnings are then neither from 
above nor from below, or both at the same time, depending on the point of 
view. Consequently, intentions to improve the growth of selected trees are 
only focused on all remaining trees but not on single trees. Here, all trees 
serve the same end with equal shares. Although trees might be harvested 
prior to the rotation age in order to improve the value of remaining trees (cf. 
Section 4.2.1), the order of harvests or the assignment of index numbers to 
each tree, respectively, is irrelevant as the stand grows homogeneously af-
terwards. Put in other words, it is irrelevant which trees are removed since 
all trees grow and influence other trees equally.  

In the heterogeneous stand, by contrast, trees might grow and influence the 
remaining trees differently. Hence, the opportunity arises to either cut more 
or less vigorously growing trees previously. However, without mutual inter-
dependencies between the trees, the order of harvest is determined solely 
by the value growth rates. As already indicated in Section 4.2.2, the optimal 
thinning age is then determined by  

[4-46] 
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Since the volume growth rates are strictly monotonically decreasing func-
tions (cf. Section 3.3.2), trees with lower value growth rates are cut prior to 
more vigorously growing trees necessarily as they intersect the constant rate 
of interest at an earlier age, provided they outweigh the influence of the rel-
ative land rent (cf. Section 4.2.2). This necessary order of the harvest ages 
due to the growth rates might have encouraged Pressler to demand the har-
vest of all “lazy or overripe workers” (1865, p. 18, original: 'faule oder 
überreife Gesellen'), which are not promising to yield a value increment 
above the interest rate. From this point of view, only thinnings from below 
are relevant in solitarily growing stands if value and volume growth rates are 
identical.  

When mutual interdependencies between trees are included, the order of 
harvests according to increasing growth rates is not necessary. Considering 
the conditions for the divergent optimal harvest ages of two successively 
thinned trees  and , i.e., [4-32] and [4-33] with  at the age 

, it must hold at a maximum of the LEV that (this is a reproduction of con-
dition [4-39]) 

Accordingly, if , the difference between the value growth rates on 
the left hand side must outweigh the difference between the relative impacts 
on the remaining trees on the right hand side.  

Applying the basic distinction between thinning from above and below from 
the beginning of this section, the left hand side of [4-47] is positive if the first 
tree to be cut, i.e. , grows at a lower rate, and it is negative if the th tree 
grows more vigorously. If thinning from below is more profitable, the right 
hand side of [4-47] might be either positive, zero or negative. If in this case 
the more vigorously growing tree exerts no influence on any tree, the left 
hand side of [4-47] is necessarily negative when only competitive pressure 
exists, thus satisfying the inequality. The stronger the impact of the more vig-
orously growing tree on the remaining trees, the more likely the right hand 

[4-47] 
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side might turn positive. When the impact in relation to the impact of the less 
vigorously growing tree is strong enough, the inequality will not hold. Then, 
both trees are either cut simultaneously or the more vigorously growing tree 
will be cut previously.  

If thinning from above is more profitable, the left hand side of [4-47] is neg-
ative. In order to satisfy the condition, the right hand side must turn negative 
as well. If the impact rates on the remaining trees are similar, this will only 
apply when the more vigorously growing tree exerts a considerable impact 
on the less vigorously growing tree. However, if the impact of the more vig-
orously growing tree on the remaining trees is strong enough, it might out-
weigh both the difference in the growth rates and the impact of the less vig-
orously growing tree.  

In this approach, different thinning methods might be characterized accord-
ing to the order of harvests set by the value growth rates as long as the net 
unit revenues remain unique for all trees (cf. Paragraph 4.4). Table 4-1 pro-
vides an overview on the basis of condition [4-47]. In the homogeneous 
stand, thinnings might be either more or less intense depending on the mu-
tual interdependencies (cf. Sections 4.3.1 and 4.3.2). Since all trees grow 
equally, the left hand side as well as the second term on the right hand side 
are necessarily zero. In the heterogeneous stand, thinnings might be con-
ducted either from above or from below depending on the characteristic that 
more vigorously growing trees are cut subsequently or prior to less vigor-
ously growing trees. In each case, equally growing trees within the heteroge-
neous stand might be cut simultaneously as indicated by the zero on the left 
and sides of the equalities.  

Within thinnings from below, different grades might be distinguished ac-
cording to the removal of more or less differently growing trees. Low grades 
(e.g. grade-A) only remove equally and less vigorously growing trees which 
might or might not exert influence on each other or the remaining trees. At 
the same time, more vigorously growing trees are left in the stand, as indi-
cated by the inequality. Higher grades of thinning from below (e.g. grade-B 
or -C) simultaneously remove more vigorously growing trees but also leave 
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even more vigorously growing trees in the stand, i.e., an increasing portion 
of the lower value growth rate distribution is thinned.  

Within thinnings from above, different types might be distinguished as well. 
Selection thinning is often referred to as the removal of the most dominant 
trees (Smith et al. 1997, p. 107 ff.), which will be the trees with the highest 
growth rates in the classification applied. For instance, this offers an argu-

Table 4-1 Characteristics of different thinning methods in view of the model ap-
proach 
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ment for removing wolf trees in young stands. It implies, however, that ine-
quality [4-47] holds; i.e., the negative relative influence of the removed trees 
is strong enough in order to offset the differences in the growth rates.  

In each case, by adding competitive pressures, the optimal order of harvests 
becomes ambiguous and not predetermined within the model approach. On 
the one hand, more vigorously growing trees earn a higher rate of return as 
less vigorously growing trees. On the other hand, more vigorously growing 
trees exert a stronger impact on the remaining trees as they release more 
resources when harvested. Less vigorously growing trees perform compar-
atively poorly but do hardly influence the remaining trees. Moreover, trees 
growing at a high rate might have accumulated high timber values thus re-
ducing the relative impact on the remaining trees even with strong absolute 
impacts.  

Basically, two conditions might be distinguished which favor thinnings from 
above. The higher the negative impact of the more vigorously growing tree 
on the remaining trees and the less the impact of the less vigorously growing 
tree on the remaining tree, the more likely thinnings are conducted from 
above as the right hand side of [4-47] turns negative. Alternatively and/ or 
additionally, positive impacts of the less vigorously growing tree on the re-
maining trees likewise increases the likelihood of thinnings from above. In 
the reverse case, i.e., with high impacts of the less vigorously growing trees 
and/ or low impacts of the more vigorously growing trees, thinnings are 
more likely to be conducted from below.  

4.4 Volume and Value 

The preceding analysis has focused primarily on the timber value and its 
change as the relevant determinants of the optimal harvest ages (cf. Section 
4.1.1). In the general model approach [3-6], the timber value only varies with 
the timber volume. In this section, the analysis is specified to account for dif-
ferent sources of timber value. This specification includes price differentials 
for different timber structures (Section 4.4.1) as well as the influence of har-
vest costs (Section 4.4.2). Moreover, the impact of the regeneration cost on 
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the optimal thinning regime is analyzed (Section 4.4.3). In this context, the 
approach is extended to include the initial density as an endogenous variable 
since it directly sets the relevant range for thinnings. Finally, the optimal tim-
ber volume as a consequence of the individual harvest ages is analyzed (Sec-
tion 4.4.4).  

4.4.1 Quantity and Quality 

The timber value of a stand is the product of the timber volume with the tim-
ber price at which it can be sold. Timber volume, however, might be a com-
posite expression which summarizes different qualities of timber as a uni-
form product. In order to separate both notions, timber volume is referred 
to as the combination of timber quantity and timber structure. The former is 
understood as the physical extension of timber. The timber structure, by con-
trast, is the combination of the quality and the dimension of the timber. Tim-
ber quality is typically determined through criteria concerning the inner 
structure of the timber. In this approach, quality criteria might be anything 
for which different timber prices are yielded. For instance, these criteria 
might refer to knots, juvenile wood, fungus infested areas, straightness or to 
spiral grain. The timber dimension, on the other hand, refers to the outer 
structure, which is determined by the diameter and length of the timber.  

Analogously to the timber volume (cf. Chapter 2), some aspects of the timber 
structure are also sensitive to the harvest ages in a stand. First of all, the stem 
diameter of a tree varies with its own harvest age and, potentially, with the 
harvest ages of its neighboring trees (cf. Section 2.1.2). In the same way, 
branch diameters as quality criteria respond to changes in the harvest ages. 
Other aspects of the timber structure, on the other hand, might not be influ-
enced by the harvest ages, such as fungus infested areas. These are irrelevant 
for a qualitative analysis as they do not influence the optimality of the endog-
enous variables.  

The relevance of these timber characteristics hinges on price differentials. In 
the presence of a uniform timber price, only the timber volume is relevant 
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for the determination of the timber value. With price differentials, equal tim-
ber volumes might represent different timber values due to different timber 
structures. Therefore, a specific timber price exists for each timber volume 
with a specific timber structure. From this point of view, different timber 
prices might be obtained if changes in the timber structure as a consequence 
of changes in the harvest ages occur. In this way, unit revenues for timber 
are age-dependent in the face of price differentials. While timber prices are 
thus exogenously given, unit timber revenues might change endogenously.  

The age-dependence of the unit revenues refers to changes in the timber 
structure. By contrast, unit timber revenues might also be dependent on time 
as timber prices might change in-between (cf. Section 3.3.1). In the static ap-
proach within the “Faustmann laboratory” (Deegen et al. 2011, p. 363 ff.), 
however, time and age are synchronized such that rate of price change is 
constant. In this as in most analyses, the rate of price change is assumed to 
be zero (cf. Section 3.3.1). Analyses with nonzero rates of price changes are 
provided, e.g., by McConnell et al. (1983), Newman et al. (1985) and Yin and 
Newman (1995). Nevertheless, the static character of the analysis remains 
as the rate of price change is constant and known. In dynamic optimization 
problems, the rate of price change might be irregular.  

The relevance of these different sources of timber value is at least well-
known since Pressler (1860; 1995). With reference to the change in the tim-
ber value, Pressler distinguished between the quantity increment, the qual-
ity increment and the price increment (Pressler 1860, p. 174). In their at-
tempt to show that the rates of the different increments, adjusted for the tim-
ber and land value and condensed as Pressler’s indicator rate, represent the 
first order condition for both the maximization of the Faustmann model [3-
2] as well as for the maximization of the generalized Faustmann model 
(Chang 1998), Chang and Deegen (2011) were able to separate the different 
increments analytically. Accordingly, they interpret the stumpage value of a 
stand as the sum of the timber values of product classes, which are charac-
terized by a particular timber price. The value of a product class is generated 
as the product of its share of total stand volume and the corresponding tim-
ber price (Chang and Deegen 2011, p. 261). In this setting, the timber volume 
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of the stand is a heterogeneous accumulation of different timber structures 
saleable at different prices, which are all subject to changes over the age. Fur-
thermore, this approach enables to analyze the influence of the planting den-
sity on the profitability with the inclusion of quality aspects (Coordes 2013).  

In this study, and in contrast to Chang and Deegen (2011), the timber volume 
of the stand is additionally separated temporally, i.e., different timber vol-
umes might be harvested at different ages. Accordingly, the timber volume 
of a specific tree  is modeled to yield a particular unit revenue . In terms 
of Chang and Deegen (2011), all trees yielding a specific timber price thus 
represent a product class. However, trees usually comprise different timber 
structures which might be sold at different prices (e.g. logs and brushwood). 
Therefore, the particular unit revenue  a tree yields has to be interpreted 
as the weighted mean of the different prices for each product class which are 
comprised in a tree. It is thus assumed that the tree is the inseparable unit of 
the forest stand. Though this assumption might be less severe for the appli-
cation of the model to problems of timber production, it might be important 
for the production of products other than timber (cf. Li and Löfgren 2000). 
In these cases, however, in which the separability of a tree is relevant, the 
problem might be solved analogously to the repeal of the inseparability of 
the forest stand (cf. Paragraph 3.1).  

In the preceding analysis, only the total change in the timber value has been 
addressed. This total change might now be separated into the value change 
due to changes in the timber volume of each tree and due to changes in the 
timber structure. The latter becomes relevant through changes in the unit 
revenues , which can be obtained for the modified timber structure. Since 
the timber structure potentially varies with the harvest ages, it is assumed 
that 

i.e., the unit revenue is potentially dependent on all previously conducted 
harvests as well as on the harvest of the specific tree itself in the same way 
as the timber volume, cf. [3-5].  

[4-48] 
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The direction of change, though, is dependent on the specific situation. For 
instance, timber of larger stem diameters usually yields higher timber prices. 
In this case, it holds that 

since postponements of the harvest age of a tree increase the stem diameter 
while postponements of previously conducted thinnings might reduce the 
diameter (cf. Section 3.3.2). Nevertheless, the unit revenue due to higher di-
ameters might also be reversed as is typically observed for very large diam-
eters due to their problematic processing. Just the opposite of [4-49] might 
also apply to changes in the timber quality. For instance, larger branch diam-
eters often result in lower timber quality. Since branch diameters respond to 
changes in the harvest ages in the same way as stem diameters, the unit rev-
enue might change in the opposite direction of [4-49]. In either case, the ex-
istence of unit revenue impacts implies volume impacts since there is no unit 
revenue impact without a volume impact.  

With the description in [4-48], the timber value  is specified as 

where  is a vector comprising all relevant variables, i.e. in this case, the har-
vest ages . As a consequence, the change in the timber value due to a 
change in the variables can be separated into changes in the timber volume 
and the unit revenue, respectively, since  

For instance, the revenues on the left hand side of the condition for the opti-
mal rotation age [4-1] is divided to give the value increment due to the 
change in the unit revenue that can be obtained for the changing timber 
structure and the change in the quantity of the timber volume.  

[4-49] 

[4-50] 

[4-51] 
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4.4.1.1 Optimal Thinning Ages with Price Differentials 

The separation of the value increment into structural and voluminous 
changes in the timber allows specifying the propositions concerning the op-
timal thinning regime in the preceding Paragraphs 4.1 - 4.3 since thinnings 
are often justified in order to increase the quality of the remaining trees. 
While thinnings might not increase the timber quantity at the rotation age, 
i.e., in particular, every thinning with rotation ages located before the mor-
tality threshold in Figure 2.1, thinnings might increase the timber value by 
virtue of higher unit revenues which can be obtained at the rotation age. Loss 
of timber volume at the rotation age as a result of thinnings might increase 
the  as long as the sum of the unit revenue and the volume increment, cf. 
[4-51], remains positive.  

With the separation in [4-51], the maximum condition for the optimal thin-
ning age [4-14] can be rewritten as  

Here, the value growth rates are separated into unit revenue and volume 
growth rates. For constant unit timber revenues, both the unit revenue 
changes and the timber prices as a whole can be eliminated in [4-52]. In this 
case, only the impact on the timber volume remains relevant such that a gain 
in timber volume now is balanced with an additional timber volume at future 
harvest ages. With price differentials, additional incentives for thinnings 
might arise.  

If the unit revenue is positively correlated with the stem diameter, for in-
stance as the relevant criterion of the timber dimension, both unit revenue 
changes on either side of [4-52] are positive since either the potentially 
thinned tree grows thicker or the remaining trees increase their diameter 
growth. Hence, both the marginal revenues and the marginal costs increase. 
If the unit revenue increases at a decreasing rate over rising diameters, the 
price increase of younger and thinner trees is greater than the one of older 
and thicker trees for equal increases in the increment. If, then, the diameter 

[4-52] 
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growth of younger trees is greater than the responses of older trees, the op-
timal thinning age tends to increase as the marginal revenues increase more 
than the marginal costs. By contrast, the relevance of thinnings in the homo-
geneous stand expands in this setting since either the LEV in [4-20] de-
creases due to lower unit revenues for thinned trees or both sides of [4-20] 
increase due to higher unit revenues for trees cut at the rotation age. In this 
way, larger price differentials between diameters favor thinnings but only 
relatively late thinnings.  

The same applies to linearly increasing unit revenues since the future unit 
revenue increase is discounted and the reaction of the older tree might be 
less intense (cf. Section 2.1.4). For progressively increasing unit timber rev-
enues, on the other hand, as well as for more vigorously growing older trees 
and for heterogeneous stands, earlier thinnings might become relevant 
when the increase in the future timber value justifies the comparatively 
small loss of the thinned tree. If the unit revenue increase of the remaining 
trees is assumed high enough, already small impacts will justify significant 
sacrifices of the thinned trees. At the same time, however, the relevance of 
thinnings increases as the right hand side of [4-26] decreases.  

With the introduction of quality criteria, additional incentives arise which 
are influenced by thinnings. If the unit revenue regarding the quality is neg-
atively correlated with the diameter, for instance due to larger branch diam-
eters, a thinning causes a unit revenue decrease of the remaining trees. At 
the same time, its own unit revenue is prevented from decreasing due to a 
lower quality. Together, the optimal thinning age thus decreases for linearly 
or regressively decreasing unit revenues over the diameter necessarily since 
the marginal costs are reduced more sharply than the marginal revenues. 
The relevance of thinnings, however, is diminished as condition [4-20] is less 
likely to be satisfied due to the decrease of the right hand side and the in-
crease of the left hand side. The same applies to progressively decreasing 
unit revenues although the optimal thinning age might then increase.  

This effect might be more or less irrelevant for living branches in many cases 
since the decisive branches for the timber value are usually those at the 
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lower parts of the stem as these determine the timber structure of the great-
est part of the timber volume. Often, these lower branches are dead when 
thinnings are conducted and might thus not increase their growth. In other 
cases, however, the thicker branches due to thinnings might be important; 
for instance, in young, very dense stands where early thinnings exert a sub-
stantial impact on both stem and branch diameters of the remaining trees. 
Viewed from a different perspective, however, thinnings might also increase 
the growth of branches which have not been growing yet. Those parts of the 
stem with dead branches might grow water shoots in the sequence of thin-
nings due to the increase of available resources.  

Both positive and negative interdependencies often arise simultaneously. 
For instance, considering a more or less homogenous and competitive stand 
of a shade-tolerant tree species like European beech (Fagus sylvatica L.) or 
sugar maple (Acer saccharum Marsh.), the trees are competing for resources 
thus reducing each other’s timber growth. At the same time, a fairly closed 
canopy might prevent knotless parts of the stem from being devalued. Here, 
positive and negative effects arise simultaneously, and thinnings are neces-
sarily irrelevant whenever the positive equal or outweigh the negative ef-
fects.  

The same applies to heterogeneous stands. Here, however, the potentially 
differing growth rates have to be considered additionally (cf. Section 4.2.2). 
Therefore, unequal growth might be compensated for by unequal impacts on 
the remaining trees. Trees might be hold despite their low volume growth 
rates in order to appreciate the positive effects on the unit timber revenues 
of the remaining trees. Thus, positive unit revenue correlations equally re-
strict the relevant range of thinnings. In contrast to the homogeneous stand, 
however, trees might be thinned even though they exert a net positive influ-
ence because of their own low growth rate.  

4.4.1.2 Optimal Thinning Regime with Price Differentials 

With price differentials, the optimal thinning regime is influenced. All factors 
which potentially allow influencing the value of the next tree to be thinned 
favor less intense or more frequent thinnings (cf. Sections 4.3.1 and 4.3.2). 
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Likewise, the optimal thinning intervals tend to be shortened over the age 
with degressively increasing unit revenues as the value growth is declining 
at a higher rate while the opposite applies to progressively decreasing unit 
revenues.  

With reference to the thinning method, two trees with different value growth 
rates might be growing at equal volume rates but at different unit revenue 
rates. For instance, two equally vigorously growing trees might be shaped 
differently such that the unit revenue increase of badly shaped trees (e.g. 
wolf trees) might approach zero while the other increase is positive. Moreo-
ver, the impact of differently growing trees on the unit revenue of the re-
maining trees might diverge. The classic example is the poorly growing, over-
topped tree which prevents knots from being formed on the stem of its dom-
inant neighbor while the other, co-dominant neighbor severely competes 
with the dominant tree for resources. Here, incentives to cut the less vigor-
ously growing tree previously arise.  

With price differentiations, the determination of the optimal thinning 
method is then specified to lead to, cf. [4-47],   

evaluated at age . Accordingly, volume and value growth rates might be 
distinguished. If a stand grows solitarily, the right hand side of [4-53] is zero. 
Without price differentials, the stand would then always be thinned from be-
low since there are no incentives to hold poorly growing trees. Naturally, 
thinnings from below might here be employed only metaphorically since the 
Kraft (1884) classes are only relevant in competitive stands.  

When the trees compete for resources, the right hand side of [4-53] might be 
positive or negative. Without price differentials, however, the net unit reve-
nue rates as well as all prices might be cancelled out. In this case, only the 

[4-53] 
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development of timber growth remains as the determinant for the optimal 
thinning method. Following the timber growth theory (cf. Chapter 2), high 
Kraft (1884) classes exert the highest absolute impact in a competitive stand 
since the removal of their voluminous crowns release more resources than 
the removal of trees with small crowns. However, due to the disproportion-
ately higher efficiency of dominant trees (cf. Section 4.3.4), even the impact 
rate of higher tree classes might be assumed to be of a greater magnitude 
since they transfer this efficiency to lower tree classes.  

If it is thus assumed that the higher Kraft (1884) classes both grow and in-
fluence other trees with a higher rate, the right hand side of [4-53] is neces-
sarily negative for thinnings from above if price differentials are absent. In 
this way, the question arises whether the higher impact rate of higher tree 
classes compensates for the loss of higher volume growth rates on the left 
hand side of [4-53]. Following the timber growth theory (cf. Chapter 2), the 
answer is negative since the contrary would imply that thinning from above 
leads to a higher timber volume compared to thinning from below. This case 
does not apply since the removal of bigger crowns is linked with lower re-
source utilization per unit area. Several experimental plots point in this di-
rection (cf. Assmann 1970, p. 223 ff.; Nyland 2002, p. 231 ff.). Consequently, 
thinnings from above are irrelevant for investment situations without price 
differentials in this simplified setting.  

If price differentials are present, nonzero unit revenue rates might offer in-
centives to thin forest stands from above. For solitarily growing stands, it is 
necessary that the difference in the unit revenue rates is inverse to and com-
pensates for the difference in the volume growth rates. Thus, faster growing 
trees of low quality might be harvested prior to slower growing trees of high 
quality as long as the unit revenue difference outweighs the volume differ-
ence. In either way, the influence of the relative land rent has to be surpassed 
such that the whole stand is not clear-cut (cf. Section 4.2.2).  

Differences in the unit revenue rates are dependent on the course of the unit 
revenue rates. If all trees face the same unit revenue function, i.e. 

, the difference in the rates is zero and thus negligible even with price 
differentials. The same holds for different unit revenue functions with slopes 
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proportional to the differences in the unit revenues i.e. . In 
these cases, stands are thinned from below necessarily. Nonzero differences 
in the unit revenue rates are given for equal unit revenue changes and une-
qual unit revenues, for the reverse case as well as for disproportional 
changes. Therefore, high quality trees of lower classes do not only require an 
absolute advantage in unit revenue increases but the comparative advantage 
in relation to the already high timber price to induce thinnings from above.  

Often, unit revenues are diameter-dependent which in turn are age- (and in-
itial density-) dependent. For instance, unit revenues are frequently ob-
served to increase in diminishing increment over rising diameters. Typically, 
diameter growth follows a sigmoid course over the age. The development of 
the unit revenues over the age is thus modified such that increasing unit rev-
enue rates might be relevant at younger ages. Since less vigorously growing 
trees are faced with lower absolute diameter increments, the higher unit rev-
enue rate per diameter unit of thinner trees has to exceed the higher absolute 
diameter increment of thicker trees in order to induce thinnings from above. 
Consequently, progressively increasing, regressively decreasing and linear 
unit revenues over rising diameters tend to favor thinnings from below 
(again in its metaphorical use). It thus pays to concentrate on the thickest 
trees as these promise the highest absolute and relative increase in timber 
value. If, on the other hand, unit revenues rise degressively, or decrease pro-
gressively respectively, over the diameters thinnings tend to be conducted 
from above (metaphorically) as the greatest opportunities for the improve-
ment of the timber value lies potentially in the thinner trees.   

When interdependencies between the trees enter the scene, the unambigu-
ous determination of the optimal thinning method is complicated. Next to the 
timber volume growth and the unit revenue rates of the trees, the impact 
rates on both the timber volume and the unit revenues on all other trees have 
to be considered. Consequently, more vigorous growing trees with equal or 
higher unit revenue rates compared to less vigorously growing trees might 
be cut sooner if their negative impact on the remaining trees is great enough. 
Plausible situation might easily be constructed. Considering only two trees 
of deviating growth rates and diameters, the more vigorously growing tree 
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might significantly restrict the timber growth of the less vigorously growing 
tree. With degressively increasing unit revenues over rising diameters, the 
impact rate of the more vigorously growing tree might be considerable 
higher than the one of the less vigorously growing tree since both the abso-
lute increases in diameter and the relative increases in unit revenue per di-
ameter unit are comparatively high.  

Nevertheless, since the removal of higher tree classes exert more influence 
on the remaining trees than the removal of lower tree classes, degressively 
increasing, progressively decreasing and linear unit revenues tend to favor 
thinnings from above while progressively increasing and degressively de-
creasing unit revenues favor thinnings from below. Furthermore, positive in-
terdependencies between trees might evolve when unit revenues are al-
lowed to vary with the harvest ages. Typically, low tree classes might be kept 
in the stand in order to preserve the high quality of some dominant trees. In 
this case, the unit revenue impact rate on the right hand side of [4-53] is pos-
itive and thus appears as an additional marginal revenue. For thinnings from 
above, this tends to lower the right hand side of [4-53] thus tending to satisfy 
the inequality.  

The previous considerations apply to continuous unit revenue functions. 
With discrete functions, i.e., with different prices for different timber sorts, 
unit revenue change rates are either zero or as high as the leap to the price 
of the next timber sort. In this way, it must be ascertained whether unit rev-
enue jumps are relevant for the corresponding thinning or not. If, for in-
stance, the potentially thinned tree and the remaining trees are far from a 
unit revenue leap, it might be profitable to concentrate more timber growth 
on the remaining trees if their product price is higher than the thinning prod-
uct price. In either case, tough, the basic argument remains valid.  

In summary, price differentials offer incentives to thin forest stands as an-
other opportunity to increase the value of the remaining trees arises. In this 
sense, it might pay to concentrate timber growth on the trees with the high-
est value increment relative to the thinned timber value. However, trees con-
sidered for thinning might also yield unit revenue rates, which in turn lower 
the relevance of thinnings again. If the order of the trees according to the 
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value growth rates deviates from the order of the trees according to the vol-
ume growth rates (tree classes), thinnings from above are conducted while, 
in the opposite case, the stand will be thinned from below. Degressively in-
creasing, progressively decreasing and linear unit revenues over rising di-
ameters tend to change the order of value growth rates compared to volume 
growth rates.  

4.4.2 Harvest Cost 

Any harvest of trees incurs costs to the forest owner. Naturally, these costs 
comprise fixed and variable costs. While the fixed costs are irrelevant for the 
isolated determination of the optimal harvest amount (Duerr 1993, p. 119), 
they are crucial for the determination of the optimal management regime 
due to the simultaneous equation system [3-13] - [3-15] as well as for the 
limits of profitable timber production. Variable costs, on the other hand, di-
rectly determine the optimal harvest ages as they depend on the order of 
harvests.  

4.4.2.1 Variable Harvest Cost 

Variable harvest or extraction costs accrue for every harvested volume of 
timber. The net unit timber revenue of a specific tree  for a harvested vol-
ume of timber is thus given by 

where  is the unit timber revenue,  are the variable harvest cost, and  is 
a vector comprising all relevant variables. Both the unit revenue and the var-
iable harvest cost may be dependent on the harvest ages. Typically, the unit 
revenue varies with the timber structure as described in the preceding Sec-
tion 4.4.1. For instance, thicker trees often yield higher timber prices per tim-
ber volume.  

The variable harvest costs, on the other hand, vary in a specific way with the 
diameter of a tree. For equally long and formed stems, the number of stems 

[4-54] 
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 which are required to sum a particular timber volume  is decreasing over 
the diameter of the stems (all measured at the same location) since, cf. [2-
4],  

where is the form factor for the shape of the stem, and  is the length of the 
stem. For equal logging techniques, which imply equal costs for the harvest 
of one stem, the harvest costs are thus negatively correlated with the corre-
sponding diameter according to a power law. As long as stands of the same 
age are compared, the tree height exerts no influence as it is assumed con-
stant (cf. Section 2.1.3). For stands of different ages, however, the decline of 
the harvest cost is modified by the tree height. Since trees in dense stands 
are taller than younger and equally thick trees in less dense stands, all other 
things being equal, the increase of the harvest costs is attenuated, though not 
reversed due to the power functional relationship. The development of the 
adjustment factor, one the other hand, may attenuate or reinforce the de-
cline.  

Since the diameters of the trees in a stand are endogenously determined by 
the harvest ages (cf. Section 2.1.2), the variable harvest cost are dependent 
on these, i.e., 

As postponed harvests are associated with additional diameter growth of the 
potentially thinned trees, while postponed thinnings reduce the diameter of 
the remaining trees (cf. Section 2.1.2), the changes in the harvest cost are 
given by 

[4-55] 

[4-56] 

[4-57] 

[4-58] 
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In contrast to [4-57] and [4-58], the changes in the unit timber revenue due 
to changes in the timber structure are not unambiguous (cf. Section 4.4.1). If 
unit revenues are constant or increasing with larger diameters, the change 
in the net unit revenue  due to changes in the harvest ages points neces-
sarily in the opposite direction of the changes in the harvest cost in [4-57] 
and [4-58], i.e., the net unit revenue a tree may obtain rises with its post-
poned harvest and decreases with postponed harvest of its neighboring 
trees. For decreasing unit revenues of thicker trees, the change depends on 
the relative magnitudes of unit revenue and harvest cost.  

From this perspective it follows that thinnings always provide an argument 
for reducing the variable harvest costs. This relationship becomes relevant 
in the condition for the optimal thinning age [4-13]. Since the second term 
on the right hand side denotes the change in the timber value of all remaining 
trees, the likelihood to thin a tree increases when the variable harvest cost 
of future harvests can be reduced. In the same way, the relevant range for 
thinnings is influenced. Since the relevance of thinnings is determined with 
the help of the potential impact of thinnings on the remaining trees, cf. [4-
20] for the homogenous and [4-25] for the heterogeneous stand, the rele-
vance increases in the presence of variable harvest costs as the impact on the 
value of the remaining trees increases (cf. Paragraph 4.2).  

The degressively decline of the variable harvest cost with increasing diame-
ters is relevant in every stand. Without timber price differentials, net unit 
revenues thus increase over the age even in forest plantations for pulpwood 
where no structural timber aspects are relevant since the diameter growth 
follows a sigmoid course. As a consequence, the impact of the variable har-
vest costs is identical to the impact of digressively increasing unit revenues 
discussed in the preceding Section 4.4.1.2. Therefore, thinnings, but only 
comparatively late thinnings, become more relevant. Furthermore, thinnings 
tend to be less intense, conducted at shorter intervals and from above (cf. 
Section 4.4.1) 

Without price differentials, trees of lower volume growth rates might grow 
in value at higher rates in the presence of variable harvest cost. As Appendix 
1 (Paragraph 7.1) demonstrates for two trees with equal volume growth 
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rates, the advantage of a higher absolute diameter increment of a thicker tree 
is overcompensated by the advantage of the steeper decline of the variable 
harvest costs of the thinner tree if [4-55] holds. Since, moreover, the higher 
net increment is set in relation to the lower timber volume and potential in-
terdependencies between the trees favor the less vigorously growing tree 
more, the value growth rate of the thinner tree exceeds the one of the thicker 
tree necessarily. Thus, the thicker tree is harvested sooner. In this way, even 
lower volume growth rates may produce higher value growth rates if price 
differentials are absent. This relationship might be reinforced by degres-
sively increasing or progressively decreasing unit revenues while it is atten-
uated in the reversed case.  

In the presence of variable harvest cost, the net unit timber revenue might 
be negative. In these cases, thinnings are said to be precommercial. A thin-
ning is denoted as precommercial if it holds at the age of the harvest  that 

When thinnings are precommercial, the timber value of the tree turns nega-
tive since 

Hence, the costs of holding the tree value on the right hand side of [4-13] 
become the revenues of postponing the interest payments.  

The corresponding value increment on the left hand side of [4-13] is then 

Here, two parts might be separated. During the time period , the changes 
in tree value due to a change in the net unit revenue and a change in the tim-
ber quantity. Since the change in the timber volume is necessarily positive 
(cf. Section 3.3.2), the second term of the value change in [4-61] is negative 

[4-59] 

[4-60] 

[4-61] 
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for precommercial thinnings as . The change in the net unit revenue, 
on the other hand, depends on the relative magnitudes of the changes in the 
unit revenue and the harvest cost. For constant or increasing unit revenues, 
the change is necessarily positive as the change in the harvest cost is nega-
tive, cf. [4-57]. Only in the case of rapidly decreasing unit revenues, the net 
unit revenue change might be negative. In this situation, however, thinnings 
are irrelevant since timber production is unprofitable. Together with the 
positive timber volume, the first term of the value change in [4-61] is posi-
tive. As both changes are opposing each other, the total change in value is 
indeterminate in the case of precommercial thinnings.  

The complete maximum condition for the optimal thinning age of the th 
tree is then, cf. [4-13],  

Disregarding the impact on the remaining trees for the moment, condition 
[4-62] might be satisfied for negative magnitudes of both the value incre-
ment and the interest on the value as both are negative for precommercial 
thinnings. Figure 4.10 shows a fictitious example. The black solid curve illus-
trates the value increment. It is composed of both grey curves, which are the 
value change due to changes in the net unit revenue (solid) and due to 
changes in the timber quantity (dashed), cf. left hand side of [4-62]. Since the 
net unit revenue is zero at the beginning, the value change is negative first 
for a given precommercial phase. The same holds for the interest on the tim-
ber value, which is illustrated by the black dashed curve, cf. right hand side 
of [4-62]. Both the value change and the value interest cross each other in 
the negative quadrant. However, in the absence of mutual interdependencies 
between the trees, the second order sufficient condition [3-16] rules out this 
harvest age as it denotes a minimum due to the crossing of the value incre-
ment from below. If the tree growth is persistently poor, such that the tree 
does not leave the precommercial phase, its optimal thinning age is virtually 

[4-62] 
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infinite as its almost zero increment comes not in equality to the interest on 
its timber value. In this case, the costs of cutting the tree are postponed to 
the rotation age.  

The presence of mutual interdependencies, though, might offer an argument 
for precommercial thinning. Since the unit timber revenue and the harvest 
costs as well as the timber quantity of the remaining trees might be positively 
influenced, cf. [4-62], it may pay to harvest trees although the cost might ex-
ceed the revenues. As long as the negative value increment exceeds the neg-
ative interest on the tree value, the impacts of postponing the thinning has 
to be positive in order to hold the tree. When the negative value increment 
is less than the negative interest on the tree value, it might nevertheless pay 
to thin a tree in order to generate the additional value of the remaining trees 
by increasing either or both the timber quantity and the unit revenue by de-
creasing the variable harvest cost. On the other hand, and despite the poten-
tially negative impact on the neighboring trees, it might pay to hold unde-
sired trees as their removal is too expensive compared to their impact. For 
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Figure 4.10  A fictitious example of precommercial thinning 
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instance, this might apply to unintentionally regenerated pioneer tree spe-
cies.  

Although precommercial thinning is an investment as capital has to be sup-
plied in order to induce a future income, its occurrence is analogous to com-
mercial thinnings in the model approach of this study. Like the regeneration 
cost at the beginning of a rotation period, precommercial thinnings regener-
ate the forest stand through a payout. On the one hand, the harvest of “nega-
tive value” by thinning precommercially will incur interest costs in the future 
which are higher the longer is the period between the thinning and the har-
vest of the remaining trees. This relationship offers incentives to postpone 
precommercial harvests to the age of commercial harvests. On the other 
hand, the earlier competitors are removed, the greater is the impact on the 
remaining trees. This might offer incentives to harvest trees just after the 
crossing of the threshold of competition. Depending on the opportunity to 
increase the value of the remaining trees, the first optimal thinning ages 
might be precommercial or commercial. However, due to the negatively in-
clined power functional relationship of the variable harvest cost and despite 
the negative net value, the unit revenue increase of precommercial trees is 
higher than the increase of commercial trees for equal diameter increases, 
which offers incentives to postpone thinnings in homogeneous stands and to 
thin from above in heterogeneous stands (cf. Section 4.4.1).  

In summary, precommercial thinnings are irrelevant for both solitarily 
growing homogeneous and heterogeneous stands. In either case, trees will 
not be harvested as long as their timber value is negative. If the timber value 
will never reach a positive value, the optimal harvest age is infinite or coin-
cides with the rotation age if timber production is profitable. With mutual 
interdependencies between the trees, it pays to thin trees precommercially 
if the impact on the remaining trees justifies the payments of the harvest and 
the accumulation interest costs.  
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4.4.2.2 Fixed Harvest Cost 

In contrast to variable harvest cost, fixed harvest costs might occur with 
every thinning in an amount independent of the tree size. If the fixed harvest 
costs associated with the harvest of the th tree are denoted by  

they are only relevant if two adjacent harvest ages differ. The thinning model 
[3-6] can then be written as 

The associated optimal harvest age of the th tree is determined by the max-
imization of [4-64] with respect to , which yields after setting to zero and 
rearranging  

for . Compared to the condition for the optimal thinning 
age without fixed harvest cost [4-13], the left hand side is extended by the 
interest on the fixed harvest cost associated with the harvest of the th tree. 
Since these are necessarily non-negative, cf. [4-63], a postponement of the 
thinning might yield interest on the capital which must not be sacrificed for 
the harvest. The presence of fixed harvest costs thus increase the revenue 
side unilaterally thus increasing the optimal thinning age when viewed iso-
lated from the equation system. The same holds for the optimal rotation age 
which is then determined according to, cf. [4-1],  

[4-63] 

[4-64] 

[4-65] 

[4-66] 
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Because the LEV decreases when fixed harvest cost are relevant while the 
revenue side increases, the optimal rotation age increases when viewed iso-
lated from the equation system.  

Since the fixed harvest cost of the th tree are only relevant when it is not 
harvested simultaneously with the st tree, cf. [4-63], the optimal thin-
ning intensity and the frequency, respectively, are influenced. With reference 
to the optimal thinning intensity in the homogeneous stand [4-36], two po-
tentially successively harvested trees,  and , are harvested at the same 
age in the presence of fixed harvest cost if 

Accordingly, the two trees are harvested simultaneously if the impact of a 
postponement of the thinning on the next tree to be cut is less than or equal 
to the interest on the fixed harvest cost. In a solitarily growing and homoge-
neous stand, [4-67] is never satisfied with fixed harvest cost, and all trees are 
harvested at the rotation age.  

The thinning is even intensified if more trees share the same relationship at 
the age , i.e.,  

where  is the number of trees with the corresponding investment charac-
teristics. The same reasoning applies to the thinning frequency in the homog-
enous stand. If the impact on the remaining tree in [4-67], and in [4-68] re-
spectively, is greater than the interest on the fixed harvest cost, the trees are 
cut successively.  

In a heterogeneous stand, the condition for the optimal thinning intensity [4-
37] becomes more complicated with fixed harvest cost due to the differing 
growth of the trees, i.e.,  

[4-67] 

[4-68] 
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Hence, the impact of the differences in the relative influences on all remain-
ing trees is reduced by the relative interest on the fixed harvest costs. With-
out mutual interdependencies, the right hand side of [4-69] is reduced to the 
term on the very right. As a result, two solitarily growing trees might differ 
in their growth rates but are cut simultaneously due to the relative interest 
on the fixed harvest cost. Or, from the perspective of the thinning frequency, 
differently and solitarily growing trees are only harvested at different ages if 
the deviation in the growth rates is high enough to offset the relative interest 
on the fixed harvest costs. Eventually, differences in the impact on the re-
maining trees might favor or handicap the thinning intensity, or frequency 
respectively. For instance, trees with similar growth rates but differing im-
pacts on the remaining trees might nevertheless be harvest at the same age 
due to the presence of fixed harvest cost.  

In summary, fixed harvest cost promote the thinning intensity while affect-
ing the thinning frequency adversely since they offer incentives to balance 
losses of future additional timber volumes with gains from lower harvest 
costs. Especially in less competitive stands, the number of thinnings might 
be reduced severely by fixed harvest costs. Only considerable differences be-
tween the growth rates and/ or the impacts on the remaining trees offer in-
centives two cut trees successively when fixed harvest costs are compara-
tively high.  

4.4.3 Regeneration Cost 

Analogously to harvest costs, regeneration costs may appear in the form of 
variable and fixed costs, cf. [3-24]. In general, the impact of regeneration 
costs on the profitability of timber production was analyzed by Chang 
(1983). In his work, Chang was able to determine the changes in the optimal 

[4-69] 
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planting density and optimal rotation age due to changes in the investment 
parameters. However, while the changes due to variations of the fixed regen-
eration costs could be determined unambiguously, the change due to varia-
tions of the variable regeneration costs remain ambiguous and only deter-
minable for some specified cases. In this way, further extensions of the 
model, as in Section 3.2.1, promise no greater insight as more, if not all, 
changes will become indeterminable. Therefore, the analysis here tries to 
combine aspects of the timber growth theory (cf. Chapter 2) and of the initial 
density model (cf. Section 3.2.1) in order to explore the implications for thin-
ning and its relevance. 

The initial density might be conceived as the planting density. In contrast to 
more complex regeneration methods like natural regeneration or sowing, 
problems like the impact of the storage and germination of the seeds as well 
as the distribution of the plants can then be omitted, which allows to focus 
on the relevant impact of the density. However, with each method, variable 
and fixed costs arise in some way which unifies the approach. The influence 
of the fixed regeneration costs is analogous to the impact of the fixed regen-
eration cost  employed in the analysis above, which therefore applies 
equally.  

In a simultaneous equilibrium generated by the necessary condition [3-30], 
the optimal initial density  must satisfy, cf. [3-32],  

with . Accordingly, the additional timber value due to a change in the 
number of trees on the left hand side must equal the variable regeneration 
cost  corrected for the impact on the timber value of all already existing 
trees.  

In view of the result in Sections 4.4.1 and 4.4.2, the effects of changes in the 
initial density might be specified. With reference to [4-54], [4-70] might be 
rewritten as  

[4-70] 
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First, an additionally regenerated tree generates the opportunity to harvest 
an additional tree (first term on the left hand side). Naturally, the change in 
the number of trees due to a change in the initial density takes only integer 
values. Without mortality, . However, if the additional tree pushes the 
stand on the threshold of competition (cf. Figure 2.1), then  since one 
tree dies off in the course of competition. The second opportunity to increase 
the  by an additionally regenerated tree is given by potential unit reve-
nue increases (second term on the left hand side). For instance, the addi-
tional tree might cause the timber quality to increase due to lower branch 
diameters or reduced areas of juvenile wood. Nevertheless, since unit reve-
nues might also be affected by the dimension of the timber (cf. Section 4.4.1), 
the value of all trees might decrease due to thinner trees. In this case, the unit 
revenue effect is negatively inclined thus working as a marginal cost.  

Obstacles to the regeneration of an additional tree are given on the right 
hand side of [4-71]. First, the variable regeneration cost  must be raised. 
Second, costs arise due to lower timber volumes of all trees within the range 
of competition as a result of smaller diameters (cf. Section 2.1.2). Third, and 
for the same reason, the variable harvest costs increase (cf. Section 4.4.2.1). 
Within the range of solitary growth, both terms on the very right side are 
zero. However, the management of solely solitarily growing trees is irrele-
vant (cf. Section 4.2.1).  

Given positive variable regeneration cost, the right hand side of [4-71] is nec-
essarily positive in all relevant cases. In order to ensure the balance, the left 
hand side must be positive equally. Assuming that unit revenues are constant 
over the age for the moment, i.e. in the presence of a unique timber price or 
unit revenue function, the opportunity of receiving gains by an additionally 
regenerated tree is reduced to the additional tree value. This additional value 

[4-71] 
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is zero in two cases: on the threshold of competition and for the equality of 
the unit revenue with the variable harvest cost. In either case, the marginal 
revenues of regenerating another tree cease while unilaterally imposing 
costs.  

Typically, the stem diameter which realizes a timber price that just covers 
the variable harvest costs is referred to as the cost-covering diameter, or for-
mally 

This concept accounts for the dependence of the variable harvest costs, and 
to some extent of the unit revenue, on the stem diameter (cf. 4.4.2.1). Natu-
rally, the harvest ages and the initial density must be chosen to generate di-
ameters beyond the cost covering. If the first thinning is conducted before or 
just as the cost-covering diameter is reached, the additional regenerated tree 
will only raise cost since the marginal revenues on the left hand side of [4-
71] are negative or zero.  

Anyway, even if the harvest ages and the initial density are chosen such that 
the cost-covering diameter is exceeded, the revenues from a potential har-
vest of the additionally regenerated tree might not cover the additional re-
generation costs. Consequently, a total variable cost-covering diameter 
might be defined as 

Any initial density may then not be chosen which generates stem diameters 
which fall short of the total variable cost-covering diameter at the age when 
mortality takes place. Additional trees may generate net revenues from thin-
nings but are unable to cover their accreted regeneration costs thus lowering 
the LEV necessarily. Fewer trees will further reduce the regeneration as well 
as the harvest costs while simultaneously increase the timber volume of all 
trees but will also reduce the opportunity to harvest more trees which in 
some investment situations might outweigh the cost.  

[4-72] 

[4-73] 
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Eventually, in order to account for all costs, the prorated fixed regeneration 
cost might be added to define a total cost-covering diameter as 

This conception helps determining the boundaries of profitable timber pro-
duction in general since any combinations of the harvest ages and the initial 
density which are unable to generate diameter above the total cost are irrel-
evant.  

The preceding propositions are summarized in Figure 4.11. It is based on the 
results of the timber growth theory in Figure 2.1. Accordingly, combinations 
of the stand age and the initial density mark the thresholds of competition 
(ToC) and mortality (ToM). The long dashed line represents all combinations 
where the cost-covering diameter (CCD) is reached while the medium 

[4-74] 

Figure 4.11 The relevant range of optimal initial densities 
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dashed line shows the total variable cost-covering diameter (TVCCD) combi-
nations. Within the range of solitary growth, both lines are parallels to the 
initial density as the diameters remain unaffected. Beyond the threshold of 
competition, higher ages are necessary to guarantee equal diameters. Like-
wise, the distance between the curves of the CCD and the TVCCD increases 
progressively as a result of the compounded interest on the variable regen-
eration cost. Since it takes a longer time to produce trees thick enough to 
cover their regeneration costs, this time elapsed exponentially increases the 
interest costs on the regeneration. At some point, higher initial densities 
might not be able to compensate for their regeneration costs such that the 
TVCCD curve is parallel to the stand age.  

The intersection point of the TVCCD curve and the threshold of competition 
marks the maximal relevant initial density ( ). Higher densities may 
produce trees which can be harvested with a net revenue starting from the 
crossing of the cost-covering diameter ( ), but which are unable to cover 
their regeneration costs. With higher interest rates, the relevant maximum 
moves to lower initial densities due to the compound interest. For , 
thinnings are inevitable as otherwise trees are dying of which could have 
generated a net revenue. Due to the overall static approach, thinnings only 
serve to anticipate mortality before the TVCCD. After the crossing of the 
TVCCD, however, additional net revenues are generated which might com-
pensate for the loss of the smaller diameters. In general, linear and progres-
sively rising net unit revenues for thicker trees will make thinnings irrele-
vant as the planting density is reduced to allow solitary growth over the en-
tire rotation age in order to produce the thickest trees possible within the 
production period. For degressively increasing net unit revenues and low 
variable harvest cost, the optimal initial density approaches  and thin-
nings become increasingly relevant. In this way, thinnings allow to produce 
additional value by regenerating more trees while simultaneously minimize 
the loss due to the thinner trees.  

The lowest ages which allow to yield a repayment ( ) or a net variable 
revenue ( ) are all solitarily growing combinations of the harvest ages 
and the initial density. In this way,  marks the earliest optimal thinning 
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age within the initial density model approach. It follows that precommercial 
thinnings are irrelevant in this setting since the planting density is deter-
mined by anticipating thinnings. Because thinnings might be viewed as a way 
to reduce the initial density at higher ages, it cannot work as effectively as 
reductions of the initial density since the time elapsed until the harvest age 
and, therefore, the response options of the trees are limited. Additionally, re-
ductions of the initial density reduce costs while precommercial thinnings 
increase costs.  

To account for the prorated fixed costs, the narrowly dashed line in Figure 
4.11 represents the total cost-covering diameter (TCCD) combinations of the 
harvest ages and the initial density. It takes the familiar form of the U-shaped 
average cost curve since the initial density, in contrast to the stand age, is a 
factor of production. In this particular representation, however, the relevant 
value axis is not shown as all curves are projections (cf. Section 2.1.5). Natu-
rally, the (correct) average cost curve is U-shaped with respect to the initial 
densities as low initial densities must bear comparatively high fixed costs 
whereas high initial densities must bear high accumulated variable costs. 
The (tilted) U-shaped TCCD curve in Figure 4.11, on the other hand, follows 
from compound interest. Low initial densities soon cross the cost and total 
variable cost-covering diameter but cannot cover the fixed costs, which are 
amplified by the interest costs, due to the low stem numbers. Very low initial 
densities might never produce timber at a profit. High initial densities, on the 
other hand, might cover the fixed cost quickly but are increasingly unable to 
cover the variable cost such that very high densities are equally unable to 
produce timber at a profit. In this way, the TCCD curve marks the zero line of 
the .  

The lowest optimal initial density which might conceivably generate a maxi-
mal LEV in some investment situations ( ) is determined by the intersec-
tion of the TCCD and the ToC curve. Lower densities are either unprofitable 
in general or irrelevant due to increasing returns to scale (cf. Section 4.2.1). 
It follows that the relevant range of optimal initial densities is delimited by 
both TVCCD and the TCCD curve. More trees planted might be interpreted as 
wasted plants while fewer trees might be understood as wasted land. The 
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potentially lowest optimal rotation age is determined by the tangent to the 
TCCD curve which is parallel to the initial density axis. Both higher and lower 
initial densities require more time to cover all costs.  

In the planting density model proposed by Chang (1983), the relevant range 
of the optimal planting densities is given by the intersection points of the 
TCCD with ToC ( ) and the ToM ( ). Since all trees are cut at the same 
age, it is unprofitable to produce trees which cannot be harvested and which 
cannot promote the value of the remaining trees. In general, the Chang 
(1983) model is restricted to all combinations of the rotation age and initial 
density which lie between the ToC and ToM. Without any unit revenue dif-
ferentiating effects, all planting densities except the lowest are relevant. In 
this case, it might pay to regenerate many trees since even the smallest might 
be sold at a profit.  

The preceding analysis remains valid if net unit revenue changes, cf. second 
term on the left hand side of [4-71], are introduced which favor thicker trees 
or where the net unit revenue increase due to higher diameters equals or 
outweighs net unit revenue decreases from lower diameters. If the net unit 
revenue for higher diameters decreases, for instance due to the dominant 
impact of the timber quality, higher planting densities and precommercial 
thinnings cannot be precluded. In this way, if the value of higher timber qual-
ity is only assumed to be high enough, i.e., if the unit revenue change is pro-
gressively decreasing, all planting densities might be justified as long as the 
quality criteria are not over-fulfilled (cf. Coordes 2013). In these cases, thin-
nings are relevant as they allow to induce the positive unit value effects of 
higher diameters once the quality criteria are met satisfactorily. The classical 
example here is the two stage production of high quality sawlogs where high 
initial densities are followed by releasing selected trees in the second part of 
the rotation period. The optimal age for releasing some trees is basically de-
termined by condition [4-52].  

In summary, tree volumes, variable harvest costs, unit revenue premiums for 
thicker trees, variable planting costs and natural mortality all offer incen-
tives not to plant more trees than are only just standing when the total vari-
able cost-covering diameter is reached. Decreasing unit revenues over rising 
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diameters, on the other hand, might induce to regenerate more trees. In ei-
ther of these cases, thinnings basically appear as the anticipation of natural 
mortality.  

4.4.4 Optimal Timber Volume 

In the model approach of this work, the management of a forest stand is re-
duced to the individual harvest ages of each tree. For that reason, other stand 
characteristics are the consequences of the harvest ages. As one of these 
characteristics, the optimal timber volume, or often referred to as the opti-
mal timber stocking, of a stand is an indirect consequence of the optimal har-
vest ages, and not the direct control variable as in other approaches (cf. 
Chapter 1).  

For all cases in which thinnings are irrelevant (cf. Paragraph 4.2), the optimal 
timber volume is given by the untreated stand development. Typically, this 
natural stand development follows a sigmoid course over the age (cf. Section 
2.1.3) with increasing increments at the beginning of the development fol-
lowed by a period of decreasing increments. The optimal timber volume thus 
increases over the age until the final rotation harvest is conducted. This op-
timal rotation timber volume is then determined by the Faustmann-Pressler-
Ohlin theorem [4-2]. In order to produce the maximum of standing timber, 
the planting density has to be chosen such that the beginning of natural mor-
tality coincides with rotation age (cf. Sections 2.1.3 and 4.4.3). For the maxi-
mal growth performance, the planting density has virtually to be infinite and 
mortality has to be anticipated.  

In forest stands in which thinnings are relevant, the development of the op-
timal timber volume is modified by the harvest of parts of the stand. Every 
thinning necessarily and by definition reduces the timber volume of a stand 
at the age of the thinning as trees are removed from the stand. Since this re-
duction occurs at one age, the accumulated timber volume function of the 
stand follows then a discontinuous course. As single trees are assumed to 
grow continuously without any discontinuous leaps, the timber volume of 
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the stand is less than the timber volume of an untreated and otherwise iden-
tical stand for a more or less long time period after the thinning. Naturally, 
the optimal timber development remains unaffected until the first optimal 
thinning age.  

In homogeneous stands and for constant unit timber revenues, however, 
thinnings necessarily reduce the timber volume compared to its identical, 
but untreated counterpart permanently. If it is possible to reduce the timber 
volume by a fixed quantity while maintaining the timber increments, the  
increases since the same amount of timber can be produced with lower cap-
ital costs. In this case, it pays to remove every tree in order to reduce the 
capital costs. However, since no trees produce any increments, this situation 
does not arise. If the increments even increase due to the thinning, such that 
the timber volume will be as high as in the untreated stand at some age, the 

 can be even more increased as more is produced with less input. Here, 
it also pays to thin all trees instantaneously in order to gain the higher incre-
ments and reduce the capital costs. This, though, amounts to clear-cutting 
the stand which would be determined by condition [4-1] since future regen-
eration costs and timber revenues have to be considered.  

With reference to the condition for the optimal thinning age [4-13], an unin-
fluenced timber volume of the remaining trees would be identical to a soli-
tarily growing tree, i.e., the second term on the right hand side of [4-13] 
would be zero. If this situation would mark the optimal thinning age, the tree 
would be thinned when its value growth rate equals the rate of interest. In 
the homogenous stand, this would apply to all trees which in turn conflicts 
with condition [4-1] as the optimal thinning age would exceed the optimal 
rotation age. The same applies if the impact of a postponement of the thin-
nings on the remaining trees would be positive such that the rate of interest 
on the right hand side of [4-13] would be reduced. Only the reduction of the 
timber volume at the next optimal harvest age offers incentives to only cut 
one tree.  

Figure 4.12 illustrates the argument. The solid curve shows the timber vol-
ume development over the age of the untreated stand. At  a thinning takes 
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place. It instantaneously reduces the timber volume of the stand by the tim-
ber volume of the thinned tree(s). If the trees are growing solitarily, the re-
maining trees continue to grow undisturbed (dashed curve) such that the 
timber volume at the age  is reduced proportionately to the thinning inten-
sity at  compared to the untreated stand.  With mutual interdependencies 
between the trees, the remaining trees grow more vigorously after the thin-
ning due to the additional resources such that the timber volume rises com-
pared to the solitarily growth (dotted curve). The additional timber volume 
at the age  induced by the thinning is then given by the difference between 
the competitive and the solitary growth. Basically, the thinned, competitive 
timber volume might exceed the untreated timber volume if mortality takes 
place between  and  (cf. Section 2.1.4). In a maximum of the , how-
ever, this situation does not arise since it pays to thin the stand before as 
mortality can be utilized and capital cost can be reduced relative to the value 
increment.  

Figure 4.12 Effect of a thinning on the timber volume of the stand 
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In any case, optimal thinnings are not conducted in order to maximize the 
timber increments in any way. In contrast, the summed increment of the 
stand necessarily decreases on the average within a thinning interval. If the 
stand increment increases or remains unaffected, it is optimal to cut another 
tree since capital costs can be reduced without loss of revenues. Although 
the increments of the remaining trees increase in a competitive stand after a 
thinning, they are not maximized since this would imply solitary growth 
which is unprofitable in the homogeneous stand necessarily (cf. Section 
4.2.1).  

If thicker trees are more valuable such that the net unit timber revenue in-
creases over rising diameters, for instance due to increasing unit revenues 
or to variable harvest costs, the optimal timber volume would be reduced 
even more compared to the untreated stand since the additional timber vol-
ume is realized by thicker remaining trees. As these are more valuable such 
that they incur higher opportunity costs, it pays to reduce the timber volume 
more strongly in order to generate higher value growth rates. For decreasing 
net unit revenues, on the other hand, all trees would be harvested at the same 
age in homogeneous stands. With correspondingly rising unit revenues, the 
optimal timber volume might be constant on the average or even decreasing. 
At some age, however, the optimal rotation age is reached as the number of 
trees is finite.  

In heterogeneous stands, solitarily growing trees might be thinned (cf. Sec-
tion 4.2.2). In this case, the optimal timber increments of the remaining trees 
remain unaffected such that course of the optimal timber volume is only re-
duced by the timber volume of the thinned tree. Within the range of compe-
tition, the optimal course of timber volume is reduced for constant or in-
creasing net unit revenues. For decreasing unit revenues, the optimal timber 
volume might reach the untreated volume again or even surpass it in the 
thinning interval if natural mortality occurs in-between. In situations in 
which the projected timber increments would be constant or even increasing 
compared to the untreated stand, the optimal thinning intensity would not 
have been determined since the right hand side of condition [4-37] would 
exceed the left hand side.  
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In summary, optimal thinnings, whenever relevant, mine the timber volume 
of a stand over the age as they necessarily reduce both the timber volume 
and the timber increment. Although the individual increments of the remain-
ing trees increase, the additional timber volume is not enough to compensate 
for the loss of timber volume at the thinning or the thinning intensity is less 
than optimal. Exceptions may be heterogeneous stands with decreasing unit 
timber revenues over rising diameters.  

4.5 Comparative Static Analysis 

With the help of a comparative static analysis, the influence of changes in the 
investment parameters on the optimal solution to [3-7] can be studied. 
Therefore, the total change in the optimal harvest ages due to an infinitesi-
mal change in one parameter is observed. The relevant set of simultaneous 
equations, through which all parameter changes are induced, is given by 
equations [3-13] - [3-15]. At the point of a maximum , they might 
be reduced to 

Throughout this section, assumption [3-47] is assumed to hold, i.e. the atten-
tion is restricted to competitive forest stands. Conditions [4-75] - [4-77] con-
stitute a system of  equations with  unknowns. If the second order condi-
tion [3-16] holds at a point of a maximum , the implicit function 

 [4-75] 

 

 

[4-76] 

[4-77] 
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theorem can be employed since all functions possess continuously differen-
tiable derivatives by definition (cf. Section 3.3.2), and since the Jacobi deter-
minant, i.e.,  

is nonzero by virtue of  at  in connection with [3-16]. Con-
sequently, the optimal harvest ages can legitimately be interpreted as a func-
tion of the investment parameters, i.e.,  

Since the equation system [4-75] - [4-77] can then be taken as an identity in 
some neighborhood of a maximum, the total differential of [4-75] - [4-77] 
with respect to  can be written in matrix form as 

where  may be any investment parameter ,  or , while all  are evaluated 
at the maximum. Applying Cramer’s rule, the comparative static derivatives 
can be expressed as 

[4-78] 

[4-79] 

[4-80] 
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In a maximum, the required second order derivatives, cf. [3-18] - [3-22], can 
be rewritten as  

The relevant derivatives with respect to the investment parameters are  

[4-81] 

[4-82] 

[4-83] 

[4-84] 

[4-85] 

[4-86] 

[4-87] 
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With these specifications, the impact of changes in the timber price (Section 
4.5.1), in the regeneration cost (Section 4.5.2) and in the rate of interest (Sec-
tion 4.5.3) can be indicated before a summary of the comparative derivatives 
is given (Section 4.5.4). 

4.5.1 Price effect 

Along with [4-81], the impact of a higher timber price on the optimal rotation 
age is given by 

Employing the Laplace expansion to the th column, [4-92] can be expressed 
as 

where  is the cofactor defined as , with  as 

the minor to the element of the th row and th column of the replaced Jaco-
bian determinant . Since the price impact on all optimal thinning ages is 
zero according to [4-86], [4-93] reduces to 

Given that , the cofactor shares the same sign with its corresponding mi-
nor . Since the latter is equivalent to the st order leading principal 
minor of the Hessian determinant, , the sign of its value is given by 
virtue of the second order condition [3-16] as . The Jacobi determi-
nant in the denominator of [4-94] is equal to the Hessian determinant , 
and the sign of its value is therefore  by virtue of [3-16]. Together, the 
values of the minor and the Jacobi determinant have opposite signs thus 

[4-92] 

[4-93] 

[4-94] 
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turning the minus in front of [4-94] into a plus. The sign of the comparative 
derivative is then determined by the direction of the change in the optimal 
rotation age due to a rising timber price. According to [4-87], its change is 
negative because of 

. Hence, the optimal rotation age shortens when the timber 
price increases.  

In the same way, the impact of a higher timber price on an optimal thinning 
age is given by 

when the -replaced Jacobi determinant is expanded by the th column. If 
 and  are both even or both odd, the sign before the minor  is positive 

while it is negative if  is odd and  is even, or vice versa. For an even , the 
value of the Jacobi determinant is positive whereas it is negative if  is odd. 
Together, they thus turn into a positive value for even , and into a negative 
value for odd .  

Due to the fact that the minor to the cofactor  is not symmetric, its eval-
uation is complex for large numbers of . In order to assess the comparative 
static derivatives in more simplified approach, the problem is reduced to two 
tree classes which are characterized by an equal harvest age of all its trees. 
For instance, this would apply if the trees in the class grow homogeneously 
while hardly influencing each other negatively (cf. Paragraph 4.2), or if fixed 
harvest costs allow to cut trees in the stand at least twice (cf. Section 4.4.2.2). 
The maximization problem [3-7] is then reduced to [3-42] with the neces-
sary condition given by the simultaneous equation system [3-43] and [3-44].  

In this setting, the sign of the comparative static derivative of the thinning 
age  with respect to the timber price is determined by the minor to the 

cofactor  which is given simply by [4-85]. If the change in the thinning 

induced additional increment of the rotation tree  due to a postponement 

[4-95] 
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of the thinning, i.e., , is positive, or if it is negative but less than the in-
terest on the additional increment due to the thinning ( ), the optimal 
thinning age will decrease as a consequence of an increasing timber price 
since  is odd. In the opposite case, the optimal thinning age will increase.  

If three tree classes are distinguished analogously to [3-42], the sign of con-
dition [4-84] becomes relevant. If it is positive along with [4-85], and if the 
thinning age to be considered is even, i.e., if the second thinning is consid-

ered, the corresponding minor to the cofactor  is positive, while it is 

negative if the corresponding thinning is odd. In combination with the sign 
in front of the minor, higher timber prices thus reduce the optimal thinning 
age. However, when [4-85] is negative, the change is ambiguous. For more 
tree classes, the unambiguity of the change depends, among other things, on 
the tree to be thinned.  

Furthermore, the solitarily growing stand might be distinguished as another 
interesting special case. Here, trees grow independently of each other such 
that the cross-derivative of the harvest ages is zero, i.e. . 
In this case, the Jacobi determinant [4-78] simplifies to a diagonal matrix, 
where all entries outside the principal diagonal are zero. Since the determi-
nant of a diagonal matrix is the product of the entries on the principal diag-
onal, the sign of the cofactor in [4-94] remains unaffected. For the change in 
the optimal thinning age, on the other hand, the cofactor in [4-95] becomes 
necessarily zero as one row becomes zero. Therefore, the optimal thinning 
ages are independent of changes in the timber price in solitarily growing 
stands.  

Yet another approach might be followed if two different timber prices for the 
two tree classes in [3-42] are distinguished. The LEV in [3-42] is then given 
by 

[4-96] 
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where  is the timber price of the trees cut at  whereas  is the timber 
price for the trees cut at  with  for . Typically, trees har-
vested at earlier ages yield lower timber prices due to less valuable timber 
structures and higher harvest costs (cf. Sections 4.4.1 and 4.4.2).  

In contrast to [4-76] and [4-86], the timber prices cannot be cancelled out 
since the necessary first order condition is given by the equation system 

Differentiating with respect to the timber prices yields 

Employing the Laplace expansion again, [4-92] can be expressed as the 
change in the rotation age due to a change in the thinning timber price as 

[4-97] 
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[4-103] 



Comparative Static Analysis 139 

where  refers to the two-tree-class Jabobi determinant, which is positive 
due to the second order condition, cf. [3-16]. Equivalently to the two-class-
one-price case above, the direction of change depends on the minor to the 

cofactor  which is analogous to [4-85]. If the thinnings induced incre-

ment change at the rotation age does not outweigh the interest on the addi-
tional timber volume, then the comparative static derivative in [4-103] is 
negative since [4-99] is necessarily positive in a maximum while [4-101] is 
negative. In this way, the optimal rotation age decreases due to a rise in the 
thinning timber price. If [4-85] is positive, however, the change remains am-
biguous.  

With respect to the change in the optimal thinning age, the comparative deri-
vate is given by 

Again, the direction of change depends on [4-85]. If the latter is negative, the 
derivative is positive due to the opposing signs of the price derivatives [4-
99] and [4-101]. Here, the thinning age increases due to an increasing thin-
ning timber price. In the opposite case, the sign is indefinite.  

The changes in the harvest ages by virtue of changes in the timber price at 
the rotation age, on the other hand, are less clear since the change in [4-102] 
depends on the relative magnitudes of the thinning class and the regenera-
tion costs. If the discounted thinning value outweighs the regeneration costs, 
[4-102] is positive whereas it is negative only if the regeneration costs are 
predominant as is the case for the unique timber price. Therefore, with sub-
stantial thinning value in comparison to the employed regeneration capital, 
the isolated change in the optimal rotation age is just the opposite of the 
Faustmann model since the marginal revenues rise more than the marginal 
cost as only a part of the future timber revenues become more valuable.  

 

 

[4-104] 
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The corresponding change in the optimal rotation age is 

If [4-85] and [4-102] are negative, the change in [4-105] remains ambiguous 
as all partial changes are negative. The same holds in the opposite case. If [4-
85] is positive and [4-102] negative, the optimal rotation age decreases with 
an increasing timber price , and vice versa. Equivalently, the change in the 
optimal thinning age, i.e.,  

is ambiguous for both positive and negative [4-85] and [4-102]. For negative 
[4-85] and positive [4-102] as well as in the reverse case, the optimal thin-
ning age decreases when the timber price at the rotation age increases.  

Naturally, the changes in the different prices are relative to each other. Since 
an increase in the thinning timber price equally represents a relative de-
crease of the rotation timber price, and vice versa, the comparative static de-
rivatives must show analogous relative changes. Interestingly, one approach 
is able to yield more specific results. An extension towards three tree classes 
is futile since either three prices must be distinguished or two prices spread 
over three classes. In either way, the comparative static derivatives remain 
ambiguous without further specifications.  

For the solitarily growing stand, where  and the Jacobi de-
terminant becomes diagonally, the impacts of changes in the prices on the 
optimal thinning ages become irrelevant as the Laplace expansions of the 
thinning columns produce zero rows. Therefore, the optimal rotation age de-
creases with a rising thinning timber prices while it increases with rising ro-
tation timber prices for  and decreases in the reverse 
case. In the same way, the optimal thinning age rises with a rising thinning 
timber price while it necessarily decreases for rising rotation timber prices.  

[4-105] 

[4-106] 
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4.5.2 Regeneration Cost Effect 

In the thinning model [3-6], the regeneration costs appear as a fixed payment 
at the beginning of each rotation cycle. With reference to the comparative 
static analysis, their influence is just the opposite of the general timber price 
effect since the corresponding partial derivatives just point in the other di-
rection. The impact of the regeneration costs on the optimal rotation age is 
given by 

since the single optimal thinning ages are independent of the regeneration 
costs according to [4-88]. As in the case of the change in the optimal rotation 
age due to rising timber prices above, the direction of change is determined 
by the sign of the change in the optimal rotation age as a result of rising re-
generation costs. Since this is positive with regards to [4-89], the optimal ro-
tation age increases.  

As in the case of the impact of the timber price, the unambiguity of the impact 
of rising regeneration cost on the optimal thinning ages is dependent on the 
number of trees. The optimal thinning ages of up to three tree classes in-
crease when [4-84] and [4-85] are positive. In case the latter derivatives are 
negative, the change is ambiguous for three tree classes, and negative for two 
classes. For solitarily growing stands, the optimal thinning ages are inde-
pendent of the regeneration costs (cf. also Section 4.5.1).  

The comparative static changes due to changes in the regeneration costs can 
analogously be interpreted as the influence of fixed regeneration costs (cf. 
Section 4.4.3). Naturally, their impact is different form the impact of changes 
in the variable regeneration costs. As Chang (1983) has shown with the in-
clusion of the initial density as an endogenous variable, however, the com-
parative static analysis yields unambiguous results only with further speci-
fications. In this way, further extensions of the model towards more harvest 
ages (cf. Sections 3.2.1 and 4.4.3) do not promise to gain deeper insight into 

[4-107] 
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the comparative static derivatives. Since in the initial density model (cf. Sec-
tion 3.2.1) all first order conditions of the optimal thinning ages are inde-
pendent of the timber price and the regeneration costs, the comparative 
static analysis is simplified. However, with the initial density, a second indi-
rect channel is opened via which the thinning ages are influenced. The over-
all change cannot be determined except with several specifications.  

4.5.3 Interest Rate Effect 

The impact of a higher interest rate on the optimal rotation age is given by 

In contrast to changes in the timber price and the regeneration costs, a 
change in the interest rate is complex as it influences all optimal thinning age 
conditions, cf. [4-90], as well as the optimal rotation age condition, cf. [4-91]. 
As a consequence, any expansion of the replaced Jacobi determinant will in-
clude several non-symmetrical minors whose evaluation is problematic. 
Moreover, both changes in the conditions for the optimal thinning age, and 
the optimal rotation age respectively, are ambiguous without further speci-
fications.  

If the problem is reduced again to only two tree classes, the direction of 
change depends on the sign of the partial cross derivatives, [4-84] and [4-
85], as well as on the sign of the changes in the maximum conditions in re-
spond to the higher interest rate, i.e., [4-90] and [4-91]. If the former condi-
tions are negative, the direction of change is ambiguous. If [4-84] and [4-85] 
are positive, the comparative static derivative shares the same sign with [4-
90] and [4-91]. This analysis is also valid for three trees. Regarding the effect 

[4-108] 
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of a rising interest rate on the thinning ages, the analysis is similar due to the 
ambiguous sign of all derivatives with respect to the interest rate. However, 
the direction of change is already ambiguous for more than two tree classes 
even in view of all additional specifications. For the solitarily growing stand, 
the analysis is equivalent to the two and three class cases (cf. also Section 
4.5.1). 

As in other studies (e.g. Chang 1983; Li and Löfgren 2000; Halbritter and 
Deegen 2011), impacts of the interest rate are hard to assess. Since invest-
ments necessarily involve the balancing of payments occurring at different 
times, the different channels through which changes in the interest rate 
might travel multiple times with the number of payment dates. In this way, 
the unambiguity of the change in the rotation age due to a change in the in-
terest rate in the Faustmann model (Amacher et al. 2009) is only a result of 
the stringent assumptions permitting the clear solution.  

4.5.4 Summary 

Table 4-1 summarizes the results of the comparative static analysis. For a 
typical forest stand of many trees, the comparative static analysis provides 
unambiguous results only for the change in the rotation age due to changes 
in the timber price and the regeneration costs as well as for solitarily grow-
ing stands. The influence of the interest rate, in contrast, as well as all shifts 
of the optimal thinning ages, remains ambiguous. For two or three trees, 
though, the direction of change is indicated when further specification of the 
timber growth are available. In particular, these are the changes in the tim-
ber increment at the optimal harvest age due to changes in previously con-
ducted harvests. If, for instance, the increment increases and simultaneously 
outweighs the interest on the increment, rising timber prices and decreasing 
regeneration costs will shorten the optimal thinning age definitely for stands 
of two or three trees. For the complex effects of changing interest rates, 
though, additional specifications concerning their influence on the maximum 
conditions are necessary. 
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Table 4-1 Summary of the comparative static analysis 
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5 Discussion and Conclusions 

In the preceding analysis, the implications have been derived which follow 
from the simultaneous equation system developed in Chapter 3. In the pre-
sent chapter, the analytical results are discussed in light of prior research 
and the questions expounded in Chapter 1. In order to retrace the incentives 
of forest owners thinning forest stands in the observable world, those situa-
tions have to be detected which are inconsistent with the model approach of 
this study. If these contradicting situations are observed, they are a strong 
indication of effective constraints deviating from those derived in this study. 
Through this process of “conjecture and refutation” (Popper 2002a), the true 
incentives might be approximated.  

Accordingly, in the first paragraph, conclusions are drawn and discussed 
which follow directly from the model approach (Paragraph 5.1). Subse-
quently, the effects of relaxing the constraints of the analysis are discussed 
and extensions of the model indicated (Paragraph 5.2). In a third step, some 
applications of the model to interactive problems of conflict or cooperation 
are specified (Paragraph 5.3). Finally, the problem in this study is general-
ized to be applied to different land use concepts and entire forests (Para-
graph 5.4).  

5.1 Optimal Thinning 

This paragraph seeks to discuss the implications which might be derived 
from the analysis of the preceding chapter. The focus lies on the optimal thin-
ning regime, i.e., the discussion is based on the stringent assumptions of the 
“Faustmann laboratory” (Deegen et al. 2011, p. 363; cf. Section 3.3.1). First, 
the optimal cutting regime of a stand is viewed as the permanent balancing 
of harvests and regenerations (Section 5.1.1). Second, thinnings are re-
viewed as an attempt to control the density of a stand (Section 5.1.2). Third, 
the comparative static analysis is discussed against the background of the 
results of prior analyses (Section 5.1.3). In each section, conclusions are pre-
ceding the corresponding discussion.  

R. Coordes, Optimal Thinning within the Faustmann Approach,
DOI 10.1007/978-3-658-06959-9_5, © Springer Fachmedien Wiesbaden 2014
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5.1.1 Harvest and Regeneration 

Thinning and reforestation are two possible ways to regenerate a forest 
stand 

In the general form of [4-14], the determination of the optimal thinning age 
bears resemblance to the determination of the optimal Faustmann rotation 
age in [4-4], or the optimal rotation age in [4-3] respectively. In either case, 
the rates of value growth are balanced with the rate of interest. At the rota-
tion age, however, the opportunity to regenerate the stand and to earn 
growth rates above the rate of interest, or more specifically, the interest on 
the land value in relation to the standing timber value, offers incentives to 
cut trees at higher growth rates. The land rent equals the interest on the  
in a partial equilibrium (cf. Section 3.3.1). Since the  is the present value 
of bare forest land, which is defined as the infinite income stream generated 
by the production and sale of timber, cf. [3-6], the opportunity costs repre-
sent the alternative to regenerate the stand in order to start new rotation 
periods. This bears cost as it offers the opportunity to earn higher value in-
crements in relation to the employed timber value (cf. Duerr 1960, p. 133).  

In a similar way, a thinning might be interpreted as offering the opportunity 
to “regenerate” a forest stand by improving the growth rates of the remain-
ing trees. This might be preferred to the alternative to clear-cut the stand and 
to earn increments from the reforestation of the stand when the additional 
increments of the remaining trees in the current rotation outweigh the rev-
enues in future rotation periods, cf. [4-20] and [4-25]. Therefore, forest own-
ers might regenerate their natural resource forest by reforestation or by 
thinnings. From an ecological perspective, both forms of regeneration are 
unquestionably different; however their economic consequences are similar.  

Thinnings are investment and divestment at the same time 

Optimal timber production is the balancing of regeneration and harvest. 
Each regenerated tree in an even-aged stand might be harvested to offer 
younger trees, or those of the same age, better growth conditions. At each 
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harvest, future timber volume of the new or the remaining trees is compared 
with future timber volume of the harvested trees. Since the optimal rotation 
age (and, in a sense, the optimal thinning ages) simultaneously determines 
the optimal regeneration age, timber harvest and regeneration are con-
stantly interlinked, and they are thus both investment and divestment at the 
same time. Next to harvests at the rotation age, thinnings thus offer the op-
portunity to control the investment in timber production (Smith et al. 1997, 
p. 91 f.). 

In some situations, the investment character prevails while in other situa-
tions the divestment character is predominant (Deegen 2001, p. 10). The for-
mer is most evident for the regeneration at the beginning of the rotation pe-
riod but also for precommercial thinnings where the cut trees might even 
remain unused in the stand. However, if the trees thinned might be utilized 
somehow, the divestment character is likewise relevant. At advanced ages, 
the divestment character, which is the transference of the timber capital to 
the next best alternative use, might eventually prevail. Then, thinning is 
more mining than regeneration. This mining character might also apply to 
solitary and heterogeneously growing stands (cf. Section 4.2.2). Neverthe-
less, even the final harvest at the rotation age is conducted in view of the 
opportunity to regenerate the stand. On the other hand, in situations in 
which the cost-covering diameter is comparatively low, for instance due to 
low wage rates, the divestment character might prevail already in fairly 
young stands. As in the calculation examples of Johann Heinrich von Thünen 
(1875, 2009), where already six year old trees yield net profits, planting 
10,000 Scots pines can be most profitable when 8,000 of these trees can be 
sold as rods with profit after only a few years.  

In forestry, these different investment characteristics are accounted for by 
the different terms for thinnings in differently stand ages. While the invest-
ment character dominates for precommercial thinnings (in German: 
“Pflegeeingriffe”) where the focus lies on the growth of the remaining trees 
in young stands, commercial thinnings typically emphasize the divestment 
character in older stands (Smith et al. 1997, p. 113). In the German literature, 
commercial thinnings are often further subdivided into “Durchforstungen” 
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(thinnings in a narrow sense), where the divestment and investment charac-
ter are more or less equally represented, and “Vornutzungen” (preceding 
harvests), where the divestment character prevails.  

When timber quality criteria are irrelevant, thinnings are primarily di-
vestment 

In the process of in- and divestment, the regeneration at the beginning of a 
rotation period sets the scope of thinnings. Naturally, only regenerated trees 
might eventually be thinned. In this way, forest owners plant trees in order 
to anticipate future harvests by either thinning or clear-cutting as these de-
termine the value of the forest stand, i.e. the value of the timber and the land, 
either for exchange or for consumption or reinvestment, the latter being 
equivalent under the Fisherian separation theorem (cf. Paragraph 3.3). For 
this, gains from additional timber of each regenerated tree must be balanced 
with losses from lower timber volumes of each single tree. Moreover, each of 
these timber volumes might be differently valuable. Forest owners regener-
ating their forest stands with high initial densities thus either speculate on 
early profits from thinnings or clear-cutting (as von Thünen in the example 
above) or on high prices for high quality timber. If rotation ages are compar-
atively long, high initial densities imply low cost-covering diameters when 
timber quality is not decisive (cf. Section 4.4.3). Without the opportunity to 
thin, these stands could only be regenerated with low initial densities.  

In general, comparatively low initial densities suggest thinnings to be as-
sumed less relevant. Here, the often adduced price premiums for thicker 
trees render thinnings irrelevant since they are fully exploited by the low 
initial density. Only increasingly price-independent timber structures favor 
then higher initial densities as more timber of equal value can be harvested. 
Therefore, the combination of low cost-covering diameters and relatively 
price-insensitive timber volumes favor high initial densities even in regions 
with comparatively long rotation periods. For instance, low wage rates and 
high prices for thin timber structures, such as firewood, might thus lead to 
increasing initial densities.  
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If initial densities are high enough to induce thinnings without substantial 
influence of timber quality aspects, trees are thinned as they allow for trans-
ference of some capital to its next best alternative use while simultaneously 
reducing the value increment not proportionately but to a lesser extent, thus 
boosting the rate of return (cf. Section 4.4.4). In this way, not merely the high-
est value increment is relevant for thinnings to be conducted but its value 
increment set in relation to its employed value. If thicker dominant trees 
yield higher increments (cf. Nyland 2002, p. 414), it might be not enough to 
yield higher growth rates as the diameter must increase by the factor  
(cf. Appendix 1, Paragraph 7.1) compared to its already accumulated diame-
ter.  

The rising capital costs per tree for employing the land prevent stands 
from being exploited 

The more intense the competition for resources, i.e., the higher the potential 
impact of the harvest of a tree on the timber volume of the remaining trees, 
the more likely thinnings are (most) profitable as less trees are cut at the 
rotation age, cf. [4-20] and [4-25], respectively. Conversely, with low levels 
or without any competition, most or all trees will be cut at the rotation age. 
Basically, the intensity of competition is regulated by the initial density, i.e., 
the number of trees at the beginning of the rotation period. High densities, 
such as natural regeneration might produce, will increase the portion of 
thinned trees in contrast to comparatively low planting densities as the po-
tential to influence remaining trees increases. Furthermore, the intensity of 
competition is dependent on the tree species. The effect of a harvest of a 
shade-tolerant tree on its conspecifics might be greater than in a stand of 
shade-intolerant trees at comparatively high age classes due to asymmetric 
competition pressures while the reverse might hold for lower age classes 
where competition in shade-intolerant stands is severe. If this applies, more 
trees are thinned in stands of shade-tolerant trees at later ages and earlier in 
shade-intolerant stands, all other things being equal. Or, the competition in-
tensity might be site specific. Forest stands on sites of low soil quality or 
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growing in a disadvantageous climate are widely spaced as some scarce re-
sources restrict the availability of those which are more available for the 
trees. In these cases, thinnings might hardly influence the remaining trees. 
Thus, all trees will be cut at the rotation age provided they are growing more 
or less homogenously.  

Conversely, it might be seldom advantageous to hold only few or one tree 
until the final rotation age. In this case, according to [4-20] or [4-25], the 
whole land rent is concentrated on one tree thus boosting the costs of hold-
ing the land, i.e., the costs of starting a new rotation with higher growth rates, 
which in turn shortens the rotation age thus bringing it closer to the next 
thinning age. Only if a stand is small and/ or the trees are huge, it may be 
optimal to hold only one tree. Therefore, if the dominant trees are removed 
due to their low value growth rates (selection thinning), and if the remaining 
co-dominant and overtopped trees leave a somehow unsatisfactory impres-
sion due to large openings, the optimal rotation age might have been ex-
ceeded since the remaining trees are unable to justify the high relative land 
rent. When these situations of degraded forests (Hyde 2012, p. 22 ff.) are 
thus observed, they are a strong indication that forest users put little value 
on the land as a source of future income (for instance due to unsecure prop-
erty rights or legal prohibitions to appropriate future timber products). 
Here, the investment opportunities are restrained such that thinning re-
mains as the only form of harvest since regeneration of any kind offers no 
incentives.  

Due to the interdependence of the optimal harvest ages, the determina-
tion of the optimal harvest regime is a feedbacked two-stage process 

The influence of the relative land rent emphasizes the interdependencies be-
tween the optimal harvest ages. The determination of the optimal harvest 
ages is a simultaneous process. A harvest age is only optimal given that all 
other harvest ages are optimal. The isolated optimization of harvest ages, on 
the other hand, might lead to severe deviations from the global maximum. 
For instance, if several trees are thinned due to their low value growth rates, 
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the remaining stand might be unsatisfactorily sparse. Again, this impression 
of sparseness might be explained with the rising costs in the form of the rel-
ative land rent. The latter is relative to standing timber value, which might 
be severely reduced by thinnings thus boosting the relative land rent. These 
high costs might then not justify the prolongation of the current investment, 
which amounts to clear-cutting with subsequent regeneration. In this sense, 
the land costs per tree are too high due to fallow land within the stand. The 
simultaneous determination even holds without interdependent tree 
growth. If the latter enters the consideration, the other marginal determi-
nants are also influenced through feedback processes between the maximum 
conditions.   

Due to the two different kinds of harvest ages, the determination of the opti-
mal cutting regime in a forest stand is basically a two-stage operation (cf. 
Figure 5.1). First, the optimal rotation age is assessed (  in Figure 5.1). If the 
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Figure 5.1 A two-stage approach towards the optimal cutting regime 
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transference of the timber value to the next-best alternative use and the re-
generation with younger, faster growing trees is more profitable than the 
value increment of the standing timber, the stand is clear-cut and reforested 
(see Figure 5.1). If the optimal rotation age is not reached yet, the optimal 
thinning age is examined (  in Figure 5.1). If the optimal thinning age is yet 
(or never) to come, the stand is left untreated (see Figure 5.1). If, then again, 
the optimal thinning age of some trees is reached, it must be ascertained 
whether the removal of these trees does not reintroduce the optimality of 
the rotation age by virtue of the simultaneous determination process (see 
feedback arrow in Figure 5.1). If not, the corresponding trees are thinned 
(while ensuring that not more trees might be optimally thinned at the same 
time due to the simultaneous determination). And if so, the stand is clear-cut 
(see Figure 5.1). The approach might be even more generalized if  is sub-
stituted for , which emphasizes the dependence between all harvest 
ages.  

Without the awareness of the interdependence of the harvest ages (espe-
cially the feedback process in Figure 5.1) and thus of the two-stage approach, 
the most profitable cutting regime might be missed completely. This applies 
especially to the pragmatic approach of free tree-marking. In assessing the 
influence of different thinning variants on a group of trees within a forest 
stand, the overall impact of each group on the whole stand might easily be 
neglected. Both more or less intense thinnings as well as the final clear-cut 
might be evaluated differently after the thinnings are conducted according 
to the tree-marking. In this way, the interdependencies between the tree 
groups are disregarded.  

The most profitable tree is a relative concept 

When thinnings are profitable such that the feedback process in Figure 5.1 
does not apply, the question arises which trees are to be removed. Basically, 
the answer to the optimal thinning ages determines the optimal thinning 
method (cf. Section 4.3.4). In contrast to exploiting the standing timber value, 
thinnings from above are only conducted when it is profitable to hold on to 



Optimal Thinning 153 

both fast growing and slow growing trees while thinnings from below as-
sume the slow growing trees to be comparatively unprofitable. The relation-
ship between these two thinning methods emphasizes the relativity of fast 
and slow growing trees. Dominant and co-dominant trees yield high returns 
by virtue of their high growth rates, but they are likewise expensive in terms 
of their high influence on the remaining trees. Dominated trees, on the other 
hand, yield only little returns, but are comparatively cheap as they hardly 
influence the value of their neighboring trees. The same holds for trees of 
high and low quality: high value increments due to high quality might be rel-
atively small in proportion to the high value employed for the increment 
while small increases in value might promise satisfactorily value growth 
rates if the tree value is low. Therefore, if the high marginal revenues of dom-
inant trees relative to their high marginal costs in the form of high impact 
rates are lower than the low marginal revenues of dominated trees relative 
to their low marginal cost, thinnings from above are more profitable, i.e., it 
pays to cut more vigorously growing prior to less vigorously growing trees.  

Equal investment situations might lead to different thinning methods 

The relativity of the most profitable trees challenges the unique applicability 
of different thinning methods to specific classes of investment situations. In 
contrast, similar price constellations might favor different thinning methods. 
For instance, in expectation of rising premiums for thicker trees, the objec-
tive to concentrate increments on selected trees might favor heavy thinnings 
from below as the individual growth of the already thickest trees is then max-
imized. However, if less vigorously growing trees exist which grow more or 
less independently of the selected trees and have value growth rates above 
the rate of interest or haven’t crossed the cost-covering diameter yet, the op-
timal thinning might be conducted from above since the less vigorously 
growing trees remain as they do not interfere with the other trees. Con-
versely, thinnings might also be conducted from above when the net unit rev-
enues rise degressively over the diameter, such as in the case of the variable 
harvest costs (cf. Section 4.4.2.1). In this situation, the less vigorously grow-
ing trees remain because they promise the greatest opportunity to increase 
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the total value the most. In either of these cases, small trees remain in the 
stand, however for entirely different reasons. In yet other situations, small 
trees might remain due to their positive impact on value of the remaining 
trees.  

Optimal thinnings do not necessarily further increase the growth rates of 
the best growing trees 

Thinnings from above are conducted whenever the order according to the 
value growth rates differs from the order according to the KRAFT (1884) clas-
ses. In this way, rising heterogeneity concerning the quality growth rates (cf. 
Section 4.4.1) will tend to favor high thinnings as in the example of wolf trees. 
Thinnings from below, on the other hand, demand the profitability of pro-
ducing comparatively thick trees. If small diameters are highly valued, for 
instance as firewood or as an agricultural building material, it surely pays to 
harvest thin trees. In this situation, however, it might also pay to clear-cut 
the comparatively young stand entirely as in the case of coppice forests. 
Thinnings form below, on the other hand, are only profitable when the sim-
ultaneous production of thicker trees is also viable. The thin timber crops are 
then a joint product for which small additional diameter increments of the 
remaining thicker trees, but not the entire thick tree, are sacrificed in order 
to allow unthinned trees to develop. Since the unit volume relationship un-
derlying the variable harvest costs (cf. Section 4.4.2.1) applies to every stand, 
thinnings from below are in no way necessarily connected to mass produc-
tion of timber.  

Therefore, optimal thinnings are not conducted in order to further increase 
the already high value growth rates of some trees necessarily. Optimal thin-
nings are conducted to gain the highest increase in the value growth rates of 
the whole investment, i.e., the current forest stand including all future stand 
states. Whether the growth rate increase is realized with hitherto poorly 
growing trees or with the best growing trees is not determinable ex ante. 
Thinning concepts favoring the (assumed) best growing trees therefore im-
ply that the promotion of their growth rates yields higher increases than the 



Optimal Thinning 155 

promotion of both the less well growing trees and future, not yet regenerated 
trees. These high demands on the absolute value increments (due to the usu-
ally high value input of the best growing trees, cf. Appendix 1, Paragraph 7.1) 
might not be met by many trees in the stand.  

With rising heterogeneity concerning the value growth rates, forest 
stands are thinned irregularly 

The allocation of trees to different products, for instance to pulpwood and 
sawlog production (Smith et al. 1997, p. 117), depends on the availability of 
promising trees. In homogeneous stands, either sawlog production with 
(possibly severe) thinnings or pulpwood production without or with only 
slight thinnings is more profitable since all trees are growing equally and 
each part the optimal path must be optimal according to the principle of op-
timality (Bellman 1957). The uniform treatment of homogeneous stands is 
independent of the possibility that the stand grows heterogeneously after-
wards, and, likewise, it is independent of potential heterogeneity in the 
prices for different timber structures. In heterogeneous stands, by contrast, 
only few trees might be profitable for sawlog production while most of the 
other trees are more profitable when producing pulpwood. In this process, 
optimal production of a single tree is always the best given what every other 
tree is producing by virtue of the simultaneous equation system, cf. [4-75] - 
[4-77]. All pulpwood trees might be converted to sawlog trees by selective 
promotion, but it might be not worth the cost of sacrificing other pulpwood 
trees.  

Nevertheless, although heterogeneity regarding tree growth is necessary for 
unequal treatments of stands, it is not sufficient since homogeneous distri-
bution of differently growing trees might entail a uniform treatment. This 
applies when different homogeneous stands are mixed regularly. With spa-
tial heterogeneity due to substantial genetic or site variability, on the other 
hand, combinations of different timber products are likely to be optimal if 
the marginal rate of substitution between the products is not equal for every 
point in the stand, i.e., if the relative differences are not equal between all 
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trees. However, the concept of the forest stand is related to more or less ho-
mogeneous management conditions such that two or more stands might be 
differentiated in some situations. In this way, production is specialized (cf. 
Vincent and Binkley 1993), however in sub-stands.  

5.1.2 Thinning and Density 

Thinnings are qualitatively equivalent to and quantitatively less pro-
nounced than reductions of the initial density 

Basically, thinnings are harvests of trees prior to the rotation age. In this way, 
thinnings offer the opportunity to gain access to the control of density in a 
forest stand. However density is defined or measured (cf. Zeide 2005; see 
also Chapter 2), thinnings influence all density criteria independently of the 
age of the stand, although conceivably to varying degrees. Even the notion of 
“thinning” implies reductions of density. (Interestingly, the corresponding 
German term “Durchforstung” is used in everyday language in the way of 
“searching for something specific”.) In this way, thinnings are sometimes re-
ferred to as the control of the relative density in a forest stand (cf. e.g. Nyland 
2002, p. 402). If, on the other hand, timber growth is denoted density-de-
pendent as the change in the timber volume is dependent on the current 
stock size (cf. Conrad and Clark 1987, p. 62), thinnings are restricted to the 
stands where mutual interdependencies between trees arise. As Section 
4.2.2 has shown, however, thinnings might be conducted in heterogeneous 
stands even with solitarily growing trees. Nevertheless, density might 
equally be defined in terms of competitive pressure with rising density due 
to rising impact rates.  

While all density criteria might be differently influenced by thinnings, they 
all yield equivalent results if applied to the initial density (cf. Chapter 2). Of-
ten, thinnings are viewed quite separately from the initial density. However, 
both are unquestionably interlinked systematically. Without (enough) re-
generated trees, thinnings become irrelevant. Furthermore, the frequency 
and intensity of thinnings are predetermined as, at some age, no trees might 
be available anymore. In principle, thinnings are qualitatively equivalent to 
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reductions of the initial density while postponements of thinnings work as 
increases of the initial density. Therefore, both entail equal consequences for 
the timber volume of a forest stand although the effect of thinnings is quan-
titatively less pronounced (cf. Section 2.1.4). In this way, the path of density 
is initiated by the initial density and adjusted by thinnings.  

Nevertheless, the stand density is the consequence of the regeneration and 
of subsequent harvests, not the reverse. Attempts to optimize the density 
thus often yield ambiguous results as the trees to be removed cannot be de-
rived. Besides, the response of the remaining trees might be totally different 
depending on the timber structure. For instance, the same timber volume 
might be comprised of a quarter of the trees of the same age however with 
twice the diameter or any combination in-between. The further development 
of these stands is surely unalike as wood does not grow wood. The composi-
tion of a given timber stand volume, though, is the result of the initial density 
and, potentially, of earlier conducted harvests. Only if all initial densities and 
subsequent treatments are assumed to be similar, comparisons can be mean-
ingful. In the presence of price differentials and variable harvest cost, on the 
other hand, the timber structure as originated by the initial density becomes 
increasingly relevant since different volume growth rates might be accom-
panied by even more deviating net unit revenue growth rates. While density 
control might thus be suitable for analyses of aggregated timber production 
in forests (Borchert 2002, p. 66), it might be less appropriate for stand-based 
prescriptions.  

Thinnings become potentially relevant through negative interdependen-
cies concerning the tree values and heterogeneity concerning the rate of 
value growth 

In the presented model [3-6], mutual interdependencies between trees are 
captured in the timber volume function of a tree [3-5]. Still, these interde-
pendencies appear in two different ways. [3-5] might be separated to lead to 

[5-1] 
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Here,  denotes the thinning-unaffected timber volume of a tree while  rep-
resents the additional timber volume due to earlier harvested competitors. 
Without previous thinnings, . Alternatively,  might denote the solitary 
growth of a tree which is reduced by  representing the negative influence 
of the presence of competitive trees. Since both approaches are qualitatively 
equivalent, the first interpretation is followed in the analysis.  

[5-1] distinguishes between the given and the additional timber volume pro-
duced. In the thinning model [3-6], the forest owner is able to influence the 
density via thinnings, which become potentially relevant through the addi-
tional timber volume of the remaining trees  (cf. Paragraph 4.2). The exist-
ence and degree of this potential, though, is given implicitly by the exoge-
nously determined timber volume . Next to previously conducted harvests, 

 is basically determined by the initial density. Hence, it prescribes the de-
velopment of a tree within the exogenously given boundary conditions. 
These might or might not comprise density-dependent aspects. With com-
petitors effectively restricting the growing space,  is simply of smaller mag-
nitude than with less or without competitors. In the same way, the timber 
volume function of the Faustmann model [3-3] does not necessarily disre-
gard density-dependent relationships as these might be built in, for instance 
by virtue of thinner trees compared to the same stand with less trees. This 
reasoning provides an argument against the sometimes applied contraposi-
tion of the Faustmann model to the fishery model (for the latter cf. e.g. Neher 
1990).  

In the light of this contemplation, the Faustmann model might be interpreted 
as a model for homogeneous and solitarily growing forest stands. In this set-
ting, neither harvests nor regenerations prior to the rotation age might pos-
sibly increase the income from forest stands in an efficient market. Hence, all 
trees are necessarily cut at the same age. In view of positive land rents, even 
some degrees of heterogeneity lead to a uniform harvest age, cf. [4-25], 
which, in addition, might even be extended by fixed harvest costs, cf. [4-69].  
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With rising positive interdependencies between the values of the trees in 
a stand, the optimal harvest ages converge 

Although the analysis in this study concentrates on the negative effects of 
joint timber growth of even-aged trees in a stand, i.e.,  in [3-47], or 

 in [5-1] respectively, the model covers the whole range of timber vol-
ume interdependencies between trees. When the narrow view of the solely 
competitive stand is abandoned, trees might improve each other’s timber 
volume in some situations. Next to the negative influence of competitive 
pressure on the timber volume of a tree, situations with mutually reinforcing 
timber volumes might thus be analyzed. From the set of all interdependen-
cies between trees, those are relevant for the forest owner which affect the 
tree value. For instance, this might also refer to the impact of protection 
against biotic and abiotic damages such as pests or storms.  

All factors increasing the value of the remaining trees, such as lower harvest 
cost, higher timber prices or more timer volume, increase the likelihood of 
thinnings to be conducted as  increases. Conversely, factors decreasing 
the value of the remaining trees, such as lower timber quality or less timber 
volume (in cases of mutually reinforcing timber growth), thinnings are less 
likely to be conducted. In the presence of positive effects on the remaining 
trees, or when the positive exceed the negative effects, the presented model 
will be reduced again to the Faustmann model as it always pays to prolong 
the thinning in order to avoid the negative impact of an early harvest. For 
instance, this situation might be relevant in comparatively dense stands 
where the closed canopy might prevent lower stem portions from being de-
valued by epicormic branching caused by the additional light shed by thin-
ning gaps which outweighs the negative effects of lower tree volumes and 
higher harvest costs. In this way, the Faustmann model might equally be in-
terpreted as assuming the negative influences to be low enough or not even 
existent or to be exceeded by the positive effects since in these instances all 
trees share the same optimal harvest age.  
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The reasons to thin a stand more intensively are given by equal and in-
dependent or unequal and interdependent value growth 

If the opportunity to harvest timber is restricted to the possibility of harvest-
ing trees, thinnings naturally reduce the density instantaneously by the pro-
portion of the thinned trees. These removals of single trees causes the aggre-
gated growth of the stand to follow a discrete course which is at best piece-
wise differentiable and thus not open to standard maximization approaches. 
If stand density is directly optimized, only increment equivalents may be re-
moved of the stand since the aggregated timber increment of the stand is 
realized in different shares on each tree. However, the sharp reduction of the 
density, and thus of the timber volume respectively, might be even intensi-
fied if more trees are removed at the same age. When two trees share the 
same optimal thinning age, the thinning is conducted more intensively and 
[4-36], or [4-37] respectively, holds.  

However, under which conditions is  in [4-36] zero?  is the impact 
of a postponement of the harvest of a tree on the next tree to be cut or the 
foregone additional increment of that tree. As a start, it is zero for solitarily 
growing trees. Without competition, trees in homogenous forest stands will 
all be cut at the same age, i.e., at the Faustmann rotation age according to [4-
2]. In a competitive forest stand, by contrast,  might be negative, cf. [3-
47]. However, in competitive and homogeneous stands, the harvest of one 
tree will potentially affect the timber volume of all remaining trees. The im-
pact of a harvest might be similar to the pattern of waves formed by a stone 
thrown into calm water. The gap caused by the thinning of a single tree will 
improve the growth of all adjacent trees as more resources become available. 
The improved growth of these trees, though, will depress the growth of their 
neighbors since the promoted trees can employ the additional resources for 
reinforcing their competition for resources with their adjacent trees, e.g. 
through faster or extended growth of shoots and roots. The depression of the 
neighbors of the neighbors to the gap will again promote their neighbors, 
and so forth.  
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Yet, the described dynamic of a thinned stand violates the assumption of a 
homogenous stand since the trees have accumulated different timber vol-
umes some time after the thinning. In order to preserve homogeneity, two 
possible interpretations arise. First, a thinning in the homogenous stand will 
change the position of the remaining trees such that they will grow equally 
afterwards. Although this postulation surely conflicts with the observable 
facts, it nevertheless might serve as a heuristic approach. Alternatively, how-
ever equally conceptual, it may be assumed that the trees are growing ho-
mogenously further on despite their varying growing areas. Since the influ-
ence of a thinning on all remaining trees is equally dispersed following these 
interpretations, the full extent of the thinning impact is regarded as a sum 
while preserving homogeneity. As a consequence of this approach, the thin-
ning intensity is an empty concept – at least for the management of a homo-
geneous stand and for a stand growing within a linear forest (cf. Johansson 
and Löfgren 1985 p. 112 ff.) – since it can never be (most) profitable to cut 
two trees simultaneously as all trees influence the timber volume of all other 
trees.  

In practice, however, the effect of the harvest of a tree will not be measure-
able in a longer distance from the harvest gap, possibly already in the second 
or third ripple. Typically, the impact is assumed to be relevant on only five to 
seven neighboring trees. This facilitates the determination of the impact 
rates, which might be connected to competition indices. Hence, a second in-
terpretation arises when the effects of harvests are supposed to operate only 
locally. Accordingly, condition [4-36] demands to cut as many trees such that 
the wavelike effects of each harvest mutually compensate resulting in a ho-
mogenous stand afterwards. This is practicable since in the homogenous 
stand the order of harvests is irrelevant as all trees are growing equally at 
equal ages before they are harvested. Consequently, different contemplated 
thinning intensities do not consider the same trees necessarily. Instead, al-
ternative intensities are related to regularly distributed sampling patterns. 
A forest owner chooses the intensity in order to satisfy condition [4-36] 
while simultaneously preserving the homogeneity through balancing the im-
pacts of all thinning gaps. As a consequence of this approach, the thinning 
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intensity, measured as the number of trees removed, is a relevant concept as 
long as the stand area is large enough and/or the tree sizes are small enough 
to generate local effects.  

Likewise, the thinning frequency, if understood as the mirror-image concept 
to the thinning intensity, is meaningless when all trees have different optimal 
harvest ages necessarily. In the case of the first interpretation of the preced-
ing paragraphs, the thinnings would then be as frequent as possible, i.e., as 
numerous as the trees to be thinned. The second interpretation, on the other 
hand, will cause less frequent thinnings as more trees are removed at the 
same age.  

When thinnings entail a divestment character, optimal thinning intervals 
are not necessarily decreasing over rising stand age 

The usually applied unit areas thus ensure that thinnings capture more than 
one tree in almost every situation within homogeneous stands. With rising 
heterogeneity, by contrast, selective and frequent removals of single trees 
become increasingly relevant, especially in cases where fixed harvest costs 
are low, cf. [4-37]. Furthermore, this tendency might be growing with rising 
net unit revenue differentials if they do not favor the thickest trees, i.e., if 
they are not progressively increasing or degressively decreasing over rising 
diameters (cf. Section 4.4.1), as then comparatively large numbers of trees 
are removed in order to produce the largest diameters. Therefore, forest 
owners are expected to concentrate their thinnings at specific ages the more 
timber growth is found to be homogeneous and net unit revenues are favor-
ing thicker trees. In the presence of commonly observed degressively rising 
net unit revenues, reasons for thinnings which are conducted frequently and 
which are distributed more or less evenly over the rotation period of even-
aged stands might not often be found within an investment analysis if the 
fixed harvest costs are not unusually low. From this point of view, Heyer’s 
“Golden Rule” for thinnings (1854, p. 257), i.e. early, often and moderately, 
might only be golden for stands which are regenerated under conditions of 
a comparatively high variability concerning site quality and/ or genetics, for 
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situations of more or less price-independent timber structures and for low 
fixed harvest costs (presumably due to the low wage rates in these times).  

In these situations, thinnings might equally be guided by the height develop-
ment of the dominant trees in the stand such that thinnings are conducted in 
fixed intervals of dominant height growth. Here, the thinning interval neces-
sarily increases over the rotation period as tree height growth declines 
(Smith et al. 1997, p. 124).  This type of management, however, is only to be 
expected without net unit revenue differentials and more or less homogene-
ous growth since thinning is not only investment but also divestment (cf. Sec-
tion 5.1.1). For reasons of divestment, openings in the canopy of older stands, 
which are not closing quickly or at all, might be acceptable as long as the re-
moved trees were growing at unsatisfactory rates in value. The concern for 
openings, though, is intelligible due to the rising relative land rent, cf. [4-20] 
or [4-25]. If the removed trees are of comparatively low value, however, the 
closure of openings is not necessarily unprofitable. The same holds for pro-
gressively rising premiums for thicker trees. Then, forest owners might 
shorten the thinning interval, and thus thin more frequently with rising 
stand age.  

Characterizations of the concepts of the intensity and frequency of thinnings 
are various. Often, the intensity is defined in terms of timber volume or basal 
area removed. If this is expressed as a percentage, it is equivalent to the def-
inition in this work for homogenous stands. If it refers to an absolute amount, 
thinnings are then intensified for equal numbers of trees harvested at each 
age since the timber volume of trees increases with rising age, cf. [3-41]. The 
thinning frequency, on the other hand, sometimes denotes the development 
of the interval between two thinnings. The advantage of the approach in this 
work is the direct relationship between the thinning concept and the harvest 
ages. It thus emphasizes the relevant management implications.  
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5.1.3 Changes and Adaptations 

Changes in the timber price and the regeneration costs lead to qualita-
tively equivalent changes in the Faustmann and the thinning model 

The optimal thinning regime as well as its relevance is determined with the 
help of the investment parameters specified by the maximization approach 
[3-7]. As the comparative static analysis has shown, the optimal harvest ages 
may shift due to changes in the investment situation generated by these pa-
rameters. Within the set up Faustmann laboratory (cf. Section 3.3.1), these 
changes in the exogenous variables cause adaptations of the endogenous 
variables which might or might not be specified. The changes run from one 
equilibrium position to another without any proposition concerning the path 
they are pursuing in-between. Yet, they serve as the basis for hypotheses 
about the adaptions of forest owners due to changes in the incentives of tim-
ber production within the network of market exchanges.  

Regarding the change in the optimal rotation age, the results of the compar-
ative static analysis in this study (cf. Paragraph 4.5) are correlated to those 
of the Faustmann model (cf. Johansson and Löfgren 1985, p. 80 ff.). In either 
analysis, the change in the optimal rotation age due to changes in the timber 
prices and regeneration costs point unambiguously in the same direction. 
This result is based on the similarity between the  theorem [4-4] and the 
maximum condition in this study [4-3] as well as on the independency of the 
isolated optimal thinning ages on changes in these parameters. If timber 
prices rise, i.e., if timber becomes more valuable compared to all other goods 
and services provided through markets, rotation ages tend to decrease re-
gardless of adaptations in the thinning ages. Depending on the change in the 
value increment at the harvest age of the remaining trees, the optimal thin-
ning ages might equally decrease or else increase. If the timber price is sep-
arated into two timber prices, the rotation age might also increase when tim-
ber prices of thinning products rise. In general, however, if the value of tim-
ber is considered as a whole, the optimal rotation ages will decrease neces-
sarily with rising timber prices. In some situations of rising timber prices, 
thinnings become less relevant if the optimal thinning ages increase while 
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the opposite holds for decreasing optimal thinning ages. For instance, when 
timber prices are substituted for net unit revenues (cf. Section 4.4.2), lower 
variable harvest costs due to higher technical productivity, lower yield taxes 
on harvesting, or price supports for timber are likely to decrease the optimal 
rotation ages while thinnings are not necessarily conducted earlier.  

The effect of rising regeneration costs is just the opposite of rising timber 
prices. Optimal rotation ages necessarily increase if regeneration costs rise. 
The impact on the optimal thinning ages, on the other hand, depends on the 
specifications of the impact on the increment of subsequently cut trees. 
Therefore, subsidies for reforestation, for instance, decrease the optimal ro-
tation ages but do not necessarily favor earlier thinnings while missing mast 
years increase optimal rotation ages but might induce earlier thinnings in 
some situations.  

The introduction of thinnings into the Faustmann model affects the un-
ambiguity of changes in the rate of interest on the optimal rotation age  

In the Faustmann model [3-2], a rise in the level of the interest rate shortens 
the optimal rotation age unambiguously (Amacher et al. 2009, p. 26 f.). The 
same does not necessarily hold for the optimal rotation age in the thinning 
model [3-6]. Instead, the interest rate affects both the alternative use of the 
tree value and the value of future harvests, however in opposite directions 
due to the discounting, cf. [4-13]. Propositions can only be deduced if the 
problem is simplified and if additional assumptions concerning the impact of 
the interest rate are made, cf. Table 4-1. For only two or three trees, or ho-
mogeneous tree classes respectively, the optimal rotation age might even 
rise with rising interest rates if the timber increments at the rotation age rise 
while the isolated harvest ages decrease due to a thinning. In the thinning 
model, this possibility cannot be excluded.  
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The optimal thinning ages in solitarily growing stands are independent 
of changes in the timber price and the regeneration costs 

In general, shifts of the optimal thinning ages can only be clearly indicated 
when the problem is both reduced and further specified. For only two or 
three trees, or, equally, two or three homogenous classes of trees with equal 
harvest ages, the optimal thinning age adapts to the change in the same di-
rection as the optimal rotation age if the postponement of a thinning raises 
the timber increment at subsequent harvests, i.e., if , cf. [4-84] and 
[4-85]. In the reverse case, the change points into the opposite direction. 
However, the conditions under which the derivatives in [4-84] and [4-85] 
yield positive or negative values remain indefinite. Further model details of 
the timber growth theory are necessary to clarify this point.  

For solitarily growing forest stands, though, the comparative derivatives can 
be evaluated unambiguously (cf. Table 4-1). Most interestingly, the optimal 
thinning ages are then independent of changes in the timber price and the 
regeneration costs. Since the condition for the optimal thinning age of soli-
tarily growing trees is equivalent to the condition for a simple duration or 
single rotation period problem (cf. Paragraph 4.2), it is not surprising that 
the comparative statics yield the same results (cf. Johansson and Löfgren 
1985, p. 80). Due to the simultaneous equation system, though, the impact of 
changes in the interest rate can only be determined with further specifica-
tions.  

The comparative static analysis of Chang (1983) might be generalized to 
include thinnings when timber quality aspects are irrelevant 

An interesting extension of the results of the comparative static analysis 
would be the incorporation of the initial density as an endogenous variable 
as in Chang (1983). However, the prospects of unambiguous propositions 
are low as the merging of both approaches potentiates the channels through 
which indirect effects of changes in the investment parameters might be 
transported. Naturally, if parameter changes induce higher initial densities, 
as for example due to rising timber prices, the optimal thinning ages will be 
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affected. The direction of change, though, will depend on the specific magni-
tudes of the investment. Eventually though, thinnings might become fairly 
irrelevant if the initial density enters as an endogenous variable (cf. Section 
4.4.3) as price differentials are exploited by modifications of the initial den-
sity (cf. Section 5.1.1). In this sense, the results of Chang (1983) might be 
generalized as thinnings become irrelevant.   

In homogeneous stands, increases in the optimal thinning ages tend to 
decrease the optimal thinning intensity, and vice versa 

In the model approach, the optimal thinning regime is the consequence of 
the optimal harvest ages. Naturally, changes in the investment parameters 
which are followed by changes in the optimal harvest ages lead to changes in 
the optimal thinning regime. The assessment of the directions of change and 
the conditions for their validity, however, could not be derived analytically. 
Therefore, only the general aspects are mentioned. 

The optimal thinning intensity in the homogeneous stand is given by condi-
tion [4-36]. In principle, it is independent of the investment parameters as 
they can be cancelled out. Nevertheless, since  is a function of the current 
as well as of all preceding harvest ages, it may change due to adaptions of the 
harvest ages. For instance, if  is negative initially, and if the optimal har-
vest age decreases due to changes in the investment situation,  might 
become zero when the trees share a shorter growth phase thus offering less 
opportunities to improve their growth by thinnings. In this way, factors lead-
ing to lower thinning ages offer incentives to thin more intense, and vice 
versa. With fixed harvest costs, this tendency is strengthened as small 
changes in the impacts might be absorbed (cf. Section 4.4.2.2).  

In heterogeneous stands, two trees share the same optimal harvest age if 
condition [4-37] holds. Again, timber prices might be cancelled out if they 
are not separated into thinning and rotation prices. If the latter applies, rises 
in the thinning timber price and declines in the rotation price, respectively, 
directly reduce the thinning intensity as the equality in [4-37] is repealed as 
long as the less vigorously growing tree is cut previously. In the opposite 
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case, the thinning will be intensified as the right hand side increases which 
will make it more profitable to harvest trees with differing value growth 
rates simultaneously. In each case, however, the interest rate remains part 
of [4-37]. Rising interest rates will increase the value of the differences in the 
future impacts of the corresponding trees. Likewise, this will tend to inten-
sify the thinning since greater impacts allow greater differences in the value 
growth rates. Anyway, changes in the investment parameters give rise to 
changes in the harvest ages. Eventually, these indirect changes might com-
pensate the direct changes. Analogously to the thinning intensity, the opti-
mal thinning method is influenced by the rate of interest on the right hand 
side of [4-47]. With high interest rates, the right hand side is comparatively 
low such that thinnings from below become less relevant.  

The viability of the scientific management of forest stands for profitable 
timber production is doubtful since, even in the simplest case, many nec-
essary adaptions remain indefinite 

Considered as a whole, the comparative statics in this analysis indicate the 
limits of analytical investigations of extensions of the Faustmann model. Just 
as in Chang (1983), even slight extensions greatly complicate the analysis as 
not all of the static derivatives can be determined unambiguously. On the 
other hand, however, there is wide conformance with the comparative static 
analysis of the Faustmann model. Its qualitative results thus even hold for 
more complex investment situations. While the impact of changes in the tim-
ber price and the regeneration cost on the optimal rotation age points into 
the same direction, the complex channels through which changes in the in-
terest rate are carried do not allow clear propositions (see also Chang 1983; 
Li and Löfgren 2000). In this way, the assumption of the insignificance of the 
thinning regime on the comparative statics of the Faustmann model is sup-
ported by the presented model. The fact, however, that optimal adaptations 
to changing investment situations cannot be conclusively determined, even 
for such a simplified model as employed in this study, might illustrate the 
difficulty or even impossibility of scientific management. As more criteria of 
profitable timber production enter, such as the risk of damages, the analysis 
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is presumably less likely to be simplified. When all derivatives become un-
known, the implications become arbitrary.  

5.2 Suboptimal Thinning 

In contrast to the preceding Paragraph 5.1, in which thinnings where ex-
plored within the framework constructed in Section 3.3.1, the following par-
agraph discusses aspects of the optimal thinning regime outside of the 
“Faustmann laboratory” (Deegen et al. 2011, p. 363). In this broad sense, 
thinnings are then suboptimal as they no longer satisfy the optimality condi-
tions derived in the analysis. Naturally, the thinning regime depends on myr-
iads of factors. In the end, everything influences its determination. The 
“Faustmann laboratory”, on the other hand, employs stringent analytical 
tools to separate a small subset of factors which satisfies the purpose to gen-
erate a solvable sub-problem while simultaneously aiming at the explanation 
of most of the original problem. However, the question arises in which direc-
tion the solution will change when the stringent assumptions are relaxed. In 
the first section, the assumption of a perfect capital market (cf. Section 3.3.1) 
is discussed (Section 5.2.1). The subsequent section explores the applicabil-
ity of the results to a dynamic world and one of unanticipated changes (Sec-
tion 5.2.2). Finally, the last section of this paragraph tries to demonstrate 
how heuristic approaches can be used to handle the complexity of a forest 
stand with respect to a management application. In this context, a heuristic 
approach is illustrated by means of an example (Section 5.2.3).  

5.2.1 Consumption and Investment 

An analytical tool employed in the Faustmann laboratory (cf. Section 3.3.1) 
is the conceptual separation of production from consumption. This “separa-
tion theorem” (Hirshleifer 1970, p. 63) is guaranteed by the assumption of 
perfect capital markets in which the rate of interest for borrowing just equals 
the rate for lending capital (Fisher 1930, p. 125 ff.). In this way, forest owners 
are able to transform any income stream from timber production to a desired 
one at the market rate of interest.  
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Naturally, perfect capital markets serve as a heuristic assumption. In observ-
able markets, by contrast, interest rates for borrowing and lending diverge 
due to transaction costs (Hirshleifer et al. 2005, p. 468). Nevertheless, as long 
as privacy and trading rules are guaranteed (Smith 1991, p. 223), imperfect 
markets are efficient in the sense that the market is cleared. In this way, the 
market process underlying the Faustmann model ensures the adaptation of 
forest owners to changes in the price system (cf. Hayek 1945).  

With imperfect capital markets, the investment cannot be separated from the 
preferences to consume since transformations of income streams via the 
capital market are not costless. In order to consume more today, more future 
income must be sacrificed than in the opposite case if the interest rate for 
borrowing exceeds the interest rate for lending capital. Before the implica-
tions of such borrowing constraints on the optimal thinning regime are dis-
cussed, though, the consumption of the owner of a thinned forest stand must 
be addressed.  

The consumer choice in the Faustmann laboratory 

The ultimate objective of a forest owner might be expressed by the maximi-
zation of his intertemporal utility  (cf. Section 3.3.1). If utility  is attained 
by consumption , which depends in turn on calendar time , the forest 
owner acts as if 

where  is the subjective time preference rate of the forest owner (cf. 
Amacher et al. 2009, p. 41). The infinite time horizon might imply either an 
eternal life span of the forest owner or a forest dynasty where all heirs of the 
forest owner have equal preferences (cf. Salo and Tahvonen 1999, p. 107). 
Another important incentive, however, lies in the opportunity to sell the for-
ested land (cf. Samuelson 1976, p. 474). In the economic equilibrium, the 

[5-2] 
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price obtainable for forest land equals the  which offers the greatest util-
ity for finite life spans as well.  

The opportunity of the forest owner to consume is constrained by his possi-
bilities to earn income. Next to the income generated by timber production, 
the owner might receive an exogenous income  and own a wealth endow-
ment of . The forest income is given by the  in [3-6], 
i.e., forest income is generated by the regeneration, thinning and clear-cut-
ting in periodical cycles of equal length.  

Since consumption is assumed to be enabled with the help of perfect capital 
markets, the present value of all future consumptions is restricted by the 
present value of all future exchange opportunities. Hence, the intertemporal 
budget constraint is given by 

where r is the market interest rate. The maximization problem in [5-2] sub-
ject to [5-3] can be solved with the help of the Lagrangian function , i.e., 

where  is a Lagrangian multiplier (cf. Amacher et al. 2009, p. 42). The opti-
mal thinning and rotation ages are then given by the first-order condition for 
a maximum, which is 

[5-3] 

[5-4] 

[5-5] 

[5-6] 
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Accordingly, the optimal harvest ages  are determined irrespectively 
of the preferences of the forest owner since  can be eliminated in [5-5] and 
[5-6] leaving an equivalent determination to [3-13] - [3-15].  

In this way, forest owners can finance both consumption and investment ei-
ther personally from their own endowment or by borrowing at the capital 
market. For perfect capital markets, lending and borrowing rates are equal 
such that the costs accruing from employing capital are equal. Forest owners 
can therefore attain their consumptive optimum, which depends on their 
preferences, irrespectively of their productive optimum (Hirshleifer et al. 
2005, p. 468). In turn, investment actions are made independently of subjec-
tive preferences. This ensures that forest owners act as maximizing the land 
expectation value since the higher present values allow larger consumption 
sets as the ultimate objective (cf. Section 3.3.1). Naturally, if non-market util-
ities enter the analysis, such as in situ-preferences (Salo and Tahvonen 1999) 
or amenity services (Amacher et al. 2009, p. 45 ff.), the separation theorem 
does not hold since the Lagrangian multiplier, which captures the marginal 
utility of consumption, cannot be eliminated. In the case of linearity in the 
income function, the solution becomes equivalent to a multiple market use 
model (cf. Hartman 1976; Amacher et al. 2009, p. 72). 

In this way, the presented analysis is a pure investment analysis. Forest own-
ers invest in regeneration and (partly) in thinnings in order to provide future 
income. The investment is unrestricted by financial budget constraints since 
any amount of capital required can be borrowed from the capital market at 
a unique rate. At the same time, the costs for employing self-owned capital 
are of equal amount. Naturally, the separation theorem is an analytical tool 
but not an empirical observation or hypothesis. It serves to concentrate the 
analysis on selected issues which otherwise remain unknown or ambiguous. 
In the terminology of Musgrave (1981), the effective capital market serves 
as a heuristic assumption for the successive approximation to the problem 
of how people interact with respect to forests.  
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Optimal thinnings under borrowing constraints 

Perfect capital markets are not observed anywhere. On the contrary, de-
manders of current income must typically pay higher interest rates than sup-
pliers due to transaction costs. Often, the borrowing rates are prohibitively 
high or virtually infinite when securities are missing. In this case, consump-
tion of the forest owner might be financed by timber harvests at suboptimal 
Faustmann rotation ages rather than by borrowing capital at the market at 
high rates. This situation is often referred to as the “Volvo argument” 
(Johansson and Löfgren 1985, p. 138). For forestry, the effect of imperfect 
capital markets on the profitability of timber production was seminally ana-
lyzed by Tahvonen et al. (2001). They demonstrate how constraints on the 
borrowing rate lead to significant changes in the optimal production of tim-
ber and how changes in the investment parameters may lead to opposite ad-
justments of the rotation age compared to the Faustmann model.  

Without the intention to prove the mathematical derivations here, it is basi-
cally conceivable to extend the analysis of Tahvonen et al. (2001) for differ-
ent harvest ages within a rotation period such that their asset equation (3) 
(Tahvonen et al. 2001, p. 1600) is adjusted to lead to 

with 

where  is the level of financial assets at the harvest age  of the th tree in 
the th rotation,  is the left hand limit of calendar time  at ,  are the 
regeneration costs which only accrue when the last tree  is harvested, cf. [5-
8]; all other notations as in Chapter 3. Thinning ages are thus separated from 
rotation ages by the cost incurred at the regeneration at age .  

 
 [5-7] 

[5-8] 
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The general optimal harvest condition (21) in Tahvonen et al. (2001, p. 
1601) might then be extended to differentiate between the determination of 
rotation ages and thinning ages. As long as the borrowing constraint is not 
binding (cf. Tahvonen et al. 2001, p. 1602), the corresponding equation sys-
tem might be formulated as 

where  is the stand age and . As Tahvonen et al. (2001, p. 
1602) have proven for the Faustmann model, successive rotation ages are of 
equal length for perfect capital markets since the optimal rotation age is de-
termined irrespectively of calendar time and of subjective factors regarding 
the forest owner such that the solution to the Faustmann model holds when 
the borrowing constraint is inactive. Equally, the optimal thinning regime, as 
explored in the analysis (cf. Chapter 4), must then hold for the equation sys-
tem [5-9] to [5-10] as it is equivalent to [4-75] - [4-77].  

If the subjective time preference rate  of a forest owner exceeds the interest 
rate in a perfect capital market, i.e. , such that the forest owner is willing 
to consume more today than he earns before or at the harvest ages, con-
sumption decreases over time continuously when markets are perfect (cf. 
Tahvonen et al. 2001, p. 1603). Thinnings then offer opportunities to in-
crease the  and thus to increase total consumption. Consumption re-
mains continuously due to efficient market exchanges while total stand vol-
ume and financial assets are more often discontinuously interrupted when 
thinnings are relevant since timber value is transferred to the asset values at 
every harvest age. In this way, thinnings serve to expand the opportunity set 
of the forest owner while transformation costs are zero. The same holds for 

 [5-9] 

 

 

     

[5-10] 
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equal or lower subjective time preference rates compared to the market in-
terest rates, however with constant or increasing consumption over time, 
where current income might also be lent.  

With a borrowing constraint, current income might not be exchanged for fu-
ture income. Forest owners with subjective time preference rates exceeding 
the market rate of interest are then unable to finance higher current con-
sumption levels in exchange for future income, which is presumably gener-
ated at the harvest ages through timber production. Forest owners with 
lower time preference rates, on the other hand, might continue to transfer 
current income to future income via lending at the capital market such that 
the optimal thinning regime stays within the Faustmann approach. This does 
only apply necessarily, however, if successive rotation ages are stationary 
(cf. Tahvonen et al. 2001, p. 1604).  

If , equation system [5-9] - [5-10] does not hold for the borrowing con-
straint. In contrast, monetary terms are then evaluated in utility units. The 
optimal rotation age might change in both directions depending on the rela-
tive magnitude of the changes in the marginal revenues and costs of post-
poning the harvest (cf. Tahvonen et al. 2001, p. 1605). Due to the imperfect 
capital market, optimal consumption becomes discontinuously such that it 
jumps at the time of the harvest, which offers an explanation for the “Volvo 
argument”. Depending on the asset endowment and on non-forest income, 
forest owners might have incentives to harvest younger trees compared to 
the Faustmann model where the marginal revenues of postponing the har-
vest might outweigh the marginal costs of holding the land and timber value 
at the market rate of interest whereas the postponement does not account 
for the comparatively high costs due to the subjective time preference rate.  

In this case, thinnings offer opportunities to finance consumption while sim-
ultaneously allowing for further revenues from holding the forest stand. As 
long as the cost-covering diameter is exceeded, consumption can be financed 
by thinnings. The alternative of employing the tree value for consumption, 
i.e. the first term on right hand side of [4-13], is then more valuable than the 
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transformation to the capital market. This tends to reduce the optimal thin-
ning age, or it renders thinnings profitable at all. Even without impacts on 
the remaining trees, thinnings might be conducted to obtain consumption 
opportunities. On the one hand, this will reduce the consumption possibili-
ties at the rotation age as the stand value is reduced. On the other hand, how-
ever, harvest prior to the rotation period might finance consumption on a 
level above the non-forest income. Together, both effects tend to level out 
the optimal consumption path over time. Naturally, this balancing effect is 
constrained by the number of trees, the land rent and fixed harvest costs. In 
contrast to uneven-aged management, thinnings are thus unable to smooth 
out consumption entirely, but they surely allow for consumption above the 
non-forest income before the rotation age.  

With non-stationary rotation ages (cf. Tahvonen et al. 2001, p. 1612), the in-
itial assets of the forest owner help determine the convergence process to-
wards the stationary rotations of the Faustmann model, or the constrained 
borrowing model respectively, if mining of the forest stand within one or a 
few rotation periods as well as regeneration delays are excluded. Only a suf-
ficiently high initial level of assets of forest owners with lower subjective 
time preference rates than the market interest rate ( ) guarantees the 
optimality of the Faustmann solution and thus of the thinning model pre-
sented in this study. If the initial assets are lower than the net timber value 
at the rotation age (i.e., the timber value at the rotation age minus the regen-
eration costs), on the other hand, the Faustmann and thinning solution are 
only stationary states in a finite long run. The current rotation age is then 
shorter since the convergence is from below (cf. Tahvonen et al. 2001, p. 
1616). In the same way, thinnings within the current rotation might be ante-
dated in order to finance consumption at an earlier time even for forest own-
ers with incentives to save. Conversely, forest owners with high initial assets 
and high time preference rates have incentives to harvest at the beginning 
according to the Faustmann rule and the thinning rule, respectively. Not until 
the initially high assets are more or less depleted, rotation and thinning ages 
are reduced to finance consumption.  
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For stationary rotation ages, Tahvonen et al. (2001, p. 1606 ff.) were able to 
comparatively statically analyze the effect of a borrowing constraint. The ef-
fect of rising regeneration costs and timber prices are analogous to those 
within the Faustmann model (cf. Amacher et al. 2009, p. 26 ff.) although ex-
ceptions exists for the timber price effect. The impact of the interest rate on 
the optimal rotation age, on the other hand, follows a non-monotonic course 
depending on the subjective time preference rate. Although not comparable 
directly, these results are analogous to the comparative static analysis in this 
study where the effect of the timber price and the regeneration costs on the 
optimal rotation age is equal to those within the Faustmann model frame-
work.  

In summary, thinnings might offer an important source for financing con-
sumption when capital markets are not perfect. As long as the cost-covering 
diameter is exceeded, harvests prior to the rotation age might finance con-
sumption of forest owners with comparatively high subjective time prefer-
ence rates and/ or low initial endowments. This tends to increase the rele-
vance of thinnings and its share on the total amount of timber harvested. The 
marginal revenues of satisfying consumptive demands might thus increase 
the marginal costs of holding the tree. Precommercial thinnings, on the other 
hand, are ruled out if the borrowing constraint is active, i.e. for comparatively 
high time preference rates or low initial endowments, as the forest owner is 
unable to invest on credit.  

5.2.2 Dynamics, Risk and Uncertainty 

Viewed from the perspective of the cyclic harvest and regeneration of trees, 
the approach in the analysis might be termed static as all future states are 
assumed to be constant (cf. Section 3.3.1). Within each cycle, though, the de-
velopment of the timber volumes of the trees follows a dynamic course as 
the timber volume is different at different ages. Moreover, the movement be-
tween static equilibria due to exogenous changes generates dynamic hypoth-
eses since the disequilibrating cause must occur within a time period (cf. Sec-
tion 3.3.1). In this sense, dynamics is any internal movement within the 
model. With reservations, then, the thinning model [3-6] can be generalized 
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to be applied to a dynamic world, although the conceptuality of statics and 
dynamics is varying among different authors (cf. Machlup 1959).  

Furthermore, the approach in this study is deterministic as random events 
are assumed not to occur. In a stochastic setting, by contrast, specific events 
may occur with a given probability. If these events are anticipated, rational 
forest owners respond by adjustments depending on the expected probabil-
ity of occurrence.  

Finally, the analysis in this study is based on certainty as all future stand 
states are assumed to be known by the forest owner. Again, this assumption 
serves as a heuristic device since the future is always uncertain in the sense 
that neither the probabilities of occurrence nor the possible future stand 
states are known (cf. Knight 1921, p. 19 ff.). Instead, unanticipated changes 
can be observed to occur constantly. In this way, the preceding analysis con-
centrates on optimal ages as opposed to optimal points in (calendar) time.  

Changes over the rotation ages 

The parameters and variables in the thinning model [3-6] might be subject 
to change over the rotation periods. In general, if the net value  at the end 
of the rotation period , i.e. , changes at a rate 
of  from period to period, the  with changes over the rotation ages fol-
lows the sequence   

Accordingly, changes over the rotation ages are basically induced via the cap-
italization sequence in the denominator of the . If the rate of change ap-
plies to the first rotation already,  has to be scaled by , which equals  

 (cf. Johansson and Löfgren 1985, p. 108).  

 

[5-11] 
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In the Faustmann model [3-2] as well as in the thinning model [3-6], the 
“pesky little ‘-1’” (Gaffney 2008, p. 124) indicates the static character over 
the rotation ages as all future timber values and regeneration costs are as-
sumed to be of equal magnitude, i.e. . If future net values are expected 
to increase, i.e. , the  increases since . However, if the rate 
of net value change equals or exceeds the rate of interest, i.e., if , the 
final equality in [5-11] does not hold since the sequence does not converge, 
or it is not defined respectively. In this case, the  would be infinite. Since 
infinite wealth is not observed, the problem must be approached differently. 
One solution is suggested by Johansson and Löfgren (1985, p. 108 ff.).  

If future net values are expected to decrease, such that , the  de-
creases since . As , the  approaches  which gives 
the one rotation age or duration solution (cf. Hirshleifer 1970, p. 82ff). The 
latter could be interpreted as the “worst” case scenario (Lu and Chang 1996, 
p. 284) of value decline.  

The necessary conditions for a maximum of the  are in general 

Accordingly, the optimal harvest ages remain stationary as marginal costs 
and revenues remain equivalent in different rotation periods due to the con-
stant rate of change. The isolated determination of the optimal thinning ages 
remains unchanged as [5-12] is qualitatively equivalent to [3-14]. Conse-
quently, the basic determination of the optimal thinning regime (cf. Para-
graph 4.3) applies in principle. The optimal rotation age, though, decreases 
for  (and increases for ) as, compared to [3-15], the cost side 

[5-12] 

[5-13] 
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increases unilaterally due to higher costs for postponing higher future reve-
nues. Changes in the rotation age affect the optimal thinning ages by virtue 
of the simultaneous equation system. Hence, the relevance of thinnings is af-
fected (cf. Paragraph 4.2) such potentially fewer trees are thinned when the 
rotation age decreases, and vice versa.  

With a constant rate of value change over the rotation ages, the general anal-
ysis in this study remains unchanged. Although the optimal thinning regime 
differs with value changes over the rotation period, the optimal harvest ages 
remain stationary such that the maximum conditions only have to be ad-
justed for potential rates of change. Naturally, different components of the 
net value at the rotation age could be subject to different rates of change. 
Despite the complication of the determination of the optimal harvest ages, 
the basic analysis, however, remains valid. 

The sources of value changes are diverse. An important source is inflation, 
i.e., a rise in the general price level of all goods and services, which tends to 
decrease the rotation ages and thus the relevance of thinnings. In this sense, 

 can be interpreted as the “Teuerungszuwachs”, i.e. the rate of price incre-
ment (Chang and Deegen 2011, p. 259), which Pressler (1860) identified as 
the third source of value increment (cf. Section 4.4.1). As another source, tim-
ber growth might improve (e.g. Löfgren 1985) or deteriorate (e.g. Halbritter 
and Deegen 2011) over the rotation periods. When future timber values de-
crease, for instance due to exploitations of the site productivity, the optimal 
rotation period increases and thinnings become potentially more relevant as 
they offer the opportunity to utilize the current rotation period more inten-
sive.  

Stochastic thinnings  

When forest owners anticipate different future stand states and expect them 
to occur with different probabilities, the optimal cutting regime of the forest 
stand is influenced. Typically, forest owners must face various aspects of 
risk. These might be timber price (Brazee and Bulte 2000), interest rate or 
timber growth risks (cf. Amacher et al. 2009, p. 241). One important kind of 
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risks is the occurrence of catastrophic events, such as fire, pests, wind or 
snow damage or drought (cf. Gardiner and Quine 2000). While some of these 
might be influenced by the management, others occur randomly. Here, only 
basic aspects of randomly occurring catastrophic events are considered in 
order to indicate the general impact on the optimal thinning regime. Hence, 
the probability of occurrence is assumed to follow a homogeneous Poisson 
process (cf. Amacher et al. 2009, p. 269), where the arrival of the event is 
constant over time.  

As Reed (1984) has shown, the Faustmann model might be transformed to a 
stochastic version for randomly and totally destructive catastrophes, which 
destroy the total timber value of the current stand. In this case, a forest stand 
is afflicted at the average rate of catastrophic occurrence per time unit  as 
the Poisson parameter. If it is assumed that the timber value is worthless af-
ter the catastrophe and the stand has to be regenerated for regeneration 
costs in the amount of , the  with risk of random catastrophic events 
and thinnings might be written as (cf. Reed 1984, p. 184) 

Maximizing  with respect to the harvest ages yields 

 
[5-14] 

[5-15] 

[5-16] 
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In the face of catastrophic events, the optimal rotation age decreases since 
the average rate of occurrence enters the maximum condition via the dis-
count factor thus increasing the costs of holding the stand unilaterally (Reed 
1984, p. 184). In the same way, the optimal thinning ages are expected to 
decrease since the present value of the impact on the remaining trees, i.e. the 
sum on the very right of [5-15], is reduced. With the decreasing present value 
of the competition impact, the relevance of thinnings (cf. Paragraph 4.2) de-
creases while the thinning intensity (cf. Section 4.3.1) increases and the thin-
nings tend to be conducted from below (cf. Section 4.3.1). Similar results 
might be obtained with the expected utility approach for risk-averse forest 
owners (cf. Johansson and Löfgren 1985, p. 271). 

The approach might be extended for age-dependent arrival rates, where the 
Poisson parameter changes over the age. Naturally, with a monotonically in-
creasing average rate of occurrence over the stand age (e.g. in the face of 
storm threats), the optimal harvest ages further decrease (cf. Reed 1984, p. 
190) since the present value of the remaining trees is reduced. In cases, in 
which catastrophic events do not lead to the total destruction of the standing 
timber value, the  in [5-14] might be extended by the present value of 
the mean randomly salvageable timber value (cf. Reed 1984, p. 188). Since 
the latter is increasing over the harvest ages if timber production is profita-
ble, the marginal costs of holding the trees rises thus increasing the harvest 
ages compared to the totally destructive event.  

More important for thinnings is the possibility to influence the average arri-
val rate of catastrophic events by management efforts (cf. Reed 1987; Reed 
and Apaloo 1991). In this case, the thinning model [3-6] offers an interesting 
opportunity to analyze the impact of thinnings on the remaining trees. One 
possible way might be to assume that the Poisson parameter of a tree  is 
dependent on its age as well as on already conducted harvests prior to the 
rotation age, i.e., . In the face of storm risk, for instance, 

 with  if the stability of individual trees rises due 
to increasing stem diameters. In this case, more trees tend to be thinned (and 
from above, cf. Section 4.3.4) as the present value of the remaining trees in-
creases due decreasing threats of storm damage. On the other hand, if 
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 with  due to a decrease in the collective stability 
of stand by virtue of gaps, the opposite applies. In this way, the change in the 
Poisson parameter might be adjusted for the specific risk in case.  

Many other kinds of risks might enter the thinning model. For instance, the 
initial density might be adjusted when some trees are expected to be dying 
off randomly during the stand development due to microsite-specific causes 
such as browsing or fungal or insect infestation. On the one hand, this might 
induce forest owners to regenerate more trees if the expected loss from 
fewer trees justifies the additional regeneration costs (cf. Section 4.4.3). If, 
then, fewer trees drop out during the stand development than expected, thin-
nings become more relevant since the competitive pressure is higher than 
expected. Without the opportunity to thin and thus to adjust the investment 
if more trees are present than expected, forest owners might not invest in 
more trees at the beginning of the rotation period since the losses due to 
possibly thinner trees at the rotation age must be considered. However, thin-
nings might equally be unprofitable such fewer trees are regenerated. The 
complexity of the maximization problem increases progressively by virtue of 
the simultaneous equation system. As a consequence, seemingly reasonable 
responses of forest owners might become ambiguous, such as the direction 
of the adjustment of the initial density in the face of mortality risks.  

Occurrence of unanticipated changes 

The LEV in the thinning model [3-6] refers to the value of bare land. Forest 
stands, however, might also comprise timber volume already. The forest 
value  of such a forest then differs from the LEV. If the standing timber is 
assumed to be clear-cut in some time followed by instantaneous regenera-
tion and subsequent harvests in infinite cycles, future rotation ages can be 
determined independently of standing timber in the same way as in [3-7] 
due to Bellman’s (1957) principle of optimality, according to which every 
part of the optimal path must be optimal (cf. Johansson and Löfgren 1985, p. 
86). With standing timber, the maximization problem might be given by 
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where  are the optimal harvest ages while  is the current age of 
the stand. The maximum conditions for the optimal harvest ages are 

for . Since the stand age  can be eliminated in both [5-18] and [5-19], 
the optimal harvest ages are independent of the standing timber volume as 
[5-18] and [5-19] are equivalent to [3-13] - [3-15]. The land value  with 
standing timber is then simply  (cf. Johansson and Löfgren 1985, p. 
86).  

The independence of the optimal harvest ages in [5-18] and [5-19], however, 
does only remain valid if the standing timber is produced along the optimal 
path determined by the current investment situation. In an uncertain world, 
by contrast, the standing timber value might be given by  

where  since future developments could not be 
assessed correctly. The present value  of the land enclosing this timber 
volume might be termed “holding value” (Klemperer 1996, p. 222). The max-
imization problem and the corresponding first-order conditions are  

[5-17] 

[5-18] 

[5-19] 

[5-20] 



Suboptimal Thinning 185 

where . Although the discount factors can be eliminated, the optimal 
harvest ages of the current rotation  do not necessarily coincide with 
the optimal harvest ages within the Faustmann approach . If the 
timber volumes differ, i.e. if , the optimal har-
vest ages differ and also the comparative static analysis (cf. Chang 1998, p. 
656).  

Naturally, if the optimal management at a given point in time and for a given 
forest stand according to [3-7] does not comprise thinnings, they might be 
conducted if the timber volume of the current forest stand diverges from the 
optimal timber volume. If, for instance, the stand has evolved out of a high 
initial density due to the expectation of high prices for thin trees, thinnings 
might be conducted which have not been anticipated in order to produce 
thicker trees in shorter time if the timber price for those trees has risen since 
then. Or vice versa, initially intended thinnings of thin trees might be post-
poned when the price for timber of high quality is comparatively high.  

From this point of view, thinnings offer the opportunity to adjust the invest-
ment in timber production to unanticipated changes. For instance, if expec-
tations in high prices for thin trees have been disappointed, thinnings offer 
the opportunity to adjust the timber investment into the direction of thicker 

[5-21] 

[5-22] 

[5-23] 
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trees. In a stationary economy with constant or constantly changing price 
levels, thinnings might often be irrelevant if exceptionally high premiums for 
timber quality are excluded (cf. Section 4.4.3). The incentives to regenerate 
trees for thinnings are then very low since the price structure is already re-
garded by the initial density and additional timber volumes cannot be pro-
duced. It can thus be expected that thinnings are the less likely to be con-
ducted the more constant the expectations of the emergence of prices pro-
gresses. Such a stationary order, however, can only evolve with dynamic ad-
aptations on the part of the individuals involved since some changes in the 
conditions surrounding human actions occur which demand adjustments if 
conditions remain stable. It is just these adjustments to unanticipated 
changes which render economic actions necessary (Hayek 2002).  

Unanticipated changes in the conditions individuals face necessarily result 
in the disappointment of the expectations of some individuals (Hayek 1973). 
If thinnings, then, are anticipated to be profitable, unanticipated changes 
might render them unprofitable, and vice versa. The relevance of thinnings 
(cf. Paragraph 4.2) is directly influenced by the new circumstances sur-
rounding the forest owner since the new optimal harvesting regime enters 
the current regime via the LEV in the equation system [5-22] - [5-23]. New 
unanticipated changes in the future will again change the optimal manage-
ment and thus the current thinning regime. If unanticipated changes are then 
observed to be occurring constantly, the thinning regime of forest owners is 
a “permanent process” (Deegen 2001, p. 35) of adjustments on the basis of 
the presented model. Therefore, observed forest stands in market economies 
are expected to be the result of all adjustments to past changes in the price 
levels and not the single maximization solution on the basis of past or current 
price levels. How often and unanticipated investment situations change has 
been illustrated for forestry by Raup (1966). Whenever the direction of 
change deviates from the direction expected from the comparative static 
analysis (cf. Paragraph 4.5), those action conditions might be traced which 
caused the deviation.  
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The adjustment character of thinnings in an uncertain world becomes even 
more evident if thinnings are understood as the reverse operation to increas-
ing the initial density. In this way, they allow to adjust the initial investment 
in the initial density as thinnings are ex post modifications of the initial den-
sity (cf. Section 5.1.1). Therefore, thinnings qualitatively influence the timber 
volume and its structure in the same way as reductions of the initial density 
while postponements of thinnings have the same impact as an increase in the 
initial density (cf. Chapter 2). Only the intensity of the impact of thinnings is 
less than the impact of changes in the initial density since the period in which 
the trees are able to respond to the changed situation is shorter and older 
trees might in general be less responsive. If the expectations of future price 
levels at the age of the regeneration have been disappointed, forest owners 
have the opportunity to adjust the initial density via thinnings. At large, if the 
investment conditions between the regeneration and the current age have 
changed, forest owners are expected to adjust to the new situation by thin-
nings or by postponing intended thinnings.  

With uncertainty however, arbitrariness enters the analysis. If only future 
prices are insinuated to be high or low enough, any management regime can 
in principle be justified. For instance, if future price premiums for high qual-
ity timber are taken to be exceptionally high, initially very dense stands and 
frequent thinnings will eventually become profitable despite current price 
levels. In the same way, all efforts to minimize biotic or abiotic damages are 
justified if the future loss in volume or quality is only evaluated high enough 
regardless of the probability of the occurrence of the damage. Arbitrariness, 
though, leads to metaphysical propositions as the set of falsifiability becomes 
empty (Popper 2002b, p. 68 ff.). In this case, the scientific argument goes the 
other way around: forest owners observed to regenerate their forest stands 
comparatively densely are expected to have high expectations concerning 
quality price premiums, or vice versa.  

As a consequence, discussions on the optimal solution to the cutting regime 
in forest stands might be structured by the separation of diverging opinions 
concerning the known and the unknown effects on future states. On the one 
hand, ambiguities arise due to the complexity of the problem (cf. also 
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Puettmann et al. 2009) for a certain future with known changes (cf. Table 
4-1). On the other hand, different opinions result from the complex or simple, 
but unknown future. Disputes over current thinning regimes can thus be 
viewed as disputes over causal relationships and future market conditions. 
Albeit these assumptions are not always stated, they are nevertheless im-
plied. In this way, debates can be analyzed in order to “expose them [faiths] 
to the light of inquiry” (Duerr and Duerr 1975, p. 41).  

5.2.3 Heuristics and Adaptive Management 

The system of first order conditions [3-13] - [3-15] required to be satisfied 
simultaneously consist of n equations, i.e., one condition for each tree. Ap-
plied to actual forest stands, the system might comprise 500 to 10,000 or 
more equations. In view of this variety, any complete solution is virtually im-
practicable. It is not just that all the required information is not obtainable, 
but also that the data is only static in the model laboratory. As for general 
economics, simultaneous equation systems can only serve as a tool for the 
main problem, but not seriously as the solution itself (Hayek 1945). The 
equation system thus serves as an analytical tool for generating hypotheses 
in a precisely defined environment.  

For the case of an application with empirical data, heuristics have to be em-
ployed which reduce the analytical set to a practicable format. For this, any 
heterogeneous stand might be assumed to be comprised of two or more clas-
ses of trees which compete for resources, i.e. 

such that  trees are reduced to  classes with  as the timber volume of a 
class. These classes are assumed to be growing homogeneously as well as 
independently enough to form a non-competitive collective with a uniform 
harvest age (cf. Section 4.2.2). Naturally, this approach bears resemblance to 
the optimal thinning intensity (cf. Section 4.3.1) as the trees are assumed to 

[5-24] 
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have the same optimal harvest age. The assumption of more or less inde-
pendent growth within each tree class is practicable since the classes are in-
tensively intermingled such that trees of the same class are more or less spa-
tially separated from each other. The number of equations is then reduced to 
the number of classes selected, whereby the comparative static analysis has 
already been made controllable (cf. Paragraph 4.5). The number of classes to 
be selected depends on the situation to be examined. In some situations, for 
instance for low s or low levels of competitive pressure, it might suffice 
to separate only two classes. 

The separation of forest stands into tree classes is related to the concept of 
cohorts in general resource economics (cf. Beverton and Holt 1957, p. 135 
ff.; Getz and Haight 1989, p. 136 ff.; Wacker and Blank 1998, p. 88 ff.; Clark 
2005, p. 217 ff.). In contrast to the latter, though, the separation of forest 
stands into tree classes might be viewed as an effort to integrate density-
dependent structures into the age-based Faustmann model while cohorts are 
typically used to integrate age-dependent structures into density-dependent 
fishery models, as Deegen (2002) pointed out. However, the classification of 
the trees of a stand serves as a heuristic approach to handle the complex va-
rieties of forest stands just as cohorts should for fishery.  

The relevant criterion for the separation of tree classes within this analysis 
is the value growth rate (cf. Section 4.3.4). Only if trees growing inde-
pendently of each other share equal value growth rates, they share the same 
optimal harvest age (cf. Section 4.2.2). This might be extended to account for 
fixed harvest cost (cf. Section 4.4.2.2). With a unique timber price for all tim-
ber volumes, the criterion reduces to the timber volume growth rate as the 
timber price is cancelled out. If thinning concepts contemplate thinnings 
within a tree class, i.e., if only parts of a tree class are to be removed, the 
assumption of independent and/ or homogeneous growth within a class 
does not hold. In this case, the classification does not serve as a heuristic for 
the determination of the trees to be cut since thinnings within each class 
have to be assessed as well.  
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In forestry, tree classification systems for organizing trees into groups with 
similar features are commonly applied, at least since Kraft (1884). This clas-
sification system is also used to define silvicultural thinning concepts (cf. 
Smith et al. 1997, p. 99 ff.). As introduced in Section 4.3.4, the Kraft (1884) 
classes might be interpreted to serve the objective to classify trees according 
to their timber volume growth rates. Interpreted in this sense, the Kraft 
(1884) classification becomes both relevant at all as well as heuristically con-
venient for the management of forest stands. On the one hand, if the Kraft 
(1884) classes order trees according to different criteria (e.g. timber volume 
increments), it would be useless for the assessment of profitable timber pro-
duction as qualitatively equal investment situations would remove trees of 
different classes. Hence, the trees to be removed could not be named unam-
biguously. On the other hand, the Kraft (1884) classes serve as an efficacious 
tool for heuristic approaches of the stand management. Despite (or because 
of) their simplicity, they are easily applicable and allow to focus on the rele-
vant aspects of timber production: the crown indicates the timber increment 
(due to the pipe model theory, cf. Section 2.1.2), the stem indicates the timber 
volume; set in relation, the volume growth rate is revealed.  

Often, the Kraft (1884) classification system has been criticized for its lack of 
quality criteria. In this course, other classification schemes, such as the IU-
FRO or Assmann (1970) system, have been developed to account for this de-
ficiency. In a way, these efforts might be interpreted as an approximation to-
wards value growth rates as the relevant determinants of the optimal har-
vest ages since both classifications are only equivalent if the net unit revenue 
for timber is unique. However, the decisive advantage of the classification 
according to Kraft (1884) lies in its conceptual separation between the less 
and more predictable speculation variables. While tree growth in the near 
future might often be comparatively well assessed, investment situations 
might totally change just the other day. The speculative momentum does 
thus lie in the simulation of future market conditions. Even in the face of cli-
mate change, market conditions as well as the preferences of forest owners 
often change more rapidly and on a smaller scale than the characteristics of 
forest sites. Quality criteria, which have been relevant today, might be less 
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important or irrelevant tomorrow. In this situation, the classification system 
today is inappropriate for tomorrow. The volume growth rates, on the other 
hand, are relevant for timber production in general independent of time and 
location. Consequently, the Kraft (1884) classes allow speculating on the 
more volatile variables of profitable timber production. On its basis, addi-
tional and more individual criteria might then be introduced, as Pressler 
(1860) has shown with the quality and the price increment rates, which 
might be extended by impact rates.  

Naturally, the evolution of different tree classes within the stand develop-
ment is equivalent to the evolution of trees within a heterogeneous stand (cf. 
Paragraph 2.2). Depending on the genetics, the site characteristics and the 
initial state of the trees, the highest classes of even-aged stands dominates at 
the beginning of the stand development as most trees are growing solitarily 
(Oliver and Larson 1996, p. 148 ff.). In the subsequent competition phase, 
more vigorously growing trees are able to reinforce their competitive ad-
vantage such that inferior trees fall behind more and more, i.e., reduce their 
growth rates. This leads to a transition of trees to lower classes.  

While the origins of different growth rates are rooted in genetic and site dis-
similarities (Assmann 1970, p. 83), the relevant discrepancies between 
growth rates are the result of mutual interdependencies since the concept of 
the forest stand implies more or less similar growth conditions. In this way, 
thinnings become relevant through mutual interdependencies between 
trees in the heterogeneous stand as well since differing value growth rates 
(or rather their large differences) are the result of competition. The addi-
tional incentive in heterogeneous stands (cf. Section 4.2.2) is hence given by 
bygone interdependencies which led to the difference in the growth rates. 
Moreover, differing growth rates indicate density-dependent mortality. 
Thinnings are then conducted in order to anticipate mortality. The evolution 
of the tree classes is influenced by thinnings. When a thinning removes a tree 
class, this class will, in most cases, only be eliminated at the age of the thin-
ning. Since growth and competition will continue after the thinning, the elim-
inated class will be build up again. Merely when the remaining stand is fairly 
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sparse or it is harvested altogether soon after the thinning, the eliminated 
class will not be accumulated once more.  

This rebuilding of the tree classes, though, complicates the heuristic ap-
proach. If the class is built up again after a thinning, the growth function of 
the class becomes discontinuous. One solution to this problem might be 
piecewise differentiation which, however, amounts merely to the separation 
of two classes or more which are temporally separated. In this way, equal 
Kraft (1884) classes might be cut at different ages which denote different 
classes in the model approach of this work. The concept of tree classes be-
comes thus equivalent to the thinning intensity since the latter combines all 
trees of equal growth rates which are growing independently of each other. 
In either way, the two-stage process of the determination of the optimal cut-
ting regime remains valid (cf. Section 5.1.1).  

In order to illustrate the working of the thinning model numerically, the de-
scribed heuristics have to be employed. For simplicity, a forest stand is ana-
lyzed where a thinning reduces the stem number by 10% of the initial den-
sity by definition. For a heterogeneous stand, this could be equivalent to the 
removal of one or more tree classes; for a homogeneous stand, this might 
simply refer to the thinning intensity. These intensities or classes are exoge-
nously given to the example, possibly by prior optimization in the face of op-
erational restrictions (cf. Sections 4.3.1 and 4.4.2.2).  

The optimal harvest ages are determined by the marginal approach which 
compares marginal revenues and costs on the basis of the maximum condi-
tions [3-13] - [3-15]. This solution technique is chosen in order to demon-
strate an adaptive management approach that allows the stepwise adjust-
ment of the growth conditions to the subjective situation of a forest owner. 
As Chang and Deegen (2011) have shown, this approach is feasible for the 
determination of the rotation age in a world of unanticipated changes. Ac-
cordingly, the relevant changes in the investment as specified by the first or-
der conditions are condensed in terms of an indicator rate which allows 
speculating about the attainment of the optimal harvest age in a simple way. 
With reference to the optimal thinning ages, this approach has the advantage 
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to estimate the impact of a thinning on the value of the remaining trees as a 
simple percentage change since the required data are seldom available.  

Table 5-1 displays the illustration example. It has been constructed based on 
a frequently employed stand timber volume function  for Loblolly pine (Pi-
nus taeda L.) from Chang (1984): 

where the site index  has been set to 60 and the initial density  to 607.04, 
which corresponds to 1,500 pines ha-1. All values in Table 5-1 have been con-
verted to m3 and ha. In connection with exogenously given constant prices 
and costs, columns 2 to 4 illustrate the determination of the  according 
to the Faustmann model [3-1] and [4-2]. The optimal Faustmann rotation age 

 is then approximately 18 years since the  in column 4 is there at a 
maximum of about $431 ha-1. 

Columns 5 to 8 demonstrate the relevant criteria for the optimal thinning 
regime. Since the stand is assumed to grow homogenously, all living trees 
share equal growth rates, which are displayed in column 5. These growth 
rates differ from the rates given by the growth model [5-25] when thinnings 
modify the timber volume and its increment. As the net unit revenues are 
constant in this example, value and volume growth rates are of equal magni-
tudes. The potential to influence the timber volume of the remaining trees is 
included in column 6, which is termed the thinning indicator rate (TIR). The 
latter is defined as  

which is obtained by adding up all impact rates on one side of [4-14]. The 
relative impact of a thinning on the remaining trees is thus given by subtract-
ing the growth rate from the TIR.  

[5-25] 

[5-26] 
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Due to missing data and for the sake of simplicity, the thinning impact on the 
remaining trees has been freely estimated as well as reduced to the impact 
rate on the trees harvested at the rotation age by the function 

where  is the stand age and  is the number of thinnings already conducted. 
Accordingly, it is assumed that the impact rate of a thinning follows a de-
creasing course at a decreasing rate over the stand age. This assessment is 

Table 5-1 The optimal Faustmann rotation age and the optimal harvest ages of the 
thinning model 

1 2 3 4 5 6 7 8 
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5 5.53 6.98 -2,156.94 1.263 0.802 -0.046 -2,156.94 
6 15.26 12.42 -1,632.57 0.814 0.457 -0.100 -1,632.57 
7 30.07 17.00 -1,173.35 0.565 0.274 -0.214 -1,117.35 
8 48.78 20.18 -782.10 0.414 0.168 -0.721 -782.10 
9 70.01 22.07 -460.26 0.315 0.103 0.942 -460.26 

10 92.58 22.94 -203.68 0.248 *0.060 0.346 -203.68 
11 115.65 23.09 -4.69 0.213 0.128 0.214 -4.59 
12 138.61 22.76 145.50 0.173 0.095 0.156 147.13 
13 161.07 22.12 255.45 0.144 0.072 0.124 259.99 
14 182.79 21.30 332.79 0.129 *0.062 0.109 341.43 
15 203.63 20.37 384.04 0.111 0.080 0.093 398.54 
16 223.52 19.41 414.61 0.097 0.067 0.081 436.84 
17 242.45 18.44 428.92 0.089 *0.060 0.075 460.26 
18 260.41 17.49 *430.54 0.080 0.066 0.067 472.49 
19 277.43 16.57 422.35 0.074 *0.060 *0.062 *476.31 
20 293.56 15.69 406.65 0.067 0.061 0.057 473.87 
21 308.83 14.86 385.28 0.062 0.056 0.054 453.99 
22 323.29 14.07 359.70 0.058 0.051 0.051 444.72 

 A Thinning indicator rate, B Pressler’s 
indicator rate 

[5-27] 
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based on the circumstance that the potential impact on the timber volume of 
the remaining trees decreases over the age as the phase of competition is 
prolonged. The decline is more or less rapid as the response to thinnings of 
older trees is typically low. At the same time, the tree value of the thinned 
trees increases as it accumulates more timber volume. Combined as in [5-
27], the impact rate thus decreases at a decreasing rate similar to the course 
of the growth rate. The diminution of the potential to influence the remaining 
trees after thinnings have already been conducted is ensured by a reduction 
factor raised to the power of the number of thinnings conducted.  

The TIR is qualitatively analogous to Pressler’s indicator rate (PIR). The lat-
ter is defined as (cf. Pressler 1860) 

[5-28] is attained by isolating the interest rate in [4-19]. For the example in 
Table 5-1, the course of PIR is shown in column 7. Here, the quality and price 
development is held constant. According to the PIR criterion (cf. Gong and 
Löfgren 2010), the optimal rotation age is reached when PIR is equal to the 
interest rate provided the intersection is from above. Equally, an optimal 
thinning age is reached when the TIR is equal to the interest rate. Since the 
potential to influence the remaining trees after a thinning has been con-
ducted decreases, the TIR criterion can be met multiply.   

In the example above, the TIR criterion is satisfied at the ages of 10, 14, 17 
and 19 years. These are the optimal thinning ages indicated by the stars in 
the column. At these ages, 10% of the initial trees are removed, i.e., an as-
sumed homogenous class of 150 ha-1 trees at every thinning. The last optimal 
thinning age, though, coincides with the optimal rotation age as PIR in col-
umn 7 becomes equal to the interest rate. Here, the  is at a maximum of 
approximately $476 ha-1, which is $46 ha-1 or 10.6% more than the maximum 
of the Faustmann model in column 4. As a result, the optimal thinning regime 
comprises three thinnings with a total of 450 ha-1 trees removed prior to the 
rotation age.  

[5-28] 
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In this example, many simplifications have been made, in particular regard-
ing the impact rate of a thinning. However, the basic approach can be illus-
trated. At any age, the forest owner assesses with the help of PIR whether the 
optimal rotation age has been reached by speculations about the develop-
ment of value growth rates and land rents. If the final harvest is postponed, 
the forest owner assesses the satisfaction of the TIR by estimating future 
value growth and impact rates for different thinning intensities. If the TIR is 
equal or less than the interest rate, the stand is thinned; otherwise any har-
vests are postponed to the next period, in which the same procedure is re-
peated until PIR is finally satisfied, the stand is clear cut and reforested. Nat-
urally, the approach in the example can be specified to account for the differ-
ent sources of value growth for both PIR and the TIR (cf. Chang and Deegen 
2011).  

Figure 5.2 shows the development of the timber volume of the stand in the 
example. While the dashed curve represents the timber volume without any 
treatments, the solid curve reveals the timber volume development of the 
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Figure 5.2 The timber volume of the untreated and thinned stand in the example 
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thinned stand. The three thinnings cause the characteristic notches of 
thinned forest stands, where 150 pine trees ha-1 are removed. Since older 
pines comprise more timber volume, the thinning intensity, when measured 
as the timber volume removed, increases with the stand age. The intervals 
between the thinnings, on the other hand, decrease. As explored in Section 
4.3.3, both the development of the impact rates and the growth rates deter-
mine the optimal thinning interval. In this case, the interval decreases since 
the mining character of the thinning, i.e. the right hand side of [4-45], pre-
vails. Nevertheless, due to the exogenously determined intensity, later thin-
nings could be more intense for an unconstraint maximum which might in 
turn lengthen later thinning intervals.  

 Eventually, Figure 5.2 illustrates the advantage of thinnings in a homogene-
ous stand clearly. Each thinning reduces the timber volume of the stand until 
the next harvest while simultaneously maintaining or slightly reducing the 
timber increment (cf. Section 4.4.4). Therefore, the growth rates increase as 
well as the  since equal or slightly less output is produced with less input. 
However, the timber increment is not increased since in this case it pays to 
thin more intensively in order to further reduce the timber volume such that 
even higher growth rates are obtained. As a result of rising growth rates, the 
optimal rotation age might likewise increase. This proposition, though, can-
not be generalized as the land rent increases simultaneously which tends to 
shorten the rotation period (cf. Section 4.1.1.1).  

5.3 Thinnings and Interactions 

The present study is a contribution to the action theory of forestry (cf. Chap-
ter 1). However, the basic problem of forestry economics is the cooperation 
of individuals for mutual advantages. For this object of investigation, action 
theory serves as the microfoundation for the individual action before coop-
eration (or conflict respectively) takes place; i.e., the actions of other individ-
uals are taken as exogenously given restriction. The actual decisive interac-
tion theory, on the other hand, explains the coordination of different individ-
ual actions. At this level, the forest owner appears as a bargaining supplier 
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offering timber and capital for exchange. Naturally, thinning is an important 
strategic tool in this context as it allows for flexibility. Here, only a few impli-
cations are addressed, i.e., the influence of thinnings on the timber supply 
(Section 5.3.1), on the distribution and allocation of income and land with 
respect to forestry (Section 5.3.2), and on the formation of forests by market 
conditions (Section 5.3.3).  

5.3.1 Individual Timber Supply 

In the presented model, the optimal harvest ages determine the individual 
timber supply, which is defined as the timber volume per time unit the forest 
owner is willing to sell in a perfect market at a specific timber price. In this 
way, the optimal timber volume of tree   is determined by the optimal har-
vest ages such that 

Since the optimal harvest ages are determined with the help of the invest-
ment parameters, it equally holds that 

where the second-order condition [3-16] is assumed to hold and  is a vector 
comprising the relevant investment parameters, i.e. in this case, . 
For the entire forest stand of  trees, the optimal timber volume is then 

[5-31] defines the optimal total growth performance of the stand within a 
rotation period. In each rotation period,  is produced at age .  

[5-29] 

[5-30] 

[5-31] 
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Though [5-31] refers to different harvest ages, each tree is cut at equal rota-
tion intervals, i.e., every  years, due to the stationary rotation ages (cf. Sec-
tion 5.2.2). In order to compare the timber output in different investment 
situations, the total timber growth performance in [5-31] is annualized over 
the rotation period, i.e., 

which typically defines the short-run timber supply  (cf. Amacher et al. 
2009, p. 28; Conrad 2010, p. 145).  

This concept of the individual, annual timber supply, however, is bound to 
the concept of a linear (Johansson and Löfgren 1985, p. 112) and normal or 
fully regulated forest (Binkley 1993) where all age classes up to the optimal 
rotation age are present with the same share of the total forest area , i.e. 

. Only in this case, the forest owner is willing to supply the share of the 
optimal total growth performance annually. Moreover, it must be assumed 
that changes in the rotation age are accompanied by instantaneous changes 
in the age class distribution to a normal forest without any conversion costs. 
In this way, the individual timber supply in the Faustmann model does only 
serve as a preliminary to an actual microeconomic timber supply. Important 
parameters for the determination of the microeconomic timber supply are 
not comprised in the Faustmann model as a basically stand level approach 
(cf. Section 5.4.3 for more discussion).  

From the comparative static analysis (cf. Paragraph 4.5), the short-run tim-
ber supply in [5-32] can be derived directly. Accordingly, the timber supply 
decreases with rising timber prices and increases with rising regeneration 
costs due to decreasing and increasing optimal rotation ages (cf. Table 4-1) 
and monotonically rising timber volumes, cf. [3-41]. The impact of the inter-
est rate, on the other hand, remains ambiguous. In order to evaluate the long-
run timber supply, [5-32] must be differentiated with respect to the invest-
ment variable for assessing the impact of variable parameters. Therefore,  

[5-32] 
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where . Without the first two terms inside the bracket, [5-
33] is qualitatively equivalent the timber supply of the Faustmann model 
(Amacher et al. 2009, p. 29). The third and the forth term within the bracket 
cause the supply function to be backward-bending (Hyde 1980, p. 67) since 
the difference is positive for rotation ages shorter than the age of the maxi-
mum sustained yield and negative in the opposite case (Binkley 1987).  

With thinnings, the first two terms inside the bracket are nonzero. The first 
term sums all impacts on the remaining trees as well as the timber incre-
ments of the thinned trees. Together with the second term, the thinning in-
fluence on the timber supply can be written as 

The first term on the right hand side denotes all additional impacts of trees 
on remaining trees which are adjusted for the ratio between the optimal 
thinning and rotation age. In a solely competitive forest stand, this term is 
negative since all impacts are negative or zero, cf. [3-47]. The second and 
third term on the right hand side are necessarily positive as all trees have 
positive timber volumes and increments, cf. [3-41]. While the timber vol-
umes are annualized over the rotation age, the increments are adjusted for 

[5-33] 

 

[5-34] 
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the ratio between the optimal thinning and rotation age. The sign of the ad-
justment factor cannot be specified in general. If the cross partial derivative 
of the timber volume is positive, the adjustment factor is positive for two or 
three trees or tree classes necessarily (and presumably also for more trees 
or classes) since the change in the harvest ages with respect to the timber 
price and the regeneration costs points in the same direction (cf. Table 4-1). 
In the opposite case, the adjustment factor is negative. The sign of changes 
in the interest rate remains indefinite.  

Combined as in [5-34], the net impact on the individual timber supply is thus 
ambiguous. For positive adjustment factors, if the sum of the adjusted incre-
ments outweighs the prorated timber volumes and the thinning impacts, the 
timber supply will increase over a longer range as in the Faustmann model. 
In the opposite case, as well as for negative adjustment factors, the timber 
supply will be backward-bending already for lower timber prices.  

The backward-bending of the long-run timber supply derived of the 
Faustmann model is contradicting the monotonically increasing supply func-
tions in microeconomic models. Often, this feature is ascribed to the limited 
availability of land and its limited productivity. Certainly, the Faustmann 
supply disregards the opportunity to increase the long-run timber supply by 
allocating more land to forestry as well as the opportunity to intensify timber 
production on the existing areas. The latter effect might partly be explained 
by changes in the initial density (Hyde 1980; Chang 1983) and partly by 
changes in the thinning regime. If the timber price rises, it might pay to plant 
more trees thus increasing the timber supply. With regards to thinnings, 
however, more or less timber might be supplied in either direction of the 
change in the investment situation as the change in the optimal thinning ages 
remains indefinite.  

5.3.2 Allocation and Distribution 

The allocation of land to forests has two different dimensions (Deegen et al. 
2011). The temporal allocation of forest lands is the balancing of total land 
available between forestry and non-forest uses. The intertemporal forest 



202  Discussion and Conclusions 

land allocation, on the other hand, is the division of the total forest area for 
current and future consumption, i.e., for current and future timber harvests. 
Naturally, thinnings influence both dimensions of land allocation as the op-
timal thinning ages are important determinants of the forest land rent.  

The first implications are straightforward. If thinnings are relevant, they in-
crease the  thus lifting the competitiveness of forestry compared with 
other land uses as the intersection point of competing land rents is shifted 
(Strand 1969). In this way, more land of the total spectrum is allocated to 
forestry other things being equal (Amacher et al. 2008). Without competitive 
land uses, the extensive margin of forest land use (Zhang and Pearse 2011, 
p. 170 f.) is extended as some previously idle land generates positive land 
rents (Hyde 1980, p. 73 ff.). Typically, forestry is a capital-intensive and la-
bor-extensive land use compared to other forms, such as agriculture. Thin-
nings influence this capital-/ labor-relation in a particular manner. Since for-
estry is capital-intensive due to the long periods of timber production, rele-
vant thinnings reduce the accruing capital costs as the capital stock is low-
ered in relation to the value increments (cf. Section 4.4.4). On the other hand, 
as thinnings require the employment of labor, the labor intensity of the tim-
ber management is increased since thinner trees cause higher harvest costs 
(cf. Section 4.4.2.1). Therefore, shifts in the labor/ capital cost relation be-
tween forestry and non-forest land uses will be less pronounced when thin-
nings are relevant. When thinnings are precommercial, on the other hand, 
additional capital and labor have to be supplied.   

When an increase in the quantity of labor employed is connected to the op-
eration of thinnings, the harvest of trees prior to the rotation period is a shift 
of the intensive margin of land use (Zhang and Pearse 2011, p. 169) towards 
intensified management on each land unit. Together, the extensive and the 
intensive margin of forest land use determine the total production of timber.  

The intertemporal allocation of forest land, in turn, is in principle deter-
mined by the division of the total forest area by the rotation age (cf. Deegen 
et al. 2011, p. 355) which defines the consumption of timber today and in the 
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future. Since the impact of thinnings on the optimal Faustmann rotation pe-
riod is ambiguous (cf. Section 4.1.1.1), the change in the area consumed to-
day and hereafter depends on the magnitudes of the changes in the marginal 
revenues and costs. Since the comparative static derivatives of the 
Faustmann model are qualitatively equivalent to those of the thinning model 
with the exception of the interest rate (cf. Paragraph 4.5), the changes in the 
intertemporal land allocation due to changes in the investment conditions 
point in the same direction, whereas the impact of the interest rate, however, 
remains indefinite. Additionally though, effects of changes in the age class 
distribution have to be considered (Salo and Tahvonen 2004).  

Finally, the distribution of the income generated with timber production 
among the owners of the land, the capital and the labor employed (Deegen 
et al. 2011, p. 356 f.) is influenced by thinnings. With (commercial) thinnings, 
capital income on the labor and land invested is partially reduced as the har-
vest age of some trees decreases as long as the  and the rotation age re-
main unchanged. In this case, the land income is unaffected. The income of 
the laborer increases since thinner trees cause higher harvest costs (cf. Sec-
tion 4.4.2.1). If thinnings increase the , on the other hand, the total in-
come of the land owner increases since forestry is more profitable. Never-
theless, the impact of thinnings on the optimal Faustmann rotation age is am-
biguous (cf. Section 4.1.1.1). Therefore, with thinnings, more capital income 
and less labor income might be generated if the rotation age increases. This 
will affect the relative proportion of the incomes on the total income gener-
ated by timber production. Lastly, with profitable precommercial thinnings, 
more labor, capital and land income is generated. Since the increase in the 
total income generated is then divided between all owners of the factors of 
production, land owners have incentives to avoid precommercial thinnings 
in order to gain a larger share of the income.  

 



204  Discussion and Conclusions 

5.3.3 Silviculture and Markets 

As has been discussed in Section 5.1.1, silvicultural treatments can be inter-
preted as responses to the investment situation generated by the market 
conditions. Although the market conditions are the consequence of the inter-
actions of individuals, they are exogenously given for the forest owners if 
their own actions in a market society are not significant due to their negligi-
bly small fraction on the total exchanges within the market. Thus, forest own-
ers simply react to changes in the restrictions generated by all individuals. 
The presented model might help to explain those changes in the silvicultural 
treatments which are caused by market exchanges.  

For instance, as revealed by the changes in experimental plots in Section 2.3, 
planting densities have severely declined in the course of the last decades for 
many tree species in Central Europe. In view of the thinning model [3-6] and 
the timber growth theory (Figure 2.1), high planting densities can only be 
explained by low cost-covering diameters (cf. Section 4.4.3). Only for tree 
species with quality criteria favored by intensive competition, higher initial 
planting densities are to be expected. As in the calculation examples of von 
Thünen (1875, 2009), low wage rates at these times might have led to very 
low cost-covering diameters which allowed to exploit the idle land between 
the small trees at the beginning of the rotation period. Without the oppor-
tunity to thin, though, the initial densities would be considerable lower in 
order to guarantee the desired stem diameters of sawlogs in a shorter time. 
Without the expectation of profitable sawlog production, on the other hand, 
the stands would have been clear-cut in young ages. In these cases, and in 
combination with the attempt to reduce the regeneration costs and to in-
crease the initial density, tree stumps were left to regenerate new and many 
shoots. In these coppice forests, thinnings have often been unprofitable since 
even thinner stems are not worth the high harvest costs. When the produc-
tivity of the stumps declined, however, new trees have been planted 
(Medema and Lyon 1985; Tait 1986). If promising to be suitable, then, some 
of these trees have been retained for sawlog production. For analyses of 
these two-aged stands, the thinning model would have to be adjusted (cf. 
Section 5.4.1 and 5.4.2).  



Thinnings and Interactions 205 

In the 20th century, the cost-covering diameter has risen, possibly due to de-
creasing demand for small trees as firewood. If quality criteria are then not 
predominating, the optimal initial density decreases as thinning in young 
ages would only generate additional costs (cf. Section 4.4.3). However, at the 
end of the 20th century, the prevalence of fully mechanized logging and ma-
chining technologies held down the cost-covering diameter again. For Nor-
way spruce (Picea abies L.) in Central Europe, the differences in the cost-cov-
ering diameter have been sometimes as large as 40 years for equal initial 
densities; on the other hand, they are not as low as at the times of von 
Thünen.  

Furthermore, the changes in the machining technology resulted in the van-
ishing of price premiums for already thick trees. This severely reduced the 
incentives to invest in already thick trees as only reductions in the variable 
harvest costs remain attractive. In this case, higher initial densities and in-
creased thinnings become relevant as the growing area per tree decreases in 
value. Moreover, thinnings tend to be conducted more from below as the net 
unit revenues tend to be constant over some diameter ranges (cf. Section 
4.4.1.2).  

In many intensively managed forest plantation in the world, thinnings are 
observed to be less important as most of these forests are never thinned. On 
the one hand, this might be explained with reference to the greater degree of 
homogeneity in forest plantations. In the presence of fixed harvest costs, 
then, thinnings become unprofitable (cf. Section 4.4.2.2). Furthermore, rota-
tion periods become increasingly shorter such that changes in the market 
conditions might solely be met with adjustments of the initial density. Only 
in regions with low wage rates and low fixed harvest costs, thinnings might 
prove to be profitable as an intensified management.  

In temperate and boreal latitudes, on the other hand, rotation periods are 
often long enough such that changes in the market conditions shape forests 
in various ways. In connection with the different opportunities of forest own-
ers to invest their capital, the dynamics of market exchanges give rise to 
quite heterogeneous forest, even if composed of the same tree species. This 



206  Discussion and Conclusions 

development leads to the simultaneous coexistence of dense and sparse and 
old and young stands with thick and thin trees. In this context, many oppor-
tunities for increasing the profitability with silvicultural treatments arise.   

5.4 Stands and Forests 

The preceding analysis and discussion has focused on the stand as the basic 
management unit of forests. These stands have been separated into homoge-
neous and heterogeneous stands, implicitly composed of one tree species. 
The thinning model [3-6], however, is basically of a greater generality. The 
following sections discuss its employment as a model of mixed and multiple-
use stands (Section 5.4.1), of uneven-aged stands (Section 5.4.2) as well as a 
plain model for the analysis of entire forests (Section 5.4.3).  

5.4.1 The Mixed and the Multiple-Use Stand 

The presented thinning model [3-6] is suitable for the analysis of both ho-
mogeneous and heterogeneous stands (cf. Paragraph 4.2). The latter are dis-
tinguished by potentially deviating value growth rates of the trees forming 
the stand. No reference, however, is necessary for the origin of the dissimilar 
value growth. In this sense, the deviations might be caused by genetic or site 
inequalities (cf. Section 5.2.3). For the economic analysis, though, it is irrele-
vant which kind of genetic differences are observed in a forest stand such 
that the differences might be intra- or interspecific. As a consequence, heter-
ogeneity concerning the value growth rates might equally refer to different 
tree species mixed in the same stand. In this way, the results of the analysis 
in Chapter 4 do also apply to even-aged mixed stands.  

A simple example might be constructed with the hypothetical mixture of two 
tree species with differing optimal Faustmann rotation ages, such as Norway 
spruce (Picea abies Karst.) and European beech (Fagus sylvatica L.) or grand 
fir (Abies grandis Lindl.) and Douglas fir (Pseudotsuga menziesii Franco). The 
optimal harvest ages of the combined production within an even-aged stand 
(i.e., regeneration is postponed until the last tree is cut) are determined by 
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the optimal rotation age [4-3] for the tree species with the longer Faustmann 
rotation age and by the optimal thinning age [4-14] for the tree species with 
the shorter Faustmann rotation age. If inter- and intraspecific competition is 
disregarded, the two tree species form two independently growing tree clas-
ses according to [5-24] with deviating growth patterns. In this case, the op-
timal harvest age of the tree species with the shorter Faustmann rotation age 
will rise compared to the pure stand since the relative land rent does not 
have to be borne, cf. [4-29]. The harvest age of the other tree species will 
decrease in turn as the land rent of the earlier harvested tree species has to 
be compensated since [4-22] holds for solitarily growing stands. Hence, the 
optimal harvest ages converge and might eventually coincide in the mixed 
stand. 

With mutual interdependencies between the trees and the species, the con-
vergence process is modified. Considering interspecific competition, the op-
timal harvest ages will diverge again as the impact rate in [4-14] becomes 
relevant. The change in the optimal rotation age of the mixed stand, though, 
is ambiguous (cf. Section 4.1.1.1). Eventually, with intraspecific competition 
and heterogeneous growth among the trees of the same species, the optimal 
harvest ages might mix such that poorly growing trees of the tree species 
with the longer isolated rotation period are cut before well growing trees of 
the other species.  

However, in mixed forest stands, even positive interdependencies between 
the volume growths of different tree species might be observed. While trees 
in pure stands necessarily compete for the same ecological niche, different 
tree species in mixed stands might occupy different ecological niches such 
that mutual reinforcing timber growth might possibly occur. For instance, 
these situations might be relevant where the one species reduces abiotic or 
biotic threats of the other species. With mutually reinforcing timber growth, 
the optimal harvest ages of the tree species in mixed stands tend to converge 
(cf. also Section 5.1.2).  

With either inter- or intraspecific competition, another comparison might be 
drawn between the relative land rent and the impact rate (cf. Section 5.1.1). 
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The relative land rent in the  theorem [4-4] and the rotation age condi-
tion [4-3] are typically associated with the costs of holding the land value (cf. 
Johansson and Löfgren 1985, p. 80) since in a partial equilibrium the land 
value is defined as the infinite income stream generated by periodic regen-
eration and harvests of forest stands. In the same way as the impact rate of 
the optimal thinning age condition [4-14] might be interpreted as the costs 
of regeneration (cf. Section 5.1.1), it might equally be understood as the costs 
of holding the land which is associated with the thinned tree, i.e., its growing 
area. Since every standing tree occupies land that could be employed alter-
natively, it incurs costs in the amount of the next best alternative use. The 
next best alternative of the growing area of a tree ready for thinning is the 
additional timber value which might be produced by its neighboring trees 
when the thinning is conducted. The land that is freed from the thinned trees 
is thus not without use after the thinning is conducted, but, instead, it enables 
an additional value increment of the remaining trees, which can only be at-
tained by keeping the adjacent land, i.e., the potential growing area, tree-free. 
The utilization of the land of a thinning gap can be illustrated by the poor or 
even non-existing growth of a small tree planted into the gap.  

This kind of interpretation is closely related to combined land use concepts 
where different parts of the area are used for different products. Again, these 
multiple-use concepts simply represent heterogeneous stands where differ-
ent goods or services are produced simultaneously. In either way, the inten-
sification of the management of one crop will influence the yield of the other 
crop. Whether these different crops are different tree species or trees and 
crops or trees and livestock or trees and some services is unimportant for 
the general economic consequences, i.e., each intensified utilization bears 
costs to the owner. In the presented model, these costs emerge as the second 
term on the right hand side of [4-13]. Without this distinction, both the opti-
mal harvest ages and the land use values are overrated since the marginal 
costs on the right hand sides of [4-3] and [4-13] are reduced. In this instance, 
the conclusion applies only to even-aged multiple-use stands. However, as 
discussed in subsequent Section 5.4.2, the results might be generalized.  
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Due to its employment as a multiple-use model, the thinning model [3-6] is 
closely related to other multiple-use models. The most prominent model 
might be the Hartman model (cf. Hartman 1976; Strang 1983; Amacher et al. 
2008, p. 43 ff.). If thinnings are interpreted as a continuous flow of timber 
dependent on the rotation age and if the mutual independencies are re-
moved, both models are equivalent. Hence, in contrast to the Hartman 
(1976) model, the thinning model as a multiple-use model regards the mu-
tual interdependencies between the different products which might then 
lead to different optimal termination ages of the different products. In this 
way, the focus is more on the economically relevant mutually exclusive as-
pects of simultaneous production. Nevertheless, some extensions of the 
Hartman (1976) model incorporated some of these aspects (e.g. Swallow et 
al. 1990; Swallow and Wear 1993; Koskela and Ollikainen 2001; Li and 
Löfgren 2000).  

In either case, it should be emphasized that these multiple-use models are 
only meaningful for goods and services exchanged in markets. Since the un-
derlying Faustmann model [3-2] is a market model employing the Fisherian 
separation theorem (cf. Section 5.2.1), non-market goods and services can-
not be integrated without the loss of economic significance. Without this 
“network of relationships that emerges or evolves out of this trading pro-
cess” (Buchanan 1964, p. 220), subjective preferences might not be sepa-
rated from the investment decision. One solution to this problem is proposed 
by Salo and Tahvonen (1999).  

5.4.2 The Uneven-Aged Stand 

When the removal of a tree prior to the rotation age is followed by regener-
ation, the resulting stand is uneven-aged. In this way, thinnings are a concept 
of the even-aged stand if they are understood as harvests without subse-
quent regeneration. Since the Faustmann model [3-2] is defined for an even-
aged stand as all living trees are of the same age necessarily, thinnings are a 
concept of the Faustmann model. Viewed from a different angle, though, the 
Faustmann model combines both uneven-aged characteristics by allowing to 
regenerate every patch of land after a tree has been harvested as well as it 
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comprises thinning aspects through the uniform regeneration after the final 
harvest. This synthesis is guaranteed by the equal harvest ages of each tree. 

As indicated in Section 3.2.2, the thinning model [3-6] might technically be 
transformed to a more general many-aged model [3-38], where the even-
aged stand represents a special case. In this way, the restriction on the tim-
ber volumes, which excludes any regeneration of the stand before the har-
vest of the last tree, is eliminated. The harvest of a tree might then be fol-
lowed by instantaneous regeneration of the patch of bare land a tree leaves 
behind. Since, in this case, any trees might be influenced by the harvest of 
any other tree due to mixed ages, [3-39] applies. In this way, each tree is 
taken as constituting a single stand.  

For a correct analysis, though, it must be assumed that the stand in question 
is already on the optimal path of the timber development such that the cur-
rent stand structure already represents the result of the optimal harvest ages 
of each tree in the current investment situation, as in Chang (1981) or Hall 
(1983). This ensures that the incentives in each cutting cycle of each tree are 
equivalent such that cutting cycles are stationary (cf. Tahvonen et al. 2001, 
p. 1602). In this case, the optimal harvest age of a tree is given by setting [3-
40] to zero, i.e., after rearranging 

Hence, each tree is optimally cut according to an extended form of the FPO 
theorem [4-2]. Naturally,  the value increment and the capital cost on the tree 
value have to be considered as well as the cost of the land per tree character-
ized by its , i.e. . The latter repre-
sents the costs of regenerating the tree, i.e., to repeat its timber growth infi-
nitely. The selection of the unit area is irrelevant as long as it applies to all 
trees considered. Only if  is equivalent for each cutting cycle such that 

, the harvest cycles are stationary and the uneven-
aged model [3-38] is meaningful.  

[5-35] 
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Next to the determinants in the FPO theorem [4-2], the impacts on the value 
of all other trees influenced by the harvest are relevant for the determination 
of the harvest ages in the uneven-aged stand, cf. [5-35]. They are adjusted for 
potentially varying cutting cycles of the trees via a capitalization sequence 
adjustment factor . If the impacts are negative due to 
competition, they appear as costs such that the optimal harvest ages of trees 
in an uneven-aged stand are shorter compared to their solitary management. 
Time lags between the harvest and the regeneration are here implicitly re-
garded in the growth functions, or in the regeneration costs respectively. The 
chosen unity of the  in [3-38] and the  in [5-35] is open to the ob-
server of the forest as long as it is equal for all s. In this way, problems 
arising from varying growing areas over the age of a tree, which might evolve 
in tree-based approaches, are excluded by the selection of a unit area for 

 in [3-38] and the summing of the  of the same unit area of all trees 
which might potentially grow within the cutting cycles.  

In the Faustmann model [3-2], and the thinning model [3-6] respectively, the 
position on the optimal path of the timber value is conventionally guaran-
teed by the unified regeneration age. In either case, the  is defined for 
bare forest land. Necessarily, the bare land represents points on the optimal 
path of the development of the timber volume or value as they are independ-
ent of all possible stand states since the optimal rotation age and the optimal 
regeneration age coincide. Thus, if a stand state is optimal at the age , 
its optimal rotation age coincides with the optimal rotation age of the 
Faustmann model (Johansson and Löfgren 1985, p. 86) while they diverge in 
the opposite case. On this account, the Faustmann solution emerges as a 
steady-state solution in an optimal control setting (Anderson 1976). In the 
uneven-aged stand, by contrast, there is no unified point like the bare land 
which is equal for all possible stand states.  

As a consequence, the solution to the combined thinning and rotation prob-
lem is qualitatively analogous to the solution to the optimal harvest ages in 
the uneven-aged stand. Any tree is cut according to its value growth rate ad-
justed for the influence on all successively cut trees. Whether the influence 
is exerted on equally old and equally growing trees or on smaller and 
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younger trees or even on not already existing trees is irrelevant for the gen-
eral economic consequences. In this way, all analytical results equally apply 
to uneven-aged stands provided they are growing on the optimal path. Nat-
urally, the latter assumption disregards any transition processes towards 
the optimal stand states (cf. Tahvonen 2009; Tahvonen et al. 2010). Never-
theless, and analogously to Section 5.2.2, these dynamic aspects do not ren-
der the validity of the static results. In an uncertain world of unanticipated 
changes, dynamic transition processes are as constantly changing as the 
maxima in the static approach (cf. Section 5.2.2), which, in either way, de-
mands for heuristic and adaptive applications (cf. Section 5.2.3). Hence, dy-
namic problem formulations of the uneven-aged stand (cf. Haight 1985) are 
just as suitable as static approaches for uncertain investment situations. 
They differ in the path to the solution, but not in their applicability to the 
observable world.  

In the view of this study, uneven-aged management is simply the breaking 
down of the stand to its smallest unit, the tree, while accounting for the in-
terdependencies between these basic stand units. The same approach might 
be applied to the even-aged stand of the Faustmann model [3-2] and the thin-
ning model [3-6]. Without interdependencies and with homogeneous 
growth, the optimal harvest ages in the Faustmann model are equal such that 
the s for trees are simply the proportional share of the  of the stand, 
i.e. . It is convenient to combine several trees with similar 
harvest ages (due to heterogeneous growth) to stands with equal harvest 
ages (i.e. the Faustmann model) as potential management costs, such as fixed 
harvest costs (cf. Section 4.4.2.2), administrative costs or supply-induced 
price impacts, might be reduced more sharply than the loss from the devia-
tions of the single optimal harvest ages of each tree.  

With interdependencies, the combination of trees might likewise be conven-
ient (thinning model) as long as the costs of a unification of the regeneration 
age measured in the postponed regeneration of some bare patches of land 
are less than the management costs of smaller stand units. With positive in-
terdependencies, on the other hand, the system moves towards even-aged 
management as the optimal harvest ages converge (cf. Paragraph 4.2). 
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Therefore, without any management costs, forests are managed on the basis 
of the smallest units, i.e. one tree. In the face of site and genetic differences 
as the origin of heterogeneous growth and/ or of competition between the 
trees, uneven-aged management will then inevitably arise as harvest and re-
generation ages of different trees will differ necessarily (cf. Section 4.2.2).  

5.4.3 Forest Stands and Forests 

The Faustmann model [3-2] might be interpreted as to be constructed for 
analyses on the forest stand level as the basic management unit with suffi-
ciently uniform conditions. The combination of different stands might then 
be referred to as a forest. In this sense, the application of the Faustmann 
model to forests is invalid when these different levels of observation deviate 
in their characteristics. As Johansson and Löfgren (1985, p. 112 ff.) have 
shown, the Faustmann model can be applied to forests constrained by a “lin-
ear technology” (Johansson and Löfgren 1985, p. 114). This linear forest 
might be exemplified as a normal or fully-regulated forest (Amacher et al. 
2009, p. 213 ff.) where the normal age class distribution (cf. Section 5.3.1) is 
ensured regardless of changes in the optimal rotation ages (Salo and 
Tahvonen 2002).  

Likewise, though, the linear forest might be defined as the sum of totally in-
dependently growing stands. By analogy, then, the thinning model [3-6] 
might be interpreted as constituting a nonlinear forest with interdependen-
cies between the stands. In this way, trees are substituted for stands in which 
the trees are growing homogenously and/ or independently enough to share 
equal harvest ages (cf. Paragraph 4.2). Since each stand might be regenerated 
instantaneously after it is clear-cut, the more general many-aged model [3-
38] applies such that the forest value , which is understood as the  of 
an entire forest comprising several stands, is simply the sum of the interde-
pendent land expectation values of each stand, i.e.  
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with  as the timber volume of the th stand, which could be further speci-
fied as the sum of the trees, and  as its corresponding rotation age. As in the 
Faustmann model [3-2] and the thinning model [3-6], the  as the net pre-
sent values of the bare land of the stand ensures that the initial state is on 
the optimal path (cf. Section 5.4.2). 

The general first order maximum condition for the th stand is then 

The first term of the derivative gives the  theorem [4-2] of the th stand. 
However, the stand within the forest is only cut at the optimal Faustmann 
rotation age if the second term is zero. The latter denotes the present value 
of all influences on the value of the other stands of the forest. Without inter-
dependencies, the impact is zero, and each stand within the forest is cut at 
its optimal Faustmann rotation age. With nonzero impacts though, however, 
the optimal interdependent rotation age is obtained at a different age. With 
predominantly negative impacts on the values of its neighboring stands, the 
optimal rotation age decreases; with predominantly positive impacts, the op-
timal rotation age will rise. 

Hence, in the presence of interdependencies, the problem of the cutting cycle 
within a forest is qualitatively equivalent to the cutting cycle of both uneven-
aged and even-aged stands (cf. Section 5.4.2 and Paragraph 4.3). It follows 
that the analytical results of this study might be applied to each case. Thus, 
as the optimal thinning regime (cf. Paragraph 4.3) is the consequence of the 
optimal harvest age of each tree within the stand, the optimal age structure 
of a forest results from the optimal rotation age of each stand. The age class 

[5-36] 

[5-37] 
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distribution is thus not the primary optimization objective but an indirect 
consequence of harvest decisions.  

The interdependencies between the stands in a forest might be manifold. As 
in the uneven- or even-aged stand (cf. Section 5.4.2 and Paragraph 4.3), the 
stands in a forest might be interlinked by biotic and abiotic factors. For in-
stance, the harvest of a stand might increase the risk of storm damages or 
sunburns or reduce the threat of fires or pests of neighboring stands. Con-
sidering forests, though, the distinction between timber volume and value 
(cf. Paragraph 4.4) becomes even more important. If several stands in a for-
est have reached the optimal Faustmann rotation age, the short-run increase 
in the timber supply might cause the timber price to decline in the corre-
sponding region when the capacities on the timber demand side are ex-
hausted. In this way, the harvest of a stand reduces the unit net revenue of 
the next stand to be cut thus postponing its harvest. If, on the other hand, 
higher logging volumes promise price premiums, more stands are cut simul-
taneously due to positive interdependencies between the stand values (cf. 
Paragraph 4.2).  

As follows, the optimal rate of harvest of a forest is determined by the opti-
mal interdependent harvest ages. The corresponding concept of the stand is 
the thinning intensity (cf. Section 4.3.1). While negative interdependencies 
(supply induced price decline, ecological competition, accessibility) tend to 
reduce the rate of harvest, positive interdependencies (protection, cutting 
volume) tend to increase the rate of harvest, cf. [4-37]. Differences in the 
value growth rate might be compensated by differences in the relative land 
rent and the impact rates such that more stands share equal rotation ages 
and the rate of harvest increases. Similarly, the rate of harvest increases in 
the presence of fixed harvest costs (cf. Section 4.4.2.2) which might compen-
sate differences in the net value growth rates, cf. [4-69]. On the other hand, 
the harvest rate might be restricted (Heaps and Neher 1979). With the dy-
namics of market exchanges and/ or uncertainty, however, there can be no 
optimal long-run age class distribution as the rate of harvest is not the ulti-
mate objective.  
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The general many-aged model [3-38] is an interesting proposal for a unified 
view on the economics of timber production. Both the Faustmann model [3-
2] and the thinning model [3-6] can be considered as special cases of the gen-
eral uneven-aged management. Depending on the level of observation, trees 
or stands might be the basic unit of the analysis. In this way, the potential 
discrepancies between divisible and indivisible capital (Oderwald and Duerr 
1990) are dissolved in the model. Indivisible capital is simply the selected 
unit of the analysis. Whether this is a stand or a tree, or even different parts 
of a tree are cut at different ages (cf. Li and Löfgren 2000), is freely selectable 
by the analyst. With negative interdependencies between trees or stands, 
some trees might be cut prior to the rotation age, or the stands at an earlier 
age respectively, which corresponds to the conclusions in Oderwald and 
Duerr (1990). Moreover, the s in [5-36] might equally refer to any other 
net present value of land use, such as agriculture. In this way, the forest 
model can be interpreted as a general land use model. 



 

6 Summary 

When forest owners conduct thinnings in forest stands, their underlying ob-
jectives might be various. In the present study, the implications are analyzed 
when forest owners conduct thinnings in order to generate income with the 
production of timber. The analysis is restricted to the incentives and oppor-
tunities to pursue this aim in an open market of voluntary exchange. In this 
way, the problem of when to harvest trees prior to the rotation age can be 
solved within the Faustmann approach as the central action theory of forest 
economic science.  

From the perspective of timber growth, thinnings can be interpreted as sub-
sequent reductions of the initial density in a forest stand. As a consequence, 
their influences on the timber volume and its structure are qualitatively 
equivalent. However, due to shorter adjustment periods, lower responsive-
ness of older trees and potentially less uniform growing areas, the impact of 
thinnings on the remaining trees is less pronounced. While the stem diame-
ter and the timber volume of the remaining trees are thus expected to in-
crease after thinnings have been conducted, the change of the standing tim-
ber volume of the stand depends on the occurrence of density-dependent 
mortality. Without mortality occurring subsequently, thinnings will de-
crease the timber volume of the stand.  

For the economic analysis, the restriction of the independency and uni-
formity of the harvest ages of the trees in the Faustmann model is repealed 
by the introduction of mutual interdependencies between the trees growing 
in the stand and the opportunity on the part of the forest owner to harvest 
trees prior to the rotation age. As a consequence, a simultaneous equation 
system arises which determines the optimal harvest ages of each tree within 
the constraints of the rule system of a market society. Since any concept of 
thinning developed in the history of forestry is implemented by the harvest 
of trees at specific ages prior to the rotation age, the optimal harvest ages of 
the trees in the stand determine the optimal thinning regime unambiguously.  

R. Coordes, Optimal Thinning within the Faustmann Approach,
DOI 10.1007/978-3-658-06959-9_6, © Springer Fachmedien Wiesbaden 2014
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From the analysis of the implications of the optimal harvest ages of the trees 
in a forest stand, it follows that thinnings become relevant with heterogene-
ity concerning the value growth rates of standing trees and competitive pres-
sure concerning the negative impact on the timber value of remaining trees. 
In order to be sufficient, though, both conditions must outweigh the relative 
land rent representing the timber harvest opportunities in future rotation 
periods per standing tree. Whenever thinnings are thus relevant, the reasons 
to thin a stand more intensively, or less frequently respectively, are given by 
equal and independent or unequal and interdependent growth. In each case, 
several trees might share equal optimal harvest ages. In the presence of fixed 
harvest cost, thinnings are intensified as some of the additional revenues of 
the remaining trees are not worth the additional cost. With comparatively 
low variable harvest cost and/ or comparatively small differences in the im-
pacts on the remaining trees, on the other hand, thinnings tend to be con-
ducted from below, while they tend to be applied from above in the opposite 
case.  

The comparative static analysis of the thinning model indicates the direction 
of the changes in the optimal harvest ages when changes in the investment 
situation occur. While the optimal rotation age decreases with rising timber 
prices and falling regeneration costs, the impact on the optimal thinning ages 
remains ambiguously if the model is not further specified or reduced in its 
complexity. With the exception of the impact of changes in the rate of inter-
est, the comparative static analysis of the thinning model is thus qualitatively 
equivalent to the results provided by the Faustmann model.  

The analysis indicates various implications. Optimal thinning is basically a 
two-stage process with a feedback path such that the harvest age of a tree is 
only optimal given that all other harvest ages are optimal. These interrela-
tions emphasize the relativity of the most profitable trees and, thus, of those 
trees which promise the greatest increase in intertemporal income. In the 
same way, forest stands are prevented from being exploited by selective 
thinnings through the opportunity to regenerate the stand for future timber 
harvests. With the theoretical basis of an extended Faustmann model with 
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thinnings, additional incentives of forest owners can be analyzed. Accord-
ingly, it can be shown that the relevance of thinnings increases under bor-
rowing constraints and risks of catastrophic events and that thinnings offer 
the opportunity to adjust the investment in timber growth when unantici-
pated changes occur.  

While the analysis in this study is restricted to thinnings in pure and even-
aged forest stands, the underlying problem might be generalized to be ap-
plied to different types of forest stands and land-use concepts as well as to 
entire forests. In each case, the problem of when to harvest simultaneously 
grown goods (or services) with mutual interdependencies arises. In this 
sense, differing value growth rates represent mixed forest stands and multi-
ple-use stands, interdependent stands comprised of a single tree represent 
uneven-aged forest stands and localized and intensive thinnings represent 
forests. On this account, a uniform approach towards the production of tim-
ber, and of land-use via markets in general, is conceivable through simply 
adjusting the level of observation



 

7 Appendices 

7.1 Appendix 1 

The implication of two trees growing in volume at equal rates is analyzed for 
the impact of the variable harvest cost. If a tree grows in timber volume  at 
a rate , i.e., if  

where the subscripts denote different ages with , the corresponding 
stem diameter  grows at a rate of  since, cf. [2-4],  

If two trees  and  are compared which grow in timber volume at an equal 
rate , both diameters are related to each other like the root of ratio of their 
timber volumes, i.e. 

[7-1] 

 

 

 

[7-2] 

 

[7-3] 

R. Coordes, Optimal Thinning within the Faustmann Approach,
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if  due to the assumption of equal height and shape growth of 
two competitive trees over a broad range (cf. Section 2.1.3). In the same way, 
the diameter increments are related since 

employing [7-2] and  again. Accordingly, the diameter in-
creases proportionately to the root of the timber volume ratio. If, for in-
stance, , then the thicker tree  grows in thickness at the factor  
compared to the thinner tree.  

Though the thicker tree has a higher diameter increment, the unequal change 
in the variable harvest costs has to be considered. Without price differentials, 
the net of variable harvest cost unit revenue is decreasing degressively over 
the diameter, cf. [4-57] in connection with [4-55]. Therefore, equal changes 
in the diameters result in higher net unit revenue rates of thinner trees. The 
ratio of the change in the variable harvest costs for the two considered trees, 
defined as , can then be rearranged as, cf. [4-55],  

[7-4] 

 

 

 

 

[7-5] 
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given that  and . Since the ratio of the diameters of the two 
trees is equal to the root of the ratio of their timber volumes by virtue of [7-
3], the ratio of the changes in the variable harvest costs is the ratio of the 
timber volumes according to [7-5]. As  for , the ad-
vantage of the higher diameter increment of the thicker tree is overcompen-
sated by the steeper decline of the variable harvest cost of the thinner tree. 
In this way, the value increment of the thicker tree is less than the value in-
crement of the thinner tree provided both grow in volume at equal rates and 
price differentials are absent 
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