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Preface

The vibration of simple structures like beams and plates was discussed in Volume I
of Vibro-Acoustics. Various wave types and their propagation in simple structures
were investigated. The coupling effects between the basic wave types propagating
in real constructions were demonstrated in the first volume.

In Volume II the response and dynamic characteristics of more complicated
structures like shells, composite panels and frame reinforced plates typical of many
types of vehicles are derived. The acoustic coupling between these structures and
the energy flow between them are important parts of Volume II. The interaction
between structures and fluids is also highlighted.

Volume II of the text includes a chapter on variational methods. The technique is
used for the derivation of equations governing the vibration of sandwich and other
composite elements and some simple shell elements. In the following chapter the
coupling between mechanical systems is explored. This includes an introduction to
the vibration of rubber mounts, resilient mountings and the design of engine
foundations. Then follow chapters on waves in fluids including outdoor sound
propagation and room acoustics. Coupling effects between vibrating structures and
a surrounding fluid or quite simply sound radiation and sound transmission loss and
fluid loading of structures are the subjects of the next chapter. Discussions on
random excitation of structures follow. Finally, some methods, including Statistical
Energy Analysis, for the prediction of excitation and propagation of structure-borne
sound in large built-up structures are investigated.

A number of problems are formulated at the end of each chapter. Solutions to the
problems are given in Volume III. A summary of some basic equations presented in
the first two volumes are summarized in Volume III. Many results discussed in
Volume II are verified by model and full-scale measurements.

Genova, Italy Anders Nilsson
August 2015
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Chapter 9
Hamilton’s Principle and Some Other
Variational Methods

Many problems inmathematical physics and thus in vibro-acoustics cannot be solved
exactly. However, a variational technique can often be used to sufficiently well for-
mulate the equations governing the response of a structure excited by external forces.
The technique ensures that errors are minimized. Variational techniques are excellent
tools for solving dynamic problems for which exact solutions cannot be formulated.

The widely used Finite Element Method is based on Hamilton’s principle, which
is a very powerful variationalmethod. The principle can be proved based onNewton’s
law of motion. Inversely Newton’s law can be derived using Hamilton’s principle.
However, Hamilton’s principle is much more general than Newton’s law and for this
reason, it has survived the revolution in mechanics brought by Einstein.

The key problem for the successful application of any variational technique is
the mathematical formulation of the kinetic and potential energies of a system. This
formulation also requires a physical understanding of the mechanisms governing
the motion of a system. This can be illustrated by considering two different types
of three-layered beams. In one case, the structure consists of a beam with a con-
strained viscoelastic layer. For the vibrating beam, the shear forces in the viscoelastic
layer along the axis of the beam are of importance. In the other case, the core of a
three-layered beam consists of a honeycomb structure. In this case, the shear forces
perpendicular to the axis of the beam are of major importance for the deflection of
the beam. For the two cases, the energies are modeled in different ways resulting in
two different equations as discussed in Sects. 9.3 and 9.4. In each case, the results
are only valid as long as the basic physical assumptions are satisfied.

Hamilton’s principle is in this chapter used to derive the equations, which up to
certain frequencies govern the flexural vibrations of thick beams or plates and of
cylindrical shells. The Lagrange and Garlekin methods are also discussed. The lon-
gitudinal vibration of thick beams or rods is examined in Chap.10 in connection with
discussions on various models describing the axial vibration of cylindrical rubber
mounts.

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
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2 9 Hamilton’s Principle and Some Other Variational Methods

9.1 Hamilton’s Principle

Themost general formulation of the lawgoverning themotion of amechanical system
is Hamilton’s principle. In formulating the principle, it is assumed that the potential
energy is a known functionof somegeneralized coordinatesq1, q2, . . . , qn and time
t . The potential energy is symbolically written as = (q, t). The kinetic energy
T of the same system is also assumed to be a known function of the coordinates
q1, q2, . . . , qn , the velocities q̇1, q̇2, . . . , qn and time t . Thus, the kinetic energy is
written as T = T (q, q̇, t).

TheHamilton’s principle states: between two instants of time, t1 and t2, themotion
of a mechanical system is such that for the coordinates defining the system to be
described by the functions qi (t) the integral

J =
∫ t2

t1
(T − )dt (9.1)

is stationary. It assumed that the coordinates or displacements of the system at t = t1
and t = t2 are known.

Hamilton’s principle can also be written in the form

δ

∫ t2

t1
(T − ) dt = 0 (9.2)

The expression states that the variation of the integral is zero when the system is
given a virtual displacement if the virtual displacement is zero at t = t1 and t = t2.
During time period t1 to t2 the system will move in such a way that the time average
of the difference between the kinetic and potential energies is an extremum or in
most cases a minimum.

The difference between the kinetic and potential energies is called the Lagrangian
of the system and is defined as (or sometimes as −L)

L = T − (9.3)

The influence of an external field or force can also be incorporated in the variational
expression. By defining the potential energy for the conservative external forces as
A and by including this in the original expression (9.2) Hamilton’s principle reads

δ

∫ t2

t1
(T − − A)dt = 0 (9.4)

For a conservative (no losses) and external force described by the vector F acting
on a particle and moving the particle along a path given by the vector s the potential
energy of the external force is reduced and giving the energy as
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A = −
∫

Fds (9.5)

Hamilton’s principle as a tool for deriving the governing equations describing the
motion of a simple beam and some more complicated structures are discussed in the
following sections.

One proof of Hamilton’s principle can, as suggested by Petyt [63], be illustrated
by considering a simple system shown in Fig. 9.1. Let the vector F describe a con-
servative force acting on the point mass m. The work W done by a conservative
force, defined by the vector F, when moving the mass m from a position r1 to r2 is
independent of the path taken. The workW done along any path s is

W =
∫

Fds

During the process the mass or the system has lost the potential energy , thus
= −W . The conservative vector force F can thus be expressed as a function of

the potential energy of the symbol

F = −grad (9.6)

Consider now a simplemassm subjected to a conservative force defined by the vector
F. According to the principle of virtual displacement, it follows that

F · δr − m r̈ · δr = 0 (9.7)

The vector r defines the position of the mass. The virtual work δW = F · δr done
by the conservative force is also given by δ = −F · δr when is the potential
energy of the system. Considering this, Eq. (9.7) is written as

δ = −m r̈ · δr (9.8)

Fig. 9.1 A simple mass
system moved by a force
between two positions
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The kinetic energy T of the mass or in fact the system is T = m · ṙ2/2. Thus

δT = m · ṙ · δ ṙ (9.9)

By subtracting the expression (9.8) from (9.9) the result is

δT − δ = m · ṙ · δ ṙ + m r̈ · δr = d

dt
(m ṙ · δr) (9.10)

Integration with respect to time from t1 to t2 gives

∫ t2

t1
(δT − δ ) dt = [m ṙ · δr]t2t1 (9.11)

Assuming that the virtual displacement δr is equal to zero for t = t1 and t = t2 it
follows that

δ

∫ t2

t1
(T − ) dt = 0

This is Hamilton’s result as given by Eq. (9.2).
Hamilton’s principle is discussed in for example Refs. [58, 77, 78].

9.2 Flexural Vibrations of Slender Beams

The flexural vibrations of “thin” or slender beamswere discussed in Chap.7 (Volume
I). Again, a “thin” beam under flexure is considered to demonstrate how Hamilton’s
principle can be used to derive the equations governing the motion of the beam as
well as to formulate the boundary conditions of the beam.

A simple homogeneous and slender beam is shown in Fig. 9.2. The bending stiff-
ness of the beam is D′ and its mass per unit length is m′. The beam is extended along
the x-axis from x = 0 to x = L and is excited by a force F ′(x, t) per unit length. The
resulting displacement of the beam isw(x, t) defined positive, as the force, along the

Fig. 9.2 Forces and bending moments acting on a beam

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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positive y-axis. The forces and bending moments at the boundaries are F1, F2, M1,
and M2 as defined in Fig. 9.2.

The potential energy l induced by bending is per unit length of the beam given
by Eq. (3.84) as

l = D′

2
·
(

∂2w

∂x2

)2

The kinetic energy per unit length of the beam is

Tl = m′

2
·
(

∂w

∂t

)2

The potential energyA1 per unit length induced by the external force F ′ is according
to the definition (9.5) given by

A1(t) = −
∫ L

0
w(x, t)F ′(x, t)dx

The potential energy A2 induced by the external forces and moments is

A2(t) = − F2(t)w(L , t) + F1(t)w(0, t) + M2(t)

[
∂w

∂x

]
x=L

− M1(t)

[
∂w

∂x

]
x=0

= −
[

Fw − M · ∂w

∂x

]L

0
(9.12)

The total potential energy invoked by all external forces is consequently

A(t) = −
∫ L

0
w(x, t)F ′(x, t)dx −

[
Fw − M · ∂w

∂x

]L

0
(9.13)

According to Hamilton’s principle the kinetic and potential energies should satisfy
Eq. (9.4). Thus

δ

∫ t2

t1
(T − − A)dt = δ

∫ t2

t1
dt

[
−A +

∫ L

0
dx(Tl − Ul)

]
= 0 (9.14)

By inserting Eqs. (9.4), (9.5), and (9.13) in Eq. (9.14) the result is

δ

∫ t2

t1
dt

[∫ L

0
dx

{
m′

2
·
(

∂w

∂t

)2

− D′

2
·
(

∂2w

∂x2

)2

+ wF ′
}]

+
[

Fw − M · ∂w

∂x

]L

0
= 0 (9.15)

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Effecting the variation the expression (9.15) is written as

∫ t2

t1
dt

[∫ L

0
dx

{
m′ ·

(
∂w

∂t

)(
∂δw

∂t

)
− D′ ·

(
∂2w

∂x2

)(
∂2δw

∂x2

)
+ F ′δw

}]

+
∫ t2

t1
dt

[
Fδw − M · ∂δw

∂x

]L

0
= 0 (9.16)

Next, integration by parts is carried out. For simplicity, each part of the integrand is
treated separately. The first part of the double integral of (9.16) gives

X1 =
∫ L

0
dx
∫ t2

t1
dt ·m′ ∂w

∂t

∂δw

∂t
=
∫ L

0
dx

{[
m′ ∂w

∂t
δw

]t2

t1

−
∫ t2

t1
dt · m′ ∂2w

∂t2
δw

}

However, as required, the displacement w is fixed at the initial and final time limits.
Thus δw = 0 at t = t1 and t = t2. The integral X1 is consequently reduced to

X1 = −
∫ t2

t1
dt · m′ ∂2w

∂t2
δw (9.17)

The second part X2 of the integral (9.16) is integrated by parts as

X2 =
∫ t2

t1
dt

{∫ L

0
dx

[
−D′ ·

(
∂2w

∂x2

)(
∂2δw

∂x2

)]}

= − D′
∫ t2

t1
dt

[(
∂2w

∂x2

)(
∂δw

∂x

)

−
(

∂3w

∂x3

)
δw

]L

0
− D′

∫ L

0
dx
∫ t2

t1
dt ·∂

4w

∂x4
· δw (9.18)

By introducing the expressions (9.17) and (9.18) in Eq. (9.16) the result is

∫ t2

t1
dt
∫ L

0
dxδw

[
−m′ ∂2w

∂t2
− D′ ∂4w

∂x4
+ F ′

]

+
∫ t2

t1
dt

[
δw

(
D′ ∂3w

∂x3
+ F

)
− ∂δw

∂x

(
D′ ∂2w

∂x2
+ M

)]L

0
= 0 (9.19)

For the result to be zero for any δw or ∂δw/∂x , it follows that the expressions inside
the brackets must be zero. Setting the expression inside the first bracket equal to zero
gives

D′ ∂4w

∂x4
+ m′ ∂2w

∂t2
= F ′ (9.20)
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This is the equation of motion of a slender and homogeneous beam in flexure as
already discussed in Sect. 3.7.

By setting the second square bracket equal zero, the boundary conditions for
x = 0 and x = L are obtained as

δw

(
D′ ∂3w

∂x3
+ F

)
= 0 (9.21)

∂δw

∂x

(
D′ ∂2w

∂x2
+ M

)
= 0 (9.22)

For the first condition (9.21) to be satisfied at a boundary, it follows that

F = −D′ ∂3w

∂x3
or δw = 0 (9.23)

The second condition requires

M = −D′ ∂2w

∂x2
or

∂δw

∂x
= 0 (9.24)

The results give the expressions for force and bending moment as given by the
displacement w of the beam as already derived in Chap.3, Eqs. (3.73) and (3.75).
The conditions δw = 0 and δ(∂w/∂x) = 0 are equivalent to w and ∂w/∂x being
constant at the boundaries. For most practical purposes a coordinate system can be
oriented in such a way that the boundary conditions can be written w = 0 and
∂w/∂x = 0.

For one end of the beam simply supported, it follows that w = 0 to satisfy the
first requirement (9.23). For a simply supported beam, the bending moment is zero
at the boundary. The second requirement gives ∂2w/∂x2 = 0. For a beam clamped
at both ends, w = 0 and ∂w/∂x = 0 to satisfy both Eqs. (9.23) and (9.24).

Thus, by defining the kinetic and potential energies for a beam in flexure not
only the equation of motion but also a set of boundary conditions are derived from
Hamilton’s principle.

9.3 Equation of Motion for Honeycomb Beams in Flexure

The so-called sandwich panel, discussed in Sect. 4.7, is a structure, which can satisfy
requirements to low weight and high strength. Another such structure is shown in
Fig. 9.3. The core of the panel is a honeycomb structure. Thin laminates are bonded
to each side of the core as shown in Fig. 9.3. The core is primarily acting as a spacer
between the high strength laminates to give a sufficiently high bending stiffness to
the entire structure. In general, the stiffness of the core is high enough to ensure that

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Fig. 9.3 Honeycomb panel

the laminates move in-phase in the frequency range of interest. Typical materials
used for honeycombs are aluminum or Nomex, an aramid fiber paper coated by
a phenolic resin. Aluminum cores are often used in combination with aluminum
laminates. Various types of composite laminates are used with Nomex cores. These
laminates typically consist of a number of layers of fibers, which form part of a
supporting matrix. The orientation of the fibers and their properties determine the
macro-mechanical behavior of the laminates. Often, not only the laminates but also
the cores are orthotropic. The acoustic and dynamic properties of various types of
sandwich and honeycomb elements are discussed in Sects. 14.5 through 14.13.

In general, the core is stiff in the direction perpendicular to the laminates. For a
stiff core, it can be assumed that the laminates move in-phase as shown in Fig. 4.4a.
However, this requires that the dilatation frequency or double wall resonance fd be
well outside the frequency range for which the structure is designed, compare the
discussion in Sect. 7.9. For a sandwich or honeycomb element, one element having
the mass per area μ1 and the other μ2, with a lightweight core having the thickness H
and the Young’s modulus E perpendicular to the laminates the dilatation frequency
fd is

fd = 1

2π

[
E(μ1 + μ2)

Hμ1μ2

]1/2

The equations governing the flexural motion of a honeycomb or sandwich beam
can be formulated based on Hamilton’s principle as discussed in Refs. [79–82].
Consider a beam element shown in Fig. 9.4. The thickness of the core is H . The core
has a density ρc and effective shear stiffness Ge with respect to lateral forces. The
E-modulus of the core in the axial direction is denoted Ecx . The laminates are
assumed to be identical and have the thickness h and density ρl and E-modulus Elx

in the x-direction.
According to Hamilton’s principle, the equation of motion governing the lateral

motion of the structure can be derived once expressions defining the kinetic and
potential energies of the structure have been formulated. However, certain assump-
tions have to be made with respect to the motion of the structure. The laminates
are assumed to move in-phase having the same lateral displacement. The lateral dis-
placement is modeled as a combination of pure bending of the entire beam and by
shear in the core as shown in Fig. 9.5a, b, respectively.

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Fig. 9.4 A sandwich beam

Fig. 9.5 Displacement of a
beam, a pure bending,
b shear deformation

(a) (b)

The lateral displacement of the beam is w. The angular displacement ∂w/∂x is
caused by pure bending, defined by the angular displacement β, and by shear in the
core given by the angular displacement γ. Thus,

∂w

∂x
= β + γ (9.25)

The potential energy 1l due to pure bending of the beam is per unit length obtained
from Eq. (3.84) as

1l = D′
1

2

(
∂β

∂x

)2

(9.26)

The bending stiffness D′
1 of the entire beam, width b, is

D′
1 = 2b

∫ H
2

0
Ecx y2dy + 2b

∫ H/2+h

H/2
Elx y2dy

= Ecx
bH3

12
+ Elx b

[
H2h

2
+ Hh2 + 2h3

3

]
(9.27)

In general Elx � Ecx and H � h.

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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The potential energy 2l induced by the shear deformation of the core is per unit
length obtained from Eq. (3.41) as

2l = SGeγ
2/2; S = Hb (9.28)

The cross section area of the beam is S. The laminates will bend due to the shear
deformation of the core. The potential energy 3l per unit length due to the shear
deformation γ of the core is for each laminate

3l = D′
2

2

(
∂γ

∂x

)2

; D′
2 = Elx

bh3

12
(9.29)

where D′
2 is the bending stiffness of one of the two identical laminates.

The kinetic energy is assumed to be determined by the lateral motion of the entire
beam and the rotation of vertical segments of the beam. In the first case the kinetic
energy T1l per unit length is

T1l = m′

2

(
∂w

∂t

)2

; m′ = b(Hρc + 2hρl) (9.30)

The mass per unit length of the beam is m′. The kinetic energy T2l due to rotation
∂β/∂t is per unit length

T2l = I ′
ω

2

(
∂β

∂t

)2

I ′
ω = 2b

∫ H/2

0
ρc y2dy + 2b

∫ H/2+h

H/2
ρl y2dy

= ρc
bH3

12
+ ρlb

[
H2h

2
+ Hh2 + 2h3

3

]
(9.31)

where I ′
ω is the mass moment of inertia of the beam.

The beam is excited by a force F ′(x, t) per unit length. The forces F1 and F2
are defined in Fig. 9.4. The shear deformation of the core induces a bending of each
laminate resulting in a bending moment Ms of the laminate and giving it an angular
displacement γ. The total bending moment of the entire beam is Mb caused by pure
bending, or rather by the angular displacement β. The total potential energy of the
external loading is in accordance with Eq. (9.13) equal to

A(t) = −
∫ L

0
w(x, t)F ′(x, t)dx − [Fw − Mb · β − 2Ms · γ]L

0 (9.32)

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Hamilton’s principle, Eq. (9.4), yields

δ

∫ t2

t1
(T − −A)dt =δ

∫ t2

t1
dt

[
−A+

∫ L

0
dx(T1l +T2l − 1l − 2l −2 3l)

]
= 0

This expression in combination with the Eqs. (9.26), (9.28)–(9.31) results in

δ

∫ t2

t1
dt

{
1

2

∫ L

0
dx

[
m′
(

∂w

∂t

)2

+ I ′
ω

(
∂β

∂t

)2

− D′
1

(
∂β

∂x

)2

− SGeγ
2

− 2D′
2

(
∂γ

∂x

)2

+ 2wF ′
]

+ [Fw − Mbβ − 2Msγ]
L
0

}
= 0 (9.33)

The angular displacement γ, which is due to shear, is according to Eq. (9.25) equal
to γ = ∂w/∂x −β. Considering this and effecting the variation and after integrating
by parts and by observing that δw = δβ = 0 for t = t1 and t = t2 the result reads

∫∫
dxdtδw

[
−GeS

{
∂2w

∂x2
− ∂β

∂x

}
+ 2D′

2

{
∂4w

∂x4
− ∂3β

∂x3

}
+ m′ ∂2w

∂t2
− F ′

]

+
∫∫

dxdtδβ

[
−GeS

{
∂w

∂x
− β

}
− D′

1
∂2β

∂x2
+ 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
+ I ′

ω

∂2β

∂t2

]

+
∫

dtδw

[
GeS

{
∂w

∂x
− β

}
− 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
− F

]L

0

+
∫

dtδβ

[
D′
1
∂β

∂x
− 2D′

2

{
∂2w

∂x2
− ∂β

∂x

}
+ Mb − 2Ms

]L

0

+ 2
∫

dt
∂δw

∂x

[
D′
2

{
∂2w

∂x2
− ∂β

∂x

}
+ Ms

]L

0
= 0 (9.34)

For the entire expression to equal zero for any virtual displacement along the total
length of the beam, the displacementw and the angular displacementβ, pure bending,
must satisfy two differential equations obtained by setting the first two large brackets
equal to zero. Thus

− GeS

{
∂2w

∂x2
− ∂β

∂x

}
+ 2D′

2

{
∂4w

∂x4
− ∂3β

∂x3

}
+ m′ ∂2w

∂t2
− F ′ = 0 (9.35)

− GeS

{
∂w

∂x
− β

}
− D′

1
∂2β

∂x2
+ 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
+ I ′

ω

∂2β

∂t2
= 0 (9.36)

For the last three integrals of Eq. (3.34) to equal zero the boundary conditions at
x = 0 and x = L must satisfy

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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F = GeS

{
∂w

∂x
− β

}
− 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
or w = 0 (9.37)

Mb − 2Ms = −D′
1
∂β

∂x
+ 2D′

2

{
∂2w

∂x2
− ∂β

∂x

}
or β = 0 (9.38)

Ms = −D′
2

{
∂2w

∂x2
− ∂β

∂x

}
or

∂w

∂x
= 0 (9.39)

By substituting Eq. (9.36) into (9.37) the first boundary condition is written as

F = −D′
1
∂2β

∂x2
+ I ′

ω

∂2β

∂t2
or w = 0

The differential equation governing the lateral displacement w(x, t) of the honey-
comb beam is obtained by eliminating the angular displacement β from Eq. (9.35) by
means of Eq. (9.36). One way to execute this operation is to introduce the expression
w(x, t) = W · exp [i(ωt − kx x)] and β(x, t) = B · exp [i(ωt − kx x)] in Eqs. (3.35)
and (3.36). The two unknown amplitudes W and B are solved. Thereafter expres-
sions of the form (−ikx )

n W are interpreted as ∂nw/∂xn and (iω)nW as ∂nw/∂tn .
The details are left for Problem 9.4. The procedure, a direct and inverse Fourier
transform, leads to the result:

− 2D′
1D′

2
∂6w

∂x6
+ 2D′

2 I ′
ω

∂6w

∂x4∂t2
+ GeSD′

1
∂4w

∂x4

− [
(D′

1 + 2D′
2)m

′ + GeSI ′
ω

] ∂4w

∂x2∂t2

+ GeSm′ ∂2w

∂t2
+ m′ I ′

ω

∂4w

∂t4
= GeSF ′ − (

D′
1 + 2D′

2

) ∂2F ′

∂x2
+ I ′

ω

∂2F ′

∂t2
(9.40)

− 2D′
1D′

2
∂6β

∂x6
+ 2D′

2 I ′
ω

∂6β

∂x4∂t2
+ GeSD′

1
∂4β

∂x4

− [
(D′

1 + 2D′
2)m

′ + GeSI ′
ω

] ∂4β

∂x2∂t2

+ GeSm′ ∂2β

∂t2
+ m′ I ′

ω

∂4β

∂t4
= GeS

∂F ′

∂x
− 2D′

2
∂3F ′

∂x3
(9.41)

Oncew and β are determined, the angular displacement γ is obtained fromEq. (9.25)
as γ = ∂w/∂x −β. Except for the source terms,w and β satisfy the same differential
equation.

By letting the shear modulus Ge approach infinity and by setting I ′
ω equal zero

and thus neglecting shear and rotation, Eq. (9.40) is reduced to D′
1∂

4w/∂x4 +

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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m′∂2w/∂t2 = F ′ or the standard equation governing flexural vibrations of a slender
beam with the bending stiffness D′

1 and mass m′ per unit length.
If on the other hand the core is soft, Ge tends to zero, and neglecting rotation,

Eq. (9.40) is reduced to

2D′
1D′

2
∂6w

∂x6
+ [

(D′
1 + 2D′

2)m
′] ∂4w

∂x2∂t2
= (

D′
1 + 2D′

2

) ∂2F ′

∂x2

which for D′
1 � D′

2 is approximated by

D′
2
∂4w

∂x4
+ m′

2

∂2w

∂t2
= F ′/2

This is the equation of motion of one laminate assuming the weight of the two
identical laminates being equal to the total weight of the beam. Since the distance
between the beams is constant, each beam is supporting the force F ′/2.

The boundary conditions for a honeycomb beam are given in Eq. (9.37) through
(9.39). For a clamped beam, the displacement is zero at the boundaries. This require-
ment satisfies Eq. (9.37). Since at the boundaries the bending moments M and Ms
are different from zero it follows that the remaining requirements, (9.38) and (9.39),
only are satisfied if β = 0 and ∂w/∂x = 0. Thus, the boundary conditions to be
satisfied at a clamped edge are as follows: w = 0, β = 0 and ∂w/∂x = 0.

For a simply supported beam, it must be assumed that the beam is “hinged” at the
center of the end section as shown in Fig. 9.6. The displacement w and the bending
moments M and Ms are zero at the end section. The expressions to be satisfied at a
boundary are given by (9.38) and (9.39) as ∂β/∂x = 0 and ∂2w/∂x2 − ∂β/∂x = 0
or quite simply w = ∂2w/∂x2 = ∂β/∂x = 0.

For a free edge, the boundary conditions must satisfy F = M = Ms = 0. The
bending moments are zero when ∂2w/∂x2 = ∂β/∂x = 0. The force, (9.37), can by
means of Eq. (9.36) be written as

F = −D′
1
∂2β

∂x2
+ I ′

ω

∂2β

∂t2

Fig. 9.6 A simply supported
edge
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Table 9.1 Boundary conditions for a honeycomb/sandwich beam

End condition

Simply supported w = 0 ∂β/∂x = 0 ∂2w/∂x2 = 0

Clamped w = 0 β = 0 ∂w/∂x = 0

Free ∂β/∂x = 0 ∂2w/∂x2 = 0 D′
1∂

2β/∂x2 −
I ′
ω∂2β/∂t2 = 0

For a free edge F = 0. Often I ′
ω � 1 which simplifies the boundary condition for a

free edge to ∂2β/∂2x = 0.
The three boundary conditions are summarized in Table9.1.
The vibrations of sandwich and honeycomb beams are discussed further in

Sects. 14.5 through 14.13.

9.4 Plates with Constrained Viscoelastic Layer

The loss factor of a structure is an important parameter. By increasing the loss factor
of a structure its vibration energy can be reduced close to a resonance. Various
methods to increase the losses of a system were discussed in Sect. 5.5. In particular,
the so-called constrained viscoelastic layers can be quite effective. An example of
a constrained layer is shown in Fig. 9.7. The constraining layer induces shear and
longitudinal waves in the viscoelastic material. The losses due to shear typically
dominate and determine the total losses of the structure. The deformation due to the
bending of a plate with a constrained viscoelastic layer is also shown in Fig. 9.7.

The addition of a constraining layer and a viscoelastic layer to a structure not only
changes the loss factor but also the dynamic properties of the structure. It is therefore
essential to formulate the equations governing the vibrations of the structure. These
equations can again be derived bymeans ofHamilton’s principle as discussed inRefs.
[83, 84]. The result also gives the total bending stiffness, loss factor, and boundary
conditions for the damped element.

Fig. 9.7 Deformation of a beam with a constrained viscoelastic layer

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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Fig. 9.8 Forces and moments acting on a plate element having a constrained viscoelastic layer

Certain assumptions have to be made concerning the bending of the structure for
estimating its kinetic and potential energies. Consider a plate element under bending
as shown in Fig. 9.8.

The length of the plate along the x-axis is L . The displacement of the plate is
assumed to depend only on its x-coordinate. The base plate, denoted 1, has the
Young’s modulus E1, density ρ1, Poisson’s ratio ν1, and thickness h1. The corre-
sponding parameters for the cover or constraining plate are E3, ρ3, ν3, and h3. The
bending stiffness or rather its real part is

D0n = E0nh3
n

12(1 − ν2n )
; n = 1 for base plate and n = 3 for cover plate

It is assumed that the loss factors η1 and η3 of the base and cover plates are small
as compared to the loss factor η2 of the viscoelastic material. The thickness of the
viscoelastic layer is h2 and its complex shear modulus is G = G0(1 + iη2). Its
density is ρ2. The E−modulus of the viscoelastic material is assumed to be small as
compared to E1 and E3. However, the properties of the viscoelastic material should
be such that the distance h2 between the base and the cover plates is constant under
flexure.

Consider a plate with a constrained viscoelastic layer oriented in the x–y-plane
of a coordinate system. The displacement w(x, t) of the plate due to flexure is along
the z-axis. The in-plane displacements in the x-direction of the plates 1 and 3 are
given by ξ1 and ξ3, respectively. The mass μ2 = ρ2h2 per unit area of the viscoelastic
layer is assumed small as compared to μ1 = ρ1h1 and μ3 = ρ3h3, the masses per
unit area of the base and cover plates.

The kinetic energy Tw per unit width of the plate is

Tw =
∫ L

0

1

2

(
μ1ξ̇

2
1 + μ3ξ̇

2
3 + μ0ẇ

2
)
dx (9.42)

The mass per unit area of the entire plate is μ0 or

μ0 = μ1 + μ2 + μ3 ≈ μ1 + μ3 (9.43)
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The potential energy w per unit width of the plate is determined by the base plate
and the cover plate, longitudinal vibrations of the base and cover plates and by shear
in the viscoelastic layer. Thus

w =
∫ L

0

1

2

[
D1

(
∂2w

∂x2

)2

+ D3

(
∂2w

∂x2

)2

+ E1h1

(
∂ξ1

∂x

)2

+ E3h3

(
∂ξ3

∂x

)2

+ Gh2γ
2
]
dx (9.44)

The shear angle γ depends on the bending of the beam and the horizontal displace-
ments of the plates. Based on the geometry shown in Fig. 9.9 the shear angle γ1 due
to bending and γ2 caused by sliding is

h2γ1 = x3 − x1 = (R + he − R) · ∂w

∂x
= he

∂w

∂x
;

he = h2 + (h1 + h3)/2; h2γ2 = ξ3 − ξ1

Thus

γ = γ1 + γ2 = he

h2

∂w

∂x
+ ξ3 − ξ1

h2
(9.45)

Following the discussion leading up to Eq. (9.13) in Sect. 9.2, it follows that the
potential energy Aw per unit width induced by the external loading is

Aw = −
∫ L

0
wpdx −

[
(h1ξ1 + h3ξ3)F ′

x/(h1 + h3) + F ′
zw − M ′ ∂w

∂x

]L

0
(9.46)

where p is the external pressure acting on the plate, F ′
z is the force per unit width

of the plate acting in the z-direction and F ′
x is the force per unit width of the plate

acting in the x-direction and M ′ is the external bendingmoment per unit width acting
on the plate. The external pressure is positive in the direction of the positive z-axis.

Fig. 9.9 Shear angles in
viscoelastic layer
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The force acting on plate 1 in the x-direction is assumed to be F ′
x h1/(h1 + h3). The

corresponding force on plate 3 is F ′
x h3/(h1 + h3).

The differential equations governing the flexural vibration of the plate are obtained
from Hamilton’s principle

δ

∫ t2

t1
(Tw − w − Aw)dt = 0 (9.47)

By inserting the expressions (9.42) through (9.46) in (9.47) and effecting the variation
the result is

∫ t2

t1
dt
∫ L

0
dx
[
μ1ξ̇1δξ̇1 + μ3ξ̇3δξ̇3 + μ0ẇδẇ

]

−
∫ t2

t1
dt
∫ L

0
dx

[
(D1+D3)

∂2w

∂x2
· ∂2δw

∂x2
+E1h1

∂ξ1

∂x
· ∂δξ1

∂x
+E3h3

∂ξ3

∂x
· ∂δξ3

∂x

]

−
∫ t2

t1
dt
∫ L

0
dx

[
Gh2

[
he

h2

∂w

∂x
+ 1

h2
(ξ3−ξ1)

]
·
[

he

h21

∂δw

∂x
+ 1

h2
(δξ3−δξ1)

]
− pδw

]

−
∫ t2

t1
dt

[
F ′

x
h1δξ1 + h2δξ2

h1 + h2
+ F ′

zδw − M ′ ∂δw

∂x

]L

0
= 0

(9.48)
Integrating by parts and considering the requirements δw, δξ1 and δξ3 equal to zero
at t = t1 and t = t2 the result reads

∫ t2

t1
dt
∫ L

0
dxδw

[
−μ0ẅ−(D1+D3)

∂4w

∂x4
+G

h2
e

h2

∂2w

∂x2
+G

he

h2

(
∂ξ3

∂x
− ∂ξ1

∂x

)
+ p

]

+
∫ t2

t1
dt
∫ L

0
dxδξ1

[
−μ1ξ̈1 + E1h1

∂2ξ1

∂x2
+ G

he

h2

∂w

∂x
+ G

1

h2
(ξ3 − ξ1)

]

+
∫ t2

t1
dt
∫ L

0
dxδξ3

[
−μ3ξ̈3 + E3h3

∂2ξ3

∂x2
− G

he

h2

∂w

∂x
− G

1

h2
(ξ3 − ξ1)

]

+
∫ t2

t1
dt

[
δw

[
(D1 + D3)

∂3w

∂x3
+ F ′

z

]
− ∂δw

∂x

[
(D1 + D3)

∂2w

∂x2
+ M ′

]]L

0

+
∫ t2

t1
dt

[
δξ1

(
h1E1

∂ξ1

∂x
− F ′

x
h1

h1 + h3

)
+δξ3

(
h3E3

∂ξ3

∂x
−F ′

x
h3

h1+h3

)]L

0
=0

(9.49)

For the result to be zero for any δw, δξn, ∂δw/∂x and ∂δξn/∂x , it follows that the
expressions inside the brackets must equal zero. The first three expressions inside
the large brackets give



18 9 Hamilton’s Principle and Some Other Variational Methods

(D1 + D3)
∂4w

∂x4
+ μ0ẅ − G

h2
e

h2

∂2w

∂x2
− G

he

h2

(
∂ξ3

∂x
− ∂ξ1

∂x

)
= p (9.50)

E1h1
∂2ξ1

∂x2
− μ1ξ̈1 + G

he

h2

∂w

∂x
+ G

1

h2
(ξ3 − ξ1) = 0 (9.51)

E3h3
∂2ξ3

∂x2
− μ3ξ̈3 − G

he

h2

∂w

∂x
− G

1

h2
(ξ3 − ξ1) = 0 (9.52)

In order to solve these equations in a simple way certain approximations have to be
made. The wavenumber kx governing the flexure of the plate is mainly determined
by the first two terms of the first equation, (9.50). Considering this, the second term
of the second expression, (9.51), can be neglected as compared to the first term as
long as [

12Ei

hiμiω2

]1/2
� 1 for i = 1 and 2

By neglecting the second term in the expressions (9.51) and (9.52) the functions ξ1
and ξ3 are readily eliminated from (9.50). The resulting differential equation reads

∂6w

∂x6
− Z(1 + ϒ)

∂4w

∂x4
+ μ0

D1 + D3

[
∂2ẅ

∂x2
− ẅZ

]
= 0 (9.53)

where

Z = G

h2

[
E1h1 + E3h3

E1h1E3h3

]
; ϒ = [h2 + (h1 + h3)/2]2

(D1 + D3)

[
E1h1E3h3

E1h1 + E3h3

]
(9.54)

The details are left for Problem 9.5.
For a wave propagating along the positive x-axis the displacement is written as

w(x, t) = A · exp [i(ωt − kx x)] ; kx =
[
μ0ω

2

Dx

]1/4
(9.55)

where Dx is the bending stiffness of the composite panel. The bending stiffness
is complex and is written Dx = Dx0(1 + iηtot) where ηtot is the total loss factor
of the composite structure and Dx0 the real part of the bending stiffness Dx . The
wavenumber and thus also the bending stiffness are obtained by inserting Eq. (9.55)
in (9.53). The result is

− k6x − Z(1 + ϒ)k4x + μ0ω
2

D1 + D3
(k2x + Z) = 0 (9.56)
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This third-order equation in k2x is readily solved bymeans of some standard numerical
program. For a propagating wave the real part of k2x must be positive. However, the
expression (9.56) can bemodified tomake it possible to use a simple iterativemethod
to estimate the bending stiffness and the loss factor of the plate. Thus, divideEq. (9.56)
by k4x and use the definition of kx given in (9.55). The result is

Dx = (D1 + D3)

[
1 + ϒZ

k2x + Z

]
(9.57)

The total loss factor ηtot of the plate is defined as

ηtot = Im(Dx )

Re(Dx )

By assuming that η2 � η1 and η2 � η3 and by introducing X as X = Z/k2x the
total loss factor is obtained as

ηtot = η2X0ϒ

1 + (2 + ϒ)X0 + (1 + ϒ)(1 + η22)X 2
0

(9.58)

The real part of X is defined as X0. The expression (9.58) is the same as that given
in Eq. (5.101). A simple iterative method to solve k2x the equation is presented in
Sect. 5.5.

The limitingwavenumbers for a composite platewith an intermediate layer having
either a very low or very high shear modulus can be obtained from Eq. (9.56). For
G = 0 the parameter Z , defined in (9.55), is also equal to zero. The wavenumber
for a propagating wave is for Z = 0 obtained from (9.56) as

kx =
[

μ0ω
2

D1 + D3

]1/4

This solution represents the wavenumber for a flexural wave propagating along two
plates, which can slide against each other without inducing any shear forces along
the sliding surfaces. One plate has the bending stiffness D1 and the other has the
bending stiffness D3.

For the other limiting case, the shear modulus of the interlayer of the composite
structure is assumed to be high. For G large or rather for the ratio G/h2 being
large, the parameter Z , Eq. (9.54), is also large. If for simplicity it is assumed that
E1 = E3 = E and h1 = h3 = h and h2 � h Eq. (9.54) gives ϒ ≈ 3. In the limiting
case as Z → ∞ the expression (9.56) is reduced to

4k4x =
[

μ0ω
2

D1 + D3

]
; D1 = D3 = Eh3

12(1 − ν2)

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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The wavenumber is thus

kx =
[
μ0ω

2

D0

]1/4
where D0 = E(2h)3

12(1 − ν2)

This is the wavenumber for flexural waves propagating along a plate with the thick-
ness 2h. Thus in limiting case as G/h2 → ∞ the plates vibrate as if they were firmly
bonded to each other.

The boundary conditions for a plate with a constrained viscoelastic layer are
obtained from the last two integrals of Eq. (9.49). As before, it is assumed that the
motion of the plate only depends on the x-coordinate. For the last two integrals to
be zero the following boundary conditions at x = 0 and x = L must be satisfied

(i) w = 0 or (D1 + D3)
∂3w

∂x3
+ F ′

z = 0

(ii)
∂w

∂x
= 0 or (D1 + D3)

∂2w

∂x2
+ M ′ = 0

(iii) ξ1 = 0 or h1E1
∂ξ1

∂x
− F ′

x
h1

h1 + h3
= 0

(iv) ξ3 = 0 or h3E3
∂ξ3

∂x
− F ′

x
h3

h1 + h3
= 0 (9.59)

9.5 Timoshenko Beams

Flexural vibrations of thick beams were discussed in Chap. 4. For the bending of
thick beams rotation as well as shear can be considered as suggested by Timoshenko
[85, 86]. A differential equation governing the lateral vibrations of a so-called Tim-
oshenko beam is given without proof in Sect. 4.4. However, this equation can be
obtained directly from Eq. (9.40), which governs the vibration of sandwich beam,
by setting the thicknesses of the laminates equal zero. Consequently, the bending
stiffness D′

2 of the laminates as well as the bending moment Ms acting on the lam-
inates should also equal zero. The mass m′ per unit length of the beam is m′ = ρS
where S is the cross section area of the beam and ρ the density of the core. Further,
for a homogeneous beam, width b and thickness h, the mass moment of inertia is
I ′
ω = ρI ′ = ρbh3/12 = ρSh2/12. Considering these notations, Eq. (9.40) is for

D2 = 0 and F ′ = 0 reduced to

GeSD′
1
∂4w

∂x4
− [

D′
1m′ + GeSI ′

ω

] ∂4w

∂x2∂t2
+ GeSm′ ∂2w

∂t2
+ m′ I ′

ω

∂4w

∂t4
= 0 (9.60)

The effective shear modulus Ge is written Ge = TbG where Tb is the so-called
Timoshenko constant discussed in Sect. 4.4.

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Table 9.2 Boundary conditions for a Timoshenko beam

End condition

Simply supported w = 0 ∂β/∂x = 0

Clamped w = 0 β = 0

Free ∂β/∂x = 0 β = ∂w/∂x

The boundary conditions are obtained from Eq. (9.34) by again setting D′
2 = 0.

This means that the last integral of Eq. (9.34) always is equal to zero. Consequently,
there are only two conditions to be satisfied at each end of a beam. The force F and
bending moment M resulting from the bending of the beam as defined in Fig. 3.14
are

F = GeS

[
∂w

∂x
− β

]
= GTb S

[
∂w

∂x
− β

]
; M = −D′

1
∂β

∂x
(9.61)

The resulting boundary conditions are given in Table9.2. The displacement w and
angular displacement β should also satisfy Eq. (9.36) for D′

2 = 0. Eigenfreguencies
for various boundary conditions are derived as discussed in Sect. 14.8 and Problem
9.9.

In Sect. 4.12 the bending of I-beams was discussed. The wavenumbers etc. were
derived using the Euler and Timoshenko theories as well an exact model. Resulting
wavenumbers are shown in Fig. 4.16. It is evident that the Timoshenko theory gives
a better agreement with respect to the exact solution than the Euler theory in the low
and mid frequency regions. For high frequencies using the Timoshenko model, the
wavenumber for the first propagatingwave is proportional to the frequency. However,
based on the exact solution the wavenumber is proportional to the square root of the
frequency. Consequently, in the high frequency range there is a big discrepancy
between the exact wavenumber and the wavenumber calculated by means of the
Timoshenko theory. However, for homogeneous beams with rectangular or circular
cross sections the Timoshenko theory can yield very good results even in the very
high frequency region if the Timoshenko constant is properly chosen as discussed in
Sect. 4.4.

9.6 Mindlin Plates

The Euler equation governs the flexural vibrations of slender beams. The equation
is only valid up to certain frequencies as discussed in Sect. 4.4. Timoshenko added
terms to include shear in as well as rotation of the beam. The result was the so-called
Timoshenko beam equation discussed in Sect. 9.5. In a similar way, Mindlin in Ref.
[73] extended the basic Kirchhoff theory which describes the flexural vibrations of
thin plates. The extension included shear in and rotation of the plate. The Mindlin
theory is thus an extension in the frequency domain of theKirchhoff theory. Again, as

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Fig. 9.10 Plate excited by a
pressure

in the case of the Timoshenko beam, the governing equations for a so-called Mindlin
plate can be derived using Hamilton’s principle.

As a starting point consider a plate oriented in the x–y-plane as shown in Fig. 9.10.
The displacementw along the z-axis is caused by bending and shear. The local change
of slope along the x-axis is due to pure bending of the plate is defined as βx (x, y, t)
at time t and at the position (x, y) on the plate. The resulting displacement ξ along
the x-axis is ξ = −βx · z where z is the distance from the neutral axis of the plate. In
the same way, the displacement η in the y-direction is given by η = −βy · z where
βy(x, y, t) is the change of slope of the plate due to pure bending along the y-axis.
The displacements along the three main axes are

ξ(x, y, t) = −βx (x, y, t) · z along the x-axis

η(x, y, t) = −βy(x, y, t) · z along the y-axis

w(x, y, t) along the z-axis (9.62)

The resulting strains in the plate are according to the definitions (3.11) and the
assumptions (9.62) obtained as

εx = ∂ξ

∂x
= −z · ∂βx

∂x
; εy = ∂η

∂y
= −z · ∂βy

∂x

γxy = ∂ξ

∂y
+ ∂η

∂x
= −z · ∂βx

∂y
− z · ∂βy

∂x
;

γxz = ∂w

∂x
+ ∂ξ

∂z
= ∂w

∂x
− βx ; γyz = ∂w

∂y
+ ∂η

∂z
= ∂w

∂y
− βy (9.63)

The last two expressions can also be written as

∂w

∂x
= βx + γxz and

∂w

∂y
= βy + γyz

The slope ∂w/∂x of the plate is caused by pure bending βx and shear determined
by γxz . The slope ∂w/∂y is given a corresponding interpretation. The same type

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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of assumptions was introduced describing the lateral displacement of sandwich and
Timoshenko beams. This was discussed in Sect. 9.3, Eq. (9.25), and in Sect. 9.5.

The kinetic and potential energies of a plate element can now be defined as func-
tions of the strains. In Eq. (3.14) the potential energy per unit volume of a homoge-
neous and isotropic solid was given as

v =
∫ (

σxdεx + σydεy + σzdεz + τxydγxy + τxzdγxz + τyzdγyz
)

(9.64)

Although the plate is not necessarily thin, it is assumed that the normal stress σz is
equal to zero not only on the two surfaces of the plate but also in the interior of the
plate. This assumption, σz = 0, and the basic stress–strain relationships (3.5) and
(3.6) give

σx = E

1 − ν2
· (εx + νεy); σy = E

1 − ν2
· (εy + νεx ) (9.65)

The shear stress τxy is according to Eq. (3.12) defined as τxy = G · γxy . The other
shear stresses are defined accordingly. Thus by setting σz = 0 and by inserting (9.65)
and the appropriate shear stresses in Eq. (9.64) the result is

v = E

1 − ν2

∫ (
εxdεx + νεydεx + εydεy + νεxdεy

)

+ G
∫ (

γxydγxy + γxzdγxz + γyzdγyz
)

(9.66)

The first integral is rewritten as

∫ [
(1 − ν)

(
εxdεx + εydεy

)+ ν(εx + εy)d(εx + εy)
]

= (1 − ν)
(
ε2x + ε2y

)
/2 + ν

(
εx + εy

)2
/2 = 1

2

(
ε2x + ε2y + 2νεxεy

)
(9.67)

The potential energy per unit volume of the plate is from (9.66) and (9.67) obtained
as

v = E

2(1 − ν2)

(
ε2x + ε2y + 2νεxεy

)
+ G

2

(
γ2

xy + γ2
xz + γ2

yz

)
(9.68)

The energy S per unit area of the plate is

S =
∫ h/2

−h/2
dz v

Since the bending stiffness D of the plate is Eh3/[12(1−ν2)] andG = E/[2(1+ν)],
it follows from Eqs. (9.68) and (9.63) that the potential energy per unit area of the
plate is

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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S = D

2

[(
∂βx

∂x

)2

+
(

∂βy

∂y

)2

+ 2ν

(
∂βx

∂x

)(
∂βy

∂y

)]

+ Gh

2

[(
∂w

∂x
− βx

)2

+
(

∂w

∂y
− βy

)2

+ 2ν
∂βx

∂x

∂βy

∂y

]

+ Gh3

24

[
∂βx

∂x
+ ∂βy

∂y

]2
(9.69)

The kinetic energy Tv per unit volume of the plate is the sum of the kinetic energy
caused by the lateral motion of the plate plus the kinetic energies caused by rotation
around the x and y-axes. Hence,

Tv = 1

2

[
ρ

(
∂w

∂t

)2

+ ρz2
(

∂βx

∂t

)2

+ ρz2
(

∂βy

∂t

)2
]

(9.70)

The kinetic energy TS per unit area of the plate is thus

TS =
∫ h/2

−h/2
dzTv = 1

2

[
μ

(
∂w

∂t

)2

+ Iω

(
∂βx

∂t

)2

+ Iω

(
∂βy

∂t

)2
]

(9.71)

In this equation the mass per unit area of the plate is μ = ρh. The mass moment of
inertia is Iω = ρh3/12. The pressure p acting on the plate induces a potential energy
AS per unit area of the plate. The resulting energy isAS = −pw. It is assumed that
the work done by the forces and moments along the boundaries is equal to zero. The
Lagrangian L of the system is obtained from Eqs. (9.69) and (9.71) as

L = TS − S − AS = 1

2

[
μ

(
∂w

∂t

)2

+ Iω

(
∂βx

∂t

)2

+ Iω

(
∂βy

∂t

)2
]

− D

2

[(
∂βx

∂x

)2

+
(

∂βy

∂y

)2

+ 2ν

(
∂βx

∂x

)(
∂βy

∂y

)]

− Gh

2

[(
∂w

∂x
− βx

)2

+
(

∂w

∂y
− βy

)2

+ 2ν
∂βx

∂x

∂βy

∂y

]

− Gh3

24

[
∂βx

∂x
+ ∂βy

∂y

]2
+ pw (9.72)

The resulting variational expression is from Eq. (9.4) obtained as

δ

∫
dxdydt (TS − S − AS) = 0
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The result after effecting the variationwith respect tow, βx andβy is three differential
equations:

−μ
∂2w

∂t2
+ Gh

[
∂2w

∂x2
+ ∂2w

∂y2

]
− Gh

[
∂βx

∂x
+ ∂βy

∂y

]
= −p

−Iω
∂2βx

∂t2
+ D

∂2βx

∂x2
+ D(1 − ν)

2

∂2βx

∂y2
+ D(1 + ν)

2

∂2βy

∂x∂y
+ Gh

[
∂w

∂x
− βx

]
= 0

− Iω
∂2βy

∂t2
+ D

∂2βy

∂y2
+ D(1 − ν)

2

∂2βy

∂y2
+ D(1 + ν)

2

∂2βx

∂x∂y
+ Gh

[
∂w

∂y
− βy

]
= 0

(9.73)
The functions βx and βy are eliminated by means of the last two expressions of
(9.73). The result is a differential equation, including shear and rotational effects,
governing the displacement w of a homogeneous plate. The result is

D∇2(∇2w)−
[

Dμ

Gh
+ Iω

]
∇2
(

∂2w

∂t2

)
+μ

∂2w

∂t2
+μIω

Gh

∂4w

∂t4
= p+ D

Gh
∇2 p− Iω

Gh

∂2 p

∂t2
(9.74)

This result is consistent with the Timoshenko beam equation (9.60). If it is assumed
thatw is a function of x and t , Eq. (9.74) is reduced to Eq. (9.60) if the shear modulus
is interpreted as an effective modulus or as TpG where Tp is a parameter comparable
to the Timoshenko constant discussed in Sect. 4.3. For the case that shear and rotation
are neglected, Eq. (9.74) is reduced to the so-called Kirchhoff equation (3.115). No
shear implies that G → ∞. The rotational effects are neglected by setting Iω equal
to zero in Eq. (9.74).

For free plate vibrations, p = 0, and assuming w = A · exp [i(ωt − kx)] the
wavenumber k should satisfy the dispersion equation

Dk4 −
[

Dμ

Geh
+ Iω

]
ω2k2 − μω2 + ω4 μIω

Geh
= 0 (9.75)

This expression can be somewhat rearranged resulting in

k4 −
[

k2l +
(

kt
Tp

)2
]

k2 − κ4 + (klkt)2

T 2
p

= 0 (9.76)

where kl is the wavenumber for longitudinal waves propagating in the plate, kt the
wavenumber for transverse waves and κ the wavenumber for flexural waves propa-
gating in a thin Kirchhoff plate. Thus

kl = ω

√
ρ(1 − υ2)

E
; kt = ω

√
ρ

G
; κ =

[
μω2

D

]1/4

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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The solutions to Eq. (9.76) are obtained from the expression

k2 = 1

2

[
k2l +

(
kt
Tp

)2
]

± 1

2

⎧⎨
⎩
[

k2l −
(

kt
Tp

)2
]2

+ 4κ4

⎫⎬
⎭

1/2

(9.77)

As the frequency approaches zero κ � kt > kl and the solutions to Eq. (9.77) tend
to k = ±κ and k = ±iκ corresponding to the solutions for a Kirchhoff plate. For
increasing frequencies the solutions to Eq. (9.77) can be written

k = ±κ(1 + �) and k = ±iκ(1 + �); � = 1

4κ2

[
k2l +

(
kt
Tp

)2
]

(9.78)

For the error in the wavenumber to be less than 10% the Kirchhoff theory to be
applicable, the parameter� should be less than 1/10. This requires that κh < 1. This
is in agreement with the discussion in Sect. 4.4. The details are left for problem 9.6.

In the high frequency region kt > kl � κ the solutions to (9.77) tend to k = ±kl
and k = ±kt/Tp. The first solution corresponds to a quasi-longitudinal wave prop-
agating along the axis of the plate. The displacement due to this wave corresponds
to an anti-phase motion of the upper and lower surfaces of the plate as illustrated
in Fig. 4.4. The second solution depends on the shear in the plate and corresponds
to a transverse wave propagating in the plate along its axis, the displacement per-
pendicular to the plane of the plate. This corresponds to an in-phase motion of the
plate. As discussed in Sect. 4.4 the wavenumber for the in-phase motion of the plate
should tend to the Rayleigh wavenumber kr as the frequency approaches infinity. In
order to satisfy this requirement it follows that kt/Tp → kr as f → ∞. In the limit
Tp = kt/kr. For ν = 0.3 Table4.2 gives the ratio between the speeds of propaga-
tion of the waves as cr/ct = kt/kr = 0.93. Thus in order to satisfy the asymptotic
behavior of the wavenumber the parameter Tp should equal 0.93 for ν = 0.3.

9.7 Cylindrical Shells

Most “flat” plates have a slight curvature. Typical plate elements of a car construction
are not completely flat but exhibit a slight curvature. In ships and trains, frames
and stringers strengthen plate elements resulting in those plates having a certain
curvature. The fuselage of an aircraft can be compared to a cylinder. The cylindrical
shape increases the strength of the structure. In fact, the strength of a plate is increased
by giving it a curvature and making it into a shell. As stated by Leissa, Ref. [87],
“Shells are the most efficient structures available to mankind, and they should be
used more in design than they are.”

The influence of a slight curvature on the vibration pattern of a platewasmentioned
in Sect. 8.8. The added characteristic of a curvature makes it more complex to derive

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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the differential equations governing the vibrations of shells as compared to flat plates.
Again, Hamilton’s principle is a very efficient tool for deriving the basic equations
for vibrating shells. A large number of cases are discussed in Leissa’s much used
reference book [87]. Soedel also discusses the dynamic behavior of shells extensively
in Ref. [88].

The general procedure of finding the equations governing the vibrations of a shell
can be illustrated by an example, which can be considered simple in comparison with
problems that are more general. The example, the vibration of a thin cylindrical shell,
is of great importance for many vibro-acoustic problems in the field of aeronautics
and naval architecture. The fuselage of an aircraft or certain ship structures can be
compared to cylindrical shells. Pipes constitute another important class of shells.

A cylindrical shell is shown in Fig. 9.11. The shell is oriented along the positive
x-axis of a cylindrical coordinate system. The thickness of the shell is h. The radius,
or the distance from the center of the shell to the midplane of the shell, is R. The
coordinate in the radial direction is z. The rotational angle is ϕ as shown in Fig. 9.11.
The displacement of the shell is ξ in the x-direction, η in the tangential direction,
and w in the radial direction. The density, Young’s modulus, shear modulus, and
Poisson’s ratio are defined as ρ, E, G, and ν, respectively.

In formulating classical theory on small displacements of thin shells, Love [89]
made the following assumptions as summarized by Leissa [87]:

(i) The thickness of the shell is small compared to the radius of the shell.
(ii) Second and higher order magnitude of strain displacement can be neglected in

comparison with first-order terms.
(iii) The transverse normal stress is small compared to other normal stress compo-

nents and can be neglected.
(iv) Normals to the undeformed middle surface of the shell remain straight and

normal to the deformed middle surface.

The last assumption is often referred to as the Kirchhoff hypothesis and discussed
in Sect. 3.9. Because of the last assumption on geometry it follows that the shear
angles γxz and γϕz and the strain σz can be set to equal zero. In accordance with the
Kirchhoff hypothesis, rotary inertia of the shell is neglected.

Fig. 9.11 A cylindrical shell
with coordinates and
displacements

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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For a flat and thin plate, oriented in the x–y-plane, and for which the shear angles
γxz and γyz and the strain σz are set to equal zero the potential energy per unit volume
is given by Eq. (3.123) as

V = E

2(1 − ν2)

[
ε2x + ε2y + 2νεxεy + (1 − ν)γ2

xy/2
]

For a thin cylindrical shell shown in Fig. 9.11 the corresponding potential energy is

V = E

2(1 − ν2)

[
ε2x + ε2ϕ + 2νεxεϕ + (1 − ν)γ2

xϕ/2
]

(9.79)

where as before εx is the tension in the x-direction of the cylinder. The tension in the
tangential direction is εϕ. The shear angle between the x and the tangential directions
on the surface of the shell is γxϕ.

For a thin and flat plate, the tensions in the x–y-plane due to bending and dis-
placement ξ in the x-direction and η in the y-direction are fromEqs. (3.2) and (3.104)
obtained as

εx = ∂ξ

∂x
− z

∂2w

∂x2
; εy = ∂η

∂y
− z

∂2w

∂y2
(9.80)

The corresponding shear angle γxy is according to (3.11) and (3.111)

γxy = ∂ξ

∂y
+ ∂η

∂x
− 2z

∂2w

∂x∂y
(9.81)

For a cylindrical shell, Fig. 9.11, the y-coordinate is replaced by rϕ. Due to the
curvature of the shell the added tension in the tangential direction of the cylinder
caused by its displacement w is

εϕ = �η

r�ϕ
= (r + w − r)�ϕ

r�ϕ
= w

r
(9.82)

Considering the results (9.80) through (9.82) the tensions and the shear angle of the
shell are, as expressed in cylindrical coordinates

εx = ∂ξ

∂x
− z

∂2w

∂x2
; εϕ = w

r
+ 1

r

∂η

∂ϕ
− z

r2
∂2w

∂ϕ2 ; γxϕ = 1

r

∂ξ

∂ϕ
+ ∂η

∂x
− 2

z

r

∂2w

∂x∂ϕ
(9.83)

The potential energy per unit volume of the shell is defined in Eq. (9.79). Taking the
variation of the total potential energy gives

δ =
∫

δ V dV = E

(1 − ν2)

∫
dV

[
δεx (εx + νεϕ) + δεϕ(εϕ + νεx )

+ δγxϕ · γxϕ(1 − ν)/2

]
(9.84)

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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where dV = rdrdϕdx . The angleϕ varies between 0 and 2π and the radius r between
R −h/2 and R +h/2 and x over the length L of the cylinder. Writing r as r = R + z
and dr as dr = dz the first part of the integral (9.84) after introducing (9.83) reads

δ 1 = E

(1 − ν2)

∫
dV

[
δεx (εx + νεϕ)

]

= E R

(1 − ν2)

∫ L

0
dx
∫ h/2

−h/2
dz
∫ 2π

0
dϕ

[
∂δξ

∂x
− z

∂2δw

∂x2

]

×
[

∂ξ

∂x
− z

∂2w

∂x2
+ νw

r
+ ν

r

∂η

∂ϕ
− νz

r2
∂2w

∂ϕ2

]

For h � R the coordinate r is set to equal R in this equation since R − h/2 ≤ r ≤
R + h/2. After integration with respect to z the result is

δ 1 = E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ

{
∂δξ

∂x

[
∂ξ

∂x
+ νw

R
+ ν

R

∂η

∂ϕ

]

+ h2

12

∂2δw

∂x2

[
∂2w

∂x2
+ ν

R2

∂2w

∂ϕ2

]}

After partial integration and assuming the boundary conditions to be satisfied, the
integral is written as

δ 1 = E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ

{
− δξ

[
∂2ξ

∂x2
+ ν

R

∂w

∂r
+ ν

R

∂2η

∂x∂ϕ

]

+ δw
h2

12

[
∂4w

∂x4
+ ν

R

∂4w

∂x2∂ϕ2

]}
(9.85)

In a similar way the second part of Eq. (9.84) is

δ 2 = E

(1 − ν2)

∫
dV

[
δεϕ(εϕ + νεx )

]

= E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ

{
δw

[
ν

R

∂ξ

∂x
+ w

R2 + 1

R2

∂η

∂ϕ

+ h2

12

(
1

R4

∂4w

∂ϕ4 + ν

R2

∂4w

∂x2∂ϕ2

)]}

− E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ

{
δη

[
1

R2

∂w

∂ϕ
+ 1

R2

∂2η

∂ϕ2 + ν

R

∂2ξ

∂x∂ϕ

]}
(9.86)
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The final part of the expression (9.84) is obtained as

δ 3 = E

(1 − ν2)

∫
dV

[
δγxϕ · γxϕ(1 − ν)/2

]

= E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ

(1 − ν)

2

{
δξ

[
− 1

R2

∂2ξ

∂ϕ2 − 1

R

∂2η

∂x∂ϕ

]

+ δη

[
− 1

R

∂2ξ

∂x∂ϕ
− ∂2η

∂x2

]
+ δw

4h2

12R2

∂4w

∂x2∂ϕ2

}
(9.87)

The kinetic energy of the structure is

T =
∫ L

0
dx
∫ h/2

−h/2
dz
∫ 2π

0
dϕR

ρ

2

[(
ξ̇
)2 + (η̇)2 + (ẇ)2

]

Thus,

δ

∫
dtT =

∫∫∫
Rdxdϕdtμ

[
δξ̇
(
ξ̇
)+ δη̇ (η̇) + δẇ (ẇ)

]

= −
∫∫∫

Rdxdϕdtμ
[
δξ
(
ξ̈
)+ δη (η̈) + δw (ẅ)

]
(9.88)

Finally using Hamilton’s principle δ
∫
dt (T − 1 − 2 − 3) = 0, the Eqs. (9.85)

through (9.88) give

E Rh

(1 − ν2)

∫ L

0
dx
∫ 2π

0
dϕ
∫ t2

t1
dt (δξ · F1 + δη · F2 + δw · F3) = 0 (9.89)

where

F1 = ∂2ξ

∂x2
+ ν

R

∂w

∂x
+ ν

R

∂2η

∂x∂ϕ
+ 1 − ν

2

(
1

R2

∂2ξ

∂ϕ2 + 1

R

∂2η

∂x∂ϕ

)
− 1 − ν2

Eh
μξ̈

F2 = 1

R2

∂w

∂ϕ
+ 1

R2

∂2η

∂ϕ2 + ν

R

∂2ξ

∂x∂ϕ
+ 1 − ν

2

(
1

R

∂2ξ

∂x∂ϕ
+ ∂2η

∂x2

)
− 1 − ν2

Eh
μη̈

F3 = −h2

12

(
∂4w

∂x4
+ 1

R4

∂4w

∂ϕ4 + 2

R2

∂4w

∂x2∂ϕ2

)
− ν

R

∂ξ

∂x
− w

R2 − 1

R2

∂η

∂ϕ
− 1 − ν2

Eh
μẅ

(9.90)
For the integral (9.89) to be zero the functions F1, F2, and F3 must equal zero. The
resulting equations can be written in matrix form as

L · r = 0; r =
⎧⎨
⎩

ξ
η
w

⎫⎬
⎭ (9.91)
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The elements of the 3 × 3 operator L are

L11 = ∂2

∂x2
+ 1 − ν

2

1

R2

∂2

∂ϕ2 − 1 − ν2

Eh
μ

∂2

∂t2
; L12 = (1 + ν)

2R

∂2

∂x∂ϕ
; L13 = ν

R

∂

∂x

L21 = 1 + ν

2R

∂2

∂x∂ϕ
; L22 = 1 − ν

2

∂2

∂x2
+ 1

R2

∂2

∂ϕ2 − 1 − ν2

Eh
μ

∂2

∂t2
; L23 = 1

R2

∂

∂ϕ

L31 = ν

R

∂

∂x
; L32 = 1

R2

∂

∂ϕ
;

L33 = 1

R2 + h2

12

(
∂4

∂x4
+ 1

R4

∂4

∂ϕ4 + 2

R2

∂4

∂x2∂ϕ2 + μ

D

∂2

∂t2

)

(9.92)

The bending stiffness D is D = Eh3/
[
12(1 − ν2)

]
. The operator L is often referred

to as the Donell-Mushtari operator.
In the limiting case as Rh tends to infinity and as R∂ϕ tends to ∂y or rather as the

shell approaches the shape of a flat plate the governing equations (9.91) and (9.92)
are reduced to

∂2ξ

∂x2
+ 1 − ν

2

∂2ξ

∂y2
+ 1 + ν

2

∂2η

∂x∂y
− 1 − ν2

Eh
μξ̈ = 0

1 + ν

2

∂2ξ

∂x∂y
+ 1 − ν

2

∂2η

∂x2
+ ∂2η

∂y2
− 1 − ν2

Eh
μη̈ = 0

∇2(∇2w) + μ

D
ẅ = 0 (9.93)

Thefirst two equations of (9.93) govern in-planewaves, or longitudinal and transverse
waves, propagating in a flat plate. This is demonstrated by introducing the velocity
and vector potentials discussed in Sect. 4.1, Eqs. (4.10) through (4.12). Compare
Problem 9.8. The last equation of (9.93) is the wave equation for flexural waves
propagating in a thin plate.

The Donell-Mushtari operator (9.92) can be modified by adding higher order
terms of (h/R)2 as suggested by Flügge, Byrne and Lur’ye. Returning to Eq. (9.83)
and the expression 1/r and remembering that this quantity was approximated by 1/R
across the thickness of the cylinder a somewhat better result would be achieved by
writing 1/r as

1

r
= 1

R + z
= 1

R(1 + z/R)
≈ 1

R

(
1 − z

R

)
for R � z

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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An operator Lf including this correction term can be written as

Lf = L + χ · �L; χ = h2

12R2 (9.94)

The operator L is defined in Eq. (9.92). The correction terms �Li j of the operator
�L are

�L11 = 1 − ν

2

1

R2

∂2

∂ϕ2 ;�L12 = 0;�L13 = −R
∂3

∂x3
+ 1 − ν

2R

∂3

∂x∂ϕ2

�L21 = 0;�L22 = 3(1 − ν)

2

∂2

∂x2
;�L23 = − (3 − ν)

2

∂3

∂x2∂ϕ

�L31=−R
∂3

∂x3
+ 1 − ν

2R

∂3

∂x∂ϕ2 ;�L32=−3 − ν

2

∂3

∂x2∂ϕ
;�L33= 1

R2 + 2

R2

∂2

∂ϕ2

(9.95)
Leissa discusses in Ref. [87] a number of additional models describing the vibration
of cylinders. Some solutions to the Eqs. (9.94) and (9.95) are discussed in Sects. 14.14
through 14.17. In certain cases, also the tension in a shell must be considered. For
example, there is typically an overpressure inside an aircraft when in flight. This
overpressure induces a tension in the plates of the fuselage. The tensionwill influence
the vibration of the structure as discussed in Chaps. 14 and 15.

9.8 Lagrange’s Equation

The equations governing the motion of a mechanical system or rather a system of
particles can be derived from Lagrange’s equations. These equations were formu-
lated before Hamilton presented his principle. However, Lagrange’s equations can
be derived from Hamilton’s principle. Thus, let the potential energy of a mechani-
cal system be . The potential energy is a known function of some generalized
coordinates q1, q2, . . . , qn and time t . The coordinates identify the positions of n
particles. The potential energy is symbolically written = (q, t). The kinetic
energy T of the same system is also assumed to be a known function of the coor-
dinates q1, q2, . . . , qn , the velocities q̇1, q̇2, . . . , q̇n and time t . The kinetic energy
is written T = T (q, q̇, t). The Lagrangian operator L of the system is defined as
L = T − . According to Hamilton’s principle, Eq. (9.2), it follows that

δ

∫ t2

t1
Ldt = 0 (9.96)

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_15
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The Lagrangian L is L = L(q, q̇, t). A variation of the expression (9.96) gives

∫ t2

t1
dt

[
∂L
∂q

· δq + ∂L
∂q̇

· δq̇

]
= 0 (9.97)

The last expression inside the bracket is integrated by parts resulting in

∫ t2

t1
dt

∂L
∂q̇

· δq̇ =
[
∂L
∂q̇

· δq

]t2

t1

−
∫ t2

t1

d

dt

(
∂L
∂t

)
δqdt (9.98)

However, δq = 0 for t = t1 and t2 as discussed in Sect. 9.1. Thus for Eq. (9.97) to
be equal to zero it follows that

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0 (9.99)

This is Lagrange’s equation for a conservative system. For a conservative force acting
on themechanical system a resulting potential energy can be defined as in Eq. (9.5) to
write the Lagrangian asL = T − −A. Some applications of Lagrange’s equations
are discussed in Sects. 10.2 through 10.4. Even systems having losses can to a certain
extent be described by means of Lagrange’s equations as discussed in Sect. 10.3

9.9 Garlekin’s Method

The forced response of plates was discussed in Chap. 8. It was concluded that analyt-
ical solutions to this type of problems only could be formulated for certain boundary
conditions. For rectangular plates two opposite sides must be simply supported for
a solution to be found. Another possibility is that two opposite sides are described
as “sliding” as illustrated in Fig. 8.2. However, good but approximate solutions can
be formulated as suggested for example by Garlekin and discussed in Refs. [16, 25].
Garlekin’s original papers were written in Russian. The variational method proposed
by Garlekin can be used to find the best possible solution to a problem provided
the differential equation describing the response of the structure and its boundary
conditions are known. The method is a generalized and simplified application of the
virtual work principle. The solution to the problem is set to be a linear combination
of a number of shapes or trial functions φk(r) where r are some coordinates for
which the structure is defined. The amplitude of the trial functions is chosen so as to
minimize the errors.

In order to describe the method assume that a structure is excited by a pressure
p(r) · exp(iωt). The resulting response of the plate, w(r) · exp(iωt), is governed by
the differential equation

Lw − p = 0 (9.100)

http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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where L is some operator. For example, for a homogeneous beam under flexure
and oriented along the x-axis the operator L is defined as D′ · ∂4/∂x4 − m′ω2 using
standard notations. The solution to Eq. (9.100) is according to the Garlekin technique
approximated by the expression

wN (r) =
N∑

k=1

Ckφk(r) (9.101)

where φk(r) are functions satisfying some set of boundary conditions but not neces-
sarily the differential equation (9.100) governing the displacement of the structure.
The number of trial functions is N . The error εN (r) resulting from introducing the
approximate solution (9.101) in Eq. (9.100) is defined as

εN (r) = LwN (r) − p(r) (9.102)

WheneverwN satisfies both boundary conditions and governing differential equation
the error function εN (r) is zero and w(r) = wN (r). Galerkin states that any error
is minimized by orthogonalizing the error function with respect to the given trial
functions. This condition is formulated as

∫
dr · φn(r) · εN (r) = 0 (9.103)

The integration is carried out over the coordinates for which the structure is defined.
The Eqs. (9.101) through (9.103) give

∫
dr · φn(r)

N∑
k=1

Ck Lφk(r) −
∫

dr · φn(r) · p(r) = 0 (9.104)

The unknown amplitudesCk are the solutions to Eq. (9.104)which also can bewritten
in matrix form as

⎡
⎢⎢⎣

A11 A12 · · · A1N

A21 A22 · · · A2N

· · · · · · · · · · · ·
AN1 AN2 · · · AN N

⎤
⎥⎥⎦ ·

⎧⎪⎪⎨
⎪⎪⎩

C1
C2
· · ·
CN

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

B1
B2
· · ·
BN

⎫⎪⎪⎬
⎪⎪⎭

(9.105)

where

Ai j =
∫

drφi (r)Lφ j (r); Bi =
∫

drφi (r)p(r) (9.106)

Thus, Garlerkin’s method results in N linear equations giving the amplitudes or
expansion coefficients Ci .
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The Garlerkin condition (9.103) can be shown to have a minimum. This can be
illustrated by considering a simple problem—a finite beam under flexure. Thus, let a
homogeneous beam of length L be oriented along the x-axis of a coordinate system.
The mass per unit length of the beam is m′ and its bending stiffness D′. The beam is
excited by a force F ′(x) exp(iωt) per unit length. The differential equation governing
the bending or lateral displacementw(x) exp(iωt) of the beam is given by Eq. (7.45)
as

D′ d4w
dx4

− ω2m′w = F ′ (9.107)

Assume that the beam is clamped at both ends at x = 0 and at x = L . Let the
response w(x) of the beam be approximated by

wN (x) =
N∑

k=1

Ckφk(x) (9.108)

The trial functions φk(x) satisfy the boundary conditions for a clamped beam but
not necessarily the differential equation (9.107). The error introduced by using the
approximate solution (9.108) is according to Eq. (9.102) defined as

εN = D′ d4wN

dx4
− ω2m′wN − F ′ (9.109)

The error function εN (x) is now multiplied by φn(x). The result is integrated over
the length of the beam. Thus,

∫ L

0
dxφn(x)εN (x) =

∫ L

0
dxφn(x)

[
D′ d4wN (x)

dx4
− ω2m′wN (x) − F ′(x)

]

(9.110)
In Sect. 9.2 the flexural vibrations of a slender beam were discussed. A variational
expression based on Hamilton’s principle was given by Eq. (9.19). For a time depen-
dence exp(iωt) of displacement and force this expression is reduced to

∫ t2

t1
dt
∫ L

0
dxδw

[
m′ω2 ∂2w

∂t2
− D′ ∂4w

∂x4
+ F ′

]
+
∫ t2

t1
dt

[
δw

(
D′ ∂3w

∂x3
+ F

)

− ∂δw

∂x

(
D′ ∂2w

∂x2
+ M

)]L

0
= 0 (9.111)

For a beam satisfying any of the natural boundary conditions, for example free,
simply supported or clamped ends, the last bracket is equal to zero. By replacing w

by wN as defined in Eq. (9.101) where all the trial functions φn(x) satisfy one of the
natural boundary conditions it follows that (9.111) is reduced to

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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∫ L

0
dxδwεN = 0 (9.112)

Since the response is approximated by (9.108) it follows that

δw(x) = δwN (x) =
N∑

k=1

φk(x)δCk (9.113)

This result in combination with (9.112) yields

N∑
k=1

δCk

∫ L

0
dxφk(x)εN (x) = 0 (9.114)

The equation has to be satisfied for any small variation of δCk . The variations of the
coefficients δCk are arbitrary and not interrelated. For Eq. (9.114) to be satisfied, it
follows that ∫ L

0
dxφk(x)εN (x) = 0 (9.115)

This result is in accordance with the Garlekin condition (9.103).

9.10 An Example Using Garlekin’s Method

Analytical solutions for the forced excitation of homogeneous and rectangular plates
can only be formulated for some simple boundary conditions as previously discussed.
For other boundary conditions, FEM calculations or some variational techniquemust
be used to find the response and natural frequencies of the structure. As an example,
the Garlerkin’s method will be used to determine the response of a clamped and
rectangular homogeneous plate.

A condition for usingGarlekin’smethod is that some trial functions can be defined.
The trial functions must satisfy the boundary conditions but not necessarily the
differential equation governing the vibration of the plate. The displacement of a
rectangular plate with all four sides clamped is written as

wN (x, y) =
∑

m

∑
n

Amnϕm(x)ϕn(y) (9.116)

The functionsϕm(x) andϕn(y) can for example be represented by the eigenfunctions
for clamped beams oriented in the x and y directions, respectively. Consequently,
the function wN (x, y) satisfies the boundary conditions for the plate but not the
differential equation governing the vibration of the plate. The mode numbers are
represented by m and n. The beam eigenfunctions for clamped boundary conditions
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are listed in Table7.2. The subscript N of wN in Eq. (9.116) is equal to the number
of possible combinations of the beam functions to be included in the summation.
A similar approach can be followed to describe the functions of plates having other
boundary conditions. For a plate with three sides clamped and one side free along
the line x = Lx , the function ϕm(x) is obtained from Table7.5 and ϕn(y) as before
from Table7.2.

However, the functions listed in Tables7.2 through 7.5 are somewhat cumbersome
to handle in particular when calculating the matrix elements Ai j defined in (9.106).
It can therefore be more convenient to use alternative trial functions, which do not
approximate the actual displacement as well as the so-called simple beam functions
listed in Tables7.1–7.5. For a clamped beam under flexure and of length L such trial
functions can be written as

Xm(x) = sin
mπx

L
sin

πx

L
= 1

2

(
cos

πx(m + 1)

L
− cos

πx(m − 1)

L

)
(9.117)

These trial functions satisfy the boundary conditions for a clamped beam, i.e.,
Xm(x) = X ′

m(x) = 0 for x = 0 and x = L . The advantage of these trial func-
tions as compared to the beam functions is that they are the sum of two cosine
functions, which are orthogonal and easy to derivate. It is therefore straightforward
to calculate the matrix elements of (9.106). For a plate or for that matter a beam,
which is exposed to a load symmetric with respect to its center the resulting response
of the structure is also symmetric requiring Xm(x) = Xm(L − x). This condition is
only satisfied for m odd in Eq. (9.117).

As a numerical example consider a quadratic and homogeneous plate, side L , with
clamped boundaries. The mass per unit area of the plate is μ and its bending stiffness
D. The plate is exposed to a pressure p0 · exp(iωt) across its entire surface, p0 being
constant. The frequency of the pressure is low or of the order of the natural frequency
of the plate resulting in that only the first few modes of the plate are necessary for
describing the motion of the plate. Therefore, consider only the first three symmetric
modes of the panel. These modes are

φ1(x, y) = X1(x)X1(y); φ2(x, y) = X2(x)X1(y); φ3(x, y) = X1(x)X2(y)

Neglecting a constant, 1/2, the trial functions are written

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x, y) =
(
1 − cos

2πx

L

)
·
(
1 − cos

2πy

L

)

φ2(x, y) =
[
cos

(
4πx

L

)
− cos

(
2πx

L

)]
·
[
1 − cos

(
2πy

L

)]

φ3(x, y) =
[
1 − cos

(
2πx

L

)][
cos

(
4πy

L

)
− cos

(
2πy

L

)]
(9.118)

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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The operator L in Eq. (9.106) is for this plate given by

L = D

(
∂4

∂x4
+ 2

∂4

∂x2∂y4
+ ∂4

∂y4

)
− μω2 (9.119)

The response of the plate is approximated by

wN = C1φ1 + C2φ2 + C3φ3 (9.120)

Defining α as α = L · [μω2/D
]1/4

the matrix elements Ai j defined in (9.106) are
obtained as

A11= D/L2
(
32π4−9α4/4

)
; A12= A21= A13= A31= D/L2

(
24π4−3α4/4

)

A22 = A33 = D/L2
(
252π4 − 3α4/2

)
; A23 = A32 = D/L2

(
16π4 − α4/4

)
(9.121)

The elements Bi are obtained from (9.106) as

B1 = p0L2; B2 = B3 = 0 (9.122)

The resulting amplitudes Ci of the trial functions are the solutions to the matrix
equation A · C = B. Thus

C1 = B1(A22 + A23)

A11(A22 + A23) − 2A2
12

; C2 = C3 = − B1A12

A11(A22 + A23) − 2A2
12
(9.123)

There are resonances when the denominator is equal to zero or when α = L ·[
μω2/D

]1/4
is the solution to

(45/16)α8 − 587π4α4 + 7424π8 = 0

The parameter α should be real and positive. There are two possible solutions cor-
responding to the first two natural frequencies of the plate. The solutions are

f11 = 5.7765 · 1

L2

(
D

μ

)1/2

; f13 = f31 = 21.9455 · 1

L2

(
D

μ

)1/2

(9.124)

Based on more accurate numerical methods the natural frequencies f11 and f13
are, with four accurate decimals, obtained as f11 = 5.7272/L2.

√
D/μ and f13 =

20.9417/L2.
√

D/μ. The error using the approximate trial functions given in (9.119)
is for f11 0.9% and for f13 4.8%.
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The amplitudes of the trial functions are

C1 = p0L4(268π4 − 7α4/4)

D(7424π8 − 587π4α4 + 45α8/16)

C2 = C3 = − p0L4(24π4 − 3α4/4)

D(7424π8 − 587π4α4 + 45α8/16)

The static deflection of the plate at its center, i.e., for x = y = L/2 and α = 0, is
obtained from Eqs. (9.121) and (9.118) as 0.00122 · p0L4/D. Numerical results with
five accurate decimals give 0.00126 · p0L4/D.

If only one term or trial function is used to approximate the displacement of the
plate, then (9.85) is reduced to wN = C1φ1. The resulting amplitude C1 is obtained
as

C1 = B1

A11
= p0L4

D(32π4 − 9α4/4)

The first natural frequency using only one trial function is the solution to α4 =
128π4/9 giving f11 = 5.92/L2 · √

D/μ. This frequency is 3.4% higher than the
accurate value.

The natural frequencies predicted using the Garlekin method are always higher or
equal to the exact values. This is also the case whenever the Rayleigh-Ritz technique,
Eq. (8.87), is used as discussed in Sect. 8.6. The Rayleigh–Ritz technique gives the
same natural frequency as the Garlekin method if the same trial functions are used.
See Problem 9.7. However, the Garlekin method gives the amplitudes at forced
excitation. The Rayleigh–Ritz technique can only be used for free vibrations.

Problems

9.1 Prove Newton’s law Fx = mẍ by using Hamilton’s principle.

9.2 A particle, mass m, is at time t = 0 at the height z0 above ground. The mass is
released at t = 0. Determine the equation governing the motion of the mass using
Hamilton’s principle and give its height at any t before it hits the ground.

9.3 Derive the wave equation for longitudinal waves propagating in a slender beam.
Formulate also the boundary conditions. Use Hamilton’s principle.

9.4 Prove Eq. (9.40) by using Eqs. (9.35) and (9.36).

9.5 Prove Eq. (9.53) by using the Eqs. (9.50)–(9.52).

9.6 Use (9.78) to show that κh < 1 for the error of the wavenumber to be less than
10% using the Kirchhoff theory.

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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9.7 Show that the Rayleigh–Ritz technique and the Garlekin method give the same
natural frequencies for a vibrating plate. In both cases use two trial functions. Assume
that the displacement is zero along the edges of the plate. Assume that the displace-
ment of a plate is approximated by

w = C1φ1 + C2φ2

This function satisfies some boundary conditions. The displacement along the
edges of the plate is zero.

9.8 Show that the first two expressions of Eq. (9.93) govern longitudinal and trans-
verse waves.

9.9 Determine the natural frequencies for a simply supported Timoshenko beam.



Chapter 10
Structural Coupling Between Simple Systems

Transfer of vibrations from excitation zones to supporting and adjoining structures
mainly determines noise emission from vehicles, machines, and other sources of
noise. The radiated noise can be reduced effectively by minimizing the vibration
transfer between sources and supporting structures. A simple example of this is the
insertion of resilient mounts between structures. These mounts offer cheap solutions
to many problems. Today it is more or less standard procedure to mount any type of
machinery on resilientmounts. Initially this type ofmountingswas used to prevent the
energy transfer of low frequency vibrations from an engine to a supporting structure
or fromavibrating supporting structure to sensitive equipment. Simple design criteria
were developed to optimize these types of mountings. The methods used described
the coupling between simple mass–spring systems with several degrees of freedom.
With respect to noise, a resilient mounting must be effective in a wide frequency
range, usually from 20 to 2000Hz or even higher. In this frequency range, coupled
dynamic systems can no longer be considered as coupled rigid masses and ideal
springs.

This chapter starts with an investigation of the vibration of systems of point
masses and ideal springs. Thereafter follows a survey of dynamic properties of some
simple resilient mounts. Finally, there is a discussion on the transfer of energy from
a vibrating source to a receiving structure.

10.1 Introduction

Resilient mountings are used to reduce the energy flow from a vibrating source,
for example an engine, to its foundation. The reduction of the energy flow depends
on the frequency contents of the forces exciting the mass of the source, the “stiff-
ness” of the mounts and the mobility of the foundation. In general, the stiffness of
the mounts should be such that the fundamental resonance frequencies of the entire
resilient system, considering all six degrees of freedom, are well below the funda-
mental frequency of the internal or external forces exciting the mass corresponding
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to the engine. Resilient mounts are usually designed in such a way that the first few
resonances of say a mounted engine are in the very low frequency range. For typical
mounting systems for internal combustion engines or even very large Diesel engines,
the first fundamental resonances of the mounted engine should be well below 10 Hz.
In this low frequency range resilient mounts can, to a certain extent, be modeled as
ideal and mass less springs or alternatively as a rod. A simple case, a mass mounted
on a spring modeled as a rod, was discussed in Sect. 6.6. However, the dynamic stiff-
ness of a rubber mount is more complicated than revealed by a simple rod model.
The stiffness of the mount also depends on the amplitude of the displacement, fre-
quency, temperature, configuration, and preload. For large amplitudes, the behavior
of a rubber mount is non-linear.

A source like an engine is built up of a number of beam- and plate- like structures.
In the very low frequency range, below the first few natural frequencies for the
individual substructures, the engine vibrates as an almost rigid mass.

The response of a rigid mass excited by an external force and mounted on an ideal
spring to a foundation with the point mobility Y was discussed in Sect. 2.8. The FT
of the displacement ŷ of the foundation as compared to the FT of the displacement
x̂ of the mass is

ŷ = x̂

1 + iω/(kY )

The stiffness of the spring is given by k. The mobility of the foundation is often such
that the displacement y is much smaller than x . If themobility of the foundation is not
sufficiently small so as to neglect the displacement, the foundation can bemodeled as
yet another simplemass–spring system as indicated in Fig. 10.1. In the low frequency
range, the result is again that the entire system can, for small amplitudes, be described
as a system of rigid masses coupled by ideal springs.

Fig. 10.1 Mass–spring
system mounted on a not
completely rigid foundation

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_2
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10.2 Coupled Mass–Spring Systems

Some simple systems with one degree of freedom were discussed in Chap. 1. The
motion of mass–spring systems mounted on foundations, which are not necessarily
infinitely stiff, was introduced in Sect. 2.8. Real systems have several or in fact an
infinite number of degrees of freedom. A machine or vibrating source should always
be mounted to a foundation or supporting structure in such a way that the first few
natural frequencies of the system do not coincide with any of the major peaks in the
spectrum of the forces exciting the system. For a simple 1-DOF system, the ratio
between the frequency f0 of the first harmonic of the exciting force and the first
natural frequency fr of the simple mass- spring system should satisfy the inequality
f0/ fr >

√
2 to avoid any amplification effects. The first few natural frequencies of

a mounting system should therefore always be calculated during the design phase.
These first few natural frequencies are very often within the very low frequency
range. If this is the case, coupled systems can be modeled as an assembly of simple
mass–spring systems. The prediction of the first few natural frequencies of the entire
system can therefore often be carried out in a fairly simple way.

The basic equations governing the motion of simple multi-degree of freedom
systems are in most cases readily derived by the use of energy methods. The methods
require that the kinetic energies of the masses and the potential energies stored in
the springs are defined for the system. The equations governing the motion of the
masses are thereafter obtained from Lagrange’s equation. The procedure leads to a
system of equations. The resulting system can be transformed to make the equations
uncoupled.

For continuous systems like beams and plates, the forced response of a structure
was obtained by means of the appropriate eigenfunctions. The response was derived
as an infinite sum of these eigenfunctions and their corresponding amplitudes. This
was discussed in Chap.6 through 8. A similar approach can be followed to describe
the forced motion of coupled discrete systems.

As an example, consider the coupled system shown in Fig. 10.2. All masses are
rigid and the springs are ideal and thus mass less. Losses are not included. In this
particular case, the masses can move in one direction only. The displacement of the
mass mr is denoted xr . The kinetic energy T of the entire system is

T =
∑

r

mr ẋ2r
2

(10.1)

The kinetic energies for all masses are included. The spring constant for a resilient
element connecting the masses r and s is denoted krs . For such a spring, compressed
as shown in Fig. 10.2, the reacting force at one end of the spring is

Frs = krs(xr − xs)

http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 10.2 An assembly of
rigid masses coupled by
ideal springs

The potential energy stored in the spring, which connects the masses r and s, is

rs =
∫

Frsdxr −
∫

Frsdxs =
∫

krs(xr − xs)d(xr − xs) = krs(xr − xs)
2

2
(10.2)

The coordinates xr and xs define the displacements with respect to the static case of
the two ends of the spring connecting the masses r and s. The total stored potential
energy in the springs is

s =
∑

krs(xr − xs)
2/2 (10.3)

The summation is made for all possible combinations of r and s for which krs is
defined. Each spring should only be included once.

The external forces exciting the system also contribute to the potential energy
of the system. For force and displacement defined positive in the same direction,
as shown in Fig. 10.2, the potential energy is converted into kinetic energy as the
mass moves in the direction of the force. The potential energy decreases as the mass
moves in the direction of the force vector. In a similar way the potential energy
for a free mass decreases as the mass accelerates in the direction of the force of
gravity. A conservative force, like the force of gravity close to the surface of the
earth, is independent of moderate variations of the coordinates xr and velocities ẋr .
The potential energy of all masses excited by external conservative forces defined
positive as in Fig. 10.2 is thus

f = 0 −
∑

r

Fr · xr (10.4)
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The parameter 0 corresponds to the potential energy of the system when initially
at rest. The total potential energy of the system is

= s + f =
∑
r,s

krs(xr − xs)
2/2+ 0 −

∑
r

Fr · xr (10.5)

The equations governing the motion of the masses can now be obtained by means
of the procedure developed by Lagrange. This method, Lagrange’s equation, is dis-
cussed in Sect. 9.8. The Lagrangian function L is defined as the difference between
the kinetic and potential energies of the system. Thus

L = T − (10.6)

Lagrange’s equation requires, as discussed in Sect. 9.8, that

d

dt

[
∂L
∂ ẋr

]
− ∂L

∂xr
= 0 (10.7)

The Lagrangian function L for the system shown in Fig. 10.2 is obtained from
Eqs. (10.1), (10.5) and (10.6) as

L =
∑

r

mr ẋ2r
2

−
∑
r,s

krs(xr − xs)
2/2 − 0 +

∑
r

Fr xr (10.8)

This expression inserted in Eq. (10.7) yields

mr ẍr +
∑
r,s

krs(xr − xs) = Fr (10.9)

The result is a system of coupled equations. These equations can be written in matrix
form as

M · Ẍ + K · X = F (10.10)

For a system built up of N masses, each allowed to move in one direction only as
defined by the coordinates xr , M and K are N × N symmetric matrices. X and F
are column vectors, each with N elements.

For free motion of the system, the external forces are equal to zero. For this case,
the eigenvalues λ or eigenfrequencies f = ω/(2π) are obtained from Eq. (10.10) by
setting

F = 0; Ẍ = −λX or Ẍ = −ω2X (10.11)

According to standard procedure, the eigenvalues are obtained by setting the deter-
minant of K − λM equal to zero, i.e.,

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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Det [K − λM] = 0 (10.12)

There are N eigenvalues for a system with N degrees of freedom. Each eigenvalue
λr corresponds to an eigenvector Xr . This vector defines the relative displacements
between themasses for that particular eigenvalue or at that particular eigenfrequency.
This is in analogy with eigenfunctions and eigenfrequencies derived for continuous
systems as discussed in Chap.6 through 8. The eigenvector Xr should satisfy the
equation

(K − λr M) · Xr = 0 (10.13)

The eigenvectors Xr are orthogonal if the matrices M and K are symmetric. For the
r -th mode the governing equation is obtained from Eq. (10.13) as

K · Xr = λr M · Xr

This expression is multiplied by the transposed vector of Xs . The result is

XT
s · K · Xr = λr XT

s · M · Xr (10.14)

By interchanging the subscripts r and s, the following equation is obtained

XT
r · K · Xs = λs XT

r · M · Xs (10.15)

If the matrices M and K are symmetric, it is readily verified that

XT
s · K · Xr = XT

r · K · Xs; XT
r · M · Xs = XT

s · M · Xr (10.16)

By subtracting Eq. (10.15) from (10.14) and using Eq. (10.16) it follows that

(λr − λs) · XT
r · M · Xs = 0

Since λr �= λs for r �= s the orthogonallity condition is obtained as

XT
r · M · Xs = 0; XT

r · K · Xs = 0 for r �= s (10.17)

The forced response of a continuous system can be determined bymeans of the mode
summation technique as described inChap.6 through8. For discrete systems a similar
approach can be followed. The general solution describing the forced excitation of
a discrete system is in vector form defined as

X =
∑

r

Ar (t) · Xr (10.18)

The eigenvectors are given by Xr . The time-dependent amplitude for each eigenvec-
tor is given by Ar (t). For harmonic excitation with the time dependence exp(iωt)

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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the resulting forced response must have the same time dependence, i.e., exp(iωt).
The time-dependent amplitudes Ar (t) are consequently of the form Ar · exp(iωt).
The equation of motion of the system is, in matrix form, given by Eq. (10.10). For
Ẍ = −ω2X , Eq. (10.10) can be rewritten as

(K − ω2 · M) · X = F (10.19)

The general solution, Eq. (10.18), is inserted in Eq. (10.19), thus

(K − ω2 · M) ·
∑

r

Ar · Xr = F

This general expression is multiplied by the transposed vector XT
r . Considering the

orthogonallity of the eigenvectors, Eq. (10.17), the result after the multiplication, is

(XT
r · K · Xr − ω2 · XT

r · M · Xr ) · Ar = XT
r · F

The amplitudes Ar and the response are consequently

Ar = XT
r · F

XT
r · K · Xr − ω2XT

r · M · Xr
; X =

∑
r

Ar · Xr · eiωt (10.20)

It is assumed that the time-dependent force vector is given by F · exp(iωt).
In analogy with the discussion in Sect. 7.4, the concepts of modal mass Mr and

modal stiffness Kr for mode r can be introduced as

Mr = XT
r · M · Xr ; Kr = XT

r · K · Xr

However, as previouslymentioned,modalmass,modal stiffness, etc., are not absolute
measures but depend on how the eigenvector is normalized. However, the angular
eigenfrequency for mode r is always obtained as ωr = √

Kr/Mr .

10.3 Coupled Systems with Losses

All systems have losses. However, the natural frequencies of a system are often
predicted while neglecting the losses. In Chap.1 the eigenfrequency of a simple
mass–spring system is given in Eq. (1.14) as function of the losses. For small and
moderate losses, the shift, with respect to the loss free case, is small or moderate.

At frequencies close to a natural frequency, the forced response of a system very
much depends on the energy dissipated. These losses can be included in Lagrange’s
equation as suggested by Rayleigh and described in for example Ref. [90].

http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_1
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The damping forces at each end of the types of mounts shown in Fig. 10.2 are
assumed to be proportional to the relative velocity ẋr − ẋs between the masses r and
s. The damping forces are

Qr = crs(ẋr − ẋs); Qs = csr (ẋs − ẋr ); crs = csr (10.21)

The dissipation function D is defined through

Qr = −∂D

∂ ẋr

For the system shown in Fig. 10.2 with a damping defined by Eq. (10.21) the dissi-
pation function D is obtained as

D =
∑
r,s

crs(ẋr − ẋs)
2/2 (10.22)

The summation is made over all possible combinations of r and s for which crs is
defined. However, each damper should only be included once. Lagrange’s equation
can, when including dissipation, be written as

d

dt

[
∂L
∂ ẋr

]
− ∂L

∂xr
+ ∂D

∂ ẋr
= 0 (10.23)

For the system in Fig. 10.2 the motion of the masses is, in matrix form and based on
the results (10.1), (10.5), (10.22), and (10.23), obtained as

M · Ẍ + C · Ẋ + K · X = F (10.24)

For a system without losses, i.e., for C equal to zero, a solution can be found
as described in the preceding section. The same procedure can be used to solve
Eq. (10.24) for certain cases or rather for certain types of damping. A necessary con-
dition is that the matrix C is defined as a linear combination of the matrices M and
K . For α and β constants and C = α · M + β · K , the orthogonal eigenvectors
Xr , which satisfy the orthogonallity conditions in (10.17), are also orthogonal with
respect to the matrix C. Consequently

XT
r · C · Xs = 0 for r �= s and C = α · M + β · K (10.25)
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The solution to equation (10.24) is thus

X =
∑

r

Ar · Xr · eiωt ;

Ar = XT
r · F

XT
r · K · Xr + iωXT

r · C · Xr − ω2XT
r · M · Xr

(10.26)

Again, it is assumed that the time-dependent force vector is given by F · exp(iωt).
The eigenvectors Xr are for certain cases also eigenvectors to the damped sys-

tem described in Eq. (10.24). For structural or hysteric damping, the parameter c is
inversely proportional to the angular frequency as discussed in Sect. 1.1. For this type
of damping, the matrix C can be written as C = H/ω. The newmatrix H is assumed
to be independent of ω. It can be shown that the eigenvectors Xr to the undamped
system also are eigenvectors to the damped system defined by Eq. (10.24) if

C = H/ω and H = γ · M + ε · K

The parameters γ and ε and the matrices M and K are assumed to be independent of
ω. However, the resulting eigenvectors are complex. This type of damping is often
assumed based on numerical rather than on physical considerations. Some more
general cases are discussed in for example Refs. [25, 63].

10.4 Example

The general procedure of solving a forced problem can be illustrated by a simple
example. A two degree of freedom system is shown in Fig. 10.3. Two masses m
and 2m are coupled by means of a resilient mount, spring constant k, and damping
coefficient c. The damping is defined as in Eq. (10.21).

Fig. 10.3 A simple 2-DOF
system

http://dx.doi.org/10.1007/978-3-662-47807-3_1
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The bigger mass is connected by two identical springs to an infinitely stiff foun-
dation. The dynamic properties for each spring are defined by k and c. Each mass can
only move in the vertical direction. No rotation is allowed. The kinetic and potential
energies and the dissipation function are

T = m(ẋ21 + 2ẋ22 )/2; = k[(x1 − x2)
2 + 2x22 ]/2 − F1x1 − F2x2 + 0

D = c[(ẋ1 − ẋ2)
2 + 2ẋ22 ]/2 (10.27)

Based on Eqs. (10.6) and (10.23) the resulting equations governing the displacements
of the masses are

mẍ1 + c(ẋ1 − ẋ2) + k(x1 − x2) = F1; 2mẍ2 + c(3ẋ2 − ẋ1) + k(3x2 − x1) = F2

In matrix form this is equivalent to

M · Ẍ + C · Ẋ + K · X = F

M = m

[
1 0
0 2

]
; K = k

[
1 −1

−1 3

]
; C = c

[
1 −1

−1 3

]
(10.28)

The damping matrix is proportional to the stiffness matrix. The eigenvalues for the
undamped system, i.e., for c = 0, are obtained from Eq. (10.12) as

Det

[
k − mλ −k

−k 3k − 2mλ

]
= 0

By introducing ω2
0 = k/m, the result is

λ1 = ω2
0/2 and λ2 = 2ω2

0 (10.29)

The eigenvectors Xr corresponding to λr are obtained from Eq. (10.13) as

[K − λr M] Xr = [K − λr M]

{
x1
x2

}
r

= 0

Inserting the appropriate values for the matrices K and M and the eigenvalue λ1 =
ω2
0/2, the result is

k

[
0.5 −1
−1 2

]{
x1
x2

}
1

= 0

The equation is satisfied by

X1 =
{

x1
x2

}
1

=
{
2
1

}
(10.30)
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or in fact, by any vector which is proportional to X1. However, it is often convenient
to set the last element in the column vector to equal unity. In a similar way the
eigenvectors X2 corresponding to λ2 = 2ω2

0 are obtained as

X2 =
{−1

1

}
(10.31)

The modes of vibration are illustrated in Fig. 10.4. At the first resonance, the ampli-
tude of the displacement of the smaller mass is twice the amplitude of the bigger
mass. At the second resonance, the masses are moving out of phase. For a force
vector with the time dependence exp(iωt) the response of the system is obtained
from Eqs. (10.20) and (10.26) as

X = (2F1 + F2)eiωt

3k + 3iωc − 6ω2m
·
{
2
1

}
+ (−F1 + F2)eiωt

6k + 6iωc − 3ω2m
·
{−1

1

}
(10.32)

The result is also written

X = (2F1 + F2)ei(ωt+ϕ1)

[(3k−6ω2m)2 + (3ωc)2]1/2 ·
{
2
1

}
+ (−F1 + F2)ei(ωt+ϕ2)

[(6k−3ω2m)2 + (6ωc)2]1/2 ·
{−1
1

}

tanϕ1 = − ωc

k − 2mω2 ; tanϕ2 = − 2ωc

2k − mω2

The frequencies at which the amplitudes have maxima are readily obtained from
Eq. (10.32). A maximum is obtained when the absolute value of one of the denom-

inators is minimum. Thus, resonances are obtained for ω =
√

ω2
0/2 − (c/2m)2 and

ω =
√
2ω2

0 − 2(c/m)2

Fig. 10.4 Modes of vibration for the 2-DOF system shown in Fig. 10.3
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The same problem could be solved in a very straightforward way without the use
of the methods described above. However, the methods are well suited for solving
numerically the motion of large complicated systems. In fact, every type of Finite
Element Method calculation is first based on a Hamilton description of the coupled
elements of the entire system. Thereafter, the resulting system of equations can be
solved as discussed above. The accuracy and efficiency of any FEM code depend on
how well the displacements of the various continuous elements are described and
how well large matrices are inverted and data stored.

In the example discussed each mass was allowed one degree of freedom. In gen-
eral, all six degrees of freedom must be considered for each mass. Figure10.5 illus-
trates a simple case of a resiliently mounted engine. The engine is modeled as a rigid
mass. Each corner of the engine is supported by a simple spring. The foundation is
assumed to be infinitely stiff. The displacement of the center of gravity with respect
to the state of equilibrium is defined by the vector (x, y, z). The angles of rotation
with respect to the main coordinate axes are θx , θy , and θz . The displacements of
each corner of the engine and thus the potential energy can be expressed as functions
of x, y, and z and the three angles of rotation. The stiffness of the identical springs
can be defined as kx , ky , and kz along the three coordinate axes. The kinetic energy
of the system can be derived as function of ẋ , ẏ, ż, θ̇x , θ̇y , and θ̇z as well as the
mass m of the engine and its moments of inertia Jx , Jy , and Jz . The six equations
governing the motion of the mass are obtained by means of Lagrange’s equation.
The generalized coordinates xr are x, y, z, θx , θy , and θz . In most practical cases, it
can be assumed that the rotational angles are small. This allows the sine and cosine
functions to be approximated by the first term of their respective Taylor expansion.

In practice, many types of resilient mounts are used to reduce the transmission of
structure-borne sound from a mechanical source to its foundation and its supporting
structure [98]. The efficiency of the mounting depends on many parameters includ-
ing the vibrational characteristics of the source, the stiffness of the coupling points
between source and mounts, the dynamic properties of the mount, and on the mobil-
ity of the foundation. Some of these aspects are discussed in the following sections,
which include an introduction concerning thematerial properties of rubber, modeling

Fig. 10.5 A resiliently
mounted rigid mass, six
degrees of freedom
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of simple mounts, mobility of foundations, and source strength. Finally a method
for the modeling of coupling between source, mount, and receiver or foundation is
discussed.

10.5 Rubber Mounts, Some Material Parameters

There are many different reasons for using resilient mounts. In vehicles, resilient
mounts are used extensively to reduce low frequency and large amplitude vibrations
induced for example by road-tyre or wheel-rail contacts. The purpose of the mounts
is to improve ride comfort. Resilient mounts can also be used for the protection of
sensitive equipment or engines from excessive vibrations. On a standard truck, there
are hundreds of various types of resilient mounts. One important application for
resilient mounts is the reduction, in the audible frequency range, of the transmission
of structure-borne sound from sources to receivers. Consequently, the noise radiated
from the receiving structure is also reduced.

In the very low frequency region, resilient mounts are used to reduce large ampli-
tude vibrations. These low frequency often non-linear vibrations are typically notice-
able even by the naked eye. This is no longer the case in the audible frequency range.
For example, the vibrational displacement of a huge ship Diesel engine is of the order
10−7 m at 1 kHz. Therefore, the modeling of the low and high frequency behavior
of resilient mounts is different.

There is a great variety of springs used for the resilient mounting of engines
etc. Most mounts are made of rubber or rubber-like materials. The spring models
discussed in the preceding sections and also in Chap. 1 are idealized and in fact
assumed to be mass less. In Chap.6 the “Thin Rod” model was introduced. Internal
resonances are included in the “Thin Rod” model, which is not the case for the ideal
mass-less spring. The “Thin Rod” model assumes that the deflection of a mount due
to a varying axial force is due to quasi-longitudinal waves propagating along the axis
of the mount. Even this model is inadequate since for typical rubber mounts diameter
and height are of the same magnitude. This means that not only waves propagating
in the axial direction but also in the radial direction of the mount must be included in
any theoretical model describing the compression of a rubber mount. The addition
of more complex modes of vibration of the mount depends on the frequency of
the disturbance as well as the cross section dimensions of the mount. The dynamic
behavior of a rubber mount depends on its geometry and material properties.

To a certain extent natural rubber can be considered as an almost incompressible
material. The Poisson’s ratio for natural rubber is almost equal to 0.5. The total
volume of a rubber element is therefore more or less constant during compression—
just like a volume of water in a thin plastic bag. The compression �V due to a
pressure p on the surface of a volume, which initially is V , is given as

�V

V
= −�p

K
(10.33)

http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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The parameter K is the bulk modulus defined in Sect. 3.1 as

K = E

3(1 − 2ν)

For ν ≈ 0.5 the ratio �V/V is obviously small as given by Eq. (10.33).
Considering that the shear modulus G is given as G = E/[2(1 + ν)] and the

definition of the bulk modulus, the E-modulus can, after the elimination of ν, be
written as

E = 9K G

3K + G
(10.34)

For K � G or ν ≈ 0.5 the expression (10.34) is simplified to E ≈ 3G. The shear
modulus of rubber is a function of frequency as discussed in Sect. 3.2 and shown in
Fig. 10.8.

The resilience of a rubber mount depends on how the shape of the mount can be
deformed during compression. If only a small deformation is allowed, the resulting
stiffness is very high.One example of such a case is shown in Fig. 10.6a.A continuous
layer of rubber is mounted in between two large plates. The plates are exposed to an
external pressure. The rubber material can only expand along the perimeter of the
plates. The resilience of the construction is therefore very small. In order to improve
the resilience, the rubber material must be allowed to expand. Two possibilities are
shown in Fig. 10.6b, c. The stiffness of a rubber mount depends on the area of the
free surface as compared to the area under pressure.

There is a simple so-called engineering method to describe the stiffness as the
function of geometry for some rubber mounts. The technique is described in a classic
book by Gödel [91]. Further developments are presented in an often-quoted review

(a)

(b)

(c)

Fig. 10.6 Rubber mount with a large shape function (a) and two alternative configurations, (b, c).
1 and 3, plates; 2, rubber; 4, air cavity

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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paper by Snowdon [92]. The apparent stiffness or modulus Ea of a rubber mount
depends on a so-called shape function and a parameter B, which in turn depends
on the hardness of the rubber material. For rubbers unfilled by carbon black the
parameter B is equal to 2. The shape function for a symmetric mount is defined as
the ratio between the areas of one loaded surface to the total force free area. For a
cylinder with the radius r and height h, the shape function S is defined as

S = πr2

2πrh
= r

2h
(10.35)

For a rectangular block with the sides a and b and height h the shape function is

S = ab

2h(a + b)
(10.36)

Measured values of E , G, and K and values for B are listed in Table10.1 for rubber
with increasing hardness. The degree of hardness, IRHD—International Hardness
degree, depends on the amount of carbon black in the rubber. IRH and Shore Durom-
eter readings are approximately the same.

The apparent E modulus, defined as Ea, of the rubber material of mount with the
shape function S is according to Ref. [92] given as

Ea = E(1 + BS2)

1 + E/K · (1 + BS2)
(10.37)

For K � G the approximate result of (10.37) is Ea = E(1 + BS2). For a mount
with a geometry as shown in Fig. 10.6a, the shape factor is very large. According to
Eq. (10.37), the apparent stiffness is also very large for this particular case. Since for
large shape functions,

lim
S→∞

Ea = K = E

3(1 − 2ν)

For natural rubber ν ≈ 0.5, which makes the bulk modulus K very large. The shear
modulus G and the loss factor η of natural rubber are also functions of temper-
ature and frequency as described in Ref. [92]. The shear modulus for filled nat-
ural rubber increases above 1kHz as the temperature is decreased. In a similar way
the losses increase already at 100Hz as the temperature is decreased. The non-
linear temperature-dependent stiffness of precompressed rubber cylinders is dis-
cussed extensively by Kari [93]. For rubber-like materials with a very high internal
damping, the shear modulus shows a strong dependence on frequency. Unfilled and
lightly filled rubbers are fairly linear for increasing strain. The stiffness of moder-
ately and heavily filled rubber materials strongly depends on amplitude in the low
frequency region as illustrated in Ref. [94].
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Table 10.1 Hardness and stiffness parameters for natural rubber, IRHD < 48, and rubber with
carbon black filler, IRH◦ > 48. From Ref. [95]

IRH◦ B E G K

MPa MPa MPa

30 1.86 0.92 0.3 1000

35 1.78 1.18 0.37 1000

40 1.70 1.50 0.45 1000

45 1.60 1.80 0.54 1000

50 1.46 2.20 0.64 1030

55 1.28 3.25 0.81 1090

60 1.14 4.45 1.06 1150

65 1.08 5.85 1.37 1210

70 1.06 7.35 1.73 1270

75 1.04 9.40 2.22 1330

Although the stiffness parameters of rubber materials depend on a number of
parameters like shape, frequency, amplitude, and temperature, it is still of interest to
list a number of hardness and stiffness parameters as in Table10.1.

There are many rubber-like materials, which are commercially available. Some
of these are listed in Table10.2. In general, the hardness of each material can vary
considerably as indicated in the table.

The static and dynamic stiffnesses of rubber mounts are in general different. From
the static to the dynamic state there is a rapid change of stiffness and loss factor as
discussed in Ref. [96]. The frequency dependence of the stiffness in the transition
region is not sufficiently well known. In practice, the static and dynamic stiffnesses
are considered as two different parameters. The ratio between the dynamic stiffness

Table 10.2 Rubber spring materials

Trade name Density Hardness Working temperature

kg/m3 IRH◦ ◦C
Natural rubber 950 30−98 −50 to 140

Polystyrene rubber

Buna S 920 40−95 −50 to 140

Nitrile rubber

Perbunan N 980 40−95 −50 to 140

Chloroprene rubber

Neoprene, Sowprene 1230 40−95 −50 to 140

Butyl rubber 930 40−90 −50 to 150

Silicon rubber 1190 40−90 −100 to 220

Polyurethane 1260 65−95 −30 to 80

From Ref. [91]
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and the static stiffness of a rubber mount is often in many product catalogs stated to
be of the order 1.3. However it has been shown that this ratio can be as large as 5.

In addition, the stiffness of a resilient mount depends not only on shape, temper-
ature, and frequency but also on the amplitude of the excitation as discussed in Ref.
[94]. In particular, in the low frequency region, the stiffness of a mount is strongly
dependent on the amplitude when the mount is exposed to harmonic excitation. In
Ref. [94] it is shown that the dynamic stiffness of a hard mount, excited at 0.05Hz, is
decreased by a factor 4 when the amplitude was increased from 0.05 to 3mm. For a
soft mount, the difference is somewhat less dramatic. The amplitude of an operating
engine is very small in the high frequency region. The stiffness of engine mounts can
therefore be considered as independent of amplitude in the audio frequency range.

In Sect. 3.2 some simple models describing the dependence of E−modulus
and loss factor on frequency were discussed. Expressions for frequency-dependent
E−modulus and loss factor are given by the Eqs. (3.29) through (3.31). These results
are based on the so-called Maxwell model. Some other models are discussed in Ref.
[97]. In particular, the Zener model is emphasized in Ref. [97]. The Zener model
is given by a simple spring element coupled in parallel to a Maxwell element. The
Zener model gives the stress–strain ratio σ/ε as

σ

ε
= E · 1 + (ωτ )2 + g(iωτ )

1 + (ωτ )2

The relative amount of relaxation is denoted g. Using the Maxwell model the corre-
sponding result is, from Eq. (3.29), of the form

σ

ε
= E · 1 + A(ωτ )2 + B(iωτ )

1 + C(ωτ )2

However, the models discussed in Ref. [97] are with respect to angular frequency of
the same form as (3.30) and (3.31).

The so-called fractional derivative model gives an alternative description of the
shear modulus as function of frequency. Themodel has certain computational advan-
tages.

This so-called fractional derivate model of the shear modulus of rubber materials
is introduced by Kari and presented in Ref. [112] as

G = γGst[1 + (iωτ )β]; E = 3G for ω > 0

G → γGst for ω → 0 (10.38)

The fractional order β is given by 0 < β ≤ 1 and the coefficient γ by 5 > γ ≥ 1 and
the factor τ by τ > 0. The angular frequency is ω. The rubber material is assumed
linear, non-aging, isotropic, homogeneous, viscoelastic, and incompressible while
being confined to isothermal rubber region conditions excluding low-temperature
crystallization, glass hardening, and strain dependence. The parameter Gst is the

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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so-called static shear stiffness of the material. If the mount is exposed to a static
load, the eventual deflection of the structure is determined by Gst or E = 3Gst.
However, if the dynamic stiffness is measured for decreasing frequencies it is found
that G → γGst as ω → 0. The parameter γ has been found to vary between 1 and 5
depending on the amount of carbon black filling in the rubber material. Occasionally
the parameter γ is given in product catalogs as 1.3 or 1.4. However measurement
results reveal that this value of γ is not necessarily correct.

It is suggested in Ref. [110] that β should be set to equal 1/2. The fractional
derivative model is found by Kari to give better agreement with experimental data
than the Maxwell and Zener models. The fractional derivate model is reduced to the
Kelvin–Voigt model (3.27) for β = 1 and harmonic displacement. It is shown by
Kari [100] that predictions based on the Kelvin–Voigt model tend to overestimate the
material damping in the high frequency region. A frequency-independent model of
the material parameters is likely to underestimate the losses. The purpose of all these
models is to define a scheme describing the frequency dependence of shear modulus
and loss factor of rubber materials in the isothermal rubber region or quite simply in
the frequency range of importance in vibro-acoustics, i.e., from 50Hz up to 5 kHz.

10.6 Wave Propagation in Rubber Mounts, Approximate
Solutions

The type of idealized springs discussed in the first few sections of this chapter and
in Chap.1 is assumed to be massless. Consequently, this type of idealized mount
has no internal natural frequencies. A somewhat more realistic spring model was
discussed in Chap. 6. The spring was modeled as a rod. This rod has a certain density,
E−modulus, and loss factor. However, only longitudinal waves propagating in the
direction of the axis of the rod were considered. For a “thin” rod, this is a valid
assumption. The transmissibilities through an ideal spring and a rod-type spring are
compared in Fig. 6.9. In the low frequency range, well below the first mass–spring
resonance, the twomodels give comparable results. At higher frequencies, the results
deviate considerably.

A typical rubbermount cannot be considered as thin. A characteristic cross dimen-
sion of a rubber mount is often of the same order as its length. Not only the displace-
ment in the axial direction but in the plane perpendicular to the axis must there-
fore be considered. For “bending waves” propagating along thick beams or in thick
plates, the so-called Timoshenko andMindlin approximations were formulated. This
was discussed in Sects. 9.5 and 9.6, respectively. In a similar way, different models
have been developed to correct the wavenumber for “longitudinal waves” propa-
gating in circular beams with a large diameter as compared to the wave length of the
disturbance.

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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Fig. 10.7 Circular bar or rod

The basis for one approximate model has already been introduced in Sect. 4.5.
The result, as presented in Eq. (4.60), is a first approximation of the wave number for
longitudinal waves propagating in a thick plate. This basic theory can be extended
to include L-waves propagating in the axial direction of beams or bars of cylindrical
or rectangular cross sections. In the first case, consider the bar of Fig. 10.7 of length
L , radius R and oriented along the x-axis. The displacement in the axial direction is
ξ and in the radial direction η. Considering a transfer from Cartesian to cylindrical
coordinates, the strain εr in the radial direction is, according to Eq. (3.1), given by

εr = ∂η

∂r
= −νσx

E
= −ν

∂ξ

∂x
(10.39)

The displacement η in the radial direction is obtained from Eq. (10.39) as

η = −rν
∂ξ

∂x
(10.40)

The velocities in the axial and radial directions are for harmonic excitation, time
dependence exp(iωt), given by

ξ̇ = iωξ; η̇ = iωη = −iωrν
∂ξ

∂x
(10.41)

For a wave propagating along the axis of the bar, the axial displacement can be
defined as

ξ = A · exp[i(ωt − kx)]

The amplitude of the wave is A and its wavenumber k. Considering this assumption
and Eq. (10.41), the radial velocity is obtained as

η̇ = −kωνrξ

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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The time average of the kinetic energy per unit length of the rod is

T̄l =ρ

4

∫ R

0

(∣∣ξ̇∣∣2 + |η̇|2
)
2πrdr =ω2ρ

4
|ξ|2

∫ R

0
[1 + (νrk)2]2πrdr

=πR2ω2ρ

4
|ξ|2

[
1 + (νRk)2

2

]
(10.42)

The result can also be written as

T̄l = πR2ω2ρa

4
|ξ|2 ; ρa = ρ

[
1 + (νRk)2

2

]
(10.43)

For a rod of quadratic cross section, the parameter R in Eq. (10.43) is set to
equal R = a

√
2, where a is length of one of the sides. The wavenumber can be

written as k = ω
√

ρa/E . This expression in combination with the apparent density
of Eq. (10.43) gives an equation in k. The solution to this equation is

k = ω

√
ρ

E
·
[
1 − ω2ρν2R2

2E

]−1/2

(10.44)

This approximate expression is only valid as long as the second term inside the
bracket is much smaller than unity. This requirement drastically restricts the useful-
ness of the expression. In addition and as previously discussed, k can not exceed the
wavenumber for Rayleigh waves.

Thewave number given in Eq. (10.44) is frequently referred to as the Love approx-
imation. Adding lateral inertia, according to Love’s approximate theory, the basic
differential equation (6.1) governing the displacement ξ due to L- waves propagating
in a beam is modified to

∂2ξ

∂x2
− ρ

E
· ∂2ξ

∂t2
+ ρν2r2p

E
· ∂4ξ

∂x2∂t2
= 0 (10.45)

In this expression, the parameter rp is equal to the radius of gyration. For a circular
cross section with radius R, the radius of gyration is rp = R/

√
2. For a rectangular

cross section, height H and width B, the result is rp = √
(B2 + H2)/12. The

expression (10.43) can also be obtained by first calculating kinetic and potential
energies of a system. Thereafter Hamilton’s principle is applied, see Chap. 9. The
wave number previously given inEq. (10.44) is again obtained by assuming a solution
ξ = A exp[i(ωt − kx)] and substituting this expression into Eq. (10.45). As in the
previous case, the solution is only valid in the low frequency range or rather when
(rpk)2 � 1.

In 1952 R.E.D. Bishop, Ref. [101] added terms to the Love model taking into
account the effect of shear. For a beam of rectangular cross section, height H and
width B, the resulting approximate differential equation governing the axial dis-
placement in the beam is

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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∂2ξ

∂x2
− ρ

E
· ∂2ξ

∂t2
+ ρν2

E
· (H2 + B2)

12

∂4ξ

∂x2∂t2

−
( ρ

E

)2 [ν2(1 − ν2)(H4 + B4)

120
− ν2(1 + ν)H2B2

72

]
∂6ξ

∂x2∂t4
= 0 (10.46)

The corresponding result for a beam of circular cross section, radius a, is

∂2ξ

∂x2
− ρ

E
· ∂

2ξ

∂t2
+ ρν2a2

2E
· ∂4ξ

∂x2∂t2
−
( ρ

E

)2 ν2a4

6
(2ν2+ν−1)

∂6ξ

∂x2∂t4
= 0 (10.47)

There are a number of additional approximate methods. Some are similar and even
identical but referred to by different names. The most common methods are summa-
rized inRef. [15]. In particular theMethod of Internal Constraintsmakes it possible to
study longitudinal vibrations of bars with different boundary conditions. Themethod
can also be a very powerful tool for predicting the vibration of structures like stiffened
plates or structures with a complicated cross sections.

For all the models discussed, not only the wavenumber but also the axial stress
must be estimated in order to determine the stiffness of a mount. In the absence of
shear, the normal stress σx related to the axial displacement ξ of a beam is, according
to Chap.3, defined as

∂σx

∂x
= ρ

∂2ξ

∂t2
(10.48)

The inertia force per unit volume defined in (10.48) is obtained from Eq. (10.45) as

∂σx

∂x
= ρ

∂2ξ

∂t2
= E

∂2ξ

∂x2
+ ν2r2pρ · ∂4ξ

∂x2∂t2

A straightforward integration with respect to x yields

σx = E
∂ξ

∂x
+ ν2r2pρ · ∂3ξ

∂x∂t2
(10.49)

The axial stresses, calculated based on the other approximate results, are obtained in
a similar way.

10.7 Equivalent Stiffness of Simple Mounts—Approximate
Methods

For an ideal spring mounted to an infinitely stiff foundation the so-called spring
constant k is equal to the ratio between the resulting force on the foundation and the
displacement of the free end of the spring. See Fig. 10.8a and compare the discussion
in Sect. 6.6.

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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(a) (b) (c)

Fig. 10.8 Mass mounted on a an ideal spring and, b on a resilient mount. Resulting forces and
velocities shown in (c)

For a real spring or resilient mount, the equivalent stiffness keq can be defined
in a similar way. For harmonic excitation the FT of velocities and forces defined in
Fig. 10.8c, are according to Eq. (6.95) related as

v̂1 = iωx̂1 = F̂1Y11 + F̂2Y21; v̂2 = iωx̂2 = F̂2Y22 + F̂1Y12 (10.50)

The FT of the displacements at the two ends of the mount are x̂1 and x̂2. For an
infinitely stiff foundation x̂2 = 0. For this case Eq. (10.50) yields F̂1 = −F̂2Y22/Y12
and

iωx̂1 = F̂2

(
Y12Y21 − Y11Y22

Y12

)
(10.51)

Defining the equivalent stiffness keq as the ratio between the FT of the resulting force
on the foundation and the FT of the displacement of the free end of the spring or
following the notations of Fig. 10.8 as keq = −F̂2/x̂1. According to this definition,
Eq. (10.50) gives

keq = iωY12

Y11Y22 − Y12Y21
(10.52)

For the simple rod model discussed in Sect. 6.5 and defined by the mobilities Yi j in
Eq. (6.96) the equivalent stiffness is obtained as

keq = SEkl

sin(kl L)
(10.53)

The cross section area of the rod is S, its length L and Young’s modulus E . The
wavenumber for longitudinalwaves is kl. In the low frequency region, i.e., for kl → 0,

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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the equivalent stiffness keq is approaching the static stiffness SE/L of a rod, compare
Eq. (3.4).

The equivalent mobility of the rod is defined as the ratio between the FT of the
velocity at the driving end of the mount and the FT of the force on the foundation.
The equivalent mobility is thus equal to

Yeq = iω

keq
= Y11Y22 − Y12Y21

Y12
(10.54)

In a similar way, the driving point stiffness kdp can be derived. This is the stiffness
felt by a force acting at the top end of a mount when the velocity of the bottom end
is blocked, i.e., v̂2 = 0. This driving point stiffness is obtained from (10.49) as

kdp = iωY22

Y11Y22 − Y21Y12
(10.55)

The corresponding driving point mobility is

Ydp = Y11Y22 − Y21Y12

Y22
(10.56)

Expressions defining mobilities and equivalent stiffness are readily modified to
include the so-called Love correction. For harmonic excitation, time dependence
exp(iωt), the expression (10.49) relating stress and strain, including lateral inertia
according to Love, yields

σx = E

(
1 − ω2ν2ρr2p

E

)
∂ξ

∂x
= Ex

∂ξ

∂x
(10.57)

Mobilities and equivalent stiffness due to longitudinal waves in a beam are, when
including the Love correction, obtained by replacing E by Ex and consequently
kl = ω

√
ρ/E by kl = ω

√
ρ/Ex in the Eq. (6.96) which define the mobilities. The

equivalent stiffness is obtained as

keq = SEkl
sin(klL)

; kl = ω
√

ρ/Ex ; Ex = E

(
1 − ω2ν2ρr2p

E

)
(10.58)

It is assumed throughout that 1 � ω2ν2ρr2p/E .
The equivalent stiffness keq calculated first according to the simple rod model

and then from Eq. (10.56) are shown in Fig. 10.9. In the low frequency region, well
below the first natural frequency of the rod, the two models give similar results.
The frequencies for the first natural frequencies differ considerably. According to
Eq. (10.43), the apparent mass of the beam is increased due to the inclusion of lateral
inertia. The magnitude of the stiffness predicted by means of the rod theory is over

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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Fig. 10.9 The equivalent stiffness keq. Rod model and Love model

estimated at the first natural frequency. The natural frequency is also too high as
predicted by the rod theory.

In general, resilient mounts are exposed to both static and dynamic forces. The
static force or load compresses the mount. The shape factor as defined in Eqs. (10.35)
or (10.36) is increased due to the load. Themount stiffens as predicted by Eq. (10.37).
Wavenumber and the height of the mount decrease, resulting in the first natural
frequency being shifted upwards. This is illustrated in Fig. 10.10. The results are
predicted using the Love model. The equivalent stiffness of one resilient mount
is shown for three static loads. A static load increases the stiffness of a mount in
the low frequency region. The first natural frequency is increased as the static load
is increased. Although, as later discussed in Sect. 10.10, the Love model does not

Fig. 10.10 The equivalent stiffness of a mount with different static loads. Love model
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agree well with measurements, the model can indicate certain trends resulting from
changed static load, shape, etc.

The applicability of the Love model is very limited since the inequality 1 �
ω2ν2ρr2p/E must be satisfied. Some additional limitations of the Love and other
models are discussed in Sects. 10.9 and 10.10. However, general trends can to a cer-
tain extent be explained by means of this very simple model. Even if sophisticated
theoretical models are preferred, accuratematerial data as well as an in detail descrip-
tion of the geometry of a mount must be available. The alternative to predictions is
measurements.

10.8 Static Deflection of Cylindrical Rubber Mounts

The apparent stiffness or rather modulus of elasticity Ea of a rubber mount is given
by Eq. (10.37). For rubber, unfilled with carbon black, the parameter B is equal to 2.
For Poisson’s ratio close to 0.5 the bulk modulus is much larger than G as discussed
in Sect. 10.5. Considering these specific conditions Eq. (10.37) is reduced to

Ea = E · (1 + 2 · S2) (10.59)

where E is the static modulus of elasticity of the rubber material. The shape factor
S is equal to the ratio between the loaded area of the mount and the free surface of
the same structure as discussed in Sect. 10.7.

When compressed a cylindrical mount with the radius R and height L will change
shape as illustrated inFig. 10.11. The performance of the deformedmount can accord-
ing to Refs. [93, 112] be modeled as if the mount had a shape of a uniform cylinder
with the radius Reff and height L − ξ where ξ is the distance the mount is com-
pressed. Since the rubber is almost incompressible the volume of the material is the
same before and after compression. Thus,

πR2L = πR2
eff(L − ξ); Reff = R

√
L√

L − ξ
(10.60)

The loaded area S1 of the mount is approximated by the expression S1 = πR2
eff given

by the cross section area of the equivalent compressed mount of Fig. 10.11c. The free
surface S2 of the mount is set to equal the free surface of the uncompressed mount

Fig. 10.11 Uncompressed
and compressed rubber
mounts. a Initial shape.
b Compressed shape.
c Equivalent shape

(a) (b) (c)
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or S2 = 2πRL . The shape function is obtained from (10.35) as

S = S1
S2

= πR2
eff

2πRL
= R

2(L − ξ)
(10.61)

The expressions (10.59) and (10.60) give the apparent modulus of elasticity Ea as

Ea = E

[
1 + R2

2(L − ξ)2

]
(10.62)

The compression ξ of a rubber mount, modulus of elasticity E , length L , and cross
section area S due to a force F is according to Eq. (3.4) equal to ξ = F L/(SE).
Thus, dF/dξ = SE/L . For the compressed rubber mount E → Ea and L → L − ξ
and S → πR2

eff . Consequently

dF

dξ
= πE R2L

(L − ξ)2

[
1 + R2

2(L − ξ)2

]
(10.63)

For a compression d of the mount the force F required is obtained by integrating
Eq. (10.63). Hence

F =
∫ d

0
dξ

πE R2L

(L − ξ)2

[
1 + R2

2(L − ξ)2

]

= πE R2d

(L − d)

{
1 + R2(3L2 − 3Ld + d2)

6L2(L − d)2

}
(10.64)

This expression gives the deflection d as function of the force F compressing the
mount. For small deflections, d � L , the approximate result is

d ≈ F L

πE R2

(
1 + R2

2L2

) (10.65)

Thus, a force F acting on a circular rubber mount with the initial radius R and height
L is compressing the mount the distance d given by the expression (10.65).

10.9 Wave Propagation in Circular Rods, Exact Solutions

Longitudinal waves propagating in thick plates were discussed in Sect. 4.5. It was
shown that contraction and shear had to be considered in the high frequency range.
For longitudinal waves propagating in a thick plate, the wavenumber derived from
the thin plate theory must be corrected with respect to plate thickness, Poisson’s ratio

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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and frequency. The result can be interpreted by identifying an apparent density ρa
of the structure. This apparent density increases with frequency, plate thickness, and
Poisson’s ratio. The wavenumber kx for longitudinal waves propagating in a plate
was given in Eq. (4.59). The exact wavenumber for longitudinal waves propagating
in a thick plate is the solution to the dispersion Eq. (4.49). Approximate and exact
wavenumbers can in a similar way be derived for longitudinal waves propagating
in infinite bars of circular cross sections. The exact solution, valid for circular bars
only, is often referred to as the Pochhammer–Chree solution. As in the case with the
infinite thick plate, the wavenumber for longitudinal waves propagating in a circular
but not necessarily thin rods is derived using the general wave equation discussed in
Chap.4.

In Sect. 4.5 the wavenumber for quasi-longitudinal waves propagating in an infi-
nite thick platewas discussed. Thewavenumberwas derived starting from the general
wave equation (4.4) which governs all elastic oscillatory motions in the interior of
a solid. Any type of linear displacement of a solid can be described by means of
longitudinal and transverse waves satisfying the equations in (4.8). The dispersion
equation for quasi-longitudinal waves propagating in an infinite plate as shown in
Fig. 4.4 b is given in Eq. (4.49). In a similar way, it is possible to derive the dispersion
equation giving thewavenumbers for quasi-longitudinal waves propagating along the
axis of an infinite, circular, and homogeneous bar with a constant cross section area.
The same is not possible for a bar with a rectangular cross section.

Again, as in Sect. 4.1, the displacement in an infinitely long cylinder is described
by means of the scalar potential φ and the vector potential ψ. The potentials should
satisfy the equations given by (4.8). Thus

∇2φ − 1

c2l

∂2φ

∂t2
= 0; ∇2ψ − 1

c2t

∂2ψ

∂t2
= 0 (10.66)

where cl and ct are the speed of sound of longitudinal and transverse waves respec-
tively or

cl =
[

E(1 − ν)

ρ(1 + ν)(1 − 2ν)

]1/2
; ct =

[
E

2ρ(1 + ν)

]1/2
(10.67)

The displacement vector is again defined as

r = gradφ + curlψ

In cylindrical coordinates and writing ψ = (ψr ,ψϕ,ψz) the expressions ∇2φ and
∇2ψ are

∇2φ = 1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2
∂2φ

∂ϕ2 + ∂2φ

∂z2

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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http://dx.doi.org/10.1007/978-3-662-47807-3_4
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∇2ψ=
(

∇2ψr − ψr

r2
− 2

r2
∂ψϕ

∂ϕ

)
er +

(
∇2ψϕ− ψϕ

r2
+ 2

r2
∂ψϕ

∂ϕ

)
eϕ+

(
∇2ψz

)
ez

(10.68)
The unit vectors er , eϕ and ez correspond to the directions along r , ϕ, and z, see
Fig. 10.7. The second expression of Eq. (10.68) is derived in for example, Ref. [131].
For axi-symmetric displacement the functions φ and ψ j sufficiently prescribe the
motion of the cylinder. Compare the discussion in Sect. 4.1. The functions φ and ψ j
are for axi-symmetric displacement independent of the angle ϕ. Consequently the
functions φ = φ(r, z, t) and ψ j = ψ(r, z, t) must satisfy

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
− 1

c2l

∂2φ

∂t2
= 0

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
− ψ

r2
− 1

c2t

∂2ψ

∂t2
= 0 (10.69)

Assuming a wave propagating along the axis of the cylinder, wavenumber kz , and
with the time dependence exp(iωt) the functions φ and ψ are written

φ = F(r) · exp[i(ωt − kzz)]; ψ = H(r) · exp[i(ωt − kzz)] (10.70)

The expressions (10.67) inserted in (10.66) yield

∂2F

∂r2
+ 1

r
· ∂F

∂r
+ λ2

1F = 0; λ1 =
√

k2l − k2z

∂2H

∂r2
+ 1

r
· ∂H

∂r
− H

r2
+ λ2

2H = 0; λ2 =
√

k2t − k2z . (10.71)

The wavenumbers kl and kt for pure longitudinal waves and transverse waves respec-
tively are defined as kl = ω/cl and kt = ω/ct . The expressions (10.71) governing F
and H are Bessel’s equations. The Bessel equation is given as

y′′ + 1

r
y′ +

(
1 − m2

r2

)
y = 0

The general solutions to these equations are a combination of Bessel Jm(r) and
Neumann Ym(r) functions. The displacement in the cylinder is finite everywhere.
However, the Neumann functions tend to infinity as r tends to zero. The functions
Jm(r) are finite for r = 0. Thus, finite solutions to Eq. (10.71) require

F(r) = A · J0(λ1r); H(r) = B · J1(λ2r) (10.72)

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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where A and B are constants. Consequently, from (10.70) the potentials are obtained
as {

φ(r, z, t) = A · J0(λ1r) · exp[i(ωt − kzz)];
ψ(r, z, t) = B · J1(λ2r) · exp[i(ωt − kzz)] (10.73)

The displacement r = (ur , 0, uz) in the cylinder is obtained from Eq. (4.5) as r =
gradφ + curlψ. As previously discussed ψr = ψz = 0 and ψϕ = ψ reducing the
displacement components to

⎧⎪⎪⎨
⎪⎪⎩

ur = ∂φ

∂r
− ∂ψ

∂z
=
[

A
∂

∂r
[J0(λ1r)] + ikz B J1(λ2r)

]
· exp[i(ωt − kzz)]

uz = ∂φ

∂z
+ 1

r

∂(rψ)

∂r
=
[
−ikz AJ0(λ1r)+ B

r

∂

∂r
[r J1(λ2r)]

]
· exp[i(ωt−kzz)]

(10.74)
The Bessel functions J0(x) and J1(x) satisfy the following expressions

[J0(x)]′ = −J1(x) and [x J1(x)]′ = x J0(x)

Considering these relationships, Eq. (10.74) is modified to

{
ur = [−Aλ1 J1(λ1r) + ikz B J1(λ2r)] · exp[i(ωt − kzz)]
uz = [−ikz AJ0(λ1r) + Bλ2 J0(λ2r)] · exp[i(ωt − kzz)] (10.75)

For an infinite cylinder with a free surface, the normal stress σr and the shear stresses
τrϕ and τr z must equal zero on the surface. The normal stress caused by the displace-
ment r = (ur , 0, uz) is obtained from Eq. (3.6) as

σr = E

1 − ν

[
∂ur

∂r
+ ν

1 − 2ν

(
∂ur

∂r
+ ur

r
+ ∂uz

∂z

)]
(10.76)

The shear stress τr z is considering (3.11) and (3.12)

τr z = G

(
∂ur

∂z
+ ∂uz

∂r

)
(10.77)

Due to axial symmetry of the displacement the shear stress τrϕ is always identical
to zero.

The parameters A and B of Eq. (10.72) are interrelated. By inserting (10.75) in
(10.77) and by setting τr z = 0 for r = R it is found that

A = (λ2
2 − k2z )J1(λ2R)

2ikzλ1 J1(λ1R)
B = P · B (10.78)

The normal stress and the shear stresses being zero for r = R leads to a system of two
homogeneous equations in the unknown constants A and B. For nontrivial solutions

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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the determinant of the coefficients equals zero. Thus, by inserting Eq. (10.74) in
(10.76) and setting the stresses equal to zero on the surface of the cylinder for r = R,
gives the dispersion equation

[
2λ2

1 J ′′
0 (λ1R)− νk2t

1 − ν
J0(λ1R)

]
(2k2z −k2t )J1(λ2R)=4k2z λ1λ2 J ′

0(λ1R)J ′
1(λ2R)

(10.79)
The dispersion equation (10.79) was obtained by Pochhammer [104], in 1876 and
somewhat later by Chree [105]. The numerical solutions were carried out almost
70years later by Bancroft and Davies [106, 107].
Some useful relations with respect to the Bessel functions in (10.79) are, Ref. [43],

J ′
0(x) = −J1(x); J ′

1(x) = J0(x) − J1(x)

x
; J ′′

0 (x) = −J0(x) + J1(x)

x

Using these formulas and the identities

k2l = k2t
(1 − 2ν)

2(1 − ν)
; k2z = k2t − λ2

2

the Pochhammer dispersion equation (10.79) is rewritten as

(k2t − 2λ2
2)

2 · θ(λ1R) + 4λ2
1(k

2
t − λ2

2) · θ(λ2R) = 2λ2
1k2t (10.80)

The function θ(x) is defined as θ(x) = x J0(x)/J1(x). The expression is known as
the Oneo function.

The low frequency solution to (10.80) is readily obtained using the expansion
formulas for small x , Ref. [43],

J0(x) = 1 − x2

4
+ x4

64
+ · · · ; J1(x) = x

2
+ x3

16
+ · · ·

Thus for x � 1, θ(x) ≈ 2 − 3x2

4
.

In the low frequency region or for R small the expansions inserted in (10.80), the
resulting wavenumber for a propagating wave is obtained as

kz = ω

√
ρ

E

This is the wavenumber for quasi-longitudinal waves propagating in a slender bar
as discussed in Sect. 3.4. In the high frequency limit or as R → ∞, one possible
solution to (10.80) is λ1 = 0 which gives kz = kl, which is the wavenumber for a
longitudinal wave propagating in an infinite solid.

http://dx.doi.org/10.1007/978-3-662-47807-3_3


10.9 Wave Propagation in Circular Rods, Exact Solutions 71

There are also approximate expansions for Bessel functions with large arguments.
Thus, from Ref. [43] or any standard text book on mathematics, the functions J0(x)

and J1(x) are for large x approximated by

J0(x) ≈
√

2

πx
· cos(x − π/4) =

√
2

πx
· sin(x − 3π/4);

J1(x) ≈
√

2

πx
· cos(x − 3π/4)

For large x the function θ(x) is then written

θ(x) = x J0(x)/J1(x) ≈ x · tan(x − 3π/4) (10.81)

For solutions where kz is larger than the wavenumbers kl for longitudinal waves and
kt for transverse waves the parameters λ1 and λ2 are imaginary as given by (10.71).
The real parameters α and β are defined as

α =
√

k2z − k2l ; β =
√

k2z − k2t (10.82)

For large R the expression on the right hand side of Eq. (10.80) can be neglected as
the left hand side expression tends to infinity for large R. Thus in the limit for large
R, Eq. (10.80) is written

(k2t − 2λ2
2)

2 · θ(λ1R) + 4λ2
1(k

2
t − β2) · θ(λ2R) = 0

By using Eqs. (10.81) and (10.82) and k0 = ω
√

ρ/E this expression is rewritten as

tan(λ1R − 3π/4)[k2z − k20(1 + ν)]2 + tan(λ2R − 3π/4)k2z λ1λ2 = 0

For solutions where kz is larger than the wavenumbers kl for longitudinal waves and
kt for transverse waves the parameters λ1 and λ2 are imaginary and equal to λ1 = iα
and λ2 = iβ, where α and β are defined in (10.82). Based on the definitions of
trigonometric functions tan z = i · tanh x for z = i x and x real. For large x, tanh x
tends to 1. Thus for R or α and β large the asymptotic value of θ(λ1R) and θ(λ2R)

are
lim

λ1R→∞
θ(λ1R) = −αR; lim

λ2R→∞
θ(λ2R) = −βR (10.83)

As the radius tends to infinity and after using these results, the dispersion equation
is reduced to

[k2z − k20(1 + ν)]2 + k2z αβ = 0; k0 = ω
√

ρ/E (10.84)

The solutions to this equation were discussed in Sect. 4.4. Equation (10.84) is identi-
cal to the result given in Sect. 4.4. The resulting wavenumber for a propagating wave
is equal to kr, the Rayleigh wavenumber, given in (4.57) and listed in Table4.2. See

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Fig. 10.12 Predicted phase velocities of L-waves propagating in the axial direction of a cylindrical
beam. 1 Exact solution; 2 Elementary theory; 3 Bishop theory; 4 Bishop improved theory; 5 Love
theory; 6 Love theory improved by Bishop. 7 Method of internal constraints. The ratio c/c0 is
shown as function of rp f/c where rp is the radius of gyration and f the frequency. From Ref. [15]

also Fig. 4.9. Thus in a circular bar the wavenumber, in the axial direction, for the
first propagating mode varies from k0, Eq. (10.84), in the low frequency region to kr,
(4.51), in the high frequency region.

Results derived from some approximatemodels are compared in Fig. 10.12. Phase
velocities, c = ω/k, calculated according to the exact and approximate wavenumber
models are compared in the figure. All models are derived for predicting the axial
displacement of cylindrical beams. The results are from Ref. [15]. Curve 1 in the
figure corresponds to the first propagating longitudinal wave mode in an infinite
cylinder. The result is the solution to Eq. (10.80). Curve 2, from elementary theory,
gives c0 = √

E/ρ, which is the phase velocity for quasi-longitudinal waves. Curve
3 represents results based on the Bishop theory, Curve 4 is Bishops improved theory,
Curve 5 Love theory, Curve 6 is Love theory improved by Bishop, and Curve 7
is derived from the method of internal constraints, Ref. [15] . It is evident that the
approximate solutions rather poorly predict the exact result as the quantity rp f/c is
increasing. However, as long as rp f/c < 0.1 the possible errors are rather small.
Compare also Fig. 4.9, which illustrates the wavenumber for longitudinal waves
propagating in thick plates. Definition of rp is found in p. 60.

The dispersion Eq. (10.80) has an infinite number of solutions, real and complex.
The solutions can be found by means of the Newton–Raphson method. The initial
values are obtained by a winding integral method as proposed by Ivansson and
Karasalo [108] and discussed in Refs. [100, 102, 112]. The axial displacement in a
cylinder is given by a sum of all possible modes. In a finite cylinder, waves can travel
in both directions along the axis. Neglecting the time-dependent function the axial
and radial displacements of the cylinder are of the form

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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uz =
∑

n

{
[−ikzn A+

n J0(λ1nr) + B+
n λ2n J0(λ2nr)] · e−ikzn z

+ [ikzn A−
n J0(λ1nr) + B−

n λ2n J0(λ2nr)] · eikzn z
}

ur =
∑

n

{
[−λ1n A+

n J1(λ1nr) + ikzn B+
n J1(λ2nr)] · e−ikzn z

+ [−λ1n A−
n J1(λ1nr) − ikzn B−

n J1(λ2nr)] · eikzn z
}

(10.85)

where kzn are solutions to (10.80). The amplitudes A+
n and B+

n are related as A+
n =

Pn B+
n , where Pn is obtained from (10.78), as

A+
n = (λ2

2n − k2zn)J1(λ2n R)

2ikznλ1n J1(λ1n R)
B+

n = Pn · B+
n (10.86)

where kzn are solutions to the dispersion equation and λ1n =
√

k2l − k2zn and λ2n =√
k2t − k2zn . In a similar way the amplitudes A−

n and B−
n are found to be related as

A−
n = − (λ2

2n − k2zn)J1(λ2n R)

2ikznλ1n J1(λ1n R)
B−

n = −Pn · B−
n (10.87)

The negative sign is due to that the wavenumbers for waves traveling in the positive
and negative direction of the z-axis have opposite signs.

As an example, consider a circular rubber mount of height H and with a radius R
as shown in Fig. 10.13. Themount is compressed by the distance d along its axis. The
displacement in the radial direction at the two end surfaces is zero. At the top end,
z = H/2, the axial displacement is−d and at the bottom end zero for z = −H/2. At
the top end, the displacement in the radial direction is zero and the axial displacement

Fig. 10.13 Circular rubber
mount
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is equal to −d. Thus ur (H/2, r) = 0 and uz(H/2, r) = −d. Eq. (10.85) through
(10.87) gives

∞∑
n=1

[
C+

n · eiqn + C−
n · e−iqn

]
Ur

n = 0;
∞∑

n=1

[
C+

n · eiqn − C−
n · e−iqn

]
U z

n = −d

(10.88)
where qn = Hkzn/2 and

Ur
n = −λ1n(λ2

2n − k2zn)J1(λ2n R)J1(λ1nr) − 2λ1nk2zn J1(λ1n R)J1(λ2nr)

U z
n = −ikzn(λ2

2n − k2zn)J1(λ2n R)J0(λ1nr) + 2iλ1nλ2n J1(λ1n R)J0(λ2nr)

C+
n Xn = B+

n ; −C−
n Xn = B−

n ; Xn = 2iλ1nkzn J1(λ1n R) (10.89)

At z = −H/2 the boundary conditions are ur (−H/2, r) = 0 and uz(−H/2, r) = 0.
Eq. (10.85) through (10.87) give

∞∑
n=1

[
C+

n · e−iqn + C−
n · eiqn

]
Ur

n = 0;
∞∑

n=1

[
C+

n · e−iqn − C−
n · eiqn

]
U z

n = 0

(10.90)
The notations are defined in Eq. (10.89). As stated by Kari [100], the most straight-
forward way to determine the coefficients of Eqs. (10.88) and (10.90) is probably
through a point-matching technique. More accurate results are achieved by the sub
region method which is presented in Ref. [100]. The series of Eq. (10.90) are trun-
cated after M terms. The number of terms required is discussed in Ref. [102]. As
stated in this reference M = 64 is sufficient for most engineering applications.

The results so far discussed in this section are only valid for mounts with no
preload. For a preloaded mount, the entire mount is deformed and can no longer be
described as a uniform cylinder. This problem has been addressed in Ref. [112]. It is
found that a deformed or compressed mount can be described as a uniform cylinder
with a radius Reff slightly larger than the radius R of the undeformed mount i.e., of
the mount without a preload. The volume of the rubber is the same with and without
the preload. Thus if the mount of the length L is compressed the distance d by the
preload the effective radius is

Reff = R ·
√

L

L − d
(10.91)

This model is discussed in Sect. 10.10.
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10.10 Measurements of Effective Stiffness of Mounts

The geometry and general construction of resilient elements can often be fairly com-
plicated. Mounts for heavy equipment are, to ensure stability, frequently mounted at
a certain angle with respect to a vertical line through the mount. A possible mounting
of a ship Diesel is shown in Fig. 10.14. A straightforward calculation of the elasticity
of mounts with complicated geometries cannot be carried out even if material para-
meters and geometries can be well specified. Numerical methods like FEM including
non-linear modules are best suited for this type of calculation. A FEM prediction
can in general be made up to sufficiently high frequency limits to include the first
few resonances in the spring.

An alternative to numerical calculations is to make direct measurements of the
dynamical properties of themount.However, a certain number of practical difficulties
must be solved to make these measurements. Some of these problems are discussed
in Refs. [109, 110]. There are two predominant measurement techniques. The first,
the direct method, was proposed by Snowdon [92]. The test specimen is mounted on
a stiff foundation. The top end of the mount is excited by a shaker. The displacement
at the top end and the force at the blocked end are measured to determine the transfer
stiffness of the mount. However, a force transducer mounted between mount and
a stiff foundation can easily brake in particular as the preload is increased. The
alternative is the so-called indirect method, see for example, Refs. [102, 111]. The
measurements should preferably be carried out in a test rig especially designed for
this particular purpose. One such rig, proposed and tested by Leif Kari [109, 110],
is illustrated in Fig. 10.15.

The test object is mounted between a force distribution plate and a motion reduc-
ing blocking mass. The two masses are “stiff” to ensure that their first few natural
frequencies are outside the frequency range of interest. This is also true for the frame
of the rig. The lower blocking mass is mounted to the frame by means of very soft
springs. The test objects can be preloaded and thus compressed by a static force. A
hydraulic oil pressure transducer measures the static load on the mount. A dynamic

Fig. 10.14 Mounting of a
ship Diesel
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Fig. 10.15 Test rig for the
measurement of the dynamic
stiffness of resilient mounts.
B Test object; B Force
distribution plate; C
Blocking mass; D
Accelerometer; E Hydraulic
piston with strain gauge; F
Shaker; G Upper isolator; H
Lower isolator; I Rigid body;
J Supporting column; K
Cross bar. From Kari

force can be superimposed by means of two electro-dynamic exciters. Forces and
velocities at the top and bottom ends of the test mounts are measured. In principle,
the four pole or two port parameters relating forces and velocities are determined
based on these measurements. The point and transfer mobilities Y11, Y12, Y21, and
Y22 defined in Sect. 6.5 could thus be obtained.

However, it is not straightforward tomeasure the forces at the top and bottom ends
of the mount bymeans of force transducers. Asmentioned before, there is a tendency
for the transducers to break when mounted between a test object and a stiff mass.
The lower mass of the test rig shown in Fig. 10.15 is mounted on very soft springs.
For sufficiently high frequencies, the mass is vibrating as if it were disconnected
from the spring. Consequently, the force induced by the mount or the test object
on the mass M is for sufficiently high frequencies and harmonic excitation given
by F2 = iωMv2 where v2 is the velocity of the mass. The equivalent or transfer
stiffness keq of a mount is in Eq. (10.92) defined as the ratio between the FT of the
force induced by the mount at its lower end and the FT of the displacement of the
upper part of the mount or

keq = F̂2

x̂1
= ω2Mx̂2

x̂1
= ω2MGv2v1

Gv1v1

= ∣∣keq∣∣ eiϕ (10.92)

Here Gv1v2 is the one-sided cross-power spectral density between the velocities at
the two ends of the mount. The one-sided autospectrum of the velocity at the upper
end is defined as Gv1v1 . Both the magnitude of the stiffness parameter and the phase

http://dx.doi.org/10.1007/978-3-662-47807-3_6
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Fig. 10.16 Calculated
(solid) and predicted
(dashed) transfer stiffness of
a cylindrical rubber mount.
From Ref. [100]

(a)

(b)

angle are determined. Two piezo-electric accelerometers are mounted on the top
mass and two on the lower blocking mass. The weight of the blocking mass is of the
order 500kg. For typical mounts, measurements of the equivalent stiffness can be
carried out in the frequency range 100–1000Hz. The preload or static load can vary
up to 60kN. In addition to measurements of the axial transfer stiffness of mounts
also measurements of transverse transfer stiffness, torsional transfer stiffness and
moment and cross coupling transfer stiffness are reported in Ref. [102].

The prediction model developed by Leif Kari is discussed in Ref. [100] and sum-
marized in Sect. 10.9. In Ref. [100], measured and predicted results are compared.
One such comparison is shown in Fig. 10.16. The test object was a cylindrical vibra-
tion isolator, length 50mm and radius 50mm. The nominal hardness of the rubber
material is 40◦ IRH and the density 1050kg/m3. The measured and predicted mag-
nitude of the transfer stiffness and its phase angle are shown in Fig. 10.16. The
agreement is very good between predicted and measured results. In Ref. [102] pre-
dictions of the transfer stiffness of mounts based on various models discussed in
Sect. 10.6 are compared. First, a mount with a length of 5000mm is considered.
Otherwise radius and material parameters are the same as in the previous case, i.e.,
radius 50mm, nominal hardness 40◦ IRH and the density 1050kg/m3. In principal
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Fig. 10.17 Transfer
stiffness. The Kari results
and the measurements are
almost identical. From Ref.
[102]

(a)

(b)

the test object is a long rod structure. The various models show very good agreement
for this particular case. However, in the second example, where again the length of
the mount is 50mm as in the very first example, the various models give very differ-
ent results. Only the Kari model successfully predicts the transfer stiffness. The long
rod model predicts well the frequency for the first resonance though the magnitude
of the stiffness is overestimated. The other more elaborate models like those of Love
and Bishop fail to predict the frequency response of the transfer stiffness as shown
in Fig. 10.17.

Yet some other measurements are presented in Fig. 10.18. The results show how
the transfer stiffness of a mount is varying as function of frequency and preload.
In the low frequency range, the stiffness of the mount is increasing with increasing
preload. The first resonance frequency is also shifting with the preload. There is a
tendency that the frequency is increasing with increasing preload. For this particular
mount, the stiffness at resonance is approximately six times the stiffness in the low
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Fig. 10.18 Transfer stiffness as function of preload. From Ref. [102]

frequency region. The dynamic stiffness is given by manufacturer as 30% higher
than the static stiffness. However, this value agrees poorly with the measurements.

In the second example, measurements are made on a more complex element
than the first. The mount consists of two rubber elements mounted at an angle of
45◦ with respect to the horizontal plane. This type of mount is often used for the
installation of Diesel engines on ships as shown in Fig. 10.14. The mounts are mainly
exposed to shear and compression. Figure10.19 shows the absolute value of the
equivalent stiffness in the vertical direction. The stiffness varies dramatically in the
audio frequency range. From 270 to 420Hz the stiffness of the mount is increased
by a factor 60. For real resilient mounts there is no such thing as a spring constant!

It should be evident that a resilient mounting system can only be optimized if
the dynamical properties of the mount are properly measured or otherwise carefully
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Fig. 10.19 Measured absolute value of equivalent stiffness of two rubber elements mounted at an
angle of 45◦. From Kari

predicted. The influence of such parameters as frequency, temperature, amplitude,
static load must be estimated.

Predictions of the transfer stiffness of bushings and of shear mounts are reported
in Ref. [112].

10.11 Structural Coupling Via Resilient Mounts

The prediction and reduction of energy flow from a source to supporting structures
and from these to adjoining structures are often the basis for a successful noise
reduction. A mechanical source is often mounted to a supporting structure at a cer-
tain number of discrete points. A typical example is an engine resiliently mounted
to a so-called sub frame in a car or a washing machine supported on a floor in a
building. The energy flow from source to foundation depends on the dynamic and
geometric properties of source, mounts, and supporting structure. As long as the area
of the contact points between structures and mounts are small, the point and transfer
mobility concepts can be used to describe coupling effects and energy flow from the
source. The characteristic dimension a of the contact surface and the wave number
κ for flexural waves in supporting structure should satisfy the condition κa � 1.

The mobility concept has already been used for describing the coupling between
structures. The coupling of finite beams exposed to axial excitation was discussed in
Sect. 6.5. The field parameters, force and velocity, at each end of a beam are related
by means of the four mobility functions Y11, Y12, Y21, and Y22. As shown in Sect. 6.6,
velocity and force at one end of the axially excited beam can be determined bymeans
of a 2×2 transfermatrix and the velocity and force at the other end.When the number
of degrees of freedom at each end of the beam is increased larger transfer matrices are
required. For the inplane bending of a thin beam, a 4 × 4 transfer matrix is required
for relating the field parameters at each end. This was discussed in Sect. 7.6. For
a complete description of a beam, allowing six degrees of freedom at each end, a

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_7
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12× 12 transfer matrix is necessary. Clearly, it can be formidable task to measure or
calculate all the 144 transfer functions for one element since in general, the resilient
element cannot be described as a simple thin beam or rod.

A full mobility matrix for a single point on a structure relating velocities vx , vy ,
and vz to forces Fx etc., and moments Mx etc., includes 36 elements. Or,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v̂x

v̂y

v̂z

ω̂x

ω̂y

ω̂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

YFx vx YFyvx YFzvx YMx vx YMyvx YMzvx

YFx vy YFyvy YFzvy YMx vy YMyvy YMzvy

YFx vz YFyvz YFzvz YMx vz YMyvz YMzvz

YFx ωx YFyωx YFzωx YMx ωx YMyωx YMzωx

YFx ωy YFyωy YFzωy YMx ωy YMyωy YMzωy

YFx ωz YFyωz YFzωz YMx ωz YMyωz YMzωz

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F̂x

F̂y

F̂z

M̂x

M̂y

M̂z

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The main contribution to the power flow to a structure is, in general, the result of
the mobilities along the diagonal of the mobility matrix. The point mobility for
thin plates was discussed in Sects. 5.3 and 8.5. In these examples the force was
perpendicular to the infinite plate. The point mobility for a finite simply supported
plate was derived in Sect. 8.5 and for a simply supported finite beam in Sect. 7.4. For
an infinite plate, density ρ, E-modulus E and thickness h , Poisson’s ratio ν, the point
mobility perpendicular to the plate isYFzvz = 1/(8

√
μD) = √

3(1 − ν2)/[4h2√Eρ]
and tangential to the plate approximately YFx vx ≈ 2ω/(Eh). For an infinite steel
plate, thickness h(m), the ratio between the point mobilities is

YFzvz

YFx vx

≈ 1

16π f h

√
3E

ρ
≈ 180

f h
(10.93)

Thus, for steel plates with a thickness of less than 10mm the point mobility perpen-
dicular to the plate dominates completely for f < 2kHz, i.e., YFzvz � YFyvy .

ThemomentmobilityYMyωy is defined as the ratio between the FTof the rotational
velocity ωy around one axis, in this case y, and the FT of the bending moment My

around the same axis. Thus

ωy = d

dt

(
∂w

∂x

)
; ω̂y = iω

∂ŵ

∂x
; YMyωy = ωy

My
(10.94)

The time average of the power � induced by the a bending moment Myeiωt is
consequently

�̄ = 1

2
Re
(

Myω
∗
y

)
=
∣∣ωy
∣∣2

2
Re
(
YMyωy

) = ∣∣ω̄y
∣∣2 Re (YMyωy

)
(10.95)

Alternatively, the power spectrum of the induced power is given as

G� = GωyωyRe(YMωy )

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Fig. 10.20 Two point forces
exciting an infinite plate

The moment mobility of an infinite and homogeneous beam, width b and height h,
is as discussed in Problem 10.3 found to be

YMωy = κ3(1 + i)

4ωm′ ; κ =
(

m′ω2

D′

)1/4

=
(
12ρω2

Eh2

)1/4

; m′ = ρbh (10.96)

The moment mobility of an infinite thin plate can be derived using the results from
Sect. 5.3. It was found in Sect. 5.3 that the FT of the displacement w(r, t) of a plate
excited by a point force F(t) at r = 0 is described by

ŵ(r,ω) = ŵ0[H (2)
0 (κr) − H (2)

0 (−iκr)]; ŵ0 = i F̂

8κ2D
(10.97)

If the plate is excited by a pair of forces in opposite directions as shown in
Fig. 10.20 the displacement along the x-axis in between the excitation points is

ŵx (x,ω) = ŵ(r1,ω) − ŵ(r2,ω); r1 = a − x; r2 = a + x for − a ≤ x ≤ a
(10.98)

The distances between a point x on the x-axis and the two forces are defined as r1
and r2. The distances r1 and r2 are small. The solutions ŵ(r1,ω) and ŵ(r2,ω) can
be expanded in MacLaurin series, thereafter the rotation along
the x-axis is calculated and the bending mobility derived. Following the discussions
in Sect. 5.3, Eqs. (5.43) and (5.50), the function ŵ(r1,ω) is also written

ŵ(r1,ω) = ŵ0(ω)[J0(z) − iY0(z) − J0(−i z) + iY0(−i z)]; z = κr1 (10.99)

For z � 1 the Bessel and Neuman functions can according to Ref. [43] be expanded
as

J0(z) = 1 − z2

4
+ z4

64
· · · ; Y0 = 2

π

[
ln
( z

2

)
+ γ

]
J0(z) + 2z2

4π
− 3z4

2 · 64 · · ·
(10.100)

The Euler constant γ is equal to 0.577 . . .. For |z| � 1, ŵ(r1,ω) is, neglecting terms
of z3 and higher orders, approximated by

ŵ(r1,ω) = ŵ0(ω)

{
1 − z2

4
− i z2

π

[
1 −

(
ln
( z

2

)
+ γ

)]}
; z = κ(a − x)

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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ŵ(r2,ω) = ŵ0(ω)

{
1 − z2

4
− i z2

π

[
1 −

(
ln
( z

2

)
+ γ

)]}
; z = κ(a + x)

(10.101)
The FT of the rotational velocity is from (10.101) obtained as

ω̂y = iω
∂

∂x

[
ŵ(r2,ω) − ŵ(r1,ω)

]
x=0 = ωaF̂

8D

{
1 + 4i

π

[
1 − ln

(κa

2

)
− γ

]}

(10.102)
However, the bending moment acting on the plate is M̂(ω) = 2aF̂(ω). Thus, from
(10.102),

YMyωy = ω

16D

{
1 + 4i

π

[
1 − ln

(κa

2

)
− γ

]}
(10.103)

The imaginary part of the moment mobility approaches infinity as a tends to zero.
However, the power input induced in a structure by a bendingmoment is proportional
to the real part of themomentmobility and is consequentlyfinite even as the parameter
a tends to zero.

It is often necessary to reduce the number of transmission mechanisms in order to
formulate a workable model describing the coupling between a source and a receiver.
Mechanisms which are considered the least likely to contribute to the energy trans-
fer to the foundation or receiver are eliminated. All such simplifications should be
verified by measurements on real and representative structures. However, over sim-
plifications can be disastrous as demonstrated by Pavic [113]. In general, it is often
assumed that the one-dimensional often vertical motion of the source predominately
causes the energy flow from a source to its supporting structure. The second most
important transmission mechanism is typically induced by the horizontal motion of
the source. In this case, the energy transfer is mainly caused by shear in the resilient
mounts. Although the forces exciting a foundation in the vertical and horizontal
directions can be of the same magnitude the mobilities perpendicular and tangential
to a standard foundation can be quite different as for example given by Eq. (10.93).
The mobility perpendicular to the foundation tends often to be the higher. A conse-
quence of this is that the transmission path perpendicular to the foundation generally
dominates, though the construction of a foundation determines which path is domi-
nant. The energy flow through a mount also depends on the stiffness of the mount in
directions other than the axial. The radial and axial stiffness of mounts can also vary
considerably.

The geometry and construction of typical mounts are often such that the energy
transfer through the mounts caused by rotation is negligible. If the total energy
flow from source to receiver is dominated by transmission along one path then the
acoustical coupling can be adequately described by means of the simplified mobility
concept. This means that each mount can be characterized by a 2 × 2 matrix only.

For a real construction, the couplings between source and mounts and mounts and
supporting structure are via a contact area rather than a contact point. The distribution
of the pressure over the contact surface determines the effective mobility of the
structure. The pressure distribution on for example a foundation depends not only
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on the material and geometrical parameters describing the supporting structure but
also on the stiffness of the mount or indenter. A number of cases are analyzed and
discussed in for example Ref. [44]. It is concluded in this reference that the simple
mobility concept can be applied as long as:

(i) Coupled systems are linear systems.
(ii) One dominating transmission path through each mount.
(iii) The wave number κ for flexural waves in plates or beams connected to supports

satisfies the condition hκ < 1, where h is the characteristic thickness of the
structure.

(iv) The characteristic dimension a of the contact surface and the wave number κ
for flexural waves in supporting structure satisfy the condition κa � 1.

The accuracy of the mobility procedure depends on how well the conditions
listed can be satisfied. The ultimate answer is obtained by comparing predicted and
measured results.

However, not only mobilities but also impedances can be used to describe the
coupling between different systems. In general, the mobility concept is much pre-
ferred. Some basic differences between the two concepts can be illustrated by means
of the beam element discussed in Sect. 6.6. The beam is excited by an axial force at
each end. The resulting FTs of the forces are in matrix form given by

{
v̂1
v̂2

}
=
[

Y11 Y12
Y21 Y22

]
·
{

F̂1

F̂2

}
or v = Y · F (10.104)

Alternatively, the forces can be expressed as functions of the velocities as

{
F̂1

F̂2

}
=
[

Z11 Z12
Z21 Z22

]
·
{

v̂1
v̂2

}
or F = Z · v (10.105)

It follows that Z = Y−1.
By exciting one end of the beam by F1 and letting F2 = 0 and measuring the

velocities v1 and v2 the mobilities Y11 and Y21 are determined. Thereafter the other
end is excited by a force F2 and again the velocities v1 and v2 are measured and the
mobilities Y21 and Y22 determined while F1 = 0. The measurements are carried out
by means of an impedance hammer, an accelerometer, and a two-channel analyser.
The technique is often referred to as the blocked force method.

In order to determine the impedance matrix of Eq. (10.105), first the velocity v2
must be blocked while the forces at the two ends and the velocity at end 1 are mea-
sured. The measurements are repeated with the velocity v1 blocked and v2 measured.
In general, this technique, the blocked velocitymethod, is more difficult than the first.
In particular, it must be ensured that the velocity at one end really is blocked. Further
the force required to keep one end blocked must be determined.

http://dx.doi.org/10.1007/978-3-662-47807-3_6
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10.12 Simple Transmission Model

For obtaining stability, a real source, like an engine, is mounted to its foundation by
three or more mounts. However, some of the basic concepts with respect to resilient
mounting can be demonstrated by means of the primitive single mount model shown
in Fig. 10.21. Some aspects on multi-point junctions are discussed in next section.
The mass or rather the source in Fig. 10.21 is excited by a harmonic force Fext. The
mass, not necessarily rigid, is allowed one degree of freedom only as defined by the
coordinate x . The foundation has the point mobility Y f at the junction of the mount.
The mobility of the mass at the junction to the mount is Y m = Y m

22. The transfer
mobility between a hypothetical excitation point and the point connecting the mass
and the mount is defined as Y m

12. The index m refers to the mass or source. To start
with, let the coupling element between the source and the foundation be completely
stiff. Forces and displacements are allowed in one direction only i.e., perpendicular
to the horizontal foundation as shown in Fig. 10.21.

The velocity v̂m of the mass at a point directly above the mount is given by

v̂m = F̂extY
m
12 − F̂2 · Y m

22 (10.106)

Fig. 10.21 Mass/source,
mount, and foundation
receiver
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The product F̂extY m
12 can be interpreted as a velocity v̂0. This quantity is equal to the

“free velocity” at the junction to the mount when the source is disconnected from
the mount but still excited by the external source.

For a source with only one contact point to the foundation, the FT of the velocity
v̂m between source and foundation is

v̂m = v̂ f = v̂0 − F̂2Y m; F̂ f = F̂2 (10.107)

The FT of the velocity of the foundation is given by v̂ f = F̂ f Y f . Thus

v̂m = v̂0

1 + Y m/Y f
(10.108)

For Y f � Y m the resulting velocity on the foundation and at the contact point on
the source is approximately equal to v̂0. Consequently, the velocity in the coupling
point can be considered as independent of the mobility of the foundation. Thus, for
Y f � Y m the foundation is said to be excited by a constant velocity source.

In a similar way the FT of the force acting on the foundation is given by

F̂ f = v̂0

Y m + Y f
= v̂0

Y m(1 + Y f /Y m)
(10.109)

For Y m � Y f the force on the foundation is approximately independent of the point
mobility of the foundation. The foundation is said to be excited by a constant force
source.

The real part of the spectrum of power transmitted to the foundation through a
completely stiff mount is

ReG� = lim
T →∞ 2Re

(
F̂ f v̂

∗
f /T

)
= lim

T →∞ 2Re
(

F̂ f F̂∗
f Y f ∗/T

)
= G F f F f Re(Y

f )

(10.110)
In combination with (10.109) the result is

ReG� = Gv0v0

Re(Y f )∣∣Y f + Y m
∣∣2 (10.111)

It can be shown that the maximum energy transfer from source/mass to
receiver/foundation is when Y f = (Y m)∗ as demonstrated in Problem 10.8. This is
the worst case, which should always be avoided. The minimum flow is for Y f = 0.
For a constant velocity source, the power spectrum of the transmitted power to the
foundation/receiver is

ReG� ≈ Gv0v0

Re(Y f )∣∣Y f
∣∣2 for Y f � Y m (10.112)
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The corresponding expression for a constant force source, Y m � Y f , is

ReG� ≈ Gv0v0

Re(Y f )

|Y m |2 for Y m � Y f (10.113)

A source of structure-borne sound is, or should be, resiliently mounted to its founda-
tion. If the resilient mounts are considered as integral parts of the source, the condi-
tion Y m � Y f would often be satisfied. In general, resiliently mounted machinery
can therefore be considered as sources inducing a constant force on the foundation
irrespective of the characteristics of the foundation. Heavy machinery mounted on
weak foundations tend to behave like constant velocity sources in the high frequency
region. An example of this is a big ship Diesel engine mounted on a foundation build
up of beam and plate elements.

The transfer mobilities defining the dynamic properties of a spring are formulated
following the procedure outlined in Sect. 6.4. These mobilities are defined as Y11,
Y12, Y21, and Y22. The forces acting on each element are illustrated in Fig. 10.21. The
velocity at the junction between spring and mass is given by vm . The corresponding
velocity at the junction between spring and foundation is v f . The FT of the velocity
vm of themass directly above themount is given by Eq. (10.107) as v̂m = v̂0− F̂2Y m .
Based on the definitions of the transfer mobilities defined in Sect. 6.4 the FT of the
velocities vm and v f at the ends of the mount are obtained as

v̂m = F̂2Y s
11 − F̂ f Y s

21; v̂ f = F̂2Y s
12 − F̂ f Y s

22 (10.114)

On the foundation, at the junction to the mount, the FT of the velocity v f is

v̂ f = F̂ f Y f (10.115)

Eliminating the quantities F̂2, v̂m and v̂ f by means of Eqs. (10.107), (10.114), and
(10.115) the FT of the force on the foundation is found to be

F̂ f = v̂0 · Y s
12

Y m · Y s
22 + Y m · Y f + Y f · Y s

11 + Y s
eq · Y s

12
; Y s

eq= Y s
11 · Y s

22 − Y s
12 · Y s

21

Y s
12

(10.116)
For a sufficiently soft mount the mobility Y s

11 at the top end of the spring should
be much higher than the point mobility Y m of the source. The point mobility Y s

22
at the bottom end could also be expected to be much higher than the point mobility
Y f of the foundation. In either case, the second term in the denominator in the
expression defining F̂ f in Eq. (10.116) can be neglected. For the case the source is
rigidly connected to the foundation v̂m is equal to v̂ f and F̂2 equal to F̂ f . For this case
Eqs. (10.112) and (10.107) give the FT of the resulting force F0

f on the foundation
as

F̂0
f = v̂0

Y m + Y f
(10.117)

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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The power spectrum of the power transmitted to the foundation is

ReG� = G F f F f · Re
(

Y f
)∗

The insertion loss IL due to the resilient mount is thus

I L = 10 log
(
ReG�0/ReG�

) = 10 log
∣∣∣G F0

f F0
f
/G F f F f

∣∣∣ = 10 log
∣∣∣F̂0

f /F̂ f

∣∣∣2
(10.118)

where G�0 is the power spectrum of the acoustic power transmitted to the foundation
when the source is mounted without resilient coupling and G� is the corresponding
result with resilient coupling.

In the low frequency region, the expression giving the insertion loss can be simpli-
fied considerably. The transfermobilities for a rod like spring are defined inEq. (6.96).
For low frequencies, the corrected or uncorrected wavenumbers for longitudinal
waves in a rod are both smaller than unity. A simple expansion of the mobilities
with respect to the wave number lead to Y s

11 ≈ Y s
12 ≈ Y s

21 ≈ Y s
22 ≈ 1/(iωρS)

and Yeq = iωL/(SE). The transfer mobilities are consequently all large in the low
frequency region and are quite simply set to be equal. As discussed above the term
Y m ·Y f /Y s

12 can normally be neglected in Eq. (10.116). Based on these assumptions
the force on the foundation with and without a resilient mount is obtained as

F̂ f = v̂0

Y m + Y f + Y s
; F̂0

f = v̂0

Y m + Y f
; F̂0

f

F̂ f
= Y m + Y f + Y s

Y m + Y f
(10.119)

Considering these simplifications the insertion loss as defined in Eq. (10.118) is
consequently given by

I L = 20 log

∣∣∣∣Y
m + Y f + Y s

Y m + Y f

∣∣∣∣ (10.120)

Although approximate and valid in the low frequency range only, the result (10.120)
clearly demonstrates the relative importance of the mobilities of source, mount, and
foundation with respect to the insertion loss. For obtaining a high insertion loss, the
effective mobility of the spring should be much larger than the sum of the mobilities
of source and foundation. If on the other hand the foundation is very resilient, i.e.,
the mobility Y f of the foundation is very high, the resulting insertion loss is small.

For the same simple case shown in Fig. 10.21, the ratio between the FT of the
velocity vm of the top end of the mount and the FT of the velocity v f of the bottom
end is

v̂m

v̂ f
= Y s

eq + Y f

Y f
(10.121)

http://dx.doi.org/10.1007/978-3-662-47807-3_6
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Fig. 10.22 Stiff mass mounted to a rod coupled to a steel plate, thickness h Predicted insertion loss

Thus, the ratio v̂m/v̂ f is different from the ratio F̂0
f /F̂ f given in Eq. (10.119). The

insertion loss due to a resilient mount cannot directly be determined by measuring
the velocities vm and v f of a system when in operation.

The importance of the dynamical properties of a foundation with respect to the
insertion loss for a resiliently mounted source can be demonstrated by means of the
simple example illustrated in Fig. 10.22. A rigid mass is mounted to a homogeneous
steel plate of thickness h. The mount is modeled as a thin rod. The transfer mobilities
are determined as described in Sect. 6.5. For an infinitely stiff foundation the first
resonance frequency for the mass–spring system would be 6Hz. The insertion loss
is predicted from the unabbreviated expressions (10.116) and (10.118). Resulting
insertion losses predicted for four different thicknesses of the foundation plate are
presented in Fig. 10.22. Close to the first resonance for the plate-mass-system the
resulting insertion loss is typically negative. Even for fairly thick foundation plates
the insertion loss is very limited even in the high frequency range. The poor result is
due to the high mobility of the foundation or rather the steel plate to which the mount
is coupled. In order to increase the insertion loss it would be necessary to stiffen the
plate, for example by adding a beam underneath the coupling point between plate
and mount.

Engine foundations on ships are build up of a number of plate elements. Similar
types of engine foundations or engine supports can be found on trucks and trains. The
structures between the coupling points between bogies and train carriages can also
have a similar construction. In the very low frequency range, the foundation can be
modeled as a stiff mass. The mobility of a stiff mass is Y = 1/(iωM). The mobility
is consequently decreasing with increasing frequencies. In a certain frequency range,
the mobility of the built-up structure is mainly determined by its local stiffness. The
mobility is increasing with increasing frequency up to a frequency range where the
various plate elements start to vibrate to more or less determine the point mobility of
the foundation. The real part of the mobility of a finite plate is given in Eq. (8.78) as

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Re(Y ) =
∑
m,n

4ωω2
mnηϕ2

mn(x0, y0)

m p[(ω2
mn − ω2)2 + (ηω2

mn)
2]

where ϕmn is some eigenfunction satisfying the boundary conditions of the plate
element. The coordinates for the excitation point are (x0, y0). In the frequency range
below the first natural frequency f11 of the plate the real part of the point mobility
is approximately given by

ReY ≈ f C1

( f 211 − f 2)2 + (η f11)2
+ C2

where C1 and C2 are two constants. For f > f11 the mobility varies rapidly with
frequency and tend to level out for increasing frequencies. In the high frequency
region, the point mobility of the structure is more or less determined by the thickness
and density of the plate elements and given by 1/(8

√
μD) as discussed in Sect. 8.5.

In the high frequency region the mobility will decrease with increasing frequency
caused by the size of the contact area as compared to the wavelength of bending
waves as discussed in Refs. [115, 116]. The result is summarized in Fig. 10.23. The
mobility level in the figure is defined as 20 log |ReY/Yref | where Yref = 1m/(Ns).
In the frequency domain B, the mobility is approximated by the expression above
obtained from a simple plate model. The horizontal line in frequency domain C
corresponds to the mobility of an infinite plate. The last domain is determined by
plate dimensions and the finite size of the engine feet. According to Ref. [115],
the mobility is decreasing with increasing frequency as in domain D for κa > 1/3
where κ is the wavenumber for bending waves propagating in the foundation and a
is a characteristic dimension of an engine foot.

Fig. 10.23 Schematic plot
of mobility of engine
foundation build up of plate
elements. From Ref. [116]

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 10.24 Scale model of a
catamaran

For the insertion loss of a mount to be high, the mobility of the foundation must
be as low as possible. This has been demonstrated on a scale model of a catama-
ran, Fig. 10.24. The noise levels in the passenger compartment of this type of fast
passenger vessel built of aluminum are mainly determined by structure-borne sound
induced by the main engines.

The insertion losses for fivedifferentmountsweremeasuredusing the scalemodel.
The locations of the engine feet on the foundation were the same as in full scale, i.e.,
in fairlyweak points on the foundation plate. Themeasured insertion losses due to the
mounts were very small or negligible for frequencies above 200Hz corresponding
to a full-scale model as shown in Fig. 10.25.

Fig. 10.25 Measured insertion loss for various mounts on the foundation of a catamaran
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With respect to the A-weighted noise level in the passenger compartment, hardly
any reduction of the noise level was achieved due to the various resilient mounts. The
simple formula (10.120) predicting the insertion loss due to a resilient mount indicate
that the effective mobility of the mount must be much higher than the mobility of the
foundation to ensure a satisfactory insertion loss. However as demonstrated by the
results shown in Fig. 10.16 the stiffness of mounts tends to increase with increasing
frequencies or rather the point mobility of the mount is decreasing as the frequency
is increased in the low frequency region. At the same time the point mobility of the
foundation is increasing, Fig. 10.23. The net effect, as given by Eq. (10.120), is a
decrease of the insertion loss in the high frequency region as illustrated in Fig. 10.25.

The point mobility of a foundation of the type shown in Fig. 10.25 very much
depends on the location of the excitation point on the foundation plate. Consequently,
the insertion loss can vary with the location of for example the engine feet on the
foundation. The point mobility of a plate element is higher at the center of the plate
than along its supported boundaries. It can therefore be expected that by moving
a point of excitation on a foundation from unsupported to a supported position the
point mobility would be reduced. Tests reported in Ref. [117] show that the transfer
mobility from a point on an engine foundation to the supporting hull plating depends
on the position of the excitation point. The model used for the measurements was
built in scale 1:4. A frequency f inmodel scale corresponds to a frequency f/4 in full
scale. Compare Problem 10.9. The measurement positions are shown in Fig. 10.26.
The point F3 is above a junction of frames along the x- and y-directions. Point F0 is
completely unsupported and the weakest point of all.

The measurement results shown in Fig. 10.27 indicate that the transfer mobility
can decrease by 5 dB or more in a wide frequency range by moving the excitation
point from aweak to a stiff point. The velocity v on the hull plate is given as v̂ = F̂Ytr ,
whereYtr is the transfermobility and F the force on the foundation. Thus, the velocity

Fig. 10.26 Measurement
positions on foundation and
hull plates. The point F3 is
above a junction of frames in
the x- and y-directions. Point
F0 is completely
unsupported and the weakest
point of all. From Ref. [117]
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Fig. 10.27 Transfer
mobilities measured on a
foundation in a weak point
F0 and a stiff point F3. From
Ref. [117]

level 20 log |v/vref | of the foundation varies as 20 log |Ytr|. The frequency response
for a full-scale structure corresponds 1/4 of the model scale frequency. Thus, 1 kHz in
Fig. 10.25 corresponds to 250Hz in full scale. Since the noise levels in the passenger
compartment for this type of vessel are mainly determined by structure-borne sound
induced by the main engines, a noise reduction in the area above the engine room
could also be reduced by approximately 5 dB by moving the position of the engine
feet from a weak to a stiff point. In practice, the feet of engines are often located in
weak points for the simple reason that it is more straightforward to get access for the
mounts at positions far from girders or vertical frames.

An alternative noise reducing measure is to stiffen the foundation itself. In one
case reported in Ref. [117] lightweight concrete or aluminum foam were used to
increase the stiffness of the engine foundation. Again, as shown in Fig. 10.28, a
substantial decrease of the transfer mobility between the foundation and the hull
could be achieved. Yet another method to decrease the energy transmission from

Fig. 10.28 Transfer
mobilities measured on a
standard foundation and a
stiffened foundation. From
Ref. [117]
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engine to the hull structure is to increase the damping of the foundation. However,
the natural damping of a foundationwith an enginemounted is quite high. To increase
the damping could therefore be difficult if at all possible.

The mobility of a foundation can also be decreased if the thickness of the plate
elements constituting the foundation is increased. The effect of adding a solid mass
or a tuned damper to foundation plates is discussed in Sect. 8.9.

10.13 Multi-point Coupling

For stability reasons a vibrating source like an engine must be coupled to its founda-
tion by means of several mounts. A general mounting configuration is schematically
illustrated in Fig. 10.29. A mass m is supported by N identical mounts. A force
excites the mass at a point denoted o in Fig. 10.29. The force could be an external or
an internal force or in fact a hypothetical force resulting for example from a com-
bustion process. Whatever the case the force is henceforth denoted Fext. As in the
example discussed in the previous section, the mass is only allowed one degree of
freedom. The mass is, in addition to the external force, also exposed to the reacting
forces of the N springs. For a linear system, the principle of superposition can be
applied. The velocity vm

i at junction i on the mass results partly from the external
force Fext and partly from the reacting spring forces.

The contribution from the external force to FT of the velocity v̂m
i at junction i

on the mass is F̂ext · Y m
0i , where Y m

0i is the transfer mobility between the excitation
point o and the junction i on the mass. The contribution from the FT of the reacting
force F̂m

j from spring j is F̂m
j · Y m

ji where Y m
ji is the transfer mobility between the

junctions j and i on the mass. Adding the contributions from all forces, the velocity
at junction i is

v̂m
i = F̂ext · Y m

0i −
N∑

j=1

F̂m
j · Y m

ji for i = 1 to N (10.122)

Fig. 10.29 Multi-point coupling

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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For spring i the velocity of the top end, denoted 1 in Fig. 10.29, is equal to the velocity
of junction i on the mass. The corresponding force from the mass on the spring is
Fm

i with a direction as shown in Fig. 10.29. At the bottom end, denoted 2, of the

spring the velocity at the foundation at junction i is v
f

i . The reacting force from the

foundation is F f
i . According to standard procedure and as discussed in Sect. 6.5,

Eq. 6.95, the velocities at the two ends of the spring can be written as

v̂m
i = F̂m

i · (Y s
11)i − F̂ f

i · (Y s
21)i ; v̂

f
i = F̂m

i · (Y s
12)i − F̂ f

i · (Y s
22)i (10.123)

The point mobility at the top end, 1 in Fig. 10.29, for spring i is defined as (Y s
11)i . The

transfer mobility between the ends 1 and 2 for spring i is (Y s
12)i etc. The velocity v

f
i

at the junction i on the foundation depends on the forces induced by all the springs
and the point mobility at junction i on the foundation and the transfer mobilities Y f

i
to all their junctions on the foundation. Thus, the FT of the velocity at the junction i
on the foundation is obtained as

v̂
f

i =
N∑

j=1

F̂ f
j · Y f

ji (10.124)

The field parameters F̂m
i , v̂m

i and v̂
f

i can, by means of the expressions (10.123) and

(10.124) be eliminated from Eq. (10.122). Introducing v̂m
0i as v̂m

0i = F̂ext · Y m
0i the N

unknown forces F̂ f
j acting on the foundation are obtained from N equations defined

as

v̂m
0i =

N∑
j=1

{
Y m

i j

(Y s
12) j

[
N∑

k=1

F̂ f
k · Y f

k j + F̂ f
j · (Y s

22) j

]}

+ (Y s
11)i

(Y s
12)i

⎡
⎣ N∑

j=1

F̂ f
j · Y f

ji + F̂ f
i · (Y s

22)i

⎤
⎦− F̂ f

i · (Y s
21)i (10.125)

If all point and transfer mobilities are known, from either predictions or measure-
ments, the unknown field parameters can be solved. Once the forces have been
determined, the velocities at each junction can be derived. However, the problem can
be simplified considerably in both the low and high frequency regions.

http://dx.doi.org/10.1007/978-3-662-47807-3_6
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10.14 Multi-point Coupling, Low and High Frequency
Limits

Engine foundations are frequently build up by means of a number of beams and
plates. In the low frequency region, well below the first natural frequency of any
subsystem, global vibrations mainly determine the motion of the foundation. This
means that the displacement at each engine foot is approximately the same. If all
points on the foundation moves in phase when excited by an arbitrary force the point
and transfer mobilities of the supporting structure are identical. For a real structure
the mobilities are assumed to be equal, or Y f

i j ≈ Y f . In the very low frequency
region, an engine can be considered as a rigid mass, consequently Y m

i j ≈ Y m . For
a single and symmetric mounting arrangement, all mounts identical, the reacting
forces from the identical springs are assumed to be the same on the foundation in the
low frequency range. All these assumptions can be formulated as

Y f
i j ≈ Y f ; Y m

i j ≈ Y m; F f
i ≈ F f ; (Y s

kl) j = Y s
kl (10.126)

These simplifications and Eq. (10.125) yield

v̂m
0 =Y m

Y s
12

(
N 2 · F̂ f · Y f + N · F̂ f · Y s

22

)

+ Y s
11

Y s
12

(
N · F̂ f · Y f + F̂ f · Y s

22

)
− F̂ f · Y s

21 (10.127)

Following the arguments in Sect. 10.12 the transfermobilities for a spring are approx-
imately equal in the low frequency region. This means that Y s

i j ≈ Y s . Further, it can

be assumed that Y s
i j � Y m and Y s

i j � Y f as also discussed in Sect. 10.12. This
additional simplification in combination with Eq. (10.127) leads to

v̂m
0 = (N F̂ f )(Y m + Y f + Y s/N ); N F̂ f = v̂m

0

Y m + Y f + Y s/N
(10.128)

The force induced by each mount on the foundation is F f . The total force is conse-
quently N F f . This result, valid for N identical springs betweenmass and foundation,
can be compared to the previously obtained solution derived for the single mount
case. A system with N identical springs can be treated as a single mount system hav-
ing the transfer mobility Y/N . The power spectrum of the acoustic power transmitted
to the foundation is for Y s = Y s

eq (compare Eq. (10.54))

G� = Gv0v0 · ReY f

∣∣∣Y m + Y f + Y s
eq/N

∣∣∣2
≈ Gv0v0 · ReY f

∣∣∣Y s
eq/N

∣∣∣2
= N 2Gv0v0 · ReY f

∣∣∣Y s
eq

∣∣∣2
(10.129)

for Y s � Y m and Y f.
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For increasing frequencies, the displacements on foundation and source are deter-
mined not only by global but also by local vibrations. The importance of the local
vibrations increases as the frequency approaches the first natural frequencies of the
subsystems. Well above the first natural frequencies for all subsystems the local
vibration pattern dominates. This means that the correlation between displacements
of points sufficiently well spaced is weak or insignificant. This can be expected when
the distance between two observation points is of the same order of magnitude as
the wavelength for bending waves in the structure. Using the same arguments, it can
also be assumed that the forces from the springs reacting on source and foundation
are uncorrelated. If the displacements of the the various joints are uncorrelated the
expressions defining the energy flow from source to foundation can be simplified
considerably.

Returning to Eq. (10.125) and assuming N large, sums on the form
N∑

k=1

F̂kY f
k j tend

to zero due to the random phase of forces and mobilities. Thus, for high frequencies
and N Eq. (10.125) is reduced to

v̂m
0i = F̂ f

i · (Y s
22)i (Y s

11)i − (Y s
21)i (Y s

12)i

(Y s
12)i

= F̂ f
i (Y s

eq)i ; F̂i = v̂m
0i

(Y s
eq)i

(10.130)

The definition of Y s
eq given in Eq. (10.54) has been used. The power spectrum of the

acoustic power transmitted to the foundation is

G� =
N∑

i=1

Gv0i v0i · ReY f
i∣∣∣(Y s

eq)i

∣∣∣2
≈ N Gv0v0 · ReY f

∣∣∣Y s
eq

∣∣∣2
(10.131)

where Y f is some average value of Y f
i . The autospectrum of the velocity and the

mobility of the foundation are defined in a similar way. In the high frequency region,
the forces on the foundation are uncorrelated, whereas in the low frequency region the
forces are correlated. The power transfer to the foundation is higher for the correlated
than the uncorrelated forces.

10.15 Source Strength

In the previous sections some characteristics of receivers/foundations, mounts, and
sources have been discussed. However well these structures are modelled also of the
vibrational power of the source must be determined. For an acoustic source there are
some straight forward techniques to determine its acoustic power. The output power
of an acoustic source is only marginally dependent on surroundings. The acoustic
power can readily be measured in free field or in a closed room as discussed in
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Chap.11. For a source of structure-borne sound, the measurement of its power is
much more complicated than for an acoustic source. The vibration and operation
of a structure-borne source depend on its mechanical coupling to other structures
as previously discussed. For the very simple case investigated in Sect. 10.12, it was
found that if the so called free velocity at a coupling point between a source and
receiver was known then also the transmission of power to the foundation could
be predicted once the point mobility of the source and the point mobility of the
receiver at the coupling point had been determined. For the simple case illustrated
in Fig. 10.21, the free velocity v0 at the coupling point could be determined by
decoupling the source/mass from any structural coupling. The free velocity could
thereafter be measured while the source is in operation. There is a standard for the
measurement of free velocities of sources Ref. [118]. The standard requires that
the source can be decoupled from its foundation. Other methods are discussed in for
exampleRef. [119]. The free velocity can also bemeasured indirectly and determined
based on theEqs. (10.107) and (10.114) to (10.116).However, for this type of analysis
mobilities for source, receiver, and mount must be known. Some inverse methods
are discussed and summarized in Ref. [120]. In situ measurements of the blocked
force of structure-borne sound are reported in Refs. [121, 122].

The free velocity of a source could be determined by an inverse technique. Assum-
ing the point mobilities are known at the coupling point between source and receiver
the free velocity could be determined by measuring the velocity at the coupling and
using the expression (10.107). The source strength, or the free velocity v0, could also
be determined based on the blocked velocity technique. Equation (10.107) gives the
FT of the velocity vm at a coupling point as function of the FT of the external force
F2 and the FT of the free velocity v0 as

v̂m = v̂0 − F̂2 · Y m

Thus by applying an external force at the coupling point and by adjusting the force
so that the FT of the velocity vm is zero the FT of the free velocity is obtained as
v̂0 = F̂2 · Y m . Both vm and F2 must be measured. Here the obvious problem is to
measure the force while the velocity is zero or blocked.

For the very simple case illustrated in Fig. 10.21 it is possible, at least in theory,
to determine the free velocity of a source in operation once the mobilities Y m , Y f ,
and Y s

eq are known and the velocity vm is measured. The FT of the free velocity v0 is

v̂0 = v̂m

(
Y f + Y s

eq + Y m

Y f + Y s
eq

)
(10.132)

Alternatively, the velocity v f of the foundation can be measured. In this case the free
velocity reads

v̂0 = v̂ f

(
Y f + Y s

eq + Y m

Y f

)
(10.133)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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In thefirst case, using the blocked force technique, itmight not be possible to decouple
the source in operation from its foundation. Furthermore, the energy flow from source
to receiver is not only determined by the vertical motion at one point. In a real case,
with N coupling points between source and receiver, (6 × N )2 mobilities must be
determined. In addition, the free velocities and bending moments, velocities and
rotations in three directions at each coupling point should be measured. Clearly, this
is not realistic. Models have to be simplified. In practice this simplification can often
be justified based on some knowledge of the characteristics of source and receiver.
For example, machinery in buildings like electric motors for elevators are likely to
be mounted on concrete slabs, a ship Diesel is mounted on a foundation build up
of plate elements etc. Due to certain rules and regulations for buildings, ships, etc.,
supporting structures for machinery have certain characteristics in common. Thus
by making measurements on a typical installation many transmission paths can be
eliminated. So for example for a ship Diesel the velocities of the engine feet in the
horizontal and vertical directions are typical of the same magnitude. However, the
point mobility of the foundation is considerably higher in the vertical as compared
to the horizontal directions. Energy transfer by means of bending moments is of
less importance than by vertical forces. This type of observations for any class of
equipment can drastically simplify any type of prediction. However, what is valid for
one class of sources and receivers could be completely different from the coupling
properties of another system.

This type of strategy has been exercised successfully by for example Moorhouse
and Gibbs (Refs. [123, 124]) who demonstrate that the source strength, free veloc-
ity, and mobility of source could be measured in situ. However, the properties of
the mounts supporting the machine must be known. The general technique can be
illustrated by again considering the simple system of Fig. 10.21. If possible, the point
mobility of the source at the coupling point between mount and source is measured
in situ while the source is turned off. As discussed in Problem 10.6 the measured
point mobility (Y m)measured is

(Y m)measured = Y m(Y f + Y s
eq)

Y f + Y s
eq + Y m

(10.134)

In a similar way the measured point mobility of the foundation is obtained as

(Y f )measured = Y f (Y f + Y s
eq)

Y f + Y s
eq + Y m

(10.135)

If Y s
eq is known the parameters Y m and Y f are determined from (Y m)measured and

(Y f )measured.
It may be preferable to obtain forces and moments acting on connections using

inverse methods as discussed in Refs. [125, 126]. General techniques for the char-
acterisation of structure-borne noise sources are for example presented in Refs.
[119, 127, 128]. In practice, free or blocked boundary conditions can be difficult or
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impossible to reproduce. In situ measurements can be the only possible alternative.
Some examples are given in Refs. [123, 128–130]. Special cases like structure-borne
sources in buildings and on ships are discussed in [115, 116, 119].

Problems

10.1 Two masses and three ideal springs are coupled as shown in Fig. 10.30. The
masses 1 and 2 are excited by the forces F1eiωt and F2eiωt , respectively. Determine
the eigenfrequencies, eigenmodes, and displacement of the system.

10.2 A resilient mount is described as a simple rod. The mobilities of the rod
are given by Eq.6.96 as Y s

11 = Y s
22 = −iω/[SEkl tan(kl L)] and Y s

12 = Y s
21 =

−iω/[SEkl sin(kl L)]. Show that Y s
12/Y s

11 → 1 as the mass of the mount tends to
zero. Determine also the limiting value of Yeq as frequency or mass tends to zero.

10.3 Determine the moment mobility for a homogeneous and infinite beam.

10.4 A cylindrical and symmetric rubber mount has the point and transfer mobilities
Y11 = Y22 and Y12 = Y21. A stiff mass M is mounted to each end of the rubber
element. The rubber element plus the two stiff masses constitute a symmetric mount
with the point and transfer mobilities Y t

11 = Y t
22 and Y t

12 = Y t
21. These quantities

are measured for the complete mount, mass-rubber-mass. Determine based on these
measured quantities the point and transfer mobilities Y11 = Y22 and Y12 = Y21 for
the rubber mount without the masses.

10.5 A stiff mass M is mounted on a resilient mount, which in turn is mounted
on an infinite steel plate with the thickness h. Determine the insertion loss of the
mount as function of the plate thickness h. Model the spring as a rod, length L and
wavenumber kl = kl0(1 − iη/2).

10.6 A source–receiver system is shown in Fig. 10.21. The source is turned off. The
point mobility of the source is measured at the coupling point between the mount and
the source. This point mobility is denoted (Ym)measured. In a similar way the point

Fig. 10.30 Two coupled
masses mounted on a stiff
foundation

http://dx.doi.org/10.1007/978-3-662-47807-3_6
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mobility (Y f )measured on the foundation at the coupling point between mount and
foundation is measured. Determine (Ym)measured and (Y f )measured.

10.7 A source–receiver system is shown in Fig. 10.21. The source is turned off. The
point mobility of the source is measured at the coupling point between the mount
and the source. This point mobility is denoted (Ym)measured. In a similar way the
point mobility (Y f )measured on the foundation at the coupling point between mount
and foundation is measured. With the source in operation the velocities vm and v f

are measured. Determine the free velocity v0 of the source as function of the four
measured properties.

10.8 Equation (10.110) gives the power input to the foundation as function of the
mobility of the source Y m and the mobility Y f of the foundation as

ReG� = Gv0v0

Re(Y f )∣∣Y f + Y m
∣∣2

Show that the maximum energy transfer from source/mass to receiver/foundation is
when Y f = (Y m)∗.

10.9 Show that if a model is built to scale 1:Z then the frequency ratio between full
scale and model scale is also 1:Z.

10.10 Use the Bishop model to determine the wavenumber for displacement along
the axis of a rubber mount. Determine also σx along the axis.



Chapter 11
Waves in Fluids

Vibrating structures radiate noise. The radiated power is determined by the acoustical
coupling between the vibrating structure and the surrounding fluid. The resulting
acoustic field induced by the vibrating structure is also influenced by reflecting
surfaces and variations, for example, temperature and velocity in the fluid. These
problems are encountered when making outdoor noise measurements. For example,
the noise generated by a traveling car is reflected on the road surface. In addition to
reflection effects, the measured noise from the car is influenced by a certain noise
attenuation in air and over ground. Wind and temperature can influence the direction
of the propagation of the sound waves and the recorded noise level. For indoor
measurements, the acoustical field induced by a source in a closed room depends on
the acoustical characteristics of the room as well the distance to the source.

These problems are discussed in this chapter. First, the equation governing the
propagation ofwaves in fluids is introduced.Noise radiation from elementary sources
as well as the effects of reflecting boundaries is discussed. The interactions between
vibrating plates and fluids are investigated in Chaps. 12 and 13.

11.1 Wave Equation

The basic equation describing the propagation ofwaves in a fluid is based on a number
of assumptions. An idealized nonviscous fluid is initially assumed to be at rest. The
ambient temperature T0, pressure p0, and density ρ0 are constant with respect to
time and space. A disturbance caused, for example, by a vibrating solid will cause a
certain motion or waves in the fluid, which in turn will cause pressure fluctuations.
The resulting wave motion in the fluid has certain similarities with the motion of
masses and springs coupled along a straight line. The motion of a mass in the chain
creates a tension in the springs in the same way as the displacement of a particle in
a fluid will cause a pressure fluctuation. The equation governing the propagation of
waves in gases is based on the principles of conservation of mass and momentum as
well as the equation of state for a perfect gas.
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Conservation of Mass

The conservation of mass within a volume V implies that the variation of mass as
function of time is equal to the mass flow out of the control volume. Initially, it
is assumed that no mass is created within the control volume. The total density ρt

of the fluid is equal to the sum of the initial density ρ0 and any small perturbations
ρ(r, t), which can vary in time and space. The conservation ofmasswithin the control
volume requires that

∂

∂t

∫
V

ρtdV +
∫

S
ρtv · ndS = 0 (11.1)

The particle velocity is given by the vector v. The unit vector n is perpendicular
to the surface S of the control volume and pointing outwards. Equation (11.1) in
combination with Gauss’ Integral Theorem gives

∂

∂t

∫
V

ρtdV +
∫

S
ρtv · ndS =

∫
V

[
∂ρt

∂t
+ div(ρtv)

]
dV = 0 (11.2)

These expressions lead to the equation of continuity for a fluid free of sources. For
the integral (11.2) to be zero, the expression inside the bracket must also be equal to
zero. Thus

∂ρt

∂t
+ div(ρtv) = 0 (11.3)

The density fluctuation ρ(r, t) caused by some disturbance, is small as compared to
the steady-state density ρ0. It follows that ρ0 � ρ. The particle velocity is caused by a
disturbance in the fluid, which initially is at rest. This means that the field parameters
v and ρ are of the same order of magnitude with respect to ρ0. The second part of
Eq. (11.3) can, when neglecting second-order terms, be written as

div(ρtv) = grad(ρ0 + ρ) · v + (ρ0 + ρ)divv = grad(ρ) · v + (ρ0)divv ≈ ρ0divv

The linearized equation of continuity is thus

∂ρ

∂t
+ ρ0 · div(v) = 0 (11.4)

Conservation of Momentum

Returning to the control volume. The pressure on the surface S of the volume is
p(r, t). The density of the fluid inside the volume is as before ρ0 + ρ(r, t) and the
particle velocity is defined by v(r, t). In the absence of external forces Newton’s
second law yields

d

dt

∫
V

ρtvdV +
∫

S
pndS = 0
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The vector n is pointing out from the control volume. The pressure p is positive
in compression. The divergence theorem in combination with the integral equation
leads to ∫

V
dV

[
d

dt
(ρtv) + gradp

]
= 0 (11.5)

The total or material time derivative of a function f (r, t) is, in Cartesian coordinates,
defined as

d f

dt
= ∂ f

∂t
+ ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
+ ∂ f

∂z

dz

dt
= ∂ f

∂t
+ grad f · v

This expression in combination with Eq. (11.5) yields

∂

∂t
(ρtv) + v · div(ρtv) + gradp = 0 (11.6)

A linearization by neglecting higher order terms gives

ρ0
∂

∂t
(v) + gradp = 0 (11.7)

In the absence of a flow, this is the equation of motion relating the particle velocity
v and the fluctuating pressure p in a nonviscous fluid.

The curl of Eq. (11.7) gives

ρ0
∂

∂t
(∇ × v) + ∇ × gradp = 0

However, ∇ × gradp is always equal to zero if p is a continuous function. Conse-
quently, the term ∇ × v must also be equal to zero. Therefore, the particle velocity,
as given by the vector v, can be defined by means of a velocity potential as

v = gradΦ (11.8)

The curl of the velocity vector or of the gradient of a scalar is equal to zero as
required. The definition (11.8) of the velocity potential leads to that the pressure
p can be derived directly from the velocity potential. In the absence of a flow, the
definition (11.8) and the basic equation (11.7) give the pressure as

p = −ρ0
∂Φ

∂t
(11.9)

It is often convenient to describe an acoustic field by means of a velocity potential
rather than by the pressure function or particle velocity vector.
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Compressibility

Any fluid or solid has a certain volume or bulk elasticity. For solids, the bulk elasticity
K was defined in Sect. 3.1. The bulk elasticity was also discussed for rubber like
materials in Sect. 10.5. However, for fluids the compressibility concept is generally
preferred. The compressibility is the inverse of the bulk modulus K . A volume V of
a fluid is changed by the amount �V when exposed to an external small pressure
�p as

�V

V
= −�p · κT (11.10)

The parameter κT is the isothermal compressibility of the fluid. The compression is
assumed to be adiabatic, i.e., the entropy of the fluid is constant. Equation (11.10)
can also be interpreted in an alternative way. Thus, if a closed volume V is changed
by the amount �V , the pressure inside the control volume is increased by �p. For
compression, �V is negative resulting in a pressure increase inside the volume.

The volume V of the fluid is equal to the mass M of the control volume divided
by the total density ρt of the fluid or V = M/ρt . Since ρt = ρ0 + ρ and ρ � ρt it
follows that

�V = − M

ρ2t
�ρt = − V

ρt
�ρt ≈ − V

ρ0
�ρ (11.11)

The increase �ρ of the density is caused by the reduction �V of the control volume.
The Eqs. (11.10) and (11.11) lead to

∂ρ

∂ p
= ρ0 · κT (11.12)

For an adiabatic process and no flow, the equation of continuity (11.4) is, by intro-
ducing Eq. (11.12), obtained as

κT · ∂ p

∂t
+ divv = 0 (11.13)

The compressibility for a perfect gas can be obtained from the equations of state. For
frequencies less than approximately 109 Hz, adiabatic compression in a gas can be
assumed. For this condition, there is no heat exchange within the gas. Expressed in
another way; in a section where the gas is compressed and therefore, the temperature
increased, the heat transfer to an adjoining area with decompressed gas is neglected.
For this particular type of process, the total pressure pt and the total density ρt of
the gas are related as

pt = C · ρ
γ
t (11.14)

In this expression C is a constant and the ratio between the specific heat for the gas
under constant pressure and the specific heat for constant volume, i.e., γ = cp/cv .
Since pt = p + p0 and ρt = ρ + ρ0 it follows from (11.14) that

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47934-6_10
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∂ρ

∂ p
= 1

γ

[
ρ + ρ0

p + p0

]
= 1

γ
· ρt

pt
(11.15)

For a perfect one atomic gas, He, the ratio γ between the specific heats is equal to
5/3. For air γ is 7/5 and for gases with several atoms γ is 4/3. The compressibilty κT

for an ideal gas is obtained from the Eqs. (11.12) and (11.15) as κT = 1/(γ pt ). For
a perfect gas temperature T, density ρt , and pressure pt are related as

pt = ρt · T · R

M (11.16)

In this expression T is the absolute temperature of the gas in degrees Kelvin, R
is the universal gas constant, which is equal to 8.314 J/(degree mol), and M the
molecular mass (kg) of the gas, i.e., the mass of one molecule. The compressibilty
κT = 1/(γ pt ) for an ideal gas is from (11.16) obtained as

κT = M
γRT ρ0

(11.17)

Again, the total density is approximated by ρ0.
Conservation of momentum and conservation of mass led to the Eqs. (11.17) and

(11.13), which are

ρ0
∂v

∂t
+ gradp = 0; κT

∂ p

∂t
+ divv = 0

The velocity dependent terms can be canceled by taking the divergence of the first
expression and subtracting the time derivative of the second expression. The result
is the wave equation

∇2 p − 1

c2
∂2 p

∂t2
= 0; c =

√
1

κT ρ0
=

√
γRT

M (11.18)

Equations (11.15), (11.16) and (11.18) give ∂ρ/∂ p = 1/c2.
In a flow, the vector velocity of the fluid being u, the simple wave equation has to

bemodified. In a flow, stationary observer, the time derivate ∂ p/∂t has to be replaced
by ∂ p/∂t + u · gradp as discussed above. The resulting wave equation giving the
pressure p in a fluid moving with the vector velocity u is given as

∇2 p − 1

c2

(
∂

∂t
+ u · grad

)2

p = 0

Since the pressure can be defined bymeans of the velocity potential thewave equation
can, in a fluid with no flow, be written as
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Table 11.1 Acoustic properties of some fluids at 0 ◦C and 1 atm.

Fluid Density (kg/m3) Velocity (m/s)

ρ0 c0

Air 1.29 331

Argon 1.78 319

CO2 1.98 258

He 0.18 970

H2 0.09 1270

O2 1.43 317

Pure water 1000 1430

Sea water 1023 1447

Benzene 880 1320

Glycerine 1260 1920

∇2Φ − 1

c2
∂2Φ

∂t2
= 0; c =

√
1

κT ρ0
=

√
γRT

M

p = −ρ0
∂Φ

∂t
; v = gradΦ (11.19)

According to the discussions in Chap.3, the parameter c can be identified as the speed
of acoustic waves in the fluid. Some properties of fluids are listed in Table11.1.

For moderate ranges of atmospheric pressure P in atm. and temperature T in
degrees Kelvin, the density of and the velocity in a gas are approximately equal to
ρ = ρ0P(273/T ) and c = c0

√
T/273.

The speed of sound inside a shock wave is a special case. The speed of sound c is
also influenced by a high pressure inside the wave. The speed of sound for this type
of wave is according to Ref. [23]

c = c0

√
1 + (γ + 1)(P − P0)

2γP0

where P0 is the ambient pressure. For an overpressure inside the shock wave, the
speed of sound is increased. For a pressure lower than the ambient, the speed is
decreased. Consequently, the shape of the wave is deformed into an N-wave as
indicated in Fig. 11.1. Eventually, due to losses, the sharp front will be rounded as
the wave propagates over a certain distance. A shock or N-wave can be created by
an aircraft in super-sonic flight.

The presence of gas or vapor in water can drastically reduce the speed of sound.
As pointed out in Ref. [132] the speed of sound is about 1430m/s in pure water and
about 340m/s in air. In an air-water mixture the speed of sound can be reduced to
20 m/s. The speed of sound in a liquid depends on the amount of gas in the liquid,
pressure, temperature, and frequency and for small bubbles also on the radius of the

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Fig. 11.1 Formation of an
N-wave

bubbles as shown by Kieffer in Ref. [132]. For any laboratory experiment in water
it should be ensured that gas bubbles have vanished before tests are started. This
process could take a few days. In seawater, the speed of sound varies with small
temperature fluctuations as c = c0 + 317(T − 273).

The equation governing pure longitudinal waves in infinite solids is on the same
form as the equation forwaves in fluids. Both are compressionwaves. In the first case,
the displacement due to longitudinal waves in a solid is given by a scalar potential
as defined in Sect. 4.1. This follows a traditional definition in solid mechanics. For
waves in fluids, the particle velocity vector is obtained from a velocity potential as
given in Eq. (11.8). This approach could also have been used in Sect. 4.1. It is only a
matter of convenience which of the two definitions is used.

11.2 Energy and Intensity

The kinetic energy contained in a volume V of a fluid is given as

T =
∫

ρ0

2
|v|2 dV =

∫
ρ0

2
|gradΦ|2 dV (11.20)

Potential energy is stored in a fluidwhen the fluid is compressed. The potential energy
U stored in the gas volume is equal to the work carried out to compress the gas of
volume V to a volume V −�V . During compression, the pressure inside the volume
increases from p0 to p0 + p. The work performed or the stored potential energy is
� = p�V , or in integral form

= −
∫

pdV

The sign is changed since the pressure p is positive and the integration is performed
from a larger to a smaller volume. Considering the expression (11.10), which in the
limit, can be written as dV/dp = −V · κT , the potential energy stored in a volume
V of a fluid with the overpressure p with respect to the ambient pressure is

= −
∫

pdV =
∫

pκT V dp = κT p2V/2 (11.21)

The compressibilityκT is fromEq. (11.18) obtained asκT = 1/(ρ0c2). The potential
energy per unit volume is thus

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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V =
V

= p2

2ρ0c2
= ρ0

2c2

(
∂Φ

∂t

)2

(11.22)

The intensity, or rather the intensity vector, resulting from a wave motion in the fluid
is defined as

I = p · v (11.23)

where p is the pressure and v the particle velocity vector in the fluid.
Using complex notations and assuming a time dependence exp(iωt) the time

averages of kinetic and potential energies per unit volume and the time average of
the intensity in the fluid are given by

T̄v = ρ0

4
|v|2 = ρ0

4
|gradΦ|2 ; ¯ v = |p|2

4ρ0c2
= ρ0

4c2

∣∣∣∣∂Φ

∂t

∣∣∣∣
2

= ω2ρ0 |Φ|2
4c2

Ī = Re

(
p · v∗

2

)
= −Re

[
iωρ0Φ(gradΦ)∗

]
(11.24)

In the last definition above, the intensity vector is set to equal the real part of the
expression p · v∗/2. This part is referred to as the active intensity. The imaginary
part of the intensity vector is the reactive intensity. Sound intensity in general and
measurement procedures are discussed extensively in a number of papers by Finn
Jacobsen, see, for example, Ref. [133]. The subject is also treated in a book by Fahy
Ref. [134].

11.3 Losses

The wave equation as presented in Sect. 11.1 was derived assuming that the losses
in the fluid could be neglected. In general, the losses in, for example, air are small.
However, when sound propagates over large distances in infinite or semi-infinite
space or in a flow through narrow openings or close to boundaries, the losses can no
longer be neglected. In infinite space, the losses are due to a number of mechanisms
in the fluid itself. In air the losses are caused by viscosity, heat conduction, diffusion
of oxygen and nitrogen molecules, heat radiation, and molecular losses. The effect
of viscosity in the equation of motion in a fluid leading up to the Navier-Stokes
equation is discussed in for example Refs. [23, 135]. By maintaining higher order
terms in the equation of conservation of momentum the Lighthill equation [136] is
obtained as discussed in, for example, Refs. [137, 138]. In the Lighthill equation a
source term, due to nonlinear effects, is added to the simple wave equation (11.18).
See Problem11.3. However, the simple wave equation (11.19) is sufficiently accurate
for the applications discussed in this text.



11.3 Losses 111

In general, when sound propagates over long distances the molecular losses dom-
inate. The molecules in a gas vibrate as coupled simple mass-spring systems with
dissipative springs. The losses are consequently frequency dependent. The losses
also depend on the type of molecules present in the gas. For losses in air, the humid-
ity or number of water molecules per volume of the gas is an important parameter. In
addition to humidity, the losses are functions of temperature, atmospheric pressure,
and frequency.

The losses, if small, can be included in the wave equation by letting the compress-
ibility be a complex quantity. This is in accordance with the introduction in Sect. 3.2
of a complex modulus of elasticity or for that matter a complex spring constant as in
Sect. 1.6. Following this basic idea, the bulk modulus K of a fluid can be written as
K = K0(1 + iδ) where K0 is a real quantity and δ the loss factor in the fluid. The
compressibility κ or rather κT is for δ � 1

κ = 1/K = 1/[K0(1 + iδ)]

For small losses the speed of sound in the fluid is obtained from Eq. (11.18) as

c = √
1/(κρ0) = √

K/ρ0 = √
K0(1 + iδ)/ρ0

≈√
K0/ρ0(1 + iδ/2) = c0(1 + iδ/2) (11.25)

The corresponding wavenumber k for waves propagating in the fluid is thus

k = ω/c = ω/[c0(1 + iδ/2)] ≈ ω/c0(1 − iδ/2) = k0(1 − iδ/2) (11.26)

The velocity potential defining a plane wave propagating in the direction of the
positive x-axis in a coordinate system, is assuming a time dependence exp(iωt),
given by

Φ = A · ei(ωt−kx) = A · ei(ωt−k0x)−k0xδ/2

where A is the amplitude of the wave. The corresponding time averaged intensity is
obtained from Eq. (11.24) as

Īx = ρ0ω
2

2c0
|Φ|2 e−k0xδ

The intensity is consequently being attenuated as the wave propagates in the fluid.
The attenuation α in dB per 100m due to atmospheric attenuation is

α = 100 · k0 · δ · 10 log e ≈ 8.03 · f · δ (11.27)

where f is the frequency (Hz) and δ the loss factor. The attenuation parameter α
as function of temperature and humidity is presented in Figs. 11.2 and11.3 for the
frequencies 1 and 2.5 kHz, respectively. For each frequency, α is shown as function

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_1
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Fig. 11.2 Attenuation parameter α (dB per 100m) as function of humidity and temperature at
1kHz. From Ref. [139]

Fig. 11.3 Attenuation parameter α (dB per 100m) as function of humidity and temperature at
2.5kHz. From Ref. [139]

of humidity and temperature. The results are fromRef. [139]. In this reference, sound
propagation in the atmosphere is discussed in detail.

Attenuation of sound waves in the atmosphere is discussed in for example Ref.
[140]. Sound absorption in air is tabulated in Ref. [141].
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11.4 Basic Solutions to Wave Equation

There are three basic solutions to the wave equation (11.19) discussed in this section.
The first solution describes the propagation of a plane wave, which has the same
direction of propagation everywhere in space. The wavefronts are perpendicular to
the direction of propagation. The second solution describes the field induced by a
pulsating sphere assuming spherical symmetry. As the diameter of such a source is
approaching zero the limiting case is a so-called ideal pointsource. The last example
discussed in this section describes the field radiated by the breathing mode of an
infinite cylinder.

In a Cartesian coordinate system, a plane propagating wave with time dependence
exp(iωt) is defined by means of a velocity potential Φ as

Φ(x, y, z, t) = A · exp[i(ωt − kx x − ky y − kzz)] = A · exp[i(ωt − kr)] (11.28)

The velocity potential must satisfy the wave equation (11.19). Consequently,

k2x + k2y + k2z = k2 = (ω/c)2

The direction of propagation of the wave is defined by its intensity vector. According
to Eqs. (11.8) and (11.9) the pressure and particle velocity due to the wave motion
are

p = −iωρ0A · exp[i(ωt − kr)]; v = −i k · A · exp[i(ωt − kr)] (11.29)

From Eq. (11.24) the time average of the intensity vector is obtained as

Ī = ωρ0k · |A|2 /2 (11.30)

Consequently, the wavenumber vector k = (kx , ky, kz) determines the direction
of propagation. For a plane wave traveling in the direction shown in Fig. 11.4 the
components of the wavenumber vector are

kx = k · sin θ · cosϕ; ky = k · sin θ · sinϕ; kz = k · cos θ (11.31)

For a plane wave the ratio between pressure and particle velocity, in the direc-
tion of propagation, is equal to ωρ0/k = ρ0c. This quantity is referred to as the
wave impedance. For a plane wave propagating along the x-axis, the intensity in
the direction of propagation, can be expressed as function of pressure or particle
velocity as

Īx = | p̄|2 /(ρ0c) = |v̄|2 · (ρ0c)

For a plane wave traveling along the positive x-axis in a fluid not at rest but moving
along the x-axiswith velocityux thewavenumber is reduced to k+ = k(1−ux/c). It is
assumed that ux � c. For a wave travelling in the opposite direction the wavenumber
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Fig. 11.4 Wave propagating
in three-dimensional space.
Definition of space angel

is k− = k(1+ ux/c). The result is discussed in Problem11.1. The ratio between the
velocity of the fluid and the speed of sound is often referred to as the Mach number.
This quantity can be somewhat deceptive. If, for example, an aircraft is said to fly at
Mach 0.8, its relative speed cannot be determined if not the speed of sound is known.
As previously discussed, the speed of sound depends on air temperature, which in
turn depends on the altitude of the flight path.

There is an interesting example illustrating the consequences of the wavenumber
being dependent on the flow velocity. The air cavity of a car tyre has certain natural
frequencies. For a standard tyre, the first few natural frequencies are 224, 447, and
671Hz. At these frequencies, the tyre is acoustically stiff since the losses inside the
tyre are very small. The tyre vibrations induced by the contact between tyre and road
surface are readily transmitted to the car body at these frequencies. The result is that
pure tone noise is radiated into the car at the natural frequencies of the tyre cavity.
However, when the car is moving the air inside the tyre is rotating. The acoustic
waves induced at the contact point between tyre and road travels at different speeds,
the wave traveling in the rotational direction of the wheel being the fastest. Due to
the rotation of the wheel, there is a frequency split of the natural frequencies of the
cavity. The frequency split is proportional to velocity of the car. At, for example,
60km/h the frequency split is of the order 9Hz for a standard tyre. The phenomenon
is discussed in Ref. [142] and in Problem11.4 at the end of this chapter. In the report
Ref. [142] it is also demonstrated how to effectively reduce this type of noise.

A sound source with spherical symmetry, like a simple pulsating sphere, will
generate a motion and thus a sound field in a loss free fluid. The resulting velocity
potential, assuming spherical symmetry, should satisfy thewave equation in spherical
coordinates

∂2Φ

∂r2
+ 2

r

∂Φ

∂r
− 1

c2
∂2Φ

∂t2
= 0 (11.32)

By considering the product rΦ as a function this equation can be rearranged as

∂2(rΦ)

∂r2
− 1

c2
∂2(rΦ)

∂t2
= 0 (11.33)
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Solutions to this type of wave equation were discussed in Sect. 3.4. The general
solution to the Eq. (11.33) is

Φ(r, t) = f (t − r/c)/r + g(t + r/c)/r (11.34)

where f and g are two arbitrary functions. The first part of the velocity potential
describes a wave propagating away from a source located at the origin. The second
part describes a wave converging on the origin. For a source in unbounded space,
there will be no converging field. Sommerfeld, in Ref. [143], formulated the radiation
condition, which must be satisfied for waves to exist in free space. The velocity
potential induced in an unbounded medium must satisfy the condition

lim
r→∞

{
r

[
∂Φ

∂r
+ 1

c

∂Φ

∂t

]}
= 0 (11.35)

The expression g(t + r/c)/r , which is part of the general solution (11.34) does not
satisfy the Sommerfeld condition. In an unbounded medium, the velocity potential
induced by a pulsating sphere is completely described by an outgoing wave f (t −
r/c)/r where r is the distance to the source as long as (11.35) is satisfied.

For a source like a pulsating sphere, the particle velocity in the fluid at the surface
of the source must be the same as the surface velocity of the sphere. For a sphere of
radius r0 and with a surface velocity u0 · exp(iωt) the boundary condition is

∂Φ

∂r
= 1

r

∂ f (t − r/c)

∂r
− f (t − r/c)

r2
= u0 · exp(iωt) for r = r0 (11.36)

Considering that the time dependence of the surface velocity of the sphere is exp(iωt)
and the general solution for an outgoing wave, the velocity potential in the fluid is
on the form

Φ(r, t) = A

r
· exp[i(ωt − kr)]

where k = ω/c is the wavenumber in the fluid. The boundary condition (11.36)
yields

A = −u0 · r20 · exp(ikr0)

1 + ikr0

The pressure p = −ρ0∂Φ/∂t and particle velocity vr = ∂Φ/∂r in the radial
direction are for r � r0 obtained as

vr (r, t) = u0r20 (1 + ikr)

r2(1 + ikr0)
· exp {i[ωt − k(r − r0)]}

p(r, t) = iωρ0u0r20
r(1 + ikr0)

· exp {i[ωt − k(r − r0)]} (11.37)

http://dx.doi.org/10.1007/978-3-662-47807-3_3
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The ratio between pressure and particle velocity is from these expressions obtained as

p

vr
= ρ0c · exp(iϕ)√

1 + [c/(ωr)]2 ; ϕ = arctan[c/(ωr)] (11.38)

The pressure and velocity are not in phase. The ratio p/vr for a spherical wave is less
than ρ0c, which is the wave impedance for a plane wave. However, at large distances
from the source the wave impedance for a spherical wave approaches that for a plane
wave. At the same time, the phase difference between pressure and velocity tends to
zero as the distance r to the source is increased.

In order to characterize the acoustical source strength, it is convenient to introduce
the volume velocity U of the source as

U (t) = U0 · exp(iωt) = 4πr20u0 · exp(iωt) (11.39)

The volume velocity defines the rate of flow away from the surface of the sphere. The
particle velocity and pressure can be expressed as functions of the volume velocity
by combining the results (11.37) and (11.39). Thus

vr (r, t) = U0(1 + ikr)

4πr2(1 + ikr0)
· exp {i[ωt − k(r − r0)]}

p(r, t) = iωρ0U0

4πr(1 + ikr0)
· exp {i[ωt − k(r − r0)]} (11.40)

The time average of the intensity Ir and the time average of the total power� radiated
by the source are

Īr = Re(p · v∗
r )/2 = ω2ρ0 |U0|2

32cπ2r2[1 + (kr0)2]

�̄ = 4πr2 Īr = ω2ρ0 |U0|2
8cπ[1 + (kr0)2] (11.41)

For an ideal point source with a finite volume velocity U (t) = U0 · exp(iωt) the
Helmholtz number kr0 is set to equal zero. The resulting velocity potential for the
ideal point source is given by

Φ(r, t) = U0

4πr
· exp[i(ωt − kr)] (11.42)

Equation (11.42) can be presented in a more general way. Suppose that the surface
of a sphere, radius r0, is pulsating with a surface velocity u(t). The rate of flow of air
away from the sphere is in every direction Q(t) = 4πr20u(t). The velocity potential
outside the sphere is according to (11.34) and (11.35) given byΦ = A · f (t −r/c)/r .
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On the boundary of the sphere, the particle velocity in the fluid is the same as the
surface velocity of sphere. The boundary condition (11.36) gives for kr0 � 1

Φ(r, t) = − Q(t − r/c)

4πr
; p(r, t) = −ρ0

∂Φ

∂t
= ρ0Q′(t − r/c)

4πr
(11.43)

For a source with the volume velocity Q0 · exp(iωt) at r = 0 the resulting velocity
potential and pressure are

Φ(r, t) = − Q0 · exp[i(ωt − kr)]
4πr

; p(r, t) = iωρ0Q0 · exp[i(ωt − kr)]
4πr

(11.44)

Sound radiation from cylinders is also of interest. For an infinite cylinder with a
surface velocity everywhere equal to v0 · exp(iωt) the resulting velocity poten-
tial must have a cylindrical symmetry and be a function of the distance r or the
radial distance from the center line of the cylinder. For a velocity, potential given by
Φ(r, t) = Φ0(r) · exp(iωt) the function Φ0 should satisfy the Helmholtz equation

d2Φ0

dr2
+ 1

r

dΦ0

dr
+ k2Φ0 = 0 (11.45)

where k = ω/c is the wavenumber in the fluid. The general solution to Eq. (11.45)
was discussed in Sect. 5.3. It was found that the solution is

Φ0(r) = C · H (2)
0 (kr) (11.46)

where H (2)
0 (kr) is the Hankel function of second order and C a constant to be

determined by the boundary condition. The asymptotic form of the solution as r
approaches infinity is

H (2)
0 (kr) →

√
2

πkr
· exp[−(kr − π/4)] (11.47)

For kr → 0 the Hankel function approaches

H (2)
0 (kr) → 2i

π
· ln(kr) (11.48)

Assuming a velocity u(t) = u0 · exp(iωt) on the surface of the cylinder with radius
r0 the boundary condition is [

dΦ0

dr

]
r=r0

= u0 (11.49)

For kr0 � 1 the velocity potential for r � r0 is obtained from Eqs. (11.46) through
(11.49) as

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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Φ(r, t) = − iu0πr0
2

· H (2)
0 (kr) · exp(iωt) = − iUl

4
H (2)
0 (kr) · exp(iωt) (11.50)

where Ul is the volume velocity per unit length of the cylinder. If kr0 is not small
the parameter C in Eq. (11.46) is obtained from the boundary condition (11.49) as
C = u0/{k[H (2)

0 (kr0)]′}. The sound intensity in the fluid can be expressed as function
of the volume velocity per unit length Ul or the acoustical power �l radiated per
length of the cylinder. The results are

Īr = ω2ρ0

16πrc
|Ul |2 = �̄l

2πr
(11.51)

The sound intensity level is decreasing by 3 dB per doubling of distance from the
center of cylinder. The sound intensity level induced by an ideal point source is
decaying by 6 dB per doubling of distance from the source. The decay rate of the
sound pressure level is determined by the Hankel function H (2)

0 (kr) and is thus
not only a function of distance but also of the wavenumber or frequency. For a
pure cylindrical wave and for kr > 1 the magnitude of pressure squared decays as
approximately 1/r . For kr < 1 the decay rate is slightly less.

11.5 Green’s Function

In previous Sect. 1.3, 6.2 and7.3, the forced excitation of first a simple 1-DOFsystems
and then of beams were derived using Green’s function. A similar procedure can be
used to find a solution to an inhomogeneous wave equation or rather to determine the
acoustic field induced by a source. Assume that a source function is given by f (r) ·
exp(iωt) where r = (x, y, z). The resulting velocity potential induced by the source
is Φ(r, t) = Φ0(r) · exp(iωt). The potential Φ0 should satisfy the inhomogeneous
equation

∇2Φ0 + k2Φ0 = − f (r) (11.52)

Let the function g(r|r0) be the Green’s function in an unbounded medium. The
function should be the solution to

∇2g + k2g = −δ(r − r0) (11.53)

where δ(r − r0) is a three-dimensional Dirac function. This Dirac function satisfies

∫
V0

dV δ(r − r0) = 1;
∫

V0

dV δ(r − r0) f (r) = f (r0) (11.54)

The volume V0 should include the point r0 = (x0, y0, z0). The general solution to
Eq. (11.53) is

http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_7
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g(r|r0) = A
e−ikr

r
; r = |r − r0|

The amplitude A is as yet undetermined. This result inserted in (11.53) and integrated
over a small volume including r0 gives

∫ ε

0
4πr2∇2gdr +

∫ ε

0
4πr2k2gdr = −1 (11.55)

The second integral approaches zero as ε tends to zero. The first integral is, using
the Gauss theorem, rewritten as

∫
dV ∇2g =

∫
dSn∇g = 4πε2Ae−ikε

(
− 1

ε2
− ik

ε

)
→ −4πA as ε → 0

(11.56)

The parameter A is obtained from (11.55) and (11.56) as A = 1/(4π). Consequently,
the Green’s function in unbounded space is

g(r|r0) = e−ikr

4πr
; r = |r − r0| =

[
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
]1/2
(11.57)

The expression (11.52) is now multiplied by g and Eq. (11.53) by Φ0 and the results
subtracted resulting in

g∇2Φ0 − Φ0∇2g = −g(r|r0) · f (r) + Φ0(r)δ(r − r0)

An integration with respect to the volume V enclosing r0 gives

∫
dV [g∇2Φ0 − Φ0∇2g] = −

∫
dV g(r|r0) f (r) + Φ0(r0) (11.58)

The expression inside the first bracket is rearranged as

g∇2Φ0 − Φ0∇2g = div(g · gradΦ0) − div(Φ0 · gradg)

Using the Gauss theorem, the first volume integral is transformed into a surface
integral as

∫
dV [g∇2Φ0 − Φ0∇2g] =

∫
ndS[g · gradΦ0 − Φ0gradg]

= 4πr2
(

g
∂Φ0

∂r
− Φ0

∂g

∂r

)
(11.59)

According to Somerfield’s criterion, the expression (11.58) must tend to zero as r
approaches infinity. The expression (11.58) is consequently reduced to
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−
∫

dV g(r|r0) f (r) + Φ0(r0) = 0

By replacing r by r0 and r0 by r and considering that g(r|r0) = g(r0|r) the solution
to Eq. (11.52) is finally written

Φ0(r) =
∫

dV0g(r|r0) f (r0) = 1

4π

∫
V0

e−ikr

r
f (r0)dV0; r = |r − r0| (11.60)

The result can be formulated in a more general way for a source function given by
f (r0, t). The resulting velocity potential is

Φ(r, t) = 1

4π

∫
V0

1

r
f (r0, t − r/c)dV0; r = |r − r0| (11.61)

For f (r, t) = −Q(t)δ(r) the resulting velocity potential is obtained from (11.60) as

Φ(r, t) = − Q(t − r/c)

4πr
; r = |r − r0| (11.62)

Comparing Eq. (11.62) to the result of Eq. (11.43) it follows that Q(t) is the volume
velocity of a point source located at r0. In summary, if a point source with the
volume velocity Q0 · exp(iωt) is located at r = r0 the velocity potential Φ(r, t) =
Φ0(r) · exp(iωt) is the solution to

∇2Φ0 + k2Φ0 = Q0δ(r − r0) (11.63)

Velocity potential, pressure, particle velocity, time average of radial intensity, and
time average of the acoustic output power of the source are

Φ(r, t) = − Q0

4πr
· exp[i(ωt − kr)]; r = |r − r0|

p(r, t) = −ρ0
∂Φ

∂t
= iωρ0Q0

4πr
· exp[i(ωt − kr)]

vr (r, t) = ∂Φ

∂r
= ik Q0

4πr
·
(
1 + 1

ikr

)
exp[i(ωt − kr)]

�̄ = ω2ρ0 |Q0|2
8πc

; Īr = ω2ρ0 |Q0|2
32π2cr2

= �̄

4πr2
; | p̄|2 = ρ0c�̄

4πr2
(11.64)



11.6 Dipole and Other Multipole Sources 121

11.6 Dipole and Other Multipole Sources

The basic wave equation was derived while making a number of approximations
and not including a number of source terms. If a mass flow is injected in a fluid,
spherical symmetry, the rate of flow will induce a velocity fluctuation and thus,
a velocity potential in the fluid. The source, if small enough, can be described as
an ideal point source or a monopole. A force acting on the fluid, for example, a
small object moving back and forth, could induce an acoustic field equivalent to that
created by two ideal point sources operating in opposite phase. More complicated
sources, for example, caused by a jet flow, could to a certain extent be described
as a combination of monopoles, pair of dipoles, or so-called quadruples. For more
details, see, for example, Refs. [23, 135–138]. See also Problem11.3.

The field from a dipole can be derived based on the configuration shown in
Fig. 11.5. A point source is located at r1 = (d/2, 0, 0). The field induced by this
point source is Qg(r|r1) where g(r|r1) is given by Eq. (11.57) and Q is the source
strength. The other source, located at r2 = (−d/2, 0, 0) and operating at opposite
phase to the first one, induces the field −Qg(r|r2). The total field is

Φ0(r) = Q [g(r|r1) − g(r|r2)] (11.65)

For the distance d between the sources being small the Green’s function can be
expanded in a Taylor series. Including only terms of the first order of magnitude the
result is

Φ0 = Q(r1 − r2)grad[g(r|0)]

Defining the dipole source as D = Q(r1 − r2) the result is

Φ0(r) = − ike−ikr

4πr2
r · D ·

(
1 + 1

ikr

)
(11.66)

Fig. 11.5 A dipole source
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Fig. 11.6 Quadruple source

For the configuration shown in Fig. 11.5 the result is for rk � 1

Φ0(r) = − |D| ike−ikr

4πr
cosϕ; p(r) = − |D| ω2ρ0e−ikr

4πrc
cosϕ (11.67)

The absolute pressure has a maximum along the axis of the dipole and a minimum
perpendicular to the dipole axis where the pressure is zero. The time average of the
total power radiated by a dipole is

�̄ = ρ0cD2k4

24π
(11.68)

The intensity and the power of a dipole are discussed in Problem11.5.
There can also bemore complex source configurations as, for example, induced by

a jet. These source elements have the configuration of assemblages of two dipoles.
One such source, called a quadruple, is shown in Fig. 11.6. Positive sources +Q
are located at (d/2, d/2, 0) and (−d/2,−d/2, 0) and negative sources −Q at
(d/2,−d/2, 0), and (−d/2, d/2, 0). Following the same procedure as before the
resulting velocity potential for this particular configuration is

Φ0(r) = d |D|
[

∂2

∂x0∂y0
g(r|r0)

]
r0=0

(11.69)

The corresponding pressure is for kr � 1

p(r) = d |D| ρ0ω2xye−ikr

4πr3c
(11.70)

This type of quadruple is denoted Qxy referring to the derivatives of the Green’s
function. Other possible combinations are Qxz , Qyz , Qxx , Qyy and Qzz . However, a
combination of Qxx , Qyy and Qzz of equal strength produces amonopole. According
to definition Qxy = Qyx etc.
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Of these simple sources, themonopole is by far themost efficient radiator followed
by the dipole and then the quadruple. There can be combinations of higher order,
octupole, and so on. However, these sources are of less practical importance than the
three basic ones since the intensity induced by these sources of higher order is low.
Quadruple sources are discussed in Problem11.3.

11.7 Additional Sources and Solutions

An acoustic field is not only induced by a mass flow, jet flow, turbulence, and heat
injection but also by the motion of structures like a membrane of a loudspeaker, a
vibrating plate, etc. It is, therefore, of interest to describe the acoustic field induced
by a vibrating surface on structures of simple geometries like spheres, cylinders and
plates. In this section, only the radiation fromspheres, and cylinderswill be discussed.
The interaction between plates and fluids are discussed in Chaps. 12 and13.

Starting with a radiating sphere. Solutions in spherical coordinates to the
Helmholtz equation can be formulated in a more general way as compared to the
results discussed in Sect. 11.4. To start with, consider sound fields, which can depend
not only on the distance from a source but also on the azimuth angle θ shown in
Fig. 11.4. For a velocity potential Φ0(r, θ) · exp(iωt), the function Φ0(r, θ) should
satisfy the Helmholtz equation

1

r2
· ∂

∂r

(
r2

∂Φ0

∂r

)
+ 1

r2 sin θ
· ∂

∂θ

(
sin θ · ∂Φ0

∂θ

)
+ k2Φ0 = 0 (11.71)

Let the functionΦ0(r, θ) be defined asΦ0(r, θ) = R(r)P(cos θ). There is an infinite
number of solutions satisfying the Helmholtz equation (11.71). The solutions can be
written as a combination of spherical Hankel functions and Legendre functions. The
general solution to Eq. (11.71) is

Φ0(r, θ) =
∑

m

(
Am Pm(cos θ)h(1)

m (kr) + Bm Pm(cos θ)h(2)
m (kr)

)
(11.72)

In this solution h(1)
m (kr) is the spherical Hankel function of the first kind and h(2)

m (kr)

of the second kind. The spherical Hankel functions or in fact R(r) should satisfy the
differential equation

d2R

dr2
+ 2

r

dR

dr
+

[
k2 − m(m + 1)

r2

]
· R = 0

The function h(2)
m (kr) represents outgoing waves whereas h(1)

m (kr) corresponds to
waves converging on the source. In an infinite medium only outgoing waves can
exist in agreement with the Sommerfeld radiation condition. Including only outgoing
waves reduces Eq. (11.72) to

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Φ0(r, θ) =
∑

m

Bm Pm(cos θ)h(2)
m (kr) (11.73)

The functions Pm(cos θ) of the solution (11.72) are the Legendre functions. A Legen-
dre function Pm(z) satisfies the differential equation

(1 − z2)
d2Pm

dz2
− 2z

dPm

dz
+ m(m + 1)Pm = 0 (11.74)

The solutions can be written as

Pm(z) = 1

2mm! · dm

dzm

(
z2 − 1

)m

The Legendre functions are finite in the interval −1 � z � 1. The functions Pm are
orthogonal as ∫ 1

−1
Pm(z)Pn(z)dz = 2

2m + 1
· δmn

where δmn is the Kronecker delta. Any continuous function f (z) can be expanded in
a series of Legendre functions in the interval −1 � z � 1 as

f (z) =
∑

m

Cm Pm(z)

The coefficients Cm are according to the orthogonallity condition obtained as

Cm = 2m + 1

2

∫ 1

−1
Pm(z) f (z)dz

The acoustic field induced by a small piston mounted in a sphere is discussed in
Problem11.6. The directivity of the acoustic intensity is shown in Fig. 11.7. In the
very low frequency region, kr0 small, the acoustic field is almost omnidirectional.
For increasing frequencies, kr0 increasing, the intensity in the forward direction is
increasing and developing into a distinct forward lobe. In the backward direction,
the intensity is decreasing as kr0 is increased.

In the general case, the velocity potential can be a function of the angle ϕ as well
as the azimuth angle θ and the distance r. The inclusion of the azimuth angle makes
any solution rather complex. However, the procedure to solve that kind of problem
is indicated below. Detailed procedures can be found in, for example, Refs. [23, 69,
131]. The spherical coordinate system is identified in Fig. 11.4. A velocity potential
Φ0(r, θ,ϕ)· exp(iωt) should satisfy thewave equation (11.19) andΦ0 theHelmholtz
equation in spherical coordinates
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Fig. 11.7 Radiation fom a
small vibrating piston
mounted in a sphere for kr0
equal to 1, 2, and 3, starting
from upper left hand corner.
From Ref. [23]

1

r2
· ∂

∂r

(
r2

∂Φ0

∂r

)
+ 1

r2 sin θ
· ∂

∂θ

(
sin θ · ∂Φ0

∂θ

)
+ 1

r2(sin θ)2
· ∂2Φ0

∂ϕ2 + k2Φ0 = 0

(11.75)

It can be shown that the velocity potential can be written as Φ0(r, θ,ϕ) = R(r) ·
G(θ) · H(ϕ).

For (11.75) to be satisfied these separate functions must also satisfy the following
differential equations

∂2H

∂ϕ2 + n2H = 0; 1

sin θ
· ∂

∂θ

(
sin θ · ∂G

∂θ

)
+ n2

(sin θ)2
· G + m(m + 1) = 0

1

r2
· ∂

∂r

(
r2

∂R

∂r

)
+

[
k2 − m(m + 1)

r2

]
R = 0 (11.76)

The general solution is, outgoing waves only

Φ0(r, θ,ϕ) =
∑
mn

h(2)
m (kr) · Gmn(θ) · Hn(ϕ)

Gmn(θ) = Cmn Pn
m(cos θ) + Dmn Qn

m(cos θ)

Hn(ϕ) = cos(nϕ) + Wn sin(nϕ) (11.77)

The spherical Hankel function of the second kind is denoted h(2)
m (kr). Pn

m and Qn
m

are the associated Legendre functions—see, for example, the Refs. [5, 23, 69, 131].
The associated Legendre function Pn

m(z) are defined as

Pn
m(z) = (1 − z2)n/2 ·

(
d

dz

)n

Pm(z)

where Pm(z) is the Legendre function of order m. The functions Pn
m(z) satisfy the

associated Legendre differential equation
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(1 − z2)
d2Pn

m

dz2
− 2z

dPn
m

dz
+

[
m(m + 1) − n2

1 − z2

]
= 0

The associated Legendre functions are orthogonal as

∫ 1

−1
Pn

m(z)Pn
k (z)dz = (m + n)!

(m − n)! · 2

2m + 1
· δmk

The second solution to Legendre’s equation is Qn
m(z). This solution is given as

Qn
m = −Pn

m(z)
∫ z

∞
dζ

(ζ2 − 1)[Pn
m(ζ)]2

The result (11.72) is just a special case of the complete solution. Equation (11.72) is
obtained by setting n = 0 in the general solution (11.77).

In cylindrical coordinates the velocity potential is Φ0(r,ϕ, z) · exp(iωt). The
function Φ0 should satisfy the Helmholtz equation

1

r
· ∂

∂r

[
r
∂Φ0

∂r

]
+ 1

r2
· ∂2Φ0

∂ϕ2 + ∂2Φ0

∂z2
+ k2�0 = 0 (11.78)

The solution is for outgoing waves only

Φ0(r,ϕ, z)=
∑

H (2)
m (r

√
k2−k2z )Fm(ϕ)Zm(z);

Fm(ϕ)= Am · cos(mϕ)+Bm sin(mϕ)

Zm(z) = Cm · cos(kzz) + · sin(kzz) (11.79)

The parameters Am , Bm , and Cm are determined from the boundary conditions.
Some characteristics of sound fields induced by vibrating cylinders can be illus-

trated by a simple example. Consider, an infinite cylinder as shown in Fig. 11.8. The
cylinder has the radius r0. Part of the surface of the cylinder is vibrating with a
velocity u defined as

u(ϕ, t) = u0 · exp(iωt) for − ϕ0 � ϕ � ϕ0 otherwise zero

The cylinder is assumed to radiate into an infinite fluid. Consequently, only out-
going waves as described by the Hankel function of the second kind can satisfy the
general solution (11.79). The function defining the surface velocity is symmetric
with respect to ϕ = 0. The surface velocity and the velocity potential in the fluid
can, therefore, be expanded by means of cosine terms only. The velocity potential in
the fluid is a function of r , ϕ, and t only and is written as
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Fig. 11.8 An infinite
cylinder, part of which is
vibrating

Φ(r,ϕ, t) = exp(iωt) ·
∑

n

An · H (2)
n (kr) · cos(nϕ) (11.80)

The particle velocity in the fluid at the surface of the cylinder must equal the surface
velocity of the cylinder. Thus

[
∂Φ

∂r

]
r=r0

= u0 exp(iωt) for − ϕ0 � ϕ � ϕ0 otherwise zero (11.81)

The surface velocity of the cylinder can also be expanded in a cosine series. The
result is

u(ϕ, t) = u0 · exp(iωt)

[
ϕ0

π
+

∞∑
n=1

2ϕ0

nπ
sin(nϕ0) cos(nϕ)

]
(11.82)

The Eqs. (11.80) through (11.82) give the solution to the problem. Details are given
in Problem11.7. The velocity potential in the fluid induced by the infinite vibrating
cylinder is obtained as

Φ(r,ϕ, t) = u0 · exp(iωt)

πk

[
ϕ0H (2)

0 (kr)

[H (2)
0 (kr0)]′

+
∞∑

n=1

H (2)
n (kr)

[H (2)
n (kr0)]′

2ϕ0

nπ
sin(nϕ0) cos(nϕ)

]
(11.83)

The sound pressure in the fluid is p = −ρ0∂�/∂t and the corresponding sound
pressure level is L p = 10 log[|p|2 /(2p2ref)]. Some results are shown in Fig. 11.9.
The radius of the infinite cylinder is 2.5 m. The cylinder is submerged in water,
ρ0c = 1.45 · 106 kg/(m2 s). The velocity of the cylinder is proportional to exp(iωt)
within a sector defined by the angle ϕ0 = 5◦. The variation of the sound pressure
level at a distance of 7.5m from the center of the cylinder is shown in Fig. 11.9. The
relative sound pressure level as function of the angle ϕ is given for four frequencies
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Fig. 11.9 Radiation from a strip along an infinite cylinder. r = 7.5m, r0 = 2.5m

18, 184, 1846, and 18462Hz corresponding to the Helmholtz numbers kr0 equal to
0.2, 2, 20, and 200. For kr0 = 0.2 the sound pressure level varies slowly as function
of the angle ϕ. For larger Helmholtz numbers the fluctuations with respect to the
angle become more pronounced. For kr0 very large, the directivity pattern is very
distinct. The highest sound pressure level is directly in front of the radiating surface,
i.e., for ϕ = 0. For ϕ = 13◦ the sound pressure level has already decreased by 20
dB. The sound pressure level varies rapidly as the angle is changed. At the offside
of the cylinder, i.e., as the angle approaches ϕ = 180◦, the sound pressure level
increases again up to a maximum at ϕ = 180◦. A similar pattern but not as distinct
is obtained for kr0 = 20. The maximum or tail at the offside of the cylinder with
respect to the source is well pronounced except for small Helmholtz numbers. The
directivity pattern is becoming smoother as the Helmholtz number decreases. In the
very low frequency region the sound pressure level tends to be independent of the
angle.

The directivity pattern of the source is not only a function of the angle ϕ and the
Helmholtz number but also of the distance r to the source or rather the product kr.
This is illustrated in Fig. 11.10. The source is again the vibrating strip on an infinite
cylinder as described in the previous case. The sound pressure levels shown in the
figure are predicted at 7.5 and 75 m from the center of the cylinder. In front of the
vibrating area, i.e., for ϕ = 0, the sound pressure level is decreased by 12 dB as the
distance from the center is increased from 7.5 to 75 m. The distance from the surface
of the cylinder is changed from 5 to 72.5 m. For a pure cylindrical attenuation this
equivalent to 12 dB. The level difference varies for increasing angles. At the offside
of the cylinder, the sound pressure level at 75 m, can at certain positions, even be
higher than the level at 7.5 m from the center. The examples illustrate that the sound
pressure at a certain point outside a source cannot be predicted based on a limited
number of measurements if not the source is completely omnidirectional in two or
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m
m
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Fig. 11.10 Radiation from a strip along an infinite cylinder. kr0 = 20

three dimensions or else if not the directivity pattern of the source is completely
determined. Radiation from cylinders and sound radiation ratios are also discussed
in Sect. 12.11.

11.8 Moving Monopole Sources

Acoustic fields induced by stationary sourceswere discussed in the previous sections.
When a source is moving certain additional effects have to be considered. Some of
these effects can be demonstrated by considering a simple monopole traveling with
constant velocity u along a straight line. Figure11.11 illustrates a source moving past
a listener. The source is traveling along the x-axis. The x-coordinate of the source
is xs = ut . Thus, at t = 0 the source is at x = 0 and the distance r0 from the

Fig. 11.11 A source moving
along a straight path at
constant speed passed a
listener

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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observation point at (0, r0, 0). At time t = te, the source at (ute, 0, 0) emits a signal
which reaches the listener at t = te + Re/c where Re is the distance between the
source and listener as shown in Fig. 11.11.

When the signal reaches the listener the source hasmoved to a position (xs, 0, 0) at
a distance Rs from the listener. The coordinate xs is xs = u(te+ Re/c) = ute+ M Re,
where M = u/c is the Mach number. Based on the geometry shown in Fig. 11.11 it
is found that

R2
e = x2e + r20 = u2(t − Re/c)2 + r20 (11.84)

The distance Re is obtained from Eq. (11.84) as

Re = − ut M

1 − M2 ±
√

(ut)2 + r20 (1 − M2)

1 − M2 (11.85)

For M < 1 there is only one solution whereas for M > 1 there are two. For subsonic
motion, M < 1, the solution is

Re = − ut M

1 − M2 +
√

(ut)2 + r20 (1 − M2)

1 − M2 = −ut M + R1

1 − M2 ;

R1 =
√

(ut)2 + r20 (1 − M2) (11.86)

The other solution for M < 1 gives a negative distance Re. From Fig. 11.11. −ute =
u(−t + Re/c) = Re · cosϕe. Thus,

− ut = Re(cosϕe − M) (11.87)

Also from Fig. 11.11, r0 = Re · sinϕ. Consequently, the distance R1 is obtained as

R1 = Re

[
(cosϕ − M)2 +

(
1 − cos2 ϕ

) (
1 − M2

)]1/2 = Re(1 − M cosϕ)

(11.88)
The differential equation determining the velocity potential induced by point source
moving along the x-axis at a velocity u as shown in Fig. 11.11 is

∇2Φ − 1

c2
∂2Φ

∂t2
= −Q(t)δ(x − ut)δ(y)δ(z) (11.89)

The equation can be solved by introducing two transformations. The first, the so-
called Lorentz transformation, is given as

x1 = γ(x − ut); y1 = y; z1 = z; t1 = γ(t − ux/c2); γ = (1 − M2)−1/2

(11.90)
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Thus, as discussed in Problem11.17, ∇2
1Φ − 1

c2
∂2Φ

∂t21
= ∇2Φ − 1

c2
∂2Φ

∂t2
. See also,

for example, Refs. [58, 131]. Since δ(y1/γ) = γδ(y1) the initial differential equation
is, using the transforms (11.90), reduced to

∇2
1Φ − 1

c2
∂2Φ

∂t21
= −γQ[γ(t1 + x1u/c2)]δ(x1)δ(y1)δ(z1) (11.91)

Yet another transformation reduces this differential to a standard equation governing
the acoustic field from a stationary source. This second transform is given as

t2 = γt1; x2 = γx1; y2 = γy1; z2 = γz1 (11.92)

Since δ(γy1) = δ(y1)/γ the Eq. (11.91) is reduced to

∇2
2Φ − 1

c2
∂2Φ

∂t22
= −γ2Q(t2 + x2u/c2)]δ(x2)δ(y2)δ(z2)

The right-hand side of the equation can be simplified since the Dirac function δ(x2)
ensures that x2 is equal to zero in the first expression. Consequently, the equation
governing the acoustic field induced by a monopole traveling along a straight line at
a constant speed is given by

∇2
2Φ − 1

c2
∂2Φ

∂t22
= −γ2Q(t2)δ(x2)δ(y2)δ(z2) (11.93)

According to Eq. (11.43) the solution to the equation is

Φ(r2, t2) = γ2 Q(τ )

4πr2
; τ = t2 − r2/c (11.94)

Transformations back to the initial coordinates give

Φ(r2, t2) = γ2 Q(τ )

4πr2
; τ = t2 − r2/c

τ = t2 − r2
c

= γt1 − γ
r1
c

= t − u(x − ut)

c2 − u2 − γ

c

√
γ2(x − ut)2 + r20

= t −
M(x − ut) −

√
(x − ut)2 + (1 − M2)r20

c(1 − M2)
= t − Re

c

r2 = γ2
[
(x − ut)2 + (1 − M2)(y2 + z2)

]1/2
(11.95)
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For the listener located at r0 = (0, r0, 0) this expression is reduced to

τ =t −
−Mut −

√
(ut)2 + (1 − M2)r20

c(1 − M2)
= t − Re

c
;

Re =
−Mut −

√
(ut)2 + (1 − M2)r20
(1 − M2)

r2 = γ2
[
(ut)2 + (1 − M2)r20

]1/2
(11.96)

However, according to Eq. (11.87), −ut = Re(cosϕe − M) and in addition r0 =
Re sinϕe which gives r2 = γ2Re(1 − M cosϕe). The parameter Re represents the
distance between the listener and the source at the time te when the signal was emitted
as shown in Fig. 11.11.

The resulting velocity potential is

Φ = Q(t − Re/c)

4πRe(1 − M cosϕe)
(11.97)

The sound pressure at r0 = (0, r0, 0) is

p = −ρ0
∂Φ

∂t
= −ρ0

Q′(t − Re/c)

(
1 − 1

c

dRe

dt

)

4πRe(1 − M cosϕe)
+ ρ0

Q(t − Re/c)

4πr22

dr2
dt

(11.98)

Equation (11.96) gives

1

c

dRe

dt
= − 1

1 − M2

[
M2 + M(x − ut)

R1

]

= − M

1 − M2

[
M + Re(cosϕe − M)

Re(1 − M cosϕe)

]
= − M cosϕe

1 − M cosϕe

dr2
dt

= γ2u2t

r2
= −γ2u(cosϕe − M)

(1 − M cosϕe)
(11.99)

The relationship −ut = Re(cosϕe − M) has been used. Hence,

p = ρ0Q′(t − Re/c)

4πRe(1 − M cosϕe)2
+ ρ0Q(t − Re/c)Mc(cosϕe − M)

4πR2
e (1 − M cosϕe)3

(11.100)

At large distances from the source the first term dominates. If the velocity of the
source is not constant but a function of time an extra term must be added to the result
(11.100). For this particular case the resulting pressure is
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p = ρ0Q′(t − Re/c)

4πRe(1 − M cosϕe)2

+ ρ0Q(t − Re/c)Mc(cosϕe − M)

4πR2
e (1 − M cosϕe)3

+ ρ0Q(t − Re/c)Ṁ

4πRe(1 − M cosϕe)3

The first and dominating term of the result (11.100) can also be given as a function
of the actual coordinates for the source at the time t the listener percieves the noise
emitted by the source when at the distance Re from the listener. Using the parameters
Rs and ϕs defined in Fig. 11.11 the first part of Eq. (11.100) is written

p(0, r0, 0, t) =
ρ0Q

[
t − Rs

(
M cosϕs+

√
1−M2 sin2 ϕs

)

c
√
1−M2

]

4πRs

√
1 − M2 sin2 ϕs

If the source has the time dependence exp(iω0) the phase ϕ of the pressure given in
Eq. (11.100) is

ϕ = ω0(t − Re/c) (11.101)

The angular frequency ω perceived by a listener at r = (0, r0, 0) is then

ω = dϕ

dt
= ω0

(
1 − 1

c

dRe

dt

)
= ω0

1 − M cosϕe
(11.102)

This is the Doppler formula. The result (11.99) has been used to derive Eq. (11.102).
As the source approaches the listener from afar the perceived frequency is f =
f0/(1 − M). When the source has passed the perceived frequency is decreased and
is approaching f = f0/(1+ M). Also the pressure varies if a source is approaching
or departing from a listener. At the same distance from a listener the noise from an
approaching source is higher than for departing source as given by Eq. (11.100).

Acoustic fields induced bymoving sources are also discussed in for example Refs.
[23, 69, 137, 138].

11.9 Reflection from a Plane Surface

A sound wave incident on a surface is partly reflected and partly absorbed by the
surface. The reflected field depends on the acoustic properties of the surface or its
acoustic impedance, angle of incidence of the wave, and the frequency. A reflecting
surface is often said to be either locally reacting or having an extended reaction. In
the first case, the response at one point of the surface due to an incident wave is
completely independent of the reaction or motion of any other part of the surface.
Each small section of the surface is responding to the incident wave as if each
infinitesimal surface element were supported by a separate spring uncoupled to any
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Fig. 11.12 Incident and
reflected plane waves. The
wave is reflected in the
x–z-plane

other part of the structure. For a surface with an extended reaction, the response of
one part of the surface depends on the motion of any adjoining part.

The acoustic properties of a locally reacting surface is defined by its acoustic
impedance Z . The impedance can be complex and a function of frequency and angle
of incidence of the incoming wave. The acoustic impedance of the surface is equal
to the ratio between the acoustic pressure on the surface and the particle velocity
normal to the surface. For a plane wave incident on a reflecting surface, part of the
sound field is reflected in the surface as illustrated in Fig. 11.12. The plane-reflecting
surface is oriented in the x–z-plane as shown in the figure. The amplitude of the
incident wave is set to equal unity, and that of the reflected wave to R. The velocity
potentials Φi and Φr defining the incident and reflected fields are

Φi(x, y, t) = exp [i(ωt − xk sinϕi − yk cosϕi)]

Φr(x, y, t) = R · exp [i(ωt − xk sinϕr + yk cosϕr)] (11.103)

The pressure p and the particle velocity normal to the surface are

p(x, y, t) = −ρ0
∂(Φi + Φr)

∂t
; vy(x, y, t) = ∂(Φi + Φr)

∂y
for y = 0

The ratio p/vy must be equal to the impedance Z anywhere on the surface or rather
for any x . For this condition to be satisfied the angles ϕi and ϕr must be equal.
Consequently, the ratio p̂/v̂y is for y = 0 obtained as

[
p̂

v̂y

]
y=0

= Z = ρ0c(1 + R)

cosϕi(1 − R)
(11.104)
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The relative amplitude R of the reflected wave is from this expression obtained as

R = Z · cosϕi − ρ0c

Z · cosϕi + ρ0c
(11.105)

The reflection coefficient ρs is equal to the ratio between the intensity Ir of the
reflected wave and the intensity Ii of the incident wave or

Ir/Ii = |R|2 = ρs (11.106)

The intensity not reflected is absorbed by the surface. The absorption coefficient α
is defined as the ratio between the absorbed intensity Ia and the incident intensity Ii.
Thus

Ia = αIi = Ii − Ir; α = 1 − ρs (11.107)

For |Z | � ρ0c the relative amplitude R of the reflected wave tends to unity. The
incident wave is almost completely reflected and the incident and reflected waves are
in phase. For the other extreme case, |Z | � ρ0c the incident wave is again almost
completely reflected. However, the incident and reflected waves are 180◦ out of
phase. For Z completely imaginary the reflection coefficient ρs is equal to unity. Part
of the incident intensity is always absorbed if the real part of the surface impedance
is different from zero.

A plane separating two fluids like a water surface separating a calm sea and air
gives one example of a surface with an extended impedance. A plate surrounded by
fluids is another example. In the first case, the problem can be illustrated as shown
in Fig. 11.13.

Two fluids are separated by the plane y = 0. For y < 0 the wave impedance
for the fluid is (ρ0c)1. The corresponding wavenumber is k1 = ω/c1. For y > 0
the wave impedance and wavenumber are (ρ0c)2 and k2 = ω/c2 respectively. The
amplitude of the plane incident wave is unity. The angle of incidence is ϕ1. In order
to satisfy any boundary condition for y = 0 the angle of the plane reflected wave
must be equal to the angle ϕ1 of the incident wave. The amplitude of the reflected

Fig. 11.13 Two fluids are
separated by the x–z-plane.
A plane wave is incident on
the plane. Part of the incident
wave is reflected and part is
transmitted
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wave is R. The tansmitted wave has the amplitude T . The angle between the plane
transmitted wave and the normal to the surface is ϕ2. The velocity potentials Φ1 and
Φ2 in the two fluids are

Φ1(x, y, t)=exp [i(ωt−k1x sinϕ1)] · [
exp(−ik1y cosϕ1)+R · exp(ik1y cosϕ1)

]

Φ2(x, y, t) = T · exp [i(ωt − k2x sinϕ2)] · [
exp(−ik2y cosϕ2)

]
(11.108)

At the surface, i.e., for y = 0, the pressure in fluid 1 must be equal to the pressure in
fluid 2. Further, the particle velocities normal to the joint boundary must be equal in
both fluids. Viscosity in the fluids is neglected. Therefore, there are no requirements
to the tangential velocities. Consequently, the boundary conditions are

− ρ01
∂Φ1

∂t
= −ρ02

∂Φ2

∂t
; ∂Φ1

∂y
= ∂Φ2

∂y
for y = 0 (11.109)

For these boundary conditions to be satisfied for any x , the x-dependent exponents
must always be equal. Consequently, the angles ϕ1 and ϕ2 must be related as

k1 sinϕ1 = k2 sinϕ2

The basic expressions (11.108) and the boundary conditions (11.109) yield

R = Z2 cosϕ1 − Z1 cosϕ2

Z2 cosϕ1 + Z1 cosϕ2
; T = 2ρ01c2 cosϕ1

Z2 cosϕ1 + Z1 cosϕ2
(11.110)

From Eq. (11.109) cosϕ2 is obtained as

cosϕ2 =
√
1 −

(
sinϕ1 · c2

c1

)2

This expression is imaginary if c2 > c1 and ϕ1 > arcsin(c1/c2). In this case, the
absolute value of the amplitude of the reflected wave is equal to unity. Thus, no
intensity is transmitted. In fluid 2, the waves are propagating along the x-axis. The
amplitude of the waves decays for increasing distances to the plane separating the
fluids. The velocity potential in fluid 2 is for this particular case given by

Φ2(x, y, t) = exp[i(ωt − k1x sinϕ1)] · exp[−y(k21 sin
2 ϕ1 − k22)

1/2] (11.111)

The two possibilities are illustrated in Fig. 11.14. Compare also the discussion in
Sect. 5.8 regarding the transmission of bending waves across a junction between two
flat plates of different thicknesses.

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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(a) (b)

Fig. 11.14 Reflected and transmitted waves, (c2 > c1). In a a wave is transmitted, in b total
reflection of incident intensity

For Z2 � Z1 the amplitude R of the reflected wave is almost equal to unity.
For R = 1 the particle velocity normal to the surface of the plane separating the
fluids is zero. In practice, this is almost the case when airborne sound is reflected in
a calm water surface. For this case the ratio Z2/Z1 ≈ 3.5 · 103. For the inverse case,
water-borne sound reflected in the water surface facing air, or when Z2 � Z1 , the
amplitude R of the reflected wave is approximately equal to−1. The result is that the
incident intensity is almost completely reflected back into the water. The reflected
wave is 180◦ out of phase with the incident wave. The pressure at the surface is,
therefore, almost equal to zero.

The sound field generated by a source over a completely reflecting surface for
which R is either+1 or−1 can be described bymeans of real and imaginary sources.
The procedure can be demonstrated by first considering a simple point source in
free space. The velocity potential for this case is, as shown in Eq. (11.42), equal to
Φ(r, t) = U0 ·exp[i(kr −ωt)]/(4πr)where r is the distance from the source to some
observation point. The source is moved to a point (0, y0, 0) above a totally reflecting
plane oriented in the x–z-plane. The surface has an infinite acoustic impedance. The
particle velocity vy normal to the surface is thus equal to zero at the boundary. The
same particle velocity, vy = 0 for y = 0, is achieved in free space by two identical
sources located at the points (0, y0, 0) and (0,−y0, 0). Compare the discussion on
dipoles in Sect. 11.6. The velocity potential resulting from these two sources in a
point (x, y, z) is

Φ(x, y, z, t) = U0 · exp(iωt)

[
e−ikr1

4πr1
+ e−ikr2

4πr2

]

r1 = [x2 + (y − y0)
2 + z2]1/2; r2 = [x2 + (y + y0)

2 + z2]1/2 (11.112)
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The y-component of the particle velocity is

vy(x, y, z, t) =∂Φ

∂y

= − U0 · exp(iωt)

[
e−ikr1

4πr1

(
ik + 1

r1

)
(y − y0)

+e−ikr2

4πr2

(
ik + 1

r2

)
(y + y0)

]

On the surface, y = 0, r1 = r2 and the particle velocity normal to the surface is zero,
vy = 0, for any y. The conclusion is that a field from a point source at (0, y0, 0)
above a plane and totally reflecting surface, R = 1 at y = 0 is equivalent to the field
in free space generated by two identical sources, one at the point of the real source
(0, y0, 0) and the other one at its image point at (0,−y0, 0). For y < 0 the sound
field is zero.

In a similar way, the field generated by a point source above a pressure release
surface, with R = −1, is

Φ(x, y, z, t) = U0 · exp(iωt)

[
e−ikr1

4πr1
− e−ikr2

4πr2

]
(11.113)

As before the volume velocity of the point source is U0. The distances r1 and r2
are defined in Eq. (11.112). The pressure p = −ρ0∂Φ/∂t is zero for y = 0, i.e.,
everywhere on the surface. The field from a point source above an acoustically soft
surface, R = −1, is equivalent to the field in an unbounded medium from the point
source and its negative image source.

In general, the field incident on a surface is not a simple plane wave but rather a
spherical wave. The field from a point source above a plane surfacewith the reflection
coefficient R can according to Ref. [144] be written as

Φ(x, y, z, t) = U0 · exp(iωt)

{
e−ikr1

4πr1
+ e−ikr2

4πr2
[R + (1 − R)F]

}
(11.114)

The functionF depends on r1, r2, k, Z1, Z2 and the angle of incidence as discussed
in Ref. [144]. For grazing incidence, ϕi ≈ π/2, or for r2 approaching infinity, the
function F is approximately equal to zero. Thus, at large distances from a source
and close to the ground the surface appears to be totally reflecting for Z2 � Z1.

The interference effects between the direct and reflected sound from a source
above a plane can be considerable. Reflection effects complicate outdoor acoustic
measurements. A rather typical test situation is illustrated in Fig. 11.15. A sound
source is located fairly close to the ground, which is assumed to be acoustically hard.
The height of the source above the ground is hs. The sound pressure from the source
is recorded at a point hr above the ground and at the horizontal distance x from the
source. It is assumed that x � hr and hs. The reflecting plane is replaced by an
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(a)

(b)

Fig. 11.15 A source above a totally reflecting plane. The acoustic field above the surface is equiv-
alent to a field induced by a real and an imaginary source having the same power

imaginary source as shown in Fig. 11.15. The distances r1 and r2 from the real and
imaginary sources are

r1 = [x2 + (hr − hs)
2]1/2 ≈ x + (hr − hs)

2

2x

r2 = [x2 + (hr + hs)
2]1/2 ≈ x + (hr + hs)

2

2x
(11.115)

The approximate results are valid as long as the heights are small compared to the
distance x between source and receiver. The distances r2 can be written as

r2 = r1 + 2�r; �r = hshr/x (11.116)

The resulting velocity potential representing the direct and reflected fields is

Φ(x, y, z, t) = U0

4πr1
· exp[i(ωt − kr1)]

[
1 + r1

r2
exp(2ik�r)

]
(11.117)

The ratio r1/r2 is almost equal to unity for �r small. However, the product k�r is
not necessarily small. Thus for �r → 0 the velocity potential tends to

Φ = U0

4πr1
· exp[i(ωt − kr1 + k�r)] · 2 cos(k�r) (11.118)
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Fig. 11.16 Sound pressure level from a point source above a surface for which R = 1 (solid line)
and R = −1 (dashed line) compared to the corresponding sound pressure level under free field
conditions (dotted line). hs =1.5m, hr = 1.5m, x = 10m

The time average of the pressure squared is

| p̄|2 = | p̄0|2 4 cos2(k�r); | p̄0|2 =
∣∣∣∣ Ū0

4πr1

∣∣∣∣
2

(11.119)

The time average of the pressure squared for free field conditions is given by | p̄0|2.
The sound pressure level L r for the source above the reflecting plane as compared
to the sound pressure level L0 in free field and at the same distance from the source
is shown in Fig. 11.16 as function of frequency. In the example hs = hr = 1m
and x = 20m. The level difference is L r − L0 = 10 log(| p̄|2 / | p̄0|2). Minima are
obtained for the frequencies fn = xc(1 + 2n)/(4hrhs) where n is an integer and c
the speed of sound in the fluid.

For a ground, which is not acoustically hard the frequency corresponding to the
first minimum is primarily determined by the ground impedance rather than by the
geometry. The expression (11.114) can be used to estimate the sound pressure above
ground. For �r � 1 the function F in Eq. (11.114) is approximately equal to zero.
In practice, a surface is not completely reflecting. Consequently, energy is lost when
sound propagates over ground. The losses depend on ground impedance, frequency,
and geometry. In general, ground attenuation dominates over air absorption in the low
frequency region. One example is presented in Fig. 11.17. At large distances r from
a source close to the ground, the sound pressure tends to decrease as 1/r2. For free
field conditions spherical attenuation corresponds to a decay 1/r . Generalized and
simplified models for the prediction of ground attenuation are for example presented
in Ref. [140].
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Fig. 11.17 Attenuation due air absorption (dashed curve) and ground absorption (solid line). Total
attenuation given by dotted line

Measurements of underwater noise are influenced by reflections in the water
surface, which is acoustically soft with R ≈ −1. The field induced by a source close
to an acoustically soft surface can be derived in a similar way as discussed above in
connection with reflections in a hard surface. Thus, consider a source at the depth hs
below awater surface. The resulting pressure is measured at the horizontal distance x
from the source and at the depth hr. The pressure as compared to free field conditions
is, using the same definitions as before

| p̄|2 = | p̄0|2 4 sin2(k�r); | p̄0|2 =
∣∣∣∣ Ū0

4πr1

∣∣∣∣
2

(11.120)

The sound pressure level difference L r − L0 is also shown in Fig. 11.16. For this
particular case the level difference hasminima for the frequencies fn = xcn/(2hrhs).

11.10 Reflection from a Water Surface

Underwatermeasurements for determining the acoustical radiation froma submerged
plate element or source can be particularly difficult. This is due to reflections in
the water surface. Furthermore, the water surface is seldom or never completely
smooth. The reflected waves from the surface cause cancelation of the direct field
from a source in the low frequency region. In practice, some of these problems
are encountered when underwater noise radiated from ships is to be determined.
Very often there are special requirements to underwater noise for various types of
research, navy and fishing vessels and even cruise liners. The surface effects can
change the radiation pattern from a single structure considerably as compared to free
field conditions. The radiation into free field from a ship-like structure like a cylinder
was discussed in Sect. 11.7. The sound pressure level induced by the breathing mode
of the infinite cylinder is obtained from Eq. (11.50). If the same cylinder is semi-
submerged the surface velocity, due to reflection effects and as seen from the water,
will be
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Fig. 11.18 Radiation from an infinite cylinder with uniform surface velocity. The sound pressure
levels for the semi-submerged (solid line) and totally submerged (dashed line) cases are shown.
The angle between the watersurface and the line of observation varies between 0 and 180◦

u(ϕ, t) = −u0 · exp(iωt) for 0 � ϕ � π

u(ϕ, t) = u0 · exp(iωt) for π < ϕ < 2π
(11.121)

The resulting velocity potential in the water is obtained from Eq. (11.83) as

�(r,ϕ, t) = −2u0 · exp(iωt)

πk

[ ∞∑
m=1

H (2)
m (kr)

m[H (2)
m (kr0)]′

[1 − cos(mπ)] sin(mϕ)

]

(11.122)

The details of solving the problem are left for Problem11.9. The variation of the
sound pressure level as function of the angle ϕ is given in Fig. 11.18. The diameter
of the cylinder is 2.5 m. The sound pressure level is calculated at a distance of 7.5m
from the center of the cylinder at f = 1846 Hz, kr0 = 20. For ϕ equal to 0◦ and
180◦ the sound pressure is zero. From approximately 20◦ to 160◦, the sound pressure
level oscillates around the level obtained for the totally submerged cylinder. When
recording underwater sound from an object, measurement positions close to thewater
surface should be avoided.

Yet another example is illustrated in Fig. 11.19. A cylinder is again semi-
submerged in water. Part of the surface of the cylinder is vibrating with a velocity
u0 exp(iωt) for −ϕ0 � ϕ � 0. Considering, the image effects the pressure in the
water can be calculated as if the cylinder is in an unbounded medium. The velocity
u(ϕ, t) of the surface of the cylinder as seen from the water is

u(ϕ, t) = −u0 · exp(iωt) for 0 � ϕ � ϕ0
u(ϕ, t) = u0 · exp(iωt) for − ϕ0 < ϕ < 0 otherwise zero

(11.123)

Following the procedure outlined in Sect. 11.7 and discussed in Problem11.10 the
velocity potential in the water is
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Fig. 11.19 Radiation from a strip on an infinite cylinder semi- submerged in water, r = 7.5m,
r0 =2.5m

Φ(r,ϕ, t) = −2u0 · exp(iωt)

πk

[ ∞∑
m=1

H (2)
m (kr)

m[H (2)
m (kr0)]′

[1 − cos(mϕ0)] sin(mϕ)

]

(11.124)

The resulting sound pressure level in the water is shown in Fig. 11.19. The result is
compared to the radiation from a cylinder in an unboundedmedium, water, discussed
in Sect. 11.7, Fig. 11.9 for which u(ϕ, t) = u0 · exp(iωt) and −ϕ0 < ϕ < ϕ0. In
both examples ϕ0 is set to equal 5◦. Again it is found that the sound pressure is
zero at the watersurface, in this case for ϕ = 180◦ and ϕ = 360◦. The directivity
pattern is muchmore pronounced for high rather than for low frequencies. In the high
frequency region the sound pressure shows a distinct interference pattern. The sound
pressure is for high frequencies increasing slightly at the back side of the cylinder
before dropping off close to the water surface.

11.11 Influence of Temperature and Velocity Gradients

The propagation of sound in fluidsis influenced by temperature and flow and to an
even larger extent by temperature and velocity gradients and turbulence. In addition,
the sound absorption in air depends on humidity. The speed of sound in water has
a strong dependence on the air contents in the water in the form of bubbles. When
sound propagates in a fluid with varying temperature and flow velocity the sound
rays tend to bend. For sound propagating over ground, wind gradients can be very
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strong close to the ground. Typical wind profiles v(z) and gradients ∂v/∂z vary with
the height z above the ground as

v(z) = V0 ln

(
z + z0

z0

)
; ∂v

∂z
= V0

z + z0
(11.125)

The parameters V0 and z0 depend the character of the ground surface. V0 is also a
function of the average wind speed. In addition, there is turbulence, which means
that the wind velocity varies as function of time and space. In general, turbulence
caused by normal wind speeds exhibits low frequency variations, typically below
20Hz. Close to the ground variations due to turbulence are most dominant parallel
to the ground. Higher up, z > 25 m, the variations are more or less the same in all
directions resulting in isotropic turbulence. Basic theories on turbulence and sound
propagation in turbulent media are for example discussed in Refs. [145, 146].

Temperature gradients above ground are often inversely proportional to the height
z over the ground. In the most simple case, sound propagating in air with constant
wind and temperature gradients, the curvature of the sound rays is constant. The
example is illustrated in Fig. 11.20. At the height z above the ground the total velocity,
speed of sound and vector wind velocity, is c + v cosϕ. The angle between the wind
direction and the direction of sound propagation is ϕ. At the height z + �z, the total

Fig. 11.20 Curvature of an
acoustic ray propagating in a
fluid having velocity and
temperature gradients, ϕ = 0
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Fig. 11.21 Rays bending
upwards creating a shadow
zone

velocity is c + v cosϕ + �z(∂c/∂z + cosϕ · ∂v/∂z). The radius of curvature Rc is
from Fig. 11.20 obtained as

Rc = − v · cosϕ + c
∂v

∂z
cosϕ + ∂c

∂z

≈ − c
∂v

∂z
cosϕ + ∂c

∂z

(11.126)

For moderate winds v � c. Since c is proportional to the square root of the absolute
temperature T it follows that ∂c/∂z = (c/2T )∂T/∂z. For (∂c/∂z+cosϕ·∂v/∂z) <

0 the radius R is positive. The rays bend upwards as shown inFig. 11.21. For (∂c/∂z+
cosϕ · ∂v/∂z) > 0 the rays bend downwards from a source. The ray patterns in the
down and upwind directions are different since the radius of curvature varies with
the angle ϕ. When the rays are bent upwards, a shadow zone is formed as shown
in Fig. 11.21. Within this zone there is no direct sound from the source. The sound
pressure level is reduced drastically when a measurement position is moved from the
direct field into the shadow zone. Within the shadow zone the sound pressure level
decays rapidly as the distance from the source is increased. Measurements within
the shadow zone should be avoided. The bending of acoustic rays due to temperature
gradients is shown in Fig. 11.22.

In the atmosphere as well as in the ocean there can be layers separated by strong
flow and temperature gradients. Sound waves can propagate within these layers over
long distances. For this type of sound waves, the geometrical attenuation is no longer
spherical.
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Fig. 11.22 Bending of acoustic rays due to temperature gradients. In the left figure temperature is
increasing with height over ground. In the right figure temperature is decreasing with height
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11.12 Acoustic Fields in Closed Rooms

In any type of enclosed space, there are certain losses, which will influence the
acoustic field in the room. These losses are due to the fluid in the room and to a
certain absorption of energy of the enclosing structures. The losses in the fluid, for
example, air, depend on room temperature, air humidity, and frequency. Even in a
room with acoustically hard walls, for example concrete with a very smooth surface,
part of the acoustic energy in the room is absorbed due to an infinite number of
reflections in the walls. The total loss factor due to the losses in the fluid or air and
due to the absorption of the walls are denoted δ . In general, the losses due to the
sound absorption of the walls are much higher than the losses in the fluid. A similar
approach was adopted to describe losses in structures, interior, and at boundaries, as
discussed in Sect. 5.12.

In a roomwith acoustically hardwalls, the particle velocity in the fluid perpendicu-
lar to thewallmust be equal to zero. For a roomwith the geometry shown in Fig. 11.23
the particle velocity vx in the x-direction must be on the form vx ∝ sin(lπx/Lx ),
i.e. vx = 0 for x = 0 and x = Lx for l being an integer. A corresponding argument
holds for vy and vz . The particle velocity vector is defined as v = gradΦ whereΦ is
the velocity potential in the room. Consequently, to satisfy the boundary conditions,
the velocity potential in the room must be on the form

Φ(x, y, z, t) =
∑
l,m,n

Flmn(t) · cos
(

lπx

Lx

)
cos

(
mπy

L y

)
cos

(
nπz

Lz

)
(11.127)

The summation is made over all possible combinations of the integers l, m and n.
Flmn(t) is some function of time satisfying some initial conditions.

The Eq. (11.127) can also be written as

Φ(x, y, z, t) =
∑
l,m,n

Flmn(t) · ϕlmn(x, y, z) (11.128)

where ϕlmn are the eigenfunctions satisfying the boundary conditions. Thus for a
parallelepiped room with the dimensions Lx , L y and Lz as shown in Fig. 11.23 and
with acoustically hard walls the eigenfunctions are

Fig. 11.23 A room and its
dimensions

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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ϕlmn(x, y, z) = cos

(
lπx

Lx

)
cos

(
mπy

L y

)
cos

(
nπz

Lz

)
(11.129)

The eigenfuntions satisfy the equation

∇2ϕlmn = k2lmnϕlmn; k2lmn =
(

lπ

Lx

)2

+
(

mπ

L y

)2

+
(

nπ

Lz

)2

(11.130)

The eigenfunctions are orthogonal satisfying

∫∫∫
V
ϕlmnϕqrsdV = 〈

ϕlmn
∣∣ ϕqrs

〉 = Lx L y Lzεlεmεnδlqδmrδns/8,

εl = 2 for l = 0, εl = 1 for l > 0 etc. (11.131)

The velocity potential must also satisfy the wave equation. For the source free case
the wave equation is, including losses as discussed in Sects. 11.1 and11.2.

∇2Φ − 1

c2
∂2Φ

∂t2
= 0; c2 = c20(1 + iδ)

The total loss factor is δ.
In accordance with the discussion in Chap.1 the function Flmn(t), introduced in

Eq. (11.127) must satisfy

d2Flmn

dt2
+ ω2

lmn(1 + iδ)Flmn = 0

ω2
lmn = c20 · k2lmn = c20

[(
lπ

Lx

)2

+
(

mπ

L y

)2

+
(

nπ

Lz

)2
]

(11.132)

The solution to Eq. (11.132) is

Flmn(t) = exp(−δωlmnt/2) [Almn cos(ωlmnt) + Blmn sin(ωlmnt)] (11.133)

where the amplitudes Almn and Blmn are determined by the initial conditions. The
mode (l, m, n) is oscillating at the natural frequency flmn with

flmn = ωlmn

2π
= c0

2

[(
l

Lx

)2

+
(

m

L y

)2

+
(

n

Lz

)2
]1/2

(11.134)

The time average over one oscillation of the pressure squared is decaying as

| p̄|2 ∝ exp(−ωlmnδt) (11.135)

http://dx.doi.org/10.1007/978-3-662-47807-3_1
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The reverberation time Tr, i.e., the time for the sound pressure level in the room to
decrease 60 dB, is, as discussed in Chap.1 given by

Tr = 2.2

f δ
(11.136)

The number of natural frequencies in the frequency range below the frequency f is
given by

N = 4π f 3V

3c3
+ π f 2Stot

4c2
+ f L tot

8c
(11.137)

where V is the volume of the room, Stot the total wall area and L tot the sum of
the lengths of all the edges of the room. In the high frequency region the first term
dominates. From (11.137) the modal density N f and the spacing � f between two
natural frequencies are for high frequencies obtained as (see Problem11.11)

N f = �N

� f
= 4π f 2V

c3
; � f = c3

4π f 2V
(11.138)

The distance between two natural frequencies decreases rapidly as the frequency
is increasing. In the high frequency range there is a large number of modes which
results in a near diffuse acoustic field in the room. In the low frequency range there
are just a few modes and the field is far from diffuse. In Table11.2, the first few
natural frequencies for a rectangular room are listed as functions of the integers l, m
and n. The dimensions of the room are Lx = 5 m , L y = 2.5 m, and Lz = 10/3
m. In the table the angle of incidence γx at the wall x = 0 is given. The angle is
obtained as cos γx = kx/k. The center frequency f0 for each 1/3 octave band is also
listed in the table.

The sound pressure p = −ρ0∂Φ/∂t in the room for some of the first fewmodes is

l = 2; m = 0; n = 0; p ∝ cos(2πx/Lx )

l = 1; m = 1; n = 0; p ∝ cos(πx/Lx ) cos(πy/L y)

l = 2; m = 1; n = 0; p ∝ cos(2πx/Lx ) cos(πy/L y)L = 2

Sound pressure contour plots in the room are shown in Fig. 11.24. The absolute
value of the sound pressure is shown in the plot. Note that the absolute value of the
sound pressure in the corners of the room always has amaximum.Within a frequency
band, the resulting sound pressure is the sum of the pressure for all the modes within
the band. In the low frequency region, the sound pressure can vary considerably
between various positions in the room. In particular, this is true when the losses in
the room are small.

For forced excitation, a source with the volume velocity Q0 · exp(iωt), located
at (x0, y0, z0) inside the room, the resulting velocity potential Φ0(x, y, z) · exp(iωt)

http://dx.doi.org/10.1007/978-3-662-47807-3_1
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Table 11.2 Modes in a room, L x = 5m, L y = 2.5m and L z = 10/3m

l m n γx (◦) flmn (Hz) f0 (Hz)

1 0 0 0 34 31.5

0 0 1 90 51 50

1 0 1 56 62 63

0 1 0 90 68

2 0 0 0 68

1 1 0 64 82 80

0 1 1 90 85

2 0 1 37 85

1 1 1 68 92 100

2 1 0 45 97

3 0 0 0 102

0 0 2 90 102

1 0 2 72 107

2 1 1 51 109

3 0 1 26 113 125

2 0 2 56 122

3 1 0 34 122

0 1 2 90 122

1 1 2 74 128

0 2 0 90 136

4 0 0 0 136

should satisfy ∇2Φ0 + k2�0 = Qδ(r − r0). The Dirac function is not defined if r0
is on the boundary, i.e., 0 < x0 < Lx . Compare Problem11.13. By multiplying the
wave by ϕlmn and integrating over the volume of the room the result is

Φ0 =
∑
l,m,n

8Q0ϕlmn(r)ϕlmn(r0)

V εlεmεn(k2 − k2lmn)
(11.139)

The pressure is from Eq. (11.9) obtained as

p = −ρ0
∂Φ

∂t
= −iωρ0Φ0 exp(iωt)

The Fourier transform of the pressure can according to the discussion in Sect. 2.2 be
written as

p̂ = −iωρ0Φ0 (11.140)

http://dx.doi.org/10.1007/978-3-662-47807-3_2
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Fig. 11.24 Variation of the absolute value of the sound pressure in a room for the modes (2, 0, 0),
(1, 1, 0), and (2, 1, 0). From Ref. [48]

The space average of square of the FT of the pressure is

〈∣∣ p̂
∣∣2〉 = ω2ρ20

1

V

∫
V
dV |Φ0|2 = ω2ρ20

V 2

∑
l,m,n

8 |Q0|2 ϕ2
lmn(r0)

εlεmεn
∣∣k2 − k2lmn

∣∣2

= f 2ρ20
V 2π2

∑
l,m,n

2c4 |Q0|2 ϕ2
lmn(r0)

εlεmεn[( f 2 − f 2lmn)2 + (δ f 2lmn)2]
=

∑
l,m,n

〈∣∣ p̂lmn
∣∣2〉 (11.141)

The space average of the pressure squared is a rapidly varying function of frequency.
The frequency average of 〈∣∣ p̂

∣∣2〉 of the mode (l, m, n) is

〈
∣∣∣ ¯̂plmn

∣∣∣2〉 = 1

� f

∫
d f 〈∣∣ p̂lmn

∣∣2〉; � f = c3

4π f 2V

The distance in the frequency domain between twomodes is� f as given by (11.138).
So eventually the space and frequency average of the square of the FT of the pressure
is as discussed in Problem11.14 obtained as
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〈
∣∣∣ ¯̂plmn

∣∣∣2〉 = 4cρ20 flmn |Q0|2 ϕ2
lmn(r0)

V δ

It is assumed that the frequency flmn is sufficiently high to set εl , εm and εn to equal
one. For a sourcemounted inside the room the average ofϕ2

lmn(r0) is 1/8 with respect
to the parameters l, m, and n. Statistically, the space and frequency average of the
squared of the FT of the pressure can by replacing flmn by f be written as

〈
∣∣∣ ¯̂plmn

∣∣∣2〉 = cρ20 f |Q0|2
2V δ

(11.142)

The frequency and space average of
∣∣ p̂

∣∣2 within a frequency band � f is

〈
∣∣∣ ¯̂p

∣∣∣2〉� f =
∑
lmn

〈
∣∣∣ ¯̂plmn

∣∣∣2〉

The summation is made over all modes N� f for which f − � f/2 < flmn <

f + � f/2 or for N� f = � f · N f where N f is the modal density in the room.
Thus,

〈
∣∣∣ ¯̂p

∣∣∣2〉� f = � f · 2π f 3ρ0 |Q0|2
c2δ

(11.143)

The results are only valid as long as there are a sufficient number of modes in the
room as discussed in next section.

11.13 Geometrical Acoustics

The acoustic field in a large roomfittedwith diffusers can in the high frequency region
be assumed diffuse. In a diffuse acoustic field the sound intensity in any direction is
the same. This is the basis for geometrical acoustics.

Based on the assumption that a sound field is diffuse, a number of simple relation-
ships concerning acoustic energy, intensity can be derived. Consider, a flat surface
with the area S located on a wall defined by the coordinate y = 0 as shown in
Fig. 11.25. A plane acoustic wave propagating in the x–y-plane is defined by its
velocity potential as

Φ(x, y, z, t) = A · exp[i(ωt − kx sin γ − ky cos γ)] (11.144)

where k is the wavenumber and γ the angle of incidence. The amplitude A is for a
diffuse field independent of the angle of incidence. The time average of the acoustic
power incident on the surface S is



152 11 Waves in Fluids

Fig. 11.25 A wave incident
on a surface

�̄ = Īy S = S

2
Re

[∫ π/2

0
pv∗

y · 2π sin γdγ

]
(11.145)

The pressure is defined as p = −ρ0∂Φ/∂t and the particle velocity normal to the
wall as vy = ∂Φ/∂y. Thus, the total incident intensity on the wall is thus

Īy = 1

2
Re

[
|A|2

∫ π/2

0
ωρ0k · 2π sin γ cos γdγ

]
= π |A|2 ωρ0k/2 (11.146)

The time average of the pressure squared in the room is

| p̄|2 = 1

2

∫ π

0
ρ20

∣∣∣∣∂Φ

∂t

∣∣∣∣
2

2π sin γdγ = 2π(ρ0ω)2 |A|2 (11.147)

The time averages of the kinetic and potential energies per unit volume are obtained
from (11.24) as

¯ V = T̄V + ¯ V = 1

2

∫ π

0

[
ρ0

2c2

∣∣∣∣∂Φ

∂t

∣∣∣∣
2

+ ρ0

2
|gradΦ|2

]
2π sin γdγ =2π |A|2 ω2ρ0/c2

(11.148)
The Eqs. (11.146) through (11.148) give

Īy = c V

4
= | p̄|2

4ρ0c
(11.149)

Now assume that a sound source with the acoustic power�(t) is located in the room.
Let the room be large enough for the sound field to be considered as diffuse. The
power dissipated in room is the sum of the lost power �f in fluid and the power �a
absorbed by the walls. The power lost in the fluid is

� f = ωδa V V (11.150)
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where δa is the loss factor in the fluid, V the acoustic energy per volume and V the
volume of the room. The power absorbed by the walls is

�a = In A (11.151)

where In is the component of the intensity perpendicular to the wall. The intensity
components parallel to the wall are assumed not to contribute to the absorbed power.
A is the equivalent absorption area of the wall which also can be written as

A =
∫

dSα(x, y, z) or A =
∑

i

αi Si

where αi is the sound absorption coefficient of the surface element i . The energy
balance in the room requires that

V
∂ V

∂t
+ In A + ωδa V V = �

However, as shown in Eq. (11.149), In = c V /4. Thus,

V
∂ V

∂t
+ c V A/4 + ωδa V V = � (11.152)

The solution to (11.152) is

V = 1

V
e−λt

∫ t

−∞
eλτ�(τ )dτ ; λ = cA

4V
+ ωδa (11.153)

If the field is stationary, i.e. ∂ V /∂t = 0, the energy in the room is from (11.152)
given by

¯ V = �̄

V [Ac/(4V ) + ωδa] ; | p̄|2 = 4ρ0c�̄

A + 4V ωδa/c
(11.154)

In general, the losses in the fluid are small as compared to the losses of the walls. If
this is the case

| p̄|2 = 4ρ0c�̄

A
; ¯ V = 4�̄

Ac
= | p̄|2

ρ0c2
; Īn = | p̄|2

4ρ0c
= �̄

A
(11.155)

If the acoustic power � in room is turned on at t = −t0 and turned off at t = 0 the
energy and thus the pressure squared in the room will decay as

| p̄|2 = | p̄0|2 · e−λt = | p̄0|2 · exp[−t Ac/(4V )] (11.156)
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The reverberation time Tr is as before defined as the time after the sound source
is turned off for the sound pressure level to decrease by 60 dB or the time for the
acoustic energy or | p̄|2 to decay by a factor 10−6. Thus from Eq. (11.156)

10−6 = exp

[
−Tr

(
cA

4V
+ ωδa

)]

For ωδa � cA/(4V ) the reverberation time is

Tr = 24 ln 10

Ac/V [1 + 4ωδa/(Ac)] ≈ 0.16 · V

A
(11.157)

The reverberation time is in seconds, the volume in m3 and the equivalent absorption
area inm2. Equation (11.157) is often referred to as Sabine’s formula. Later Eyring in
Ref. [147] formulated an improved version of the expression giving the reverberation
time. Eyring’s formula reads

Tr = 0.16 · V

−S · ln(1 − ᾱ)
(11.158)

The average sound absorption coefficient of the structures in the room is given by ᾱ.
If the absorption is small ln(1 − ᾱ) ≈ −ᾱ and the result (11.158) is approximately
equal to (11.157). However, for most problems discussed in this text the accuracy
given by the last part of the expression (11.157) is sufficient. Reverberation time
curves were discussed in Sect. 2.9. Compare also Fig. 2.11. The average slope of the
upper part of the decay curve should determine the reverberation time.

The decay of an acoustic field was first, Eq. (11.135), expressed as function of the
loss factor δ and later, Eq. (11.156), by means of the equivalent absorption area A of
the room. The two expressions must be identical. Thus,

δ = Ac

4ωV
(11.159)

This result inserted in Eq. (11.143) gives

〈
∣∣∣ ¯̂p

∣∣∣2〉 = 4πρ20 f 2 |Q0|2
A

(11.160)

For a source located inside the room this expression is reduced to

〈
∣∣∣ ¯̂p

∣∣∣2〉 =
4ρ0c

∣∣∣�̂
∣∣∣

A
(11.161)

The sound pressure in the reverberant field in a roomdepends on the sound absorption
or equivalent absorption area A in the room as shown in Eq. (11.155). Thus if the
acoustic power of a source is known, the equivalent absorption in the room can

http://dx.doi.org/10.1007/978-3-662-47934-6_2
http://dx.doi.org/10.1007/978-3-662-47934-6_2
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be calculated by measuring the resulting average sound pressure level. Thus, let
an acoustic source have the acoustic power �. The resulting sound pressure in the
reverberant field in the room is given in Eq. (11.155). If the sound power level of the
source is L� in dB re 10−12 W and the average sound pressure level in the room is
L p in dB re 2 · 10−5 Pa the equivalent absorption area A in m2 is obtained as

10 · log A = L� − L p + 6

The expression (11.157) can be used for determining the sound absorption coeffi-
cient of a material. A so-called reverberation room is used for the measurements.
According to the ISO norms there are certain requirements to the minimum volume
of the room as well as to the reverberation time of the room. The volume of the
reverberation room should be at least 200 m3 for measurements above 100Hz. The
area S of the test sample should exceed 10 m2. The test sample should be rectangular
and should not be closer to any wall than 1 m. The reverberation time T1 with an
empty room is measured first. The test sample is thereafter mounted in the room and
the new reverberation time T2 is measured. The average absorption coefficient of the
test sample is obtained as

α = A2 − A1

S
= 0.16 · V

S

(
1

T2
− 1

T1

)
(11.162)

Theoretically, the absorption coefficient could vary between zero and unity. How-
ever, due to certain edge effects for finite samples and an approximate theory, the
measurement technique outlined above and following the existing ISO requirements
can result in a measured sound absorption coefficient, which exceeds unity. Various
types of sound absorbers are discussed in for example Refs. [148, 149].

Geometrical acoustics require that an acoustic field in a room is reasonably diffuse.
Schröder in Refs. [150, 151] defined a lower frequency limit fs for a so-called diffuse
field as

fs = 2000
√

Tr/V (11.163)

Here Tr is in seconds and V inm3 giving the frequency inHz. The Schröder frequency
is also discussed in Ref. [148].

11.14 Near and Reverberant Acoustic Fields in a Room

In Sect. 11.13, it was assumed that the acoustic field in the room was reverberant and
diffuse. This condition cannot be satisfied if there is an acoustic source in the room.
Close to the source, there is an acoustic near field dominating over the reverberant
field. The resulting field in the room can be described by means of a simple model.
Thus, assume that an omnidirectional source with the acoustic power � is located
in the room. In the direct acoustic field of the source the intensity Ir in the direction
away from the source is given by
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Ir = �

4πr2
(11.164)

where r is the radial distance from the source. The resulting pressure pd from
the omnidirectional source far from any reflecting surfaces is according to (11.64)
obtained as

| p̄d|2 = ρ0c�̄

4πr2

However, if the source is mounted on a surface the resulting field in the room and
close to the source will not only be determined by the source itself but also by its
image source. For a source in free space the space angle as seen from the source is
4π. For the same source mounted on a hard surface the space angle is reduced to 2π
and the intensity is doubled. For a source mounted at a junction between two surfaces
the space angle is reduced to π and the intensity in near field of the source increased
by a factor 4. Finally, the space for a source in a corner is π/2. The intensity is thus
increased by a factor 8. Thus, the average of the pressure squared in the near field of
a source is

| p̄d|2 = ρ0c�̄P
4πr2

(11.165)

P = 8 source in a corner
P = 4 source in junction between two surfaces
P = 2 sources mounted close to a flat surface
P = 1 source mounted inside the room far from any reflecting surface

The output power of the source is assumed independent of its position. The average
of the square of the sound pressure in the reverberant field is

| p̄r|2 = 4ρ0c�̄

A
(11.166)

The sources, the real causing the direct field and the imaginary or reflecting sources
inducing the reverberant field, are assumed to be uncorrelated, the total pressure ptot
is thus

| p̄tot|2 = | p̄r|2 + | p̄d|2 = ρ0c�̄

[ P
4πr2

+ 4

A

]
(11.167)

For r <
√
16π/(AP) the first term inside the bracket of the expression (11.167)

dominates, in this region the near field dominates, whereas further away from the
source, the reverberant field determines the sound pressure in the room. The sound
pressure level L p in the room is from (11.167) obtained as

L p = 10 log

[
ρ0c�̄

p2ref

]
+ 10 log

[ P
4πr2

+ 4

A

]
(11.168)

The result is illustrated in Fig. 11.26.
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Fig. 11.26 Near and
reverberant fields in a room

11.15 Measurement of the Sound Transmission
Loss of a Wall

A structure or wall mounted between a noise source and a listener can effectively
reduce the noise exposure of the listener. The sound transmitted through a wall is
determined by its sound reduction index R. The sound transmission loss or sound
reduction index R (dB) is defined as R = 10 log(1/τ )where τ is the sound transmis-
sion coefficient of the structure. The sound reduction index of a structure mounted
between two rooms can bemeasured according to somewell-established procedures.

Consider, a wall mounted between two rooms as shown in Fig. 11.27. The area of
the wall is S. A sound source with the power � is located in room 1. The equivalent
sound absorption area in room 1 is equal to A1. The intensity Iin in Room 1 incident
on the wall is from Eq. (11.155) given by

Īin = | p̄1|2
4ρ0c

(11.169)

The sound pressure in Room 1 is p1. The sound transmission coefficient for the
wall is given by τ . The acoustic power �tr transmitted from the wall is

�̄tr = ĪinSτ = | p̄1|2 Sτ

4ρ0c
(11.170)

Fig. 11.27 Wall between
two rooms
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Assuming that the resulting field in Room 2 is diffuse and that the equivalent absorp-
tion area in the room is A2 the sound pressure in the room is obtained as

| p̄2|2 = 4ρ0c�̄tr

A2
= 4ρ0cτ S�̄

A2A1
= | p̄1|2 τ S/A2 (11.171)

The definition R = 10 log(1/τ ) in combination with Eq. (11.171) gives

L p1 − L p2 = R + 10 log(A2/S) (11.172)

where L p1 and L p2 are the sound pressure levels inRoom1 andRoom2, respectively.
The sound pressure level L p2 (dB re 2 ·10−5 Pa) in Room 2 can also be expressed

as function of the acoustic power level L� (dB re 10−12 W) of the source in Room
1. The result is obtained as

L p2 = L� − R − 10 log(A1A2/S) + 6 (11.173)

In order to reduce the noise level in a room adjoining a space with a certain source
the result shows the following possibilities:

1. Reduction of the source strength L�;
2. An increase of the sound absorption in the source room;
3. An increase of the sound absorption in the receiving room;
4. An increase of the sound reduction index of the wall separating the rooms.

The sound reduction index of a structure separating two rooms can be determined
in different ways as described in relevant ISO standards. The traditional way is first
to determine the equivalent sound absorption in Room 2 by means of reverberation
time measurements. An acoustic source is thereafter located in Room 1. The sound
pressure levels in the two rooms are determined and R calculated from (11.172).
Alternatively, the sound intensity I2 radiated by thewall intoRoom2 ismeasured.The
sound intensity I1 incident on thewall inRoom1, the source room, is determined from
the expression (11.169) to give Ī1 = | p̄1|2 /(4ρ0c). The resulting sound reduction
index is for normal room temperature given by

R = 10 log
∣∣ Ī1/ Ī2

∣∣ = L p1 − L I2 − 6 (dB) (11.174)

for L p1 in dB re 2 · 10−5 Pa and the intensity level of the sound radiated into Room
2 is given by L I2 in dB re 10−12 W/ m2.

The measurement procedures and requirements to laboratory facilities are
described in various ISO documents. In general the sound reduction index is deter-
mined in 1/3 octave bands starting with the 100Hz band and ending with the 3150Hz
band. The measurement is based on the assumption that the acoustic fields in the
rooms are diffuse. In particular, in the low frequency region this assumption is
not readily satisfied as previously discussed. However, all measurement procedures
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should at least satisfy the existing ISO requirements. Measurements of sound reduc-
tion indices are discussed in Sect. 13.8.

A structure separating two rooms could consist of many different elements. For
example, the separating structure could be a wall with a door or a wall with a win-
dow. If the sound reduction index Ri and area Si of each element are known the
effective sound reduction index R0 of the entire structure can be estimated. The
sound transmission coefficient τi for structure i is defined as τi = 10−Ri /10. The
total transmission from the structure is

�̄tot = Īin
∑

i

τi Si = Īin
∑

i

10−Ri /10Si = ĪinτtotS0 = Īin10
−R0/10S0

The parameter S0 is the total area of the structure and R0 the effective sound trans-
mission loss of the entire structure. Thus,

R0 = 10 log

⎡
⎢⎣

∑
i

Si

∑
i

Si10−Ri /10

⎤
⎥⎦ (11.175)

The effect of a small opening in a structure can be devastating as demonstrated in
Problem11.15.

Problems

11.1 Afluid is moving with the velocity u = (ux , 0, 0). A plane wave is propagating
along the positive x-axis. Determine, the wavenumber for this wave. The same thing
for a wave propagating in the opposite direction.

11.2 A straight duct has a constant cross section and the length L . At one end of
the duct, x = 0, a piston is moving with the velocity u0 exp(iωt). The opposite wall
has the acoustic impedance Z .Determine the acoustic field inside the duct. Consider
only plane waves propagating along the x-axis.

11.3 Derive the wave equation using the exact expressions (11.3) and (11.6). Show
that the secondary terms form a source term of the quadruple type.

11.4 Determine the natural frequencies inside a tyre which is rotatingwith a velocity
U.

The dimensions of a standard tyre are inner radius r0 = 0.21 m, outer radius
R0 = 0.275 m, width z0 = 0.205 m.

11.5 Determine the intensity from the dipole shown in Fig. 11.5.

http://dx.doi.org/10.1007/978-3-662-47934-6_13
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11.6 Determine the acoustic field induced by a vibrating sector on a sphere. The
velocity on the sphere is

u(θ, t) = u0 exp(iωt) for 0 � θ � θ0 � 1

Coordinates defined in Sect. 11.7

11.7 An infinite cylinder has the radius r0 .Part of the surface of the cylinder is
vibrating with a velocity u defined as (Fig. 11.8) u(ϕ, t) = u0 · exp(iωt) for −ϕ0 �
ϕ � ϕ0 otherwise zero Determine the acoustic field in the fluid outside the cylinder.

11.8 A point source is mounted above a hard surface. The resulting sound pressure
level is measured away from the source and above the ground, see Fig. 11.14. Deter-
mine in a frequency band the sound pressure level difference between the measured
sound pressure level and the level representative for free field conditions.

11.9 An infinite cylinder is semi submerged in water. The surface velocity is
u(ϕ, t) = u0 · exp(iωt). Determine the velocity potential in the water.

11.10 A cylinder is semi submerged in water. Part of the surface of the cylinder is
vibrating with a velocity u0 exp(iωt) for −ϕ0 � ϕ � ϕ0. Determine the velocity
potential in the water.

11.11 Determine the modal density in a room with the volume V .

11.12 A source is travelling at a velocity v.The position of the source is given by
r the vector from an observer to the source. The vector velocity of the source is v.
Determine the frequency shift due to the motion of the source as experienced by the
observer.

11.13 Consider two ducts. The first one, length L , has one source Q = Q0 exp(iωt)
at x = x0. Both ends of the duct are acoustically hard. In the second duct, length
2L , there are two sources one at x = x0 and the other at x = −x0. The strength of
each source is the same as in the previous case. Determine the space average of the
pressure squared for both cases. The cross sections of the ducts are the same.

11.14 Determine the frequency average of 〈∣∣ p̂lmn
∣∣2〉 defined in Eq. (11.141).

11.15 A door is mounted in a wall between two rooms. The area of the wall is 6 m2

and of the door 2 m2. Below the door is an airgap. The area of the opening is
2 × 10−2 m2. In a particular frequency band the sound reduction index of the wall
is 40 dB and of the door 30 dB. Assume that the sound transmission coefficient
through the air gap is 1. Determine the effective sound reduction index for the entire
construction in this particular frequency band. Determine also the sound reduction
index after closing the gap.

11.16 An acoustic source with the power � is turned on at t = 0 and turned off
at t = t0. Determine how the sound pressure varies in the room, volume V , and
equivalent absorption area A.



Problems 161

11.17 Show that ∇2
1Φ − 1

c2
∂2Φ

∂t21
= ∇2Φ − 1

c2
∂2Φ

∂t2
when the coordinates in the

two systems are defined as x1 = γ(x − ut), y1 = y , z1 = z, t1 = γ(t − ux/c2) and
γ = c/

√
c2 − u2. Compare Sect. 11.8.



Chapter 12
Fluid Structure Interaction and Radiation
of Sound

Vibrating structures radiate noise. In fact, most sources of sound and noise, from
loudspeakers to engines and vehicles, are really due to vibrating structures. A typical
noise reducingmeasure is therefore to limit the transmission of structure-borne sound
from vibrating sources to large structures. The second step is to reduce the vibration
levels and radiation properties of the structure.

The acoustical coupling effects between structures and fluids are discussed in this
chapter. The sound radiation characteristics of simple plates are described by means
of the sound radiation ratio.

A fluid load on a structure influences its vibration level and its natural frequencies.
In particular, this is the case for lightweight structures enclosing an air volume. Exam-
ples of these structures are, for example, car and aircraft bodies. A structure exposed
to a heavy fluid-like water has an effective or apparent mass much greater than the
same plate vibrating in air. The loading on a plate from a heavy fluid has a marked
influence on the dynamic performance of the structure. For ship constructions, the
water loading on hull plates can have a very significant effect.

12.1 Radiation and Fluid Loading of Infinite Plates

In Sects. 11.4 through 11.7 acoustic fields generated by pulsating spheres and cylin-
ders were discussed. It was shown that structural vibrations induce a motion in a
surrounding fluid. The resulting particle velocity in the fluid creates a wave motion
and thus a pressure field in the fluid. This pressure or reacting load from the fluid
will influence the motion of the structure. The field in the fluid and the motion of the
plate are coupled.

The wave field induced in a fluid by a vibrating plate, or in this case an infinite
plane plate, can be derived based on some simple assumptions. Let a plate be oriented
in the x–y-plane as shown in Fig. 12.1. The mass per unit area of the plate is μ and its
bending stiffness is D. A plane bendingwave is forced to propagate along the positive
x-axis. The displacement in the z-direction of the plate isw. The corresponding lateral
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Fig. 12.1 Plane bending wave propagating along an infinite plate. The plate is radiating sound

velocity vz of the plate is

vz = v0 · exp[i(ωt − κx x)] (12.1)

where κx is the wave number for bending waves propagating along the fluid-loaded
plate. It is assumed that the amplitude of the bending wave is constant. The fluid is
the same on both sides of the infinite plate. The density of the fluid is ρ0 and the
speed of sound in the fluid is c. The plate radiates into semi-infinite space. There
can only be outgoing or evanescent waves in the fluid. Since the plate velocity is
independent of the y-coordinate so are the induced velocity potentials in the fluid.
These potentials are defined as

Φ+(x, z, t) = A+ · exp[i(ωt − kx x − kzz)] for z > 0
Φ−(x, z, t) = A− · exp[i(ωt − kx x + kzz)] for z < 0

(12.2)

The velocity potentials must satisfy the wave equation (11.19). Thus k2x + k2y = k2

where k = ω/c is the wave number in the fluid. Disregarding the effects of viscosity,
only the particle velocity vz in the fluid normal to the plate has to be considered.
Consequently, the particle velocity vx in the fluid parallel to the plate is different
from the plate velocity in the same direction. The boundary conditions are

vz = ∂w

∂t
= ∂Φ+

∂z
= ∂Φ−

∂z
for z = 0 (12.3)

For the boundary conditions to be satisfied anywhere on the surface of the plate, it
follows that kx = κx . The boundary conditions yield

A+ = −A− = iv0/kz; kz =
√

k2 − κ2
x = i

√
κ2

x − k2 (12.4)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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The additional solution, kz = −√
k2 − κ2

x , corresponds to waves propagating toward
the plate. Since no waves are reflected back from infinite space, this solution is
excluded. Thewave number kz is, neglecting losses in fluid and plate, real for k � κx ,
otherwise imaginary.

The pressure squared and the intensity induced in the fluid by one side of the
vibrating plate is for z > 0

Īz = 1

2
Re(p · v∗

z ) = 1

2
Re

[
−ρ0

∂Φ+
∂t

(
∂Φ+
∂z

)∗]
= ωρ0 |v0|2

2
Re

(
1

kz

)

| p̄|2 = 1

2

∣∣∣∣ρ0 ∂Φ+
∂t

∣∣∣∣
2

= (ωρ0)
2 |Φ+|2
2

(12.5)

For κx > k the z-component kz of the wave number in the fluid is imaginary. The
intensity Īz , as defined in Eq. (12.5), is consequently zero and there is no propagating
wave traveling away from the plate for κx > k. Considering that the time average
of the plate velocity squared is equal to |v0|2 /2 or |v̄|2 = |v0|2 /2 it follows that for
z > 0

Īz = 0; | p̄|2 = (ρ0c)2 |v̄|2 · exp[−2z
√

κ2
x − k2]∣∣1 − (κx/k)2

∣∣ for κx > k

Īz = ρ0c |v̄|2 · 1√
1 − (κx/k)2

;

| p̄|2 = (ρ0c)2 |v̄|2 · 1∣∣1 − (κx/k)2
∣∣ for κx < k (12.6)

The vibrating plate always generates a pressure in the fluid. For κx > k the gener-
ated wave propagates along the plate. The pressure amplitude decays exponentially
with increasing distance from the plate as illustrated in Fig. 11.14. For κx < k, a
propagating wave travels away from the plate. The direction of propagation is ϕ as
shown in Fig. 12.1. The angle ϕ is given by

cosϕ = kz/k =
√
1 − (κx/k)2 (12.7)

For kz real and k approaching κx the intensity of the radiated acoustic power tends
to be very high or in theory infinite. This implies that in order to maintain the lateral
velocity at vz = v0 · exp[i(ωt − κx x)] an increasing power input to the plate is
required as k tends to κx . For k = κx the plate has infinite losses due to the radiated
power and the motion of the plate cannot be maintained.

For a plate in vacuo, the wave number for bending waves is κ = (μω2/D)1/4 as
discussed in Chap. 8. However, the load of a fluid will influence the motion of the

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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plate and thus also the wave number. For a plate in flexure in a fluid, the displacement
w must satisfy the wave equation (8.20)

∇2(∇2w) + μ

D
· ∂2w

∂t2
= − p

D
(12.8)

The pressure p from the fluid on the plate is acting in the opposite direction to the
motion w of the plate; therefore, a minus sign. In the expression (8.20), the force f
per unit area is driving the plate. The reacting pressure p is equal to the difference
between the pressure p+ on the top side of the plate and the pressure p− at the other
side of the plate. Thus

p = p+ − p− = −ρ0

[
∂Φ+
∂t

− ∂Φ−
∂t

]
z=0

(12.9)

For a bending wave propagating along the x-axis with a velocity vz = v0 ·exp[i(ωt −
κx x)] the wave Eq. (12.9) can, after being derivated with respect to t, be written as

∇2(∇2vz) + μ

D
· ∂2vz

∂t2
= −ρ0

D

[
∂2Φ+
∂t2

− ∂2Φ−
∂t2

]
z=0

(12.10)

The expressions for vz , Φ+ and Φ−, Eqs. (12.1), (12.2), and (12.4) inserted in
Eq. (12.10) give

vz · [κ4
x − κ4 − 2iρ0ω

2/(Dkz)] = 0 (12.11)

For nontrivial solutions and following the definition of kz = √
k2 − κ2

x , Eq. (12.4),
it follows that κx must satisfy the equation

κ4
x = κ4 + 2ω2ρ0

D
√

κ2
x − k2

For a fluid load on only one side of the plate, the corresponding expression is

κ4
x = κ4 + ω2ρ0

D
√

κ2
x − k2

= κ4

[
1 + ρ0

μ
√

κ2
x − k2

]
(12.12)

Numerical methods must be used to solve the Eq. (12.12). Iteration can be used to
find some of the basic solutions to Eq. (12.12) by first setting κx equal to κ on the
right-hand side of the equation to calculate a new κx and so forth. The case for
which κx tends to k is discussed in Problem 12.1. However, approximate solutions
can be obtained for certain cases, for example, if the second term inside the bracket
of Eq. (12.12) is small as compared to unity. For κx � k one set of solutions is
obtained as

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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κx = ±κ

[
1 + ρ0

μ
√

κ2
x − k2

]1/4

≈ ±κ

[
1 + ρ0

4μ
√

κ2
x − k2

]
≈ ±κ

[
1 + ρ0

4μκx

]

(12.13)
Another set of solutions is

κx ≈ ±iκ

[
1 − iρ0

4μκx

]
(12.14)

The high frequency solutions κx ≈ k are discussed in Problem 12.1. However, for
this solutionκx > k which according to Eq. (12.4)means that thewave number kz for
the outgoing wave is imaginary. Consequently, this wave type does not radiate any
sound from the plate. It is only the first pair of solutions (12.13) representing waves
traveling along the plate, which are of importance for the acoustic power radiated
from the plate. The positive wave number represents a wave propagating along the
positive x-axis. The last pair of solutions (12.14) corresponds to evanescent waves.

The fluid loading increases the wave number for the traveling waves. The fluid
loading does not influence the bending stiffness of the plate. The increased wave
number is attributed to the added mass �μ caused by the fluid loading. In the low
frequency region, part of the fluid moves with the plate thus increasing its apparent
mass. For a plate with a fluid on both sides, the apparent mass μtot of the plate is
for free plate vibrations obtained by setting κx = (μtotω

2/D)1/4 in Eq. (12.13). The
result is

μtot = μ + �μ ≈ μ + 2ρ0/κ for κ � k and μ � 2ρ0/κ (12.15)

For a plate vibrating in air the addedmass effect can be neglected except for very light
and stiff panels like lightweight sandwich or honeycomb panels. This is discussed
in Chap.14. For a plate vibrating in air the wave number κx can be set to equal
κ, the wave number for the plate vibrating in vacuo, as long as 2ρ0/(κμ) � 1.
The wave number for flexural waves propagating in a plate is κ = (μω2/D)1/4

as shown in (3.117). In the low frequency range κ > k, the added mass �μ due
to fluid loading is 2ρ0/κ. The added mass effect is consequently decreasing for
increasing frequencies. For a plate submerged in water, the fluid loading effect can
be considerable as shown in Fig. 12.2. The figure shows the wave number, flexural
waves, for a 4mm steel plate with a water load on one side and the wave number for
the same plate vibrating in vacuo. In the high frequency region, the wave number
κx is larger than but approaching k as discussed in Problem 12.1. This particular
wave does not radiate acoustical power since kz is imaginary. The amplitude of the
pressure in the fluid induced by this wave type is decaying weakly with increasing
distance from the plate. The added mass effect, corresponding to this wave number,
is substantial in the high frequency region. This type of wave is, therefore, not readily
excited in the very high frequency region.

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Fig. 12.2 wave numbers for flexural waves traveling along a 4mm infinite steel plate in vacuum
andwith a water load on one side. The wave number in water is also shown. For f > fc one solution
is given by Eq. (12.16)

The weight per area of the 4mm steel plate is 30kg/m2. The addedmass due to the
water load on one side is 96 kg/m2 at 100Hz and 32kg/m2 at 1kHz. For plates with
a mass per unit area of more than 10kg/m2 the fluid loading in air can be neglected.

In the high frequency region or for k > Reκx one set of solutions to Eq. (12.12)
can be written as

κx = ±κ(1 − iηr/4) (12.16)

where ηr is equivalent to a loss factor for bending waves as defined in Sect. 5.6. For
ηr � 1 and k > Reκ Eq. (12.16) inserted in Eq. (12.12) gives

ηr ≈ ρ0

μ
√

k2 − κ2
(12.17)

The loss factor or rather the losses are due to the acoustic power radiated from one
side of the plate. In addition, κx = ±iκ(1 − iηr ) are also solutions to Eq. (12.12)
in the high frequency region. These solutions represent evanescent waves. It can be
concluded that for free vibrations of an infinite plate in a fluid, the load induced by
the fluid increases the apparent mass of the plate in the low frequency region or for
κx > k. For k > Reκ the plate radiates acoustic power resulting in an energy flow
from the panel. This energy loss is included in the loss factor ηr . For k > Reκ there
is no mass load on the plate. The frequency for which k = κ, or rather k = Reκ, is
called the critical frequency fc. For a homogeneous single-leaf panel, thickness h,

density ρp, Young’s modulus E , and Poisson’s ratio ν, the critical frequency fc for
which k = ω/c = Reκ = κ0 is

fc = c2

2π

(
μ

D0

)1/2

= c2

2πh

[
12ρp(1 − ν2)

E0

]1/2
(12.18)

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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The speed of sound in the fluid is c. The critical frequency is inversely proportional to
the thickness of the plate. For a 4mm steel plate, the critical frequency is 2890Hz in
air. For the same plate in water fc it is 53kHz. The wave number for flexural waves,
plate in vacuo, can be written as κ = (2π/c)

√
f · fc. Neglecting the fluid loading

in the expressions (12.6) the ratio (κx/k)2 is equal to fc/ f . Considering this, the
intensity Īz induced by a vibrating and weakly loaded infinite plate can be written as

Īz = ρ0c |v̄|2 σ̄r

σr = 0 for f < fc; σr = 1√
1 − fc/ f

for f > fc (12.19)

The function σr is the sound radiation ratio or sound radiation efficiency of the
plate. A completely stiff and infinite piston vibrating with the velocity v radiates the
intensity Īz = ρ0c |v̄|2. The function σr defines the radiation efficiency of a flexible
plate as compared to an infinite and rigid piston vibrating with the same rms velocity
as the plate.

In summary, the wave number for flexural waves traveling along a homogeneous
plate with a fluid loading on one side can be approximated by the expressions

κx ≈ κ

[
1 + ρ0

4μκ

]
for κ > k or f < fc;

κx = κ(1 − iηr ) for κ < k or f > fc; ηr ≈ ρ0

μ
√

k2 − κ2

For a panel having a fluid loading on both sides, the terms containing ρ0 should be
multiplied by a factor 2.

12.2 Radiation—General Formulation

The sound pressure in a fluid induced by a source region and a vibrating structure
can be derived by means of the so-called Kirchhoff–Helmholtz integral equation.
The basis for the equation is the by now familiar Green’s function. However, Green’s
function is not readily derived except for vibrating structures with simple geometries.
One such case is an infinite flat plate shown in Fig.12.1. On the upper side of the
plate, i.e., for z > 0 there is a fluid, which is unbounded in the upper half plane. The
density and speed of sound in the fluid are ρ0 and c, respectively. A source region is
located in the fluid and defined by its FT f (r). The pressure in the fluid or rather its
FT should satisfy the equation

∇2 p + k2 p = − f (r) (12.20)
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The wave number in the fluid is k. Let the Green’s function G(r|r0) be the solution
to the equation

∇2G + k2G = −δ(r − r0) (12.21)

Equation (12.20) is multiplied by the Green’s function G(r|r0) and Eq. (12.21) by
p(r). The resulting two expressions are subtracted resulting in

p∇2G − G∇2 p = −δ(r − r0)p(r) + f (r)G(r|r0) (12.22)

This expression is rewritten as

div[p · gradG − G · gradp] = −δ(r − r0)p(r) + f (r)G(r|r0) (12.23)

An integration over the entire volume V of the upper half plane is thereafter carried
out. The resulting integral on the left-hand side of Eq. (12.23) can be simplified using
the Gauss theorem, i.e., the identity

∫
divadV =

∫
n · adS

The unit vector n is normal to the surface S over which the integration is carried out.
The unit vector n is pointing out from the surface. The integration of the expression
(12.23) yields

∫
dSn[p · gradG − G · gradp] = −

∫
dV δ(r − r0)p(r) +

∫
dV f (r)G(r|r0)

(12.24)
For a time dependence exp(iωt) the particle vector velocity in the fluid is obtained
from Eq. (11.7) as

v = igradp/(ωρ0) (12.25)

Following the definition of a Dirac function, the first part of the integral on the right-
hand side of Eq. (12.24) is quite simply equal to −p(r0). Consequently, Eq. (12.24)
is reduced to

p(r0) = −
∫

dSn[p · gradG + iωρ0v · G] +
∫

dV f (r)G(r|r0)

Since G(r|r0) = G(r0|r) the vectors r and r0 can be interchanged. Thus

p(r) = −
∫

dS0n[p · gradG + iωρ0v · G] +
∫

dV0 f (r0)G(r|r0) (12.26)

The expression (12.26) is referred to as the Kirchhoff–Helmholtz or quite simply
the Helmholtz integral equation. As the integral equation stands, the pressure on the
plate, the velocity of the plate as well as the function G must be known in order to

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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calculate the pressure p at a point r in the fluid. However, the general expression
(12.26) is simplified considerably if a function G can be found satisfying the basic
differential equation (12.21) as well as the boundary condition n ·gradG = 0 on the
surface of the plate. A solution satisfying these conditions is discussed in the next
section.

12.3 Green’s Function—Rigid Plane Boundary

The Green’s function satisfying Eq. (12.21) and the boundary condition n ·gradG =
0 on the surface of a flat plate is written

G(r|r0) = g1(r|r0) + g2(r|r0)

where g1 is the particular solution and g2 is the complementary solution toEq. (12.21).
The function g2 should be chosen so that the boundary condition n · gradG = 0 is
satisfied on the surface of the plate.

In order to find the required solutions let a point source be located at r0 =
(x0, y0, z0) above a totally reflecting and flat plate oriented in the x–y-plane. The
particular solutionmust be equal to a spherical wave propagating away from the ideal
point source. Omitting the time dependence exp(iωt), g1 is given by Eq. (11.57) as

g1(r|r0) = e−ikr1

4πr1
; r1 = |r − r0| =

[
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
]1/2
(12.27)

The complementary solution g2 should satisfy the basic homogenous equation and
also be such that on the boundary

n · gradG = n · grad(g1 + g2) = 0 (12.28)

This means, since n = (0, 0,−1) on the surface of the plate, that

∂

∂z
(g1 + g2) = 0

The following argument can be used to find g2. For a source above a completely
reflecting plane, the field above the plate at z = 0 is due to the real source at
(x0, y0, z0) and an imaginary source at r ′

0 = (x0, y0,−z0) as discussed in Sect. 11.9.
This means that g2 above the plate at z = 0 is of the form

g2(r|r0) = e−ikr2

4πr2
; r2 = ∣∣r − r ′

0
∣∣ =

[
(x − x0)

2 + (y − y0)
2 + (z + z0)

2
]1/2

(12.29)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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The function r2 is equal to the distance between the observation point (x, y, z) and
the location of the imaginary source at (x0, y0,−z0). The function g2 satisfies the
basic homogenous differential equation for z � 0. Further

∂

∂z
(g1 + g2) = −e−ikr1

4πr21

(
ik + 1

r1

)
(z − z0) − e−ikr2

4πr22

(
ik + 1

r2

)
(z + z0)

At the boundary z = 0, r1 is equal to r2 which gives

∂

∂z
(g1 + g2) = 0 for z = 0

Consequently, the Green’s function for a rigid boundary at z = 0 is equal to the sum
of g1 and g2 or

G(r|r0) = e−ikr1

4πr1
+ e−ikr2

4πr2

r1 =
[
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
]1/2 ;

r2 =
[
(x − x0)

2 + (y − y0)
2 + (z + z0)

2
]1/2

(12.30)

For z > 0, Green’s function (12.30) is the solution to the equation

∇2G + k2G = −δ(r − r1) − δ(r − r2); r1 = (x0, y0, z0); r2 = (x0, y0,−z0)
(12.31)

This means that the field induced by a point source above a completely reflecting
plate is equivalent to the field resulting from two identical point sources located
symmetrically with respect to the plane z = 0 in the absence of the plate. The
analogy is shown in Fig. 11.15.

Returning to the basic integral equation (12.24), the surface integration should
be carried out across the x–y-plane and over a semi-sphere above the plane closing
the surface. At large distances r from a source region the functions p and G are
of the form exp(−ikr)/r . The contribution to the surface integral, left-hand side of
Eq. (12.24), over the half sphere approaches zero as the radius r goes to infinity. This
is the Sommerfeld radiation condition. The total integral is thus determined by the
contribution of the surface integral over the plate only. On the surface of the plate,
i.e., for z = 0, the function G is equal to

G(x, y, 0|x0, y0, z0) = e−ikr

2πr
r =

[
(x − x0)

2 + (y − y0)
2 + z20

]1/2
(12.32)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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The Green’s function can also be written as

G(x, y, z|x0, y0, 0) = e−ikr

2πr
r =

[
(x − x0)

2 + (y − y0)
2 + z2

]1/2

If part of the plate, area S, is given a velocity v(x, y) with the time dependence
exp(iωt) the resulting pressure in the fluid above the plate in the absence of any
sources in the fluid, f (r) = 0, is according to Eq. (12.26) and for n = (0, 0,−1)
equal to

p(r) =
∫∫

S0
iωρ0v(x0, y0)G(x, y, z|x0, y0, 0)dx0dy0

=
∫∫

S0
iωρ0v(x0, y0)

e−ikr

2πr
dx0dy0

r =
[
(x − x0)

2 + (y − y0)
2 + z2

]1/2
(12.33)

This special case of the general Helmholtz integral equation determines the pressure
p in a fluid induced by a flat, vibrating, and infinite plate.

If only a small part of the infinite plate is allowed to vibrate the expression (12.33)
can be simplified if the pressure is only to be calculated at points at large distances
from the center of the vibrating area. The problem is illustrated in Fig. 12.3. The
distance r from one such observation point to any point on the vibrating surface is as
a first approximation equal to the distance rc to the center of the plate. However, the
phase of the function exp(−ikr) can, since the product kr is not necessarily small,
be a rapidly varying function as x0 and y0 are traversing the vibrating surface of the
plate. Since r in the denominator in Eq. (12.33) is approximately constant, this factor
can be placed outside the integral. The result or the so-called Rayleigh formula is
thus equal to

Fig. 12.3 Radiation from a
vibrating area in the
x–y-plane. The observation
point is far from the radiating
area
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p(r) = 1

2πrc

∫∫
S0

iωρ0v(x0, y0)e
−ikrdx0dy0; rc � 1

rc =
[
x2 + y2 + z2

]1/2 ; r =
[
(x − x0)

2 + (y − y0)
2 + z2

]1/2
(12.34)

The usefulness of this expression is demonstrated in subsequent sections.

12.4 Spatial Fourier Transforms—Several Variables

For many problems and in particular for problems concerning the coupling between
structures and fluids, Fourier transforms with respect to space coordinates are
extremely useful. Spatial FT were introduced in Sect. 5.4. The spatial FT ũ(kx , ky)

of a function u(x, y) which is defined for all x and y is according to Eq. (5.61) given
as

ũ(kx , ky) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y) · e−i(kx x+ky y)dxdy

The inverse transform is

u(x, y) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ũ(kx , ky) · ei(kx x+ky y)dkxdky

As an example, consider a finite rectangular plate oriented in the x–y-plane with the
corners at (Lx/2, L y/2), (−Lx/2, L y/2), (−Lx/2,−L y/2), and (Lx/2,−L y/2).
Let the velocity of the plate be given by v(x, y) · exp(iωt). The spatial FT of the
velocity is ṽ. The time and space average of the velocity squared over the plate
area is

〈|v̄|2〉 = 1

2Lx L y

∫∫
s
|v|2 dxdy = 1

2Lx L y

∫∫
s
vv∗dxdy (12.35)

The factor 2 in the denominator is due to the time dependence exp(iωt) as discussed
in Chap.2. Introducing the spatial FT of v and the corresponding transform for v∗ in
Eq. (12.35) the result reads

〈|v̄|2〉 = 1

2Lx L y

∫∫
S
dxdy

1

(2π)4

∫ ∞

−∞

∫ ∞

−∞
ṽ(kx , ky)

· ei(kx x+ky y)dkxdky

∫ ∞

−∞

∫ ∞

−∞
ṽ∗(ξ, η) · e−i(ξx+ηy)dξdη

Without loss of generality, the order of integration can be changed. Starting with the
integration over the x and y coordinates, the integral is rewritten as

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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〈|v̄|2〉 = 1

2Lx L y(2π)4

∫ ∞

−∞

∫ ∞

−∞
ṽ(kx , ky) · dkxdky

∫ ∞

−∞

∫ ∞

−∞
ṽ∗(ξ, η)dξdη

∫∫
S
dxdy exp[i x(kx − ξ) + iy(ky − η)] (12.36)

The integral over x and y is according to the definition of the two-dimensional Dirac
function equal to

∫∫
S
dxdy exp[i x(kx − ξ) + iy(ky − η)] = (2π)2δ(ξ − kx )δ(η − ky)

This expression inserted in (12.36) yields

〈|v̄|2〉 = 1

2Lx L y(2π)2

∫ ∞

−∞

∫ ∞

−∞
∣∣ṽ(kx , ky)

∣∣2 dkxdky (12.37)

In a similar way, the average power radiated from the surface can be derived as a
function of the spatial Fourier transforms p̃ and ṽ of the pressure on the plate and
the velocity of the plate. The resulting integral is equal to

〈∣∣�̄∣∣〉 = 1

2(2π)2
Re

∫ ∞

−∞

∫ ∞

−∞
p̃(kx , ky)ṽ

∗(kx , ky)dkxdky (12.38)

If, in three dimensions, the Fourier transforms of f (r) is f̃ (k) and if f (r) is contin-
uous and if the function and its derivatives approach zero as r goes to infinity then
the spatial Fourier transforms of ∇2 f and ∇2(∇2 f ) can also be obtained.

Consider the integral

J =
∫ ∞

−∞
∇2 f (r) · exp(−i kr)d3r

By means of partial integration the result is, considering the boundary conditions

J =
∫ ∞

−∞
f (r) · ∇2[exp(−ikr)]d3r

= −
∫ ∞

−∞
f (r) · (k2x + k2y + k2z )[exp(−i kr)]d3r

= − (k2x + k2y + k2z )
∫ ∞

−∞
f (r) · [exp(−i kr)]d3r = −(k2x + k2y + k2z ) f̃ (k)

This means that the Fourier transform of ∇2 f in three dimensions is

FT∇2 f (r) = −(k2x + k2y + k2z ) f̃ (k) (12.39)
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In a similar way
FT∇2[∇2 f (r)] = (k2x + k2y + k2z )

2 f̃ (k) (12.40)

In two dimensions, the result reads

FT∇2 f (x, y) = −(k2x + k2y) f̃ (kx , ky) (12.41)

It was demonstrated in Sect. 12.3 that the Green’s function defined in Eq. (12.31) is,
for z > 0, the solution to the equation

∇2G + k2G = −δ(r − r1) − δ(r − r2)

r1 = (x0, y0, z0); r2 = (x0, y0,−z0) (12.42)

The three-dimensional Fourier transform G̃ of G(r|r0) satisfying (12.42) is obtained
using the results (12.39). Define the function G and its Fourier transform as

G(r|r0) = 1

(2π)3

∫ ∞

−∞
G̃(k) exp(i kr0)d3k

G̃(k) =
∫ ∞

−∞
G(r|r0) exp(−i kr0)d3r0

The function G̃ is obtained by multiplying Eq. (12.42) by exp(−i kr0). Integration
over space is thereafter carried out. The result is

G̃[k2 − (k2x + k2y + k2z )] = − exp[−i(kx x + ky y + kzz)]+ exp[−i(kx x + ky y − kzz)]

Thus

G̃ = 2 cos(kzz) · exp[−i(kx x + ky y)]
k2x + k2y + k2z − k2

(12.43)

In order to calculate the pressure in a fluid induced by a vibrating flat plate theGreen’s
function on the surface of the plate must be known as displayed by the Eqs. (12.32)
and (12.33). At the boundary, i.e., for z = 0, the function G is

G(x, y, 0|x0, y0, z0) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp[ikx (x0 − x) + iky(y0 − y)]dkxdky

×
∫ ∞

−∞
2 exp(ikzz0)

k2x + k2y + k2z − k2
dkz (12.44)

The last integral can be evaluated by means of contour integration in the upper half
of the complex plane. The integrand has one pole in the upper half plane. This pole
is equal to
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kz = i
√

k2x + k2y − k2

A contour integration follows a path C, a semicircle in the upper half of the complex
plane closed by the real axis of kz . The result is

∮
C

2 exp(ikzz0)

k2x + k2y + k2z − k2
dkz =

∫ ∞

−∞
2 exp(ikzz0)

k2x + k2y + k2z − k2
dkz

=
2π exp(−z0

√
k2x + k2y − k2)√

k2x + k2y − k2

Combining this result and the original expression (12.44) for G gives

G(x, y, 0|x0, y0, z0)

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

×
exp[ikx (x0 − x) + iky(y0 − y) − z0

√
k2x + k2y − k2)]√

k2x + k2y − k2
(12.45)

This formulation of Green’s function will be used in the next section to determine
the radiation from an infinite point-excited plate.

12.5 Radiation from Infinite Point-Excited Plates

This problem might seem to be very academic. However, for fairly large plates with
high loss factors the effects of the boundary conditions on the radiation pattern can
be small with respect to the total radiation from the plate. In particular, this is the case
for large plates in heavy fluids like water. It has been shown that hull sections of a
submarine in fact radiate in a similarway as point- or line-excited infinite fluid-loaded
plates.

Again, consider an infinite and flat plate oriented in the x–y-plane. On the upper
side of the plate, for z > 0, there is a fluid with density ρ0 and speed of sound c.
The fluid is, except for the plate, unbounded. A point force F · exp(iωt) is exciting
the plate at the origin, x = y = 0. The direction of the force is perpendicular to the
plate. A pressure p · exp(iωt) is induced by the fluid due to the motion of the plate.
The resulting velocity of the plate is v(x, y) ·exp(iωt). Omitting the time-dependent
function the equation of motion for the plate is

∇2(∇2v) − κ4v = iωFδ(x)δ(y)/D − iω p/D (12.46)
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The wavenumber for flexural waves on the plate in vacuo is κ. The bending stiffness
of the plate is D. The force and velocity are defined positive in the same direction.
The pressure p induced by the fluid on the plate is counter acting its motion. The
velocity of the plate can be expressed as a Fourier integral. Thus

v(x, y) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ṽ(ξ, η) exp[i(xξ + yη)]dξdη

ṽ(ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
v(x, y) exp[−i(xξ + yη)]dxdy (12.47)

The FT of ∇2(∇2v) is according to (12.40) equal to

FT∇2(∇2v) = (ξ2 + η2)2ṽ(ξ, η) (12.48)

The FT of the first expression on the right-hand side of Eq. (12.46) is quite simply
equal to iωF/D. This follows directly from the definition of the Dirac function. The
pressure reacting on the plate at (x, y, 0) is from Eqs. (12.32) to (12.33) given by

p(x, y, 0) =
∫ ∞

−∞

∫ ∞

−∞
iωρ0v(x0, y0)G(x, y, 0|x0, y0, 0)dx0dy0 (12.49)

In Eq. (12.49) the Fourier transforms of the plate velocity and the Green’s function,
Eq. (12.45), are introduced as

v(x0, y0) =
∫ ∞

−∞

∫ ∞

−∞
ṽ(ξ, η) exp[i(x0ξ + y0η)]dξdη

G(x, y, 0|x0, y0, 0) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

exp[ikx (x0 − x) + iky(y0 − y)]√
k2x + k2y − k2

These transforms are inserted in (12.49). The order of integration is changed giving

p(x, y) = iωρ0

(2π)4

∫ ∞

−∞

∫ ∞

−∞
ṽ(ξ, η)dξdη

∫ ∞

−∞

∫ ∞

−∞
exp(−ikx x − iky y)√

k2x + k2y − k2
dkxdky

×
∫ ∞

−∞

∫ ∞

−∞
exp[i x0(kx − ξ) + iy0(ky − η)]dx0dy0 (12.50)

The last integral is based on the definition of the FT of a two-dimensional Dirac
function equal to

∫ ∞

−∞

∫ ∞

−∞
exp[i x0(kx − ξ) + iy0(ky − η)]dx0dy0 = (2π)2δ(ξ − kx )δ(η − ky)
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This result in combination with (12.50) yields

p(x, y) = iωρ0

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ṽ(ξ, η)

exp[i(ξx + ηy)]√
ξ2 + η2 − k2

dξdη (12.51)

The spatial FT of p consequently compares the general definition (12.47) of Fourier
transforms

p̃(ξ, η) = ωρ0ṽ(ξ, η)/λ; λ =
√

k2 − ξ2 − η2 (12.52)

In the basic Eq. (12.46), each term is replaced by its spatial Fourier transform. The
result is

ṽ[(ξ2 + η2)2 − κ4] = iωF

D
− iω2ρ0ṽ

Dλ

ṽ = iωF

D[(ξ2 + η2)2 − κ4 + iω2ρ0/(Dλ)] (12.53)

The time average of the total power � radiated by the plate is

�̄ = 1

2
Re

∫∫
pv∗dxdy = 1

2
Re

∫∫
p̃ṽ∗dξdη = 1

2
Re

∫∫
|ṽ|2 ωρ0

(2π)2λ
dξdη

(12.54)
The integrand is only real as long as ξ2 + η2 � k2. If it is assumed that F = 0 for
frequencies larger than f1 and f1 � fc where fc is the critical frequency defined in
(12.18), then k < κ. Based on these assumptions an approximate expression for ṽ in
the frequency range f � fc is

ṽ = −iωF

D[κ4 − iω2ρ0/(Dλ)]
This expression inserted in Eq. (12.54) gives the time average of the radiated power
as

�̄ = 1

8π2 Re
∫∫

ω3ρ0 |F |2
D2λ[κ8 + ω4ρ20/(Dλ)2]dξdη (12.55)

The integration is carried out for k2 � ξ2 +η2 � 0. Outside this region λ is complex
and no power is radiated. It is convenient to change to cylindrical coordinates as

ζ2 = ξ2 + η2; λ =
√

k2 − ζ2

dξdη/λ → 2πζdζ/λ → −2πdλ

The wave number κ for the plate is given by κ4 = μω2/D where μ is the mass per
unit area of the plate. Considering these substitions and after changing the integration
limits, the expression (12.55) is simplified to
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�̄ = ρ0 |F |2
4πωμ2

∫ k

0

λ2

λ2 + (ρ0/μ)2
dλ =ρ0 |F |2

4πωμ2

[
k − ρ0

μ
arctan

(
kμ

ρ0

)]

For a heavy fluid loading on the plate, i.e., for kμ/ρ0 � 1 the arctan term can
be expanded in a Taylor series. Substituting arctan(z) by z − z3/3 in the result
above, the time average of the radiated power from the point-excited infinite plate is
given as

�̄ = |F |2 k3

12πωρ0
= |F |2 k2

12πcρ0
=

∣∣F̄∣∣2 k2

6πcρ0
(12.56)

This is indeed a remarkable result. The radiated acoustical power is not a function
of the material parameters of the plate but only of properties of the fluid and the
frequency. The same result is obtained if the plate is exchanged by a membrane as
shown by Morse and Ingard, [23]. The result (12.56) was first derived by Maidanik
and Kerwin using a different approach as presented in Ref. [152]. It should be noted
that F in Eqs. (12.46) and (12.56) is the amplitude of the force and not the rms value
of the force as used in Ref. [152]. This distinction is not made in some references.
This can cause some confusion.

For an infinite plate with a fluid on both sides the density ρ0 is replaced by 2ρ0.
The area of the radiating plate and the vibration resistance are both doubled. This
means that the total radiated power is the same for plates with fluid loading on one
or two sides.

For a light fluid loading, i.e., for kμ/ρ0 � 1 and for k � κ or f � fc the second
term inside the bracket in the denominator of the integral (12.55) can be neglected.
The radiated power is thus equal to

�̄ = ρ0 |F |2
4πμ2c

= ρ0
∣∣F̄∣∣2

2πμ2c
(12.57)

In the high frequency region, for k � κ or f � fc the corresponding result for the
lightly loaded plate is

�̄ = |F |2
16

√
μD

=
∣∣F̄∣∣2
8
√

μD
(12.58)

It is assumed that the internal losses of the plate are negligible. This means that all
the power fed into the plate is lost as radiated acoustic power from the plate. The
expression (12.58) is readily derived by considering the point mobility for an infinite
plate as discussed in Sect. 8.4. The implication of the results (12.57) and (12.58)
above are discussed in Sect. 12.8.

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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12.6 Mobilities of Fluid-Loaded Infinite Plates

The point mobility of a structure is an important parameter. As discussed in Sect. 2.8
and elsewhere, the power spectral density G� of the acoustic power induced in a
structure by a force having the power spectral density G F F is G� = G F FReY where
Y is the point mobility of the structure. Clearly, one way to reduce the input power
to a structure is, if possible, to change its point mobility. It is therefore essential to
model the mobility functions of various types of structures. In previous discussions,
the mobilities have been derived without considering the effects of fluid loading.
In most cases, this is a valid approximation. However, for a structure exposed to a
heavy fluid loading the mobility would differ as compared to that valid for the same
structure in vacuo. Real structures are obviously finite. However, the response of or
the energy flow to a finite structure can very often be estimated by considering the
coupling between the corresponding infinite structures. This was already discussed
in Sect. 8.5.

For an infinite structure, as before oriented in the x–y-plane and with a fluid load
on one side as described in Sect. 12.5, the plate velocity v at the excitation point is
from Eq. (12.53) given as

v̂ = iω F̂

(2π)2D

∫ ∞

−∞

∫ ∞

−∞
dξdη

(ξ2 + η2)2 − κ4 + iρ0κ4/(μλ)

The plate has certain losses. These losses are included in the standard way by writing
κ4 = κ4

0(1 − iηp) where ηp is the loss factor of the plate. By changing to cylindri-
cal coordinates as previously demonstrated and by including the loss factor ηp the
result is

v̂ = iω F̂

(2π)D

∫ ∞

0

ζdζ

ζ4 − κ4 + iηpκ4 + iρ0κ4/(μλ)
; λ =

√
k2 − ζ2 (12.59)

If the fluid loading can be neglected the velocity v is given by

v̂ = iω F̂

(2π)D

∫ ∞

0

ζdζ

ζ4 − κ4 + iηpκ4

This integral was discussed in Sect. 8.5. For an infinite plate with negligible fluid
loading the point impedance is obtained from (8.77) as

Y∞ = 1

8
√

μD

For a plate exposed to a heavy fluid, the last term in the denominator of Eq. (12.59)
cannot be neglected. The parameterλ is a function of ζ whichmakes a straightforward
integration impossible. Crighton [153–155] has published a large number of papers
on the effect a fluid load has on a plate. When a fluid is very heavy like water, certain

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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simplifications can be made when solving Eq. (12.59) as suggested by Crighton. As
a starting point, a parameter Q is defined as

Q =
(
ρ0κ

4/μ
)1/5

(12.60)

For a fluidwith a high density, ρ0/μ � κ and Q � κ. Considering these assumptions
the basic expression (12.59) is reduced to

v̂ = iω F̂

(2π)D

∫ ∞

0

ζdζ

ζ4 + i Q5/λ
= iω F̂

(2π)D

∫ ∞

0

(ζ4λ2 − iλQ5)ζdζ

ζ8λ2 + Q10

For simplicity, the integral is written as

v̂ = iω F̂

(2π)D
(J1 + J2)

J1 =
∫ ∞

0

ζ4λ2ζdζ

ζ8λ2 + Q10 ; J2 =
∫ ∞

0

−iλQ5ζdζ

ζ8λ2 + Q10 (12.61)

The integrand has poles for ζ8λ2 + Q10 = 0. However, Q � k which according to
(12.59) implies that ζ8λ2 = ζ8(k2 − ζ2) ≈ −ζ10 . The poles ζn are consequently

ζn ≈ Q · e−iπn/5 for n = 0, 1, . . . 9, (12.62)

At any of these poles λ2 = k2 − ζ2 ≈ −ζ2 and according to (12.59), λ = −i(ζ2 −
k2)1/2 ≈ −iζ. For a time dependence exp(iωt) the pressure in the fluid is of the
form

p(r, t) ∝
∮

�̃(ζ)ζ exp[i(ωt − rζ)]dζ

A contour integration of this integral can only include poles with negative arguments
for the integral to be finite. The same is the case for Eq. (12.61). For |ζn| � k the
expressions J1 and J2 of the integral (12.61) can be approximated as

J1 =
∫ ∞

0

ζ4λ2ζdζ

ζ8λ2 + Q10 ≈
∫ ∞

0

ζ7dζ

ζ10 − Q10 ;

J2 =
∫ ∞

0

−iλQ5ζdζ

ζ8λ2 + Q10 ≈ 1

2

∫ ∞

−∞
Q5ζ2dζ

ζ10 − Q10 (12.63)

The integral J2 is solved bymeans of integration along the path shown in Fig.12.4.
Thus

J2 = −1

2

∮

C

Q5ζ2dζ

ζ10 − Q10 = −iπ
4∑

n=0

ζ2n Q5

10ζ9n
= − iπ

10Q2

4∑
n=0

e7inπ/5 (12.64)
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Fig. 12.4 Integration path
for solving Eq. (12.61)

The other integral J1 includes an odd function and can therefore not directly be
extended to minus infinity. The standard procedure for this type of problem is to
multiply the integrand by ln ζ. Thereafter, the contour integration is carried out.
Thus, consider the integral

J3 =
∮

ln ζ · ζ7dζ

ζ10 − Q10

The argument for ζ along the positive axis is 0 and along the negative axis −iπ for
the contour is shown in Fig.12.4. Thus

J3 = 0 − iπ
∫

ζ7dζ

ζ10 − Q10 −
∫ ∞

0

ln |ζ| · ζ7dζ

ζ10 − Q10 −
∫ 0

−∞
ln |ζ| · ζ7dζ

ζ10 − Q10

J1 = −J3/(iπ) = −2
4∑

n=0

ζ7n ln |ζn|
10ζ9n

= − 2

10Q2

4∑
n=0

−inπ

5
· e2inπ/5

The total integral J is thus equal to

J = J1 + J2 = − iπ

10Q2

4∑
n=0

(
e7iπn/5 − 2n

5
· e2iπn/5

)
= 2iπ

10Q2 [1 − i tan(π/10)]

(12.65)
For frequencies well below the critical frequency, the point mobility of heavily fluid-
loaded plates is obtained from (12.61) to (12.65) as

Y∞ =
(

ω

D3ρ20

)1/5

[1 − i tan(π/10)] /10 (12.66)

The point mobility for a plate clearly depends on the type of fluid loading on the
plate. This is discussed further in next section.
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12.7 Discussion of Results—Infinite Fluid-Loaded Plates

Maidanik and Kerwin [152] have derived the acoustical power radiated by a fluid-
loaded plate. The plate is either considered to be excited by a point force, line force,
or a point moment. In Sect. 12.6 the first case is discussed, the other results can
be derived in a similar way. The corresponding mobilities have been investigated by
Crighton. Some of themain results byCrighton are presented in [153]. The procedure
used by Crighton to determine the point mobility of a plate exposed to a heavy fluid
loading is for the “low frequency” case outlined in Sect. 12.6. Crighton has shown that
the low frequency approximation gives satisfactory results as long as k/κ < 1/10,
where k is the wave number in the fluid and κ the wave number for flexural waves
propagating along the plate in vacuo.

For infinite plates excited by a point or line force the results can be summarized as

1. Infinite plate excited by a point force F
Light fluid loading
Radiated power

�̄ = ρ0
∣∣F̄∣∣2

2πcμ2 (12.67)

Point mobility

Y∞ = 1

8
√

μD
(12.68)

Heavy fluid loading
Radiated power

�̄ = k2
∣∣F̄∣∣2

6πcρ0
(12.69)

Point mobility

Y∞ = 1

10

(
ω

D3ρ20

)1/5

[1 − i tan(π/10)] (12.70)

2. Infinite plate excited by a line force Fl

Light fluid loading
Radiated power per unit length

�̄l = πρ0
∣∣F̄l

∣∣2
4ωμ2 (12.71)
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Mobility per unit length

Yl∞ =
(

1

ω2Dμ3

)1/4 1 + i

4
(12.72)

Heavy fluid loading
Radiated power per unit length

�̄ = πω
∣∣F̄l

∣∣2
8ρ0c2

(12.73)

Mobility per unit length

Yl∞ = 1

5

(
1

ωD2ρ30

)1/5

[1 + i tan(π/10)] (12.74)

For a point-excited infinite plate with a heavy fluid loading the time average of
the power fed into the plate is

�̄in = ∣∣F̄∣∣2 ReY∞ =
∣∣F̄∣∣2
10

(
ω

D3ρ20

)1/5

The acoustical power radiated out from the plate is

�̄rad = ρ0
∣∣F̄∣∣2

2πcμ2

The ratio �̄rad/�̄in is less than unity in the low frequency region. For high fre-
quencies well above the critical frequency, �̄rad = �̄in if the losses in the plate itself
are neglected. In the low frequency region, an additional wave type is propagating
parallel to the plate and away from the excitation point. As previously pointed out,
the amplitude of this type of wave is decreasing exponentially with the distance from
the plate. No power is radiated perpendicular away from the plate due to this field.
However, the wave propagating parallel to the plate carries power away from the
excitation point. The intensity vector of the wave is pointing away from the exci-
tation point and is parallel to the plate. The total power �̄surface radiated by these
waves clinging to the plate is, for a loss-free plate,

�̄surface = �̄in − �̄rad

Numerical calculations of the response of finite plates show that the displacement
of the plate is large at the excitation point and rapidly decaying with increasing dis-
tance from the excitation point. The dominating part of the radiated power is caused
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by the plate displacement very close to the excitation point. For this reason the radi-
ated power from sufficiently large fluid-loaded plates can, as a first approximation,
be estimated as if the plates were infinite.

The vibrational field of a finite plate consists of a near field and a reverberant field.
The effect of the fluid loading on the reverberant field can be calculated as discussed
in Sect. 12.1. The additional mass per unit area due to the fluid loading is

μadd ≈ ρ0/κx

where κx is the wave number for flexural waves traveling along a fluid-loaded plate.
For a point force exciting a fluid-loaded plate it can be shown that at the excitation
point the apparent mass of the plate is considerably higher than the corresponding
added mass felt by a reverberant field. See Problem12.7.

12.8 Radiation from Finite Baffled Plates

A real structure is finite. Consequently, it is of great importance to determine the
radiation from finite plates and the influence on the radiation of the area, geome-
try, and the boundary conditions of the plate. In principle, a plate can be baffled or
unbaffled. The baffle is a structure in which a plate can be mounted. The baffle is
typically assumed to be completely stiff and consequently nonradiating. Two vibrat-
ing plates are shown in Fig. 12.5. One is mounted in an infinite baffle and the other
without. In the last case, the two acoustic fields generated below and above the plate
can interfere. This interference reduces the acoustic radiation efficiency of the plate.
In the other case, there is no coupling effect or negative interference between the
upper and lower acoustic fields. Consequently, the baffled plate is a more efficient
acoustic radiator than the unbaffled plate. In the very low frequency range, close to
the first natural frequency of the plate, the baffled plate radiates like a monopole and
the unbaffled plate like a dipole.

In order to illustrate the radiation from a baffled plate consider a rectangular and
simply supported plate mounted in an infinite and rigid baffle oriented in the x–y-
plane. In the region, z > 0 there is a fluid with the density ρ0 and speed of sound
c and wave number k. The reverse side of the plate is unloaded. The plate has the
dimensions Lx and L y . The center of the plate is at the origin of the coordinate
system as shown in Fig.12.6.

Fig. 12.5 Radiation from a baffled and an unbaffled plate. First vibrational mode
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Fig. 12.6 A radiating simply supported plate

At a large distance from the plate the pressure p in an observation point (x, y, z)
is, neglecting a time dependence exp(iωt), according to Eq. (12.34) given by

p(r) = 1

2πrc

∫∫
S0

iωρ0v(x0, y0)e
−ikrdx0dy0; rc � 1

rc =
[
x2 + y2 + z2

]1/2 ; r =
[
(x − x0)

2 + (y − y0)
2 + z2

]1/2

It is assumed that the distance from the plate to the observation point is much
lager than the plate dimensions, i.e., rc � |x0| and |y0|. Thus, the distance r between
a point (x0, y0, 0) on the plate and the observation point (x, y, z) is written as

r =
(

r2c − 2xx0 + x20 − 2yy0 + y20

)1/2 ≈ rc − xx0
rc

− yy0
rc

(12.75)

An approximate expression for the pressure in the fluid is obtained by inserting
(12.75) in the preceding expression. The result is

p(r) = e−ikrc

2πrc

∫∫
S0

iωρ0v(x0, y0) exp(−ikxx0/rc − ikyy0/rc)dx0dy0 (12.76)

The velocity is defined for −Lx/2 < x < Lx/2 and −L y/2 < y < L y/2 . The
velocity is equal to zero elsewhere on the plane defined by z = 0. The eigenfunction
for the simply supported rectangular plate is

gmn(x, y) = sin

[
mπ(x + Lx/2)

Lx

]
· sin

[
nπ(y + L y/2)

L y

]
(12.77)
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The lateral velocity of the rectangular and simply supported plate is for mode
(m, n) given by

v(x, y, t) = vmn · exp(iωt) · gmn(x, y)

The resulting pressure p(r) at the observation point r induced by the vibrational
mode (m, n) of the plate is according to Eqs. (12.76) and (12.77) equal to

pmn(r) = e−ikrc

2πrc
iωρ0vmn Hx Hy

Hx =
∫ Lx /2

−Lx /2
sin

[
mπ(x0 + Lx/2)

Lx

]
exp(−ikxx0/rc)dx0

Hy =
∫ L y/2

−L y/2
sin

[
nπ(y0 + L y/2)

L y

]
exp(−ikyy0/rc)dy0 (12.78)

The functions Hx and Hy are solved by partial integration. The results are

Hx = (mπ/Lx ){exp[ikx Lx/(2rc)] − cos(mπ) exp[−ikx Lx/(2rc)]}
(mπ/Lx )2 − (kx/rc)2

Hy = (nπ/L y){exp[ikyL y/(2rc)] − cos(nπ) exp[−ikyL y/(2rc)]}
(nπ/L y)2 − (ky/rc)2

(12.79)

The time average of the absolute value of the pressure squared at the point r is
from Eqs. (12.78) to (12.79) given by

| p̄mn|2 =
(

ωρ0

2πrc

)2 |νmn|2
2

Gx G y

Gx = 2
(mπ/Lx )

2[1 − cos(mπ) cos(kx Lx/rc)]
[(mπ/Lx )2 − (kx/rc)2]2

G y = 2
(nπ/L y)

2[1 − cos(nπ) cos(kyL y/rc)]
[(nπ/L y)2 − (ky/rc)2]2 (12.80)

The rms pressure along the z-axis, i.e., for x = y = 0 is quite simply given by
(12.80) as

| p̄mn|2 =
(

ωρ0
πrc

)2 |vmn|2
2

[1 − cos(mπ)]
(mπ/Lx )2

× [1 − cos(nπ)]
(nπ/L y)2

(12.81)



12.8 Radiation from Finite Baffled Plates 189

For m or n even, the pressure is zero along the normal through the center of the plate.
The reason is that one-half of the plate is moving in opposite phase as compared
to the other part. The total field along the center line is consequently zero. If for
the modes (1, 1) and (1, 3) the modal velocity vmn has the same amplitude, the ratio
| p̄11/ p̄13|2 is equal to 9. The radiation pattern for mode (1, 3) is schematically shown
in Fig.12.7.

The plate is radiating as if it consisted of six sources, four in phase and two
in antiphase. The four central sources extinguish each other. Only the two sources
along the edges contribute to the field along the center axis. Along this axis, it
seems as if only 1/3 of the plate is radiating. The pressure squared is inversely
proportional to the area squared. Consequently, the ratio | p̄11/ p̄13|2 is equal to 9.
In the low frequency region, only a few vibrational modes are excited. In this case,
the acoustic power radiated by the plate is the result of the motion of the edges or
corners of the plate. When the boundary conditions of the plate are changed from
simply supported to clamped the uncancelled radiation area is increased suggesting
that a clamped plate radiates more acoustic power assuming the velocity being the
same. See Problem12.6.

At a large distance from the plate the intensity in the radial direction as seen from
the center of the plate is Ī = | p̄|2 /(ρ0c). The total radiated power induced by the
vibrational mode (m, n) is thus

�̄ =
∫

S
Ī d S = Lx L y

ρ0c

∫ 2π

0
dβ

∫ π/2

0
dα cosα| p̄|2r2c (12.82)

The area integration is made over a semi-sphere with the radius rc. The radiated
power from the plate induced by the mode (m, n) can also be written as

�̄ = ρ0c < |v̄|2 > σmn Lx L y = ρ0c
∣∣∣v2mn

∣∣∣ (σr )mn Lx L y/8 (12.83)

The time and space average of the square of the plate velocity is given by 〈|v̄|2〉 =
|vmn|2 /8. The sound radiation ratio formode (m, n) is denoted as (σr )mn . The square
of the modal pressure | p̄mn|2 is given by Eq. (12.80). Thus, the Eqs. (12.80)–(12.83)
give the radiation ratio (σr )mn as

(σr )mn = k2

π2

∫ 2π

0
dβ

∫ π/2

0
Gx G y cosαdα (12.84)

Fig. 12.7 Radiation pattern
for mode (3,1) along the
x-axis of a simply supported
plate. The lower illustration
shows the effect of
cancelation of central
radiators
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In the low frequency region or rather if kLx and kL y � 1 the cosine terms in
Eq. (12.80) that are functions of these products can be expanded in Taylor series as

cos(kx Lx/rc) ≈ 1 − 1

2

(
kx Lx

rc

)2

The coordinates x and y are defined by means of the angles α and β. Thus

x = rc cosα cosβ; y = rc cosα sin β;

The denominators of Gx and G y in Eq. (12.80) are in the low frequency region,
i.e., for kLx and kL y � 1, approximated by (mπ/Lx )

4 and (nπ/L y)
4, respectively.

Thus

Gx ≈ 2[1 − cos(mπ)][1 − (kLx cosα cosβ)2/2]
(mπ/Lx )2

;

G y ≈ 2[1 − cos(nπ)][1 − (kL y cosα sin β)2/2]
(nπ/L y)2

The approximate expressions giving Gx and G y inserted in the expression (12.84)
yield σmn . As demonstrated by Wallace [157] the result is for kLx and kL y � 1

(i) m and n odd

σmn = 32k2Lx L y

m2n2π5

{
1 − k2Lx L y

12

[(
1 − 8

(mπ)2

)
Lx

L y
+

(
1 − 8

(nπ)2

)
L y

Lx

]}

(12.85)
(ii) m odd n even

σmn = 8k4Lx L3
y

3m2n2π5

{
1 − k2Lx L y

20

[(
1 − 8

(mπ)2

)
Lx

L y
+

(
1 − 24

(nπ)2

)
L y

Lx

]}

(12.86)
For n odd and m even exchange m and n and Lx and L y .
(iii) m and n even

σmn = 2(k2Lx L y)
3

15m2n2π5

{
1− 5k2Lx L y

64

[(
1− 24

(mπ)2

)
Lx

L y
+

(
1− 24

(nπ)2

)
L y

Lx

]}

(12.87)

It is evident that the odd–odd modes are the most efficient radiators. However, the
requirement kLx and kL y � 1 limits the applicability of the formulas given in
Eqs. (12.85)–(12.87).

A more general and useful presentation of the results are obtained by normalizing
the wave number k with respect to the wave number κ for flexural waves propagating
on the plate. Thus for

κ = [(mπ/Lx )
2 + (nπ/L y)

2]1/2; γ = k/κ (12.88)
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the modal radiation ratios are written as
(i) m and n odd

σmn = 32k2Lx L y

mnπ3

(
nLx

mL y
+ mL y

nLx

)

× γ2
{
1 −

[(
1 − 8

(mπ)2

)
Lx

L y
+

(
1 − 8

(nπ)2

)
L y

Lx

]}
(12.89)

(ii) m odd n even

σmn = 8L y

3πLx

(
nLx

mL y
+ mL y

nLx

)2

× γ4
{
1 −

[(
1 − 8

(mπ)2

)
Lx

L y
+

(
1 − 24

(nπ)2

)
L y

Lx

]

×
(

nLx

mL y
+ mL y

nLx

)
mnπ

20
γ2

}
(12.90)

Fig. 12.8 Radiation ratios for the first few modes of a simply supported rectangular plate. From
Ref. [157]
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For n odd and m even exchange m and n and Lx and L y .
(iii) m and n even

σmn = 2mnπ

15

(
nLx

mL y
+ mL y

nLx

)3

× γ6
{
1 −

[(
1 − 24

(mπ)2

)
Lx

L y
+

(
1 − 24

(nπ)2

)
L y

Lx

]

×
(

nLx

mL y
+ mL y

nLx

)
5mnπ

64
γ2

}
(12.91)

It is stated by Wallace that the expressions given in Eqs. (12.89)–(12.91) are only
valid as long as γ2 � 1.

The radiation ratios for the first modes of a simply supported rectangular plate are
shown in Fig.12.8. The radiation ratios are given as function of γ = k/κ. In the low
frequency region, it is evident that the odd–odd modes are more efficient radiators
than the even–even modes. However, as γ → 1 this difference is decreasing.

12.9 Radiation Ratios—Finite Baffled Plates

In Sect. 12.1 it was demonstrated that no sound is radiated from a vibrating and infi-
nite flat plate for frequencies below the critical frequency. The results of the previous
section reveal that a finite vibrating plate radiates sound even in the low frequency
range below the critical frequency of the plate. Although the results discussed in
the previous section are approximate and only valid in the low frequency range it
is clearly demonstrated how the various type of panel modes influence the acoustic
power radiated by the plate. However, in most cases it is not convenient or practi-
cally possible to calculate the radiation ratio and the power radiated by each mode.
The radiation ratio should preferably be averaged over all possible modes within a
frequency band. Maidanik was the first to formulate expressions giving in Ref. [158]
radiation ratios averaged over the dominating modes. Maidanik started off defining
the acoustic radiation from a simply supported, homogeneous, and vibrating rec-
tangular plate. It was assumed that the velocity of each plate mode was the same.
Further, the acoustic coupling between each plate mode and any acoustic mode in
the fluid was equal. Although the end result is very compact and simple to use the
derivations leading up to the final results are not always readily understood. Later
Leppington et al. [159] treated the same problem and using the same basic equa-
tions and assumptions but according to the authors, a more stringent approach was
followed as compared to the procedures presented in some previous papers. Still the
results obtained by Maidanik and Leppington are identical except for frequencies
very close to the critical frequency. However, in both cases the results are based on
rather long and complicated derivations.
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The basis for both methods is the same. A homogeneous plate is oriented in the
x–y-plane, z = 0. The coordinates of the corners are at (0, 0), (Lx , 0), (Lx , L y), and
(0, L y). According to Eq. (12.33) the pressure p(x, y) on the surface of the plate is
induced by the vibrating plate and is written as

p(x, y) =
∫ Lx

0

∫ L y

0
iωρ0v(x0, y0)

e−iks

2πs
dx0dy0 (12.92)

where v(x0, y0) is the plate velocity and s is the distance between a vibrating point
at the plate defined by the coordinates (x0, y0) and an observation point (x, y) on
the same plate. Consequently, s = √

(x − x0)2 + (y − y0)2. The time average of the
acoustic power radiated from one side of the plate is

�̄ = 1

2
Re

∫ Lx

0

∫ L y

0
p(x, y) · v∗(x, y)dxdy (12.93)

Equations (12.92) and (12.93) give

�̄ = 1

2
Re

∫ Lx

0

∫ L y

0
v∗(x, y)dxdy

∫ Lx

0

∫ L y

0
iωρ0v(x0, y0)

cos(ks) − i sin(ks)

2πs
dx0dy0

= ωρ0
4π

∫ Lx

0

∫ L y

0
v∗(x, y)dxdy

∫ Lx

0

∫ L y

0
ωρ0v(x0, y0)

sin(ks)

2πs
dx0dy0 (12.94)

For a simply supported plate with the corners at (0, 0), (Lx , 0), (Lx , L y), and
(0, L y) the eigenfunctions of the plate are

ϕmn(x, y) = sin(mπx/Lx ) · sin(nπy/L y)

The velocity for this particular mode is v(x, y) = vmn · ϕmn(x, y) omitting the
time dependence exp(iωt). The time and space average of the velocity squared is

〈|v̄|2〉 = 1

2

∫∫
S
v2(x, y)dxdy = v2mn

8
(12.95)

The radiation ratio for the plate is according to Eq. (12.19) obtained as

σr = Īz

〈|v̄|2〉ρ0c
= �̄

〈|v̄|2〉Sρ0c

Consequently, the radiation ratio for mode (m, n) is obtained as

σmn = 8ωk

4πcLx L y

∫ Lx

0

∫ L y

0
ϕmn(x, y)dxdy

∫ Lx

0

∫ L y

0
ϕmn(x0, y0)

sin(ks)

2πs
dx0dy0

(12.96)
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This expression can be somewhat simplified by making the transformation
x0 = x + ξ and y0 = y + η and s = √

ξ2 + η2. Considering the definition of
the eigenvectors, the expression (12.96) is reduced to

σmn = 2k2

πLx L y

∫ Lx

0

∫ L y

0
[(Lx − ξ) cos(mπξ/Lx ) + Lx/(mπ) sin(mπξ/Lx )]

× [
(L y − η) cos(nπη/L y) + L y/(nπ) sin(nπη/L y)

] sin(ks)

ks
dξdη (12.97)

The next step is to change to cylindrical coordinates. The result (12.97) seems
deceptively simple. However, a certain effort is required to solve the integral as
demonstrated in Ref. [159].

The radiation ratio given in Eq. (12.97) is in principle valid for the plate mode
(m, n). The numerically calculated radiation ratios for some modes are shown in
Fig. 12.9. It is shown that for small wavenumbers k, the odd–odd modes radiate
more than the even–even modes. For higher frequencies but still below the critical

Fig. 12.9 Radiation ratios for some higher plate modes. From Ref. [159]
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frequency, the difference between the radiation ratios for odd–odd and even–even
modes is very small. In the previous example, Fig. 12.8, the differences between the
odd–odd and even–even for low mode numbers were shown to be much bigger than
shown in Fig. 12.9.

One basic assumption made by Maidanik and Leppington is that the velocity of
everymode is the same. This assumptionmakes it possible to formulate an average of
the radiation ratio for all the possible modes within a frequency band. The wavenum-
ber in the x-direction for the bending waves is κx = mπ/Lx . In the y−direction
the wavenumber is κy = nπ/L y . However, the total wavenumber κ for the flexural
waves is given by κ2 = κ2

x + κ2
y . Assuming that m and n can vary continuously

over all positive values the following substitutions can made: mπ/Lx = κ cosφ
and nπ/L y = κ sin φ. These expressions inserted in (12.97) give σ(φ). The average
radiation ratio taken over all possible angles is

σ̄r = 2
π

∫ π/2

0
σ(φ)dφ

The final result as given by Leppington is with q = √
fc/ f

σ̄r = Lx + L y

πqkLx L y

√
q2 − 1

[
ln

(
q + 1

q − 1

)
+ 2q

q2 − 1

]
for q > 1 or f < fc

(12.98)
where f is the frequency and fc the critical frequency defined in Eq. (12.18).

At the critical frequency, Leppington gives the result as

σ̄r ≈
(
1

2
− 0.15

Lmin

Lmax

)√
kLmin for q = 1, f = fc (12.99)

where Lmin is the lesser and Lmax the greater of Lx , L y .
For frequencies above the critical frequency the result is the same as for an infinite

panel, or

σ̄r = 1√
1 − fc/ f

for q < 1 or f/ fc > 1 (12.100)

For frequencies below the first natural frequency f11 of the plate, σ̄r is given by
Maidanik [158] as

σ̄r ≈ 32Lx L yk2

π5
≈ Lx L yk2

π2 = 4Lx L y f 2

c2
for f < f11

The radiation ratios given by (12.98) and (12.100) can, however, never be greater
than the radiation ratio at the critical frequency. The expression (12.98) requires as
pointed out by Leppington that kLmin(q −1) � 1. The expression (12.98) is similar
to that given by Maidanik. However, for f < fc/2 Maidanik has added a term g1.
In Ref. [159] it is argued that this term g1 is negligible and probably not correct.
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In conclusion, the main difference between the models derived by Leppington and
Maidanik is the expression (12.99) giving the radiation ratio at the critical frequency.
The result (12.99) being themore accurate. Some predicted radiation ratios are shown
in Fig. 12.10.

In the low frequency region f � fc the result (12.98) is given by

σ̄r ≈ 2(Lx + L y)c
√

f

π2Lx L y
√

f 3c
(12.101)

The radiation ratio depends on the area and the ratio between the two sides of the
plate. The result (12.98) indicates that a plate has a constant area while changing the
ratio between the lengths of the sides and the minimum radiation ratio is obtained
for a quadratic plate. The sound radiation ratio is also changed by the addition of
stiffeners. It can be assumed that the velocity of the stiffeners if stiff enough can
be neglected as compared to the velocity of the plates. As an example, consider a
rectangular plate with the dimensions Lx and L y . Two stiffeners are mounted to the
plate dividing the plate into four equal sections, each having the sides Lx/2 and
L y/2. In the first case, the radiation ratio of the entire plate without stiffeners is,
according to Eq. (12.98), proportional to (Lx + L y)/(Lx L y). In the second case, the
lengths of the sides are decreased by a factor 2 and the radiation ratio is proportional
to 2(Lx + L y)/(Lx L y). Consequently, in the low frequency region, the effective
radiation ratio is doubled by the addition of the two stiffeners.

The boundary conditions are also of importance. The radiation ratio is increased
as the boundary conditions of the plate are constrained. Thus, a clamped plate has
a higher radiation ratio than a simply supported plate of the same dimensions. The
radiation ratio for corner and edge modes is increased by a factor 2 as simply sup-

Fig. 12.10 Radiation ratios for steel plate thicknesses 2, 4, and 6mm. Lx = 1.4m and L y = 0.8m
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ported boundary conditions are changed to clamped. However, the edge and corner
modes become less significant for increasing frequencies as f tends to fc. If the
sound radiation ratio is written X · σ̄r where σ̄r is given by (12.98)–(12.100) then
the parameter X is equal to unity for a simply supported plate. For a clamped plate
X ≈ 2 for f < fc/3 and X ≈ 2−3 fc/2( f − fc/3) for fc > f > fc/3. For f > fc
X = 1.

The radiation ratio also depends on how the plate is excited. The results (12.98)–
(12.100) were derived assuming the vibrational field of the plate to be reverberant. In
the low frequency region, the wave number for the plate vibrations were determined
by the properties of the plate. However, when a plate is excited by an acoustic field
the nonresonant wave pattern of the plate is forced by the acoustic field. The radiation
ratio for a plate excited by an acoustic field is much higher than for a freely vibrating
plate for frequencies below the critical frequency. This is discussed in Chap.13.

The losses of a plate can also influence its radiation ratio below the critical fre-
quency as discussed by Liu et al. [294]. It is demonstrated in [294] that if the loss
factor of a finite plate is increased from 0.05 to 0.10 the corresponding radiation
ratio could increase by 4 to 6 dB. The results imply that a damping treatment may
effectively reduce the response of a plate while it has less effect on the acoustic power
radiated by the structure.

12.10 Radiation from Point-Excited Plates

In a room with a sound source, the total acoustic field can be separated into a rever-
berant and a near field as discussed in Sect. 11.14. A somewhat similar approach
is sometimes adopted to describe the radiation from finite plates excited by a point
force. For estimating the radiated power from the plate, it is assumed that the radia-
tion from the near field close to the force is approximately equal to the power radiated
by the plate if it were infinite. The radiation from an infinite point-excited plate is
for f � fc given by Eq. (12.57) as

�̄∞ = ρ0
∣∣F̄∣∣2

2πμ2c
or 〈G�∞〉 = ρ0〈G F F 〉

2πμ2c

The acoustical power � radiated by the reverberant plate vibrations is equal to

�̄rev = ρ0c〈|v̄|2〉Sσ̄r (12.102)

In this expression S is the area of the plate, σ̄r the radiation efficiency given
in Eqs. (12.98) through (12.100). The product (ρ0c) is the characteristic wave
impedance for the fluid surrounding the plate. For air ρ0c is equal to 415kg/(m2s)
at room temperature and normal pressure. The corresponding number for water is
1.45×106 kg/(m2s). Consequently, the spectral density of the total radiated acoustic

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_11
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power is, including both direct and reverberant fields,

�̄tot = �̄∞ + �̄rev = ∣∣F̄∣∣2
[

ρ0cσ̄r

8ωημ
√

Dμ
+ ρ0

2πμ2c

]

= ∣∣F̄∣∣2 ρ0

2πμ2c

[
1 + πσ̄r · fc

4η f

]
(12.103)

The first term inside the bracket dominates as long as πσ̄r fc/(4η f ) < 1. If this is
the case, the radiated acoustical power from the point-excited plate is only reduced
insignificantly if the losses of the plate are increased. If a damping layer is added to
the plate, the extra dampingwill have no effect for this particular case. The only effect
on the radiation is that the mass of the structure is increased. The radiated power is
inversely proportional to the mass squared of the plate. By using the approximate
expression for the radiation ratio (12.101) the first term of Eq. (12.103) dominates,
or rather πσ̄r fc/(4η f ) < 1, as long as f < frev where

frev = 1

fc

[
c(Lx + L y)

4πηLx L y

]2
(12.104)

For f > frev the sound radiation is not decreased by increasing the damping for a
point-excited plate. For example, a 1mm Al plate has a critical frequency of 12 kHz.
The loss factor could be of the order 4% if the plate is connected to other structures.
For Lx = L y = 1m, the parameter frev is approximately 150Hz. Thus in a frequency
range 150 to say 4000Hz any additional damping will have no appreciable effect on
acoustic power radiated by the point-excited plate.

For a lightly damped plate, the second term of (12.103) dominates and the acousti-
cal power � radiated by a plate is given by Eq. (12.102). In order to limit the radi-
ated power from a plate there are some obvious possibilities namely to reduce the
plate velocity and/or the radiation efficiency. The plate velocity can be changed by
changing the plate dimensions. However, this will also affect the radiation efficiency.
Therefore, the combined effect must be considered.

As an example, assume that a point force F with the power spectral density GFF

is exciting a uniform and rectangular plate. The power input to the structure is

G� = GFFReY

where Y is the point mobility of the plate at the excitation point. Within a frequency
band � f which includes a large number of natural frequencies of the plate, the
frequency average of the real part of the point mobility is equal to the point mobility
of an infinite plate as discussed in Sect. 8.5. Thus, for white noise excitation within
the frequency band � f the average of the power spectral density can be written as

〈G�〉� f = 〈GFF〉� f ReY∞ (12.105)

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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The power spectral density of the plate velocity can from (8.54) be written as

Gvv = G�/(μωηS) (12.106)

where μ is the mass per unit area of the plate and η its loss factor. The expressions
(12.105) and (12.106) give

〈G�〉� f = 〈G F F 〉� f
ρ0c

μωη
ReY∞ (12.107)

The power spectral density of the radiated acoustical power can also be written
as

〈G�〉� f = 〈Gvv〉� f ρ0cSσ̄r (12.108)

The frequency average of the power spectral density of the radiated power is from
(12.107) and (12.68) equal to

〈G�〉� f = 〈GFF〉� f
ρ0cσ̄r

8ωη
√

Dμ
(12.109)

For white noise excitation G F F is constant. The plate velocity is decreased if the
bending stiffness is increased. However, the radiation efficiency is also increased as
the plate stiffness is increased as shown inFig.12.10.The acoustical power radiatedby
a simply supported plate is shown in Fig. 12.11. The spectral density of the radiated
power is calculated from Eq. (12.109). The radiation efficiency is obtained from
Eqs. (12.98) through (12.100). The dimensions of the steel plate are Lx = 1.4m and
L y = 0.8m. The radiated power is calculated for three plate thicknesses namely 2,
4, and 6mm. The power spectral density of the force is the same for the three cases.

Fig. 12.11 Radiated power from steel plate thicknesses 2, 4 and 6mm. Lx = 1.4mand L y = 0.8m.
White noise excitation

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Well below the critical frequency, it is advantageous to increase the plate thickness
in order to reduce the radiated acoustical power. Close to and at the critical frequency
the plate is radiating readily. In this region the plate, which has a critical frequency
closest to the frequency of the driving force, is radiating most efficiently. In the
very high frequency range above the critical frequency, the radiation efficiency is
approximately equal to unity. In this region, the radiated power is decreased if the
bending stiffness of the plate is increased.

The sound radiation from structures having a fairly simple geometrical surface
can be estimated by replacing the radiating surface by a number of simple sources
inside the surface. The location and strength of the sources are determined so as to
give an approximately correct surface velocity of the source. The sound pressure
outside the structure is approximated by the fields of all the sources. The technique
is summarized in Ref. [169]. The radiation from complicated structures must be
determined by means of numerical methods. One such technique, the Boundary
Element Method, is described in, for example, Refs. [170, 171].

12.11 Sound Radiation Ratios—Cylinders

The sound radiation from cylinders was discussed in Sect. 11.7. It was found that if
the velocity distribution around the circumference of a cylinder is known then the
velocity potential in the adjoining fluid is given by the expression (11.78). If it is
assumed that the surface velocity of the cylinder is the same for every section of the
cylinder the velocity potential is given by Eq. (11.79) as

�(r,ϕ, t) = exp(iωt) ·
∑

n

An H (2)
n (kr) · cos(nϕ) (12.110)

The pressure pn induced by mode n is

pn(r,ϕ, t) = −iωρ0 exp(iωt) · An H (2)
n (kr) · cos(nϕ) (12.111)

The acoustic power radiated per unit length of the cylinder into the fluid is

(
�̄n

)
l =

∫ 2π

0

|pn|2
2(ρ0c)

rdϕ =(ωρ0)
2
∫ 2π

0
|An|2

∣∣∣H (2)
n (kr)

∣∣∣2 r · cos2(nϕ)

2(ρ0c)
dϕ

=
π(ωρ0)

2 |An|2 r
∣∣∣H (2)

n (kr)

∣∣∣2
2(ρ0c)

· εn

εn = 2 for n = 0; εn = 1 for n > 0 (12.112)

For kr � 1 the Hankel function tends to

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
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H (2)
n (kr) →

√
2

πkr
· e−i(kr−nπ/2−π/4)

This asymptotic value inserted in (12.112) gives

(
�̄n

)
l = (ωρ0)

2 |An|2
k(ρ0c)

· εn (12.113)

The velocity on the surface of the cylinder is obtained from Eq. (12.110) as

v(r0,ϕ, t) = exp(iωt)

[
∂

∂r

∑
n

An H (2)
n (kr) · cos(nϕ)

]

r=r0

The velocity for mode n is

vn(r0,ϕ, t) = exp(iωt)An cos(nϕ)k
[

H (2)
n (z)

]′
z=kr0

The time and space average of the velocity squared is

〈|v̄n|2〉 = 1

2
· 1

2π

∫ 2π

0
|vn|2 dϕ = |An|2 k2

4

∣∣∣∣
[

H (2)
n (z)

]′
z=kr0

∣∣∣∣
2

· εn (12.114)

Introducing the radiation ratio σn per unit length of the cylinder, the acoustic
power radiated by mode n per unit length of the cylinder can be written as

(�̄n)l = ρ0c(2πr0)〈|v̄n|2〉σn (12.115)

The Eqs. (12.113) through (12.115) give

σn = 2

πkr0

{[
H (2)

n (z)
]′

z=kr0

}2 (12.116)

The radiation ratio σn is shown in Fig.12.12 for n = 0, 1, 2. The corresponding
vibrational modes are shown in Fig.12.13. Again, as for a plate, it is found that the
radiation ratio is increasing with frequency up to a maximum and thereafter leveling
out to unity in the high frequency region.

For kr0 � 1 the radiation ratios can be approximated as

σ0 = π

2
(kr0); σn = 4π

(n!)2
(

kr0
2

)2n+1

for n > 0

The result is derived in Problem 12.5.
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Fig. 12.12 Radiation ratios
for the first three modes of a
cylinder

Fig. 12.13 First three
vibrational modes for a cross
section of a cylinder

12.12 Losses Due to Radiation

The acoustical power radiated from a panel will contribute to its losses. The power
lost by radiation from the panel is

�̄rad = 2ρ0c〈|v̄|2〉Sσ̄r (12.117)

It is assumed that both sides of the panel are radiating into the same type of fluid.
The power lost due to radiation can also be written as

�̄rad = ωηrad ¯ = ωηrad〈|v̄|2〉μS (12.118)

where ηrad is the loss factor resulting from the radiation. The two expressions (12.117)
and (12.118) give

ηrad = 2ρ0cσ̄r

ωμ
(12.119)

In general, this quantity is very small except for very light structures with a high
radiation ratio. In the low frequency region, the radiation ratio for a panel can be
approximated by the expression (12.101). This expression inserted in (12.119) gives
for f � fc

ηrad = ρ0c2(Lx + L y)

π3Lx L yμ
√

f 3c f
(12.120)
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For a 1m×1m Al plate, thickness 1mm, the loss factor in the low frequency
region is obtained from (12.119) as

ηrad ≈ 2.5 × 10−3/
√

f

For this type of plate, the radiation losses are negligible as compared to losses at
the boundaries as discussed in Sect. 5.12. However, for frequencies at and around the
critical frequency of the plate or when σ̄r is large, the losses due to radiation can be
significant. This is considered in next chapter in connection with the derivation of the
sound transmission loss of panels at frequencies close to or at the critical frequency.

The Statistical Energy Analysis method, SEA, is frequently used to predict the
energy transfer between various components assembled within a complex structure,
for example, a car. The use of SEA requires that the interior loss factors are known
for each component. Nijman has presented measurements of loss factors for a cast
iron oil sump and a cast iron cylinder block in Ref. [160]. For both structures, which
are very stiff, the sound radiation ratio is of the order unity within the most important
frequency range. Further, the interior loss factor for cast iron is very low, of the
order 10−4. It was therefore not clear if the measured loss factors were determined
by radiation or interior losses. To resolve this problem, the loss factors were first
measured with the components in air and afterward the same measurements were
repeated with the structure submerged in helium. The ratio between ρ0c for air and
helium is of the order 2.4. The speed of sound in He is almost three times as high as
in air. The critical frequency, Eq. (12.18), for a structure in He is almost ten times as
high as for the same structure in air. Therefore, the radiation ratio is much smaller
for a structure submerged in He than in air. The radiation losses in He are therefore
much smaller than the corresponding losses in air. For the oil sump, the average
loss factor measured in the frequency range 380–1200Hz was 1.9× 10−3 in air and
3.2 × 10−4 in He. For the cylinder block, the average loss factor in the frequency
range 1050–2400Hz was 1.6× 10−3 in air and 1.2× 10−3 in He. The results of the
measurements indicated that the total losses of the structure when measured in air
were mainly determined by radiation losses. However, the losses measured with the
structure in helium were representative of the inner losses of the structure. After the
components were mounted in a complete car, the loss factors of the components were
found to be of the order 3× 10−2. The material or inner loss factor was estimated to
be less than 2× 10−3. The loss factor due to radiation was given as 2× 10−3. Thus,
as discussed in Sect. 5.12, the total loss factor of a component mounted to a built-up
structure is mainly determined by transmission losses, i.e., by energy flow from the
component to adjoining structures.

In Sect. 12.1 the wave number for flexural waves traveling on a fluid-loaded plate,
one side, was given as

κx = κ

[
1 + ρ0

4μ
√

κ2
x − k2

]

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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For a plate with a fluid loading on both sides and for k > κ the wave number is
approximately given by

κx = κ

[
1 − iρ0

2μ
√

k2 − κ2
x

]
= κ

[
1 − iρ0c

2μω
√
1 − fc/ f

]

= κ

[
1 − iρ0cσ̄r

2μω

]
for f > fc

The wave number can according to Eq. (5.28) also be written as κ = κ0(1−iη/4),
where η is the loss factor. Comparing the two expressions, the loss factor due to
radiation is written as

ηr = 2ρ0cσ̄r

μω
(12.121)

This loss factor is in agreement with ηrad as given in Eq. (12.119).

12.13 Radiation from Fluid-Loaded Finite Plates

The generation of underwater noise can be of main concern for certain types of
vessels, for example, research and navy ships. Two of the major problems to be
considered for these cases are the effect of the fluid loading on plates and the reflec-
tions in the water surface. Andresen has in Ref. [161] compared various prediction
models to laboratory and field measurements of sound radiated from water-loaded
plates. The predictions are based on a number of available theoretical models like
Refs. [158, 159, 162, 172]. In some of the experiments reported by Andresen in Ref.
[161], rectangular plates were mounted to a stiff wooden box. The natural frequen-
cies of the plates mounted to the box were first measured in air. The measurements
were repeated with the box semisubmerged in water leaving one side of the plate
exposed to water and the other to air as shown in Fig.12.14.

A modal analysis of the vibration pattern of the plate in air indicated that the
boundary conditions of the plate could be described as clamped. The natural fre-
quencies of the clamped plate were predicted as discussed in Sect. 8.6. For the same
plate with a water load on one side, the total mass μtot of plate plus water load is
calculated based on Eq. (12.12). The wave number κx for the water-loaded plate is
written as

κx =
(

μtotω
2

D

)1/4

=
(

μtot

μ

)1/4 (
μω2

D

)1/4

= κ ·
(

μtot

μ

)1/4

(12.122)

where μ is the mass per unit area of the plate itself and κ the wave number in vacuo.
Consequently,

μtot = μ ·
(κx

κ

)4
(12.123)

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 12.14 Schematic drawing of plate mounted in box-like structure and semisubmerged in a
water tank

The wave number κx for the water-loaded (one side) plate is obtained from

κ4
x = κ4

[
1 + ρ0

μ
√

κ2
x − k2

]
for κx > κ11;

κ4
x = κ4

⎡
⎣1 + ρ0

μ
√

κ2
11 − k2

⎤
⎦ for κx � κ11 (12.124)

The wave number κ11 corresponds to the first natural frequency of the water-
loaded plate. The natural frequencies of the plate are predicted from Eq. (8.87) by
setting themass per unit area in the denominator equal toμtot as givenbyEqs. (12.123)
and (12.124). Some comparisons between predicted and measured natural frequen-
cies for an Al plate with and without a water load are shown in Table12.1.

The results show that awater load on a plate decreases the natural frequencies quite
significantly. Further, the results also show that the measured natural frequencies
can exceed the predicted values. Whenever the Rayleigh–Ritz method is used for
predicting natural frequencies, the predicted value is expected to be larger than the
measured. However, as shown in Table12.1 this is not always the case for the water-
loaded plate. Obviously,measurements are always sensitive to errors, etc. In addition,
the total mass per unit area of the water-loaded plate was calculated as if the plate
were infinite. Thus, the total mass is slightly overestimated resulting in a too low
predicted natural frequency. Further, the edges of the plate are not perfectly clamped.

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Table 12.1 Eigenfrequencies for a clamped 4mm thick and 1.34m by 0.74m Al plate

Mode (m) n Water load on one side No water load

fmn (Hz)
predicted

fmn (Hz)
measured

fmn (Hz)
predicted

fmn (Hz)
measured

1 1 11.2 14.2 45.3 45.0

2 1 19.5 16.6 62.2 61.9

3 1 26.9 28.6 91.8 90.1

1 2 35.7 35.3 116.2 107.1

2 2 41.9 41.8 132.2 126.6

4 1 42.8 43.9 133.4 130.5

The loss factors for plates with and without a water load were also registered
by Andresen in Ref. [161]. It was found that the measured loss factors for a plate
mounted in a box, Fig. 12.14, were considerably higher with a water load than with-
out. However, measurements on ships reported by Nilsson [163] and Plunt [164]
indicate that loss factors of hull plates are more or less the same independent of a
water load.

Measurements of noise radiated from plates were carried out in two different ways
as reported in [161]. First, the usual box with a plate was semisubmerged in a large
water-filled cylindrical tank. The plate was excited by a point force or rather a shaker
as shown in Fig. 12.14. The average sound pressure in the water was measured by
a number of hydrophones. The reverberation time in the tank was recorded and the
acoustical power radiated into the water was determined. The volume of the tank
limited the measurements to frequencies above 500Hz. Due to the reflections in the
water surface the source must be considered as a dipole, compare Fig. 12.15. Twice
the depth of the plate determines the distance between the two sources of the dipole.
The radiation from the plate is determined as if the dipole is located in a tank with
a volume twice the real tank as indicated in Fig. 12.15. The main power radiated

Fig. 12.15 Box plus plate
in water tank and equivalent
acoustic system
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by the plate is due to the displacement at and very close to the excitation point. It
is therefore concluded in Ref. [161] that the finite plate radiates approximately the
same acoustic power as an infinite plate. The power radiated by an infinite plate with
water on one side is according to (12.69)

�̄ = k2
∣∣F̄∣∣2

6πcρ0
(12.125)

The ratio between the power radiated by a dipole and a monopole is according to
Eqs. (11.64) and (11.68) equal to

�̄d

�̄m
= ω2l2

3c2
(12.126)

The distance between the two sources of the dipole is l.The power of the two sources,
though of different phase, is the same as the monopole. The power radiated by the
dipole is obtained from (12.120) to (12.121) as

�̄d = ω2l2

3c2
�̄m = 2h2k4

∣∣F̄∣∣2
9πcρ0

(12.127)

where h = l/2 is the distance between the water surface and the plate element. The
input power to the plate is according to Eq. (12.70) given by

�̄in = ∣∣F̄∣∣2 ReY∞ = ∣∣F̄∣∣2 1

10

(
ω

D3ρ20

)1/5

(12.128)

In Ref. [161] it is assumed that most of the input power due to white noise
excitation is dissipated as losses in the plate and that the velocity field of the plate is
reverberant. The time and space average of the velocity is obtained from (8.72), i.e.,

�̄in = ωημtot〈|v̄|2〉S (12.129)

Here η is the total loss factor of the submerged plate and μtot the total mass of the
fluid-loaded plate. The area of the plate is denoted S. The Eqs. (12.128) and (12.129)
give

〈|v̄|2〉 =
∣∣F̄∣∣2

10ωημtotS

(
ω

D3ρ20

)1/5

(12.130)

From Eq. (12.127) it is found that

∣∣F̄∣∣2 = 9πρ0c

2h2k4
�̄rad

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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This expression in combination with (12.130) and the definition �̄rad = 〈|v̄|2〉
Sρ0cσr give

σ̄r =
(

D3ρ20
ω

)1/5
20h2k4ωημtot

9π(ρ0c)2
(12.131)

The power radiated by the plate into the water was experimentally determined in
two different ways. First, with the plate and box semisubmerged in a water tank by
measuring the average sound pressure in the water and the reverberation time in the
tank. The radiated power is obtained from (11.161) as

�̄rad = | p̄|2 A

4ρ0c
; A = 0.16 · 2V

T
(12.132)

The equivalent absorption area in the tank is A and the reverberation time T .Note
that the actual volume V of the water is multiplied by a factor 2 to account for the
reflections at the water surface, compare Fig.12.15. The velocity of the panel was
measured by means of accelerometers. When intensity measurements are used, the
radiated power is given by �̄rad = Lx L y〈I 〉. The velocity of the plate is measured
as before. The radiation ratio is obtained from the measurements as

σ̄r = �̄rad

ρ0cLx L y〈|v̄|2〉
The radiation ratio given in Eq. (12.131) is averaged over frequency. The result is

valid for a point-excited plate exposed to a heavy fluid loading. The results derived
by Leppington and summarized in Eqs. (12.98)–(12.100) are also averaged over fre-
quency. For a point-excited plate themodal contributions canvary significantly result-
ing in that the radiation ratio varies considerably with respect to the averaged result
given by Eqs. (12.98)–(12.100). An alternative way to determine the radiation in a
frequency band is proposed by Andresen and given as

σ̄r =
∑
m,n

σmn〈|v̄mn|2〉
∑
m,n

〈|v̄mn|2〉 (12.133)

where vmn is the modal velocity of the plate. The summation is made over all m
and n within each frequency band. Assuming equipartition of energy Eq. (12.133)
is much simplified since 〈|v̄mn|2〉 is constant and independent on mode number.
For a large number of modes in each band the radiation ratios tend to the results
given by Leppington. The modal radiation ratios σmn derived by Wallace are given
in Eqs. (12.89)–(12.91). These results are only valid in the low frequency region
or as long as γ2 � 1. Davies has in Ref. [172] presented modal radiation ratios
which are valid for higher frequencies. Davies discusses sound radiation fromwater-
loaded plates in Ref. [173]. The models by Davies and Wallace agree well in the

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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Fig. 12.16 Predicted and measured radiation ratios from a 4mm thick Al plate with dimensions
0.76mby1.36m.Radiated acoustic powermeasured in tank.◦−◦measurement;—Eq. (12.133);−∗
− Eq. (12.133) corrected for surface reflections; bottom straight line Eq. (12.131). From Ref. [161]

low frequency region. A comparison from Ref. [161] between a predicted and mea-
sured radiation ratio is shown in Fig.12.16. The upper curve is predicted according
to Eq. (12.133) using the modal radiation ratios proposed by Davies. The result is
thereafter corrected according to Eq. (12.126) to acount for reflection effects in the
water surface. The solid straight line in Fig. 12.16 is derived from Eq. (12.131). The
approximate formula (12.131) gives rather satisfactory results.

Additional measurements are reported in Ref. [161]. Experiments on the plate-
box structure were also carried out in a deep, secluded bay. The sound intensity
radiated by point-excited plates was measured by means of two different intensity
hydrophone probes. Again, the surface effects had to be considered. Once more, the
platewas approximated as an acoustic dipole. In this case, this approximation is not as
readily explained as in the previous case. However, the agreement between predicted
and measured results is fairly convincing. One example is shown in Fig. 12.17. The
radiation ratio is for a 4mm thick aluminum plate, length 1.364m and width 0.764m
and with water on one side. The depth of the plate is 0.05m. The plate is mounted to
the box shown in Fig. 12.14. The predicted results are derived fromEq. (12.133) using
Davies modal radiation ratios shown by the two top curves. The predicted result is
thereafter corrected for surface effects and compared to the measurements with two
different intensity probes. The agreement between measured and predicted radiation
ratios is good. The predicted and corrected results vary smoothly with frequency
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Fig. 12.17 Predicted and
measured radiation ratios
from a 4mm thick Al plate
with dimensions 0.76m by
1.36m. Radiated acoustic
power measured by two
different intensity probes
with and without surface
correction. − ∗ − predicted
from Eq. (12.97) and
corrected for surface
reflections. The two upper
predicted upper curves are
not corrected for surface
effects. From Ref. [161]

indicating that the averaged radiation ratios given in Eq. (12.98) could have been
used.

Junger and Feit [165] have compared various radiation mechanisms for water-
loaded plates. For a point-excited plate with a fluid loading on one side the radiation
from the bending near field is dominating over the radiation from the resonant modes
if the loss factor η of the plate satisfies the inequality

η >
8ρ0

√
1 + β−2

kκ2μLx L y

[
1 + β

(
fc
f

− 1

)−1/2
]−3/2

; β = ρ0c

μω
(12.134)

The critical frequency fc is defined in Eq. (12.18). The result implies that adding
damping does not reduce the sound radiation from a point-excited plate if the loss
factor already exceeds the value given by Eq. (12.134). Compare the discussion in
Sect. 12.10 and Eq. (12.104).

Hull plates on a ship are not always excited by some point forces. In fact, any
engine or mechanical device should never be mounted directly to a hull plate to
avoid excessive radiation into the water or in fact to the accommodation spaces. The
hull plates are typically excited by bending moments along its edges as discussed
in Chaps. 15 and 16. The radiated noise from a hull plate is caused by modal radi-
ation and not a small area excited by a point force. Andresen [161] makes certain
assumptions about the character of the radiation. It is assumed that the vibration
fields of hull plates are basically uncorrelated for frequencies above the first natural
frequency of the plate. For typical ship constructions the first natural frequencies of
hull plates are between 80 and 160Hz. The plates radiate as if they were mounted in

http://dx.doi.org/10.1007/978-3-662-47934-6_15
http://dx.doi.org/10.1007/978-3-662-47934-6_16
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an infinite baffle. The velocity of a plate element is much higher than the velocity of
the frames limiting the plate. The radiation ratio for such a hull plate can in the low
frequency region be calculated from (12.133) using the modal radiation ratios given
in Eqs. (12.89)–(12.91) by assuming γ = k/κx . The wave number κx for the water-
loaded plate is given by Eq. (12.12). In the high frequency region, the radiation ratios
are given by Eq. (12.98) where the radiation ratio for f < fc is given as function of
the parameter q. For a fluid-loaded plate, water load on one side, the parameter q is
written as

q = κx

k
(12.135)

where κx is the wave number for flexural waves propagating along a fluid-loaded
plate. The wave number κx is the solution to Eq. (12.12).

Again, reflections in the water surface must be considered. The location of the
plate with respect to the water surface must be observed. However, the reflections
in the water surface depend on the sea waves. The absolute value of the reflection
coefficient is decreasing with increasing wave height. The reflection coefficient also
depends on the angle of incidence and frequency. The absolute value of the coef-
ficient decreases with increasing frequencies. Compare Sect. 11.8. Andresen esti-
mated reflection coefficients at the water surface as suggested in Refs. [166, 167].
The reflection coefficient R is written on the form R = − exp(C f cosϕ)2 where C
is a parameter depending on the height of the surface waves, f is the frequency, and
ϕ the angle between the normal to the water surface and the incident wave as defined
in Fig. 11.14. Reflection coefficients of the order −0.5 for sea waves with a height
of 0.4m could be expected for an angle of incidence of 45◦ and at 500Hz. Measure-
ments and predictions of sound radiated from hull plates show good agreement as
reported in Ref. [161].

In Sect. 11.10 the sound radiation from semisubmerged vibrating cylinders were
discussed. In Fig. 11.18, it was shown that the sound pressure level in thewater within
a large angular segment was almost independent of reflections in the water surface.
Figure11.19 illustrates yet another case of the effect of reflections in a water surface.

In Chap.4, a so-called “thin” plate was defined. It was argued that a plate could
be considered as thin as long as the wave number for flexural waves propagating
along the plate did not differ by more than 10% of the correct value. In a similar
way, it could be argued that the fluid loading of a plate could be neglected if the fluid
loading is increasing the wave number by less than 10%. The wave number for a
plate with a fluid loading on one side is given by Eq. (12.13). The expression is valid
in the low frequency region or for κ � k. For a plate with a fluid loading on both
sides the wave number is approximately given by

κx ≈ κ

[
1 + ρ0

2μκx

]
≈ κ

[
1 + ρ0

2μκ

]
(12.136)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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For the error neglecting the last term inside the bracket to be less than 10%, if the
fluid is air, it follows that the condition for neglecting the term is

μκ > 6 (12.137)

For a steel or aluminum plate thicker than 1mm the air loading can be neglected
in the entire acoustic frequency range. Whenever the fluid loading can be neglected
the response of a structure to external forces can be calculated as if the structure were
vibrating in vacuum or quite simply uncoupled to the surrounding fluid. The sound
radiated from the structure can thereafter be calculated as function of velocity level
of the element itself.

If the condition (12.137) is not satisfied, the coupled problem should be solved.
This means that the acoustic field depends on the vibrational field of the structure,
which in turn depends on the reaction of the acoustic field. In general, the coupled
problem is much more complicated than the uncoupled problem. However, certain
approximations can often be made to simplify the handling of coupled problems.
In the case of ships or any structures exposed to a water load it can be assumed
that the total mass of a structure submerged in water is equal to its actual mass plus
the additional mass due to the water load. The total mass μtot is calculated from
Eqs. (12.123) to (12.124). Consequently, the total mass of a water-loaded plate is
frequency dependent. This simplified procedure to include the fluid loading has been
used successfully for the prediction of the propagation of structure-borne sound in
ship structures as discussed in Refs. [163, 168]. In the low frequency region, the
technique has been verified by FEM calculations.

Problems

12.1 Find the solution κx to Eq. (12.12) as κx → k.

12.2 Determine the sound pressure in a fluid induced by a plane flexural wave
traveling along an infinite flat plate. The velocity of the plate perpendicular to the
surface is v(x0, y0, t) = v0 exp[i(ωt − κx0)]. The plate is oriented in the x0 − y0-
plane. Use Eq. (12.33) and the Green’s function (12.45).

12.3 The area of rectangular plate is S0. The ratio between the lengths of the sides
is ξ. Determine the sound radiation ratio as function of ξ.

12.4 Determine the mass load on a rectangular plate, sides Lx and L y , at the first
natural frequency of the plate. Fluid loading on one side only.

12.5 Determine the sound radiation ratio σm for a cylindrical shell as kr0 → 0, r0
is the radius of the cylinder and k the wave number in the fluid.
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12.6 The power radiated by the edge mode of a plate is proportional to the square
of the uncancelled area of the edge mode. Calculate the square of the uncancelled
area for a simply supported beam mode and in the same way the uncancelled area
for a clamped beam mode. Consider only odd modes.

12.7 Show that for a point force exciting a fluid-loaded plate that at the excitation
point the apparent mass of the plate is much higher than the corresponding added
weight due to fluid loading for the reverberant field.



Chapter 13
Sound Transmission Loss of Panels

In general, the noise level inside a building or structure is determined by the
transmission of air-borne sound from external and internal acoustic sources and by
structure-borne sound induced by some mechanical sources. For example in a train,
the interior noise is due to air-borne noise created by the contact between the rolling
wheel and the rail. The air-borne noise is transmitted to the interior through floor,
wall, and window constructions. The structure-borne sound is mainly induced by
the contact forces between wheel and rail. These forces excite structural vibrations.
The structure-borne sound is transmitted through wheel and bogie to the car body
construction, which in turn radiates noise into the interior. For high-speed trains,
the flow-induced noise is of great importance. For the design of any noise control
measures, the sound transmission properties of structures must be well understood
whenever air-borne sound is a dominating factor.

In the field of building acoustics, a large number of important papers on sound
transmission through structures were published after the Second World War during
the building boom in Europe. Cremer, Ref. [174], published the most important paper
of all. Many of the prediction models derived were adjusted to the type of materials
and constructions then being used for buildings. Many of these constructions were
heavy and large. Today lightweight and stiff materials are used in many types of
vehicles and even in buildings. There is nowadays a tendency to test only fairly
small samples of these materials. This is often due to the cost of producing the
material. The testing of small samples requires an understanding of the importance
of boundary conditions and geometrical parameters. For a large heavy concrete or
brick wall, these effects can be insignificant. In the vehicle industry and in particular
in the aircraft industry, the acoustic properties of lightweight structures are vital. An
improvement of the sound transmission loss of an aircraft structure by just a few dB
could be of great importance. Consequently, it must be understood when comparing
different measurement results if an observed improvement is due to an improvement
of the structure itself or to some changes of the mounting conditions.

In this chapter, the sound transmission loss of single leaf structures is discussed.
The effects of boundary conditions and panel and room dimensions are consid-
ered. The somewhat lengthy discussion on these effects is summarized in Sect. 13.9.
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Measured and predicted results are compared in Sect. 13.8. The response of struc-
tures excited by an acoustic field and the resulting sound radiation ratios are also
considered. The sound transmission through ribbed panels and double wall struc-
tures is reported in Sect. 13.10. Flanking transmission is discussed in Sect. 13.11.
The sound transmission through composite panels and curved panels is discussed in
Chap. 14. Flow-induced noise is reported in Chap. 15.

13.1 Sound Transmission Through Infinite Flat Panels

A sound wave, which is incident on a plate, sets the plate in motion. The vibrating
plate induces pressure waves in the fluid on both sides of the plate. Part of the incident
intensity is reflected from the plate and part is transmitted from the opposite side of
the plate. The problem is illustrated in Fig. 13.1.

Figure 13.1 shows an infinite plate oriented in the x–y-plane. The fluid is the same
on both sides of the plate. The mass per unit area of the plate is μ and its bending
stiffness D. The lateral displacement w of the plate must satisfy Eq. (8.20) or

∇2(∇2w) + μ

D

∂2w

∂t2 = p(x, y, t)

D
(13.1)

where p is the pressure driving or exciting the plate. The pressure or the force per
unit area of the plate and the displacement are defined positive along the positive
z-axis.

Assume that a plane wave with the amplitude A is incident on the plate. The
angle of incidence is ϕ as shown in Fig. 13.1. The velocity potential for this incident
wave is Φi = A · exp[i(ωt − kx sin ϕ − kz cos ϕ)] where k is the wavenumber
in the fluid and A the amplitude of the incident wave. The reflected wave has
the amplitude R · A. The reflection angle must be equal to the incident angle for
the boundary conditions to be satisfied for any x . The reflected wave is given by the
velocity potential Φr = R · A · exp[i(ωt − kx sin ϕ + kz cos ϕ)]. The transmitted

Fig. 13.1 Incident, reflected and transmitted waves and resulting motion of plate

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_15
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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wave, amplitude T · A, must propagate in the same direction as the incident wave to
satisfy the boundary conditions. Thus Φt = T · A · exp[i(ωt − kx sin ϕ− kz cos ϕ)].
No energy is reflected back to the plate from any outer boundaries. The velocity
potentials below and above the plate are

Φ− = A · {exp[i(ωt − kx sin ϕ − kz cos ϕ)]
+ R · exp[i(ωt − kx sin ϕ + kz cos ϕ)]}; z < 0

Φ+ = A · T exp[i(ωt − kx sin ϕ − kz cos ϕ)]; z > 0 (13.2)

The pressure acting on the plate in the direction of the positive z-axis is

p = p− − p+ = −ρ0

(
∂Φ−
∂t

− ∂Φ+
∂t

)
z=0

(13.3)

The velocity normal to the plate induced by the pressure is written vz = v0 exp[i(ωt−
κx x)]. For any boundary condition on the surface of the plate to be satisfied, the
parameter κx must be equal to k sin ϕ. The plate velocity is consequently

vz = v0 exp[i(ωt − kx sin ϕ)] (13.4)

Equation (13.1) is derivated with respect to time and after using Eq. (13.3) the result
is

∇2(∇2vz) + μ

D

∂2vz

∂t2 = −ρ0

D

(
∂2Φ−
∂t2 − ∂2Φ+

∂t2

)
z=0

(13.5)

The particle velocity in the fluid and normal to the plate must be equal to the panel
velocity vz on either side of the panel. Thus,

(
∂Φ+
∂z

)
z=0

=
(

∂Φ−
∂z

)
z=0

= vz (13.6)

There are two boundary conditions (13.6) and one wave equation (13.5) to be satisfied.
The unknown parameters R, T and vz can be determined from these equations. The
boundary conditions (13.6) yield

R = 1 − T ; v0 = −ik · cos ϕ · T · A (13.7)

Equations (13.2) and (13.4) inserted in the wave equation (13.5) give

− ik cos ϕ · T · [(k sin ϕ)4 − κ4] = 2ρ0ω
2(1 − T )/D; κ4 = μω2/D (13.8)

From these equations the ratio T between the amplitudes of the transmitted and
incident waves is obtained as
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T =
[

1 − ik D · cos ϕ

2ρ0ω2 {(k · sin ϕ)4 − κ4}
]−1

(13.9)

The plate has losses. These are included in the usual way by defining the bending
stiffness D as D = D0(1 + iη) and the wave number for flexural waves as κ4 =
μω2/D. The critical frequency fc is defined in Eq. (12.18) as

fc = c2

2π

(
μ

D0

)1/2

Following this definition of the critical frequency, other useful relationships are

κ0 = 2π

c

√
f · fc; k

κ0
=

√
f

fc
(13.10)

The definitions of D, D0 and fc inserted in (13.9) give

T =
{

1+ μω

2ρ0c
·cos ϕ

(
f

fc

)2

·(sin ϕ)4 ·η− iμω

2ρ0c
·cos ϕ·

[(
f

fc

)2

· (sin ϕ)4 − 1

]}−1

(13.11)

The sound transmission coefficient τ (ϕ) is defined as the ratio between the intensity
It of the transmitted wave and the intensity Ii of the incident wave at the angle ϕ or

τ (ϕ) = It(ϕ)

Ii(ϕ)
= |T (ϕ)|2 (13.12)

The last part of the equation, τ (ϕ) = |T (ϕ)|2, is only valid as long as the fluid is the
same on both sides of the infinite panel.

The velocity potential of the incident wave was defined as Φi = A · exp[i(ωt −
kx sin ϕ − kz cos ϕ)]. The time average of the intensity of the plane wave traveling
toward the plate is Ī0 = (1/2)Re(p · v∗) = ωρ0k |A|2 /2. The intensity Īz of the
wave incident on the plate is

Īz = (1/2)Re(p · v∗
z ) = ωρ0k |A|2 · cos ϕ/2 = Ī0 · cos ϕ (13.13)

where, as before, ϕ is the angle of incidence of the wave as shown in Fig. 13.1. For an
ideally diffuse field, the intensity of the acoustic field is the same in every direction,
i.e., Ī0 is constant. The average of the intensity incident on the plate, considering all
angles of incidence or integrated over a half sphere, and divided by the total space
angle 4π is

〈 Īi〉 = 1

4π

∫ π/2

0
( Ī0 cos ϕ)2π sin ϕdϕ = Ī0/4 (13.14)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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Compare Sect. 11.13. The time average of the transmitted intensity is

〈 Īt〉 = 1

4π

∫ π/2

0
[ Ī0 · τ (ϕ) · cos ϕ] · 2π sin ϕdϕ (13.15)

The transmission coefficient τd obtained for a diffuse incident field is defined as

τd = 〈 Īt〉
〈 Īi〉

= 2
∫ π/2

0
τ (ϕ) sin ϕ · cos ϕdϕ (13.16)

The transmission coefficient τ (ϕ) is obtained from Eqs. (13.11) and (13.12) as

τ (ϕ) =
⎧⎨
⎩

[
1 + μω

2ρ0c
· cos ϕ

(
f

fc

)2

· (sin ϕ)4 · η

]2

+
[

μω

2ρ0c
· cos ϕ ·

[(
f

fc

)2

· (sin ϕ)4 − 1

]]2
⎫⎬
⎭

−1

(13.17)

The character of the transmission coefficient depends on the ratio between the fre-
quency f of the incident wave and the critical frequency fc. Two simple expressions
defining the sound transmission through a simple homogeneous single leaf plate can
be derived as discussed below in the frequency ranges f � fc and f > fc.

Case 1. f � fc

In the low frequency region ( f/ fc)
2 � 1 and the transmission coefficient τ (ϕ),

Eq. (13.17), is reduced to

τ (ϕ) ≈
{

1 +
(

μω

2ρ0c
· cos ϕ

)2
}−1

(13.18)

The transmission coefficient for a diffuse incident field is thus

τd = 2
∫ π/2

0

cos ϕ · sin ϕdϕ

1 + [μω/(2ρ0c)]2(cos ϕ)2 =
∫ 1

0

dξ

1 + [μω/(2ρ0c)]2ξ

= ln

[
1 +

(
μω

2ρ0c

)2
]

/

(
μω

2ρ0c

)2

(13.19)

In the low frequency region τd → 1 as μω/(ρ0c) → 0. In fact 0 < τd < 1 in the
entire frequency range. The sound reduction index or sound transmission loss Rd for
a diffuse incident field is defined as

Rd = 10 log(1/τd) (13.20)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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For this particular case the sound reduction index is obtained from Eq. (13.19) as

Rd = 20 log

(
μω

2ρ0c

)
− 10 log

{
ln

[
1 +

(
μω

2ρ0c

)2
]}

(13.21)

The last part of this expression is a slowly varying function of frequency. For
μω/(2ρ0c) = 10, this part of the expression is 6.6. For μω/(2ρ0c) = 20, the value
is 7.8.

In the first case Rd is Rd ≈ 20 log μ + 20 log f − 49 dB for f � fc and μ
expressed in kg/m2. However, results predicted from this formula are claimed to be
somewhat too low as compared to measurements. It is therefore practice to express
the sound reduction index as

Rd ≈ 20 log μ + 20 log f − 47 dB for f � fc (13.22)

To justify this result it has been suggested, [175], that the expression (13.19) should
be integrated over the angles of incidence from 0 to 78◦ rather than between 0 and 90◦.
There is no physical justification for changing the limit for the angle of incidence.
However, measured sound transmission losses also depend on the geometries of
facilities used for the tests. This is discussed in Sect. 13.8. Since 0 < τd < 1 it
follows that Rd > 0 indicating that the expression (13.22) can not be extended to the
low frequency range.

In the low frequency region, the mass per unit area of the panel is the only plate
parameter determining the sound reduction index as given by (13.22). A doubling of
mass or frequency adds 6 dB to the sound reduction index.

the sound transmission loss R(0) = −10 log[τ (0)] for normal incidence on the
plate is according to Eqs. (13.18) and (13.22) about 5 dB higher than for the trans-
mission loss due to a diffuse incident field or R(0) ≈ Rd + 5 dB.

Case 2. f > fc

Returning to Eq. (13.17), it is found that in the high frequency region the transmission
coefficient strongly depends on the angle of incidence. For a plate with small losses,
the transmission coefficient has a very sharp maximum when the angle of incidence
ϕ satisfies the expression ( f/ fc)

2 sin4 ϕ = 1. This is illustrated in Fig. 13.2.
The sound transmission through the plate is almost completely determined by the

acoustic transparency of the plate at this particular angle, which is often referred to
as the coincidence angle ϕc where

sin ϕc = √
fc/ f (13.23)

At this angle of incidence, the trace of the wavenumber in the fluid on the panel
is equal to the wave number of flexural waves propagating along the plate. The
magnitude of the transmission coefficient at this angle is almost equal to unity for
a plate with small losses. For a hypothetic loss free plate, τ = 1 for ϕ = ϕc. The
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Fig. 13.2 Sound
transmission coefficient as
function of angle of
incidence for f > fc

sound transmission coefficient drops rapidly as ϕ is increased or decreased with
respect to ϕc. The transmission coefficient τd for diffuse incidence can, as suggested
by Cremer [174], be estimated by determining the sound transmission through the
plate for angles close to the angle of coincidence. For this reason, the angle of
incidence is defined through

sin ϕ = (1 + ξ) · sin ϕc = (1 + ξ)
√

fc/ f ; |ξ| � 1 (13.24)

Combining Eqs. (13.17) and (13.24) and neglecting second-order terms like ηξ and
ξ2, etc., Eq. (13.17) is reduced to

τ (ϕ) =
{[

1 + μω

2ρ0c
· cos ϕc · η

]2

+
[

μω

2ρ0c
· cos ϕc · 4ξ

]2
}−1

(13.25)

For high frequencies μωη cos ϕc/(2ρ0c) 	 1 for cos ϕc > 0. Thus,

τ (ϕ) ≈ (2ρ0c)2

(μω)2(η2 + 16ξ2) cos2 ϕc
(13.26)

The transmission coefficient for diffuse incidence is from Eq. (13.26) obtained as

τd ≈ 2

[μω/(2ρ0c)]2(cos ϕc)2

∫ π/2

0

cos ϕ · sin ϕdϕ

η2 + 16ξ2 (13.27)

The angle ϕ is a function of ξ as defined in Eq. (13.24). Thus 2 sin ϕ cos ϕdϕ =
d(sin ϕ)2 = 2 sin2 ϕc · dξ. The integration is carried out for −ξ0 � ξ � ξ0, i.e., for
angles close to ϕc. The expression (13.27) is reduced to

τd ≈ 2(sin ϕc)
2

[μω/(2ρ0c)]2(cos ϕc)2

∫ ξ0

−ξ0

dξ

η2 + 16ξ2 =
[

2ρoc · sin ϕc

μω · cos ϕc

]2 arctan(4ξ0/η)

η
(13.28)
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For small losses or for η � 4ξ0, arctan(4ξ0/η) ≈ π/2. According to Eq. (13.23)
sin2 ϕc = fc/ f . Thus, cos2 ϕc = 1 − fc/ f . The transmission coefficient for diffuse
incidence can for f > fc finally be written as

τd ≈
[

2ρ0c

μω

]2

· π

2η
· fc/ f

1 − fc/ f
(13.29)

The corresponding sound reduction index, Eq. (13.20), for a diffuse incident field is

Rd = 20 log μ+30 log f −10 log fc+10 log η+10 log(1− fc/ f )−45 dB (13.30)

The mass per unit area of the plate, μ, is given in kg/m2 and f and fc in Hz. The
term 10 log(1 − fc/ f ) is often neglected for f 	 fc reducing (13.30) to

Rd = 20 log μ + 30 log f − 10 log fc + 10 log η − 45 dB for f 	 fc (13.31)

The sound reduction index (13.31) depends on the mass of the plate as well as
its stiffness and loss factor. The reduction index appears to increase by 9 dB per
doubling of frequency. However, the approximate sound reduction index given by
(13.31) cannot exceed the value given by Eqs. (13.19) and (13.20) as long as η < 1.
This is revealed by a simple parameter study using the numerical result of Eqs. (13.16)
and (13.17). See Fig. 13.3.

The loss factor for a simple panel is typically decreasing with increasing frequency.
The total losses should also include those due to radiation as given by Eq. (12.121).
The critical frequency is proportional to

√
μ/D0. An increased bending stiffness but

constant mass increases the reduction index for f > fc. If the mass is increased, so
is the critical frequency. In theory, a doubling of the thickness and the mass of a plate

Fig. 13.3 Sound transmission loss of a 5 cm thick chipboard panel, fc = 720 Hz, μ = 22 kg/m2.
R1 Eqs. (13.16), (13.17) and (13.20) with η = 0.01; R2 Eqs. (13.19) and (13.20) with η = 0.03; R3
Eq. (13.22) for f < fc, Eq. (13.30) for f > fc, η = 0.03; R4 Eq. (13.22); R5 Eq. (13.21)

http://dx.doi.org/10.1007/978-3-662-47934-6_12


13.1 Sound Transmission Through Infinite Flat Panels 223

will improve the sound reduction index by 9 dB for f > fc since both the mass and
bending stiffness are changed. Compare Problem 13.2.

The predicted sound reduction index for 5 cm thick chipboard panel is shown
in Fig. 13.3 as function of f/ fc. The mass per unit area is 22 kg/m2 and the critical
frequency is 720 Hz for the panel. The sound reduction indices R1 and R2 are obtained
by means of numerical integration of Eq. (13.16) with τ (ϕ) defined by (13.17). The
sound reduction index is calculated for two different loss factors. For R1 the loss
factor η is set to equal 0.01 and for R2 the loss factor is increased to 0.03. The sound
reduction index R3 is predicted from the simplified expression (13.22) for f � fc
and Eq. (13.31) with η = 0.03 for f 	 fc. The asymptotes R4 and R5 are obtained
from Eqs. (13.22) and (13.21). The level of these curves is only determined by the
mass of the plate or the so-called mass law. The simplified result R4 over-estimates the
sound reduction index. In theory the mass law, as defined by Eq. (13.21) and shown
in Fig. 13.3 as R5 represents the upper achievable limit for the reduction index for
the chipboard panel for any loss factor and frequency. However, the sound reduction
index for finite plates can exceed the reduction index predicted by the mass law. This
is discussed in Sects. 13.7 and 13.8.

The sound reduction index R2 starts to deviate from the mass law R5 at f ≈ fc/3.
The deviation is maintained up to the critical frequency. For higher frequencies,
the sound reduction index steadily increases. The loss factor is only of importance
for frequencies higher than approximately 0.8 · fc for large panels. A significant
improvement of the sound reduction index by increasing the losses is for large panels
only obtained for frequencies above the critical frequency. For small panel elements,
the loss factor can be of significance also in the low frequency region as discussed
in Sects. 13.6 and 13.9. For finite plates mounted between closed spaces or rooms,
the boundary conditions of the plate as well plate and room geometries can influence
the sound reduction index as discussed in Sect. 13.6.

13.2 Plate Velocity Induced by an Acoustic Field

The response of plates excited by dynamic forces was discussed in Chap. 8 and later
in Chap. 12. The input power to a plate was found to be partly dissipated in the plate,
radiated as sound or transmitted to adjoining structures. The power injected in a plate
by an acoustic field is also distributed in a similar way. Figure 13.1 shows the response
of an infinite plate which is excited by an incident plane acoustic wave, amplitude A.
The angle of incidence is ϕ and the time average of the incident intensity of the plane
wave is Ī0. The resulting velocity v0 normal to the surface of the plate is in Eq. (13.7)
given as v0 = −ik · cos ϕ · T · A. The parameter T is defined in Eq. (13.11). The time
average of the velocity squared of the plate averaged over all angles of incidence is
following the discussions leading up to Eqs. (13.14) and (13.15) given by

〈|v̄0|2〉 = 1

2
· 1

4π

∫ π/2

0
2πk2(cos ϕ)2 sin ϕ · |AT |2 dϕ (13.32)

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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The total intensity incident on the structure is given by Eq. (13.15) as 〈 Īi〉 = Ī0/4. If
the acoustic field exciting the plate is completely diffuse and if the average pressure
squared in the field is | p̄|2 the resulting average intensity on the plate is 〈 Īi〉 =
| p̄|2 /(4ρ0c) as shown in Sect. 11.13. The ratio between the velocity squared of
the plate and the incident intensity is, considering Eqs. (13.32) and (13.12) and the
definition of the incident power given by

〈|v̄0|2〉
〈 Īi〉

= 2

ρ0c

∫ π/2

0
(cos ϕ)2 sin ϕ · τ (ϕ)dϕ (13.33)

The intensity radiated from the vibrating plate or the intensity transmitted through
the plate is given by (13.12). This intensity can also be described by introducing a
sound radiation ratio σa for the plate resulting from the acoustic excitation of the
plate. In analogy with the discussion in Sect. 12.1, Eq. (12.19), the parameter σ̄a is
defined as

σ̄a = 〈 Īt〉
ρ0c〈|v̄0|2〉

(13.34)

The transmitted intensity can according to Eqs. (13.14) through (13.16) be written as
〈 Īt〉 = τd · 〈 Īi〉. This expression in combination with Eqs. (13.33) and (13.34) gives

σ̄a = τd

2
∫ π/2

0 cos2 ϕ · sin ϕ · τ (ϕ)dϕ
= τd

W
(13.35)

Considering that the incident intensity is 〈 Īi〉 = 〈| p̄|2〉/(4ρ0c) it follows from (13.33)
that

〈|v̄0|2〉(ρ0c)2

〈| p̄|2〉 = 1

2

∫ π/2

0
cos2 ϕ · sin ϕ · τ (ϕ)dϕ (13.36)

In the previous section, simple expressions for the sound reduction index of an infinite
plate were derived in the high and low frequency regions. A similar approach can be
followed to find the radiation ratio σ̄a for a plate.

Case 1 f � fc

The velocity squared of the plate excited by a diffuse incident field is given by
Eq. (13.32). The transmission coefficient for f � fc is presented in Eq. (13.18).
Thus, the parameter W in Eq. (13.35) is given as

W =
∫ π/2

0

2(cos ϕ)2 sin ϕ

1 + [μω cos ϕ/(2ρ0c)]2 dϕ =
∫ 1

0

2ξ2dξ

1 + [μω/(2ρ0c)]2ξ2 (13.37)

The result is for f � fc

W = 2

X2

(
1 − arctan X

X

)
; X = μω

2ρ0c
(13.38)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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For f � fc the transmission coefficient τd is given by Eq. (13.19). Consequently,
the radiation ratio is reduced to

σ̄a = ln(1 + X2)

2 · (1 − arctan X/X)
; X = μω

2ρ0c
(13.39)

In the very low frequency range X � 1 and ln(1+X2) ≈ X2 and (1−arctan X/X) ≈
X2/3. Thus

lim
f →0

σ̄a = 1.5 (13.40)

The radiation ratio σ̄a is weakly increasing with increasing frequency. See Problem
13.1. The radiation from a plate resulting from a free wave propagating along the
plate gives a sound radiation equal to zero for f < fc as discussed in Sect. 12.1. For
an infinite plate excited by an acoustic field a certain vibration pattern is forced on
the plate. This vibration pattern is well coupled to the acoustic field on the opposite
side of the plate as long as the fluid is the same on both sides of the plate. This results
in a radiation ratio larger than zero. The radiation ratio of an infinite plate depends on
how the plate is excited. The same is true for finite plates as discussed in Sect. 13.9.
The radiation ratio σ̄a is much lower for finite plates than for infinite plates.

It can be shown that for f � fc the response of the plate is approximately given
by

10 log

∣∣∣∣∣
(ρ0c)2〈|v̄0|2〉

〈| p̄1|2〉

∣∣∣∣∣ ≈ −9 − R dB

where 〈| p̄1|2〉 is the frequency and space average of the pressure squared in the source
room and R the sound transmission loss of the plate for f � fc.

Case 2 f > fc

In the high frequency region, the sound transmission coefficient τ (ϕ) is given by
Eq. (13.25). The radiation ratio is defined in Eq. (13.35). The transmission coefficient
is large for ϕ ≈ ϕc. Again, the expansion (13.24) is used to determine the function
W introduced in Eq. (13.35).

W =
∫ π/2

0
2 cos2 ϕ · sin ϕ · τ (ϕ)dϕ ≈

∫ π/2

0
2(sin ϕc)

2 cos ϕcτ (ξ)dξ

= cos ϕc ·
∫ π/2

0
2(sin ϕc)

2τ (ξ)dξ = cos ϕc · τd (13.41)

As before sin ϕc = √
fc/ f and cos ϕc = √

1 − fc/ f . Equations (13.35) and (13.41)
give

σ̄a = 1

cos ϕc
= 1√

1 − fc/ f
for f > fc (13.42)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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This is the same result as derived in Sect. 12.1 for free waves propagating along the
plate. For resonant transmission through the plate, the wave number for the waves
induced by the acoustic field will be same as for free waves. Consequently σ̄a = σ̄r
for f > fc.

The response of the plate is given by Eq. (13.36). Thus

〈|v̄0|2〉(ρ0c)2

〈| p̄|2〉 = 1

2

∫ π/2

0
cos2 ϕ·sin ϕ·τ (ϕ)dϕ= cos ϕc

4
2

∫ π/2

0
cos ϕ·sin ϕ·τ (ϕ)dϕ

= cos ϕc · τd

4
= τd

4
√

1 − fc/ f
(13.43)

The response of the plate is obtained from

10 log

∣∣∣∣∣
(ρ0c)2〈|v̄0|2〉

〈| p̄1|2〉

∣∣∣∣∣ ≈ −6 − R dB

where again 〈| p̄1|2〉 is the frequency and space average of the pressure squared in
the source room and R the sound transmission loss of the plate for f > fc.

13.3 Sound Transmission Between Rooms Separated
by a Single Leaf Panel

The sound transmission through an infinite wall or rather an infinite single leaf plate
was discussed in Sect. 13.1. The sound pressure level difference between two rooms
separated by a single wall with a sound source in one of the rooms is given by (11.172)
as

L p1 − L p2 = R + 10 log(A2/S)

The sound transmission loss or sound reduction index of the wall is defined by R. The
area of the wall is S and the equivalent sound absorption area in the receiving room
is A2. Based on measurement results, the sound reduction index of a simple wall is
known to depend on panel dimensions, the mounting or boundary conditions of the
panel and a number of material parameters of the wall. It has also been observed that
different shapes of the measurement rooms and test openings in laboratories can lead
to quite different measured sound reduction indices for a specific structure. However,
in practice little or nothing is really done to compensate for these effects. Thus,
measurement results from different laboratories do not always show satisfactory
agreement as discussed in Sect. 13.8. It is therefore not always possible to determine to
what extent the observed discrepancies between measurements are due to differences
of material parameters or due to variations of mounting or laboratory design.

In order to describe the effect of boundary conditions, etc., the acoustic fields in
the two rooms plus the vibration field of the wall and the coupling between these

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_11
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fields must be described. Some models have been presented by Sewell [176, 177],
Crocker and Price [178], Josse and Lamure [179], and Nilsson [180]. Some of these
models are somewhat cumbersome. Still it is here considered useful to demonstrate
and discuss the basic principles of the model described in Ref. [180]. The results are
summarized in Sect. 13.9. Measurements compared to predictions are presented in
Sect. 13.8.

To start with, let a rectangular single leaf panel separate two rooms. The config-
urations of the rooms are shown in Fig. 13.4. An acoustic source is located in Room
1, the left room in Fig. 13.4.

The dimensions of the plate and the two rooms are L y and Lz along the y and z
axes. The left room is the source room and extends from x = −d to x = 0 in the
coordinate system shown in Fig. 13.4. The receiving room extends from x = 0 to
x = a. The acoustic field in Room 1, the source room, excites the wall which in turn
radiates acoustic power into the two rooms. It is assumed that the outer walls of the
rooms are acoustically hard so that the particle velocity in the fluid normal to the
outer walls is equal to zero everywhere. The particle velocity in the x-direction at
x = 0 should equal the velocity of the wall separating the rooms. The wall and the
rooms have losses. Initially, it is assumed that the boundary conditions of the wall
can be described as stiff and sliding as illustrated in Fig. 8.2. This assumption will
ensure that the eigenfunctions in the rooms along the y–z-axes are the same as for
the plate. These eigenfunctions are

ϕmn(y, z) = cos

(
mπy

L y

)
cos

(
nπz

Lz

)
(13.44)

The velocity of the wall can be written as

v(y, z, t) =
∑
mn

vmn · ϕmn(y, z) · exp(iωt) (13.45)

Fig. 13.4 Two rooms separated by a wall. A sound source is located in the left room

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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The velocity potential induced in Room 2, the receiving room, by the vibrating wall
is

Φ2 =
∑
mn

Amn cos[λmn(x − a)]ϕmn(y, z) exp(iωt) (13.46)

The expression satisfies the boundary conditions that the particle velocities normal
to all outer walls are zero. The velocity potential must satisfy the wave equation
∇2Φ + k2Φ = 0. Thus

λmn = (k2 − k2
mn)1/2 = [k2 − (mπ/L y)

2 − (nπ/Lz)
2]1/2 (13.47)

The parameter λmn is complex since the wave number is k = k0(1 − iδ2/2) to
account for the losses δ2 in the room

At x = 0 the boundary condition is

∂Φ2/∂x = v (13.48)

The Eqs. (13.45), (13.46) and (13.48) give

Amn = vmn

λmn sin(λmna)
(13.49)

Consequently the velocity potential in the receiving room, defined by 0 � x � a, is

Φ2 =
∑
mn

vmn cos[λmn(x − a)]ϕmn(y, z) exp(iωt)

λmn sin(λmna)
(13.50)

In the source room, the velocity potential is written as the sum of a field Φ� induced
by the acoustic source in the room and a field Φw induced by the vibrating wall. In
the first case, it is assumed that the particle velocities normal to all walls are equal
to zero. With a source mounted in a corner of the room, the resulting field in Room
1 is according to Eq. (11.139)

Φ� =
∑
lmn

P · cos(lπx/d) · ϕmn(y, z) · exp(iωt)

εlεmεn(k2 − k2
lmn)

(13.51)

where P is a function of the acoustical power of the source and εl = 2 for l = 0 and
εl = 1 for l > 0 etc. However, the lower modes are of no great importance for the
derivation of the sound transmission loss, which makes it possible to leave out the
indices εl etc. The field Φw should satisfy the boundary conditions ∂Φw/∂x = 0 for
x = −d and ∂Φw/∂x = v at x = 0. Consequently, the velocity potential induced
by the vibrating wall is written

Φw =
∑
mn

−vmn cos[λmn(x + d)]ϕmn(y, z) exp(iωt)

λmn sin(λmnd)
(13.52)

http://dx.doi.org/10.1007/978-3-662-47934-6_11


13.3 Sound Transmission Between Rooms Separated by a Single Leaf Panel 229

Thus, the total velocity potential in the source room is

Φ1 = Φ� + Φw (13.53)

The differential equation governing the vibration of the plate is

∇2(∇2v) − κ4v = ( ṗ1 − ṗ2)x=0

D
= ρ0ω

2

D
[Φ1 − Φ2]x=0 (13.54)

where κ4 = μω2/D and D = D0(1 + iη). The Eqs. (13.46), (13.51) and (13.52)
inserted in (13.54) give

[k4
mn − κ4]vmn

= − ρ0ω
2

D
vmn

[
cos(λmnd)

λmn sin(λmnd)
+ cos(λmna)

λmn sin(λmna)

]
− ρ0ω

2

D

∑
l

P

k2
lmn − k2

(13.55)

The summation on the right hand side can be made as discussed in Problem 13.3
giving ∑

l

1

k2 − k2
lmn

= d

2λmn tan(λmnd)
(13.56)

The Eqs. (13.55) and (13.56) give

vmn

[
k4

mn − κ4 + ρ0ω
2

D

(
1

λmn tan(λmnd)
+ 1

λmn tan(λmna)

)]

= ρ0ω
2d P

2Dλmn tan(λmnd)
(13.57)

The terms 1/[λmn tan(λmnd)] are large whenever Re(λmnd) ≈ nπ or rather at fre-
quencies coinciding with any of the natural frequencies of the source room. At any
of these frequencies, the reaction of the acoustic field in the room will decrease the
mobility of the wall. Compare Problem 13.4. The reacting field in the source room
is increasing the added mass of the wall due to the fluid loading. However, for a
light fluid like air the added mass effect is small and can in fact be neglected if the
rooms are comparatively large. See also Sect. 12.1. Neglecting the secondary terms
describing the effect of the fluid loading on the wall, i.e., the parenthesis inside the
bracket on the left hand side of Eq. (13.57), this expression is reduced to

vmn = d P

2Zmnλmn tan(λmnd)
; Zmn = D

ρ0ω2

(
k4

mn − κ4
)

(13.58)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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The function λmn is complex, which means that the velocity vmn is finite at any
frequency coinciding with a natural frequency in the room.

The pressure in the fluid is p = −iωρ0Φ. Assuming that the direct field from
the acoustic source in the room dominates over the secondary field induced by the
vibrating wall the velocity potential Φ1 in Room 1 can be set to equal Φ�. The space
average of the pressure squared in room 1 is

〈
∣∣∣p2

1

∣∣∣〉 = (ρ0ω)2

V

∫
v

dV |Φ1|2 = (ρ0ω)2

8

∑
lmn

|P|2∣∣k2
lmn − k2

∣∣2 (13.59)

The frequency or wave number average of the pressure squared is

〈
∣∣∣ p̄2

1

∣∣∣〉 = (ρ0ω)2

8

∑
lmn

1

�k

∫ k+�k/2

k−�k/2
dk

|P|2∣∣k2
lmn − k2

∣∣2

= (ρ0ω)2

8

�N

�k

∫ k+�k/2

k−�k/2
dk

|P|2∣∣k2
lmn − k2

∣∣2 (13.60)

The number of modes within the wavenumber domain k − �k/2 and k + �k/2 is
given by �N . The number of modes in room of volume V1 is for wave numbers less
than k given by N = k3V1/(6π2). See Eqs. (11.137) and (11.138). Consequently

�N

�k
= k2V1

2π2 (13.61)

To account for the losses in Room 1 the wavenumber for the fluid is according to
standard practice written k(1 − iδ1/2), where δ1 is the loss factor. Following the
procedure outlined in Sect. 11.12, the space and wavenumber average of the pressure
squared in Room 1 is

〈
∣∣∣ p̄2

1

∣∣∣〉 = |ρ0ωP|2 V1

32πδ1k
(13.62)

From Eq. (13.50) the space average of the pressure squared in Room 2 is given as

〈|p2|2〉= (ρ0ω)2

V2

∫
dV |Φ2|2 =

∑
mn

(ωρ0)
2 |vmn|2

4[λmn sin(λmna)]2

∫ a

0

cos2[λmn(x − a)]
a

dx

=
∑
mn

(ωρ0)
2 |vmn|2

8 · [λmn sin(λmna)]2

[
sin(2λmna)

2λmna
+ 1

]
(13.63)

This expression is also written

〈|p2|2〉 =
∑
mn

(ωρ0)
2 |vmn|2
8

Ymn(a);

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
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Ymn(a) = 1

[λmn sin(λmna)]2

[
sin(2λmna)

2λmna
+ 1

]
(13.64)

For unequal rooms |vmn|2 and Ymn(a) have maxima at different frequencies. The
wavenumber averages of the functions can therefore be made separately. The
wavenumber average of 〈|p2|2〉 can therefore be written as

〈| p̄2|2〉 =
∑
mn

(ωρ0)
2 |v̄mn|2
8

Ȳmn(a) (13.65)

The frequency average of Ymn(a) is given by Ȳmn(a). The function Ymn(a) is large
when λmna ≈ nπ or when k0 = k0a(1 + ξ) for ξ small and

k0a =
[

k2
mn +

(
Nπ

a

)2
]1/2

(13.66)

Considering that k = k0(1 − iδ2/2) = k0a(1 + ξ)(1 − iδ2/2) ≈ k0a(1 + ξ − iδ2/2)

where δ2 represents the losses in Room 2 then for small ξ and δ2 the function Ymn(a)

is expanded as

|Ymn(a)| = 1

(ak2
0a)2(ξ2 + δ2

2/4)
(13.67)

Compare Problem 13.5. The wavenumber average of this function is

∣∣Ȳmn(a)
∣∣ = 1

�k

∫
dk0

(ak2
0a)2(ξ2 + δ2

2/4)
= 1

�k
· 1

a2k3
0a

∫
dξ

(ξ2 + δ2
2/4)

From Eq. (13.66) �k0a = �N (Nπ/a)(π/a)/k0a . For �N = 1 and (Nπ/a) =
(k2

0 − k2
mn)1/2 = k0 cos ϕ where ϕ is the angle between the outgoing wave and the

normal to the plate. The wavenumber spacing �k is obtained for �N = 1 as

�k0a = (Nπ/a)(π/a)/k0a = π cos ϕ/a (13.68)

Consequently ∣∣Ȳmn(a)
∣∣ = 2

ak3
0aδ2 cos ϕ

(13.69)

The velocity of the plate is given by Eq. (13.58). The velocity components vmn are
large whenever tan(λmnd) is small or whenever Reλmnd ≈ nπ or at any of the
natural frequencies of the source room. The function λmn tan(λmnd) can in a similar
way as Ymn(a) be expanded with respect to a wavenumber kod corresponding to one
of the natural frequencies in Room 1. Thus, write k = k0d(1 + ξ − iδ1/2) where
k0d = [k2

mn + (Nπ/d)2]1/2. The losses in Room 1 are given by δ1. Based on these
assumptions the modal velocity of the panel is
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vmn = P

2[Zmnk2
0d(ξ − iδ1/2)] (13.70)

The wavenumber average of v2
mn is for �k = π cos ϕ/d

|v̄mn|2 = |P|2
4

∣∣Zmnk2
0d

∣∣2
�k

∫ k+�k/2

k−�k/2

kx dξ

ξ2 + δ2
1/4

= |P|2 d

2 cos ϕ
∣∣Z2

mn

∣∣ k3
0dδ1

(13.71)

Setting k = k0d and using (13.62) the result is written

|v̄mn|2 = 〈| p̄1|2〉 16π

L y Lz cos ϕ(ρ0ω)2
∣∣Z2

mn

∣∣ k2
(13.72)

The pressure p2 in Room 2 is given by the expression (13.65) as a sum of the product
between |v̄mn|2 and Ȳmn(a). For sound transmission between two unequal rooms
these two functions have maxima at different wavenumbers. The summation (13.65)
can therefore be approximated by the expression

〈| p̄2|2〉 = [
Ȳmn(a)

]
av

∑
mn

(ωρ0)
2 |v̄mn|2
8

(13.73)

The function
[
Ȳmn(a)

]
av is defined as the modal average of Ȳmn(a) or as

[
Ȳmn(a)

]
av =

∑
mn

Ȳmn(a)/Ntot (13.74)

where Ntot is the total number of modes projected on the wall for all wavenumbers
less than k. The wavenumber kmn projected on the wall is kmn = k sin ϕ. For a certain
angle ϕ, the total number of modes N projected on the plate is

N = L y Lzk2
mn/(4π) = L y Lzk2 sin2 ϕ/(4π) (13.75)

Thus the number of modes �N within a section �ϕ of the angle of incidence is

�N = L y Lzk2 sin ϕ cos ϕ�ϕ/(2π) (13.76)

∑ ∣∣Ȳmn(a)
∣∣ =

∫ π/2

0

L y Lzk2 sin ϕ cos ϕdϕ

πak3
0N δ2 cos ϕ

= L y Lzk2

πak3
0N δ2

= V1

πa2kδ2
(13.77)

The number of modes projected on the plate for wavenumbers less than k is obtained
from Eq. (13.76) as

Ntot = 1

2π

∫ π/2

0
L y Lzk2 sin ϕ cos ϕdϕ = L y Lzk2

4π
(13.78)
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Following the definition (13.74) and the result (11.159), δk = A/4V , the function[
Ȳmn(a)

]
av is obtained as

[
Ȳmn(a)

]
av = 4V2

a2k3δ2L y Lz
= 4

ak3δ2
= 16S

k2 A2
(13.79)

The equivalent absorption area in Room 2 is A2 and the area of the wall is S = L y Lz

and the volume of the room is V2 = Sd. For sufficiently high frequencies or rather
for sufficiently many modes in the rooms the summation in Eq. (13.73) can using
(13.76) be transformed into an integral as

∑
mn

Qmn → L y Lzk2

2π

∫ π/2

0
Q(ϕ) sin ϕ cos ϕdϕ (13.80)

Finally the expressions (13.71), (13.74), (13.79) and (13.80) give

〈| p̄2|2〉 = 〈| p̄1|2〉 16S

A2k2

∫ π/2

0

sin ϕdϕ

|Z(ϕ)|2 (13.81)

The function Zmn is given in Eq. (13.58). By setting D = D0(1 + iη), κ4 = μω2/D
and κ4

0/k4 = ( f/ fc)
2, kmn = k sin ϕ the new function Z(ϕ) is

|Z |2 =
(

μ

ρ0

)2
⎧⎨
⎩

[(
f

fc

)2

sin4 ϕ − 1

]2

+
[
η

(
f

fc

)2

sin4 ϕ

]2
⎫⎬
⎭ (13.82)

Together with Eq. (13.81) the pressure in Room 2 is finally obtained as

〈| p̄2|2〉 = 〈| p̄1|2〉16S(ρ0c)2

A2(μω)2

∫ π/2

0

sin ϕdϕ[(
f

fc

)2

sin4 ϕ − 1

]2

+
[
η

(
f

fc

)2

sin4 ϕ

]2

(13.83)
For f � fc, |Z |2 ≈ (μ/ρ0)

2 and

〈| p̄2|2〉 = 〈| p̄1|2〉16S(ρ0c)2

A2(μω)2

For μ expressed in kg/m2 and f in Hz the difference between the sound pressure
level L p1 in Room 1 and the sound pressure level L p2 in Room 2 is written

L p1 − L p2 = 20 log μ + 20 log f − 48 + 10 log(A2/S) dB (13.84)

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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For f > fc and following the procedure outlined in Sect. 13.1 the result is

〈| p̄2|2〉 = 〈| p̄1|2〉 4πS(ρ0c)2 fc

A2η(μω)2 f
√

1 − fc/ f

L p1 − L p2 = 20 log μ + 30 log f − 10 log fc + 10 log η

+ 5 log(1 − fc/ f ) − 47 + 10 log(A2/S) (13.85)

Considering the definition (11.172), the sound transmission loss is written as

R=20 log μ + 20 log f − 48 for f � fc (13.86)

R=20 log μ+30 log f −10 log fc+10 log η+5 log(1− fc/ f )−47 for f > fc
(13.87)

As discussed in Sect. 13.1, the sound reduction index R always satisfies R > 0.
Further the sound reduction index given by (13.87) cannot exceed the value given
by (13.86) at any frequency.

The expression (13.84) was derived assuming that the secondary field in Room
1 could be neglected. This is not the case when the sound reduction index is small.
Not neglecting the secondary terms in Eq. (13.57) would ensure that R > 0 as
the frequency tends to zero. The radiation losses, defined in Eq. (12.119) should be
included in the total loss factor given by η in Eq. (13.87). For f > fc the radiation
losses are

ηrad = 2ρ0c

ωμ
√

1 − fc/ f

rendering R finite as f → fc.

13.4 Sound Transmission Between Equal Rooms

The acoustical coupling between the rooms shown in Fig. 13.4 is changed if the
dimensions of the rooms are made identical. In this particular case, it means that
a = d in Fig. 13.4. By setting a = d in Eq. (13.57) the modal velocity vmn is
obtained as

vmn = a P

2Zmnλmn tan(λmna)
= P

2Zmnk2
0a(ξ − iδ1/2)

(13.88)

The pressure squared in Room 2 is given by Eq. (13.64). For unequal rooms the func-
tions |vmn| and Ymn could be averaged separately with respect to the wavenumber.
For equal rooms, the functions have maxima for the same wavenumber and must
therefore be averaged together. By inserting Eqs. (13.88) and (13.67) in (13.64), the
pressure squared in Room 2 is written as

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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〈|p2|2〉 = (ωρ0)
2 |P|2

32a2k8

∑
mn

1

|Zmn|2 (ξ2 + δ2
1/4)(ξ2 + δ2

2/4)
(13.89)

The wavenumber average of (13.89) is given by

〈| p̄2|2〉 = 1

�k

∫
〈|p2|2〉kdξ; �k = π cos ϕ/a

Thus,

〈| p̄2|2〉 =
∑
mn

(ωρ0)
2 |P|2

32π cos ϕak7 |Zmn|2 · �; � =
∮

dξ

(ξ2 + δ2
1/4)(ξ2 + δ2

2/4)

(13.90)
The integration is made along a contour of a half-circle in the upper part of the com-
plex plane. The procedure is discussed in Problem 13.6. The function � is obtained
as

� = 8π

δ1δ2(δ1 + δ2)
(13.91)

For sufficiently many modes in the rooms, the summation of (13.90) is made into an
integration as given by Eq. (13.80). Thus

〈| p̄2|2〉 =
∫ π/2

0

(ωρ0)
2 |P|2 S sin ϕdϕ

8πak5 |Z(ϕ)|2 δ1δ2(δ1 + δ2)
(13.92)

The pressure squared in Room 1 is defined in Eq. (13.62). The loss factor δ1 in Room
1 is as before given by δ1k = A1/4V where A1 is the equivalent absorption area in
Room 1. The Eqs. (13.62) and (13.92) give

〈| p̄2|2〉 = 〈| p̄1|2〉 64S2

A2(A1 + A2)

∫ π/2

0

sin ϕdϕ

k2 |Z(ϕ)|2 (13.93)

A comparison with the results (13.84) through (13.87) gives the sound pressure level
difference between two equal rooms as

L p1 − L p2 = R + 10 log(A2/S) + 10 log[(A1 + A2)/(4S)] (13.94)

A1 and A2 are the equivalent absorption areas in Room 1 and Room 2 respectively.
The sound reduction index R is given in Eq. (13.86) for f � fc and in Eq. (13.87)
for f > fc. The result given by Eq. (13.94) is valid even when the rooms are slightly
different. It can be shown that if the rooms have the same shape but slightly different
volumes V and V + �V the result (13.94) is valid as long as

δ1 + δ2

2
>

2�V

3V
or �V < c(A1 + A2)/(16ω) (13.95)
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This condition is more readily satisfied in the low frequency region. Whenever the
transmission rooms are equal, the sound pressure level difference between the rooms,
a sound source in one room, depends on the losses in both rooms. Experimentally,
the sound reduction index of a wall is, as discussed in Sect. 11.15, Eq. (11.172),
determined through R = L p1 − L p2 −10 log(A2/S). A comparison with Eq. (13.94)
gives a difference between reduction indices measured between equal and unequal
rooms as

Requal − Runequal = 10 log[(A1 + A2)/(4S)] (13.96)

13.5 Sound Transmission Between Irregular Rooms

In Sects. 13.3 and 13.4, the sound pressure level difference between two rooms were
discussed. One of the rooms having a sound source and the rooms being separated
by a simple wall. In the first case, Fig. 13.5a, the height and width of the adjoining
rooms were the same whereas the lengths of the rooms were different. In the second
example, Fig. 13.5b, the two rooms were identical. The sound pressure level differ-
ence between the rooms was found to be different in the two cases. A third type of
room configuration can also be considered, Fig. 13.5c. The two rooms are completely
irregular and the cross-sectional modes in the rooms and of the wall are uncoupled. It
can be shown that the sound pressure level difference between the rooms, one having
a sound source, is given by the expression (11.172) where R is given by Eqs. (13.21)
and (13.30). This result is obtained by considering that in Eq. (13.57) λmn is complex
since k = k0(1 − iδ/2). Thus tan(λmna) and tan(λmnd) tend to 1/ i as the lengths
of the rooms, a and d, approaches infinity. Further, averages and summations over
the modes in the source room, receiving room and the panel can be made separately
as the modes are uncoupled. Compare Problem 13.12.

Thus, in summary, the sound pressure level difference �L p between two rooms,
one having a sound source, is given by

(i) Configuration of rooms according to Fig. 13.5a

�L p = R + 10 log(A2/S)

(a) (b) (c)

Fig. 13.5 Three configurations of rooms separated by a simple panel. a Width and height of rooms
and panel are identical; b Width and height of rooms and panel and lengths of rooms are identical;
c The rooms are completely irregular

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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where R is defined in (13.83) or approximately given by (13.86) and (13.87). The
equivalent sound absorption area in the receiving room is given by A2. The area of
the panel separating the rooms is S.
(ii) Configuration of rooms according to Fig. 13.5b

�L p = R + 10 log(A2/S) + 10 log[(A1 + A2)/(4S)]

where R is defined in (13.83) or approximately given by (13.86) and (13.87). The
equivalent sound absorption area in the receiving room is given by A2 and in the
source room A1
(iii) Configuration of rooms according to Fig. 13.5c

�L p = R + 10 log(A2/S)

where R is defined in (13.16) and (13.17) or approximately given by (13.22) and
(13.30). The equivalent sound absorption area in the receiving room is given by A2.

However, as discussed in the next few sections the boundary conditions and the
dimensions of the panel can also influence the sound transmission loss of a panel.

13.6 Effect of Boundary Conditions of Plate on Sound
Transmission Loss

The sound transmission through a panel separating two rooms was discussed in
Sect. 13.3. The transmission can be said to be due to a non-resonant process in the
very low frequency region. The transmission loss is mainly determined by the simple
mass law. For increasing frequencies, the transmission due to resonant phenomena
starts to be of importance finally to dominate completely for frequencies above the
critical frequency fc. The sound transmission loss of a panel often starts to deviate
from the simple mass law for frequencies f > fc/2. The resonant transmission
or rather the resonant response of a plate is in the high frequency region more or
less independent of the boundary conditions. The response and the transmission
are for high frequencies determined by material parameters of panel and the modal
density for bending waves on the plate. In this frequency region, the modal density
is independent of boundary conditions as shown in Sect. 8.5. See Problem 13.7. In
Chap. 12, it was concluded that the sound radiation ratio of a plate is independent of
boundary conditions for f > fc whereas in the low frequency region the radiation
ratio is higher for a clamped than for a simply supported plate. It is also concluded
that the sound radiation ratio for a plate for f < fc depends on the dimensions of
the plate. In the high frequency range, this is no longer the case. In a similar way,
it can be shown that the resonant sound transmission through a panel is, as a first
approximation, independent of boundary conditions and length and width of plate.

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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In this section, a discussion is included on the influence of boundary conditions
on the non-resonant sound transmission through a plate. The influence of panel and
room dimensions is discussed in Sect. 13.7.

The sound transmission loss of a panel mounted between two rooms was discussed
in Sect. 13.3. A sound source was operating in one room. The sound pressure in the
receiving room was found to be a function of the plate velocity or rather its modal
amplitudes vmn as given in Eq. (13.63). These modal parameters were derived for the
special case that the panel satisfied the boundary conditions for a sliding edge illus-
trated in Fig. 8.2. The eigenfuntions for the plate and the cross modes in the room were
consequently the same, see Eq. (13.44). In the low frequency region, non-resonant
transmission, the plate velocity is a function of the differential equation

∇2(∇2v) − κ4v =
∑
mn

Qmn · ϕmn(y, z) (13.97)

where for a diffuse field in the source room the parameter Qmn is independent of the
mode numbers m and n. If in Eq. (13.55) the secondary acoustic fields are neglected
the source terms Qmn are found to be of approximately the same amplitude for
κ 	 k � kmn . Following the discussion in Sect. 13.5 the frequency average of the

product Qmn · Qrs of the modal amplitudes is equal to
∣∣Q̄

∣∣2
δmrδns . One possible

way to find a solution to Eq. (13.97) for a panel with clamped boundaries would be
to use approximate eigenfunctions for the plate. These could be a combination of
beam functions describing the flexural vibrations of clamped beams as discussed
in Sect. 8.6. The amplitudes of the resulting modes could thereafter be obtained
using Garlerkin’s method, Sect. 9.9. However, a different approach is to be followed
here. The technique is described in Ref. [180]. It is assumed that if the problem
is treated in one dimension the extra contribution or perturbation due to a changed
boundary condition could be calculated directly. The result for the two dimensional
case is obtained by super-imposing two one-dimensional and perpendicular wave
motions. A similar one-dimensional approach has previously been used by Nikiforov
in Ref. [181] to model the sound radiation from finite plates with different boundary
conditions. The use of a one-dimensional model can also be justified by considering
the radiation from a finite plate discussed in Sect. 12.9. It was demonstrated that the
dominant part of the acoustic energy radiated by a vibrating finite plate was caused
by the edge modes.

The wave equation for a plate excited by a diffuse field is given by Eq. (13.97). In
one dimension, the y-direction, this would correspond to

∂4v

∂y4 − κ4v =
∑

m

Qm · ϕm(y); 0 � y � L y (13.98)

In order to save space the discussion is confined to symmetric fields or m even. How-
ever, the complete solution, including both symmetric and asymmetric fields, gives
the same result. Thus for the symmetric case, v(y) = v(L y − y), the eigenfunctions

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_8
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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ϕm are ϕm(y) = cos(2mπy/L y). The total solution to Eq. (13.98) is the sum of the
particular and the complementary solutions. The particular solution to the inhomo-
geneous equation (13.98) is

v1 =
∑

m

v1mϕm(y); v1m = Qm

k4
m − κ4 ; km = 2mπ/L y (13.99)

For frequencies far below the critical frequency, k � κ and consequently km � κ
for the modes exciting the structure. Thus,

v1m ≈ − Qm

κ4 (13.100)

The complementary and symmetric solution to the homogeneous problem is on the
form

v2 = B1 cos κ(y − L y/2) + B2 cosh κ(y − L y/2)

For a structure clamped at the ends y = 0 and y = L y the total solution v = v1 + v2
should satisfy the boundary conditions

v = dv

dy
= 0 for y = 0 and y = L y

The second boundary condition requires that ∂v2/∂y = 0 for y = 0. Thus,

v2 = U

[
cos κ(y − L y/2)

sin(κL y/2)
+ cosh κ(y − L y/2)

sinh(κL y/2)

]

The function U is determined from the boundary condition v = v1 + v2 = 0 for
y = 0. Consequently,

U = − 1

cot(κL y/2) + coth(κL y/2)

M∑
m=0

Qm

κ4

The summation is made for all positive m up to M . The limit M is equal to the number
of modes of the pressure in the frequency range up to f . Thus 2Mπ/L y = k where
k is the wavenumber in the fluid, speed of sound c. Consequently, M ≈ f L y/c. For
κL y > 1, coth(κL y/2) ≈ 1 and the function U is reduced to

U ≈ − 1

cot(κL y/2) + 1

M∑
m=0

Qm

κ4 (13.101)
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The complementary function can also be expanded along the eigenfunctionsϕm(y) =
cos(2mπy/L y). The result is

v2(y) = 8κ3U

L y

[∑
m

ϕm(y)

κ4 − k4
m

]
≈ 8κ3U

L y

[∑
m

ϕm(y)

κ4

]
f � fc

For non-resonant transmission, κ 	 km this expression is reduced to

v2 =
∑

m

v2mϕm = 8U

κL y

∑
m

ϕm; v2m = 8U

κL y
(13.102)

The amplitude of U is large when Re(κL y/2) = 3π/4 + Nπ = α0 where N is an
integer. Following the definition of the wavenumber, the parameter α0 is also equal
to

α0 = πL y
√

f · fc

c
(13.103)

where c is the speed of sound of the fluid in the rooms, i.e., typically air. Let now the
frequency dependent function κL y/2 be expanded around α0 as

κL y

2
= α0(1 + ξ)

(1 + iη)1/4 ≈ α0(1 + ξ − iη/4)

Using this result, the function U , Eq. (13.101), is for κL y/2 ≈ α0 obtained as

U ≈ − 1

2α0(ξ − iη/4)
·

M∑
m=0

Qm

κ4 (13.104)

In the low frequency region or for non-resonant transmission, and excitation by a
diffuse field the parameters Qm are assumed to have the same absolute value. Further,
the frequency average of a product Qm · Qn can be set to equal |Q|2 · δmn . Compare
the result (13.58) for the two dimensional case.

The response of a clamped one-dimensional structure excited by a diffuse pressure
field is

v =
∑

m

vmϕm =v1 + v2 =
∑

m

(v1m + v2m)ϕm;

The amplitudes of the modes are given by Eqs. (13.100) and (13.102).
The power radiated from the one-dimensional structure is proportional to the

frequency average of |v1m + v2m |2. Thus

v̄2
m = 1

� f

∫ f +� f/2

f −� f/2

∣∣∣v2
1m + 2v1mv2m + v2

2m

∣∣∣d f
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The frequency average of the cross term is equal to zero. Considering that the defi-
nition (13.102) the frequency average is obtained as

v̄2
m = v̄2

1m + 1

� f

∫ f +� f/2

f −� f/2

∣∣∣U 2
∣∣∣ d f (13.105)

The function |U |2 has a maximum for κL y/2 = α0. Maxima occur with a frequency
π. The symmetric interval including one maximum is α0 − π/2 < κL y/2 < α0 +
π/2. Considering the expansion of κ the interval is also equal to ξ1 = −π/(2α0) <

ξ < π/(2α0) = ξ2. The integral of Eq. (13.105) can therefore be written as

1

� f

∫ f +� f/2

f −� f/2

∣∣∣U 2
∣∣∣ d f = 1

πα0

∫ ξ2

ξ1

dξ

4α2
0(ξ

2 + η2/16)

∣∣∣∣∣
M∑

m=0

Qm

κ4

∣∣∣∣∣
2

≈ M

α3
0η

|Qm |2
κ8

The number M of modes is M ≈ f L y/c. The quantity v̄2
1m is given in Eq. (13.100).

Consequently,

v̄2
m = v̄2

1m

[
1 + 64

πL2
yηκ2

√
f

fc

]
= v̄2

1m

[
1 + 16c2

π3L2
yη f 1/2 f 3/2

c

]
(13.106)

Thus, by constraining the boundary condition the frequency average of the modal
velocity squared of the panel and the radiated acoustical power are increased. For
a sliding edge, the panel movement can adjust to the pressure field exciting the
structure. The pressure field and the panel motion are for that case described by
means of the same eigenfunctions. This increases the inertia of the structure and thus
its apparent mass. The edge effect is decreased as the dimension L y is increased or
when the frequency is increased or the critical frequency is decreased. The sound
radiation ratio discussed in Sect. 12.9 showed a similar behavior.

Super-imposing two perpendicular wave motions writes the modal energy of a
rectangular panel

v̄2
mn = v̄2

0mn

[
1 + 32

πηκ2

√
f

fc

(
1

L2
y

+ 1

L2
z

)]
= v̄2

0mn� (13.107)

The total perturbation is due to one half of the contributions from each of the two
directions.

A similar approach can be followed to describe the effect of changing the boundary
conditions of a rectangular plate with sliding edges to simply supported edges. See
also Problem 13.8. The result is

v̄2
mn = v̄2

0mn

[
1 + 8

πηκ2

√
f

fc

(
1

L2
y

+ 1

L2
z

)]
= v̄2

0mn� (13.108)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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By writing κ = 2π
√

f · fc/c, where c is the speed of sound of the fluid, the expres-
sion for � is for air at room temperature reduced to

�(S) = 1 + 3 · 104

4η · f 1/2 · f 3/2
c

(
1

L2
y

+ 1

L2
z

)

The panel dimensions Lx and L y are in m and the frequencies in Hz. The panel area
S is defined as S = L y · Lz . The resulting pressure squared in the receiving room
due to the non-resonant transmission through the plate is

〈 p̄2
2〉 = p̄2

0�

where p̄2
0 is the resulting pressure induced by a plate with sliding edges. Let the

contribution from the resonant transmission be p̄2
0G. The resonant transmission and

thus also the function G is independent of the boundary conditions of the plate.
Following the discussion in Sect. 13.3 and Eq. (13.83) the function G is written

G =
∫ π/2

0

sin ϕdϕ[(
f

fc

)2

sin4 ϕ − 1

]2

+
[
η

(
f

fc

)2

sin4 ϕ

]2 − 1 (13.109)

It is apparent that the function G tends to zero as the frequency f decreases. As the
frequency increases and gets close to the critical frequency fc, the function G grows
rapidly. The approximate result at f = fc is G ≈ π/(4η3/2). The function G is
given in Appendix A, Table A.1 for some typical loss factors.

The sound transmission loss R of a rectangular and homogeneous single leaf panel
mounted between two rooms as shown in Fig. 13.4 and discussed in Sect. 13.3 can
be written as

1. f < fc
R = 20 log μ + 20 log f − 10 log[�(S) + G] − 48 dB

Sliding edges �(S) = 1

Simply supported edges �(S) = 1 + 3 · 104

4η · f 1/2 · f 3/2
c

(
1

l2
y

+ 1

l2
z

)

Clamped edges �(S) = 1 + 3 · 104

η · f 1/2 · f 3/2
c

(
1

l2
y

+ 1

l2
z

)
(13.110)

The plate dimensions, expressed in m, are ly and lz . In this particular case ly = L y

and lz = Lz where L y and Lz are the cross dimensions of the rooms.
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Fig. 13.6 Predicted sound transmission loss of a lightweight concrete wall. μ = 41 kg/m2, fc =
570 Hz, η = 2.5 %, L y = 4.5 m and Lz = 2.8 m

2. f > fc

R = 20 log μ+30 log f −10 log fc +10 log η+5 log(1− fc/ f )−47 dB (13.111)

The mass μ per unit area is in kg/m2. The frequencies are in Hz. The results for f < fc
clearly shows that as the boundary conditions are constrained the sound transmission
loss of the structure is decreased. By constraining the boundary conditions, the inertia
of the panel and thus its apparent mass is decreased. The effect of the boundary
conditions is most pronounced for small and stiff panels. For very large panels, the
boundary effects are negligible. The loss factor of panels is discussed in Sect. 13.9.

The predicted sound transmission loss for a lightweight concrete wall is shown
in Fig. 13.6 for three different boundary conditions. The parameters for the wall are
μ = 41 kg/m2, fc = 570 Hz, η = 2.5 %, L y = 4.5 m and Lz = 2.8 m. The sound
reduction index is calculated in 1/3 OB.

13.7 Effect of a Baffle on Sound Transmission Loss

The pressure squared in the receiving room was in Sect. 13.6 assumed to be propor-
tional to

∣∣v̄2
mn

∣∣ where vmn = 〈v|ϕmn〉. In Eq. (13.108) the square of the expansion
coefficients were written as

∣∣∣v̄2
mn

∣∣∣ = �(S)

∣∣∣v̄2
0mn

∣∣∣
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The parameter �(S) is determined by the boundary conditions and the dimensions
of the plate. The expansion coefficients v0mn are the expansion coefficients of the
panel velocity v1, Eq. (13.99), which is the particular solution to Eq. (13.98). The
velocity v1 has the same mode shape as the cross mode in the room. Thus

v0mn = 〈v1|ϕmn〉 (13.112)

The motion v1 is in the low frequency region or rather for the non-resonant contri-
bution given by

v1 = −
∑
qr

Qqr

κ4 · ϕqr (13.113)

where ϕqr is defined in Eq. (13.44). For frequencies well below coincidence the
source coefficients are defined for 0 � q � M and 0 � r � N where

(
Mπ

L y

)2

+
(

Nπ

Lz

)2

= k2

where k is the wave number in the fluid.
For a panel in baffle as shown in Fig. 13.7, the panel velocity is defined for �L y �

y � L y − �L y and �Lz � z � Lz − �Lz . The parameters v0mn are obtained from
(13.112) and (13.113) as

v0mn = 〈v1|ϕmn〉S = −
∑
qr

Qqr

κ4 · 〈ϕqr |ϕmn〉S (13.114)

Fig. 13.7 A panel mounted
in a baffle between two
rooms

(a)

(b)
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The subscript S indicates that the integration of the eigenfunctions should be carried
over the panel surface, i.e., for �L y � y � L y − �L y and �Lz � z � Lz −
�Lz . Assuming again that the parameters Qrs are uncorrelated and having the same
absolute value |Q| it follows from Eq. (13.114) that

|v̄0mn|2 =
∣∣∣∣ Q

κ4

∣∣∣∣
2 ∑

qr

∣∣〈ϕqr |ϕmn〉S
∣∣2 (13.115)

Assuming the natural frequencies in the receiving room and the natural frequencies
of the panel to be uncorrelated then the room and panel response can be averaged
separately over frequency. Thus, the average pressure squared in the receiving room
is proportional to the sum of the square of the coefficients vmn . This means that if all
parameters except the panel area are kept constant then according to the Eqs. (13.65)
and (13.115), the resulting space and frequency average of the pressure squared is
proportional to a function

H(S) = �(S) ·
M N∑
mn

M N∑
qr

∣∣〈ϕqr |ϕmn〉S
∣∣2 (13.116)

Keeping the room dimensions constant and decreasing the panel area by mounting
the panel in a baffle the frequency and space average of the pressure squared in the
receiving room is change from 〈| p̄2|2〉0 to 〈| p̄2|2〉 where

〈| p̄2|2〉 = 〈| p̄2|2〉0 · H(S)

H(S0)
(13.117)

The area of panel plus baffle is S0 and the area of the panel is S � S0.
Introducing the parameters D and E as

D = π(L y − 2�L y)

L y
= πly

L y
; E = π(Lz − 2�Lz)

Lz
= πlz

Lz

and after some effort, see Ref. [180], the function H(S) is written as

H(S) = �(S) ·
(

S

S0

)2

· (1+ M1)(1+ N1) [1 + Z(M D)] · [1 + Z(N E)] (13.118)

where

M =
√

πL y f

c
; M1 = Integer(M); M2 = Integer(M/2)
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M3 = Integer(M − 2); M4 = Integer

(
M − m

2

)
; ξm = (−1)m (13.119)

The function Z(M D) is given by

Z(M D)= 1

1+M1

{
M1∑

m=1

[(
sin(m D)

m D

)2

+2ξm
sin(m D)

m D

]
+4

M2∑
m=1

(
sin(m D)

m D

)2
}

+ 2

1 + M1

⎧⎨
⎩

M3∑
m=1

M4∑
l=1

[
ξm

sin[(m + l)D]
(m + l)D

+ sin(l D)

l D

]2
⎫⎬
⎭ (13.120)

The function Z(N E) is defined in a similar way with N = √
πLz f/c, N1 =

Integer(N ), etc. The expression is readily solved numerically. However, for the sake
of simplicity some results are tabulated in Appendix A, Table A.2. In the table, the
expression Z(M D) is given as function of the product f · L y for various values of
X = (L y − 2�L y)/L y = ly/L y .

The sound pressure level difference between two rooms is partly determined by
the ratio H(S)/H(S0) where the function H(S) is defined in Eq. (13.118). For the
case the panel is mounted without a baffle the parameters D = E = π resulting in
Z(M D) = 0 and Z(N E) = 0. Consequently H(S0) = �(S0)(1 + M1)(1 + N1).
The corresponding expression H(S) is for 0 � S � S0 given by

H(S) = �(S)(1 + M1)(1 + N1)[1 + Z(M D)][1 + Z(N E)] · S2/S2
0

For non-resonant transmission the ratio between the radiated acoustic power from a
panel with the area S < S0 and a panel with the area S0 is

H(S)

H(S0)
= �(S)

�(S0)

(
S

S0

)
�(S); �(S)=

(
S

S0

)
· [1+Z(M D)] · [1+Z(N E)]

S0 = L y · Lz; S = ly · lz (13.121)

The corresponding result for resonant transmission is H(S)/H(S0) = S/S0 Thus in
the high frequency range, f > fc, the acoustic power is just proportional to the area
of the radiating panel.

A number of limiting values for the various functions are discussed in [180].
For small baffles �L y/L y < 1/10 and �Lz/Lz < 1/10 the functions Z (MD) and
Z (NE) are rather small for low frequencies. In the high frequency region and for very
large baffles the functions Z (MD) and Z (NE) are small or in fact negligible. This
means the sound transmission loss of a panel mounted without a baffle is almost the
same as the sound reduction index for the same panel when mounted in a very large
baffle. See Table A.2 in Appendix A. The parameter H(S)can be shown to vary as
1 � Γ (S) � S/(4S0).



13.7 Effect of a Baffle on Sound Transmission Loss 247

The sound transmission loss for a panel can now be written as

R = 20 log μ + 20 log f − 10 log[� · �(S) + G] − 48 dB for f < fc

R = 20 log μ + 30 log f − 10 log fc + 10 log η

+ 5 log(1 − fc/ f ) − 47 dB for f > fc (13.122)

The functions �(S), �(S) and G are defined in Eqs. (13.121), (13.110) and (13.109)
respectively.

In Fig. 13.8, the predicted sound reduction index for a clamped gypsum-board
is shown as function of the panel area. The dimensions L y = 5.45 m and Lz =
3.5 m are kept constant. The material parameters for the panel are μ = 10.1 kg/m2,
fc = 2350 Hz. The loss factor of the panel is shown in the graph. Comparisons with
measurements are discussed in Sect. 13.8.

The sound pressure level in a room has always maxima close to walls and corners.
In the low frequency domain there are only a few modes in the room. Consequently,
the high sound pressure area close to a wall can be quite distinct. Consider for
example the (1, 1, 1) mode for which the pressure on the plate shown in Fig. 13.7
is proportional to cos(πy/L y) · cos(πz/Lz). By mounting a panel in a baffle the
high sound pressure levels close to the adjoining walls do not excite the panel at all.

(a)

(b)

Fig. 13.8 Predicted sound transmission loss of a clamped gypsum-board panel; μ = 10.1 kg/m2,
fc = 2350 Hz, S0 = 5.45 × 3.5 m2, loss factor shown in graph (b)
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The apparent sound transmission loss therefore seems to be higher than for the same
panel without a baffle. However, as the frequency is increased the number of modes
exciting the plate is also increased and the baffle effect is decreased.

The results discussed in Sects. 13.1 through 13.7 show that the sound transmission
loss of a single leaf panel depends on a number of material parameters like mass
per unit area, stiffness, loss factor, boundary conditions, and dimensions and in
addition also the respective geometries of the transmission rooms. In the literature,
it is agreed that the sound reduction index of a panel is independent of boundary
conditions and baffle effects for frequencies above the critical frequency. Below
coincidence there are a number of models (Refs. [176–178, 180]) describing the
effects of boundary conditions and panel dimensions on the sound transmission
loss. In principal, the end results are rather similar. The sound transmission loss is
decreased as the boundary conditions of the plate are constrained and also the sound
transmission loss is decreased in the low frequency region as the plate dimensions
are decreased for a plate mounted in an infinite baffle. In the low frequency range, a
finite baffle increases the sound transmission loss.

In the low frequency region, the results given in [179] agree very well with the
results of Eq. (13.122). The effect of the boundary conditions was in Sect. 13.6 as
well as in Refs. [176, 177] found to decrease as the frequency is increasing toward
the critical frequency. These findings are confirmed by measurements. It is shown in
Fig. 13.8 that a baffle can increase the apparent sound transmission loss of a panel.
The importance of a baffle on the sound transmission loss of a panel has also been
reported in Refs. [176, 177].

13.8 Measurement Results

The boundary conditions clamped and simply supported are naturally difficult or
impossible to reproduce for a panel mounted in a standard sound transmission labo-
ratory. However, Fig. 13.9 shows the measured sound transmission losses for a panel
first firmly and then resiliently mounted in a test opening of a transmission labo-
ratory. Only the boundary conditions are different for the two measurements. The
mass of the chipboard panel was 22 kg/m2 and its critical frequency 720 Hz. The
measurement procedure and mounting conditions are described in Refs. [180, 182].
Diffusers were mounted in both transmission rooms during all measurements. The
results indicate, as predicted by Eq. (13.110), that the sound transmission loss for the
panel is increased below coincidence as the boundary conditions are changed from
firm to elastic mounting. The difference is decreasing as the frequency is approaching
the critical frequency. Above coincidence the sound transmission loss is more or less
independent of boundary conditions.

A resilient mounting can also have positive effects on the sound reduction index
even in the high frequency region. For example, comparing the reduction index for
a glass plate firmly mounted or resiliently mounted to a frame, the sound reduction
index for the resiliently mounted plate is found to be higher than the result for the
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(a)

(b)

Fig. 13.9 Measured sound transmission loss and velocity level of a chip board panel; μ = 22 kg/m2,
fc = 720 Hz

clamped panel. Below the critical frequency, the result is a consequence of the relaxed
boundary condition as discussed in Sect. 13.6. The resilient mounting if achieved by
means of a rubber lining is likely to increase the losses of the panel and thus also the
sound transmission loss above the critical frequency.

The effect of a baffle is shown in Fig. 13.10. A lightweight concrete wall,
μ = 41 kg/m2, fc = 570 Hz, is firmly mounted in a frame as shown in Fig. 13.10
(A). Thereafter the frame is hidden by wedges made of chipboard resulting in a
configuration denoted Lab. B. The loss factors of the panel was measured in 1/3 OB
giving η = 2.5 % for f < 315 Hz, η = 1.9 % for f = 315 Hz and η = 1.7 % for
f > 315 Hz. Predicted and measured results agree fairly well and show that the
sound transmission loss of the panel is increased due to the baffle for frequencies
below the critical frequency. There is no significant difference between the two cases
in the high frequency region.

The predicted sound transmission loss for a panel with varying area was shown
in Fig. 13.8. Measurements were carried out on a clamped gypsum panel mounted
without a baffle between two transmission rooms. The baffle surrounding the panel
was gradually made larger and the panel area smaller without otherwise changing
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Fig. 13.10 Measured and predicted sound transmission losses for a baffled and unbaffled firmly
mounted plate of lightweight concrete; μ = 41 kg/m2, fc = 570 Hz, η = 2.5 % for f < 315 Hz,
η = 1.9 % for f = 315 Hz and η = 1.7 % for f > 315 Hz

Fig. 13.11 Predicted sound transmission loss for a clamped gypsum-board panel; μ = 10.1 kg/m2,
fc = 2350 Hz, S0 = 5.45 × 3.5 m2, loss factor shown in Fig. 13.8b)

the mounting, room or panel parameters. Predicted and measured results are shown
in Figs. 13.11 and 13.12.

A so-called niche can also have an effect on the measured sound transmission
loss of a structure. Three configurations have been tested. In the first case, a wall was
mounted in a frame with a baffle. A niche around the panel was thereafter mounted
on one side of the panel and the measurements were repeated. An additional niche
was thereafter mounted on the other side of the wall. The results shown in Fig. 13.13
show that a niche tends to increase the sound transmission loss of a panel in the low
frequency region. In particular, an asymmetric niche can increase the transmission
loss significantly. Similar results were obtained by Gösele [183].

All the effects discussed, geometry of rooms, baffle, and niche effects and bound-
ary conditions can in a very critical way influence the measured sound transmission
loss of a structure as revealed in a round robin test reported in Ref. [180, 182]. A cer-
tain number of single leaf partitions were tested in six laboratories all satisfying the
existing ISO recommendations. Schematic drawings of the laboratories are shown
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Fig. 13.12 Predicted sound transmission loss for a clamped gypsum-board panel; μ = 10.1 kg/m2,
fc = 2350 Hz, S0 = 5.45 × 3.5 m2, loss factor shown in Fig. 13.8b)

Fig. 13.13 Measurements of sound transmission loss of a panel mounted with a no niche ;
b a niche on one side - - - -; c niches on both sides◦◦◦

in Fig. 13.14. The same structures were used for all measurements. The mounting
procedures of the structures were described in detail. Materials and linings for the
mounting of the panels in each laboratory were also identical. The number of micro-
phone positions used during the measurements was much higher than prescribed in
the existing ISO recommendations.

The results of one set of measurements are shown in Fig. 13.15. The spread of the
results is quite discouraging. However, it is noted that the measured transmission loss
in Lab 1B is the lowest. In this laboratory there no baffles and no niches. The highest
sound transmission loss is measured in Lab. 3. In this laboratory, there is a very deep
niche and in addition a substantial frame around the test specimen. In other cases,
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Fig. 13.14 Schematic drawings of the laboratories participating in round robin test
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Fig. 13.15 Measured sound transmission loss for a firmly mounted chipboard panel; μ = 22 kg/m2,
fc = 720 Hz

frames or niches of varying degree do influence and in fact increase the measured
sound reduction index with respect to the results obtained in Lab 1B having no niches
or baffles. In all cases, there were sound diffusers in the measurements rooms to avoid
coupling effects between equal rooms discussed in Sect. 13.4. The results shown in
Fig. 13.15 also indicate that the differences between the measured results decrease
as the frequency is increasing and approaching the critical frequency. For f > fc the
discrepancies between the results are small. All this is in agreement with the results
presented in Sects. 13.6 and 13.7.

13.9 Loss Factors and Summary

A general observation comparing any measured and predicted sound transmission
losses is that predicted sound transmission losses at and around the critical frequency
are underestimated. This problem has been investigated by Feng in Ref. [184]. Typ-
ically, a loss factor of a plate is measured in situ by means of reverberation time
measurements. The losses are determined in 1/3 OB. In general, transmission losses
to adjoining structures and internal losses determine the total losses. However, for
frequencies close to the critical frequency the radiation losses can be significant.
Vibration modes having a high loss factor due to radiation are attenuated rapidly.
The vibration modes having a low loss factor will therefore determine the rever-
beration time in the frequency bands close to the critical frequency. The loss factor
due to radiation from two sides of a structure is according to Eq. (12.119) given as

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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ηr = 2ρ0cσ̄r/(μω) where σ̄r is the sound radiation ratio for the structure and given
in Eqs. (12.98) through (12.100) for flat rectangular plates. It is suggested in [184]
that the loss factor for a panel should be written

η = ηmeasured + 2ρ0cσ̄r/(μω)

It could be argued that for the radiation ratio σ̄a rather than σ̄r should be used.
However, for frequencies close to the critical frequency σ̄r and σ̄a are rather similar.
The sound radiation ratio induced by an acoustic field is given by σ̄a and is discussed
for an infinite plate in Sects. 13.2 and 13.9 for a finite plate. See also Sect. 16.7.

The sound transmission loss R for a single leaf and rectangular plate, dimensions
ly and lz , mounted between two rooms, width L y and height Lz , can be written as:
1. f < fc

R = 20 log μ + 20 log f − 10 log[� · �(S) + G] − 48 dB

Sliding clamped edges, Fig. 8.2
� = 1

Simply supported edges

� = 1 + 3 · 104

4η · f 1/2 · f 3/2
c

(
1

l2
y

+ 1

l2
z

)

Clamped edges

� = 1 + 3 · 104

η · f 1/2 · f 3/2
c

(
1

l2
y

+ 1

l2
z

)

Baffle effects, see Table A.2, Appendix A

�(S) = [1 + Z(M D)][1 + Z(N E)]; D = πly

L y
; E = πlz

Lz

Resonant transmission function, see Table A.1, Appendix A

G = ∫ π/2
0

sin ϕdϕ[(
f

fc

)2

sin4 ϕ − 1

]2

+
[
η

(
f

fc

)2

sin4 ϕ

]2 − 1

2. f > fc

R = 20 log μ+30 log f −10 log fc +10 log η+5 log(1− fc/ f )−47 dB (13.123)

Loss factor, all frequencies η = ηmeasured + 2ρ0cσ̄r/(μω)

Radiation ratio σ̄r given by Eqs. (12.98)–(12.100).
The sound transmission loss close to and at the critical frequency should be deter-

mined by the maximum value of R for f < fc and f > fc as f tends to fc.
Measurement results reveal that predicted sound transmission losses close to the
critical frequency typically are too low. One reason for this is that the bending stiff-
ness of a real plate varies across the structure due to material imperfections, variation

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_16
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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of thickness or due to some slight curvature of the plate. The critical frequency is a
function of the bending stiffness. If for example the bending stiffness is assumed to
vary by a certain percentage, the resulting sound transmission loss of the structure
can be derived as an average of these variations.

The response or rather average velocity squared of a plate excited by an acoustic
field is discussed in Ref. [180]. Results are given for different boundary conditions
of the plate. The effects of baffles are also discussed in [180]. The frequency and
space average of the plate velocity is given by the quantity

Lv/p = 10 log

[
(ρ0c)2〈v̄2〉

〈 p̄2
1〉

]
(13.124)

where 〈 p̄2
1〉 is the frequency and space average of the pressure squared in the source

room. According to Ref. [180] the quantity Lv/p is for an unbaffled rectangular panel
given by

1. f < fc
Lv/p = 39 − 20 log μ − 20 log f − 10 log[T + G] dB

Sliding clamped edges, Fig. 8.2
T = 1

Simply supported edges

T = 1 + 50

η · f 1/2 · f 1/2
c

(
1

ly
+ 1

lz

)

Clamped edges

T = 1 + 100

η · f 1/2 · f 1/2
c

(
1

ly
+ 1

lz

)

2. f > fc

Lv/p = 41 − 20 log μ − 30 log f + 10 log fc − 10 log η (13.125)

Compare Fig. 13.9a. The sound radiation ratio for a rectangular plate without a baffle
is obtained from (13.124) and (13.125) as

σ̄a = 2(� + G)

T + G
for f < fc

σ̄a = 1√
1 − fc/ f

for f > fc (13.126)

The velocity level of a plate mounted in a baffle is given in Appendix B. Predicted
results are shown in Fig. 13.16.

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 13.16 Predicted sound radiation ratio σa for a clamped and unbaffled panel, L y = 4.5 m,
Lz = 2.8 m. The panel is excited by an acoustic field

13.10 Sound Transmission Through Complex Structures

Frames or beams often stiffen partitions in vehicles. These stiffeners influence the
sound transmission through the structure. This is illustrated in Fig. 13.17 from Ref.
[185]. The sound transmission loss is first measured for a simple 4 mm Al-plate. The

Fig. 13.17 Measured sound transmission loss of unribbed and ribbed, damped and undamped 4 mm
Al plates. From Ref. [185]
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plate is thereafter stiffened by vertical ribs and finally also by horizontal ribs. For
the undamped plate, it is found that the transmission loss is decreased as the panel
is stiffened. In the low frequency region, the transmission loss for the stiffened plate
has distinct minima just above 100 Hz. These dips correspond to the first natural
frequency of the sub-element between the stiffeners. Well above this first natural
frequency, the transmission loss is mainly determined by the various sub-elements.
The transverse motion along the ribs is comparatively small. Compare the discussion
in Sect. 8.7. The plate elements are more or less clamped along the ribs. These
boundary conditions will reduce the inertia of the plate and thus also its apparent
mass and consequently also the sound transmission of the structure. Returning to the
Sect. 13.9 and the sound transmission loss, Eq. (13.123) it is found that the parameter
� is increased as the dimensions of the sub-element are decreased and also when
the boundary conditions of the element is constrained. As � increases, the sound
transmission loss of the structure decreases. As damping is added to the structure the
parameter � is decreased and thus the transmission loss increased. If the sub-element
is surrounded by other elements or if the entire ribbed construction is mounted in
a large frame or baffle the parameter � in Eq. (13.123) is close to unity. The effect
of the added damping is most pronounced at the first natural frequency of the sub-
elements. The resonant transmission is also decreased as the damping is increased.
The parameter G in (13.123) is decreased as the losses are increased. Consequently,
the added damping will increase the sound transmission loss in the entire frequency
range. The loss factor for an Al-plate is in general very low. Therefore, the added
damping can have a positive effect even in the low frequency region. However,
for a large structure with a rather high loss factor the effect of added damping is
insignificant for f < fc/2.

The sound transmission loss of a single leaf panel is in principle only increased by
6 dB due to the doubling of the mass of the panel for f < fc. This type of increase of
the sound transmission loss is often unacceptable due to weight constraints. The use
of double structures is an alternative to drastically increase the sound transmission
loss while keeping the weight low. A double structure is quite simply two single leaf
panels separated by an air filled cavity or a cavity with some sound absorbing mater-
ial. An example of the first is an ordinary window with double-glazing. The vibration
of a double structure was discussed in Sect. 7.9 and illustrated in Fig. 7.14. When a
coupled double structure is excited on one side, the coupled structures move almost
in face in the low frequency region. As the frequency is increased the structures starts
moving in antiphase and having a large amplitude close to and at the double wall
resonance f0. Well above this frequency, the velocity level difference between the
coupled plates is increasing as approximately 40 log( f/ f0) up to certain limit deter-
mined by the added sound transmission loss achieved by the two panels separated
by a cavity with a certain sound absorption. The resulting sound transmission loss
of a double structure is schematically shown in Fig. 13.18.

In the low frequency range, f < f0 the double structure vibrates as a single
structure with the mass equal to the total mass of the two partitions. Thus

RI = 20 log(μ1 + μ2) + 20 log f − 49 dB for f < f0 (13.127)

http://dx.doi.org/10.1007/978-3-662-47934-6_8
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Fig. 13.18 Schematic
drawing of the sound
transmission loss of a double
leaf construction

In the frequency region fx > f > f0 the transmission loss increases by an added
40 log( f/ f0). Thus

RII = 20 log(μ1 + μ2) + 20 log f + 40 log( f/ f0) − 49 dB for fx > f > f0
(13.128)

In the very high frequency range f > fx the total transmission is the sum of the
transmission for each panel plus a correction for absorption in the cavity. The result
is

RIII = R1 + R2 + 6 dB for f > fx (13.129)

The correction term of 6 dB is often explained by claiming that the sound absorption
between the plates make the sound field in the cavity non-diffuse. The absorbent
rather effectively attenuates the modes propagating parallel to the plates. Hence, the
acoustical intensity incident on the second plate has close to normal incidence. The
sound transmission for normal incidence is about 5 dB higher than the transmission
loss for diffuse incidence.

The frequency fx is the solution to RII( fx ) = RIII( fx ). Compare Problem 13.9.
Assuming the cavity between the plates being filled with a gas, density ρ0 and speed
of sound c, the double wall resonance f0 is

f0 = 1

2π

[
ρ0c2(μ1 + μ2)

dμ1μ2

]1/2

(13.130)
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where d is the distance between the two plate elements. Compare Problem 13.10.
The effect of increasing the absorption inside the cavity between the plates has been
investigated by Sharp [186]. Some measurement results are shown in Fig. 13.19.

It is evident that an addition of sound absorbing material inside the cavity drasti-
cally increases the sound transmission loss of the structure. The improvement due to
the doubling of the thickness of the sound absorbing material is less dramatic. If, how-
ever, the entire cavity is filled with sound absorbing material the apparent stiffness
of the entrapped air and sound absorbing material could be increased. This would
also increase the double wall resonance and thus also reduce the sound transmission
loss of the entire structure for f0 � f � fx .

It is often necessary to stiffen lightweight double wall constructions. Strength and
stability of the structure is achieved by mounting studs between the plates of the
double structure. Clearly, these connections will reduce the acoustic efficiency of a
double wall construction. There will be an acoustic energy flow between the plates
through the studs. The total transmission loss will depend on the distance between
studs and type of studs used. Some measurement results are shown in Fig. 13.20. The
measurements reported by Northwood [187] reveal that by changing a wooden stud
to a more flexible metal stud the sound transmission loss is increased considerable.
Again, as in Fig. 13.19, it is also demonstrated that the sound transmission of a double
structure is improved by adding some sound absorbing material between the plates.

Fig. 13.19 Sound transmission loss of a double wall construction as function of sound absorption
material in cavity. From Ref. [186]
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Fig. 13.20 Influence of added sound absorption and studs on the sound transmission loss of a
double wall construction. 1 Two 13 mm plasterboard panels with a spacing of 106 mm; 2 Sound
absorbing material added to cavity; 3 Wooden studs connecting plates; 4 Metal studs connecting
plates. From Ref. [187]

Models for estimating the effects on the transmission loss of various types of
couplings between the panels of a double wall structure have been formulated by
Sharp [186]. The sound transmission loss of double structures is extensively discussed
in for example Refs. [149, 188, 189].

13.11 Flanking Transmission

The procedures for the measurement of the sound transmission loss of structures
are described in a number of ISO standards, Refs. [190–192]. Comparing laboratory
and field measurements made for the same type of structure there is a tendency that
laboratory measurements give a slightly better result than field measurements. One
reason for this is the so-called flanking transmission as illustrated in Fig. 13.21.

An acoustic source in a room not only excites the wall to an adjoining room but
also floor, ceiling and other walls in the source room. The vibration energy of these
structures is transmitted to the structures enclosing the receiving room. The sound
pressure level is thus determined not only by the sound directly transmitted through
the separating wall but also from acoustic power radiated by the other structures into
the room. A typical sound transmission laboratory is built in such a way as to reduce
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Fig. 13.21 Direct and
flanking transmission
between two adjoining
rooms

the flanking transmission to a minimum. Consequently, field measurements tend to
give a lower sound transmission for a structure as compared to laboratory measure-
ments. Kihlman has discussed and estimated the effects of flanking transmission in
Ref. [193]. Flanking transmission is also discussed at the end of Sect. 16.6.

13.12 Sound Transmission Through Fluid Loaded Plates

In certain cases, it is of interest to estimate the sound transmission through a plate
or the response of a structure having a fluid loading on one side. For example,
large electric transformers are often submerged in a heavy fluid and enclosed in
a steel container. The vibrating transformer emits noise in the fluid and the noise
excites the surrounding panels, which in turn radiate noise to the environment. It is
readily demonstrated, see Problem 13.11, that the transmission through this type of
enclosure is mainly determined by the impedance differences between the entrapped
heavy fluid and the outside air. Consequently, an increase of the thickness of the
enclosing structure would only marginally decrease the sound intensity transmitted
from the enclosure.

For designing noise reducing measures in large buildings or constructions it is
of importance to determine if a noise problem is caused by air-borne or structure-
borne sound as discussed in Sect. 13.1. For example on a ship, one of the main noise
problems is due to the main engines. The engines, when in operation, induce an
energy flow of structure-borne sound through the engine foundation to hull plates
and from there to the accommodation spaces. The engines also induce a very high
sound pressure level in the engine room. This acoustic field excites the hull structure.
The hull structure is typically exposed to a water load. The vibration level of hull
plates exposed to a one sided water load can be calculated from the results given
in Sect. 13.2. The mass of the structure should be corrected for the fluid loading as
described in Sect. 12.1. In a similar way, the transmission of sound through hull plat-
ings into the water can be determined. However, structure-borne sound induced by
air-borne sound is generally of less importance than structure-borne sound induced
by mechanical forces. So for example in a catamaran, model shown in Fig. 10.24,
the sound pressure level in the engine room is of the order 115 dB(A) during normal

http://dx.doi.org/10.1007/978-3-662-47934-6_16
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_10
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cruising conditions. The passenger compartments are located directly above the
engine room. Still, the noise in this space is exclusively determined by structure-
borne sound induced by the vibrating main engines.

A propeller is also a major noise source on ships. The acoustic power induced in
the water loaded hull plates above a cavitating propeller is discussed in Ref. [163].

Problems

13.1 Calculate the radiation ratio σ̄a for an infinite plate, μ = 22 kg/m2 and fc =
720 Hz, in the frequency range up to 500 Hz.

13.2 Determine how the sound transmission loss for a single leaf panel is changed
if the thickness of the homogeneous plate is changed from h1 to h2. Consider the
frequency intervals f � fc and f > fc.

13.3 Show that ∑
l

1

k2 − k2
lmn

= d

2λmn tan(λmnd)

For notations, see Sect. 13.3.

13.4 A stiff plate is mounted as shown in Fig. 13.22. Determine the mobility of the
plate as function of the distance d between plate and bottom structure. The mass per
unit area of the infinitely stiff plate is μ and its area S. The fluid in the cavity is air.

13.5 Show that

Ymn(a) = 1

[λmn sin(λmna)]2

[
sin(2λmna)

2λmna
+ 1

]

can close to a maximum be expanded as

|Ymn(a)| = 1

(ak2
0a)2(ξ2 + δ2

2/4)

Fig. 13.22 Stiff plate
coupled to cavity

stiff plate

d



Problems 263

13.6 Solve

� =
∮

dξ

(ξ2 + δ2
1/4)(ξ2 + δ2

2/4)

Make the integration along a semi-circle in the upper half plane of the complex plane.

13.7 Show that the sound transmission loss is independent of boundary conditions
for f > fc.

13.8 Follow the one-dimensional procedure for the clamped plate to indicate the
solution for a simply supported plate.

13.9 Determine the sound transmission loss of a double construction consisting of
two panels with a cavity between them. Assume that the acoustic field between the
plates is diffuse.

13.10 Determine the double wall resonance frequency given in Eq. (13.130).

13.11 Determine the sound transmission loss of a structure with a water load on one
side. Consider only normal incidence.

13.12 Show that the sound transmission loss for a panel between two rooms tends
to the sound transmission loss of an infinite panel as the dimensions of the rooms
becomes infinite.



Chapter 14
Waveguides

A waveguide is a system, which by means of its boundaries contains and directs the
flow of energy in a construction. One such system is a structural waveguide typical
of a ship construction. Aircraft and certain train constructions are also built up of
frames and plates. Parallel frames mounted to plate elements guide the propagation
of waves in a direction of the frames. A sandwich or honeycomb plate forms another
type of waveguide. The laminates coupled to a core contain the energy flow in the
structure. A third type of a waveguide system is a cylinder.

In this chapter, the discussion starts with structural waveguides. The coupling
between a number of finite structural waveguides is investigated. Methods for reduc-
ing the energy flow in these waveguides are considered. Predictions and measure-
ments of the distribution of energy in structures similar to ship, train and aircraft
constructions are compared.

Sandwich structures were first investigated in Sect. 4.7. The basic equations gov-
erning the vibration of sandwich and honeycomb structures were derived in Sect. 9.3
using Hamilton’s principle. In this chapter, it is shown that how some of the basic
dynamic properties of sandwich and honeycomb structures can be determined by
means of some simple tests. In addition, the response due to external excitation of
sandwich beams and plates is explored. In this discussion, the sound transmission
loss of sandwich plates is included.

In the final part of this chapter, the basic principles of the propagation of structure-
borne sound in cylinders are described. As part of this section, the sound transmission
loss of shell elements typical of aircraft structures is studied. Predicted andmeasured
sound transmission losses are compared for stiffened and unstiffened shell elements
with and without overpressure on one side of the panel.

14.1 Introduction

Some characteristics of a waveguide can be illustrated by considering an infinite and
straight duct shown in Fig. 14.1. The cross section of the duct is rectangular with the
dimensions L y and Lz . The walls of the duct are assumed to be infinitely stiff. The
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Fig. 14.1 An acoustic
waveguide

particle velocities in the fluid inside the duct are therefore equal to zero normal to
the duct walls. An acoustic wave is induced to propagate along the infinite duct in
the direction of the positive x-axis.

The velocity potential describing the acoustic field inside the infinite duct is of
the form

Φ(x, y, z, t) =
∑
mn

Amn exp[i(ωt − λmn x)] · ϕmn(y, z)

ϕmn(y, z) = cos(mπy/L y) · cos(nπz/Lz) (14.1)

Since the duct is assumed infinite, there is no reflected field. The velocity potential
must satisfy the wave equation (11.19). Thus,

λmn =
[
k2 − (mπ/L y)

2 − (nπ/Lz)
2
]1/2 =

[
k2 − k2mn

]1/2
(14.2)

The parameter λmn is only real if k � kmn = [
(mπ/L y)

2 + (nπ/Lz)
2
]1/2

. For λmn

real, a wave can propagate along the positive x-axis of the duct. For kmn > k, λmn

is imaginary giving an evanescent and thus an attenuated wave.
The time average of the energy flow in the duct is written as

�̄x =
∫

dS
1

2
Re(p · v∗) =

∫
dS

1

2
Re

[
−ρ

∂Φ

∂t

(
∂Φ

∂x

)∗]

The integration is carried out over the cross-sectional area S of the duct. Inserting
the expressions (14.1) and (14.2) in this equation the result is

�̄x =
∑
mn

ωρ |Amn|2Re(λmn)L y Lz/8 (14.3)

There is no energyflow formodes forwhich kmn � k since for this caseRe(λmn) = 0.
If say, the energy flow in a duct has to be described in the frequency range up to f0
only modes for which (2π/c)

[
(mπ/L y)

2 + (nπ/Lz)
2
]1/2 = fmn � f0 have to be

http://dx.doi.org/10.1007/978-3-662-47934-6_11
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considered. All other modes are represented by evanescent waves carrying no energy
assuming a loss-free fluid.

The frequency fmn at which themode (m, n) starts propagating is often referred to
as the cut-on frequency of the waveguide. For a duct with a rectangular cross section,
the largest dimension of the cross section of the duct determines the cut-on frequency.
For a duct with a circular cross section with radius a, the cut-on frequencies fn for
the first five modes are fn = cβn/(2πa) where c is the speed of sound in the fluid.
The parameter βn is equal to 1.841, 3.054, 3.832, 4.201, and 5.318 for n = 1–5.
Compare Problem 14.1.

The coupling between various types of acoustic waveguides with and without
flow has been discussed extensively by Bodén and Åbom. The main results are
summarized in Ref. [194]. See also [138]. The acoustic waveguide model is also an
essential part of any design of exhaust and muffler systems for cars, ships, and other
vehicles.

14.2 Structural Waveguides

Many large constructions are built up by a combination of plates and frames. Parallel
frames are supporting plate constructions. Typical examples of this type of construc-
tion are ships, aircraft, and to a certain extent train carriages. The parallel frames as
discussed in, for example, [42] mainly contain the energy flow in such constructions.
The frames constitute a waveguide. The energy flow in the plate element between
the frames is in general completely dominating over the flow in the frames. A con-
ventional ship is an interesting example of a waveguide system. The main sources
of structure-borne sound are mounted in the hull of the ship. The structure-borne
sound induced by main engines, etc. is traveling between the vertical frames to the
upper decks of the ship. On any of the upper decks, it is readily possible, just by
listening, to identify the positions of the main sources with respect to any frame.
Similar observations can be made for other large constructions, which are built up
of plates and frames. It is therefore of importance to investigate the energy flow and
its possible reduction in structural waveguides.

A simple structural waveguide is shown in Fig. 14.2. A plate element, width L y ,
is limited by two parallel boundaries. The plate element has the bending stiffness D
and the mass per unit area μ. As discussed in Sect. 8.3 the lateral displacement w of

Fig. 14.2 A structural
waveguide

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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the plate can only be described in a simple analytical way if the boundary conditions
along the edges y = 0 and y = L y are assumed to be simply supported. Sliding edges
as illustrated in Fig. 8.2 is a possible but an unrealistic option for a real construction.
Following the discussion in Sect. 8.3, Eqs. (8.47) through (8.49), the displacement of
a plate element having two parallel sides simply supported can be written as

w(x, y, t) = eiωt ·
∞∑

n=1

ϕn(y) · Xn(x)

ϕn(y) = sin(kn y); kn = nπ/L y; n = 1, 2, 3 . . . (14.4)

The boundary conditions w = 0 and ∂2w/∂y2 = 0 along the edges y = 0 and
y = L y are satisfied. The displacement w must also satisfy the wave equation for
flexural waves. Thus, by setting the external force F equal to zero in Eq. (8.51) the
wave equation reads

d4Xn

dx4
− 2k2n

d2Xn

dx2
+ k4n Xn − κ4Xn = 0 (14.5)

where as usual κ = (
μω2/D

)1/4
is the wavenumber for flexural waves propagating

in the plate. According to standard procedure, it is assumed that Xn can be written
in the form of An exp(λn x), with λn satisfying the equation

λ4
n − 2k2nλ2

n + k4n − κ4 = 0

The four resulting solutions to this equation are

λn1 = i
√

κ2 − k2n = iκ1; λn2 = −i
√

κ2 − k2n = −iκ1

λn3 =
√

κ2 + k2n = κ2; λn4 = −
√

κ2 + k2n = −κ2 (14.6)

For κ > kn the solution λn1 represents a wave propagating along the negative x-axis,
λn2 a wave propagating along the positive x-axis, λn3 an evanescent wave decaying
for increasing negative values of x , and finally, λn4 an evanescent wave decaying for
increasing positive values of x .

Assuming that the semi-infinite waveguide shown in Fig. 14.2 is excited at x = 0,
two waves are induced in the structure corresponding to the solutions λn2 and λn4.
No waves are reflected toward the excitation point. The displacement of the plate
element within the waveguide is consequently

w(x, y, t) = eiωt
∞∑

n=1

ϕn(y) ·
(

An · e−iκ1x + Bn · e−κ2x
)

(14.7)

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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The amplitudes An and Bn are determined by the boundary conditions. The parameter
κ1 is only real as long as κ > kn . For κ < kn no waves can propagate in the plate if
the plate is assumed to be loss free.

The energy flow in plates due to flexure is discussed in Sect. 3.11, and formulated
in Eq. (3.138). Using complex notations, the time average of the energy flow �′

x
along the x-axis is per unit width of the plate given by

�̄′
x = −1

2
Re

[
D

{
∂2w

∂x2

(
∂2w

∂x∂t

)∗
− ∂3w

∂x3

(
∂w

∂t

)∗}]
(14.8)

The total energy flow in the plate is

�̄x =
∫ L y

0
�̄′

xdy (14.9)

The expressions (14.7) and (14.8) inserted in (14.9) yield

�̄x = 1

2
Re

[
L yωD

∞∑
n=1

|An|2κ3
1

]
= 1

2
Re

[
L yωD

∞∑
n=1

|An|2(κ2 − k2n)3/2

]

(14.10)

Thus, only the propagating waves contribute to the energy flow. For κ < k1 there is
no energy flow. For simply supported edges, the cut-on frequency fco1 is obtained
when κ = k1, i.e., fco1 = π/(2L2

y)
√

D0/μ. The cut-on frequency for the cross mode
n is

fcon = πn2

2L2
y

√
D0

μ
(14.11)

For the type of acoustic waveguide discussed in Sect. 14.1 there can be an energy flow
in the low frequency region below the first cut-on frequency. This corresponds to a
plane wave traveling along the waveguide. For a loss-free structural waveguide there
can be no energy flow in the low frequency region below the first cut-on frequency.
For a more or less symmetric excitation of a structural waveguide the cross modes
for which n is odd will dominate. For this particular case, the first and the third and
higher odd crossmodeswill determine the energyflow in the plate. If, for example, the
waveguide shown in Fig. 14.2 is excited by a constant bending moment M exp(iωt)
at x = 0 across the plate element the resulting energy flow �̄xn for the cross mode
n is, as shown in Problem 14.2, given by

�̄xn = 1

2
Re

{
4ωM2

[
κ2 − (nπ/L y)

2
]3/2

n2π2Dκ4L y

}
for n odd, otherwise zero (14.12)

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Clearly, the energy flow corresponding to the first cross mode is completely domi-
nating over the higher modes even for frequencies above the third cut-on frequency.
The energy flow in waveguides is also discussed in [196].

For the plate element, the boundaries parallel to the x-axis are assumed to be
clamped, a complete solution of the plate displacement cannot readily be derived.
An approximate solution can be formulated by representing the shape of the cross
mode by a simple sine function with an eigenvalue within 0.4% of the correct value.
The first cross mode can be described as

ϕ1(y) = sin

(
3πy

2L y
− π

4

)
for L y/6 � y � 5L y/6 otherwise zero (14.13)

Approximate expressions for the second and higher cross modes are

ϕn(y) = sin

[
(2n + 1)πy

2L y
− π

4

]
for

L y

2(2n + 1)
� y � L y(4n + 1)

2(2n + 1)
(14.14)

However, these approximate eigenfunctions are not orthogonal. The displacement of
the plate element can therefore not be expanded along these approximate functions
ϕn(y).

14.3 Coupled Structural Waveguides

Large constructions are often built up by plates and frames as previously discussed.
At a junction between two adjoining plate elements, energy from one element is
transferred to the next element by a bending moment. This bending moment induces
an angular displacement around the junction. The total bending moment around
the junction must be zero. Further, the angular displacement of one element should
equal the angular displacement of the adjoining element. During the rotation of
the elements around the junction it is assumed that the angle between the elements
is maintained or in fact being constant. These assumptions are the same as those
discussed in Sect. 5.9 in connection with the derivation of the transmission of flexural
waves across junctions. In Sect. 5.9, it was also argued that the lateral motion of the
junctions could be neglected. This assumption was found to be relevant even for
coupled plate elements freely suspended in space. However, in real constructions
plate elements and junctions are coupled to supporting structures. Consequently, the
lateralmotion of any real junction is verymuch restricted. Thus, neglecting the lateral
motion of a junction between two plate elements leads to that longitudinal waves
induced by flexural waves can be disregarded. This assumption is discussed further
in Chap.16. The coupling between finite waveguides is also discussed in Refs. [56,
197, 198].

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47934-6_16
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Fig. 14.3 Structural waveguide element between two junctions m and n and limited in the y-
direction by two frames

A structural waveguide element is illustrated in Fig. 14.3. The finite waveguide
connects two junctions denoted as m and n. The length of the element is Lmnx

and its width is L y . The bending stiffness of the plate is D = Eh3/[12(1 − ν2)]
and its mass per unit area is μ. The corresponding wavenumber for flexural waves
is κ = (

μω2/D
)1/4

. The angular displacement along the junction m is γm and at
the junction n equal to γn . The displacement of the plate element is zero along the
boundaries. The cross modes are given by ϕn(y). For simply supported boundaries
along the frames the cross modes are given by Eq. (14.4) and for clamped boundaries
by (14.13) and (14.14). The displacement w of the plate is written as

w(x, y, t) = exp(iωt)
∑

n

ϕn(y)Xn(x) (14.15)

As given by Eq. (14.5) the function Xn should for free vibrations and simply sup-
ported boundaries along the frames satisfy the differential equation

d4Xn

dx4
− 2k2n

d4Xn

dx4
+ k4n Xn − κ4Xn = 0

The general solution to this equation is

Xn = C1n sin(κ2x) + C2n cos(κ2x) + C3n sinh(κ1x) + C4n cosh(κ1x)

κ1 =
√

κ2 + k2n; κ2 =
√

κ2 − k2n (14.16)

The boundary conditions at the two ends of the waveguide are Xn(0) = Xn(Lmnx ) =
0 and dXn/dx = γm for x = 0 and dXn/dx = γn for x = Lmnx . Introducing the
parameters α1, α2 and χ as α1 = κ1Lmnx , α2 = κ2Lmnx , and χ = κ1/κ2, the
amplitudes C1n , etc. of Eq. (14.16) are obtained as
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C1n = γm [χ(1 − cosα2 coshα1) − sinhα1 sinα2] − γnχ(coshα1 − cosα2)

κ2
[
2χ(1 − cosα2 coshα1) − sinhα1 sinα2(1 − χ2)

]

C2n = γm [χ(sinα2 coshα1) − cosα2 sinhα1] − γn [χ sinα2 − sinhα1]

κ2
[
2χ(1 − cosα2 coshα1) − sinhα1 sinα2(1 − χ2)

]

C3n = γm

χκ2
− C1n

χ
; C4n = −C2n (14.17)

These expressions can be somewhat simplified since

α1 = Lxmn

√
κ2 + (π/L y)2 � πLxmn/L y .

For Lmnx > L y , α1 is large enough to ensure that sinhα1 ≈ coshα1 � 1. Conse-
quently, the expression (14.17) is reduced to

C1n = γm [χ cosα2 + sinα2] + γnχ

κ2
[
2χ cosα2 + sinα2(1 − χ2)

]

C2n = γm [cosα2 − χ sinα2] − γn

κ2
[
2χ cosα2 + sinα2(1 − χ2)

]
C3n = C2n; C4n = −C2n (14.18)

The resulting bending moment around the junction m is

Mmn(0) =
∑

j

M jmn(0)ϕ j (y) = −Dmn

∑
j

w′′
j (0)ϕ j (y) (14.19)

The bending stiffness of the element is now denoted as Dmn . For j = 1, i.e., for the
first cross mode the parameter M1mn can be written as

M1mn = Xmnγm − Ymnγn

Xmn = Dmnκ
2
mn

κ2 cosα2 − κ1 sinα2

κ1κ2 cosα2 − k21 sinα2
;

Ymn = Dmnκ2
mn

κ2

κ1κ2 cosα2 − k21 sinα2

κmn =
[
μmnω2

Dmn

]1/4
;

κ1 =
[
κ2

mn(1 − iη/2) + k21

]1/2 ; κ2 =
[
κ2

mn(1 − iη/2) − k21

]1/2 ;
k1 = π

L y
; α2 = κ2Lxmn (14.20)
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The bending moment M1mn(Lxmn) at the other end of the plate element is found
to be

M1mn(Lxmn) = Ymnγm − Xmnγn (14.21)

The frequency and space average of the velocity squared of the element is

〈|v̄|2〉 = 1

2Lxmn L y� f

∫ Lxmn

0
dx
∫ L y

0
dy
∫ f +� f

f
d f ω2 |w|2

After a certain effort it is found that the average velocity squared corresponding to
the first cross mode is

〈|v̄1|2〉 = ω2 |κ2| (|γ1m |2 + |γ1n|2)
6ηLxmnκ4 for κ > k1 (14.22)

The angular displacements γ1m and γ1n represent the displacement for the first cross
mode following that γm =

∑
i

γimϕi (y). The frequency average of the product γmγn

has been set to equal zero.
A system of equations relating the rotation at each junction and the resulting

bendingmoments can nowbe formulated. Consider the junction shown in Fig. 14.4. It
is assumed that there is no translatorymotion at any junction.The energy transfer from
one element to the adjoining is caused by a bending moment at the junction. During
rotation the angle between the plate elements is constant, i.e., each element is rotated

Fig. 14.4 Resulting bending moments and angular displacement at a junction n of a structural
network
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Fig. 14.5 A system of
coupled waveguides

the angleγn around the junctionn. The sumof the bendingmoments around a junction
must equal zero. Thus, using the notations in Fig. 14.4, Mvn−1(0) + Mhn(0) =
Mvn(Lzn).

Consider now the model shown in Fig. 14.5. The junctions in a vertical plane of a
built-up structure are numbered from1 to N . Thewidth L y of themodel is determined
by the distance between the parallel frames. The length of a plate element between
the junctions m and n is given by Lmnx . Assume that the energy flow to the structure
is induced by bending moments M1 and M2 at the junctions 1 and 2 as shown in
Fig. 14.5. The angular displacement of the first cross mode at junction m is γm . Only
the first propagating mode is considered, since according to Eq. (14.12) this mode is
completely dominating for symmetric excitation of a waveguide structure.

Based on the assumptions made above, the resulting system of equations relating
the rotations at the various junctions can be written in matrix form as

[A] {γ} = {M} (14.23)

where

{γ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ1
γ2
··
··
··
γN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; {M} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M1
M2
··
··
··

MN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14.24)
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The elements Mm are equal to zero except at those junctions where the structure is
excited. For the configuration shown in Fig. 14.5, Mm = 0 for m > 2.

The elements Amn in the N × N matrix [A] are defined as

Amm =
N∑

n=1,n 
=m

Xmn; Amn = −Ymn for m 
= n (14.25)

The functions Xmn and Ymn are equal to zero if there is no plate element between
the junctions m and n. For the configuration shown in Fig. 14.5 the elements of the
matrix [A] are

A11 = X13; A13 = −Y13; A1n = 0 for n 
= 1, 3

Aqq = Xqp + Xqr + Xqs + Xqt

Aqn = −Yqn for n = p, r, s, t; Aqn = 0 for n 
= p, q, r, s, t etc.

The matrix [A] is symmetric, i.e., Amn = Anm .
The frequency and space average of the velocity squared of the element between

the junctions m and n is given by Eq. (14.22). In most practical cases, only the
velocity level difference between various plate elements is of interest. Thus, assuming
a symmetric excitation of the structure, the bending moments M1 and M2 can be set
to be equal to unity.

The velocity of a plate element is a rapidly varying function of frequency. The
total kinetic energy of an element for a certain frequency band must therefore be
solved by means of numerical integration within this band.

Considering that the dominating energy flow is determined by the first cross mode
for a frame distance L y the eigenfunction corresponding to clamped boundaries along
frames is given by Eq. (14.13) and for simply supported boundaries by Eq. (14.4).

If the technique described above is used in the frequency range below the first nat-
ural frequency of the plate element, the resulting attenuation between two adjoining
plate elements becomes far too high compared with measured results. One reason for
this is that the clamped boundary conditions along the frames no longer are applica-
ble in the low frequency range. The boundary conditions for the plates along the
frames clearly depend on the relative stiffness between the frames and the plates.
The moment impedance for a plate is obviously different for frequencies below
and above the first natural frequency of the plate. This will naturally influence the
apparent boundary conditions of the plate. Further, measurements indicate that for
frequencies decreasing below the first natural frequency of the plate the shape of
the cross mode is determined by simply supported rather than clamped boundary
conditions. For these reasons an approach different from the one discussed above is
used to determine the coupling between plate elements in the low frequency region.
The method is based on the Garlerkin variational method discussed in Sect. 9.9. The
result is presented in Ref. [198]. Compare also Sect. 16.2.

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_16
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In the low frequency range, a more simple technique can also be applied. In the
low frequency range or rather for frequencies below the cut-on frequency, the frames
and the plate element between the frames tend to vibrate with the same amplitude.
A plate and the adjoining frames can therefore be modeled as a beam with a certain
bending stiffness and mass per unit area. The built-up structure, Fig. 14.5, can for
this case be modeled as a grillage of beams. For this particular case, the parameters
Xmn and Ymn are discussed in Problem 14.3 obtained as

M1mn = Xmnγm − Ymnγn; M1mn(Lxmn) = Ymnγm − Xmnγn

Xmn = Dmn
κmn cosα − κmn sinα

cosα
; Ymn = Dmn

κmn

cosα

κmn =
[
μmnω2

Dmn

]1/4
; α = κmn(1 − iη/4)Lxmn (14.26)

The space average of the velocity squared is

〈|v|2〉 ≈ ω2(|γm |2 + |γn|2)
2κ2 cos2 α

(14.27)

The velocity squared is again a rapidly varying function of frequency. A frequency
average of the quantity must be calculated numerically. This is in analogy with the
discussion on the coupling of beams discussed in Sect. 7.6.

14.4 Measurements and Predictions

A number of model and full-scale measurements have been carried out to verify
the waveguide model discussed in the previous section. A simple beam-plate struc-
ture was used by Haettel [200] to measure and predict energy flow in some simple
waveguide systems. The structure was also used for the investigation of various
means to reduce the energy flow in the structure. The basic structure is shown in
Fig. 14.6. During measurements, the entire structure was resiliently suspended.

The parallel frames or beams supporting the plates on both sides are 15mm
high with a thickness of 2mm. The dimensions of the plate elements are given in
Table14.1. All elements are made of steel.

At the junctions the plate elements were coupled in three different ways:

(i) The plates were line welded along the entire junction;
(ii) The plates were spot welded along the junction;
(iii) Open coupling, the plate elements were connected and held in place by the

frames only.

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Fig. 14.6 Basic waveguide structure. From Ref. [200]

Table 14.1 Dimensions of plate elements

Plate 1 2 3 4 5 6

Lx (m) 0.3 0.7 1.0 0.8 1.2 0.9

L y (m) 0.3 0.3 0.3 0.3 0.3 0.3

Thickness (m) 0.01 0.003 0.003 0.003 0.003 0.003

The plate element 1 was excited by an electrodynamic shaker and the velocity
levels of the various plate elements were measured. Figure14.7 shows the measured
velocity level difference �L2,6 between the elements 2 and 6 for the three different
couplings between the plate elements. The result shows that changing the coupling
from line welded to open the velocity level difference �L2,6 is increased by more
than 10 dB in a very wide frequency range. A substantial reduction is also obtained
by changing the coupling from line welded to spot welded. Compare also the dis-
cussion on structural couplings discussed in Sect. 5.13. The measurements confirm
the assumption that the dominating energy flow is in the plate elements and not in
the frames.

The effect of damping layers on the energy flow in the model structure was also
tested. Measurements were carried out with and without damping layers on the
elements 3 and 5 of the model shown in Fig. 14.6. The measured velocity level
difference �L2,5 between the elements 2 and 5 and the velocity level difference
�L2,6 are shown in Figs. 14.8 and 14.9, respectively.

The velocity level of element 2 was the same in both cases. Figure14.8 shows that
a damping layer mounted on element 5 decreases the velocity level of this element by
almost 10 dB in a wide frequency range. The velocity level of the adjoining element
6 is also decreased but to a much lesser extent than element 5 as shown in Fig. 14.9.

The excitation point of plate 1 of Fig. 14.6was also varied from a center position to
positions more close to one of the stiffeners. It was found that the transfer mobilities
between excitation point and any position on any of the other plates increased as the

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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Fig. 14.7 Velocity level
difference �L2,6 between
the elements 2 and 6 of the
model shown in Fig. 14.6 for
three different plate
couplings. From Ref. [200]

Fig. 14.8 Velocity level
difference �L2,5 between
the elements 2 and 5. With
and without damping layers
on the elements 3 and 5.
From Ref. [200]

Fig. 14.9 Velocity level
difference �L2,6 between
the elements 2 and 6. With
and without damping layers
on the elements 3 and 5.
From Ref. [200]
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Fig. 14.10 Predicted and
measured velocity level
difference �L2,3 between
elements 2 and 3 of model
Fig. 14.6. From Ref. [200]

Fig. 14.11 Predicted and
measured velocity level
difference �L2,6 between
elements 2 and 6 of model
Fig. 14.6. From Ref. [200]

excitation was changed from a stiff point to a weak point. This is in accordance with
the discussion in Sect. 10.12, see Figs. 10.26 and 10.27.

Some additional tests were carried out with a slightly modified waveguide struc-
ture. The plate element 1 was cut off in the structure shown in Fig. 14.6. The loss
factors of the remaining elements were measured and were approximated by the
expression η = [0.07 + 0.21 × exp(−1.7 × 10−3 × f )] where f is the frequency.
Predicted andmeasured velocity level differences are shown in Figs. 14.10 and 14.11.
The measured velocity level differences are fairly well predicted by the waveguide
model. In the predictions only flexural waves are considered. Any translatory motion
of the joints is neglected.

Predicted and measured results were also compared for the structure with one
damping layer on plate element 4. The loss factor of the plate with the damping layer
wasmeasured and found to be 6% for f � 1000Hz and 1.1% for higher frequencies.
Predicted and measured velocity levels are shown in Figs. 14.12 and 14.13.

Again, the agreement between predicted and measured results is satisfactory. By
comparing the results shown in Figs. 14.11 and 14.13, it is found that the velocity

http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47934-6_10
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Fig. 14.12 Predicted and
measured velocity level
difference �L2,4 between
elements 2 and 4 of model
Fig. 14.6. Damping layer on
element 4. From Ref. [200]

Fig. 14.13 Predicted and
measured velocity level
difference �L2,6 between
elements 2 and 6 of model
Fig. 14.6. Damping layer on
element 4. From Ref. [200]

level difference �L2,6 between elements 2 and 6 are almost the same with and
without a damping layer on element 4. The damping layer decreased the velocity
level of the element 4 by approximately 5 dB in a wide frequency range. Despite
this, the velocity level of element 6 is only changed moderately by the addition of
damping on plate 4. This indicates that a damping layer applied in the transmission
path between source and receiving elements is not very effective.

The effectiveness of damping layers applied to a built-up structure has been dis-
cussed in a number of papers. Damping layers can be applied either at the founda-
tion of a source, at the receiving end, or at the propagation path between source and
receiver. An example of the firstmethod is reported in Ref. [201]. The structure-borne
sound induced by a small pump on a ship was reduced by the application of damping
layers on the steel structure around the pump. The resulting noise reduction in an
adjoining cabin was reduced by 10 dB by the reduction of the structure-borne sound
induced by the pump. However, for large sources like Diesel engines the foundation
is quite heavy and naturally well damped. For this particular case, the addition of
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damping layers on the engine foundation is of minor importance. Compare the dis-
cussion in Sect. 10.12. The application of damping layers at the receiving end, on the
steel deck, and on steel bulkheads facing a cabin, can also be effective as reported in
Ref. [202]. In the case investigated, constrained viscoelastic layers partially covered
the steel structures. The noise reduction achieved in the cabin was of the order 4–5
dB.

Van Tol [203] has performed model tests with damping layers. When only part
of the transmission path between source and receiver was clad with viscoelastic
materials, the resulting noise reduction at the receiving end was minor. The noise
reduction was increased considerably when the treated area was extended all the way
between source and receiver.

Full-scale experiments are reported by Buiten [204] and Turner [205]. In the first
investigation, layers of a viscoelastic material were applied to two decks and the
intermediate hull section on a Rhine cruiser. The total area covered was 400 m2.
The auxiliary engines and a number of cabins were situated on the lower of the two
decks. The treated area was not extended all the way up to the engines and cabins.
The resulting noise reduction in the cabins on the same deck as the auxiliary engines
was estimated to be less than 1 dB. The results repudiate the idea that added damping
anywhere in a structure “absorbs” energy and thus decreases noise levels.

A discussion on the apparent inefficiency of damping layers on stiffened steel
structures is presented in Ref. [206]. It is argued that the low damping which is often
observed is due to the waveguide characteristics of the structure. In the report, it is
also concluded that the incorporation of dissipative elements in frames which are
part of a waveguide does not seem to be useful.

Some of the damping effects summarized above and predictions of the flow of
structure-borne sound using the waveguide technique were investigated using a scale
model shown in Fig. 14.14. The results reported in Refs. [197, 198] suggest that the
main power flow in a ship structure is caused by flexural waves propagating in the
plate elements. It should thus be possible to test the theoretical model discussed
in [197] and presented in Sect. 14.3 by means of measurements on a structure, the
width of which is equal to the distance between two frames and where the frames
are acting as boundaries. Measurements on sections of ships were pioneered by
Odegaard-Jensen [207], and Ohlrich [116].

The basic model used for the test is shown in Fig. 14.14. The thickness of the
steel plates is 0.6mm for the elements 4–11 and 1mm for the elements 1–3. The
dimensions of the frames on elements 1–3 are 60 × 15 × 1 mm and for the frames
of elements 4–11 6× 5× 0.6 mm. The other dimensions are indicated in Fig. 14.14.
The upper part of the structure could correspond to a super structure on a ship and the
lower part to the hull section and the main deck. The structure is not really made to
scale with respect to a real ship structure. However, the scaling factor is roughly 1:20.
The structure is excited at position 1 shown in Fig. 14.14. The force on the structure is
acting primarily in the vertical direction. The transmission of structure-borne sound
from the main deck, plate 3, to the superstructure, elements 4–11, is determined for
the following configurations:

http://dx.doi.org/10.1007/978-3-662-47934-6_10
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Fig. 14.14 Basic ship model

(i) bare steel model, Fig. 14.14;
(ii) damping layers on plates 4 and 6;
(iii) damping layers on plates 5 and 7;
(iv) damping layers on the center third part of plates 5 and 7;
(v) damping layers on the main deck, plate 5, plus on plates between elements 2

and 4;
(vi) the superstructure, elements 4–11, resiliently mounted on main deck, see

Fig. 14.15;
(vii) the plate elements 3 and 4 connected only via the frames, see Fig. 14.16.

The velocity levels of the various plate elementsweremeasuredwhile the structure
was excited at the position 1 shown in Fig. 14.14. The velocity level differences
between the plate elements 4–11 in the superstructure and the main deck, plate 3,
were determined. The average loss factor of the elementswasmeasured. For the plates
in the superstructure, elements 4–11, the loss factor was 8×10−4 up to and including
the 1.6 kHz third octave band and decreased with increasing frequency to 5 × 10−4

at 50 kHz. Since the scaling factor is 1:20, a frequency f in model scale corresponds
approximately to a frequency f/20 in full scale. The lowest cut-on frequency for
the plates clamped along the frames is of the order 0.9 kHz for the elements in
the superstructure. The excitation is symmetric with respect to the frames. It can
therefore be expected that the odd cross modes determine the energy flow. Following
the result (14.12) only the energy flow due to the first cross mode is considered in the
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Fig. 14.15 Elastic mounts supporting superstructure

Fig. 14.16 Coupling between the elements 3 and 5

predictions. The higher modes were found to be much less dominant. Comparisons
between measured and predicted results are shown in Figs. 14.17 and 14.18.

As shown in Figs. 14.17 and 14.18 the agreement between predicted andmeasured
results is satisfactory formost practical purposes. It is interesting to note that�L3,9−
�L3,11 = L11 − L9 is positive in most of the frequency range. Thus, the velocity
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Fig. 14.17 Measured ◦−◦ and predicted—velocity level differences�L3,5 (left) and�L3,7 (right)

Fig. 14.18 Measured ◦ − ◦ and predicted—velocity level differences �L3,9 (lef t) and �L3,11
(right)

Fig. 14.19 Measured loss
factor of plate element with a
damping layer

level of the top deck is higher than for the deck below. This is generally also the case
for full-scale structures as discussed in Chap.16.

Some of the damping effects summarized above were investigated through mea-
surements on the models 2–5. The damping layers used consisted of viscoelastic
self-adhesive material. The weight per unit area was 1.6 kg/m2. The loss factor for
plate and damping layer was measured. The average result for a damped element is
shown in Fig. 14.19. Predicted andmeasured velocity level differences between plate
3 and the plates 5, 7, 9, and 11 are compared for the models 2 and 3 in Figs. 14.20
and 14.21. The predictions are all based on the simple waveguide model presented
above. The plate elements were assumed to be clamped along the frames. In the
calculations the added mass of the damping layer is considered. The stiffness of the
layer is neglected.

http://dx.doi.org/10.1007/978-3-662-47934-6_16
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Fig. 14.20 Measured and predicted velocity level differences: ◦ − ◦ measured model 3; ——
predicted model 3; ××× measured model 2; - - - - predicted model 2. The velocity level difference
�L3,5 is shown in left graph and �L3,7 in the right graph

Fig. 14.21 Measured and predicted velocity level differences: ◦ − ◦ measured model 3; ——
predicted model 3; ××× measured model 2; - - - - predicted model 2. The velocity level difference
�L3,9 is shown in left graph and �L3,11 in the right graph

The results for model 2 and 3 indicate that the velocity level of a deck is decreased
more effectively if the damping layer is applied directly to the deck itself rather than
to the vertical plate sections below the deck. The velocity levels of the two top decks,
elements 9 and 11, are more or less independent of where on the lower plate elements
the damping layers are applied. In fact, the velocity level of the top plate, element
11, is approximately equal for the models 1–5 if the input power to the structure is
kept constant.

The damping layers on the elements 4 and 6 on model 2 decrease the energy flow
due to flexural waves more effectively than the flow caused by longitudinal waves.
It could therefore be expected that the velocity levels of the decks on model 2 were
determined by longitudinal waves. However, the agreement between measured and
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Fig. 14.22 Measured
velocity level differences
between elements 3 and 5:
◦ − ◦ − ◦ model 1; - - - -
model 2; -x-x-x model 3;
· · · · · · model 4

predicted levels using the waveguide model, flexural waves only, indicate that the
role of the longitudinal waves is comparatively insignificant in these model tests. The
full-scale measurements reported in Refs. [197, 198] confirm that the power flow in
typical waveguide structures is mainly determined by flexural waves.

In Fig. 14.22 the measured velocity level differences �L3,5 are compared for
models 1–4. For models 2 and 4 the total area clad with damping layers is the same.
Method 4 is however more effective. The velocity level of a deck is not just a simple
function of the total losses. A reduction of the clad area to one third of the total area
of deck 5 increases the velocity level by 10 dB in the low frequency range as shown
in Fig. 14.22, and this should be compared with the results for models 3 and 4. In the
high frequency range, the difference is considerably smaller.

Damping layers applied to a transmission path between a source and receiver
perform poorly. The reason is that the transmission from one element to another is
due to forced rather than resonant transmission. A damping layer on a plate is only
effective at frequencies at or close to some natural frequency of the plate. Compare
the discussion in Sect. 6.4, see also Fig. 6.5. For a plate, having the same natural
frequency as an adjoining plate the effect of a damping layer on the energy flow
between the plates would be significant. However, in a finite structure like the one
shown in Fig. 14.14 even equal plates do not necessarily have coinciding natural
frequencies. The natural frequency of an element not only depends on its material
parameters and geometry but also on its coupling to adjoining structures and on
its position in a built-up structure. Thus, no elements in Fig. 14.14 are dynamically
identical.

The measured velocity levels of deck 5 for model 3, damping on two decks
in superstructure, and model 5, damping on main deck or plate 3, are compared

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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Fig. 14.23 Comparison
between the measured
velocity levels of plate 5 for
models 5 and 3. The input
power to the structure was
the same in both cases

in Fig. 14.23. The result confirms the general conclusion that if the velocity of an
element is to be decreased the best result is obtained if the damping layer is applied
to the element itself.

The noise transmission to a superstructure is reduced if the entire construction
is resiliently mounted. The concept has been used for ships with deadweight up to
30,000 tons. The simple natural frequency for the mass–spring system is in full scale
of the order 5–10Hz. Full-scale measurements indicate that a resilient mounting can
reduce noise levels in a superstructure of the order 10 dB. Model 6, Fig. 14.15 is
not directly comparable to a real ship structure. The reason is that on a ship there is
an additional deck directly above the resilient mounts. The configuration shown in
Fig. 14.15 was chosen to make all models comparable. The first natural frequency for
the mass–spring system is of the order 140Hz corresponding to 7 Hz in full scale.
For model 6, the elastically mounted superstructure, the measured velocity level
differences between plate elements 3 and 9 are shown in Fig. 14.24. For comparison,
the corresponding results for the original configuration, model 1, are included. The
reduction of the velocity levels due to the elastic mounts is of the same order as
observed for full-scale measurements. An apparent advantage of elastic mounts as
compared to damping layers is that the velocity levels of all structures beyond the
mounts are reduced whereas a damping layer primarily reduces the velocity level of
the structure to which the layer is applied.

The waveguide model is based on the assumption that the main energy flow is
due to flexural waves propagating in plate elements between parallel frames. This
assumption has been verified by means of full-scale measurements. Based on this
assumption it could be expected that the energy flow between two waveguide ele-
ments could be reduced if the coupling between the plate elements is disconnected.
Figure14.16 shows an example of this type of coupling. The vertical plate element
4 was connected to the main deck via the frames only. All other junctions were
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Fig. 14.24 Measured
velocity level difference
between elements 3 and 5 —
model 1; -·- model 6; - - - -
model 7

unchanged. The measured velocity level difference between the elements 3 and 5 is
shown in Fig. 14.24. The corresponding results for model 1, the basic design, and
for model 6, the resiliently mounted structure, are also shown in the graph. On the
average the velocity level difference �L3,5 is increased by 5 dB by decoupling the
plate elements 3 and 4 as shown in Fig. 14.16. This indicates that the energy flow in
a plate element is of the order 5 dB higher than in the energy flow in the coupled
frames.

The results of the model-scale measurement show that with a certain degree of
accuracy the energy flow in coupled waveguide systems like a ship can be predicted
from a simple waveguide model in which only flexural waves are included. The
additional attenuation due to damping layers can also be estimated based on the same
type of model. Damping layers on a part of a structure tend to decrease the velocity
level of only that part of the structure that is damped. The velocity level of adjoining
elements is reduced to a much lesser extent. If the boundary conditions between a
superstructure and the hull are changed the energy flow to the superstructure can be
reduced considerably. A resilient mounting could give a reduction of 10 dB and a
decoupling of plate elements 5 dB.

Some general conclusions:

(i) Damping layers applied to a transmission path between source and receiver is in
general ineffective with respect to the energy flow transmitted to the receiving
plate element.

(ii) Damping of elements at receiving end most effective for reducing the energy
of these elements.

(iii) Relaxation of coupling between elements decreases energy flow to all elements
beyond the coupling.
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(iv) Simple waveguide models predict well the energy flow in waveguide structures
with and without damping layers.

The points (i)–(iii) apply to any type of built-up structure.
Full-scale measurements and predictions are discussed further in Chap.16. See

also Refs. [196, 208].

14.5 Composite, Sandwich, and Honeycomb Plates

For many applications the use of lightweight structures is of great importance. This
has always been the case for the aircraft industry. The shipbuilding, car, truck, and
train industries have now followed suit. To meet a growing demand a variety of
different types of sandwich panels have been developed during the last few decades.
A sandwich panel is a structurewith a fairly thick lightweight corewith thin laminates
bonded to each side of either a foamor a honeycomb core.A sandwich plate combines
low weight with high strength. However, for certain types of sandwich plates the
acoustic properties can be very poor. The absence of acoustic qualities can severely
restrict the use of sandwich elements. Somedynamic properties of sandwich elements
have already been discussed in Sects. 4.7 through 4.11. In these sections, the general
wave equation was used to describe the displacement in the thick core of a sandwich
structure. In Sect. 9.3 the bending of a sandwich structure was derived based on
Hamilton’s principle. The results from Sect. 9.3 in this chapter are used to determine
the response of finite sandwich beams and plates.

The laminates of a sandwich structure can often consist of 3–20 layers of fibers
oriented in different directions to give anisotropic dynamic properties. One example
is shown in Fig. 14.25. This type of very strong and lightweight structure can also be
used on its own, i.e., without the backing of a core and an additional laminate. Again,
this type of composite structure is nowadays frequently used by the aircraft industry.

Fig. 14.25 Construction of a
laminate

http://dx.doi.org/10.1007/978-3-662-47934-6_16
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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The laminates of a sandwich structure could also be thin metal sheets. In the building
industry the “laminates” could even be made of lightweight concrete. A number of
textbooks, papers on applications, measurements and theories on laminated plates,
and sandwich structures have been published. TheRefs. [32, 40, 41, 79–81, 209–213]
are just a few examples. The first model describing the flexural vibrations of slender
beams was developed independently by Euler and Bernoulli in the mid-eighteenth
century. They both assumed that the deflection of a beam is due to only pure bending.
Later Lord Rayleigh [90] and Timoshenko [214] considered shear and rotational
effects to describe the lateral displacement of beams which were not necessarily
slender. However, these models are not sufficient for describing the lateral motion
of sandwich or honeycomb beams. In the Bernoulli–Euler theory it is assumed that
the shear modulus of the beam is infinite. The theory is therefore only applicable
as long as the wavelength of the flexural waves is much larger than the dimensions
of the cross section of the beam. The Timoshenko theory predicts that in the high
frequency region the lateral deformation of a beam is governed by the effects of shear
and rotation. For a three-layered sandwich beam the lateral displacement is governed
by the bending of the laminates. Thus, although the Timoshenko theory can be used
for higher frequencies than the basic Bernoulli–Euler theory, even this theory fails
for increasing frequencies or in fact in the frequency range of greatest importance
for typical sandwich constructions.

Research on the flexural displacement of sandwich beams has intensified during
the last few decades. So, for example, Kerwin [215] analyzed the damping of flexural
waves in composites with viscoelastic layers. Mead and Markus [216] introduced a
sixth-order theory neglecting rotational inertia. They investigated the response of a
sandwich beam subjected to “damped normal loadings” and presented orthogonality
relations for describing the displacement of the beam. Mead presented in Ref. [217]
a short review of some different theories on sandwich beams and also presented
a new model taking into account the effects of inertia and shear deformation in
the laminates resulting in sixth- and eighth-order differential equations describing
the lateral motion of symmetric as well as asymmetric sandwich beams. Boundary
conditions were not discussed. In Ref. [80] even a 10th-order differential equation is
briefly discussed. However, it is concluded in [80] that in most practical cases and in
a frequency range up to 5 kHz a sixth-order differential equation should be sufficient
to describe the displacement of a typical sandwich beam. In Ref. [40] an “exact”
model is presented which describes the lateral displacement of sandwich beams with
a thick core and thin laminates. The basic model was discussed in Sects. 4.9–4.11.
The model was investigated further in [41]. It was found that the wavenumbers
necessary for describing the displacement of the beam could only be determined by
using rather sophisticated numerical methods for solving ill-conditioned and huge
systems of equations. In addition boundary conditions for finite beams were not
readily defined. However, the model allows a detailed mapping of the displacement
of core and laminates. One result from Ref. [41] is shown in Fig. 14.26. The figure
represents deformation due to bending at 3.5 kHz of a standard sandwich beam.

A simple model based on Hamilton’s principle was introduced in Ref. [79] to
describe the lateral displacement of sandwich and honeycomb beams. The result was

http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Fig. 14.26 Deformation of the cross section of a sandwich beam. From Ref. [41]

Fig. 14.27 Sandwich
structure made up of
laminates and core

a sixth-order differential equation governing the lateral displacement of symmetric
beams as demonstrated in Sect. 9.3. Boundary conditions are included. The model
agrees well with results derived from the “exact” model [40] and with measured
results. Vibration of asymmetric sandwich structures are discussed in for example
Ref. [81]. Models resulting in eighth-order differential equations do not significantly
improve the accuracy of predictions of the response and vibration of standard sand-
wich elements. However, the computational efforts are multiplied.

The geometry of the type of sandwich element considered here is shown in
Fig. 14.27. In general, a sandwich construction is symmetric with respect to the
center line. The thickness of the lightweight core is typically of the order 5–75mm
whereas the thickness of the laminates could vary between 0.5 and 8mm. The E-
modulus for a laminate is high and much higher than the corresponding modulus for
the core. A laminate can be treated as thin as long as the wavelength for pure bending
waves in the structure is larger than six times the thickness of the laminate. For the
lateral motion or the bending of the entire sandwich construction, it is assumed that
the displacement of a laminate is determined by flexural and longitudinal waves.

The displacement of the laminates can therefore be described by means of longi-
tudinal waves in the plane of the plate or beam and by simple flexural waves (Euler
beam or Kirchhoff plate theory). For a sandwich element with an isotropic foam
core the displacement within the core can be described by means of the general wave
equation as discussed in Ref. [40] and summarized in Sect. 4.9. In general, both the
in-phase and antiphase motion of the laminates must be considered for foam cores.
However, for typical honeycomb cores, Fig. 14.28, the stiffness of the core material
in the direction perpendicular to the laminates is sufficiently high to allow only the
in-phase motion of the laminates except in the very high frequency range.

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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Fig. 14.28 Ideal honeycomb
structure

The dynamical properties of a composite beam or plate depend on the geometry of
the structure as well as on the material properties of core and laminates. The method
of bonding laminates to core can also influence the dynamic properties of sandwich
constructions. For example, a bonding substance can increase the spacing between
the laminates. As compared tometal laminates the properties of a composite laminate
depend on the build up of the structure, the number of plies and their orientation, the
type of resin used, etc. Figure14.25 shows a fiber construction of a laminate.

In order to determine dynamic properties like bending stiffness of a laminate the
material and geometrical properties of the plies or layers must be well known. This
is not always the case. Besides, existing tools for predicting properties of composite
structures are not always sufficiently accurate. The area weight is readily controlled
whereas the E-modulus of a structure is far much more complicated to determine.
The E-modulus of a small sample of a laminate can, for example, be determined
by means of the ISO procedure 6721, Part 5. For the prediction of the response of
a composite structure due to some external dynamic force the bending stiffness of
the structure should be known. The thickness of a metal plate used, for example,
in the car, aircraft, or ship industries shows very small variations from its nominal
thickness. In addition the E-modulus, Poisson’s ratio, and density of ametal structure
are known with good precision helping to improve the accuracy of any type of FEM
calculation. The opposite seems to be the case for composite laminates. Due to
local variations of a laminate, E-modulus and thickness can vary considerably with
location. It can therefore be very misleading to determine the bending stiffness of a
laminate based on measurements on small samples. The average bending stiffness of
a beam representing part of a plate can be measured in a simple but yet sufficiently
accurate way. The beam investigated is suspended by strings to simulate free–free
boundary conditions as discussed in Sect. 14.9. The beam is excited by an impact
hammer and its response measured by means of a laser. Based on the recorded
frequency response function the first few natural frequencies are determined. The
bending stiffness of a thin laminate can be considered as frequency independent
up to fairly high frequencies. For a beam with a length of approximately 1.2 m, the
first ten bending modes and natural frequencies can often be identified. The average
bending stiffness of a beam can therefore be determined fairly accurately based on
these measurements.
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Fig. 14.29 Aluminum foam core

Fig. 14.30 Geometries of a Nomex and an aluminum honeycomb core

The bending stiffness was in this way measured for eight beams cut out of four
composite test panels, consisting of 14–16 plies, which were carefully manufactured
to be used for various types of tests. The average bending stiffness of the beams could
be determined within ±4%, assuming a 95% confidence interval. The deviation
between the bending stiffness measured on beams and on small samples of the same
structure could however vary by as much as ±30%!

The properties of core materials can also vary considerably. Plastic foams can
often be considered as being isotropic and homogeneous. Other types of foams,
for example, aluminum foam, can show large geometrical variations as indicated
in Fig. 14.29. The geometries of one Nomex and one aluminum honeycomb core
are shown in Fig. 14.30. It is evident that the corresponding dynamic properties of
such core structures must be based on some space average. Means of estimating the
dynamic properties are discussed in Sect. 14.9.
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14.6 Flexural Vibrations of Honeycomb/Sandwich Beams

The normal deflection of a sandwich panel is primarily caused by bending but also by
shear and rotation in the core as discussed in Sect. 9.3. The total lateral displacement
w of a sandwichbeam is a result of the angular displacement due to bendingof the core
as defined by β and the angular displacement γ due to shear in the core as ∂w/∂x =
γ + β for a beam oriented along x-axis of a coordinate system. The differential
equations governing w, β, and γ can be determined using Hamilton’s principle as
shown in Sect. 9.3. In deriving the equations governing the lateral displacement of
the structure shown in Fig. 14.31 the symmetry is assumed. The identical laminates
have a Young’s modulus El , bending stiffness D2, density ρl , and thickness h. The
effective shear stiffness of the core is Gc, its Young’s modulus Ec, its equivalent
density ρc, and its thickness H . The parameter Gc is for a thick core not necessarily
equal to the shear stiffness G as suggested by Timoshenko [218]. The core itself is
assumed to have a very low stiffness Ecx in the x-direction. In the y-direction, the
core is assumed to be sufficiently stiff to ensure that the laminates move in phase
within the frequency range of interest. The static bending stiffness of the beam, width
b, is

D′
1 = b[Ecx H3/12 + El(H2h/2 + Hh2 + 2h3/3)]

In general El � Ecx . The bending stiffness of one laminate is D′
2 = bEl h3/12. The

mass moment of inertia is defined as I ′
ω = b[ρcH3/12+ρl(H2h/2+ Hh2+2h3/3)]

while the mass per unit length is m′ = μb = b(2hρl + Hρc). The cross-sectional
area of the core is S = b · H .

As demonstrated in Sect. 9.3 it is found that the displacement w and the angular
displacement β caused by an external force F ′ per unit length of the beam must
satisfy the differential equations

− GcS

{
∂2w

∂x2
− ∂β

∂x

}
+ 2D′

2

{
∂4w

∂x4
− ∂3β

∂x3

}
+ m′ ∂2w

∂t2
− F ′ = 0 (14.28)

Fig. 14.31 Excitation of beam and resulting forces and moments. For a symmetric beam Mg = Ms

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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− GcS

{
∂w

∂x
− β

}
− D′

1
∂2β

∂x2
+ 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
+ I ′

ω

∂2β

∂t2
= 0 (14.29)

Eliminating β the equation governing w is obtained as

−2D′
1D′

2
∂6w

∂x6
+ 2D′

2 Iω
∂6w

∂x4∂t2
+ GcSD′

1
∂4w

∂x4
−[(D′

1+2D′
2)m

′+GcSI ′
ω

] ∂4w

∂x2∂t2

+ GcSm′ ∂2w

∂t2
+ m′ Iω

∂4w

∂t4
= GcSF ′ − (

D′
1 + 2D′

2

) ∂2F ′

∂x2
+ I ′

ω

∂2F ′

∂t2
(14.30)

Eliminating w instead gives the corresponding equation for β as given by Eq. (9.41).
For no external force on the structure, F ′ = 0, w, and β satisfy the same differential
equation.

The boundary conditions to be satisfied are also obtained from the variational
expression as shown in Sect. 9.3. The boundary conditions are:

F = GcS

{
∂w

∂x
− β

}
− 2D′

2

{
∂3w

∂x3
− ∂2β

∂x2

}
or w = 0 (14.31)

M − 2Ms = −D′
1
∂β

∂x
+ 2D′

2

{
∂2w

∂x2
− ∂β

∂x

}
or β = 0 (14.32)

Ms = −D′
2

{
∂2w

∂x2
− ∂β

∂x

}
or

∂w

∂x
= 0 (14.33)

For a simply supported edge both M and Ms are zero. The conditions for some simple
boundary conditions are again summarized in Table14.2. The boundary conditions
were derived in Sect. 9.3.

The corresponding expressions for asymmetric sandwich panels are, for example,
presented in [80].

Table 14.2 Boundary conditions for a sandwich beam

End condition

Simply supported w = 0 ∂β/∂x = 0 ∂2w/∂x2 = 0

Clamped w = 0 β = 0 ∂w/∂x = 0

Free ∂β/∂x = 0 ∂2w/∂x2 = 0 D′
1∂

2β/∂x2 − I ′
ω∂2β/∂t2 = 0

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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14.7 Wavenumbers, Sandwich/Honeycomb Beams

The dispersion relation, giving thewavenumber as function of frequency andmaterial
parameters, is for flexural vibration of a honeycomb beam obtained by setting w =
W · exp [i(ωt − kx x)] in the wave equation (14.30) and by assuming the external
forces to be zero. The possible wavenumbers kx must satisfy the equation

2D′
1D′

2k6x − 2D′
2 Iωk4xω

2 − [m′(D′
1 + 2D′

2) + I ′
ωGcS]k2xω2

+ GcS[D′
1k4x − m′ω2] + m′ I ′

ωω4 = 0 (14.34)

There are six solutions to Eq. (14.34). These solutions are written kx = ±κ1,±iκ2,

±iκ3 where κ1 and κ3 are real whereas κ2 shifts from being real in the low fre-
quency region to being imaginary for high frequencies. For one particular structure,
the wavenumbers or rather their absolute values are shown in Fig. 14.32. The par-
allel lines in the figure define the upper and lower asymptotes of the wavenumbers
describing propagating waves. The bottom line represents the wavenumber for flex-
ural waves propagating in a slender or Euler beam as given by Eq. (3.78). The upper
asymptote gives the wavenumber for flexural waves propagating in one of the lam-
inates. The wavenumber for the first propagating mode is given by κ1. The second
propagating wave is given by κ2. This wave is developing from an evanescent wave
and could be described as a rotational wave.When wavenumbers are calculated from
the approximate expressions derived based on Hamilton’s principle as discussed in
Sect. 9.3 only two wavenumbers for propagating waves are obtained. However, if the
more exact technique described in Sect. 4.9 is used, the result is an infinite number
of wavenumbers. Compare Fig. 4.12 showing the wavenumbers for the first three
propagating waves. For most practical problems, the results based on the sixth-order
differential equation (14.30) are sufficient to describe the displacement of a sandwich
plate.

Fig. 14.32 Wavenumbers
for flexural motion of a
sandwich beam. From Ref.
[79]

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47807-3_4
http://dx.doi.org/10.1007/978-3-662-47807-3_4
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The dotted and dashed lines in Fig. 14.32 correspond to purely imaginary roots of
Eq. (14.34) and represent near-field solutions or evanescent waves. The wavenumber
κ2 is equal to zero for f = f p where

f p = 1

2π

(
GcS

I ′
ω

)1/2

= 1

2π

(
GcH

Iω

)1/2

(14.35)

For frequencies below f p the wavenumbers kx = ±iκ2 are imaginary defining
evanescent waves. For f > f p the solution kx = ±iκ2 is real representing a rotating
and propagating wave. The frequency f p is decreased as the moment of inertia is
increased.

In summary, the limiting values for the wavenumbers are

lim |κ1|= lim |κ2|=
(

m′ω2

D′
1

)1/4

as f → 0; lim |κ3| =
(

GcS

2D′
2

)1/2

as f →0;

lim |κ1|= lim |κ3|=
(

m′ω2

2D′
2

)1/4

as f →∞; lim |κ2|=
(

I ′
ωω2

D′
1

)1/2

as f →∞
(14.36)

Throughout the discussion, it has been assumed that the laminates move in phase.
In general, this assumption is valid for sandwich elements with honeycomb cores,
which have a high stiffness in the direction perpendicular to the laminates. For sand-
wich elements with foam cores, the antiphase motion of the laminates should be
considered for frequencies close to and above the double-wall resonance fd where
fd ≈√Ecy/(2Hμ)/(π). The E-modulus of core in a direction perpendicular to the
laminates is denoted as Ecy .

Thewavenumbers derived usingHamilton’s principle agree verywellwith “exact”
solutions discussed in Sect. 4.9 and in Ref. [40]. The “exact” solution yields an infi-
nite number of wavenumbers. However, only the first few are really essential for
describing the vibration of a sandwich structure. Further, the boundary conditions
obtained from using Hamilton’s principle can readily be used to describe the vibra-
tion of sandwich structures with simple geometries. The formulation of boundary
conditions using the “exact” solution requires very cumbersome numerical meth-
ods as discussed in Ref. [41]. Solutions based on Hamilton’s principle should be
preferred to “exact” solutions as discussed in Refs. [78–82].

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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14.8 Displacement

For a finite honeycomb beam oriented along the x-axis the displacement w must
satisfy the differential equation (14.30). For no external force, F ′ = 0, the angular
displacement β should also satisfy the same differential equation. The displacement
w must be defined as a function of the wavenumbers κ1, κ2, and κ3. Consequently

w = (A1sinκ1x + A2cosκ1x + A3e
−κ2x + A4e

κ2(x−L) + A5e
−κ3x + A6e

κ3(x−L))eiωt (14.37)

where the boundary conditions and the external forces determine the amplitudes A1
to A6. The angular displacement can be expressed in a similar way as w. Thus,

β = (B1sinκ1x + B2cosκ1x + B3e
−κ2x + B4e

κ2(x−L)+B5e
−κ3x+B6e

κ3(x−L))eiωt

(14.38)

whereκ1,κ2, andκ3 are solutions to equation (14.34). In order to completely describe
the displacementw andβ for a beam, the parameters Ai and Bi need to be determined.
However, the parameters Ai and Bi are not independent of each other. By inserting
the definitions (14.37) and (14.38) in Eq. (14.29) the result is a function of sinκ1x ,
cosκ1x , etc. The resulting expression should be valid for any x . Thus it follows that
the amplitudes of the functions sinκ1x , cosκ1x , etc. must equal zero. Consequently,
the amplitudes Bi can be determined as functions of the amplitudes A j . The result,
using the abbreviations D′

t = D′
1 + 2D′

2 and Ω = GcS − ω2 I ′
ω , is

B1 = −A2
2D′

2κ
3
1 + GcSκ1

D′
tκ

2
1 + Ω

= A2X2; B2 = A1
2D′

2κ
3
1 + GcSκ1

D′
tκ

2
1 + Ω

= A1X1

B3 = −A3
2D′

2κ
3
2 − GcSκ2

D′
tκ

2
2 − Ω

= A3X3; B4 = A4
2D′

2κ
3
2 − GcSκ2

D′
tκ

2
2 − Ω

= A4X4

B5 = −A5
2D′

2κ
3
3 − GcSκ3

D′
tκ

2
3 − Ω

= A5X5; B6 = A6
2D′

2κ
3
3 − GcSκ3

D′
tκ

2
3 − Ω

= A6X6

(14.39)

From these results it follows that X1 = −X2, X3 = −X4, and X5 = −X6. For a
finite beam there are three boundary conditions at each end to be satisfied. These
boundary conditions are sufficient for determining the relative amplitudes A2/A1,
etc. as well as the eigenfrequencies for the beam.

The procedure of defining the eigenfrequencies and their corresponding modes
of vibrations for a finite beam is demonstrated by considering a clamped beam. The
boundary conditions for a beam clamped at both ends are according to Table14.2
given as w = 0, β = 0, and ∂w/∂x = 0 for x = 0 and x = L . The displacement
w is given in Eq. (14.37). The angular displacement β satisfies the same differential
equation as w for free vibrations of the beam, i.e., for F ′ = 0 in Eq. (14.30). The six
boundary conditions in combination with the Eq. (14.39) give a system of equations,
which can be written in matrix form as
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⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 e−κ2L 1 e−κ3L

sin κ1L cosκ1L e−κ2L 1 e−κ3L 1
X1 0 X3 X4e−κ2L X5 X6e−κ3L

X1 cosκ1L X2 sin κ1L X3e−κ2L X4 X5e−κ3L X6

κ1 0 −κ2 κ2e−κ2L −κ3 κ3e−κ3L

κ1 cosκ1L −κ1 sin κ1L −κ2e−κ2L κ2 −κ3e−κ3L κ3

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

A1
A2
A3
A4
A5
A6

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (14.40)

The first line is obtained for w = 0 at x = 0 and the second at x = L . The third and
fourth are for β = 0 first at x = 0 and then at x = L . The last two lines are obtained
when ∂w/∂x = 0 for x = 0 and x = L respectively. The eigenfrequencies are
obtained as solutions to the determinant of the matrix being zero. For each solution
or eigenfrequency the relative ratio of the amplitudes is derived from Eq. (14.40)
by setting A1 = 1. The amplitudes Bi are thereafter obtained from Eq. (14.39). A
correspondingmatrix for a beamwith free ends is discussed in Problem 14.5. Amore
general expression valid also for mixed boundary conditions for beams is presented
in Ref. [80].

Simple analytical expressions giving the natural frequencies of simply sup-
ported beams of length L can be derived by setting w = A sin(nπx/L) and
β = B cos(nπx/L). The details are left for Problem 14.6. For this particular case
the natural frequencies fn are, neglecting Iω , given by

fn = n2π

2L2

{
D′
1[2D′

2π
2n2 + GcSL2]

m′[(D′
1 + 2D′

2)π
2n2 + GcSL2]

}1/2

(14.41)

The same result is obtained using the proper matrix equation for simply supported
ends as discussed above. For a simple Euler beam, the shear modulus is assumed
to be infinite. For this case, the natural frequency of the simply supported sandwich

beam is reduced to fn = n2π
√

(D′
1/m′)/(2L2) as given by Eq. (7.12).

By using the method outlined above, the first eight natural frequencies for a
lightweight and thin honeycomb beam are predicted for three different boundary
conditions. The resulting natural frequencies are listed in Table14.3. For comparison,
the corresponding natural frequencies using the Euler beam theory are also given in
Table14.3. For the Euler beam, the bending stiffness is set to equal the bending
stiffness D1 of the honeycomb beam in the low frequency range.

The natural frequencies predicted from the Euler beam theory are always higher
than the corresponding natural frequencies derived as described above. The devia-
tions between the results derived from the two models tend to increase for increasing

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Table 14.3 Predicted natural frequencies for a honeycomb beam L = 1.2 m; μ = 6.14 kg/m2;
H = 10 mm; h = 1 mm; Gc = 45 × 106 Pa; El = 70 × 109 Pa; Ec = 0.13 × 109 Pa

Natural frequency (Hz) Free ends Clamped ends Simply supported ends

Euler Sandw. Euler Sandw. Euler Sandw.

f1 71 68 71 61 31 30

f2 196 168 196 144 125 110

f3 383 289 383 246 282 217

f4 634 416 634 357 501 336

f5 947 544 947 474 783 458

f6 1323 671 1323 592 1128 582

f7 1762 796 1762 712 1535 705

f8 2263 921 2263 832 2005 827

frequencies. For the Euler beam, the natural frequencies for clamped and free bound-
aries are the same. This is not the case using the model for a sandwich beam. For a
clamped beam shear is induced at the boundaries thus rendering the beam more flex-
ible as compared to a beam with free edges. The natural frequencies for a clamped
beam are consequently lower than the corresponding natural frequencies for the
same beam with free edges. If the length of the beam or the shear stiffness of the
core was increased the differences between the natural frequencies for a sandwich
beam having free or clamped ends would decrease. See also Fig. 14.33.

The apparent bending stiffness of a sandwich beam is defined as the bending stiff-
ness of a Bernoulli–Euler beam having the same natural frequencies as the sandwich
beam. The apparent bending stiffness is thus frequency dependent. The apparent
bending stiffness also depends on the boundary conditions of the sandwich beam as
shown in [80]. The apparent bending stiffness per unit width of a beam is for three
different boundary conditions shown in Fig. 14.33. Each symbol indicates a predicted
natural frequency for the beam for each specific boundary condition. In addition, the
bending stiffness obtained from κ1 as discussed in Sect. 14.7 is also illustrated in the
figure. The graph shows that the apparent bending stiffness decreases as the boundary
conditions are constrained. The influence of the boundary conditions on the apparent
bending stiffness would decrease if the length of the beam or the shear stiffness of
its core is increased. The influence of the boundary conditions is also reduced as the
frequency is increased. The bending stiffness derived from κ1 is almost identical to
the apparent bending stiffness of a simply supported beam.

Plotting the displacement of the honeycomb beam at any of the natural frequen-
cies shows the influence of shear and bending. The displacement w and the angular
displacement β and γ are shown in Fig. 14.34 for a clamped beam at the eigenfre-
quency f8. The shear has maxima at the two ends of the clamped panel. Shear and
rotational angles are large when the displacement of the beam is small as shown in
Fig. 14.34.
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Fig. 14.33 Apparent bending stiffness as function of boundary conditions and frequency for a
sandwich beam

Fig. 14.34 Relative displacement, bending, and shear of a beamalong its x-axis at 1054Hz.Material
parameters are given in Table14.3
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For a vibrating lightweight and stiff structure the fluid loading of the surrounding
air has a certain effect in the low frequency range. This is demonstrated in Ref.
[79]. The natural frequencies of a 1.2 m long sandwich beam, weight per area 2.6
kg/m2, were measured with the beam suspended in a vacuum chamber. The first
natural frequency of the beam was 32Hz with fluid loading and 37Hz in vacuo. This
corresponds a weight increase of approximately 40% due to the fluid loading. The
effect of the fluid loading is decreasing for increasing frequencies as discussed in
Sect. 12.1.

14.9 Dynamic Properties of Sandwich Beams

In the previous section, the wave equation governing the displacement of a hon-
eycomb beam was derived. Based on this differential equation the wavenumbers,
eigenfrequencies, and modes of vibration can be determined for different boundary
conditions. For the response of a beam to be calculated all the material parame-
ters of the beam must be known. The dynamic properties of a composite beam are
not always well defined as previously discussed. In addition, the elements of the
assembled structure perform differently when bonded together as compared to when
vibrating separately. However, the main dynamic properties of a composite beam can
be determined from measurements of the first few eigenfrequencies of the structure
when freely suspended.

Returning to Eq. (14.34) the wavenumber kx = κ1 for the first propagating wave
can be written as k4x = ω2m′/D′

x where D′
x is the apparent bending stiffness of the

structure. Consequently D′
x can, as a first approximation, be defined as the bending

stiffness of a simple homogeneous beam, which at a certain frequency has the same
dynamic properties as the honeycomb structure. By inserting the definition of kx in
the expression (14.34) an equation in D′

x is obtained. The resulting expression can
generally be simplified whenever D′

1 � D′
2 and ω2 I ′

ω 
 GcS. For the structures
discussed here, these assumptions hold for frequencies below 4 kHz as shown in
Ref. [219]. The apparent bending stiffness D′

x is, considering these approximations,
obtained as the solution to the equation

(
GcS√
m′

ω

)[
D′3/2

x

D′
1

− D′1/2
x

]
+ D′

x − 2D′
2 = 0 (14.42)

In the low frequency range, or as ω → 0, the first part of the equation dominates
why D′

x → D′
1. The bending stiffness is consequently determined by pure bending

of the beam. In the high frequency range, when ω → ∞, then D′
x → 2D′

2. For high
frequencies, the laminates are assumed to move in phase. In this frequency range,
the bending stiffness for the entire beam is equal to the sum of the bending stiffness
of the laminates. This agrees with the results discussed in the previous sections.

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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For a beam with boundary conditions well defined, the bending stiffness can be
determined by means of simple measurements. The apparent bending stiffness D′

xn
for mode n having the eigenfrequency fn is for a beam with free ends, length L and
mass per unit area μ, given by

D′
xn =4π2 f 2n m′L4/α4

n; αn =4.73, 7.85, 11.00, 14.14 for n =1, 2, 3, 4 resp.,

for n � 5 αn = nπ + π/2

The bending stiffness of a composite beam is strongly frequency dependent as given
by Eq. (14.42). Equation (14.42) is written in a more general way as

A

f
D′3/2

x − B

f
D′1/2

x + D′
x − C = 0 (14.43)

where

A = Gc S√
m′2πD′

1

; B = Gc S√
m′2π

; C = 2D′
2 (14.44)

For nonmetallic materials, Young’s modulus could exhibit a slight frequency depen-
dency as discussed in, for example, Ref. [211] and demonstrated in Refs. [18, 20].
However, within the frequency range of interest, here up to 4 kHz, the parameters D′

1,
D′
2, and Gc in Eq. (14.44) are assumed to be constant for the structures investigated.

Using the measured data, the parameters A, B, and C can be determined by means
of the least square method. The quantity Q1 is defined by

Q1 =
∑

i

(
A

fi
D′3/2

xi − B

fi
D′1/2

xi + D′
xi − C

)2

(14.45)

where D′
xi is the measured bending stiffness at the frequency fi for mode i . The

parameters A, B, and C are chosen to give the minimum of Q1. The shear modulus
Gc and the bending stiffnesses D′

1 and D′
2 can be determined, once the parameters

A, B, and C are calculated from Eq. (14.43).
The method to determine the dynamic parameters of a beam based on the expres-

sion (14.45) can be somewhat improved. By using Eq. (14.45) to determine the para-
meters A, B, and C of Eq. (14.43) the low frequency measurements will dominate.
The parameter A, which depends on the static bending stiffness D′

1 is therefore
determined from (14.45) by solving the system of equations resulting from setting
∂Q1/∂ A = ∂Q1/∂B = ∂Q1/∂C = 0. If instead the quantity

Q2 =
∑

i

(
AD′3/2

xi − B D′1/2
xi + fi D′

xi − fi C
)2

(14.46)
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Fig. 14.35 Suspension of
beam to simulate free–free
boundary conditions. An
impedance hammer is used
for excitation and laser for
recording the response of the
beam

isminimized thehigh frequency responseof the beamwill dominate. Theparameter A
obtained fromEq. (14.45) is inserted in Eq. (14.46) and the parameterC is determined
from a system of equations by setting ∂Q2/∂B = ∂Q2/∂C = 0. In the mid-
frequency region the variational expression is written as

Q3 =
∑

i

(
A√
fi

D′3/2
xi − B√

fi
D′1/2

xi +√
fi D′

xi −√
fi C

)2

(14.47)

The parameters A and C are known and B is the solution to ∂Q3/∂B = 0.
Measurements reported inRefs. [79, 219]were performed on beamswith different

boundary conditions to verify the theories outlined above. The survey included beams
with honeycomb as well as foam cores. The beams investigated had also different
types of laminates. In order to determine the apparent bending stiffness of a beam, the
beam was suspended by strings to simulate free–free boundary conditions as shown
in Fig. 14.35.

An accelerometer was mounted on the beam. Alternatively, a laser measured the
velocity for lightweight structures. An impedance hammer was used to excite the
beam. The resulting FRF was recorded and the natural frequencies of the free–free
beam were recorded. For the sandwich beams tested, the first ten modes and natural
frequencies could at least be identified. In every case the length of each beam was
approximately 1.2 m. The measurement technique was first tested on a beam with
well-defined bending stiffness. The repeatability of the measurements was found to
be satisfactory. Measurements of the velocity on both laminates were recorded to
verify that the laminates were moving in phase in the frequency range of interest.
The details are discussed in Ref. [219].

Since honeycomb plates are predominantly anisotropic, measurements should
be performed on beams representing the two main in-plane directions of the plate.
The vibration measurements should preferably be made with a laser vibrometer to
achieve noncontact measurements. The natural frequencies are determined from the
measured frequency response function. Based on the frequency response function
the loss factor can also be determined. The effect of the boundary conditions on the
apparent bending stiffness has also been investigated. Measurements were made on
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Fig. 14.36 Predicted bending stiffness of a honeycomb beam

a beam with both ends free and with one end free and the other firmly mounted
to simulate a clamped boundary. For each natural frequency fn the corresponding
apparent bending stiffness Dxn is determined in Ref. [219]. At least three sets of
data, fn and D′

xn , determine the shear modulus Gc and the bending stiffnesses D′
1

and D′
2.

The apparent frequency-dependent bending stiffness Dx = D′
x/b per unit width

for one type of honeycomb beam is shown in Fig. 14.36. The predicted bending
stiffness or rather the value Dx giving the best fit to the measured results, the solid
line, is determined from the first 12 natural frequencies of the freely suspended
beam. For comparison, the effect of increasing the shear modulus by a factor 10 is
also indicated in the figure. In addition, the figure shows the effect of increasing the
E-modulus of the laminates from 6.2 ×1010 Pa to 8 ×1010 Pa.

Losses can be included in the predictionmodels by allowing shear and E-modulus
to be complex or by defining the modulus as En = E0n(1+ iηn), etc. in Eq. (14.34).
The resulting wavenumber for propagating waves is then obtained as κ1 = κ10(1 −
iηtot/4) where ηtot is the total loss factor of the structure as discussed in Sect. 5.6. A
comparison between predicted and measured losses is shown in Fig. 5.15.

14.10 Bending Stiffness of Sandwich Plates

It is not always convenient or possible to cut beams from a plate for determining the
bending stiffness of a structure.An alternativemethod is tomeasure the pointmobility
of the plate. Based on this type of measurement the apparent bending stiffness of the
plate can be estimated.

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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The point mobility of a rectangular plate, sides Lx and L y , can, according to
Eq. (8.73), be written as

Y (x j , y j ) =
∑
mn

4iωϕ2
mn(x j , y j )

(2π)2m p( f 2mn − f 2 + iη f 2mn)

The mass m p of plate is μ · Lx · L y , where μ mass per unit area of plate. The natural
frequencies of the plate are denoted as fmn . The frequency is given by f . The angular
frequency is ω = 2π f where f is the frequency. The loss factor of the plate is η. The
eigenfunctions satisfying the boundary conditions of the plate are ϕmn(x, y). For
a simply supported plate with the corners at (0, 0), (0, L y), (Lx , L y), and (Lx , 0)
the eigenfunctions are ϕmn(x, y) = sin(mπx/Lx ) sin(nπy/L y). The mobility is
determined at a point with the coordinates (x j , y j ).

Since
1

N

N∑
j=1

ϕ2
mn(x j , y j ) ≈ 1

4
for m > 0 and n > 0 the space average 〈Y 〉 of the

mobility measured in N points is

〈Y 〉 = 1

N

N∑
j=1

Y ≈
∑
mn

i f

(2π)m p( f 2mn − f 2 + iη f 2mn)

For a freely suspended plate m and n can equal zero. For either m or n zero

1

N

N∑
j=1

ϕ2
mn(x j , y j ) ≈ 1

2
. The real part of 〈Y 〉 is for m > 0 and n > 0

Re〈Y 〉 =
∑
mn

η f f 2mn

2πm p[( f 2mn − f 2)2 + (η f 2mn)2] (14.48)

The frequency average of Re〈Y 〉 is

Re〈Ȳ 〉 = 1

� f

∫ fmn+� f/2

fmn−� f/2
d f Re〈Y 〉

where� f is frequency distance between two natural frequencies of the plate. For suf-
ficiently high frequencies � f is independent of the boundary conditions of the plate
and as given in Eq. (8.19) equal to � f = 2

√
D/μ/S. Consequently, the frequency

average of Eq. (14.48) gives

Re〈Ȳ 〉 = η
√

μ

4
√

Dπμ

π

2η
= 1

8
√

Dμ
(14.49)

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Thus

D = 1

64μ[Re〈Ȳ 〉]2 (14.50)

The frequency average requires that there is a sufficient number of modes Nwithin a
frequency band � f . The number of modes within a band � f is based on Eqs. (8.83)
and (14.50) approximately given by Eq. (8.83) as

N ≈ 4μS� f Re〈Ȳ 〉

Sandwich and honeycomb panels are often lightweight. A small added mass can
change the mobility of the plate considerably. This is a problem encountered when
the mobility of a plate is measured by a force transducer and an accelerometer. If
the mass of the transducer mounted to the plate is �m the measured mobility Ym is
given by Ym/(1 + iωY�m) where Y is the point mobility of the structure and Ym

the measured point mobility. Thus

ReYm = Y

1 + (ωY�m)2

For the error in Y to be less than 10% based on this type of measurement it is required
thatωY�m < 0.3. Themobility technique is only useful in a certain frequency band.
The lower frequency limit is determined by the number ofmodes in a frequency band.
The number of modes per band should preferrably exceed four. The high frequency
limit is determined by the requirement f < 0.3/(2π�mY ). The bending stiffness Dn

measured in frequency band n should satisfy the expression introduced in Sect. 14.9
or

A

fn
D3/2

n − B

fn
D1/2

n + Dn − C = 0 (14.51)

The parameters A, B, and C are determined as discussed in Sect. 14.9.

14.11 Response of Sandwich Beams

The forced response of a sandwich beam can be calculated based on Eqs. (9.35)–
(9.41). An alternative approach is first to calculate the so-called apparent bending
stiffness of the beam and thereafter use the Bernoulli–Euler equations assuming
the bending stiffness to be frequency dependent and equal to the apparent bending
stiffness.

Predicted and measured transfer accelerances for a beam with free ends are com-
pared in Fig. 14.37. The results were predicted in Ref. [80] using the full sixth-order

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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Fig. 14.37 Predicted and
measured transfer
accelerances of a sandwich
beam with free edges. The
full model corresponds to
Eq. (14.30). The response
assuming a Bernoulli–Euler
model using a
frequency-dependent
bending stiffness is denoted
by B-E. From Ref. [80]

Fig. 14.38 Predicted
mobility levels in third
octave bands. From Ref. [80]

differential equation (14.30) for sandwich beams. The result is given by the dashed
line in Fig. 14.37. The dotted line represents the predicted transfer accelerance using
the Bernoulli–Euler equation with a frequency-dependent apparent stiffness. The
solid line represents measured results. The transfer accelerance is well predicted
close to the natural frequencies even by using the simple B-E, Bernoulli–Euler,
model with a frequency-dependent bending stiffness.

Calculating themobility levels in third octave bands gives a satisfactory agreement
between the results from the sandwich model and the B-E model with a frequency-
dependent bending stiffness. This is demonstrated in Fig. 14.38.

The forced response of a structure can, when predicted in third octave bands, be
estimated fairly accurately by using the apparent bending stiffness of the structure
in combination with the Bernoulli–Euler theory for beams or the Kirchhoff theory
for plates. These results imply that expressions defining sound transmission loss and
radiation ratios for homogeneous single-leaf panels with constant bending stiffness
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can be used for sandwich panels by allowing the bending stiffness to be frequency
dependent.

It can be shown that the point mobility of an infinite sandwich beam is given by

Ysandbeam = ω

2D′
1κ1κ2κ3

[
κ2κ3(Y3 − Y2) + iκ1κ3(Y1 − Y3) − iκ1κ2(Y1 − Y2)

κ2
1Y1(Y3 − Y2) − κ2

2Y2(Y1 − Y3) + κ2
3(Y1 − Y2)

]

where

Y1 = 2D′
2κ

2
1 + GcS

(D′
1 + 2D′

2)κ
2
1 + GcS

; Y2 = 2D′
2κ

2
2 − GcS

(D′
1 + 2D′

2)κ
2
2 − GcS

;

Y3 = 2D′
2κ

2
3 − GcS

(D′
1 + 2D′

2)κ
2
3 − GcS

The details are left for Problem 14.7.
The response of a simply supported sandwich beam can be expressed as a sum

over the appropriate eigenfunctions in analogy with derivation of the response of
an Euler beam demonstrated in Sect. 7.4. Assuming the beam to be extended from
x = 0 to x = L , the displacement w can be expanded along the eigenfunctions
ϕn = sin(nπx/L). The angular displacement β due to pure bending of the beam is
consequently expanded along the functions gm = cos(nπx/L). The displacements
w and β should satisfy Eqs. (14.28) and (14.29). Let a force F · exp(iωt) excite
the beam at x = x1. Neglecting the moment of inertia, the response of the beam is
obtained as

w(x, t) = 2F · eiωt

Lm′
∞∑

n=1

sin(nπx/L) sin(nπx1/L)

(2π)2[ f 2n (1 + iη) − f 2] (14.52)

Themass per unit length of the beam ism′. The loss factor isη. Thenatural frequencies
fn are given by Eq. (14.41). The details are left for Problem 14.6.
The sound transmission loss for single-leaf panels was discussed in Chap.13. The

sound transmission loss R was derived as function of the material parameters of the
panel and its boundary condition and the geometries of panel as well as the baffle in
which the panel is mounted. The expressions presented in Chap.13 can, after some
modifications, also be used to predict the sound transmission loss of sandwich plates.
The sound transmission loss of a single-leaf panel depends on the bending stiffness
of the plate and a number of other parameters. The critical frequency fc defined in
Eq. (12.18) is a function of the bending stiffness of the plate. For a thin homogeneous
single-leaf panel the critical frequency is a constant and equal to frequency for which
the trace matching between flexural waves on the plate and waves in the surrounding
medium coincides. For a sandwich panel, a parameter f ′

c is introduced as

f ′
c = c2

2π

√
μ

D( f )
(14.53)

http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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Fig. 14.39 Predicted sound
transmission loss for three
sandwich plates with
different core thickness h.
Core material and laminates
identical for all plates

where D( f ) is the frequency-dependent bending stiffness of the plate and μ its mass
per unit area. If the bending stiffness D′( f ) is measured for a beam, width b, then
D( f ) ≈ D′( f )/b. For D( f ) constant f ′

c = fc. By replacing fc by f ′
c in all the

expressions giving the sound transmission loss of a single-leaf panel in Chap. 13, the
sound transmission loss of a sandwich/honeycomb panel with a frequency-dependent
bending stiffness could be estimated. The procedure is analogous to calculating the
response in 1/3 OB of a sandwich beam using the Bernoulli–Euler equations and a
frequency-dependent bending stiffness.

Figure14.39 shows predicted sound transmission losses for three plates with dif-
ferent core thicknesses. The laminates are identical for the plates. The weight is
almost the same for the three plates. The core thickness has a very significant effect
on the sound transmission loss.

The sound transmission losses of the sandwich plates were predicted according
to Eq. (13.122). The wavenumber, flexural waves, for the panel having the 50mm
core is almost equal to the wavenumber in air in a very wide frequency range from
300 to 1600Hz. The sound reduction index of the panel is consequently rather poor
in this frequency range.

The sound transmission losses of a laminate and a sandwich element were mea-
sured and predicted. The result is shown in Fig. 14.40. The panels were mounted
in a baffle between the transmission rooms. It is interesting to note that in the mid-
frequency region the sound transmission loss for just one laminate is higher than the
transmission loss of the entire structure consisting of two laminates and a core.

Radiation ratios calculated according to Leppington Ref. [159] using a frequency-
dependent bending stiffness also show good agreement with measurements.

Once the bending stiffness and the parameters A, B, and C , Eq. (14.44), have
been determined for a beam element of a sandwich plate various parameter studies
with respect to the sound transmission loss of the structure can be carried out as

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Fig. 14.40 Measured and predicted sound transmission losses for sandwich plate and one of the
laminates which is part of the sandwich structure

Fig. 14.41 Predicted sound transmission loss for an aluminum honeycomb panel. The results to
the left illustrate the effect of changing the shear modulus by ±50%. The results to the right give
the sound transmission loss as the thickness of the laminates are varied by ±50%

discussed in Ref. [220]. If, for example, the shear modulus of the core is changed
the constants A and B of Eq. (14.44) are also changed. Using the new constants the
resulting bending stiffness is predicted from Eq. (14.40). The sound transmission
loss is thereafter calculated as previously described. Two examples are shown in
Fig. 14.41. The basic structure was an aluminum honeycomb panel with an area
weight of 6.2 kg/m2. In the first example, the shear stiffness of the core is varied
by ±50% while all other parameters are kept constant. The sound transmission
losses are predicted for infinite plates. In the second example, the thickness of the
laminates is varied by ±50%. The effect of changing the core thickness is already
demonstrated in Fig. 14.39. The sound transmission loss of a sandwich panel can
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obviously be changed considerably by varying some of the main parameters of the
plate.

There is a tendency to determine the acoustic properties of composite structures
based on measurements on fairly small samples, typically with an area of 1m2. The
reason is often stated to be the cost of manufacturing the sample. However, the area
of a sample is of importance when measuring and predicting the sound transmission
loss and sound radiation ratio of a panel as discussed in Chap. 13.

14.12 Energy Flow in Sandwich Beams

A plane flexural wave propagating in a thin plate, thickness h and width b, can
be described by means of the Euler–Bernoulli differential equation. For the wave
propagating along an x-axis in the plane of the plate the lateral displacement of the
beam is defined as

w(x, t) = A · exp [i(ωt − κx)] ; κ =
[
ω2m′

D′
0

]1/4
; D′

0 = Ebh3

12
(14.54)

The resulting time average of the energy flow in the x-direction is according to
Eq. (3.91) equal to

�̄x = ωκ3D′
0 |A|2 (14.55)

In a sandwich plate, the displacement is not only due to pure bending but also to
shear in the core. Thus, if the displacement wl of a laminate and its rotational angle
β are described as

wl(x, t) = A · exp [i(ωt − κ1x)] ; β(x, t) = B · exp [i(ωt − κ1x)] (14.56)

where κ1 is the wavenumber for the propagating wave in the plate. Equation (14.56)
should satisfy Eq. (14.29) giving the ratio between the amplitudes A and B as

B = −i Aκ1Y1; Y1 = 2D2κ
2
1 + G H

κ2
1(D1 + 2D2) + G H − Iω2

(14.57)

The mass moment of inertia per unit width of plate is defined as Iω = ρcH3/12 +
ρl(H2h/2 + Hh2 + 2h3/3). Note that D1 ≈ D′

1/b, etc. The time average of the
energy flow per unit width of the sandwich plate is

�̄x = 1

2
Re

{
−F · ẇ∗ + M ·

(
∂β

∂t

)∗
+ 2Ms

(
∂γ

∂t

)∗}
(14.58)

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47807-3_3
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Fig. 14.42 Energy flow in
sandwich beam as compared
to a slender beam both
having the same weight and
bending stiffness in the low
frequency region. Amplitude
the same in both cases. From
[81]

In Eq. (14.58) F is the force defined in Eq. (14.31). The bending moment M is due
to pure bending of the entire beam and the bending moment Ms in the laminates is
caused by shear in the core are defined in Eqs. (14.32) and (14.33).

Neglecting Iω the resulting energy flow in the beam is

�̄x = |A|2
2

· ωκ3
1

{
D1Y1(1 + Y1) + 2D2(1 − Y1)

2
}

(14.59)

In the low frequency region as f → 0 the energy flow approaches �̄x = ωκ3D1 |A|2
which is the energy flow in a simple Bernoulli–Euler beam, bending stiffness D0 =
D1 due to a flexural wave defined as w(x, t) = A · exp [i(ωt − κx)]. In the high
frequency region, the energy flow is �̄ = 2ωκ3D2 |A|2 or twice the energy flow
in one laminate with the bending stiffness D2 and the wavenumber κ describing
flexural waves. Figure14.42 shows the ratio �̄x/�̄ between the energy flow in a
sandwich beam and the energy flow in a Bernoulli–Euler beam. The amplitude A of
the displacement is the same in both cases. In the low frequency the ratio approaches
unity and in the high frequency region [2D2/(D1 + 2D2)]1/4.

The frequency inFig. 14.42 has beennormalizedwith respect to fa. This frequency
fa indicates the upper limit for the applicability of theTimoshenko theory to sandwich
beam vibrations as discussed in [81]. The frequency fa is defined as

fa = GcH

2π
√
2μD2

The time average of the energy flow �̄x in a beam can be written as �̄x = cgs Ētotal
where cgs is the group velocity and Ētotal the time average of the total energy per unit
length of the structure. Compare Sect. 3.7. For a sandwich beam, the time average of
the total energy per unit length is obtained from Eqs. (9.26) through (9.31) as

http://dx.doi.org/10.1007/978-3-662-47807-3_3
http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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Ētotal = 1

4

[
D′
1

∣∣∣∣∂β

∂x

∣∣∣∣
2

+ SGc |γ|2 + 2D′
2

∣∣∣∣∂γ

∂x

∣∣∣∣
2

+ m′
∣∣∣∣∂w

∂t

∣∣∣∣
2

+ I ′
ω

∣∣∣∣∂β

∂t

∣∣∣∣
2
]

The energy flow is given by Eq. (14.57). Thus, neglecting the moment of inertia, the
group velocity is

cgs = κ1[6D1D2κ
4
1 + 2GcH D1κ

2
1 − μω2(D1 + 2D2)]

μω[κ2
1(D1 + 2D2) + GcH ] (14.60)

14.13 Energy Flow Across Pinned Junctions

The shear effects in the core of sandwich beams influence the vibroacoustic coupling
between beam elements. The difference between the coupling effects across a junc-
tion connecting two sandwich or two Euler–Bernoulli beams can be illustrated by
means of an elementary case. Consider two identical and semi-infinite beams joined
together by a pinned joint allowing rotation but no translatory motion of the joint.
The structure is illustrated in Fig. 14.43. The joint coincides with the center line of the
beam. Assume that a “bending” wave is propagating in beam a toward the junction.
Part of the incident energy is reflected at and part is transmitted across the junction.
Assuming a time dependence exp(iωt) the lateral displacement wa of beam a reads

wa = exp(−iκ1x) + A1 · exp(iκ1x) + A2 · exp(κ2x) + A3 · exp(κ3x) (14.61)

where A1 is the amplitude of the reflected propagating wave and A2 and A3 are
the amplitudes of the evanescent waves induced in beam a at the junction. The
displacement wa is caused by shear and bending.

The pure bending displacement βa is defined as

βa = (−iκ1) · Y1 · exp(−iκ1x) + A1 · (iκ1) · Y1 · exp(iκ1x)

+ A2 · κ2 · Y2 · exp(κ2x) + A3 · κ3 · Y3 · exp(κ3x) (14.62)

Fig. 14.43 Two semi-infinite beams coupled across a pinned joint
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The expressions wa and βa must satisfy Eq. (14.29). As a result, the parameters Yi

are obtained as

Y1 = 2D2κ
2
1 + GcH

κ2
1(D1 + 2D2) + GcH − Iωω2

; Y2 = 2D2κ
2
2 − GcH

κ2
2(D1 + 2D2) − G H + Iωω2

;

Y3 = 2D2κ
2
3 − GcH

κ2
3(D1 + 2D2) − GcH + Iωω2

(14.63)

The displacement wb and the corresponding field βb in beam b are written

wb = B1 · exp(−iκ1x) + B2 · exp(−κ2x) + B3 · exp(−κ3x)

βb = (−iκ1) · B1 · Y1 · exp(−iκ1x) − B2 · κ2 · Y2 · exp(−κ2x)

− B3 · κ3 · Y3 · exp(−κ3x) (14.64)

The amplitude of the transmitted wave is B1. The boundary conditions at x = 0 are

wa =0; wb =0; ∂wa

∂x
= ∂wb

∂x
; βa =βb; Ma = Mb; (Ms)a =(Ms)b

(14.65)

The third condition means that the rotational angle of both beams is the same. The
fourth condition ensures that the angle due to pure bending is the same for the beams.
The third and fourth conditions also give γa = γb. Based on the six boundary condi-
tions the six amplitudes A1, B1, etc. are solved. The amplitude B1 of the transmitted
propagating wave is

B1 = i[κ1(κ2 − κ3)Y1 − κ1κ2Y2 + κ1κ3]
i(κ1κ2 − κ1κ3)Y1 + (κ2κ3 − iκ1κ2)Y2 + (iκ1κ3 − κ2κ3)Y3

(14.66)

The transmission loss R across the junction is defined as

R = 10 · log 1

|B1|2
(14.67)

The transmission loss across the junction is shown in Fig. 14.44. The transmission
loss is plotted as function of the ratio f/ fa where fa is defined in Sect. 14.12. The
transmission loss is approaching 3 dB for decreasing frequencies and then increasing
to a maximum and then again decreases to approach 3 dB in the very high frequency
range. In the low frequency region, the beam is vibrating as a simple Euler beam
and consequently the transmission is equal to 3 dB as discussed in Sect. 5.9. In the
high frequency region, the transmission is determined by the coupling between the
laminates. The transmission loss across a junction between two thin laminates is 3
dB, Sect. 5.9. The transmission loss predicted based on the sixth-order differential
equation approaches the right asymptotes for both high and low frequencies.

http://dx.doi.org/10.1007/978-3-662-47807-3_5
http://dx.doi.org/10.1007/978-3-662-47807-3_5
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Fig. 14.44 Predicted
transmission loss across a
pinned junction. The number
of beams connected at the
junction is given by n. From
Ref. [81]

This simple example also shows that the concept of equivalent stiffness for a
beam cannot be applied for the calculation of coupling effects between sandwich
elements. Even assuming a frequency-dependent bending stiffness in combination
with theEuler theory for the two beams shown in Fig. 14.41 the resulting transmission
loss would be 3 dB as long as the beams are identical.

In Ref. [81] it is demonstrated that the transmission loss Rn of a junction between
n identical sandwich beams is written as

Rn = R + 20 log(n/2) (14.68)

where R is given by Eq. (14.61). In Sect. 5.9 the transmission loss between two of
n equal Euler beams was found to be Rn = 10 log(n2/2) = R + 20 log(n/2) for
R = 3 dB.

14.14 Wave Propagation on Infinite Cylinders

The noise inside an aircraft in-flight is to a large extent determined by turbulent
boundary layers. The turbulent boundary layers induce vibrations of the fuselage.
The vibrating plate elements of the structure radiate noise into the cabin. In addition,
air-borne noise from engines transmitted through the fuselage contributes to the
interior noise level. A fuselage can to a certain degree be modeled as a circular
cylinder. The plates between stringers and frames are equivalent to shell elements.
The curvature of the shell influences the vibration pattern of the structure. Pipes filled
with a moving fluid constitute another important class of noise radiators, which can
be modeled as circular cylinders.

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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Fig. 14.45 Coordinates and displacement of a cylindrical shell

Infinite cylinders can be considered as folded structural wave guides having cut-
on frequencies for various types of propagating waves. This is in analogy with waves
propagating in structural waveguides and sandwich and honeycomb structures.

The differential equations governing the propagation of waves on cylinders were
derived in Sect. 9.7. The displacements w, ξ, and η of a cylindrical shell are shown
in Fig. 14.45.

By setting F1, F2, and F3 equal to zero in the expressions (9.90) the three equations
governing the displacement of a cylindrical shell are obtained as

∂2ξ

∂x2
+ 1 − ν

2R2

∂2ξ

∂ϕ2 − 1 − ν2

Eh
μξ̈ + 1 + ν

2R

∂2η

∂x∂ϕ
+ ν

R

∂w

∂x
= 0

1 + ν

2R

∂2ξ

∂x∂ϕ
+ 1 − ν

2

∂2η

∂x2
+ 1

R2

∂2η

∂ϕ2 − 1 − ν2

Eh
μη̈ + 1

R2

∂w

∂ϕ
= 0 (14.69)

ν

R

∂ξ

∂x
+ 1

R2

∂η

∂ϕ
+ w

R2 + h2

12

(
∂4w

∂x4
+ 1

R4

∂4w

∂ϕ4 + 2

R2

∂4w

∂x2∂ϕ2

)

+ μ(1 − ν2)

Eh
ẅ = p(1 − ν2)

Eh

For a wave propagating along the positive x-axis and assuming w to be symmetric
around ϕ = 0 the displacement can be written as

w(x,ϕ, t) =
∑

n

An cos(nϕ) · exp[i(ωt − λn x)] (14.70)

http://dx.doi.org/10.1007/978-3-662-47934-6_9
http://dx.doi.org/10.1007/978-3-662-47934-6_9
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The in-planedisplacementmust propagate in a similarmanner to satisfy anyboundary
conditions. The displacements ξ and η must satisfy the three expressions of (14.69).
Consequently, ξ and η are written as

ξ(x,ϕ, t) =
∑

n

i Bn cos(nϕ) · exp[i(ωt − λn x)] (14.71)

η(x,ϕ, t) =
∑

n

Cn sin(nϕ) · exp[i(ωt − λn x)] (14.72)

The amplitude Bn is multiplied by i to avoid complex numbers in the equations
resulting from inserting Eqs. (14.70)–(14.72) in (14.69). For free vibrations, p = 0
in the last expression of Eq. (14.69). Equations (14.70)–(14.72) inserted in (14.69)
yield a system of equations written as

[Q] ·
⎧⎨
⎩

An

Bn

Cn

⎫⎬
⎭ =

⎧⎨
⎩
0
0
0

⎫⎬
⎭ (14.73)

The elements of the symmetric matrix [Q] are

Q11 = 1

R2 + h2

12

(
λ4

n + n4

R4 + 2n2λ2
n

R2

)
− μω2(1 − ν2)

Eh
; Q12 = νλn

R
;

Q13 = n

R2 ; Q21 = νλn

R
= Q12; Q22 = λ2

n + (1 − ν)n2

2R2 − ω2μ(1 − ν2)

Eh
;

Q23 = nλn(1 + ν)

2R
; Q31 = n

R2 = Q13; Q32 = n(1 + ν)λn

2R
= Q23;

Q33 = n2

R2 + (1 − ν2)λ2
n

2
− (1 − ν2)μω2

Eh
(14.74)

The wavenumbers for waves propagating in the cylinder can be derived using the
nondimensional frequency parameter Ω defined as

Ω = Rω

√
ρ(1 − ν2)

E
= Rω

cl
(14.75)

The phase velocity of longitudinal waves propagating in a thin plate is given by cl .
The wavenumber λn for free waves propagating in an infinite cylinder is the solution
to Det [Q] = 0. Thus, according to Ref. [87]
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Ω6 − K2Ω
4 + K1Ω

2 − K0 = 0

K2 = 1 + (3 − ν)

2

[
n2 + λ2

n R2
]

+ h2

12R2

[
n2 + λ2

n R2
]2

K1= 1−ν

2

[
(3+2ν)λ2

n R2+n2+
(

n2+λ2
n R2

)2+ (3−ν)

(1−ν)

h2

12R2

(
n2+λ2

n R2
)3]

K0 = (1 − ν)

2

[
(1 − ν2)λ4

n R4 + h2

12R2

(
n2 + λ2

n R2
)4]

(14.76)

For any given frequency and integer n there are eight solutions of λn or rather four
pairs of solutions. Each pair represents waves traveling in both the positive and
negative directions. For λ2

n negative, the solution λn is imaginary representing an
evanescent wave. There is at least one pair of evanescent waves for each frequency.

The cut-on frequencies for various wave types are obtained by setting λn = 0 in
the equations given Det [Q] = 0. Since for λn = 0 the matrix elements Q12, Q21,
Q23, and Q32 are equal to zero, the determinant of [Q] is given by

Q22[Q11 · Q33 − Q2
13] = 0 (14.77)

The first cut-on angular frequency is the solution to Q22 = 0, i.e.,

ω2
n = n2E0

2ρ(1 + ν)R2 = n2G0

ρR2 = n2c2t
R2 ; fn = ctn

2πR
(14.78)

where ct is the phase velocity of transverse or torsional waves propagating in a
cylindrical shell. The circumference of the circular cylinder is a multiple of the
wavelength λt of the transverse or torsional waves. Thus, n · λt = 2πR.

Other solutions giving λn = 0 are obtained from the second part of Eq. (14.77),
i.e., from [Q11 · Q33 − Q2

13] = 0. Using the definition of Ω this expression is
written as

Ω4 − Ω2
[
(1 + n2) + h2n4

12R2

]
+ h2n6

12R2 = 0 (14.79)

Thus, for h2/(12R2) 
 1

Ω2 ≈ 1 + n2 + h2n4

12R2(1 + n2)
≈ 1 + n2

The cut-on angular frequencies are

ωn ≈ cl

R

√
1 + n2 (14.80)
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Fig. 14.46 Cross section
displacement of a cylindrical
shell for some different n or
vibrational modes

For n = 0 the resulting cut-on frequency is f0 = cl/(2πR). This is the so-called
ring frequency. At this frequency a longitudinal wave is propagating in the shell and
perpendicular to the axis of the cylinder. This wave motion will cause the shell to
expand and contract in a breathing mode. See Fig. 14.46. This type of motion of
the shell is in general readily excited. This mode is an effective raditor of sound.
Consequently, the sound transmission loss of a circular cylinder has a minimum at
the ring frequency as discussed in Sect. 14.16 and subsequent sections in this chapter.
For large integers n the result (14.80) is approximately given by ωn ≈ n · cl/R. In
analogy with the previous result this is also written as n · λl = 2πR where λl is the
wavelength of longitudinal waves propagating on the cylinder.

Another solution to Eq. (14.79) is for h2/(12R2) 
 1 given by

ωn =
[

E0h3

12R4μ(1 − ν2)

]1/2 (
n6

1 + n2

)1/2

= 1

R2

(
D0

μ

)1/2 ( n6

1 + n2

)1/2

(14.81)

where D is the bending stiffness of a flat plate of thickness h and a Young’s modulus
E . Equation (14.81) can also be written as (Rκ)2 = [

n6/(1 + n2)
]1/2

where κ is the
wavenumber for flexural waves propagating in a flat plate with the same properties
as the shell. For n large Rκ ≈ n or n · λf ≈ 2πR where λf is the wavelength of
flexural waves propagating in the structure. The expression (14.81) gives the cut-on
angular frequencies for flexural waves propagating in the shell.

In the high frequency region, there are eight solutions λn to Eq. (14.76). As dis-
cussed in Problem 14.8 these solutions are±kl ,±kt ,±κ, and±iκwhere kl , kt , and κ
represent wavenumbers for longitudinal, torsional, and flexural waves, respectively.

The mode associated with each wavenumber can be classified as flexural, longitu-
dinal, or torsional. The relative amplitudes corresponding to a specific n, wavenum-
ber, and frequency can be determined by setting An = 1 in Eq. (14.73) and thereafter
by solving Bn and Cn .

For n = 0 there are two waves propagating along the positive x-axis in the low
frequency region. One is a longitudinal wavewith the wavenumber kl = ω

√
ρ/E and

the other a torsionalwavewith thewavenumber kt = ω
√

ρ/G. The longitudinalwave
is transformed into a flexural wave for increasing frequencies. The other solutions
λn to Eq. (14.76) are imaginary in the low frequency region and represent evanescent
waves. For n = 1 the cylinder is vibrating like an infinite beam in the low frequency
region with a wavenumber of λ1 = [m′ω2/D′]1/4 = [2πρω2(1 − ν2)/(E R2)]1/4
where D′ = Eh R3/(1 − ν2) is the bending stiffness of a thin circular cylinder and
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m′ = 2πRhρ its mass per unit length. For n � 2 there are three types of propagating
waves—longitudinal, torsional, and flexural—at frequencies above their respective
cut-on frequencies.

The resulting displacement w or rather its real part is shown in Fig. 14.46 for n
equal to 0, 1, and 2.

For n = 0 the displacement w of the shell is, at the cut-on frequency for lon-
gitudinal waves, determined by the so-called breathing mode of the cylinder. This
frequency is referred to as the ring frequency of the cylinder. At this frequency lon-
gitudinal waves can propagate in the shell perpendicular to the axis of the cylinder.
For n = 1 the cylinder is vibrating like a beam, the upper and lower parts of the
cylinder are moving in phase.

In certain cases, the basic equation (14.76) can be simplified as suggested by
Rayleigh [221] and Love [222, 223]. For h2/(12R2) 
 1, Eq. (14.76) is reduced to
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Eh
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Eh
(14.82)

The approximation implies that the bending stiffness of the shell is negligible at
every point. The shell is reduced to a membrane without stiffness. The expressions
(14.82) are often referred to as the membrane equations.

Another simplification is obtained by assuming plain strain in the cylinder. This is
equivalent to assuming no displacement of the shell in the direction of the axis of the
cylinder and that the displacements do not depend on the location along the length
of the cylinder. The case of plane strain requires w = w(ϕ), ξ = 0 and η = η(ϕ).
Thus, assuming plane strain, the expressions (14.69) are reduced to

1

R2

∂2η

∂ϕ2 − 1 − ν2

Eh
μη̈ + 1

R2

∂w

∂ϕ
= 0

1

R2

∂η

∂ϕ
+ w

R2 + h2

12R2 · 1

R2

∂4w

∂ϕ4 + μ(1 − ν2)

Eh
ẅ = p(1 − ν2)

Eh
(14.83)

Yet another very useful approximation is obtained by neglecting the inertia terms of
the in-plane motion of the shell. This is equivalent to setting μ = 0 in the first two
equations of the expression (14.69). This simplification permits the uncoupling of
the three differential equations. It is found that the resulting equations give

h2

12R2∇8
kw + (1 − ν2)R4 ∂4w

∂x4
+ μ(1 − ν2)R2

Eh
∇4

k
∂2w

∂t2
= 0 (14.84)
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The operator ∇2
k is defined as

∇2
k = R2 ∂2

∂x2
+ ∂2

∂ϕ2 (14.85)

The displacements ξ and η should satisfy the expressions

∇4
kξ = νR3 ∂3w

∂x3
− R

∂3w

∂x∂ϕ2 ; ∇4
kη = −R2(2 + ν)

∂3w

∂x2∂ϕ
− R3 ∂3w

∂x3
(14.86)

The results (14.84) and (14.86) are often referred to as theDonnell–Musthtari–Vlasov
equations and will be used in Sect. 14.15 for the prediction of the sound transmission
loss of a section of a cylindrical shell.

The wavenumbers derived for n = 0 and n = 1 using any of the approximate
models (14.82) through (14.84) give rather large errors as compared to the exact
results. For example, a plane longitudinal wave can always propagate along the axis
of a cylinder. However, due to the approximations made when deriving Eq. (14.82),
this plane longitudinal wave can only satisfy Eq. (14.82) for the radius being infinite.
However, according to Ref. [87], the simplified models yield acceptable results for
n � 2.

14.15 Vibration of Open Circular Cylindrical Shells

An open circular cylindrical shell is shown in Fig. 14.47. For ϕ0 
 2π the shell
is considered shallow. For shallow shells, it can be assumed that terms containing
transverse shearing forces are negligibly small compared to other terms.

Theboundary conditions for this typeof element areTx = Mx = 0 andw = η = 0
for x = 0 and x = L where Tx is the shear force and Mx the bending moment. In

Fig. 14.47 An open circular cylindrical shell
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addition Tϕ = Mϕ = 0 and w = ξ = 0 for ϕ = 0 and ϕ = ϕ0. The boundary
conditions are satisfied by

w(x,ϕ, t) =
∑
mn

Amn sin(mxπ/L) sin(nπϕ/ϕ0) exp(iωmnt)

ξ(x,ϕ, t) =
∑
mn

Bmn cos(mxπ/L) sin(nπϕ/ϕ0) exp(iωmnt)

η(x,ϕ, t) =
∑
mn

Cmn sin(mxπ/L) cos(nπϕ/ϕ0) exp(iωmnt) (14.87)

The natural angular frequencies ωmn are derived from Eq. (14.77) by replacing λn

by mπ/L and n by nπ/ϕ0 and by defining Ω as Rωmn/cl .
If, however, the simplified equation of motion given by (14.84) is used in com-

bination with the expression for w in Eq. (14.87) the natural angular frequencies are
obtained as solutions to

h2

12R2(1 − ν2)

[
R2
(mπ

L

)2 +
(

nπ

ϕ0

)2
]4

+ R4
(mπ

L

)4

= μω2
mn R2

E0h

[
R2
(mπ

L

)2 +
(

nπ

ϕ0

)2
]2

The natural angular frequencies are

ω2
mn = D0

μ

[(mπ

L

)2 +
(

nπ

Rϕ0

)2
]2

+
E0

(mπ

L

)4

ρR2

[(mπ

L

)2 +
(

nπ

Rϕ0

)2
]2 (14.88)

As R tends to infinity the natural angular frequencies approach the angular natural
frequencies of a rectangular simply supported plate with sides L and Rϕ0 and mass
per unit area μ and bending stiffness D.

The responsew of a segment of a circular cylinder excited by an internal pressure
p = p0 exp(iωt) where p0 is independent of x and ϕ can be found by using the
Donnell–Musthtari–Vlasov approach neglecting the inertia terms of the in-plane
motion of the shell. This is discussed in Ref. [87]. Thus, by setting μ = 0 in the first
two equations of the expression (14.69) and by defining the displacement of the shell
through Eq. (14.87), the amplitude Amn is obtained as

Amn = 4〈p|hmn〉
μLϕ0(ω2

mn − ω2 − iηmnω2
mn)

; 〈p|hmn〉 =
∫ ϕ0

0
dϕ
∫ L

0
dxhmn p

(14.89)
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The loss factor for mode (m, n) is denoted as ηmn . The orthogonal eigenfunctions
hmn are defined as

hmn(x,ϕ) = sin(mxπ/L) sin(nπϕ/ϕ0) (14.90)

The angular natural frequencies of the shell segment are ω2
mn as given by Eq. (14.88).

The orientation of the coordinate system is shown in Fig. 14.47.

14.16 Sound Transmission Loss of Shallow Shell Segments

The sound transmission loss of a segment of circular cylinder has, for example,
been discussed by Liu Ref. [224]. It is assumed in Ref. [224] that the radius R of
the cylinder is large and that the thickness h of the structure is small. It is also
assumed that the displacement of the structure can be approximated by means of
the Donnell–Musthtari–Vlasov equations (14.85) and (14.86). However, the starting
point in Ref. [224] is a simply supported flat, rectangular, and homogeneous plate
with the dimensions Lx and L y , the bending stiffness D, and mass per unit area μ.
The differential equation governing the displacement w of the plate in flexure is

∇2(∇2w) − κ4w = p/D

where the pressure on the plate is given by p. A timedependence exp(iωt) is assumed.
The resulting displacement is written as

w(x, y) =
∑
mn

4〈p|gmn〉gmn(x, y)

Lx L yμ[ω2
mn(1 + iηmn) − ω2]

=
∑
mn

4pmngmn(x, y)

Lx L yμ[ω2
mn(1 + iηmn) − ω2] =

∑
mn

wmngmn (14.91)

Assuming the panel to be flat, rectangular, and simply supported having its corners
located at (Lx/2, L y/2), (Lx/2,−L y/2), (−Lx/2,−L y/2), and (−Lx/2, L y/2)
the eigenfunctions gmn satisfying the differential equation and the boundary condi-
tions are

gmn(x, y) = sin

[
mπ(x + Lx/2)

Lx

]
· sin

[
nπ(y + L y/2)

L y

]
(14.92)

The time average of the acoustical power radiated by mode (m, n) is according to
Sect. 12.9 given by

�̄mn = ρ0c(σr )mn

2

∫∫
dxdyω2 |wmn|2 = 2ρ0cω2(σr )mn |pmn|2

Lx L yμ2[(ω2
mn − ω2)2 + (ηmnω2

mn)2]
(14.93)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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Fig. 14.48 Geometry of a wave incident on a plate

The radiation ratios (σr )mn are given in expression (12.97). In the low frequency
region, the radiation ratio (σr )mn can be approximated as given by Wallace, Eqs.
(12.89)–(12.91). The pressure incident on the plate is written as p = p0 · exp[i(ωt −
k · r)]. On the surface of the plate the pressure is doubled and given by

p = 2p0 exp[i(ωt−kx x−ky y)]=2p0 exp[i(ωt−kx cosα cosβ−ky cosα sin β)]
(14.94)

The result is obtained by setting kx = k cosα cosβ and kx = k cosα cosβ. The
angles are defined in Fig. 14.48.

The quantity pmn = 〈p|gmn〉 in Eq. (14.93) is

pmn = 2p0

∫ Lx /2

−Lx /2
dx
∫ L y/2

−L y/2
dygmn

× exp(−ikx cosα cosβ − iky cosα sin β) = 2p0Hx Hy

Hx =
∫ Lx /2

−Lx /2
sin

[
mπ(x + Lx/2)

Lx

]
exp(−ikx cosα cosβ)dx

Hy =
∫ L y/2

−L y/2
sin

[
nπ(y + L y/2)

L y

]
exp(−iky cosα sin β)dy (14.95)

The functions Hx and Hy are solved by partial integration as shown in Sect. 12.8.
Following the discussion in Sect. 12.8, Eq. (12.76), the function |pmn|2 in Eq. (14.95)
is written as

|pmn|2 = 4p20Gx G y (14.96)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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For a diffuse incident field

|pmn|2d = 4p20

∫ 2π

0
dβ
∫ π/2

0
Gx G y cosαdα (14.97)

This integral was discussed in Sect. 12.8. Using the result (12.84), Eq. (14.97) is
written as

|pmn|2d = 4π2 p20σmn

k2
(14.98)

This expression inserted in Eq. (14.93) yields

�̄mn = 8ρ0cω2π2σ2
mn p20

k2μ2[(ω2
mn − ω2)2 + (ηmnω2

mn)2]
The total radiated power is

�̄rad =
∑
mn

�̄mn =
∑
mn

8ρ0cω2π2σ2
mn p20

k2μ2[(ω2
mn − ω2)2 + (ηmnω2

mn)2] (14.99)

The incident power is

�̄in = p20Lx L y

2ρ0c

∫ 2π

0
dβ
∫ π/2

0
dα sinα cosα = πLx L y p20

2ρ0c
(14.100)

The sound transmission coefficient τd for a diffuse incident field is

τd =
∑
mn

16πρ20c4σ2
mn

μ2Lx L y[(ω2
mn − ω2)2 + (ηmnω2

mn)2] (14.101)

The loss factor, including radiation losses, is

ηmn = η + 2
ωρ0c(σr)mn

μω2
mn

(14.102)

Now returning to the discussion on the sound transmission through an open shallow
circular shell. For a shallow shell, the sound radiation ratios are approximately equal
to the radiation ratios for a flat plate of the same material and thickness having the
same dimensions and boundary conditions as the shell, Ref. [88]. Thus, the sound
transmission coefficient τd for the shell and the corresponding sound transmission
loss R, assuming a diffuse incident field, are written as

τd =
∑
mn

16πρ20c4(σr)
2
mn

μ2L Rϕ0[(ω2
mn − ω2)2 + (ηmnω2

mn)2] ; R = 10 log(1/τd) (14.103)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
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Fig. 14.49 A curved,
rectangular panel with
circumferential stiffeners

The natural angular frequencies ωmn are given by the expression (14.88). The sound
radiation ratios (σr)mn are obtained from Eq. (12.97) by setting Lx = L and L y =
Rϕ0. Compare Problem 14.9.

The effect of stringers and ring frames on the transmission coefficient can also
be included as discussed in Ref. [224]. A stiffened shell is shown in Fig. 14.49. The
distance between the boundary and ring frame number t is denoted as Lt . The radial
force on the shell caused by a vibrating frame is qt per unit length of the frame. The
corresponding forcing bending moment per unit length of the stringer is κt .

The total pressure ptot on the shell due the incident pressure field and the reaction
of the stringer can be written as

ptot = p −
T∑

t=1

qtδ(x − Lt ) −
T∑

t=1

κtδ
′(x − Lt ) (14.104)

The total number of frames supporting the plate element is T . The resulting modal
pressure 〈ptot|gmn〉 acting on the plate is

(ptot)mn = pmn − Qmn − Mmn

Qmn =
T∑

t=1

∫ ϕ0

0
dϕ sin

(
nπϕ

ϕ0

)∫ L

0
dxqt sin

(mπx

L

)
δ(x − Lt )

=
T∑

t=1

∫ ϕ0

0
dϕqt sin

(
mπLt

L

)
sin

(
nπϕ

ϕ0

)

Mmn =
T∑

t=1

∫ ϕ0

0
dϕ sin

(
nπϕ

ϕ0

)∫ L

0
dxκt sin

(mπx

L

)
δ′(x − Lt )

= −
T∑

t=1

∫ ϕ0

0
dϕκt

(
L

mπ

)
cos

(
mπLt

L

)
sin

(
nπϕ

ϕ0

)
(14.105)

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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Fig. 14.50 A stiffened
curved plate

Themodal pressure pmn is as before given by Eq. (14.98). The equations determining
the forces qt and torsional moment κt per unit length of rib frame are according to
Refs. [88, 226] given by

qt = Dr

R4

(
∂4wt

∂ϕ4 + 2
∂2wt

∂ϕ2 + wt

)
− m′

rω
2wt (14.106)

The displacement along the frame t is given by wt = w(Lt ,ϕ). The corresponding
equation defining κt is

κt = Tr
R2

∂2θr

∂ϕ2 − Et Iϕ
R2 θr + ρt Iρω

2θr ; θt =
[
∂w

∂x

]
x=L t

(14.107)

The torsional stiffness of the frame t is Tr, its bending stiffness Dr, mass per unit
length m′

r. The warping stiffness of the frame is Iϕ and its moment of inertia Iρ. The
modulus of elasticity is Et . The bending stiffness of the frame is Dt and its mass per
unit length m′

r .
The effect of stringers on a shell can be formulated in a similar way as described

in Ref. [224]. A shell stiffened by stringers is shown in Fig. 14.50. The distance
between the boundary and stringer number s is denoted as Ls . The radial force on
the shell caused by the stringer is qs per unit length of the stringer. The corresponding
bending moment per unit length of stringer is κs. The total pressure ptot on the shell
due the incident pressure field and the reaction of the stringer can be written as

ptot = p −
S∑

s=1

qsδ(Rϕ − Ls) −
S∑

s=1

κsδ
′(Rϕ − Ls) (14.108)

The total number of stringers on the element is S. The resulting modal pressure
〈ptot|gmn〉 is
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(ptot)mn = pmn − Qmn − Mmn

Qmn =
S∑

s=1

∫ L

0
dx sin

(mπx

L

) ∫ ϕ0

0
dϕqs sin

(
nπϕ

ϕ0

)
δ(Rϕ − Ls)

=
S∑

s=1

∫ L

0
dx sin

(mπx

L

)qs

R
sin

(
nπLs

Rϕ0

)

Mmn =
S∑

s=1

∫ L

0
dx sin

(mπx

L

) ∫ ϕ0

0
dϕκs sin

(
nπϕ

ϕ0

)
δ′(Rϕ − Ls)

= −
S∑

s=1

∫ L

0
dx sin

(mπx

L

) κs

ϕ0R2 cos

(
nπLi

Rϕ0

)
(14.109)

The parameters qs and κs are in Ref. [224] given as

qs = Ds
∂4ws

∂x4
− μω2ws; κs = Ts

∂2θs

∂x2
− E Iw

∂4θs

∂x4
+ ρs Ipω

2θs

where Ds and Ts are the bending and torsional stiffness of the beam or stiffener.
Iw is the warping constant of the stiffener and Ip its polar moment of inertia. The
combined effect of stringers and frames is discussed in Ref. [224].

14.17 Comparison Between Measured and Predicted TL

Measurements on various shallow plate elements are reported by Liu et al. in Refs.
[224, 225]. In these papers, predictions of the sound transmission loss of shallow
elements were compared to measurements carried out at the Marcus Wallenberg
Laboratory for Sound and Vibration Research (MWL), KTH, Sweden. The purpose
of the measurements was to verify the various models discussed in Sect. 14.16. In
particular, the influence on the sound transmission loss of plate curvature, frames,
and overpressure was investigated. The test samples were mounted in between a
reverberation room and an anechoic room as shown in Fig. 14.51. The reverberation
room (6.21 m × 7.86 m × 5.05 m) was used as the source room. Diffusers were
mounted in the source room. The sound pressure level in the room was measured by
means of a rotating microphone. The anechoic room (7 m × 5.95 m × 5.8 m, cutoff
frequency 80Hz) is used as the receiving room and the average sound intensity level
over the surface of the sample was measured using a scanning method. The sound
transmission losses of thepanelsweremeasured according to the ISOstandard15186-
1:2000 Ref. [227] using the intensity method. The repeatability of the measurements
waswithin 0.5 dB in the frequency range 100–5000Hz. The intensity sound reduction
index or the sound transmission loss R is calculated according to the standard as
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Fig. 14.51 Test arrangement for sound transmission loss measurements

Table 14.4 Description of panels

Panel Material Radius
(m)

Size (m2) Skin area
density
(kg/m2)

Young’s
modulus
(N/m2)

Stiffener Loss
factor

A Al. ∞ 0.87 × 0.87 2.7 6.85 × 1010 No 0.01

B Al. 4 0.87 × 0.91 2.7 6.85 × 1010 No

C Al. 1 0.87 × 0.95 2.7 6.85 × 1010 No

D Composite ∞ 0.535 × 1.25 4.0 3.25 × 1010 No 0.15

E Composite ∞ 0.535 × 1.25 4.9 3.25 × 1010 Yes See

F Al. 2 1.67 × 2.2 5.4 6.85 × 1010 Yes Table14.4

G Composite 2 1.67 × 2.2 5.4 3.25 × 1010

× 1010
Yes

R = L ps − L Ir − 6 dB (14.110)

where L ps , dB (re 2 × 10−5 Pa), is the averaged sound pressure level in the source
room and L Ir , dB (re 10−12W/m2), the averaged sound intensity level radiated from
the panel into the receiving room. The area over which the intensity was measured
was equal to the area of the test panel.

Seven panels, data shown in Table14.4, were used for the measurements. Panels
A, B, and C were made of aluminum plates of the same thickness. The panels had
different curvatures. Panel D was a small composite aircraft panel without stringers.
Panel E was the same as D but stiffened with densely arranged stringers. In addition
Panel E is heavily damped. The structure is shown in Fig. 14.52. Panels F and G
are large aircraft structures. Panel F is made of aluminum whereas Panel G is a
composite structure of the same weight and having the same geometry as Panel F.
Panels F and G are stiffened with stringers, ring frames, and heavily damped on the
concave side of the structure, Fig. 14.53. The panel area, 40% of the total, without
stringers are designed for the allocation of windows. Therefore, two areas, stringer
area and window area, may be classified for Panels F and G. The thicknesses of the
panels vary between the window and stringer areas. In all predictions, an effective
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Fig. 14.52 Mounting of panel E. Left picture as seen from the reverberation room, right picture
seen from the anechoic room

Fig. 14.53 Mounting of Panel F. Left picture as seen from the reverberation room, right picture
from the anechoic room

Table 14.5 Loss factors for panels E, F, and G

Frequency
(Hz)

100 125 160 200 250 315 400 500 630 800 �1k

Panel E 0.13 0.11 0.06 0.07 0.063 0.043 0.024 0.021 0.02 0.02 0.015∗

Panel F 0.11 0.07 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.015∗

Panel G 0.12 0.12 0.07 0.06 0.06 0.04 0.03 0.03 0.02 0.02 0.015∗
∗ The loss factors below 1 kHz are measured and above 1 kHz are estimated

thickness of 2mm is used for Panel F and 3.3mm for Panel G. The measured loss
factors for the mounted panels are listed in Table14.5. The panels are clamped at the
edges. More information on the stiffeners is given in Ref. [224].

The influence of the curvature on the sound transmission loss of a shallow plate
element is illustrated inFig. 14.54. Thefigure shows themeasured sound transmission
loss for the plates A, B, and C. The plates are made of the same material and have
the same thickness. Plate A is flat, the radius of plate B is 4m, and of plate C
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Fig. 14.54 Measured sound
transmission loss for panels
with different curvature:
Panel A, flat; - - - - Panel B,
R = 4 m; —•— Panel C,
R = 1 m

Fig. 14.55 Measured and
predicted sound transmission
loss for Panel C: - - - -
Measurement;
—•—predicted, clamped;
—∗— predicted, infinite
model

is 1m. The first natural frequency of a curved plate is increased as the radius of
the plate is reduced. According to Eq. (14.88) the first natural frequency for plate
A is 6Hz assuming simply supported boundary conditions. For plate B and C the
corresponding natural frequencies are 105 and 436Hz respectively. The measured
sound transmission loss for Panel B has a minimum at around 100Hz and for Panel
C somewhere around 400–600Hz. In the high frequency region, m and n large,
the first part of Eq. (14.88) determines the natural frequencies of the curved plate.
Consequently, the natural frequencies for curved and flat plates are almost the same,
which also leads to similar sound transmission losses. In the low frequency region, the
sound transmission loss of a curved plate element is higher than for the corresponding
flat plate.

For Panel C predicted and measured sound transmission losses are compared in
Fig. 14.55. The infinite model corresponds to an infinitely long circular Al cylinder
with a plate thickness of 1 mm, [228]. The ring frequency fr = cl/(2πR) for the full
cylinder is 850Hz. The predicted results indicate that predictions based on an infinite
model give fairly accurate results for frequencies above twice the ring frequency.
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(a) (b)

Fig. 14.56 Comparison between predicted and measured sound transmission loss of a Panel D
without stiffeners and b Panel E with stiffeners. - - - - predicted; —•— measured

The influence of stiffeners on the sound transmission loss of a flat panel is shown
in Fig. 14.56. The figure on the left-hand side (a), shows the measured and predicted
sound transmission loss of a flat panel (D in Table14.4) without any stiffeners. The
sound transmission loss for the same panel (E in Table14.4) with stiffeners is shown
on the right-hand side (b) of the figure. The results indicate that the stiffeners improve
the sound transmission loss at low frequencies. At high frequencies, the stiffeners
decrease the sound transmission loss. In the high frequency region, each subpanel
vibrates more or less independently of other elements. The radiation ratios are there-
fore increased resulting in a lower transmission loss as predicted by Eq. (14.103).
Compare also Fig. 13.17 and the discussion in Sect. 13.10.

Measured and predicted sound transmission losses for two large and curved air-
craft panels are shown in Figs. 14.57, 14.58, 14.59 and 14.60. The data for these
panels, F and G, are given in Tables14.4 and 14.5. Panel F, the Al structure, is shown
in Fig. 14.53. The configuration of Panel G, the composite structure, is the same as
for Panel F. The ring frequency, assuming a full circular section, is 420Hz for Panel

Fig. 14.57 Measured and
predicted sound transmission
loss for Panel F.
measurement;
- - - -predicted., skin + ring
frames; —•— predicted,
skin + axial stringers

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Fig. 14.58 Measured and
predicted sound transmission
loss for Panel G.
measurement;
- - - -predicted., skin + ring
frames; —•— predicted,
skin + axial stringers

Fig. 14.59 Measured sound
transmission loss for Panels
F and G. —•— Panel F;
—∗— Panel G

Fig. 14.60 Predicted sound
transmission loss for Panel F
for three different loss
factors; —•— skin loss
factor 10%; - - - - skin loss
factor same as Table14.4;
—∗— skin loss factor is 1%.
The stringer loss factor is
1.5%, fr ≈ 420 Hz

F and 410Hz for Panel G. The critical frequency of the skin is 5700Hz for Panel
F and 3700Hz for Panel G. Measurements are compared to predicted results based
on three different models. The first is valid for a curved plate without stringers or
frames, the second is applicable for a curved plate with ring frames, and the third
is used for a curved plate with stringers. Predictions for a curved plate with both
stringers and frames give approximately the same result as for a curved plate with
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stringers. However, the computational time, including both stringers and frames, is
very long.

The results indicate that the ring frames have very little effect on the sound trans-
mission loss below400Hz and no apparent effect at frequencies above 630Hz.Unlike
the ring frames, the axial stiffeners slightly improve the sound transmission loss
below 400 Hz. For the Al structure, Panel G, the stringers have no effect in the high
frequency region. However, for the composite panel, the sound transmission loss is
slightly reduced due to the stringers. For large curved aircraft panels, the ring frames
have little influence on the sound transmission loss in the frequency range of interest.
Compared with the ring frames, the stringers may have a significant influence on the
sound transmission loss of a structure. The stringers will slightly improve the sound
transmission loss of a curved panel around the ring frequency, but it may result in a
potential deterioration of the sound transmission loss above the ring frequency.

The results shown in Figs. 14.57 and 14.58 indicate that the agreement between
measured and predicted results using the skin/stringer model is fairly good. Com-
paring the Al (F) and the composite (G) panel in Fig. 14.59, it is found that the Al
structure has the higher sound transmission loss despite the fact that the mass per
unit area of the skin of the panels is the same.

The influence of the loss factor of the skin on the sound transmission loss is
illustrated in Fig. 14.60. The numerical results reveal that an increase of the skin loss
factor from 1 to 10% increases sound transmission loss by about 1 to 2 dB below
500Hz. In this frequency range, the sound transmission is dominated by resonant
transmission of the subpanels.

During in-flight operations of an aircraft, there is a pressure difference between the
cabin and the outside atmosphere. The pressure difference or rather the overpressure
in the cabin will induce a tension in the fuselage. The tension in the plate elements
will increase the natural frequencies of the structures. Compare Sect. 8.14. For a shell
element exposed to tension T ′

x and T ′
y in the x-and y-directions the natural angular

frequencies are approximately given by

ω2
mn = D0

μ
·
⎧⎨
⎩
[(

mπ

Lx

)2

+
(

nπ

L y

)2
]2

+ 12(
h Ry

)2 [1 + (nLx/mL y)2]2

+
[

T ′
x

D0

(
mπ

Lx

)2

+ T ′
y

D0

(
nπ

L y

)2
]}

(14.111)

For T ′
x = T ′

y = 0 Eq. (14.111) is reduced to Eq. (14.88). For a finite circular cylinder
with an inside overpressure�p the tensions T ′

x and T ′
y are discussed in Problem14.10

approximated by T ′
x = �pRy/2 and T ′

y = �pRy . Consequently, the response and
sound transmission loss of the elements will also change. The sound transmission
loss is calculated by inserting Eq. (14.111) in the expression (14.103). The effect of an
overpressure on the sound transmission loss of an aircraft structurewas investigated in
Ref. [225]. The panelwas againmounted as illustrated in Fig. 14.51. The overpressure

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 14.61 Measured TL difference�R = R(with overpressure) – R(no overpressure) for different
overpressures on one side of the panel

in the anechoic room could be increased stepwise up to 8500Pa. The effect �R
defined as �R = Rwith overpressure − Rwithout overpressure was measured (Fig. 14.61).

When the anechoic roomwas pressurized, the air density inside the anechoic room
is increased to ρ�P , with the relation to ρ0 as

ρ�P = �P + Patm

Patm
ρ0

where ρ0 is the air density without overpressure, �P is the overpressure, Patm is the
ambient atmospheric pressure.

Predicted results obtained by changing the natural frequencies of the plate due to
the added tension and considering the change of the air density in the receiving room
agreed well with measurements as discussed by Liu in Ref. [225]. At frequencies
higher than the ring frequency both predicted and measured results reveal that an
overpressure tends to reduce the sound transmission loss at the rate of 0.5 dB per
10 kPa. Approximately 80% of this reduction is due to a mismatch caused by the
different air densities on each side of the panel and by 20% due to the added tension.
At low frequencies, below the ring frequency, �R is mainly determined by the shift
of the natural frequencies of the plate element caused by the in-plane tension, which
in turn is a result of the overpressure. The tension in the plates depends also on the
arrangements of stringers and frames. See also the discussion in Sect. 15.6 on the
excitation of shell elements by turbulent boundary layers.

http://dx.doi.org/10.1007/978-3-662-47934-6_15
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Problems

14.1 Determine the first five cut-on frequencies for an acoustic cylindrical wave-
guide.

14.2 A structural waveguide, Fig. 14.2, is excited by a bending moment M exp
(iωt) at x = 0. The bending moment is constant along the y-axis. Determine the
energy flow in the waveguide. The plate element is simply supported along the lines
y = 0 and y = L y . Assume the waveguide to be semi-infinite.

14.3 Assume that the elements in Fig. 14.5 are beam elements. Determine the cou-
pling elements in the matrix [A] of Eq. (14.23) for this particular case.

14.4 Use Eq. (14.34) to prove the results given in Eq. (14.36).

14.5 Determine the matrix giving the natural frequencies of a sandwich beam with
free ends.

14.6 Determine the response of a simply supported sandwich beam, length L , mass
per unit lengthm′, and bending stiffness D′. The beam is extended along the x-axis of
a coordinate system from x = 0 to x = L . The beam is excited by a force F exp(iωt)
at x1 where 0 < x1 < L .

14.7 Determine the point mobility of an infinite sandwich beam.

14.8 Determine the high frequency limits for the wavenumbers for waves propagat-
ing on a circular cylinder.

14.9 Use Eq. (14.100) to predict the sound transmission loss of a curved panel for
f > fc and well above the ring frequency.

14.10 Show that in a finite circular cylinder with an inside over pressure �p the
tensions T ′

x and T ′
y are approximated by T ′

x = �pRy/2 and T ′
y = �pRy .



Chapter 15
Random Excitation of Structures

The excitation of some simple continuous systems like beams and plates was dis-
cussed in Chaps. 6 through 8. In the majority of those examples, the excitation of
the structure was a point force or a pressure distribution across the surface of the
structure. The response due to harmonic as well as white noise or random excitation
was discussed. The response of a structure due to a random distribution of forces
across a plate was discussed briefly in Sects. 7.4 and 8.2.

In this chapter, a more general approach is presented for the prediction of the
response of structures exposed to certain random distributions of forces. One impor-
tant example is a structure subjected to random excitation, uncorrelated in space and
time, often referred to as “rain on the roof” excitation. Another important problem
is flow-induced vibrations of plate structures. Examples of this type of phenomenon
are aerodynamic excitation of fast moving aircraft, trains, and cars as well as fast
vessels or ships moving through water. Another example is the excitation of duct
walls due to a flow inside the duct.

In the first section of this chapter, some basic mathematical tools are introduced as
outlined by Newland in Ref. [11]. This section is an extension of Chap. 2. However,
not only time but also space dependent signals are considered. Thereafter follows
some examples, first on rain on the roof excitation of plates followed by a basic
example of flow-induced vibrations. Although prediction procedures are somewhat
cumbersome, the examples discussed can be useful for parameter studies on the
influence of plate geometry, stiffness, etc., on the power induced in a plate due to a
turbulent flow. For rain on the roof excitation, the resulting energy of the plate can
be formulated in a very compact way.

15.1 Introduction

In Chap.2 the auto- and cross-correlation functions were introduced for time-
dependent functions. For a stationary time-dependent signal u(t) the autocorrelation
function Ruu(τ ) was in Eq. (2.19) defined as

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
A. Nilsson and B. Liu, Vibro-Acoustics, Volume 2,
DOI 10.1007/978-3-662-47934-6_15

339

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2


340 15 Random Excitation of Structures

Ruu(τ ) = E[u(t)u(t + τ )] = lim
T →∞

1

T

∫ T/2

−T/2
u(t)u(t + τ )dt (15.1)

where E[u(t)u(t + τ )] represents the ensemble average of the product of the signal
at time t and the signal at a later time t +τ . The corresponding power spectral density
Suu(ω) is according to Eq. (2.34) defined as the temporal Fourier transform of Ruu(τ )

as

Suu(ω) =
∫ ∞

−∞
Ruu(τ ) exp(−iωτ )dτ (15.2)

The inverse FT of this expression gives

Ruu(τ ) = 1

2π

∫ ∞

−∞
Suu(ω) exp(iωτ )dω (15.3)

A signal can depend not only on time but also on its spatial coordinates. For a spatially
stationary signal u(x) the spatial autocorrelation function between the signal at the
coordinate x and the signal at x + ξ is defined as

Ruu(ξ) = E[u(x)u(x + ξ)] = lim
X→∞

1

X

∫ X/2

−X/2
u(x)u(x + ξ)dx (15.4)

The spatial spectral density S̃uu(k) is defined as

S̃uu(k) =
∫ ∞

−∞
Ruu(ξ) exp(−ikξ)dξ (15.5)

The inverse spatial FT of the spatial spectral density gives

Ruu(ξ) = 1

2π

∫ ∞

−∞
S̃uu(k) exp(ikξ)dk (15.6)

In analogy with the discussion in Sect. 2.3, it follows that a signal u(x) defined
as u(x) = A sin(k0x) has the spatial autocorrelation function Ruu(ξ) = A2/[2 ·
cos(k0ξ)]. For a stationary and random signal u(x) the corresponding spatial auto-
correlation function is Ruu(ξ) = a · δ(ξ) where a is a positive nonzero constant.
The parameter a is equal to the spatial spectral density S̃uu(k), compare Eq. (2.39).
While a temporal FT is a transform from the time domain to the frequency domain,
a spatial FT is a transform from the space to the wavenumber domain.

In general a signal not only depends on time t but also on the coordinates x and y
of the observation point. The autocorrelation function of a signal u(x, y, t) is defined
as the ensemble average of the product of the signal u at the coordinates (x, y, t) and
the signal at the coordinates (x + ξx , y + ξy, t + τ ). For a signal u, stationary in two-
dimensional space and time, the ensemble average depends only on the separation

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
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ξx and ξy in space and τ in time. Thus, the autocorrelation function Ruu is defined
as

Ruu(ξx , ξy, τ ) = E[u(x, y, t)u(x + ξx , y + ξy, t + τ )] (15.7)

The three-dimensional spectral density S̃(kx , ky,ω) is given by

S̃uu(kx , ky,ω) =
∫ ∞

−∞
dξx

∫ ∞

−∞
dξy

∫ ∞

−∞
dτ · Ruu(ξx , ξy, τ )

· exp[−i(kxξx + kyξy + ωτ )]
=
∫ ∞

−∞
dξx

∫ ∞

−∞
dξy Suu(ξx , ξy,ω) · exp[−i(kxξx + kyξy)]

(15.8)

The cross-power spectral density between the two signals observed at positions sep-
arated by the vector r = (ξx , ξy) is defined by Suu(ξx , ξy,ω) as

Suu(ξx , ξy,ω) =
∫ ∞

−∞
dτ · Ruu(ξx , ξy, τ ) · exp(−iωτ ) (15.9)

The function S̃uu(kx , ky,ω) of Eq. (15.8) is the spatial FT of Suu(ξx , ξy,ω). Conse-
quently,

Suu(ξx , ξy,ω) = 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky S̃uu(kx , ky,ω) · exp[i(kxξx + kyξy)]

(15.10)
Thus, for a homogeneous and stationary random process u(r, t) with a spectral
density S̃(k,ω), the cross-power spectral density S(ξx , ξy,ω)between any twopoints
separated by the vector (ξx , ξy) can be derived as given by Eq. (15.10).

The inverse three-dimensional FT of the first part of Eq. (15.8) reads

Ruu(ξx , ξy, τ ) = 1

(2π)3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dω · S̃uu(kx , ky,ω)

· exp[i(kxξx + kyξy + ωτ )] (15.11)

Introducing the wavenumber vector k = (kx , ky) and the two-dimensional space
vector r = (x, y) the transforms (15.8) and (15.10) can be written in a more compact
form as

S̃uu(k,ω) =
∫ ∞

−∞
d2r

∫ ∞

−∞
dτ · Ruu(r, τ ) · exp[−i(k · r + ωτ )] (15.12)

Ruu(r, τ ) = 1

(2π)3

∫ ∞

−∞
d2k

∫ ∞

−∞
dω · S̃uu(k,ω) · exp[i(k · r + ωτ )] (15.13)
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The time and two-dimensional space averages of the signal u(x, y, t)with the power
spectral density S̃uu(k,ω) is from Eqs. (15.7) and (15.13) obtained as

〈ū2〉 = E[u(x, y, t)u(x, y, t)] = Ruu(0, 0, 0)

= 1

(2π)3

∫ ∞

−∞
d2k

∫ ∞

−∞
dω · S̃uu(k,ω) (15.14)

In a three-dimensional coordinate system with r = (ξx , ξy, ξz) and k = (kx , ky, kz)

the power spectral density S̃uu(k,ω) and the corresponding correlation function
Ruu(r, τ ) read

S̃uu(kx , ky, kz,ω) = S̃uu(k,ω)

=
∫ ∞

−∞
d3r

∫ ∞

−∞
dτ · Ruu(r, τ ) · exp[−i(k · r + ωτ )]

=
∫ ∞

−∞
dξx

∫ ∞

−∞
dξy

∫ ∞

−∞
dξz

∫ ∞

−∞
dτ · Ruu(ξx , ξy, ξz, τ )

· exp[−i(kxξx + kyξy + kzξz + ωτ )] (15.15)

Ruu(ξx , ξy, ξz, τ )

= Ruu(r, τ )

= 1

(2π)4

∫ ∞

−∞
d3k

∫ ∞

−∞
dω · S̃uu(k,ω) · exp[i(k · r + ωτ )]

= 1

(2π)4

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

∫ ∞

−∞
dω · S̃uu(kx , ky, kz,ω)

· exp[i(kxξx + kyξy + kzξz + ωτ )] (15.16)

15.2 Excitation of Plates

As a starting point, consider a continuous linear system, in this case, a thin homo-
geneous flat plate. The plate is oriented in the x–y-plane of a Cartesian coordinate
system. The plate is excited by a force perpendicular to the plate at a point defined
by the position vector s as illustrated in Fig. 15.1.

The temporal FT of the force exciting the plate at the coordinates s is F̂(s,ω).
The temporal FT of the response of the plate at a point defined by the space vector
r is ŵ(r,ω). The frequency response function defining the steady state harmonic
response ŵ(r,ω) at r due to the force F̂(s,ω) at s is denoted H(r, s,ω). Thus

ŵ(r,ω) = F̂(s,ω) · H(r, s,ω) (15.17)
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Fig. 15.1 Plate excited by a
point force at s. The
response is observed at r

The power spectral density Sww(r,ω) of the response is from Eq. (2.33) obtained
as

Sww(r,ω) = lim
T →∞

1

T
ŵ∗ŵ = lim

T →∞
1

T
H(r, s,ω)H∗(r, s,ω)F̂(s,ω)F̂∗(s,ω)

= SF F (s,ω)H(r, s,ω)H∗(r, s,ω) (15.18)

The spectral density of the force is according to Sect. 2.4 defined as

SF F (s,ω) = lim
T →∞

1

T
F̂(s,ω)F̂∗(s,ω)

For the case shown in Fig. 15.2, there are two separate forces exciting the plate at
the points defined by the vectors s1 and s2. The response functions ŵ(r1,ω) and
ŵ(r2,ω) at the points r1 and r2 respectively are

ŵ(r1,ω) = F̂(s1,ω) · H(r1, s1,ω) + F̂(s2,ω) · H(r1, s2,ω)

ŵ(r2,ω) = F̂(s1,ω) · H(r2, s1,ω) + F̂(s2,ω) · H(r2, s2,ω) (15.19)

Defining H(r i , s j ,ω) as the frequency response function between the points r i and
s j . For linear systems reciprocity holds, i.e., H(r i , s j ,ω)= H(r j , si , ω). The cross-
spectral density Sww(r1, r2,ω) between the response ŵ(r1,ω) at r1 and the response
ŵ(r2,ω) at r2 is

Fig. 15.2 Two-point forces,
F̂(s1,ω)and F̂(s2,ω), at the
positions s1 and s2 excite a
plate. The response at the
points r1 and r2 are ŵ(r1,ω)

and ŵ(r2,ω), respectively

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
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Sww(r1, r2,ω) = SF F (s1, s1,ω)H∗(r2, s1,ω)H(r2, s1,ω)

+ SF F (s1, s2,ω)H∗(r1, s1,ω)H(r2, s2,ω)

+ SF F (s2, s1,ω)H∗(r1, s2,ω)H(r2, s1,ω)

+ SF F (s2, s2,ω)H∗(r1, s2,ω)H(r2, s2,ω) (15.20)

where SF F (si , s j ,ω) is the cross-power spectral density between the forces exciting
the plate at the points defined by the position vectors si and s j . The result is just an
extension of Eq. (15.18). The cross-power spectral density Sww(r2, r1,ω) is obtained
by exchanging r1 and r2 in Eq. (15.20). Expressed in general terms the result is
written

Sww(r i , r j ,ω) = S∗
ww(r j , r i ,ω) (15.21)

For N separate forces exciting the plate structure the cross-spectral density between
the response w(r1, t) at the position r1 and response w(r2, t) at r2 is defined as

Sww(r1, r2,ω) =
N∑

i=1

N∑
j=1

SF F (si , s j ,ω)H∗(r1, si ,ω)H(r2, s j ,ω) (15.22)

The result is a generalization of the expression (15.20). In the limiting case when the
number of sources is approaching infinity the FT of a force at si can be written

F̂(si ,ω) = p̂(si ,ω) · �si (15.23)

where p̂(si ,ω) is the temporal FT of the pressure at the point si on the plate and
�si the small area exposed to this pressure. The cross-spectral density between
the pressure p(s1, t) at the position s1 and the pressure p(s2, t) at s2 is defined as
Spp(s1, s2,ω). In the limiting case as N , the number of sources, goes to infinity and
the area �si approaches zero, the result (15.22) is written in integral form as

Sww(r1, r2,ω) =
∫ ∫

d2s1d2s2Spp(s1, s2,ω)H∗(r1, s1,ω)H(r2, s2,ω)

(15.24)
The symbols d2s1 and d2s1 represent surface integrals. The cross-power spectral
density Spp(s1, s2,ω) can following Eq. (15.8) also be written as

Spp(s1, s2,ω) = 1

(2π)2

∫
d2k · S̃pp(k,ω) exp[i k(s2 − s1)]

= 1

(2π)2

∫
dkx

∫
dky S̃pp(k,ω) exp[i(kxξx + kyξy)] (15.25)

The space vector between the observation points is s2 − s1 = (ξx , ξy). The inverse
transform of Eq. (15.25) is
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S̃pp(k,ω) =
∫

dξx

∫
dξy Spp(s1, s2,ω) exp[−i(kxξx + kyξy)] (15.26)

The results (15.24) and (15.25) give

Sww(r1, r2,ω) = 1

(2π)2

∫ ∫
d2s1d2s2H∗(r1, s1,ω)H(r2, s2,ω)

×
∫

d2k · Spp(k,ω) · exp[i k(s2 − s1)] (15.27)

After changing the order of integration the result reads

Sww(r1, r2,ω) = 1

(2π)2

∫
d2k · S̃pp(k,ω)

∫
d2s1H∗(r1, s1,ω) exp(−iks1)

×
∫

d2s2H(r2, s2,ω) exp(i ks2) (15.28)

By introducing the function G(r, k,ω) as

G(r, k,ω) =
∫

dsH(r, s,ω) exp(i ks) (15.29)

the power spectral density Sww(r1, r2,ω) is written

Sww(r1, r2,ω) = 1

(2π)2

∫
d2k · S̃pp(k,ω)G∗(r1, k,ω)G(r2, k,ω) (15.30)

The power spectral density with respect to the displacement of the plate is for r1 =
r2 = r

Sww(r,ω) = 1

(2π)2

∫
d2k · S̃pp(k,ω)|G(r, k,ω)|2 (15.31)

The corresponding power spectral density with respect to the velocity is following
the result (2.53) given by

Svv(r,ω) = 1

(2π)2

∫
d2k · ω2 S̃pp(k,ω)|G(r, k,ω)|2 (15.32)

The function Svv(r,ω) is the autospectrum of the velocity at the point r on the plate.
The time and space average of the velocity squared across the surface of the plate is
thus

〈|v̄|2〉 = 1

2πA

∫
A
d2r

∫ ∞

−∞
dωSvv(r,ω) (15.33)

where A is the area of the plate.

http://dx.doi.org/10.1007/978-3-662-47807-3_2
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15.3 Rain on the Roof Excitation of Plates

Consider a flat and homogeneous plate subjected to random excitation, uncorrelated
in space and time, referred to as “rain on the roof excitation.” The plate is oriented
in the x–y-plane. The direction of the forces acting on the plate is in the z-direction
of the coordinate system as shown in Fig. 15.3. The plate is rectangular and simply
supported along its edges.
The equation of motion for the plate in flexure is according to Eq. (8.20).

∇2(∇2w) + μ

D

∂2w

∂t2
= p

D
(15.34)

As before the mass per unit area of the plate is μ and its bending stiffness of the
plate is D = D0(1+ iη) where η is its loss factor. The pressure on the plate or force
per unit area caused by the rain on the roof excitation is defined by p = p(x, y, t).
The excitation p(x, y, t) is homogeneous, stationary, and uncorrelated in space and
time. The spatial autocorrelation function as defined in Eq. (15.7) is independent
of the coordinates x and y and t and depends only on the vector (ξx , ξy) between
the observation points and on the time interval τ between the observations. For the
correlation function to be uncorrelated in space and time it must be on the form

Rpp(ξx , ξy, τ ) = S0 · δ(ξx ) · δ(ξy) · δ(τ ) (15.35)

where S0 is a constant. The three-dimensional spectral density S̃pp(kx , ky,ω) is
obtained by inserting the definition (15.35) in Eq. (15.8). The result is

S̃pp(kx , ky,ω) = S̃pp(k,ω) = S0 (15.36)

The cross-power spectral density between the pressure at the point s1 = (s1x , s1y) and
the pressure at s2 = (s2x , s2y) where s2 − s1 = (ξx , ξy) is according to Eqs. (15.25)
and (15.36) given by

Fig. 15.3 A simply
supported and rectangular
plate

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Spp(s1, s2,ω) = 1

(2π)2

∫
d2k · S̃pp(k,ω) exp[i k(s2 − s1)]

= 1

(2π)2

∫
d2k · S0 exp[i k(s2 − s1)]

= S0
(2π)2

∫ ∞

−∞
dkx exp(ikxξx )

∫ ∞

−∞
dky exp(ikyξy) (15.37)

According to Eq. (2.4) the solution to the last integral is

∫ ∞

−∞
dky exp(ikyξy) = 2πδ(ξy)

Thus, the cross-power spectral density Spp of Eq. (15.37) is equal to

Spp(s1, s2,ω) = S0δ(s1 − s2) = S0δ(ξx )δ(ξy) (15.38)

Once the cross-power spectral density of the pressure is determined, the correspond-
ing cross-power spectral density between the displacements at the coordinates r1
and r2 is obtained by inserting Eq. (15.36) in (15.28). Thus

Sww(r1, r2,ω) = 1

(2π)2

∫
d2s1

∫
d2s2H∗(r1, s1,ω)H(r2, s2,ω)

×
∫

d2k · S0 · exp[i k(s2 − s1)] (15.39)

However, the last integral in the expression above is, based on Eq. (2.4), equal to

∫
d2k · S0 · exp[i k(s2 − s1)] = (2π)2 · S0 · δ(s1 − s2)

This result inserted in the expression (15.39) gives

Sww(r1, r2,ω) = S0

∫
d2s1H∗(r1, s1,ω)H(r2, s1,ω) (15.40)

The corresponding cross-power spectral density between the velocities at the two
points is

Svv(r1, r2,ω) = S0

∫
d2s1ω2H∗(r1, s1,ω)H(r2, s1,ω) (15.41)

For a plate in flexure satisfying the differential equation (15.34) the responsew(r, t)
at position r due to a point force F0 · exp(iωt) at s is written as

w(r, t) = F0 · H(r, s,ω) · exp(iωt) (15.42)

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
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The frequency response function H(r, s,ω) is according to Eq. (8.21) the solution
to

∇2(∇2H) − κ4H = δ(r − s)/D (15.43)

The wavenumber for flexural waves is κ and the bending stiffness of the plate is
D = D0(1 + iη). The solution to the Eq. (15.43) is also equal to Green’s function
discussed in Sect. 8.2. The frequency response function H(r, s,ω) is according to
Eq. (8.28) written

H(r, s,ω) =
∑
mn

ϕmn(r)ϕmn(s)
Nmn D(κ4

mn − κ4)
(15.44)

The orthogonal eigenfunctions for the plate are given by ϕmn and the corresponding
eigenvalues by κmn . The norm Nmn of the eigenvector ϕmn is Nmn = 〈ϕmn|ϕmn〉.
For a simply supported rectangular and homogeneous plate oriented in a coordinate
system as shown in Fig. 15.3 the eigenfunctions, norm, and eigenvalue are

ϕmn(x, y) = sin

(
mπx

Lx

)
sin

(
nπx

L y

)
; Nmn = Lx L y/4;

κ2
mn =

(
mπ

Lx

)2

+
(

nπ

L y

)2

(15.45)

By writing κ4 = μω2/D and κ4
mn = μω2

mn/D0 as in Eq. (8.32) the frequency
response function is

H(r1, s1,ω) =
∑
mn

Wmnϕmn(r1)ϕmn(s1);

Wmn = 4

Lx L yμ[ω2
mn(1 + iη) − ω2] (15.46)

The time average of the kinetic energy of the plate is

¯ =
∫

A
d2rμ |v̄(r, t)|2 /2 =

∫ ∫
A
dxdyμ |v̄(x, y, t)|2 /2 (15.47)

where A is the area of the plate. The time average of the velocity squared is

|v̄(r)|2 = 1

2π

∫ ∞

−∞
dω · Svv(r, r,ω) (15.48)

Considering the orthogonality of the eigenfunctions, Eqs. (15.41), (15.44) through
(15.48) give the autospectrum of the velocity at the position r as

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Svv(r, r,ω) = ω2S0

∫
d2s

[∑
mn

W ∗
mnϕmn(r)ϕmn(s)

][∑
mn

Wmnϕmn(r)ϕmn(s)

]

= ω2S0Lx L y

4

∑
mn

|Wmn|2ϕ2
mn(r)

The time average of the kinetic energy is from Eqs. (15.47) and (15.48) obtained as

¯ = S0
4πμ

∑
mn

∫ ∞

−∞
dω · ω2

(ω2
mn − ω2)2 + (ηω2

mn)
2 =

∑
mn

S0
4μωmnη

=
∑
mn

¯ mn

¯ mn = S0
4μωmnη

(15.49)

Compare also Sect. 2.7. Equation (15.49) gives the kinetic energy of a plate subjected
to random excitation, uncorrelated in space and time, i.e., for rain on the roof excita-
tion. For viscous losses, the product ωmnη is constant which means that the kinetic
energy mn for each mode is also constant and thus independent of frequency. For
white noise excitation, the potential energy of a linear system is equal to its kinetic
energy as discussed in Sect. 2.7. The time average of the total energy per mode mn

is thus also constant per mode for rain on the roof excitation of a plate having viscous
losses. Consequently,

¯ mn = S0
2μωmnη

(15.50)

In Sect. 8.2 the response of a plate excited by randomly distributed forces, each
having a constant one-sided power spectral densityG F F , was given in Eq. (8.35). The
correspondingmodal energy was given in Eq. (8.39). The parameter S0 in Eq. (15.50)
is equal to the two-sided power spectral density of the pressure on the plate. Thus
2S0 = G F F/(Lx L y). This expression in combination with Eq. (15.50) gives the
result (8.39).

The results (15.49) and (15.50) hold for a flat plate of any shape with boundary
conditionswhich do not allow energy flow across the edges of the plate. The vibration
of such plates can be described by means of orthogonal eigenfunctions as discussed
in Chap.8. The edges of the plate can, for example, be simply supported, clamped, or
free or satisfy any combination of these conditions. For such plates having viscous
losses and being exposed to rain on the roof excitation the energy per mode is
the same. This is referred to as equipartition of energy. The total energy within a
frequency band � f of a plate exposed to rain on the roof excitation is following the
discussion in Sects. 7.4 and 8.6 given by

¯ � f = N f · � f · S0
4πμ fmnη

(15.51)

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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where N f is the modal density of the plate as defined in Eq. (8.18). In the high
frequency region, the modal density tends to be independent of the boundary con-
ditions of the plate. The modal density is approximately given by Eq. (8.18) as
N f = (Lx L y/2)

√
μ/D0. Thus, the total energy of a flat plate of any shape hav-

ing viscous losses and boundary conditions not allowing an energy flow across the
boundaries can, within a frequency band � f , in the high frequency range be cal-
culated from Eq. (15.51) for sufficiently wide frequency bands assuming rain on
the roof excitation. Compare Sect. 6.4. In practice S0 in Eq. (15.51) can be assumed
constant. However, in theory the energy would approach infinity as the frequency
interval is increasing.

The time average of the input power �mn to mode (m, n) can be shown to be

�̄mn = ωη ¯ mn = S0/(2μ)

The details are for Problem 15.5.

15.4 Turbulent Boundary Layers

A turbulent boundary layer—TBL is developed in a fluid close to a structure at
sufficiently high flow velocities. For an in-flight aircraft, the TBL, when developed,
excites the fuselage and its plate structures. The structures enclosing the aircraft
cabin radiates noise into the cabin. The acoustic power radiated due to this effect
is proportional to the kinetic energy induced in the fuselage structure by the TBL.
It is therefore essential to determine the relative importance of the TBL effect as
compared to the acoustic energy induced in the fuselage structure by other sources
like engines, propellers, ventilation systems, etc. A model describing the effect of a
TBL or rather the acoustic energy induced in a fuselage as function of flight velocity,
plate geometry, etc., could possibly be used to minimize the effect of the TBL by
changing the design of the fuselage (Fig. 15.4).

The first parameter that determines the nature of turbulence in a boundary layer is
the Reynolds number R defined as R = U∞L/ν f where U∞ is the velocity of the
fluid well away from a structure, L is the distance of the origin of the boundary layer
and ν f the kinematic viscosity of the fluid in m2/s. The viscosity of air depends on

Fig. 15.4 Flow across a
plate in x-y-plane resulting
in a turbulent boundary layer.
The velocity profile of the
flow is shown as function of
the distance z from plate

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_6
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Table 15.1 Atmospheric data as function of altitude H over sea level

H (m) T (◦K) Pstatic (atm) ρ0 (kg/m3) c (m/s) ν f (10−4m2/s)

0 288 1 1.25 340 0.146

1000 282 0.89 1.13 336 0.158

2000 275 0.78 1.03 333 0.171

3000 269 0.69 0.93 329 0.186

4000 262 0.61 0.83 325 0.203

5000 256 0.53 0.75 321 0.221

6000 249 0.47 0.67 316 0.242

7000 243 0.40 0.60 312 0.265

8000 236 0.35 0.53 308 0.291

9000 230 0.30 0.48 304 0.320

10000 223 0.26 0.42 299 0.353

12000 217 0.19 0.32 295 0.456

14000 217 0.14 0.23 295 0.626

1 atm = 1.01325 ×105 Pa at 15 ◦C

the ambient pressure and the temperature. Some values are listed in Table15.1 for
pressures and temperatures typical for some flight conditions. The tabled values are
according to US standards.

As discussed by Blake [162] turbulence can build up spotwise forR ≈ 2 × 106.
For R ≈ 107the turbulence is fully developed. The thickness of the boundary layer
in a fluid having a turbulent flow close to a structure is given by δ and is defined as
the distance from the wall at which the mean flow velocity is 0.99 ·U∞ where U∞ is
the free velocity well away from the wall. The boundary layer thickness is according
to Ref. [229] given as

δ = 0.38 · L · R−1/5 = 0.38 · L ·
(

ρU∞L

ν f

)−1/5

(15.52)

Within the boundary layer, eddies are formed due to shear effects in the fluid caused
by the velocity profile. The principal boundary layer eddies are moving across the
wall at the convection velocity Uc. Both experimental and numerical simulations
indicate, according to Howe Ref. [230], that 0.5 · U∞ � Uc � 0.7 · U∞ with only a
weak dependence on frequency.

The pressure p caused by a turbulent boundary layer at a point on a plate, oriented
in the x–y-plane, not only depend on time t but also on the coordinates x and y of
the observation point. The autocorrelation function of the pressure p(x, y, t) on
the plate is defined as the ensemble average of the pressure p at the coordinates
(x, y, t) and the pressure at the coordinates (x + ξx , y + ξy, t + τ ). For a pressure p,

stationary in two-dimensional space and time, the ensemble average depends only on
the separation ξx and ξy in space and τ in time as discussed by, for example, Newland
Ref. [11]. The cross-power correlation function Rpp is following Eq. (15.53) defined
as
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Rpp(ξx , ξy, τ ) = E[p(x, y, t)p(x + ξx , y + ξy, t + τ )] (15.53)

The function Rpp(ξx , ξy, τ ) is real. The cross-power spectral density between the
two signals observed at two positions separated by the vector (ξx , ξy) is according
to Eq. (15.9) defined by Spp(ξx , ξy,ω) as

Spp(ξx , ξy,ω) =
∫ ∞

−∞
dτ · Rpp(ξx , ξy, τ ) · exp(−iωτ ) (15.54)

where ω is the angular frequency.
The resulting power spectral density of the velocity of the plate is determined

by the function Spp as well as the material and geometrical parameters of the plate
element. Finally, the acoustic power radiated by the structure depends on the velocity
of the structure as well as on the geometrical andmaterial parameters of the structure.

There are a number ofmodels describing the cross-power spectral density induced
by a flow or turbulent boundary layer across a structure. Some of the most widely
used models are attributed to Corcos [231, 232], Efimtsov [233], Chase [234, 235],
Smolyakov and Tkachenko [236], and FfowcsWilliams [237]. Graham in Ref. [238]
has discussed the merit of these various models. It is concluded in Ref. [238] that
the Corcos model can give satisfactory results when used to predict the response of
plate structures excited by turbulent boundary layers. The Efimtsov extension can
underestimate the plate response. The shortcomings of the Corcos model are most
evident in the high-frequency region. This is naturally a problem when predicting
the absolute velocity level of a structure. This problem is much less important when
the relative response of different structures are compared assuming all the structures
being excited by the same pressure field.

15.5 TBL Models

The model proposed by Corcos has during the last few decades been widely used
for many different types of problems. The model is applicable in the immediate
neighborhood of the so-called convective ridge, Refs. [230, 231], or rather when
ωδ
/

U∞ > 1. In this expression δ is the thickness of the boundary layer defined in
Eq. (15.5) and U∞ the velocity of the flow well away from the structure. Compare
Fig. 15.5 and the discussion in Sect. 15.6. In Fig. 15.5, k is the wavenumber in the
fluid and Uc is the convection velocity and according to Howe [230], 0.5 · U∞ �
Uc � 0.8 · U∞. The strongest pressure fluctuations exciting the wall occur within
the convective ridge as indicated in Fig. 15.5.

As a starting point for the discussion, assume that the plate exposed to the tur-
bulent flow is flat and rectangular. The results derived can thereafter be modified
to include a curvature of the plate or for that matter also a doubly curvature. Thus,
for simplicity, assume that the plate exposed to the turbulent boundary layer is flat,
homogeneous, rectangular, and oriented in the x–y-plane of a Cartesian coordinate
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Fig. 15.5 Wall pressure spectrum induced by TBL. Note −kx on horizontal axis

system as shown in Fig. 15.6. The coordinates for the corners of the rectangular plate
are (0, 0), (Lx , L y), (0, L y) and (Lx , 0), where Lx is the width and L y is the length
of the plate. A turbulent flow across the plate in the direction of the x-axis is the seat
of local pressure fluctuations. It is assumed that the field is statistically stationary
and homogeneous.

Corcos assumes that the cross-power spectral density, defined in Eq. (15.22),
between the pressures induced by TBL at two different positions separated by the
vector

(
ξx , ξy

)
can be expressed as

Spp
(
ξx , ξy,ω

) = Φpp(ω) exp[−γ1
∣∣ωξx

/
Uc
∣∣] exp[−γ3

∣∣ωξy
/

Uc
∣∣ exp [−iωξx

/
Uc
]

(15.55)
The point autospectrum of the pressure is Φpp(ω). The quantity ωξx/Uc in the last
part of Eq. (15.55) is equal to the phase shift between two signals the distance ξx

apart along the x-axis in the coordinate system is shown in Fig. 15.6. The average
convection or translation velocity is Uc. The sign in the last exponent depends on the
definition of the Fourier transforms. This sign convention can be somewhat confusing

Fig. 15.6 Rectangular plate
excited by a TBL. Flow in
x-direction
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when comparing results from various texts. The parameters γ1 and γ3 are determined
from experimental data. Initially, Corcos assumed the parameters γ1 and γ3 to be
constant. The magnitude of the dimensionless parameters has been estimated in a
number of papers. Some examples are given in Table15.2.

The parameters determined by Finnveden are found to give good results as com-
pared to some in-flight measurements as discussed in Sect. 15.9.

The Efimtsov model assumes, as in the Corcos model, that the lateral and the
longitudinal effects of the TBL can be separated. However, in the Efimtsov model
the dependence of spatial correction on boundary layer thickness, δ, as well as spatial
separation is taken into account. The Efimtsov model gives the cross-power spectral
density of the pressure at two different positions separated by the vector

(
ξx , ξy

)
as

Spp
(
ξx , ξy,ω

) = Φpp(ω) exp
[− ∣∣ξx

/
L ′

x

∣∣] exp [−
∣∣∣ξy

/
L ′

y

∣∣∣
]
exp

[−iωξx
/

Uc
]

(15.56)
where L ′

x and L ′
y are the so-called correlation lengths in the x and y directions of the

panel. Efimtsov, based on in-flight measurements, has estimated these correlation
lengths. The parameters are in [233] given as

L ′
x = δ

⎡
⎣
(

0.1Sh

Uc
/

Uτ

)2

+ 5300

Sh2 + 2235

⎤
⎦

−1/2

;

L ′
y = δ

⎡
⎣
(
0.77Sh

Uc
/

Uτ

)2

+ 300300

Sh2 + 1648

⎤
⎦

−1/2

(15.57)

where Sh is the Strouhal number and equal to Sh = ωδ/Uτ and Uτ the friction
velocity which varies with the Reynolds number but is typically of the order 0.03U∞
to 0.04U∞. At high frequencies these expressions correspond to a Corcos model
with γ1 = 0.1 and γ3 = 0.77. Since Efimtsov’s results are derived from an extensive
series of measurements on aircraft, over a Mach number range of 0.41–2.1, they
have been taken in preference to Blake’s recommendations [162] for the predictions
presented in Sect. 15.8.

Table 15.2 Corcos parameters

γ1 γ3

Willmarth [239] 0.12 0.70

Efimtsov [233] 0.10 0.77

Robert [240] 0.13 0.83

Blake [162] 0.12 0.70

Finnveden [241] 0.116 0.70
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By comparing the Eqs. (15.55) and (15.56) it follows that the Corcos constants
when extended as suggested by Efimtsov can be written as

γ1 = Uc

ωL ′
x
and γ3 = Uc

ωL ′
y

(15.58)

Chase’s model is believed to describe the low-wavenumber domain better than Cor-
cos’s model. Chase’s original model gave a reasonable, but not quite satisfactory,
description of the measured cross-correction. Improvements of the model, or rather
a modified Chase model, has been proposed by Finnveden [241]. Accordingly, the
power spectral density of the TBL-induced pressure is written as

Spp
(
ξx , ξy,ω

) = Φpp(ω)[AM (ω) fM
(
ξx , ξy,ω

)
exp(−zM − iωξx

/
Uc)

+ AT (ω) fT (ξx , ξy,ω) exp(−zT − iωξx/Uc)] (15.59)

where

fM (ξx , ξy,ω) = 1 + zM + α2
Mμ2

M (1 − z2M1/zM ) + 2iαMμM zM1,

fT (ξx , ξy,ω) = 1 + zT + α2
T γ2

T (1 − z2T 2/zt ) + α2
T μ2

T (1 − z2T 1/zt ) + 2iαT μT zT 1,

zM =
√

z2M1 + z2M2, zT =
√

z2T 1 + z2T 2, zM1 = αMμMωξx
/

Uc,

zT 1 = αT μT ωξx
/

Uc,

zM2 = αMγMωξy
/

Uc, zT 2 = αT γT ωξx
/

Uc,

αM =
√
1 + (bMωδ

/
Uc
)−2

, αT =
√
1 + (bT ωδ

/
Uc
)−2

. (15.60)

The relative magnitude AM,T is as proposed by Finnveden given as

AM (ω, Uc) = (1 − r)/(1 + α2
Mμ2

M ), AT (ω, Uc) = r/(1 + α2
T γ2

T + α2
T μ2

T )

(15.61)
with

r(ω, Uc) = ar − brω/ω0, ω0 = 105, 0 � r(ω, Uc) � 1 (15.62)

Themodified Chasemodel is defined by Eqs. (15.60) through (15.62). For the Corcos
and Efimtsov models, the lateral and longitudinal effects of the TBL can be sepa-
rated. This assumption greatly simplifies numerical calculations as demonstrated in
Sect. 15.6. This characterization does not apply to the Chase model.

Predicted results based on the three models are compared to in-flight measure-
ments in Sect. 15.8.
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Robert [240] estimated the autospectrum Φpp(ω) given in Eq. (15.55) based on a
number of measurements. The Robert model is given as

�pp(ω)U∞
q2δ∗ =

⎧⎪⎨
⎪⎩
2.14 × 10−5 ωδ∗/U∞ � 0.25

7.56 × 10−6 × (ωδ∗/U∞
)−3/4 0.25 < ωδ∗/U∞ � 3.5

1.27 × 10−4 × (ωδ∗/U∞
)−3 3.5 < ωδ∗/U∞

(15.63)
where the boundary layer displacement thickness is denoted as δ∗. This quantity is
defined as

δ∗ =
∫ ∞

0
[1 − v(z)/U∞]dz

where v(z) is the flow velocity. For practical purposes, it may be assumed that
δ∗ = δ/8. The dynamic pressure is given by q = ρ0U 2∞

/
2 with ρ0 the density of

the fluid. Compare Eq. (15.84).

15.6 Plate Response Due to TBL Excitation

The basic theory on the TBL excitation of plates is discussed in for example Refs.
[162, 230, 242]. The response of plates excited TBL has, for example, also been
discussed inRefs. [243–247] in addition to theRefs. [231–241].As a starting point for
the prediction of the response of a plate excited byTBL, consider a thin homogeneous,
flat and rectangular plate that is simply supported along its edges. The plate is oriented
in x–y-plane as shown in Fig. 15.6. The plate is excited by a TBL flow across the
plate in the direction of the x-axis. Corcos and Efimtsov assume that the cross-
power spectral density Spp(ξx , ξy,ω) can be expressed in separable form as given
by Eqs. (15.55) and (15.56), respectively, where Φpp(ω) is the point autospectrum.
The Robert model of the autospectrum is given by Eq. (15.63).

The velocity spectrum of a flat rectangular plate can now be determined as dis-
cussed in Sect. 15.2. The starting point is to determine the three-dimensional spec-
tral density S̃pp(k,ω) of the pressure on the plate. Following the definition (15.9)
S̃pp(k,ω) is given as

S̃pp(kx , ky,ω) =
∫ ∞

−∞
dξx

∫ ∞

−∞
dξy

∫ ∞

−∞
dτ · Rpp(ξx , ξy, τ )

× exp[−i(kxξx + kyξy + ωτ )]
=
∫ ∞

−∞
dξx

∫ ∞

−∞
dξy Spp(ξx , ξy,ω) · exp[−i(kxξx + kyξy)]

From these expressions and since Rpp is real it follows that S̃pp(k,ω) = S̃pp(−k,

−ω). The definition above of S̃pp(k,ω) in combination with the expression (15.55)
yield
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S̃pp(kx , ky,ω) = 4 ·
Φpp(ω) · ωγ1

Uc
· ωγ3

Uc[(
ωγ1

Uc

)2

+
(

ω

Uc
+ kx

)2
]

·
[(

ωγ3

Uc

)2

+ k2y

] (15.64)

The power spectral density of the velocity is given in Eq. (15.32). The time and space
average of the velocity squared of the panel is given in Eq. (15.33). The Eqs. (15.32)
and (15.33) give

〈|v̄|2〉 = 1

A(2π)3

∫
d2r

∫
dω
∫

d2k · ω2 S̃pp(k,ω)|G(r, k,ω)|2 (15.65)

where A is the area of the plate. The function G(r, k,ω) is defined in Eq. (15.29)
and following the result (15.46) equal to

G(r, k,ω) =
∑
mn

∫
d2s · exp(−i ks) · Wmnϕmn(r)ϕmn(s)

=
∑
mn

Wmn Imn(k)ϕmn(r)

Imn(k) =
∫

d2s · exp(−i ks) · ϕmn(s) (15.66)

For a simply supported plate shown in Fig. 15.6 the eigenfunctions are defined in
Eq. (15.45). Consequently,

Imn =
∫ Lx

0
dξx · sin

(
mπξx

Lx

)
exp(−ikxξx )

∫ L y

0
dξy · sin

(
nπξy

L y

)
exp(−ikyξy)

= (mπ/Lx )(nπ/L y)[1−cos(mπ) exp(−ikx Lx )] · [1−cos(nπ) exp(−iky L y)]
[k2x −(mπ/Lx )2] · [k2y −(nπ/L y)2] (15.67)

For a homogeneous plate, the time and space average of the velocity squared is from
Eqs. (15.65) and (15.66) written as

〈|v̄|2〉 = 1

(2π)3A

∫
dω · ω2

∫
d2k · S̃pp(k,ω)

∫
d2r

∣∣∣∣∣
∑
mn

Wmnϕmn(r)Imn

∣∣∣∣∣
2

Considering the orthogonality of the eigenfuntions ϕmn this expression is reduced to

〈|v̄|2〉 = 1

4(2π)3

∑
mn

∫
dω · ω2|Wmn|2

∫
d2k · S̃pp(k,ω)|Imn|2 (15.68)

The main contributions to the last integral are obtained as S̃pp(k,ω) and |Imn|2 have
maxima. Thus according to Eq. (15.64) S̃pp(k,ω) has a maximum for kx = −ω/Uc
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and ky = 0 within the so-called convective ridge. Since γ3/γ1 ≈ 6 the function
S̃pp(k,ω) at constant ω/Uc appears elliptical as shown in Fig. 15.5. The function
|Imn|2 has according to Eq. (15.67) maxima for kx = mπ/Lx and ky = nπ/L y or
whenever k2x + k2y = κ2 where κ is the wavenumber for flexural waves propagating
on the plate. The wall pressure spectrum on a plate is shown in Fig. 15.5 at lowMach
number and for ωδ/U∞ � 1.

For the Corcos and Efimtsov models, the expression S̃pp(k,ω)|Imn|2 can be writ-
ten in separable form. The last double integral of Eq. (15.68) can therefore be defined
as a product between two integrals. Thus

∫ ∫
d2k · S̃pp(k,ω) |Imn|2 = 4

[
ωγ1

Uc

]
·
[
ωγ3

Uc

]
· Φpp(ω) · �m · �n (15.69)

The expressions �m and �n are in integral form given as

�m = 2

[
mπ

Lx

]2 ∫ ∞

−∞
dkx · [1 − cos(mπ) cos(kx Lx )][

k2x −
(

mπ

Lx

)2
]2 [(

kx + ω

Uc

)2

+
(

ωγ1

Uc

)2
]

(15.70)

�n = 2

[
nπ

L y

]2 ∫ ∞

−∞
dky ·

[
1 − cos(nπ) cos(ky L y)

]
[

k2y −
(

nπ

L y

)2
]2 [

k2y +
(

ωγ3

Uc

)2
] (15.71)

The solutions to integrals (15.70) and (15.71) are as demonstrated in Problem 15.7
given by

�m = 2π
(

mπ

Lx

)2 [ Lx

4 (mπ/Lx )
2 [(mπ/Lx + ω/Uc)

2 + (ωγ1/Uc)2]
]

+ 2π
(

mπ

Lx

)2 [ Lx

4 (mπ/Lx )
2 [(mπ/Lx − ω/Uc)

2 + (ωγ1/Uc)
2]
]

+ 2π
(

mπ

Lx

)2 [ 1 − cosmπ exp(−i Lxω/Uc − ωγ1Lx/Uc)

(2ωγ1/Uc)[(ω/Uc − iωγ1/Uc)
2 − (mπ/Lx )

2]2
]

+ 2π
(

mπ

Lx

)2 [ 1 − cosmπ exp(iωLx/Uc − ωγ1Lx/Uc)

(2ωγ1/Uc)[(ω/Uc + iωγ1/Uc)
2 − (mπ/Lx )

2]2
]

(15.72)

�n = 2π
(

nπ

L y

)2
[

L y

2
(
nπ/L y

)2 [(nπ/L y
)2 + (ωγ3/Uc)2]

]

+ 2π
(

nπ

L y

)2
[

1 − cos nπ exp(−ωγ3L y)

(ωγ3/Uc)[(ωγ3/Uc)
2 + (nπ/L y

)2]2
]

(15.73)
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It has been shown, for example, by Totaro and Guyader [246] that the expressions
�m and �n can be simplified when the frequency f satisfies the inequality f >

Uc/L where L is the maximum of Lx and L y . In this frequency range, the last two
expressions inside the bracket of Eq. (15.72) and the last expression inside the bracket
of Eq. (15.73) can be neglected.

The space and time average of the velocity squared can following Eq. (15.41) be
written

〈|v̄|2〉 = 1

2π

∫
dω〈Svv(r,ω)〉 = 1

2π

∫
dω

1

A

∫
d2r Svv(r,ω) (15.74)

The average across the plate of the power spectral density or autospectrum 〈Svv(r,ω)〉
= Svv(ω) of the plate velocity is now following the results (15.68) through (15.73)
written as

Svv(ω) = 〈Svv(r,ω)〉 = 1

Lx L y

∫
d2r Svv(r,ω)

=
∑
mn

1

(2π)2
· Φpp(ω) · ω2 |Wmn|2 · ωγ1

Uc
· ωγ3

Uc
· �m(ω) · �n(ω)

(15.75)

Once the parameters γ1 and γ3 are known, the power spectral density of the velocity
can be calculated for a flat plate. However, the result (15.75) is only valid for the
Corcos and Efimtsov models. The basis for the result is that the TBL model can be
written in separable form. This is not the case for the Chase model.

In the frequency range above the first natural frequency of the plate, i.e., for
f > f11 the expression |Wmn|2 is a rapidly varying function of frequency.Whenever
the velocity level of or input power to a plate is to be estimatedwithin a frequencyband
the function |Wmn|2 can be replaced by its frequency average |W̄mn|2 as suggested
by Guyader et al. [246]. A similar approach was discussed in Chaps. 2 and 7. Thus,
from Eq. (15.46)

|W̄mn|2 = 1

�ω

∫ ω2

ω1

dω|Wmn|2

= 1

�ω

∫ ω2

ω1

dω
16

(Lx L yμ)2[(ω2
mn − ω2)2 + (ηω2

mn)
2] (15.76)

where �ω| is the spacing of the angular frequency between two natural angular
frequency of the plate. The integration limits are ω1 = ωmn − �ω/2 and ω2 =
ωmn + �ω/2. Equation (8.19) gives �ω as

�ω = 4π

Lx L y

√
D0

μ

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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For a lightly damped system, η � 1, the integration limits can be extended since the
main contribution to the integral is in the close vicinity toωmn . Thus the limitsω1 and
ω2 are set to equal zero and infinity respectively. Similar problems were discussed in
Sects. 6.4, 7.4 and 8.5. From Eq. (2.61), it follows that the integral (15.76) is reduced
to ∣∣W̄mn

∣∣2 = 2

ημ2Lx L yω3
mn

√
μ

D0
(15.77)

Considering this result the approximate auto-power spectral density of Eq. (15.75)
is written

S̄vv(ω) ≈ 1

�N

∑
mn

2

μ2ωηLx L y
·
√

μ

D0
·Φpp(ω)· ωγ1

Uc
· ωγ3

Uc
·�m(ω)·�n(ω) (15.78)

For any ω the summation is made for all m and n satisfying the inequality

(ω − �ω/2) �
√

D0

μ

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]

� (ω + �ω/2)

The number of modes �N within the band is obtained from Eq. (8.18) as

�N = N f �ω/(2π) = Lx L y

4π

√
μ

D0
· �ω

The results (15.77) and (15.78) are only valid for flat plates which are not exposed
to any in-plane tension.

For a curved plate shown in Fig. 15.7 the natural angular frequencies ωmn are,
according to Eq. (14.88), given by the expression

ω2
mn = D0

μ
·
⎧⎨
⎩
[(

mπ

Lx

)2

+
(

nπ

L y

)2
]2

+ 12(
h Ry

)2 [1 + (nLx/mL y)2]2

⎫⎬
⎭ (15.79)

Fig. 15.7 Curved plate
exposed to TBL excitation.
The flow Uc is in the
x-direction, the frame
distance is Lx , and the height
of the plate along the frames
is L y

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47807-3_14
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The curvature of the plate is along the y-axis. The dimensions of the plate are Lx

and L y and its thickness is h. The bending stiffness of the structure is D. The
corresponding expression for a doubly curved panel is

ω2
mn = D0

μ
·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]2

+ 12

(h)2

[
1

Ry

(
mπ

Lx

)2

+ 1

Rx

(
nπ

L y

)2
]2

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

For an aircraft in-flight, there is a difference �p between the outside and inside
pressures. For the tensions in the x and y-directions being T ′

x and T ′
y the natural

angular frequencies are for Rx → ∞ given by

ω2
mn = D0

μ
·
⎧⎨
⎩
[(

mπ

Lx

)2

+
(

nπ

L y

)2
]2

+ 12(
h Ry

)2 [1 + (nLx/mL y)2]2

+
[

T ′
x

D0

(
mπ

Lx

)2

+ T ′
y

D0

(
nπ

L y

)2
]}

(15.80)

For a finite circular cylinder with an inside overpressure �p the tensions T ′
x and T ′

y
are as discussed in Sect. 14.17 and in Problem 14.10 approximated by T ′

x = �pRy/2
and T ′

y = �pRy . However, it can be argued that in an aircraft the tension T ′
x can

be neglected since due to the frames and stringers of the fuselage a plate segment
is exposed to a minimum of strain in the x-direction. In the high-frequency region,
(mπ/Lx )

2+(nπ/L y)
2 � 1, the natural frequencies for curved plate segments, with

and without in-plane tensinsion, tend to the natural frequencies of a flat plate. In the
high-frequency region, the autospectrum Svv(ω) for a curved plate under tension
tends to the autospectrum valid for a flat plate of the same dimensions exposed to no
tension.

The space average of an autospectrum of the velocity of a plate segment under
tension and with a curvature Ry as shown in Fig. 15.7 excited by a turbulent flow in
the x-direction is given by Eq. (15.75).The natural angular frequencies ωmn in Eq.
(15.75) are given by Eq. (15.80).

The autospectrum, Eq. (15.78), of the plate velocity can be written as

Svv(ω) =
∑
mn

[Svv(ω)]mn (15.81)

where [Svv(ω)]mn is the autospectrum of the velocity of the mode (m, n). The sum-
mation over m and n as for Eq. (15.78). By comparing Eqs. (15.78) and (15.81) the
modal autospectrum components [Svv(ω)]mn are obtained as

http://dx.doi.org/10.1007/978-3-662-47807-3_14
http://dx.doi.org/10.1007/978-3-662-47807-3_14
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[Svv(ω)]mn = 1

(2π)2
· Φpp(ω) · ω2 |Wmn|2 · ωγ1

Uc
· ωγ3

Uc
· �m(ω) · �n(ω) (15.82)

The power spectrum [S�(ω)]mn of the acoustic power radiated by mode (m, n) is

[S�(ω)]mn = (ρc) · A · (σr )mn · [Svv(ω)]mn (15.83)

where A is the area of the plate (ρc) the wave impedance of the fluid—ρ is its density
and c the speed of sound in the fluid. The parameter (σr)mn is the sound radiation
ratio for mode (m, n) defined in Eq. (12.97).

15.7 Measurements of TBL-Induced Vibrations

Finnveden et al. have reported laboratory measurements of wall pressure correlation
and plate vibrations in Ref. [241]. The wind tunnel used for the experiments is shown
in Fig. 15.8. A test panel was mounted in the stiff duct. The plate was excited by the
TBL induced by a flow through the duct. A fan was used to build up an overpressure
in an anechoic room. Due to the overpressure there was a flow through the duct. The
capacity of the fan resulted in an airflow of 10m3/s through the duct and a pressure
drop of 10kPa. The background noise level in the duct was below 25dB during tests.
As reported in Ref. [241], the basic Corcos and Chasemodels weremodified to better

Fig. 15.8 Wind tunnel used for measurements of TBL at MWL, KTH from [241]

http://dx.doi.org/10.1007/978-3-662-47807-3_12
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comply with measured results. In the Chase model, the relation between the terms
describing the self-noise and the shear noise was made frequency and flow speed
dependent.

An alternative to laboratory measurements is in-flight measurements. One exam-
ple of in-flight measurements was first described in Ref. [247] and later in Ref. [248].
A small business aircraft of type Piaggio 180 was used for these in-flight measure-
ments. The aircraft is shown in Fig. 15.9. The total length of the aircraft is 14.41 m,
the wing span is 14.03 m, and the wing area 16 m2. The aircraft is powered by two
five-bladed propellers. Interior linings were removed for vibration measurements to
be made directly on the fuselage. Loss factor measurements of the structures were
made with engines and all equipment turned off and aircraft parked in hangar. During
in-flight measurements, no auxiliary equipment was in operation. The noise induced
by propulsion system was readily identified by its blade-passing frequencies. The
velocity levels of the plate elements shown in Fig. 15.10 were measured at three dif-
ferent flight velocities. The dimensions of the plate elements are given in Table15.3.
The flight data are listed in Table15.4.

During the test flights, 15 accelerometers were mounted on the inside of the
fuselage on one side of the aircraft. The accelerometers were mounted in such a way
with respect to the frames as to give a good average for each class of plates.

Accelerometers mounted on the plates 2, 7, 12, and 14 give an average of the
velocities of the lower plates and accelerometers on the plates 1, 6, 10, and 13 of the
upper plates. The accelerometers 3 and 8 were mounted at junctions of stringers just
below the upper plates. In a similar way the accelerometers 5 and 9 were mounted
to stiff points just above the lower panels.

Fig. 15.9 Piaggio 180 aircraft used for in-flight measurements
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Fig. 15.10 Position of plate elements on fuselage. The elements 4 and 15 are windows. Numbers
3, 5, 8, and 9 represent connection points between stringers and frames

Table 15.3 Panel parameters

Panel width Lx 0.206 m

Panel length L y 0.629 m

Panel thickness h 1mm

Loss factor η 10× f −0.8

Curvature of plate Ry 0.96 m

E-modulus of plate E 0.72 N/m2

Density plate ρ 2700kg/m3

Poisson’s ratio ν 0.3

Table 15.4 Flight data

Flight Height (m) Airspeed Mach Outside Temp. Pressure Propeller

Test (m/s) number (◦C) (Pa) rpm

1 9000 192 0.626 −40 22490 1986

2 9000 173 0.566 −40 24020 1980

3 9000 149 0.485 −40 25720 1978

The theory developed to describe the excitation of the plates was based on the
assumption that the velocities of a plate element are much higher than the velocity of
its boundaries. In Fig. 15.11 the average velocity level of the lower plates, numbered
2, 7, 12, and 14 in Fig. 15.10, are compared to the average velocity of the adjoining
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Fig. 15.11 Velocity level of plate, top curve, and velocity level of frame, bottom curve. Airspeed
173 m/s, test condition 2

frames, indicated by 5 and 9 in Fig. 15.10. The measurements clearly show that the
plate velocity is much higher than the velocity of the stringers and frames in the
frequency range 600–1250Hz that determines the A-weighted internal noise level
in this particular aircraft. In the frequency range of importance, the plate velocity is
10–20dB higher than the velocity of the frames. Thus, the assumption concerning
the relative velocities of plates and stringer/frames is well supported.

The flight data for the tests are given in Table15.4, data on the geometries of the
lower plate, positions 1, 6, 10, and 13 are given in Table15.3. The location of the
lower plates on the fuselage is shown in Fig. 15.10.

The curvature is along the length L y of the plate. For a fully equipped aircraft the
loss factor is 14 × f −0.8. The loss factors are based on measurements on the P.180
aircraft parked on ground as described in Ref. [247]. During all in-flight tests con-
ditions the turbulence was fully developed at the measurement positions. Compare
the discussion in Sect. 15.4.

The density of the external air was set to 0.44kg/m3. The interior pressurization
was 0.97 atm = 98940Pa and the static outside pressure 0.30 atm, 1 atm = 1.013×105

Pa. The pressure given in Table15.4 is the pressure on the fuselage.
The measured velocity levels, lower plates, narrow-band analysis, are shown in

Fig. 15.12 for the three different test conditions defined in Table15.4. The corre-
sponding result based on a 1/3 octave band analysis is shown in Fig. 15.13.

The plate response due to the propeller blade excitation is clearly shown in
Fig. 15.12. The rpm of the five-bladed propeller was approximately 1980 corre-
sponding to a frequency of 33Hz. The fundamental tone 33Hz and its harmonics 66
and 99Hz are quite distinct in Fig. 15.12. The first blade passing frequency of the
five-bladed propeller is 165Hz with the harmonics 330, 495, 660Hz and so on. The
first few blade passing frequencies are also readily distinguished in Fig. 15.12.
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Fig. 15.12 Measured velocity levels of the lower plates. Narrow-band analysis

Fig. 15.13 Measured velocity levels of the lower plates. 1/3 OB analysis

15.8 Comparison Between Measured and Predicted Velocity
Levels Induced by TBL

Measurements of velocity levels were compared to predictions based on the Cor-
cos, Efimtsov, and modified Chase models. In the Corcos model, Eq. (15.55), the
Finnveden parameters were used, i.e., γ1 = 0.116 and γ3 = 0.7. The Efimtsov para-
meters are defined in Eq. (15.57). The parameters used in the Chase model are given
in Table15.5. The parameters Uc and Uτ in Eqs. (15.56) and (15.57) are given by
Graham [238] as Uc = 0.7 · U∞ and Uτ = 0.03 · U∞. The boundary layer thickness
is set to equal 0.06m for all flight conditions.

A comprehensive study of measured in-flight data and different models of
autospectrum of the wall pressure can be found in a NASA report by Robert and
Adam [249]. The report indicates that the autospectra predicted by the models of
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Table 15.5 Parameters for the Chase model

U∞ 149 m/s 173m/s 192 m/s

ar 0.75 0.78 0.83

br 0.14 0.14 0.14

bM bT μM μT γM γT

0.5973 0.3158 0.2531 0.0614 1.2267 1.4186

Robertson, ESDU, Laganelli, Goodwin are rather similar in a wide frequency range,
while the results obtained from the Efimtsov model are approximately 5dB lower in
the low frequency range and less steep at high frequencies as compared to other pre-
dictions. However, as suggested by Finnveden, the autospectrum proposed by Robert
in Ref. [240] is preferred. Robert estimates the autospectrum of the wall pressure
Φpp(ω) as given by Eq. (15.63).

For the prediction of the velocity levels of the plates of the fuselage the wall
pressure spectrum, Eq. (15.63), was used for all three cases. Plate dimensions and
material parameters are listed in Table15.3. The flight data are given in Table15.4.

Predicted velocity levels using the three models are compared in Fig. 15.14 for
test condition 1. For this particular aircraft the A-weighted noise level in a fully
equipped cabin is determined by TBL-induced noise in the frequency range 500–
1250Hz as discussed inRef. [247]. In comparisonwith theCorcosmodel, the velocity
level of the plate elements derived from the Efimtsov model is 3–6 dB lower in this
frequency range. The results based on the Chasemodel are in between the Corcos and
Efimtsov predictions in the same frequency region. These results are also supported

Fig. 15.14 Comparison of predictions based on Corcos, Chase, and Efimtsov models. Predicted
velocity autospectrum for the points 2, 7, 12 and 14, test condition 1, velocity 192 m/s, in 1/3 octave
band
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by Graham’s findings as reported in Ref. [238]. The Corcos model shows the better
agreement with measurements in the frequency range 200–1500Hz. Therefore, the
Corcos model was used for all predictions.

Figures15.15, 15.16 and 15.17 compare predicted and measured results using
narrow-band analysis and 1/3 octave-band analysis, respectively, for three different
flight velocities, test conditions 1, 2 and 3, given in Table15.4. The Corcos model is
used throughout.

The measured velocity levels exclude peaks due to propeller excitation at the
propeller harmonics 165, 330Hz, etc. The TBL-induced noise determines the plate
velocity in the frequency range 500–2000Hz. The noise radiated by the curved plates
in this frequency range determines the A-weighted noise level in the cabin. The
results justify the assumption that relative differences of plate velocity levels can
be predicted by means of the Corcos model as function of flight velocity and plate
dimensions.

Fig. 15.15 Comparison between predicted and measured velocity autospectral density. (Upper)
Narrow-band analysis, (Below) 1/3 OB analysis. Test condition 1, velocity 192 m/s
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Fig. 15.16 Comparison between predicted and measured average velocity autospectral density.
(Upper) Narrow-band analysis, (Below) 1/3 OB analysis. Test condition 2, velocity 173 m/s

Discrepancies between themeasured and predicted spectra appear above 2000Hz.
These discrepancies are similar to the results based on wind tunnel experiments
reported byFinnveden [241]. The loss factors of the plate elements given inTable15.3
are based on measurements up to 2500Hz. In the high frequency region, above
2.5kHz, the radiation losses would contribute to the total losses of the fuselage. By
including radiation losses the discrepancies betweenmeasured and predicted velocity
levels would somewhat decrease for high frequencies. However, the Corcos model
clearly overestimates the velocity levels of the plate elements in the high-frequency
region. The agreement between results from the Corcos model and measurements
is acceptable, although about 3dB too low in the important mid-frequency region
200–1500Hz. The results based on the Efimtsov and Chase models are slightly
less accurate in this frequency range and for this particular test case. One possible
explanation for the discrepancies between predicted and measured velocity levels in
the mid-frequency region might be the influence of the nose wing and the propellers
on the thickness of the turbulent boundary layer. If the boundary thickness δ is
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increased from 0.06 to 0.1m the agreement between predicted and measured results
is very good (Fig. 15.16).

During the last few years a number of semiempirical models for turbulent bound-
ary layer wall pressure spectra have been published. In Ref. [295] some of these
models are compared. The authors, Hwang et al., suggest that the model proposed
byGoody [296], provides the best overall prediction of frequency spectra. TheGoody
model decays more rapidly or as ω−5 with increasing frequencies as compared to
the Robert model presented in Eq. (15.63) which decays as ω−3. The Goody model
would therefore give better agreement than the Robert model when comparisons are
made between measured and predicted results as in Figs. 15.15, 15.16 and 15.17.

Fig. 15.17 Comparison between predicted and measured average velocity autospectral density.
(Upper) Narrow-band analysis, (Below) 1/3 OB analysis. Test condition 3, velocity 149 m/s
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The Goody model, double-sided spectrum, can be written as

�pp(ω) = 1.5τ2wδ (ωδ/U∞)2

U∞
{[

0.5 + (ωδ/U∞)3/4
]3.7 +

[
1.1 · R−0.57

T · (ωδ/U∞)
]7} (15.84)

For a single-sided spectrum the function �pp should be multiplied by a factor 2.
The parameter RT = (δ/U∞)/(v f /u2∗) is the ratio of the outer to inner boundary
layer timescale. Other notations are given in Sect. 15.5. See also [297].

15.9 Parameter Study

The power spectral density, Eq. (15.73), and thus the velocity level of the plate ele-
ments of the fuselage depend on the flow velocity of the TBL disturbance. In turn,
the flow velocity depends on the flight velocity of the aircraft. The autospectrum
of the wall pressure Φpp(ω), Eq. (15.63), is a function of Uc as U 15/4

c in the mid-
frequency region and as U 6

c for high frequencies. In addition, the �m and �n both
depend on Uc. However, in-flight measurements on the aircraft, Fig. 15.9, reveal that
the A-weighted sound pressure level in the fully equipped cabin depends on the flight
velocity v as

L A = C + 80 log v dB(A) (15.85)

where C is some constant. It is assumed that the altitude of the aircraft is constant,
only the velocity is changed. Thus a 20% increase of the speed of the aircraft would
increase the interior noise level by approximately 6 dB assuming that all other para-
meters are kept constant. The expression (15.84) is only valid for moderate variations
of the flight velocity.

The response of a plate excited by a TBL was discussed in Sect. 15.6. It was
concluded that the response of the plate depends on the geometrical and material
parameters and the loss factor of the plate element. Assuming thematerial parameters
to be fixed and the speed and altitude of the aircraft to be constant the parameters
which could influence the response of the plate are the radius Ry of the fuselage,
the radius Rx of the fuselage in the longitudinal direction of the aircraft, the plate
dimensions Lx and L y , and the plate thickness h as well as the loss factor of the
structure.

The loss factor of the plate elements of the fuselage is an important parameter.
The frequency average of the power spectral density of the velocity, Eq. (15.78), is
inversely proportional to the loss factor of the structure. However, the noise radiated
by a plate is not necessarily reduced at the same rate as the plate velocity by adding
damping as discussed in Sect. 12.10.

http://dx.doi.org/10.1007/978-3-662-47807-3_12
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For a plate with a single curvature, the influence of changing the radius of the
fuselage is insignificant in the frequency range of importance if the radius is changed
by less than ±20%.

The effect of the plate thickness on the velocity is demonstrated in Problem 15.8.
It can be shown that the power spectral density of the velocity as function of plate
thickness is approximately given by

Svv(ω) ∝ 1

h3 (15.86)

However, with respect to the noise radiated into the cabin also the radiation ratio of
the plate elements must be considered. The simple result (15.86) gives an indication
of the influence of the plate thickness on the autospectrum of the plate velocity. The
result also indicates that in the frequency range well above the first natural frequency
of the plate, see Eq. (15.79), the autospectrum of the velocity is only moderately
dependent on the length and width of the plate. The first natural frequency of the
plate elements are determined by the plate parameters as shown in Eq. (15.80). The
autospectrum of the plate velocity is more or less independent of the width and length
of the plate. These conclusions are supported by Ref. [250].

The power spectrum S� of the acoustical power radiated by the plate is given by
Eqs. (15.81) through (15.83). The modal sound radiation ratio (σr )mn is a function
of the plate dimensions as well as of frequency. Although in the high-frequency
range the velocity of the plate is more or less independent of the plate dimensions,
the radiation ratio, and thus the radiated power varies very significantly with the
plate dimensions. The radiation ratio decreases with increasing plate dimensions.
Clearly, the combined effect of plate velocity and radiation ratio must be considered
for estimating the noise radiated by a plate structure excited by a TBL.

The acoustic power radiated by a plate not only depends on the plate velocity but
also on the radiation ratio of the plate. By increasing the plate thickness the plate
velocity is decreased, Eq. (15.86), but at the same time the radiation ratio is increased
in the frequency range between the first plate resonance and the critical frequency
of the plate. These effects can be counteracting each other. By increasing the plate
dimensions, width and length, the radiation ratio is decreased, whereas the plate
velocity is more or less constant (Fig. 15.18).

In Ref. [224] it is observed that the influence of stringers on noise radiation from a
fuselage depends on the orientation of the frames with respect to the outside airflow.
A frame mounted perpendicular to the flow will increase the noise radiated from a
plate in the frequency range below the critical frequency and the ring frequency of
the panel.
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Fig. 15.18 Effect of stringer distance on the predicted sound power radiated by per square meter
of the plate in 1/3 octave band 192 m/s. Height of plate is 0.627 m, frame distances are 0.206 and
0.246 m

15.10 Flow Noise Induced in Ships

A turbulent boundary layer—TBL can be developed in a fluid close to a structure
at sufficiently high flow velocities as discussed in Sect. 15.4. For a ship traveling
through water, the TBL, when developed, excites the hull plates. Part of the acoustic
power induced in the hull is transmitted as vibrations in the ship structure to the
accommodation spaces. The structures enclosing the accommodations radiate noise
into these spaces. The acoustic power radiated due to this effect is proportional to
the power induced in the hull structure by the TBL. For fast and comparatively small
vessels, water TBL induced noise can be very dominant in the forward part of the
ship. For an aircraft, the noise generating mechanism is different. For an aircraft the
fuselage excited by the TBL is radiating noise directly into the cabin. On a ship it is
essential to determine the relative importance of the TBL effect as compared to the
acoustic power induced in the ship structure by other sources like water jets, engines
etc. A model describing the effect of a TBL or rather the acoustic power induced in
hull plates as function of ship speed, plate geometry, etc., could possibly also be used
to minimize the effect of the TBL by changing the hull design. A number of reports
have been issued within the project NORMAfinanced by the European Commission.

The first parameter that determines the nature of turbulence in a boundary layer is
the Reynolds number R in Sect. 15.4 as R=U∞L/ν f , where U∞ is the velocity of
the fluid well away from a structure, L is the distance of the origin of the boundary
layer and ν f the kinematic viscosity of the fluid. The viscosity for water is 1.284 ·
10−6 m2/s. As discussed in Ref. [162] turbulence can build up spotwise for R ≈
2 · 106. For R ≈ 107the turbulence is fully developed.
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Again, the Corcos model was used for predicting the velocity level of the hull
plates. Model-scale measurements determined the autospectrum of the pressure on
the hull plates. This type of measurements are described in Ref. [251]. Magienese
discusses the scaling laws transforming the model-scale measurement to full scale
in Ref. [252]. The pressure spectrum was determined for two different hull shapes,
one for a catamaran and one for a slender trimaran. Both hulls were designed for
very high velocities.

The fluid loading on a hull plate can be considerable. For a plate in flexure with a
fluid loading on one side, the wavenumber κ is according to Eq. (12.13) the solution
to

κ4 = κ4
0

[
1 + ρ0

μ0
√

κ2 − k2

]
(15.87)

where κ0 is the wavenumber for the plate in vacuum, k the wavenumber in the fluid,
ρ0 the density of the fluid, and μ0 the mass per unit area of the unloaded plate. The
wavenumber κ for flexural waves is obtained from the expression κ4 = μω2/D,
where D is the bending stiffness of the plate. For κ � k Eq. (15.87) is written as

μ ≈ μ0 + ρ/κ0 (15.88)

The mass per unit area of the plate with a fluid loading on one side is given by μ
whereas μ0 is the mass per unit area of the unloaded plate. For water ρ ≈ 1000
kg/m3.

The boundary conditions for the plate elements located between frames can be
considered to be clamped or simply supported. In a previous study [163] on the
response of hull plates above a cavitating propeller, the plateswere assumed as simply
supported along the frames. The assumption was based on measured results. The
natural frequencies of hull plates were measured and compared to predicted results
for various boundary conditions. InRef. [163] it was found that a good agreementwas
obtained between predicted andmeasured results when simply supported boundaries
for the plate elements were assumed.

The loss factor η for a fluid loaded plate is modeled as

η = 0.025 × f −0.275 (15.89)

where f is the frequency. The result (15.89) is based on full-scale measurements.
The Corcos model, Eq. (15.55), is again used to describe the wall pressure fluctu-

ations. The flow is in the x direction. The pressure autospectrumΦpp is the TBLwall
pressure autospectrum and taken from model-scale measurements for example Ref.
[251]. The convection velocity Uc was approximated from measurement results by
U∞/8, whereU∞ is as before the free-stream velocity. The streamwise and spanwise
coherence parameters γ1 and γ3 were initially taken as 0.125 and 0.7, respectively,
as suggested in Ref. [251].

http://dx.doi.org/10.1007/978-3-662-47807-3_12
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The hull plates were modeled as simply supported aluminum plates. The plates
were assumed to be flat, isotropic, and without prestress. The dimensions were Lx =
0.7 m, L y = 1.5 m and thickness 4mm.

The frequency range investigated was 23–3536Hz and the main analysis was
made in third octave bands. Four free-flow velocities were studied: 25, 30, 35 and
40 knots. Some numerical procedures are discussed in Ref. [250]. The autospectrum
Φpp(ω) is shown in Fig. 15.19 for four different ship velocities, 25, 30, 35, and 40
knots. The spectrum is determined from model-scale measurements.

The measured autospectrum is shown in Fig. 15.19 as function of flow velocity.
The data is from Ref. [251].

Figure15.20 compares the autospectral density of the velocity for the four flow
speeds. As expected, an increase in speed generally results in an increase in response.
The velocity level Lv in dB re 10−9 m/s is obtained as (1/3 OB analysis)

Lv = 10 · log(Gvv) + 180 (15.90)

when Gvv is given in SI units. The velocity level of the hull plates is increasing
rapidly as function of the flow speed u. In the frequency range 630–1250Hz the
velocity level Lv in dB in 1/3 octave bands is approximately given as

Lv = 10 · log u10 + C1 (15.91)

Fig. 15.19 Wall pressure power spectrum Φpp as function of flow velocity. From top to bottom;
40, 35, 30, and 25 knots
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Fig. 15.20 Response Svv as function of flow speed and frequency. From top to bottom: 40, 35, 30
and 25 knots. 1/3 OB analysis

where C1 is some constant. Thus, by increasing the speed from 25 to 30 knots
the velocity level of the plate is increased by 8 dB, from 25 to 35 knots by 14
dB and from 25 to 40 knots by 20 dB. However, some full-scale measurements

Fig. 15.21 Response as function of length Lx at 40 knots , 0.7 m;- - - -, 1 m. 1/3 OB analysis
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reported by Det Norske Veritas indicate that the plate velocity can be approximated
by Lv = 10 · log u6.5 + C1.

The influence of the framedistance on the plate response is illustrated inFig. 15.21.
At 40 knots the plate response or rather Gvv is calculated for Lx equal to 0.7 and
1.0m. The result shows that it is only in the low-frequency region, below 200Hz, that
the frame distance significantly influences the plate response. For frequencies well
above the first plate natural frequency the plate dimensions are of minor importance
with respect to the plate response.

Figure15.22 shows the plate response Svv for the three different plate thicknesses
of 4, 6, and 8mm. In the high-frequency range, a doubling of the plate thickness
gives a reduction of the velocity level by approximately 7dB. A 50% increase of
plate thickness results in a reduction of the velocity level by approximately 4 dB.
The velocity level Lv of the hull plate as function of plate thickness h is in the
high-frequency region approximately given by

Lv = 10 · log(h−9/4) + C2 (15.92)

where C2 is some constant. The details are left for Problem 15.9. This result is
different from Eq. (15.85) derived for a fuselage. The reason is the effect of the water
load on the hull plates.

The main design parameters which influence the velocity level of hull plates
excited by a turbulent boundary layer is the speed of the ship, the shape of the hull,
and the thickness of the hull plates. A damping layer on the hull plateswould decrease
the velocity level of the plate but the damping layer does not influence the input power
to the plate. A damping layer would therefore have a very limited effect on the noise
levels in the accommodation spaces on the main deck and above. The frame distance
has a very small effect on the noise levels in the mid- and high-frequency ranges.
The shape of the hull is crucial with respect to the acoustic input power to the hull.

Fig. 15.22 Response as
function of thickness t at 40
knots. Top curve, 4mm;
middle curve, 6mm; bottom
curve, 8mm. 1/3 OB analysis
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There is a rather strong variation of the hull plate velocity due to the location of the
plate in the stern or the bow. The hull of the catamaran was different from the hull
of the trimaran used for the tests. The hull section under the water level was much
more slender for the trimaran as compared to the catamaran. Although the velocity
of the trimaran was 60 knots and the speed of the Catamaran 40 knots the velocity
levels of the hull plates were approximately the same for the two ships. This is a
clear indication that the shape of a hull is of paramount importance with respect to
flow-induced noise.

Problems

15.1 A spatially stationary signal u(x) is defined as u(x) = A ·cos(k0x). Determine
the spatial autocorrelation function Ruu(ξ) defined in Eq. (15.4).

15.2 Determine the spatial spectral density S̃uu(k) of the signal u(x) = A ·cos(k0x).

15.3 A wave, displacement u(x, t) = A · sin[ω0(t − x/c)], is propagating along
the positive x-axis in a coordinate system. Determine the autocorrelation function
Ruu(ξ, τ ) and the corresponding spectral density S̃(k,ω).

15.4 Use the expression S̃(k,ω) derived in Problem 15.4 to calculate the time and
space average of the displacement squared, 〈ū2〉, for u(x, t) = A · sin[ω0(t − x/c)].
15.5 Show that the time average of the input power to mode (m, n) to a plate is
�̄mn = ωmnη ¯ mn where ¯ mn is the total energy of that mode and η is the loss
factor and ωmn the natural angular frequency for that mode. Assume rain on the roof
excitation.

15.6 A beam is simply supported at both ends. The beam is excited by a random
force per unit length. The autocorrelation function of the force is RF ′ F ′(ξ, τ ) =
S0 · δ(ξ) · δ(τ ) where ξ is the separation in space and τ in time of the force function.
The bending stiffness of the beam is D′, its mass per unit length m′ and its length L .

Determine the space and time average of the kinetic energy of the beam.

15.7 Solve Eqs. (15.70) and (15.71).

15.8 Show that the autospectrum of the velocity of a flat plate excited by a TBL is
proportional to 1/h3 where h is the thickness of the plate.

15.9 Show that the velocity squared of a water loaded plate excited by a water flow
is proportional to h−9/4.



Chapter 16
Transmission of Sound in Built-Up Structures

Maximum permissible noise and vibration levels are often required for most types of
machinery, vehicles, and buildings. These requirements could either be law enforced
or indirectly set by consumers. Very often a low-noise product is synonymous with
a high-quality product. During the design phase of a manufacturing process of new
products the acoustical performance of the products should be considered. It is always
difficult, if at all possible, to introduce noise reducing measures once a construction
has been manufactured. Consequently, there is a need for reliable noise prediction
methods which can be used during the design phase of a new product.

During the design phase it should be ensured that the fundamental frequencies
of the main sources, which are part of the construction, do not coincide with some
of the first few natural frequencies of the main construction or its substructures.
Another major task is the prediction of noise levels, internal as well as external, in
the audible frequency range, often in 1/3 or 1/1 octave bands, from 80 to 3150Hz.
This type of prediction is often based on measurements on an existing construction.
The purpose of the prediction is to evaluate possible changes and improvements to
be implemented in a new construction or model.

There are as yet no general prediction model which can be used for these tasks.
Often workable prediction models are developed for a certain class of construction,
for example, a building, train, car, or a ship. In the low-frequency region predictions
are generally based on the finite element method. In the high-frequency region the
so-called Statistical Energy Analysis technique, SEA, is often favored. However, for
certain large constructions, for example ships, the waveguide model has been applied
for predicting noise levels in accommodation spaces.

In this chapter some basic elements of SEA and some applications are discussed.
It is also demonstrated how the waveguide model can be used to predict noise levels
in ships and other vehicles.

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
A. Nilsson and B. Liu, Vibro-Acoustics, Volume 2,
DOI 10.1007/978-3-662-47934-6_16

379



380 16 Transmission of Sound in Built-Up Structures

16.1 Introduction

The noise levels inside a large construction, for example a double-decker train,
depend not only on the various noise sources but also on the construction itself.
The noise sources like wheel–track interaction vary depending on speed and other
running conditions. Variations of noise levels between similar products can also
be caused by constructional differences. Even apparently identical structures can
acoustically be rather different. Fahy [292] demonstrated that frequency response
functions measured in the same way on very simple and presumably identical con-
structions, beer cans, could vary considerably. The narrow-band frequency plot of
the 41 FRFs shows a spread of the order 20 dB in a very wide frequency range.
The frequency and amplitudes of FRF peaks are shifted between the various mea-
surements. Similar findings have been reported by Kompella and Bernhard [253],
who used 98 vehicles of the same make for their experiment. A force was applied
to a wheel and the acoustic response at the position of a driver’s ear was recorded.
Although the FRF for each car shows the same characteristics, the plot of all the
resulting 98 FRFs shows a spread of approximately 20 dB from 50 to 500Hz.

In practice it is not possible to identify two acoustically identical systems among
mass-produced structures. There are many reasons for this. Plate elements used for
the manufacturing of many products are slightly different with respect to thickness,
material parameters, curvature, and thus also boundary conditions. The dramatic
influence of a slight curvature of a plate on its natural frequencies was discussed in
Sect. 8.8. A variation of the thickness of a plate by 4% would also shift the natural
frequencies of the plate by 4%. A change of width and length by the same amount
would shift the natural frequencies by approximately 8% and so on. The boundary
conditions of a structure are of critical importance for the natural frequencies of
the structure. Boundary conditions depend on the joining of structures. One specific
welded joint can hardly be reproduced. The tension in plates can vary with ambient
temperature to change a curvature or a boundary condition. A certain manufactur-
ing process can give one result in the morning and another in the afternoon due to
varying ambient temperatures. All these effects will influence any FRF in an appar-
ently random way. Any attempt to predict noise levels in narrow frequency bands is
therefore in most cases meaningless. Noise levels should preferably be determined in
frequency bands, typically 1/3 or 1/1 octave bands, for the result to be representative
for a certain type of structure. In general, measurements in 1/1 or 1/3 octave bands
can be reproduced quite well. A narrow-band analysis, measurement or predictions,
can be used for identifying the dominating natural frequencies of a construction with
respect to some excitation. The exact natural frequencies representing a number of
seemingly identical products cannot be determined due to structural variations. How-
ever, a narrow-band analysis can form the basis for changing the structure in order
to shift some natural frequencies.

The degree of detail of any noise prediction scheme should be considered care-
fully. Certain structural elements could have only a minor influence on the predicted
result. A simple example is illustrated in Fig. 16.1. The first natural frequency of a

http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 16.1 FEM models for
the prediction of the first
natural frequency of
superstructure on a ship.
From Ref. [254]

(A)

(B)

(C)

(D)

Table 16.1 FEM models and predicted results

Model Number of
elements

Degrees of
freedom

First natural
frequency (Hz)

Error (%)

A 484 61 11.5 39

B 1190 165 9.0 8

C 1500 315 8.8 6

D 2150 445 8.2 −1

superstructure on a ship should be calculated using a FEM technique. The natural
frequency should be well separated from the fundamental frequencies of the main
forces induced by propellers and main engines. Four different FEM models were
used. The models used were: (A) Superstructure clamped to a solid foundation; (B)
Superstructure plus engine room below; (C) Superstructure plus complete model of
aft body; (D) Complete ship.

The fundamental frequency was determined by full-scale measurements to be
8.3Hz. The predicted results are given in Table16.1. For this type of prediction,
Model A is too inaccurate, whereas the result given byModel B is sufficiently precise
to determine if the first natural frequency is well separated from the fundamental
frequencies of the main sources. Model D is unnecessarily detailed. Clearly, a certain
experience of the programmer is required to determine how detailed a model must
be made.

The energy flow in any structure is mainly carried by flexural, longitudinal, and
transverse waves. Simple measurements on scale models or for that matter full-scale
structures can often reveal if any particular wave type is dominating the energy flow.
The inclusion of many wave types in a prediction model drastically increases the
complexity of any prediction. Certain sources can often be neglected except perhaps
very close to their coupling points to themain structure. Any predictionmodel should
be compared to or calibrated againstmeasurements on scalemodels or real structures.
Even if the absolute levels predicted are not quite correct the prediction model might
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still be used to estimate level differences due to certain structural changes of the main
construction. It should also be possible to use a prediction program for determining
the relative importance of the main noise sources and the dominant transmission
paths. At the receiving end a prediction should identify the most radiating surfaces
facing a particular enclosure. For any prediction to be successful the operator of the
prediction programmust be experienced and knowledgeable of the general acoustical
characteristics of the product being investigated.

Three methods for the prediction of the propagation of structure borne sound in
large structures are discussed in this chapter. Themethods could be termed empirical,
statistical, or analytical. The prediction schemes discussed are based on Statistical
Energy Analysis or SEA, empirical models, and the waveguide model. Empirical
methods can be very informative during the acoustical planning of a new construction
which is a modification of an existing design. The upper frequency limit for a FEM
calculation is too low to make FEM feasible for standard noise predictions. For
example, a FEMmodel of a 2m section of a Fokker 50 commercial aircraft, required
24,000 degrees of freedom for the prediction of the sound transmission loss of the
fuselage up to 120Hz as reported by Roozen [255]. A full FEM model of the entire
25m long aircraft would require approximately 6 × 105 degrees of freedom for
frequencies up to 125Hz.

16.2 Statistical Energy Analysis, SEA

The SEAmethod was introduced in the early 1960s. The method was initially devel-
oped for the prediction of the response of space craft structures during take off. Fun-
damental work was carried out, for example, by Lyon, Scharton, Maidanik, Smith
Jr., Heckl, and Fahy. Some basic reports on SEA are given in Refs. [256–269]. Some
of the basic results have been summarized by Lyon [258]. As the name of the method
implies the SEA procedure is a statistical method. The basic parameter is energy.
The method is developed for systems excited by white noise. A system can consist of
a number of coupled subsystems. In practice this could mean an assembly of plates
and beams which are connected mechanically. The total energy and thus the average
velocity of each subsystem is calculated within a frequency band—for example, 1/1
or 1/3 octave bands. Each subsystem should have a large number of natural frequen-
cies within the frequency band of interest. Only the resonant transmission of energy
is considered. The SEA formalism is very simple which might be one reason for its
popularity and abuse.

The initial concept of SEAwas based on the study of the energy flow between two
coupled simple linear oscillators. Continuous systems like beams and plates, when
excited by external forces, vibrate as an infinite set of simple oscillators as discussed
in Chaps. 6, 7 and 8. Each oscillator corresponds to a vibration mode which can
be represented as a simple mass–spring system with a certain modal mass, modal
stiffness and modal losses and excited by a modal force. The study of the energy
flow between continuous systems can therefore be considered as an extension of

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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Fig. 16.2 Two coupled
oscillators excited by two
external forces. From Ref.
[256]

the problem relating the energy flow between two simple oscillators as proposed by
Lyon and Maidanik in their by now classical paper [256].

The starting point for the problem discussed by Lyon and Maidanik and later by
Scharton and Lyon [257] is the coupled oscillators shown in Fig. 16.2.

The two oscillators are linear and are mounted on an infinitely stiff foundation.
The coupling between the masses of the oscillators is due to a simple spring with a
spring constant kc, a mass coupling mc, and finally a gyroscopic coupling G. The
vertical displacements of the masses are given by y1 and y2 as indicated in the figure.
The equations of motion for the two systems are most readily derived by means of
Lagrange equation (9.99) as demonstrated in Problem 16.1. The equations of motion
are

(m1 + mc/4)ÿ1 + c1 ẏ1 + (k1 + kc)y1 + (mc/4)ÿ2 − G ẏ2 − kc y2 = F1(t)

(m2 + mc/4)ÿ2 + c2 ẏ2 + (k2 + kc)y2 + (mc/4)ÿ1 + G ẏ1 − kc y1 = F2(t) (16.1)

A somewhat more simple case can illustrate the energy flow between the two oscil-
lators by assuming that the coupling between the oscillators is only due to the ideal
spring between the two masses. The procedure to derive the energy flow between
the oscillators shown in Fig. 16.2 is the same as for the simple case, although much
more cumbersome. Thus by setting G = 0 and mc = 0, the Eq. (16.1) are reduced to

m1 ÿ1 + c1 ẏ1 + (k1 + kc)y1 − kc y2 = F1(t)

m2 ÿ2 + c2 ẏ2 + (k2 + kc)y2 − kc y1 = F2(t) (16.2)

The time average of the input power inducedby the force F1(t) to thefirst oscillator
is written �̄1 = E[F1 ẏ1]where E[F1 ẏ1] stands for the expected value of the product
within the brackets as defined in Sect. 2.3. The input power to oscillator 1 is obtained
bymultiplying thefirst equation of (16.2) by ẏ1 and thereafter forming the expectation
values of all the products. Thus the expectation values are

http://dx.doi.org/10.1007/978-3-662-47807-3_9
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m1E[ÿ1 ẏ1] + c1E[ẏ1 ẏ1] + (k1 + kc)E[y1 ẏ1] − kc E[y2 ẏ1] = E[F1 ẏ1] (16.3)

The forces F1 and F2 are assumed to be random and uncorrelated. Consequently, the
displacement y1 is also random. For this type of signal it was shown in Sect. 2.3, Eqs.
(2.26) and (2.27) that E[y ẏ] = E[ẏ ÿ] = 0. The expected value or the time average
of the input power to the mass 1 induced by the external force F1 is �̄1 = E[F1 ẏ1].
The energy flow from oscillator 2 to oscillator 1 across the common spring is �̄21 =
E[kc y2 ẏ1]. Inserting these results in Eq. (16.3) the equation is reduced to

c1E[ẏ1 ẏ1] = �̄1 + �̄21 (16.4)

In similar way the energy flow to oscillator 2 is

c2E[ẏ2 ẏ2] = �̄2 + �̄12 (16.5)

Since �̄21 = E[k0y2 ẏ1] and �̄12 = E[k0y1 ẏ2] it follows from Sect. 2.3 that
E[y2 ẏ1] + E[y1 ẏ2] = 0 which leads to the result

�̄21 = −�̄12 (16.6)

For random excitation the kinetic and potential energies of each oscillator are equal
as discussed in Sect. 2.7, Eqs. (2.65) and (2.66). Therefore the quantity c1E[ẏ1 ẏ1]
can also be written as c1E[ẏ1 ẏ1] = ωδ1 ¯ 1 where ¯ 1 is the total energy of oscillator 1
and δ1 the loss factor of spring 1. Compare Sect. 1.6 and Problem 16.1. Consequently,
the Eqs. (16.4) and (16.5) can be reduced to

�̄1 + �̄21 = ωδ1Ē1 = �̄d1; �̄2 + �̄12 = ωδ2Ē2 = �̄d2 (16.7)

The power dissipated due to losses in the spring of oscillator 1 is denoted �̄d1. The
power lost in oscillator 2 is given by �̄d2. By adding the two expressions of Eq.
(16.7) and considering the result (16.6), it is found that

�̄1 + �̄2 = �̄d1 + �̄d2 (16.8)

Thus, the sum of the input power to the oscillators is equal to the sum of the power
dissipated in the two systems or rather in the springs supporting themasses. Compare
also the discussion of the energy flow between three coupled plates presented in
Sect. 8.4.

In order to describe the energy flow between the oscillators the quantities y1, ẏ1,
y2 and ẏ2 must be determined. Using the Fourier transforms of y1, y2, F1 and F2 the
basic equations describing the displacements of the oscillators are written in matrix
form as

[A]

{
ŷ1
ŷ2

}
=
{

F̂1

F̂2

}

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_8
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[A] =
[−ω2m1 + iωc1 + k1 + kc −kc

−kc −ω2m2 + iωc2 + k2 + kc

]
(16.9)

The spring constant kc is real representing a loss-free coupling. The spring constants
k1 and k2 have losses described by the parameters c1 and c2 as discussed in Chap. 1.
The FTs of the displacements are given in matrix form as

{
ŷ1
ŷ2

}
= [B]

{
F̂1

F̂2

}
=
[

b11 b12
b21 b22

]{
F̂1

F̂2

}

[B]= [A]−1=
[−ω2m2+iωc2+k2+kc kc

kc −ω2m1+iωc1+k1+kc

]
/Det [A]

(16.10)
The autospectrum of the velocity of oscillator 1 is, following the definitions in
Sect. 2.7, given by

(Gvv)1 = lim
T →∞

ω2
∣∣ŷ∣∣2
T

Consequently

(Gvv)1 = ω2[|b11|2 (G F F )1 + |b12|2 (G F F )2];
(Gvv)2 = ω2[|b22|2 (G F F )2 + |b21|2 (G F F )1] (16.11)

The elements bi j of the matrix [B] are defined in Eq. (16.10). The time average of
the total energy of oscillator 1 is obtained from (2.49) as

¯ 1 = m1

2π

∫ ∞

0
(Gvv)1dω = m1ω

2

2π

∫ ∞

0

[
|b11|2 (G F F )1 + |b12|2 (G F F )2

]
dω

(16.12)
For white noise excitation (G F F )1 and (G F F )2 are constant. For a weak coupling
between the oscillators it can be assumed that the total energy of oscillator 1 is the
same as if oscillator 2 were stationary, i.e., as if y2 were equal to zero. Based on these
considerations and following the procedure outlined in Sect. 2.7, the time average of
the total energy of oscillator 1 is obtained as

¯ 1 = m1

2π

∫ ∞

0

ω2 (G F F )1∣∣−m1ω2 + k1 + kc + iωc1
∣∣2 dω = (G F F )1

4c1
(16.13)

In a similar way the total energy of oscillator 2 is given by

¯ 2 = (G F F )2

4c2
(16.14)

http://dx.doi.org/10.1007/978-3-662-47807-3_1
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_2
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The energy flow from oscillator 2 to oscillator 1 is defined by its power spectral
density

G�21 = Re
{
−iωkc[(G F F )1(b21b∗

11 − |b11|2) + (G F F )2(b22b∗
12 − |b12|2)]

}

= ωkc[(G F F )1 I m(b21b∗
11) + (G F F )2Im(b22b∗

12)] (16.15)

For a weak coupling between the oscillators or for kc � k1 and kc � k2 the elements
bi j of Eq. (16.10) can be approximated as

b11= 1

−m1ω2 + iωc1 + k1
; b12= kc

(−m1ω2+iωc1+k1)(−m2ω2 + iωc2 + k2)

b21= kc

(−m1ω2+iωc1 + k1)(−m2ω2+iωc2 + k2)
; b22= 1

−m2ω2+iωc2 + k2

These expressions in combination with Eq. (16.15) yield

G�21 = k2c
m2

1m2
2

· ω[ωc1(G F F )2 − ωc2(G F F )1]
[(ω2

1 − ω2)2 + (ωc1/m1)2][(ω2
2 − ω2)2 + (ωc2/m2)2]

(16.16)

According to Eqs. (16.13) and (16.14) the time average of the total energy of system
n is ¯ n = (G F F )n/(4cn). Inserting this result in Eq. (16.16) gives

G�21 = 4c1c2k2c
m2

1m2
2

[ ¯ 2− ¯ 1
] ω2

[(ω2
1−ω2)2+(ωc1/m1)2][(ω2

2−ω2)2+(ωc2/m2)2]
(16.17)

The energy flow from oscillator 2 to oscillator 1 is given as

�̄21 = 1

2π

∫ ∞

0
Re
(
G�21

)
dω = γ21

( ¯ 2 − ¯ 1
)

(16.18)

where

γ21 = 4c1c2k2c
2πm2

1m2
2

∫ ∞

0

ω2dω

[(ω2
1 − ω2)2 + (ωc1/m1)2][(ω2

2 − ω2)2 + (ωc2/m2)2]

= k2c
m1m2

{
c2

m2[(ω2
1 − ω2

2)
2 + (ω1c2/m2)2]

+ c1
m1[(ω2

1 − ω2
2)

2 + (ω2c1/m1)2]

}
(16.19)

It follows from Eq. (16.6) that

�̄12 = γ12
( ¯ 1 − ¯ 2

) ; γ12 = γ21 (16.20)
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The result (16.20) shows that the energyflowbetween twoweakly coupledoscillators,
each excited by a random force, white noise, is proportional to the energy difference
between the oscillators. The parameter γ12 = γ21 is always positive as given by Eq.
(16.19). Consequently, the energy flow between the oscillators is always from the
oscillator with the highest energy to the oscillator with the lowest energy. A complete
analysis [258] of the energy flow between the oscillators shown in Fig. 16.2 gives
the same basic result as for the simplified case discussed here. Thus, the energy flow
between the oscillators shown in Fig. 16.2 is also proportional to the difference of
energy between the two systems. However, the proportionality factor is different for
the two cases.

Fahy et al. [270] investigated the energy flow between two oscillators having a
nonconservative coupling consisting of a spring and a damper. It was found that the
energy between the systems could be written as

�̄12 = γ′
12

( ¯ 1 − ¯ 2
)+ α ¯ 1 + β ¯ 2 (16.21)

Consequently, for a nonconservative coupling between the oscillators the simple
relationship (16.20) no longer holds.

The results (16.18) and (16.20) were derived based on some very important
assumptions. These are:

(i) The forces exciting theoscillators are random,white noise, and thus uncorrelated.
(ii) The losses of the oscillators are viscous, i.e., the parameters c1 and c2 in Eq.

(16.2) are constant and thus frequency independent.
(iii) The coupling parameter kc is loss free.
(iv) The energy of an oscillator is assumed to depend on the input power from the

external force exciting the oscillator and to a lesser extent to the energy flow
from the other system. This requirement can be formulated as

∣∣�̄1
∣∣ � ∣∣�̄21

∣∣
for oscillator 1. Consequently, each oscillator is assumed to vibrate as if almost
uncoupled to the other oscillator. This necessitates a weak coupling between
the systems. A weak coupling also requires that kc � k1 and k2.

(v) The natural angular frequencies ω1 and ω2 of the two systems should be well
separated in order to make the coupling factors γ12 and γ21 small. Whenever
the natural frequencies coincide the coupling factors are large as shown by Eq.
(16.19). The requirement to weak coupling is no longer satisfied if ω1 ≈ ω2.

The result (16.18) forms the basis for the technique referred to as Statistical Energy
Analysis or quite simply SEA. In the next section the technique is extended to include
energy flow between continuous systems like beams and plates.

16.3 Energy Flow Between Continuous Systems

“Rain on the roof” excitation of structures was discussed in Sects. 8.2 and 15.3. This
type of excitation is equivalent to the structure being excited by a large number of
sources scattered over its surface. Each source having the same strength or rather the

http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_15
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Fig. 16.3 Coupling between
modes in two different
systems

same power spectral density. The sources have white noise spectra and are conse-
quently uncorrelated. For a structure excited in this way the time and space averages
of the total energy per mode is the same if the losses in the system are viscous.
This was demonstrated in Eqs. (6.81), (7.70), (8.39) and again in Eq. (15.50). If in a
system each mode has the same energy, there is said to be an equipartion of energy.
In a diffuse acoustic field in a closed space, the modal energy is the same assuming
random excitation and a certain equivalent absorption area in the enclosed space.
This is discussed in Problem 16.2.

If it is assumed that the coupling between any mode in one system and any other
mode in a second system is the same, the simple concept of energy flow between
two oscillators can be applied to describe the total energy flow between two con-
tinuous systems. The coupling between the modes of the two systems is illustrated
in Fig. 16.3. Let, within a frequency band � f , there be N1 modes in system 1 and
N2 modes in system 2. The space and time average of the total energy of system
1 is ¯ 1� f and ¯ 2� f for system 2 within the same frequency band � f . The modal
energies for the two systems are

ε1 = ¯ 1� f /N1; ε2 = ¯ 2� f /N2 (16.22)

By defining the coupling loss factor between a mode of system 1 and a mode of
system 2 by γ′

12 the energy flow π̄12 between modes is, following the discussion in
Sect. 16.2, written as

π̄12� f = γ′
12(ε1 − ε2) (16.23)

The total flow from N1 modes in system 1 to N2 modes in system 2 is consequently,

�̄12� f = N1N2γ
′
12(ε1 − ε2)=γ′

12(
¯ 1� f N2 − ¯ 2� f N1)=ωη12 ¯ 1� f − ωη21 ¯ 2� f

(16.24)
The parameter ηi j is termed the coupling loss factor, or CLF, between the systems i
and j . It follows from Eq. (16.24) that

η12/N2 = η21/N1 (16.25)

http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47807-3_7
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_15
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Fig. 16.4 Energy flow
between two continuous
systems

Consider now the coupling between two multimode systems. One of the systems is
excited by a force. The input power to system 1 is �̄1. The energy flow between the
systems is illustrated in Fig. 16.4.

The energy flows are written

�̄1 = �̄d1 + �̄12; �̄12 = �̄d2 (16.26)

The power dissipated in system i is following Eq. (16.7) �̄i = ωηi ¯ i . The energy
flow �̄12 is according to Eq. (16.24) �̄12 = ωη12 ¯ 1 − ωη21 ¯ 2. These expressions
inserted in Eq. (16.26) give the energies and the ratio between the energies of the
systems as

¯ 1 = �̄1
η2 + η21

ω[(η1 + η12)(η2 + η21) − η12η21] ;
¯ 2 = �̄1

η12

ω[(η1 + η12)(η2 + η21) − η12η21]
¯ 1
¯ 2 = η2 + η21

η12
(16.27)

For a weak coupling, η1 � η12 and η2 � η21. Thus from Eq. (16.27)

¯ 1 ≈ �̄1

ωη1
; ¯ 2 ≈ η12�̄1

ωη1η2
; ¯ 1

¯ 2 ≈ η2

η12
(16.28)

The energies can be reduced by increasing the losses of system 1 or of both systems
when the coupling is weak.

For a strong coupling, η12 � η1 and η21 � η2. Thus

¯ 1 ≈ �̄1

ω(η1 + η2η12/η21)
= �̄1

ω(η1 + η2N2/N1)
;

¯ 2 ≈ �̄1

ω(η2 + η1N1/N2)
; ¯ 1

¯ 2 ≈ η21

η12
= N1

N2
(16.29)
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The modal energy is the same in both systems when the coupling is strong.
For a lightly damped system any FRF exhibits narrow peaks. As the damping of

the system is increased the amplitude of the peaks decreases and the width of the
peaks widens and the peaks start to overlap as shown in Fig. 16.3. This overlapping
effect improves the coupling between resonant systems. The so-called modal overlap
M( f ) is defined as the ratio between the half bandwidth of a resonance peak and
the average frequency space between two natural frequencies. The half bandwidth is
defined in Eq. (2.87) as f1 − f2 = f0η where η is the loss factor of the system at its
natural frequency f0. The frequencies f1 and f2 are the frequencies for which |H |2
has dropped 3dB from its maximum. The FRF is given by H. The average frequency
distance between two natural frequencies is � f = 1/N f where N f is the modal
density of the system. Following these definitions the modal overlap is given as

M( f ) = η · f · N f ( f ) (16.30)

The response of a structure depends strongly on the modal overlap. For M � 1
distinct resonances can be observed. The resonant peaks occur at the same fre-
quency irrespective of the observation or measurement point. For M � 1 many
resonances overlap and no distinct peaks can be recorded. The frequency of a peak
can vary depending on the observation point. It is suggested, for example, by Fahy
and Mohammed [271] that the modal overlap should be greater than 1 to satisfy the
basic assumptions of SEA. Although the study [271] was limited to some simple
cases, the requirementMi > 1 has prevailed. Experience has shown that the modal
overlap should exceed unity for SEA to be applicable for estimating the energy
distribution between coupled systems.

The number of modes within a frequency band is of prime importance for making
a successful estimate of the energy of a resonant system. This was discussed in
Sect. 6.4. Compare Figs. 16.6 and 16.7. Preferably, there should be more than four
modes per frequency band for using SEA for estimating energies of resonant systems.

16.4 Coupling Between Acoustic Fields and Vibrating
Structures

One of the first successful applications of the SEA technique was the prediction
of plate vibrations induced by strong acoustic fields. This type of problem is of
importance for any type of spacecraft. High vibration levels can lead to material
fatigue. The coupling between vibrating structures and acoustic fields using the SEA
technique is discussed by Lyon [258]. A different approach is used in Sect. 13.2 for
the prediction of the response of flat rectangular plates which are excited by acoustic
fields. The response of curved plates was discussed in Sect. 15.6.

Another problem is illustrated in Fig. 16.5.A plate is facing an enclosed space. The
plate is exposed to “rain on the roof excitation” discussed in Sect. 15.3. The acoustic

http://dx.doi.org/10.1007/978-3-662-47807-3_2
http://dx.doi.org/10.1007/978-3-662-47807-3_6
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_15
http://dx.doi.org/10.1007/978-3-662-47934-6_15
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Fig. 16.5 Plate excited by
an acoustic field, left, and
plate radiating sound into a
closed space

power �̄rad radiated by the vibrating panel into the enclosed space is according to
Eq. (12.97) given by

�̄rad = ρ0cSσ̄r |v̄|2 (16.31)

where σ̄r is the sound radiation ratio discussed in Sect. 12.9 and defined in Eqs.
(12.98) through (12.100). The radiated power can also be written as

�̄rad = ωη12Ē1 = ωη12μS |v̄|2 (16.32)

The Eqs. (16.26) and (16.27) give

η12 = ρ0cσ̄r

μω
(16.33)

The coupling loss factor η21 between the acoustic field and the plate is according
to Eq. (16.25) equal to η21 = N1η12/N2 where N1 and N2 are the number of modes
within the frequency band � f of the plate and the enclosed space respectively. N1
and N2 are given in Eqs. (8.18) and (11.137) as

N1 = � f · S

2

√
μ

D0
= � f · π fc

c2
; N2 = � f · 4π f 2V

c3
(16.34)

The center frequency of the band is f . The critical frequency of the structure is
fc and is according to Eq. (12.18) defined as fc = c2/(2π)

√
μ/D0. The volume of

the closed space is V and the speed of sound in the enclosed fluid is c. Consequently,
the coupling loss factor η21 is obtained as

η21 = N1

N2
η12 = ρ0c4σ̄rS

16π2 f 3V1
√

μD0
= ρ0c2σ̄r fc S

8π f 3μV1
(16.35)

Following the result (11.155) the average pressure squared in a closed space, volume
V, with a diffuse acoustic field, total energy E , is

〈| p̄|2〉 = ρ0c2 ¯ /V (16.36)

For a plate excited by an acoustic field in a closed space the total energy E1 of the
plate is obtained from

http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47807-3_8
http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_12
http://dx.doi.org/10.1007/978-3-662-47934-6_11


392 16 Transmission of Sound in Built-Up Structures

�̄21 = ωη21 ¯ 2 = ωηd1 ¯ 1 = ωηd1Sμ〈|v̄|2〉

Thus,

〈|v̄|2〉 = 〈| p̄|2〉 c2σ̄r

16π2 f 3ηd1D1/2
0 μ3/2

= 〈| p̄|2〉 σ̄r · fc

8π · f 3ηd1μ2 (16.37)

However, the response of the structure is not only due to the coupling between
resonant modes in the acoustic space and modes of the vibrating structure. There
is also a nonresonant coupling between the structures. In the low-frequency region,
f < fc/2, the response of the plate is determined by its mass rather than its stiffness
as discussed in Sect. 13.1. The velocity v0 of a mass exposed to a pressure pw is
v0 = pw/(iωμ). The pressure squared on the wall is twice as high as the average
pressure squared in the enclosure. Thus

〈|v̄0|2〉 = 2〈| p̄|2〉
(μω)2

(16.38)

The total velocity squared is assuming uncorrelated resonant and nonresonant fields
are from Eqs. (16.37) and (16.38) obtained as

〈|v̄|2〉 = 〈| p̄|2〉
[

2

(2π f μ)2
+ σ̄r · fc

8π · f 3ηd1μ2

]
(16.39)

In the low frequency region, f < fc/2, the radiation ratio σ̄r is very small resulting
in that the first term inside the bracket dominates over the second expression. The
response of the plate can for f < fc/2 be written as

L p/v = 10 log

[
2(ρ0c)2

(μω)2

]
≈ −9 − Rd dB for f < fc/2 (16.40)

The sound transmission loss of structure Rd is defined in Eq. (13.21). The result
(16.40) is the same as that previously derived in Sect. 13.2.

In the high-frequency region, f > fc, the radiation ratio σ̄r > 1 and the second
expression inside the bracket of Eq. (16.39) dominates over the first expression.
Consequently, the response of the structure is given by

L p/v =10 log

[
(ρ0c)2〈|v̄|2〉

〈| p̄|2〉

]
=10 log σ̄r − 10 log

(
f 3ηd1μ

2

fc

)
+ 38≈−6−Rd dB

(16.41)
where Rd is the sound transmission loss of the panel for f � fc. The result is the
same as that presented at the end of Sect. 13.2 for f > fc.

Throughout the discussion it has been assumed that the coupling loss factors
between different modes of the plate and the acoustic field are the same. However, in

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Sect. 12.9 it was shown that the modal radiation ratio depends on the vibration mode
of the panel. In particular this is the case in the low-frequency region. The results
of Fig. 16.9 show that the modal radiation ratios converge for f > fc/2 where fc

is the critical frequency of the plate. This would make the result (16.39) valid for
f > fc/2 only. However, in the low-frequency region σ̄r � 1 and the result (16.39)
is approximately correct even in this frequency range.

16.5 Prediction of Sound Transmission Through a Panel
Using SEA

The sound transmission loss of a panel mounted between two reverberant rooms can
be predicted based on the SEA technique as suggested by Crocker and Price in [178].
The problem is illustrated in Fig. 16.6. A loudspeaker is generating acoustic power
�̄1 into room 1. The energy flow between the rooms 1 and 3 is caused by resonant
and nonresonant transmissions. The acoustic field in room 1 induces reverberant
vibrations of the structure. This energy flow is denoted �̄12. The resulting resonant
vibrations of the plate radiate power �̄23 into room 3. The nonresonant transmission
between the rooms is given by �̄13. The rooms and the structure all have losses
denoted �̄dn for n =1, 2 and 3.

The balance of energy between the systems shown in Fig. 16.6 requires that

�̄1 = �̄12 + �̄13 + �̄d1; �̄12 = �̄23 + �̄d2; �̄13 + �̄23 = �̄d3 (16.42)

The total energy of system i is given by ¯ i . The loss factor of system i is ηdi . The
power �̄di dissipated in system i is

�̄di = ωηdi ¯ i (16.43)

The energy flow �̄i j between systems i and j is according to Eqs. (16.24) and (16.25)
given by

Fig. 16.6 A panel mounted
between two rooms and the
corresponding energy flow
chart. An acoustic source is
operating in room 1

http://dx.doi.org/10.1007/978-3-662-47934-6_12
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�̄i j = ωηi j Ni

( ¯ i

Ni
− ¯ j

N j

)
(16.44)

In addition, from Eq. (16.25) ηi j/N j = η j i/Ni . The Eqs. (16.42) through (16.44)
give

¯ 1
¯ 3 = (ηd3 + η31 + η32)(ηd2 + η21 + η23) − η32η23

η13(ηd2 + η21 + η23) + η12η23
(16.45)

The derivation is left for Problem 16.3. In most practical cases the dissipated power
in a room due to its absorption is much larger than caused by the energy flow from
the acoustic field in the room to the panel and to the other room. Thus, ηd3 � η32 and
ηd3 � η31. If these conditions are satisfied the coupling is often referred to as being
weak. In general, the coupling between resonant acoustic fields and vibration fields
areweak.The total loss factorη2tot of the panel is the sumof the internal loss factorηd2
and the losses due its radiation to the rooms. Consequently, η2tot = η2d + η21 + η23.
The ratio between the pressure squared in the two rooms is therefore reduced to

〈| p̄1|2〉
〈| p̄3|2〉

=
( ¯ 1V3

¯ 3V1

)
≈ V3

V1
· ηd3

η13 + η12η23/η2tot
(16.46)

According to Eq. (16.34) the number of modes within the frequency band � f in
room i is

Ni = � f · 4π f 2Vi

c3
for i = 1 or 3 (16.47)

The number of modes of the structure is given by Eq. (16.34) as

N2 = � f · π fcS

c2
(16.48)

The loss factors ηd1 and ηd3 in the rooms 1 and 3 can be expressed by means of the
equivalent absorption area Ai . Equation (11.159) gives

ηdi = Ai c

8π f Vi
for i = 1 or 3 (16.49)

The coupling loss factors η21 and η23 determine the resonant sound radiation from
the vibrating plate and are given by Eq. (16.34) as

η2 j = ρ0c2σ̄r S fc

8π f 3μVj
for j = 1 or 3 (16.50)

In the low-frequency region the nonresonant sound transmission through the panel
determines the ratio between the pressure squared in the two rooms. In Sect. 11.15
it was shown that for f � fc this ratio is given by

http://dx.doi.org/10.1007/978-3-662-47934-6_11
http://dx.doi.org/10.1007/978-3-662-47934-6_11
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〈| p̄1|2〉
〈| p̄3|2〉

= A3

τd S
(16.51)

where τd is the sound transmission coefficient of the panel for nonresonant transmis-
sion assuming a diffuse acoustic field in the source room. The sound transmission
loss Rd for nonresonant transmission is given in Eq. (13.21) or alternatively in Eq.
(13.22). The transmission coefficient can also be written as

τd = 10−Rd/10

The coupling loss factor η13 defining the nonresonant transmission is obtained from
Eq. (16.51) as

η13 = N3τd Sηd3

N1A3
= τd Sc

8π f V1
(16.52)

Compare Problem 16.4. Finally, by using Eq. (16.25), i.e., ηi j/N j = η j i/Ni , the
expression (16.46) giving the sound pressure level difference between the two rooms
is written

�L p = 10 log A3 − 10 log S − 10 log

[
τd + (ρ0c)2σ̄2

r fc
2πμ2 f 3η2tot

]
(16.53)

R = −10 log τ = −10 log

[
τd + (ρ0c)2σ̄2

r fc
2πμ2 f 3η2tot

]
(16.54)

In high-frequency region for f > fc the last term inside the bracket of the expres-
sion (16.54) dominates. In this frequency region σ̄r = 1/

√
1 − fc/ f and the sound

transmission loss is reduced to

R ≈ 10log

[
2πμ2 f 3η2tot
(ρ0c)2σ̄2

r fc

]

= 20 logμ + 30 log f + 10 log η2tot + 10 log(1 − fc/ f ) − 45 (16.55)

This is the same result as presented in Eq. (13.30). It can be noted that τ > τd ,
consequently R < Rd . Thus, the sound transmission loss of an infinite panel can
never exceed the sound transmission loss of a limp panel having the same mass. In
the low-frequency range, f < fc, the SEA derived sound transmission loss does not
quite agree with results based on other models. This is discussed in Sect. 16.7.

16.6 Sound Transmission Through Double Walls

The procedure for the prediction of the sound transmission loss of single leaf panels
can be extended also to include double wall constructions as demonstrated by Price
and Crocker [272]. Figure16.7 shows a double wall construction separating two

http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Fig. 16.7 A double wall
mounted between two rooms
and the corresponding
energy flow chart. An
acoustic source is operating
in room 1

reverberant rooms. There are no connections between the two panels except along
the frame that is assumed to be infinitely stiff. As in the previous case, discussed in
Sect. 16.5, the sound pressure level difference between the two reverberant rooms
1 and 5 is determined by both resonant and nonresonant transmissions. The energy
flow between the systems is also illustrated in Fig. 16.7.

The nonresonant energy flow from the source room 1 to the cavity 3 between the
plates is denoted �̄13 and from the cavity to room 5 by �̄35. The energy balance for
the various systems gives

�̄1 = �̄1d + �̄12 + �̄13; �̄12 = �̄2d + �̄23; �̄13 + �̄23=�̄3d + �̄34 + �̄35

�̄34 = �̄4d + �̄45; �̄35 + �̄45 = �̄5d (16.56)

As before

�̄id = ωηdi ¯ i ; �̄i j = ωηi j Ni ( ¯ i/Ni − ¯ j/N j ); Niηi j = N jη j i (16.57)

The ratio between the pressure squared in the rooms is

〈| p̄1|2〉
〈| p̄5|2〉

=
( ¯ 1V5

¯ 5V1

)
(16.58)

The ratio ¯ 5/ ¯ 1 is obtained from Eqs. (16.57) to (16.58) as

¯ 1
¯ 5 =

(
η5tot + η54η35

η34

)[
η4tot

η34

(
η3tot − η23η32

η2tot

)
− η43

]
(

η45 + η4totη35

η34

)(
η13 + η12η23

η2tot

)

−

(
η45 + η4totη35

η34

)[
η54

η34

(
η3tot − η23η32

η2tot

)
+ η53

]
(

η45 + η4totη35

η34

)(
η13 + η12η23

η2tot

) (16.59)
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The total loss factor ηitot of system i is the sum of internal plus radiation losses,
thus ηitot = ηdi +

∑
j

ηi j . The coupling loss factors and modal densities are in

principal derived as discussed in the previous sections. However, the volume of the
cavity between the plates is very small and the coupling between the cavity and other
systems has to be considered. If the distance d between the two plates of the double
structure is less than one-half wavelength in the enclosed fluid only modes parallel
to the plates can exist. Price and Crocker therefore assumed that the modal density
in the cavity is given by

N3 = 2π f S

c2
for f <

c

2d
; N3 = 4π f 2Sd

c3
for f >

c

2d
(16.60)

The details are left for Problem 16.5. It is assumed that the part of the cavity not
facing the plates, area Sc, is clad by amaterial with a sound absorption coefficientα0.
It is assumed that the equivalent absorption area in the cavity is Scα0 for f < c/(2d)

and 2Scα0/3 for f > c/(2d). Thus,

η3tot = Scα0c

8π f V3
for f <

c

2d
; η3tot = Scα0c

12π f V3
for f >

c

2d
(16.61)

It is also assumed by Price and Crocker that the radiation efficiency of a plate facing
the cavity is twice the radiation efficiency valid for free field conditions for frequen-
cies below the critical frequency. This is formulated as

ηi3 = ρ0cσ̄ir

πμ f
for f < fci ; ηi3 = ρ0cσ̄ir

2πμ f
for f > fci and i = 2 or 4 (16.62)

The number of modes in the rooms 1 and 5 within the frequency band � f are

Ni = � f · 2 f 2Vi

c3
for i = 1 and 5 (16.63)

The number of panel modes is

Ni = � f · S fci
c2

for i = 2 and 4 (16.64)

The remaining parameters are, as discussed in the previous sections, given by

ηi = Ai c

8π f Vi
for i = 1 and 5

η21 = ρ0cσ̄2r

2π f μ2
η45 = ρ0cσ̄4r

2π f μ4
(16.65)
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The equations (16.59) through (16.65) inserted in the expression (16.58) gives the
sound pressure level difference between the rooms separated by the double construc-
tion. The resulting sound transmission loss of the double construction is approx-
imately equal to the transmission loss already presented in Sect. 13.10. The main
difference between the results depends on how the acoustic field inside the cavity is
described. Based on experience the previously discussed formulae (13.127) through
(13.129) give satisfactory results as compared to measurements. In addition to prob-
lems of modeling the acoustic field inside the cavity also the coupling between the
plates via the common frame is a source of error. The acoustic properties of double
walls with mechanical couplings between the plates are described by Craik [268]
using the SEA technique. The acoustic performances of various types of double con-
structions are also discussed extensively by Fahy [189], Vigran [149] andKristensson
and Rindel [188]. See also Sect. 16.7.

The sound transmission between two rooms separated by a structure is not only
determined by the direct transmission through but also by energy flow, or flanking
transmission, via the adjoining structures as discussed in Sect. 13.11. SEA estimates
of flanking transmission are discussed byCraik [268],Guyader [273],Kihlman [193],
and others. Flanking transmission will increase the transmission between the rooms
and thus also decrease the expectedmeasured sound transmission loss of the structure
separating the rooms.

16.7 Limitation of SEA-Derived Sound Transmission Loss

A number of different methods for the prediction of the sound transmission loss
of single leaf panels have been discussed extensively in Chap.13, then again in
Sect. 14.16, and finally in Sect. 16.5. The models of Chap.13 and Sect. 14.16 give
rather similar results. Thesemodels all reveal that the sound transmission loss of even
a very large panel or in fact an infinite panel is increasing with frequency as predicted
by the simple mass law in the low-frequency region. As the frequency is approaching
the critical frequency there is a smooth gradual deviation from the simple mass law
curve as given by R1 and R2 in Fig. 13.3. The transmission loss, Eq. (16.54), derived
from SEA, does not exhibit this tendency. As the panel area becomes very large the
radiation ratio σ̄r of Eq. (16.54) tends to zero as given in Eq. (12.98) for f < fc.
The radiation ratio for an infinite panel is equal to zero for f < fc, as discussed
in Sect. 12.1, Eq. (12.19). The resulting sound transmission loss for a large panel is
according to the SEA model, Eq. (16.54) with σ̄r = 0 for f < fc, therefore given
by R3 in Fig. 13.3. The curve given by R3 is increasing more or less linearly up to
f = fc. Thereafter R3 drops sharply at the critical frequency to increase again for
f > fc. The reason for this anomaly is that the radiation ratio for a plate excited by
an acoustic field is different from and larger than the radiation ratio resulting from
free vibrations for f < fc as previously discussed in Sect. 13.2. The acoustic power
radiated from a plate excited by an acoustic field is determined by the velocity of the
plate and the radiation ratio σ̄a. This parameter σ̄a was first derived for an infinite

http://dx.doi.org/10.1007/978-3-662-47934-6_13
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panel in Sect. 13.2. It was found that σ̄a approaches 3/2 as the frequency tends to
zero. The corresponding radiation ratio for a wall mounted between two rooms was
in Eq. (13.126) found to be equal to 2 as the dimensions of the rooms tend to infinity.
In an ideal world the results for the two cases should have been the same. In the
high-frequency region, f > fc, the radiation ratios σ̄r and σ̄a are equal and given
as σ̄r = σ̄a = 1/

√
1 − fc/ f . The modal radiation ratio σmn , defined in Eq. (12.96)

and used in Eq. (14.98) is not equal to σ̄r. The parameter σ̄r is a modal average of
σmn . In the expression (14.98) giving the sound transmission coefficient for a wall
the modal radiation ratio is weighted with respect to the various modes by means of
the denominator. The sound transmission coefficient is given as

τd =
∑
mn

16πρ20c4σ2
mn

μ2Lx L y[(ω2
mn − ω2)2 + (ηmnω2

mn)2] (16.66)

For f > fc, σmn = σ̄a = 1/
√
1 − fc/ f . The summation of the expression (16.66)

should be made over all the plate modes. According to Eq. (8.19)

�N

�ω
= Lx L y

4π

√
μ

D0

Thus, τ̄d =
∑
mn

τmn →
∫

dω
�N

�ω
τmn . By using the expressions (8.19) and (16.66)

the result is

τ̄d = 4ρ20c4

μ2

√
μ

D0
·
∫ ωmn+�ω/2

ωmn−�ω/2

dω

[(ω2
mn − ω2)2 + (ηω2

mn)
2](1 − fc/ f )

(16.67)

This is by now a standard integral, first discussed in Sect. 2.7. The solution to Eq.
(16.67) is

τ̄d = 2πρ20c4

μ2ηω3
mn(1 − fc/ fmn)

√
μ

D0

By setting fc = c2

2π

√
μ

D0
and ω = ωmn the result reads

τ̄d = (ρ0c)2 fc
2πμ2 f 3η(1 − fc/ f )

(16.68)

This is the same result as that previously given by Eq. (13.29).
Also in the very low-frequency region the modal radiation ratio is constant and

independent of themodal numbers orσmn = σ̄a . For f � fc Eq. (16.66) is reduced to

τd =
∑
mn

16πρ20c4σ̄2
a

μ2Lx L yω4 (16.69)
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The number of acoustic modes N exciting the plate is according to Eq. (13.78) equal
to N = Lx L yk2/(4π) where k is the wavenumber in the fluid. Thus

τ̄d =
∑
mn

16πρ20c4σ̄2
a

μ2Lx L yω4 = N
16πρ20c4σ̄2

a

μ2Lx L yω4 = 4ρ20c2σ̄2
a

μ2ω2 (16.70)

For σ̄a = 2 as given by Eq. (13.126) for the plate dimensions approaching infinity
the sound transmission loss is obtained as

R = 20 logμ + 20 log f − 48 dB

This is the same result as previously given by Eq. (13.86).
The two examples discussed above illustrate that the parameter σ̄a can be used

to calculate the sound transmission loss of a panel. The parameter σ̄a is the sound
radiation ratio for a panel excited by an acoustic field. The radiation ratio σ̄r is the
result of radiation from resonant vibrations of a plate. For an infinite plate σ̄a > 0
and σ̄r = 0 for f < fc. For f > fc, σ̄a = σ̄r = 1/

√
1 − fc/ f . It also follows that

the radiation ratio σ̄r cannot be used indiscriminately in SEA calculations.

16.8 Coupling Between Vibrating Structures

The applicability of SEA is often based on the assumption that the coupling between
the resonant systems of the entire structure is weak. In general the coupling between
a structure and an acoustic field is weak. Often a coupling between two systems i
and j is referred to as weak if the coupling loss factor ηi j between them is much
smaller than ηid that determines the dissipated power in the system. According to
this definition a weak coupling requires ηi j � ηid as discussed in Sect. 16.3. Further,
it is argued in Sect. 16.3 that the modal overlap should exceed unity, i.e.,

Mi = ηi f Ni > 1 (16.71)

Over the years a very large number of papers on SEA has been published. There are
many numerical comparisons between the energy flow between simple structures
using exact methods and the SEA technique. In general fair agreement is obtained
in the high-frequency region. However, it is not always possible to define the lower
frequency limit for neither the applicability of SEA nor the possible error of a predic-
tion. Despite these fundamental shortcomings the SEA technique in its most primi-
tive form has been used rather successfully to predict the energy flow in complicated
structures like buildings, ships, and trains. The ultimate test of any predictionmethod
is a comparison with measured results. This type of comparison would indicate fre-
quency limits, accuracy of the coupling loss factors used, and approximate errors.
Once a model has been tested and calibrated the model could be used for parameter

http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Fig. 16.8 Two plate
elements coupled via a
junction

studies answering vital questions like; what happens if the material and geometrical
parameters of an element in a large construction are changed?

Of primary concern for any SEA calculation is the estimation of the coupling
loss factors. The energy flow between coupled plate elements were discussed in
Sect. 5.12. The coupling between two elements is illustrated in Fig. 16.8. According
to Eq. (5.153) the energy flow across the junction between the plates is for flexural
vibrations given by

�̄i j = ¯ i cgi τ̄i j Li j

πSi
= ωηi j ¯ i (16.72)

The group velocity for flexural waves on plate i is cgi , the length of the junction
between the plates is Li j and the average transmission coefficient, assuming a diffuse
field on plate i , is τ̄i j . The area of plate i is Si . The coupling loss factor between the
plates is obtained from Eq. (16.72) as

ηi j = cgi τ̄i j Li j

πωSi
= 2D1/4

0i τ̄i j Li j

πω1/2μ
1/4
i Si

(16.73)

The bending stiffness and mass per unit area of plate i are given by D0i and μi ,
respectively. As discussed in Sect. 5.8, a field incident on a junction between plates
can never be completely diffuse. It can therefore be argued, as by Heckl et al. [31],
that for many engineering applications it is sufficient to use a transmission coefficient
derived for normal incidence between infinite plates. The transmission coefficient
for diffuse incidence is slightly lower than the corresponding coefficient for normal
incidence. For example, the transmission coefficient for diffuse incidence across a
pinned junction between two identical plates is 2/3 of the transmission coefficient
for normal incidence as discussed in Sect. 5.8. Corrections for diffuse incidence for
a number of joints are discussed in Ref. [268]. Further, the transmission coefficient
between two finite systems is set to equal the transmission coefficient between two
semi-infinite systems. As a comparison it was found in Sect. 13.5 that the sound
transmission through a panel between two irregular finite rooms is the same as for an
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infinite panel. The transmission coefficients for flexural waves travelling across some
simple junctions are derived inSect. 5.9. In all cases normal incidence is assumed.The
energy flow across the junction is caused by rotation only, i.e., there is no translatory
motion of the junction.

The coupling loss factor between two beams i and j are given by

ηi j = cgiτi j

2ωLi
= (D′

0i )
1/4τi j

πω1/2(m′
i )
1/4Li

(16.74)

The mass per unit length of beam i is m′
i and its bending stiffness D′

0i and length
Li . The group velocity in beam i is given by cgi . It is assumed that the translatory
motion at the junction of the beams is zero. The transmission coefficient τi j is again
given in Sect. 5.9 for a number of different joints. The derivation of Eq. (16.74) is
left for Problem 16.6. The simple coupling loss factors do not apply to the coupling
between identical or periodic structures. Compare Sects. 7.7 and 7.8.

Craik has in his book [268] made a catalogue of coupling loss factors across
junctions between various types of constructions.

16.9 Energy Flow in Large Structures, SEA

It is suggested by Craik in [268] that the SEA technique outlined in the previous
sections can be used for the prediction of velocity-level differences in built-up struc-
tures as long as the basic SEA assumptions are satisfied. As an example consider the
built-up structure shown in Fig. 16.9. The construction consists of five plate elements.
Plate element 1 is excited by an external force, random noise. The power input to
plate 1 is �̄1.

The energy flows between the plates in Fig. 16.9 are obtained as

�̄1 = �̄d1 + �̄12 + �̄13; �̄12 = �̄d2 + �̄23; �̄13 + �̄23 = �̄d3 + �̄34 + �̄35

�̄34 + �̄54 = �̄d4; �̄35 = �̄d5 + �̄54 (16.75)

The energy flow �̄i j is as defined in Eq. (16.24) given as �̄i j = −�̄ j i =
ω
(
ηi j ¯ i − η j i ¯ j

)
. These definitions in combination with Eq. (16.75) give

[C]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¯ 1¯ 2¯ 3¯ 4¯ 5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�̄1
0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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Fig. 16.9 Coupling between
five structural elements and
the corresponding SEA
energy flowchart

[C] = ω

⎡
⎢⎢⎢⎢⎢⎢⎣

ηd1 + η12 + η13 −η21 −η31
−η12 ηd2 + η21 + η23 −η32

−η13 −η23
ηd3 + η31 + η32+
+η34 + η35

0 0 −η34
0 0 −η35

0 0
0 0

−η43 −η53
ηd4 + η43 + η45 −η54

−η45 ηd5 + η53 + η54

⎤
⎥⎥⎥⎥⎦ (16.76)

The coupling loss factors between the plate elements are given by Eq. (16.73). The
velocity level difference �Li j between the elements is

�Li j = 10 log

(
〈|v̄i |2〉
〈∣∣v̄ j

∣∣2〉
)

= 10 log

( ¯ iμ j S j

¯ jμi Si

)
(16.77)

Craik has in his book [268] and in some papers [274] reported comparisons between
measured and predicted velocity-level differences in full-scale buildings excited by a
dynamic force. In one case a three-storey building was used for the experiments. On
each storey there were ten rooms along a corridor. The floors were made of 165mm
concrete and the walls of 100 or 150mm concrete blocks. One wall in a room on
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Fig. 16.10 Cross section through a building used for comparisons betweenmeasured and predicted
noise and velocity levels. An inner wall was excited by a force indicated by F in the lower left hand
corner

the first floor was excited by a shaker as indicated in Fig. 16.10 which shows a cross
section of the building.

Two prediction models were used. In the first case only the energy transfer via
flexural waves was considered. In the second case also longitudinal and transverse
waves were included. In the last case the building was modeled by means of 1100
subsystems. The predicted and measured sound pressure levels were compared. It
was found that the difference between predicted and measured results increased
with increasing distance from the source. The full model, F-, L-, and T-waves, gave
somewhat better results than the simple model, F-waves only, four or more junctions
away from the source. Surprisingly, by comparing the results in the 1/3 OB 125,
500 and 2000Hz, the apparent prediction errors were increasing with frequency.
The difference between measured and predicted results using any of the models was
within ±7 for structures not being more than 4 joints or approximately 10m from
the source. The comparison was made in the 1/3 OBwith the center frequencies 125,
250, 500, 1000, and 2000Hz. Further away the differences could be very large or
of the order 10–20 dB. However, it is always of the greatest importance to correctly
predict a noise or vibration level close to a source where the levels are the highest.
According to Table4.1, Sect. 4.4, the concrete structures used in the tests cannot be
considered as “thin” in an important frequency range. Consequently, the coupling
loss factors derived for thin plates should not be used indiscriminately to calculate
the energy in a concrete structure.

The application of the SEA method for ship structures is, for example, discussed
by Odegaard Jensen [207]. A ship structure and a corresponding flowchart is shown
in Fig. 16.11. The coupling loss factor between two adjoining plates is a function of
the transmission coefficient τi j from plate i to plate j . This transmission coefficient is
equal to the ratio between the transmitted and incident energy flow over the junction
between the structures. The coupling loss factor ηi j between two plates coupled along
a junction of length Li j is given by Eq. (16.73).

Odegaard compares in Ref. [207] measured and predicted velocity level differ-
ences between various deck structures. A model, scale 1:5, was used for the mea-
surements. The width of a plate element was equal to a number of frame distances.
The coupling loss factors between the elements were calculated based on the plate
dimensions only, i.e., the frames were left out. Only couplings via flexural waves
were considered. The agreement between predicted and measured results is quite
good as reported in Ref. [207]. In fact the reported discrepancies between measured
and predicted results are much smaller in Ref. [207] than given in Ref. [268].

http://dx.doi.org/10.1007/978-3-662-47807-3_4
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(a)

(b)

Fig. 16.11 Coupling between plate elements of a ship and the corresponding SEAenergy flowchart.
From Ref. [207]

Another ambitious attempt to predict velocity levels in ships by using SEA has
been presented by Plunt in [164]. In this investigation full-scale measurements car-
ried out on four ships were used for identifying relevant coupling factors for the
ship structures. Flexural as well as in plane waves were included in the SEA model.
The necessary parameters were determined based on some regression analysis. Con-
sequently, the results from the semi-empirical model agreed quite well with the
measured results on which the predictions were based. Other reports on predicting
velocity levels on ships using SEA are, for example, reported in Refs. [275, 276].
A number of additional papers on the subject have been published over the years.
However, these models are basically the same as that presented by Odegaard [207].

For typical ship structures the requirement tomodal overlap defined in Eq. (16.71)
is not always met. The same is true for the structures discussed in Sect. 14.4. Conse-
quently, SEA is not applicable for calculating the energy flow in these structures.

An alternative to the SEA technique for predicting ship noise is discussed in
Sects. 16.11–16.16.

http://dx.doi.org/10.1007/978-3-662-47934-6_14
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16.10 SEA Parameters

In deriving the equations governing the energy flow between two simple oscillators a
number of assumptions were made. These are listed in Sect. 16.2. For any successful
SEA prediction the basic assumptions plus certain other requirements should be
satisfied. The following prerequisites should be considered:

(i) Weak, linear, and non-dissipative coupling between resonant systems.
(ii) Uncorrelated forces, rain on the roof (white noise) excitation.
(iii) Well-defined subsystems.
(iv) Large number of modes in subsystems for each frequency band of interest.
(v) Well-defined SEA parameters.

The subsystems should not be identical or rather they should be as different as pos-
sible. The transmission coefficients between identical subsystems are different from
the corresponding transmission coefficient between irregular systems. In Sect. 7.7 it
was shown that the transmission coefficient across a pinned periodic joint was very
different from the transmission coefficient across a single pinned joint. The coupling
loss factors for the cases are consequently also different. A similar problem was dis-
cussed in Chap.13. It was found that the apparent sound transmission loss of a panel
depends on the shape and thus the coupling between the rooms on either side of the
panel. For many big constructions like buildings and ships the various elements have
dimensions in common due to constant height between storeys and decks. However,
to a certain extent even small variations of dimensions, etc., can make apparently
identical structures irregular.

Subsystems can sometimes be readily identified. For example, each of the two
coupled plates shown in Fig. 16.8 is a subsystem. The coupling is along the common
junction. The built-up structure shown in Fig. 16.9 is, in the analysis presented in
Sect. 16.8, described as having five subsystems. However, if the plates 1 and 2 are of
the samematerial and have the same thickness and if the plates 4 and 5 also are similar,
the number of subsystems could be reduced to three. A large structure like a train
carriage, aircraft, ship, or building is not readily described by a number of subsystems.
For example, the subsystems identified in the SEA model used by Odegaard and
shown in Fig. 16.11 are made up of deck elements with a width of several frame
distances. The distance between the parallel frames on a ship is typically of the
order 0.6–0.8 m. If instead only the plate elements limited by the frames constitute
a subsystem the basic SEA requirements would have been violated with respect
to modal density. This particular problem is discussed in Sect. 16.12. Tortaro and
Guyader [277] describe a mathematical tool for defining proper subsystems of large
constructions, exemplified by a double-decker train carriage.

The modal densities of plates and beam can be estimated by means of mobility
measurements. The modal densities and point mobilities for three structures are
shown in Table16.2. In the first two cases, flexural waves are induced by a point
force perpendicular to the structure and in the third case longitudinal waves are
excited by a force along the axis of the beam as shown in Fig. 16.12.

http://dx.doi.org/10.1007/978-3-662-47807-3_7
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Table 16.2 Real part of point mobilities and modal densities

Structure ReY N f N f

Plate, F-waves
1

8
√

μD0

S

2

√
μ

D0
4SμReY

Beam, F-waves
1

4(m′)3/4ω1/2(D′
0)

1/4

L√
ω

(
m′

D′
0

)1/4

4m′LReY

Rod, L-waves
1

A
√

ρE0
2L
√

ρ

E0
2LρAReY

Acoustic cavity –
4π f 2V

c3
–

Fig. 16.12 Coupling
between two semi-infinite
rods

The point mobilities are valid for an infinite plate, infinite beam, and semi-infinite
rod. The surface of the plate is S, the length of the beam and the rod is L , and the
cross-sectional area of the rod is A. The number of modes N� f within a frequency
� f is consequently N� f = � f · N f where the modal density can be estimated
from the space average of the point mobility and mass of the structure as shown in
the right column of Table16.2. The modal density of an acoustic cavity is given by
Eq. (11.138).

The coupling loss factor between two structures can be estimated as discussed in
Sect. 16.6. The coupling loss factor between two plates, flexural waves only, is given
by Eq. (16.73) as

ηi j = cgi τ̄i j Li j

πωSi
= 2D1/4

0i τ̄i j Li j

πω1/2μ
1/4
i Si

The transmission coefficients τi j are discussed in Sects. 5.8 and 5.9. The coupling
loss factor between two beams, flexural waves, is given by Eq. (16.74) as

ηi j = cgiτi j

2ωLi
= (D′

0i )
1/4τi j

πω1/2(m′
i )
1/4Li

The transmission coefficients τi j are presented in Sect. 5.8. For coupled rods,
Fig. 16.12, longitudinal waves only, the coupling loss factor is

ηi j = cliτi j

2ωLi
= τi j

2ωLi

√
E0i

ρi
; τi j = 4Ai A j

√
ρi E0i

√
ρ j E0 j(

Ai
√

ρi E0i + A j
√

ρ j E0 j
)2 (16.78)

The cross-sectional area of rod i is Ai and its density and real part of E-modulus are
ρi and E0i , respectively. The details are left for Problem 16.7.
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Fig. 16.13 Power injected
into two coupled systems in
two different ways

Coupling loss factors, modal densities, and group velocities can be estimated from
FEM calculations as, for example, described in Refs. [278, 279].

The so-called Power Injection Method can be used to estimate the coupling loss
factor between two simple systems. First power, �̄a

1, is induced in system 1 as shown
in Fig. 16.13. The energies ¯ a

1 and ¯ a
2 in two systems are determined by measuring

the velocity levels of the structures. There after the power �̄b
2 is injected in system

2 and the energies ¯ b
1 and ¯ b

2 of the systems 1 and 2 are determined. As shown in
Problem 16.8 the loss factors are obtained from the matrix equation

[
η1 + η12 −η21

−η12 η2 + η21

]
= 1

ω

[
�̄a

1 0
0 �̄b

2

][ ¯ a
1

¯ b
1

¯ a
2

¯ b
2

]−1

(16.79)

The resulting four equations give the loss factors and the coupling loss factors. The
structures should be excited by band-pass white noise. The bandwidth should be
wide enough to ensure that a sufficient number of modes is excited in each system.

The loss factor of a subsystem can bemeasured as discussed in Sect. 2.9. However,
the measured loss factor includes also coupling losses to adjoining structures and
surrounding fluid. So for example, the measured loss factor ηmeasured for system 1 in
Fig. 16.2 is equal to ηmeasured = η1 + η12. For a weak coupling between the systems
η1 � η12 and ηmeasured ≈ η1. Radiation losses can also contribute to the measured
loss factor as discussed by Nijman [160]. Two types of loss factor measurements
on a cast iron oil sump for a passenger car are reported in Ref. [160]. In the first
case the oil sump was surrounded by air and in the second case the oil sump was
submerged in helium gas. The wave impedance of helium is much lower than for
air, the ratio being aproximately 0.4. In addition, the speed of sound in helium is
almost three times the speed of sound in air. The critical frequency of a structure
submerged in helium is therefore almost ten times as high as the corresponding critical
frequency in air leading to a much reduced radiation ratio in helium. Consequently,
the radiation losses are much smaller for the sump being submerged in helium than
in air. The average measured loss factor was 19 × 10−4 in air and 3.2 × 10−4 in
helium in the frequency range 300–1200Hz. If the internal losses dominated the
measured loss factors would be the same in both cases. The tests clearly demonstrate
that radiation losses can exceed internal losses. For small internal losses the weak
coupling requirement is not readily satisfied.

In Sect. 16.3 the coupling between modes in different systems was discussed. In
SEA it is assumed that the coupling between any mode in one system and any other

http://dx.doi.org/10.1007/978-3-662-47807-3_2
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mode in another system is the same. This is not always the case. For example, the
modal radiation ratio and thus the coupling loss factor between a vibrating struc-
ture and an acoustic enclosure depend on the modes of the structure as discussed
in Sect. 16.4. The transmission of flexural waves across a junction depends on the
thicknesses of the plates. There is no transmission of energy from a thin to a thick
plate of the samematerial if the angle of incidence of the primary wave exceeds a cer-
tain value as discussed in Sect. 5.8. Consequently, the coupling loss factor between
different modes cannot be the same. This problem has been addressed by Maxit and
Guyader [280]. However, despite these and other limitations, basic SEA calculations
can yield acceptable results.

16.11 Ship Noise

Noise problems on ships have attracted increasing attention since the beginning of
1970. National and international organizations have issued requirements or recom-
mendations concerning limits for noise levels in sleeping quarters or working areas.
Low noise levels in cabins and other public spaces on cruise liners are of paramount
importance for attracting customers. Some products like cars, trains, and airplanes
are manufactured in very large series. Prototypes are built and tested. During this
initial construction phase noise reducing measures can be tested. For the ship build-
ing industry the problem is different. Each ship structure is in general individually
designed and equipped. Consequently, in the ship industry there is a special need for
noise prediction methods. By means of a prediction program the construction and
general arrangement can be optimized with respect to noise, economy, weight, etc.

The noise situation on board a ship is determined by many and varied forms of
noise sources. Effective shipboard noise control therefore requires identification and
knowledge of all significant noise sources. Themost important noise sources aremain
and auxiliary engines, propeller, gear, casing, and exhaust systems including funnel,
various pumps, compressors, hydraulic systems, and fan equipment including air
intakes and outlets. In spaces containing noise sources such as engines, fans, or pumps
the sound pressure level is almost entirely determined by airborne sound. Methods to
predict and reduce airborne sound are well known and are extensively treated in the
literature. See, for example, the Refs. [281–283]. Typical sound reducing measures
are partitions, hoods, screens, and sound absorbing materials. In accommodation
spaces other than those mentioned above, with the possible exception of cabins or
other spaces directly adjoining a source, the noise level is determined by structure-
borne sound. The term structure-borne sound refers to structural vibrations in the
frequency range 16–20,000Hz. High-frequency flexural vibrations of a structure
radiate audible noise into a cabin or any other space.

Structure-borne sound is directly induced by any mechanical force. The mechan-
ical power transmitted from a source through its connection to the foundation
propagates into the structure. The power can propagate in the structure as flexural,
longitudinal, transverse, and torsional waves. The relative importance of these wave

http://dx.doi.org/10.1007/978-3-662-47807-3_5
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types has been discussed in Refs. [56, 168, 197]. The resulting energy flux in a struc-
ture is attenuated as function of the distance from the disturbance. The attenuation
depends on losses in the structure and also on the number of obstructions or dis-
continuities (decks, platforms, frames) in the propagation path. At the receiving end
in, for example, a cabin—the acoustical power radiated from a structure depends
on the velocity level of the material parameters and dimensions of the structure. To
make a prediction of resulting noise levels in an accommodation space possible, the
following quantities must be known: (i) source strengths; (ii) transmission properties
of steel structure; (iii) radiation properties of structures at the receiving end.

A flowchart for a typical noise prediction procedure is given in Fig. 16.14. Gener-
ally, the main problem is the characterization of the acoustical properties of the main
sources, their coupling to the ship structure, and the propagation of structureborne

Fig. 16.14 Chart for predicting noise levels in cabins on a ship
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sound from a source to a certain deck structure. It is often argued that the acoustical
energy flow in a ship structure can be determined by means of empirical methods,
finite element methods, statistical energy analysis, or analytical methods.

One of the first empirical methods was introduced by Janssen and Buiten [284]
in 1973. The method is very simple but still very informative. Although every ship
is individually designed the basic structure must satisfy certain classification rules.
This implies a certain conformity between standard ships. In Buiten’s model the
attenuation of structureborne sound from a source to a deck is assumed to be 5
dB per deck for the first four decks and then 2 dB for each additional deck. The
attenuation is assumed to be independent of plate thickness, frame distance, and
other design parameters as well as of frequency. For a standard type of ship with a
conventional superstructure this simple model gives fairly accurate results.

The outline of Buiten’s procedure has been copied in numerous other prediction
schemes. The essential difference between these is the description of the attenuation
of the energy flow in the steel structure. Another widely used empirical method was
published by BSRA [285]. This method is also based on the principles outlined by
Buiten. Classification societies and other organizations have access to drawings and
noise measurements for a large number of ships. This type of information can be the
foundation for a more or less sophisticated database. This is, for example, discussed
in [286]. This type of database can be used at the very early design stage so as to
avoid any major mistakes with respect to the acoustical planning of the new building.

Very often today yards are mainly interested in the noise prediction for specially
designed ships of a type not previously built. Thismeans of course that there is no data
available to form the basis for any type of empirical estimates. Other methods used
for predicting the energy flow in ship structures are the SEA technique, Sect. 16.8,
and the waveguide method discussed in Sects. 14.2 and 14.3.

16.12 Waveguide Model

This approach to the propagation problem was first presented in Ref. [197] and
then in a more generalized form in Ref. [168]. The method is based on a technique
previously used by Heckl [287] to determine the vibration of grillages. In Refs. [56]
and [168] the basic assumptions concerning the adaptation of the method to ship
structures have been discussed at length. The waveguide method, which is discussed
in Sects. 14.2–14.4, can be used to determine the vibration levels of plate elements
in a vertical section of a ship structure, as shown in Figs. 14.5 and 16.18. The plates
in the section are restricted by the frames and have junctions with other plates–decks
or vertical partitions. The dynamical coupling between the plates in a section can be
calculated on the basis of the following assumptions:

(i) A ship construction can be considered as an acoustical wave guide system; the
parallel frames constitute the boundaries for each wave guide; the transverse
motion of the plates is negligible at the boundaries;
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(ii) The main power flow from a source propagates as flexural waves in the plate
elements within the wave guide system;

(iii) The coupling between two plate elements is caused by rotation, or a bending
moment at the junction between the plates, perpendicular to the frames.

The relative importance of flexural and longitudinal waves has been discussed
in Refs. [56, 168]. The results of the study indicated that the main power flow in
a ship structure is caused by flexural waves. The test illustrated in Fig. 14.16 and
discussed in Sect. 14.4 confirms that the dominating energy flow in a ship structure
is within the plate elements and not in the frames. In Refs. [168, 197] model- and
full-scale measurements have been compared with predicted results for frequencies
above the cutoff frequency for the waveguide system. For a full-scale ship structure
this limit corresponds to approximately 100Hz. In a ship the thicknesses of the
plates are greater in the hull and tank top than in the superstructure. Consequently,
the cutoff frequencies can be comparatively high for the elements in the tank top.
The method described in Ref. [197] therefore has certain limitations with respect to
frequency range when its application is extended to include not only superstructures,
but also propagation paths all the way from the engine foundations. For this reason
it is of importance to determine the propagation pattern even for frequencies below
cutoff. This is discussed in Ref. [168]. Coupling factors between plate elements for
frequencies below cutoff are presented in Ref. [168].

A detailed knowledge of the mechanism describing the energy flow from the
engine foundations could eventually lead to new design criteria for the minimization
of the noise levels on a ship and also to the noise radiated out into the water. A
low level of water-borne noise is of great importance on e.g., fishing, navy, and
geophysical research vessels.

The basic waveguide model is fairly simple as discussed in Sects. 14.2 and 14.3.
Initially, a vertical section of a ship construction is considered. One example is shown
in Fig. 14.3. The width of the section is determined by the distance between the paral-
lel frames. The plates in the structure are assumed to be excited by a bendingmoment
acting on one element, perpendicular to the frames. The power flow to the adjoining
and subsequent elements is then generated by the resulting angular displacement
at each junction. The lateral motion of the boundaries is small compared with the
displacement of the plates. This has been confirmed by full-scale measurements on
typical ship structures. Typically, the velocity level of a plate element is 5 to 10 dB
higher than the velocity level of the frames limiting the plate as confirmed by tests
described in Sect. 14.4. Therefore the transverse motion of the boundaries and the
twisting moments at the junctions has been neglected in the analysis. As a conse-
quence of this, the displacement and thus also the bending moment for any plate
element can be derived as functions of the rotation at each junction. However, this is
based on the assumption that the angle between two plate elements is not changed
by the rotation. The coupling between the elements can then be calculated based
on the fact that the sum of the bending moments around each junction should equal
zero. This final condition makes it possible to form a system of equations relating
all the angular displacements at the junctions of the structure. The solutions to this
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set of equations determine the displacement and thus also the velocity of each plate
as functions of the initial forcing bending moment. This is discussed in Sect. 14.3.

If plates are assumed to be simply supported along the frames, a simple expansion
can be used to determine the plate displacement as discussed in Sect. 14.2. However,
for a ship structure with plate elements mounted to parallel frames like in Fig. 14.3
the plate are clamped rather than simply supported along the frames in the frequency
range above the first natural frequency of the plate as discussed in Sect. 14.2. This
assumption has been confirmed by modal analysis on full-scale ship structures. This
is also a criterion generally accepted for similar problems relating to aircraft struc-
tures Ref. [288]. For ship structures this problem was discussed in Ref. [56]. No
exact solution can be derived by using the expansion theorem for clamped boundary
conditions. This difficulty can be overcome if the boundary conditions are somewhat
relaxed. However, the main point is that the eigenvalues of the approximate eigen-
functions thus introduced should be reasonably close to the correct eigenvalues of
the cross modes. These approximate eigenfunctions are discussed in Sect. 14.2 and
defined in Eq. (14.14). The cut-on frequency for the first clamped crossmode is of the
order 100 Hz for a typical ship structure. The cut-on frequency for the next symmet-
ric cross mode, n = 3 in Eq. (14.14), is of the order 550Hz. The energy flow carried
by the first mode is dominating over the higher modes as discussed in Sects. 14.3
and 14.4. A comparison between predicted and measured results clearly indicates
that satisfactory results are obtained if only the first cross mode is considered. In
fact, a prediction using one of the higher modes only gives too high attenuations.
Therefore the following discussions of all results are based on the concept that the
higher modes can be neglected.

In the low-frequency region the boundary conditions aremore relaxed. The bound-
ary conditions for the plates along the frames depend on the relative stiffness between
the frames and the plates. The moment impedance for a plate is different for fre-
quencies above or below the first plate resonance. This will influence the apparent
boundary conditions for the plate. Further, measurements indicate that for frequen-
cies decreasing below the first natural frequency of the plate, the shape of the cross
modes is determined by simply supported rather than clamped boundary conditions.
For these reasons a different approach is used to calculate the coupling between the
plates in the frequency range below the first natural frequency of the plate. This
method is based on the Garlekin variational method discussed in Sect. 9.9. The low
frequency model is presented in Ref. [168].

When looking at a ship structure from the outside it can be clearly seen that plate
elements have a slight curvature even when being part of a flat large section. This is
a result of the welding process when plates are mounted to frames. These curvatures
of the plates influence the natural frequencies of the plates as discussed in Sect. 8.8.
The measured first natural frequency of a plate element is therefore higher than the
predicted result for a flat plate. This particular problem introduces a certain error in
the frequency bands including the first natural frequencies of the plate elements.

The boundary conditions for the plate along the frames are essential. Various
models are discussed in [168]. Once the appropriate boundary conditions along the
frames have been established the bending moments acting on the plate element can
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be determined. The total bending moment around a junction is equal to zero. This
means that the angular displacement at each junction can be solved as function of a
force or moment exciting a particular element. In matrix form the resulting system
of equations can be written as defined by the Eqs. (14.23) through (14.27). Based
on the assumptions made above, the resulting system of equations can be written in
matrix form as

[A]

⎧⎪⎪⎨
⎪⎪⎩

γ1
γ2
..

γN

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

M1
M2
..

MN

⎫⎪⎪⎬
⎪⎪⎭

(16.80)

The matrix [A] is defined in Eqs. (14.20) and (14.25). The elements Mm are equal
to zero except at those junctions where the structure is excited. The velocity level
of an element is calculated from the resulting angular displacements as given by
Eq. (14.22). The velocity level differences between the elements in the structure and
the source element are thereafter calculated. The procedure must be repeated for
each source element in the structure. The velocity of a plate element is a rapidly
varying function of frequency. The total kinetic energy of a plate element in a certain
frequency band must therefore be determined by means of numerical integration:
i.e., summation within each frequency band. For a typical noise prediction the nine
octave bands with the center frequencies 31.5Hz to 8 kHz are of interest. In each
of these frequency bands the average velocity should be based on 100–250 separate
calculations depending on frequency. If, for a typical ship construction, the number
of summations within a frequency band is extended from 250 to 500, the resulting
velocity level differences between the elements in the structure can change by a few
dB. For the predictions discussed in Sect. 16.15 the number of summations within
each frequency band was 500.

The model discussed above is valid only for plate elements located in the same
vertical plane in between the same two frames. In other words the model describes
the energy transmission parallel to the frames from the source. This transmission is
very critical and determines the noise levels in the spaces or cabins most exposed
to noise. The cabins having the highest noise levels are in general located above
the engine room or propeller. It is of great importance that these maximum noise
levels can be predicted with a sufficient degree of accuracy so that any necessary
noise reducing measures can be properly designed. It is of less importance to predict
accurately a noise level which is known to be well below any noise requirement.
This is why so little effort has been spent on the investigation of the transmission of
structureborne sound in any other than the vertical direction in a ship structure.

The propagation of structureborne sound perpendicular to the frames has been
investigated experimentally as reported in Ref. [289]. In that study it was found that
this attenuation could be described as function of frequency f and the number r of
the frames in between source and receiver. The geometry of the frames was, within
certain limits, only of secondary importance. Based on full-scale measurements it
was found that in the horizontal direction the transmission loss T LH in dB across a
total of r frames could be written as
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T LH = β1r for r � 20
T LH = 20β1 + (r − 20)β2 for 20 � r � 50
T LH = 20β1 + 30β2 + (r − 50)β3 for r � 50

β1 = 0.7; β2 = 0.10 + 0.161 · log f ; β3 = 0.032 + 0.052 · log f (16.81)

In Ref. [284], the original paper on noise prediction by Janssen and Buiten, the total
attenuation T L between a source and a receiving elementwas given by the expression

T L =
(

T L2
H + T L2

V

)1/2
(16.82)

where T LH and T LV are the transmission losses in the horizontal and vertical direc-
tions, respectively. Despite the lack of any reasonable physical explanation the simple
expression (16.82) has been found to yield satisfactory results. The reason is probably
that in practice one of the terms T LH or T LV dominates.

The method discussed above has certain limitations. The model cannot be used
for ship constructions with longitudinal web frames. For ships with frames perpen-
dicular to the center line the frame distance should be the same everywhere. The
model can therefore not be used without certain manipulations for ships with addi-
tional ice frames. Results based on this model depend on how well the structure can
be described. This requires a certain experience. In particular with respect to the
modeling of engine foundations.

16.13 Noise Levels in Accommodation Spaces

If in a cabin the noise level is induced by structure-borne sound, then this noise
level is a function of the velocity levels, radiation ratios, and dimensions of all
the structures facing the cabin. The energy flow or transmission from a deck to
a structure, for example, a bulkhead mounted on the deck, can be expressed as a
velocity-level difference between the deck and the structure. Henceforth the velocity
level of a structure is by means of a coupling factor referred to the corresponding
velocity level of the steel deck in the cabin. The strengths of the sources inducing
structureborne sound and the transmission losses in the ship construction determine
the velocity level of the deck.

Consequently, in order to predict noise levels in accommodation spaces the fol-
lowing quantities must be known: (i) Source strengths; (ii) Transmission losses in
structure between sources and deck plates; (iii) Dimensions, radiation ratios, and
coupling factors for structures in cabin; (iv) Sound absorption in cabins and other
spaces. These statements are readily formulated in a few equations as suggested by
Janssen and Buiten [284].

Thus, assume that the rms velocity at the foundation of a source is Lv (source)
and the resulting rms velocity of a deck is of a deck is Lv (deck), then
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Lv(deck) = Lv (source) − T L (16.83)

The function T L , defined in Eq. (16.82), is the transmission loss in the structure
between the source and the receiver or rather the steel deck of the cabin. The structure-
borne sound is transmitted from the steel deck to the floor, bulkheads and ceiling
in the cabin. The type of mounting of each structure and its connection to the steel
construction determine the velocity level difference (�Lv)i between the steel deck
and the radiating surface i . The velocity level Li of a radiating surface is

Li = Lv(deck) − (�Lv)i (16.84)

The sound pressure level L pi induced in a room, equivalent absorption area A (m2),
by a structure i with a velocity level Li , area Si , sound radiation ratio σi is

L pi = Li + 10 log(Siσi/A) − 28 dB (16.85)

The sound pressure level and velocity level are referred to 2×10−5 Pa and 10−9 m/s,
respectively. The total noise level L tot in the cabin is obtained by adding logarithmi-
cally the contributions from all structures and sources. Thus,

Fig. 16.15 Test rig for
measurements of acoustical
properties of accommodation
systems
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Fig. 16.16 Cross section of a floating accommodation system

L tot = 10 log

( ∑
sources

∑
i

10L pi /10

)
(16.86)

Any possible contribution from the transmission of airborne sound is added in a
similar way. The calculation procedure is typically carried out in the nine octave
bands with the center frequencies from 31.5 to 8 kHz. Based on these octave band
levels the A-weighted level or a noise rating can be determined.

All acoustical properties of accommodation systems should preferably be mea-
sured in situ or else in a special test rig. Figure16.15 shows a test rig used for these
purposes. The rig is quite simply a section of a ship structure extending from the
outer bulkhead to the casing. The dimensions of the deck area are in this particular
case 7m × 4.6m. The structure is excited by a shaker and the resulting vibration
levels of the structures facing the cabin and the noise level in the cabin are measured
and determined as functions of the velocity level of the deck. A cross section of a
floating accommodation system is shown in Fig. 16.16.

16.14 Source Data

For the purpose of a noise prediction it is in general sufficient to determine the
velocity level perpendicular to the plating at the foundations of main and auxiliary
engines, gears, pumps, etc. Semiempirical formulae for the predictions of these levels
have been, for example, presented in Refs. [284, 290]. Various aspects of problems
concerning coupling and transmission between engines and foundations have been
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discussed in Refs. [116, 291]. See also the discussion in Chap.10 and in particular
Sect. 10.12. The accuracy of a noise prediction is much improved if the input data
for the sources are based on direct measurements on similar machinery. Therefore
access to a good data bank is essential. Source data for propellers can be determined
from model scale measurements or from calculations as discussed in Ref. [195]. For
fast vessels flow noise must also be considered, see Sect. 15.10.

The element model of a ship is shown in Fig. 16.18. Element 28 is the foundation
of the main engine. By letting bending moments excite this element the relative
velocity levels of all other elements are obtained from Eq. (16.80). The velocity level
of element 28 is set to equal the source data for the main engine. Consequently, the
velocity levels induced by the main engine can be determined for all elements. The
operation is thereafter repeated for all other sources to give the total velocity level
for every element.

16.15 Measured and Predicted Results

Predicted and measured velocity levels on a 34,000 tdw conventional tanker are
compared in Ref. [168]. The predicted results are based on the waveguide theory.
The ship and the corresponding element model are shown in Figs. 16.17 and 16.18.
Material parameters plate dimensions, etc., are listed in Appendix C. Measurements
of velocity levels were carried out during ordinary service conditions. Measurement
positions are indicated in Fig. 16.18. Accelerometers were mounted on the steel
plates along the center line between the frames 35 and 36. The distance between two
positions was 0.75 m. The standard deviation between individual measurements on
a plate element is of the order 1.5 dB in the mid-frequency region, about 0.8 dB in
the 4 kHz octave band and 2 dB in the 63Hz band.

Predicted and measured velocity level differences between element 25 and the
elements 2, 8, and 17 are compared in Fig. 16.19a–c, respectively. In general and as
indicated in the figures, the attenuation increases as the distance from the sources is

Fig. 16.17 Overall view of
ship

http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47934-6_10
http://dx.doi.org/10.1007/978-3-662-47934-6_15
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Fig. 16.18 View of the aft body of the ship. Measurement positions located in shaded areas. The
corresponding element model is shown on the right

(a) (b)

(c)

Fig. 16.19 Predicted and measured velocity level differences between the elements, a 25 and 2,
b 25 and 8, c 25 and 17. The elements are indicated in Fig. 16.18
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Fig. 16.20 Predicted
velocity level differences
between elements 25 and
2—and 25 and 4 - - - -

increased. However, the attenuation is not only a function of the location of the plate
but also of the plate dimensions.

Predicted velocity level differences between element 25 and the elements 2 and
4 are shown in Fig. 16.20. The last two elements represent the platings between
C- and D-deck and the plate structure in C-deck. It is evident that the energy flow to
the deck is greater than to the adjoining ship side in the low-frequency region. For high
frequencies the opposite is the case. The result—or rather the frequency dependence
for the various coupling factors—which is shown in Fig. 16.20 is representative of
this type of junction between ship side and deck. The reason for the result is quite
simply that the material parameters—total weight, stiffness, etc.—are not the same
for a deck construction and a ship side.

The transmission of structureborne sound from the engine foundation to the hull
was also investigated. The bottom part of the cross section previously referred to is
shown in Fig. 16.21. In this figure L1 denotes the average velocity level on the ship
side between the tank top and the platform deck. The positions 2 and 3 correspond
to plate elements in the tank top and in the engine foundation. In Fig. 16.22a the
predicted and measured velocity level differences between the ship side and tank top
elements are compared. In the low-frequency range the velocity level on the ship
side is higher than on the tank top. This is mainly due to two reasons. Primarily, the
first natural frequency for the water loaded plate is much lower than for a plate in
the tank top. The plate in the hull is consequently easier to excite. Secondarily, the
power flow-from the bottom plates to the ship side is significant in the low frequency
range.

In Fig. 16.22b predicted and measured velocity level differences between the ship
side and the engine foundation are compared. The difference in stiffness between the
elements in the ship side and foundation is here much more pronounced than in the
previous case. The result is that the velocity level difference between the elements
is much larger than in the previous case for low frequencies. The same observations
have been confirmed by other full-scale measurements.

Predicted and measured sound pressure levels, 1/1 octave band analysis, are com-
pared in Fig. 16.23a–d for cabins located on four different decks. In some cases there
can be rather large deviations between predicted and measured octave band levels.
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Fig. 16.21 Cross section of
engine foundation and tank
top construction. L1, L2 and
L3 indicate average velocity
levels for plate element in
the structure

Fig. 16.22 Velocity level
difference between ship’s
side L1 and a element in tank
top and b engine foundation

(a)

(b)

This could be due to the effect of a local source not included in the prediction. A
more likely explanation could be a rattling door or a squeaking panel. The recorded
differences between predicted and measured A-weighted sound pressure levels are
shown in Fig. 16.24. The A-weighted noise levels in the cabins were measured twice
for the same apparent operating conditions for the ship. The deviations between the
two measurement series were of the same order as between predicted and measured
results shown in Fig. 16.24. The accuracy of a prediction could never be better than
the accuracy of the measurements. It should be noted that additional errors are intro-
duced in the prediction if the data for the main sources have to be estimated rather
than measured.
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(a) (b)

(c) (d)

Fig. 16.23 Predicted and measured noise levels in cabins, a no. 57 on 1st deck, b no. 36 on A-deck,
c no. 21 on C-deck and d no. 10 on C-deck

Fig. 16.24 Distribution of
the difference between
predicted and measured
A-weighted noise levels in
cabins
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16.16 Conclusions—Noise Prediction on Ships

Empirical methods can be very informative during the acoustical planning of a ship.
Predictions based on empirical methods should be limited to standard ships. The
upper frequency range for a FEM calculation is much too low to make the model
feasible for standard noise predictions. However, FEM calculations could be used
for the investigation of the coupling between various substructures in, for example,
the tank top structure. Whenever an SEA calculation is attempted it must be verified
that the assumptions on which the method is based are not violated. In general ship
structures are out of range for SEA calculations. The number of modes for plate
elements between frames is much too low. The waveguide model has been verified
by a number of measurements on full- and model-scale structures. The waveguide
model has been used successfully for the prediction of noise levels on various types
of ships from large cruise liners, tankers, research vessels to fast ferries, Ref. [293].
The model has also been used for prediction of the energy flow in railway carriages,
Ref. [55].

The basic SEA method was also tested for predicting the attenuation in structures
shown in Fig. 14.6. The agreement between measured and predicted results was
very poor. The reason is that the basic requirements for the SEA technique to be
applicable were not satisfied. The effect of damping layers in the transmission path
was investigated by means of the model shown in Figs. 14.6 and 14.14. The SEA
technique overestimated the effect of the damping layers quite considerably. The
waveguide model yielded acceptable results. This shortcoming of the SEA model is
sometimes referred to as the “tunnel effect.” For damped structures not only resonant
but also forced transmission are of importance. SEA only includes resonant effects.
The waveguide model incorporates both resonant and forced transmission.

The propagation of structureborne sound in steel structures can be predicted by
means of fairly simple plate models. In combination with basic acoustical principles
the propagation can be used to predict noise levels in accommodation spaces on
ships or off-shore structures. The use of a noise prediction programmakes it possible
already at the design stage to estimate the noise levels in a ship. If for instance the
initial design is found to be acoustically unsatisfactory, the effects of improved sound
insulation and general arrangement can readily be determined. A noise prediction
program can also make it possible to find the most economical solution to achieve
certain noise requirements. Ideally, the prediction of noise levels should be standard
procedure for every new construction.

The data or type of information necessary for making a noise prediction are as
follows: description or type of engines, propellers and other sources, steel draw-
ings and general arrangement, description of accommodation systems and of any
sound reducing measures. It is assumed that the necessary acoustical parameters for
engines, propellers, and accommodation systems can be obtained from a data bank
or otherwise be estimated. However, predictions based on measured source data are
always preferred. However, the accuracy of a noise prediction can never be better

http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
http://dx.doi.org/10.1007/978-3-662-47934-6_14
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than the accuracy of noise measurements. A standard deviation for the difference
between measured and predicted A-weighted noise levels cannot be expected to be
less than 1.5 dB.

A noise prediction can be made in such a way that the relative importance of the
various noise sources and structures facing a cabin is presented. The program can
also make it possible to determine the effects of changes of installations such as
floating floors, damping layers, resilient mounts for engines, new propeller designs,
etc.

Problems

16.1 Derive Eq. (16.1).

16.2 An acoustic source is located in a room. Determine the modal energy of the
acoustic field in the room. The equivalent absorption area in the room is A. Assume
that the field is induced by a number of sources scattered in the room. The power
spectral density of the total volume velocity of the sources is G Q and is constant.

16.3 Derive the sound pressure level difference between the rooms 1 and 3 shown
in Fig. 16.6 by using the appropriate coupling loss factors.

16.4 Derive the coupling loss factor η13 between the rooms 1 and 3 shown in
Fig. 16.6. The coupling loss factor η13 defines the nonresonant transmission through
a panel having the sound transmission coefficient τ .

16.5 Derive the modal density in a narrow cavity, height d, having the dimensions
Lx and L y for f < c/(2d). Compare Eq. (16.60).

16.6 Determine the coupling loss factor between two plates. Consider only flexural
waves. Only rotation at the junction. Compare Eq. (16.60).

16.7 Determine the coupling loss factor between the two rods shown in Fig. 16.12.
Consider only longitudinal waves in the rods. Compare Eq. (16.78).

16.8 Derive the expression (16.74).



Appendix A
Sound Transmission Loss of Single Leaf
Panels

Panel parameters; μ-mass per unit area (kg/m2), ly-width (m), lz-height (m),
fc-critical frequency (Hz), η-loss factor. The dimensions of the wall in which the
panel is mounted are L y-width (m) and Lz-height (m).

The sound transmission loss R of a panel is
R = 20 logμ + 20 log f − 10 log[� · �(S) + G] − 48 dB for f < fc
R = 20 logμ + 30 log f − 10 log fc + 10 log η + 5 log(1 − fc/ f ) − 47 dB for

f > fc

G =
∫ π/2

0

sinϕdϕ[(
f

fc

)2

sin4 ϕ − 1

]2

+
[
η

(
f

fc

)2

sin4 ϕ

]2 − 1 Table A.1

Sliding edges �(S) = 1

Simply supported edges �(S) = 1 + 3 · 104
4η · f 1/2 · f 3/2c

(
1

l2y
+ 1

l2z

)

Clamped edges �(S) = 1 + 3 · 104
η · f 1/2 · f 3/2c

(
1

l2y
+ 1

l2z

)

�(S) = S

S0
[1 + Z(M D)] · [1 + Z(N E)] ; S0 = L y · Lz ; S = ly · lz

The function Z(M D) is given in TableA.2

Z(M D) = 1

1+M1

{
M1∑

m=1

[(
sin(m D)

m D

)2

+2ξm
sin(m D)

m D

]

+ 4
M2∑

m=1

(
sin(m D)

m D

)2
}
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Table A.1 Resonant transmission function G

f/ fc G f/ fc G

η = 1% η = 2% η = 3% η = 4% η = 5%

0 0 0.8 2.53 2.53 2.53 2.52 2.52

0.1 0.01 0.82 2.76 2.76 2.75 2.75 2.74

0.02 0.04 0.84 3.32 3.31 3.31 3.30 3.29

0.03 0.11 0.86 4.08 4.07 4.06 4.04 4.02

0.04 0.21 0.88 5.15 5.14 5.12 5.09 5.05

0.05 0.37 0.90 6.76 6.73 6.69 6.64 6.57

0.55 0.49 0.92 9.39 9.34 9.25 9.13 8.98

0.60 0.65 0.94 14.30 14.15 13.90 13.58 13.19

0.65 0.86 0.96 25.75 25.12 24.15 22–95 21.60

0.70 1.16 0.98 69.35 63.02 55.13 47.41 40.63

0.75 1.60 1.00 791 281 154 100 72

+ 2

1 + M1

⎧⎨
⎩

M3∑
m=1

M4∑
l=1

[
ξm

sin[(m + l)D]
(m + l)D

+ sin(l D)

l D

]2⎫⎬
⎭ ; D = πly

L y

M =
√

πL y f

c
; M1 = Integer(M); M2 = Integer(M/2)

M3 = Integer(M − 2); M4 = Integer

(
M − m

2

)
; ξm = (−1)m

Z(N E) = 1

1 + N1

{
N1∑

n=1

[(
sin(nE)

nE

)2

+ 2ξn
sin(nE)

nE

]
+ 4

N2∑
n=1

(
sin(nE)

nE

)2
}

+ 2

1 + N1

⎧⎨
⎩

N3∑
n=1

N4∑
l=1

[
ξn

sin[(n + l)E]
(n + l)E

+ sin(l E)

l E

]2⎫⎬
⎭ ; E = πlz

Lz

N =
√

πLz f

c
; N1 = Integer(N ); N2 = Integer(N/2)

N3 = Integer(N − 2); N4 = Integer

(
N − n

2

)
; ξn = (−1)n

The baffle parameter Z(M D) = Z(X) depends on the ratio between the dimen-
sions of the plate and the dimension of baffle plus plate as well as on the frequency.
Once the ratio X is determined the function Z(X) is found in TableA.2 for a fre-
quency f for the product f · L y , where f is the frequency in Hz and L y the total
width of panel plus baffle in m.
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Appendix B
Velocity Level of Single Leaf Panels Excited
by an Acoustic Field

Panel parameters; μ-mass per unit area (kg/m2), ly-width (m), lz-height (m),
fc-critical frequency (Hz), η-loss factor. The dimensions of the wall in which the
panel is mounted are L y-width (m) and Lz-height (m).

The response or rather average velocity squared of a plate excited by an acoustic
field is discussed in Sect. 13.9. Results are given for different boundary conditions of
the plate. The effects of baffles are discussed in ref. [180]. The frequency and space
average of the plate velocity are given by the quantity

Lv/p = 10 log

[
(ρ0c)2〈v̄2〉

〈 p̄21〉

]

where 〈 p̄21〉 is the frequency and space average of the pressure squared in the source
room. The quantity Lv/p is for a baffled rectangular panel given by

1. f < fc

Lv/p = 39 − 20 logμ − 20 log f + 10 log[T(S) · � + G] dB

Sliding clamped edges, Fig. 8.2 T = 1

Simply supported edges T = 1 + 50

η · f 1/2 · f 1/2c

(
1

ly
+ 1

lz

)

Clamped edges T = 1 + 100

η · f 1/2 · f 1/2c

(
1

ly
+ 1

lz

)

� = [1 + U (M D)] · [1 + U (N E)] where 1 ≥ � > 1/4

U (M D) = 1

1 + M1

M1∑
m=1

ξm · sin(m D)

m D
; D = πly

L y
;
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M =
√

πL y f

c
; M1 = Integer(M); ξm = (−1)m

U (N E) = 1

1 + N1

N1∑
n=1

ξn · sin(nE)

nE
; E = πlz

Lz

N =
√

πLz f

c
; N1 = Integer(N ); ξn = (−1)n

The function U (M D) is listed in TableB.1. The function G is listed in TableA.1.

2. f > fc

Lv/p = 41 − 20 logμ − 30 log f + 10 log fc − 10 log η

The sound radiation ratio for a rectangular plate without a baffle is obtained from
(13.124) and (13.125) as

σ̄a = 2(� · � + G)

� · T + G
for f < fc

σ̄a = 1√
1 − fc/ f

for f > fc

The baffle parameterU (M D) = U (X) depends on the ratio between the dimensions
of the plate and the dimension of baffle plus plate as well as on the frequency. Once
the ratio X is determined the function U (X) is found in TableB.1 for a frequency f
for the product f · L y where by determining.
f is the frequency in Hz and L y is the total width of panel plus baffle in m.

http://dx.doi.org/10.1007/978-3-662-47934-6_13
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Appendix C
Input Data for Noise Prediction on Ships

The prediction model presented in Sects. 16.11 through 16.15 has been used exten-
sively for the prediction of noise levels on various types of ships. One example is
discussed in Sect. 16.15 where measured and predicted results are compared. The
ship is shown in Fig. 16.17 and the element model in Fig. 16.18

The main particulars of the ship are as follows:

(1) Hull 33175 TDW, L O A =170.7 m, T =11.6 m
(2) Main engine (1) 9200kW, 134 rpm (max.cont.)
(3) Aux. engines (3) 808kW, 720 rpm (each)
(4) Propeller (1) Diameter=5.6 m, 4-bladed, design rate of revs.=134 rpm

Main and auxiliary engines were firmly mounted.
On the first deck a floating accommodation system of the type shown in Fig. 16.16

was used. On all other decks, the accommodation system was mounted directly to
the steel deck. The radiation ratios and coupling factors for all structures in accom-
modations are given in TablesC.1 and C.2.

On the decks, layers of levelling compound and vinyl were applied. The additional
weight of deck covering system plus furniture, etc., is approximately 20 kg/m2. The

Table C.1 Radiation ratio σ given as 10 logσ for structures in accommodations

f (Hz) Deck Bulkheads Ceiling Floating floor

31.5 −10 −10 −22 −20

63 −10 −12 −21 −20

125 −9 −12 −21 −18

250 −7 −9 −19 −16

500 −4 −3 −17 −14

1000 −1 2 −15 −12

2000 0 0 −9 −5

4000 0 0 2 0

8000 0 0 0 0
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Table C.2 Coupling factors, �Lv , for structures in accommodations

f (Hz) Bulkheads Ceiling Floating floor

31.5 −3 0 4

63 3 0 4

125 3 0 4

250 7 6 10

500 9 8 16

1000 11 9 20

2000 14 11 22

4000 15 13 24

8000 16 16 26

bending stiffness for this type of levelling compound is negligible. The parameters
for the elements shown in Fig. 16.18 are given in TableC.3. The loss factor η for the
various elements is defined as

Table C.3 Structural model

Element number Lx (m) t (mm) ξ Added weight
(kg/m2)

1 2.50 6 0.7

2 2.75 7 0.7

3 2.75 6 0.7

4 5.90 6 0.7 20

5 2.75 7 0.7

6 2.75 7 0.7

7 5.90 6 0.7 20

8 2.75 6 0.7

9 2.75 6 0.7

10 3.50 7.5 0.7

11 5.90 7.5 0.7 20

12 2.85 11.5 0.7

13 2.85 6 0.7

14 3.00 14 0.7 20

15 3.00 14 0.7 20

16 3.30 14 0.7

17 3.60 15 0.7

18 3.60 6.5 0.7

19 3.60 6.5 0.7

20 3.00 8.5 0.7

(continued)
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Table C.3 (continued)

Element number Lx (m) t (mm) ξ Added weight
(kg/m2)

21 3.00 8.5 1.0

22 3.30 8.5 0.7

23 4.40 14 0.7

24 3.00 13 0.7

25∗ 6.10 14 0.7

26∗ 2.00 13.5 1.5

27∗ 4.00 13.5 1.5

28 0.80 45 10

29∗∗ 2.70 15 0.7

30∗∗ 1.40 15.5 0.7

31∗ 1.40 20 0.7

32∗ 1.40 22 0.7

33∗∗ 4.00 15 0.7

34∗ 0.80 18 0.7

∗Fluid loading on one side ∗∗Fluid loading two sides (water and oil)

η = 0.025 · ξ · f −0.275

where f is the frequency in Hz and ξ a proportionality factor given in TableC.3. The
frame distance L y is everywhere equal to 0.8m The data for the main sources are
presented in TableC.4. The main engine is mounted on element 31 between frames
21 and 43. Auxiliary engines are mounted on element 24 between frames 31 and 40.
The propeller is equivalent to a source acting on element 25 between frames 0 and
10. The source strength for the main engine is given as a velocity level of element
25. The actual source strength on the foundation can be calculated using the result
shown in Figs. 16.21 and16.22.

Table C.4 Source data The velocity levels in dB (re 10−9 m/s) induced by main engine, auxiliary
engines, and propeller on the elements 25, 23 and 25 respectively

f (Hz) Main engine El. 25 Aux. engine El.23 Propeller El.25

31.5 126 109 128

63 128 111 127

125 117 113 122

250 111 117 117

500 108 109 109

1000 100 99 106

2000 90 88 100

4000 84 80 94

8000 74 79 86
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Index

A
Acoustic fields

closed rooms, 146
near, 155
reverberant, 155

Acoustic impedance, 134
Acoustic sources

cylindrical sources, 126, 128
dipole sources, 121
moving monopole source, 129
multipole sources, 121
point source, 113
spherical source, 121
volume velocity, 116

Acoustic waves
influence od velocity gradients, 143
influence of fluid velocity, 143
infuence of temperature gradients, 144
wave equation, 67

Added weight, fluid loading, 163
Apparent E-modulus, rubber, 57
Associated Legendre function, 123
Attenuation

waves in fluids, 103

B
Beam

honeycomb, 294
sandwich, 294

Bessel function, 69
Boundary conditions

beam, constrained viscoelastic layer, 20
bending sandwich, 297
bending, honeycomb, 14, 298
Timoshenko beam, 20

Boundary layer thickness, 351

Bulk modulus, 54

C
Coincidence angle, 220
Constrained viscoelastic layers, 14
Convective ridge, 352
Corcos’ model, 352
Corcos’parameters, 354
Coupling loss factor, 388
Coupling loss factor, structures, 400

measurement of, 408
Critical frequency, 169, 218
Cylinders, wave propagation, 316
Cylindric acoustic source, 117
Cylindrical shells, 26, 322

sound transmission loss, 324

D
Deflection, rubber mounts, 65
Dilatation frequency, 8
Dipole sources, 121
Donell-Mushtari operator, 31
Doppler effect, 133
Double wall resonance, 258
Driving point stiffness, mounts, 63

E
Effective stiffness, mounts, 75
Efimtsovmodels, 355
Eigenfunctions

acoustic fields, rooms, 146
E-modulus, see Young’s modulus

apparent, 55
Energy
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fluids, 109
Energy flow

buildings, 403
SEA, 387, 402
ships, 405

Equivalent absorption, 153
Equivalent mobility

mounts, 63
Equivalent stiffness

measurements, 77
mounts, 61
phase, 77

Eyring’s formula, 154

F
Flanking transmission, 260
Flexural waves, beams, 4
Flexural waves, plates

sandwich/honeycomb, 7
Floating accommodations, 417
Flow-induced noise, ships, 372
Fluid loading

infinite plates, 168
radiation from plate, 204

Fluids
compressibility, 106
conservation of mass, 104
conservation of momentum, 104
losses, 110
properties, 108
speed of sound, 108
wave equation, 103

Forced response
simple mass–spring systems, 41

Fourier transform
spatial, 174

Frequency split, 114

G
Garlekin’s method, 33
Geometrical acoustics, 151
Green’s function

acoustic sources, 118
Fourier transform of, 175
rigid plane boundary, 171

Ground absorption, 141
Group velocity, 314

H
Hamilton’s principle, 1
Hankel function, 117, 200

Hardness, rubber, 55
Honeycomb plates, 289
Honeycomb, see Sandwich

I
Impedance

acoustic, 137
Impedance matrix, 84
Intensity

fluids, 109
IRH, 55

K
Kinematic viscosity, 350

L
Lagrange’s equations, 32
Lagrangian, 2
Legendre function, 124
Longitudinal waves

Bishop correction, 60
Love approximation, 60
rubber mounts, 58

Lorentz transformation, 130
Losses

discrete systems, 46
fluids, 110
radiation, 163, 202, 203

M
Mach number, 130
Mindlin plate, 21
Mobility matrix, 81, 84
Mobility, fluid-loaded plates, 184
Modal density

acoustic field, rooms, 148
Modal energy, SEA, 388
Modal overlap, 390
Modes, discrete systems, 51
Moment mobility, 82
Mounts

effective stiffness, 75
rubber, 53

Multipole sources, 121

N
Natural frequency, 47

closed rooms, 148
cylindrical shells, 322
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sandwich/honeycomb beam, 300
N-wave, 108

O
Oneo function, 70

P
Particle velocity, 104, 115
Phase velocity

longitudinal waves, 72
Plate

excitation of, 342
excited by acoustic field, 223, 255
excited by TBL, 356
rain on the roof excitation, 346
random excitation, 339

Point mobility
engine foundation, 92
fluid-loaded infinite plate, 181
measurements, 95

Potential
velocity, 107

Q
Quadropole sources, 122

R
Random excitation, 339
Rayleigh formula, radiation, 173
Reflection

acoustic waves, 133, 139
coefficient, 138
watersurface, 141

Resiliently mounted superstructures, 281
Reverberation time, 154
Reynold’s number, 350
Ring frequency, 320
Rubber element

wave propagation, 66
Rubber, material parameters, 55, 56

S
Sandwich plate/beam, 289

bending stiffness, 305
dynamic properties, 302
energy flow, 312
flow across junctions, 314
group velocity, 314
natural frequencies, bending, 299

response, 307
sound transmission loss, 309

Schröder frequency, 155
SEA, 382

buildings, 403
coupling loss factor, 388, 391, 407
energy flow, 387
modal energies, 388
modal overlap, 390
parameters, 405
requirements, 387
ships, 404
sound transmission loss, 393
weak coupling, 389

Shadow zone, 145
Shape function

rubber mounts, 54
Ship noise, 409

measurements of, 418, 420
prediction of, 411, 415

Sound radiation
baffled finite plates, 186
cylinders, 200
fluid-loaded plate, 204
general formulation, 169
induced by acoustic field, 223
infinite plates, 163
losses, 202
modal radiation, 191
point-excited infinite plate, 177, 185
ratios, finite baffled plates, 192
Rayleigh formula, 173
total radiation from plates, 197

Sound reduction index, see Sound transmis-
sion loss

Sound transmission loss
between equal rooms, 234
between irregular rooms, 236
cylindrical shells, 324
double walls, 257
effect boundary conditions, 237
effect of baffle, 243
effect of niche, 250
flanking transmission, 260
fluid loaded plates, 261
infinite panels, 216
influence of plate tension, 336
loss factors, 253
mass law, 223
measurement of, 157
measurement results, 248, 252, 329
plate with ribs, 257
sandwich/honeycomb plates, 309



452 Index

SEA, double wall, 395
SEA, single wall, 393
shells with ribs, 328
total, several wall elements, 159
wall between rooms, 226

Source strength
structure-borne sound, 87

Spectral density
spatial, 340

Spherical Hankel function, 125
Statistical Energy Analysis, see SEA
Strouhal number, 354

T
Test rig, mounts, 75
Timoshenko beam, 20
Transfer stiffness

magnitude, 76
phase, 77

Transmission through mounts, 84
Turbulent boundary layers, 350

measurements, 362
water, 374

V
Velocity potential, fluids, 105
Volume velocity, 116

W
Wave equation

fluids, 103
Wave propagation

cylinders, 316
cylindrical shells, 322

Waveguide model, 276, 411
Waveguides

acoustic, 266
coupled, 270
cut-on frequency, 269
general, 267
measurement results, 276
predictions, 276
structural, 267

Wavenumber
honeycomb, 296
sandwich, 296

Z
Zener model, 57
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