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Foreword to the First Edition

A mathematical model is a caricature, a deliberate oversimplification of reality.

As such, its weaknesses may be transparent, its limitations obvious. This is not so,

perhaps, with the invisible model a decision-maker or researcher must inevitably

use. But some form of model must be implicit in informed decision-making, lest

those decisions become random acts of whimsy; and some form of model similarly

guides any experimental design. For all of the limitations of any model, the

likelihood is that the explicit consideration of assumptions is a step in the direction

of better understanding and better decision-making. One goal of this book is to

develop that thesis and to provide the reader the tools to become a better decision-

maker or better scientist. A more general goal is simply to make the power of

dynamical simulation models available to the widest possible audience of

researchers, as aids to exploring the dynamics of ecosystems.

The use of dynamic mathematical models in ecology is not new; indeed, it has a

rich and glorious history. In the early part of the twentieth century, the brilliant

mathematician, Vito Volterra, challenged by his son-in-law Umberto D’Ancona to

explain the oscillations of the Adriatic fisheries, formulated a simple but

now-classic pair of differential equations to show how the interaction between

predator and prey could drive sustained oscillations. More sophisticated models,

incorporating historical effects via Volterra’s own specialty, integral equations,

were explored; but it was the simplicity of the ordinary differential equation models

that captured the attention of later generations. Indeed, the power of simple models

as tools for understanding is also a central theme of this book.

Volterra was not alone in laying out the foundations of today’s mathematical

ecology. Alfred Lotka, an actuary and part-time genius, developed similar equa-

tions, as did the Russian V.I. Kostitzin. Generations of mathematicians explored the

complexities of these apparently simple equations; and even today, new and

esoteric discoveries about bifurcations and chaos are being made. But this research

has largely been the domain of mathematicians, and at times has made little contact

with biological fact or application. It is time, in the words of the authors, for a

“democratization of modeling,” driven by their conviction that modeling is too

important and too much fun to be left to mathematicians. It is also the case that
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modeling in the hands of the uninformed can be a dangerous thing. Hence, as

modeling becomes more widely used, it is essential for those who will use the

output as well as those who will do the modeling to learn the complexities and

limitations to the greatest extent possible; the touchstone of democracy is an

informed electorate.

This book could not have been imagined 20 years ago, or consummated even

10 years ago. The advent of computers indeed introduced a new dimension, the

ability to go beyond analytical treatments and to use simulation as an experimental

tool for much more complex models. High-speed computation has led to increases

in what can be done at a dizzying rate. But the initial result of this revolution was to

replace one kind of theoretical elite—the mathematician—with another—the com-

puter nerd. The power of the modeling was no more in the hands of the proletariat

than it was when the keys to the kingdom were in the intricacies of dynamical

systems theory. Hannon and Ruth have set out to change that. Using STELLA as a

platform, they have produced the modeling cookbook for those who thought they

hated modeling. Their goal, admirably achieved, was to show that some forms of

modeling are no harder to operate than a VCR, and that there are intellectual and

practical rewards waiting for those willing to venture forth.

The student of this text will be well rewarded, learning about modeling in the

only way one really can. . .by putting one’s modeling muddy boots on and slogging

through exercises. Along the way, the hardy traveler will enjoy a wonderful tour of

a wide range of applications in ecology, while learning both techniques and pitfalls.

Modeling is just one tool available to the researcher, to be used in concert with

observation, experimentation, and hypothesis construction. Simulation such as that

taught in this book is just one part of the process, to be combined with analysis and

thought. But it is a powerful tool for exploring the consequences of our assump-

tions, and Hannon and Ruth have provided an introduction that opens this world to a

far greater part of the research community than could have been included a decade

ago. Word processing seemed forbidding when it was first made available, but now

is a skill performed more easily by most Americans than arithmetic or spelling.

Modeling too can be made easily available, at least in its simplest forms. Word

processing is no substitute for thoughtful composition, and STELLA similarly has

limits. For the advanced researcher, or one who wants to become one, more

sophisticated approaches beckon. Nonetheless, we are nearing the day when

every researcher will be able to use simple tools such as STELLA to construct

representations of their hypotheses, and use these to explore broad classes of

scenarios unavailable through experimentation. Read on and join the revolution.

Princeton, NJ Simon A. Levin

August 21, 1995
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Preface

The problems of understanding complex system behavior and the challenge of

developing easy-to-use models are apparent in the fields of biology and ecology.

In real-world ecosystems, many parameters need to be assessed. This requires tools

that enhance the collection and organization of data, interdisciplinary model devel-

opment, transparency of models, and visualization of the results. Neither purely

mathematical nor purely experimental approaches will suffice to help us better

understand the world we live in and shape so intensively.

Until recently, we needed significant preparation in mathematics and computer

programming to develop such models. Because of this hurdle, many have failed to

give serious consideration to preparing and manipulating computer models of

dynamic events in the world around them. This book, and the methods on which

it is built, will empower us to model and analyze the dynamics characteristic of

human–environment interactions.

Without computer models we are often left to choose between two strategies.

First, we may resort to theoretical, mathematical models that describe the world

around us. Mathematics offers powerful tools for such descriptions, adhering to

logic and providing a common language by sharing similar symbols and tools for

analysis. Mathematical models are appealing in social and natural science where

cause and effect relationships are confusing. These models, however, run the risk of

becoming detached from reality, sacrificing realism for analytical tractability. As a

result, these models are only accessible to the trained scientist, leaving others to

“believe or not believe” the model results.

Second, we may manipulate real systems in order to understand cause and effect.

One could modify the system experimentally, such as introduce a pesticide or some

CO2, or remove a population or introduce a new one, and then observe the effects.

If no significant effects are noted, one is free to assume the action has no effect

and increase the level of the system change. This is an exceedingly common approach.

It is an elaboration of the way an auto mechanic repairs an engine, by trial and error.

But social and ecological systems are not auto engines. Errors in tampering with

these systems can have substantial costs, both in the short and long term.

Despite growing evidence, the trial-and-error approach remains the meter of the day.
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We trust that, just like the auto mechanic, we will be clever enough to clear up the

problems created by the introduced change. We let our tendency toward optimism

mask the new problems.

However, the level of intervention in social and ecological systems has become

so great that the adverse effects cannot be ignored. As our optimism about repair

begins to crumble, we take on the attitude of patience toward the inevitable—

unassignable cancer risk, global warming, fossil fuel depletion—the list is long. We

are pessimistic about our ability to identify and influence cause and effect relation-

ships. We need to understand the interactions of the components of dynamic

systems in order to guide our actions. We need to add synthetic thinking to the

reductionist approach. Otherwise we will continue to be overwhelmed by details,

failing to see the forest for the trees.

There is something useful that we can do to turn from this path. We can

experiment using computer models. Models give us predictions of the short- and

long-term outcomes of proposed actions. To do this we can effectively combine

mathematical models with experimentation. By building on the strengths of each

we will gain insight that exceeds the knowledge derived from choosing one method

over the other. Experimenting with computer models will open a new world in our

understanding of dynamic system. The consequences of discovering adverse effects

in a computer model are no more than ruffled pride.

Computer modeling has been with us for over 50 years. Why then are we so

enthusiastic about its use now? The answer comes from innovations in software and

powerful, affordable hardware available to most individuals. Almost anyone can

now begin to simulate real-world phenomena on their own, in terms that are easily

explainable to others. Computer models are no longer confined to the computer

laboratory. They have moved into every classroom, and we believe they can and

should move into the personal repertoire of every educated citizen. Even more

important, we believe that the modern biologist and ecologist should, before

beginning any lab or field experiments, formulate their hypothesis and construct a

model to address it. This struggle for understanding will not only clarify the

biological dynamics but also point to the parameters that need the appropriate

levels of determination through the ensuing lab and field experiments. Model

first, before the lab or field experiment. It is less time and resource consuming

and produces more meaningful experiments.

The ecologist Garrett Hardin and the physicist Heinz Pagels have noted that an

understanding of system function, as a specific skill, needs to be and can become an

integral part of general education. It requires the recognition (easily demonstrable

with exceedingly simple computer models) that the human mind is not capable of

handling very complex dynamic models by itself. Just as we need help in seeing

bacteria and distant stars, we need help modeling dynamic systems. We do solve the
crucial dynamic modeling problem of ducking stones thrown at us or of safely

crossing busy streets. We learned to solve these problems by being shown the

logical outcome of mistakes or through survivable accidents of judgment. We

experiment with the real world as children and get hit by hurled stones, or we let

adults play out their mental model of the consequences for us and we believe them.
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These actions are the result of experimental and predictive models and they begin

to occur at an early age. In the complex social, economic, and ecological world,

however, we cannot rely on the completely mental model for individual or espe-

cially for group action, and often we cannot afford to experiment with the system in

which we live. We must learn to simulate, to experiment, and to predict with

complex models.

In this book, we have selected the modeling software STELLA. Programming

languages such as STELLA are changing the way in which we think. They enable

each of us to focus and clarify the mental model we have of a particular phenom-

enon, to augment it, elaborate it and then to do something we cannot otherwise do:

to run it, to let it yield the inevitable dynamic consequences hidden in our assump-

tions and the structure of the model. STELLA and easy-to-use personal computers

are not the ultimate tools in this process of mind extension. However, they make the

path to freer and more powerful intellectual inquiry accessible to every student.

These are the arguments for this book onModeling Dynamic Biological Systems.
We consider such modeling as the most important task before us. To help students

learn to extend the reach of their minds in this unfamiliar yet very powerful way is

the most important thing we can do.

Urbana, IL, USA Bruce Hannon

Boston, MA, USA Matthias Ruth
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Chapter 1

Modeling Dynamic Biological Systems

Data can become information if we know the processes involved.
Information can become knowledge if we see the system that is
operating. But knowledge only becomes wisdom when we can
see how any system must change, and can deal with that reality.

(Peter Allen, Coherence, Chaos and Evolution in the Social

Context, Futures, 1994, Vol. 26, p. 597)

1.1 Process and Art of Model Building

Biologists, from those who study the mechanisms of the nerve cell to those who

study ecosystems are in one way or another inescapably involved in dynamic

modeling. This book is dedicated to those people, with an understanding of at

least some of the problems they face.

The book is about the process and art of modeling. We define the process of

model building as an unending one—one with rewards typically proportional to the

effort extended. The art of modeling is implied throughout this book, first by virtue

of our continuing reference to style of the modeling approach and second by the

plethora of modeling examples from nearly every field in biology, and finally by

regular reference to the use of analogy.

Modeling style is important. Throughout our life we have learned to develop

models in our mind of the processes that we face every day. We do solve an

amazing class of dynamic problems, such as hitting baseballs and driving cars, by

acquiring through trial and error the skills that are necessary to put the various

components of a dynamic system together in our mind, draw the necessary conclu-

sions and react accordingly. However, the more complex the system, the less are we

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_1,
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able to sufficiently grasp in our mind its workings, anticipate its behavior, and

prepare our actions. We simply cannot hold the many aspects of a dynamic process

at once in mind.

The history of modern science, including the life sciences, is one of reduction—

an effort to concentrate on ever-smaller parts of the overall system in hopes of

advancing knowledge about its constituent parts. Being able to assemble the

knowledge about the pieces so something new and meaningful can be said about

overall system behavior, however, requires a different kind of knowledge—systems

knowledge—and new concepts and tools. Or, as Freeman Dyson (2008) observed:

I’m 84, so I’m definitely over the hill. If I were starting today as a scientist, I’d certainly

study biology. I’d probably be much better at doing biology today than I used to be, because

it is now much more of a theoretical subject. Now you can do biology pretty well with

computers.

. . ..

The future of biology is exciting and unknown. The main thing is that the era of

molecules is over and the era of organisms is here. The reductionist model was the basis

of biology in the 20th century, and it was enormously successful – we reduced everything to

molecules. We found out wonderful things. The problem in the next century is putting it

together. We know pretty much what the building blocks are. The question is, how do they

actually function? How does the system work as a system? [1]

We need to be able to capture our knowledge—and possibly that of others—in a

consistent and transparent way so that we can better understand, and act in, a

changing world. There are by now general rules and computer programs available

that have been found useful in letting the modelers quickly get down to the business

of capturing their experience inside a computer. Such knowledge capturing is

essential to both learning and understanding. But just as we needed microscopes

and telescopes to extend the reach of the eye, we need dynamic simulation to extend

the reach of our mind. In this process, the computer becomes a facilitator, but it

does not substitute for our ability to develop and understand complex dynamic

systems, rather, it requires the process and skill of modeling that we called for

above. The computer is a means by which we can enlarge our reach into as of yet

unexplored territory, and we need to accustom ourselves to the possibilities it opens

for us. In this sense, the computer is not unlike other great technologies that

required from us that we familiarized ourselves with them and got to understand

their powers and limitations.

We have long been accustomed to machinery which easily out-performs us in physical
ways. That causes us no distress. On the contrary, we are only too pleased to have devices

which regularly propel us at great speed across the ground - a good five times as fast as the

swiftest human athlete - or that can dig holes or demolish unwanted structures at rates

which would put teams of dozens of men to shame. We are even more delighted to have

machines that can enable us physically to do things we have never been able to do before:

they can lift us into the sky and deposit us at the other side of an ocean in a matter of hours.

These achievements do not worry our pride. But to be able to think - that has been a very

human prerogative [2].

Dynamic modeling is a process of extending our knowledge, and the computer is

the only means toward this end. The history of dynamic modeling is traced back to

World War II and the immense technical effort mounted by the scientists involved
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in the development of automated computation. Dynamic modeling was done before

then, but to escape the use by the skilled mathematicians, we had to wait for the

advent of machine computation, the development by Jay Forrester of the basic

computer logic, and the eventual emergence of this development to the personal

computer in the form of STELLA and other easy-to-use programming languages.

STELLA is a graphical programming process that evokes the most easily acces-

sible form of symbolic understanding by humans, the use of icons. As you will find

throughout the text, the classification of variables is quite simple and the resulting

icons associated with them are quite appropriate for capturing all the parts that

influence a system’s behavior. An experienced STELLA modeler literally sees and

understands the dynamic process through the arrangement of these icons. This is part

of what we mean by the modeling art. Now the art can be practiced by anyone with

knowledge of basic mathematics and the ability to use a personal computer.

The only way to achieve the facile use of the icons of dynamic modeling is to use

them repeatedly in many different applications. Thus our books are a carefully

arranged set of models of biological processes that build on each other to various

degrees and make use of the same modeling tools in various contexts. We have tried

to arrange the models from simple to more complex and by scale, from small to

large—from simple growth models of a cell to a rather involved set of interacting

spatial ecosystems. As you work through these models you will not only become

fluent in the use of the modeling language STELLA but you will develop a new way

of thinking about dynamic systems. Practice is the foundation of the modeling art.

Throughout the examples, we try to show how the principal idea of one model

can be used again in a different application. The basic growth models are elements

of large models. The law of mass action in chemistry is used in epidemic and

ecosystem modeling. The play of analogy is dangerous in that it can be misleading

but the loss is never more than blush of embarrassment and a little electricity. Much

new science seems to ride on analogy: its skillful use is the final piece in the

construct of the modeler’s art.

The goals of dynamic modeling are to explain and, with enough effort and luck,

predict. The dynamic events occurring in the real world are multifaceted, interre-

lated and difficult, perhaps impossible, to understand. To reduce our worry and to

state our curiosity about such events, we pose and then try to answer specific

questions about the dynamic processes that seem to comprise these events. Of

necessity, we abstract from most of the details and attempt to concentrate on

some portion of the larger picture—a particular set of features of the real world.

The resulting models are true abstractions of reality. They force us to face the

results of the structural and dynamic assumptions we have used in our abstractions.

The modeling process is necessarily complicated and it is unending. Well-posed

questions lead us to develop a model—that model leads us to more questions. If we

are good at modeling, we improve our understanding of reality. If we are expert at

modeling, we approach reality asymptotically. To become expert, we make the

modeling process an iterative one: We observe what we call real events from

the world, we create an abstract version of these events, highlighting our view of

the important elements, then we build and run a dynamic model, we draw
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conclusions from the results of the model, we compare our explanation of the events

with the reality of such events, and finally we advance our understanding, refine our

questions, and improve our models. If we are really good, we make and test

predictions with the model. According to John L. Casti, good models are the

simplest that explain most of the data from an operating system, and yet do not

explain it all, leaving some room for the model, or theory, to grow [3]. Good models

must have elements that directly correspond to objects in the real world. All models

are necessarily simple constructs of reality; some are just too simple, some just

too complex.

The biological modeling process is certainly a knowledge capturing one and yet

it is exceedingly difficult to do well. Nature seems ineffable. The ultimate difficulty

stems from the complexity of the living system, both its structure and its dynamics,

and the impossibility of removing ourselves fully to observational status. Even an

expert in biochemistry, in medicine or in ecosystem analysis cannot make much

headway against such complexity alone. A team of such people, expert in the

various aspects of a problem may be the answer. As a team, researchers can more

easily see anthropomorphism in each other. We suspect that such team modeling

will become much more common in the near future. The elements that make such a

team successful are of course the possession of real and pertinent expertise,

compatible personalities, a common concept of the questions to be answered, and

a common modeling language. Since the level of modeling expertise is likely to

vary among even the best set of experts, a simple modeling language is needed—

one that can be understood by each of the team in a very short time. The program-

ming language STELLA meets that requirement. Our book contains the guidelines

for the most likely successful process of team or individual modeling and it is based

on that language. Many generations of students both at universities, in government,

and in corporations have contributed to the process described herein.

1.2 Static, Comparative Static, and Dynamic Models

Three general types of models can be defined. The first type of models is those that

represent a particular phenomenon at a point of time, a static model. For example, a

map of the world might show the location and size of a city or the location of

infection with a particular disease, each in a given year. The second type comprises

comparative static models that compare some phenomena at different points in

time. This is like using a series of snapshots to make inferences about the system’s

path from one point in time to another without modeling that process itself.

Other models describe and analyze the very processes by which a particular

phenomenon is created. We may develop a mathematical model describing the

change in the rate of migration to or from a city, or the change in the rate of

the spreading of a disease. Similarly, we may develop a model that represents the

change of these rates over time. This latter type of models is dynamic in the sense

that they attempt to capture the change in real or simulated time.
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With the advent of easy-to-use computers and software we can all build on the

mathematical descriptions of a system and carry them further. The world is not a

static or comparative static process, and so the models treating it in that way will

become obsolete, and are perhaps even misleading. We can now investigate in great

detail and with great precision the system’s behavior over time, its movement

toward, or away from, equilibrium positions, rather than restrict the analysis to an

equilibrium point itself.

An understanding of the dynamics and changing interrelationships of systems,

such as social, biological, and physical systems, are of particular importance in a

world in which we face increasing complexity. In a variety of disciplines scientists

ask questions that involve complex and changing interrelationships among systems.

How do mutation and natural selection affect the distribution of genetic information

in a population? How does a vaccination program affect the spread of a disease? All

good modeling processes begin (and end) with a good set of questions. These

questions keep the modeler focused and away from the miasma of random explo-

ration. Starting with a clear question in mind also helps the modeler decide when

the model is done—namely when it yields a satisfactory answer. Conversely,

modelers who start with the intention to “model the behavior of a system,” without

ever having articulated what the question is that they wish to address, tend to keep

on going, in part because there always seems to be an aspect of the real world that

has not yet found its way into the model, and as a result, the model is perceived as

incomplete. And, of course, it will always be incomplete. But should the model ever

include all the parts of reality, then it will be as complex as reality, and the modelers

will have altogether missed the point of modeling.

Models help us understand the dynamics of real-world processes by mimicking

with the computer the actual but simplified forces that are assumed to result in a

system’s behavior. For example, it may be assumed that the number of people

migrating from one country to another is directly proportional to the population

living in each country, and migration decreases the further these countries are apart.

In a simple version of this migration model, we may abstract away from a variety of

factors that impede or stimulate migration, besides those directly related to the

different population sizes and distance. Such an abstraction may leave us with a

sufficiently good predictor of the known migration rates, or it may not. If our

answers do not compare sufficiently well with reality, we re-examine the abstrac-

tions, reduce the simplifying assumptions, and re-test the model for its new pre-

dictions. The results will not only be a better model of the system under

investigation but most importantly a better understanding of our conception of

that system, showing us whether we were indeed able to identify and properly

represent the essential features of that system.

We cannot overstress the fact that one should keep the model simple, even

simpler than one knows the cause and effect relationship to be, and only grudgingly

add additional features to the model when it does not reproduce the real effects.

After all, it is not the goal to develop models that capture all facets of real life

systems. Such models would be useless because they would be as complicated as

the systems we wanted to understand in the first place. The real quest of dynamic
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modeling is to “discover” the hopefully few rather simple underlying principles that

together bring the observed complexity. This is our meaning of simplicity.

Each element of the model is specified by initial conditions and the computer

works out the system’s responses according to the specified relations among the

model elements. The initial conditions may derive from actual measurement, such

as the number of people living on an island, or estimates, such as estimates of the

number of voles living in a specific garden. The estimates, in turn, could be derived

from empirical information or even reasonable guesses by a modeling team. Models

built on such uncertain parameters may still be of great value, providing a picture of

a particular processes, rather than exact information. Documentation of the param-

eters and assumptions, always necessary at each step in the modeling process, is

important when the modeler’s judgment is used.

In the end, models can be no better than the modelers. Hence the elegant

statement by Botkin [4] is very appropriate,

by operating the model the computer faithfully and faultlessly demonstrates the implica-

tions of our assumptions and information. It forces us to see the implications, true or false,

wise or foolish, of the assumptions we have made. It is not so much that we want to believe

everything that the computer tells us, but that we want a tool to confront us with the

implications of what we think we know.

1.3 Analogies, Anomalies, and Reality

For many years, physicists have known of the analogous relations between the

principle variables in the basic equations of hydraulics, electricity, and mechanical

systems. Force, springs, dampers, inertia, velocity, and displacement have their coun-

terparts in voltage, current, resistance, inductance and capacitance and again pressure,

mass flow, frictional loss, and vorticity. Coulomb apparently was convinced that the

attractive force between charged particles was of the same form as the gravitational

attraction between planetary bodies, put forth by Newton centuries before. These

analogies are more than curiosities. They show a common worldview of such impor-

tant phenomena. As scientists developed each of these disciplines in their turn, they

recognized the heritage of hard-won successes in describing parts of the real world.

Not only were these analogies useful in physics and engineering, but it is well

known that the great economist Walras produced his equations of the economy

from the principles of hydraulics. Before him, the medical doctor and physiocratic

economist Quesnay divined his input–output tables of the French economy from an

analogy with the circulation of blood in the body. Analogy, carried to the right level

of detail, is the cornerstone if not the foundation of the creative enterprise.

Analogies abound between economics, biology, and chemistry. For example, the

most common production functional form used in economics is:

Rate of Production ¼ Q ¼ ALαKβ ð1:1Þ
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where A, α, and β are constants and L is the input of labor and K the input of capital

services, in a process that produces say, widgets at rate Q. But to a chemist, this is

the law of mass action at work. Q is the production rate of some product made from

the reaction of L and K, two chemicals that combine to produce the product. The

constants α and β reflect temperature or perhaps pressure effects on the reaction

rate. Or if you were an epidemiologist, you would say that Q is the rate at which

people are getting sick, that L is the size of the healthy population, K is the size of

the sick population, and A is the contact coefficient. If you are a metapopulation

theorist in ecology, L would be the number of patches occupied by an inferior

species, K the number of superior species, A is the colonization rate of the superior

species, and Q is the rate of conversion of the inferior patches to superior ones.

Some ecologists use a variant analogy to the economic production function

above. They say that Q, an insect birth rate for example, equals a maximum growth

rate for the insect (A) times a series of factors each of whose value varies from 0 to

1, where 1 is the factor value associated with the maximum possible growth rate.

These are usually graphically based, experimentally derived factors that naturally

show diminishing returns. Examples of such factors are temperature and humidity.

Under the exact condition of optimal temperature for the growth rate for this insect,

the temperature factor would be 1.0.

In its various uses of the equation described above, the factors are assumed to be

completely independent. Capital and labor can be substituted for one another

without concern about the availability of the other. But actually, it clearly takes

labor to make more capital to substitute for the displaced labor. So the factors are

not actually independent although they are commonly assumed to be. Neither are

temperature and humidity independent, despite the assumptions in the insect model

for example. For a single firm, the independent factor assumption is not a terribly

bad one, but to make this assumption for the economy as a whole is absurd. Such

assumptions are usually a matter of expediency of model building. Be careful how

you use them.

Analogies can also help you spot anomalies. Lightman and Gingerich [5] point

to the “retrorecognition” phenomenon, where anomalies in one theory are only

recognized when they are explained later by a superseding theory. For a variety of

reasons, we scientists are essentially blind to those facts not explained by the

dominant theory. By the use of appropriate analogy, de rigor for the nineteenth

century likes of Lord Kelvin and J. C. Maxwell, we should be able to turn up

anomalies in our current explanations of the way things work. A rule of thumb for

anomaly-finding is to push your model to its reasonable limits.

Our discussion on the use of analogy is intended to raise your optimism about the

idea of dynamic modeling. But not everyone is optimistic. We might be able to

accurately simulate some very complex biological system but can we actually learn

more about these systems from such models? Can we learn to make wiser decisions

from our modeling exercises? We think the answer is “yes” but our view has its

dissenters. (For an excellent summary of this argument, see Denning [6].) The

counter argument is based on the idea the human problem solving is very context-

dependent, while most computer models are not. This sounds to us more like a
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complaint than a fatal criticism, that is, we should be able to model in a context-

dependent way when that is needed. We should be able to model in such a way that

the guiding rules in the model shift as the context shifts. We further argue that the

terrific complexity of biological, ecological, and sociological systems can mask the

possibility of simple underlying rules. These rules when used together in a model

might cause the system behavior to appear exceedingly complex. The quest is to

find the underlying rules. Such a quest pushes us well beyond simulation. It is what

we mean by the term “dynamic modeling.”

1.4 Model Components

The most important elements of a system are the state variables. State variables are

indicators of the current status of the system. They are the variables on which all the

other calculations in the model are based. State variables come in two flavors:

conserved and non-conserved. A conserved state variable represents an accumula-

tion or stock of something—water, people, materials, or information. These stocks

are created and destroyed by the results of the control variables in the system. But

non-conserved state variables, such as price and temperature, are also possible.

Clearly, the temperature of a hot body sitting in a cool room will determine the rate

that the body cools. The changing price of a natural resource will signal the changes

in its rate of optimal depletion. To maintain simplicity in the model, strive to

minimize the number of its state variables.

System elements that represent the action or change in a state variable are called

flows or control variables. As a model unfolds in time, control variables update the

state variables at the end of each time step. Examples for control variables are the

rate of flood water inflowing to a reservoir, the rate of water release from that

reservoir, and the rate of water evaporation from its surface—all acting to change

the water contained or “conserved” in the state variable, the reservoir.

The remaining set of variables in any model might be classed as converters or

transforming variables. They take in parameters or perhaps the results of calcula-

tions elsewhere in the model and transform these inputs still further. These results

are relayed on to other such transforming variables or to that special class of

transforming variables, the control variables. These interactions in a model are

often classed in terms of feedback—the flow of information from a state variable

through a chain of transforming variables, and ultimately back to the control

variables, change that state variable, and so continue in an ever changing loop,

perhaps finally reaching a steady state or maybe race off to infinity, to zero or to

chaos. The nature of such circulations of information is negative or positive.

Negative feedback tends to force state variables toward goals set up either implic-

itly or explicitly in the model. Negative feedback leads to balance. Positive feed-

back tends to do the opposite: it allows variables to reinforce differences rather than

minimize these differences. Positive feedback, as we shall see in the text has some

surprising results. Negative feedback is the basic idea of the controlled dynamic
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system, and ultimately it is the confederate of the causally-oriented theorist.

Real-world systems typically contain both reinforcing and balancing processes,

often with their strengths varying over time.

Variation in feedback processes can be brought about by nonlinear relationships.

Such nonlinear relationships are present if a control variable does not depend on

other variables in a linear fashion but changes, for example, with the square root of

some other variable. As a result of nonlinear feedback processes, systems can

exhibit complex dynamic behavior. Similarly, adjustments in system components

to influences on them may not occur instantly but be lagged in time. Consequently,

system modelers must pay special attention to nonlinearities and lagged effects that

describe the relationships among models components.

Throughout this book we encounter a variety of nonlinear feedback processes

that give rise to complex system behavior. Let us develop a simple model to

illustrate the concepts of state variables, flows, and feedback processes. We will

then return to discuss some “principles of modeling” that will help you to structure

the model building process in a set of steps.

1.5 Modeling in STELLA

To explore modeling with STELLA, we will develop a basic model of the dynamics

of a fish population. Assume you are the sole owner of a pond that is stocked with

200 fish that all reproduce at a fixed rate of 5 % per year. For simplicity, assume also

that none of the fish die. How many fish will you own after 20 years?

A run-time version of STELLA can
be downloaded for free at the 
following internet site:

www.iseesystems.com/modelingdynamicbiologicalsystems.

There you will also find the models 
developed and described in this book.
The models are also available at:

www.iseesystems.com/modelingdynamicbiologicalsystems.

In building the model, we will utilize all four of the graphical “tools” for

programming in STELLA. On opening STELLA, you will be faced with a user

interface that shows, on the left side, a series of tabs. Click on the Model tab and

you should see a window as in Fig. 1.1. The left-hand side can be used to develop

the model, get an overview over its structure (that is the mapping layer), build a user

interface for it, or display the equations, initial conditions and such, on which the
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model is based. The right-hand side captures details such as the equations used to

calculate a particular parameter, and can be displayed or collapsed by clicking the

little triangle. More about all this later.

The model layer displays the following symbols, “building blocks” (from left to

right): stocks, flows, converters, action connectors (information arrows), and mod-

ules (Fig. 1.2).

We begin with the first tool, a stock (rectangle). In our example model, the stock

will represent the number of fish in your pond. Click on the rectangle with your

mouse, drag it to the center of the screen, and click again. Type in FISH. This is

what you get (Fig. 1.3).

This is the first state variable in our model. Here we indicate and document a

state or condition of the system. In STELLA, this stock is known as a reservoir.

Fig. 1.1

Fig. 1.2

Fig. 1.3
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In our model, this stock represents the number of fish of the species we are studying

that populate the pond. If we assume that the pond is one square kilometer large, the

value of the state variable FISH is also its density, which will be updated and stored

in the computer’s memory at every step of time (DT) throughout the duration of the

model. The fish population is a stock, something that can be contained and

conserved in the reservoir; density is not a stock, it is not conserved. Nonetheless,

both of these variables are state variables. So, because we are studying a species of

fish in a specific area (one square kilometer), the population size and density are

represented by the same rectangle.

Inside the rectangle is a question mark. This is to remind us that we need an

initial or starting value for all state variables. Click on the rectangle and the side-

docked panel will be activated. Its bottom portion is asking for an initial value:

“Enter initial value here.” Add the initial value you choose, such as 200, using the

keyboard or the mouse and the dialogue keypad in the upper part of the side-docked

panel. In the upper part, you can also check whether the stock can or cannot become

negative. In our case, click the “Non-negative” check-box, since the stock of fish

will never be allowed to drop below zero. When you have finished, click the check

mark in the lower right-hand side of the side-docked panel to apply your specifi-

cations. The question mark in the stock FISH will have disappeared (Fig. 1.4).

We must decide next what factors control (i.e., add to or subtract from) the

number of fish in the population. Since we assumed that the fish in your pond never

die, we have one control variable: REPRODUCTION. We use the flow tool (the

right-pointing arrow, second from the left in Fig. 1.2) to represent the control

variable, so named because they control the states (variables). Click on the flow

symbol, then click on a point about 2 in. to the left of the rectangle (stock) and drag

Fig. 1.4
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the arrow to POPULATION, until the stock becomes dashed, and release. Label the

circle REPRODUCTION. Figure 1.5 shows what you will have.

Here, the arrow points only into the stock, which indicates an inflow. But, you can

get the arrow to point both ways if you want it to. You do this by clicking on the circle

in the flow symbol and choosing “Biflow” in the upper portion of the side-docked

panel. A biflow enables you to add to the stock if the flow generates a positive number

and subtract from the stock if the flow is negative. In our model, of course, the flow

REPRODUCTION is always positive and newly born fish go only into the popula-

tion. Our control variable REPRODUCTION is a uniflow: “new fish per annum.”

Next we need to know how the fish in our species reproduce. Not the biological

details, just how to accurately estimate the number of new fish per annum. One way

to do this is to look up the birth rate for the fish species in our pond. Say we find that

the birth rate¼ 5 new fish per 100 adults each year which can be represented as a

transforming variable. A transforming variable is expressed as a converter, the
circle that is third from the right in the STELLA toolbox (Fig. 1.2). So far

REPRODUCTION RATE is a constant, later we will allow the reproduction rate

to vary. The same clicking and dragging technique that got the stock on the screen

will bring up the circle. Click on the converter and then enter in the side-docked

panel the number of 0.05 (5/100). In the upper right-hand side of the side-docked

panel is an impressive list of “built-in” functions that we can use for more

sophisticated model specifications. We’ll use some of those later.

At the right of the STELLA toolbox (Fig. 1.2) is the connector (information

arrow). We use the connector to pass on information (about the state, control, or

transforming variable) to a circle, to control or transforming variable. In this case,

we want to pass on information about the REPRODUCTION RATE to REPRO-

DUCTION. Once you draw the information arrow from the transforming variable

REPRODUCTION RATE to the control and from the stock FISH to the control,

open the control by double clicking on it. Recognize that REPRODUCTION RATE

and FISH are listed in the side-docked panel as two required inputs for the

specification of REPRODUCTION. Note also that STELLA asks you to specify

the control: REPRODUCTION¼ . . . “Enter equation here.” Click on REPRO-

DUCTION, then on the multiplication sign in the lower portion of the side-docked

panel and then on FISH to generate the equation:

REPRODUCTION ¼ REPRODUCTION RATE � FISH ð1:2Þ
Click the check mark in the lower right-hand side of the side-docked panel, and

the question mark in the control REPRODUCTION disappeared. Your STELLA

diagram should now look like the one in Fig. 1.6.

Fig. 1.5
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Next, we set the temporal (time) parameters of the model. These are DT

(the time step over which the stock variables are updated) and the total time length

of a model run. Go to the RUN pull-down menu on the menu bar and select Time

Specs. . . A dialogue box will appear in which you can specify, among other things,

the length of the simulation, the DT, and the units of time. We arbitrarily choose

DT¼ 1, length of time¼ 20, and units of time¼ years.

To display the results of our model, click on the graph icon (the left symbol in

Fig. 1.7) and drag it to the diagram. If we wanted to, we could display these results

in a table by choosing the table icon instead (the right symbol in Fig. 1.7).

When you create a new graph pad it will open automatically. To open a pad that

had been created previously, just double-click on it to display the list of stocks,

flows, and parameters for our model. Each one can be plotted. Select FISH to be

plotted and, with the� arrow, add it to the list of selected items. Then set the scale

from 0 to 600 and check OK. You can set the scale by clicking once on the variable

whose scale you wish to set and then on the arrow next to it (Fig. 1.8). Now you can

select the minimum on the graph and the maximum value defines the highest point

on the graph. Rerunning the model under alternative parameter settings will lead to

graphs that are plotted over different ranges. Sometimes these are a bit difficult to

compare with previous runs, because the scaling has changed, unless, of course, you

have fixed the scale, as we suggest here.

Would you like to see the results of our model so far? We can run the model by

selecting RUN from the pull-down menu. The results are shown in Fig. 1.9.

We see a graph of exponential growth of the fish population in your pond. This is

what we should have expected. It is important to state beforehand what results you

expect from running a model. Such speculation builds your insight into system

behavior and helps you anticipate (and correct) programming errors. When the

results do not meet your expectations, something is wrong and you must fix it. The

error may be either in your STELLA program or your understanding of the system

that you wish to model, or both.

Fig. 1.6

Fig. 1.7
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Fig. 1.8

Fig. 1.9



The lower left-hand corner of the graph pad also shows several symbols—a

triangle, which allows you to flip though the pages of a graph pad, assuming there is

more than one graph specified in that pad; a lock, to “freeze” the output from a

model run so it does not lost of the model is run again; a printer symbol to print the

graph; and a dynamite stick to clear the graph. Also, below the graph is the name of

the graph, which we have not specified, but you can do so by double clicking on

“Untitled” and then typing in a name. At the top right-hand corner of the graph pad,

you see a “pin” that can be used—by clicking on it—to affix the graph to the top

layer of your diagram so that it does not go to the background when you, for

example, open or close a stock or other symbol.

What dowe really have here in ourmodel?Howdoes STELLAdetermine the time

path of our state variable? Actually, it is not very difficult. At the beginning of each

time period, starting with time¼ 0 years (the initial period), STELLA looks at all the

components for the required calculations. The values of the state variables will

probably form the basis for these calculations. Only the variable REPRODUCTION

depends on the state variable FISH. The estimate the value of REPRODUCTION

after the first time period, STELLAmultiplies 0.05 by the value FISH (@ time¼ 0) or

200 (provided by the information arrows) to arrive at 10. From time¼ 1 to time¼ 2,

the next DT, STELLA repeats the process and continues through the length of the

model. When you plot you model results in a table you find that, for our simple fish

model, STELLA calculates fractions of fish from time¼ 1 onward. This problem is

easy to solve for example by having STELLA round the calculated number of fish—

there is a built-in function that can do that—or just by re-interpreting the population

size as “thousands of fish.”

This process of calculating stocks form flows highlights the important role that is

played by the state variable. The computer carries that information—and only that

information—from one DT to the next, which is why it is defined as the variable

that represents the condition of the system.

You can drill down in the STELLA model to see the parameters and equations

that you have specified and how STELLAmakes use of them. Click on the Equation

tap on the far right of your STELLA diagram. The equations and parameters of your

models are listed here. Note how the fish population in time period t is calculated

from the population one small time step DT earlier and all the flows that occurred

during a DT.

The model of the fish population dynamics is simple. So simple, in fact, we could

have solved it with pencil and paper, using analytic or symbolic techniques. The

model is also linear and unrealistic. So let us add a dimension of reality, and by

doing so explore some of STELLA’s flexibility. This may be justified by the

observation that, as populations get large, mechanisms set in that influence the

rate of reproduction.

To account for feedback between the size of the fish population and its rate of

reproduction, an information arrow is needed to connect FISH with REPRODUC-

TION RATE. The connection will cause a question mark to appear in the symbol

for REPRODUCTION RATE (Fig. 1.10). The previous specification is no longer

correct; it now requires FISH as an input.
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Open REPRODUCTION RATE. STELLA alerts you that there is an unused, but

required input FISH. The relationship between REPRODUCTION RATE and FISH

must be specified in mathematical terms, or at least, we must make an educated

guess about it. Our educated guess about the relationship between two variables can

be expressed by plotting a graph that reflects the anticipated effect on variable

(REPRODUCTION) will have on another (FISH). The feature we will use is called

a graphical function.
To use a graph to delineate the extended relationship between REPRODUCTION

RATE and FISH, we click on REPRODUCTION RATE to access the side-docked

panel, then select FISH to make it part of the specification of the REPRODUCTION

RATE, and then select the graphical function option in the lower part of the panel

(see Fig. 1.11).

Set the limits on the FISH at 2 and 500; set the corresponding limits on the

REPRODUCTION RATE at 0 and 0.20, to represent a change in the birth rate when

the population is between 0 and 500. Here we are using arbitrary numbers for a

made-up model. Finally, use the cursor to draw a curve from the maximum birth

rate and population of 2 to the point of zero birth rate and population of 500.

Suppose a census of the fish population was taken at three points in time. The

curve we just drew would then go through all three points. We can assume that, if a

census had been taken at other times, it would show a gradual transition through all

the points. Here, we use STELLA’s default of 11 data points. This sketch is good

enough for now. Click on OK.

Before we run the model again, let us speculate what our results will be. Think of

the graph for FISH through time. Generally, it should rise, but not in a straight line.

At first the rise should be steep: the initial population is only 200, so the initial birth

rate should be very high. Later it will slow down. Then, the population should level

off at 500, when the population density would be so great that new births tend to

cease. Run the model. Figure 1.12 shows that we were right!

This problem has no analytic solution, only a numerical one. We can continue to

study the sensitivity of the answer to changes in the graph and the size of

DT. We are not limited to a DT of one. Generally speaking, a smaller DT leads

to more accurate numerical calculation for updating state variables and, therefore, a

more accurate answer. Choose Time Specs from the RUN menu to change DT.

Fig. 1.10
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Fig. 1.11

Fig. 1.12
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Change DT to reflect ever-smaller periods until the change in the critical variable is

within measuring tolerances. Start with a DT¼ 1 and reduce it to 0.5, 0.25, 0.125. . .
for subsequent runs—each time cutting it into half of its previous value. We may

also change the numerical technique used to solve the model equations. Euler’s

method is chosen as a default. Two other methods, Runge–Kutta-2 and Runge–

Kutta-4, are available that update state variables in different ways. We will discuss

these methods later.

Start with a simplemodel and keep it simple, especially at first.Whenever possible,

compare you results against measured values. Complicate yourmodel only when your

results do not predict the available experimental data with sufficient accuracy or when

your model does not yet include all the features of the real system that you wish to

capture. For example, as the owner of a pond, you may want to extract fish for sale.

What are the fish population dynamics if you wish to extract fish at a constant rate of

3 % per year? To find the answer to this question, define an click on the stock FISH.

Click on the converter, then click onto the stock to have the converter connected to

the stock, and then drag the flow from the stock to the right. Now fish disappear from

the stock into a “cloud.” We are not explicitly modeling where they go. Figure 1.13

shows what you should have developed thus far as your STELLA model.

Next, define a new converter called EXTRACTION RATE and set is to 0.03.

Specify the outflow as:

EXTRACTION ¼ EXTRACTION RATE � FISH ð1:3Þ

after making the appropriate connections with information arrows. Your model

should now look like as in Fig. 1.14.

Fig. 1.13

Fig. 1.14
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Run your model again. The new time-profile of the fish population in you pond is

shown in Fig. 1.15.

You can easily expand this model, for example, to make the decision on

EXTRACTION endogenous to your model, or introduce unforeseen outbreaks of

diseases in your pond or other problems that may occur in a real world setting.

When your model becomes increasingly complicated, try to keep your STELLA

diagram as organized as possible, so it clearly shows the interrelationships among

the model parts. A strong point of STELLA is its ability to demonstrate complicated

models visually. Use the “arrow” symbol (Fig. 1.16) to move model parts around

the diagram; use the “paintbrush” to change the color of icons. The “dynamite” will

blast off any unnecessary parts of the model.

Be careful when you blast away information arrows. Move the dynamite to

the place at which the information arrow is attached and click on that spot. If you

click, for example, on the converter itself, it will disappear, together with the

information arrow.

The tools we mentioned here are likely to prove very useful when you develop

more complicated models and when you want to share your models and their results

with others. STELLA contains many more helpful tools, which we hope you will

explore and use extensively. Space limitations preclude us from describing all of

STELLA’s features. You will probably want to try out on your own such features,

or consult the web help option accessible through the question mark in the upper

right-hand corner of the side-docked panel.

Fig. 1.15

Fig. 1.16
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Make thorough use of your model, running it over again and always checking

your expectations against its results. Change the initial conditions and try running

the model to its extremes. At some point you will want to perform a formal

sensitivity analysis. Later, we will discuss STELLA’s excellent sensitivity analysis

procedures and other features to complement your modeling skills.

1.6 Principles of Modeling

Though our title of this section may seem somewhat ostentatious, we surely have

learned something general about the modeling process after many years of trying.

So here is our set of ten steps for the modeling process. We expect you to come back

to this list once in a while as you proceed in your modeling efforts, and to challenge

and refine these principles. A good set of principles should be useful to the novice

and aid in speeding the process of learning to become an effective modeler.

1. Define the problem and the goals of the model. Set the questions you want the

model to answer. The power of a good set of specific questions is hard to

overstate. Good questions focus the mind on some aspect of the entire system in

which your subsystem of interest is embedded. Appropriate generalization will

come with time. Spend a lot of time defining the question(s) to be answered by

your model.

2. Select the state variables, those variables that are to be the indicators of the

status of the system through time. Designate the condition for non-negativity of

the state variables, as appropriate. Some state variables are conserved, some are

not. Identify those in your model. Keep the number of state variables as small

as possible. Purposely avoid complexity in the beginning. Record the units of

the state variables either in the “Units” editor available in the side-docked panel

or by adding them in a comment within braces—{. . ..}—in your specification

of the state variable.

3. Designate the control variables, those flow controls that will change the state

variables. Note which state variables are donors and which are recipients with

regard to each of the control variables. Note whether lagged effects should be

included either in the controls or in the variables that compose the controls. Be

sure to set these flows as biflows if appropriate. Also, note the units of the

control variables as you have done for state variables, and ensure that they

match with their uses in other parts of the model. Are there any useful analogies

to apply here? Keep it simple at the start. Try to capture only the essential

features. Put in one type of control as a representative of a class of similar

controls. Add the others as needed, in step 10.

4. Select the parameters for converters. Note the units of these converters and

check their consistency with other parts of the model. Ask yourself: Of what are

these converters a function? Do you expect some of these variables to be lagged
or delayed functions of some of the other variables? Only begrudgingly expand

your model.
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5. Check your model for compliance with any appropriate physical, economic, or

other laws; for examples, the conservation of mass, energy, value; any conti-

nuity requirements. Also, check for consistency of units. Look for the possi-

bilities of division by zero, negative volumes, or prices, etc. Use conditional

statements if necessary to avoid these violations. Fully document your param-

eters, initial values, the units of all variables, assumptions, and equations before

going on.

6. Choose the time and space horizon over which you intend to examine the

dynamic behavior of the model. Choose the length of each time interval for

which state variables are being updated by reference to the space over which

the dynamics occur, and mainly by reference to the fastest rate of change you

expect in your model. Then choose the numerical computation procedure by

which flows are calculated. Set up a graph showing the most important vari-

ables and guess their variation before running the model.

7. Run the model. Are your results reasonable? Are your questions answered?

Choose alternative lengths of each time interval for which state variables are

updated. Choose alternative integration techniques. Explain any differences.

8. Do a sensitivity analysis of the parameters and initial values in the model. Try

out these small changes singly and collectively within their reasonable

extremes and see if the results in the graph still make sense. Revise the

model to repair errors and anomalies.

9. Compare the results to experimental data. This may mean shutting off parts of

your model to mimic a lab experiment, for example.

10. Revise the parameters, perhaps even the model structure to reflect greater

complexity and to meet exceptions to the experimental results, repeating

steps 1–10. Do the results of this model suggest a new set of questions? They

should.

1.7 Why Model?

Now that we introduced you to modeling, the software, and general principles of

modeling, it is time to step back and ask ourselves again an important question:

Why, and for what purposes, do we develop models? Dynamic modeling has four

possible general uses:

• First, you can experiment with models. A good model of a system enables you to

compare your result to those available from the real system and to change the

model components in order to see how these changes affect the rest of the

system. You can experiment, form and run scenarios, and bypass the inherent

risk aversion to making changes in a real system.

• Second, a good model enables prediction of the future course of a dynamic

system. Some modelers want only to explain what is going on, others aspire to

a higher and more difficult (and dangerous) calling: forecasting. A good

model will highlight gaps in what we know about the system we are studying.
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A good model will indicate the normal fluctuations in a complex system. Such

variations are sometimes the cause of great alarm and much unneeded change.

Conversely, observation of variation that is unexpected from real world experi-

ence could signal the need for action. A good model should be able to indicate

the results of these corrective actions.

• Third, a good model can serve as a thought-organizing device. Sometimes, most

of the value in modeling comes from a deeper understanding of the variables

involved in a system that people are routinely struggling to control. Modeling

requires that you assemble the group of experts on the various parts of the system

to be understood. Each group member gains a better understanding of the system

and of the skills and knowledge of their colleagues. Good modeling stimulates

further questions about the system behavior and in the long run, the applicability

to other systems of any newly discovered principles.

• Fourth, a good model is a growing storage device for data and ideas that the

human enterprise has struggled long and hard to find and learn. Most often such

data and insights are left to gather dust in printed form or reside quietly in some

distant computer. An ever-developing model should capture the knowledge that

we have gained, and document those lessons learned through the years about

how the system actually works.

1.8 Model Confirmation

When do you know that you developed a “good” model? Giving an answer to this

question often is rather difficult. By definition, all models abstract away from some

aspects of reality that the modeler perceives less relevant than others. As a result,

the model is a product of the modeler’s perceptions. Consequently, one model is

likely not the same as the models developed for the same system by other modelers

who have their own, individual perceptions. Plurality of, and competition among,

models is therefore required to improve our collective understanding of real-world

processes. The more open and flexible the modeling approach, and the more people

are engaged in the specific modeling activity, the greater the chance of important

discovery.

By enclosing a selected number of system components in the model, and

determining the model-system’s behavior over time solely in response to the forces

inside the model, the model becomes closed. Real systems, in contrast, are not

closed but open, allowing for new, even unprecedented development in response to

highly infrequent but dramatic changes in their environment. It is therefore not

possible to completely “verify” a model by comparing model results to the behavior

of the real system. There may have been extenuating circumstances that led the real

system to behave differently from the model. The model itself may not have been

incorrect, but just incomplete with regard to those circumstances. Such circum-

stances will always be present, precisely due to the fact that it is the modeler’s goal

to capture only the “essentials” of the real system and abstract away from other factors.
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Consequently, complete verification of a model can only be done with regard to the

consistency, or logical accuracy, of its internal structure.

Generally, there are two ways to test a model. First, one can withhold some of

the basic data that was used to set up the model to determine the model parameters,

data that represent the real world to the extent that it can be measured. Then the

model can be used to predict the used data. For example, one might develop a model

to predict the future population of the U.S. based on actual data from, say, 1900 to

1960 and then use the resulting model to predict the (known) population data from

1970 to 1990. If the “prediction” is a success, the later data can be incorporated into

the model, and prediction for the next 20 or 30 years can be made with some

reasonable degree of confidence. Another way to test the “goodness” of a model is

to predict the condition in some heretofore unmeasured arena and then proceed to

measure these variables in the field. For example, suppose that a model is being

devised to predict the location of an endangered species. The model is built and

calibrated on the known habitats and then applied to the rest of the likely geography

to qualify these places as likely locations.

If it is not possible, by definition, to verify a model by comparing its results to the

performance of the real system, how can we know that we really captured the

essentials of that system in the model? We know that our model is not unique—

there are always other ways to construct a model. The guide for selection: always

first try to choose the simplest form. We may compare the model results to reality,

not to verify but to confirm, and if we are unable to reproduce at least the trends

observed in the real system, we know something is missing or wrong and we are

forced to revise our model or check the accuracy of the data that went into

specifying the model parameters and initial conditions.

Ironically, things can also become more problematic if the model results coin-

cide well with our observations of the real system. The problem, for example, lies in

the possibility that errors in the model cancel each other. Such misspecifications are

difficult to detect and this is why we will start in many chapters of this book with a

theory of model behavior rather than with observations of real systems. Combining

theory, observations and, indeed intuition, in a disciplined way in dynamic models

is especially important when we make use of easy-to-learn and easy-to-use software

packages. These devices allow us to develop models that can get ahead of our-

selves. At each point in the model construction process is it important to be able to

justify the assumptions that are made.

Once the model is built on a theoretical base and observations, or “reasonable”

initial conditions and parameter values, we let it yield the consequences of the

forces built into the model. The choice of observations versus “reasonable” values

is basically a choice of providing a predictive or descriptive model. For a descrip-

tion of the role of feedback mechanisms for system development it is frequently

sufficient to concentrate on those forces and the appropriate parameter range rather

than precise numerical values.

To confirm our model results we may compare them to appropriate data. The

greater the number of instances in which model results and reality coincide under a

variety of different scenarios, the more probable it is that the model captures the
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essential features of the real system it attempts to portray. We can increase our

confidence in the model further by comparing its results to other models for the

same or similar systems. The latter approach is of particular interest if the model

was descriptive rather than predictive. Finally, we hope that we develop, through

practice in modeling, experience and new understanding of system dynamics that

enable us to more easily detect problems in model specifications. This is a learning

process and we hope our book makes a significant contribution.

1.9 Extending the Modeling Approach

The models developed in this book are all built with the graphical programming

language STELLA. In contrast to the majority of computer languages available

today, STELLA enables you to spend the majority of your time and effort on

understanding and investigating the features of a dynamic system, rather than

writing a program that must follow some complicated, unintuitive syntax. With

its easy-to-learn and easy-to-use approach to modeling, STELLA provides us with a

number of features that enhance the development of modeling skills and collabo-

ration of modelers. First there is the knowledge-capturing aspect of STELLA. The

way we employ STELLA leads not only to a program that captures essential

features of a system, but also more importantly results in a process that involves

the assembly of experts who contribute their specialized knowledge to a model of a

system. Experts can see the way in which their knowledge is incorporated into the

model because they can pick up the fundamental aspects of STELLA very quickly.

They can see how their particular part of the whole is performing and judge what

changes may be needed. They can see how their part of the model interacts with

others and how other specialists formulate their own contribution. As a result, these

experts are more likely confident that the whole model is able and accurate than if

they had entrusted a programmer with their insight into the system’s workings.

Once engaged in this modeling process, experts will sing its praises to other

scientists. This is the knowledge capturing aspect of the modeling process.

These same experts are likely to take STELLA into the depths of their own

discipline. But most important, they will return to their original models and repair

them to meet broader challenges than first intended. Thus models grow along with

the expertise and understanding of the experts. This is the expert-capturing part of

our process. It is not only based on informed consensus but it has the possibility of

continuing growth of the central model.

So we avoid the cult of the central modeler on the mainframe computer, who

claims to have understood and captured the meaning of the experts. We avoid

producing a group of scientists who, unsure how well their knowledge has been

captured, and so, in their conservative default position, deny any utility or even

connection to the model.

The process is not risk free and it requires delicate organization. The scientists

who do participate in the modeling endeavor will reveal an approach to their field.
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There may be, no doubt will be errors and omissions in that approach, and thus, they

may worry about criticism. Therefore, the rules of interaction must recognize gently

their courage. The process does promise to make young scientists wiser and older

scientists younger.

A general strategy for modeling with experts is to build a STELLA model of the

phenomena that all expect will be needed to answer the questions posed by them at

the outset. That model should cover a space and have a time step that is commen-

surate with the detail needed for the questions. The whole space and time needed for

the model may exceed reasonable use of the desktop computer. Eventually, any

modeling enterprise may become so large that the program STELLA is too cum-

bersome to use. However, translators exist for the final STELLA model, converting

its equations into other computer code, such as C+ or FORTRAN. Translated

models can be duplicated and put into parallel modes, adjoining cells on a land-

scape, for example and run simultaneously on large computers. For example, in

spatial ecological modeling we use STELLA to capture the expertise of a variety of

life science professionals. We then electronically translate that generic model into

C+ or FORTRAN and apply it to a series of connected cells, for example as many as

120,000 in a model of the Sage Grouse [7]. The next step is to electronically

initialize these now cellularized models with a specific Geographic Information

System of parameters and initial conditions maps. We then run the cellularized

combine on a large parallel-processing computer or a large network of paralleled

workstations. In this way, the knowledge-capturing features of STELLA can be

seamlessly connected to the world’s most powerful computers.

The cellular or parallel approach to building dynamic spatial models with

STELLA and running those models on ever more powerful computers is receiving

increasing attention in landscape ecology and environmental management. An

alternative, but closely related approach has been chosen by Ruth and Pieper [8]

in their model of the spatial dynamics of sea level rise. The model consists of a

relatively small set of interconnected cells, describing the physical processes of

erosion and sediment transport. Each cell of the model is initialized with site-

specific data. These cells are then moved across the landscape to create a mosaic of

the entire area to be covered by the model. In its use of an iconographic program-

ming language, its visual elements for data representation and its representation of

system dynamics the model are closely related to pictorial simulation models [9]

and cellular automata models [10]. The approach is flexible, computationally

efficient, and typically does not require parallel-processing capabilities. Though

slightly awkward, it is also possible to use STELLA to carry out object-oriented

models.

It is the intention of this book to teach you how to model, not just how to use

models. We have chosen STELLA toward this end because it is a very powerful

tool for building dynamic models. The software also comes with an “Authoring”

version that enables you to develop models for use by others who may be

uninterested in the underlying structure of the model. However, since model

development and understanding are the purpose of this book, we do focus here on

the modeling process itself.
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Chapter 2

Exploring Dynamic Biological Systems

Art may be said. . .to overcome, and advance nature, as in these
Mechanicall disciplines.

(Wilkins, Mathematical Magick, 1648)

2.1 Simple Population Dynamics

In this chapter we will return to the concepts and ideas presented above, and explore

in more detail the dynamics of seemingly simple dynamic population models. In the

process of developing and exploring these models you will learn more about

the features of the STELLA software. The findings of this exploration should

sensitize your perception of dynamic processes and help you develop your dynamic

modeling skills.

Let us begin with a simple model of a population N in a given ecosystem with

carrying capacity K. The initial size of the population is N(t¼ 0)¼ 10, and the

carrying capacity is K¼ 100¼ constant. For population sizes below the carrying

capacity, N will increase. Above the carrying capacity, N will decrease. The

maximum rate of increase of N is R¼ 0.1, measured in individuals per individual

in N per time period. A convenient specification for the change in the population

size is the logistic function

ΔN ¼ R � N � 1� N

k

� �
ð2:1Þ

To set up the STELLA model for our investigation of the dynamics of this

population, use the reservoir icon for the stock N, the flow symbol for ΔN, and

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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converters for the transforming variables R and K. Specify the flow ΔN as a biflow

by clicking on the biflow option in the side-docked panel. Your model should look

like the one in Fig. 2.1.

Set up a graph to plot N and K over time. Specify in the Run Specs menu a DT of

one and the length of the model run to extent from time period 0–120, and specify

the units of time as months. Before you run the model, make an educated guess of

the population size N over time. Will N reach the carrying capacity? Will the

approach be exponential? Will N overshoot K? Here is what you should get when

you run your model (Fig. 2.2).

The population size N asymptotically approaches K, and this approach is at first

fairly rapid—as long as N is far below K—but the increase slows down as K is

approached. The ratio of N/K approaches 1 as N increases, and thus (1�N/K)

becomes ever smaller. As a result, ΔN approach zero, but it never quite gets there.

Experiment with alternative values for R, K and initial population sizes, and

observe the resulting population dynamics. Always make an educated guess

about the results before you run the model.

Fig. 2.1

Fig. 2.2
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2.2 Simple Population Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 10

INFLOWS:

ΔN ¼ R*N*(1�N/K)

K ¼ 100

R ¼ .1

2.3 Simple Population Dynamics with Varying

Carrying Capacity

Let us now explore the dynamics of this system by making small changes to the

parameter values. We have already modeled in the previous chapter the case in

which the rate of natural increase changes as a function of the population size.

Another parameter that may not be constant over time is the carrying capacity

K. For example, there may be seasonal fluctuations in the physical environment

that affect the resource base on which our population feeds. For simplicity, we

assume that these seasonal fluctuations occur along a sinewave around the carry-

ing capacity of 100. Click on the converter for K, then type “100+” and scroll

down in the list of built-in functions to find SINWAVE to add SINWAVE to the

value 100. The built-in function SINWAVE requires an amplitude and period for

its specification. We set those arbitrarily to 10 and 12, respectively. You should

now have

K ¼ 100þ SINWAVE 10; 12ð Þ ð2:2Þ
which yields a carrying capacity that fluctuates between 90 and 110 over the

course of a twelve-month period. The STELLA diagram (Fig. 2.3) should look as

before, but the results (Fig. 2.4) are different because of the change in the specifi-

cation of ΔN.

Fig. 2.3
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How will this change in the carrying capacity over time affect the population

size N. Since the carrying capacity has only little influence on N as long as N is

small, we would expect the change in K not to alter the early sigmoidal growth

phase of N. However, as N gets larger, K has an increasing influence on the

subsequent changes in N. When you run the model, you should find that this is

indeed the case. Look closely at the graph and recognize, however, that the changes

in N and K are not exactly in sync with each other. Rather, an increase in K is not

instantly matched by an increase in N. Can you explain why?

Again, explore the dynamics of the system by successively running the model

for alternative specifications of R, K and initial population sizes. For example,

enlarge the range over which K fluctuates over the course of a year. Alternatively,

abandon the assumption that K fluctuates along a sinewave and make it a random

variable. You can do so with the built-in function RANDOM which requires that

you specify upper and lower bounds. For example, specify

K ¼ 100þ RANDOM �10, 10ð Þ ð2:3Þ

and K will fluctuate randomly between the values 90 and 110. Figure 2.5 shows the

results of one model run with K specified as in Eq. (2.3). The time paths of this

system are different from run to run because of the random number.

Fig. 2.4
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2.4 Population with Varying Carrying Capacity

Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 10

INFLOWS:

ΔN ¼ R*N*(1�N/K)

K ¼ 100 + SINWAVE(10,12)

R ¼ .1

2.5 Sensitivity and Error Analysis with STELLA

Let us reflect for a moment on the models that we developed so far. We have

hypothesized about the workings of a dynamic system—the influences on births and

deaths in a population, and possible fluctuations in the maximum number of

individuals of that population that can be sustained in a given environment. We

have not concerned ourselves with real data describing real populations in a real

environment. Rather, we were interested in the general features of such systems.

The modeling approach that we chose here is distinct from a data-driven,

statistical approach. Statistical, or as they are sometimes called, empirical models

are a kind of disembodied representation of some well-studied phenomenon. They

have no connection to reality other than the purely mathematical. The systematical

alternative, the kind we have used in this and similar books [1–3], strives to

Fig. 2.5
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represent as much as possible the reality of the dynamic phenomenon. Some refer to

this form of modeling as the mechanical approach, but this term seems to us too

wooden and likely to leave the impression that we think nature is just another

mechanical process, rather like the engine of an auto. We do not think so.

In systematical modeling, we build into the representation of the phenomenon

that we know actually exists—such as the birth and death processes of populations.

Our systematical alternative therefore starts with an advantage over the purely

statistical or empirical modeling schema. This advantage allows the systematical

model to be used in more related applications than the empirical model—the

systematical model is more transferable to new applications. But the empirical

model does have one advantage: in the process of evaluating the data gathered

about the phenomenon, the mean and standard deviations of the coefficients are

found. The corresponding parameters and initial values in our models are not so

elaborated. Such values are at first usually found or derived from the pertinent

literature, often without a given variation.

Once the systematical model has performed to meet a general sanity test, the

parameters and initial values need to be flexed to determine the sensitivity of the

model results with regard to the choice of parameters and initial conditions. This

process is time consuming and is usually allocated to the drudgery part of modeling.

But it is essential. Just how effective is a model that responds with dramatic

difference when one of its parameters is changed slightly? The point is not whether

sensitivity analysis needs to be done but how can it be done efficiently? Our view is

that STELLA is a very efficient tool for building the structure of the systematical

model and for performing sensitivity analyses.

To conduct a sensitivity analysis, for example on the parameter R of our

population model, choose “Sensi Specs. . .” (Sensitivity Specification) from the

Run pull-down menu, and choose the parameter R—by clicking on it and selecting

it—as the one for which you want to perform a sensitivity analysis. Type in the

dialogue box “# of Runs” 5 to generate five sensitivity runs. Then provide start and

end values for R. If you chose “Incremental” as the variation type, STELLA

calculates the other values from the start and end values that you specified such

that there are equal incremental changes in A from run to run. Plot the five resulting

curves for N in the same graph by choosing the “Graph” option in STELLA II’s

Sensitivity Specs menu. Run the model with the S-Run command and observe the

resulting graph. Here are the results for R varying from run to run incrementally

between 0.05 and 0.15, and a carrying capacity that is specified as

K ¼ 100þ SINWAVE 10; 12ð Þ ð2:4Þ
The results of this model are shown in Fig. 2.6. Here, we have created one page

in our graph pad that summarizes the five consecutive runs. You can do this by

clicking on the graph that already existed, then selecting a new page for that graph

pad by clicking the triangle that is labeled “New”, and then specifying that this

should serve as a “Comparative” graph (see Fig. 2.7).
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Fig. 2.6

Fig. 2.7
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If you wish to let values of R vary from run to run along a normal distribution

with known mean and standard deviation, choose, within “Sensi Specs” the “Dis-

tribution” option instead of “Incremental”. When you specify “Seed” as a positive

integer, you ensure that the model will replicate a particular random number

sequence in subsequent sensitivity runs. Specify 0 as the seed and a “random”

seed will be selected (Fig. 2.8). If you do not wish to make use of the normal

distribution of the random numbers used in the sensitivity analysis, click on the bell

curve button. This curve bell-shaped button will change its appearance when you

click on it, and then allow you to specify a minimum, maximum and a seed for your

sensitivity analysis.

Another choice for the specification of sensitivity runs in STELLA is not to

change parameters in incremental intervals or along distributions. You can specify

ad hoc values for each of the consecutive runs.

You can easily specify a whole series of parameter variations in STELLA and

make the hundreds of runs needed to reasonably explore the combinations for their

collected sensitivity. Examination of the results can lead you to those parameter

groups that can cause trouble. You might consider eliminating such a combination

by a structural change in the model or by investing more effort in narrowing the real

range of these parameters through extended research.

Fig. 2.8
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Another rather interesting approach is to change each of the parameters to a sine

or cosine function varying the mean value of the parameter, similar to what we have

done in the preceding section of this chapter. Each parameter is assigned its own

frequency and the model is run with all parameters and initial values varying in this

way. A spectral analysis can be performed on the variations in the main variable

with the hope of finding certain critical frequencies, leading you directly to the

parametrical culprits.

Generally though, big computer-based models create a demand for big com-

puters as they are needed to sift through the parameter and initial value specification

problem. There is no easy way around this situation. The problem is actually larger

than the parameter problem discussed here. There are many sources of modeling

error. Gertner et al. [4] and Gertner and Guan [5] wisely advocate the use of Error

Budgets as a way of pinning down the critical areas of error sources. He and his

colleagues have developed the methods of breaking down the source of error in

several categories (Input Measurement, Sampling, Components of the model (sets

of equations), Grouping and Computational). They are able to isolate the sources of

variation in the main variable. With such information the model can be effectively

revised or the data collection effort intelligently redirected.

For very large spatial dynamic models with thousands of cells, the testing

problem is very great, seemingly impossibly large. But efficient testing algorithms

have been and are being developed.1

In presenting your models and their results, you should always include the

variations in the main variables of interest with changes in the critical parameters.

This display reveals to the critical observer that you have a respect for the trouble

that can be caused by what is still unknown about the process you study. The best

thing that can happen to modelers is to have one of their models used to aid

important decision-making. No good decision maker will use a model that has

not been screened for its error potential.

2.6 Difference and Differential Equations

Let us more closely investigate how STELLA treats the equation we specify in our

models. If we set DT¼ 1, then state variables are updated every full time period,

such as every year, month or week. In this case, we have a model of discrete time.

As DT is lowered, we still have a discrete time model, but more closely approach

the case of continuous time. The model of this section illustrates the differences

between the two cases.

1 For a review of this approach and the general strategy of developing, sensitivity testing and using

these large spatial models, see: http://ice.gis.uiuc.edu, generally and: http://ice.gis.uiuc.edu/

TortModel/tortoise.html, specifically for the error budgeting process.
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Start with the following difference equation:

X tþ 1ð Þ ¼ R � X tð Þ t ¼ 1, 2, 3, 4 . . . ð2:5Þ
The analytic solution to this equation is:

X tð Þ ¼ Xo � R >t t ¼ 1, 2, 3, 4 . . . ð2:6Þ
In STELLA, this difference equation is

ΔX ¼ X tþ 1ð Þ � X tð Þ ¼ R� 1ð Þ � X tð Þ ð2:7Þ
which yields what we term Y Numeric in the model of Fig. 2.9.

The continuous form version of this phenomenon is:

ΔY ¼ R � Y, ð2:8Þ
yielding Y Numeric.

The analytic solution to this continuous time equation is:

Y tð Þ ¼ Yo � EXP R � tð Þ ¼ Y Analytic: ð2:9Þ
X Numeric and X Analytic are the same if DT¼ 1. As DT approaches 0, these

equations drift apart. But the analytic solution to the difference equation is good

only for DT¼ 1 (Fig. 2.10). Conversely, when DT¼ 1, the Y Numeric and Y

Analytic are far apart. Run the model with a DT¼ 1/1024, and you will find that

numeric and analytical equations converge, as of course they should.

Figure 2.11 shows how much the two numeric solutions agree at DT¼ 1. Thus

there is a substantial difference between the difference and differential (discrete

vs. continuous) equations when they result in exponential solutions.

Fig. 2.9
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2.7 Difference and Differential Equation Model Equations

Xo\Yo(t) ¼ Xo\Yo(t � dt)

INIT Xo\Yo ¼ 0.1

X_Numeric(t) ¼ X_Numeric(t � dt) + (ΔX) * dt

INIT X_Numeric ¼ Xo\Yo

Fig. 2.10

Fig. 2.11

2.7 Difference and Differential Equation Model Equations 39



INFLOWS:

ΔX ¼ (R�1)*X_Numeric

Y_Numeric(t) ¼ Y_Numeric(t � dt) + (ΔY) * dt
INIT Y_Numeric ¼ Xo\Yo

INFLOWS:

ΔY ¼ R*Y_Numeric

R ¼ 2

X_Analytic ¼ Xo\Yo*R^time

Y_Analytic ¼ Xo\Yo*EXP(R*time)
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Chapter 3

Risky Population

I know that history at all times draws strangest consequence
from remotest cause.

(T.S. Eliot, Murder in the Cathedral, Part I, 1935)

3.1 Risky Population Model

In the previous chapter we have seen how to model simple deterministic and

random processes that influence population dynamics. We emphasized the need

to thoroughly test your models before you move on and expand them. This chapter

provides a novel expansion to the traditional model of population dynamics. Other

expansions follow in the next chapters. Each of those expansions is kept to a

minimum complexity yet the resulting dynamics can be rather surprising. A central

utility of this model is that it produces what could be called a carrying capacity of an

environment as reflected in the birth, death, and behavioral characteristics of the

population, as determined by that environment. Simple population model that claim

to represent resource limits often do it by simply specifying the carrying capacity as

a model input parameter [such as K in Eq. (2.1) of Chap. 2]. Here the carrying

capacity is derived.

For the following model assume that a population grows exponentially by virtue

of a birth rate and dies according to a death rate. If the birth rate is 7 % and the death

rate is 4 %, then the population grows exponentially at the rate of 3 %. That is a

simple matter and we have addressed this model in our most elementary examples

of the previous chapters.

But we all know that, as the population size (or density) grows and no migration

can take place, the chance of a sudden unanticipated rise in the death rate increases.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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Perhaps the calamity is due to an infectious disease or, in the case of some human

populations, to war. We leave out natural causes like earthquake and meteor

impacts because these disasters are not brought on by the population itself. Like-

wise as some argue, a larger population causes an inventive focus to alleviate some

of the human dilemma.We need to express the death rate in such a way that both the

negative and the beneficial effects of rising population can be felt. The question is:

when the birth rate is higher than the nominal death rate, what are the population

dynamics when higher populations can have the effect of increasing and at other

times decreasing the death rate? The answer is rather surprising.

Let us set the birth rate to a constant rate of 7 %. To mimic unanticipated changes

in the death rate, we introduce a nominal death rate, NOMINAL DR, which we set to

NOMINAL DR ¼ :04 ð3:1Þ
We make use of this nominal death rate as the mean value in a normal distribu-

tion, DR DISTRIBUTION. To specify a normal distribution with a mean of

nominal death rate we make use of the built-in function NORMAL. We must

specify the mean and standard deviation as its arguments. We define

DR DISTRIBUTION ¼ NORMAL NOMINAL DR, 0:005 � POPULATIONð Þ
ð3:2Þ

with an arbitrarily set standard deviation of 0.005*POPULATION. Thus, as the

POPULATION increases, so does the standard deviation around the mean

NOMINAL DR.

Next we define a death rate signal, DR DIST CONTROL that constrains the

normally distributed DR DISTRIBUTION between 0.01 and 1:

DR DIST CONTROL ¼ IF DR DISTRIBUTION � 0:01ð Þ AND

DR DISTRIBUTION � 1ð Þ
THEN DR DISTRIBUTION ELSE 0:01 ð3:3Þ

We assume that the absolute minimum of the death rate is 0.01.

Finally, the DEATH RATE itself is set up to allow the following three test cases:

(a) The DR DIST CONTROL is defined in Eq. (3.3) above,

(b) A case where the standard deviation is allowed to only increase the death

rate, and

(c) An exponentially declining nominal death rate whose standard deviation

(0.005*POPULATION) is allowed to only increase the death rate.

For the first case, we define

DEATH RATE ¼ DR DIST CONTROL ð3:4Þ

Consequently, the death rate varies with normal distribution from 0.01 to 1

in every time period (e.g., year, decade, generation) with the nominal death rate
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(here 4 %) as the mean of this distribution. The STELLA diagram is shown in

Fig. 3.1. It contains a module that calculates the average population size AVG POP

over time by summing the population over time and dividing by time.

The results of this model are shown in Fig. 3.2.

The remarkable result is that the population reaches a somewhat steady

condition—it is not expanding off to infinity at a net 3 % growth rate as implied

by the net birth rate of 7 %. At first the population grows exponentially but it then

Fig. 3.1

Fig. 3.2
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hits a kind of limit shown by the average population after about 1,500 time units.

The population becomes large enough to be constrained by the sudden switches in

its death brought on by the sheer size of the population, even allowing that many of

these switches are death rate-reducing.

How do the results of our model change if the DEATH RATE is allowed only to

increase above the NOMINAL DR (up to 1.0), from period to period? This is the

second test case described above. To investigate this case we change the definition

of the DEATH RATE in Eq. (3.4) to

DEATH RATE ¼ �
IF DR DIST CONTROL > NOMINAL DR THEN

DR DIST CONTROL ELSE NOMINAL DR
� ð3:5Þ

To specify the model in this way, note that you will need a connector from

NOMINAL DR to DEATH RATE. Here we find a lower mean population size of

not quite 14, down from the previous model run of about 20 (Fig. 3.3). Can you

explain why?

The results above were all derived for a fixed nominal death rate. Yet, the

nominal death rate may slowly decline over time as the population grows. This is

certainly the case for the human population that, through advancements in medicine

and political treaties, has significantly reduced the death rate in parts of the world.

How do our results change if we have on the one hand a decline in the nominal

death rate and on the other hand an increase in the standard deviation above the

mean DR DISTRIBUTION? We model the decline in the nominal death rate as

NOMINAL DR ¼ EXP �:01 � TIMEð Þ � :03þ :01 ð3:6Þ

Fig. 3.3
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where EXP is Euler’s number, and TIME is a built-in function that takes on the

same value as the current period of the model run. With this specification,

the nominal death rate exponentially declines from 4 to 1 %. This is an example

for our third case mentioned above, and the results it generates are shown in

Fig. 3.4. Now, the mean population size is approximately 27.

We note that at first the population rises in the expected exponential way and

then the effect of the standard deviation takes over, causing an average population

about 26. None of these populations continue to grow. After about t¼ 2,000, a mean

value is achieved that holds for the rest of the run, in all cases although the first and

third cases clearly show a greater variation.

Can you develop any more scenarios? Should the death rate be allowed to vary

so greatly from period to period? Perhaps the death rate should be a state variable

and thus change more slowly. Can you set up such a model? Should this distribution

be normal? Is it a bit unreal to cut the normal distribution off at 0.01 on the low side

and 1.0 on the high side? How about a normal distribution that has different

standard deviations for the different sides of the mean? What about the idea of

making the standard deviation a nonlinear function of the population size? What

about the possibility of a delay of death rate decreases with no delay of death rate

decreases? Try out some of these modifications of the model, make an educated

guess before you run them, then explain your results.

Now that we have seen some of the effects of randomness on population

dynamics, we will return to deterministic models—models that yield the same

results from run to run. The absence of randomness, however, not necessarily

means that we will be able to make precise forecasts of a system’s behavior once

we know its history and current state. Rather, unforeseen, chaotic events may occur.

This is the topic of the following chapter.

Fig. 3.4
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3.2 Risky Population Model Equations

POPULATION(t) ¼ POPULATION(t � dt) + (BIRTHS � DEATHS) * dt

INIT POPULATION ¼ 2

INFLOWS:

BIRTHS ¼ .07*POPULATION

OUTFLOWS:

DEATHS ¼ DEATH_RATE*POPULATION

SUM_POP(t) ¼ SUM_POP(t � dt) + (CURRENT_POP) * dt

INIT SUM_POP ¼ 0

INFLOWS:

CURRENT_POP ¼ IF TIME > 100 THEN POPULATION ELSE 0

AVG_POP ¼ IF TIME 6¼ 100 then SUM_POP/(time�100) else 0

DEATH_RATE ¼ (IF DR_DIST_CONTROL > NOMINAL_DR THEN

DR_DIST_CONTROL ELSE NOMINAL_DR)*1 +0*DR_DIST_CONTROL

+0*NOMINAL_DR

DR_DISTRIBUTION ¼ NORMAL(NOMINAL_DR,0.005*POPULATION)

DR_DIST_CONTROL ¼ IF (DR_DISTRIBUTION � 0.01) AND

(DR_DISTRIBUTION � 1) THEN DR_DISTRIBUTION ELSE 0.01

NOMINAL_DR ¼ (EXP(�.01*TIME)*.03 + .01)*1 + .04*0
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Chapter 4

Steady State, Oscillation, and Chaos

in Population Dynamics

And then so slight, so delicate is death
That there’s but the end of a leaf’s fall
A moment of no consequence at all.

(Mark Swann)

4.1 The Emergence of Chaos in Population Models

Let us return to the simple population models of Chap. 2, in the absence of

randomness, and explore the behavior of a very basic deterministic model as a

parameter value gets pushed outside the realm that is typically considered in these

models. Denote the size of the population in time period t as N(t) and the net change

in the population size during that period as ΔN. The exogenous parameter influenc-

ing the net flow is R. The net flow ΔN updates the stock N:

ΔN ¼ N tþ DTð Þ � N tð Þ: ð4:1Þ
The “reproductive rule” in this model is

N tþ DTð Þ ¼ R � N tð Þ � 1� N tð Þð Þ, ð4:2Þ
and consequently

ΔN ¼ R � N tð Þ � 1� N tð Þð Þ � N tð Þ: ð4:3Þ
Compare this equation to Eq. (2.1) of Chap. 2 and describe the differences. Also

see the discussion of discrete versus continuous STELLA flow equation in Chap. 2.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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The STELLA model shown in the following diagram has as its main component

the ΔN equation updating the stock N at each period of time. We also calculate the

stock N delayed by DT as LAG N. To calculate this lagged value, we make use of

the built-in function DELAY, which requires as its input the variable of which a

delay should be calculated—in our case N—the lag length—DT—and initial value.

If you do not specify an initial value, STELLA will assume the initial value of the

delayed variable is zero. Here, we specify

LAG N ¼ DELAY N;DTð Þ ð4:4Þ
The STELLA model is shown in the diagram of Fig. 4.1. Note that the control on

N is specified as a bi-flow, allowing additions into and subtractions from the stock.

Set up the model with an initial value for N¼ 0.1, DT¼ 1, and R¼ 1. Make an

educated guess before you run the model. Figure 4.2 shows what you should get.

The population size declines along the logistic curve.

Next increase R for subsequent runs to 2, then 3. You can do that with

STELLA’s sensitivity methods. Again make a guess before you run the model.

The results are plotted in Fig. 4.3.

Fig. 4.1

Fig. 4.2
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The first of these runs generates a steady-state population of N¼ 0.5, and the

second run yields a damped oscillation. With R¼ 2 we have a situation in which the

population size can be thought of overshooting some carrying capacity, then gets

correct and falls below that carrying capacity, only to overshoot again—albeit to a

smaller extent—in the next period.

Increase R to 4. You should find that the population has left its regular pattern

and becomes chaotic—the curve never repeats itself (Fig. 4.4). Pause the model

halfway through its run and make a guess on the future path. Can you predict where

it is going, solely based on your observation of its past behavior and current position?

Fig. 4.3

Fig. 4.4
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Such prediction is impossible. Run the model over and over again, and you will find

that always the same path is chosen. The system that we are dealing with here is not

random, it is deterministic. Yet, prediction from past and current states is impos-

sible. Recognize also that if you change even very slightly the initial conditions, e.

g., N¼ 0.101 instead of N¼ 0.1, a very different path emerges. This should

illustrate the sensitivity of nonlinear dynamic systems to initial conditions, and

sensitize you to the limitations of real data—which always comes with measure-

ment errors—in forecasting a system’s behavior.

Even though there is seemingly no regularity in the system’s behavior, all values lie

within a well-defined range. Generate a scatter plot—a diagram of the system’s phase

space—by plotting LAGNagainst N, and observe the results. To set up the scatter plot,

create a graph and choose “Scatter” as the Graph Type. Here are the results (Fig. 4.5).

Can you find the value for R at which chaos seems to begin? Now lower the time

step to DT¼ 0.5 and find the value for R at which chaos begins again. Keep

shortening DT and you will find that there is a relation between the size of DT

and the smallest R necessary to produce chaotic behavior:

DT R necessary for chaos

1 3.58

0.5 6.12

0.25 11.29

0.125 21.56

0.0625 42.13

0.03125 83.24

A pattern emerges. When DT is halved, R is doubled and lessened by one.

That is, if DT(n + 1)¼ 0.5*DT(n) then R(n + 1)¼ 2*R(n)� 1. A function R(DT) to

calculate the critical R is

Fig. 4.5
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R DTð Þ ¼ 4:57=DTð Þ � 1þ 2þ 4þ 8þ � � �1=DT½ � ð4:5Þ
or

R DTð Þ ¼ R 1ð Þ þ 1ð Þ=DT� 1þ 2þ 4þ 8þ � � �1=DTð Þ, ð4:6Þ
the boundary between chaos and finitely numbered solutions for the spectrum of

discrete steps.

This model shows you that the R for DT¼ 0 is infinity. This result is correct

since chaos is typically not noticed on the continuous level. Chaos occurs on the

continuous level only if you are stuck with a specific DT in your particular problem,

and the parameters lie within the critical range. For a full discussion of this and

other versions of chaos, see Jenson [1].

Compare the chaotic time paths of your model to a truly random number.

We defined such a number in the model as RAND and calculated its delayed

value (Fig. 4.6).

The random number, plotted against its delayed value, is shown in Fig. 4.7. Re-run

the model several times and see how the graph changes. The difference between

chaotic—but deterministic—behavior and randombehavior should become apparent.

At this point we should ask if chaos occurs in nature. We find that indeed it does.

Water drips from a faucet chaotically, heart beats and brain wave variations show

chaos. Both living and non-living systems seem to show chaos. Why? To what

Fig. 4.6

Fig. 4.7
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advantage is such a result to these systems? Kaufman [2], among others, has

proposed that all systems seem to evolve toward higher and higher efficiencies of

operation. Many systems are so highly disturbed by variations in their environment

that their efficiencies are not ever very high. However, if these disturbances can be

held to a minimum, then the evolution of the system becomes more complete, more

efficient but closer to the border of chaotic behavior. Earthquakes and avalanches are

examples of energy storing systems that continuously redistribute the incoming

stresses more and more efficiently until a breaking point is reached and the border

to chaos is opened. Does this mean that the brain and the heart have somehow evolved

close to somemaximum efficiency for such organisms?We don’t know the answer to

this question. We do know that the scale of measurement here matters. For example,

if we were to watch the pattern on a patch of natural forest over many centuries, we

would see the rise and sharp fall of the biomass levels, unpredictably. Forest fires and

insects find ample hosts in such forest patches once they have developed a large

amount of dry biomass bound up in relatively few species. The patch evolves or

succeeds to greater and greater efficiency of light energy conversion by getting larger

and fewer species. But the patch also becomes more vulnerable to fire and pests, and

eventually collapses. Yet if we look at the total biomass on a large collection of such

biomasses, whose collapses are not synchronized, this total biomass remains rela-

tively constant. Thus chaotic-like behavior in the small is not seen in the large. Could

this mean that natural systems have “found” chaos in their search for greater

efficiencies and have “learned” to stagger the chaotic events, allowing faster rebound

and large-scale stability? We don’t know the answers here either, but we think

the implications are fascinating. We will return to these questions with our models

on self-organization and catastrophe, presented in Part VII of this book.

4.2 Chaotic Population Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 0.1

INFLOWS:

ΔN ¼ R*N*(1 � N) � N {X_t plus one � X ¼ delta X}

LAG_N ¼ DELAY(N, DT)

LAG_RAND ¼ DELAY(RAND, DT)

R ¼ 1

RAND ¼ RANDOM(0,1)

4.3 Simple Oscillator

The model of the previous section assumed that changes in population size occur

instantaneously in response to the current population. Alternatively, we may assume

that those changes are a function of the population size one time period delayed.
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Oscillations can occur in simple first-order differential equations provided they are

nonlinear and contain lags. Let us define the differential equation that guides the

change in population size as

ΔN ¼ R � LAG N � 1� LAG Nð Þ ð4:7Þ
with

LAG N ¼ DELAY N; 1ð Þ ð4:8Þ
where DELAY is the built-in function that generates a delayed value of its argu-

ment—in our case the state variable N—over a set time frame—in our case 1 full

time period.

The STELLA model is shown in Fig. 4.8.

Set R¼ 0.5 and DT¼ 1 and the model will generate population dynamics that

oscillate but quickly settle down to a steady-state level. The results of the model are

shown in Figs. 4.9 and 4.10. In steady state, LAG N¼N, and thus the graph in

phase-space collapses to a point.

Now increase R to 1, make an educated guess of the results of the model, and run

it. Figures 4.11 and 4.12 show what you should get. Did you expect this result and

Fig. 4.8

Fig. 4.9
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can you explain it? Here a pattern emerges and yet is it chaos? Note how the arcs of

the limit curve fill in with a definite pattern. This pattern of filling in arcs is due to

the lagged N.

Keep increasing R for subsequent runs and observe the results. The plot in

Fig. 4.13 is for R¼ 1.3.

If the DT is changed to 0.5, and R set to 1, you will find again an oscillation—

shown in Figs. 4.14 and 4.15. But if you increase R to 1.3, you will not find chaos.

Fig. 4.10

Fig. 4.11
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Rather, the number of limbs increases from 6 to 10 and the limit loop becomes

smaller. See Figs. 4.16 and 4.17 for this case. What is the origin of these limbs?

Can you find the value of R at which chaos emerges? If the lag time is increased

to two, the model becomes unstable. Could you then stabilize it somehow?

Oscillatory behavior has been observed in chemical systems. We will model one

of the most prominent chemical oscillators—the Brusselator—in Chap. 10. It has

far-reaching implications for the understanding of real-world systems, and we will

discuss these implications in that later chapter.

Fig. 4.12

Fig. 4.13
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4.4 Simple Oscillator Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ .1

INFLOWS:

ΔN ¼ R*LAG_N*(1�LAG_N)

LAG_N ¼ DELAY(N,1)

R ¼ 1.3

K ¼ 1

Fig. 4.14

Fig. 4.15
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Chapter 5

Spatial Dynamics

There is no coming into being of aught that perishes, nor any end
for it. . . but only mingling, and separation of what has been
mingled.

(Empedocles)

5.1 Spatial Dynamics Model

In the previous chapters we have modeled population dynamics in response to

births and deaths, and we have assumed that the respective flows originate or

disappear in “clouds.” If we deal with migration in the context of population

dynamics we may want to explicitly model the source and recipients of the flows

of migrants. This is the topic of this chapter. The model developed here is quite

general and provides a basis for our discussion of spatial dynamics in later chapters.

Here is what might be called a “mobility framework,” where migration from one

state to another depends only on the current status of the donor state. Mobility might

be the movement of animals between various resource points, chemical diffusion,

the circulation of money, or the location of people in towns on a landscape.

Mobility is defined by flows that are calculated as the difference between the

value of the state variables at two points on the landscape. This difference is then

multiplied by a fixed coefficient that reflects the strength of migration. The

STELLA model is shown in Fig. 5.1.

Figure 5.2 shows the egalitarian or the strict diffusion solution—no matter what

the initial status of each of the states, all stocks find the same equilibrium. This is

due to the fact that each of the exchanges is multiplied by the same coefficient.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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The final level is just the average of the four initial stock values, since there is no

loss from the system.

This is a simple but profound view of the long-term processes of thermodynam-

ics. While the system starts with low entropy (high differentiation), it ends with its

highest possible entropy (no differentiation). Show that with delays, this system can

be kept from this zero entropy state. The delays in a real system require an external

input of energy and this is the root cause of the system’s apparent reluctance to

dissipate.

Remove the two internal and one of the external flows. Does this truncated

system show the same result? Why? Compare the two systems through time.

Fig. 5.1

Fig. 5.2
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The drivers in this system are actually the concentration differences expressed in

the six flows. Here we assumed that all volumes are 1.0. Make each stock a different

volume. Even make one of them a function of time as in a collapsing balloon.

Then set up converters for the four stocks that represent their dynamic concentra-

tions. (Remember, the stocks are measuring the weight such as in grams of gas in

each of them. The concentrations are then in grams per unit volume.) Have the

concentration differences times a specific diffusion constant for each flow be

the flow equation in each of the six cases. This is a more realistic representation

of diffusion conditions.

To quickly compare the results of each model run without plotting a table,

choose the numeric display—you find it among the STELLA icons to the right of

the graph and table icons that we have used before and a “status indicator” that we

won’t use here (Fig. 5.3)—and place it in the STELLA diagram.

Double-click on the numeric display icon, select one of the system’s state

variables, and click on OK. Repeat this procedure for the other state variables.

These numeric displays function like a counter and show you the value of parameter

as the model runs. If you specified the displays to maintain the ending balance, you

can quickly compare the results from model run to model run. For example, the

egalitarian result is shown in our model for coefficients equal to 0.03 (Fig. 5.4).

Return to the case of coefficients smaller than one. What are the effects of time

lags on the time it takes for the system to equilibrate? Will the same equilibrium be

reached as in the absence of those lags? Can these new time constants cause

oscillation? Why? There are six connectors in this model. What is the minimum

number to allow this same equilibrium to be reached?

5.2 Spatial Dynamics Model Equations

FOUR(t) ¼ FOUR(t � dt) + (FLOW_3–4 + FLOW_2–4 � FLOW_4–1) * dt

INIT FOUR ¼ 4

Fig. 5.3

Fig. 5.4
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INFLOWS:

FLOW_3–4 ¼ .03*(THREE-FOUR)

FLOW_2–4 ¼ .03*(TWO-FOUR)

OUTFLOWS:

FLOW_4–1 ¼ .3*(FOUR-ONE)

ONE(t) ¼ ONE(t - dt) + (FLOW_4–1 + FLOW_3–1 - FLOW_1–2) * dt

INIT ONE ¼ 1

INFLOWS:

FLOW_4–1 ¼ .3*(FOUR-ONE)

FLOW_3–1 ¼ .03*(THREE-ONE)

OUTFLOWS:

FLOW_1–2 ¼ .03*(ONE-TWO)

THREE(t) ¼ THREE(t � dt) + (FLOW_2–3 � FLOW_3–4 � FLOW_3–1) * dt

INIT THREE ¼ 3

INFLOWS:

FLOW_2–3 ¼ .03*(TWO-THREE)

OUTFLOWS:

FLOW_3–4 ¼ .03*(THREE-FOUR)

FLOW_3–1 ¼ .03*(THREE-ONE)

TWO(t) ¼ TWO(t � dt) + (FLOW_1–2 � FLOW_2–3 � FLOW_2–4) * dt

INIT TWO ¼ 2

INFLOWS:

FLOW_1–2 ¼ .03*(ONE-TWO)

OUTFLOWS:

FLOW_2–3 ¼ .03*(TWO-THREE)

FLOW_2–4 ¼ .03*(TWO-FOUR)
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Part II

Physical and Biochemical Models



Chapter 6

Law of Mass Action

Let us now consider the character of the material Nature
whose necessary results have been made available. . . for a final
cause.

(Aristotle)

6.1 Law of Mass Action Model

The law of mass action is a powerful concept that describes the average behavior of

a system that consists of many interacting parts such as molecules that react with

each other, or viruses that are passed along from a population of infected individ-

uals to nonimmune ones. The law of mass action has been derived first for chemical

systems but subsequently found high use in epidemiology and ecology. In this

chapter, we will discuss the law of mass action in the context of a simple chemical

system. In later chapters, we will apply it to issues as diverse as enzyme–substrate

interactions, the spread of a disease, or the colonization of landscape patches.

Let us consider the case of oxygen O reacting with hydrogen molecules H to

form water H2O. The stock of each substance is given as a concentration, measured

in moles per cubic meter. For simplicity, we assume initial conditions of 200 moles

of hydrogen per cubic meter and 100 moles of oxygen atoms per cubic meter. Thus,

there is enough of each initial stock to just form 100 molecules of water. The

stochiometric equation for this reaction is

Oþ 2H ! H2O ð6:1Þ

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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Obviously, not all of the oxygen molecules will instantaneously find hydrogen

molecules to engage in the reaction. Rather, the reaction will take place over time.

The reaction velocity will be high early on as the concentrations of each of the

reactants are high. With declining concentrations, the reaction velocity declines.

The law of mass action expresses the rate of formation of the product H2O from the

reactants O and H:

ΔH2O ¼ K � H � O ð6:2Þ

with K as the reaction rate constant, measured in 1 per second. This law provides

chemistry with dynamics. It was first used many centuries ago and the theoretical

basis for it was established in the late nineteenth century. If the pressure and/or

temperature vary during the reaction, H and O have exponents to modulate the rate

for such effects.

The process by which H2O is generated in our model is shown in Fig. 6.1.

The concentrations of the reactants decrease as the reaction proceeds.

To calculate the respective outflows from the stocks O and H, we need to specify

the number of moles that enter the reaction to form one mole of the product. For O

and H these are, respectively, 1 and 2. The part of the model that calculates removal

of O and H for the formation of H2O is shown in Fig. 6.2.

The results of our model are shown in Fig. 6.3 for a hypothetical value of

K¼ 0.005. As we would expect, the concentrations of both reactants decline as

the product is formed. Also, the rate of reaction declines. Will eventually all the

Fig. 6.1

Fig. 6.2
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reactants be used up and exactly 100 moles of water per cubic meter be formed?

Make an educated guess and then run the model for a longer time frame and observe

the results.

The model above implicitly assumes that temperatures and pressures remain

constant throughout the reaction. However, the formation of water from oxygen and

hydrogen produces a significant amount of heat that, in turn, increases the reaction

velocity. Can you introduce this effect in the model? Expand the model to the case

of a simple photosynthetic process in which carbon dioxide and water react to form

a glucose and oxygen:

6CO2 þ 6H2O ! C6H12O6 þ 6O2 ð6:3Þ

Can you change your model to capture the metabolic process in which the

glucose reacts with oxygen to form water and carbon dioxide? Find in the literature

characteristic reaction rate constants for both the formation and metabolism of

various types of glucose and model the respective chemical reactions.

6.2 Law of Mass Action Model Equations

H(t) ¼ H(t � dt) + (� ΔH) * dt

INIT H ¼ 200 {Moles per Cubic Meter}

OUTFLOWS:

ΔH ¼ ΔH2O*H_PER_H2O {Decrease in H concentration as a result of H2O

formation; measured in Moles per Cubic Meter per Second}

H2O(t) ¼ H2O(t � dt) + (ΔH2O) * dt

INIT H2O ¼ 0 {Moles per Cubic Meter}

Fig. 6.3
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INFLOWS:

ΔH2O ¼ K*H*O {Increase in H2O concentration; simple second-order reaction

overall and first order reaction with respect to each of the elements; measured in

Moles per Cubic Meter per Second}

O(t) ¼ O(t � dt) + (� ΔO) * dt

INIT O ¼ 100 {Moles per Cubic Meter}

OUTFLOWS:

ΔO ¼ O_PER_H2O*ΔH2O {Decrease in 0 concentration as a result of H2O

formation; measured in Moles per Cubic Meter per Second}

H_PER_H2O ¼ 2 {Moles H required per Mole H2O formed - from stoichiometry

of reaction}

K ¼ .005 {1/Second-concentration.}

O_PER_H2O ¼ 1 {Moles O required per Mole H2O formed - from stoichiometry

of reaction}
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Chapter 7

Catalyzed Product

Many bodies . . . have the property of exerting on other bodies an
action which is very different from chemical affinity. By means of
this action they produce decomposition in bodies, and form new
compounds into the composition of which they do not enter. This
new power, hitherto unknown, is common both in organic and
inorganic nature. I shall call it catalytic power. I shall also call
Catalysis the decomposition of bodies by this force.

(Berzelius, Edin. New Phil. Jrnl. XXI., 1836)

7.1 Catalyzed Product Model

In the previous chapter we have used the law of mass action to describe chemical

change of two substances interacting with each other and forming a product that is

chemically distinct from the two reactants. In this chapter we expand on that model

and deal with the case in which—after a series of reactions—one of the reactants

reemerges to enter the reaction anew. For example, some enzyme E may enter a

chemical reaction from which an intermediate product I results. This intermediate

product, in turn, may enter a reaction from which E is released in unchanged form

together with a new product F. An additional substance active in this process is the

substrate D, which is converted into the product F by action of the enzyme E.

Such catalyzed reactions are common in biological processes. One example

of these reactions is the production of fructose (F) from dextrose (D). In this

process, the enzyme (E) mechanically locks onto the substrate molecule, breaks it

into a new molecule, fructose, and is released again after the chemical reaction

occurred (see [1]).

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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Denote the reaction rate constants as K1, K2, and K3. With this notation, the

basic reaction equation is:

Eþ D$K1
K2

I!K3 Eþ F ð7:1Þ

The four basic differential equations that define the rate expressions, or

flows, are:

dD=dt ¼ K1 � D � E� K2 � I ð7:2Þ

dI=dt ¼ K1 � S � E� K2þ K3ð Þ � I ð7:3Þ

dE=dt ¼ �dI=dt ð7:4Þ

dF=dt ¼ K3 � I ð7:5Þ

Fig. 7.1

Fig. 7.2
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The differential equations are used in four modules of the STELLA model as

shown in Figs. 7.1, 7.2, 7.3, and 7.4. Each of the state variables is treated as a

concentration.

The results (Fig. 7.5) show a temporary decline in the concentration of the

enzyme as it gets locked up in the production of I. As the concentration of the

intermediate product declines—in response to the formation of the final product

F—the concentration of E increases again. As the substrate D gets depleted, no

more reactions take place and the system settles down to a set of equilibrium

concentrations for E and F. What is the continuous addition rate of D such that

withdrawal can be achieved for F at a rate of 0.1 units per time step?

Fig. 7.3

Fig. 7.4
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For the model results above, we have arbitrarily set K1¼K2¼ 0.01 and

K3¼ 0.5. Change the reaction rates and observe the results. Can you make this

model with fewer stocks, say just ones for I and F?

In this chapter we modeled in a general way the catalyzed reactions of enzymes

and substrates. In the following chapter, we broaden our focus and deal with an

entire cell that takes up nutrients from its environment and excretes waste products

into its environment.

7.2 Catalyzed Product Model Equations

D(t) ¼ D(t � dt) + (�ΔD) * dt

INIT D ¼ 100 {Moles per Cubic Meter}

OUTFLOWS:

ΔD ¼ K1*D*E�K2*I {Moles per Cubic Meter per Time Period}

E(t) ¼ E(t � dt) + (�ΔE) * dt

INIT E ¼ 20 {Moles per Cubic Meter}

OUTFLOWS:

ΔE ¼ K1*D*E�(K2+K3)*I {Moles per Cubic Meter per Time Period}

F(t) ¼ F(t � dt) + (ΔF) * dt

INIT F ¼ 0 {Moles per Cubic Meter}

Fig. 7.5
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INFLOWS:

ΔF ¼ K3*I {This is the Michaelis-Menten enzyme model; P_Rate measured in

Moles per Cubic Meter per Time Period}

I(t) ¼ I(t � dt) + (ΔI) * dt

INIT I ¼ 10 {Moles per Cubic Meter}

INFLOWS:

ΔI ¼ K1*D*E�(K2+K3)*I {Moles per Cubic Meter per Time Period}

K1 ¼ .01 {1/Time Period}

K2 ¼ .01 {1/Time Period}.

K3 ¼ .5 {1/Time Period}

Reference
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Chapter 8

Two-Stage Nutrient Uptake

In the nutrient-rich waters of the Thames type, a burst of algal
growth may sometimes cease before any serious depletion of the
mineral nutrient in the water has apparently taken place.

(Nature, 21 Sept. 1946)

8.1 Two-Stage Nutrient Uptake Model

In the previous model we have investigated a chemical reaction that may take place

within a cell. In this chapter, we model in more detail the activities of an entire cell

that receives nutrients from its environment, uses these nutrients for growth and

maintenance, and then excretes waste products back into its environment.

Assume a cell with an internal nutrient concentration Q is immersed in a media

with a nutrient concentration N. The growth of the cell biomass X is directly

dependent on the internal rather than the external nutrient concentration. Nutrient

uptake is proportional to the cell biomass. The proportionality factor is MU. An

outline of the structure of this system is given in Fig. 8.1. The model is called the

Caperon–Droop model. For a reference on the origins of this model see Spain [1].

Through respiration and mortality, the nutrient is passed back into solution

outside the cell. The rate of return from the cell is proportional to the biomass of

the cell. The proportionality factor is R. There is a minimum level of the internal

nutrient concentration, Q0, which is needed before the cell will grow at all. Thus,

the change in cell biomass, ΔX, is

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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ΔX ¼ IF Q � Q 0 THEN MU� Rð Þ � X ELSE 0: ð8:1Þ

The change in the nutrient concentration outside the cell, ΔN, depends on the

nutrient passing through the cell wall,

ΔN ¼ IF N > 0 THEN R � Q � X� V � X ELSE 0: ð8:2Þ

R*Q*X is the return of the nutrients to the external environment, depending on

the internal nutrient concentration Q. The nutrient balance equation for the internal

concentration of the nutrient is

ΔQ ¼ IF Q � Q 0 THEN V�MU � Q ELSE 0: ð8:3Þ

Equation (8.3) is a form of the Monod equation used to predict the change in the

internal concentration.

The rates V and MU are calculated from a now-standard Michaelis-Menten

formula. The general form for this equation is derived from the enzyme-substrate

equation discussed in the previous chapter [2]:

V ¼ VM � N= KNþ Nð Þ ð8:4Þ

MU ¼ MU BAR � Q� Q 0ð Þ= KQ þ Q� Q 0ð Þð Þ ð8:5Þ

with VM the maximum rate of nutrient uptake per unit biomass, KN the half

saturation constant for nutrient uptake, KQ the half saturation constant for growth,

and MU BAR the maximum biomass growth rate.

Our model is shown in Fig. 8.2. Recognize, that this model differs from the

specification of the reaction rate in the previous chapter in that the reaction rate here

is not based on the product of the concentrations of the compounds. Also, note well

Internal 
Concentration Q

Cell Biomass X with
Growth Rate MU

MU*X
R*X

R*Q*XV*X

Fig. 8.1
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the way in which MU is used in the ΔX and ΔQ equations. It is an interesting use of

a common variable. The ΔQ equation makes more sense if you multiply through by

X. Curiously, R*X and R*Q*X are not included in the ΔQ equation. The R factor is

apparently designed to represent the communication of the cell biomass to the main

nutrient source only. This fact, as with the definition of Q, is the likely result of

experimental measurement problems of the time.

In this model N and Q are concentrations. But they are different kinds of

concentrations. N is measured in mgN/liter, a volumetric concentration and Q is

measured in mgN/mgX, a mass-based concentration. It must be too hard to measure

the volume of a cell. The units are tricky. The units of the uptake rate for N, V are

mgN/mgX/hour, while the rate of formation and mortality of the biomass X are

1/hour. The units of MU are 1/time. Work out the units of ΔN, ΔQ, and ΔX to

make sure that they are consistent.

The STELLA diagram of Fig. 8.2 shows the three differential equations and the

supporting parameters. The graph in Fig. 8.3 shows how the concentrations and

the biomass levels change with time and how the cell growth rate depends on the

internal nutrient concentration. To obtain such results, we had to run the time step at

Fig. 8.2
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DT¼ 0.125. Try running the model with Euler and DT¼ 1.0 and note the difference

in results. Try shifting the parameters and note their effect on the concentration

trajectories.

How is it possible in our model that the biomass can maintain itself in the

steady state forever? Does this cell know something about perpetual motion that

it is not telling us or have we missed something? Actually, the cell is using energy

all the time. It has to be taking up high quality energy (ATP) and giving off low

quality energy (heat). We are simply not modeling that part of the cell activity. We

model only the use of a single nutrient. Neither are we modeling things going on at

the smaller level where things are inevitably falling apart and being replaced, and

that replacement process is not faultless.

The following chapter will expand the boundaries of systems processes beyond

an individual cell to the level of an organism. There, we will distinguish different

compartments among which a substance is being distributed. Models of organs and

entire organisms are presented in Part IV of the book.

8.2 Two-Stage Nutrient Uptake Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 0.5 {mg/liter}

INFLOWS:

ΔN ¼ IF N > 0 THEN R*Q*X �V*X ELSE 0

Q(t) ¼ Q(t � dt) + (ΔQ) * dt

INIT Q ¼ 0.02 {mg/mg of X}

Fig. 8.3
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INFLOWS:

ΔQ ¼ IF Q � Q_0 THEN V � MU*Q ELSE 0

X(t) ¼ X(t � dt) + (ΔX) * dt

INIT X ¼ 0.01 {mg/liter. Total cell biomass per liter.}

INFLOWS:

ΔX ¼ IF Q � Q_0 THEN (MU �R)*X ELSE 0

K_N ¼ 0.05 {mg/liter}

K_Q ¼ 0.03 {mgN/mgX}

MU ¼ MU_BAR*(Q - Q_0)/(K_Q + (Q � Q_0)) {1/hour}

MU_BAR ¼ 0.1 {1/hour}

Q_0 ¼ 0.02 {mgN/mgX}

R ¼ 0.01 {1/hour}

V ¼ V_M*N/(K_N + N) {mgN/mgX/hour}

V_M ¼ 0.03 {mgN/mgX*hour}
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Chapter 9

Iodine Compartment

Iodine was discovered accidentally, about the beginning of
the year 1812, by M. Courtois, a manufacturer of saltpetre
at Paris.

(Henry, Elem. Chem. I., 1826)

9.1 Iodine Compartment Model

The previous two models focused, respectively, on chemical reactions within a cell,

and on the activities of an entire cell. In this chapter we model the flow of a

substance—iodine—among different parts of an organism. This is a donor-

controlled model.

Iodine is found in three places in the body: the thyroid gland, tissue connected to and

surrounding the thyroid gland, and inorganic iodine in the circulatory system. Fig-

ure 9.1 shows how the flow balance is established for each of the stocks representing

each of the places that iodine can be found. For ourmodel (Fig. 9.2), inorganic iodine is

constantly injected into the system at 150 μg/day, for example, through certain foods,

or iodized salt. This exogenous iodine input is denoted Di in Fig. 9.1.

Note that all flows are donor controlled. This of course is not the case in all

models. The Extra Tissue is that immediately adjacent to the thyroid. The Inorganic

Iodine is in the blood stream.

The thyroid gland is consuming inorganic iodine and some leaves the system

with urine. Ultimately, the remainder leaves the digestive system as feces. Conver-

sion rates required to specify the flows from compartment to compartment are

assumed to be dependent on the amount of iodine in each place. This is a question-

able assumption that nevertheless is supported by experiment.

A save-disabled version of STELLA and the computer models of this book are available at
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Fig. 9.1
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Results of this model are shown in Fig. 9.3. The thyroid level declines to a stable

level with the input rate. Change the external input rate to one tenth of the stable

level and plot the result. This level represents an extremely deficient iodine level.

This very basic model of a complex and important process demonstrates how

one can model simply yet accurately. Note that we did not use the idea of the mass

action law here. Why not? Can you see here where some flows are recipient-

controlled and some are donor-controlled? This identification of the state variable

controls early in the modeling process can be very helpful.

We have begun this part of the book on physical and biochemical with simple

chemical reactions and proceeded to catalyzed processes, the activities of an

individual cell, and the distribution of chemical substances among different com-

partments. Let us return in the following chapter to chemical reactions and combine

our insight into oscillatory system behavior of Chap. 4 with our knowledge about

chemical processes.

9.2 Iodine Compartment Model Equations

EXTRA_TISSUE_IODINE(t) ¼ EXTRA_TISSUE_IODINE(t � dt) + (FLOW_6

� FLOW_5) * dt

INIT EXTRA_TISSUE_IODINE ¼ 682 {micrograms}

INFLOWS:

FLOW_6 ¼ K2*THYROID

Fig. 9.3
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OUTFLOWS:

FLOW_5 ¼ (K3+K5)*EXTRA_TISSUE_IODINE

INORG_IODINE(t) ¼ INORG_IODINE(t � dt) + (FLOW2 � FLOW1) * dt

INIT INORG_IODINE ¼ 81 {micrograms}

INFLOWS:

FLOW2 ¼ DI+K3*EXTRA_TISSUE_IODINE

OUTFLOWS:

FLOW1 ¼ (K1+K4)*INORG_IODINE

THYROID(t) ¼ THYROID(t � dt) + (FLOW3 � FLOW4) * dt

INIT THYROID ¼ 6821 {micrograms}

INFLOWS:

FLOW3 ¼ K1*INORG_IODINE

OUTFLOWS:

FLOW4 ¼ K2*THYROID

DI ¼ 150 {micrograms/day}

K1 ¼ 0.84 {1/day}

K2 ¼ 0.01 {1/day}

K3 ¼ 0.08 {1/day}

K4 ¼ 1.68 {1/day}

K5 ¼ 0.02 {1/day}
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Chapter 10

The Brusselator

In the Beginning the Heav’ns and Earth Rose out of Chaos.

(P.L. Milton, 1667)

10.1 Brusselator Model Equations

One important characteristic of real-world processes is that interactions among

system components are nonlinear. As we have seen in the previous chapters, non-

linearities can give rise to rich temporal patterns. An example of nonlinearities in

chemical reactions is the autocatalytic process

Aþ X ! 2X ð10:1Þ

whereby X stimulates its own production from A. Such autocatalytic reactions may

involve a series of intermediate sates, for example if X produces a substance Y,

which in turn accelerates the production of X. One such cross-catalytic reaction has

been studied extensively by a group of scientists around the Nobel Laureate Ilya

Prigogine in Brussels, and is known as the Brusselator [1]. It involves the following

series of reaction steps:

A ! X ð10:2Þ
2Xþ Y ! 3X ð10:3Þ
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Bþ X ! Yþ D ð10:4Þ
X ! E ð10:5Þ

A and B are used to make D and E with intermediate products X and Y.

These reactions can be maintained far from equilibrium by continually supply-

ing the substances A and B and extracting D and E. These additions and sub-

tractions eliminate the back reactions by holding the concentrations A, B, D, and E

constant. This assumption allows us to capture in the STELLA model the concen-

trations of those products as transforming variables rather than reservoirs. In

contrast, the two intermediate components (X and Y) may have concentrations

that change in time.

For simplicity, and without loss of generality, we set the kinetic constants equal

to one. The following system of nonlinear equations results, after eliminating D,

which does not enter any of the reactions and is continuously removed from the

system. Thus, by analogy with Chap. 7:

dX=dt ¼ Aþ X2 � Y� B � X� X ð10:6Þ

dY=dt ¼ B � X� X2 � Y ð10:7Þ

Figure 10.1 shows the corresponding STELLA diagram. The assumption that the

products A, B, D, and E are held constant through either removal or addition allows

us to model those products as constants.

Set A¼ 0.7 and B¼ 2, and run the model. Choose the initial conditions

X(t¼ 0)¼A and Y(t¼ 0)¼B/A, run the model at a DT¼ 0.0625, and you will

Fig. 10.1
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find the steady state of this system. However, this steady state is unstable. To

confirm this observation, run the model for two initial conditions close to the

ones that yield steady state, for example X(t¼ 0)¼ 1, and X(t¼ 0)¼ 0.8, with

Y(t¼ 0)¼ 2.5 in each of the two cases. Figure 10.2 shows the results plotted in the

same graph, and in Fig. 10.3 we show the phase diagrams for these two model runs.

Small changes in the initial conditions lead away from the (unstable) steady

state but ultimately lead the system to a steady limit cycle. Will this cycle be chosen

by the system for initial conditions that are significantly different from those that

Fig. 10.2

Fig. 10.3
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we already chose? Here are the results for five runs with the setups shown in

Table 10.1:

These runs were performed with STELLA’s sensitivity analysis, making use

of the ad hoc values option and plotting X against Y in a comparative scatter plot.
The results show that irrespective of the initial conditions, the system converges to

the same limit cycle.

Note that if dX/dt¼ dY/dt¼ 0, then A¼Xe, the equilibrium X. When A< 1, we

have a loop; A> 1, we have a line. The break point between a line and a loop is

A¼ 1 (Fig. 10.4).

Two conditions are necessary for the limit cycle to occur—the system must be

open, and interactions among system components must be nonlinear. The first of

these conditions is fulfilled by withdrawing and adding the products A, B, D, and E,

effectively leaving their concentrations constant. As a result, the system is

maintained away from an equilibrium at which reactants get used up and the

chemical reactions come to a halt. The second condition is met by Eqs. (10.6)

and (10.7). Prigogine and his coworkers argue that virtually any real-world system

is open, characterized by nonlinearities, and maintained out of equilibrium with its

surroundings. Individual organisms receive material and energy inputs from their

Table 10.1 Initial conditions

for five runs
Run X(t¼ 0) Y(t¼ 0)

1 0 0

2 0 1

3 0 2

4 3 0.5

5 1.5 0

Fig. 10.4
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environment and excrete waste products and waste heat. Similarly, entire ecosys-

tems channel materials and energy through their systems. The constant influx of

“reactants” and energy into these systems and the constant removal of waste

materials and heat make it possible for these systems to function. They are clearly

open and not in equilibrium with their surroundings.

Change the values for A and B, and rerun the model for alternative initial

conditions. Can you find the steady-state conditions? How does the limit cycle

change? How are the results affected by the choice of DT and integration methods.

Once you explored the dynamics of this system and familiarized yourself

sufficiently with the models of chemical processes discussed in this part of the

book, move on to learn more about the application of physical principles and tools

to the understanding of biological processes. This is the topic of the following

chapter.

10.2 Brusselator Model Equations

X(t) ¼ X(t � dt) + (ΔX) * dt

INIT X ¼ 1

INFLOWS:

ΔX ¼ A+X^2*Y�B*X�X

Y(t) ¼ Y(t � dt) + (ΔY) * dt

INIT Y ¼ 2.5

INFLOWS:

ΔY ¼ B*X�X^2*Y

A ¼ .7

B ¼ 2

Reference
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Chapter 11

Signal Transmission

“Ginny!” said Mr. Weasley, flabbergasted. “Haven’t I taught
you anything? What have I always told you? Never trust
anything that can think for itself if you can’t see where it keeps

its brain?”

(J.K. Rowling, Harry Potter and the Chamber of Secrets)

11.1 Fitzhugh–Nagumo Neuron Model

The previous chapter showed rich dynamics for the case of chemical reactions in
open system. In that chapter, we stressed the sensitivity of system responses to

initial conditions and the role of nonlinearities in determining system behavior. The

model of this chapter captures nonlinearities in the changes of the physical state of a
cell in response to electrical impulses from its surroundings.

Figure 11.1 depicts a neuron or nerve cell. Neurons consist of a cell body,

picking up possible signals from one or all of its several dendritic branches (signals

from other neurons) and transmitting these received (electrical) signals down a

relatively long axon pathway to its terminal. At the terminal the signal is amplified

and transmitted across a synapse to the next nerve cell. The cell remains inactive

until the collective input from the dendrites reaches a critical level whereupon the

cell “fires”—it reacts in such a way as to amplify the collective input signals into a

signal potential at its terminal end. If the collective input signal is not great enough

the signal dies out in the cell due to the action of a recovery mechanism.

The Fitzhugh–Nagumo model is of a nerve cell under special laboratory condi-

tions, where all dendritic receivers are kept at the same potential. The space-change

in potential along the axon and throughout the cell is thus ignored. The only way to
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cause a cell reaction then is to boost the external voltage to a sufficiently high level

or to establish an input signal through the dendritic connections.

The Fitzhugh–Nagumo equations used here have been adapted from Brown and

Rothery [1] and are

dV=dt ¼ �V � V� V1ð Þ � V� V2ð Þ �Wþ E ¼ current, ð11:1Þ

dW=dt ¼ EPSILON � V� C �Wð Þ ð11:2Þ

where V is the departure of the membrane potential from its equilibrium and W is

the recovery current reflecting conductance of ions depending on voltage. These

two variables are the state variables of the system. The amplifying threshold

parameters V1 and V2 capture the influence of V on the rate of change of V and

are held constant at 0.2 and 1.0, respectively. The parameter E reflects the electrical

current to which the neuron is exposed.

Equations (11.1) and (11.2) can be combined into a single second order differ-

ential equation: the rate of change of velocity of the membrane potential voltage.

The amplifying character of the neuron is analogous to function of the transistor.

The rate of change of the recovery variable W, defined in Eq. (11.2), is dependent

on the difference between the departure of the membrane potential from its

equilibrium V, and the recovery variable W that decays at a constant rate C. In

our model, we arbitrarily set C¼ 0.5. The change in W is assumed to be propor-

tional to (V�C*W), with a proportionality factor of EPSILON. We set

EPSILON¼ 0.02.

The STELLA model of the Fitzhugh–Nagumo equations is shown in Fig. 11.2.

Note that in this STELLA model, the control flows are set up as biflows and the

stocks are set to allow negative values. We run this model at a DT¼ 0.1, using the

Euler integration method.

Fig. 11.1
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If you set V(t¼ 0)¼ 0 and W(t¼ 0)¼ 0, both the membrane potential and

recovery mechanism are at equilibrium. If you further set E¼ 0, the cell does not

respond because all potentials are zero.

When the neuron is exposed to either a dendritic voltage or an external potential,

the cell membrane potential builds and “fires” an amplification of the combined

received voltages. The dendritic signals are simulated by initial values of the

membrane potential. The membrane potential response shows a critical threshold

voltage potential is required. A quick examination of the differential equations

shows that this amplification threshold is 0.2 (V1) and amplification ceases when

the voltage exceeds 1.0 (V2)—our choice of parameters for the model.

When the dendritic potential is zero (V(t¼ 0)¼ 0, W(t¼ 0)¼ 0), the effect of

applied voltages (E) can be seen. For currents over 0.23, the membrane potential

cycles up and down. This result shows an unstable condition that also can be

observed in physical experiments. The results for E¼ 0.23 are shown in Fig. 11.3.

This is the lowest applied voltage that will produce cycling. Can you find the value

for E that leads to the largest amplification of the input signal?

Figure 11.4 the case of amplification of the dendritic signal: E¼ 0, V(t¼ 0)¼
0.4 and all other variables the same as above. The cell responds when the initial

membrane potential is set to some positive potential. The membrane potential

asymptotically approaches zero from its initial value, after rising, then overshooting

zero and dropping below the equilibrium potential (zero on our scale). Try

EPSILON¼ 0.002 and note the different level of response. Demonstrate that the

amplification range of the cell is actually between 0.2�V(t¼ 0)� 1.0. Why do you

suppose the nerve cell amplifies the combination of the input signals?

The first model run above showed cycling of V and W for E� 0.23. Keep

increasing EPSILON for subsequent runs and observe the results. You will find

Fig. 11.2
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that when the applied current in the model is greater than 1.3, cycling ceases, only to

return again when EPSILON reaches the range of 25–32; first cycling returns and

then chaos ensues. This chaos phenomenon is probably only of interest to modelers.

Could the nerve cell actually become chaotic if it could withstand these apparently

high currents? It depends on whether or not the actual functioning of the cell is

discrete in time. If the cell has some operating period required belowwhich no action

takes place, then chaos of the membrane potential should be experimentally

demonstrable.

Fig. 11.4

Fig. 11.3
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Following thismodel of the behavior of an individual cell in response to the impulses

from its environment, we will model the behavior of an entire organism in response to

changes in its physical surroundings. This is the topic of the following chapter.

11.2 Fitzhugh–Nagumo Neuron Model Equations

V(t) ¼ V(t � dt) + (ΔV) * dt

INIT V ¼ 0

INFLOWS:

ΔV ¼ �V*(V�.2)*(V�1)�W+E

W(t) ¼ W(t � dt) + (ΔW) * dt

INIT W ¼ 0

INFLOWS:

ΔW ¼ EPSILON*(V�.5*W)

E ¼ 0

EPSILON ¼ .02

Reference

1. Brown D, Rothery P (1993) Models in biology: mathematics, statistics and computing. Wiley,

Chichester, pp 320–326
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Chapter 12

Mating and Mutation of Alleles

There is such an unerring power at work, or Natural Selection,
which selects exclusively for the good of each organic being.

(Darwin, Letters, 1857)

12.1 Model of Mating and Mutation of Alleles

Genetic theory provides us with insight into the changes of the genetic makeup of

organisms. These insights are of particular interest in the context of conservation

biology where genetic diversity is seen as one advantage of a species to survive in a

changing environment. The more different genetic information is present, the better

prepared a species to deal with a range of environmental factors.

Several processes influence the genetic makeup of organisms in a species. Among

those influences is the combination of various alleles into a genotype from “parents”

that carry those alleles. Another factor determining genetic makeup is the random

mutations of one type of allele into another. These two cases are dealt with in the

model of this chapter. The following chapter will then explore the impacts of natural

selection and fitness in conjunction with mutation on genotype distribution.

To model the process of genotype mixing and mutation we restrict ourselves—

without loss of generality—to the case of two alleles A and B, which are drawn

randomly from an initial pool of 200 A alleles and 300 B alleles. The results of the

simple mating of two alleles are explained by the Hardy–Weinberg law: this law

states that the genotype frequencies are determined in a random mating process.

These genotype frequencies are for AA, p^2; for AB, 2*p*q; for BB, q^2, where p

and q are the A and B allele frequencies, respectively. In our sample problem,

p¼ 200/500 or 0.4 and q¼ 300/500 or 0.6 for our initial pool of 200 A alleles and

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_12,

© Springer International Publishing Switzerland 2014
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300 B alleles. From 500 alleles we can have 250 genotypes, so the Hardy–Weinberg

law tells us that we should end up with 0.4*0.4*250 or 40 AA genotypes,

2*0.4*0.6*250 or 120 AB genotypes and finally, 0.6*0.6*250 or 90 BB genotypes.

Of course, the allele frequencies change from generation to generation as

mutation occurs. Here, we assume that mutation is a random process and can

occur in both directions. For the model we assume that a random fraction of A

alleles turns into B alleles and vice versa, and we only deal with the net of the

mutation in both directions. We define

NET MUTATION ¼ RANDOM �0:05, 0:05ð Þ
� A ALLELESþ B ALLELESð Þ ð12:1Þ

where A ALLELES and B ALLELES are the stocks of alleles of each type that are

available for mating to form the next generation of genotypes. Each of these stocks

is emptied when a new generation of genotypes is formed. We call the respective

outflows A MATE and B MATE. The inflows into the stocks are based on the

alleles that have been temporarily “tied up” in genotypes. For example, one AA

GENOTYPE releases two A alleles and one AB GENOTYPE releases only one A

allele. As alleles are dumped into the respective stocks, mutation occurs as specified

in Eq. (12.1). The STELLA model that deals with this part of the process of allele

mixing and mutation is shown in Fig. 12.1.

Fig. 12.1
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The alleles are combined according to the Hardy–Weinberg law. The Hardy–

Weinberg law is used here to calculate the inflows into the stocks of the three

genotypes (Fig. 12.2). The outflows are set equal to the stocks, reflecting the fact

that after a generation was formed the will be available again for re-mating.

Figure 12.3 shows the calculation of the relative frequencies of the genotypes.

These are plotted in Fig. 12.4. The results of the model are different from run to run

because of the random mutation process that takes place. What will happen when

the total number of alleles decreases? Run the model several times and observe the

results. How do the results change if mutation is more likely to occur in one

direction than another? What are the implications of a decreasing number of alleles

Fig. 12.2

Fig. 12.3
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and asymmetric mutation for conservation biology? Can you set up the problem

without making explicit use of the Hardy–Weinberg law?

Use this model to introduce survival and fertility rates for the genotypes and

combine these rates to form a fitness measure. Together with mutation these effects

consort to give the new genotype frequencies. Geneticists and conservation biolo-

gist think the existence of the heterozygote, the AB genotype, is a measure of health

of the system of genotypes. The strength of its presence is sometimes referred to as

“Hybrid vigor” and is obviously desired as it carries both alleles.

12.2 Mating and Mutation of Alleles Model Equations

AA_GENOTYPE(t) ¼ AA_GENOTYPE(t � dt) + (Δ_AA_GENOTYPE �
AA_REMATE) * dt

INIT AA_GENOTYPE ¼ 0

INFLOWS:

Δ_AA_GENOTYPE ¼ TOTAL_ALLELES/2*A_FREQ^2

OUTFLOWS:

AA_REMATE ¼ AA_GENOTYPE

AB_GENOTYPE(t) ¼ AB_GENOTYPE(t � dt) + (Δ_AB_GENOTYPE �
AB_REMATE) * dt

INIT AB_GENOTYPE ¼ 0

INFLOWS:

Δ_AB_GENOTYPE ¼ 2*TOTAL_ALLELES/2*A_FREQ*(1 � A_FREQ)

Fig. 12.4
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OUTFLOWS:

AB_REMATE ¼ AB_GENOTYPE

A_ALLELES(t) ¼ A_ALLELES(t � dt) + (RELEASE_A + MUTATION �
A_MATE) * dt

INIT A_ALLELES ¼ 200

INFLOWS:

RELEASE_A ¼ 2*AA_GENOTYPE +AB_GENOTYPE

MUTATION ¼ RANDOM(�0.05,0.05)*(A_ALLELES+B_ALLELES)

OUTFLOWS:

A_MATE ¼ A_ALLELES

BB_GENOTYPE(t) ¼ BB_GENOTYPE(t � dt) + (Δ_BB_GENOTYPE �
BB_REMATE) * dt

INIT BB_GENOTYPE ¼ 0

INFLOWS:

Δ_BB_GENOTYPE ¼ TOTAL_ALLELES/2*(1 � A_FREQ)^2

OUTFLOWS:

BB_REMATE ¼ BB_GENOTYPE

B_ALLELES(t)¼B_ALLELES(t� dt)+ (RELEASE_B�B_MATE�MUTATION)*dt

INIT B_ALLELES ¼ 300

INFLOWS:

RELEASE_B ¼ 2*BB_GENOTYPE + AB_GENOTYPE

OUTFLOWS:

B_MATE ¼ B_ALLELES

MUTATION ¼ RANDOM(�0.05,0.05)*(A_ALLELES+B_ALLELES)

AA_FREQ¼ IF TIME> 0 THENAA_GENOTYPE/TOTAL_GENOTYPEELSE 0

AB_FREQ¼ IF TIME> 0 THENAB_GENOTYPE/TOTAL_GENOTYPE ELSE 0

A_FREQ ¼ A_ALLELES/(A_ALLELES+ B_ALLELES)

BB_FREQ¼ IF TIME> 0 THEN BB_GENOTYPE/TOTAL_GENOTYPE ELSE 0

TOTAL_ALLELES ¼ A_ALLELES + B_ALLELES

TOTAL_GENOTYPE ¼ AA_GENOTYPE+AB_GENOTYPE+BB_GENOTYPE
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Chapter 13

Artificial Worms

Any intelligent fool can make things bigger, more complex,
and more violent. It takes a touch of genius – and a lot
of courage – to move in the opposite direction.

(Albert Einstein)

13.1 Artificial Worm Model

Natural selection works in the presence of chance or randomness. As random

mutations take place, the form or function of organisms changes. With changes in

the “appearance” of individual organisms may come an enhanced ability to survive

and to pass on the respective traits to subsequent generations. However, because

mutations continue to take place, and because the environment within which natural

selection occurs is not constant, it is not automatic that the fitness of offspring

increases from one generation to the next.

The following model—briefly mentioned in Cohen and Stewart [1]—illustrates

the workings of natural selection and randomness for a population of six worms of

different length. Each individual worm can, in principle, mate with any one of the

others. The decision of who mates with whom is randomly made. Of the three

randomly chosen pairs of mating worms, only the longer one of the two will survive

to bear exactly two offspring. The offspring, in turn, are either shorter or longer

(randomly decided) than their parent. Their actual length is determined by a coin

toss. If the coin shows head, one of the offspring will be exactly 1 unit longer than

the parent, and the other one will be exactly 2 units longer than the parent. In the

case that the coin shows tail, the two offspring are, respectively, 1 and 2 units

shorter than the parent. The moment the offspring are generated, the parent dies.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_13,

© Springer International Publishing Switzerland 2014
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As a result, a total of six new worms are present whose length may differ from that

of their six parents. Will the length of the new generations of worms be similar to

that of their parents, or will over generations worms get longer or shorter?

Because of the randomness that determines the choice of mating partners and the

randomness that determines the length of the offspring we do not know in advance

how long each of the next-generation worms will be. What we do know, however, is

that of the pairs that mate, only the longer one survives. So, a mechanism is built in

to the dynamics of this artificial, evolutionary process that favors longer worms, and

we would therefore expect that as time passes, later-born worms are on average

longer than their predecessors.

In order to model the evolution of our worms, note that we need to solve three

interrelated problems. First, we need to randomly pair the worms. Then we need to

decide who in each pair is longer, and “kill” the shorter ones off. Third, we need to

toss a coin to determine the length of the offspring and add these new worms to our

system while we remove the information about their parents, i.e. let the remaining

three parents die.

The first of these three modeling problems can be solved by assuming that we

cast six dice such that at the end all six dice show a different number. Then we

always pair the same dice—the first die with the second, the third with the fourth,

and the fifth with the sixth. For example, if the dice give the numbers 2, 4, 1, 6, 3, 5,

then we take this to mean that we should mate WORM 2 with WORM 4, WORM

1 with WORM 6, and WORM 3 with WORM 5. To make things easier, we may

actually fix one die—say the first one—and cast only the other five die. That little

trick still leaves the process perfectly random, because any time five die are cast

such that their numbers are different from each other, the number for the sixth is

automatically determined anyway. We may as well start with that one. Here, we

arbitrarily set it to 1.

Once all dice have been cast such that they each show a different number, their

sum is 21 (1 + 2 + 3 + 4 + 5 + 6¼ 21). At that time, the worms are officially paired

and can begin their fight to the death (with the winner reproducing). Then the

system is re-set and the stocks, which contain the results of the round of casting the

dice, are emptied, and the dice are cast anew.

The dice of this model are represented as stocks named STOCK 1, STOCK

2, etc., whose contents are held constant until all dice show random numbers

between 2 and 6, and all are different from each other. The exception is the first

die, STOCK 1, whose value is fixed at 1.

Take, for example, the second die. The converter DIE 2 in Fig. 13.1 generates a

random number between 1 and 7:

DIE 2 ¼ INT RANDOM 1; 7ð Þð Þ ð13:1Þ

By only taking the integer of the random number we generate a string of

numbers between 1 and 6. The odds that exactly a 7 is generated are minuscule.

Next, we need to make sure that we only accept a number that has not already been

cast by another die—we want to avoid mating one worm with itself. We do this, for
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example, for DIE 2, with the following conditional statement which states that as

long as STOCK 2 is zero and as long as DIE 2 shows a different number from those

recorded in the other stocks, we can accept that die’s number. If not, we continue to

cast that die until its number differs from any of the others, and we then add it to

the stock.

RAND 2 ¼ IF
�
STOCK 2 ¼ 0 AND DIE 2 6¼ STOCK 1 AND DIE 2 6¼ STOCK 3

AND DIE 2 6¼ STOCK 4 AND DIE 2 6¼ STOCK 5 AND DIE 2 6¼ STOCK 6

AND DIE 2 6¼ DIE 6 AND DIE 2 6¼ DIE 5 AND DIE 2 6¼ DIE 4

AND DIE 2 6¼ DIE 3
�

THEN DIE 2 ELSE 0

ð13:2Þ
Once all dice have been cast such that they each show a different number, their

sum is 21. We calculate that sum in the ALL DICE converter, using STELLA’s

“Summing Converter” option. Once all dice show a different number all worms are

randomly, yet unambiguously, paired with each other to begin their fight to the

death. The system is re-set by emptying STOCK 2, STOCK 3 etc., and the dice are

cast anew.

STOCK 2 OUT ¼ IF ALL DICE ¼ 21 THEN STOCK 2 ELSE 0 ð13:3Þ

So far, we have only concerned ourselves with the means by which we can

randomly pair up the six worms. But what about their length? To keep track of

Fig. 13.1
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worm length, we generate six new state variables, and we assign them some

arbitrary initial values for the lengths of the worms. For simplicity, we set here

the initial values of WORM 1¼ 1, WORM 2¼ 2, WORM 3¼ 3, and so on.

Note in Fig. 13.2 how we set up the model structure such that we always update

the same pair of stocks for the worms. Who these worms are, however, is

Fig. 13.2
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determined by casting the dice—it is not as fixed as the graphical model represen-

tation may suggest. For example, WORM 3 and WORM 4 are always those worms

that were identified as the first and second worms in the second pair of worms that is

formed for the mating process, but from one round of casting dice to the next, these

are different worms whose lengths may differ from those of their parents.

Outflows from the WORM 1, WORM 2, etc. stocks occur once all dice are cast,

i.e. when ALL DICE¼ 21. Those worms are now ready to fight for their life and

then generate offspring. For example, the outflow from the WORM 1 stock is

WORM 1 OUT ¼ IF ALL DICE ¼ 21 THEN WORM 1 ELSE 0 ð13:4Þ

The inflows are determined on the basis of a coin toss and who of the two worms

in a pair survived the fight for life. We will discuss the inflows into WORM

1, WORM 2, etc. below, after we dealt with the processes by which we determine

the winners of the fights and update the respective other stocks in our model.

Take, for example, the second pair of worms—the pair that got determined by

tossing the third and fourth dice (Fig. 13.3). The stock LIFE 2 retains information

about the length of the winner of a fight. That stock is initially set to zero, as are

LIFE 1 and LIFE 3—the winners of the other two fights.

The inflows into the stocks LIFE 1, LIFE 2, and LIFE 3 are called FIGHT

1, FIGHT 2, and FIGHT 3, and they contain the guts of this model. Here, we check

which of the worms got matched up in the dice-casting part of this model and then

compare their lengths. For example, if the third die showed the number 2 and the

fourth die a number 3, then we know that the second and third worm were paired up,

and we will compute the maximum of the lengths of the two. But if the third die

showed a number 2 and the second a number 4, then WORM 2 and WORM 4 were

paired up and their lengths need to be compared. We repeat this process until we

exhaust all combinatorial possibilities. If none of the possibilities arose, that is a

sign that the process of pairing the worms by casting the dice has not yet been

completed. In this case the value of FLIGHT 2 is set to zero and the stock LIFE

2 remains unchanged, as shown in equation 13.5:

Fig. 13.3
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FIGHT 2 = IF (STOCK 3=2 AND STOCK 4=3 AND ALL DICE=21)

THEN MAX(WORM 2 OUT,WORM 3 OUT)

ELSE IF (STOCK 3=2 AND STOCK 4=4 AND ALL DICE=21)

THEN MAX(WORM 2 OUT,WORM 4_OUT)

ELSE IF (STOCK 3=2 AND STOCK 4=5 AND ALL DICE=21)

THEN MAX(WORM 2 OUT,WORM 5 OUT)

ELSE IF (STOCK 3=2 AND STOCK 4=6 AND ALL DICE=21)

THEN MAX(WORM 2 OUT,WORM 6 OUT)

ELSE IF (STOCK 3=3 AND STOCK 4=2 AND ALL DICE=21)

THEN MAX(WORM 3 OUT,WORM 2 OUT)

ELSE IF (STOCK 3=3 AND STOCK 4=4 AND ALL DICE=21)

THEN MAX(WORM 3 OUT,WORM 4 OUT)

ELSE IF (STOCK 3=3 AND STOCK 4=5 AND ALL DICE=21)

THEN MAX(WORM 3 OUT,WORM 5 OUT)

ELSE IF (STOCK 3=3 AND STOCK 4=6 AND ALL DICE=21)

THEN MAX(WORM 3 OUT,WORM 6 OUT)

ELSE IF (STOCK 3=4 AND STOCK 4=2 AND ALL DICE=21)

THEN MAX(WORM 4 OUT,WORM 2 OUT)

ELSE IF (STOCK 3=4 AND STOCK 4=3 AND ALL DICE=21)

THEN MAX(WORM 4 OUT,WORM 3 OUT)

ELSE IF (STOCK 3=4 AND STOCK 4=5 AND ALL DICE=21)

THEN MAX(WORM 4 OUT,WORM 5 OUT)

ELSE IF (STOCK 3=4 AND STOCK 4=6 AND ALL DICE=21)

THEN MAX(WORM 4 OUT,WORM 6 OUT)

ELSE IF (STOCK 3=5 AND STOCK 4=2 AND ALL DICE=21)

THEN MAX(WORM 5 OUT,WORM 2 OUT)

ELSE IF (STOCK 3=5 AND STOCK 4=3 AND ALL DICE=21)

THEN MAX(WORM 5 OUT,WORM 3 OUT)

ELSE IF (STOCK 3=5 AND STOCK 4=4 AND ALL DICE=21)

THEN MAX(WORM 5 OUT,WORM 4 OUT)

ELSE IF (STOCK 3=5 AND STOCK 4=6 AND ALL DICE=21)

THEN MAX(WORM 5 OUT,WORM 6 OUT)

ELSE IF (STOCK 3=6 AND STOCK 4=2 AND ALL DICE=21)

THEN MAX(WORM 6 OUT,WORM 2 OUT)

ELSE IF (STOCK 3=6 AND STOCK 4=3 AND ALL DICE=21)

THEN MAX(WORM 6 OUT,WORM 3 OUT)

ELSE IF (STOCK 3=6 AND STOCK 4=4 AND ALL DICE=21)

THEN MAX(WORM 6 OUT,WORM 4 OUT)

ELSE IF (STOCK 3=6 AND STOCK 4=5 AND ALL DICE=21)

THEN MAX(WORM 6 OUT,WORM 5 OUT)

ELSE 0

ð13:5Þ

110 13 Artificial Worms



The FIGHT 3 flow is analogous to the one for FIGHT 2, but both of these differ

slightly from the FIGHT 1 flow (Fig. 13.4). To calculate FIGHT 1 we do not need a

ghost of STOCK 1, because we always know the value of that stock—earlier we set

it to 1.

Once we calculated the length of the winner of the fights in each pair of worms,

that worm will die, too. We model the winner’s death with the outflows from the

respective LIFE stocks, such as

LIFE 2 EXPIRES ¼ LIFE 2: ð13:6Þ

The LIFE 1, LIFE 2, and LIFE 3 stocks are used to calculate the lengths of the

next generation of worms. For each pair of offspring we flip a coin, as we have done

in previous chapters:

COIN 1 ¼ RANDOM 0; 1ð Þ ð13:7Þ
COIN 2 ¼ RANDOM 0; 1ð Þ ð13:8Þ
COIN 3 ¼ RANDOM 0; 1ð Þ ð13:9Þ

Then we compute the length of the new worms based on the outcome of the coin

toss. We interpret numbers below .5 as tail and in that case make the length of one

new worm 1 unit less than that of the winner of the fight, and we make the other

offspring 2 units shorter. For numbers above .5 we make the offspring 1 and 2 units

longer, respectively. For example,

NEW WORM 1 ¼ IF LIFE 1 > 0 AND COIN 1 < :5ð Þ THEN LIFE 1� 1

ELSE IF LIFE 1 > 0 AND COIN 1 > :5ð Þ THEN LIFE 1þ 1

ELSE 0

ð13:10Þ

Fig. 13.4
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NEW WORM 2 ¼ IF LIFE 1 > 0 AND COIN 1 < :5ð Þ THEN LIFE 1� 2

ELSE IF LIFE 1 > 0 AND COIN 1 > :5ð Þ THEN LIFE 1þ 2

ELSE 0

ð13:11Þ

Now our model is finished. We have modules that we use to generate random pairs

of worms, to compare their lengths and let the longer one win a fight, and to generate

offspring whose lengths depend on the length of the winner in each fight. Figure 13.5

shows in the form of a bar chart the result of the evolution of our worms after running

the model for 1,000 periods. To generate a bar chart, simply double-click on an open

graph pad and select “Bar.” Only a maximum of five variables can be plotted.

Note that the length of the model run should not be interpreted in terms of the

number of generations of worms. At times, the process of casting dice leads

immediately to numbers that are different from each other for all six dice. At that

moment, a new generation of worms can be formed, and only in this case is one time

period equal to the length of one worm generation. If the dice are cast and not all

dice show different numbers, we need to continue to cast them until they do. This

may take several periods in the model and, as a consequence, the new generation of

worms will be formed after more than one period in the model.

Of course in the world of laboratory and field experiments, the most likely

picture we would have is a seasonal or breeding cycle study of the length of

worms. In actual measurement of the worms we would get just one of the pictures

in the series that compose Fig. 13.5. We would categorize the lengths in the field

most likely in terms of mean length and standard deviation. Our model allows one

to actually compute these values continuously and thus provides a way to validate

the model. In the absence of such data, we have a model here that provides a

dynamic example of natural selection dynamics.

Fig. 13.5
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13.2 Artificial Worm Model Equations

LIFE_1(t) ¼ LIFE_1(t � dt) + (FIGHT_1 � LIFE_1_EXPIRES) * dt

INIT LIFE_1 ¼ 0

INFLOWS:

FIGHT_1 ¼ IF (STOCK_2 ¼ 2 AND ALL_DICE¼ 21) THEN MAX

(WORM_1_OUT,WORM_2_OUT)

ELSE IF (STOCK_2 ¼ 3 AND ALL_DICE¼ 21) THEN MAX(WORM_1_OUT,

WORM_3_OUT)

ELSE IF (STOCK_2 ¼ 4 AND ALL_DICE¼ 21) THEN MAX(WORM_1_OUT,

WORM_4_OUT)

ELSE IF (STOCK_2 ¼ 5 AND ALL_DICE¼ 21) THEN MAX(WORM_1_OUT,

WORM_5_OUT)

ELSE IF (STOCK_2 ¼ 6 AND ALL_DICE¼ 21) THEN MAX(WORM_1_OUT,

WORM_6_OUT)

ELSE 0

OUTFLOWS:

LIFE_1_EXPIRES ¼ LIFE_1

LIFE_2(t) ¼ LIFE_2(t � dt) + (FIGHT_2 - LIFE_2_EXPIRES) * dt

INIT LIFE_2 ¼ 0

INFLOWS:

FIGHT_2 ¼ IF (STOCK_3¼2 AND STOCK_4¼3 AND ALL_DICE¼21) THEN

MAX(WORM_2_OUT,WORM_3_OUT)

ELSE IF (STOCK_3¼2 AND STOCK_4¼4 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_4_OUT)

ELSE IF (STOCK_3¼2 AND STOCK_4¼5 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_5_OUT)

ELSE IF (STOCK_3¼2 AND STOCK_4¼6 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_6_OUT)

ELSE IF (STOCK_3¼3 AND STOCK_4¼2 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_2_OUT)

ELSE IF (STOCK_3¼3 AND STOCK_4¼4 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_4_OUT)

ELSE IF (STOCK_3¼3 AND STOCK_4¼5 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_5_OUT)

ELSE IF (STOCK_3¼3 AND STOCK_4¼6 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_6_OUT)

ELSE IF (STOCK_3¼4 AND STOCK_4¼2 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_2_OUT)

ELSE IF (STOCK_3¼4 AND STOCK_4¼3 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_3_OUT)

ELSE IF (STOCK_3¼4 AND STOCK_4¼5 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_5_OUT)
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ELSE IF (STOCK_3¼4 AND STOCK_4¼6 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_6_OUT)

ELSE IF (STOCK_3¼5 AND STOCK_4¼2 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_2_OUT)

ELSE IF (STOCK_3¼5 AND STOCK_4¼3 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_3_OUT)

ELSE IF (STOCK_3¼5 AND STOCK_4¼4 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_4_OUT)

ELSE IF (STOCK_3¼5 AND STOCK_4¼6 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_6_OUT)

ELSE IF (STOCK_3¼6 AND STOCK_4¼2 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_2_OUT)

ELSE IF (STOCK_3¼6 AND STOCK_4¼3 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_3_OUT)

ELSE IF (STOCK_3¼6 AND STOCK_4¼4 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_4_OUT)

ELSE IF (STOCK_3¼6 AND STOCK_4¼5 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_5_OUT)

ELSE 0

OUTFLOWS:

LIFE_2_EXPIRES ¼ LIFE_2

LIFE_3(t) ¼ LIFE_3(t � dt) + (FIGHT_3 - LIFE_3_EXPIRES) * dt

INIT LIFE_3 ¼ 0

INFLOWS:

FIGHT_3 ¼ IF (STOCK_5¼2 AND STOCK_6¼3 AND ALL_DICE¼21) THEN

MAX(WORM_2_OUT,WORM_3_OUT)

ELSE IF (STOCK_5¼2 AND STOCK_6¼4 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_4_OUT)

ELSE IF (STOCK_5¼2 AND STOCK_6¼5 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_5_OUT)

ELSE IF (STOCK_5¼2 AND STOCK_6¼6 AND ALL_DICE¼21) THEN MAX

(WORM_2_OUT,WORM_6_OUT)

ELSE IF (STOCK_5¼3 AND STOCK_6¼2 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_2_OUT)

ELSE IF (STOCK_5¼3 AND STOCK_6¼4 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_4_OUT)

ELSE IF (STOCK_5¼3 AND STOCK_6¼5 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_5_OUT)

ELSE IF (STOCK_5¼3 AND STOCK_6¼6 AND ALL_DICE¼21) THEN MAX

(WORM_3_OUT,WORM_6_OUT)

ELSE IF (STOCK_5¼4 AND STOCK_6¼2 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_2_OUT)

ELSE IF (STOCK_5¼4 AND STOCK_6¼3 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_3_OUT)
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ELSE IF (STOCK_5¼4 AND STOCK_6¼5 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_5_OUT)

ELSE IF (STOCK_5¼4 AND STOCK_6¼6 AND ALL_DICE¼21) THEN MAX

(WORM_4_OUT,WORM_6_OUT)

ELSE IF (STOCK_5¼5 AND STOCK_6¼2 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_2_OUT)

ELSE IF (STOCK_5¼5 AND STOCK_6¼3 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_3_OUT)

ELSE IF (STOCK_5¼5 AND STOCK_6¼4 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_4_OUT)

ELSE IF (STOCK_5¼5 AND STOCK_6¼6 AND ALL_DICE¼21) THEN MAX

(WORM_5_OUT,WORM_6_OUT)

ELSE IF (STOCK_5¼6 AND STOCK_6¼2 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_2_OUT)

ELSE IF (STOCK_5¼6 AND STOCK_6¼3 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_3_OUT)

ELSE IF (STOCK_5¼6 AND STOCK_6¼4 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_4_OUT)

ELSE IF (STOCK_5¼6 AND STOCK_6¼5 AND ALL_DICE¼21) THEN MAX

(WORM_6_OUT,WORM_5_OUT)

ELSE 0

OUTFLOWS:

LIFE_3_EXPIRES ¼ LIFE_3

STOCK_1(t) ¼ STOCK_1(t � dt)

INIT STOCK_1 ¼ 1

STOCK_2(t) ¼ STOCK_2(t � dt) + (RAND_2 � STOCK_2_OUT) * dt

INIT STOCK_2 ¼ 0

INFLOWS:

RAND_2 ¼ IF (STOCK_2 ¼ 0 AND DIE_2 <> STOCK_1 AND DIE_2<>
STOCK_3 AND DIE_2<>STOCK_4 AND DIE_2<>STOCK_5 AND

DIE_2<>STOCK_6 AND DIE_2<>DIE_6 AND DIE_2<>DIE_5 AND

DIE_2<>DIE_4 AND DIE_2<>DIE_3 ) THEN DIE_2 ELSE 0

OUTFLOWS:

STOCK_2_OUT ¼ IF ALL_DICE ¼ 21 THEN STOCK_2 ELSE 0

STOCK_3(t) ¼ STOCK_3(t � dt) + (RAND_3 � STOCK_3_OUT) * dt

INIT STOCK_3 ¼ 0

INFLOWS:

RAND_3 ¼ IF (STOCK_3 ¼ 0 AND DIE_3 <> STOCK_1 AND DIE_3

<>STOCK_2 AND DIE_3<>STOCK_4 AND DIE_3<>STOCK_5 AND

DIE_3<>STOCK_6 AND DIE_3<>DIE_6 AND DIE_3<>DIE_5 AND

DIE_3<>DIE_4 AND DIE_3<>DIE_2 ) THEN DIE_3 ELSE 0
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OUTFLOWS:

STOCK_3_OUT ¼ IF ALL_DICE ¼ 21 THEN STOCK_3 ELSE 0

STOCK_4(t) ¼ STOCK_4(t � dt) + (RAND_4 � STOCK_4_OUT) * dt

INIT STOCK_4 ¼ 0

INFLOWS:

RAND_4 ¼ IF (STOCK_4 ¼ 0 AND DIE_4 <> STOCK_1 AND DIE_4

<>STOCK_2 AND DIE_4<>STOCK_3 AND DIE_4<>STOCK_5 AND

DIE_4<>STOCK_6 AND DIE_4<>DIE_6 AND DIE_4<>DIE_5 AND

DIE_4<>DIE_3 AND DIE_4<>DIE_2) THEN DIE_4 ELSE 0

OUTFLOWS:

STOCK_4_OUT ¼ IF ALL_DICE ¼ 21 THEN STOCK_4 ELSE 0

STOCK_5(t) ¼ STOCK_5(t � dt) + (RAND_5 � STOCK_5_OUT) * dt

INIT STOCK_5 ¼ 0

INFLOWS:

RAND_5 ¼ IF (STOCK_5 ¼ 0 AND DIE_5 <> STOCK_1 AND DIE_5

<>STOCK_2 AND DIE_5<>STOCK_3 AND DIE_5<>STOCK_4 AND

DIE_5<>STOCK_6 AND DIE_5<>DIE_6 AND DIE_5<>DIE_4 AND

DIE_5<>DIE_3 AND DIE_5<>DIE_2) THEN DIE_5 ELSE 0

OUTFLOWS:

STOCK_5_OUT ¼ IF ALL_DICE ¼ 21 THEN STOCK_5 ELSE 0

STOCK_6(t) ¼ STOCK_6(t � dt) + (RAND_6 � STOCK_6_OUT) * dt

INIT STOCK_6 ¼ 0

INFLOWS:

RAND_6 ¼ IF (STOCK_6 ¼ 0 AND DIE_6 <> STOCK_1 AND DIE_6

<>STOCK_2 AND DIE_6<>STOCK_3 AND DIE_6<>STOCK_4 AND

DIE_6<>STOCK_5 AND DIE_6<>DIE_5 AND DIE_6<>DIE_4 AND

DIE_6<>DIE_3 AND DIE_6<>DIE_2) THEN DIE_6 ELSE 0

OUTFLOWS:

STOCK_6_OUT ¼ IF ALL_DICE ¼ 21 THEN STOCK_6 ELSE 0

WORM_1(t) ¼ WORM_1(t � dt) + (NEW_WORM_1 � WORM_1_OUT) * dt

INIT WORM_1 ¼ 1

INFLOWS:

NEW_WORM_1 ¼ IF (LIFE_1>0 AND COIN_1<.5) THEN LIFE_1�1

ELSE IF (LIFE_1>0 AND COIN_1>.5) THEN LIFE_1+1

ELSE 0

OUTFLOWS:

WORM_1_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_1 ELSE 0

WORM_2(t) ¼ WORM_2(t � dt) + (NEW_WORM_2 � WORM_2_OUT) * dt

INIT WORM_2 ¼ 2
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INFLOWS:

NEW_WORM_2 ¼ IF (LIFE_1>0 AND COIN_1<.5) THEN LIFE_1�2

ELSE IF (LIFE_1>0 AND COIN_1>.5) THEN LIFE_1+2

ELSE 0

OUTFLOWS:

WORM_2_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_2 ELSE 0

WORM_3(t) ¼ WORM_3(t � dt) + (NEW_WORM_3 � WORM_3_OUT) * dt

INIT WORM_3 ¼ 3

INFLOWS:

NEW_WORM_3 ¼ IF (LIFE_2>0 AND COIN_2<.5) THEN LIFE_2�1

ELSE IF (LIFE_2>0 AND COIN_2>.5) THEN LIFE_2+1

ELSE 0

OUTFLOWS:

WORM_3_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_3 ELSE 0

WORM_4(t) ¼ WORM_4(t � dt) + (NEW_WORM_4 � WORM_4_OUT) * dt

INIT WORM_4 ¼ 4

INFLOWS:

NEW_WORM_4 ¼ IF (LIFE_2>0 AND COIN_2<.5) THEN LIFE_2�2

ELSE IF (LIFE_2>0 AND COIN_2>.5) THEN LIFE_2+2

ELSE 0

OUTFLOWS:

WORM_4_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_4 ELSE 0

WORM_5(t) ¼ WORM_5(t � dt) + (NEW_WORM_5 � WORM_5_OUT) * dt

INIT WORM_5 ¼ 5

INFLOWS:

NEW_WORM_5 ¼ IF (LIFE_3>0 AND COIN_3<.5) THEN LIFE_3�1

ELSE IF (LIFE_3>0 AND COIN_3>.5) THEN LIFE_3+1

ELSE 0

OUTFLOWS:

WORM_5_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_5 ELSE 0

WORM_6(t) ¼ WORM_6(t � dt) + (NEW_WORM_6 � WORM_6_OUT) * dt

INIT WORM_6 ¼ 6

INFLOWS:

NEW_WORM_6 ¼ IF (LIFE_3>0 AND COIN_3<.5) THEN LIFE_3�2

ELSE IF (LIFE_3>0 AND COIN_3>.5) THEN LIFE_3+2

ELSE 0

OUTFLOWS:

WORM_6_OUT ¼ IF ALL_DICE ¼ 21 THEN WORM_6 ELSE 0
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ALL_DICE ¼ STOCK_1 + STOCK_2 + STOCK_3 + STOCK_4 + STOCK_5 +

STOCK_6

COIN_1 ¼ RANDOM(0,1)

COIN_2 ¼ RANDOM(0,1)

COIN_3 ¼ RANDOM(0,1)

DIE_2 ¼ INT(RANDOM(1,7))

DIE_3 ¼ INT(RANDOM(1,7))

DIE_4 ¼ INT(RANDOM(1,7))

DIE_5 ¼ INT(RANDOM(1,7))

DIE_6 ¼ INT(RANDOM(1,7))

Reference

1. Cohen J, Stewart I (1994) The collapse of chaos. Penguin Books, New York, pp 105–106
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Chapter 14

Langur Infanticide and Long-Term

Matriline Fitness

For my own part I would as soon be descended from that heroic
little monkey, who braved his dreaded enemy in order to save
the life of his keeper; or from that old baboon, who, descending
from the mountains, carried away in triumph his young comrade
from a crowd of astonished dogs—as from a savage who delights
to torture his enemies, offers up bloody sacrifices, practices
infanticide without remorse, treats his wives like slaves, knows
no decency, and is haunted by the grossest superstitions.

(Charles Darwin, The Descent of Man)

14.1 Langur Infanticide Model

The previous two chapters concentrated on natural selection, mutation, and fitness

for a given species. The focus there was at the level of genes. In this chapter, we

explore at the population level factors that may affect long-term fitness. Specifi-

cally, we explore the case of infanticides, the selective pressures they exert on the

population, and the impacts they have on population size.

The particular case we explore here is for Hanuman Langurs, which are found

throughout the Indian Subcontinent, Sri Lanka, and north into the pine forests of the

Himalayas. Their habitats vary from moderate ranges such as savannahs and

woodlands, to the extreme climates of tropical rainforests and dry desert fringes.

Hanuman Langurs coexist with humans and are considered sacred temple animals

in India where they are often provisioned [1].

TheHanumanLangurs possess a highly complicated social system, with three types

of groups: single male breeding troops, bachelor bands, and multi-male/multi-female

troops. Langur troops are flexible, with troop sizes ranging from7 to 93 individuals at a

A save-disabled version of STELLA and the computer models of this book are available at
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time, averaging between 20 and 40 individuals. Langur dominance hierarchies are

linear and tend to be organized into matrilines (due to females being philopatric,

or remaining in their natal group), and stabilized through coalitions between high

ranking females and their subordinates. Within single male breeding troops one male

dominates and mates with all the females within his group. In order to maintain this

privilege, the male must defend his position from outside males. These males come

from bachelor bands that are composed of immature males and adults.

Juvenile males are often forced out of a group by dominant males who are not

their fathers. After being forced from the group, these individuals may spend

several years in all-male bands, forming alliances that can be utilized in the

takeover of harem groups. In contrast to the predominately male and female troops,

multi-male/multi-female bands have a polygamist group dynamic. Group member-

ship among multi-male/multi-female groups is very flexible within these coed

bands, with males constantly joining and leaving the group [1]. Due to the insta-

bility of these multi-male/multi-female groups and the complexity of social rela-

tionships between them, we model here a single male harem situation.

For our model, longitudinal data was available for a group of provisioned harem

groups in Jodphur, India [2]. Because this group is provisioned and also raids crops,

we did not include any density component in the model.

The Langurs of Jodphur, on which the model is based, show no seasonality in

births, although there is a peak in March and a low in November [2]. Their ability to

produce infants year-round is primarily due to the lack of seasonality in access to

food. In contrast, Langurs found in the Himalayas, for example, show a seasonally

varying birth pattern.

After a dominant male has been replaced in the harem group by a new male, the

incoming male will kill the offspring of the ousted male. This triggers the end of

lactational amennorhea and the female enters estrus sooner than she would have

otherwise. This is the major tenant of the “sexual selection hypothesis” that favors

infanticide as a male reproductive strategy [3]. This hypothesis assumes that males

are deliberately killing unrelated infants in order to shorten the interbirth interval.

Over 80 % of infant deaths occur within the first 9 months.

For infanticide to be an effective male reproductive strategy amale would have to

be able to distinguish his offspring from that of another male. Proof of this can be

seen in the female strategy of paternity confusion were a male will not tend to attack

an infant whose mother he mated with. Furthermore, an infanticidal male would

have to remain around the female long enough to prevent other males from attacking

his infant. Hausfater [4] has shown that a 26.5 month stay is optimal for this task.We

therefore assume that the average tenure of a male to be dominant is 26.5 months.

For the average interbirth interval we assume 16.7 months in the case of no

infanticide, and 12.8 months after the death of an infant. Gestation is 6.5 months,

and the age at which a juvenile female is considered an adult and gives birth for her

fist time is 43 months.

Each month 25 % of the females become pregnant. Since the cycle is around

1 month, any given week one quarter of the females are able to become pregnant.

Pregnancy is known from the literature to be 6.5 months, and the conveyor
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represents this. Lactation length can vary, but the average interbirth interval is

16.7 months (without infanticide), thus minus the 6.5 months of gestation, weaning

would be 10.2 months. After the death of an infant, the interbirth interval is

shortened to 12.8 months. Subtracting from the shortened interbirth interval inus

the gestation period of 6.5 months defines 6.3 months as the period after which

females become fertile again.

The model of Fig. 14.1 represents a single matriline of related females at various

ages in the life cycle as they are born, reproduce, and die. It is essential that we are able

to distinguish individuals within the cohorts of infants, juveniles, pregnant, and

lactating females by the time at which they enter a stock and when they leave it—

rather than lumping all of them together with their respective peers. We can therefore

not use STELLA’s default stock—the reservoir—which, like a water reservoir,

receives input and allows for output, without distinguishing what came in first or

last. Instead, we specify the stocks infants, juveniles, pregnant, and lactating females

as conveyors, whichwork analogous to a conveyor belt that has slats on which entities

are placed, and after some transit time on the conveyor these entities are released in the

order in which they entered the conveyor. Simply click and hold the stock tool on the

toolbar (Fig. 14.2). Going down the list of options in Fig. 14.2 you find

• The reservoir, which lumps all the entries together,

• The conveyor, which works much like a conveyor belt, taking on elements and

releasing them after a set time,

• The queue, which keeps elements queued up until some specified conditions are

met, and

• The oven, which has a given capacity, keeps elements for a defined duration but

does not distinguish its contents by their order of arrival and simply releases

them all after their “cook time.”

Choose the stocks for infants, juveniles, lactating, and pregnant individuals as

conveyors. Specify the transit time for infants as 9 (months) and that for juveniles as

34 (months) because the age at first birth is 43 months (43� 9¼ 34). Set the initial

conditions of each of these conveyors at 5 (individuals). Specify the transit time for

pregnant females as 6.5 (months) and that for lactating females as 10 (months).

Assume we start with ten pregnant and ten lactating individuals.

Note thatwith the specification of the transit times, the outflows fromeach stock are

pre-defined: The individuals, who come into the stock first also leave first, after their

specified duration in the stock. Any additional flow out of the conveyors that you draw

will be interpreted as a leak—such as the “leakage” of infants from natural causes and

infanticide. For the leakage, you can specify when it should occur along the conveyor,

such as at its very beginning or anywhere during the transit time. For infant deaths, for

example, we allow the loss of babies to occur as early as at the beginning of their

cohort, and as late as at the very end of the 9 months in their cohort (Fig. 14.3).

We must also select the type of leakage these flow represents—linear or expo-

nential. If you select the linear option, the total amount to leak is equal to the

inflow*DT*leakage_fraction and this amount is distributed evenly across the leak-

age zone of the conveyer (each slat leaks this amount divided by the number of

slats). In contrast, if you select the exponential option, the amount that leaks from
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each slat within the leakage zone is equal to the slat_contents*leakage_fraction,

generating an exponential decay in the amount leaked across the leakage zone. As a

consequence, for linear leakage, the total amount leaked does not change with the

length of the leakage zone, whereas for exponential leakage it does. In our model,

we selected the linear option.

For infants, we specify the leak fraction as follows:

Leak Fraction ¼ IFIs the male in the population currently killing babies? > 0

THEN Extra death rate due to infanticideþ Int Infant Death Rateð Þ � Infant
ELSE Int Infant Death Rate � Infant

ð14:1Þ

The matriline modeled here interacts with an outside population of males. A

dominant male of a harem group encounters rivals with an unknown frequency and

he will win some challenges but eventually loses his position to another. We capture

this interaction in the model by creating a random number generator to yield values

between 0 and 1. A converter called “Is_the_old_male_removed?” samples from

this random distribution. It is specified as

Is the old male removed ¼ IF Random # Gen > :96 THEN 1 ELSE 0 ð14:2Þ

Fig. 14.2

Fig. 14.3
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because we know that the average tenure of males in a group is 26.5 months,

varying from just a few days to 74 months. We can assume that each month there is

a 4 % chance of being replaced, so that after the average tenure time passes most

males will have been replaced. (The DT must be set at one for this to work, if DT is

set at 0.5, the 0.96 will have to be replaced by 0.98 so that the same chance is

encountered).

A second unknown is whether the new male (should he win his dominance

challenge) is himself infanticidal. To determine the likelihood that a male commits

infanticide, we specify another random number generator in much the same way,

only this time creating a component called “Pct Infanticidal” in which we can

actually vary the percentage of males in the population who will exhibit this trait. A

converter called “Is_new_male_infanticidal?” uses the random number generator

and the percentage specified to determine the answer to this question. Its value is

Is new male infanticidal ¼ IF Random # Gen 2 <¼ Pct Infanticidal THEN 1

ELSE 0},

ð14:3Þ

such that if 40 % are infanticidal (Pct Infanticidal¼ 0.4) there is a 40 % chance that

the random number generated will be smaller than the 0.4 specified and thus a 40 %

chance that the new dominant male is infanticidal.

Both of the conditional statementsEqs. (14.2) and (14.3) feed into a biflowconnected

to a stock called “Is_the_male_in_the_population_currently_killing_babies?”, which

we used above [Eq. (14.1)] to define the leakage fraction from the stock of infants.

We set the initial condition for this stock to 0. The biflow is called “Change in

Male Status” and has the following value

Change in Male Status ¼ IF Is new male infanticidal?þ Is old male removed? ¼ 2

THEN 6� Is the male in the population currently killing babies?
ELSE if Is new male infanticidal?� Is old male removed? ¼ �1

THEN� Is the male in the population currently killing babies?
ELSE � 1:

ð14:4Þ

This biflow allows us tomakemales in the population not perpetual baby killers for

the entire time of their tenure. Instead, after the gestation period of around 6 months

passes, new-borns are likely themale’s offspring, and so this biflow causes the stock to

“count down” until the male gains no benefit from killing babies: If a new male is

successful and is infanticidal, then a six is read in the stock. For each month that the

resident male remains in charge, this value decreases by one until it goes to zero—the

stock is non-negative—and the male is no longer killing babies. If a newly dominant

male is not infanticidal the sum of the two conditional statements is negative.

The stock “Is_the_male_in_the_population_currently_killing_babies?” influences

the infant death rate and the weaning tenure of the females.
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Since the model deals only with total female population size, the total

birthrate is divided by 2. Death of infants from natural causes is a function of

Int_Infant_Death_Rate, which we assume to be 4 %, and the actions of an infan-

ticidal male. The latter is estimated from the literature to be 0.366 [2].

To calculate the total adult female population size in our model, we could have

created a converter and connected into it with action connectors the stocks of fertile,

pregnant, and lactating individuals. Instead, we made use here of STELLA’s

Summing Converter (shown in Fig. 14.4 and used in the lower left-hand side of

Fig. 14.1). You can select the Summing Converter by clicking and holding the

Converter tool on the toolbar and place it anywhere in your model. Upon opening it,

you simply need to specify which model components should be summed up, and

STELLA does the rest.

Figure 14.5 shows how often males are replaced and that the modeled tenure

lengths fit well with the known average and range. The total female population size

is shown for four runs in Fig. 14.6—first without infanticide and for subsequent

runs with (randomly) occurring infanticides, assuming 50 % of males to be infan-

ticidal. Figure 14.7 compares total female population sizes for three different

percentages of infanticidal males—0, 50, and 100 %.

Fig. 14.4

Fig. 14.5
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The results show a population of females that increases and then tends to level off.

Infanticide causes this population size to fluctuate at a level below that of a population

with no infanticide, but thedifference between0 and100% infanticidalmales, although

significant, is only a few individuals. Over time the success of the matriline is barely

affected by the presence of infanticidal males. The model thus seems to support the

sexual selection hypothesis, and shows the varying levels of impact of infanticide on

different hierarchical levels with the matriline showing very little long-term effect.

Individual males benefit by speeding up the interbirth interval. Individual females

suffering from a loss of infants see their lifetime fitness seriously reduced.

Fig. 14.6

Fig. 14.7
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Even a smallmating advantage for infanticidalmales could lead to themaintenance

of this trait since the cumulative effect on the matriline is so small. Variation in

male success with the infanticidal/noninfanticidal strategies leads to the preservation

of the polymorphism.

14.2 Langur Infanticide Model Equations

Fertile(t)¼ Fertile(t� dt) + (Weaning + Sexual_Mat� Fertilization� FDeath) * dt

INIT Fertile ¼ 10

INFLOWS:

Weaning ¼ CONVEYOR OUTFLOW

Sexual_Mat ¼ CONVEYOR OUTFLOW

OUTFLOWS:

Fertilization ¼ .25*Fertile

FDeath ¼ .004*Fertile

Is_the_male_in_the_population_currently_killing_babies?(t) ¼ Is_the_male_in_the_

population_currently_killing_babies?(t� dt) + (Change_in_male_state) * dt

INIT Is_the_male_in_the_population_currently_killing_babies? ¼ 0

INFLOWS:

Change_in_male_state ¼ IF Is_new_male_infanticidal? + Is_old_male_removed?

¼ 2 THEN 6�Is_the_male_in_the_population_currently_killing_babies? else if

Is_new_male_infanticidal?� Is_old_male_removed?¼�1 then�Is_the_male_in_the_

population_currently_killing_babies? else�1

Infant(t) ¼ Infant(t � dt) + (Female_Birth � Maturation � Infant_death) * dt

INIT Infant ¼ 5

TRANSIT TIME ¼ 9

CAPACITY ¼ INF

INFLOW LIMIT ¼ INF

INFLOWS:

Female_Birth ¼ .5*Birth

OUTFLOWS:

Maturation ¼ CONVEYOR OUTFLOW

Infant_death ¼ LEAKAGE OUTFLOW

LEAKAGE FRACTION ¼ If Is_the_male_in_the_population_currently_

killing_babies? > 0 then (Extra_death_rate_due_to_infanticide

+Int_Infant_ Death_Rate)*Infant else Int_Infant_Death_Rate*Infant

LEAK ZONE ¼ 0% to 100%

Juvenile(t) ¼ Juvenile(t - dt) + (Maturation - Sexual_Mat - Juvenile_death) * dt

INIT Juvenile ¼ 5
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TRANSIT TIME ¼ 34

CAPACITY ¼
INFLOW LIMIT ¼

INFLOWS:

Maturation ¼ CONVEYOR OUTFLOW

OUTFLOWS:

Sexual_Mat ¼ CONVEYOR OUTFLOW

Juvenile_death ¼ LEAKAGE OUTFLOW

LEAKAGE FRACTION ¼ .02*Juvenile

LEAK ZONE ¼ 0% to 100%

Lactating(t) ¼ Lactating(t � dt) + (Birth � Weaning � LDying) * dt

INIT Lactating ¼ 10

TRANSIT TIME ¼ IF Is_the_male_in_the_population_currently_killing_

babies?> 0 THEN 6.3 ELSE 10.2

CAPACITY ¼
INFLOW LIMIT ¼

INFLOWS:

Birth ¼ CONVEYOR OUTFLOW

OUTFLOWS:

Weaning ¼ CONVEYOR OUTFLOW

LDying ¼ LEAKAGE OUTFLOW

LEAKAGE FRACTION ¼ .004*Lactating

LEAK ZONE ¼ 0% to 100%

Pregnant(t) ¼ Pregnant(t � dt) + (Fertilization � Birth � PDying) * dt

INIT Pregnant ¼ 10

TRANSIT TIME ¼ 6.5

CAPACITY ¼ INF

INFLOW LIMIT ¼ INF

INFLOWS:

Fertilization ¼ .25*Fertile

OUTFLOWS:

Birth ¼ CONVEYOR OUTFLOW

PDying ¼ LEAKAGE OUTFLOW

LEAKAGE FRACTION ¼ .004*Pregnant

LEAK ZONE ¼ 0% to 100%

Extra_death_rate_due_to_infanticide ¼ 0.366

Int_Infant_Death_Rate ¼ 0.04

Is_new_male_infanticidal?¼ If Random_#_Gen_2<¼ Pct_Infanticidal then 1 else 0

Is_old_male_removed? ¼ IF Random_#_Gen > .98 then 1 else 0

Pct_Infanticidal ¼ 0.5

Random_#_Gen ¼ random(0,1)

Random_#_Gen_2 ¼ Random(0,1)

Total_Adult_Female_Population_Size ¼ Pregnant+ + Lactating+ + Fertile
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Part IV

Models of Organisms



Chapter 15

Odor Sensing

The only defect of our senses is, that they give us disproportion’d
images of things.

(Hume, 1739).

15.1 Basic Model of Odor Sensing

In this chapter we develop a model of a “nose” with three receptors. Each of the

three receptors is tuned to a particular type of odor, either 1, 2 or 3. The goal of the

“nose” is for the dominant receptor to suppress the other two odors in order to send

a clear signal to the brain regarding the type of odor being sensed. The odor changes

over time according to the following rule

ODOR ¼ IF TIME � 15 THEN NORMAL 1; :4ð Þ ELSE NORMAL 3; :4ð Þ ð15:1Þ

Our “nose” can select the mean value out of a normally distributed odor. The

mean value of the odor is thought to be an integer and it is assumed that integers

above 3 would merely require additional receptors. In order for our nose to work,

each receptor has to have a way of forgetting its present signal, should that signal

decrease. We assume that the receptor is constantly forgetting or “zeroing out” the

effect of the signal. Thus, when the strength of a signal to a particular receptor

declines, the strength of the signal transmitted by that receptor declines. The three

receptors are set up accordingly as
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RECEPTOR 1 ¼ IF ODOR � :5ð Þ AND ODOR � 1:5ð Þ THEN 1 ELSE� A

ð15:2Þ
RECEPTOR 2 ¼ IF ODOR > 1:5ð Þ AND ODOR � 2:5ð Þ THEN 1 ELSE� B

ð15:3Þ
RECEPTOR 3 ¼ IF ODOR > 2:5ð Þ AND ODOR � 3:5ð Þ THEN 1 ELSE� C

ð15:4Þ

The complete model is shown in Fig. 15.1. Our resulting signal to the brain from

the three receptors is unambiguous in spite of the fact that the incoming odor signal

was mixed and overlapped the boundaries of the receptors (Fig. 15.2).

Fig. 15.1

Fig. 15.2
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The model does not depict a perfect nose. There are too few receptors. Add more

receptors and increase the range of the possible odors. Change the sensitivity of

some receptor such that if there is too much odor of a particular strength or for a

particular duration, that receptor gets “numb” and provides the wrong signals to the

brain. How can the brain minimize those errors? Can you reprogram this model

such that any continuous odor is eventually ignored, until a sudden change in the

level of the odor is introduced?

15.2 Odor Sensing Model Equations

A(t) ¼ A(t � dt) + (RECEPTOR_1) * dt

INIT A ¼ 0 {Signals}

INFLOWS:

RECEPTOR_1 ¼ IF (ODOR � .5) AND (ODOR � 1.5) THEN 1 ELSE � A

{Signals per Minute}

B(t) ¼ B(t � dt) + (RECEPTOR_2) * dt

INIT B ¼ 0 {Signals}

INFLOWS:

RECEPTOR_2 ¼ IF (ODOR > 1.5) AND (ODOR � 2.5) THEN 1 ELSE �B

{Signals per Minute}

C(t) ¼ C(t � dt) + (RECEPTOR_3) * dt

INIT C ¼ 0 {Signals}

INFLOWS:

RECEPTOR_3 ¼ IF (ODOR > 2.5) AND (ODOR � 3.5) THEN 1 ELSE �C

{Signals per Minute}

ODOR ¼ IF TIME�15 THEN NORMAL(1,.4) ELSE NORMAL(3,.4) {Odor

Units}
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Chapter 16

Stochastic Resonance

The thirst for something other than what we have. . .to bring
something new, even if it is worse, some emotion, some sorrow;
when our sensibility, which happiness has silenced like an idle
harp, wants to resonate under some hand, even a rough one, and
even if it might be broken by it.

(Marcel Proust, Swann’s Way)

16.1 Basic Stochastic Resonance Model

In the previous chapter we modeled a “nose” that detects some odor. Let us model

in this chapter an “ear” with a limited range of amplitudes of acoustic signals that it

can detect. The threshold of audible amplitudes is arbitrarily set at 0.03. Let us

specify a harmonic signal whose amplitude (0.01) is too low to be heard.

HARMONIC ¼ SINWAVE :01; :1ð Þ þ :01 ð16:1Þ

Additionally, there is noise in the system.

NOISE ¼ RANDOM 0; :02ð Þ ð16:2Þ

With the addition of noise the peak apparent amplitude to the ear is doubled,

goes above the audio threshold and thus can be “heard”:

COMBINED SIGNAL ¼ HARMONICþ NOISE ð16:3Þ

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_16,

© Springer International Publishing Switzerland 2014

137

www.iseesystems.com/modelingeconomicsystems


The “frequency” of the noise is the DT. In every DT the random level of the

noise is changed. If the noise is not generated often enough, the signals become

impossibly masked by the noise.

Our model of stochastic resonance is shown in Fig. 16.1. Try a DT of 0.001 and

of 0.0625. The results are shown, respectively, in Figs. 16.2 and 16.3. Recognize

how little of the harmonic signal can be detected if the frequency is too low.

The human ear–brain smoothes over the fact that the peaks above the threshold

are composed of several tightly spaced signals of noise plus signal. The same

phenomenon is present in the eye-brain system. Imagine a set of leafless branches

fidgeting in the wind, seen against a bright sky. Assume we are looking for a

mammal moving through the branches. The movement of the branches is the

“white” visual noise in this system. Our eye-brain system is extremely well

equipped to filter out the dark shapes formed at random by the intersection of

several branches, because this sort of shape does not persist. We easily see the

mammal flitting though the branches. Adding leaves to these branches just makes

the problem harder, but perhaps not impossible. So the eye-brain and ear–brain

Fig. 16.1

Fig. 16.2
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systems must learn to allow persistence of the input signal in order to appropriately

average it and make decisions based on that average value. In the case of the

combined audio signal, this quality of persistence allows one to compose the parts

of this combine that exceed the audio threshold into a particular frequency. In the

visual example, the persistence quality allows us to ignore those signals that are

random and focus our attention on the more apparently purposeful motion.

Now that we have modeled a simple “nose” and an “ear,” let us turn to a more

elaborate model of a four-chambered heart. This is the topic of the following

chapter.

16.2 Stochastic Resonance Model Equations

COMBINED_SIGNAL ¼ HARMONIC+NOISE

HARMONIC ¼ SINWAVE(.01,.1)+.01

NOISE ¼ RANDOM(0,.02)

Fig. 16.3
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Chapter 17

Heart Beat

I have to remind myself to breathe – almost to remind my heart
to beat!

(Emily Brontë, Wuthering Heights)

17.1 Basic Heart Beat Model

In Chap. 4 we have mentioned the fact that organs, or entire organisms, may be

viewed as having evolved to a critical state in which they are seemingly close to

chaotic behavior. Yet, at that stage of their evolution, they may have optimized their

behavior with regard to a specific task. The heart is such an organ, and we model it

in a simplified form in this chapter.

The behavior of the four-chambered human heart follows a series of closely

interrelated flow processes. Deoxygenated blood from the venous system is collected

into the vena cava and then delivered into the right atrium. Blood then is pumped into

the right ventricle past the bicuspid valve. Blood is pumped to the lungs via the

pulmonary arteries where it becomes oxygenated. Blood then is delivered into the

left atrium via the pulmonary vein. From there the blood is pumped into the left

ventricle. The oxygenated blood is then pumped to the body’s arterial system through

the aorta. This pumping rate is controlled by the heart’s pacemaker. Special cells in

both atrial chambers have the ability to send electrical impulses that cause the atria to

contract. The same impulse is also carried to the A-V node which causes ventricular

contraction. The result is first an atrial contraction then, after a few millisecond delay,

the ventricular contraction. A very basic rendition of the heart is laid out in Fig. 17.1.

Our model of the four-chambered heart (Fig. 17.2) is constructed to respond to

changes in blood demand and to disease. A volume of blood is pumped through
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Fig. 17.1

Fig. 17.2
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each of the four chambers of the heart. At the core of the model are two pacemakers,

each sending a Pulse that “pumps” the blood causing a flow from one chamber to

the next:

PACEMAKER ¼ PULSE RIGHT ATRIUM, 1,MEDULAð Þ ð17:1Þ

PACEMAKER 2 ¼ PULSE LEFT ATRIUM, 1,MEDULAð Þ ð17:2Þ

The Pulse’s firing frequency is controlled by the medulla, part of the brain that

stimulates some body functions such as breathing and heart beat. The activity of the

medulla is a function of the activity of the heart, here arbitrarily set as

MEDULA ¼ 8 � ACTIVITY, ð17:3Þ

with ACTIVITY¼ 1 for a person at rest and ACTIVITY< 1 for an active person.

Increased activity increases the rate of pulses being sent by the pacemaker. FIT-

NESS is also included in the model. The more fit an individual, the more efficient

the heart is at pumping blood.

A Delay is used in both the Bicuspid and Tricuspid flows to create a short pause

between atrial and ventricle firing.

PULMONARY ART ¼ DELAY AV NODE 2, 1ð Þ ð17:4Þ

AORTA ¼ DELAY AV NODE, 1ð Þ ð17:5Þ

To make the graph of the blood flow more realistic, a Smooth function was used.

The Built-in SMTH1(A,X) calculates the first order exponential smooth of a

variable A, using an exponential averaging time of X. The Smooth function gives

the appearance of blood gradually flowing into its chamber. To capture the gradual

flow of blood in our model we define the flows connecting atrium and ventricle of

the left and right chambers, BISCUSPID VALVE and TRICUSPID VALVE, with

the smooth function:

BISCUSPID VALVE ¼ SMTH1 PACEMAKER � FITNESS,MEDULA � :1ð Þ
ð17:6Þ

TRICUSPID VALVE ¼ SMTH1 PACEMAKER 2 � FITNESS,MEDULA � :1ð Þ
ð17:7Þ

To be able to read off the blood pressure in our model, we defined a converter

PRESSURE as a graphical function of the amount of blood on the left ventricle as

shown in Fig. 17.3.

Heart disease was added into the model with the infarction factor, I FACTOR.

This value represents the quantity of heart tissue damage as a parameter. Increased

damage influences the transmittance of the electrical impulse. Run the model for

alternative I FACTOR values and observe the result.

17.1 Basic Heart Beat Model 143



We annotated stocks and flows in our STELLA diagram to visualize their change

over time. As the model runs, the shading of these icons now varies (see Fig. 17.4).

Choose “Model Prefs. . .” from the toolbar and click on the icons you wish to

animate (e.g., as in Fig. 17.5).

Fig. 17.3

Fig. 17.4
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Figure 17.6 shows the pressure of the left atrium and ventricle over time.

Figure 17.7 shows the pressure in the left ventricle for two fitness rates—1 and

1.4. At all times, the pressure is lower under higher fitness rates than lower ones.

Modify the model to allow for the gradual awakening of a sleeping person, and a

Fig. 17.5

Fig. 17.6

Fig. 17.7
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gradual increase in that person’s stress level. How does a less-fit person’s heart

performance compare to that of a fitter person? What about a display of the effects

of heart disease?

17.2 Heart Beat Model Equations

Left_Atrium(t)¼ Left_Atrium(t� dt) + (Pulmonary_veins� Tricuspid__Valve) * dt

INIT Left_Atrium ¼ 40

INFLOWS:

Pulmonary_veins ¼ smth1(Pulmonary_art,Medulla*.1)

OUTFLOWS:

Tricuspid__Valve ¼ smth1(Pacemaker_1*Fitness,Medulla*.1)

Left_Ventricle(t) ¼ Left_Ventricle(t � dt) + (Tricuspid__Valve � Aorta) * dt

INIT Left_Ventricle ¼ 40

INFLOWS:

Tricuspid__Valve ¼ smth1(Pacemaker_1*Fitness,Medulla*.1)

OUTFLOWS:

Aorta ¼ delay(AV_Node_1,1)

Right_Atrium(t) ¼ Right_Atrium(t � dt) + (Vena_Cava � Bicuspid_Valve) * dt

INIT Right_Atrium ¼ 40

INFLOWS:

Vena_Cava ¼ Aorta

OUTFLOWS:

Bicuspid_Valve ¼ smth1(Pacemaker_2*Fitness,Medulla*.1) {Ventricle fills pas-

sively until halfway through the cardiac cycle.}

Right_Ventricle(t)¼ Right_Ventricle(t� dt) + (Bicuspid_Valve� Pulmonary_art) * dt

INIT Right_Ventricle ¼ 40

INFLOWS:

Bicuspid_Valve ¼ smth1(Pacemaker_2*Fitness,Medulla*.1) {Ventricle fills pas-

sively until halfway through the cardiac cycle.}

OUTFLOWS:

Pulmonary_art ¼ delay(AV_Node_2,1)

Activity ¼ 1 {1 represents a person at rest, values less than 1 represent activity}

AV_Node_1 ¼ pulse(Left_Ventricle,Transmitance,Medulla)

AV_Node_2 ¼ pulse(Right_Ventricle,Transmitance,Medulla)

Fitness ¼ 1.4

Infarction__factor ¼ 1.1

Medulla ¼ 8*Activity

Pacemaker_1 ¼ PULSE(Left_Atrium,1,Medulla)

Pacemaker_2 ¼ pulse(Right_Atrium,1,Medulla)

Pressure ¼ GRAPH(Left_Ventricle)

(0.00, 113), (12.0, 116), (24.0, 119), (36.0, 119), (48.0, 118), (60.0, 115), (72.0,

107), (84.0, 93.6), (96.0, 69.0), (108, 42.0), (120, 5.00)

Transmitance ¼ 2*Infarction__factor
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Chapter 18

Bat Thermo-Regulation

The baby bat
Screamed out in fright,
‘Turn on the dark,
I’m afraid of the light.”

(Shel Silverstein)

18.1 Bat Thermo-Regulation Model

Objects of a particular temperature, surrounded by a cooler environment, tend to

lose heat to their surrounding. Under the assumption that the environment is large in

comparison to the object, the rate of change in the temperature of the object is

determined by the difference between the object’s temperature and the ambient

temperature. The ambient temperature becomes the target final temperature of the

object.

In this chapter we model the thermo-regulatory process of a bat. The bat loses

heat based on Newton’s law of cooling. This law states that the rate of change of a

body’s temperature is linearly proportional to the temperature difference between

the object and the environment. In our case, heat loss by a bat is

HEAT LOSS ¼ K � BODY TEMP � AMBIENT TEMPERATUREð Þ ð18:1Þ

Unlike the standard setting for Newtonian cooling of inanimate objects, bats are

able to influence the cooling coefficient K by adjusting their fur, rolling into a more

nearly spherical shape (minimum surface per unit volume), and crowding. Thus, the

cooling coefficient is a function of temperature. The relationship between the
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cooling constant and ambient temperature is shown in Fig. 18.1 and the data for the

model are from Spain [1].

Heat gain is a function of the difference between the body temperature and a set

temperature, TN. The chemical reaction rate is halved for every 10 �C drop in body

temperature. The metabolic rate maximum (10) sets the upper limit on basal

metabolic rate, QR:

QR ¼ IF 2þ 2 � TN� BODY TEMPð Þ � 10

THEN 2þ 2 � TN� BODY TEMPð Þ ELSE 10
ð18:2Þ

The complete system is shown in Fig. 18.2. The parameters K and A translate

heat flows into temperature changes for the bat.

Set the ambient and initial body temperature at different levels for consecutive

model runs and watch the heat loss and heat gain converge while the body

temperature approaches its final value. When this process is carried out for a variety

of ambient temperatures the following graph results. In Figs. 18.3, 18.4, and 18.5

we plotted the temperatures for eight model runs with AMBIENT TEMPERA-

TURE ranging from 10 to 24 �C. Note how the thermo-regulation process is

proceeding normally (nearly horizontal portion of the curve) and then the curve

drops suddenly. Why is this break point occurring? What process is producing

temperature equilibrium in the bat at ambient temperatures below 15 �C?

Fig. 18.1
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Fig. 18.2

Fig. 18.3

Fig. 18.4



18.2 Bat Thermoregulation Model Equations

BODY_TEMP(t) ¼ BODY_TEMP(t � dt) + (HEAT_GAIN � HEAT_LOSS) * dt

INIT BODY_TEMP ¼ 10 {Deg C}

INFLOWS:

HEAT_GAIN ¼ QR*EXP(-A*(35 � BODY_TEMP)) {Deg C per Hour}

OUTFLOWS:

HEAT_LOSS ¼ K*(BODY_TEMP-AMBIENT_TEMPERATURE) {Deg C per

Hour}

A ¼ .0693 {Deg C}

AMBIENT_TEMPERATURE ¼ 14 {Deg C}

QR ¼ IF 2 + 2*(TN - BODY_TEMP) � 10 THEN 2 +2*(TN � BODY_TEMP)

ELSE 10

TN ¼ 35 {Deg C}

K ¼ GRAPH(AMBIENT_TEMPERATURE)

(0.00, 0.4), (5.00, 0.42), (10.0, 0.44), (15.0, 0.46), (20.0, 0.5), (25.0, 0.6), (30.0,

0.7), (35.0, 1.00), (40.0, 1.00), (45.0, 1.00), (50.0, 1.00)

Reference

1. Spain JD (1992) BASIC microcomputer models in biology. Addison-Wesley, Reading

Fig. 18.5
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Chapter 19

The Optimum Plant

Plant, a Natural Body that has a vegetable Soul.

[1696 Phillips (ed. 5)]

19.1 Optimum Plant Model

Just describing or simulating the change in living organisms may simply not be

good enough. We all want ultimately to predict what these organisms would do

under prescribed circumstances. Scientists interested in predictions first need a

good description of the behavior of the living organism. Toward that end, they

frequently find it advantageous to set up optimality hypotheses of the organism’s

behavior and then compare the optimization results with results of experiments on

the actual dynamics of the organism.

The work begun by Cohen in 1971 on the optimization of plants makes a good

example of this kind of approach [1]. A good summary is provided in Roughgarden

[2]. Cohen’s model is the simplest model possible of optimal control in plants. The

basic hypothesis is that this plant strives to produce the maximum reproductive

biomass by the end of the growing season, a period that is T units long. We assume

that the plant is genetically “wired” for this growing season, i.e., its genetics have

been so shaped by the local environment that the plant acts as though it “knows”

what the length of the growing season is. We further assume that the growing

season lasts for 5 time units and still further that the growth of the vegetative part

ΔX in the time DT is given by
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ΔX ¼ dX

dt
¼ U � X ð19:1Þ

and the growth of the reproductive part ΔY in the time DT is

ΔX ¼ dY

dt
¼ 1� Uð Þ � X ð19:2Þ

U is the control variable that we use to simulate a plant’s shift of its resources from

vegetative growth to reproductive growth. The control, U, is necessarily 0�U� 1.

The optimality problem is one of maximizing Y(T).

For this problem, assume that either the vegetative or reproductive portion is

growing but not both at the same time. In such a case we say that the control

is “bang-bang”—it is either 1 or 0. Under this assumption, the control becomes:

if t < T STAR then U ¼ 1

if t > T STAR then U ¼ 0,
ð19:3Þ

where T STAR is the shift time, the time when the plant’s production shifts from

vegetative to reproductive.

We can build a model (Fig. 19.1) of this process and change T STAR for

successive runs until we find the maximum Y at t¼T¼ 5. This value is 5.35 if

we use a small enough DT, and we experimentally find that the optimal switch time,

T STAR, is equal to 4.00 (Fig. 19.2)

This model is a good example of how the correct DT must be found. DT¼ 1 is

too large. Choices of DT¼ 0.01 and smaller are appropriate because they give the

same answer of Y¼ 5.45 when T STAR¼ 4.

Fig. 19.1
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Our result can be verified by theory using the Pontryagin optimization theory [3].

For the situation outlined above, the Hamiltonian, H, is:

H ¼ A � U � Xþ B � 1� Uð Þ � X ð19:4Þ

The variables A and B are called the costate or adjoint variables. These costate

variables must conform to the following conditions according to the Pontryagin

theory:

dA=dt ¼ �∂H=∂X ð19:5Þ

dB=dt ¼ �∂H=∂Y: ð19:6Þ

Thus,

dA=dt ¼ �A � U� B � 1� Uð Þ ð19:7Þ

and

dB=dt ¼ 0: ð19:8Þ

Maximizing Y(T) means that the terminal conditions on the costate variables

must be

A Tð Þ ¼ 0 ð19:9Þ

Fig. 19.2
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and

B Tð Þ ¼ 1: ð19:10Þ

From Eqs. (19.8) and (19.10), we have

B tð Þ ¼ 1: ð19:11Þ

In the region t*� t�T, U¼ 0, so with Eqs. (19.7) and (19.11) we have

A tð Þ ¼ T� t: ð19:12Þ

A third and final Pontryagin condition is

∂H=∂U ¼ 0 ð19:13Þ

at the optimal switch time only. So at t¼ t*, a¼ b; t*¼T� 1, or in our case,

t*¼ 4.0, which is what we found experimentally on the computer.

Does the hypothesis of optimal plant behavior yield the right answer? There is

only one way to find out. Compare it to experimental results [4]. Even if you

successfully compare, the hypothesis may not be sufficiently general to cover the

behavior of many different types of plants under different environmental condi-

tions. Even if your model did predict correctly for several different kinds of plants,

it is only a good suspect in the search for whether or not living organisms seem to

follow any kind of optimal plan.

These optimal control problems in plants can be very difficult. Imagine that the

growth equations are logistic rather than the simple ones given above. Further,

imagine that the growth periods overlap and finally think of the perennial plant,

which regrows from root extensions and from seeds. Then the determination of the

actual optimal path of the control and of X and Y may be accomplished only by

numerical analysis. The control may not be bang-bang but graded, allowing both

types of biomass to grow simultaneously for some part of the growing season. The

best procedure to follow in most cases is to first do as much analytical work as

possible to simplify the ensuing numerical analysis. Usually, one of the costate

variables can be found in terms of the two biomasses and perhaps the control.

However, the actual solution frequently must be obtained numerically even with a

significant quantity of numerical analysis.

19.2 Optimal Plant Model Equations

X(t) ¼ X(t � dt) + (ΔX) * dt

INIT X ¼ .1 {Kg}
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INFLOWS:

ΔX ¼ U*X {Kg per Time Period}

Y(t) ¼ Y(t � dt) + (ΔY) * dt

INIT Y ¼ 0 {Kg}

INFLOWS:

ΔY ¼ (1 � U)*X {Kg per Time Period}

T_STAR ¼ 4

U ¼ IF TIME � T_STAR THEN 1 ELSE 0 {1/Time Period}
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Chapter 20

Soybean Plant Growth

In life, a person can take one of two attitudes: to build or to
plant. The builders might take years over their tasks, but one
day, they finish what they’re doing. Then they find that they’re
hemmed in by their own walls. Life loses its meaning when the
building stops.
Then there are those who plant. They endure storms and all the
vicissitudes of the seasons, and they rarely rest. But unlike a
building, a garden never stops growing. And while it requires the
gardener’s constant attention, it also allows life for the gardener
to be a great adventure.
Gardeners always recognize each other, because they know that
in the history of each plant lies the growth of the whole World.

(Paulo Coelho)

20.1 Soybean Plant Model

While the previous chapter described the optimal behavior of an idealized plant,

here we turn to a model of a soybean plant under a set of current and potential

alternative environmental conditions. We ask and answer the following three key

questions:

• What is the seasonal biomass accumulation by a soybean plant over an average

growing season?

• How does biomass of the plant parts change over the season with different

developmental stages?

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_20,

© Springer International Publishing Switzerland 2014
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• How do changes in leaf assimilation rate under different atmospheric conditions

impact growth and final biomass of the whole plant over the season, and does

accelerated senescence in an elevated O3 atmosphere impact overall soybean

growth?

All stocks in our model (Fig. 20.1) are expressed in grams of carbon, and all

flows are grams of carbon per hour. Leaf photosynthesis is calculated over the

growing season by integrating the product of leaf assimilation rate, photoinhibition,

specific leaf area, and a diurnal switch, which indicates whether the plant operates

under day or night conditions. The diurnal cycle itself is specified using the built-in

function MOD. XMODY gives the remainder when X is divided by Y. In our case,

TIME MOD 24 is 3 in period 27, 4 in period 28, etc. Thus,

Daily cycle ¼ TIME MOD 24ð Þ þ 1, ð20:1Þ

Fig. 20.1
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creates a repeating series of counts from 1 to 24 to correspond to the hours in

the day, and

Day night switch ¼ IF Daily cycle <¼ 6 OR Daily cycle >¼ 19 THEN 0 ELSE 1:

ð20:2Þ

These parameters generate a daily accumulation of assimilates. Assimilates are

allocated among the plant parts according to standard percentages found in the

literature [1]. Also included is carbon allocation to respiration of the roots and

shoot. The rate and magnitude of allocation are controlled by switches, which also

incorporate randomness during the growing season. Such randomness accounts for

variations in plant development that may arise due to differences in soil water

status, growing degree-days, and other environmental variables. A major feedback

in the model is the accumulation of leaf area over the season and the subsequent rise

in photosynthesis.

Senescence has two components. The initial component is a small loss of leaf

mass occurring early in the season due to self-shading and loss of leaf area deep in

the canopy. The larger component occurs later in the season as the plant matures.

The timing of the senescence components also incorporates randomness. The sum

of all the plant components feeds into soybean growth over the season.

Using this model, we are able to grow a single, small plant into a mature soybean

under alternative environmental conditions. Under current atmospheric conditions,

we assume a specific leaf area (SLA)¼ 0.0270 (area/mass) and the following initial

values:

Assimilates ¼ 0 g

Leaf ¼ .09 g

Root ¼ 0 g

Seed ¼ 0 g

Stem ¼ .1 g

The leaf assimilation rate, which is a key determinant of CO2 uptake, is shown in

Fig. 20.2.

Figure 20.3 demonstrates that there is a daily increase in the assimilated carbon

that is subsequently exported at night to the various plant organs (Fig. 20.4). There

is no build up of soluble carbon from 1 day to the next, which is consistent with

actual total soluble carbohydrate measurements.

Let us now modify the model by incorporating elevated CO2 concentrations.

Growth in elevated CO2 results in higher leaf assimilation rates and decreased SLA.

Decreases in SLA are common in plants exposed to elevated CO2 and reflect altered

carbon contents. Photoinhibition also decreases in elevated CO2. The greater final

biomass of soybeans grown in elevated CO2 reflects the beneficial decrease in

photoinhibition.

The results are shown in Fig. 20.5, where we assume the same parameters as

under current ambient conditions except that now Photoinhibition¼ 0.03,

SLA¼ 0.023, and the Leaf Assimilation Rate CO2 is as specified in Fig. 20.6 and
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Fig. 20.2

Fig. 20.3
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used instead of the specification in Fig. 20.2. Can you explain the sudden downward

sweep of curves 1 and 2 in this graph?

For elevated atmospheric O3 we again assume the same conditions as in our first

model run of Figs. 20.2 and 20.3 but adjust the parameters for seed maturity to be

Fig. 20.4

Fig. 20.5
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reached at 2,000 h, leaf senescence due to plant maturity to begin randomly

sometime between 1,800 and 2,250 h. We also adjust the leaf assimilation rate as

shown in Fig. 20.7.

Ozone is a pollutant and damages plant tissue. Over time the accumulated

damage results in faster senescence of the whole plant despite higher leaf assimi-

lation than the plant grown in ambient air. As a result, of elevated O3 conditions the

soybean plant does not display a greater final biomass (Fig. 20.8). The faster decline

in leaf area is clearly evident in these results.

Elevated atmospheric CO2 and O3 concentrations alter the development of plants.

How sensitive is the model to alterations in the timing of developmental cues?

The leaf assimilation rate used in all the model runs above represents a maxi-

mum for light saturated leaves at the top of the plant. Up to 60 % of photosynthesis

in a canopy occurs in light limited conditions. How would incorporating the

dynamics of light changes around a plant in the canopy impact individual plant

growth?

Fig. 20.6
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Fig. 20.8

Fig. 20.7
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20.2 Soybean Plant Growth Model Equations

Assimilates(t) ¼ Assimilates(t � dt) + (photosynthesis � Allocation_to_stem �
Allocation_to_root � Allocation_to_seed � Allocation_to_Leaf_Area �
Shoot_Maintenance_Respiration - Root__Maintenance_Respiration) * dt

INIT Assimilates ¼ 0

INFLOWS:

photosynthesis ¼ leaf_area*((Leaf_Assimilation_Rate*3600)*0.000012) *day_night__

switch- (photoinhibition*3600)*0.000012

OUTFLOWS:

Allocation_to_stem ¼ if time <¼ 1800 then Assimilates*percent_to_stem*root_

shoot__switch else 0

Allocation_to_root ¼ if time <¼ 500 then Assimilates*percent_to_root*root_

shoot__switch else Assimilates*0.08*root_shoot__switch

Allocation_to_seed ¼ (1-seed__Switch_control)*(1-seed__Switch_control_2)

*Assimilates*percent_to_seed

Allocation_to_Leaf_Area ¼ if time <¼ 2200 then Assimilates*percent_to_leaf

*leaf_switch else 0

Shoot_Maintenance_Respiration ¼ (Assimilates*Shoot_Maintenance_Rd)

Root__Maintenance_Respiration ¼ (Assimilates*Root_Maintenance_Rd)

Leaf(t) ¼ Leaf(t � dt) + (Allocation_to_Leaf_Area - Senescence) * dt

INIT Leaf ¼ 0.09

INFLOWS:

Allocation_to_Leaf_Area ¼ if time <¼ 2200 then Assimilates*percent_to_leaf

*leaf_switch else 0

OUTFLOWS:

Senescence ¼ if time <¼2200 then leaf*senesence_switch*0.002 else leaf

*senesence_switch_2*.02

Root(t) ¼ Root(t � dt) + (Allocation_to_root) * dt

INIT Root ¼ 0

INFLOWS:

Allocation_to_root ¼ if time <¼ 500 then Assimilates*percent_to_root*root_

shoot__switch else Assimilates*0.08*root_shoot__switch

Seed(t) ¼ Seed(t � dt) + (Allocation_to_seed) * dt

INIT Seed ¼ 0

INFLOWS:

Allocation_to_seed ¼ (1�seed__Switch_control)*(1�seed__Switch_control_2)

*Assimilates*percent_to_seed

Stem(t) ¼ Stem(t � dt) + (Allocation_to_stem) * dt

INIT Stem ¼ 0.1

INFLOWS:

Allocation_to_stem ¼ if time <¼ 1800 then Assimilates*percent_to_stem*root_

shoot__switch else 0

Daily_cycle ¼ (TIME MOD 24)+1
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Day_night__switch¼ IFDaily_cycle<¼ 6ORDaily_cycle>¼ 19 THEN 0 ELSE 1

Leaf_area ¼ Leaf*SLA

Leaf_Assimilation_Rate ¼ GRAPH(time)

(312, 35.5), (650, 31.6), (987, 36.5), (1325, 33.5), (1662, 34.3), (2000, 24.6)

Leaf_Assimilation_Rate_CO2 ¼ GRAPH(time)

(312, 44.8), (650, 39.1), (987, 33.3), (1325, 36.5), (1662, 41.3), (2000, 31.9)

Leaf_Assimilation_Rate_O3 ¼ GRAPH(time)

(312, 40.9), (650, 32.1), (987, 34.3), (1325, 35.0), (1662, 44.1), (2000, 22.3)

Leaf_switch ¼ if time <¼ leaf_t_change then 1 else 0.35

Leaf_t_change ¼ 1200

Percent_to_leaf ¼ 0.2

Percent_to_root ¼ 0.3

Percent_to_seed ¼ 0.4

Percent_to_stem ¼ 0.17

Photoinhibition ¼ 0.05

Root_Maintenance_Rd ¼ 0.22

Root_shoot__switch ¼ if time <¼ t_change then 1 else 0.4

Seed__switch_control ¼ if time <¼ seed__t_change then 1 else 0

Seed__switch_control_2 ¼ if time <¼ seed__t_change_2 then 0.75 else 1

Seed__t_change ¼ RANDOM(1300, 1450)

Seed__t_change_2 ¼ 2200

Senesence_switch ¼ if time <¼ t_change_senesence then 0 else 1

Senesence_switch_2 ¼ if time <¼ t_change_senesence_2 then 0 else 1

Shoot_Maintenance_Rd ¼ 0.18

SLA ¼ 0.027

Soybean ¼ root+Leaf+Seed+stem

t_change ¼ RANDOM(850, 975)

t_change_senesence ¼ RANDOM(850, 975)

t_change_senesence_2 ¼ RANDOM(1900, 2250)
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Chapter 21

Infectious Diseases

The endemic and epidemic diseases in Scotland fall chiefly, as is
usual, on the poor.

(Thomas Malthus, 1798)

21.1 Basic Epidemic Model

In this model we consider the spread of an infectious disease within a population.

We assume that there is some initial number of individuals already infected with the

disease. These individuals can pass on the disease to a group of susceptibles S. We

do not model explicitly the agents that cause the disease, such as viruses or bacteria.

Doing that would be rather impractical if we would want to apply our model to real

world diseases. Tracing the billions of agents that can cause the outbreak with a

particular disease is virtually impossible. Therefore, we do not explicitly model the

dynamics of individuals in a population of disease-causing agents but deal with

their effects in an aggregate way.

The law of mass action discussed in Part II of this book has proven to be a

powerful analogous way of capturing the spread of a disease in a population. The two

“reactants” in our case are the susceptible individuals S and the infective ones I. We

define a contact rate BETA at which these two groups of individuals make contact

and propagate the disease. This contact rate BETA is analogous to the reaction rates

in chemical reactions.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_21,

© Springer International Publishing Switzerland 2014
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We also model an influx of susceptibles into the stock S. Additionally, we

assume that once an individual had the disease that individual ultimately becomes

immune to the disease. We therefore remove those infectives from the stock I and

let them disappear in a “cloud”—they will not further affect the spread of the

disease and, therefore, we need not keep track of them (Fig. 21.1).

This is a very simple epidemic model—but can you anticipate the resulting

dynamics? Make an educated guess before you run the model. How do the dynam-

ics change with a change in the rate of NONIMMUNE IMMIGRANTS. This rate is

here set to 7 per time period, and the initial stocks for S and I are 1,000 and

20, respectively (Fig. 21.2).

What are the effects of a vaccine on the spread of the disease? Assume that only

20 % of the population receives the vaccine and that it is only 90 % effective among

the susceptibles. Infectives are not immunized. Change the model to include an

incubation period and reassess the ability of your vaccine to limit the spread of

the disease.

Fig. 21.1

Fig. 21.2
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21.2 Basic Epidemic Model Equations

I(t) ¼ I(t � dt) + (CONTRACTION � REMOVAL) * dt

INIT I ¼ 20

INFLOWS:

CONTRACTION ¼ BETA*S*I

OUTFLOWS:

REMOVAL ¼ I

S(t) ¼ S(t � dt) + (NONIMMUNE_IMMIGRANTS � CONTRACTION) * dt

INIT S ¼ 1000

INFLOWS:

NONIMMUNE_IMMIGRANTS ¼ 7

OUTFLOWS:

CONTRACTION ¼ BETA*S*I

BETA ¼ .002

21.3 Two Infective Populations

Let us expand on themodel of the previous section and assume that an individual breaks

out with the disease upon contact with a virus that can either be carried by members of

the same population or by organisms of another species. Prominent examples are the

Marburg and Ebola viruses that can spread from monkeys to humans. For a powerful

description of the dynamics of these viruses see, for example, Preston [1].

We begin our model with the set up of the previous section and duplicate it to

capture the spread of the disease in the second population and from that population

to the other one. To duplicate the STELLA model of the previous section, select the

entire model by choosing Select All from the Edit menu and then copy it. Then

make the necessary changes in the names of the variables and the connections

among the two model parts. Notice that we only captured here the one-way

movement of the virus from the infective stock I2 to S1 (Fig. 21.3). You can easily

explore the case of the virus spreading from any of the two populations to the other.

For the first model run we set the parameters as follows:

Variable Value Explanation

S1(t¼ 0) 1,000 Initial stock of susceptibles in population 1

I1(t¼ 0) 20 Initial number of infective individuals in population 1

BETA 1 0.008 Contact rate of S1 with I1

SURVIVAL RATE 1 0.065 Rate of survival upon contact of S1 with disease

S2(t¼ 0) 1,000 Initial stock of susceptibles in population 1

I2(t¼ 0) 20 Initial number of infective individuals in population 1

BETA 2 0.003 Contact rate of S2 with I2

BETA 2 1 0.00015 Contact rate of S1 with I2

SURVIVAL RATE 2 0.2 Rate of survival upon contact of S1 with disease
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We set the number of nonimmune immigrants for the two populations to 7 and

10, respectively. All of these numbers are hypothetical.

In Fig. 21.3, we used the following specifications to calculate the number of

individuals that contract the virus:

CONTRACTION 1 ¼ BETA 1 � S 1 � I 1þ BETA 1 2 � S 1 � I 2 ð21:1Þ

CONTRACTION 2 ¼ RATE OF CONTACT 2 � I 2 � S 2 ð21:2Þ

Can you anticipate the dynamics of the spread of the disease? The initial

outbreak will be larger than that of the previous model because the number of

susceptibles and infective individuals is larger, although the contact rates are quite a

bit smaller. What matters, though, is the product of contact rates and sizes of the

individual stocks.

Figure 21.4 shows the results for the parameter settings listed above and a choice

of DT¼ 1. Following an initially severe outbreak, new episodes of the disease

occur at relatively constant intervals and slightly increase in their amplitude. After

only five episodes of outbreaks of the disease among S1, the disease “burns out” and

disappears from the population. Can you explain why in the very long run the

disease disappears? Plot S2 and I2 in a separate graph to help you find an answer.

Let us assume that the parameters listed above are representative of one of two

strains of the virus. The first strain—modeled above—does not move easily from

Fig. 21.3
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one population to the other, but when it does, it results in only very small rates of

survival. You may think of this strain as one that can only be passed on through

direct contact with bodily fluids such as saliva or blood. In contrast, the other strain

of the virus can travel through air. It is therefore more easy to contract the disease.

But this strain is also less lethal. Assume BETA 1 2¼ 0.00025, SURVIVAL RATE

1¼ 0.155, and all the other parameters as listed above. The first outbreak with the

disease is virtually the same for both strains but the subsequent dynamics are very

different. The virus of the second strain can stay in the population for long times

(Fig. 21.5). Can you explain why? Perform a sensitivity analysis of the contact rates

Fig. 21.4

Fig. 21.5
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BETA 1, BETA 2 1, and BETA 2. How are the results affected by the choice of

survival rates? How does the outbreak pattern of the disease change for smaller DT

and for different integration methods?

21.4 Two Infective Populations Model Equations

I_1(t) ¼ I_1(t � dt) + (CONTRACTION_1 � SURVIVE_1 � DIE_1) * dt

INIT I_1 ¼ 5

INFLOWS:

CONTRACTION_1 ¼ BETA_1*S_1*I_1 + BETA_1_2*S_1*I_2

OUTFLOWS:

SURVIVE_1 ¼ SURVIVAL_RATE_1*I_1

DIE_1 ¼ (1�SURVIVAL_RATE_1)*I_1

I_2(t) ¼ I_2(t � dt) + (CONTRACTION_2 � DIE_2 � SURVIVE_2) * dt

INIT I_2 ¼ 20

INFLOWS:

CONTRACTION_2 ¼ RATE_OF_CONTACT_2*I_2*S_2

OUTFLOWS:

DIE_2 ¼ (1-SURVIVAL_RATE_2)*I_2

SURVIVE_2 ¼ SURVIVAL_RATE_2*I_2

S_1(t)¼ S_1(t� dt) + (NONIMMUNE_IMMIGRANTS_1�CONTRACTION_1) *dt

INIT S_1 ¼ 1000

INFLOWS:

NONIMMUNE_IMMIGRANTS_1 ¼ 7

OUTFLOWS:

CONTRACTION_1 ¼ BETA_1*S_1*I_1 + BETA_1_2*S_1*I_2

S_2(t)¼S_2(t� dt)+ (NONIMMUNE_IMMIGRANTS_2�CONTRACTION_2)*dt

INIT S_2 ¼ 1000

INFLOWS:

NONIMMUNE_IMMIGRANTS_2 ¼ 10

OUTFLOWS:

CONTRACTION_2 ¼ BETA_2*I_2*S_2

BETA_1 ¼ .008

BETA_1_2 ¼ 0.00015

BETA_2 ¼ .003

SURVIVAL_RATE_1 ¼ .065

SURVIVAL_RATE_2 ¼ .2
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21.5 Temporary Immunity

In the previous sections of this chapter we have modeled a disease that spreads in a

population by turning susceptible, nonimmune individuals into infective ones.

Following infection, the individuals were assumed to either die or remain immune

for the rest of their lives. In both cases, the outflows from the stock of infective

individuals disappeared into clouds—we did not keep track of them. We need to

change this setup if we wish to model the case of a disease that only leads to

temporary immunity. In that case, the flow of individuals who survive must end in a

reservoir, rather than a cloud. What are the effects of temporary immunity on the

population modeled in Sect. 20.1?

Assume that once an individual becomes infected with the virus, that individual

will either die from the disease or survive. The survival rate is 90 % per time and

there are no other causes of death. Those individuals that survive become tempo-

rarily immune. A fraction of the stock of temporarily immune individuals, T, will

become sick again with the disease at a given RECURRENCE RATE, and again

pass on the virus to the susceptible population (Fig. 21.6).

The effect of temporary immunity is an overall larger stock of infective indi-

viduals. The following results are plotted for a RECURRENCE RATE ranging

from 0.02 to 0.1. The level of the initial outbreak of the disease is different under

each of these rates, but the remaining dynamics show convergence towards the

same steady-state level (Fig. 21.7).

Change the duration of temporary immunity and observe the results. Introduce

an incubation period for the disease and vaccination program as you did in first

section of this chapter.

Fig. 21.6
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Disaggregate your model to deal with the case of a virus that affects different age

cohort in the population differently. An example for such a disease is chicken pox.

Chicken pox is a highly infectious childhood disease. It is caused by the varicella

zoster virus. This virus can be spread either through direct contact with infected

individuals or through the air. After exposure to the virus, the incubation period

before an individual becomes contagious is approximately seven days. Individuals

are contagious for about seven days during which symptoms including fever and

blisters appear, and then remain sick for an additional fourteen days. Once an

individual recovers he or she develops a natural immunity and is unlikely to get

the disease again.

Later in life, the varicella zoster virus manifests itself in the form of shingles in

about 15 % of the population that contracted chicken pox. Shingles has symptoms

that are similar to chicken pox but strikes mostly individuals over the age of fifty

that are fatigued or under stress. It takes approximately ten days to recover from

shingles and during this time susceptible individuals can contract chicken pox from

those suffering from shingles.

Recently, a vaccine has been approved to immunize people against chicken pox.

The target population for immunization are children, as they comprise the highest

infectious class. What are the effects of chicken pox on a given population and how

do those effects change as immunization takes place? What are the effects of

immunization during childhood on the occurrence of shingles? How does an

immunization policy effect the average age at which a person contracts the disease?

Set up a model to provide answers to these questions. To achieve some realism with

your model, consult the literature for parameter values, such as Edelstein-Keshet

[2], Finger et al. [3], May [4], and Hethcote [5].

Fig. 21.7
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21.6 Temporary Immunity Model Equations

I(t) ¼ I(t � dt) + (CONTRACTION + RECURRENCE � DIE � SURVIVE) * dt

INIT I ¼ 20

INFLOWS:

CONTRACTION ¼ BETA*S*I

RECURRENCE ¼ RECURRENCE_RATE*T

OUTFLOWS:

DIE ¼ (1�SURVIVAL_RATE)*I

SURVIVE ¼ SURVIVAL_RATE*I

S(t) ¼ S(t � dt) + (NINIMMUNE_IMMIGRANTS � CONTRACTION) * dt

INIT S ¼ 1000

INFLOWS:

NINIMMUNE_IMMIGRANTS ¼ 7

OUTFLOWS:

CONTRACTION ¼ BETA*S*I

T(t) ¼ T(t � dt) + (SURVIVE � RECURRENCE) * dt

INIT T ¼ 10

INFLOWS:

SURVIVE ¼ SURVIVAL_RATE*I

OUTFLOWS:

RECURRENCE ¼ RECURRENCE_RATE*T

BETA ¼ .002

RECURRENCE_RATE ¼ .1

SURVIVAL_RATE ¼ .9

21.7 Epidemic with Vaccination

Let us further expand on the models of the previous sections and introduce a number

of features that make those models more meaningful. Among these features are

• The explicit inclusion of birth rates;

• Death rates that are not only influenced by the disease but that result also from

natural mortality;

• A vaccination program which allows the population to become immune to the

disease without having to first be sick;

• Mutations in the disease that result in immune people not staying immune

forever; and

• Ignorance of a fixed portion of the contagious population. These people are

assumed not to know that they carry the disease. Consequently, we assume that
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ignorance would increase the rate at which the disease gets passed on from the

infective to the susceptible population.

The birth and natural death rates are specified graphically in this model as shown

in Figs. 21.8 and 21.9 respectively.

CONTRACTING is a function of susceptible, healthy people coming into

contact with people who are aware that they are contagious mixed in with people

who are immune:

CONTRACTING ¼ IF IMMUNE > 0 THEN CC � NON IMM � CONTAGIOUS ELSE 0

ð21:3Þ

The VACCINATING biflow is specified as

VACCINATING ¼ VAC FRACTION � NON IMM ð21:4Þ

and contains the rate of vaccination. A flow from IMMUNE to NONIMMUNE

captures 1.5 % of immune people that lose their immunity (Fig. 21.10).

Fig. 21.8
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Consistent with the model of the previous section, there are a series of epidemic

outbreaks (Fig. 21.11). Due to the additional features of this model, however, the

numbers of immune and nonimmune people tends to rise as does the number of

sick. This rise is due to the differences between the birth and death rates.

Introduce a spatial component into the model by considering two regions with

different contact rates and different vaccination programs. Investigate the implica-

tions of travel restrictions imposed by one of the regions on people originating in

the other region.

Fig. 21.9
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Fig. 21.10

Fig. 21.11
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21.8 Epidemic with Vaccine Model Equations

CONTAGIOUS(t)¼CONTAGIOUS(t� dt) + (CONTRACTING�CONTAGIOUS_

DYING� BED_DING) * dt

INIT CONTAGIOUS ¼ 1 {People}

INFLOWS:

CONTRACTING ¼ IF IMMUNE > 0 THEN CC*NON_IMMUMNE*CONTA

GIOUS ELSE 0

OUTFLOWS:

CONTAGIOUS_DYING ¼ CONTAGIOUS*NAT_DEATH_RATE/52 {People

per Week}

BED_DING ¼ CONTAGIOUS-CONTAGIOUS_DYING {People per Week}

IMMUNE(t) ¼ IMMUNE(t � dt) + (RECOVERING + VACCIN_ATING �
IMMUNE__DYING - IMMUNE_LOSS) * dt

INIT IMMUNE ¼ 0 {People}

INFLOWS:

RECOVERING ¼ 0.9*SICK {People per Week}

VACCIN_ATING ¼ VAC_FRACTION*NON_IMMUMNE - 0.15*IMMUNE

OUTFLOWS:

IMMUNE__DYING ¼ IMMUNE*NAT_DEATH_RATE/52 {People per Week}

IMMUNE_LOSS ¼ .002*IMMUNE {People per Week}

NON_IMMUMNE(t)¼NON_IMMUMNE(t� dt) + (BIRTHING+ IMMUNE_LOSS

� CONTRACTING� NONIMMUNE_DYING� VACCIN_ATING) * dt

INIT NON_IMMUMNE ¼ 1000000 {People}

INFLOWS:

BIRTHING ¼ POPULATION*BIRTH_RATE/52 {People per Week}

IMMUNE_LOSS ¼ .002*IMMUNE {People per Week}

OUTFLOWS:

CONTRACTING ¼ IF IMMUNE > 0 THEN CC*NON_IMMUMNE*CONT

AGIOUS ELSE 0

NONIMMUNE_DYING ¼ NAT_DEATH_RATE/52*NON_IMMUMNE {People

per Week}

VACCIN_ATING ¼ VAC_FRACTION*NON_IMMUMNE � 0.15*IMMUNE

SICK(t) ¼ SICK(t - dt) + (BED_DING � RECOVERING � SICK_DYING) * dt

INIT SICK ¼ 0 {People}

INFLOWS:

BED_DING ¼ CONTAGIOUS-CONTAGIOUS_DYING {People per Week}

OUTFLOWS:

RECOVERING ¼ 0.9*SICK {People per Week}

SICK_DYING ¼ (.1*SICK)+(NAT_DEATH_RATE/52*SICK) {People per Week}

BIRTH_RATE ¼ GRAPH(POPULATION)

(0.00, 0.199), (166667, 0.189), (333333, 0.181), (500000, 0.171), (666667, 0.159),

(833333, 0.146), (1e+06, 0.138), (1.2e+06, 0.133), (1.3e+06, 0.129), (1.5e+06,

0.125), (1.7e+06, 0.123), (1.8e+06, 0.122), (2e+06, 0.12)

21.8 Epidemic with Vaccine Model Equations 179



CC ¼ 0.000002*(1 � 1*IMMUNE/(IMMUNE+NON_IMMUMNE)) {+SINWAVE

(0.0000005,52 ) }

NAT_DEATH_RATE ¼ GRAPH(POPULATION)

(0.00, 0.0108), (208333, 0.0108), (416667, 0.0111), (625000, 0.0135), (833333,

0.0168), (1e+06, 0.0207), (1.2e+06, 0.0258), (1.5e+06, 0.0321), (1.7e+06,

0.0363), (1.9e+06, 0.0387), (2.1e+06, 0.0411), (2.3e+06, 0.0423), (2.5e+06,

0.0426)

VAC_FRACTION ¼ 0.03

POPULATION ¼ CONTAGIOUS + IMMUNE + NON_IMMUMNE + SICK
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Part V

Single Population Models



Chapter 22

Adaptive Population Control

To make increased population the cause of improved
agriculture, is to commit the absurd blunder of confounding
cause and effect.

(Rogers, Political Economy, 1868)

22.1 Adaptive Population Control Model

In this chapter we model the action of a population that is collectively trying to

control their population size by imperfectly recalling much of what they have done

in terms of birth rate control over the recent past. They assess the gap between their

current population size and that size dictated by their physical environment. It takes

time to gain the information about these two population sizes. Once the population

knows these levels, we assume they react by changing their birth rate. The new birth

rate is an average of the ones remembered over the recent past. The death rate for

this population and the level of the desired population size are dependent on the

population density.

Figure 22.1 shows that part of the model that captures the relationships among

area, population density, death rates, and desired population level. Here we also

introduce a multiplier A to scale the variable area for alternative runs. By defining

population density as

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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POP DENSITY ¼ POPULATION= VA effect � 1þ :0001þ FIXED AREA � 0ð Þ
ð22:1Þ

We can make use of either a fixed area or a variable area in our calculation of the

population density simply by multiplying one of them by one and the other by zero.

With this setup, the model can easily be run under alternative assumptions without

having to re-do parts of the diagram.

Figure 22.2 shows that part of the model that traces the birth rate history and the

extent to which that history is remembered. The resulting population and the

desired population then define a gap that is used to set the new birth rate, given

some sensitivity with which the population is able to react to the size of this gap

(Fig. 22.3). The gap itself is defined as the difference between the desired popula-

tion size and the size of the population two time periods earlier, using the DELAY

built in function:

GAP ¼ DESIRED POP� DELAY POPULATION; 2ð Þ ð22:2Þ

In essence, we assume here that it takes two periods of time to obtain a

population census.

The GAP is then normalized (Fig. 22.3) by the current population level and multi-

plied by a reaction sensitivity to get the fractional birth rate (FRACTIONAL BR).

Fig. 22.1

Fig. 22.2
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We now wish to keep track of these FRACTIONAL BRs for a length of time called

the YEARS RECALL. This part of the model captures the “adaptive control”—the

influence of the remembered composite history of the system on its current and

future performance.

To keep track of the FRACTIONALBRs, we use a stock that accumulates the birth

rates. We call this stock CUM BIRTH RATE. However, we do not specify this stock

as a reservoir but as a conveyor to retain information on the birth rates and then dump

the oldest values on the conveyor, those that have been on the conveyor for YEARS

RECALL. We also draw a second outflow from the conveyor and call it FORGET.

The leakage—or exponential forgetting of the collected birth rate signals stored in

the conveyor CUMBIRTHRATE—is controlled by a FORGETTING RATE.We set

it here to 0.05, i.e., 5 % of the information is lost from all slats on the conveyor. Had

we wanted to reserve this forgetting process to some portion of the conveying process,

we could set the “No Leak Zone” of the conveyor at something less than the full

length in the FORGET variable.

The CUM BIRTH RATE, the sum of all the birth rates on the various conveyor

slats, is sent to NET BIRTHS where it is divided by the YEARS RECALL to get an

average rate, and then compared to the death rate to calculate a net birth rate. This

net birth rate is then multiplied by the population level to find the addition or

subtraction to the total POPULATION.

The graphical functions of Figs. 22.4 and 22.5 are used to express the relation-

ships between population density and death rate and between density and desired

population. Figure 22.6 shows how land area varies over time.

Figure 22.7 shows the case of a variable area while Fig. 22.8 depicts the

population dynamics under the assumption of a constant area over time, varying

that amount of land between 10 and 80 for five successive runs. For all but one of

the cases, the result is a population that ultimately is damped to reach a steady state.

For a fixed land area of 10, the population keeps oscillating.

Fig. 22.3

22.1 Adaptive Population Control Model 185



Of course part of the initial fluctuations in population sizes is due to the fact that

there is no initial history of the birth rates in this population. To this extent the

model might be thought unrealistic. Yet suppose that we had a population that was

initially stabilized at for many years, and then due to a technological change or a

conquest of new lands, was suddenly exposed to the given amounts of land. In this

case the model is more realistic. Such a population would have no remembrance of

any adaptation process to sudden new resource availability. But we show that as

long as they are trying to adapt to the available resources (close the GAP), they will

eventually reach a new steady state. In essence, this population is remembering a

process of adaptation, but not the details. A more sophisticated model would allow

them to remember how much social trauma the cycling produced and the next

period of sudden resource increase would be met with less extreme peaks and lows.

In general we are trying to capture here the idea that a population reacts to an

average remembered history of efforts to achieve some goal, in this case, closing the

gap between actual and desired levels of the population. Our approach to the final

steady state might be framed as an optimality problem: What controls (birth rates)

do we use to proceed to the steady state within a certain time, perhaps with

certain constraints such as avoiding population decline while rising to the ultimate

Fig. 22.4
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steady-state level? This constraint may be appropriate given the trauma of reducing

populations. The problem with the optimality proposal above though is that we don’t

know a priori, what the final steady state is going to be, given all these parameters.

The final steady-state population is a function of the very parameters that we wish to

change in order to control the ascent to the steady state. We could use as an optimality

goal, the rise (only) in a prescribed time to a steady state and not be partial to the

actual value of that steady state. In that case we would want to know which of the

controllable parameters are accessible—in our case here, only the forgetting rate, the

number of years of recall, and perhaps the reaction sensitivity. Then we wish to know

which of these causes a damping in the system. We would next set those that cause

damping such that there is no oscillation in the population. This slope constraint is

probably the best goal to use: when that value gets sufficiently low, we have reached

the goal—we are sufficiently close to the steady state. Try out this idea and ones of

your own to achieve the “no oscillation” goal.

Fig. 22.5
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Fig. 22.6

Fig. 22.7
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22.2 Adaptive Population Control Model Equations

POPULATION(t) ¼ POPULATION(t � dt) + (NET_BIRTHS) * dt

INIT POPULATION ¼ 23.49

INFLOWS:

NET_BIRTHS ¼ (CUM_BIRTH_RATE/YEARS_RECALL-DEATH_RATE)

*POPULATION

CUM_BIRTH_RATE(t)¼ CUM_BIRTH_RATE(t� dt) + (FRACTIONAL_BR�
OUT � FORGETTING) * dt

INIT CUM_BIRTH_RATE ¼ 1.5

TRANSIT TIME ¼ YEARS_RECALL

CAPACITY ¼ INF

INFLOW LIMIT ¼ INF

INFLOWS:

FRACTIONAL_BR ¼ REACTION_SENSITIVITY*GAP/POPULATION

OUTFLOWS:

OUT ¼ CONVEYOR OUTFLOW

FORGETTING ¼ LEAKAGE OUTFLOW

LEAKAGE FRACTION ¼ FORGETTING_RATE

LEAK ZONE ¼ 0% to 100%

A ¼ 10

DEATH_RATE ¼ GRAPH(POP_DENSITY)

(0.00, 0.1), (1.00, 0.105), (2.00, 0.125), (3.00, 0.15), (4.00, 0.195), (5.00, 0.245),

(6.00, 0.315), (7.00, 0.425), (8.00, 0.58), (9.00, 0.75), (10.0, 1.00)

DESIRED_POP ¼ GRAPH(POP_DENSITY)

Fig. 22.8
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(0.00, 99.5), (0.167, 96.5), (0.333, 93.5), (0.5, 90.0), (0.667, 86.5), (0.833, 82.0),

(1, 77.5), (1.17, 70.5), (1.33, 61.0), (1.50, 50.0), (1.67, 37.0), (1.83, 21.0),

(2.00, 0.00)

FIXED_AREA ¼ 50

FORGETTING_RATE ¼ 0.05

DOCUMENT: Acts like a damping coefficient.

GAP ¼ DESIRED_POP-DELAY(POPULATION,2)

POP_DENSITY ¼ POPULATION/(VA_effect*0+.0001+FIXED_AREA)

REACTION_SENSITIVITY ¼ 0.05

DOCUMENT: The inverse of this number is like a damping coefficient.

VARIABLE_AREA ¼ GRAPH(TIME)

(0.00, 42.8), (8.33, 43.0), (16.7, 43.2), (25.0, 44.0), (33.3, 45.5), (41.7, 47.2), (50.0,

50.1), (58.3, 54.3), (66.7, 57.2), (75.0, 59.0), (83.3, 59.7), (91.7, 59.9),

(100, 60.0)

VA_effect ¼ VA_mult*VARIABLE_AREA

VA_mult ¼ 1�time/A

YEARS_RECALL ¼ 15
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Chapter 23

Roan Herds

We descended into a valley, bent upon the destruction of a roan
antelope.

(W. C. Harris, 1839)

23.1 Roan Herd Model

In the previous chapter we have captured environmental influences on population

dynamics through the concept of a carrying capacity, captured through the influence

on death rates from changes in available land and associated population density. As

parameters of the physical environment change, so does the carrying capacity of the

ecosystem. Let us model environmental influences in more detail and focus on

seasonal fluctuations and spatial differences in environmental parameters. We

develop the model of this chapter for roans.

The roan is an antelope-like animal in Africa. Our problem is to model its

population cycles given a weather-grass availability pattern (called KP and KM)

and two different habitats called “prime” and “marginal” ground. The converter KP

controls the birth and death rate of any roan that live on the prime ground; the

converter KM controls the same for those roans living on the marginal ground.

These converters are shown in Figs. 23.1 and 23.2.

For these converters, the variable YEAR is defined by

YEAR ¼ INT MOD TIME; 12ð Þð Þ þ 1 ð23:1Þ
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Fig. 23.1

Fig. 23.2



which utilizes the built-in function INT which returns the largest integer less than or

equal to its argument. Thus, YEAR counts the numbers 1, 2, . . ., 12 corresponding

to the year of the 12-year rainfall cycle. KP and KM reflect that rainfall pattern on

births.

Ideally, one should imagine a spatial pattern of prime and marginal grounds and

provide an initial population to each. This is the subject of further model building.

For now let us say that there are only two places in the model, prime ground and

marginal ground. If the population in either place drops below 3, the herd is lost

from that area, i.e., the outflows DUMP PGP and DUMP MGP in Fig. 23.3 empty

the population stocks on the respective ground type.

The herd on the prime ground (PRIME GRND POP) has a tendency to split to

the marginal ground on a random basis. The probability that a split occurs is

SPLIT PROB ¼ INT 2 � RANDOM 0; 1ð Þð Þ, ð23:2Þ

making the SPLIT flow either zero or one according to the following rule:

SPLIT ¼ IF PRIME GRND POP > 7 THEN

INT PRIME GRND POP=3ð Þ � SPLIT PROB ELSE 0
ð23:3Þ

The nature of the split function is taken from Starfield and Blelock [1]. These

authors define the problem in much more detail than we have done here. In fact,

they define a simplified approach and our model is even simpler. Yet, the results of

Fig. 23.3
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this simplified approach seem to agree with those in the more elaborate model of

Starfield and Blelock, reconfirming our earlier statements that you should start with

simple models. These are often the most powerful ones.

As Fig. 23.4 shows, the population cycles in the first few decades and then

proceeds to approach to a steady-state population of 5 on the prime ground and zero

on the marginal ground. However, we should not expect to accurately model

anything more than a couple of weather cycles at most. In the first 25 years, the

cycle seems normal enough even though the long-term effect is quite different.

Population cycles that are more pronounced than the ones found in this model

are typical for animals that produce more rapidly than roans do. Voles and lemming

are two prominent examples, and we will model their population dynamics in the

following two chapters.

Try adding another marginal land unit. Double the initial prime ground herd size.

The newer marginal unit, call it MARGINAL 2, receives “splits” from the prime

ground with half of the split probability of the first unit. The marginal units are

connected and can transfer roan back and forth with the following rule: If one of the

marginal units is larger by 3 or more roan than the other for more than 1 year, then

that unit transfers roan to the less populated unit in groups of 3. Run your model for

24 years and interpret your results.

23.2 Roan Herd Model Equations

MAR__GRND_POP(t) ¼ MAR__GRND_POP(t � dt) + (SPLIT + BIRTH_

DEATH_MG � DUMP_MGP) * dt

INIT MAR__GRND_POP ¼ 100 {Individuals}

Fig. 23.4
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INFLOWS:

SPLIT ¼ IF PRIME_GRND_POP > 7 THEN INT(PRIME_GRND_POP/

3*SPLIT_PROB) ELSE 0 {Individuals per Year}

BIRTH_DEATH_MG ¼ INT(KM*MAR__GRND_POP) {Individuals per Year}

OUTFLOWS:

DUMP_MGP ¼ IF MAR__GRND_POP < 3 THEN INT(MAR__GRND_POP)

ELSE 0 {Individuals per Year}

PRIME_GRND_POP(t) ¼ PRIME_GRND_POP(t � dt) + (BIRTH_DEATH_PGP

� SPLIT � DUMP_PGP) * dt

INIT PRIME_GRND_POP ¼ 100 {Individuals}

INFLOWS:

BIRTH_DEATH_PGP ¼ IF PRIME_GRND_POP >¼ 7 THEN INT

(KP*PRIME_GRND_POP) ELSE 0 {Individuals per Year}

OUTFLOWS:

SPLIT ¼ IF PRIME_GRND_POP > 7 THEN INT(PRIME_GRND_POP/

3*SPLIT_PROB) ELSE 0 {Individuals per Year}

DUMP_PGP ¼ IF PRIME_GRND_POP < 3 THEN INT(PRIME_GRND_POP)

ELSE 0 {Individuals per Year}

KM ¼ GRAPH(YEAR)

(0.00, 0.05), (1.00, �0.05), (2.00, �0.05), (3.00, �0.15), (4.00, �0.15), (5.00,

�0.05), (6.00, �0.05), (7.00, 0.05), (8.00, 0.05), (9.00, 0.15), (10.0, 0.15),

(11.0, 0.05), (12.0, 0.05).

KP ¼ GRAPH(YEAR)

(0.00, 0.12), (1.00, 0.02), (2.00, 0.02), (3.00, �0.08), (4.00, �0.08), (5.00, 0.02),

(6.00, 0.02), (7.00, 0.12), (8.00, 0.12), (9.00, 0.22), (10.0, 0.22), (11.0, 0.12),

(12.0, 0.12).

SPLIT_PROB ¼ INT(2*RANDOM(0,1))

TOTAL_HERD_POP ¼ PRIME_GRND_POP+MAR__GRND_POP {Individuals}

YEAR ¼ INT((time MOD 12)) + 1

Reference
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Chapter 24

Population Dynamics of Voles

The true Voles. . .number about fifty known species.

(Cassell’s Natural History, 1880)

24.1 Basic Model

Microtine rodent populations, such as voles and lemmings, have been the subject of

intense interest in population biology for over 50 years. Much of this interest stems

from the dramatic fluctuations in density observed in many populations. These

fluctuations are often cyclic in nature, with large-scale irruptions occurring every

2–4 years. Voles and other small rodents are also of great economic importance due

to their potential as agricultural pests and as vectors of disease. Voles may cause

substantial damage to a wide variety of crops and cause severe damage to fruit

orchards by girdling trees. Renewed attention is also being given to the population

dynamics of small rodents due to their prospective role in outbreaks of Lyme

disease and the Hanta virus. Understanding the factors that regulate their population

densities is the first step to controlling future outbreaks.

The periodic oscillations these animals experience, often referred to as vole

cycles, have generated a tremendous number of experimental studies. Both field

and laboratory approaches have been utilized to determine how voles respond to

environmental changes. Although no consensus has been reached concerning

the causes of vole cycles, it is clear that no single extrinsic factor, such as weather

or food availability, can be directly responsible for this phenomenon. Could

intrinsic factors be invoked to explain the occurrence of cyclical population

changes in voles?
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The logistic model of population growth has been previously used as a starting

point for simulating vole dynamics, but has failed to generate cycles using param-

eters that are commonly observed. One attribute that may have been missing from

previous models is some form of time lag. It may be that vole populations behave in a

logistic fashion, but with a delayed response to changes in density. In this chapter we

construct a simple logistic model of population density to determine whether time

delayed components can be used to generate multiyear population cycles in voles.

The basic logistic equation for population growth is

ΔN ¼ dN

dt
¼ R � N � 1� N

K

� �
ð24:1Þ

where R is the intrinsic rate of increase; K is the environmental carrying capacity;

and N is the population size or, in the case of a fixed area, the population density. In

real populations of animals there may often be a delay between a change in total

population size and the animals’ response to that change. For example, there may be

an increase in birth rates due to increasing food availability, but if reproduction is

limited by competition the new animals entering the population may not create any

appreciable impact until they reach adult size several months later. This may mean

that current density is dependent upon the density at some time period in the past, a

phenomenon known as delayed density dependence. Delayed density dependence

can be incorporated into our logistic equation as

ΔN ¼ dN

dt
¼ R � N � 1� NT

K

� �
ð24:2Þ

where NT represents the population size at some earlier time period T.

Our basic vole population model is shown in Fig. 24.1.

Using the standard logistic growth equation, the incremental change in popula-

tion size, ΔN would decrease as the population approaches the environmental

carrying capacity, K. You can verify this by setting the time lag, T, equal to zero.

Fig. 24.1
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When a nonzero time lag is added however, the population may no longer reach a

steady state. Run the model using K¼ 78, R¼ .15, and an initial population of 2.

Rerun your model with T¼ 12 and T¼ 18. The values for R and K were measured

from a cycling population of meadow voles (Microtus pennsylvanicus) in Massa-

chusetts [1]. N¼ 2 represents a founding pair of voles in a new population, and

T¼ 12, T¼ 18 represent time lags of approximately one and one and a half

generation, respectively. You should find that at T¼ 12 the population oscillates

around the carrying capacity, with a period of approximately 1 year. Increases in the

time lag lead to oscillations of higher amplitude and lower periodicity. Figure 24.2

summarizes the results for T¼ 0, 12, and 18, respectively.

Now experiment with each of the parameters to determine their potential effects on

the population. Predict the qualitative changes you would expect before running the

model with modified parameters. The carrying capacity K only raises or lowers the

amplitude of the cycle without altering the periodicity. Run the simulation with

different initial population sizes, N. Any N�K alters the “starting point” of the

population without affecting the shape of the oscillation itself. For N much larger

than K extreme density fluctuations result that eventually settle down into the standard

1-year oscillation. An illustration for N¼ 80 and K¼ 28 is shown in Fig. 24.3.

The model is quite sensitive to modest changes in the population’s intrinsic rate of

increase, R. A small increase in this value produces tremendous changes in the

amplitude of the oscillation and also increases the period of the oscillation. As R

increases, the populationwill “overshoot” the carrying capacity to a larger extent before

the damping effects of the carrying capacity pull the population back into a decline.We

will retain ourR¼ 0.15 as it has been empirically determined fromanatural population.

K andNhave no affect on periodicity, thus if we are to obtainmultiyear cycles fromour

model we must turn our attention to the effects of the time lag.

Experiment with a large range of values to determine the sensitivity of the model

to changes in T. Values of T> 30 weeks generate very unstable populations that

Fig. 24.2
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eventually crash to extinction. Very small time lags reduce the period and ampli-

tude of the oscillation; T< 4 weeks produces only temporary cycles that ultimately

dampen out on the environmental carrying capacity, K. Conversely, increasing T

above 12 increases both the amplitude and period of our cycle.

A time lag of 18 weeks yields a “correct” population cycle with a period of

approximately 2 years. At first glance it appears that we have now achieved our

task, simulating a vole cycle from field parameters. A closer look at the oscillation,

however, reveals a serious flaw in the model. If we plot the simulation using the

logarithm of population density, as we have done above, we see that the density

undergoes changes of over four orders of magnitude during the course of a cycle.

Such changes are not observed in North American vole populations and are not

biologically meaningful. The densities of one animal per 100 ha implied by the

graph would certainly lead to extinction! The model must be re-examined to

determine whether multiyear cycles can be generated without experiencing density

changes of over three orders of magnitude. This is done in the following section.

24.2 Basic Vole Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 2 {Individuals}

INFLOWS:

ΔN ¼ R*N*(1�(LAG_N/K)) {Individuals per Week}

K ¼ 78 {Individuals}

LAG ¼ DELAY(N, T) {Individuals}

LAG_N ¼ IF (TIME>T) THEN LAG ELSE 0 {Individuals}

Fig. 24.3
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LOG_N ¼ LOG10(N) {individuals}

R ¼ .15 {Individuals per Individuals per Week}

T ¼ 12 {weeks}

24.3 Vole Population Dynamics with Seasonality

One shortcoming of our previous model may be its failure to account for seasonal

shifts in behavior. Seasonal changes in the demographics of voles have been well

documented. Let us add seasonality to our delayed-logistic model by varying R, the

intrinsic rate of increase, as a function of time. This modification has a solid

foundation in field data as these rodents are seasonally reproductive; breeding is

sharply curtailed during the winter months. If we assume that limited winter

reproduction is roughly equal to winter mortality, we can allow R to alternate

between zero and its maximum value during the breeding season.

We will now modify our model to set R¼ 0 for 16 weeks of each 52-week period

and set R¼ 0.15 for the remainder of the year. This is done in the converter VAR R

of our model (Fig. 24.4), where WEEK is a cyclical clock and defined as

WEEK ¼ TIME MOD 52ð Þ þ 1 ð24:3Þ
and

VAR R ¼ IF week >¼ 52�WINTERð Þ and week <¼ 52ð Þ THEN 0 ELSE R:

ð24:4Þ

Since WEEK resets itself to 1 after an entire year has elapsed, the parameter

VAR R is set to zero during the 16 weeks of winter, then reverts back to its original

Fig. 24.4
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value for the rest of the year. Run the model and observe the results on a logarithmic

density plot, using a value of T¼ 18 weeks. The results are shown in Fig. 24.5.

Initially the population cycles over a period of approximately 2 years, within a

fairly reasonable amplitude. After several years elapse however, the amplitude

fluctuations become more irregular and we encounter a familiar problem: the

range of fluctuations in population density in our model is unreasonably large.

Another shortcoming of this model may be its boolean-style approach to seasonal-

ity. A graph of VAR R reveals an “on-off” or boolean mode in the intrinsic rate of

increase: the value is reset immediately from one value to another without any

transition (Fig. 24.6). It would be more realistic to alter the seasonal component of R

in a more continuous fashion. This type of change is modeled in the following section.

Fig. 24.5

Fig. 24.6
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24.4 Vole Model with Seasonality Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 2 {Individuals}

INFLOWS:

ΔN ¼ VAR_R*N*(1�(LAG_N/K)) {Individuals per Week}

K ¼ 78 {Individuals}

LAG ¼ DELAY(N,T) {Individuals}

LAG_N ¼ IF (TIME>T) THEN LAG ELSE 0 {Individuals}

LOG_N ¼ LOG10(N)

R ¼ 0.15 {Individuals per Individuals per Week}

T ¼ 18 {Weeks}

VAR_R ¼ IF (week >¼ 52 � WINTER) THEN 0 ELSE R {Individuals per

Individual per Week}

WEEK ¼ (TIME MOD 52)+1

WINTER ¼ 16 {weeks}

24.5 Sinusoidal Seasonal Change

Allowing the seasonal component of R to change in a continuous fashion is a better

approximation of reality as the population is not perfectly synchronous in its

behavioral response to seasonal changes. This form of seasonality may be achieved

in our model by allowing the intrinsic rate of growth to oscillate between zero and R

in a sinusoidal fashion. In our sinusoidal model, a new variable, SIN R, is simply a

sine wave function with a 52-week period oscillation and with an amplitude of

�0.75 to +0.75. By setting

VAR R ¼ 0:075þ SINWAVE 0:075; 52ð Þ ð24:5Þ

We create an R value varying continuously between 0.15 and 0 over the course

of 1 year. Simply replace this new specification of VAR R in the model of the

previous section (Fig. 24.4) and you should receive quite satisfying results:

multiyear cycles within biologically reasonable amplitudes of density (Fig. 24.7).

What implications do these simulations have for our understanding of vole

biology? First, they demonstrate that a simple delayed-logistic equation, with a

single seasonal component, is capable of generating multiyear fluctuations in

population density. This was accomplished without resorting to external factors

such as predation or climate change. These simulations were completed using

actual field data for the intrinsic rate of increase (R) and the environmental carrying

capacity (K). Second, the lag component was a mere 18 weeks, as opposed to the

considerably longer lags used in previous models (e.g. [2]). The 18-week delay used

in this simulation roughly approximates the generation time observed in many

species of vole. This implies that roughly one generation elapses between any
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change in density and a corresponding change in population growth rate. In our

simple model the time lag was of paramount importance in generating population

cycles. Interestingly, regular periodic oscillations in density do not occur in

populations where dispersal is prevented, such as on island populations or

populations that are enclosed within vole-tight fences. In light of our model results

this suggests that blocking dispersal may influence the time-delayed component of

vole cycles. A greater understanding of the relationship between dispersal and its

potential effects on time-delayed responses may shed new light on the field of

microtine population dynamics. Third, modeling of population dynamics, com-

bined with data from field studies, can provide insight into the mechanisms of

population change that not only enhance our understanding of the driving forces of

the system but further sharpen the focus of subsequent studies of these populations.

24.6 Sinusoidal Vole Model Equations

N(t) ¼ N(t � dt) + (ΔN) * dt

INIT N ¼ 2 {Individuals}

INFLOWS:

ΔN ¼ VAR_R*N*(1�(LAG_N/K)) {Individuals per Week}

K ¼ 78 {Individuals}

LAG ¼ DELAY(N, T) {Individuals}

LAG_N ¼ IF (TIME>T) THEN LAG ELSE 0 {Individuals}

LOG_N ¼ LOG10(N)

T ¼ 18 {Weeks}

VAR_R ¼ SINWAVE(.075,52) + .075 {Individuals per Individual per Week}

Fig. 24.7
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Chapter 25

Lemming Population Dynamics

A kind of Mice, (they call Leming. . .) in Norway, which eat up
every green thing. They come in such prodigious Numbers, that
they fancy them to fall from the Clouds.

(Derham, 1713)

25.1 Lemming Model

Similar to the vole population modeled in the previous chapter, lemming

populations can experience significant population fluctuations from year to year.

Many legends surround the seemingly erratic population dynamics of lemmings [1].

Tomodel lemming population dynamics it seems advisable [2] to distinguish two

types of lemmings: Type 1 reproduces rapidly and migrates in response to

overcrowding. Type 2 has a lower reproductive capacity but is less sensitive to

high population densities. The change in the densities of each type is given,

respectively, by

ΔN1 ¼ IF N1 > 0 THEN N1 � A1� B1� C1ð Þ � N2� C1 � N1þ N2ð Þð Þ ELSE 0

ð25:1Þ

ΔN2 ¼ IF N2 > 0 THEN N2 � �A2þ B2 � N1ð Þ ELSE 0 ð25:2Þ

The parameters A1, A2, B1, B2, and C1 capture the density-dependence of birth

and deaths rates of the two types of lemmings. Figure 25.1 shows the model.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_25,
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Appropriate choice of these parameters yield oscillatory behavior noted in the

lemming populations. For the results in Figs. 25.2 and 25.3, we have set A1¼ 0.9

(1/time period), A2¼ 0.5 (1/time period), B1¼ 0.9 (1/area/time period), B2¼ 0.2

(1/individuals/area/time period), and C1¼ 0.0043 (1/individuals/area/time period).

As in the previous chapter, introduce seasonality with random variations into the

model. Then find the parameters that yield oscillation of the lemming population.

Fig. 25.1

Fig. 25.2
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25.2 Lemming Model Equations

N1(t) ¼ N1(t � dt) + (ΔN1) * dt

INIT N1 ¼ 1 {Individuals per Unit Area}

INFLOWS:

ΔN1 ¼ IF N1>0 THEN N1*(A1-(B1-C1)*N2-C1*(N1+N2)) ELSE 0 {Individuals

per Unit Area per Time Period}

N2(t) ¼ N2(t � dt) + (ΔN2) * dt

INIT N2 ¼ 1 {Individuals per Unit Area}

INFLOWS:

ΔN2¼ IF N2>0 THEN N2*(�A2+B2*N1) ELSE 0 {Individuals per Unit Area per

Time Period}

A1 ¼ .9 {1/Time Period}

A2 ¼ .5 {1/Time Period}

B1 ¼ .9 {1/Individuals per Unit Area per Time Period}

B2 ¼ .2 {1/Individuals per Unit Area per Time Period}

C1 ¼ .0043 {1/Individuals per Unit Area per Time Period}
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Chapter 26

Multi-Stage Insect Models

We may define insects to be little animals without red blood,
bones or cartilages, furnished with a trunk or else a mouth,
opening lengthwise, with eyes which they are incapable of cov-
ering, and with lungs which have their openings in the sides.

(Goldsmith, 1774)

26.1 Matching Experiments and Models

of Insect Life Cycles

One of the most advanced areas of dynamic modeling at the organism level is found

in entomology. Insects have received much attention in part because they are

animals of great economic significance: they cause billions of dollars of damage

to food supplies around the world every year. We try to control their population

levels, having long ago realized they multiply and evolve too fast for elimination.

To better understand the dynamics of insect populations, we model the life cycle

of an insect, simplified into two stages, egg and adult. Typically, the data used in

understanding insect population dynamics come from laboratory experiments

in which one watches each egg and notes when it dies or hatches. Data from such

an experiment (at constant temperature) might look like those shown in Table 26.1

of the life history of 100 new insect eggs. Note how the final number of survivors

must equal the total number hatched. ESF is the experimental survival fraction and

T is the mean maturation time or the mean time to hatch, in days.

Time is measured in days in this case, with data displayed for the beginning of

the next day (the result of the previous day). This table yields two important

averaged numbers, the experimental survival fraction, ESF (0.699, say 0.7), and

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_26,

© Springer International Publishing Switzerland 2014
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the experimental maturation time, T (5.019, say 5 days). How can we use such data

to parameterize a model, when the model time step is dramatically different from

this experimentally found maturation time?

We must develop a new concept: the model survival fraction, MSF. In ecological

experiments, the instantaneous survival rate cannot be measured. But the survival

rate can be measured over some real time period, the maturation time, as we see

from Table 26.1. A problem arises when we wish to model the system at a shorter

time step than the real one. We need to model at these shorter times because the

characteristic time of the system may be shorter than the shortest feasible measure-

ment time of some particular part of the system. So we have the experimental time

step (the maturation time) and the model time step (DT) and we must devise a

conversion from experiment to model.

That conversion is based on the assumption that the survival fraction is a

declining exponential, with ESF(T) and T defining its mean point.

ESF tð Þ ¼ N tþ DTð Þ=N tð Þ ¼ EXP �m � tð Þ
¼ the dimensionless experimental survival

fraction as a function of time:
ð26:1Þ

We are constrained here to the assumption of exponential decline since both the

DEATH and HATCH flows in the model are arranged as exponential decays.

N is the population level. Later, when we attempt to verify the experimental data

with our model, we will shut off the birth and hatch rate and observe the (neces-

sarily exponential) decline in egg population due to death. The resulting instanta-

neous survival fraction is determined with the constant m. Using the experimental

data, we solve this equation for �m:

�m ¼ LOGN ESF Tð Þð Þ=T: ð26:2Þ

Table 26.1 Sample life history table from an experiment

Time Died Survived Hatched Time*Survived Time*Hatched

0 1 99 0 0 0

1 3 96 0 96 0

2 3 93 2 186 4

3 4 89 3 267 9

4 5 84 21 336 84

5 5 79 9 395 45

6 6 73 7 438 42

7 6 67 5 469 35

8 7 60 3 480 24

9 8 52 2 468 18

Col. sum 45 52 3,135 261

3,135/45/100¼ 0.697¼ESF 261/52¼ 5.02¼T
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The model survival fraction (based on our choice of the time step DT) is derived:

MSF ¼ ESF tþ DTð Þ=ESF tð Þ ¼ EXP �m � DTð Þ: ð26:3Þ

When the expression for �m is substituted into Eq. (26.3), we get

MSF ¼ EXP LOGN ESFð Þ=T � DTð Þ, ð26:4Þ

which is the basic equation for the model survival fraction. We now have the

instantaneous survival fraction and those surviving will mature or hatch at the

maturation or HATCH rate

HATCHING ¼ EGGS=T �MSF, ð26:5Þ

that is, the survivors hatch at the rate, EGGS/T. Remember, eggs don’t have to

hatch or die. They may simply wait. When they do die, they are claimed at the

model death rate

DYING ¼ EGGS � 1�MSFð Þ=DT, ð26:6Þ

the multiplier fraction being the model death rate per egg.

Such life table data can be used to determine the death rate of the adults, a

normal demographic application. If we were to watch 100 new adults we could

calculate the experimental adult survival fraction, EASF, and adult survival time

(mean length of adult life), TA. Let’s say that we found these numbers to be 0.8 and

1.0, respectively. These numbers are using in a parallel way to obtain the equivalent

of Eq. (26.6) for ADULTS.

The layout for the egg-adult model is shown in Fig. 26.1, with an EGG LAY

RATE of 0.5 (eggs per adult per day) and the model results are shown in Fig. 26.2.

Now turn off the BIRTHING and HATCHING flows and put 100 eggs in EGGS.

Run the model to verify that it reproduces the experimental mean maturation

rate, T, and the experimental survival fraction at T. This must be so since our

modeling process is one of exponential decay for both the DYING and HATCHING

flows.

Suppose we are uncertain about the exact egg experimental fraction. We may

suspect that using literature data is not good enough, and think that this number is

within �10 %. Next we do an experiment to find this number if the total number of

adults in 24 days is within �10 %. Insert a larval stage into this model with a larval

survival fraction of 0.8 in 3 days maturation time. Why doesn’t the stock of adults in

this model grow as is did in the first version?

Using this model, vary T to find the maximum number of eggs to be left alive for

next season after 14 days.
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26.2 Two-Stage Insect Model Equations

ADULTS(t) ¼ ADULTS(t � dt) + (HATCHING - ADULTS_DYING) * dt

INIT ADULTS ¼ 0

INFLOWS:

HATCHING ¼ EGGS/T*MSF

Fig. 26.2

Fig. 26.1
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OUTFLOWS:

ADULTS_DYING ¼ ADULTS*(1 � MASF)/DT

EGGS(t) ¼ EGGS(t � dt) + (BIRTHING � EGGS_DYING � HATCHING) * dt

INIT EGGS ¼ 50

INFLOWS:

BIRTHING ¼ EGG_LAY_RATE*ADULTS

OUTFLOWS:

EGGS_DYING ¼ EGGS*(1 � MSF)/DT

DOCUMENT: Instantaneous survival fraction + instantaneous mortality fraction¼ 1.

HATCHING ¼ EGGS/T*MSF

EASF ¼ .8 {Experimental daily adult survival fraction per stage, dimensionless.}

EGG_LAY_RATE ¼ 0.5

DOCUMENT: Experimental laying rate. EGGS PER ADULT PER DAY.

ESF ¼ .7 {Experimental egg survival fraction, dimensionless, per stage. Stage ¼
1/EXP MATURE RATE, i.e., 70 eggs per 100 eggs survive each 1/EXP

MATURE RATE days, as noted in the experiment.}

MASF ¼ EXP(LN(EASF)*DT/TA)

MSF ¼ EXP(LN(ESF)/T*DT)

T ¼ 5

DOCUMENT: Inverse is the Experimental Maturation Rate, 1/DAY.

TA ¼ 1

DOCUMENT: One day ¼ experimental period for which adult mortality is

measured.

26.3 Two-Stage Insect Model with a Degree-Day

Calculation Controlling the Maturation Rate

Let us take the model of the previous section and specify the maturation rate as a

function of the temperature. In this model, time and temperature are now the two

independent variables. We have assumed a sine function for the mean daily

temperature and assumed �10 �F+ the mean daily to get the high and low temper-

ature for the day:

DAILY MEAN TEMP ¼ 47þ 27 � SIN 2 � PI=365 � TIMEð Þ ð26:7Þ

If the high temperature is less than the threshold or base temperature, no degree-

days for that day are calculated. If the minimum temperature for that day is less than

the threshold temperature but the maximum temperature is greater than the thresh-

old, the degree-days, DD 1, are calculated as the maximum temperature minus the

threshold temperature, divided by 2:
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DD ¼ IF DAILY MEAN TEMPþ 10 < BASE TEMP THEN 0 ELSE

DAILY MEAN TEMPþ 10� BASE TEMPð Þ=2 ð26:8Þ

The calculation is illustrated in Fig. 26.3.

For this model we needed to assume a relation between the degree-days and

the maturation time that we assumed to be a declining exponential function.

Degree-days (DD) are not accumulated over time but are determined for each

time step (1 day). We have also set up a linearly increasing effect of DD on the

birth or oviposition rate as shown in Figs. 26.4 and 26.5 in order to prevent the

population from growing too large. Figure 26.6 shows the complete model and

Fig. 26.7 presents its results.

Together these additions make the population rise and fall. But the peak declines

exponentially. Do you know why?

Figure 26.7 shows the results. Note how the adults die off and the egg number

levels off when the threshold temperature is reached. Run this model for 2 years.

When will it begin to repeat itself and thus be clear of the initial conditions? Try

different initial conditions and find the same sort of independence. The results are

extremely dependent on the parameter values. Why is this and how could the model

be restructured to reduce such dependency (or is it real)? The insects are gradually

dying out of this system. What are the logical changes that you could make to

stabilize their annual peaks? For example, stabilize the egg numbers by

experimenting with the adult maturation time.

This result is extremely sensitive to the Egg Lay Rate. What happens if I change

the shape of its graphical relationship with the Degree-days, DD? Try a slightly

convex form of the graph.

Assume that this model represents the pattern of a needed predator insect. Try to

add in the fewest number of eggs at the best time to keep this species between

30 and 50 adults at the most throughout the indefinite future.

1
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Fig. 26.3
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Fig. 26.4

Fig. 26.5



As a modification to the model above, we could assume that the egg maturation

rate was a function of time and the accumulated degree-days. We would have to

represent oviposition by adding in the eggs over a very short period. Can you devise

a feasible model of this sort? Use a normal distribution of the daily temperature and

assume a standard deviation and then use the base temperature as the basis for

calculating the accumulated degree-days. Take the difference between the daily

mean as now calculated, add the normal deviation for the day, and subtract the base

temperature to determine the number of degree-days for each day. Then have the

maturation rate a function of the cumulative DD and time. Find the adult maturation

time that stabilizes the egg population. Find the egg maturation time that maximizes

the adult population.

Fig. 26.6

Fig. 26.7
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26.4 Two-Stage Insect Model with Degree-Day Equations

ADULTS(t) ¼ ADULTS(t � dt) + (HATCHING � ADULTS_DYING) * dt

INIT ADULTS ¼ 100

INFLOWS:

HATCHING ¼ EGGS*MSF/T

OUTFLOWS:

ADULTS_DYING ¼ ADULTS*(1 � MASF)/DT

EGGS(t) ¼ EGGS(t � dt) + (BIRTHING - EGGS_DYING � HATCHING) * dt

INIT EGGS ¼ 0

INFLOWS:

BIRTHING ¼ EGG_LAY_RATE*ADULTS

OUTFLOWS:

EGGS_DYING ¼ EGGS*(1 � MSF)/DT

HATCHING ¼ EGGS*MSF/T

BASE_TEMP ¼ 48

DAILY_MEAN_TEMP ¼ 47 + 27*SIN(2*PI/365*TIME)

DD ¼ if DAILY_MEAN_TEMP+10 < BASE_TEMP then 0 else

(DAILY_MEAN_TEMP+10-BASE_TEMP)/2

EASF ¼ .8 {The adult survival rate.}

EGG_LAY_RATE ¼ GRAPH(DD)

(0.00, 0.00), (6.00, 0.158), (12.0, 0.263), (18.0, 0.443), (24.0, 0.593), (30.0, 0.735),

(36.0, 0.863), (42.0, 1.00), (48.0, 1.11), (54.0, 1.23), (60.0, 1.41)

ESF ¼ .7

MASF ¼ EXP(LN(EASF)/TA*DT)

MSF ¼ EXP(LN(ESF)/T*DT)

T ¼ GRAPH(DD)

(0.00, 50.0), (2.00, 35.0), (4.00, 26.0), (6.00, 18.5), (8.00, 13.8), (10.0, 8.60), (12.0,

5.60), (14.0, 4.00), (16.0, 2.60), (18.0, 1.60), (20.0, 1.00)

TA ¼ 1

26.5 Three-Stage Insect Model

In this section we return again to the basic two-stage insect model but introduce

now a larval stage. The survival rate for larvae is given by

LARV INTANT SURV ¼ EXP LOGN S2ð Þ � U2 � DTð Þ ð26:9Þ

Unlike in the previous models we must now distinguish the experimental egg

maturation rate from the experimental larval maturation rate. The resulting model is

shown in Fig. 26.8, and its results are depicted in Fig. 26.9.

Perform a sensitivity analysis for the parameters of T and EGG LAY RATE, and

interpret your results. Then, extend your model to incorporate the degree-day

influence on maturation rates of eggs discussed above as well as a degree-day
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influence on maturation rates of larvae. How does the introduction of the larval

stage affect your results?

In the following chapter and Chap. 31 we will combine our insight into the

spread of a disease—already modeled in simplified form in Chap. 21—with the

knowledge we gained here on insect population dynamics and the ways in which

laboratory experiments can be used to set up dynamic models of biological systems.

Fig. 26.8

Fig. 26.9
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26.6 Three-Stage Insect Model Equations

ADULT(t) ¼ ADULT(t � dt) + (MATURING � A_DYING) * dt

INIT ADULT ¼ 10 {Number of Adults}

INFLOWS:

MATURING ¼ MLSF*LARVAE/TL {Adults per Time Period}

OUTFLOWS:

A_DYING ¼ (1 � MASF)*ADULT/DT

EGG(t) ¼ EGG(t � dt) + (BIRTHING � HATCHING � D_DYING) * dt

INIT EGG ¼ 0 {Number of Eggs}

INFLOWS:

BIRTHING ¼ EGG_LAY_RATE*ADULT {Eggs per Time Period}

OUTFLOWS:

HATCHING ¼ MESF*EGG/TE {Larvae per Time Period}

D_DYING ¼ (1-MESF)*EGG/DT {Eggs per Time Period}

LARVAE(t) ¼ LARVAE(t - dt) + (HATCHING �MATURING - L_DYING) * dt

INIT LARVAE ¼ 0 {Number of Larvae}

INFLOWS:

HATCHING ¼ MESF*EGG/TE {Larvae per Time Period}

OUTFLOWS:

MATURING ¼ MLSF*LARVAE/TL {Adults per Time Period}

L_DYING ¼ (1 � MLSF)*LARVAE/DT {Larvae per Time Period}

EASF ¼ .5 {Experimental adult survival per time step.}

EESF ¼ .7 {Experimental egg-larvae survival rate, 1/stage.}

EGG_LAY_RATE ¼ 0.6 {eggs/adult/day. Try 1.112}

ELSF ¼ .8 {Experimental larvae-adult survival rate, 1/stage.}

MASF ¼ EXP(LN(EASF)/TA*DT)

MESF ¼ EXP(LN(EESF)/TE*DT)

MLSF ¼ EXP(LN(ELSF)/TL*DT)

TA ¼ 1

TE ¼ 8

DOCUMENT: DAYS.

TL ¼ 3

DOCUMENT: DAYS
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Chapter 27

Two Age-Class Parasites

Men who reject the responsibility of thought and reason can only
exist as parasites on the thinking of others.

(Ayn Rand, The Virtue of Selfishness)

27.1 Two Age-Class Parasite Model

This model shows how a disease spreads in an insect population, such as asexually

reproducing aphids, consisting of two life stages—nymphs and adults. The model

has two parts, one for the healthy population and one for the diseased population.

Diseased nymphs can infect healthy nymphs and become diseased adults. Diseased

adults cannot infect healthy adults or nymphs but can produce infected nymphs.

Note how these features are expressed in the model by the appropriate flows and

links.

Unlike in the previous section of this chapter, the infection coefficient is based

on an exponential model.

INFECTION COEF ¼ 1� EXP �:3 � NYMPHS � NYMPHS Dð Þ ð27:1Þ

NYMPHS and NYMPHS D refer to the population sizes of healthy and infected

nymph populations, respectively. The INFECTION RATE is calculated as the

product of the INFECTION COEF, the number of healthy nymphs, divided by

the model maturation rate for survivors, MNSF/TN

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_27,
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INFECTION RATE ¼ MNSF=TN � INFECTION COEF � NYMPHS ð27:2Þ

with

MNSF ¼ Model Nymph Survival Fraction

¼ EXP LOGN ENSFð Þ=TN� DTð Þ ð27:3Þ

where TN is the experimental nymph maturation rate and ENSF is the dimension-

less experimental nymph survival fraction. When there are no sick nymphs or

healthy nymphs the probability of becoming infected equals zero. The specification

of the INFECTION COEF translation variable is a purely empirical formulation but

it gives the correct value at the extremes, 0 when the number of diseased nymphs is

zero or when the number of healthy nymphs is zero, and near 1 when either at least

one of the stocks NYMPHS or NYMPHS D is very large.

Note well the specification of the MATURING function in the model that insures

that the total rate of change from nymphs to adults here is still U1*NYMPHS:

MATURE ¼ MNSF=TN� NYMPHS� 1� INFECTION COEFð Þ ð27:4Þ

The complete model is shown in Fig. 27.1.

Figure 27.2 shows the proportions of healthy nymphs and adults, and the number

of diseased nymphs and adults. Similar to the previous section of this chapter, we

find distinct phases for the outbreak of a disease. Try varying the separate birth and

death rates and the infection coefficient and noting the effect on the relative size of

the healthy and diseased portions of the populations.

These newly diseased nymphs are converted to diseased adults rather than

directly into diseased nymphs in an effort to reflect the fact that these nymphs,

who contract rather acquire the disease, have the normal nymph survival rate and,

they are not able to convey the disease to other healthy nymphs.
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Fig. 27.1
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27.2 Two Age-Class Parasite Model Equations

ADULTS(t) ¼ ADULTS(t � dt) + (MATURING � ADULT_DYING) * dt

INIT ADULTS ¼ .10 {Individuals}

INFLOWS:

MATURING ¼ MNSF*NYMPHS*(1�IC)/TN {Individuals per Day}

OUTFLOWS:

ADULT_DYING ¼ ADULTS*(1-EXP(LN(EASF)/TA*DT))/DT {Individuals per

Day}

ADULTS_D(t) ¼ ADULTS_D(t � dt) + (MATURING_D + I_R � D_ADULT_

DYING) * dt

INIT ADULTS_D ¼ .10 {Individuals}

INFLOWS:

MATURING_D ¼ MNSF_D*NYMPHS_D/TN_D

I_R ¼ INFECTION_RATE {Individuals per Day}

OUTFLOWS:

D_ADULT_DYING ¼ ADULTS_D*(1-EXP(LN(EASF_D)/TA_D*DT))/DT

{Individuals per Day}

NYMPHS(t) ¼ NYMPHS(t � dt) + (BIRTHING � DYING � MATURING �
INFECTION_RATE) * dt

INIT NYMPHS ¼ 0 {Individuals}

INFLOWS:

BIRTHING ¼ LAY_RATE*ADULTS {Individuals per Day}

OUTFLOWS:

DYING ¼ (1 � MNSF)*NYMPHS/DT

MATURING ¼ MNSF*NYMPHS*(1�IC)/TN {Individuals per Day}

INFECTION_RATE ¼ MNSF*IC*NYMPHS/TN

Fig. 27.2

226 27 Two Age-Class Parasites



NYMPHS_D(t) ¼ NYMPHS_D(t � dt) + (BIRTHING_D � DYING_D �
MATURING_D) * dt

INIT NYMPHS_D ¼ 0 {Individuals}

INFLOWS:

BIRTHING_D ¼ D_LAY_RATE*ADULTS_D

OUTFLOWS:

DYING_D ¼ (1 � MNSF_D)*NYMPHS_D/DT

MATURING_D ¼ MNSF_D*NYMPHS_D/TN_D

D_LAY_RATE ¼ .35

EASF ¼ 0.8

EASF_D ¼ .65

ENSF ¼ .7

ENSF_D ¼ .5

IC ¼ 1�EXP(�.3*NYMPHS*NYMPHS_D)

DOCUMENT: INFECTION COEFFICIENT

LAY_RATE ¼ .6

MNSF ¼ EXP(LN(ENSF)/TN*DT)

MNSF_D ¼ EXP(LN(ENSF_D)/TN_D*DT)

TA ¼ 1

TA_D ¼ 1

TN ¼ 5

TN_D ¼ 5
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Chapter 28

Monkey Travels

We are just an advanced breed of monkeys on a minor planet of a
very average star. But we can understand the Universe. That
makes us something very special.

(Stephen Hawking)

28.1 Model of Monkey Travels

In the rain forests of Peru, a small monkey, a Tamarin, no larger than a squirrel,

lives in groups of about a dozen and spends most of its time in the canopy. It eats,

travels, and sleeps in the canopy, apparently fearing predators on the ground and in

the air above the canopy. The canopy for the most part, is so thick that vision is

limited to a few meters at most. They travel on the average about 90 m before

finding a sufficient quantity of fruit to stop for a feeding bout. They have about 5–10

such bouts each day, before stopping to sleep in the largest local tree. An interesting

question arises as to how these Tamarins find food. One possibility is that they used

their noses. This is the central assumption for the model of this chapter, which is

based on Garber and Hannon [1].

Let us lay out a horizontal plane, which runs through the canopy of all the taller

trees, and is divided into cells of unit width and height. The symbol X measures the

distance from the origin in the center of the space and Y measures the distance

perpendicular to X. The odor strength is measured vertically, perpendicular to the

X–Y plane. The Tamarin troop is considered a point in this X–Y plane and moves in

a straight line for the visual sight distance in the canopy. We assumed that

this distance, called VISIBILITY in our model, is a constant 2.0 m. At the end

of this STEP DISTANCE a new assessment is made and a new direction is chosen.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_28,
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This process is continued until the fruited tree is in sight of the troop. We assume

that the typical tree could be seen at a distance of 17 m from the tree. We also

assume that the troop cannot travel exactly in the direction it desires to go because

of the lack of suitable branches. So the chosen direction is modified in the model by

a small random angle.

Figure 28.1 shows that part of the model dealing with the location and movement

of the monkeys. Here, the state variables are the coordinates X and Y at which the

Fig. 28.1
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troop is located. For example, the X variable is initialized as a specific position,

such as the origin of the grid, and updated by ΔX.
The variables TREE X1, TREE Y1, and TREE X2 TREE Y2 draw the outline of

each of the trees present in the plane. VISIBILITY is the specified step distance and

it is used, after the trees are drawn, to calculate the total travel distance from the

starting point to the sighting point of the tree. The controller TARGET calculates

the relation of the troop to the tree circle of a visual influence of 17 m radius. When

this circle is reached, it is assumed that the troop can proceed by sight:

TARGET ¼ IF TIME > 16ð Þ AND R1 � 17ð Þ OR R2 � 17ð Þð Þ THEN 0 ELSE 1

ð28:1Þ

with R1 and R2 as the straight line distance from the troop to the center of tree 1 and

tree 2, respectively. R1 and R2 are defined by

R1 ¼ SQRT X� TREE X1ð Þ̂ 2þ Y� TREE Y1ð Þ̂ 2ð Þ ð28:2Þ
R2 ¼ SQRT X� TREE X2ð Þ^2þ Y� TREE Y2ð Þ^2ð Þ ð28:3Þ

The straight line distances, R1 and R2 from the troop to the center of each tree are

used for the calculation of the odor strength at the troop location. This calculation is

performed as shown in Fig. 28.2. This part of the model is based on information on

theWINDANGLEDEGREES fromwhichwe derive theWINDANGLE in radians,

counter-clockwise from the positive X axis. The WIND ANGLE is then used to

calculate the troop location coordinate relative to the tree 1 in terms of the plume.

Fig. 28.2

28.1 Model of Monkey Travels 231



X1 ¼ X� TREE X1ð Þ� COS WIND ANGLEð Þ
þ Y� TREE Y1ð Þ� SIN WIND ANGLEð Þ ð28:4Þ

Y1 ¼ Y� TREE Y1ð Þ� COS WIND ANGLEð Þ
� X� TREE X1ð Þ� SIN WIND ANGLEð Þ ð28:5Þ

X1 is measured parallel to wind, Y1 perpendicular to X1.

To determine troop movement, we need to further specify variables for fruit

ripeness, tree height, and wind speed and direction. The concentration of the odors

caused by each tree is calculated separately (CONC 1 and CONC 2). The basis for

this calculation is the air pollution stack emission equations. These are empirically

derived equations which give the dispersion of a pollutant such as sulfur dioxide

emitted from a chimney, depending on the chimney height, the wind speed, and

emission rate. The variables which begin with SIG. . ., X1, X2, Y1, Y2, RY, and RZ
are the elements of these equations. The vertical emission velocity is set at zero.

The corresponding part of the model is shown in Fig. 28.3.

The behavioral part of the model is shown in Fig. 28.4. First we add the odor

concentrations from the two trees to form the total concentration at the troop

location, CONCENTRATION. The problem here is to calculate the direction that

optimally points up the odor “mountain,” the direction of maximum odor increase.

Fig. 28.3
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The direction is to be calculated on the minimum necessary information: the

location and odor strength at three points. These three points are the current location

and the last two locations of the troop. The monkeys must remember the locations

and the odor concentrations at the last two points and compare them with their

current situation. They then have the minimum necessary information.

Exactly how the monkeys would figure which direction is the maximum ascent

up the odor mountain is not known of course, nor do we know how we would do it if

we were in the monkeys place. Perhaps each individual has a sort of “stereo”

olfactory system and with their two nostrils can detect odor gradients; perhaps

they sense these gradients by just moving their heads? Here we assume that they

develop a sense of the odor gradient by moving their entire body and refiguring the

gradient periodically. If we were to use odor to find its source, we could ascend the

odor mountain in the direction of steepest ascent but delete and not solve any

computer programs. Yet to mimic the monkey pattern, we assume that they do solve

the problem and we proceed with a mathematical solution. That solution requires

that we calculate the normal to the plane formed by the last two locations of the

troop and the current location. The projection of this normal vector onto the

horizontal plane, components N X and N Y, gives the direction of the steepest

descent. The opposite direction to this projection is the direction of steepest ascent,

or, more precisely, a local approximation to the true direction of steepest ascent.

The plane formed by these three points is approximately a plane tangent to the

odor mountain in the area of the three points. It is possible for the normal to point

down rather than up on certain occasions. This possibility requires the calculation

of a detector for the normal vector’s orientation, the N SENSOR (Fig. 28.5).

Fig. 28.4
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It is calculated from knowledge of the change in the directions taken in the past,

PHI D1 and PHI D2, the two previous directions which the troop has taken. Still

another possibility exists. The directions could be so accurate that the plane formed

is perpendicular to the X–Y plane. In this case, the direction of the normal vector

is ambiguous. Fortunately, we need to add a small random variation (RAND) to the

angle chosen for the next direction (PHI), and that variation nearly always prevents

the ambiguous case. On the rare occasion when the ambiguous case does form, the

troop will take a 90� turn to the right or left, randomly.

The model was “calibrated” to the best extent possible by comparing the

averaged field data to the trip distances travelled in the model. We devised a

CIRCULARITY measure which compares the distance actually travelled to the

straight line distance between the starting point and the tree. We adjusted

the random angle and visibility variables until the model circularity agreed with

the values found in the field. Unfortunately, we have no data on the wind speed or

direction in the canopy in the rain forest. We do have a reference on canopy wind

speeds in another rain forest and we used an approximate average daily value of

0.5 m/s at the upper canopy level for our model.

Sometimes, the monkeys in the field will be stopped by a wide stream as they

proceed in their search for food. In such cases they seem to abandon that search path

and start out on another. Such a situation is not covered by the present model. Nor is

the model sensitive to absolute odor levels. It is assumed in the model that they can

sense the slightest of odors and only relative odor strengths can influence their path.

After these brief calibrations, we are as ready as possible to test the model.

Fig. 28.5
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First we set up the troop at the center, lower edge of the X–Y plane, and turn the

emissions from the left tree off by setting its “ripeness” to zero. We set the wind at

0.5 m/s from the North. The results are shown in Fig. 28.6.

Next we turn the left tree on with the same odor emission rate as the right tree,

and run again. The results are shown in Fig. 28.7.

In the first case (Fig. 28.6), the troop starts out heading to the right of the tree but

gradually curves into the goal. With both trees emitting evenly (Fig. 28.7), the troop

starts out headed between the trees and rather suddenly turns up the odor “ridge”

Fig. 28.6

Fig. 28.7
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formed by the left tree and then proceeds along the ridge to that tree. Position the

troop close between the trees and you will see that the “ridge” effect is more

pronounced.

One other interesting result seems worth mentioning. If we plot the odor

concentration directly downwind of the tree, we find that, due to ground reflection

of the odor, the peak odor is at the canopy level only near the emitting tree. As one

moves away from that tree, the peak concentration falls both in intensity of course,

but also in height. So, for very distant fruit trees, the best place to be is not in the

canopy but down the trunk, perhaps half way to the ground. There is another

monkey species which travels with the Tamarin and which stays at about the

mid-height level of the tree, until the fruit tree is reached. These lower monkeys

are in a better position to direct the combined troop in the early stages of the search

for a distant tree with ripe fruit.

Although quite elaborate, our model has several shortcomings. The diffusion

equations are for a uniform medium, usually air. In the actual forest, we do not have

such a medium. The leaves and branches of the trees no doubt cause much more

rapid mixing than an air-only medium. The leaves are not uniformly distributed

vertically in the rain forest. Above the canopy, the model has a single medium

(clear air). How would this affect the readings in the forest? What about temper-

ature inversions caused by the forest? How would the model include such effects?

Perhaps the monkeys use a mixture of odor tracking and memory. How would the

memory effects be included? It is assumed that the monkeys can detect the

difference between under and over ripe fruit. How can this be modeled?

28.2 Monkey Travels Model Equations

ALTERNATOR(t) ¼ ALTERNATOR(t � dt) + (ALTERNATOR_RESET) * dt

INIT ALTERNATOR ¼ 1*RAND_1

INFLOWS:

ALTERNATOR_RESET ¼ �2*ALTERNATOR

PHI_D1(t) ¼ PHI_D1(t � dt) + (PHI + N_SENSOR_RESET � T1) * dt

INIT PHI_D1 ¼ 0 {Phi delayed.}

INFLOWS:

PHI ¼ IF (TIME > 16) AND (N_X>¼0) THEN ARCTAN(N_Y/N_X) + ALTER-

NATOR*(RAND+DEVIATION_ANGLE) ELSE IF (TIME>16) AND

(N_X<0) THEN ARCTAN(N_Y/N_X) + PI + ALTERNATOR*(RAND

+DEVIATION_ANGLE) ELSE 0 {The chosen angle for the next step.}

N_SENSOR_RESET ¼ IF TIME ¼15 THEN THETA ELSE 0

DOCUMENT: (TIME ‚â• 14) AND (TIME ‚â§ 15)

OUTFLOWS:

T1 ¼ PHI_D1

PHI_D2(t) ¼ PHI_D2(t � dt) + (T1 � T2) * dt

INIT PHI_D2 ¼ 0
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INFLOWS:

T1 ¼ PHI_D1

OUTFLOWS:

T2 ¼ PHI_D2

X(t) ¼ X(t � dt) + (ΔX � CLEAR_X) * dt

INIT X ¼ 0 {The X horizontal distance to the troop from the origin of the

designated space.}

INFLOWS:

ΔX ¼ IF TIME > 14 THEN VISIBILITY*COS(THETA)*TARGET ELSE IF

TIME ¼ 13 THEN INITIAL_X ELSE IF TIME <¼ 11 THEN (R*COS

(TIME) + TREE_X)/DT ELSE 0 {Changing the X location of the troop of

monkeys, looking for trees with ripe fruit.}

OUTFLOWS:

CLEAR_X ¼ IF TIME <¼ 12 THEN X/DT ELSE 0

Y(t) ¼ Y(t � dt) + (ΔY � CLEAR_Y) * dt

INIT Y ¼ 0 {The Y horizontal distance to the troop from the origin of the

designated space.}

INFLOWS:

ΔY ¼ IF TIME > 14 THEN VISIBILITY*SIN(THETA)*TARGET ELSE IF

TIME ¼ 13 THEN INITIAL_Y ELSE IF TIME <¼ 11 THEN (R*SIN(TIME)

+ TREE_Y)/DT ELSE 0 {Changing the y location of the troop of monkeys,

looking for trees with ripe fruit.}

OUTFLOWS:

CLEAR_Y ¼ IF TIME <¼ 12 THEN Y/DT ELSE 0

TRAVEL_DISTANCE(t)¼TRAVEL_DISTANCE(t� dt)+(STEP_DISTANCE)*dt

INIT TRAVEL_DISTANCE ¼ 0 {The distance travelled from the starting point of

the troop to the circle of influence of the tree.}

INFLOWS:

STEP_DISTANCE ¼ IF TIME >¼ 15 THEN VISIBILITY*DT ELSE 0

CIRCUITY ¼ (TRAVEL_DISTANCE+9)/(SQRT((TREE_X1�INITIAL_X)^2+

(TREE_Y1-INITIAL_Y)^2)�7.5)

CONCENTRATION ¼ CONC_1+CONC_2 {The combined odor concentration at

the canopy top at the current troop location.}

CONC_1 ¼ IF X1 > 0 THEN EXP(�.5*(Y1/SIG_Y1)^2)*EXP(�.5*(2*TREE_

HEIGHT/SIG_Z1)^2)/(2*PI*SIG_Y1*SIG_Z1)*RIPENESS_1/WIND_SPEED

ELSE 0 {plume and ground reflection conc at top of tree; ug/m3}

CONC_2 ¼ IF X2 > 0 THEN EXP(�.5*(Y2/SIG_Y2)^2)*EXP(�.5*(2*TREE_

HEIGHT/SIG_Z2)^2)/(2*PI*SIG_Y2*SIG_Z2)*RIPENESS_2/WIND_SPEED

ELSE 0 {See note in CONC 1}

CONC_D1 ¼ DELAY(CONCENTRATION,1)

DEVIATION_ANGLE ¼ PI/16

INITIAL_X ¼ 0 {Specified X coordinate of starting point for the troop in the

designated space.}

INITIAL_Y ¼ 0
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N_SENSOR ¼ IF (PHI_D2<PI) AND ((PHI_D1>PHI_D2) AND (PHI_D1<
(PHI_D2+PI))) THEN 1 ELSE IF (PHI_D2>¼PI) AND ((PHI_D1>PHI_D2)

OR (PHI_D1<(PHI_D2�PI))) THEN 1 ELSE �1 {Rel. angle sizes sets normal

up or down.}

N_X ¼ (�Δ_Y2*ΔCONC_1 + ΔCONC_2*Δ_Y1)*N_SENSOR {The projection

of the normal vector to the plane by the last two steps, on the X-Y plane. This is

the X component of the max. rise vector.}

N_Y¼ (�ΔCONC_2*Δ_X1 + Δ_X2*ΔCONC_1)*N_SENSOR {The y component

of the projection of the normal vector to the plane by the last two steps, onto the

X-Y plane. This is the y component of the max. rise vector}

R ¼ 17.5 {At this radius (meters), the fruit can be seen by the troop.}

R1 ¼ SQRT((X�TREE_X1)^2 + (Y�TREE_Y1)^2) {The straight line distance

from the troop to the center of tree 1.}

R2 ¼ SQRT((X�TREE_X2)^2 + (Y�TREE_Y2)^2) {The straight line distance

from the troop to the center of tree 2.}

RAND ¼ 2*PI*RANDOM(1,0)*.05*1

RAND_1 ¼ IF RANDOM(0,2) > 1 THEN 1 ELSE �1

RIPENESS_1 ¼ 0 {Specified fruit odor emission rate, ug/sec, from tree 1.}

RIPENESS_2 ¼ 7000 {Specified fruit odor emission rate, ug/sec, from tree 2.}

RY ¼ IF WIND_SPEED < 2 THEN .4 ELSE IF (WIND_SPEED >¼ 2) AND

(WIND_SPEED <¼ 5) THEN .36 ELSE .32

RZ ¼ IF WIND_SPEED < 2 THEN .4 ELSE IF (WIND_SPEED >¼ 2) AND

(WIND_SPEED <¼ 5) THEN .33 ELSE .22 {For the odor dispersion equation.

See SIG Y.}

R_Y ¼ IF WIND_SPEED < 2 THEN .9 ELSE IF (WIND_SPEED >¼ 2) AND

(WIND_SPEED <¼ 5) THEN .86 ELSE .78

R_Z ¼ IF WIND_SPEED < 2 THEN 2 ELSE IF (WIND_SPEED >¼ 2) AND

(WIND_SPEED <¼ 5) THEN .86 ELSE .78

SIG_Y1 ¼ IF X1 > 0 THEN RY*X1^R_Y ELSE 0 {A term in the odor dispersion

equation.}

SIG_Y2 ¼ IF X2 > 0 THEN RY*X2^R_Y ELSE 0 {A term in the odor dispersion

equation.}

SIG_Z1 ¼ IF X1 > 0 THEN RZ*X1^R_Z ELSE 0 {A term in the odor dispersion

equation.}

SIG_Z2 ¼ IF X2 > 0 THEN RZ*X2^R_Z ELSE 0 {A term in the odor dispersion

equation.}

TARGET ¼ IF (TIME > 16) AND ((R1 <¼ 17) OR (R2 <¼ 17) ) THEN 0 ELSE

1 {Senses relation of troop to tree circle of visual influence (17 m. radius). When

this circle is reached, it is assumed that the troop can proceed by sight.}

THETA ¼ IF (TIME >¼ 14) AND (TIME <¼ 15) THEN -2*PI*RANDOM(1,0)

ELSE PHI

TREE_HEIGHT ¼ 20 {Specified height of the ripe fruit and canopy of tree,

meters.}

TREE_X¼ IF TIME< 6 THEN TREE_X1 ELSE IF TIME< 12 THEN TREE_X2

ELSE 0
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TREE_X1 ¼ �45 {X location of the first tree with ripe fruit in the general

coordinate system for the designated space.}

TREE_X2 ¼ 45 {X coordinate of tree 2 in the designated space.}

TREE_Y¼ IF TIME< 6 THEN TREE_Y1 ELSE IF TIME< 12 THEN TREE_Y2

ELSE 0

TREE_Y1¼ 90 {Y location of the first tree w/ripe fruit in the general coord. system

for the designated space.}

TREE_Y2 ¼ 90 {Y coordinate of tree 2 in the designated space.}

VISIBILITY¼ IF TIME<¼16 THEN .1 ELSE 1 {Specified step rate for the troop.

2 meters per minute. Actual Tamarin data from P. Garber: 300 meter max.

distance or 86 minute max. travel time. Avg. travel time ¼ 26 min.}

WIND_ANGLE ¼ WIND_ANGLE_DEGREES*PI/180 {wind angle in radians,

counter-clockwise from + x axis.}

WIND_ANGLE_DEGREES ¼ -90 {Specified wind angle, degrees; counter-

clockwise from the + x axis, from the origin.}

WIND_SPEED ¼ 0.5

X1 ¼ (X�TREE_X1)*COS(WIND_ANGLE) + (Y�TREE_Y1)*SIN

(WIND_ANGLE) {The troop location coordinate, relative to tree 1, in terms

of the plume; X1 parallel to wind, Y1 perpendicular to X1.}

X2 ¼ (X�TREE_X2)*COS(WIND_ANGLE) + (Y�TREE_Y2)*SIN

(WIND_ANGLE) {The troop location coordinate, relative to tree 2, in terms

of the plume; X2 parallel to wind, Y2 perpendicular to X2.}

Y1 ¼ (Y � TREE_Y1)*COS(WIND_ANGLE) � (X � TREE_X1)*SIN

(WIND_ANGLE) {The troop location coordinate, relative to the tree 1, in

terms of the plume; X1 parallel to wind, Y1 perpendicular to X1.}

Y2 ¼ (Y�TREE_Y2)*COS(WIND_ANGLE) � (X�TREE_X2)*SIN

(WIND_ANGLE) {The troop location coordinate, relative to tree 2, in terms

of the plume; X2 parallel to wind, Y2 perpendicular to X2.}

Δ_X1 ¼ X�DELAY(X,1) {See note ΔY2.}
Δ_X2 ¼ DELAY(Δ_X1,1) {See note ΔY2.}
Δ_Y1 ¼ Y�DELAY(Y,1)

Δ_Y2 ¼ DELAY(Δ_Y1,1) {The Y location of the troop 2 steps ago. We now have

3 odor readings at 3 known locations. This forms a plane, the normal to which

gives us the local approximation of the direction of steepest ascent up the

odor hill.}

ΔCONC_1 ¼ CONCENTRATION�CONC_D1

ΔCONC_2 ¼ DELAY(ΔCONC_1,1)

Reference

1. Garber P, Hannon B (1993) Modeling monkeys: a comparison of computer generated and

empirical measures. Int J Primatol 14:827–852
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Chapter 29

Biosynchronicity

With Heav’nly touch of instrumental sounds In full harmonic
number joind.

(1667 Milton)

29.1 Firefly Model

We know from the observation of fireflies in India that whole trees containing tens of

thousands of these insects begin to blink in unison shortly after dusk [1]. Casual

observation of the sounds of nighttime insects around the common suburban home

shows us that audio-synchronous behavior occurs. We assume some group reproduc-

tion advantage is conferred by such synchrony. The pacemakers in the heart of every

mammal are really the synchronous pulsing of thousands of special cells, yielding

sufficient signal to cause a muscle action. What process allows such synchronization?

How can these organisms and even cells conform to each other’s signal?

Apparently, Charles Peskin of New York University first successfully formu-

lated a model of this process. Nearly any electrical engineer would understand the

process immediately, as he began with an electrical analogy: a resistance and a

capacitor in parallel, subjected to a steady electrical current input. The voltage

builds on the capacitor to a limit when it suddenly discharges and the voltage drops

quickly to zero, only to repeat the process. This system is analogous to a weight

hanging on a damper, subjected to a constant extending force. When the damper

reaches its limiting extension the velocity of the weight becomes zero.

In the model, we represent four fireflies by four cells of a spatial model. The state

variable for each cell is the “voltage” V—or brightness—of the cell. We choose

different starting values for each cell in order to get the cells initially out of phase.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_29,
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When the TOTAL V—total voltage, or in our case the brightness of the combined

flashes—exceeds a given level, each cell boosts its own voltage by a small amount

(BOOST STRENGTH). That boost voltage hastens the time for the receiver to

reach its peak and discharge. Assuming the parameters are within certain limits, this

process generates an outcome where cells gradually merge into synchronous firing.

Even if the cells are significantly different, they can still be driven into syn-

chrony but the reactions times of the cells (DT) must be shorter, the booster signal

strength must be larger, and the resulting synchronous frequency is greater. These

requirements probably mean that the organisms must be more highly developed and

more energy demanding if they are not identical and therefore, the organic forms of

these cells would tend to become genetically more similar through time, at least

with regard to their flashing mechanisms. Such an evolutionary direction would

tend to reduce or even avoid the biological cost of faster reaction times and high

strength booster signals.

In this model we represent four such systems subjected to a common steady

INPUT CURRENT. Reactance (R) is the value of the resistance constant and

Capacitance (C) is the measure of the capacitor constant (Fig. 29.1).

The governing differential equation for each firefly is a simple linear one:

C� dV=dtþ V=R ¼ INPUT CURRENT ¼ 0:15 ð29:1Þ

that is solved for each of the four such cells.

As shown in Figs. 29.2 and 29.3, the individual and TOTAL V is erratic at first

but grows in size and fluctuation as the cells become synchronized.

Experiment with this model. See what the first DT and BOOST STRENGTH

settings give when the cells are not the same. Change the input current level. All

sorts of interesting results can occur. You should even find, as Strogatz and Stewart

[1] report, that there are a variety of steady conditions where the peaks are not

synchronous. All sorts of interesting possibilities lurk in the dynamics of these two

interconnected pulsing cells.

Think of those thousands of fireflies. Are each of them interconnected to only

one other? Or does each connect to only its nearest neighbors, in a kind of regional

association, with the regions eventually acting as a single unit that must swing

somehow into synchrony with other regional units—a kind of hierarchy of syn-

chronous behavior? Or does each somehow average the peak of the signal from the

whole and adjust its own flash initiation? Add more cells and try out these and

perhaps other ideas. You will find no doubt that this glorious process of nature is not

as complex a process as you might have thought.

We may imagine that the group flashing is the behavior of individuals whose

reproductive chances are enhanced by synchronous behavior—to attract distant

mates into the proximity from a long distance. But what happens when the attracted

mate is close? The appeal of belonging to a group is lost—the act of mating is not a

many-to-one relationship, it is the ultimate in one-to-one behavior. Maybe those in

the vicinity of attractee stop flashing once they realize the situation. Maybe, once

those locals notice the newcomer of the opposite sex, only these locals begin to
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Fig. 29.2
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flash synchronously with that of the attractee, while the bulk of the group continues

to flash in synchrony. With enough attractees the group synchrony falls apart,

destroying the potential for success.

29.2 Biosynchronicity Model Equations

V_4(t) ¼ V_4(t � dt) + (ΔV_4) * dt

INIT V_4 ¼ 0.02

INFLOWS:

ΔV_4 ¼ if (V_4 <¼ .05) then (INPUT_CURRENT�V_4/R4)/C4+BOOST else

�V_4/dt

V_1(t) ¼ V_1(t � dt) + (ΔV_1) * dt

INIT V_1 ¼ 0.01

INFLOWS:

ΔV_1 ¼ if V_1<¼.05 then (INPUT_CURRENT�V_1/R1)/C1+BOOST else

�V_1/dt

V_2(t) ¼ V_2(t � dt) + (ΔV_2) * dt

INIT V_2 ¼ 0.015

INFLOWS:

ΔV_2 ¼ if (V_2 <¼ .05) then (INPUT_CURRENT�V_2/R2)/C2+BOOST else

�V_2/dt

V_3(t) ¼ V_3(t � dt) + (ΔV_3) * dt

INIT V_3 ¼ 0

Fig. 29.3
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INFLOWS:

ΔV_3 ¼ if V_3<¼.05 then (INPUT_CURRENT�V_3/R3)/C3+BOOST else

�V_3/dt

BOOST ¼ IF (TOTAL_V > .18) THEN BOOST_STRENGTH ELSE 0

BOOST_STRENGTH ¼ .001/dt

C1 ¼ 3

C2 ¼ 3

C3 ¼ 3

C4 ¼ 3

INPUT_CURRENT ¼ 0.15

R1 ¼ 0.4

R2 ¼ 0.4

R3 ¼ 0.4

R4 ¼ 0.4

TOTAL_V ¼ V_1+V_2+V_3+V_4

Reference

1. Strogatz S, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269

(6):102–109
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Chapter 30

Plant–Microbe Interaction

The soil is the great connector of lives, the source and destina-
tion of all. It is the healer and restorer and resurrector, by which
disease passes into health, age into youth, death into life. With-
out proper care for it we can have no community, because
without proper care for it we can have no life.

(Wendell Berry, The Unsettling of America: Culture and Agriculture)

30.1 Plant–Microbe Interaction Model

Soil microbial communities actively interact with terrestrial plant communities, and

they are documented to influence the community structure of the plant communi-

ties. We use here the soil feedback model introduced by Bever [1] to predict how

soil microbes may influence plant community structure by providing beneficial or

detrimental feedbacks. Figure 30.1, from Bever [1] shows the structure of the soil

feedback model. NA and NB represent the populations of two plant species, and SA
and SB represent the soil microbe communities that associate with A and B

respectively. The effect of plant A on its soil community SA is l, and the effect of

plant B on its soil community is ν. The effect from soil communities SA to plant A is

represented by αA, the effect to plant B is represented by αB. Similarly, the effect

from soil community B on plants A and B are represented by βA and βB respec-

tively. The competition between plant species is assumed to follow the Lotka-

Volterra model (see Chap. 2 for basic illustrations). The competition effect of

species A on species B is CA, and the competition effect of species B on species

A is CB.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_30,

© Springer International Publishing Switzerland 2014
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The corresponding STELLA model is shown in Fig. 30.2. In the model the

feedback from soil community to the plants is quantified by the interaction coeffi-

cient Is, which in turn is defined as

Is ¼ αA þ βB � αB � βA ð30:1Þ

The direction of interaction coefficient, Is, captures co-existence of two plant

species. Additionally, in natural systems, the succession of plant communities may

be affected by the delayed feedback effect from the soil communities [2].

With the assumption that both plant and microbe communities start with an even

relative abundance of 0.5, we change the feedback coefficient to arrive at alternate

co-existence patterns of plant A and plant B. Data used in this model is from the

paper published by Bever [1], van Wesenbeeck et al. [3] and Yamazaki et al. [4].

Figures 30.3 and 30.4 show the plant community dynamics without the soil com-

munity feedback (Is¼ 0). As shown in Fig. 30.1, plant A goes extinct in the given field

within 50 years. This is because of the fact that we assumed, for this model run, plant B

to be a stronger competitor (CA¼ 0.885, KA¼ 100; CB¼ 0.98, KB¼ 120).

What are the effects of strong negative feedbacks on the coexistence of plant A

and plant B? To answer this question we first adde a strong negative soil community

feedback (Is¼ �0.43) to the system (Figs. 30.5 and 30.6). Instead of extinction of

one species, plant A and plant B take turns to dominant the system. The dynamics of

the relatively dominant soil microbial communities changes over time, Fig. 30.5).

When we increase the strength of feedback from strongly negative (Is¼ �0.43)

to strongly positive (Is¼ 0.43), we observe that the plant community dynamics

quickly changes from one where plant A and B take turns to dominant to one where

plant A becomes distinct (Fig. 30.7). As the feedback strength becomes more

positive, plant A goes to extinction more quickly.

So far, the model does not allow for any randomness in the system. How may the

randomness of the growth coefficients RA and RB, the carrying capacities KA and

KB, and the delayed effect change the coexistence of plants A and B? To answer

this question we introduced randomness to the growth coefficients RA and RB

(Fig. 30.8), and to the carrying capacities KA and KB (Fig. 30.9) separately.

NA

SA

NB

SB

CA

CB

aA
1

bA
aB

bB

n

Fig. 30.1
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As shown in Fig. 30.8, where RA¼RANDOM(0.5,0.9) and RB¼RANDOM

(0.3,0.7), adding randomness to the growth factors barely changes the plant com-

munity dynamics. In contrast, adding randomness to the carrying capacities brings

in a lot of fluctuation in the local stable points, and also slows down the pace of

plant community changes. This is shown in Fig. 30.9, where KA¼RANDOM

(80,120), and KB¼RANDOM(110, 130).

For some final experimentation with our model, we assume that soil communi-

ties only have a 1-year delayed effect on the plant seeds (Fig. 30.10). Adding this

delay slows down the plant community changes, and also affects the way in which

the community changes over time.

Fig. 30.2
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In this model, soil communities are stable systems. In reality, however, soil

communities may be dynamically changed, which consequently influences both

soil community and plant species. For example, one common impact on soil

communities comes from microbial immigration and dispersion. Dispersion may

weaken the influence of plants on soil microbes, then our model should underesti-

mate the delay brought by randomness. Does change of soil community over time

affect plant coexistence? The model above provides a basis to answer this question.

You can also use the model to capture the density dependence of feedback effect.

Fig. 30.3

Fig. 30.4
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The effect of soil community to plant is dependent on the density of plant species.

For example, the negative effect of a pathogen is expected to be increased as the

density of plant is increased, or in other words, the sensitivity of plants to pathogens

is increased when their relative abundance is high [4].

Fig. 30.5

Fig. 30.6
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Fig. 30.7

Fig. 30.8

254 30 Plant–Microbe Interaction



Fig. 30.9

Fig. 30.10
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30.2 Plant–Microbe Interaction Model Equations

NA(t) ¼ NA(t � dt) + (DEL_NA) * dt

INIT NA ¼ 10

INFLOWS:

DEL_NA ¼ RA*NA*(1+ALPHA_A*Delay(SA, 1)+BETA_A*Delay(SB, 1)�
(NA+CB*NB)/KA)*DT

NB(t) ¼ NB(t � dt) + (DEL_NB) * dt

INIT NB ¼ 10

INFLOWS:

DEL_NB ¼ RB*NB*(1+ALPHA_B*Delay(SA, 1)+BETA_B*Delay(SB, 1)�(NB

+CA*NA)/KB)*DT

SA(t) ¼ SA(t � dt) + (DEL_SA) * dt

INIT SA ¼ 0.5

INFLOWS:

DEL_SA ¼ SA*(1�SA)*(L*NA/(NA+NB)�V*NB/(NA+NB))*DT

SB(t) ¼ SB(t � dt) + (DEL_SB) * dt

INIT SB ¼ TOTAL_S�SA

INFLOWS:

DEL_SB ¼ �DEL_SA

ALPHA_A ¼ �0.03

ALPHA_B ¼ 0.1

BETA_A ¼ 0.1

BETA_B ¼ �0.2

CA ¼ 0.885

CB ¼ 0.98

IS ¼ ALPHA_A�ALPHA_B�BETA_A+BETA_B

KA ¼ 100

KB ¼ 120

L ¼ 1

RA ¼ 0.7

RB ¼ 0.5

TOTAL_S ¼ 1

V ¼ 0.8
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Chapter 31

Wildebeest

There is another species of wild ox, called by the natives gnoo.

(G. Forster, 1777)

31.1 Wildebeest Model

The Wildebeest model is developed for a wildlife park on African grassland.

Wildebeest are eaten by lions, and shot by park rangers attempting to manage the

ecosystem. The data on the number of lions in the park is thought to be between

400 and 600. We choose 500 for the initial runs of the model. The rate at which

wildebeest are killed by the lions varies between 4.5 and 3.8 wildebeest per lion in

the first 6 years of the data (Fig. 31.1).

The wildebeest were shot by the park rangers during the first 4 years. The calf

survival rate varies from 0.35 to 0.48 during the first 6 years (Fig. 31.2). Females

constitute 70 % of the total population. The first 6 years have population census

estimates for the calves, yearlings, 2-year olds, and adults (Fig. 31.3).

The lion population of our model should depend on the availability of food,

which is in our case is mostly the non-calf population of wildebeest. This depen-

dency is given as shown in Fig. 31.4. Note that it is critical here to specify the

graphical function in ways that extrapolate from the last entry on the non-calf

population to higher, rather than constant, lion numbers.

Given the population of YEARLINGS, TWO YEAR OLDS and ADULTS we

can calculate an average death rate assumed to apply to these “cohorts”. This death

rate is assumed to be distinct from that for calves (Fig. 31.5).

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_31,

© Springer International Publishing Switzerland 2014
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Fig. 31.1

Fig. 31.2



Fig. 31.3

Fig. 31.4



The death rate for calves is calculated from data on calf survival rates Q as (1-Q).

We fit the data (see [1]) by adjusting the calf survival rate Q downward in the early

years for the given estimates. This is done in Fig. 31.6.

We are now ready to put the pieces of our model together to assess changes in the

wildebeest population given the influences of lions and rangers. Specifically, the

remaining population cohort model for wildebeest is shown in Fig. 31.7.

Fig. 31.5

Fig. 31.6
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One can now change all of the parameters in turn to find the sensitivity of each,

i.e., the kill rate, the number of lions, the calf survival rate, the fecundity coefficients

BETA and B for the 2 year olds and for adults, respectively, and the female fraction.

Note well how the Dying of each stock is subtracted from the TIME flows. This

is done since this is a model of aging and the two alternatives die or advance to the

next age group. This is always true in modeling populations where the independent

variables include age cohort. It is not true for example in water flowing from a

reservoir where the flow options are evaporation and release. . .the water does need
to move on. It is true in say the hatching of eggs: in any model time period the egg

may die, hatch, or continue to mature. In these cases, the dying flows (evaporation,

egg death) are not subtracted from the advancing flow (water release, hatching). In

general, the aging flow is the donor stock minus the dying rate, with this difference

divided by the residence time in the donor.

The results of our model are shown in Figs. 31.8 and 31.9. Total wildebeest

numbers, as calculated in the model, and available data on the population size are

compared in Fig. 31.8. The individual cohort numbers are shown in Fig. 31.9. That

figure also contains information on the corresponding lion population, which

stabilizes as well.

Run the model yourself and test for the sensitivity of the parameters. How would

you modify this model to correct the lion population and eating rate to bring the

wildebeest herd to a 5,000 animal steady state?

Lions are just one factor in the system affecting the wildebeest population. The

amount of rainfall influences grass height during the calving season which in turn

influences the predation rate on calves. Making predictions about the rainfall

Fig. 31.7
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variations can determine the expected appropriate cropping rates for wildebeests

and lions. Introduce seasonal rainfall into your model and find a (non-zero) lion

population and eating rate that prevent the wildebeest population from crashing.

31.2 Wildebeest Model Equations

ADULTS(t) ¼ ADULTS(t � dt) + (TIME_3 � DIE_3) * dt

INIT ADULTS ¼ 6440 {Individuals}

Fig. 31.9

Fig. 31.8
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INFLOWS:

TIME_3 ¼ TWO_YEAR_OLDS�DIE_2 {Net graduation of the two year olds to

adulthood. Individuals per Time Period}

OUTFLOWS:

DIE_3 ¼ ADULTS*PRELIM_FRAC_DIE {Individuals per Time Period}

CALVES(t) ¼ CALVES(t � dt) + (BIRTHS � TIME_1 � DIE_0) * dt

INIT CALVES ¼ 3640 {Individuals}

INFLOWS:

BIRTHS ¼ (BETA*TWO_YEAR_OLDS + B*ADULTS)*.7 {.7 is the fraction

of the adult population which is female. Fecundity is greater among the adults.

Individuals per Time Period}

OUTFLOWS:

TIME_1 ¼ CALVES � DIE_0 {Individuals per Time Period}

DIE_0 ¼ (1 - Q)*(CALVES) {The survival rate q improves with time, reducing

the death rate of the calves. Individuals per Time Period}

TWO_YEAR_OLDS(t) ¼ TWO_YEAR_OLDS(t � dt) + (TIME_2 � TIME_3 �
DIE_2) * dt

INIT TWO_YEAR_OLDS ¼ 1680 {Individuals}

INFLOWS:

TIME_2¼ YEARLINGS�DIE_Y {The net number of yearlings graduating to two

year olds. Individuals per Time Period}

OUTFLOWS:

TIME_3 ¼ TWO_YEAR_OLDS�DIE_2 {Net graduation of the two year olds to

adulthood. Individuals per Time Period}

DIE_2 ¼ TWO_YEAR_OLDS*PRELIM_FRAC_DIE {Individuals per Time

Period}

YEARLINGS(t) ¼ YEARLINGS(t � dt) + (TIME_1 � TIME_2 � DIE_Y) * dt

INIT YEARLINGS ¼ 2240 {Individuals}

INFLOWS:

TIME_1 ¼ CALVES � DIE_0 {Individuals per Time Period}

OUTFLOWS:

TIME_2¼ YEARLINGS�DIE_Y {The net number of yearlings graduating to two

year olds. Individuals per Time Period}

DIE_Y ¼ YEARLINGS*PRELIM_FRAC_DIE {Individuals per Time Period}

B ¼ .92 {Given adult female fecundity. Births per Female}

BETA ¼ .3 {Given two year old female fecundity. Births per Female}

NONCALF_POP ¼ YEARLINGS + TWO_YEAR_OLDS + ADULTS

PRELIM_FRAC_DIE ¼ WB_DIE/NONCALF_POP {A death rate assumed to

apply to yearlings, two year olds and adults. Individuals per Individuals per

Time Period}

TOTAL_WB ¼ CALVES+NONCALF_POP {Individuals}

WB_DIE ¼ ( WB_PER_LION*LIONS + CROPPING*1) {The number of wilde-

beest eaten and shot in the game park per year.}
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CROPPING ¼ GRAPH(TIME)

(0.00, 572), (1.00, 550), (2.00, 320), (3.00, 78.0), (4.00, 0.00), (5.00, 0.00), (6.00,

0.00), (7.00, 0.00), (8.00, 0.00), (9.00, 0.00), (10.0, 0.00), (11.0, 0.00), (12.0,

0.00), (13.0, 0.00), (14.0, 0.00), (15.0, 0.00), (16.0, 0.00), (17.0, 0.00), (18.0,

0.00), (19.0, 0.00), (20.0, 0.00.

LIONS ¼ GRAPH(NONCALF_POP)

(0.00, 0.00), (680, 0.00), (1360, 20.0), (2040, 40.0), (2720, 40.0), (3400, 100),

(4080, 170), (4760, 310), (5440, 430), (6120, 460), (6800, 490.

Q ¼ GRAPH(TIME)

(0.00, 0.3), (1.00, 0.3), (2.00, 0.3), (3.00, 0.4), (4.00, 0.45), (5.00, 0.48), (6.00,

0.48), (7.00, 0.48), (8.00, 0.48), (9.00, 0.48), (10.0, 0.48), (11.0, 0.48), (12.0,

0.48), (13.0, 0.48), (14.0, 0.48), (15.0, 0.48), (16.0, 0.48), (17.0, 0.48), (18.0,

0.48), (19.0, 0.48), (20.0, 0.48.

TOTAL_WB_DATA ¼ GRAPH(time)

(0.00, 14000), (1.00, 11800), (2.00, 10600), (3.00, 8000), (4.00, 7700), (5.00, 7200),

(6.00, 6700.

WB_PER_LION ¼ GRAPH(TIME)

(0.00, 4.50), (1.00, 4.50), (2.00, 4.50), (3.00, 3.30), (4.00, 3.30), (5.00, 3.30), (6.00,

3.30), (7.00, 3.30), (8.00, 3.30), (9.00, 3.30), (10.0, 3.30), (11.0, 3.30), (12.0,

3.30), (13.0, 3.30), (14.0, 3.30), (15.0, 3.30), (16.0, 3.30), (17.0, 3.30), (18.0,

3.30), (19.0, 3.30), (20.0, 3.30.

Reference
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Chapter 32

Nicholson–Bailey Host–Parasite Interaction

You knot of Mouth-Friends:..Most smiling, smooth, detested
Parasites.

(Shakespeare, Timon of Athens, 1607)

32.1 Nicholson–Bailey Host–Parasitoid Model

In Chap. 26 we modeled the spread of a parasitic infection in an insect population of

two life stages. The focus of that model was the spread of the infection. Therefore,

we did not pay any explicit attention to the fate of the parasitoid. In this chapter

however, we model explicitly the interactions between the host and the parasitoid

populations. Rather than setting up our model in terms of population sizes, we

specify host–parasitoid interactions in terms of population densities. What follows

here closely mirrors prior modeling by Ederstein-Keshet [1] and Brown and

Rothery [2].

In order to model the host–parasitoid interactions, we abstract away from the fact

that only specific lifecycle stages exhibit those interactions. After you worked

through this chapter, you may want to refine the model to account for the fact

that, for example, adult parasitoids lay their eggs in the pupae of hosts, but not in the

eggs of their hosts or with the larvae or adults.

Denote, respectively, H(t) and P(t) as the host and parasitoid densities in time

period t, and F(H(t), P(t)) as the fraction of hosts that is not parasitized. Then

H tþ 1ð Þ ¼ λ � H tð Þ � F H tð Þ, P tð Þð Þ ð32:1Þ

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_32,

© Springer International Publishing Switzerland 2014

267

http://dx.doi.org/10.1007/978-3-319-05615-9_26
www.iseesystems.com/modelingdynamicbiologicalsystems


P tþ 1ð Þ ¼ C � H tð Þ � 1� F H tð Þ, P tð Þð Þ½ � ð32:2Þ

where λ(H(t)) is the host growth rate and C is the parasitoid fecundity.

Let us assume that the fraction of hosts that become parasitized depends on the

density-dependent rate of encounter of parasitoids and hosts. Encounters occur

randomly, allowing us to invoke the law of mass action that we already discussed

in Chaps. 6 and 21. Accordingly, the number of encounters of hosts HE, with

parasitoids is

HE tð Þ ¼ A � H tð Þ � P tð Þ ð32:3Þ

where A is the searching efficiency of the parasitoids.

Unlike the models of the spread of a disease from an infected to a nonimmune

population, subsequent encounters of individuals in the two populations do not alter

the rate at which parasitoids are propagated. Therefore, we need to modify the law of

mass action to account for the fact that only the first encounter of hosts and

parasitoids is significant in propagating the parasitoid. Once a host carries the

parasitoid’s eggs, subsequent encounters with parasitoids will not change the number

of parasitoid progeny that hatch from the host. We need only to distinguish between

hosts that had no encounter and hosts that had at least one encounter with parasitoids.

The Poisson distribution describes the occurrence of such discrete, random

events as encounters of hosts and parasitoids. We can make use of the Poisson

probability distribution to calculate the probability that there is no attack of

parasitoids on a host within a certain time period. In general, therefore

P Xð Þ ¼
EXP �HE tð Þ

H tð Þ
� �

HE tð Þ
H tð Þ

� �X

X!
ð32:4Þ

is the probability of X attacks. This probability depends on the average number of

attacks in the given time interval, HE/H. From Eq. (32.3) we know

HE tð Þ=P tð Þ ¼ A � P tð Þ ð32:5Þ

Thus, for zero attacks by the parasitoids, Eq. (32.4) yields?

P 0ð Þ ¼ EXP �A � P tð Þð Þ A � P tð Þð Þ0
0!

¼ EXP �A � P tð Þð Þ � 1
1

¼ EXP �A � P tð Þð Þ ð32:6Þ

Equations (32.1) and (32.2) can therefore be re-written as

H tþ 1ð Þ ¼ H tð Þ � λ � EXP �A � P tð Þð Þ ð32:7Þ

P tþ 1ð Þ ¼ C � H tð Þ � 1� EXP �A � P tð Þð Þ½ � ð32:8Þ
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Let us also assume that without parasitoids, the hosts will grow toward a carrying

capacity K set by the environment. To capture growth of the host population up to a

density H(t)¼K and decline of the host population for H(t)>K, we replace in

Eq. (32.7) the growth rate λ(H(t)) with

λ ¼ EXP R � 1� H tð Þ
K

� �� �
ð32:9Þ

where R is the maximum host growth rate. Thus, the equation governing the size of

the host population in time t + 1 becomes

H tþ 1ð Þ ¼ H tð Þ � EXP R � 1� H tð Þ
K

� �
� A � P tð Þ

� �
ð32:10Þ

and after subtracting the respective state variables in time period t from Eqs. (32.8)

and (32.10), we have a set of differential equations that capture the change of

host and parasitoid densities from time period t to t + 1:

ΔH tð Þ ¼ H tð Þ � EXP R � 1� H tð Þ
K

� �
� A � P tð Þ

� �
� H tð Þ ð32:11Þ

ΔP tð Þ ¼ C � H tð Þ � 1� EXP �A � P tð Þð Þ½ � � P tð Þ ð32:12Þ

The complete STELLA model is shown in Fig. 32.1. We can now see the

dynamics that it exhibits. These equations describing changes in the host and parasit-

oid densities can yield a variety of results, from the production of steady-state

Fig. 32.1
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conditions for the host and parasitoid, to their lock in a limit cycle, to chaos. Chaotic

system behavior is discussed in more detail in Part VII of the book.

The result in Figs. 32.2, 32.3, and 32.4 is the product of the parameter choices

and initial conditions in Table 32.1, and a DT¼ 1.

Try reducing the DT. For the graphs above it is set at one. A smaller DT fetches a

completely different answer. What is going on here? Is the DT of 1.00 required by the

host or the parasitoid? The Nicholson–Bailey model views t¼ 1 as one generation

and all the dynamics for one DT go on inside that time period of one. It is as though

Fig. 32.3

Fig. 32.2
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the whole new generation of the two populations is formed just before the beginning

of that generation. So in the sense of this model, a DT less than one has no meaning.

Do a sensitivity analysis on the initial values of H and P, on R, A, and K.

We have modeled in this chapter one type of species interaction that is almost

exclusively found among insects. Typically, both the parasitoid and host have a

number of lifecycle stages—eggs, larvae, pupae, and adults—and their interaction

is limited to a subset of these. Can you modify the model to account for the fact that

it is typically only the larvae of the host that get parasitized by adult parasitoids?

How does this disaggregation of the parasitoid and host population affect your

results? Can you find parameters and initial values that generate alternatively steady

state, limit cycles, or chaos? What is the appropriate DT to use here and how are the

results affected by its choice?

32.2 Nicholson–Bailey Host–Parasitoid Model Equations

H(t) ¼ H(t � dt) + (ΔH) * dt

INIT H ¼ 10

Table 32.1 Parameter

choices and initial

conditions (DT¼ 1)

Graph Description R A K H(t¼ 0) P(t¼ 0)

1 Steady state 0.50 0.20 14.5 10.00 1.00

2 Limit cycle 2.00 0.20 21.5 10.00 1.00

3 Chaos 2.65 0.20 25.0 10.00 1.00

Fig. 32.4
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INFLOWS:

ΔH ¼ H*EXP(R*(1�H/K)-A*P)�H

P(t) ¼ P(t � dt) + (ΔP) * dt

INIT P ¼ 1

INFLOWS:

ΔP ¼ C*H*(1-EXP(�A*P))�P

A ¼ .2

C ¼ 1

K ¼ 14.5

R ¼ .5
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Chapter 33

Diseased and Healthy Immigrating Insects

And migrant tribes these fruitful shorelands hail.

(Joel Barlow, 1807, The Columbiad, ii. 178)

33.1 Immigrating Insects Model

This chapter builds on themodels developed inChap. 26 by distinguishing two cohorts

of a population infected with a disease. The two populations modeled here are insects

that suffer from a disease that increases mortality for the infected nymphs and adults

and also decreases their egg-laying rate. Unlike the previous chapters we assume here

two populations of insects, living in two fields. One of the fields has generally better

living conditions than the other, although the current year’s carrying capacities are

randomly generated and there is some overlap in the ranges within which the carrying

capacity fluctuates. Carrying capacity has a direct effect on birth rates.

The carrying capacities of the two fields are defined as

K1¼ IF CARRY R1 > :666 THEN 2

ELSE IF CARRY R1 < :333 THEN :5
ELSE 1 ð33:1Þ

and

K2¼ IF CARRY R2 > :666 THEN 4

ELSE IF CARRY R2 < :333 THEN 1

ELSE 2 ð33:2Þ

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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respectively, with CARRY R1 and CARRY R2 as random numbers between

0 and 1. These random numbers are calculated in the following module with

R COUNT1 ¼ IF MOD TIME; 52ð Þ
¼ 0 THEN RANDOM 0; 1ð Þ=DT ELSE 0 ð33:3Þ

and

R COUNT2 ¼ IF MOD TIME; 52ð Þ
¼ 0 THEN RANDOM 0; 1ð Þ=DT ELSE 0: ð33:4Þ

As before, we make use of the MOD function here to set up a recurring counter.

Note that with some DT values, whose fractional representation does not have n^2

in the denominator, STELLA rounds the remainder in the MOD function; so the

re-starting values of R COUNT1 and R COUNT2 for each new year are not exactly

zero (Fig. 33.1).

When over-crowding develops, healthy adult insects leave their home field and

join the other population. Furthermore, it is assumed that 10 % of healthy adults

migrate under all circumstances. Changes in population sizes are no longer only

dependent on births and on deaths but additionally on migration.

The model is composed of the following additional modules (Figs. 33.2, 33.3,

and 33.4). The first captures the population dynamics of healthy insects in the first

field. The structure and workings of this module are analogous to the ones outlined

in Chap. 26 with the additional feature of migration from and to that region.

The second module (Fig. 33.3) is set up to calculate the change in nymph and

adult population in field 1 that are affected by the disease.

A virtually identical second set of these modules capture the dynamics of the

populations in field 2. Parameters relevant to both healthy and diseased insects in

both fields are calculated in the following modules (Fig. 33.3). They include

• A calculation of the total number of adults in each fields, ALL ADULTS 1 and

ALL ADULTS 2;

• The ratio of the total number of adults in each region to the carrying capacity of

the respective region, FRXNL CAP1 and FRXNL CAP2;

• Experimental maturation times for healthy and diseased insects, Tx1 H, Tx1 D;

• Model survival fractions MxSF H, MxSF D;

Fig. 33.1
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• Experimental laying rates BR H, BR D;

• Experimental daily adult survival fractions per stage, ExSF H , ExSF D.

The model rates are calculated from the experimental data using the functions

discussed in Chaps. 26 and 27.

Fig. 33.2

Fig. 33.3
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Figure 33.5 shows the combined result of the population dynamics due to natural

increases and deaths as well as migration. Note how ensuing runs with the same

parameters and initial conditions are significantly different. Why is this difference

occurring? The diseased insects are at a “disadvantage” here. What would you

change within realm of the biologically likely, to favor the diseased population? Is

it possible that by studying insect population dynamics from an ecological perspec-

tive we can provide a more useful means for biological control? Can you implement

such a control in the model?

Over the long run, the population of each field is clearly responding to changes in

the local carrying capacity. Both fields take a while to build up numbers from the

low start, 0.1 adults each of healthy and diseased. Surprisingly, in the run we have

graphed neither field’s total population hugs the carrying capacity very well, but in

other runs we made it sometimes did. Clearly there are other factors at work

limiting population besides carrying capacity. While we’ve required that 10 % of

healthy adults migrate, we aren’t seeing the diseased population expand to fill that

gap. Run the model repeatedly and note the differences. Introduce additional factors

such as seasonality into the population model.

Fig. 33.4
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33.2 Immigrating Insects Model Equations

ADULTS_D1(t)¼ADULTS_D1(t� dt) + (MATURING_D1 + I_R1�DEATHS_

DA1) * dt

INIT ADULTS_D1 ¼ .1 {Initial diseased adults.}

INFLOWS:

MATURING_D1¼ MNSF_D*NYMPHS_D1/TN1_D {IndividualsperTimePeriod}

I_R1 ¼ INFECTION_1 {Individuals per Time Period}

OUTFLOWS:

DEATHS_DA1¼ ADULTS_D1*(1-MASF_D)/DT {Individuals per Time Period}

ADULTS_D2(t) ¼ ADULTS_D2(t � dt) + (MATURING_D2 + I_R2 � DYING_

DA2) * dt

INIT ADULTS_D2 ¼ .1 {Initial diseased adults.}

INFLOWS:

MATURING_D2¼MNSF_D*NYMPHS_D2/TN1_D {Individuals perTimePeriod}

I_R2 ¼ INFECTION_2 {Individuals per Time Period}

OUTFLOWS:

DYING_DA2¼ ADULTS_D2*(1�MASF_D)/DT {Individuals per Time Period}

ADULTS_H1(t) ¼ ADULTS_H1(t � dt) + (MATURE_H1 + INCOMING_1 �
DYING_HA1 � IMMIG_1_TO_2) * dt

INIT ADULTS_H1 ¼ .1 {Initial healthy adults}

INFLOWS:

MATURE_H1 ¼ MNSF_H*NYMPHS_H1/TN1_H*(1�INFECTION_COEF1)

INCOMING_1 ¼ ARRIVING_2_TO_1 {Individuals per Time Period}

Fig. 33.5
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OUTFLOWS:

DYING_HA1¼ ADULTS_H1*(1�MASF_H)/DT {Individuals per Time Period}

IMMIG_1_TO_2 ¼ IF ADULTS_H1 � (.1*ADULTS_H1 + .9*FRXNL_CAP1)

> 0 THEN (.1*ADULTS_H1 + .9*FRXNL_CAP1) ELSE IF ADULTS_H1> 0

THEN ADULTS_H1 ELSE 0 {Individuals per Time Period; Only healthy

adults migrate. At least ten percent of the healthy adults always migrate. Under

the noted conditions the 10% healthy and an additional fraction of the healthy

adults based empirically on the total number of adults also migrate. Note well the

order of the nested IF statement; the first one is checked first and if the condition

holds the first statement is executed and the program goes no further. Otherwise

all the adults flee. This same statement is also true of the adults in the other

field.}

ADULTS_H2(t) ¼ ADULTS_H2(t � dt) + (MATURE_H2 + INCOMING_2 �
DYING_HA2 � IMMIG_2_TO_1) * dt

INIT ADULTS_H2 ¼ .1 {Initial healthy adults}

INFLOWS:

MATURE_H2 ¼ MNSF_H*NYMPHS_H2*(1�INFECTION_COEF2)/TN1_H

{Individuals per Time Period}

INCOMING_2 ¼ ARRIVING_1_TO_2 {Individuals per Time Period}

OUTFLOWS:

DYING_HA2¼ ADULTS_H2*(1�MASF_H)/DT {Individuals per Time Period}

IMMIG_2_TO_1 ¼ IF ADULTS_H2 � (.1*ADULTS_H2 + .9*FRXNL_CAP2)

> 0 THEN (.1*ADULTS_H2 + .9*FRXNL_CAP2) ELSE IF ADULTS_H2> 0

THEN ADULTS_H2 ELSE 0 {Individuals per Time Period}

CARRY_R1(t) ¼ CARRY_R1(t � dt) + (R_COUNT1 � DUMP1) * dt

INIT CARRY_R1 ¼ 0

INFLOWS:

R_COUNT1 ¼ IF (time MOD 52) ¼ 0 THEN RANDOM(0,1)/DT ELSE 0

OUTFLOWS:

DUMP1 ¼ IF (time MOD 52) ¼ 0 THEN CARRY_R1/DT ELSE 0 {Insures a

new number between 0-1 each integer time step.}

CARRY_R2(t) ¼ CARRY_R2(t � dt) + (R_COUNT2 � DUMP2) * dt

INIT CARRY_R2 ¼ 0 {See note in Carry_R.}

INFLOWS:

R_COUNT2 ¼ IF (time MOD 52) ¼ 0 THEN RANDOM(0,1)/DT ELSE 0

OUTFLOWS:

DUMP2 ¼ IF (time MOD 52) ¼ 0 THEN CARRY_R2/DT ELSE 0

LEAVE_1_TO_2(t) ¼ LEAVE_1_TO_2(t � dt) + (IMMIG_1_TO_2 � DYING_

2_TO_1 � ARRIVING_1_TO_2) * dt

INIT LEAVE_1_TO_2 ¼ 0

INFLOWS:

IMMIG_1_TO_2 ¼ IF ADULTS_H1 - (.1*ADULTS_H1 + .9*FRXNL_CAP1)

> 0 THEN (.1*ADULTS_H1 + .9*FRXNL_CAP1) ELSE IF ADULTS_H1> 0

THEN ADULTS_H1 ELSE 0 {Individuals per Time Period; Only healthy

adults migrate. At least ten percent of the healthy adults always migrate.
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Under the noted conditions the 10% healthy and an additional fraction of the

healthy adults based empirically on the total number of adults also migrate. Note

well the order of the nested IF statement; the first one is checked first and if the

condition holds the first statement is executed and the program goes no further.

Otherwise all the adults flee. This same statement is also true of the adults in the

other field.}

OUTFLOWS:

DYING_2_TO_1 ¼ .25*LEAVE_1_TO_2 {Individuals per Time Period}

ARRIVING_1_TO_2 ¼ .75*LEAVE_1_TO_2 {Individuals per Time Period}

LEAVE_2_TO_1(t) ¼ LEAVE_2_TO_1(t � dt) + (IMMIG_2_TO_1 � DYING_

2TO1 � ARRIVING_2_TO_1) * dt

INIT LEAVE_2_TO_1 ¼ 0

INFLOWS:

IMMIG_2_TO_1 ¼ IF ADULTS_H2 � (.1*ADULTS_H2 + .9*FRXNL_CAP2)

> 0 THEN (.1*ADULTS_H2 + .9*FRXNL_CAP2) ELSE IF ADULTS_H2> 0

THEN ADULTS_H2 ELSE 0 {Individuals per Time Period}

OUTFLOWS:

DYING_2TO1 ¼ .25*LEAVE_2_TO_1 {Individuals per Time Period}

ARRIVING_2_TO_1 ¼ .75*LEAVE_2_TO_1 {Individuals per Time Period}

NYMPHS_D1(t) ¼ NYMPHS_D1(t � dt) + (BIRTHS_D1 � DYING_DN1 �
MATURING_D1) * dt

INIT NYMPHS_D1 ¼ 0 {Initial diseased eggs}

INFLOWS:

BIRTHS_D1 ¼ IF (K1-ALL_ADULTS_1) > 0 THEN BR_D*ADULTS_D1

ELSE 0 {Individuals per Time Period}

OUTFLOWS:

DYING_DN1 ¼ (1 � MNSF_D)*NYMPHS_D1/DT {Individuals per Time

Period}

MATURING_D1 ¼ MNSF_D*NYMPHS_D1/TN1_D {Individuals per Time

Period}

NYMPHS_D2(t) ¼ NYMPHS_D2(t � dt) + (BIRTHS_D2 � DYING_DN2 �
MATURING_D2) * dt

INIT NYMPHS_D2 ¼ 0 {Initial diseased eggs}

INFLOWS:

BIRTHS_D2 ¼ IF (K2-ALL_ADULTS_2) > 0 THEN BR_D*ADULTS_D2

ELSE 0 {Individuals per Time Period}

OUTFLOWS:

DYING_DN2¼ (1�MNSF_D)*NYMPHS_D2/DT {Individuals per Time Period}

MATURING_D2 ¼ MNSF_D*NYMPHS_D2/TN1_D {Individuals per Time

Period}

NYMPHS_H1(t) ¼ NYMPHS_H1(t � dt) + (BIRTHING_H1 � DYING_HN1 �
MATURE_H1 � INFECTION_1) * dt

INIT NYMPHS_H1 ¼ 0 {Initial Healthy eggs}

33.2 Immigrating Insects Model Equations 279



INFLOWS:

BIRTHING_H1 ¼ IF (K1 � ALL_ADULTS_1) > 0 THEN BR_H*ADULTS_H1

ELSE 0 {Individuals per Time Period}

OUTFLOWS:

DYING_HN1 ¼ (1 � MNSF_H)*NYMPHS_H1/DT

MATURE_H1 ¼ MNSF_H*NYMPHS_H1/TN1_H*(1�INFECTION_COEF1)

INFECTION_1 ¼ INFECTION_COEF1*MATURE_H1 {Individuals per Time

Period}

NYMPHS_H2(t) ¼ NYMPHS_H2(t � dt) + (BIRTHS_H2 � DYING_HN2 �
MATURE_H2 � INFECTION_2) * dt

INIT NYMPHS_H2 ¼ 0 {Initial Healthy eggs}

INFLOWS:

BIRTHS_H2 ¼ IF (K2-ALL_ADULTS_2) > 0 THEN BR_H*ADULTS_H2

ELSE 0 {Individuals per Time Period}

OUTFLOWS:

DYING_HN2¼ (1�MNSF_H)*NYMPHS_H2/DT {Individuals per Time Period}

MATURE_H2 ¼ MNSF_H*NYMPHS_H2*(1-INFECTION_COEF2)/TN1_H

{Individuals per Time Period}

INFECTION_2¼ INFECTION_COEF2*MATURE_H2 {Individuals per Time Period}

ALL_ADULTS_1 ¼ ADULTS_H1+ADULTS_D1

ALL_ADULTS_2 ¼ ADULTS_H2+ADULTS_D2

BR_D ¼ .35 {Experimental laying rate. DISEASED EGGS PER ADULT PER

DAY.}

BR_H ¼ 0.75

DOCUMENT: NYMPH BIRTH RATE, NYMPHS PER DAY PER ADULT

EASF1_D ¼ .65 {Experimental daily diseased adult survival fraction per stage,

dimensionless.}

EASF1_H ¼ 0.8

FRXNL_CAP1 ¼ ALL_ADULTS_1/K1

DOCUMENT: This fraction is the degree to which both healthy and diseased adults

have reached their carrying capacity.

FRXNL_CAP2 ¼ ALL_ADULTS_2/K2

INFECTION_COEF1¼ 1� EXP(�.3*NYMPHS_H1*NYMPHS_D1) {Constructed

function giving the desired 0 to 1 probability.}

INFECTION_COEF2¼ 1� EXP(�.3*NYMPHS_H2*NYMPHS_D2) {Constructed

function giving the desired 0 to 1 probability.}

K1 ¼ IF CARRY_R1 > .666 THEN 2 ELSE IF CARRY_R1 < .333 THEN .5

ELSE 1 {This is the carrying capacity of the area the insects area}

K2 ¼ IF CARRY_R2 > .666 THEN 4 ELSE IF CARRY_R2 < .333 THEN 1

ELSE 2 {This is the carrying capacity of the area the insects area}

MASF_D ¼ EXP(LN(EASF1_D)/TA1_D*DT)

MASF_H ¼ EXP(LN(EASF1_H)/TA1_H*DT)

MNSF_D ¼ EXP(LN(S1_D)/TN1_D*DT)

MNSF_H ¼ EXP(LN(S1_H)/TN1_H*DT)
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S1_D ¼ .5 {Experimental diseased egg survival fraction, dimensionless, per

stage. Stage ¼ 1/F1, i.e., 30 eggs per 100 eggs survive each 1/F1 days, as noted

in the experiment.}

S1_H¼ .7 {Experimental egg survival fraction, dimensionless, per stage. Stage¼ 1/F1,

i.e., 70 eggs per 100 eggs survive each 1/F1 days, as noted in the experiment.}

TA1_D ¼ 1

TA1_H ¼ 1

TN1_D ¼ 5

TN1_H ¼ 5
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Chapter 34

Two-Species Colonization Model

Thou eternal fugitive, Hovering over all that live.

(1847 Emerson Poems, Ode to Beauty)

34.1 Basic Colonization Model

In Chap. 5 we have modeled spatial dynamics in a rather abstract way. Let us take

up the issue of spatial dynamics in this chapter and deal specifically with the

competition between two species for space. We will begin this chapter with a

simple version of this model, then introduce disturbances on the physical landscape

and observe the implications for population dynamics.

Assume you are the manager of forestland on which two species of trees can

grow [1]. Both species are able to colonize open patches of land. The colonization

coefficient C is different for each of the species. One of the species has a higher

ability to colonize, but after colonization took place it is easily outcompeted by the

other species. Call the species that loses in competition the INFERIOR or “fugitive”

species, and the other one the SUPERIOR species. Both species have an extinction

rate, E, which we assume—only to keep things simple—to be the same for each

species. The constant E is multiplied by the number of patches occupied by a

species, to obtain the extinction rate of that species. Once extinction from a patch on

the landscape takes place, the area that was previously covered by a particular

species is converted into an open patch.

There are three state variables of this system: One state variable for the amount

of open land that can be colonized, and one each for the land occupied by a Superior

and Inferior species. In the model we normalize the total habitable forest area

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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TOTAL ¼ 1 ð34:1Þ

and express the land that is open for colonization and the land that is colonized as a

fraction of the total.

Additional to the three state variables, there are three main driving forces for the

dynamics of this system that you must consider. One is the colonization of, and

competition for, patches of land by the two tree species—the conversion of empty

space to either INFERIOR or SUPERIOR species. The second is the removal of

species through extinction. Finally, there is the conversion of INFERIOR species

space through encounters with the SUPERIOR ones.

To calculate the number of patches that become occupied by inferior species, we

multiply the colonization rate of the inferior species, CI, by the product of open

patches and the area occupied by the inferior species. From this product we must

subtract the loss of inferior species due to extinction at a rate EI,

I COLONIZES ¼ CI � INFERIOR � OPEN � EI � INFERIOR ð34:2Þ

to obtain the Inferior colonization rate.

Multiplying the two state variables INFERIOR and OPEN with each other and

with the colonization coefficient C to calculate the conversion of uncolonized to

colonized patches is analogous to the way in which chemists calculate the product

of two chemical reactions. We have made use of this idea, for example, in our

epidemiology models in Chap. 21 and the host–parasite model of Chap. 32.

Again, an analogous application of the law of mass action yields the colonization

rate by SUPERIOR species

S COLONIZES ¼ CS � SUPERIOR � OPEN� ES � SUPERIOR ð34:3Þ

where CS is the colonization rate of the superior species and ES is the extinction

rate of the superior species. The rate at which the superior species replaces the

inferior one is

S DISPLACES I ¼ CS � INFERIOR � SUPERIOR ð34:4Þ

No resistance to this displacement is offered by the Inferior species.

The relationships between the superior and the inferior species are listed below.

In general, for different extinction rates EI and ES for the inferior and superior

species, the inferior species is defined by the following inequality:

CS=ES < CI=EI ð34:5Þ

which can be derived by setting the derivatives in the exchange Eqs. (34.2), (34.3),

and (34.4) equal to zero. The inequality means that either species must have a

relatively low extinction rate or a relatively high colonization rate in order to stay in

this area.
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The model is shown in Fig. 34.1. Run this model for initial values of

INFERIOR¼ 0.256 and SUPERIOR¼ 0.25, the colonization rates CS¼ 0.55 and

CI¼ 0.7, and extinction rate ES¼EI¼E¼ 0.45.

The results of the model (Fig. 34.2) show that the system soon reaches a steady

state in which most of the land is open patches. With ecological succession, the

inferior species is becoming increasingly replaced by superior species, leading to a

dominance of the superior species in the steady state.

The stocks in the model shown in Fig. 34.1 could be construed as stocks of

biomass with the “OPEN” stock as the remaining potential. Then crimping the

“TOTAL” would be reducing the total potential biomass. Can you set up the model

Fig. 34.1

Fig. 34.2
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to investigate the implications of habitat loss for the colonization process? One way

to set up that model is to specify a series of sensitivity runs for which the total

land available for colonization becomes smaller with each run. The results in

Figs. 34.3, 34.4, and 34.5 are derived for five runs with the total habitable area

declining from 1 to 0.7. Can you explain why the fraction of open patches

temporarily increases in some of the runs, and then declines again?

A certain range of reduced habitable space actually favors the dominance of the

inferior species. This result is due to the higher colonization rate of the inferior

Fig. 34.3

Fig. 34.4
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species, a fugitive-like species, as compared to the superior species. The inferior

species is able to recover more quickly from their sudden “extinction” from certain

patches and, thus, may “evade the bulldozers” more easily whereas the chances that

the superior species will get caught in a patch that is being destroyed is greater

because of their slower movement.

Matthias use this graph instead of the previous one: As habitable space is

decreased in the example we show above, the superior population declines and

the inferior species declines. When the space has been preempted down to the level

E/CS or below, the superior species disappears and the population begins to decline

from its maximum steady-state level. When the habitable space is reduced to the

level E/CI, both species disappear from the landscape.

Still another interesting possibility exists. Let the extinction coefficient E be the

same for both species. Under a special range of choice of CS, E, and CN, only the

superior species exists at the steady state, until the fractional level of habitat has

been reduced below E*CN/(CS)^2, in the cases where this term is less than one. Our

model indicates a subtle nuance [2]: under those conditions where the fractional

level of the habitat stands between 1 and E*Cn/(Cs), only repeated disturbance can

possibly keep the inferior species in existence on this patch. Then those distur-

bances must not be too severe or they may speed the demise of the inferior species.

The range of frequency and severity of the disturbance are critical as one can

apparently only learn by experiment with numerical analysis. Try to show this

“window” by selecting new values for these coefficients.

A true field of science has its own unique principles. Ecology has few and the

concept of a limiting territorial size may be one of those unique principles.

Fig. 34.5
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34.2 Basic Patch Dynamics Model Equations

INFERIOR(t) ¼ INFERIOR(t � dt) + (I_COLONIZES � S_DISPLACES_I) * dt

INIT INFERIOR ¼ .256

INFLOWS:

I_COLONIZES ¼ CI*INFERIOR*OPEN�E*INFERIOR

OUTFLOWS:

S_DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

OPEN(t) ¼ OPEN(t � dt) + (� S_COLONIZES � I_COLONIZES) * dt

INIT OPEN ¼ TOTAL � SUPERIOR � INFERIOR

OUTFLOWS:

S_COLONIZES ¼ CS*SUPERIOR*OPEN�E*SUPERIOR

I_COLONIZES ¼ CI*INFERIOR*OPEN�E*INFERIOR

SUPERIOR(t) ¼ SUPERIOR(t � dt) + (S_DISPLACES_I + S_COLONIZES) * dt

INIT SUPERIOR ¼ .25

INFLOWS:

S_DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

S_COLONIZES ¼ CS*SUPERIOR*OPEN�E*SUPERIOR

CI ¼ .75

CS ¼ .55

E ¼ .45

TOTAL ¼ 1

34.3 Two-Species Colonization Model with Fire

Real-world ecosystems are not maintained in permanent steady state. Rather, natural

events such as insect pest outbreaks or forest fires may lead to significant changes in

those systems, “re-setting” them to a state in their early successional cycle. Let us set

up the model such that forest fires occur when the forest reached a steady state and the

investigate impacts of fire on the structure of the forest community. Towards this end,

we first specify a new variable that measures the change in open patches

D OPEN ¼ 5000 � DERIVN OPEN; 1ð Þ ð34:6Þ

using the built-in function DERIVN to calculate the derivative of the state variable

OPENwith respect to time.We use DOPEN to generate a random occurrence of fires,

FIRE YEARS ¼ IF TIME > 1ð ÞAND�� RANDOM 0; 1ð Þð Þ2 > ABS D OPENð Þ��
THEN 1 ELSE 0

ð34:7Þ
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Once fifteen such fire years accumulated, we assume a fire occurs that is large

enough to affect the extinction rates of species from their colonized patches. We

calculate a variable FIRE as

FIRE ¼ IF FIRE YEARS ¼ 15 THEN 1:5 ELSE 0 ð34:8Þ

and capture its impacts on the extinction of the species from a particular forest

patch, by modifying the extinction rate to

E ¼ 0:4þ RANDOM :45; :65ð Þ � FIRE=DT ð34:9Þ

The complete model is shown in Fig. 34.6.

As the model runs, a steady state is approached (Fig. 34.7). As the steady state is

reached, random fires increase the proportion of empty patches. The inferior species

rapidly colonize the empty habitable patches after a fire occurs. As the inferior

species colonizes an increasing portion of the space, the conditions for the superior

Fig. 34.6
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species become more favorable, leading to a replacement of inferior species. In the

long run, the system returns to a near steady state, until fire breaks out again. Choose

alternative parameter values to modify the severity of the fire. Figure 34.7 (DT¼ 1/4)

shows the case of fire leading to a temporary dominance of inferior species over

superior ones.

Investigate the combined effects of habitat loss discussed in the previous section

of this chapter and forest fires through a series of sensitivity runs. What are the

implications of your findings for ecosystem management?

34.4 Patch Dynamics With Fire Model Equations

FIRE_YEARS(t) ¼ FIRE_YEARS(t � dt) + (ADD_FIRE_YEARS � OUT) * dt

INIT FIRE_YEARS ¼ 0

INFLOWS:

ADD_FIRE_YEARS ¼ IF (TIME > 1) AND (((RANDOM(0,1))^2 > ABS

(D_OPEN))) THEN 1 ELSE 0

OUTFLOWS:

OUT ¼ IF FIRE¼ 1.5 THEN FIRE_YEARS/dt ELSE 0

INFERIOR(t) ¼ INFERIOR(t � dt) + (I_COLONIZES � S_DISPLACES_I) * dt

INIT INFERIOR ¼ 0.256

INFLOWS:

I_COLONIZES ¼ CI*INFERIOR*OPEN�E*INFERIOR

OUTFLOWS:

S_DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

OPEN(t) ¼ OPEN(t � dt) + (�S_COLONIZES � I_COLONIZES) * dt

INIT OPEN ¼ TOTAL � SUPERIOR � INFERIOR

Fig. 34.7
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OUTFLOWS:

S_COLONIZES ¼ CS*SUPERIOR*OPEN�E*SUPERIOR

I_COLONIZES ¼ CI*INFERIOR*OPEN�E*INFERIOR

SUPERIOR(t) ¼ SUPERIOR(t � dt) + (S_DISPLACES_I + S_COLONIZES) * dt

INIT SUPERIOR ¼ 0.25

INFLOWS:

S_DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

S_COLONIZES ¼ CS*SUPERIOR*OPEN�E*SUPERIOR

CI ¼ 0.75

CS ¼ 0.55

D_OPEN ¼ 5000*DERIVN(Open,1)

E ¼ .45 + RANDOM(.45,.65)*FIRE/dt

FIRE ¼ IF FIRE_YEARS¼15 THEN 1.5 ELSE 0

TOTAL ¼ 1

34.5 Landscape and Patch Dynamics

Let us expand on the model of the previous section that captured a disturbance (fire)

that occurs in landscape near steady state and converted some fraction of occupied

patches to empty patches. The collection of patches in the model of the previous

section forms a region, and the modeling in this section will group the regions into

an interacting set. By creating a larger landscape, made of multiple smaller regions

on the landscapes, can we achieve a more steady distribution of these populations of

competitors? If we consider each smaller landscape a region of this larger land-

scape, how can we model the movement of species between regions, and what

effect will this movement have on the equilibrium of the total landscape?

Duplicate the model of the previous chapter to generate a 3� 3 grid to study the

effects of adding spatial dimensions to this model. Each patch has some specific

characteristics, which help to simulate a somewhat diverse landscape. One charac-

teristic is the region’s “affinity for fire” which is contained as a coefficient in the

∂OPEN variable. This coefficient determines how close a region is to steady-state,

and therefore how quickly it accumulates fire days.

Assume that only the inferior species move between regions, due to their higher

colonization rate. Inferior species only colonize in adjacent regions when the region

is not at equilibrium (i.e., after a disturbance). We have assumed here that the

colonization of inferiors in adjacent regions resembles a seeding process; that is,

inferiors need not leave their own region to colonize in an adjacent region, but the

success of their seeds in adjacent regions is dependent on a larger amount of open

space than normal. These inferiors cannot colonize adjacent open space instanta-

neously either—there is a lag time in years associated with moving between

regions, which we have called COL YEARS and arbitrarily set at 10. So the idea

is to have INFERIORS only as interregional colonizers and it takes them ten years
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to effect their desired boundary crossing. Between two adjacent regions, that desire

is based on how many inferiors there are in the home region and how many inferiors

there are in the region to be colonized.

The general layout of our model is shown in Fig. 34.8. The STELLA diagram of

Fig. 34.9 shows, as an example, how to calculate the amount of the three types of

space for the upper left-hand cell (Region 1) of the 3� 3 grid of nine interconnected

models. Only the inferior species in the adjacent regions to the right and below can

1 2 3

4 5 6

7 8 9

Fig. 34.8

Fig. 34.9
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disperse their seeds into that portion of the habitable area. Therefore, we need to

calculate I COLONIZES as a function of the presence of inferior species in those

two adjacent regions—INFERIOR 2 and INFERIOR 4.

With these rules, we can begin to model the effects of patch disturbances on the

overall landscape, and how the landscape as a whole responds to this single-patch

disturbance. This result is part of a body of theoretical ecosystem speculation (see,

e.g., [3–7]).

Our results in Figs. 34.10, 34.11, 34.12, 34.13, and 34.14 are shown for the first

two of the nine patches, for the open area—unsmoothed and smoothed with the

Fig. 34.10

Fig. 34.11
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built-in function SMTH1—and the area colonized by the inferior species over the

entire landscape.

When comparing the results of this mosaic-type landscape with the single-patch

model (with the same parameter values) we find that the disturbances in individual

regions are damped by both the greater number of total regions, and by the coloni-

zation of adjacent inferiors. The fact that these disturbances occur out-of-phase helps

to give the total landscape more stability than that of any individual patch. This result

Fig. 34.12

Fig. 34.13
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may be even more evident if we allow each fire to destroy a whole patch, instead of

only a fraction of the patch. If this were the case, the disturbed patch would have to

rely solely on the species from adjacent patches to rebuild its population. It would be

interesting to see if the total landscape could maintain a somewhat steady population

over time, even when whole patches are being eliminated at various times. Set up the

model to investigate this case.

The realization that extreme variation of species presence at the patch (cell) level

results in their steady presence at the aggregate or landscape level seems to be a

unique principle for the science of ecology.

Modify the model of this section to allow the separate patches to have different

colonization rates. How will this affect the overall dynamics of the system? Is it

possible for the system as a whole to support inferior life in patches which would

not be able to support this species on their own?

In this chapter, we captured the competition for space. In the following four

chapters we will model a different type of species interaction as the one modeled

here. There, we will concentrate on predator–prey interactions. The first of these

models deals with algae and herbivore, using hypothetical data. The second is more

elaborate. It is built on real data for grass carp populations. The third predator–prey

model shown below concentrates on population management methods that are built

on predator–prey interactions. Finally, in Chap. 35 we will return to the issue of

spatial dynamics already discussed here in the context of spatial competition.

Fig. 34.14
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34.6 Landscape and Patch Dynamics Model Equations

FIREYEARS_2(t) ¼ FIREYEARS_2(t � dt) + (ADD__FIRE_YEARS_2

� OUT_2) * dt

INIT FIREYEARS_2 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_2 ¼ if (time > 1) and (((random(0,1))^2 > ABS

(D_OPEN_2))) then 1 else 0

OUTFLOWS:

OUT_2 ¼ if FIRE_2¼1 then FIREYEARS_2 else 0

FIREYEARS_7(t) ¼ FIREYEARS_7(t � dt) + (ADD__FIRE_YEARS_7 �
OUT_7) * dt

INIT FIREYEARS_7 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_7¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_7)))

then 1 else 0

OUTFLOWS:

OUT_7 ¼ if FIRE_7¼1 then FIREYEARS_7 else 0

FIRE_YEARS(t) ¼ FIRE_YEARS(t � dt) + (ADD__FIRE_YEARS � OUT) * dt

INIT FIRE_YEARS ¼ 0

INFLOWS:

ADD__FIRE_YEARS ¼ if (time > 1) and (((random(0,1))^2 > ABS(D_OPEN)))

then 1 else 0

OUTFLOWS:

OUT ¼ if FIRE¼1 then FIRE_YEARS else 0

FIRE_YEARSS_3(t) ¼ FIRE_YEARSS_3(t � dt) + (ADD__FIRE_YEARS_3 �
OUT_3) * dt

INIT FIRE_YEARSS_3 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_3¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_3)))

then 1 else 0

OUTFLOWS:

OUT_3 ¼ if FIRE_3¼1 then FIRE_YEARSS_3 else 0

FIRE_YEARSS_9(t) ¼ FIRE_YEARSS_9(t � dt) + (ADD__FIRE_YEARS_9 �
OUT_9) * dt

INIT FIRE_YEARSS_9 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_9¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_9)))

then 1 else 0

OUTFLOWS:

OUT_9 ¼ if FIRE_9¼1 then FIRE_YEARSS_9 else 0

FIRE_YEARS_4(t) ¼ FIRE_YEARS_4(t � dt) + (ADD__FIRE_YEARS_4 �
OUT_4_4) * dt

INIT FIRE_YEARS_4 ¼ 0
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INFLOWS:

ADD__FIRE_YEARS_4¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_4)))

then 1 else 0

OUTFLOWS:

OUT_4_4 ¼ if FIRE_4¼1 then FIRE_YEARS_4 else 0

FIRE_YEARS_5(t) ¼ FIRE_YEARS_5(t � dt) + (ADD__FIRE_YEARS_5 �
OUT_5) * dt

INIT FIRE_YEARS_5 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_5¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_5)))

then 1 else 0

OUTFLOWS:

OUT_5 ¼ if FIRE_5¼1 then FIRE_YEARS_5 else 0

FIRE_YEARS_6(t) ¼ FIRE_YEARS_6(t � dt) + (ADD__FIRE_YEARS_6 �
OUT_6) * dt

INIT FIRE_YEARS_6 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_6¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_6)))

then 1 else 0

OUTFLOWS:

OUT_6 ¼ if FIRE_6¼1 then FIRE_YEARS_6 else 0

FIRE_YEARS_8(t) ¼ FIRE_YEARS_8(t � dt) + (ADD__FIRE_YEARS_8 �
OUT_8) * dt

INIT FIRE_YEARS_8 ¼ 0

INFLOWS:

ADD__FIRE_YEARS_8¼ if (time> 1) and (((random(0,1))^2>ABS(D_OPEN_8)))

then 1 else 0

OUTFLOWS:

OUT_8 ¼ if FIRE_8¼1 then FIRE_YEARS_8 else 0

INFERIOR(t) ¼ INFERIOR(t � dt) + (I_COLONIZES � S__DISPLACES_I) * dt

INIT INFERIOR ¼ 0.1304

INFLOWS:

I_COLONIZES ¼ (CI*INFERIOR*OPEN�E*INFERIOR) + (DELAY(ABS

((.69�OPEN))/2*CI_2*INFERIOR_2*OPEN,COL_YEARS))+ (DELAY(ABS

((.69�OPEN))/2*CI_4*INFERIOR_4*OPEN,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

INFERIOR_2(t) ¼ INFERIOR_2(t � dt) + (I__COLONIZES__2 �
S__DISPLACES_I_2) * dt

INIT INFERIOR_2 ¼ 0.1304

INFLOWS:

I__COLONIZES__2 ¼ (CI_2*INFERIOR_2*OPEN_2�E_2*INFERIOR_2) + (DELAY

(ABS((.69�OPEN_2))/2.5*CI*INFERIOR*OPEN_2 ,COL_YEARS)) + (DELAY

(ABS((.69�OPEN_2))/2.5*CI_3*INFERIOR_3*OPEN_2 ,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_2))/2.5*CI_5*INFERIOR_5*OPEN_2,COL_YEARS))
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OUTFLOWS:

S__DISPLACES_I_2 ¼ CS_2*INFERIOR_2*SUPERIOR_2

INFERIOR_3(t) ¼ INFERIOR_3(t � dt) + (I__COLONIZES__3 �
S__DISPLACES_I_3) * dt

INIT INFERIOR_3 ¼ 0.1304

INFLOWS:

I__COLONIZES__3 ¼ (CI_3*INFERIOR_3*OPEN_3�E_3*INFERIOR_3)+

(DELAY(ABS((.69�OPEN_3))/2*CI_2*INFERIOR_2*OPEN_3,COL_YEARS))+

(DELAY(ABS((.69�OPEN_3))/2*CI_6*INFERIOR_6*OPEN_3,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_3 ¼ CS_3*INFERIOR_3*SUPERIOR_3

INFERIOR_4(t) ¼ INFERIOR_4(t � dt) + (I__COLONIZES__4 �
S__DISPLACES_I_4) * dt

INIT INFERIOR_4 ¼ 0.1304

INFLOWS:

I__COLONIZES__4¼ (CI_4*INFERIOR_4*OPEN_4�E_4*INFERIOR_4)+ (DELAY

(ABS((.69�OPEN_4))/2.5*CI*INFERIOR*OPEN_4,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_4))/2.5*CI_5*INFERIOR_5*OPEN_4,COL_YEARS))+

(DELAY(ABS((.69�OPEN_4))/2.5*CI_7*INFERIOR_7*OPEN_4,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_4 ¼ CS_4*INFERIOR_4*SUPERIOR_4

INFERIOR_5(t) ¼ INFERIOR_5(t � dt) + (I__COLONIZES__5 �
S__DISPLACES_I_5) * dt

INIT INFERIOR_5 ¼ 0.1304

INFLOWS:

I__COLONIZES__5 ¼ (CI_5*INFERIOR_5*OPEN_5�E_5*INFERIOR_5) +

(DELAY(ABS((.69�OPEN_5))/3*CI_2*INFERIOR_2*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_4*INFERIOR_4*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_6*INFERIOR_6*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_8*INFERIOR_8*OPEN_5,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_5 ¼ CS_5*INFERIOR_5*SUPERIOR_5

INFERIOR_6(t) ¼ INFERIOR_6(t � dt) + (I__COLONIZES__6 �
S__DISPLACES_I_6) * dt

INIT INFERIOR_6 ¼ 0.1304

INFLOWS:

I__COLONIZES__6¼ (CI_6*INFERIOR_6*OPEN_6�E_6*INFERIOR_6) + (DELAY

(ABS((.69�OPEN_6))/2.5*CI_5*INFERIOR_5*OPEN_6,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_6))/2.5*CI_3*INFERIOR_3*OPEN_6,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_6))/2.5*CI_9*INFERIOR_9*OPEN_6,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_6 ¼ CS_6*INFERIOR_6*SUPERIOR_6

INFERIOR_7(t) ¼ INFERIOR_7(t � dt) + (I__COLONIZES__7 �
S__DISPLACES_I_7) * dt

INIT INFERIOR_7 ¼ 0.1304
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INFLOWS:

I__COLONIZES__7 ¼ (CI_7*INFERIOR_7*OPEN_7�E_7*INFERIOR_7) +

(DELAY(ABS((.69�OPEN_7))/2*CI_4*INFERIOR_4*OPEN_7,COL_YEARS))+

(DELAY(ABS((.69�OPEN_7))/2*CI_8*INFERIOR_8*OPEN_7,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_7 ¼ CS_7*INFERIOR_7*SUPERIOR_7

INFERIOR_8(t) ¼ INFERIOR_8(t � dt) + (I__COLONIZES__8 �
S__DISPLACES_I_8) * dt

INIT INFERIOR_8 ¼ 0.1304

INFLOWS:

I__COLONIZES__8¼ (CI_8*INFERIOR_8*OPEN_8�E_8*INFERIOR_8) + (DELAY

(ABS((.69�OPEN_8))/2.5*CI_5*INFERIOR_5*OPEN_8,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_8))/2.5*CI_7*INFERIOR_7*OPEN_8,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_8))/2.5*CI_9*INFERIOR_9*OPEN_8,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_8 ¼ CS_8*INFERIOR_8*SUPERIOR8

INFERIOR_9(t) ¼ INFERIOR_9(t � dt) + (I__COLONIZES__9 �
S__DISPLACES_I_9) * dt

INIT INFERIOR_9 ¼ 0.1304

INFLOWS:

I__COLONIZES__9 ¼ (CI_9*INFERIOR_9*OPEN_9�E_9*INFERIOR_9) +

(DELAY(ABS((.69�OPEN_9))/2*CI_6*INFERIOR_6*OPEN_9,COL_YEARS))+

(DELAY(ABS((.69�OPEN_9))/2*CI_8*INFERIOR_8*OPEN_9,COL_YEARS))

OUTFLOWS:

S__DISPLACES_I_9 ¼ CS_9*INFERIOR_9*SUPEIOR_9

OPEN(t) ¼ OPEN(t � dt) + (�S_COLONIZES � I_COLONIZES) * dt

INIT OPEN ¼ 1 � SUPERIOR � INFERIOR

OUTFLOWS:

S_COLONIZES ¼ (CS*SUPERIOR*OPEN � E*SUPERIOR)

I_COLONIZES ¼ (CI*INFERIOR*OPEN�E*INFERIOR) + (DELAY(ABS

((.69�OPEN))/2*CI_2*INFERIOR_2*OPEN,COL_YEARS))+ (DELAY(ABS

((.69�OPEN))/2*CI_4*INFERIOR_4*OPEN,COL_YEARS))

OPEN_2(t)¼OPEN_2(t� dt) + (�S_COLONIZES_2� I__COLONIZES__2) * dt

INIT OPEN_2 ¼ 1 � SUPERIOR_2 � INFERIOR_2

OUTFLOWS:

S_COLONIZES_2 ¼ CS_2*SUPERIOR_2*OPEN_2 � E_2*SUPERIOR_2

I__COLONIZES__2 ¼ (CI_2*INFERIOR_2*OPEN_2�E_2*INFERIOR_2) + (DELAY

(ABS((.69�OPEN_2))/2.5*CI*INFERIOR*OPEN_2 ,COL_YEARS)) + (DELAY

(ABS((.69�OPEN_2))/2.5*CI_3*INFERIOR_3*OPEN_2 ,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_2))/2.5*CI_5*INFERIOR_5*OPEN_2,COL_YEARS))

OPEN_3(t)¼OPEN_3(t� dt) + (�S_COLONIZES_3� I__ COLONIZES__3) * dt

INIT OPEN_3 ¼ 1 � SUPERIOR_3 � INFERIOR_3

OUTFLOWS:

S_COLONIZES_3 ¼ CS_3*SUPERIOR_3*OPEN_3 � E_3*SUPERIOR_3
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I__COLONIZES__3 ¼ (CI_3*INFERIOR_3*OPEN_3�E_3*INFERIOR_3)+

(DELAY(ABS((.69�OPEN_3))/2*CI_2*INFERIOR_2*OPEN_3,COL_YEARS))+

(DELAY(ABS((.69�OPEN_3))/2*CI_6*INFERIOR_6*OPEN_3,COL_YEARS))

OPEN_4(t)¼ OPEN_4(t� dt) + (�S_COLONIZES_4� I__COLONIZES__4) * dt

INIT OPEN_4 ¼ 1 � SUPERIOR_4 � INFERIOR_4

OUTFLOWS:

S_COLONIZES_4 ¼ CS_4*SUPERIOR_4*OPEN_4 � E_4*SUPERIOR_4

I__COLONIZES__4 ¼ (CI_4*INFERIOR_4*OPEN_4�E_4*INFERIOR_4)+ (DELAY

(ABS((.69�OPEN_4))/2.5*CI*INFERIOR*OPEN_4,COL_YEARS))+ (DELAY(ABS

((.69�OPEN_4))/2.5*CI_5*INFERIOR_5*OPEN_4,COL_YEARS))+ (DELAY(ABS

((.69�OPEN_4))/2.5*CI_7*INFERIOR_7*OPEN_4,COL_YEARS))

OPEN_5(t)¼OPEN_5(t� dt) + (�S_COLONIZES_5� I__COLONIZES__5) * dt

INIT OPEN_5 ¼ 1 � SUPERIOR_5 � INFERIOR_5

OUTFLOWS:

S_COLONIZES_5 ¼ CS_5*SUPERIOR_5*OPEN_5 � E_5*SUPERIOR_5

I__COLONIZES__5 ¼ (CI_5*INFERIOR_5*OPEN_5�E_5*INFERIOR_5) +

(DELAY(ABS((.69�OPEN_5))/3*CI_2*INFERIOR_2*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_4*INFERIOR_4*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_6*INFERIOR_6*OPEN_5,COL_YEARS))+

(DELAY(ABS((.69�OPEN_5))/3*CI_8*INFERIOR_8*OPEN_5,COL_YEARS))

OPEN_6(t)¼OPEN_6(t� dt) + (�S_COLONIZES_6� I__COLONIZES__6) * dt

INIT OPEN_6 ¼ 1 � SUPERIOR_6 � INFERIOR_6

OUTFLOWS:

S_COLONIZES_6 ¼ CS_6*SUPERIOR_6*OPEN_6 � E_6*SUPERIOR_6

I__COLONIZES__6¼ (CI_6*INFERIOR_6*OPEN_6�E_6*INFERIOR_6) + (DELAY

(ABS((.69�OPEN_6))/2.5*CI_5*INFERIOR_5*OPEN_6,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_6))/2.5*CI_3*INFERIOR_3*OPEN_6,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_6))/2.5*CI_9*INFERIOR_9*OPEN_6,COL_YEARS))

OPEN_7(t)¼OPEN_7(t� dt) + (�S_COLONIZES_7� I__COLONIZES__7) * dt

INIT OPEN_7 ¼ 1 � SUPERIOR_7 � INFERIOR_7

OUTFLOWS:

S_COLONIZES_7 ¼ CS_7*SUPERIOR_7*OPEN_7 � E_7*SUPERIOR_7

I__COLONIZES__7 ¼ (CI_7*INFERIOR_7*OPEN_7�E_7*INFERIOR_7) +

(DELAY(ABS((.69�OPEN_7))/2*CI_4*INFERIOR_4*OPEN_7,COL_YEARS))+

(DELAY(ABS((.69�OPEN_7))/2*CI_8*INFERIOR_8*OPEN_7,COL_YEARS))

OPEN_8(t)¼OPEN_8(t� dt) + (�S_COLONIZES_8� I__COLONIZES__8) * dt

INIT OPEN_8 ¼ 1 � SUPERIOR8 � INFERIOR_8

OUTFLOWS:

S_COLONIZES_8 ¼ CS_8*SUPERIOR8*OPEN_8 � E_8*SUPERIOR8

I__COLONIZES__8¼ (CI_8*INFERIOR_8*OPEN_8�E_8*INFERIOR_8) + (DELAY

(ABS((.69�OPEN_8))/2.5*CI_5*INFERIOR_5*OPEN_8,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_8))/2.5*CI_7*INFERIOR_7*OPEN_8,COL_YEARS))+ (DELAY

(ABS((.69�OPEN_8))/2.5*CI_9*INFERIOR_9*OPEN_8,COL_YEARS))

OPEN_9(t)¼OPEN_9(t� dt) + (�S_COLONIZES_9� I__COLONIZES__9) * dt

INIT OPEN_9 ¼ 1 � SUPEIOR_9 � INFERIOR_9
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OUTFLOWS:

S_COLONIZES_9 ¼ CS_9*SUPEIOR_9*OPEN_9 � E_9*SUPEIOR_9

I__COLONIZES__9 ¼ (CI_9*INFERIOR_9*OPEN_9�E_9*INFERIOR_9) +

(DELAY(ABS((.69�OPEN_9))/2*CI_6*INFERIOR_6*OPEN_9,COL_YEARS))+

(DELAY(ABS((.69�OPEN_9))/2*CI_8*INFERIOR_8*OPEN_9,COL_YEARS))

SUPEIOR_9(t)¼SUPEIOR_9(t�dt)+(S__DISPLACES_I_9+S_COLONIZES_9)*dt

INIT SUPEIOR_9 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_9 ¼ CS_9*INFERIOR_9*SUPEIOR_9

S_COLONIZES_9 ¼ CS_9*SUPEIOR_9*OPEN_9 � E_9*SUPEIOR_9

SUPERIOR(t)¼ SUPERIOR(t� dt) + (S__DISPLACES_I + S_COLONIZES) * dt

INIT SUPERIOR ¼ 0.1818

INFLOWS:

S__DISPLACES_I ¼ CS*INFERIOR*SUPERIOR

S_COLONIZES ¼ (CS*SUPERIOR*OPEN � E*SUPERIOR)

SUPERIOR8(t)¼SUPERIOR8(t�dt)+(S__DISPLACES_I_8+S_COLONIZES_8)*dt

INIT SUPERIOR8 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_8 ¼ CS_8*INFERIOR_8*SUPERIOR8

S_COLONIZES_8 ¼ CS_8*SUPERIOR8*OPEN_8 � E_8*SUPERIOR8

SUPERIOR_2(t) ¼ SUPERIOR_2(t � dt) + (S__DISPLACES_I_2 + S_

COLONIZES_2) * dt

INIT SUPERIOR_2 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_2 ¼ CS_2*INFERIOR_2*SUPERIOR_2

S_COLONIZES_2 ¼ CS_2*SUPERIOR_2*OPEN_2 � E_2*SUPERIOR_2

SUPERIOR_3(t) ¼ SUPERIOR_3(t � dt) + (S__DISPLACES_I_3 + S_

COLONIZES_3) * dt

INIT SUPERIOR_3 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_3 ¼ CS_3*INFERIOR_3*SUPERIOR_3

S_COLONIZES_3 ¼ CS_3*SUPERIOR_3*OPEN_3 � E_3*SUPERIOR_3

SUPERIOR_4(t) ¼ SUPERIOR_4(t � dt) + (S__DISPLACES_I_4 + S_

COLONIZES_4) * dt

INIT SUPERIOR_4 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_4 ¼ CS_4*INFERIOR_4*SUPERIOR_4

S_COLONIZES_4 ¼ CS_4*SUPERIOR_4*OPEN_4 � E_4*SUPERIOR_4

SUPERIOR_5(t) ¼ SUPERIOR_5(t � dt) + (S__DISPLACES_I_5 + S_

COLONIZES_5) * dt

INIT SUPERIOR_5 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_5 ¼ CS_5*INFERIOR_5*SUPERIOR_5

S_COLONIZES_5 ¼ CS_5*SUPERIOR_5*OPEN_5 � E_5*SUPERIOR_5
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SUPERIOR_6(t) ¼ SUPERIOR_6(t � dt) + (S__DISPLACES_I_6 + S_

COLONIZES_6) * dt

INIT SUPERIOR_6 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_6 ¼ CS_6*INFERIOR_6*SUPERIOR_6

S_COLONIZES_6 ¼ CS_6*SUPERIOR_6*OPEN_6 � E_6*SUPERIOR_6

SUPERIOR_7(t) ¼ SUPERIOR_7(t � dt) + (S__DISPLACES_I_7 + S_

COLONIZES_7) * dt

INIT SUPERIOR_7 ¼ 0.1818

INFLOWS:

S__DISPLACES_I_7 ¼ CS_7*INFERIOR_7*SUPERIOR_7

S_COLONIZES_7 ¼ CS_7*SUPERIOR_7*OPEN_7 � E_7*SUPERIOR_7

CI ¼ 0.8

CI_2 ¼ 0.8

CI_3 ¼ 0.8

CI_4 ¼ 0.8

CI_5 ¼ 0.8

CI_6 ¼ 0.8

CI_7 ¼ 0.8

CI_8 ¼ 0.8

CI_9 ¼ 0.8

COL_YEARS ¼ 10

CS ¼ 0.55

CS_2 ¼ 0.55

CS_3 ¼ 0.55

CS_4 ¼ 0.55

CS_5 ¼ 0.55

CS_6 ¼ 0.55

CS_7 ¼ 0.55

CS_8 ¼ 0.55

CS_9 ¼ 0.55

D_INFERIOR ¼ 100*DERIVN(INFERIOR,1)

D_INFERIOR_2 ¼ 100*DERIVN(INFERIOR_2,1)

D_INFERIOR_3 ¼ 100*DERIVN(INFERIOR_3,1)

D_INFERIOR_4 ¼ 100*DERIVN(INFERIOR_4,1)

D_INFERIOR_5 ¼ 100*DERIVN(INFERIOR_5,1)

D_INFERIOR_6 ¼ 100*DERIVN(INFERIOR_6,1)

D_INFERIOR_7 ¼ 100*DERIVN(INFERIOR_7,1)

D_INFERIOR_8 ¼ 100*DERIVN(INFERIOR_8,1)

D_INFERIOR_9 ¼ 100*DERIVN(INFERIOR_9,1)

D_OPEN ¼ 5000*DERIVN(OPEN,1)

D_OPEN_2 ¼ 10000*DERIVN(OPEN_2,1)

D_OPEN_3 ¼ 15000*DERIVN(OPEN_3,1)

D_OPEN_4 ¼ 20000*DERIVN(OPEN_4,1)

D_OPEN_5 ¼ 5000*DERIVN(OPEN_5,1)
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D_OPEN_6 ¼ 10000*DERIVN(OPEN_6,1)

D_OPEN_7 ¼ 15000*DERIVN(OPEN_7,1)

D_OPEN_8 ¼ 20000*DERIVN(OPEN_8,1)

D_OPEN_9 ¼ 5000*DERIVN(OPEN_9,1)

D_SUPERIOR ¼ 100*DERIVN(SUPERIOR,1)

D_SUPERIOR_2 ¼ 100*DERIVN(SUPERIOR_2,1)

D_SUPERIOR_3 ¼ 100*DERIVN(SUPERIOR_3,1)

D_SUPERIOR_4 ¼ 100*DERIVN(SUPERIOR_4,1)

D_SUPERIOR_5 ¼ 100*DERIVN(SUPERIOR_5,1)

D_SUPERIOR_6 ¼ 100*DERIVN(SUPERIOR_6,1)

D_SUPERIOR_7 ¼ 100*DERIVN(SUPERIOR_7,1)

D_SUPERIOR_8 ¼ 100*DERIVN(SUPERIOR8,1)

D_SUPERIOR_9 ¼ 100*DERIVN(SUPEIOR_9,1)

E ¼ .45 + random(0.45,0.65)*FIRE

E_2 ¼ .45 + random(0.45,0.65)*FIRE_2

E_3 ¼ .45 + random(0.45,0.65)*FIRE_3

E_4 ¼ .45 + random(0.45,0.65)*FIRE_4

E_5 ¼ .45 + random(0.45,0.65)*FIRE_5

E_6 ¼ .45 + random(0.45,0.65)*FIRE_6

E_7 ¼ .45 + random(0.45,0.65)*FIRE_7

E_8 ¼ .45 + random(0.45,0.65)*FIRE_8

E_9 ¼ .45 + random(0.45,0.65)*FIRE_9

FIRE ¼ If FIRE_YEARS¼15 then 1 else 0

FIRE_2 ¼ If FIREYEARS_2¼15 then 1 else 0

FIRE_3 ¼ If FIRE_YEARSS_3¼15 then 1 else 0

FIRE_4 ¼ IF TIME ¼ 10 THEN 1 ELSE If FIRE_YEARS_4¼15 then 1 else 0

FIRE_5 ¼ If FIRE_YEARS_5¼15 then 1 else 0

FIRE_6 ¼ If FIRE_YEARS_6¼15 then 1 else 0

FIRE_7 ¼ If FIREYEARS_7¼15 then 1 else 0

FIRE_8¼ IF TIME¼ 25 THEN 1 ELSE IF FIRE_YEARS_8¼15 THEN 1 ELSE 0

FIRE_9 ¼ If FIRE_YEARSS_9¼15 then 1 else 0

SMOOTH_OPEN ¼ SMTH1(TOTAL_OPEN,40)

TOTAL_INFERIOR ¼ INFERIOR+INFERIOR_2+INFERIOR_3+INFERIOR_4

+INFERIOR_5+INFERIOR_6+INFERIOR_7+INFERIOR_8+INFERIOR_9

TOTAL_OPEN¼OPEN+OPEN_2+OPEN_3+OPEN_4+OPEN_5+OPEN_6+OPEN_7

+OPEN_8+OPEN_9
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Chapter 35

Herbivore-Algae Predator–Prey Dynamics

That the carnivore may live herbivores must die.

(H. Spencer Data of Ethics, 1879)

35.1 Herbivore-Algae Predator–Prey Model

Let us return to the simple predator–prey model to see that even without migration

the system can exhibit a wide range of responses, not just a simple population crash.

Assume that the prey are algae in a pond on which an herbivore grazes. The data for

this problem has been invented. Its input data, parameters, and initial conditions

would normally be determined by experiment.

The model consists of two main parts, one for the change in the algae population,

one for the herbivore. The algae-growth portion of the model we have seen before

in various forms. The growth rate is a function of the algal density, ALGAE. This

function is monotonic and declining (Fig. 35.1). Algal growth is calculated as the

product of the density and the growth rate.

The algae density is reduced through consumption by the herbivore. The con-

sumption per head is a nonlinear function of the algal density: the greater the

density, the higher the consumption per head. The consumption rate is simply the

product of the number of herbivore and the consumption per head (Fig. 35.2).

The herbivore death rate is determined by their average life span, which is a

nonlinear function of the consumption per head: the higher the consumption per

head, the longer the life span, within limits (Fig. 35.3). Indirectly, the denser the

algae, the lower the herbivore death rate.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_35,
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Fig. 35.1

Fig. 35.2



The herbivore growth rate is a product of the herbivore stock and the fractional

herbivore growth rate, FCN HERB GROW. To increase realism of the model, we

make FCN HERB GROW a function of the algae density in the previous time

period (Fig. 35.4). This is done by producing an additional stock called ALGAE

DELAY, shown in Fig. 35.5. In general, it makes sense to represent herbivore

behavior in this way. Herbivore gestation time reflects the origin of this lagged

behavior.

Figure 35.6 shows the wide swings in algal density and herbivore population

over time and Fig. 35.7 presents a plot of algal density against the herbivore

population, which shows the limit cycle resulting from this particular choice of

the variables.

Now it is your turn to try changing things. Can you make the herbivore crash and

not re-emerge? Try to maximize the herbivore population. Can you do this by

adjusting only the variable FCN HERB GROW, without changing the maximum

and minimum rates?

Fig. 35.3
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Fig. 35.4

Fig. 35.5
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35.2 Herbivore-Algae Predator–Prey Model Equations

ALGAE(t) ¼ ALGAE(t � dt) + (ALGAE_GROWTH � CONSUMPTION) * dt

INIT ALGAE ¼ 210 {Algae per Area}

INFLOWS:

ALGAE_GROWTH ¼ ALGAE*GROWTH_RATE {Algae per Area per Time

Period}

Fig. 35.6

Fig. 35.7
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OUTFLOWS:

CONSUMPTION ¼ HERBIVORE*CONSUMP_PER_HD {Algae per Area per

Time Period}

HERBIVORE(t)¼ HERBIVORE(t� dt) + (HERB_GROWTH_RATE� DEATH_

RATE) * dt

INIT HERBIVORE ¼ 45 {Individuals}

INFLOWS:

HERB_GROWTH_RATE ¼ HERBIVORE*FCN_HERB_GROW {Individuals

per Time Period}

OUTFLOWS:

DEATH_RATE ¼ HERBIVORE/LIFESPAN {Individuals per Time Period}

ALGAE_DELAY ¼ DELAY(ALGAE,2) {Individuals}

CONSUMP_PER_HD ¼ GRAPH(ALGAE)

(0.00, 0.00), (100, 0.25), (200, 0.6), (300, 0.83), (400, 1.06), (500, 1.24), (600, 1.41),

(700, 1.61), (800, 1.77), (900, 1.89), (1000, 1.98)

FCN_HERB_GROW ¼ GRAPH(ALGAE_DELAY)

(0.00, 0.00), (100, 0.0035), (200, 0.0075), (300, 0.019), (400, 0.065), (500, 0.13),

(600, 0.163), (700, 0.181), (800, 0.19), (900, 0.195), (1000, 0.198)

GROWTH_RATE ¼ GRAPH(ALGAE)

(0.00, 0.21), (100, 0.168), (200, 0.112), (300, 0.0902), (400, 0.0781), (500, 0.066),

(600, 0.0572), (700, 0.0462), (800, 0.0363), (900, 0.0198), (1000, 0.00)

LIFESPAN ¼ GRAPH(CONSUMP_PER_HD)

(0.00, 0.00), (0.2, 2.16), (0.4, 4.32), (0.6, 6.96), (0.8, 9.48), (1.00, 12.1), (1.20, 14.9),

(1.40, 17.3), (1.60, 20.2), (1.80, 22.6), (2.00, 23.8)
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Chapter 36

The Grass Carp

The Carp is the Queen of Rivers: a stately, a good,
and a very subtle fish.

(Walton Angler, 1653)

36.1 Grass Carp Model

The Grass Carp model is a large one. It combines insight from the herbivore-algae

model discussed in the previous chapter with the need for human management of

the predator–prey relationship. A management practice known as “biomani-

pulation” has sprung from the idea of manipulating predator–prey relationships

and is gaining popularity among lake management organizations. The model was

motivated by the need of controlling the growth of grass in ponds and lakes.

Nutrient rich waters flow into these bodies producing prodigious growth rates of

a variety of plants. Plant growth is so luxuriant that sport fish cannot find food. To

control the grass, carp are introduced to eat the plants. To prevent the waterway

from being overrun by the carp, they are bred to be sterile. Such sterile carp are

called “triploid” in this model. The carp can overdo it as well—if they eat all of the

plants, they will starve and the young sport fish become easy prey for the large fish.

When the carp reduce the grass biomass to about 35–45 % of the unregulated

biomass, on the average, the optimum level of control is reached. The problem

becomes one of finding the appropriate number, size, and time of introduction of the

carp into the waterway. If such a way can be found, then biological control can

successfully displace chemical vegetation control.

Nursery-raised carp are commonly sold at 200 g, the minimum size for safe

transfer to a new waterway. The time horizon for most waterways is assumed to be

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_36,

© Springer International Publishing Switzerland 2014
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5 years, that is, for convenience the stocking should occur about every 5 years.

Thus, to predict the full effect of the fish, a 10-year period is set as the modeling

time: fish are introduced in the spring of the first and the fifth year. Spring is chosen

to maximize the survival rate of the young fish. An area of 1,000 m2 is chosen as the

basic unit of waterway area. The targeted water area is that portion of the waterway

up to 6 m in depth. The data used here are reported in Wiley et al. [1].

There are three basic parts to this model: the number of fish, the average size of

the fish, and the plant biomass. Let us first turn to the model component that deals

with the number of fish.

In the following figure, the input to the number of carp, which we here call

STOCK Rate, specifies when and how many 200 g fish are added to the waterway.

The output flows, which diminish the number of fish, are grouped under the control

MORTALITY. They are:

• PRED MORT, the consumption of the carp by the larger sport fish;

• WINTER MORT, the death of fish due to the harshness of the winter months;

and,

• STARVE MORT, the death of the carp due to lack of food.

Predator mortality is a function of the winter period, WINTER, a mortality

coefficient, MORT COEF, and the number of fish. The mortality coefficient, in

turn, is a function of the average age and size of the fish and a variable that causes

the mortality rate to increase as the fish ages, MORT COEF AGE.Winter mortality is

a function of the number of fish, the winter period, WINTER FLAG, and the above

aging coefficient. The WINTER FLAG indicates when winter occurs. It is defined as

WINTERFLAG¼ IF WEEK� 12ð ÞOR WEEK� 52ð ÞTHEN1ELSE0 ð36:1Þ

The starvation mortality is a function of the number of fish, a mortality coeffi-

cient based on the water temperature, and a determination of the food scarcity,

HUNGER. The hunger variable is determined by comparing the desired and actual

ingestion rates, as discussed below. The corresponding part of the STELLA model

is shown in Fig. 36.1.

Figure 36.2 shows how the temperature is derived. Average weekly air temper-

atures (10 year sample) for Region 11 Illinois were fit with a fourth order polyno-

mial. The resulting equation is

AIR TEMP ¼ � 2:8474� 1:025 �WEEKþ :2114 � WEEKð Þ2
� :0066 � WEEKð Þ3 þ 5:548E� 5 � �WEEK

�4 þ NORMAL
�
1, 3

�
ð36:2Þ

Winter is defined as that period when the average weekly temperature dropped

below 8 �C.
The next module displays the procedure for calculating the average size of the

fish in the waterway, in calories and in grams. The fish ingest vegetation measured
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in calories. They respire and excrete substances measured in calories as well. If the

ingested calories exceed the calories excreted and respired, the fish will gain

weight. If ingestion is smaller, the average size declines. The excess calories are

converted to grams of flesh at different rates and the conversion efficiency declines

as the fish grows larger. The conversion efficiencies for small and large fish, G

SIZES and G SIZEL, are shown in Figs. 36.3 and 36.4.

Fig. 36.1

Fig. 36.2
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The fish change their diet to one of declining caloric density as they grow older.

These changes are captured by FCC1, FCC2, and FCC3:

FCC1 ¼ IF G SIZE < 30ð Þ AND G SIZE � 0ð Þ THEN 500 ELSE FCC2 ð36:3Þ

FCC2 ¼ IF G SIZE � 30ð Þ AND G SIZE < 100ð Þ THEN 1000 ELSE FCC3

ð36:4Þ

FCC3 ¼ IF G SIZE � 100 THEN 430 ELSE 0 ð36:5Þ

Actual ingestion is determined in the plant module (shown below) but the

desired ingestion, DESIRED INGEST, is a function of the caloric density,

the average eating rate, BWPD, a factor for comparing triploid eating rates to the

natural carp eating rate, PLOIDY, the grams size, G SIZE, and a voraciousness

factors TC and TC1 which depend on the water temperature:

DESIRED INGEST ¼ 7 � BWPD � G SIZE � TC � PLOIDY � FCC1 ð36:6Þ

BWPD ¼ IF G SIZE < 15000 THEN 0:52 ELSE :21 ð36:7Þ

Fig. 36.3
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PLOIDY ¼ 0:91 ð36:8Þ

TC ¼ IF WATER TEMP � 11ð Þ AND WATER TEMP � 25ð Þ THEN
� 2:8591þ 1:19889 � LOGN WATER TEMPð Þ ELSE TC1

ð36:9Þ

TC1 ¼ IF WATER TEMP > 25 THEN 1 ELSE 0 ð36:10Þ

The respiration energy rate in Fig. 36.5 depends on the digestion effort, SDA, the

activity level ACTIV FAC, and the standard metabolism, STANDARD METAB,

the latter being dependent on the gram size and water temperature.

RESPIRATION ¼ IF G SIZE > 0 THEN

7 � STANDARD METAB � ACTIV FACð Þ
þ SDA ELSE 0

ð36:11Þ

SDA ¼ :06 � INGESTION ð36:12Þ

ACTIV FAC ¼ TC= 1:06 � Cð Þ þ 1 ð36:13Þ

Fig. 36.4
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STANDARD METAB ¼ IF WATER TEMP � 0ð ÞAND�
G SIZE > 1

�
THEN

82:2 � :026 � �G SIZE :645ð Þ� �WATER TEMP1:07

ELSE 0

ð36:14Þ

where conversions are made from milligrams of oxygen per fish-hour to standard

calories per fish-day.

The excretion rate is a function of the amount of energy not assimilated and the

fish size. The assimilation level depends in a complex way on the ratio of the

desired to actual ingestion (Fig. 36.6).

EXCRETION RATE ¼ IF G SIZE > 0 THEN 1� ASSIMILATION � K1ð Þ
� K2 � INGESTION ELSE 0

ð36:15Þ

Fig. 36.5
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Figure 36.7 shows the plant model. Growth of the plant is a simple logistic form

with a specified upper limit on the maximum plant density, PCC¼ 500,000, and a

specified growth rate G¼ 0.125. The growth rate is controlled by the temperature,

TEMP SWITCH G:

TEMP SWITCH G ¼ IF WATER TEMP > 15 THEN 1 ELSE 0 ð36:16Þ

The temperature must be above a specified level for growth to occur. Plant

mortality is controlled by the number of cumulative degree-days, which produces a

mortality rate for the plant, INSTANT MORT

INSTANT MORT ¼ A � CUM DEG DAYSB ð36:17Þ

Fig. 36.6

Fig. 36.7
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Aminimum level of vegetation (5,000 g) is preserved for regeneration and caremust

be taken to insure that plant mortality does not exceed this limit, P MORT TENAT

P MORT TENAT ¼ 7 � INSTANT MORT � PLANT STOCK G

� TEMP SWITCH M:
ð36:18Þ

The most complicated part of the model is the removal of vegetation by fish

grazing, GRAZE MORT (Figs. 36.7 and 36.8). Grazing mortality must not exceed

the minimum level GRAZE MORT1 and the desired ingestion is consequently

controlled. The desired grazing rate is the desired ingestion converted to grams of

wet plant material from a dry caloric base. Actual ingestion is the allowed grazing

rate converted back to dry calories.

PLANT MORT ¼ IF P MORT TENAT � PLANT STOCK G� 5000

THEN PLANT STOCK G� 5000ð Þ
ELSE P MORT TENAT

ð36:19Þ

GRAZE MORT1 ¼ IF PLANT STOCK G� 5000 > 0

THEN PLANT STOCK G� 5000 ELSE 0
ð36:20Þ

Figure 36.9 shows the two ways to find the average percentage plant biomass

consumed by the fish for the 10-year period. The first module records the collective

actual peak biomass levels for the ten periods and divides by ten and by the annual

undisturbed peak in biomass. The second module simply integrates the area under

the plant biomass–time curve and divides the sum by ten times the area under the

undisturbed annual biomass curve. These are the two similar measures of the

success of the stocking program being tested.

Figure 36.10 shows how the average yearly age AVG AGE of the current stock

of fish at the second stocking time T2 is calculated. Before and after this time the

average age of the fish is proportional to the TIME variable. The average age is used

to change the winter mortality rate (see above).

Figure 36.11 gives the size-averaging module. In this module, the average size of

the fish is thought to be sufficiently accurate. The alternative is to model each of the

stockings independently.

Fig. 36.8
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Fig. 36.9

Fig. 36.10

Fig. 36.11
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The last module is set up for the degree-day calculation (Fig. 36.12). The base

here is 0 �C.
Now all the necessary components of the model are laid out. Run the model as

suggested above. It will yield the results shown in Fig. 36.13.

Now, experiment with the model, for example by choosing different stocking

numbers. Try using a smaller number in the second stocking period to smooth out

the vegetative peak variation. You will find that the weakest part of the model is the

part where known air temperatures are converted into corresponding water temper-

atures. You will find that we have experimented with this connection, using random

variations on the average weekly temperatures and a variety of lag times between

the air and water temperatures.

Fig. 36.12

Fig. 36.13
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36.2 Grass Carp Model Equations

ST1(t) ¼ ST1(t � dt) + (PSG � F1) * dt

INIT ST1 ¼ 0

INFLOWS:

PSG ¼ PLANT_STOCK_G {This section computes the max plant peak in each

year, sums those peaks over the ten-year period of the run and then divides this

sum by the sum of ten years of plant peaks which are undisturbed by grazing.}

OUTFLOWS:

F1 ¼ ST1

ST2(t) ¼ ST2(t � dt) + (F1 � F2) * dt

INIT ST2 ¼ 0

INFLOWS:

F1 ¼ ST1

OUTFLOWS:

F2 ¼ ST2

CAL_SIZE(t) ¼ CAL_SIZE(t � dt) + (INGESTION + SIZE_PULSE � EXCRE-

TION � RESPIRATION) * dt

INIT CAL_SIZE ¼ 0

INFLOWS:

INGESTION ¼ IF CAL_SIZE > 0 THEN ACTUAL_INGEST ELSE 0 {Calories

per Fish-Week}

SIZE_PULSE¼ PULSE(F_SIZE_CAL_1, TIME_1, 1000) + PULSE(SIZE_REAVG,

TIME_2,1000){This is thepulsingof the twocontrol sizes in std. cals, into theaverage

calorie size state variable box.}

OUTFLOWS:

EXCRETION ¼ IF G_SIZE > 0 THEN (1-ASSIMILATION*K_1)

*K2*INGESTION ELSE 0 {Calories per Fish–Week}

RESPIRATION ¼ IF G_SIZE > 0 THEN 7*(STANDARD_METAB

*ACTIV_FAC)+SDA ELSE 0 {Standard Calories per Fish–Week}

CUM_DEG_DAYS(t)¼CUM_DEG_DAYS(t� dt)+ (DD_RATE�CDD_RESET)*dt

INIT CUM_DEG_DAYS ¼ 0

INFLOWS:

DD_RATE ¼ IF WATER_TEMP >¼ 0 THEN (WATER_TEMP)*7 ELSE 0

OUTFLOWS:

CDD_RESET¼ IF WEEK¼ 52 THEN CUM_DEG_DAYS ELSE 0 {This control

dumps the Cummulative Degree Days on Jan. 1st so that another accumulation

can begin. }

FRAC_AREA_LEFT(t) ¼ FRAC_AREA_LEFT(t � dt) + (FLOW_1) * dt

INIT FRAC_AREA_LEFT ¼ 0

INFLOWS:

FLOW_1 ¼ IF TIME ¼ 519 THEN PLANT_MAX/45300000 ELSE 0 {Divides

the cumulative area under the plant stock (Grams) vs. time curve by the area

under the standard curve (10 years), no variation in the avg. temp. curve}
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FRAC_PEAK_LEFT(t) ¼ FRAC_PEAK_LEFT(t � dt) + (PEAK_RATE) * dt

INIT FRAC_PEAK_LEFT ¼ 0

INFLOWS:

PEAK_RATE ¼ IF (F1 > PSG) AND (F1 > F2) AND (F1 > 50000) THEN

F1/4250000 ELSE 0

NO_AT_T2(t) ¼ NO_AT_T2(t � dt) + (NT2) * dt

INIT NO_AT_T2¼ 0 {This section calculates the average age of the fish in years.

It averages the fish of the second pulse with the age of the remaining fish from

the first pulse.}

INFLOWS:

NT2 ¼ IF TIME ¼ TIME_2 THEN NUMBER ELSE 0

NUMBER(t) ¼ NUMBER(t � dt) + (STOCK_RATE � MORTALITY) * dt

INIT NUMBER ¼ 0

INFLOWS:

STOCK_RATE ¼ PULSE(NUM_1,TIME_1,1000) + PULSE(NUM_2,

TIME_2,1000) {These are the Pulse functions. They only work with Euler

integration and dt ¼1.00. See Specs Menu.}

OUTFLOWS:

MORTALITY ¼ PRED_MORT + WINTER_MORT + STARVE_MORT

PLANT_MAX(t) ¼ PLANT_MAX(t � dt) + (PLT_STOCK � FLOW_1) * dt

INIT PLANT_MAX ¼ 0

INFLOWS:

PLT_STOCK ¼ PLANT_STOCK_G {This section computes the total area under

the plant curve for the ten-year test run and then divides it by the total area under

the undisturbed (by grazing) curve of plant growth.}

OUTFLOWS:

FLOW_1 ¼ IF TIME ¼ 519 THEN PLANT_MAX/45300000 ELSE 0 {Divides

the cumulative area under the plant stock (Grams) vs. time curve by the area

under the standard curve (10 years), no variation in the avg. temp. curve}

PLANT_STOCK_G(t) ¼ PLANT_STOCK_G(t � dt) + (PLANT_GROWTH �
PLANT_MORT � GRAZE_MORT) * dt

INIT PLANT_STOCK_G ¼ 5000 {Grams Dry Weight per 1000 Square Meters.

To change veg. type, change variables: A, B, FCC3, G, PC, PCC, TEMP

SWITCHG, and DRY WETPLT}

INFLOWS:

PLANT_GROWTH ¼ IF PLANT_STOCK_G > 0 THEN 7*TEMP_SWITCH_

G*G*PLANT_STOCK_G*(1-PLANT_STOCK_G/PCC) ELSE 0 {Grams dry

weight per 1000 Square Meters–Week}

OUTFLOWS:

PLANT_MORT¼ IF P_MORT_TENAT>¼ PLANT_STOCK_G� 5000 THEN

(PLANT_STOCK_G �5000) ELSE P_MORT_TENAT

GRAZE_MORT ¼ IF DESIRED_GRAZE <¼ PLANT_STOCK_G � 5000

THEN DESIRED_GRAZE ELSE GRAZE_MORT_1 {Dry Weight Grams per

Week. A 5000 Gram/Square Meter-Week reserve is maintained.}
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TEMP_LAG(t) ¼ TEMP_LAG(t � dt) + (TEMP_RATE � LAG_RATE) * dt

INIT TEMP_LAG ¼ 0 {Degrees C}

INFLOWS:

TEMP_RATE ¼ AIR_TEMP {Degrees C per Time Period}

OUTFLOWS:

LAG_RATE ¼ TEMP_LAG/3 {Degrees C per Time Period}

A ¼ .11E-12 {from fig 3�11, page 3�27, part 3}

ACTIV_FAC ¼ TC/(1.06*C)+1

ACTUAL_INGEST ¼ IF NUMBER > 0 THEN GRAZE_MORT*FCC1/

DRY_WETPLT/NUMBER ELSE 0 {Converting the actually allowed ingestion

back to Wet Standard Calories per Fish-Week from Dry Vegetation Grams per

Week.}

AIR_TEMP¼�2.8474-1.025*WEEK+.2114*(WEEK)^2-.0066*(WEEK)^3+5.548E

�5*(WEEK)^4 + NORMAL(1,3) {Degrees C}

ASSIMILATION¼ IF (WATER_TEMP> 1) AND (G_SIZE> 1) THEN �.026-

.058*LN(G_SIZE) + .213*LN(WATER_TEMP) ELSE 0 {see eqn 8, page

859, Wiley & Wike, AFS, 1986.}

AVG_AGE ¼ IF TIME >¼ TIME_2 THEN (NO_AT_T2*TIME_2/52)/

(NO_AT_T2 + NUM_2) + (TIME - TIME_2)/52 ELSE TIME/52

B ¼ 3.45

BWPD ¼ IF G_SIZE <15000 THEN 0.52 ELSE .21 {Average consumption rate

for Elodea; Grams Wet Vegetation per Gram Fresh Fish–Day}

C ¼ IF DESIRED_INGEST > INGESTION THEN 2 ELSE 1 {Reduces assimi-

lation rate during starvation}

DESIRED_GRAZE ¼ NUMBER*DESIRED_INGEST*DRY_WETPLT/FCC1

{Dry Vegetation Grams per Week. Conversion: from Standard Calories by /

FCC1; from Wet Grams to Dry Grams by *DRY WETPLT}

DESIRED_INGEST ¼ 7*BWPD*G_SIZE*TC*PLOIDY*FCC1 {Regular Calo-

ries per Fish–Week}

DRY_WETPLT ¼ .24 {This is the dry to wet weight ratio for Elodea.}

FCC1 ¼ IF (G_SIZE < 30) AND (G_SIZE >¼ 0) THEN 500 ELSE FCC2

{Calories per gram of wet weight of Elodea c.}

FCC2 ¼ IF (G_SIZE >¼ 30) AND (G_SIZE < 100) THEN 1000 ELSE FCC3

{Calories per gram of wet weight of Elodea c.}

FCC3 ¼ IF G_SIZE >¼ 100 THEN 430 ELSE 0 {430 Calories per gram of wet

weight of Elodea c.}

FSIZECAL_2 ¼ 827.18*F_SIZE_G_2^1.0968 + .0115*F_SIZE_G_2^2.1936

F_SIZE_CAL_1 ¼ 827.18*F_SIZE_G_1^1.0968 + .0115*F_SIZE_G_1^2.1936

{See Ref. under FSizeCal_2; eqn is multiplied by FSize_g_1 to get total Stan-

dard Calories per Fish}

F_SIZE_G_1¼ 200 {Grams fresh weight, per fish. This variable is set by the user.}

F_SIZE_G_2 ¼ 200 {The size of the average fish in the second pulse, in g fresh

weight. This variable is set by the user.}

G ¼ .125 {Instantaneous growth rate of Elodea c., Grams per Gram-Day}
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GRAZE_MORT_1 ¼ IF PLANT_STOCK_G � 5000 > 0 THEN

PLANT_STOCK_G � 5000 ELSE 0

G_SIZE ¼ IF CAL_SIZE < 700000 THEN G_SIZE_S ELSE G_SIZE_L {I broke

the Wiley/Wike function into 2 parts for better accuracy. This relation controls

the conversion of net cal. to fresh g of fish.}

G_SIZE_L ¼ GRAPH(CAL_SIZE)

(0.00, 5.67e�317), (7e+06, 3100), (1.4e+07, 5800), (2.1e+07, 8000), (2.8e+07,

10000), (3.5e+07, 11600), (4.2e+07, 13200), (4.9e+07, 14800), (5.6e+07,

16100), (6.3e+07, 17300), (7e+07, 18500)

G_SIZE_S ¼ GRAPH(CAL_SIZE)

(0.00, 6.05e-317), (100000, 78.0), (200000, 148), (300000, 218), (400000, 277),

(500000, 342), (600000, 400), (700000, 452), (800000, 500), (900000, 500),

(1e+06, 500)

HUNGER¼ 1� INGESTION/(DESIRED_INGEST+1.0) { The 1.0 keeps the ratio

from becoming indefinite.}

INSTANT_MORT ¼ A*CUM_DEG_DAYS^B

K2 ¼ .97 {calibration coefficient}

K_1 ¼ 1 + (.2�.2*(INGESTION/(DESIRED_INGEST+1.0))) {eqn 5, page 3�8,

part 3. The 1.0 keeps 0/0 from being an indefinite number.}

MORT_COEF¼ IF (G_SIZE> 1.0)AND(G_SIZE< 100)THEN.04645�.00705*LN

(G_SIZE) ELSEMORT_COEF_AGE

MORT_COEF_AGE ¼ GRAPH(AVG_AGE)

(0.00, 0.000495), (1.20, 0.0002), (2.40, 0.0002), (3.60, 0.00015), (4.80, 0.000395),

(6.00, 0.001), (7.20, 0.001), (8.40, 0.001), (9.60, 0.001), (10.8, 0.001), (12.0, 0.001)

MORT_COEF_STARVE ¼ IF WATER_TEMP < 20 THEN 0 ELSE .005479

MORT_COEF_WINTER ¼ MORT_COEF_AGE

NUM_1 ¼ 4 {Number of fish per 1000 sq. m. in the first pulse. This variable is set

by the user.}

NUM_2 ¼ 4 {Number of fish per 1000 sq. m. in the second pulse. This variable is

set by the user.}

PCC ¼ 500000 {Carrying capacity for Elodea; Dry Grams per 1000 Square

Meters.}

PLOIDY ¼ .91 {This is the factor for comparing triploid eating rates to the natural

carp eating rate.}

PRED_MORT ¼ IF NUMBER > 0 THEN 7*MORT_COEF*NUMBER*
(1-WINTER) ELSE 0 {number per week}

P_MORT_TENAT ¼ 7*INSTANT_MORT*PLANT_STOCK_G*TEMP_

SWITCH_M {Grams per 1000 Square Meters}

SDA ¼ .06*INGESTION {Grams Dry Vegetation Equivalent per Fish–Week}

SIZE_REAVG ¼ (NUMBER*CAL_SIZE + NUM_2*FSIZECAL_2)/ (NUM_2 +

NUMBER) � CAL_SIZE {Reaverages the caloric size when the second pulse

occurs.}

STANDARD_METAB¼ IF (WATER_TEMP>¼ 0) AND (G_SIZE> 1) THEN

82.2*.026*(G_SIZE^(.645))*WATER_TEMP^1.07 ELSE 0 {82.2 converts

from Milligram Oxygen per Fish-Hour to Standard Calories per Fish-Day}
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STARVE_MORT ¼ IF (NUMBER > 0) AND (INGESTION > 0) THEN

7*HUNGER*MORT_COEF_STARVE*NUMBER ELSE 0 {number per

week, see eqn on page 3-14, part 3.}

TC ¼ IF (WATER_TEMP >¼ 11) AND (WATER_TEMP <¼ 25) THEN

�2.8591+1.19889*LN(WATER_TEMP) ELSE TC1

TC1 ¼ IF WATER_TEMP > 25 THEN 1 ELSE 0

TEMP_SWITCH_G ¼ IF WATER_TEMP > 15 THEN 1 ELSE 0 {Temp. growth

threshold for Elodea C., Degrees C}

TEMP_SWITCH_M¼ IF (CUM_DEG_DAYS>¼ 800)AND (CUM_DEG_DAYS

<¼ 10000) AND (WEEK> 1) AND (WEEK< 51) THEN 1 ELSE 0

TIME_1 ¼ 21 {Time in weeks to the first pulse. Usually the best time is April or

17 weeks into the year. This variable set by user.}

TIME_2 ¼ 281 {Time of the second pulse, in weeks. This variable set by user.}

WATER_TEMP ¼ 3.06 + 0.32*TEMP_LAG + 0*AIR_TEMP {Degrees C}

WEEK ¼ (TIME MOD 52) + 1 {Determines the number (1 to 52) of the week of

the year}

WINTER ¼ IF WATER_TEMP < 8 THEN 1 ELSE 0

WINTER_FLAG ¼ IF (WEEK <¼12) OR (WEEK >¼ 52) THEN 1 ELSE 0

{Indicates when winter occurs: December 21 thru March 21}

WINTER_MORT ¼ IF NUMBER > 0 THEN 7*MORT_COEF_WINTER*
WINTER_FLAG*NUMBER ELSE 0 {Number/Week}

Reference

1. Wiley MJ, Tazik PP, Sobaski ST (1987) Controlling aquatic vegetation with triploid grass

CARP. Illinois Natural History Survey, Champaign (Circular 57)
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Chapter 37

Recruitment and Trophic Dynamics

of Gizzard Shad

The exquisite manipulation of the master gives to each atom of
the multitude its own character and expression.

(Ruskin, 1843)

37.1 Gizzard Shad Model

The previous chapter provides one example of ways in which ecosystems can be

managed via the deliberate manipulation of food webs. In this chapter, we develop a

model of the addition of piscivorous (fish-eating) predators to a system that may

enhance water quality by reducing algal biomass. These effects are obtained when

predators diminish for example planktivore biomass, which in turn release zoo-

plankton production. Increased numbers of zooplankton then result in lower num-

bers of algae, which increases water quality for human uses.

Unfortunately, numerous exceptions have been found within this simple “cas-

cading” mechanism. For instance, due to rapid turnover of primary production,

highly eutrophic systems are not easily limited by top-down regulation. Systems

with many littoral plants also resist biomanipulation, since these plants serve as a

reservoir of production and nutrients apart from the limnetic community.

The model developed in this chapter examines the recruitment and trophic

dynamics of a freshwater clupeid, gizzard shad, in a flood control reservoir. Due

to rapid growth, omnivorous food habits, and a high fecundity, populations of this

fish species may escape both regulation by predators, and competition for food

resources. As a result they may often impact predator and zooplankton populations

more than they are impacted themselves. Such “middle-out” effects in the trophic

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_37,

© Springer International Publishing Switzerland 2014
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cascade may thwart any attempt to improve water quality by adding predators to a

system containing a substantial population of gizzard shad. Thus the question

arises: Under what conditions could a lake manager hope to control gizzard shad

populations and improve water quality through biomanipulation? In this chapter we

examine the effect of various biomanipulation regimes, the effect of predator death

rates, and gizzard shad egg survival.

Let us model a community of primary producers, zooplankton, planktivores

(gizzard shad), and a predator species that forages optimal size classes of gizzard

shad. The model is set up to run for approximately 10 years of simulated time.

Gizzard shad growth is dependent on zooplankton density for the first two size

classes (larval 5–20 mm, and early juvenile 20–40 mm). The larval and juvenile

growth rates are graphically specified in Figs. 37.1 and 37.2.

Predation rates remain constant for a given abundance of predators. Thus

survival of gizzard shad depends on the ability of the fish to outgrow predation.

Growth is especially important during the first three life stages (larval, early

juvenile, and late juvenile), but fish will transfer at set time intervals to higher

size classes from the late juvenile stage onward. This maturation pattern reflects the

foraging shift from zooplankton to detritus during the first year of life, and the

diminishing importance of density dependent events for adult detritivores. Egg

survival determined under the control variable SURVIVAL and WINTERKILL is

Fig. 37.1
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controlled by SEVERITY. SURVIVAL is set to 0.008 and reflects year to year

variation in egg survival due to flooding. SEVERITY is set equal to 0.1 and reflects

year to year variation in winter severity and subsequent winter kill:

WINTERKILL ¼ PULSE LARVAL � SEVERITY, 50, 52ð Þ ð37:1Þ

Diminishing predation on late juvenile fish as the summer progresses is indicated

by the controller variable SEASONAL SHIFT, which is a pulse that diminishes

over time:

SEASONAL SHIFT ¼ 1� PULSE 1; 8; 52ð Þ ð37:2Þ

Here, the built-in PULSE function takes on the value of 1, which happens for the

first time in period 8 and repeats itself every 52 periods.

Predation on larvae and small fish, i.e. early and late juveniles, is specified as

shown in Figs. 37.3 and 37.4.

Predators are divided into three categories; juveniles (young of year or YOY),

small predators, and adults. The STELLA diagram that captures the corresponding

age cohort dynamic is shown in Figs. 37.5 and 37.6.

Fig. 37.2
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Fig. 37.4

Fig. 37.3



Death of gizzard shad is determined by the density of predators of various size

classes. The predation rate is given graphically in Fig. 37.7.

Large adult gizzard shad are not removed by predation at all. Regulation strength

of predators is modified at the variable REGULATION STRENGTH. This control

variable affects death rates of the predator and its ability to control gizzard shad. It

may be said that the control is directly related to the spatial separation of the two

Fig. 37.5
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Fig. 37.6

Fig. 37.7



species (gizzard shad occur in both the limnetic and littoral zone, and largemouth

bass occur primarily in the littoral zone).

The population dynamics of the predator are given in the module of Fig. 37.8.

Here, the death of small predators depends on the availability of gizzard shad larvae

and early juveniles (Fig. 37.9).

Similarly, the effects of biomass of prey for small and adult predators are

specified through control variables set up as graphs, shown in Figs. 37.10 and 37.11.

The modules capturing algal and zooplankton growth are set up as shown in

Figs. 37.12 and 37.13.

The growth rates for algae and zooplankton are specified, respectively, as in

Figs. 37.14 and 37.15.

Consumption rates of algae by zooplankton and of zooplankton by gizzard shad

are also specified graphically (Figs. 37.16 and 37.17).

Now all the pieces of the model are in place and we are ready to investigate the

impacts of biomanipulation. Our models show that the top-down manipulations are

effective in controlling populations of gizzard shad (Figs. 37.18, 37.19, and 37.20).

Fig. 37.8
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Conduct sensitivity analyses for the impact of the number of predators and the

regulation strength on algal bloom. You should find that by increasing the number

of predators which are introduced into a system, the peak of algal blooms (which

occur without these predators) is reduced and the number of algal blooms is also

reduced. Regulation strength is effective in controlling algal biomass and gizzard

shad numbers as well. By reducing the regulation strength, the amount of algae in

the system is substantially enhanced, and increasing the amount of regulation

strength diminishes the amount of algae in the system.

In a separate set of sensitivity analyses, assess the impacts of egg survival rates

and winterkill on the system’s dynamics. In the case of winterkill, reduction of the

Fig. 37.9
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population does not matter, because reproduction of gizzard shad is so great that a

few adults could fill the system. Thus the peak numbers of larval gizzard shad are

slightly reduced, but the overall population patterns remained unchanged. Egg

survival also does not greatly effect the population or algal biomass.

From the results of sensitivity testing, it appears that manipulations of predator

populations may still have success in controlling gizzard shad populations despite

the fact of rapid gizzard shad growth and high fecundity. Lake managers should

take care to conserve and possibly enhance predator stocks (taking care not to

impact local stocks or environments) in lakes where water quality is important.

Fig. 37.10
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Fig. 37.11

Fig. 37.12



Fig. 37.13
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Fig. 37.14
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Fig. 37.15
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Fig. 37.16
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Fig. 37.17
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Fig. 37.18

Fig. 37.19
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37.2 Gizzard Shad Model Equations

ADULT(t) ¼ ADULT(t � dt) + (YEARLING_GROW � ADULT_GROW �
ADULT_DIE) * dt

INIT ADULT ¼ 100 {Individuals}

INFLOWS:

YEARLING_GROW ¼ PULSE(YEARLING,7,52) {Individuals per Week}

OUTFLOWS:

ADULT_GROW ¼ ADULT*ADULT_GROWTH {Individuals per Week}

ADULT_DIE ¼ IF ADULT <1 THEN 0 ELSE (ADULT*SIZE_RATE_5)

+WINTERKILL_5 {Individuals per Week}

ALGAE(t)¼ALGAE(t� dt) + (ALGAE_GROWTH_2�CONSUMPTION_ZOOP)

* dt

INIT ALGAE ¼ 10000 {Units of Biomass}

INFLOWS:

ALGAE_GROWTH_2 ¼ GROWTH_ALGAE {Units of Biomass per Week}

OUTFLOWS:

CONSUMPTION_ZOOP ¼ (ALGAE*CONSUMPTION_RATE_ZOOP) {Units of

Biomass per Week}

EARLY_JUV(t)¼EARLY_JUV(t� dt)+ (LARVAE_GROW�EARLY_JUV_GROW

� EARLY_JUV_DIE) * dt

INIT EARLY_JUV ¼ 100 {Individuals}

INFLOWS:

LARVAE_GROW ¼ LARVAL*LARVAL_GROWTH {Individuals per Week}

OUTFLOWS:

Fig. 37.20
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EARLY_JUV_GROW ¼ EARLY_JUV*EARLY_JUV_GROWTH {Individuals

per Week}

EARLY_JUV_DIE ¼ IF EARLY_JUV < 1 THEN 0 ELSE (EARLY_JUV*
SIZE_RATE_2)+WINTERKILL_2 {Individuals per Week}

JUV_PRED(t) ¼ JUV_PRED(t � dt) + (JUV_GROW � SMALL_PRED_DEATH

� JUV_MAT) * dt

INIT JUV_PRED ¼ 1000 {Individuals}

INFLOWS:

JUV_GROW ¼ PULSE(PREDATOR*25000,8,52)+BIOMANIPULATION {Indi-

viduals per Week}

OUTFLOWS:

SMALL_PRED_DEATH ¼ (SMALL_PRED_DIE*REGULATION_STRENGTH)

*JUV_PRED {Individuals per Week}

JUV_MAT ¼ PULSE(JUV_PRED,8,52) {Individuals per Week}

LARGE_ADULT(t) ¼ LARGE_ADULT(t � dt) + (ADULT_GROW � LARGE_

ADULT_DIE) * dt

INIT LARGE_ADULT ¼ 40 {Individuals}

INFLOWS:

ADULT_GROW ¼ ADULT*ADULT_GROWTH {Individuals per Week}

OUTFLOWS:

LARGE_ADULT_DIE ¼ IF LARGE_ADULT <1 THEN 0 ELSE (.001*
(LARGE_ADULT))+WINTERKILL_6 {Individuals per Week}

LARVAL(t) ¼ LARVAL(t � dt) + (EGG_DEPOSITION � LARVAE_GROW �
LARVAL_DIE) * dt

INIT LARVAL ¼ 100 {Individuals}

INFLOWS:

EGG_DEPOSITION ¼ (PULSE(REPROD*20000*EGG_SURVIVAL,10,52))

+(PULSE(REPROD*160000*EGG_SURVIVAL,12,52))+(PULSE

(REPROD*2000*EGG_SURVIVAL,16,52)) {Individuals per Week}

OUTFLOWS:

LARVAE_GROW ¼ LARVAL*LARVAL_GROWTH {Individuals per Week}

LARVAL_DIE ¼ IF LARVAL <1 THEN 0 ELSE (LARVAL*SIZE_RATE)

+WINTERKILL {Individuals per Week}

LATE_JUV(t)¼LATE_JUV(t� dt)+ (EARLY_JUV_GROW�LATE_JUV_GROW

� LATE_JUV_DIE) * dt

INIT LATE_JUV ¼ 75 {Individuals}

INFLOWS:

EARLY_JUV_GROW ¼ EARLY_JUV*EARLY_JUV_GROWTH {Individuals

per Week}

OUTFLOWS:

LATE_JUV_GROW ¼ PULSE(LATE_JUV,9,52) {Individuals per Week}

LATE_JUV_DIE¼ IFLATE_JUV<1THEN0ELSE((LATE_JUV*SIZE_RATE_3)

*SEASONAL_SHIFT)+WINTERKILL_3 {Individuals per Week}

PREDATOR(t) ¼ PREDATOR(t � dt) + (GR � PRED_DEATH_RATE) * dt

INIT PREDATOR ¼ 10 {Individuals}
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INFLOWS:

GR ¼ PULSE(SMALL_PRED,8,104) {Individuals per Week}

OUTFLOWS:

PRED_DEATH_RATE¼ IF PREDATOR<1 THEN 1 ELSE (PRED_DEATH*RE-

GULATION_STRENGTH)*PREDATOR {Individuals per Week}

SMALL_PRED(t) ¼ SMALL_PRED(t � dt) + (JUV_MAT � GR �
SM_PRED_DEATH) * dt

INIT SMALL_PRED ¼ 100 {Individuals}

INFLOWS:

JUV_MAT ¼ PULSE(JUV_PRED,8,52) {Individuals per Week}

OUTFLOWS:

GR ¼ PULSE(SMALL_PRED,8,104) {Individuals per Week}

SM_PRED_DEATH ¼ (PREDATOR_GROW*REGULATION_STRENGTH)

*SMALL_PRED {Individuals per Week}

YEARLING(t) ¼ YEARLING(t � dt) + (LATE_JUV_GROW �
YEARLING_GROW � YEAR_DIE) * dt

INIT YEARLING ¼ 60 {Individuals}

INFLOWS:

LATE_JUV_GROW ¼ PULSE(LATE_JUV,9,52) {Individuals per Week}

OUTFLOWS:

YEARLING_GROW ¼ PULSE(YEARLING,7,52) {Individuals per Week}

YEAR_DIE ¼ IF YEARLING <1 THEN 0 ELSE (YEARLING*SIZE_RATE_4)

+WINTERKILL_4 {Individuals per Week}

ZOOP(t) ¼ ZOOP(t � dt) + (ZOOP_GROWTH � CONSUMPTION_SHAD) * dt

INIT ZOOP ¼ 1000 {Units of Biomass}

INFLOWS:

ZOOP_GROWTH ¼ ZOOP*GROWTH_ZOOP {Units of Biomass per Week}

OUTFLOWS:

CONSUMPTION_SHAD ¼ IF ZOOP <1 THEN 0 ELSE (ZOOP*CONSUMP-

TION_RATE_SHAD) {Units of Biomass per Week}

ADULT_GROWTH ¼ ADULT/ZOOP*.0009

BIOMANIPULATION¼ PULSE(DEGREE,50,TIMING) {Individuals per Week}

CONSUMPTION_RATE_SHAD ¼ GRAPH(SHAD_BIOMASS)

(0.00, 0.00), (100, 0.065), (200, 0.155), (300, 0.25), (400, 0.345), (500, 0.46),

(600, 0.54), (700, 0.66), (800, 0.775), (900, 0.895), (1000, 1.00)

CONSUMPTION_RATE_ZOOP ¼ GRAPH(ZOOP )

(0.00, 0.01), (10.0, 0.34), (20.0, 0.52), (30.0, 0.625), (40.0, 0.73), (50.0, 0.805),

(60.0, 0.865), (70.0, 0.905), (80.0, 0.94), (90.0, 0.98), (100, 1.00)

DEGREE ¼ 0 {Week}

EARLY_JUV_GROWTH ¼ GRAPH((EARLY_JUV+LARVAL)/ZOOP)

(0.00, 1.00), (100, 1.00), (200, 1.00), (300, 0.99), (400, 0.965), (500, 0.705),

(600, 0.435), (700, 0.34), (800, 0.31), (900, 0.3), (1000, 0.3)

EGG_SURVIVAL ¼ ABS(RANDOM(SURVIVAL,.009))

GROWTH_ALGAE ¼ GRAPH(ALGAE)

(0.00, 14.8), (1e+07, 12.0), (2e+07, 9.30), (3e+07, 7.95), (4e+07, 6.83), (5e+07,

6.45), (6e+07, 6.22), (7e+07, 6.22), (8e+07, 6.22), (9e+07, 6.08), (1e+08, 6.08)
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GROWTH_ZOOP ¼ GRAPH(ALGAE )

(0.00, 0.00), (10.0, 0.1), (20.0, 0.195), (30.0, 0.3), (40.0, 0.4), (50.0, 0.5), (60.0,

0.6), (70.0, 0.7), (80.0, 0.8), (90.0, 0.895), (100, 0.99)

LARGE_PRED_BIO ¼ ADULT+LATE_JUV+YEARLING {prey for adults}

LARVAL_GROWTH ¼ GRAPH(LARVAL/ZOOP)

(0.00, 0.995), (10.0, 0.845), (20.0, 0.755), (30.0, 0.65), (40.0, 0.575), (50.0, 0.475),

(60.0, 0.365), (70.0, 0.295), (80.0, 0.255), (90.0, 0.215), (100, 0.155)

LARVAL_PRED ¼ GRAPH(JUV_PRED)

(0.00, 2.00), (10.0, 4.50), (20.0, 9.50), (30.0, 19.5), (40.0, 30.5), (50.0, 39.0), (60.0,

49.5), (70.0, 62.0), (80.0, 75.0), (90.0, 87.0), (100, 97.5)

PREDATOR_GROW ¼ GRAPH(SMALL_PRED_BIO)

(0.00, 0.098), (10.0, 0.0785), (20.0, 0.06), (30.0, 0.043), (40.0, 0.0005), (50.0,

0.0005), (60.0, 0.0005), (70.0, 0.0005), (80.0, 0.00), (90.0, 0.00), (100, 0.00)

PRED_DEATH ¼ GRAPH(LARGE_PRED_BIO)

(0.00, 0.055), (100, 0.05), (200, 0.0275), (300, 0.02), (400, 0.015), (500, 0.0117),

(600, 0.01), (700, 0.009), (800, 0.0081), (900, 0.0075), (1000, 0.0072)

PRED_RATE ¼ GRAPH(PREDATOR )

(0.00, 0.02), (10.0, 0.115), (20.0, 0.195), (30.0, 0.26), (40.0, 0.365), (50.0, 0.465),

(60.0, 0.57), (70.0, 0.685), (80.0, 0.785), (90.0, 0.9), (100, 0.99)

REGULATION_STRENGTH ¼ 1

REPROD ¼ ADULT+(LARGE_ADULT*1.2)

SEASONAL_SHIFT ¼ 1�PULSE(1,8,52)

SEVERITY ¼ .1 {reflects year to year variation in winter severity and subsequent

winter kill}

SEVERITY_6 ¼ RANDOM(.1,.01)

SHAD_BIOMASS ¼ IF ZOOP > 2*TOTAL_POPULATION THEN ((LAR-

VAL*.05)+(EARLY_JUV*3)+(LATE_JUV*10)+((YEARLING*30)

+(ADULT*100)+(LARGE_ADULT*200))*.001)*.7 ELSE (LARVAL*.05)

+(EARLY_JUV*3)+(LATE_JUV*3)

SIZE_RATE ¼ LARVAL_PRED*.5

SIZE_RATE_2 ¼ SMALL_PRED_RATE*.5

SIZE_RATE_3 ¼ (SMALL_PRED_RATE*.5)+(PRED_RATE*.5)

SIZE_RATE_4 ¼ PRED_RATE*.125

SIZE_RATE_5 ¼ PRED_RATE*.01

SMALL_PRED_BIO ¼ LARVAL+EARLY_JUV+(LATE_JUV*.5){prey for

small predators}

SMALL_PRED_DIE ¼ GRAPH(LARVAL+EARLY_JUV )

(0.00, 0.0975), (100, 0.0645), (200, 0.037), (300, 0.0225), (400, 0.012), (500, 0.00),

(600, 0.00), (700, 0.00), (800, 0.00), (900, 0.00), (1000, 0.00)

SMALL_PRED_RATE ¼ GRAPH(JUV_PRED)

(0.00, 0.015), (10.0, 0.1), (20.0, 0.175), (30.0, 0.275), (40.0, 0.375), (50.0, 0.485),

(60.0, 0.61), (70.0, 0.715), (80.0, 0.83), (90.0, 0.92), (100, 1.00)

SURVIVAL¼ .008 {reflects year to year variation in egg survival due to flooding}

TIMING ¼ 52 {Weeks}
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TOTAL_POPULATION ¼ ADULT+LARVAL+LARGE_ADULT+LATE_JUV

+EARLY_JUV+YEARLING {Individuals}

WINTERKILL ¼ PULSE(LARVAL*SEVERITY,50,52) {Individuals per Week}

WINTERKILL_2 ¼ PULSE(EARLY_JUV*SEVERITY,50,52) {Individuals per

Week}

WINTERKILL_3 ¼ PULSE(LATE_JUV*SEVERITY,50,52) {Individuals per

Week}

WINTERKILL_4 ¼ PULSE(YEARLING*SEVERITY,50,52) {Individuals per

Week}

WINTERKILL_5¼ PULSE(ADULT*SEVERITY,50,52) {Individuals per Week}

WINTERKILL_6 ¼ PULSE(LARGE_ADULTSEVERITY_6,50,52) {Individuals

per Week}

YOY ¼ EARLY_JUV+LARVAL+LATE_JUV {Individuals}
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Chapter 38

Salamander Dispersal

The salamanders, like tiny birds, locked into formation, fly
down into the endless mysteries of the transforming water, and
how could anyone believe that anything in this world is only
what it appears to be—that anything is ever final—that
anything, in spite of its absence, ever dies a perfect death?
(from the poem ‘What Is It?’)”.

(Mary Oliver, House of Light)

38.1 Salamander Dispersal Model

The models of the two previous chapters concentrated on biomanipulation of

populations within a given habitat. In this chapter we turn to the colonization of

new habitat by a species. Our example is for the spotted salamander (Ambystoma
maculatum), which is a pond breeding species found throughout most of the eastern

United States and southern Canada, west to eastern Iowa, and eastern Texas. Adults

breed in ephemeral woodland pools once a year in the spring. Females lay an

average of 125 eggs per clutch. Eggs hatch into an aquatic larvae after 1–2 months.

Larvae remain in the pond until they metamorphose into the terrestrial juvenile

stage within 2–4 months. Juveniles then disperse from their natal pond to surround-

ing forested areas remaining under leaf litter and dead logs or utilizing small

mammal burrows until they mature to a reproductive stage. Females are considered

mature after 7 years, and males are considered mature after 2–6 years. Adult

salamanders also travel to terrestrial areas away from the pond during the

nonbreeding season, yet they return to the same breeding pond every year, so

dispersal should occur primarily during the juvenile stage.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_38,

© Springer International Publishing Switzerland 2014
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Given these movement patterns throughout the life of salamanders, we explore

the time it would take for salamanders to colonize habitat that becomes available to

them, such as ponds that are created nearby their current location. To do so, we

begin with a population of spotted salamanders inhabiting a single woodland pond,

but with access to a new pond—Pond 2—in the same woodland area as Pond 1. We

also assume a third pond—Pond 3—in a nearby woodlot, accessible only through

an open grassy field.

We assumed that dispersal only occurs during the juvenile stage since the eggs/

larvae are aquatic and adults are known to have a high level of site fidelity. Initially,

we assumed that each life stage has its own death rate, but that these death rates

would be the same across all three ponds.

Following work by Rothermel and Semlitsch [1] we assume that only 14 % of

juveniles disperse farther than 100 m, so we used this number to represent the total

percentage of juveniles moving far enough from their natal pond to colonize

adjacent ponds. Several studies show that juveniles show a preference to disperse

through forest versus grass, and so we assume that 10 % disperse through the forest

and 4 % disperse through grass. Recapture rates from different habitats are used to

represent the survival rates of the juvenile salamanders as they moved through grass

(0.167) and through forest (0.333) Rothermel and Semlitsch [1]. And because it

takes 7 years for the females to mature and reach reproductive age, we simply

account for this aging delay by dividing the juvenile population of each pond by

seven, so that 1/7 of each juvenile cohort would enter the adult population.

Dispersal rates, death rates, hatching success, and average clutch size all are

highly dependent on environmental factors, such as predation, water characteristics,

and weather. The parameters used here have been chosen to reproduce an obser-

vational 4-year study monitoring the adult population size of a single pond Black-

well et al. [2]. There are 236 adults and 365 juveniles in Pond 1 at a carrying

capacity of 274.

Figure 38.1 shows the STELLA model for the three ponds. Here, we use a

converter to capture the field observations (Observed Pop) on population in a

pond—data against which we will compare our model results. For simplicity, we

assume that the final population size in that pond corresponds to the steady-state

population. The hatching success rate has been calibrated (through sensitivity

analysis) to yield population sizes that are, in the long run, close to that steady

state (Fig. 38.2). The particular value we chose is 0.27, and the larval, juvenile, and

adult death rates that correspond with that hatching success rate to generate

acceptable results are, respectively, 0.5, 0.43, and 0.17.

The adults in Pond 2 and 3 rise to an initial surge after the juveniles disperse

from Pond 1 and colonize the other two ponds (Fig. 38.2). Adults reach a peak in

Pond 2 before they do in Pond 3 because juvenile dispersal through forest to Pond

2 is easier than dispersal through grass to Pond 3. Initial adult populations peak after

juveniles because the juveniles are the ones dispersing from the natal pond (Pond 1)

to the other two ponds (Fig. 38.3). Upon maturation, they grow into adults and

begin reproducing in each of the two new ponds.
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Fig. 38.2

Fig. 38.1
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Let us now experiment with this set-up and assume that the carrying capacity in

Pond 2 is 180 instead of the 27 assumed in the previous run. Although it is

preferable for the salamander to disperse through forest at a higher survival rate

of dispersal than dispersing through grass, the population of Pond 2 decreases

compared to Ponds 1 and 3 if the habitat is less suitable and has a lower carrying

capacity. This decrease demonstrates a lower cost-benefit ratio of choosing to

disperse through grass rather than forest—even though survival of dispersing

through grass may be lower, it is more beneficial for the overall population in the

long run if juveniles survive because the habitat is more suitable and can maintain a

larger population. These are the results captured in Fig. 38.4.

What would happen in the case of equal carrying capacities of 274 in each of the

three ponds, but Pond 1 suffering suddenly from local extinction? We model the

extinction with conditional statements so that the death rate for each life stage is

100 % for 5 years between time periods 10 and 15. In addition, during those 5 years,

the carrying capacity is set to 1 for the years between 10 and 15, but the usual

274 otherwise. These changes cause the population to crash starting at year 10 and

reaching an adult population low of five individuals and a juvenile population low

of two individuals at year 15 since the other populations are still dispersing to Pond

1 (Fig. 38.5). Once the extinction reaches a low, both the juvenile and adult

populations began increasing almost immediately, leading to a temporary popula-

tion surge after the local extinction overshoots the carrying capacity. Juvenile and

adult populations then decline and finally stabilize, oscillating around the carrying

capacity much as before.

How would the model results change if all of the ponds have different carrying

capacities? How would the populations vary if each pond had different death rates

and hatching success based upon different environmental factors such as predation,

pH levels, hydrologic period of the ponds, food availability, and temperature?

Fig. 38.3

352 38 Salamander Dispersal



38.2 Salamander Dispersal Model Equations

Adults_Pond_1(t) ¼ Adults_Pond_1(t � dt) + (Colonizing_3_to_1 + Staying_at_1

+ Colonizing_2_to_1 � Adults_1_Dying) * dt

INIT Adults_Pond_1 ¼ 236

INFLOWS:

Colonizing_3_to_1 ¼ (Juveniles_Pond_3/7)*Dispersal_Through_Grass*0.04

Staying_at_1 ¼ (Juveniles_Pond_1/7)*0.86

Fig. 38.5

Fig. 38.4
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Colonizing_2_to_1 ¼ (Juveniles_Pond_2/7)*Dispersal_Through_Forest*0.10

OUTFLOWS:

Adults_1_Dying ¼ Adults_Pond_1*Adult_Death_Rate

Adults_Pond_2(t) ¼ Adults_Pond_2(t � dt) + (Colonizing_1_to_2 + Staying_at_2

� Adults_2_Dying) * dt

INIT Adults_Pond_2 ¼ 0

INFLOWS:

Colonizing_1_to_2 ¼ (Juveniles_Pond_1/7)*Dispersal_Through_Forest*0.10

Staying_at_2 ¼ (Juveniles_Pond_2/7)*0.86

OUTFLOWS:

Adults_2_Dying ¼ Adults_Pond_2*Adult_Death_Rate*
Adults_Pond_3(t) ¼ Adults_Pond_3(t � dt) + (Colonizing_1_to_3 + Staying_at_3

� Adults_3_Dying) * dt

INIT Adults_Pond_3 ¼ 0

INFLOWS:

Colonizing_1_to_3 ¼ (Juveniles_Pond_1/7)*Dispersal_Through_Grass*0.04

Staying_at_3 ¼ (Juveniles_Pond_3/7)*0.96

OUTFLOWS:

Adults_3_Dying ¼ Adults_Pond_3*Adult_Death_Rate

Juveniles_Pond_1(t) ¼ Juveniles_Pond_1(t � dt) + (Growing_1 � Colonizing_

1_to_2 � Colonizing_1_to_3 � Staying_at_1 � Juveniles_1_Dying) * dt

INIT Juveniles_Pond_1 ¼ 365

INFLOWS:

Growing_1 ¼ DELAY(Larvae_Pond_1,0.25)

OUTFLOWS:

Colonizing_1_to_2 ¼ (Juveniles_Pond_1/7)*Dispersal_Through_Forest*0.10

Colonizing_1_to_3 ¼ (Juveniles_Pond_1/7)*Dispersal_Through_Grass*0.04

Staying_at_1 ¼ (Juveniles_Pond_1/7)*0.86

Juveniles_1_Dying ¼ Juveniles_Pond_1*Juvenile_Death_Rate

Juveniles_Pond_2(t) ¼ Juveniles_Pond_2(t � dt) + (Growing_2 � Staying_at_2 �
Juveniles_2_Dying � Colonizing_2_to_1) * dt

INIT Juveniles_Pond_2 ¼ 0

INFLOWS:

Growing_2 ¼ DELAY(Larvae_Pond_2,0.25)

OUTFLOWS:

Staying_at_2 ¼ (Juveniles_Pond_2/7)*0.86

Juveniles_2_Dying ¼ Juveniles_Pond_2*Juvenile_Death_Rate

Colonizing_2_to_1 ¼ (Juveniles_Pond_2/7)*Dispersal_Through_Forest*0.10

Juveniles_Pond_3(t) ¼ Juveniles_Pond_3(t � dt) + (Growing_3 �
Colonizing_3_to_1 � Staying_at_3 � Juveniles_3_Dying) * dt

INIT Juveniles_Pond_3 ¼ 0

INFLOWS:

Growing_3 ¼ DELAY(Larvae_Pond_3,0.25)

OUTFLOWS:

Colonizing_3_to_1 ¼ (Juveniles_Pond_3/7)*Dispersal_Through_Grass*0.04
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Staying_at_3 ¼ (Juveniles_Pond_3/7)*0.96

Juveniles_3_Dying ¼ Juveniles_Pond_3*Juvenile_Death_Rate

Larvae_Pond_1(t) ¼ Larvae_Pond_1(t � dt) + (Reproducing_1 � Growing_1 �
Larvae_1_Dying) * dt

INIT Larvae_Pond_1 ¼ 0

INFLOWS:

Reproducing_1 ¼ (.5*Adults_Pond_1*Number_of_Eggs*Hatching_Success)*
(1�(Adults_Pond_1/Carrying_Capacity_1))

OUTFLOWS:

Growing_1 ¼ DELAY(Larvae_Pond_1,0.25)

Larvae_1_Dying ¼ Larvae_Pond_1*Larvae_Death_Rate

Larvae_Pond_2(t) ¼ Larvae_Pond_2(t � dt) + (Reproducing_2 � Growing_2 �
Larvae_2_Dying) * dt

INIT Larvae_Pond_2 ¼ 0

INFLOWS:

Reproducing_2 ¼ (.5*Adults_Pond_2*Number_of_Eggs*Hatching_Success)*
(1�(Adults_Pond_2/Carrying_Capacity_2))

OUTFLOWS:

Growing_2 ¼ DELAY(Larvae_Pond_2,0.25)

Larvae_2_Dying ¼ Larvae_Pond_2*Larvae_Death_Rate

Larvae_Pond_3(t) ¼ Larvae_Pond_3(t � dt) + (Reproducing_3 � Growing_3 �
Larvae_3_Dying) * dt

INIT Larvae_Pond_3 ¼ 0

INFLOWS:

Reproducing_3 ¼ (.5*Adults_Pond_3*Number_of_Eggs*Hatching_Success)*
(1�(Adults_Pond_3/Carrying_Capacity_3))

OUTFLOWS:

Growing_3 ¼ DELAY(Larvae_Pond_3,0.25)

Larvae_3_Dying ¼ Larvae_Pond_3*Larvae_Death_Rate

Adult_Death_Rate¼ .17 {IF TIME>¼ 10 and TIME<¼ 15 THEN 1 ELSE 0.17}

Carrying_Capacity_1 ¼ 274 {IF TIME >¼ 10 and TIME <¼ 15 THEN 1 ELSE

274}

Carrying_Capacity_2 ¼ 180*0+274

Carrying_Capacity_3 ¼ 274

Dispersal_Through_Forest ¼ 0.333

Dispersal_Through_Grass ¼ 0.167

Hatching_Success ¼ 0.27

Juvenile_Death_Rate ¼ .43 {IF TIME >¼ 10 and TIME <¼ 15 THEN 1 ELSE

0.43}

Larvae_Death_Rate ¼ .5 {IF TIME >¼ 10 and TIME <¼ 15 THEN 1 ELSE 0.5}

Number_of_Eggs ¼ 125

Observerd_Pop ¼ GRAPH(TIME)

(0.00, 236), (1.00, 236), (2.00, 240), (3.00, 260)
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Chapter 39

Quail Movement

The Blue Jay’s Lullaby Spiders and sowbugs and beetles and
crickets, Slugs from the roses and ticks from the thickets,
Grasshoppers, snails, and a quail’s egg or two—All to be
regurgitated for you. Lullaby, lullaby, swindles and schemes,
Flying’s not near as much fun as it seems.

(Peter S. Beagle, The Last Unicorn)

39.1 Quail Model

As in the previous chapter, we develop here a spatial model of population movement.

The species of interest are northern bobwhite quail, which move between prairie

patches that have been burned and exhibit different stages of succession. These

patches are characterized by varying vegetative species and density. While bobwhite

utilize different habitat types, they prefer open areas for most of their life activities

like brood rearing, nesting, foraging, and roosting [1]. Sites that had been burned

within a year or two produce greater amounts of food for bobwhite than older burns

[2], thus bobwhite migrate to areas where the vegetation is the least dense (i.e. 0 years

post burn). As a consequence of burning increases in bobwhite abundance can be

observed, and these increases diminish after the vegetation recovered and bare

ground decreased [3]. Regular disturbance, such as prescribed burning, is essential

for a continued positive impact on northern bobwhite quail [1]. Effective burning

tends to double the density of birds from 2.5 to 5 birds per ha [4].

Our model describes quail migration between four stocks labeled A, B, C, and

D. Each stock represents a region in a different stage of prairie succession. Births

of quail, named Birthing A, Birthing B, etc. in the model (Fig. 39.1) are the only

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_39,

© Springer International Publishing Switzerland 2014

357

www.iseesystems.com/modelingdynamicbiologicalsystems


population influx; immigration and emigration from outside the four regions are not

included. Average clutch size is 14 eggs, with 40 % of the total number of females

having at least one nest during the year. On average, 43.7 % of the nests survive

incubation [5].

The physical pressures on quail that come from predation, hunting, and weather

are incorporated into the model as dying outflows. Underlying the model structure

are the habitat quality converters called Hab Q A, Hab Q B, etc. Converters for each

stock start at a different habitat quality level (4 is the highest and 1 the lowest) and

cycle through the four levels over 4 years using STELLA’s built-in count function

(simulating the succession conditions), illustrated in Fig. 39.2.

Habitat burning happens at the lowest point in the cycle, which quickly brings

the habitat to optimal quality. In nature, predation is habitat dependent. In the best

habitat (4), predation is highest, because there are fewest hiding spots and birds are

generally more abundant, attracting more predators. Drawing on data from Burger

et al. [6], we use graphical functions of the kind shown in Figs. 39.3 and 39.4 to

specify, respectively, predation rates and hunting rates dependent on habitat

quality. Similarly, birth rates are specified graphically, assuming that better habitat

quality implies more food for larger, more successful clutches (Fig. 39.5). Here,

however, the rate is delayed by half a time period to represent the time delay needed

for juveniles to become reproducing adults.

Fig. 39.1
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Also included is death rate associated with abiotic factors. This is a stochastic

weather function based on a normal distribution with a mean of 0 and an SD of 0.67:

Normal Env ¼ Normal 0; :67ð Þ ð39:1Þ

When incorporated into the outflow that specifies deaths from abiotic influences,

we assume that between 0 and 24 % of the population can be lost to weather each

year in the standard model conditions:

Env Cond ¼ If Normal Env > 0 AND Normal Env

< :95 THEN Normal Env � :25 ELSE 0 ð39:2Þ

Fig. 39.2
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Given our choice of initial stock sizes and parameter values, stable cyclic

dynamics develop with population size fluctuating around 1,000 individuals

(Fig. 39.6). These fluctuations are due to the stochastic weather function and vary

between runs (Fig. 39.7). Changing the initial population in each of the stocks does

not change the timing of that cycle, only its magnitude. The cycle is in delayed

synchronization with the fluctuation of the habitat quality: peaks in stock popula-

tion size are delayed by about 1.5 years following a peak in habitat quality

(Fig. 39.8).

Slightly modify the parameters for hunting and predation-induced death rates

and you will find that even small changes can have large impact on the population.

Similarly, small modifications of weather-induced mortality can have devastating

Fig. 39.3

360 39 Quail Movement



consequences for bobwhite. In reality, with increasing human encroachment on

their habitat and with climate change, both factors tend to coincide and move in the

same direction.

Northern bobwhites breed twice a year. You may want to explicitly introduce

into the model multiple age classes within a year and see the implications of their

inclusion for the cycles we observed above, and for the long-term viability of our

quail population under different biotic and abiotic pressures.

Fig. 39.4
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Fig. 39.5

Fig. 39.6
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39.2 Quail Model Equations

A(t) ¼ A(t � dt) + (Birthing_1 + Migration_DA � Migration_AB � Dying_1 �
Migration_AC � Abio_Die_A) * dt

INIT A ¼ 50

INFLOWS:

Birthing_1 ¼ A*Delay(BR1,.5)

Migration_DA¼ IF HabDA> 0 THEN�HabDA*A*.167 ELSE�HabDA*D*.167

Fig. 39.7

Fig. 39.8
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OUTFLOWS:

Migration_AB¼ IF HabAB>0 THEN�HabAB*B*.167 ELSE�HabAB*A*.167

Dying_1 ¼ A*(HR1+PR1)

Migration_AC¼ IF HabAC> 0 THEN�HabAC*C*.167 ELSE�HabAC*A*.167

Abio_Die_A ¼ A*Env_Cond

B(t) ¼ B(t � dt) + (Migration_AB + Migration_DB + Birthing_2 �Migration_BC

� Dying_2 � Abio_DieB) * dt

INIT B ¼ 400

INFLOWS:

Migration_AB¼ IF HabAB>0 THEN�HabAB*B*.167 ELSE�HabAB*A*.167

Migration_DB¼ IF HabDB> 0 THEN�HabDB*B*.167 ELSE�HabDB*D*.167

Birthing_2 ¼ Delay(BR2,.5)*B

OUTFLOWS:

Migration_BC ¼ IF HabBC > 0 THEN -HabBC*C*.167 ELSE �HabBC*B*.167

Dying_2 ¼ B*(HR2+PR2)

Abio_DieB ¼ B*Env_Cond

C(t) ¼ C(t � dt) + (Migration_BC + Birthing_3 + Migration_AC �Migration_CD

� Dying_3 � Abio_Die_C) * dt

INIT C ¼ 300

INFLOWS:

Migration_BC¼ IF HabBC > 0 THEN �HabBC*C*.167 ELSE �HabBC*B*.167

Birthing_3 ¼ C*Delay(BR3,.5)

Migration_AC¼ IF HabAC> 0 THEN�HabAC*C*.167 ELSE�HabAC*A*.167

OUTFLOWS:

Migration_CD¼ IF HabCD> 0 THEN�HabCD*D*.167 ELSE�HabCD*C*.167

Dying_3 ¼ C*(HR3+PR3)

Abio_Die_C ¼ C*Env_Cond

D(t)¼D(t� dt) + (Migration_CD + Birthing_4�Migration_DA�Migration_DB

� Dying_4 � Abio_Die_D) * dt

INIT D ¼ 200

INFLOWS:

Migration_CD¼ IF HabCD> 0 THEN�HabCD*D*.167 ELSE�HabCD*C*.167

Birthing_4 ¼ D*Delay(BR4,.5)

OUTFLOWS:

Migration_DA ¼ IF HabDA> 0 THEN �HabDA*A*.167 ELSE -HabDA*D*.167

Migration_DB¼ IF HabDB> 0 THEN�HabDB*B*.167 ELSE�HabDB*D*.167

Dying_4 ¼ D*(HR4+PR4)

Abio_Die_D ¼ D*Env_Cond

BR1 ¼ GRAPH(HabQ_A)

(1.00, 0.042), (2.00, 0.06), (3.00, 0.083), (4.00, 0.102)

BR2 ¼ GRAPH(HabQ_B)

(1.00, 0.042), (2.00, 0.06), (3.00, 0.083), (4.00, 0.102)
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BR3 ¼ GRAPH(HabQ_C)

(1.00, 0.042), (2.00, 0.06), (3.00, 0.083), (4.00, 0.102)

BR4 ¼ GRAPH(HabQ_D)

(1.00, 0.042), (2.00, 0.06), (3.00, 0.083), (4.00, 0.102)

Env_Cond ¼ If Normal_Env >0 AND Normal_Env <.95 THEN Normal_Env*.25

ELSE 0

HabAB ¼ HabQ_A�HabQ_B

HabAC ¼ HabQ_A�HabQ_C

HabBC ¼ HabQ_B�HabQ_C

HabCD ¼ HabQ_C�HabQ_D

HabDA ¼ HabQ_D�HabQ_A

HabDB ¼ HabQ_D�HabQ_B

HabQ_A ¼ GRAPH(Counter(0,8))

(0.00, 4.00), (1.00, 3.00), (2.00, 2.00), (3.00, 1.00), (4.00, 4.00), (5.00, 3.00), (6.00,

2.00), (7.00, 1.00), (8.00, 4.00), (9.00, 3.00)

HabQ_B ¼ GRAPH(Counter(0,8))

(0.00, 3.00), (1.00, 2.00), (2.00, 1.00), (3.00, 4.00), (4.00, 3.00), (5.00, 2.00), (6.00,

1.00), (7.00, 4.00), (8.00, 3.00), (9.00, 2.00)

HabQ_C ¼ GRAPH(Counter(0,8))

(0.00, 2.00), (1.00, 1.00), (2.00, 4.00), (3.00, 3.00), (4.00, 2.00), (5.00, 1.00), (6.00,

4.00), (7.00, 3.00), (8.00, 2.00), (9.00, 1.00)

HabQ_D ¼ GRAPH(Counter(0,8))

(0.00, 1.00), (1.00, 4.00), (2.00, 3.00), (3.00, 2.00), (4.00, 1.00), (5.00, 4.00), (6.00,

3.00), (7.00, 2.00), (8.00, 1.00), (9.00, 4.00)

HR1 ¼ GRAPH(HabQ_A)

(1.00, 0.003), (2.00, 0.01), (3.00, 0.02), (4.00, 0.04)

HR2 ¼ GRAPH(HabQ_B)

(1.00, 0.003), (2.00, 0.01), (3.00, 0.02), (4.00, 0.04)

HR3 ¼ GRAPH(HabQ_C)

(1.00, 0.003), (2.00, 0.01), (3.00, 0.02), (4.00, 0.04)

HR4 ¼ GRAPH(HabQ_D)

(1.00, 0.003), (2.00, 0.01), (3.00, 0.02), (4.00, 0.04)

Normal_Env ¼ Normal(0,.67)

PR1 ¼ GRAPH(HabQ_A)

(1.00, 0.005), (2.00, 0.01), (3.00, 0.015), (4.00, 0.03)

PR2 ¼ GRAPH(HabQ_B)

(1.00, 0.005), (2.00, 0.01), (3.00, 0.015), (4.00, 0.03)

PR3 ¼ GRAPH(HabQ_C)

(1.00, 0.005), (2.00, 0.01), (3.00, 0.015), (4.00, 0.03)

PR4 ¼ GRAPH(HabQ_D)

(1.00, 0.005), (2.00, 0.01), (3.00, 0.015), (4.00, 0.03)

Total_Pop ¼ A+B+C+D

39.2 Quail Model Equations 365



References

1. Greenfield KC, Chamberlain MJ, Burger LW Jr, Kurzejeski EW (2003) Effects of burning and

discing conservation reserve program fields to improve habitat quality for northern bobwhite

(Colinus virginianus). Am Midland Nat 149(2):344–353

2. Reid VH (1953) Multiple land use: timber, cattle, and bobwhite quail. North Am Wildl Conf

18:412–420

3. Wilson MM, Crawford JA (1979) Response of bobwhites to controlled burning in south Texas.

Wildl Soc Bull 7(1):53–56

4. Stoddard HL (1931) The bobwhite quail: its habits, preservation, and increase. Scribner’s,

New York, p 559

5. Burger L, Ryan M, Dailey T, Kurzweski E (1995) Reproductive strategies, success, and mating

systems of northern bobwhite in Missouri. J Wildl Manag 59(3):417–426

6. Burger L, Dailey T, Kurzejeski E, Ryan M (1995) Survival and cause�specific mortality of

northern bobwhite. J Wildl Manag 59(2):401–410

366 39 Quail Movement



Chapter 40

Modeling Spatial Dynamics of Predator–Prey

Interactions in a Changing Environment

It is a sad fact that several of our most noble birds of prey can no
longer be studied in what were once their native haunts.

(D. A. Bannerman Birds Brit. Isles, 1956)

40.1 Spatial Predator–Prey Model

In the previous chapter we have modeled the spatial dynamics of species that move

across the landscape to take advantage of differences in habitat characteristics. Let

us now model the case of spatial predator–prey interactions in a changing environ-

ment. To model the spatial aspect of these interactions, we define four subdivisions

of the landscape as laid out in Fig. 40.1.

Cell 1 is occupied with 1,000 predators and 10,000 prey. There are no predators

or prey in the other three cells. The birth rates for predators and prey are given

exogenously, yet the number of births depends on predator–prey interaction and the

carrying capacity of their ecosystem. Similarly, the deaths of predators and prey

depend on their interaction—the prey consumed by predators. For example, the

births and deaths of predators and prey in cell 1 are defined as

BIRTH PRED 1 ¼ BR PRED � PRED 1� DEATH PRED 1ð Þ ð40:1Þ

DEATH PRED 1 ¼ PRED 1� CONSUME 1=CONSUME RATE ð40:2Þ

BIRTH PREY 1 ¼ PREY 1� DEATH PREY 1ð Þ � BR PREY 1

� 1� PREY 1=CC PREY 1ð Þ ð40:3Þ

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_40,

© Springer International Publishing Switzerland 2014
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DEATH PREY 1 ¼ CONSUME 1 ð40:4Þ

where PREY 1 and PRED 1 are the stock of the two populations in cell 1, BR PREY

1 is the birth rate of prey in cell 1, CONSUME 1 is the number of prey consumed by

predators in cell 1. The number of prey consumed in cell 1 cannot exceed the

number of prey in that cell and is at least zero and at most the consumption rate

times the number of predators in that cell. The amount of prey consumed by

predators in cell 1 is defined as

CONSUME 1 ¼ MIN PREY 1, CONSUME RATE � PRED 1ð Þ ð40:5Þ

CC PREY 1 is the carrying capacity for prey in cell 1. The latter is assumed to

change along a sinewave with an exogenously defined CYCLE TIME:

CC PREY 1 ¼ 2250 � SIN 2 � PI � TIME=CYCLE TIMEð Þ þ 2500 ð40:6Þ

In addition, we assumed that the carrying capacity for each individual patch was

out of phase by 90� with the “previous” patch, i.e.

CC PREY 2 ¼ 2250 � SIN 2 � PI � TIME=CYCLE TIME� PI=2ð Þ
þ 2500 ð40:7Þ

CC PREY 3 ¼ 2250 � SIN 2 � PI � TIME=CYCLE TIME� 3 � PI=2ð Þ
þ 2500 ð40:8Þ

CC PREY 4 ¼ 2250 � SIN 2 � PI � TIME=CYCLE TIME� PIð Þ þ 2500 ð40:9Þ

Prey migrate routinely regardless of their population in the starting or the

receiving cells, and the predators migrate to a new cell when they begin to starve

in their current cell. Once the migration quantity is established, a random process

determines its distribution to adjacent cells. This simple idea enables the prey to

“escape” to a neighboring cell where the predator population may be at a relatively

low level.

The model for cell 1 of the 4-cell predator–prey model is shown in Fig. 40.2.

Predators and prey can move to the right (RT) and down (DN). The fraction

of predators and prey that move is a random number between zero and one.

For example, the migration of predators from cell one to any of the other cells is

defined as

1 2

3 4

Fig. 40.1
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MIG PRED 1 ¼ MIN
�
PRED 1� DEATH PRED 1,MIG RATE PRED

�DEATH PRED 1

ð40:10Þ

The migration rate of predators, MIG RATE PRED, depends on the availability

of prey in the cell. For simplicity, we assume that the number of predators that

migrate is the product of the number of starvation deaths and the migration rate of

predators. In the model, we define this number as a constant.

How do the predator and prey populations vary as the cycle time is varied on the

carrying capacity? For what values of the carrying capacity will the predator and

prey populations have the lowest standard deviation?

Run several trials with cycle time being varied. To evaluate which cycle time

produces the most stable populations, you must look for the least value of the

standard deviation. For the predator population, a cycle time of 8 produces a low

standard deviation of approximately 630. Similarly, for the prey population a cycle

time of 1 produces a low standard deviation of about 2,242. Are these the lowest

standard deviations one can find? Run the model many times for the same cycle

time and observe the results.

Fig. 40.2
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The two cases of CYCLE TIME¼ 1 and CYCLE TIME¼ 8 are shown, respec-

tively, in Figs. 40.3 and 40.4. Admittedly, even in the best cases, the population still

varies significantly over time. This variation can best be minimized by increasing

the number of patches that describe the ecosystem.

By holding the phase difference of the sinusoidal carrying capacity constant

between patches, will a variation of frequency between patches create a more stable

ecosystem? Can a similar phase difference that was used in this model be applied to

a spatial model with nine or more patches? Can variations in other parameters,

including birth rate, migration rate, and consumption rate, create the desired effects

of this spatial predator–prey model? Try to find answers to these questions.

Fig. 40.3

Fig. 40.4
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40.2 Spatial Predator–Prey Model Equations

PRED_1(t) ¼ PRED_1(t � dt) + (BIRTH_PRED_1 + IM_PRED_1 �
MIG_PRED_1 � DEATH_PRED_1) * dt

INIT PRED_1 ¼ 100.

INFLOWS:

BIRTH_PRED_1 ¼ BR_PRED*(PRED_1�DEATH_PRED_1)

IM_PRED_1 ¼ PRED_LF_2+PRED_UP_3

OUTFLOWS:

MIG_PRED_1 ¼ MIN(PRED_1�DEATH_PRED_1,MIG_RATE_PRED*
DEATH_PRED_1)

DEATH_PRED_1 ¼ PRED_1�CONSUME__1/CONSUME_RATE

PRED_2(t) ¼ PRED_2(t � dt) + (BIRTH_PRED_2 + IM_PRED_2 �
MIG_PRED_2 � DEATH_PRED_2) * dt

INIT PRED_2 ¼ 0

INFLOWS:

BIRTH_PRED_2 ¼ BR_PRED*(PRED_2�DEATH_PRED_2)

IM_PRED_2 ¼ PRED_RT_1+PRED_UP_2

OUTFLOWS:

MIG_PRED_2 ¼ MIN(PRED_2�DEATH_PRED_2,MIG_RATE_PRED*
DEATH_PRED_2)

DEATH_PRED_2 ¼ PRED_2�CONSUME_2/CONSUME_RATE

PRED_3(t) ¼ PRED_3(t � dt) + (BIRTH_PRED_7 + IM_PRED_7 �
MIG_PRED_3 � DEATH_PRED_3) * dt

INIT PRED_3 ¼ 0

INFLOWS:

BIRTH_PRED_7 ¼ BR_PRED*(PRED_3�DEATH_PRED_3)

IM_PRED_7 ¼ PRED_DN_1+PRED_LF_4

OUTFLOWS:

MIG_PRED_3 ¼ MIN(PRED_3�DEATH_PRED_3,DEATH_PRED_3*
MIG_RATE_PRED)

DEATH_PRED_3 ¼ PRED_3-CONSUME_3/CONSUME_RATE

PRED_4(t) ¼ PRED_4(t � dt) + (BIRTH_PRED_4 + IM_PRED_4 �
MIG_PRED_4 � DEATH_PRED_4) * dt

INIT PRED_4 ¼ 0

INFLOWS:

BIRTH_PRED_4 ¼ BR_PRED*(PRED_4�DEATH_PRED_4)

IM_PRED_4 ¼ PRED_DN_2+PRED_RT_3

OUTFLOWS:

MIG_PRED_4 ¼ MIN(PRED_4�DEATH_PRED_4,DEATH_PRED_4*
MIG_RATE_PRED)

DEATH_PRED_4 ¼ PRED_4�CONSUME_4/CONSUME_RATE

PREY_1(t) ¼ PREY_1(t � dt) + (BIRTH_PREY_1 + IM_PREY_1 �
DEATH_PREY_1 � MIG_PREY_1) * dt

INIT PREY_1 ¼ 1000.
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INFLOWS:

BIRTH_PREY_1 ¼ (PREY_1�DEATH_PREY_1)*BR_PREY_1*(1�PREY_1/

CC_PREY_1)

IM_PREY_1 ¼ PREY_LF_2+PREY_UP_3

OUTFLOWS:

DEATH_PREY_1 ¼ CONSUME__1

MIG_PREY_1 ¼ MIG_RATE_PREY*(PREY_1�DEATH_PREY_1)

PREY_2(t) ¼ PREY_2(t � dt) + (BIRTH_PREY_2 + IM_PREY_2 �
DEATH_PREY_2 � MIG_PREY_2) * dt

INIT PREY_2 ¼ 0

INFLOWS:

BIRTH_PREY_2 ¼ (PREY_2�DEATH_PREY_2)*BR_PREY_1*(1�PREY_2/

CC_PREY_2)

IM_PREY_2 ¼ PREY_RT_1+PREY_UP_4

OUTFLOWS:

DEATH_PREY_2 ¼ CONSUME_2

MIG_PREY_2 ¼ MIG_RATE_PREY*(PREY_2�DEATH_PREY_2)

PREY_3(t) ¼ PREY_3(t � dt) + (BIRTH_PREY_3 + IM_PREY_3 �
DEATH_PREY_3 � MIG_PREY_3) * dt

INIT PREY_3 ¼ 0

INFLOWS:

BIRTH_PREY_3 ¼ (PREY_3�DEATH_PREY_3)*BR_PREY_1*(1�PREY_3/

CC_PREY_3)

IM_PREY_3 ¼ PREY_DN_1+PREY_LF_4

OUTFLOWS:

DEATH_PREY_3 ¼ CONSUME_3

MIG_PREY_3 ¼ MIG_RATE_PREY*(PREY_3�DEATH_PREY_3)

PREY_4(t) ¼ PREY_4(t � dt) + (IM_PREY_4 + BIRTH_PREY_4 �
DEATH_PREY_4 � MIG_PREY_4) * dt

INIT PREY_4 ¼ 0

INFLOWS:

IM_PREY_4 ¼ PREY_DN_2+PREY_RT_3

BIRTH_PREY_4 ¼ (PREY_4�DEATH_PREY_4)*BR_PREY_1*(1�PREY_4/

CC_PREY_4)

OUTFLOWS:

DEATH_PREY_4 ¼ CONSUME_4

MIG_PREY_4 ¼ MIG_RATE_PREY*(PREY_4�DEATH_PREY_4)

BR_PRED ¼ 0.2

BR_PREY_1 ¼ 2

CC_PREY_1 ¼ 2250*SIN(2*PI*TIME/CYCLE_TIME)+2500

CC_PREY_2 ¼ 2250*SIN(2*PI*TIME/CYCLE_TIME�PI/2)+2500

CC_PREY_3 ¼ 2250*SIN(2*PI*TIME/CYCLE_TIME�3*PI/2)+2500

CC_PREY_4 ¼ 2250*SIN(2*PI*TIME/CYCLE_TIME�PI)+2500

CONSUME_2 ¼ MIN(PREY_2,CONSUME_RATE*PRED_2)
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CONSUME_3 ¼ MIN(PREY_3,CONSUME_RATE*PRED_3)

CONSUME_4 ¼ MIN(PREY_4,CONSUME_RATE*PRED_4)

CONSUME_RATE ¼ 1

CONSUME__1 ¼ MIN(PREY_1,CONSUME_RATE*PRED_1)

CYCLE_TIME ¼ 8

MIG_RATE_PRED ¼ .05 {this times the number of starvation deaths is the

number that migrate}

MIG_RATE_PREY ¼ .1 {this is the proportion of the prey that migrate}

PPRED_DN_1 ¼ RANDOM(0,1)

PPRED_DN_2 ¼ RANDOM(0,1)

PPRED_LF_2 ¼ RANDOM(0,1)

PPRED_LF_4 ¼ RANDOM(0,1)

PPRED_RT_1 ¼ RANDOM(0,1)

PPRED_RT_3 ¼ RANDOM(0,1)

PPRED_UP_3 ¼ RANDOM(0,1)

PPRED_UP_4 ¼ RANDOM(0,1)

PPREY_DN_1 ¼ RANDOM(0,1)

PPREY_DN_2 ¼ RANDOM(0,1)

PPREY_LF_2 ¼ RANDOM(0,1)

PPREY_LF_4 ¼ RANDOM(0,1)

PPREY_RT_1 ¼ RANDOM(0,1)

PPREY_RT_3 ¼ RANDOM(0,1)

PPREY_UP_3 ¼ RANDOM(0,1)

PPREY_UP_4 ¼ RANDOM(0,1)

PRED_DN_1 ¼ MIG_PRED_1*PPRED_DN_1/PRED_PROB_1

PRED_DN_2 ¼ MIG_PRED_2*PPRED_DN_2/PRED_PROB_2

PRED_LF_2 ¼ MIG_PRED_2*PPRED_LF_2/PRED_PROB_2

PRED_LF_4 ¼ MIG_PRED_4*PPRED_LF_4/PRED_PROB_4

PRED_POPULATION ¼ PRED_1+PRED_2+PRED_3+PRED_4

PRED_PROB_1 ¼ PPRED_RT_1+PPRED_DN_1

PRED_PROB_2 ¼ PPRED_LF_2+PPRED_DN_2

PRED_PROB_3 ¼ PPRED_RT_3+PPRED_UP_3

PRED_PROB_4 ¼ PPRED_LF_4+PPRED_UP_4

PRED_RT_1 ¼ MIG_PRED_1*PPRED_RT_1/PRED_PROB_1

PRED_RT_3 ¼ MIG_PRED_3*PPRED_RT_3/PRED_PROB_3

PRED_UP_2 ¼ MIG_PRED_4*PPRED_UP_4/PRED_PROB_4

PRED_UP_3 ¼ MIG_PRED_3*PPRED_UP_3/PRED_PROB_3

PREY_DN_1 ¼ MIG_PREY_1*PPREY_DN_1/PREY_PROB_1

PREY_DN_2 ¼ MIG_PREY_2*PPREY_DN_2/PREY_PROB_2

PREY_LF_2 ¼ MIG_PREY_2*PPREY_LF_2/PREY_PROB_2

PREY_LF_4 ¼ MIG_PREY_4*PPREY_LF_4/PREY_PROB_4

PREY_POPULATION ¼ PREY_1+PREY_3+PREY_2+PREY_4

PREY_PROB_1 ¼ PPREY_RT_1+PPREY_DN_1

PREY_PROB_2 ¼ PPREY_LF_2+PPREY_DN_2
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PREY_PROB_3 ¼ PPREY_RT_3+PPREY_UP_3

PREY_PROB_4 ¼ PPREY_LF_4+PPREY_UP_4

PREY_RT_1 ¼ MIG_PREY_1*PPREY_RT_1/PREY_PROB_1

PREY_RT_3 ¼ MIG_PREY_3*PPREY_RT_3/PREY_PROB_3

PREY_UP_3 ¼ MIG_PREY_3*PPREY_UP_3/PREY_PROB_3

PREY_UP_4 ¼ MIG_PREY_4*PPREY_UP_4/PREY_PROB_4
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Part VII

Catastrophe and Self-Organization



Chapter 41

Catastrophe

The choice of the name, catastrophe theory, is unfortunate as it
denotes abnormal nasty events. What we have come to realize is
that such events are normal and necessary for the continued
smooth functioning of many systems.

(E.D. Schneider and J.J. Kay. 1994. Complexity and Thermody-

namics, Futures, Vol. 26, p. 641)

41.1 Catastrophe Model

If a large number of real systems exhibit dynamics that bear the potential for chaos,

why do we not see more chaos in real-world processes? Fortunately, the domains

over which stability of the system occurs can be relatively large. But once in a

while, systems may move “towards the edge of stability” and little nudges to the

system may move it from stability to instability—that is, into a catastrophe.

Subsequently, reorganization of system components may occur to bring the system

back into a stable domain—a kind of evolutionary process. This stable domain,

however, may not be the same as the one prior to the disturbance.

The system undergoes a catastrophic event in the sense that it is moved from an

initial state of stability through a dramatic phase of reorganization and back to

some degree of stability. Examples for such catastrophic events include landslides,

avalanches, earthquakes, and pest outbreaks in ecosystems. In each case, small

changes in the system occur that individually may not be critical to the system’s

behavior. Collectively, however, they lead to the evolution of the system towards

a critical state. This is apparent, for example, in the case of avalanches.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_41,

© Springer International Publishing Switzerland 2014
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Each individual snow flake potentially adds to the instability of the system. When a

critical point is reached, the next snow flake may trigger an avalanche that affects a

large part of the system. Temporary stability is quickly reached if the avalanche was

not too dramatic. Even if not of a large scale, the avalanche adds to the “stress” of

the system downhill, making it more susceptible to further avalanches as more

snow falls at those regions or as additional small avalanches are received from

higher on the hill. Ultimately, a large-scale, catastrophic event may occur which

affects the entire system, not just individual regions. The system components

re-group and finally enter a phase of new, temporary stability.

So, evolutionary processes are at work making the system more “efficient” in

some sense. This is evolution toward catastrophe. A system in such a state can

remerge to a stable state by another process of evolution, likely faster than the first

kind, and this new stable state may not be very efficient. Large living natural

systems are likely constrained from operating at or near peak efficiency by random

intervention of uncoordinated external processes at the regional levels.

In this chapter we develop a simple model of catastrophe. Before we develop the

models, consider Fig. 41.1 that illustrates the surface defined by the following

equation [1]:

X3 � ALPHA � X� BETA ¼ 0 ð41:1Þ

Fig. 41.1
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Imagine a ball lying at the top of this surface, such as at point A. The ball may lie

still, and very small nudges away from its equilibrium point A lead to a new

equilibrium. After a series of such small perturbations, however, the ball will roll

off the top part of the surface, and a priori, it is difficult for us to determine exactly

where it will end up. All we know for certain is that the new equilibrium position is

somewhere at the bottom of the surface, say point B.

Small nudges to the ball in B will again move it slightly away from B. And if we

kick it hard enough, we can propel the ball through the fold, or “cusp,” to the upper

part of the surface again. Where exactly will it end up? To give a precise answer

requires exact knowledge of the shape of the surface, the properties of the ball, and

the magnitude and direction of the force exerted on the ball. In more complicated,

real-life systems, not all the variables to describe the system and the forces incident

upon them are well enough known. As a result, we may only know stability

domains rather than specific locations.

The STELLA model for Eq. (41.1) above is given in Fig. 41.2. (Note that

we named our variable BETA 1 in the diagram because STELLA already uses

the name BETA for a built-in function.) We slightly vary X with each simu-

lation time step. Solve Eq. (41.1) for BETA. Set DT¼ 0.0025 and define X, for

example, as

X ¼ TIME� 2, ð41:2Þ

then run the model.

For positive ALPHA, the cusp or fold appears in the X vs. BETA plot. For

ALPHA¼ 0 and negative ALPHA, the “S” curve appears. Figure 41.3 shows the

results for BETA¼�3, BETA¼ 0, and BETA¼ 3, respectively.

Fig. 41.2
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41.2 Catastrophe Model Equations

ALPHA ¼ �1

BETA_1 ¼ X^3 � ALPHA*X

X ¼ TIME � 2

Reference

1. Beltrami E (1987) Mathematics for dynamic modeling. Academic Press, Boston

Fig. 41.3
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Chapter 42

Spruce Budworm Dynamics

Books are subject among other Chances to fire, and the Worme.

(Whitlock Zootomia, 1654)

42.1 Spruce Budworm Model

A classical example for the implications of catastrophes for ecosystem management

is the spruce budworm dynamics. Spruce budworm is a caterpillar that feeds on

spruce and fir forests in the northeastern United States and eastern Canada. For

many years, population sizes of spruce budworm are low and have little impact on

trees. When forest stands reach maturity, however, spruce budworm populations

explode, seriously affecting the forest by defoliating the trees. As a result of

defoliation, trees are weakened and ultimately may die. With the death of trees

comes a loss of the food source for spruce budworm and a consequent population

crash.

The cycle of low spruce budworm population densities, followed by population

explosions and catastrophic collapse tend to repeat themselves over the course of

years. The resulting damage and death of trees affects negatively the timber and

paper pulp industries of the region. Frequently, forest managers decided to spray

forest stands to control budworm populations. The dynamics inherent in the system,

however, lead it to follow its own path, making ever more extensive pest control

necessary. If those controls fail, outbreaks are more sever and devastating than if

the system had been left to control itself, as recent experiences in the US and

Canada show.

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_42,

© Springer International Publishing Switzerland 2014
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One of the natural system controls not now used in forestry relates to the idea of

patch size. Natural systems no doubt avoid large catastrophes because they operate

in patches, where the degree of maturity of adjacent patches is nearly always

different. Consequently, pests and fires find difficulty in spreading beyond a patch

and the size of the catastrophe is kept small. Current forestry practice seems to be

disconnected from such natural system behavior. Our model is not a regional one

and so such interpatch dynamics are not captured. However, we have modeled such

patch dynamics in Chap. 40, and you may want to combine the approach of that

chapter with the one developed here.

To model the spruce budworm catastrophe, we closely Beltrami [1] and denote B

as the budworm population size, K as the carrying capacity, S as habitat size, and

GR as the budworm’s natural rate of increase. Thus,

dB

dt
¼ GR � B � 1� B

K � S
� �

ð42:1Þ

would describe the population dynamics for a fixed carrying capacity and no

predatory influences on population growth. This is the logistic growth equation

that we have used in this book many times before. Let us introduce the effects of

predation with a maximum predation rate C, which is assumed to be constant. At

small population densities, predation has only little effects on the budworm popu-

lation because they are well-hidden in a relatively dense canopy. As population

densities increase, however, predators may increasingly feed on budworm that

partially or totally defoliated the trees and are then easy prey. A predation term

that captures such interactions is

C � B2

A2 þ B2
, ð42:2Þ

with A as a scalar that captures the effectiveness of the predators to spot and prey on

spruce budworm. In an immature forest, predation is easier than in a mature forest

with diverse and dense canopy. Thus, A may be assumed to increase with increased

maturity of the forest, i.e. habitat size S

A ¼ K1 � S ð42:3Þ

and thus

C � B2

A2 þ B2
¼ C � B2

K1þ Sð Þ2 þ B2
, ð42:4Þ

with K1 as a constant.
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Combining predation with the logistic growth function yields

ΔB ¼ dB

dt
¼ GR � B � 1� B

K � S
� �

� C � B2

K1þ Sð Þ2 þ B2
, ð42:5Þ

which is the equation used in the model to drive spruce budworm population

changes, ΔB.
Changes in habitat size are assumed to also follow the logistic growth curve,

with RS as the natural rates of increase and KS as carrying capacity:

ΔS ¼ dS

dt
¼ RS � S � 1� BS

KS � E
� �

ð42:6Þ

E is the percentage of foliage on trees. The more healthy the forest, the higher is

E. The percentage of foliage on trees is assumed to decrease as the average

budworm density per habitat size B/S increases. To model diminishing stress as

budworm populations decrease we multiply B/S by E2. The combined effect of

logistic growth in foliage and budworm-induced foliage losses is

ΔE ¼ dE

dt
¼ RE � E � 1� Eð Þ � P � B � E2

S
, ð42:7Þ

with RE the rate of foliage increase and P a proportionality factor.

Let us consider the case of B 6¼ 0 and introduce the following notation:

R ¼ GR � K1 � S
C

ð42:8Þ

Q ¼ K

K1
, ð42:9Þ

and rewrite

B ¼ K1 � S � X: ð42:10Þ

It can be shown [1] that the nontrivial equilibria of Eq. (42.5) fulfill

R 1� X

Q

� �
¼ F Xð Þ ¼ G Xð Þ ð42:11Þ

with

G Xð Þ ¼ X

1þ X2
: ð42:12Þ
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The left side of Eq. (42.11) is a straight line F(X) with slope -R0/Q. Equilibria
occur where this line intersects with G(X).

S and R increase with increases in Q. At first, there is a single equilibrium,

corresponding to the situation shown in the first graphs of Fig. 42.1a–e. After some

time, the line becomes tangent to the curve, as in Graph b. With further increases in

the slope, two points that “attract” system behavior emerge (Graph c). From left to

right, these intersection points in Graph c are, respectively, stable, unstable, and

stable.

Note that in each of the graphs of Fig. 42.1, X is the horizontal axis and F has the

slope R/Q. As such, F will be equal to, or intersect, G at equilibrium points [per

Eqs. (42.11) and (42.12)] of varying stability. If F is less than G, to the right of the

Fig. 42.1

384 42 Spruce Budworm Dynamics



intersection, the point is stable. Thus, between Graph a and Graph d of Fig. 42.1, the

left intersection switches suddenly from stable to unstable, the only stable point

becoming the right intersection. This sudden shift in stable points is the reason

behind the sudden shift, or explosion, in the budworm population. Graph e

in Fig. 42.1 shows the case in which only one point of intersection exists.

This point is a stable attractor.

The cusp of the spruce budworm dynamics is shown schematically in Fig. 42.2

in the R–Q plane. The upper part of the surface corresponds to an outbreak level

while the lower part corresponds to a subsistence level.

The modules to solve for the dynamics of the spruce budworm population are

shown in Fig. 42.3. We drive changes in the model by setting X¼TIME. The

functions G(X) and F(X) are shown in Figs. 42.4 and 42.5, respectively.

For KS¼ 2.5, the corresponding values of X are 0.69, 2.0, and 7.32. These

correspond to B¼ 0.173, 0.500, and 1.83, respectively [see Eq. (42.10)]. These B

values represent the steady states of B. However, only two of these extrema are

stable: the middle value represents an unstable extremum. All initial values of B

within a given range will lead to the same, single steady state for B, one of the two.

There are two such given ranges for initial Bs, given the way that the main model is

set up—initial values of B greater and less than 1/2. Figure 42.6 shows, for a range

of initial Bs close to 1/2 the approach to the two equilibria. Figures 42.7 and 42.8, in

contrast, are for an initial value of B¼ 3.0.

Recognize that the choice of KS is a crucial one. So is the choice of Q. They

determine whether there are one, two, or three extreme solutions for B. Run a

series of sensitivity tests on KS and Q to explore their impact on the system’s

dynamics.

Fig. 42.2
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Fig. 42.4

Fig. 42.3
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Fig. 42.5

Fig. 42.6
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42.2 Spruce Budworm Model Equations

B(t) ¼ B(t � dt) + (ΔB) * dt

INIT B ¼ 3 {Spruce Budworm per Unit Area}

INFLOWS:

ΔB ¼ GR*B*(1�B/K/S) � C*B^2/((K1*S)^2 + B^2) {Spruce Budworm per Unit

Area per Time Period}

Fig. 42.7

Fig. 42.8
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E(t) ¼ E(t � dt) + (ΔE) * dt

INIT E ¼ .95 {Percentage of Foilage Cover}

INFLOWS:

ΔE ¼ RE*E*(1�E) � P*B*E^2/S {Change in Percentage of Foilage Cover per

Time Period}

S(t) ¼ S(t � dt) + (ΔS) * dt

INIT S ¼ 2.5 {Habitat Density}

INFLOWS:

ΔS ¼ RS*S*(1 � S/KS/E) {Habitat Density Change per Time Period}

C ¼ 1

F ¼ R_1*(1�X/Q)

G ¼ X/(1+X^2)

GR ¼ 2 {Spruce Budworm per Unit Area per Spruce Budworm per Unit Area per

Time Period}

K ¼ 1

K1 ¼ 0.1

KS ¼ 2.5

P ¼ 0.01

Q ¼ K/K1

R ¼ GR*K1*S/C

RE ¼ 2 {Change in Percentage of Foilage Cover per Percentage Foilage Cover

Time Period}

RS ¼ 3 {Habitat Density Change per Habitat Density Change per Time Period}

R_1 ¼ GR*K1*KS/C

X ¼ TIME

Reference

1. Beltrami E (1987) Mathematics for dynamic modeling. Academic Press, Boston
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Chapter 43

Game of Life

What I need is the dandelion in the spring. The bright yellow
that means rebirth instead of destruction. The promise that
life can go on, no matter how bad our losses. That it can be
good again.

(Suzanne Collins, Mockingjay)

43.1 Game of Life Model

Two of the most striking features of nature are the ability of these systems to evolve

and reproduce. For example, gradients in material concentrations and temperature

in the primordial soup enabled formation of simple structures that were not only

distinguishable from their environment but eventually also possessed the ability to

change that environment. The emergence of catalytic RNA in a heterogeneous

environment, in turn, not only led to change in the environment of these simple

structures but, with chance, to the change of these structures themselves [1]. Increas-

ingly complex molecular structures evolved, reproduced, and continuously

transformed the environment in which they lived.

The evolution and reproduction of life forms was long interpreted as the result of

some “vital force.” It is only since the beginning of this century that we have gained

a better understanding of evolution and reproduction from a physical perspective

[2]. In 1966, John von Neumann created a simple model of a reproducing machine

[3] that sparked the development of numerous efforts to boil down rules for

replication to simple logical statements that take on the form of “mechanistic”

rules. Collectively, these models are known as cellular automata. In general, a

cellular automaton is any set of individuals with a finite number of characteristics

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_43,

© Springer International Publishing Switzerland 2014
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that change over time based on previous characteristics and the characteristics of

individuals with which it interacts. Typically, individuals are represented as cells in

a grid. The features of each cell are determined by its features in the past and those

of the neighboring cells.

The model of this chapter is set up for 100 cells arranged in a square. It is an

extremely simple cellular automaton which has been developed by the British

mathematician John H. Conway. Conway [4] called this model “Life,” perhaps

because the displays of the model looks remarkably like a Petri dish full of

microscopic organisms, moving back and forth, merging with each other, replicat-

ing themselves or generating new forms.

The rules for the game of life are as follows:

1. Each cell on the grid can only take on two characteristics, for example, the colors

black or white.

2. If, for a given cell, the number of neighbors is exactly two, the value of the

square does not change at the next time step.

3. If the number of black neighbors is exactly three, the square will be black in the

next time step.

4. If the number of black neighbors is neither two nor three, the square will be

white at the next time step.

We have named the cells in our model with letters A, B, . . ., J for rows and

numbers 1, 2, . . ., 10 for columns. The state of each cell is captured by a state

variable that either takes on a value of one if it is black or zero if it is white. Changes

in the state of a cell are captured by bi-flows and calculated on the basis of its own

state and the value its neighbors take on. If a cell is black (i.e., its state variable

takes on a value of one) and if exactly three of its neighbors are black (the sum of

the state variables of all neighbors is three), then—according to the third rule

above—there is no change in the state of the cell and the bi-flow is zero. If

the cell is white but exactly three of its neighbors are black, then—according to

the third rule above—the bi-flow takes on a value of one, changing the state of the

respective cell from zero to one. Rules two and four can be accommodated

analogously in the model. An example for the application of these rules to one of

the cells in the model is given in the module of Fig. 43.1.

The parameter BIRTH # is the number of neighbor cells that must be black to

“give birth” to a cell. According to our rules we set BIRTH #¼ 3. Similarly,

NEIGHBOR MAX is the number of cells being black above which the cell dies

from crowding, and NEIGHBORMIN is the minimum number of neighboring cells

below which the cell is no longer viable. NEIGHBORMAX and NEIGHBORMIN

in our model are set to 3 and 2, respectively. The rule for the change in cell B4 is

shown in Eq. (43.1).
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B4 IN ¼ IF A3þ A4þ A5þ B3þ B5þ C3þ C4þ C5ð Þ ¼ BIRTH#AND

B4 ¼ 0 THEN 1

ELSE IF A3þ A4þ A5þ B3þ B5þ C3þ C4þ C5ð Þ < NEIGHBOR MIN OR

A3þ A4þ A5þ B3þ B5þ C3þ C4þ C5ð Þ > NEIGHBOR MAX AND

B4 ¼ 1 THEN� 1

ELSE 0

ð43:1Þ

Randomly initialize the value for each cell and observe the system’s dynamics.

You will find that some initial conditions lead to more interesting dynamics than

others. Among the more interesting initial conditions for the model are the ones

shown in the set-ups of Fig. 43.2, where a black cell is one with initial value of one,

and a white cell has initial value of zero. Start the model with one of these initial

conditions, and observe its spatio-temporal dynamics. Find your own constellations

of initial conditions that lead to self-replicating structures. With this model you can

construct “factories” which produce gliding swarms of black cells, or intricate

structures of squares within squares.

We have animated the stocks in the STELLA model and placed ghosts of the

stocks close together to set up a checkerboard-like pattern. The results of the model

with initial conditions depicted in the upper left-hand panel of Fig. 43.2 yields the

results shown in Fig. 43.3.

Fig. 43.1
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The initial “glider” moves downward in the grid and to the right, repeatedly

replicating itself until it reaches the lower right-hand corner of the model where it

gets stuck. If you keep enlarging the number of cells, you can keep the slider

going. Can you set up the decision rules such that the glider moves out of the

cells, rather than gets stuck? The other initial conditions shown in Fig. 43.2 yield

situations in which two gliders annihilate, and in which new, stable patterns

emerge.

Cellular automata not only generate interesting-looking spatio-temporal patterns

but have been proven to be quite informative in physics when modeling the

behavior of fluids [5], and in landscape ecology where they have been used, for

example, to model sediment transport on coastal landscapes [6] or the spread of

forest fires [7].

In the model above, a “black” cell indicated the presence of an organism,

“white” meant that there were no organisms in a particular cell. Can you set up

the model to capture competition of two species with each other? When introducing

a second type of organism, make only as few changes to the rules as possible to

model that organism and its competitive behavior.

Fig. 43.2
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43.2 Game of Life Model Equations

A1(t) ¼ A1(t � dt) + (A1_IN) * dt

INIT A1 ¼ 0

INFLOWS:

A1_IN ¼ IF (A2+B1+B2)¼BIRTH_# and A1¼0 THEN 1 ELSE IF (A2+B1+B2)

<NEIGHBOR_MIN OR (A2+B1+B2)>NEIGHBOR_MAX AND A1¼1

THEN �1 ELSE 0

A10(t) ¼ A10(t � dt) + (A10_IN) * dt

INIT A10 ¼ 0

INFLOWS:

A10_IN ¼ IF (A9+B10+B9)¼BIRTH_# AND A10¼0 THEN 1 ELSE IF (A9+B10

+B9)<NEIGHBOR_MIN OR (A9+B10+B9)>NEIGHBOR_MAX AND

A10¼1 THEN �1 ELSE 0

A2(t) ¼ A2(t � dt) + (A2_IN) * dt

INIT A2 ¼ 1

Fig. 43.3
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INFLOWS:

A2_IN ¼ IF (A1+A3+B1+B2+B3)¼BIRTH_# AND A2¼0 THEN 1 ELSE IF

(A1+A3+B1+B2+B3)<NEIGHBOR_MIN OR (A1+A3+B1+B2+B3)>
NEIGHBOR_MAX AND A2¼1 THEN �1 ELSE 0

A3(t) ¼ A3(t � dt) + (A3_IN) * dt

INIT A3 ¼ 0

INFLOWS:

A3_IN ¼ IF (A2+A4+B2+B3+B4)¼BIRTH_# AND A3¼0 THEN 1 ELSE IF

(A2+A4+B2+B3+B4)<NEIGHBOR_MIN OR (A2+A4+B2+B3+B4)>
NEIGHBOR_MAX AND A3¼1 THEN �1 ELSE 0

A4(t) ¼ A4(t � dt) + (A4_IN) * dt

INIT A4 ¼ 0

INFLOWS:

A4_IN ¼ IF (A3+A5+B3+B4+B5)¼BIRTH_# AND A4¼0 THEN 1 ELSE IF

(A3+A5+B3+B4+B5)<NEIGHBOR_MIN OR (A3+A5+B3+B4+B5)>
NEIGHBOR_MAX AND A4¼1 THEN �1 ELSE 0

A5(t) ¼ A5(t � dt) + (A5_IN) * dt

INIT A5 ¼ 0

INFLOWS:

A5_IN ¼ IF (A6+B4+B5+B6+A4)¼BIRTH_# AND A5¼0 THEN 1 ELSE IF

(A6+B4+B5+B6+A4)<NEIGHBOR_MIN OR (A6+B4+B5+B6+A4)>
NEIGHBOR_MAX AND A5¼1 THEN �1 ELSE 0

A6(t) ¼ A6(t � dt) + (A6_IN) * dt

INIT A6 ¼ 0

INFLOWS:

A6_IN ¼ IF (A7+B5+B6+B7+A5)¼BIRTH_# AND A6¼0 THEN 1 ELSE IF

(A7+B5+B6+B7+A5)<NEIGHBOR_MIN OR (A7+B5+B6+B7+A5)>
NEIGHBOR_MAX AND A6¼1 THEN �1 ELSE 0

A7(t) ¼ A7(t � dt) + (A7_IN) * dt

INIT A7 ¼ 0

INFLOWS:

A7_IN ¼ IF (A6+A8+B6+B7+B8)¼BIRTH_# AND A7¼0 THEN 1 ELSE IF

(A6+A8+B6+B7+B8)<NEIGHBOR_MIN OR (A6+A8+B6+B7+B8)>
NEIGHBOR_MAX AND A7¼1 THEN �1 ELSE 0

A8(t) ¼ A8(t � dt) + (A8_IN) * dt

INIT A8 ¼ 0

INFLOWS:

A8_IN ¼ IF (A7+A9+B7+B8+B9)¼BIRTH_# AND A8¼0 THEN 1 ELSE IF

(A7+A9+B7+B8+B9)<NEIGHBOR_MIN OR (A7+A9+B7+B8+B9)>
NEIGHBOR_MAX AND A8¼1 THEN �1 ELSE 0

A9(t) ¼ A9(t � dt) + (A9_IN) * dt

INIT A9 ¼ 0

INFLOWS:

A9_IN ¼ IF (A10+A8+B10+B8+B9)¼BIRTH_# AND A9¼0 THEN 1 ELSE

IF (A10+A8+B10+B8+B9)<NEIGHBOR_MIN OR (A10+A8+B10+B8+B9)>
NEIGHBOR_MAX AND A9¼1 THEN �1 ELSE 0
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B1(t) ¼ B1(t � dt) + (B1_IN) * dt

INIT B1 ¼ 0

INFLOWS:

B1_IN ¼ IF (A1+A2+B2+C1+C2)¼BIRTH_# AND B1¼0 THEN 1 ELSE IF

(A1+A2+B2+C1+C2)<NEIGHBOR_MIN OR (A1+A2+B2+C1+C2)>
NEIGHBOR_MAX AND B1¼1 THEN �1 ELSE 0

B10(t) ¼ B10(t � dt) + (B10_IN) * dt

INIT B10 ¼ 0

INFLOWS:

B10_IN ¼ IF (A10+A9+B9+C10+C9)¼BIRTH_# AND B10¼0 THEN 1 ELSE IF

(A10+A9+B9+C10+C9)<NEIGHBOR_MIN OR (A10+A9+B9+C10+C9)>
NEIGHBOR_MAX AND B10¼1 THEN �1 ELSE 0

B2(t) ¼ B2(t � dt) + (B2_IN) * dt

INIT B2 ¼ 0

INFLOWS:

B2_IN ¼ IF (A1+A2+A3+B1+B3+C1+C2+C3)¼BIRTH_# AND B2¼0 THEN

1 ELSE IF (A1+A2+A3+B1+B3+C1+C2+C3)<NEIGHBOR_MIN OR

(A1+A2+A3+B1+B3+C1+C2+C3)>NEIGHBOR_MAX AND B2¼1 THEN

�1 ELSE 0

B3(t) ¼ B3(t � dt) + (B3_IN) * dt

INIT B3 ¼ 1

INFLOWS:

B3_IN ¼ IF (A2+A3+A4+B2+B4+C2+C3+C4)¼BIRTH_# AND B3¼0 THEN

1 ELSE IF (A2+A3+A4+B2+B4+C2+C3+C4)<NEIGHBOR_MIN OR

(A2+A3+A4+B2+B4+C2+C3+C4)>NEIGHBOR_MAX AND B3¼1 THEN

�1 ELSE 0

B4(t) ¼ B4(t � dt) + (B4_IN) * dt

INIT B4 ¼ 0

INFLOWS:

B4_IN ¼ IF (A3+A4+A5+B3+B5+C3+C4+C5)¼BIRTH_# AND B4¼0 THEN

1 ELSE IF (A3+A4+A5+B3+B5+C3+C4+C5)<NEIGHBOR_MIN OR

(A3+A4+A5+B3+B5+C3+C4+C5)>NEIGHBOR_MAX AND B4¼1 THEN

�1 ELSE 0

B5(t) ¼ B5(t � dt) + (B5_IN) * dt

INIT B5 ¼ 0

INFLOWS:

B5_IN ¼ IF (A4+A5+A6+B4+B6+C4+C5+C6)¼BIRTH_# AND B5¼0 THEN

1 ELSE IF (A4+A5+A6+B4+B6+C4+C5+C6)<NEIGHBOR_MIN OR

(A4+A5+A6+B4+B6+C4+C5+C6)>NEIGHBOR_MAX AND B5¼1 THEN

�1 ELSE 0

B6(t) ¼ B6(t � dt) + (B6_IN) * dt

INIT B6 ¼ 0
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INFLOWS:

B6_IN ¼ IF (A5+A6+A7+B5+B7+C5+C6+C7)¼BIRTH_# AND B6¼0 THEN

1 ELSE IF (A5+A6+A7+B5+B7+C5+C6+C7)<NEIGHBOR_MIN OR

(A5+A6+A7+B5+B7+C5+C6+C7)>NEIGHBOR_MAX AND B6¼1 THEN

�1 ELSE 0

B7(t) ¼ B7(t � dt) + (B7_IN) * dt

INIT B7 ¼ 0

INFLOWS:

B7_IN ¼ IF (A6+A7+A8+B6+B8+C6+C7+C8)¼BIRTH_# AND B7¼0 THEN

1 ELSE IF (A6+A7+A8+B6+B8+C6+C7+C8)<NEIGHBOR_MIN OR

(A6+A7+A8+B6+B8+C6+C7+C8)>NEIGHBOR_MAX AND B7¼1 THEN

�1 ELSE 0

B8(t) ¼ B8(t � dt) + (B8_IN) * dt

INIT B8 ¼ 0

INFLOWS:

B8_IN ¼ IF (A7+A8+A9+B7+B9+C7+C8+C9)¼BIRTH_# AND B8¼0 THEN

1 ELSE IF (A7+A8+A9+B7+B9+C7+C8+C9)<NEIGHBOR_MIN OR

(A7+A8+A9+B7+B9+C7+C8+C9)>NEIGHBOR_MAX AND B8¼1 THEN

�1 ELSE 0

B9(t) ¼ B9(t � dt) + (B9_IN) * dt

INIT B9 ¼ 0

INFLOWS:

B9_IN¼ IF (A10+A8+A9+B10+B8+C10+C8+C9)¼BIRTH_# AND B9¼0 THEN

1 ELSE IF (A10+A8+A9+B10+B8+C10+C8+C9)<NEIGHBOR_MIN OR

(A10+A8+A9+B10+B8+C10+C8+C9)>NEIGHBOR_MAX AND B9¼1

THEN �1 ELSE 0

C1(t) ¼ C1(t � dt) + (C1_IN) * dt

INIT C1 ¼ 1

INFLOWS:

C1_IN ¼ IF (B1+B2+C2+D1+D2)¼BIRTH_# AND C1¼0 THEN 1 ELSE IF

(B1+B2+C2+D1+D2)<NEIGHBOR_MIN OR (B1+B2+C2+D1+D2)>
NEIGHBOR_MAX AND C1¼1 THEN �1 ELSE 0

C10(t) ¼ C10(t � dt) + (C10_IN) * dt

INIT C10 ¼ 0

INFLOWS:

C10_IN ¼ IF (B10+B9+C9+D10+D9)¼BIRTH_# AND C10¼0 THEN 1 ELSE IF

(B10+B9+C9+D10+D9)<NEIGHBOR_MIN OR (B10+B9+C9+D10+D9)>
NEIGHBOR_MAX AND C10¼1 THEN �1 ELSE 0

C2(t) ¼ C2(t � dt) + (C2_IN) * dt

INIT C2 ¼ 1

INFLOWS:

C2_IN ¼ IF (B1+B2+B3+C1+C3+D1+D2+D3)¼BIRTH_# AND C1¼0 THEN

1 ELSE IF (B1+B2+B3+C1+C3+D1+D2+D3)<NEIGHBOR_MIN OR

(B1+B2+B3+C1+C3+D1+D2+D3)>NEIGHBOR_MAX AND C2¼1 THEN

�1 ELSE 0
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C3(t) ¼ C3(t � dt) + (C3_IN) * dt

INIT C3 ¼ 1

INFLOWS:

C3_IN ¼ IF (B2+B3+B4+C2+C4+D2+D3+D4)¼BIRTH_# AND C3¼0 THEN

1 ELSE IF (B2+B3+B4+C2+C4+D2+D3+D4)<NEIGHBOR_MIN OR

(B2+B3+B4+C2+C4+D2+D3+D4)>NEIGHBOR_MAX AND C3¼1 THEN

�1 ELSE 0

C4(t) ¼ C4(t � dt) + (C4_IN) * dt

INIT C4 ¼ 0

INFLOWS:

C4_IN ¼ IF (B3+B4+B5+C3+C5+D3+D4+D5)¼BIRTH_# AND C4¼0 THEN

1 ELSE IF (B3+B4+B5+C3+C5+D3+D4+D5)<NEIGHBOR_MIN OR

(B3+B4+B5+C3+C5+D3+D4+D5)>NEIGHBOR_MAX AND C4¼1 THEN

�1 ELSE 0

C5(t) ¼ C5(t � dt) + (C5_IN) * dt

INIT C5 ¼ 0

INFLOWS:

C5_IN ¼ IF (B4+B5+B6+C4+C6+D4+D5+D6)¼BIRTH_# AND C5¼0 THEN

1 ELSE IF (B4+B5+B6+C4+C6+D4+D5+D6)<NEIGHBOR_MIN OR

(B4+B5+B6+C4+C6+D4+D5+D6)>NEIGHBOR_MAX AND C5¼1 THEN

�1 ELSE 0

C6(t) ¼ C6(t � dt) + (C6_IN) * dt

INIT C6 ¼ 0

INFLOWS:

C6_IN ¼ IF (B5+B6+B7+C5+C7+D5+D6+D7)¼BIRTH_# AND C6¼0 THEN

1 ELSE IF (B5+B6+B7+C5+C7+D5+D6+D7)<NEIGHBOR_MIN OR

(B5+B6+B7+C5+C7+D5+D6+D7)>NEIGHBOR_MAX AND C6¼1 THEN

�1 ELSE 0

C7(t) ¼ C7(t � dt) + (C7_IN) * dt

INIT C7 ¼ 0

INFLOWS:

C7_IN ¼ IF (B6+B7+B8+C6+C8+D6+D7+D8)¼BIRTH_# AND C7¼0 THEN

1 ELSE IF (B6+B7+B8+C6+C8+D6+D7+D8)<NEIGHBOR_MIN OR

(B6+B7+B8+C6+C8+D6+D7+D8)>NEIGHBOR_MAX AND C7¼1 THEN

�1 ELSE 0

C8(t) ¼ C8(t � dt) + (C8_IN) * dt

INIT C8 ¼ 0

INFLOWS:

C8_IN ¼ IF (B7+B8+B9+C7+C9+D7+D8+D9)¼BIRTH_# AND C8¼0 THEN

1 ELSE IF (B7+B8+B9+C7+C9+D7+D8+D9)<NEIGHBOR_MIN OR (B7+B8

+B9+C7+C9+D7+D8+D9)>NEIGHBOR_MAX AND C8¼1 THEN �1 ELSE 0

C9(t) ¼ C9(t � dt) + (C9_IN) * dt

INIT C9 ¼ 0
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INFLOWS:

C9_IN¼ IF (B10+B8+B9+C10+C8+D10+D8+D9)¼BIRTH_# AND C9¼0 THEN

1 ELSE IF (B10+B8+B9+C10+C8+D10+D8+D9)<NEIGHBOR_MIN OR

(B10+B8+B9+C10+C8+D10+D8+D9)>NEIGHBOR_MAX AND C9¼1

THEN �1 ELSE 0

D1(t) ¼ D1(t � dt) + (D1_IN) * dt

INIT D1 ¼ 0

INFLOWS:

D1_IN ¼ IF (C1+C2+D2+E1+E2)¼BIRTH_# AND D1¼0 THEN 1 ELSE IF

(C1+C2+D2+E1+E2)<NEIGHBOR_MIN OR (C1+C2+D2+E1+E2)>
NEIGHBOR_MAX AND D1¼1 THEN �1 ELSE 0

D10(t) ¼ D10(t � dt) + (D10_IN) * dt

INIT D10 ¼ 0

INFLOWS:

D10_IN ¼ IF (C10+C9+D9+E10+E9)¼BIRTH_# AND D10¼0 THEN 1 ELSE IF

(C10+C9+D9+E10+E9)<NEIGHBOR_MIN OR (C10+C9+D9+E10+E9)>
NEIGHBOR_MAX AND D10¼1 THEN �1 ELSE 0

D2(t) ¼ D2(t � dt) + (D2_IN) * dt

INIT D2 ¼ 0

INFLOWS:

D2_IN ¼ IF (C1+C2+C3+D1+D3+E1+E2+E3)¼BIRTH_# AND D2¼0 THEN

1 ELSE IF (C1+C2+C3+D1+D3+E1+E2+E3)<NEIGHBOR_MIN OR

(C1+C2+C3+D1+D3+E1+E2+E3)>NEIGHBOR_MAX AND D2¼1 THEN

�1 ELSE 0

D3(t) ¼ D3(t � dt) + (D3_IN) * dt

INIT D3 ¼ 0

INFLOWS:

D3_IN ¼ IF (C2+C3+C4+D2+D4+E2+E3+E4)¼BIRTH_# AND D3¼0 THEN

1 ELSE IF (C2+C3+C4+D2+D4+E2+E3+E4)<NEIGHBOR_MIN OR

(C2+C3+C4+D2+D4+E2+E3+E4)>NEIGHBOR_MAX AND D3¼1 THEN

�1 ELSE 0

D4(t) ¼ D4(t � dt) + (D4_IN) * dt

INIT D4 ¼ 0

INFLOWS:

D4_IN ¼ IF (C3+C4+C5+D3+D5+E3+E4+E5)¼BIRTH_# AND D4¼0 THEN

1 ELSE IF (C3+C4+C5+D3+D5+E3+E4+E5)<NEIGHBOR_MIN OR

(C3+C4+C5+D3+D5+E3+E4+E5)>NEIGHBOR_MAX AND D4¼1 THEN

�1 ELSE 0

D5(t) ¼ D5(t � dt) + (D5_IN) * dt

INIT D5 ¼ 0

INFLOWS:

D5_IN ¼ IF (C4+C5+C6+D4+D6+E4+E5+E6)¼BIRTH_# AND D5¼0 THEN

1 ELSE IF (C4+C5+C6+D4+D6+E4+E5+E6)<NEIGHBOR_MIN OR

(C4+C5+C6+D4+D6+E4+E5+E6)>NEIGHBOR_MAX AND D5¼1 THEN

�1 ELSE 0
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D6(t) ¼ D6(t � dt) + (D6_IN) * dt

INIT D6 ¼ 0

INFLOWS:

D6_IN ¼ IF (C5+C6+C7+D5+D7+E5+E6+E7)¼BIRTH_# AND D6¼0 THEN

1 ELSE IF (C5+C6+C7+D5+D7+E5+E6+E7)<NEIGHBOR_MIN OR

(C5+C6+C7+D5+D7+E5+E6+E7)>NEIGHBOR_MAX AND D6¼1 THEN

�1 ELSE 0

D7(t) ¼ D7(t � dt) + (D7_IN) * dt

INIT D7 ¼ 0

INFLOWS:

D7_IN ¼ IF (C6+C7+C8+D6+D8+E6+E7+E8)¼BIRTH_# AND D7¼0 THEN

1 ELSE IF (C6+C7+C8+D6+D8+E6+E7+E8)<NEIGHBOR_MIN OR

(C6+C7+C8+D6+D8+E6+E7+E8)>NEIGHBOR_MAX AND D7¼1 THEN

�1 ELSE 0

D8(t) ¼ D8(t � dt) + (D8_IN) * dt

INIT D8 ¼ 0

INFLOWS:

D8_IN ¼ IF (C7+C8+C9+D7+D9+E7+E8+E9)¼BIRTH_# AND D8¼0 THEN

1 ELSE IF (C7+C8+C9+D7+D9+E7+E8+E9)<NEIGHBOR_MIN OR

(C7+C8+C9+D7+D9+E7+E8+E9)>NEIGHBOR_MAX AND D8¼1 THEN

�1 ELSE 0

D9(t) ¼ D9(t � dt) + (D9_IN) * dt

INIT D9 ¼ 0

INFLOWS:

D9_IN¼ IF (C10+C8+C9+D10+D8+E10+E8+E9)¼BIRTH_# AND D9¼0 THEN

1 ELSE IF (C10+C8+C9+D10+D8+E10+E8+E9)<NEIGHBOR_MIN OR

(C10+C8+C9+D10+D8+E10+E8+E9)>NEIGHBOR_MAX AND D9¼1

THEN �1 ELSE 0

E1(t) ¼ E1(t � dt) + (E1_IN) * dt

INIT E1 ¼ 0

INFLOWS:

E1_IN ¼ IF (D1+D2+E2+F1+F2)¼BIRTH_# AND E1¼0 THEN 1 ELSE IF

(D1+D2+E2+F1+F2)<NEIGHBOR_MIN OR (D1+D2+E2+F1+F2)>
NEIGHBOR_MAX AND E1¼1 THEN �1 ELSE 0

E10(t) ¼ E10(t � dt) + (E10_IN) * dt

INIT E10 ¼ 0

INFLOWS:

E10_IN ¼ IF (D10+D9+E9+F10+F9)¼BIRTH_# AND E10¼0 THEN 1 ELSE IF

(D10+D9+E9+F10+F9)<NEIGHBOR_MIN OR (D10+D9+E9+F10+F9)>
NEIGHBOR_MAX AND E10¼1 THEN �1 ELSE 0

E2(t) ¼ E2(t � dt) + (E2_IN) * dt

INIT E2 ¼ 0
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INFLOWS:

E2_IN ¼ IF (D1+D2+D3+E1+E3+F1+F2+F3)¼BIRTH_# AND E2¼0 THEN

1 ELSE IF (D1+D2+D3+E1+E3+F1+F2+F3)<NEIGHBOR_MIN OR (D1+D2

+D3+E1+E3+F1+F2+F3)>NEIGHBOR_MAX AND E2¼1 THEN �1 ELSE 0

E3(t) ¼ E3(t � dt) + (E3_IN) * dt

INIT E3 ¼ 0

INFLOWS:

E3_IN ¼ IF (D2+D3+D4+E2+E4+F2+F3+F4)¼BIRTH_# AND E3¼0 THEN

1 ELSE IF (D2+D3+D4+E2+E4+F2+F3+F4)<NEIGHBOR_MIN OR (D2+D3

+D4+E2+E4+F2+F3+F4)>NEIGHBOR_MAX AND E3¼1 THEN �1 ELSE 0

E4(t) ¼ E4(t � dt) + (E4_IN) * dt

INIT E4 ¼ 0

INFLOWS:

E4_IN ¼ IF (D3+D4+D5+E3+E5+F3+F4+F5)¼BIRTH_# AND E4¼0 THEN

1 ELSE IF (D3+D4+D5+E3+E5+F3+F4+F5)<NEIGHBOR_MIN OR (D3+D4

+D5+E3+E5+F3+F4+F5)>NEIGHBOR_MAX AND E4¼1 THEN �1 ELSE 0

E5(t) ¼ E5(t � dt) + (E5_IN) * dt

INIT E5 ¼ 0

INFLOWS:

E5_IN ¼ IF (D4+D5+D6+E4+E6+F4+F5+F6)¼BIRTH_# AND E5¼0 THEN

1 ELSE IF (D4+D5+D6+E4+E6+F4+F5+F6)<NEIGHBOR_MIN OR (D4+D5

+D6+E4+E6+F4+F5+F6)>NEIGHBOR_MAX AND E5¼1 THEN �1 ELSE 0

E6(t) ¼ E6(t � dt) + (E6_IN) * dt

INIT E6 ¼ 0

INFLOWS:

E6_IN ¼ IF (D5+D6+D7+E5+E7+F5+F6+F7)¼BIRTH_# AND E6¼0 THEN

1 ELSE IF (D5+D6+D7+E5+E7+F5+F6+F7)<NEIGHBOR_MIN OR (D5+D6

+D7+E5+E7+F5+F6+F7)>NEIGHBOR_MAX AND E6¼1 THEN �1 ELSE 0

E7(t) ¼ E7(t � dt) + (E7_IN) * dt

INIT E7 ¼ 0

INFLOWS:

E7_IN ¼ IF (D6+D7+D8+E6+E8+F6+F7+F8)¼BIRTH_# AND E7¼0 THEN

1 ELSE IF (D6+D7+D8+E6+E8+F6+F7+F8)<NEIGHBOR_MIN OR (D6+D7

+D8+E6+E8+F6+F7+F8)>NEIGHBOR_MAX AND E7¼1 THEN �1 ELSE 0

E8(t) ¼ E8(t � dt) + (E8_IN) * dt

INIT E8 ¼ 0

INFLOWS:

E8_IN ¼ IF (D7+D8+D9+E7+E9+F7+F8+F9)¼BIRTH_# AND E8¼0 THEN

1 ELSE IF (D7+D8+D9+E7+E9+F7+F8+F9)<NEIGHBOR_MIN OR (D7+D8

+D9+E7+E9+F7+F8+F9)>NEIGHBOR_MAX AND E8¼1 THEN �1 ELSE 0

E9(t) ¼ E9(t � dt) + (E9_IN) * dt

INIT E9 ¼ 0
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INFLOWS:

E9_IN ¼ IF (D10+D8+D9+E10+E8+F10+F8+F9)¼BIRTH_# AND E9¼0 THEN

1 ELSE IF (D10+D8+D9+E10+E8+F10+F8+F9)<NEIGHBOR_MIN OR (D10

+D8+D9+E10+E8+F10+F8+F9)>NEIGHBOR_MAX AND E9¼1 THEN �1

ELSE 0

F1(t) ¼ F1(t � dt) + (F1_IN) * dt

INIT F1 ¼ 0

INFLOWS:

F1_IN ¼ IF (E1+E2+F2+G1+G2) ¼ BIRTH_# AND F1¼0 THEN 1 ELSE IF

(E1+E2+F2+G1+G2) <NEIGHBOR_MIN OR (E1+E2+F2+G1+G2)>
NEIGHBOR_MAX AND F1¼1 THEN �1 ELSE 0

F10(t) ¼ F10(t � dt) + (F10_IN) * dt

INIT F10 ¼ 0

INFLOWS:

F10_IN ¼ IF (E10+E9+F9+G10+G9)¼BIRTH_# AND F10¼0 THEN 1 ELSE IF

(E10+E9+F9+G10+G9)<NEIGHBOR_MIN OR (E10+E9+F9+G10+G9)>
NEIGHBOR_MAX AND F10¼1 THEN �1 ELSE 0

F2(t) ¼ F2(t � dt) + (F2_IN) * dt

INIT F2 ¼ 0

INFLOWS:

F2_IN ¼ IF (E1+E2+E3+F1+F3+G1+G2+G3)¼BIRTH_# AND F2¼0 THEN

1 ELSE IF (E1+E2+E3+F1+F3+G1+G2+G3)<NEIGHBOR_MIN OR (E1+E2

+E3+F1+F3+G1+G2+G3)>NEIGHBOR_MAX AND F2¼1 THEN �1 ELSE 0

F3(t) ¼ F3(t � dt) + (F3_IN) * dt

INIT F3 ¼ 0

INFLOWS:

F3_IN ¼ IF (E2+E3+E4+F2+F4+G2+G3+G4)¼BIRTH_# AND F3¼0 THEN

1 ELSE IF (E2+E3+E4+F2+F4+G2+G3+G4)<NEIGHBOR_MIN OR (E2+E3

+E4+F2+F4+G2+G3+G4)>NEIGHBOR_MAX AND F3¼1 THEN �1 ELSE 0

F4(t) ¼ F4(t � dt) + (F4_IN) * dt

INIT F4 ¼ 0

INFLOWS:

F4_IN ¼ IF (E3+E4+E5+F3+F5+G3+G4+G5)¼BIRTH_# AND F4¼0 THEN

1 ELSE IF (E3+E4+E5+F3+F5+G3+G4+G5)<NEIGHBOR_MIN OR (E3+E4

+E5+F3+F5+G3+G4+G5)>NEIGHBOR_MAX AND F4¼1 THEN �1 ELSE 0

F5(t) ¼ F5(t � dt) + (F5_IN) * dt

INIT F5 ¼ 0

INFLOWS:

F5_IN ¼ IF (E4+E5+E6+F4+F6+G4+G5+G6)¼BIRTH_# AND F5¼0 THEN

1 ELSE IF (E4+E5+E6+F4+F6+G4+G5+G6)<NEIGHBOR_MIN OR (E4+E5

+E6+F4+F6+G4+G5+G6)>NEIGHBOR_MAX AND F5¼1 THEN �1 ELSE 0

F6(t) ¼ F6(t � dt) + (F6_IN) * dt

INIT F6 ¼ 0
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INFLOWS:

F6_IN ¼ IF (E5+E6+E7+F5+F7+G5+G6+G7)¼BIRTH_# AND F6¼0 THEN

1 ELSE IF (E5+E6+E7+F5+F7+G5+G6+G7)<NEIGHBOR_MIN OR (E5+E6

+E7+F5+F7+G5+G6+G7)>NEIGHBOR_MAX AND F6¼1 THEN �1 ELSE 0

F7(t) ¼ F7(t � dt) + (F7_IN) * dt

INIT F7 ¼ 0

INFLOWS:

F7_IN ¼ IF (E6+E7+E8+F6+F8+G6+G7+G8)¼BIRTH_# AND F7¼0 THEN

1 ELSE IF (E6+E7+E8+F6+F8+G6+G7+G8)<NEIGHBOR_MIN OR (E6+E7

+E8+F6+F8+G6+G7+G8)>NEIGHBOR_MAX AND F7¼1 THEN �1 ELSE 0

F8(t) ¼ F8(t � dt) + (F8_IN) * dt

INIT F8 ¼ 0

INFLOWS:

F8_IN ¼ IF (E7+E8+E9+F7+F9+G7+G8+G9)¼BIRTH_# AND F8¼0 THEN

1 ELSE IF (E7+E8+E9+F7+F9+G7+G8+G9)<NEIGHBOR_MIN OR (E7+E8

+E9+F7+F9+G7+G8+G9)>NEIGHBOR_MAX AND F8¼1 THEN �1 ELSE 0

F9(t) ¼ F9(t � dt) + (F9_IN) * dt

INIT F9 ¼ 0

INFLOWS:

F9_IN ¼ IF (E10+E8+E9+F10+F8+G10+G8+G9)¼BIRTH_# AND F9¼0 THEN

1 ELSE IF (E10+E8+E9+F10+F8+G10+G8+G9)<NEIGHBOR_MIN OR (E10

+E8+E9+F10+F8+G10+G8+G9)>NEIGHBOR_MAX AND F9¼1 THEN �1

ELSE 0

G1(t) ¼ G1(t � dt) + (G1_IN) * dt

INIT G1 ¼ 0

INFLOWS:

G1_IN ¼ IF (F1+F2+G2+H1+H2)¼BIRTH_# AND G1¼0 THEN 1 ELSE IF (F1

+F2+G2+H1+H2)<NEIGHBOR_MIN OR (F1+F2+G2+H1+H2)>
NEIGHBOR_MAX AND G1¼1 THEN �1 ELSE 0

G10(t) ¼ G10(t � dt) + (G10_IN) * dt

INIT G10 ¼ 0

INFLOWS:

G10_IN ¼ IF (F10+F9+G9+H10+H9)¼BIRTH_# AND G10¼0 THEN 1 ELSE IF

(F10+F9+G9+H10+H9)<NEIGHBOR_MIN OR (F10+F9+G9+H10+H9)>
NEIGHBOR_MAX AND G10¼1 THEN �1 ELSE 0

G2(t) ¼ G2(t � dt) + (G2_IN) * dt

INIT G2 ¼ 0

INFLOWS:

G2_IN ¼ IF (F1+F2+F3+G1+G3+H1+H2+H3)¼BIRTH_# AND G2¼0 THEN

1 ELSE IF (F1+F2+F3+G1+G3+H1+H2+H3)<NEIGHBOR_MIN OR (F1+F2

+F3+G1+G3+H1+H2+H3)>NEIGHBOR_MAX AND G2¼1 THEN�1 ELSE 0

G3(t) ¼ G3(t � dt) + (G3_IN) * dt

INIT G3 ¼ 0
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INFLOWS:

G3_IN ¼ IF (F2+F3+F4+G2+G4+H2+H3+H4)¼BIRTH_# AND G3¼0 THEN

1 ELSE IF (F2+F3+F4+G2+G4+H2+H3+H4)<NEIGHBOR_MIN OR (F2+F3

+F4+G2+G4+H2+H3+H4)>NEIGHBOR_MAX AND G3¼1 THEN�1 ELSE 0

G4(t) ¼ G4(t � dt) + (G4_IN) * dt

INIT G4 ¼ 0

INFLOWS:

G4_IN ¼ IF (F3+F4+F5+G3+G5+H3+H4+H5)¼BIRTH_# AND G4¼0 THEN

1 ELSE IF (F3+F4+F5+G3+G5+H3+H4+H5)<NEIGHBOR_MIN OR (F3+F4

+F5+G3+G5+H3+H4+H5)>NEIGHBOR_MAX AND G4¼1 THEN�1 ELSE 0

G5(t) ¼ G5(t � dt) + (G5_IN) * dt

INIT G5 ¼ 0

INFLOWS:

G5_IN ¼ IF (F4+F5+F6+G4+G6+H4+H5+H6)¼BIRTH_# AND G5¼0 THEN

1 ELSE IF (F4+F5+F6+G4+G6+H4+H5+H6)<NEIGHBOR_MIN OR (F4+F5

+F6+G4+G6+H4+H5+H6)>NEIGHBOR_MAX AND G5¼1 THEN�1 ELSE 0

G6(t) ¼ G6(t � dt) + (G6_IN) * dt

INIT G6 ¼ 0

INFLOWS:

G6_IN ¼ IF (F5+F6+F7+G5+G7+H5+H6+H7)¼BIRTH_# AND G6¼0 THEN

1 ELSE IF (F5+F6+F7+G5+G7+H5+H6+H7)<NEIGHBOR_MIN OR (F5+F6

+F7+G5+G7+H5+H6+H7)>NEIGHBOR_MAX AND G6¼1 THEN�1 ELSE 0

G7(t) ¼ G7(t � dt) + (G7_IN) * dt

INIT G7 ¼ 0

INFLOWS:

G7_IN ¼ IF (F6+F7+F8+G6+G8+H6+H7+H8)¼BIRTH_# AND G7¼0 THEN

1 ELSE IF (F6+F7+F8+G6+G8+H6+H7+H8)<NEIGHBOR_MIN OR (F6+F7

+F8+G6+G8+H6+H7+H8)>NEIGHBOR_MAX AND G7¼1 THEN�1 ELSE 0

G8(t) ¼ G8(t � dt) + (G8_IN) * dt

INIT G8 ¼ 0

INFLOWS:

G8_IN ¼ IF (F7+F8+F9+G7+G9+H7+H8+H9)¼BIRTH_# AND G8¼0 THEN

1 ELSE IF (F7+F8+F9+G7+G9+H7+H8+H9)<NEIGHBOR_MIN OR (F7+F8

+F9+G7+G9+H7+H8+H9)>NEIGHBOR_MAX AND G8¼1 THEN�1 ELSE 0

G9(t) ¼ G9(t � dt) + (G9_IN) * dt

INIT G9 ¼ 0

INFLOWS:

G9_IN ¼ IF (F10+F8+F9+G10+G8+H10+H8+H9)¼BIRTH_# AND G9¼0 THEN

1 ELSE IF (F10+F8+F9+G10+G8+H10+H8+H9)<NEIGHBOR_MIN OR (F10

+F8+F9+G10+G8+H10+H8+H9)>NEIGHBOR_MAX AND G9¼1 THEN �1

ELSE 0

H1(t) ¼ H1(t � dt) + (H1_IN) * dt

INIT H1 ¼ 0
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INFLOWS:

H1_IN ¼ IF (G1+G2+H2+I1+I2)¼BIRTH_# AND H1¼0 THEN 1 ELSE IF (G1

+G2+H2+I1+I2)<NEIGHBOR_MIN OR (G1+G2+H2+I1+I2)>
NEIGHBOR_MAX AND H1¼1 THEN �1 ELSE 0

H10(t) ¼ H10(t � dt) + (H10_IN) * dt

INIT H10 ¼ 0

INFLOWS:

H10_IN ¼ IF (G10+G9+H9+I10+I9)¼BIRTH_# AND H10¼0 THEN 1 ELSE IF

(G10+G9+H9+I10+I9)<NEIGHBOR_MIN OR (G10+G9+H9+I10+I9)>
NEIGHBOR_MAX OR H10¼1 THEN �1 ELSE 0

H2(t) ¼ H2(t � dt) + (H2_IN) * dt

INIT H2 ¼ 0

INFLOWS:

H2_IN ¼ IF (G1+G2+G3+H1+H3+I1+I2+I3)¼BIRTH_# AND H2¼0 THEN

1 ELSE IF (G1+G2+G3+H1+H3+I1+I2+I3)<NEIGHBOR_MIN OR (G1+G2

+G3+H1+H3+I1+I2+I3)>NEIGHBOR_MAX AND H2¼1 THEN �1 ELSE 0

H3(t) ¼ H3(t � dt) + (H3_IN) * dt

INIT H3 ¼ 0

INFLOWS:

H3_IN ¼ IF (G2+G3+G4+H2+H4+I2+I3+I4)¼BIRTH_# AND H3¼0 THEN

1 ELSE IF (G2+G3+G4+H2+H4+I2+I3+I4)<NEIGHBOR_MIN OR (G2+G3

+G4+H2+H4+I2+I3+I4)>NEIGHBOR_MAX AND H3¼1 THEN �1 ELSE 0

H4(t) ¼ H4(t � dt) + (H4_IN) * dt

INIT H4 ¼ 0

INFLOWS:

H4_IN ¼ IF (G3+G4+G5+H3+H5+I3+I4+I5)¼BIRTH_# AND H4¼0 THEN

1 ELSE IF (G3+G4+G5+H3+H5+I3+I4+I5)<NEIGHBOR_MIN OR (G3+G4

+G5+H3+H5+I3+I4+I5)>NEIGHBOR_MAX AND H4¼1 THEN �1 ELSE 0

H5(t) ¼ H5(t � dt) + (H5_IN) * dt

INIT H5 ¼ 0

INFLOWS:

H5_IN ¼ IF (G4+G5+G6+H4+H6+I4+I5+I6)¼BIRTH_# AND H5¼0 THEN

1 ELSE IF (G4+G5+G6+H4+H6+I4+I5+I6)<NEIGHBOR_MIN OR (G4+G5

+G6+H4+H6+I4+I5+I6)>NEIGHBOR_MAX AND H5¼1 THEN �1 ELSE 0

H6(t) ¼ H6(t � dt) + (H6_IN) * dt

INIT H6 ¼ 0

INFLOWS:

H6_IN ¼ IF (G5+G6+G7+H5+H7+I5+I6+I7)¼BIRTH_# AND H6¼0 THEN

1 ELSE IF (G5+G6+G7+H5+H7+I5+I6+I7)<NEIGHBOR_MIN OR (G5+G6

+G7+H5+H7+I5+I6+I7)>NEIGHBOR_MAX AND H6¼1 THEN �1 ELSE 0

H7(t) ¼ H7(t � dt) + (H7_IN) * dt

INIT H7 ¼ 0
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INFLOWS:

H7_IN ¼ IF (G6+G7+G8+H6+H8+I6+I7+I8)¼BIRTH_# AND H7¼0 THEN

1 ELSE IF (G6+G7+G8+H6+H8+I6+I7+I8)<NEIGHBOR_MIN OR (G6+G7

+G8+H6+H8+I6+I7+I8)>NEIGHBOR_MAX AND H7¼1 THEN �1 ELSE 0

H8(t) ¼ H8(t � dt) + (H8_IN) * dt

INIT H8 ¼ 0

INFLOWS:

H8_IN ¼ IF (G7+G8+G9+H7+H9+I7+I8+I9)¼BIRTH_# AND H8¼0 THEN

1 ELSE IF (G7+G8+G9+H7+H9+I7+I8+I9)<NEIGHBOR_MIN OR (G7+G8

+G9+H7+H9+I7+I8+I9)>NEIGHBOR_MAX AND H8¼1 THEN �1 ELSE 0

H9(t) ¼ H9(t � dt) + (H9_IN) * dt

INIT H9 ¼ 0

INFLOWS:

H9_IN ¼ IF (G10+G8+G9+H10+H8+I10+I8+I9)¼BIRTH_# AND H9¼0 THEN

1 ELSE IF (G10+G8+G9+H10+H8+I10+I8+I9)<NEIGHBOR_MIN OR (G10

+G8+G9+H10+H8+I10+I8+I9)>NEIGHBOR_MAX AND H9¼1 THEN �1

ELSE 0

I1(t) ¼ I1(t � dt) + (I1_IN) * dt

INIT I1 ¼ 0

INFLOWS:

I1_IN ¼ IF (H1+H2+I2+J1+J2)¼BIRTH_# AND I1¼0 THEN 1 ELSE IF (H1+H2

+I2+J1+J2)<NEIGHBOR_MIN OR (H1+H2+I2+J1+J2)>NEIGHBOR_MAX

AND I1¼1 THEN �1 ELSE 0

I10(t) ¼ I10(t � dt) + (I10_IN) * dt

INIT I10 ¼ 0

INFLOWS:

I10_IN ¼ IF (H10+H9+I9+J10+J9)¼BIRTH_# AND I10¼0 THEN 1 ELSE IF

(H10+H9+I9+J10+J9)<NEIGHBOR_MIN OR (H10+H9+I9+J10+J9)>
NEIGHBOR_MAX AND I10¼1 THEN �1 ELSE 0

I2(t) ¼ I2(t � dt) + (I2_IN) * dt

INIT I2 ¼ 0

INFLOWS:

I2_IN ¼ IF (H1+H2+H3+I1+I3+J1+J2+J3)¼BIRTH_# AND I2¼0 THEN 1 ELSE

IF (H1+H2+H3+I1+I3+J1+J2+J3)<NEIGHBOR_MIN OR (H1+H2+H3+I1+I3

+J1+J2+J3)>NEIGHBOR_MAX AND I2¼1 THEN �1 ELSE 0

I3(t) ¼ I3(t � dt) + (I3_IN) * dt

INIT I3 ¼ 0

INFLOWS:

I3_IN ¼ IF (H2+H3+H4+I2+I4+J2+J3+J4)¼BIRTH_# AND I3¼0 THEN 1 ELSE

IF (H2+H3+H4+I2+I4+J2+J3+J4)<NEIGHBOR_MIN OR (H2+H3+H4+I2+I4

+J2+J3+J4)>NEIGHBOR_MAX AND I3¼1 THEN �1 ELSE 0

I4(t) ¼ I4(t � dt) + (I4_IN) * dt

INIT I4 ¼ 0
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INFLOWS:

I4_IN ¼ IF (H3+H4+H5+I3+I5+J3+J4+J5)¼BIRTH_# AND I4¼0 THEN 1 ELSE

IF (H3+H4+H5+I3+I5+J3+J4+J5)<NEIGHBOR_MIN OR (H3+H4+H5+I3+I5

+J3+J4+J5)>NEIGHBOR_MAX AND I4¼1 THEN �1 ELSE 0

I5(t) ¼ I5(t � dt) + (I5_IN) * dt

INIT I5 ¼ 0

INFLOWS:

I5_IN ¼ IF (H4+H5+H6+I4+I6+J4+J5+J6)¼BIRTH_# AND I5¼0 THEN 1 ELSE

IF (H4+H5+H6+I4+I6+J4+J5+J6)<NEIGHBOR_MIN OR (H4+H5+H6+I4+I6

+J4+J5+J6)>NEIGHBOR_MAX AND I5¼1 THEN �1 ELSE 0

I6(t) ¼ I6(t � dt) + (I6_IN) * dt

INIT I6 ¼ 0

INFLOWS:

I6_IN ¼ IF (H5+H6+H7+I5+I7+J5+J6+J7)¼BIRTH_# AND I6¼0 THEN 1 ELSE

IF (H5+H6+H7+I5+I7+J5+J6+J7)<NEIGHBOR_MIN OR (H5+H6+H7+I5+I7

+J5+J6+J7)>NEIGHBOR_MAX AND I6¼1 THEN �1 ELSE 0

I7(t) ¼ I7(t � dt) + (I7_IN) * dt

INIT I7 ¼ 0

INFLOWS:

I7_IN ¼ IF (H6+H7+H8+I6+I8+J6+J7+J8)¼BIRTH_# AND I7¼0 THEN 1 ELSE

IF (H6+H7+H8+I6+I8+J6+J7+J8)<NEIGHBOR_MIN OR (H6+H7+H8+I6+I8

+J6+J7+J8)>NEIGHBOR_MAX AND I7¼1 THEN �1 ELSE 0

I8(t) ¼ I8(t � dt) + (I8_IN) * dt

INIT I8 ¼ 0

INFLOWS:

I8_IN ¼ IF (H7+H8+H9+I7+I9+J7+J8+J9)¼BIRTH_# AND I8¼0 THEN 1 ELSE

IF (H7+H8+H9+I7+I9+J7+J8+J9)<NEIGHBOR_MIN OR (H7+H8+H9+I7+I9

+J7+J8+J9)>NEIGHBOR_MAX AND I8¼1 THEN �1 ELSE 0

I9(t) ¼ I9(t � dt) + (I9_IN) * dt

INIT I9 ¼ 0

INFLOWS:

I9_IN ¼ IF (H10+H8+I10+I8+H9+J10+J8+J9)¼BIRTH_# AND I9¼0 THEN

1 ELSE IF (H10+H8+I10+I8+H9+J10+J8+J9)<NEIGHBOR_MIN OR (H10

+H8+I10+I8+H9+J10+J8+J9)>NEIGHBOR_MAX AND I9¼1 THEN �1

ELSE 0

J1(t) ¼ J1(t � dt) + (J1_IN) * dt

INIT J1 ¼ 0

INFLOWS:

J1_IN ¼ IF (I1+I2+J2)¼BIRTH_# AND J1¼0 THEN 1 ELSE IF (I1+I2+J2)<
NEIGHBOR_MIN OR (I1+I2+J2)>NEIGHBOR_MAX AND J1¼1 THEN �1

ELSE 0

J10(t) ¼ J10(t � dt) + (J10_IN) * dt

INIT J10 ¼ 0
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INFLOWS:

J10_IN¼ IF (I10+I9+J9)¼BIRTH_# AND J10¼0 THEN 1 ELSE IF (I10+I9+J9)<
NEIGHBOR_MIN OR (I10+I9+J9)>NEIGHBOR_MAX AND J10¼1 THEN

�1 ELSE 0

J2(t) ¼ J2(t � dt) + (J2_IN) * dt

INIT J2 ¼ 0

INFLOWS:

J2_IN ¼ IF (I1+I2+I3+J1+J3)¼BIRTH_# AND J2¼0 THEN 1 ELSE IF (I1+I2+I3

+J1+J3)<NEIGHBOR_MIN OR (I1+I2+I3+J1+J3)>NEIGHBOR_MAX AND

J2¼1 THEN �1 ELSE 0

J3(t) ¼ J3(t � dt) + (J3_IN) * dt

INIT J3 ¼ 0

INFLOWS:

J3_IN ¼ IF (I2+I3+I4+J2+J4)¼BIRTH_# AND J3¼0 THEN 1 ELSE IF (I2+I3+I4

+J2+J4)<NEIGHBOR_MIN OR (I2+I3+I4+J2+J4)>NEIGHBOR_MAX AND

J3¼1 THEN �1 ELSE 0

J4(t) ¼ J4(t � dt) + (J4_IN) * dt

INIT J4 ¼ 0

INFLOWS:

J4_IN ¼ IF (I3+I4+I5+J3+J5)¼BIRTH_# AND J4¼0 THEN 1 ELSE IF (I3+I4+I5

+J3+J5)<NEIGHBOR_MIN OR (I3+I4+I5+J3+J5)>NEIGHBOR_MAX AND

J4¼1 THEN �1 ELSE 0

J5(t) ¼ J5(t � dt) + (J5_IN) * dt

INIT J5 ¼ 0

INFLOWS:

J5_IN ¼ IF (I4+I5+I6+J4+J6)¼BIRTH_# AND J5¼0 THEN 1 ELSE IF (I4+I5+I6

+J4+J6)<NEIGHBOR_MIN OR (I4+I5+I6+J4+J6)>NEIGHBOR_MAX AND

J5¼1 THEN �1 ELSE 0

J6(t) ¼ J6(t � dt) + (J6_IN) * dt

INIT J6 ¼ 0

INFLOWS:

J6_IN ¼ IF (I5+I6+I7+J5+J7)¼BIRTH_# AND J6¼0 THEN 1 ELSE IF (I5+I6+I7

+J5+J7)<NEIGHBOR_MIN OR (I5+I6+I7+J5+J7)>NEIGHBOR_MAX AND

J6¼1 THEN �1 ELSE 0

J7(t) ¼ J7(t � dt) + (J7_IN) * dt

INIT J7 ¼ 0

INFLOWS:

J7_IN ¼ IF (I6+I7+I8+J6+J8)¼BIRTH_# AND J7¼0 THEN 1 ELSE IF (I6+I7+I8

+J6+J8)<NEIGHBOR_MIN OR (I6+I7+I8+J6+J8)>NEIGHBOR_MAX AND

J7¼1 THEN �1 ELSE 0

J8(t) ¼ J8(t � dt) + (J8_IN) * dt

INIT J8 ¼ 0

43.2 Game of Life Model Equations 409



INFLOWS:

J8_IN ¼ IF (I7+I8+I9+J7+J9)¼BIRTH_# AND J8¼0 THEN 1 ELSE IF (I7+I8+I9

+J7+J9)<NEIGHBOR_MIN OR (I7+I8+I9+J7+J9)>NEIGHBOR_MAX AND

J8¼1 THEN �1 ELSE 0

J9(t) ¼ J9(t � dt) + (J9_IN) * dt

INIT J9 ¼ 0

INFLOWS:

J9_IN ¼ IF (I10+I8+I9+J10+J8)¼BIRTH_# AND J9¼0 THEN 1 ELSE IF (I10+I8

+I9+J10+J8) <NEIGHBOR_MIN OR (I10+I8+I9+J10+J8)>
NEIGHBOR_MAX AND J9¼1 THEN �1 ELSE 0

BIRTH_# ¼ 3 {NUMBER OF NEIGHBOR CELLS REQUIRED TO GIVE

BIRTH TO THE CELL}

EAT_LAG ¼ 3

NEIGHBOR_MAX ¼ 3 {Number of neighbor cells above which the cell dies from

crowding}

NEIGHBOR_MIN ¼ 2 {Minimum number of neighboring cells below which the

cell is no longer viable}

REPROD_PROB ¼ 1
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Chapter 44

Daisyworld

One ring to rule them all, one ring to bind them, One ring to
bring them all, and in the darkness bind them.

(J.R.R. Tolkien, The Lord of the Rings, Part 1,

Ballantine Books, NY 1965)

44.1 Daisyworld Model

During the late 1960s and early 1970s, James Lovelock, an independent inventor

and scientist, and Lynn Margulis, a professor at Boston University, worked with the

NASA Jet Propulsion Laboratory to develop a means to detect life on Mars. It was

noted in the progress of this work that one striking property of the Earth is that its

atmosphere is far from chemical equilibrium since the biota use it as a reservoir for

nutrients and waste products. In other words, the atmosphere is, in the steady state,

not derived of ordinary chemistry and physics. In fact, it is derived of life.

Conventional thought is that the Earth and the life upon it evolved separately by

different mechanisms. The evolution of the planet’s surface features and the

atmosphere is a result of chemical and physical processes to which the biota must

adapt to prevent extinction. In some instances, it is very clear that life has had a

significant effect on the environment, yet these feedbacks are regarded as acciden-

tal. Lovelock has criticized this view for not adequately describing the sophisticated

interaction between life and its environment and has developed his own theory

known as the Gaia Hypothesis.

The Gaia Hypothesis states quite simply that “the Earth is homeostatic, with the

biota actively seeking to keep the environment optimal for life” [1]. Lovelock

suggests that life has the capacity to regulate the environment of the Earth in

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.

B. Hannon and M. Ruth, Modeling Dynamic Biological Systems,
Modeling Dynamic Systems, DOI 10.1007/978-3-319-05615-9_44,

© Springer International Publishing Switzerland 2014
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order to maintain its fitness for that life. Thus, according to the Gaia hypothesis, life

and the environment evolve together as a single system. The species that leaves the

most progeny tend to inherit a particular environment, and in turn, the environment

that favors the most progeny is itself sustained.

There has been little success in finding the feedback mechanisms that regulate

Gaia, but these mechanisms are likely to be subtle and complex. Scientists have

questioned the validity of the Gaia hypothesis for this reason and others. One of the

most important criticisms has been that the active regulation of the environment

that is the central property of Gaia supposes natural selection for traits that will not

be beneficial for thousands of years. But the ecosystem has no capacity for

conscious forethought and planning, and it is clear that the biota would not evolve

altruistic planetary regulation systems in the pursuit of local self-interest. In other

words, if bacteria appear on the Earth’s surface, how can these bacteria regulate the

atmosphere to suit their own needs when they cannot possibly have a significant

effect on the atmosphere’s chemistry for thousands of years? Lovelock chose to

challenge this criticism with a paradigm and a numerical model: Daisyworld. Since

he first proposed the model, he also asserted that Daisyworld fully exhibits all of the

characteristics of a Gaian world.

In our simplified view, Daisyworld is a right cylindrical planet in Earth’s orbit

around a sun of Sol’s luminescence. This planet has a clear atmosphere and is

populated by two life forms: light and dark daisies. Here, albedo is specified as a

unitless measure of the reflectivity of a surface where 1 means perfectly reflective

and 0 means perfectly absorptive. Light daisies have an albedo greater than the

planet surface albedo and dark daisies have an albedo less than that of the planet’s

surface. If there is bare planet surface available, the daisies will grow and cover it,

and change its albedo.

The model of Daisyworld is based on Lovelock’s equations. The original

equations and parameters are listed in Tellus [2]. We briefly present them here.

There are only two stocks in this model, LIGHT DAISY AREA and DARK DAISY

AREA. These stocks represent the fraction of planet surface covered by each type

of daisy (Fig. 44.1).

Growth of the daisy populations is temperature dependent. For each daisy

species, there is a temperature “window” where growth can occur. That window

extends from 5 to 45 �C. Within this window, growth is described by the parabola

defined with Eqs. (44.1) and (44.2).

LIGHT DAISY GROWTH ¼ 1� 0:003265 25� LIGHT DAISY TEMPð Þ⋀2:
ð44:1Þ

DARK DAISY GROWTH ¼ 1� 0:003265 � 25� DARK DAISY TEMPð Þ⋀2
ð44:2Þ

These functions are maximal at a temperature of 25 �C. The actual daisy growth
is then given by the differential equations
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d LIGHT DAISY AREAð Þ=dt ¼ LIGHT DAISY AREA � NO DAISY AREA

� LIGHT DAISY GROWTH

ð44:3Þ

d DARK DAISY AREAð Þ=dt ¼ DARK DAISY AREA � NO DAISY AREA

� DARK DAISY GROWTH

ð44:4Þ

where NO DAISY AREA is the fraction of fertile planet surface area not populated

by daisies:

NO DAISY AREA ¼ FERTILE AREA� LIGHT DAISY AREA

� DARK DAISY AREA
ð44:5Þ

Fig. 44.1
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Fertile Area is the exogenously given fraction of the planet surface that is

habitable by daisies. Similarly, the area occupied by daisies is

DAISY AREA ¼ LIGHT DAISY AREA þ DARK DAISY AREA ð44:6Þ

and the area not occupied by daisies is

GROUND AREA ¼ 1� DARK DAISY AREA � LIGHT DAISY AREA

ð44:7Þ

The daisies are also subject to death at the rate of 30 % of the population per

unit time.

The most crucial aspect of the Daisyworld model lies in the calculation of the

temperature of the world. The modules of Figs. 44.2 and 44.3 are devoted to this

calculation. The first of these modules (Fig. 44.2) calculates world temperature.

Physically, the planet surface temperature is determined by the amount of solar

radiation incident upon the planet and the amount reflected by the planet. Using the

Stefan-Boltzmann rule, WORLD TEMP is given by

Fig. 44.2

Fig. 44.3
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WORLD TEMP ¼ ��
SUN LUMINOSITY � LIGHT FLUX

� 1�WORLD ALBEDOð Þ�=STEFANS CONSTANT
�
⋀0:25� 273

ð44:8Þ

where LIGHT FLUX is equal to the solar flux of our sun, SUN LUMINOSITY is a

dimensionless measure of the sun’s luminosity, and STEFANS CONSTANT is the

proportionality between solar radiation flux and temperature.

WORLD ALBEDO, in turn, is determined by

WORLD ALBEDO ¼ LIGHT DAISY AREA � LIGHT DAISY ALBEDO

þ DARK DAISY ALBEDO � DARK DAISY AREA

þ GROUND AREA � GROUND ALBEDO:

ð44:9Þ
WORLD ALBEDO is calculated in the module of Fig. 44.3. In our first scenario,

the sun’s luminosity is assumed to change over time:

SUN LUMINOSITY ¼ IF TIME < 150 THEN 0:01 � TIME

ELSE 1:5� 0:01 � TIME� 150ð Þ ð44:10Þ

The key to Daisyworld’s ability to regulate temperature is the different albedos

of the light and dark daisies. Because dark daisies absorb more solar radiation, they

are warmer at a given solar flux than light daisies. Thus, they are at a different point

on their growth curve. Equations (44.8) and (44.9) show how Daisyworld’s tem-

perature is regulated by the daisies. But the WORLD TEMP is not what determines

the growth of the daisy species. Rather, it is the local temperature of each daisy that

regulates growth. The local temperature for the two daisy species is given by

LIGHT DAISY TEMP ¼ LOCAL TEMP FUNC � �WORLD ALBEDO

� LIGHT DAISY ALBEDO
�þWORLD TEMP

ð44:11Þ
DARK DAISY TEMP ¼ LOCAL TEMP FUNC � �WORLD ALBEDO

� DARK DAISY ALBEDO
�þWORLD TEMP

ð44:12Þ

where LOCAL TEMP FUNC is a constant that measures the degree of insulation

between daisies (Fig. 44.4). A low LOCAL TEMP FUNCmeans that there is a great

deal of heat conduction between daisy species and all local temperatures equal the

mean temperature while a high LOCAL TEMP FUNC (on the order of 10^2)

indicates insulation between high and low temperature regions on the surface. For

this simulation, LOCAL TEMP FUNC has been chosen to be 20, which is between

the two extremes, but closer to a “conductive” planet surface.

We assume that the sun’s luminosity changes over time according to Eq. (44.10)

in order to investigate how a Gaian system reacts to perturbations. Since the
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environment of Daisyworld is solely specified by temperature, the best way to test

the Gaia Hypothesis is to affect Daisyworld in such a way that temperature is the

independent variable. Note, however, that most of the graphs presented here have

time as the independent variable. This is somewhat misleading since time is not

significant to Daisyworld; instead the luminosity of the sun is the independent

variable used in this investigation. But SUN LUMINOSITY is varied linearly with

respect to time, so the time axes in the graphs can easily be translated to a SUN

LUMINOSITY axis.

First, let us consider what is expected of a Daisyworld unaffected by biology. In

this case, the albedo of the planet surface is constant and equal to 0.5. As the solar

luminosity increases, the temperature of the planet surface increases (almost)

linearly by the Stefan-Boltzmann rule. There is only a small range of luminosities

where the planet surface temperature is suitable for daisy growth, so we expect few

daisies to appear. This is clearly not a situation where life that requires a certain

temperature to grow would thrive. It is this type of environment that life without

Gaia faces. Whatever biota are present must be able to survive in the given

environmental conditions. As we see in the graphs of Figs. 44.5 and 44.6, daisies

are only present during the short interval in which the planet’s surface temperature

is appropriate for their growth. Daisies are entirely subject to their environment.

How should a Gaian Daisyworld respond to changing solar flux? Lovelock

asserts that the daisies should regulate the temperature of Daisyworld at the

optimum growth temperature, 25 �C, over a range of solar luminosities. Further-

more, perturbations that are not too large should be accommodated by Daisyworld.

The most important characteristic of Gaia is that Gaian feedbacks are homeostatic

and should increase stability of the system. Indeed, Lovelock claims the model

always shows greater stability with daisies than it does without them. Thus, if we

find that Daisyworld is not more stable with daisies than without, then we can safely

Fig. 44.4
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assert that Daisyworld is not regulated by Gaia. The results in Figs. 44.5 and 44.6

provide a baseline for our assessment.

What happens when there is feedback between the biota and the environment?

Figures 44.7, 44.8, and 44.9 show the “classic” Daisyworld which Lovelock has

published numerous times. This is a fascinating graph and it demonstrates quite

clearly that the daisies are capable without foresight, or planning, of regulating the

temperature of Daisyworld to the optimum 25 �C. The graph shows the mean

temperature, sun luminosity, and planet surface area covered by light and dark daisies.

Fig. 44.5

Fig. 44.6
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When the solar flux on Daisyworld is so small that the world temperature is less

than 25 �C, dark daisies flourish. Only when solar luminosity declines significantly

can the daisies not survive.

Dark daisies, because they are dark, absorb more light than either the bare

ground or light daisies, so they are warmer under the same solar flux conditions

and can grow when it is too cool for light daisies. As the dark daisy population

increases, the world temperature increases, and soon it is warm enough for light

daisies. But the solar luminosity is increasing at the same time, so now Daisyworld

Fig. 44.7

Fig. 44.8
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is getting too hot for the dark daisies and they start to die off. The light daisies cool

off the planet surface, so mean temperature drops. As one can see, the light and dark

daisies adjust their respective populations to maintain the temperature of

Daisyworld near the optimal 25 �C! The temperature regulation is not perfect, of

course, in the case of only dark and light daisies. Increase the number of shades to

improve Daisyworld.

Daisyworld must also be able to withstand perturbations more dramatic than a

simple steady change of solar flux. The following shows a situation where there is a

discontinuity in solar flux (Figs. 44.10 and 44.11).

Fig. 44.9

Fig. 44.10
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SUN LUMINOSITY ¼ IF TIME < 150 THEN 0:01 � TIME

ELSE IF TIME � 150 AND TIME � 200 THEN 1

ELSE 1:5� 0:01 � TIME� 150ð Þ
ð44:13Þ

The effect of the jump in solar flux is to eradicate approximately half of the light

daisies. But notice that Daisyworld recovers almost immediately! The dark daisies

begin to grow in response to the lower temperature of Daisyworld and the newly

available surface area no longer occupied by light daisies. Consequently, the

temperature of Daisyworld is quickly returned to the optimum 25 �C.
This is a dramatic demonstration of the ability of Daisyworld to regulate itself to

an optimum point and is certainly evidence in favor of Gaia. This kind of behavior

is also realistic in that life on Earth has withstood such catastrophes before and

survived, witness the extinction of the dinosaurs. Granted, dinosaurs were replaced

by another genus altogether rather than a new bunch of the same dinosaur species,

but the point is that Gaia must be robust enough to sustain life under drastically

changing conditions.

Thus far we have demonstrated two characteristics of Gaia: regulation of the

environment to a point optimal for the growth of the regulating life forms, and

maintenance of that optimum even under severe shock. But what about the last, and

probably most important point of the Gaia Hypothesis that there will be increased

stability on the planet? In order to assess the implications of Gaia for the stability of

the system you must first define what is meant by stability. You also must specify

the range of perturbations that you allow for the system. For example, find a solar

luminosity that yields a steady state for the LIGHT DAISY AREA and DARK

Fig. 44.11
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DAISY AREA. Then perturb the system and note how close the system gets to the

original steady state after disturbance occurred. We have done this with

SUN LUMINOSITY ¼ IF TIME � 120 AND TIME

� 180 THEN 2 ELSE 1
ð44:14Þ

and the results are shown in Figs. 44.12, 44.13, and 44.14.

How are the results changed if the optimum temperature range for the two

daisies differs? You will find for some ranges that there is hysteresis in Daisyworld,

Fig. 44.12

Fig. 44.13
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implying that for a given amount of solar radiation on Daisyworld there are two

stable temperatures and two stable daisy population sizes. How can this finding be

reconciled with the notion of Gaia’s stability?

44.2 Daisyworld Model Equations

DARK_DAISY_AREA(t) ¼ DARK_DAISY_AREA(t � dt) + (DARK_DAISY_

BIRTH � DARK_DAISY_DEATH) * dt

INIT DARK_DAISY_AREA ¼ 0.0001

INFLOWS:

DARK_DAISY_BIRTH ¼ if ((DARK_DAISY_TEMP>5) and (DARK_DAISY_

TEMP<45)) then DARK_DAISY_AREA*NO_DAISY_AREA*DARK_

DAISY_GROWTH else 0

OUTFLOWS:

DARK_DAISY_DEATH ¼ DARK_DAISY_AREA*DEATH_RATE

LIGHT_DAISY_AREA(t) ¼ LIGHT_DAISY_AREA(t � dt) + (LIGHT_DAISY_

BIRTH � LIGHT_DAISY_DEATH) * dt

INIT LIGHT_DAISY_AREA ¼ 0.0001

INFLOWS:

LIGHT_DAISY_BIRTH ¼ if ((LIGHT_DAISY_TEMP>5) and (LIGHT_

DAISY_TEMP<45)) then LIGHT_DAISY_AREA*NO_DAISY_AREA

*LIGHT_DAISY_GROWTH else 0

Fig. 44.14
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OUTFLOWS:

LIGHT_DAISY_DEATH ¼ LIGHT_DAISY_AREA*DEATH_RATE

DAISY_AREA ¼ LIGHT_DAISY_AREA+DARK_DAISY_AREA {Fraction of

area covered by daisies}

DARK_DAISY_ALBEDO ¼ 0.25

DARK_DAISY_GROWTH ¼ 1 � 0.003265*(25 � DARK_DAISY_TEMP)^2

DARK_DAISY_TEMP ¼ LOCAL_TEMP_FUNC*(WORLD_ALBEDO �
DARK_ DAISY_ALBEDO) + WORLD_TEMP

DEATH_RATE ¼ 0.3

FERTILE_AREA ¼ 1

GROUND_ALBEDO ¼ 0.5

GROUND_AREA ¼ 1 � DARK_DAISY_AREA � LIGHT_DAISY_AREA

{Fraction of total area not covered by daisies}

LIGHT_DAISY_ALBEDO ¼ 0.75

LIGHT_DAISY_GROWTH ¼ 1 � 0.003265*(25 � LIGHT_DAISY_TEMP)^2

LIGHT_DAISY_TEMP ¼ LOCAL_TEMP_FUNC*(WORLD_ALBEDO

� LIGHT_DAISY_ALBEDO) + WORLD_TEMP

LIGHT_FLUX ¼ 9.17e2 {W/(sec m^2)}

LOCAL_TEMP_FUNC ¼ 20

NO_DAISY_AREA ¼ FERTILE_AREA � LIGHT_DAISY_AREA � DARK_

DAISY_AREA {Fraction of fertile area not covered by daisies}

STEFANS_CONSTANT ¼ 5.6703e�8 {W/(m^2 K^4)}

SUN_LUMINOSITY ¼ IF TIME < 150 THEN 0.01*TIME ELSE 1.5�0.01*
(TIME�150)

WORLD_ALBEDO ¼ (LIGHT_DAISY_AREA*LIGHT_DAISY_ALBEDO +

DARK_DAISY_ALBEDO*DARK_DAISY_AREA + GROUND_AREA

*GROUND_ALBEDO)

WORLD_TEMP ¼ ((SUN_LUMINOSITY*LIGHT_FLUX*(1 � WORLD_

ALBEDO))/STEFANS_CONSTANT)^0.25 � 273
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Chapter 45

Building a Modeling Community

I alone cannot change the world, but I can cast a stone across the
waters to create many ripples.

(Mother Teresa)

The models and concepts that we developed in this book are powerful means to

investigate the behavior of biological and ecological systems. The modeling

approach that we chose is dynamic with regard to four issues. First, the systems

that we modeled are dynamic ones, and we portray their dynamics, rather than use a

static or comparative-static approach or a statistical model. Second, our model

development process itself is dynamic. We encouraged you to start with simple

models of complex systems. You will soon find that your models become increas-

ingly complicated but more representative of the system about which you are asking

important questions. STELLA, through its use of graphics, is an excellent tool to

organize and assess the various aspects of the system that you wish to capture. Once

the model system is sufficiently understood, you can easily move on to expand on

the model and capture additional features of the real system.

Third, the learning process that accompanies model development and model

runs is a dynamic one. By carefully phrasing the questions that the model should

answer, and by stating the assumptions that underlie the model that we develop, we

structure our knowledge about a system. By running the model and observing the

results we learn about some aspect of a system. Subsequent model runs and model

refinements provide more of this insight and should sharpen our focus for future

model development and improve our intuition about the behavior of dynamic

systems.

Fourth, through building and running computer models we provide a basis for

communicating data and model assumptions. Frequently, model efforts become

A save-disabled version of STELLA and the computer models of this book are available at

www.iseesystems.com/modelingdynamicbiologicalsystems.
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large-scale multidisciplinary endeavors. STELLA is sufficiently versatile to enable

development of large-scale dynamic models. Such models can include a variety of

features that are typically not dealt with by an individual modeler. Through easy

incorporation of new modules into existing dynamic models and flexibility in

adjusting models to specific real-world problems, STELLA fosters dialog and

collaboration among modelers. It is a superb organizing and knowledge-capturing

device for model building in an interdisciplinary arena. Individuals can easily

integrate their knowledge into a STELLA model without “losing sight” of, or

influence on, their particular part of the model. We anticipate that the modeling

approach presented in this book will increase interaction among modelers and

will be generating new momentum for interdisciplinary and cross-cultural

exchange of ideas.

With the various books in the Modeling Dynamic Systems book series, of which

this volume is a part, we wish to initiate a dialogue with and among you and other

modelers. We invite you to share with us your ideas, suggestions and criticisms of

the book, its models, and its presentation format. We also encourage you to send us

your best STELLA models. We intend to make the best models available to a larger

audience, possibly in the form of books, acknowledging you or your group as one of

the selected contributors. The models will be chosen based on their simplicity, their

application to an interesting phenomenon, or real-world problem.

We believe that the dynamic modeling enthusiasm, the ecolate skill, spreads by

word of mouth, by people in groups of two or three sitting around a computer doing

this modeling together, building a new model, or reviewing one by another such

group. Share your thoughts and insights with us, and through us, with other

modelers.

Bruce Hannon Matthias Ruth

University of Illinois Northeastern University

Urbana, IL, USA Boston, MA, USA
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