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Foreword

 International concern in scientifi c, industrial, and governmental communities over 
traces of xenobiotics in foods and in both abiotic and biotic environments has justi-
fi ed the present triumvirate of specialized publications in this fi eld: comprehensive 
reviews, rapidly published research papers and progress reports, and archival docu-
mentations. These three international publications are integrated and scheduled to 
provide the coherency essential for nonduplicative and current progress in a fi eld as 
dynamic and complex as environmental contamination and toxicology. This series 
is reserved exclusively for the diversifi ed literature on “toxic” chemicals in our 
food, our feeds, our homes, recreational and working surroundings, our domestic 
animals, our wildlife, and ourselves. Tremendous efforts worldwide have been 
mobilized to evaluate the nature, presence, magnitude, fate, and toxicology of the 
chemicals loosed upon the Earth. Among the sequelae of this broad new emphasis 
is an undeniable need for an articulated set of authoritative publications, where one 
can fi nd the latest important world literature produced by these emerging areas of 
science together with documentation of pertinent ancillary legislation.  

 Research directors and legislative or administrative advisers do not have the time 
to scan the escalating number of technical publications that may contain articles 
important to current responsibility. Rather, these individuals need the background 
provided by detailed reviews and the assurance that the latest information is made 
available to them, all with minimal literature searching. Similarly, the scientist 
assigned or attracted to a new problem is required to glean all literature pertinent to 
the task, to publish new developments or important new experimental details 
quickly, to inform others of fi ndings that might alter their own efforts, and eventu-
ally to publish all his/her supporting data and conclusions for archival purposes.  

 In the fi elds of environmental contamination and toxicology, the sum of these 
concerns and responsibilities is decisively addressed by the uniform, encompassing, 
and timely publication format of the Springer triumvirate: 

 Reviews of Environmental Contamination and Toxicology [Vol. 1 through 97 
(1962–1986) as Residue Reviews] for detailed review articles concerned with 
any aspects of chemical contaminants, including pesticides, in the total environ-
ment with toxicological considerations and consequences. 
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Bulletin of Environmental Contamination and Toxicology (Vol. 1 in 1966) for 
rapid publication of short reports of signifi cant advances and discoveries in the 
fi elds of air, soil, water, and food contamination and pollution as well as method-
ology and other disciplines concerned with the introduction, presence, and 
effects of toxicants in the total environment.

Archives of Environmental Contamination and Toxicology (Vol. 1 in 1973) for 
important complete articles emphasizing and describing original experimental or 
theoretical research work pertaining to the scientifi c aspects of chemical con-
taminants in the environment. 

 Manuscripts for Reviews and the Archives are in identical formats and are peer 
reviewed by scientists in the fi eld for adequacy and value; manuscripts for the 
Bulletin are also reviewed, but are published by photo-offset from camera-ready 
copy to provide the latest results with minimum delay. The individual editors of 
these three publications comprise the joint Coordinating Board of Editors with 
referral within the board of manuscripts submitted to one publication but deemed by 
major emphasis or length more suitable for one of the others.

Coordinating Board of Editors 

ForewordForeword
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 The role of Reviews is to publish detailed scientifi c review articles on all aspects of 
environmental contamination and associated toxicological consequences. Such arti-
cles facilitate the often complex task of accessing and interpreting cogent scientifi c 
data within the confi nes of one or more closely related research fi elds. 

 In the nearly 50 years since Reviews of Environmental Contamination and 
Toxicology ( formerly Residue Reviews) was fi rst published, the number, scope, and 
complexity of environmental pollution incidents have grown unabated. During this 
entire period, the emphasis has been on publishing articles that address the presence 
and toxicity of environmental contaminants. New research is published each year on 
a myriad of environmental pollution issues facing people worldwide. This fact, and 
the routine discovery and reporting of new environmental contamination cases, cre-
ates an increasingly important function for Reviews. 

 The staggering volume of scientifi c literature demands remedy by which data 
can be synthesized and made available to readers in an abridged form. Reviews 
addresses this need and provides detailed reviews worldwide to key scientists and 
science or policy administrators, whether employed by government, universities, or 
the private sector. 

 There is a panoply of environmental issues and concerns on which many scien-
tists have focused their research in past years. The scope of this list is quite broad, 
encompassing environmental events globally that affect marine and terrestrial eco-
systems; biotic and abiotic environments; impacts on plants, humans, and wildlife; 
and pollutants, both chemical and radioactive; as well as the ravages of environmen-
tal disease in virtually all environmental media (soil, water, air). New or enhanced 
safety and environmental concerns have emerged in the last decade to be added to 
incidents covered by the media, studied by scientists, and addressed by governmen-
tal and private institutions. Among these are events so striking that they are creating 
a paradigm shift. Two in particular are at the center of everincreasing media as well 
as scientifi c attention: bioterrorism and global warming. Unfortunately, these very 
worrisome issues are now superimposed on the already extensive list of ongoing 
environmental challenges. 

 Preface 
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 The ultimate role of publishing scientifi c research is to enhance understanding of 
the environment in ways that allow the public to be better informed. The term 
“informed public” as used by Thomas Jefferson in the age of enlightenment 
 conveyed the thought of soundness and good judgment. In the modern sense, being 
“well informed” has the narrower meaning of having access to suffi cient informa-
tion. Because the public still gets most of its information on science and technology 
from TV news and reports, the role for scientists as interpreters and brokers of 
 scientifi c information to the public will grow rather than diminish. Environmentalism 
is the newest global political force, resulting in the emergence of multinational con-
sortia to control pollution and the evolution of the environmental ethic.Will the new 
politics of the twenty-fi rst century involve a consortium of technologists and envi-
ronmentalists, or a progressive confrontation? These matters are of genuine concern 
to governmental agencies and legislative bodies around the world. 

 For those who make the decisions about how our planet is managed, there is an 
ongoing need for continual surveillance and intelligent controls to avoid endanger-
ing the environment, public health, and wildlife. Ensuring safety-in-use of the many 
chemicals involved in our highly industrialized culture is a dynamic challenge, for 
the old, established materials are continually being displaced by newly developed 
molecules more acceptable to federal and state regulatory agencies, public health 
offi cials, and environmentalists. 

 Reviews publishes synoptic articles designed to treat the presence, fate, and, if 
possible, the safety of xenobiotics in any segment of the environment. These reviews 
can be either general or specifi c, but properly lie in the domains of analytical chem-
istry and its methodology, biochemistry, human and animal medicine, legislation, 
pharmacology, physiology, toxicology, and regulation. Certain affairs in food tech-
nology concerned specifi cally with pesticide and other food-additive problems may 
also be appropriate. 

 Because manuscripts are published in the order in which they are received in 
fi nal form, it may seem that some important aspects have been neglected at times. 
However, these apparent omissions are recognized, and pertinent manuscripts are 
likely in preparation or planned. The fi eld is so very large and the interests in it are 
so varied that the editor and the editorial board earnestly solicit authors and sugges-
tions of underrepresented topics to make this international book series yet more 
useful and worthwhile. 

 Justifi cation for the preparation of any review for this book series is that it deals 
with some aspect of the many real problems arising from the presence of foreign 
chemicals in our surroundings. Thus, manuscripts may encompass case studies 
from any country. Food additives, including pesticides, or their metabolites that may 
persist into human food and animal feeds are within this scope. Additionally, chemi-
cal contamination in any manner of air, water, soil, or plant or animal life is within 
these objectives and their purview. 

PrefacePreface
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 Manuscripts are often contributed by invitation. However, nominations for new 
topics or topics in areas that are rapidly advancing are welcome. Preliminary com-
munication with the editor is recommended before volunteered review manuscripts 
are submitted. 

 Summerfi eld, NC, USA David M. Whitacre 
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1  Introduction

At a global scale, increasing human population and associated economic growth has 
lead to an increase in the demand for consumable goods such as those made from 
polymer-based materials (PBMs) (i.e., plastics and elastomers). During their 
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lifecycle PBMs can be released into the environment from a variety of sources. 
Once in the environment, PBMs are exposed to a variety of mechanical and chemi-
cal weathering processes. This causes a change to the PBM structure and facilitates 
the disintegration of the PBM into increasingly smaller fragments (Andrady 2011). 
Furthermore these materials are now thought to be contributing to the build-up of 
chemicals in the environment via the leaching of chemical additives that are used in 
the manufacturing process (Erren et al. 2009). The majority of physical effects data 
regarding bulk PBM items identifies them as presenting a hazard to mammals and 
birds as they can become entangled and/or mistake PBMs as a food source (Derraik 
2002). The majority of ecotoxicity data regarding PBM additives has focused on the 
effects of compounds that are generally referred to as having endocrine disruptive 
potential, such as the phthalates (Oehlmann et al. 2009). However, receiving envi-
ronments are potentially exposed to a combination of both these physical and chem-
ical components, as well as substances produced during degradation processes. 
Therefore, PBMs and their associated degradation products may compromise the 
viability of organisms at all trophic levels. At the base of the food chain primary 
producers may be more sensitive to substances that have a biological action. 
Nonselective and filter-feeding consumers could be susceptible to ingesting both 
bulk PBMs and fragmented particles, leading to the potential passage up the food 
chain to secondary and tertiary consumers. Despite this concern, PBMs are regarded 
under REACH (Registration, Evaluation, Authorisation and Restriction of 
Chemicals) as representing a low environmental concern because of their high 
molecular weight (ECHA 2012). However, the occurrence of PBMs and their asso-
ciated chemical additives in the aquatic environment have been recognized as an 
emerging worldwide problem, and their impacts are now gaining a wider scientific 
and social audience (Hammer et al. 2012; Thompson et al. 2009).

The purpose of this article is to provide a broad bibliographical review of the 
research that addresses the use, release, occurrence, degradation and effects of 
PBMs and their associated chemical additives in aquatic and terrestrial environ-
ments. We address issues involving both the bulk polymer component of PBMs and 
the additive component.

2  Usage and Consumption

The PBMs used in society today are made from a broad class of materials that are 
both natural and synthetic in origin (Table 1). Natural polymers such as polyiso-
prene, derived from the tropical tree Hevea brasiliensis, are used to make natural 
rubber and latex products (Agostini et al. 2008). Petrochemical-based polymers are 
manufactured through a thermal splitting process termed “cracking” that separates 
oil and natural gas to produce different hydrocarbon monomers, such as ethylene 
and propylene (Chaudhuri 2010). World demand for petroleum derived polymers is 
estimated at 230 million t annually (Plastics-Europe 2010), with annual consump-
tion estimated to be 26 kg per person (CIPET 2010). However, there are notable 
differences between geographic regions that result from differences in standards of 

S. Lambert et al.
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living, lifestyle, and income (Table 2). Polyolefins (i.e., polyethylene (PE; linear 
low density, low density, and high density), and polypropylene (PP)), account for 
~60% of annual consumption followed by polyvinyl chloride (PVC) and polysty-
rene (PS) (Plastics-Europe 2010; Mutha et al. 2006). Packaging represents the most 
important application for PBMs and accounts for 40.1% of overall consumption, 
followed by building and construction (20.4%), automotive (7%), electrical and 
electronic equipment (5.6%), and other market sectors including leisure and agri-
culture (26.9%) (Plastics-Europe 2010; Mutha et al. 2006). Polyurethane (PUR) is 
a successful material for biomedical applications, where it is used to make artificial 
joints and flexible replacements for blood vessels and heart valves (Ghanbari et al. 
2009). World demand for natural rubber (NR) is estimated at 10.97 million t annu-
ally; this demand is dominated by latex products (80.3%) such as medical and 
household products (NRS 2011). Other natural rubber uses include tires (9.2%), 
general rubber goods (7.2%), industrial rubber goods (3.2%), and footwear (0.2%) 
(NRS 2011).

Technological advances have seen the development of PBMs that have been 
altered to be more degradable. These PBMs can be broadly divided into three cate-
gories. First, are those that have a biodegradable ingredient, such as starch, which is 
added to the polymer matrix to link short strands of the polymer chain together 
(Drimal et al. 2007; Reddy et al. 2003). Second, nano clay composites are used to 
provide a favorable environment for growing microorganisms that can utilize the 
polymer matrix as a food source; montmorillonite clay has been reported to pro-
mote microbial growth by stabilizing pH in the polymer matrix (Reddy et al. 2009). 
Third are those produced from the bacterial fermentation of sugars and lipids that 
comprise a class of polymers that include polyhydroxyalkanoates (PHA), polylac-
tides (PLA), aliphatic polyesters, polysaccharides, copolymers, and/or blends of the 
above. Reddy et al. (2003) have described these as being the most promising tech-
nological advances, because the polymer matrix is thought to be fully utilized by 
microbial communities.

High-performance composites are also an important market segment. These con-
sist of a polymeric matrix and fillers that are designed to provide improved mechan-
ical properties. Carbon fiber composites have been an important innovation for the 
aircraft industry, and have reduced aircraft weight and thereby reduced fuel use 
(Mulder 1998). Glass-fiber-reinforced polyester composites are used in shipping 
because of their impact resistance and light weight. PBMs are sometimes blended 

Table 2  Per capita 
consumption of polymers 
geographically (source: 
Central Institute for Plastic 
Engineering and Technology 
2010)

Country Polymer consumption per capita (kg)

India 5
China 12
South East Asia 10
Latin America 18
North America 90
West Europe 65
East Europe 10
Worldwide average 26

S. Lambert et al.
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to improve the deficient properties of traditional single-chemical polymers. When 
the properties of two or more incompatible polymers are desired in one blend, com-
patibilizers are employed. For example, blends of PP and acrylonitrile butadiene 
rubber (NBR) are desirable to combine the oil resistance and elastic properties of 
NBR and the low density and chemical resistance properties of PP, although their 
individual physical, mechanical, and chemical properties normally prevent this.

3  Bulk PBMs and the Environment

3.1  Environmental Release

PBMs may enter the environment from both ocean- and land-based sources. We 
address each of these in more detail below.

3.1.1  Ocean-Based Sources

Ocean-based sources include items lost or discarded from commercial fishing vessels, 
offshore oil or gas platforms and waste dumped by recreational boat users. Losses 
of cargo can also occur from shipping during bad weather events or accidents and 
items lost from improper loading, unloading, or onboard storage (Tharpes 1989). 
In the past, pre-production PE and PP pellets have reportedly been used on the 
decks of ships to reduce friction when moving large objects; as such, many of these 
pellets are washed from the deck and are dispersed by winds and ocean currents 
(Tharpes 1989). The dumping of wastes at sea has long been seen as a major issue 
and was prohibited under international legislation in 1973 (MARPOL 73/78 Annex V), 
which came into force in 1988 and regulates the operational discharges from 
shipping (do Sul and Costa 2007). One requirement of the MARPOL ruling is that 
under no circumstances are PBMs to be disposed of at sea, but the enforcement of 
this regulation is noted as being an issue (Ryan et al. 2009).

3.1.2  Land-Based Sources

General and Accidental Littering

On land, general and accidental littering are important routes of environmental 
entry of PBM debris (Gregory 2009). General littering is the direct dropping of 
litter, and dumping of items; for example, illegal dumping of waste that can then be 
transported by wind or from drainage and storm water runoff to ocean sinks (Tharpes 
1989). Littering at festival sites is noted as an issue; especially from sites that have 
inadequate waste management systems (Cierjacks et al. 2012). Accidental littering, 
by contrast, results from windblown debris from bins, or from recycling and landfill 

Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment
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facilities (Tharpes 1989). Littering on land in the UK is covered by section 18 of the 
Clean Neighbourhoods and Environment Act of 2005, which came into force on 7th 
June 2005 and makes it an offense to litter on all public and private land and land 
covered by water (DEFRA 2012).

Landfills

Landfills are a major end-of-life disposal route for PBMs (Barnes et al. 2009). In most 
developed regions of the world, waste is collected, transferred to landfills and is 
typically covered with soil daily (Rayne 2008). However, in many developing 
regions waste materials are often disposed of in areas lacking adequate infrastruc-
ture, and are rarely or inadequately covered with soil (Rayne 2008). This increases 
the likelihood of windblown debris migrating from landfill sites. Rayne (2008) has 
also identified the increasing urbanization of Africa as a potential future problem, 
because it will increase the stress on limited waste management systems in this area 
of the world.

Sewage-Related Debris (SRD)

SRD also presents a source from which PBMs can enter the environment. In many 
countries, domestic inputs of household waste to the sewage system are largely 
uncontrolled. Therefore, PBMs associated with personal hygiene products, such as 
condoms, cotton buds (Ashley et  al. 2005; Williams and Simmons 1999), and 
microscopic PE beads found in some hand cleaners and facial scrubs (Fendall and 
Sewell 2009), as well as microscopic fibers (acrylic) shed from cloths during wash-
ing (Zubris and Richards 2005) can constitute a portion of this waste stream. Larger 
items are generally removed by screening methods, but may enter the environment 
during sewage overflow events that occur during periods of heavy rainfall. The abil-
ity of sewage treatment works to process microscopic beads and fibers has now been 
questioned. Browne et al. (2011) recently sampled wastewater from domestic wash-
ing machines and demonstrated that a single garment can produce >1,900 fibers per 
wash. Microscopic beads and fibers can potentially pass through finer screening 
processes and enter the environment via sludge application and discharge of treated 
waters (Browne et al. 2011). Coarse screens, designed to remove large solids and 
debris items, typically have a mesh size of 6 mm, whereas fine screens typically 
have mesh sizes of 1.5–0.2 mm (EPA 2012).

Industrial Sources

Industrial sources of PBM waste include air-blasting technologies that use micro-
scopic beads to strip paint from metallic surfaces and for cleaning engine parts; when 
discarded, they enter the environment through foul-water, or via transfer through 
sewage treatment processes (Derraik 2002). Low density polyethylene (LDPE) films 
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constitute a large-volume use of PBMs in agricultural crop production, and 
consequently they have become an important agricultural emission (Xu et  al. 
2006). Their application is thought to be one of the most important sources of PBM 
contamination of soils, because they become brittle and easily disintegrates, render-
ing their recovery difficult (Xu et al. 2006). Agriculture films can also contain light-
sensitive additives, such as ferric and nickel dibutyldithio-carbamates, the ratio of 
which can be adjusted so that the film is usable during a specific growing season, 
after which the product begins to photo-degrade (Klemchuk 1990). This ultimately 
results in disintegration of the material, and when coupled with successive precipi-
tation events the disintegrated particles can be washed into the soil where they accu-
mulate (Klemchuk 1990).

3.1.3  Conclusion

The principal introduction routes of PBMs into the environment are most likely 
general littering, dumping of unwanted waste materials, migrations from landfill 
and during refuse collection (Gregory 2009; Teuten et  al. 2009; Tharpes 1989). 
Routes of minor importance are potentially the weathering of PBM building materi-
als. However, the importance of one particular source over another will depend on 
geographical location and infrastructure. For example, landfills are identified as a 
potential important source in areas of the world where infrastructure is lacking, but 
microscopic PE beads in facial scrubs are probably more important in more affluent 
regions. One must also be aware of the difficulties in determining the sources of 
PBM debris, because of the length of time it may have been in the environment and 
the distances it may have travelled. For a more in depth analysis of PBM origin see 
Hammer et al. (2012).

3.2  Environmental Occurrence

Upon their release to the environment PBMs are transported and distributed to vari-
ous environmental compartments. The distances that an individual item will travel 
depends on its size and weight. Lightweight materials can be readily transported 
long distances via a windblown route or carried by freshwater to eventually accu-
mulate in the oceans. During heavy rainfall events, roadside litter can be washed 
into drains and gullies, and, where the topography is favorable for it, can be carried 
to the sea. In this section, we review the literature in which the occurrence of poly-
mers globally has been quantified.

3.2.1  Macro PBMs in the Oceans

Large items of PBM debris are termed “macroplastics” and have been generally 
categorized as items >5 mm in diameter, because this size provides an opportunity 
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to assess markings to trace an object to its origin. Marine habitats are highlighted as 
one of the most important sinks for macro PBMs (Browne et al. 2011; Derraik 2002; 
Thompson et al. 2009). PBMs are believed to contribute up to 80% of all anthropo-
genic debris in the oceans (Derraik 2002). A well documented example are pre-
production PE and PP pellets that are transported from manufacturing plants to 
plastic injection factories, where they are melted and molded into consumer prod-
ucts. These pellets have been reported floating in coastal surface waters, and in the 
world’s oceans, later to be washed ashore in nonindustrialized areas such as the 
South Pacific Islands (Derraik 2002; Gregory 1977; Moore 2008; Morris 1980). 
Lightweight items, such as PE bags, polystyrene foam items and polymer drinks 
bottles, inappropriately disposed of on land, can be readily transported long dis-
tances via a windblown route or carried by freshwater to eventually accumulate in 
the oceans (Ryan et al. 2009).

There are now a number of studies in which macro PBMs have been observed or 
collected floating on the ocean surface and laying on the seafloor (Table 3). These 
studies provide a snapshot, but do highlight PBMs as the dominate component of 
ocean debris. Geographical variability in ocean PBM debris has been highlighted by 
Barnes and Milner (2005), in their extensive study on the occurrence of drifting 
PBM debris in the Atlantic Ocean. These authors identified the English Channel as 
having the greatest number of debris items (10 to >100 items/km2), 66% of which 
were a form of PBM. This study also established PBM debris to be an order of 
magnitude lower in both the Polar Regions, but the authors do highlight that the 
tropics and the West Atlantic were poorly sampled. One of the only documented 
cases of decreasing litter densities in the literature comes from Kuriyama et  al. 
(2003), who reported a 45.3% decrease in the number of littered items on the seabed 
of Tokyo Bay between 1996 and 2000; the authors of this study hypothesized this to 
be a result of litter removal by bottom trawl fishing vessels.

3.2.2  Macro PBMs on Shorelines and on Land

Shorelines around the world have been found to accumulate debris, including island 
shorelines far from any centers of human activity (Table 4). Benton (1991) surveyed 
beach litter on Ducia Atoll in the south Pacific and found 953 items of debris over a 
1.5 mile survey transect. This is one of the world’s most remote islands, being 293 
miles from the nearest inhabited location of Pitcarin Island, which in 1991 had a 
population of ~50 people. Another example comes from remote tropical beaches of 
Brazil, where PBMs have been found at densities of 9.1 items/m2, accounting for 
76% of the litter items found (Santos et al. 2009). Evidence of the increasing occur-
rence of PBMs is provided from in Scotland, where Caulton and Mocogni (1987) 
found 0.35 items of litter/m2, with plastics accounting 29% of items found. Ten 
years later the same area of beach was surveyed and the density of litter was found 
to have increased to 0.8 items of litter/m2, with PBMs accounting for 37% of items 
found (Velander and Mocogni 1998).

S. Lambert et al.
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The amount of PBM debris in the freshwater environment is less well docu-
mented, but one recent study reported on the distribution of PBM debris along the 
freshwater beaches of Lake Huron, Canada. In this study, 2,986 polymer pellets, 
108 polymer fragments and 117 pieces of Styrofoam were found (Zbyszewski and 
Corcoran 2011). On land, urban littering is considered to be an important environ-
mental and public issue (Seco Pon and Becherucci 2012), but it less well docu-
mented in the available literature. One researcher conducted a study in Nairobi, 
Kenya in 2001 and collected 4,834 plastic bags from 6 sites that measured 
20 m × 50 m in size (Njeru 2006). A similar study was performed in Mar del Plata, 
Argentina, in which 20,336 items (14.27  items/m2) of litter was recovered from 
study sites between April 2008 and March 2009; in this study, PBMs accounted for 
22% of the recovered litter (Seco Pon and Becherucci 2012).

Table 3  Polymer-based materials as a component of marine debris

Location Depth
Mean density of 
litter (items/km2) % Plastic items Reference

North Atlantic and Europe
Baltic sea Sea floor 0.12 35.7 1
North Sea Sea floor 0.15 48.3 1
Bay of Biscay Sea floor 0.14 79.4 1
Celtic Sea Sea floor 0.53 29.5 1
Adriatic Sea Sea floor 0.38 69.5 1
English Channel Surface 10–100 66 2
Sargasso Sea Surface 3,500 100 3
Gulf of Mexico Sea floor Not stated 204 pieces 4
Mediterranean
Malta
Greece 15 m—seafloor 0–437 items ~65 5, 6, 7
France 40–1,448 0–78/ha 70.6 8
Pacific
Central California (2007) 20–365 m 6,900 95 9
Southern California 

(2002)
20–365 m 320 41 9

Southern Chile Surface 1–250 80 10
SE Pacific (Chile) Surface 0–1.8 86.9 11
Brazil Sea floor 2.9/100 m2 12
North Pacific Gyre Surface 334,271 100 15
Tokyo Bay (1996 and 

2000)
Sea floor 338 and 185 90 and 90 13

Kodiak Island, Alaska 
(1994–1996)

Sea floor Not stated 49 (1994), 59 (1995) 
and 47 (1996)

14

Middle East
Jordan, Gulf of Aqaba Coral Reef 2.8 42 16

References: 1 Galgani et al. (2000); 2 Barnes and Milner (2005); 3 Carpenter and Smith (1972); 4 
Wei et al. (2012); 5 Katsanevakis and Katsarou (2004); 6 Koutsodendris et al. (2008); 7 Stefatos 
et al. (1999); 8 Galgani et al. (1996); 9 Watters et al. (2010); 10 Hinojosa and Thiel (2009); 11 
Thiel et al. (2003); 12 Oigman-Pszczol and Creed (2007); 13 Kuriyama et al. (2003); 14 Hess et al. 
(1999); 15 Moore et al. (2001); 16 Abu-Hilal and Al-Najjar (2009)
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Table 4  Polymer-based materials as a component of shoreline debris

Location
Number 
of beaches

Mean density of litter 
(items/m2) % Plastic items Reference

Europe
Scotland (firth of forth) 

(1999 and 2007)
16 and 37 6.2 (max. Density) 46 1, 2

Scotland (Cramond) 
(1987 and 1998)

1 0.35 and 0.8, 
respectively

29.37 and 37.12, 
respectively

3, 4

Wales 1 Not stated >50 5
Germany, Kachelotplate 1 Not stated 60.4 6
Mediterranean 32 36 Reported as most 

common item found
7

Russia 8 0.2 55.1 8
Inch Strand, Ireland 1 0.22 46 9
Mediterranean
Malta 7 1.6–167 (max. 1,462) Counts of pellets 10
Australasia
Australia (Cable Beach) 1 0.5 14.65 11
Australia (Greater 

Sydney region)
6 0.2 89.8 12

Japan 18 3.4 72.9 8
Middle East
Israel 6 0.03–0.88 70.6 13
Gulf of Oman 11 Ranged from 0.43 to 

6.01, with a mean 
density of 1.79

61 14

North America
West Indies 5 0.37 47 15
New Jersey, USA 1 728 items over 500 m 

transects (monthly 
mean)

~73 16

South America
Chile 43 1.8 Reported as most 

common item found
17

Brazil 1–16 1–10 items ~57 18, 19, 20
Canada
Nova Scotia 1 (70 m) 2,129 Items collected 86 21
Antarctic Peninsula
Scotia Arc Islands 4 0–0.3 >70 22
Oeno Pitcarin 1 0.35 45 9
Ducia Atoll, South 

Pacific
1 0.12 38 23

References: 1 Storrier et  al. (2007); 2 Velander and Mocogni (1999); 3 Caulton and Mocogni 
(1987); 4 Velander and Mocogni (1998); 5 Williams and Tudor (2001); 6 Liebezeit (2008); 7 
Martinez-Ribes et al. (2007); 8 Kusui and Noda (2003); 9 Benton (1995); 10 Turner and Holmes 
(2011); 11 Foster-Smith et  al. (2007); 12 Cunningham and Wilson (2003); 13 Bowman et  al. 
(1998); 14 Claereboudt (2004); 15 Nagelkerken et al. (2001); 16 Ribic (1998); 17 Bravo et al. 
(2009); 18 Santos et al. (2009); 19 Silva-Cavalcanti et al. (2009); 20 Oigman-Pszczol and Creed 
(2007); 21 Walker et al. (2006); 22 Convey et al. (2002); 23 Benton (1991)
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3.2.3  Micro PBMs in the Oceans

Particles <5 mm, formed as a result of the breakdown of larger materials, are now 
found floating on the ocean surface, mixed into the water column, and embedded in 
bottom sediments and beach sands (Colton et al. 1974; Thompson et al. 2004). These 
smaller particles are generally termed “microplastics” (Barnes et al. 2009; Moore 
2008). However, it has recently been suggested that the term microplastics be rede-
fined as items <1 mm to include particles only discernible by microscopy (Andrady 
2011; Browne et al. 2011). The term “mesoplastic” should then be introduced to the 
scientific literature to account for items between 1 and 5 mm (Andrady 2011).

Colton et al. (1974) found PBM particles in 62% of surface plankton samples 
taken from the Atlantic Ocean (247 samples in total). Archived plankton samples, 
collected along routes between Aberdeen and the Shetlands and from Sule Skerry to 
Iceland as part of the continuous plankton recorder (CPR) survey, have also shown 
the presence of PBM particles and fibers in samples dating back to the 1960s 
(Thompson et  al. 2004). This highlights the long-term trends first identified by 
Carpenter et  al. (1972), who found fragmented polymer particles in surface nets 
while sampling the Sargassum (free-floating seaweed) community in the western 
Sargasso Sea. Furthermore, Carpenter et al. (1972) predicted that the increasing use 
and production of PBMs would lead to an increase in concentrations of these par-
ticles in the environment. In 2004, the CPR survey, the longest running plankton 
monitoring program in the North Sea and North Atlantic, added microplastic as 
their first nonbiological marine entity to their recordings (Richardson et al. 2006).

One area that has received particular attention is the subtropical accumulation 
zone in the North Pacific gyre. In this area, debris has accumulated at such high 
densities as a result of high atmospheric pressure and the clockwise rotation of 
ocean currents that forces debris into a central area where strong winds and currents 
diminish (Cooper and Corcoran 2010). Neuston sampling at 11 sites, using a mantra 
trawl, estimated a mean PBM abundance of 334,271 pieces km2 (Moore et al. 2001). 
Items identified were fragments ranging in size from 0.44 to >4.76 mm, pellets, PP 
monofilament and Styrofoam pieces. In a study performed along Californian coastal 
waters, surface samples were collected with a manta trawl, mid-depth samples with 
a bongo net and bottom samples with an epibenthic sled, all having 333 μm nets; 
PBM debris density was found to be greatest near the bottom, and least in mid-depth 
zones (Lattin et  al. 2004). This suggests that when measuring the occurrence of 
PBM debris it is important to establish whether the concentrations of a true sink or 
an intermediate pathway are being measured. A more recent study, focusing on the 
North Western Mediterranean Sea, found neuston PBM particles at an average 
abundance of 0.116 m2 (Collignon et al. 2012). For an in-depth review on micro-
plastics in the marine environment see Cole et al. (2011).

3.2.4  Micro PBMs on Shorelines and on Land

Infrared spectroscopy techniques have been utilized to identify fragment PBMs in the 
microscopic range by comparing spectra to those in a database of common polymers. 
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This technique was principally pioneered by Thompson et al. (2004), whose research 
identified synthetic fibers (PE, PP, polystyrene, nylon, and acrylonitrile butadiene sty-
rene) in samples of beach sand and sub-tidal sediments from around the UK. 
Microscopic PBM granules and fibers have now been found in sediment at world heri-
tage sites, such as the East Frisain Islands, where a maximum of 496 granules/10 g 
sediment has been observed (Liebezeit and Dubaish 2012). Further inland, sewage 
sludge application has been identified as a source of polymer fibers in agricultural 
soils. Zubris and Richards (2005) found polymer fibers were still present in field soils 
15 years after application, with fibers also found in soil horizons below the depth of 
plowing, suggesting some potential for movement through the soil profile.

3.2.5  Conclusion

There have now been a number studies from around the world that have documented 
PBMs as the dominant component of shoreline, ocean, and terrestrial debris, 
although geographical differences in PBM occurrence have been noted. Research 
on microplastic as a component of beach sediments is also gaining increasing atten-
tion. However, microplastics as a component of freshwater sediments and soils are 
yet to be investigated. Lake and roadside habitats would seem a good place to start; 
items littered on lakes have less transportation potential, and the regular grass cut-
ting roadsides receive in some countries would mean that littered items are quickly 
disintegrated by mowing equipment.

3.3  Environmental Degradation

Once in the environment PBMs are degraded through abiotic or biotic factors 
working together or in sequence; these processes cause the polymer matrix to disin-
tegrate, resulting in the formation of fragmented particles of various sizes and 
leached additives (Fig. 1). There are now a number of studies whose authors have 
investigated the degradability of a range of PBMs under a range of exposure 
conditions (Table 5). In the following section we address the degradation of PBMs 
with a focus an studies that are environmental relevant.

3.3.1  Factors Affecting Degradation

Polymer Characteristics

Polymer characteristics play an important role in the degradation rate of PBMs. 
Those PBMs that contain ester linkages (e.g., polyester polyurethanes) are reported 
to be readily biodegraded by the action of esterases (Albertsson and Karlsson 1993). 
The molecular composition of a PBM also affects the hydrophobicity of the poly-
mer surface, which in turn affects how easily microorganisms can attach themselves 
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(Albertsson and Karlsson 1993). Complexity of a specific polymer structure (cross-
linked polymers that form highly ordered networks) and composition (copolymers) 
can affect overall degradability by directly influencing the accessibility of enzymes 
(Artham and Doble 2008). PBMs with short and regular repeating units that have 
high symmetries and strong interchain hydrogen bonding (e.g., PE, PP, and polyeth-
ylene terephthalate (PET)), often limit accessibility and are less susceptible to 
enzyme attack (Artham and Doble 2008). Kumar et al. (2006) studied the degrad-
ability of ethylene–propylene copolymers, and found biotic degradability to 
decrease with increased ethylene content over a 6-month time period. Composition 
also affects how sensitive a polymer is to photo-degradation. Kaczmarek et  al. 
(2007) used blends of poly (ethylene oxide) and pectin and found that after 20 h of 
exposure the blends most sensitive to UV irradiation were those with an equal 
weight-ratio of each polymer.

3.3.2  Abiotic Degradation

Photo-degradation

Under ambient conditions, photo-degradation is one of the primary means by which 
PBMs are damaged (Klemchuk 1990; Lucas et  al. 2008). The main processes 

Fig. 1  Conceptual model illustrating degradation pathways for polymer materials
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involved are chain scission and cross-linking reactions, when exposed to ultraviolet 
(UV) radiation (290–400 nm) or visible radiation (400–700 nm) (Al-Salem 2009). 
Most polymers tend to absorb high-energy radiation, which activates their electrons 
to higher reactivity and foments oxidation, cleavage, and other forms of degradation 
(Shah et  al. 2008). The most damaging UV wavelength for a specific material 
depends on the bonds present; for polyethylene this is 300 nm and for polypropyl-
ene 370 nm (Singh and Sharma 2008). When exposed to UV radiation PE and PP 
films lose their mechanical integrity and tensile strength, which is accompanied by 
a decrease in their average molecular weight (Singh and Sharma 2008). UV absorp-
tion in PS has been found to occur at the benzene ring, causing loss of mechanical 
properties, chain scission, cross-linking reactions and is a precursor to oxidative 
degradation (Nagai et al. 1999). Nagai et al. (2005b) analyzed the photo-degradation 
of a polyether-polyester elastomer under laboratory conditions and found the degra-
dation mechanism upon UV exposure was a selective degradation of the ether parts 
of soft segments in the polymer matrix, and resulted in the formation of ester, 
aldehyde, formate, and propyl end groups.

Thermal Degradation

Thermal degradation is the molecular deterioration of a polymer as a result of 
overheating, which causes bond scissions of the main polymer chain and results in 
a change in properties. This process affects the entire polymer and not just the 
polymer surface, and results in changes to molecular weight, loss of tensile 
strength, changes in crystallinity, reduced durability, embrittlement, changes in 
color, and cracking (Arkatkar et  al. 2009). Thermally pretreated PP has shown 
enhanced biodegradation, when compared to non-pretreated samples after 12 
months (Arkatkar et al. 2009). Thermal degradation of polyolefins (PP, LDPE & 
PET) at temperatures of 673, 773, 873, and 973 K were found to form tar-contain-
ing paraffinic structures in PP and LDPE, while aromatic structures were produced 
by pyrolysis of PET (Cit et al. 2010). The heat involved in the thermal degradation 
process also provides energy for the oxidation of carbon in the polymer backbone 
(Krzan et al. 2006).

Oxidative Degradation

Oxidation processes can be photo or thermally induced and are considered impor-
tant, especially for non-hydrolyzable materials such as PE (Rutkowska et al. 2002a). 
The introduction of O2 into the polymer matrix leads to the formation of OH and CO 
functional groups, which aid subsequent breakdown by biotic processes. The pres-
ence of O3 in the atmosphere, even in small concentrations, accelerates the aging 
process of PBMs, because O3 attacks covalent bonds to produce cross-linking reac-
tions and/or chain scissions producing free radicals (Lucas et al. 2008).
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Hydrolytic Degradation

The rate of hydrolysis is dependent on the presence of hydrolyzable covalent bonds 
such as ester, ether, anhydride, amide, carbamide (urea), or ester amide (urethane) 
groups in the polymer (Lucas et al. 2008). PBMs with these functionalities are able 
to absorb moisture (e.g., polyesters), which then promotes hydrolytic cleavage of the 
polymer chain (Krzan et al. 2006). Hydrolytic degradation of polyester occurs when 
positively charged hydrogen ions in acidic or negatively charged hydrogen ions in 
alkaline media attack the ester linkage, thus breaking the polyester chain (Iskander 
and Hassan 2001). This reduces the polymer chain length and alters its molecular 
weight distribution, which directly impacts the strength of the material. In addition to 
chain breakage, hydrolysis in alkaline media also causes surface erosion of polyes-
ters, which is subsequently manifested by weight loss (Iskander and Hassan 2001).

Mechanical Disintegration

Mechanical disintegration is the breakdown of the material through the application 
of shear forces. This process is distinguished from degradation as the materials 
molecular bonds remain unchanged. Under field conditions, polymers are exposed 
to several forms of mechanical degradation that include aging and breakage from 
atmospheric weathering, water turbulences, freeze-thaw cycles, pressure due to 
burial under soil or snow, or damage inflicted by animals or birds.

3.3.3  Biotic Degradation (Biodegradation)

Abiotic processes act as an important first step in the degradation of PBMs as they 
result in a loss of mechanical properties and structural changes to the materials 
molecular bonds. These processes increase the surface area available for micro-
bial colonization (Kijchavengkul et al. 2010; Lucas et al. 2008). The size of poly-
mer molecules and their general lack of water solubility prevent microorganisms 
from transporting them into their cells, where most biochemical processes take 
place (Artham and Doble 2008). Biological processes involved in PBM disinte-
gration start outside the microbial cell, with the secretion of extracellular enzymes 
(Artham and Doble 2008). These enzymes are too large to penetrate deep into the 
polymer, so act on the surface by cleaving the polymer chain via hydrolytic mech-
anisms (Palmisano and Pettigrew 1992). Biological processes are further enhanced 
by the formation of the aforementioned utilizable functional groups in the poly-
mer chain (Albertsson et  al. 1987; Nagai et  al. 2005a). Over time, abiotic and 
biotic factors work together to further the degradation process. Chain scission 
reduces the molecular weight of the polymer, which in turn provides greater 
accessibility for moisture and oxygen to induce cross-linking reactions that cause 
the polymer structure to further weaken and become more susceptible to micro-
bial activity (Kijchavengkul et al. 2010; Roy et al. 2008). When the molar mass of 
the polymer is sufficiently reduced to generate oligomers and then monomers that 
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are water soluble, the process of mineralization can begin. These substances are 
transported through the semipermeable outer membrane of the microorganisms, 
where they are assimilated as a carbon or nitrogen source through the appropriate 
metabolic pathway.

3.3.4  Degradation in the Natural Environment

Aquatic Environment

In the aquatic environment the mechanical disintegration of PBMs is facilitated by 
wave action and grinding with sediment particles, whereas changes in chemical 
functionality are driven by UV exposure. Floating debris has a greater exposure to 
sunlight and the oxidative properties of the atmosphere, which act alongside the 
hydrolytic properties of water to cause the material to become brittle and fragment. 
Sudhakar et al. (2007) immersed sheets of LDPE, HD (high density) PE, and PP of 
1.5 mm thickness for 6 months in ocean waters of Bay of Bengal at a depth of 3 m, 
and found weight loss was greatest in LDPE sheets (2.5%), HDPE (0.75%), 
PP (0.5%). The authors of this study also found samples at sites with higher dis-
solved O2 had increased oxidation. Rutkowska et al. (2002b) investigated the degra-
dation of polyurethanes in the Baltic Sea over a period of 12 months and found the 
rate of degradation was dependent on the degree of cross-linking. In the deep ocean 
environment where sunlight and oxidative processes are missing, the rate of abiotic 
degradation is extremely low (Watters et al. 2010). Biodegradation in these environ-
ments is considered minimal, due to the reduced diversity and density of microbial 
communities (Browne et al. 2008; Watters et al. 2010). Therefore, PBMs do not 
readily biodegrade but rather disintegrate, breaking into smaller and smaller pieces 
(Barnes et  al. 2009). In the absence of significant microbial degradation, the 
sediment compartment in both marine and freshwater environments could function 
as a continuing source of environmental exposure.

Soil Environment

Soil burial studies have been used as a method to evaluate the degradation of PBMs in 
the terrestrial environment. Soil type is an important factor affecting degradation; under 
laboratory conditions, polycaprolactone (PCL) degraded to a greater extent in clay soils 
than in sandy soils, owing to the great density of microbial communities associated with 
the clay soils (Cesar et al. 2009). However, when compared to solar exposed samples, 
buried samples degraded at a much slower rate. Kijchavengkul et al. (2010) buried 
polyester films in soil for 280 days and found minimal degradation when compared 
to solar exposed films. A similar result was also found by Williams and Simmons 
(1996) for PE strips that had been buried for 4 months; these strips retained greater 
tensile strength than samples that had been exposed to sunlight for 4 months.

The combined effect of multiple degradation processes has also been studied. For 
example, several authors have evaluated the effects of UV exposure prior to 
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conducting biodegradation studies under soil burial conditions. Saad et  al. (2010) 
used PHB (polyhydroxybutyrate) films with a 0.1–0.12 mm thickness and found sam-
ples exposed to 9 h UV radiation showed ~52% weight loss after 28 days soil burial, 
compared to ~32% weight loss for samples without pre UV exposure. Sadi et  al. 
(2010) also used PHB films (3 mm thickness) and found pre UV exposure increased 
the rate of degradation, but at a much slower rate due to the increased thickness of the 
film. These studies inform that abiotic pretreatment acts as a first step in weakening 
the polymer structure. This initiates the formation of oxygenated compounds and low 
molecular weight hydrocarbons, which are recognized by microbial communities and 
can be utilized as a food source (Roy et al. 2008). In sea water media, Sudhakar et al. 
(2008) also found thermal pretreatment enhanced the biodegradation of LDPE and 
HDPE by two marine microbes, namely, Baccillus sphericus and Bacillus cereus. 
Thermal processes are considered to contribute minimally to marine environmental 
disintegration of plastics because of the prevailing low water temperatures.

Biodegradation studies have tended to deal with the use of concentrated micro-
bial cultures, with the aim of assessing a particular strain’s ability to degrade a 
particular PBM. Actinomycetes are reported to be the main group of rubber degrad-
ing microbes, with Bacillus sp. SBS25 also reported as being capable of utilizing 
natural rubber as a sole carbon source (Cherian and Jayachandran 2009). Tsuchii 
et  al. (1997) studied strains of Nocardia and observed that they only slightly 
degraded strips of tread cut from truck tires, when used as a sole carbon source. 
However, degradation of the tire was enhanced by the addition of more easily acces-
sible carbon sources in the form of latex glove and unvulcanized rubber materials, 
which were readily utilized by the bacteria (Tsuchii et al. 1997).

Biological processes are affected by the amount and type of microorganisms 
present, their sensitivity to associated environmental parameters and the adaptabil-
ity of the microbiota (Krzan et al. 2006; Palmisano and Pettigrew 1992). Koutny 
et al. (2009) isolated bacterial strains from forest soils, most belonging to different 
genera of the proteobacteria group and three Rhodococcus strains, and showed that 
commonly found bacteria were capable of adhering to and growing on the surface 
of oxidized LDPE film.

PBMs with a starch component are effectively hollowed out when exposed to 
microbial communities; this increases the surface to volume ratio allowing for 
higher oxygen and moisture permeability, enhancing both oxidative and hydrolytic 
processes (Rutkowska et al. 2002b). In theory, the released polymer fragments will 
have a greater surface area than the original polymer, allowing them to be further 
degraded by the microbiota. However, in the case of PE, microorganisms have been 
found to utilize the starch component, but are unable to utilize the remaining PE 
fragments, which remain nondegradable (Reddy et al. 2003). The starch is utilized 
by microorganisms, leaving behind a lace-like structure with reduced physical integ-
rity. However, the molecular weight of the remaining material was not reduced suf-
ficiently for permanent assimilation into the microbial biomass (Klemchuk 1990). 
Therefore, the remaining polymer matrix was no more biodegradable than the 
untreated polymer. This causes the disintegration of the polymer matrix, which gen-
erates many smaller particles and produces a wider distribution of polymer particles 
in the environment (Palmisano and Pettigrew 1992). PBMs, such as starch filled PE, 
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rather than being biodegradable are only biodisintegrated (Klemchuk 1990). 
However, there are no studies that quantify particle concentrations or particle sizes 
formed during polymer disintegration and degradation.

3.3.5  Conclusion

There is a broad literature dealing with the degradation of various polymer types under 
various conditions. Most of these studies were performed in the laboratory and had a 
major focus on samples exposed to high-energy UV irradiation. In the future, a needed 
focus is on test conditions that are environmental relevant, such as degradation in 
marine water and freshwater microcosms, so that samples are exposed to natural 
cycles of sunlight and temperature. This approach should also include the use of 
microbial communities’ that represent natural conditions (e.g., agricultural soils of 
different types, freshwater and marine water), rather than concentrated cultures. 
Attention is also needed on testing materials of different thicknesses and determining 
if degradation half-lives can be calculated for PBM films, foams and bulkier items. 
The identification of microscopic PBM particles in environmental matrices (Sect. 3.2.4) 
highlights a need to establish whether nano-sized particles are also formed during the 
degradation of PBMs. This is a potentially important issue, given the current concerns 
regarding the environmental behavior and ecotoxicity of engineered nano-materials.

3.4  Environmental Effects

3.4.1  Entanglement and Ingestion

Once they enter the environment PBMs have the potential to mimic natural food 
sources (Fig. 2). Laist (1987) addressed this in one of the most frequently cited stud-
ies. This author identified 135 species of marine vertebrates and 8 species of inver-
tebrates that are susceptible to entanglement, and 111 species of seabirds that are 
known to ingest plastic items. Hanni and Pyle (2000) and Page et al. (2004) also 
reported PBM packing loops as a threat to sea lions in California and fur seals in 
Australia, respectively; Bugoni et  al. (2001) identified plastic bags as the main 
debris type ingested by sea turtles.

Seabirds are identified as particularly sensitive to PBM debris intake, and are 
known to accumulate high numbers of items in their stomachs. Robards et al. (1995) 
found species-specific differences for PBM ingestion in a colony-based survey of 
multiple species; however, the authors highlight that these differences may be 
because of geographical differences in PBM pollution. Surface-feeding and 
plankton-feeding divers are most at risk as they are more likely to confuse PBM 
items with their food source (Applegate et al. 2008). Petry et al. (2009) studied the 
stomach contents of 185 birds found dead during beach surveys from July 1997 and 
July 1998. They identified PBM items in 77% of the stomachs of Cory's Shearwater, 
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Calonectris diomedea, a pelagic seabird that winters in the waters off the state of 
Rio Grande do Sul in Southern Brazil. The most significant causes of mortality were 
from ingesting large PBM items, such as syringes, cigarette lighters and tooth-
brushes (Petry et al. 2009). The ingestion of such items causes obstruction of the 
digestive tract and internal injury, leading to diminished food consumption, loss of 
nutrition and eventually starvation and death (Bugoni et al. 2001; Derraik 2002).

Entanglement and ingestion of PBM debris in the terrestrial environment is not 
as well documented in the literature as it is in the marine environment; however, 
livestock are known to consume PBMs. In a recent study, inadequate pastures from 
drought was identified as a major cause of sheep and goats swallowing foreign 
objects in Birjand, Iran, with PBMs identified as the dominant foreign items con-
sumed (Omidi et al. 2012). Foreign bodies such as plastic bags have also been high-
lighted as one of the many animal husbandry problems experienced by farmers in 
Southern Africa (Dreyer et al. 1999).

3.4.2  Ingestion of Fragmented Particles

The ingestion by a variety of organisms of micro size PBM particles has been 
reported (Fig. 2). Bern (1990) found that the crustacean zooplankton, Bosmina core-
goni, did not differentiate between polystyrene beads (2 and 6 mm) and algae when 

Fig. 2  Conceptual model illustrating the potential effects of degradates produced during the deg-
radation of polymer-based materials
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exposed to combinations of both objects. Thompson et al. (2004) exposed amphi-
pods (detritivores), lugworms (deposit feeders), and barnacles (filter feeders) to 
microscopic plastic particles and found all three species ingested them within a few 
days. Browne et al. (2008) found microscopic polystyrene fragments (2 μm in diam-
eter) were ingested by the mussel Mytilus edulis under laboratory conditions; these 
particles were then translocated from the gut to the circulatory system. Researchers 
have suggested that ingesting PBM particles could present a potential physical haz-
ard leading to the following effects: intestinal blockage in fish, hindering formation 
of fat deposits, blocking gastric enzyme secretion, feeding stimulus diminution, 
lowering steroid hormone levels, and delaying ovulation that may cause reproduc-
tive failure (Ryan et al. 1988). The ingestion of microplastic particles by plankton-
feeding species creates the potential for PBMs to pass up the food chain. Evidence 
that this occurs is seen from PBM particles having been recovered from fur seal 
scats on Macquaire Island (Eriksson and Burton 2003). It was hypothesized by the 
authors that these particles were consumed by a pelagic fish species, Electrona sub-
aspera, which were then consumed by fur seals (Eriksson and Burton 2003).

3.4.3  Sorption of POPs to Particle Fragments

The ingestion of PBMs could provide a novel route of expose for chemicals that 
adsorb to the PBM surface. Persistent organic pollutants (POPs) (e.g., polyaromatic 
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), some pesticides and 
polybrominated diphenyl ethers (PBDE)) have been shown to biomagnify in food 
webs, mimic natural hormones to cause reproductive disorders, and possibly 
increase the risk of disease (Ryan et al. 1988). Carpenter and Smith (1972) were the 
first to predict that PBM particles could be a factor to help explain the presence of 
PCBs in oceanic communities. They hypothesized that as polymers disintegrate into 
smaller particles, the surface area of the PBM would increase providing an increased 
surface for absorbing hydrophobic chemicals (Fig. 1). If the PBM particles are then 
taken up by organisms, the polymer-associated chemicals would also be transported 
into the organisms, possibly leaching into tissues and leading to long-term toxicity 
issues. Since then, polymer particles have increasingly been investigated as a vector 
for hydrophobic contaminants to enter the food web (Saal et al. 2008). Mato et al. 
(2001) found that PE and PP pellets (1–5 mm diameter) accumulated PCBs at con-
centrations up to 106 times that of the surrounding environment, while Ryan et al. 
(1988) found a positive correlation between ingested PBMs and PCB tissue concen-
tration in seabirds, indicating transfer of these contaminants to organisms. Teuten 
et  al. (2007) found that the pollutant phenanthrene (used to make dyes, plastics, 
pesticides, explosives, and drugs), was transmitted to the lugworm, Arenicola 
marina, by contaminated PE particles absorbed from seawater that were mixed into 
sediments inhabited by the worm. Other POPs such as the chlordanes, dichlorodi-
phenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE) and heavy 
metals such as mercury, zinc, and lead have also been found to absorb to PBMs 
(Endo et al. 2005; Van et al. 2012). It has also recently been suggested that sorption 
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behavior of POPs to polymer surfaces is driven by polymer characteristics such as 
polymer type and density (Fries and Zarfl 2012). In their study, Fries and Zarfl 
(2012) found LDPE had higher diffusion coefficients than did high-density 
polyethylene (HDPE), meaning shorter equilibrium times for low density polymers. 
The knowledge that chemical contaminants adsorb to PBM particles creates the 
potential for novel uptake exposure routes, with the potential for indirect effects on 
PBM debris consumption.

3.4.4  Spread of Alien Species

It has been emphasized that PBM debris may provide a substrate for fouling organ-
isms to be transported long distances, thereby contributing to species dispersal 
(Derraik 2002; Gregory 2009). Barnes and Milner (2005) reported sightings of an 
exotic species of barnacle, Elminius modestus, on debris in the northern Pacific, and 
Aliani and Molcard (2003) documented benthic invertebrates living on marine 
debris transported by wind and surface currents over the western Mediterranean 
Sea. PBM pellets (2–1.5 mm diam.) have also been identified as providing an ovi-
position site for the ocean-skater insect Halobates, and show that PBM debris may 
affect the dispersion of this species (Majer et al. 2012). However, Majer et al. (2012) 
do highlight temperature as a limiting factor with the geographical range of this spe-
cies, as low water temperatures would prevent their full development. Barnes and 
Milner (2005) also tentatively suggested that the differences in water temperature 
could be a limiting factor in species dispersal.

3.4.5  Conclusion

Bulk PBMs are well documented as entanglement and ingestion hazards. The effects 
of microplastics are less well understood but research on uptake into aquatic organ-
isms is starting to emerge. Microplastic uptake and effects on terrestrial organisms 
are yet to be investigated. Given that soils are highlighted as a potential sink 
(Sect. 3.2.4), it is likely that if soil dwelling organisms can ingest soil particles, they 
can also ingest microplastic particles. Research questions regarding the interaction 
of microplastics with POPs are also starting to emerge, but these issues are focused 
primarily on the aquatic environment. The terrestrial environment also needs to be 
considered, because the sorption of pesticides to microplastics in soil may also pres-
ent an exposure route for pesticides to soil organisms.

4  Polymer Additives and the Environment

The types and functions of additives used in the production of PBMs are wide 
ranging. Some of the most important regarding their environmental impact are those 
that have an endocrine disruptive potential. These include chemicals or chemical 
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classes such as phthalates, brominated flame retardants (BFRs), and bisphenol A 
(BPA) (Moore 2008). Phthalate esters are primarily used as plasticizers to impart 
flexibility to the polymer matrix, and are also used in other products such as inks, 
lubricating oils, and as solvents in perfumes, paints and additives in hair-sprays, 
insect repellents, and home furnishings (Fatoki et  al. 2010; Julinova and Slavik 
2012; Teil et al. 2006; Yuan et al. 2002). In the past, the most important phthalate 
representative was di-(2-ethylhexyl) phthalate (DEHP), but due to restrictions on its 
use, others such as di-isodecyl phthalate (DIDP), di-isononyl phthalate (DINP), and 
di-n-butyl phthalate (DBP) are now commercially important (Clara et  al. 2010; 
Tickner et al. 2001).

PVC resins are the most important polymer in terms of phthalate usage. PVC can 
be produced in two forms; the first is a plasticized from that makes the PVC flexible 
and the second is an unplasticized form (uPVC) used for the production of rigid 
materials. In the plasticized form, phthalates can account for 50% of total polymer 
weight (Mulder 1998; Oehlmann et  al. 2009). Other PBMs that can incorporate 
phthalates include PET, polyvinyl acetates, cellulosic, and PUR (Teil et al. 2006).

BFRs are a diverse group of chemical mixtures that contain brominated organic 
compounds (Zhang et al. 2009). BFRs are commonly used in a variety of polymer 
products, such as computers, televisions, kitchen appliance casings, car trimmings, 
electrical insulation, polyurethane foams, as well as textiles to improve fireproof 
properties (de Wit 2002). There are approximately 80 different mixtures of BFRs 
used commercially, and until recently polybrominated diphenyl ethers (PBDEs) were 
the most widely used (Hu et al. 2009). In Europe and North America, restrictions on 
the use of PBDEs have lead to tetra-brominated bisphenol A (TBBPA) and hexabro-
mocyclododecane (HBCD) becoming more commercially important (Hu et al. 2009).

BPA is widely used as a monomer in the production of commercial polycarbon-
ate (Duong et al. 2010), and as an antioxidant and stabilizing material for polymer 
products (Yamamoto et al. 2001). Other additives that are used in PBMs include 
antimicrobial agents (used in food packaging to preserve shelf-life), and dyes and 
pigments (often used to improve aesthetic properties of the material) (Saron and 
Felisberti 2006). Recently, silver nanoparticles have been utilized as an antimicro-
bial agent in plastic food packaging materials. Nanosilver damages bacterial cells 
by weakening cell membranes and destroying enzymes that transport cell nutrients, 
therefore prolonging the shelf life of foodstuffs (Silvestre et al. 2011). Stabilizer 
technology has the aim to extend the service life of PBMs used in outdoor environ-
ments, especially in regions of the world that have high temperatures and long sum-
mer seasons (Al-Salem 2009). Solvents may also be applied to coat objects with 
plastic layers or to clean plastics before printing (Mulder 1998).

4.1  Fate of Additives

The phthalates are generally considered to be chemically stable over a wide 
temperature range and are easily dissolved in water (Clara et al. 2010), so tend to 
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adsorb to inorganic and organic particles such as plankton in the water column, before 
being deposited onto sediments (Larsson et al. 1986). The phthalates are not chemi-
cally bonded to the polymer matrix, and, hence, migrate from the products in which 
they are used by volatilization and enter the atmosphere. Once in the atmosphere they 
can undergo oxidative or photolytic reactions, followed by wet or dry deposition 
(Teil et al. 2006). The hydrolytic metabolites of DEHP have been identified as mono 
ethylhexyl phthalate (MEHP) and 2-ethanohexanol (2-EH) (Tickner et al. 2001).

BFRs are stable and resist degradation, but studies have shown that the higher 
brominated PBDEs will undergo degradation via de-bromination to more persistent 
lower-brominated compounds (Birnbaum and Staskal 2004). Such degradation occurs 
in sand, sediments, and soils under laboratory conditions (Birnbaum and Staskal 
2004; Soderstrom et al. 2004). The half life of deca-BDE in sediments is estimated to 
be <30  min under UV light, 53  h under natural sunlight, and 150–200  h in soils 
(Soderstrom et al. 2004). The leachability of PBDEs from TV housings was found to 
be enhanced by the presence of dissolved organic matter in landfill leachate, but deg-
radation rates of PBDEs varied from congener to congener (Kim et al. 2006).

TBBPA is reactively bonded to the polymer matrix and requires cleavage of 
covalent bonds before migration can take place. Photo-degradation and biodegrada-
tion occurs with TBBPA, and the breakdown products have been identified as tri-, 
di-, and mono-BBPA, as well as BPA (Debenest et  al. 2010). In water, TBBPA 
derivatives are produced from the photochemical degradation and decomposition of 
the PBMs (Eriksson et  al. 2004), whereas thermal degradation also leads to the 
formation of the above mentioned brominated species (Barontini et  al. 2004). 
TBBPA is reported to have a half life of 7–81 days in water, depending on season, 
and 2 months under both aerobic and anaerobic conditions in soils and sediments 
(Birnbaum and Staskal 2004). HBCD has low water solubility and has been shown 
to persist in sediments (Remberger et al. 2004). Analysis of BFR residues in harbor 
seals sampled from the northwest Atlantic identified 16 congeners of PBDE at con-
centrations ranging from 35 to 19,500 ng/g lipid wt (Shaw et al. 2012). Shaw et al. 
(2012) also identified tissue-specific concentrations of an α-HBCD isomer that dis-
played significantly higher concentrations in the liver (2–279 ng/g lipid wt) than in 
the blubber (2–29 ng/g lipid wt).

The migration of BPA from commercially available polycarbonate baby bottles 
has been shown to range from 2.4 to 14.3 μg/kg, when bottles were filled with boiling 
water and left at ambient temperatures for 45 min, mainly during the first eight cycles 
of such use (Maragou et al. 2008). To put this into context the estimated dietary expo-
sure for infants aged up to 1 year old ranges between 0.2 and 2.2 μg/kg-bwt/day, 
which is below the recently established tolerable daily intake (Maragou et al. 2008). 
Polycarbonate PBMs were also shown to exhibit accelerated leaching velocity of the 
BPA when exposed to salts in sea water (1.6 ng/mL/day at 20 °C and 11 ng/mL/day 
at 37 °C) compared to river water (0.2 ng/ml/day at 20 °C and 4.8 ng/ml/day at 37 °C) 
(Sajiki and Yonekubo 2003). The estimated half-life of BPA is up to 14 days in sea-
water (Robinson and Hellou 2009), with aerobic degradation of BPA constituting the 
most dominant degradation pathway, except when it is present in the atmosphere, and 
thereby susceptible to reaction with hydroxyl radicals (Staples et al. 1998).
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4.2  Occurrence of Associated Additives

Chemical additives are used in the polymer manufacturing process to improve a 
materials performance, and such additives are dispersed within the three-dimensional 
porous structure of the polymer. These additives can be released to the environment 
during the manufacturing process, throughout a PBMs lifecycle and during subse-
quent PBM degradation processes. The rate at which additives are leached depends 
on the pore diameter of a particular polymer structure and the molecular size of the 
additives used; lower molecular weight additives move more easily through a poly-
mer matrix that display larger pore size (Gopferich 1996). Various environmental 
samples have been analyzed for the presence of these additives, and they have been 
detected at various concentrations ranging from ng/L to mg/L (Table 6).

Table 6  Concentrations of compounds associated with the manufacturing of polymer products 
detected in various environmental matrices

Compound Country
Concentration reported 
(min: max) Reference

Plasticisers Surface water
DEHP Chi, Ger, Ire, Jap, 

Neth, SA, Tai, US
n.d.–2.18 mg/L 1, 2, 3, 4, 5, 6, 7, 8

DBP Chi, Neth, Tai 0.04–13.5 μg/L 2, 3, 5
DEP SA 0.16–3.56 mg/L 7
DINP Ire 0.14–1.89 μg/L 4
Bis(2-ethylhexyl) adipate US 10 μg/L (max) 8
Triphenyl phosphate US 0.22 μg/L (max) 8
Phthalic anhydride US 1 μg/L (source: plastic 

manufacturing)
8

River sediments
DEHP Can, Chi, Ger, Ire, 

Jap, SA, Tai
0.014–25.27 mg/kg 1, 2, 3, 4, 6, 7, 10

DBP Can, Chi, Ire, SA, Tai n.d.–0.89 mg/kg 2, 3, 4, 7, 9, 10
DINP Can, Ire n.d.–6.16 mg/kg 4, 10
DIDP Ire 0.1–7.46 mg/kg 4
BBP Can, Tai < 0.3–220 μg/L 9, 10

Sewage sludge
DEHP Aus 20–29 mg/kg 11
DMP Aus n.d.–89 μg/kg 11
DEP Aus < 40–130 μg/kg 11
BBP Aus 120–380 μg/kg 11
DOP Aus 58–180 μg/kg 11

Wastewater effluent
DEHP Aus, Fra ng–5.02 μg/L 11, 12
DEP Aus n.d.–1.1 ng/L 11
DMP Aus n.d.–0.19 ng/L 11
DBP Aus n.d.–2.4 ng/L 11

(continued)
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Compound Country
Concentration reported 
(min: max) Reference

BBP Aus 0.088–1.4 ng/L 11
DOP Aus n.d.–0.26 ng/L 11

Untreated wastewater
DEHP Aus 3.4–34 ng/L 11
DEP Aus 0.77–9.2 ng/L 11
DMP Aus n.d.–2.4 ng/L 11
DBP Aus n.d.–8.7 ng/L 11
BBP Aus 0.31–3.2 ng/L 11
DOP Aus n.d.–1.1 ng/L 11

Soil
DEHP Chi, Den 0.012–7.11 mg/kg 13, 14
DBP Chi, Den n.d.–1.56 mg/kg 13, 14
DEP Chi n.d.–2.61 mg/kg 13

Stormwater
DEHP Aus, Swe 0.45–24 μg/L 11, 15
DEP Aus n.d.–0.27 μg/L 11
DMP Aus, Swe n.d.–0.3 μg/L 11, 15
DBP Aus, Swe <0.02–0.27 μg/L 11, 15
DIDP Aus, Swe n.d.–17 μg/L 11, 15
DINP Aus, Swe 0.005–85 μg/L 11, 15
BBP Aus, Swe n.d.–0.33 μg/l 11, 15
DOP Aus n.d.–0.37 μg/L 11

Rainwater
DEHP Fra 423 ng/L (mean) 16
DMP Fra 116 ng/L (mean) 16
DEP Fra 333 ng/L (mean) 16
DBP Fra 592 ng/L (mean) 16
BBP Fra 81 ng/L (mean) 16
DOP Fra 10 ng/L (mean) 16

Other
Japan (aquatic vegetation) DEHP 20–2,000 ug/kg 6
Taiwan (fish) DEHP 2.4–253.9 mg/kg (dwt) 9
Bisphenol-A Surface water
BPA Aust, Chi, Ita, Jap, 

Kor, Port, Swit, 
Tai, US

n.d.–39.4 μg/L 8, 17, 18, 19, 20, 
21, 22, 23, 24, 
25, 26, 27

Sediments
BPA Ita <2–118 μg/kg (dwt) 26

Sewage sludge
BPA Can, Ger 0.001–1.36 mg/kg (dwt) 1, 28

Wastewater effluent
BPA Aus, Aust, Gre, Port, 

Kor, Spa
0.0026–213.6 μg/L 20, 25, 26, 27, 28, 

29, 30
Landfill leachate
Jap 1.3–17,200 μg/L 31

(continued)

Table 6  (continued)
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Compound Country
Concentration reported 
(min: max) Reference

Flame retardents Surface water
PBDE Arg n.d. 33
TBBPA UK 140–3,200 pg/L 32
HBCD UK 80–270 pg/L 32
Tri(dichlorisopropyl) 

phosphate
US 0.16 μg/L 8

Tri(2-chloroethyl)
phosphate

US 0.54 μg/L 8

River sediments
PBDE Bel, Swit 0.14–8,413 ng/g (dwt) 34, 35
TBBPA UK, Jap, Swe <0.2–270 μg/kg (dwt) 32, 36, 37
HBCD UK, Jap, Swe 880–4,800 pg/g (dwt) 32, 34, 36

Marine sediment
TBBPA Jap 5.5 ng/L 36
HBCD Jap <2–860 ng/L 36

Sewage sludge
TBBPA Swe 31–56 μg/kg 37

Landfill leachate
TBBPA Jap 0.3–540 ng/L 36
HBCD Jap <2–8 ng/L 36

Soil
PBDe Arg n.d. 33

Other
PBDE Can (Crab, Sole, and 

Porpoise)
4–2,300 ng/g (lipid 

weight; lwt)
38, 39

TBBPA UK (fish) <0.29–270 pg/L (lwt) 32
HBCD UK (fish) 14–290 ng/g (lwt) 32

n.d. not detected, DEHP Di(2-ethylhexyl)phthalate, DEP Di ethyl phthalate, DMP Di methyl 
phthalate, DBP Di-n-butyl phthalate, DIDP Di-isodecyl phthalate, DINP Di-isononyl phthalate, 
BBP Butyl Benzyl Phthalate, DOP Dioctyl phthalate, BPA Bisphenol-A, PBDE Polybrominated 
diphenyl ethers, TBBPA Tetrabromobisphenol A, HBCD Hexabromocyclododecane, Arg 
Argentina, Aus Austria, Aust Australia, Bel Belgium, Can Canada, Chi China, Den Denmark, Fra 
France, Ger Germany, Gre Greece, Ire Ireland, Jap Japn, Kor Korea, Neth Netherlands, Port 
Portugal, SA South Africa, Spa Spain, Swe Sweden, Swit Switzerland, Tai Taiwan, UK United 
Kingdom, US United States
References: 1 Fromme et al. (2002); 2 Yuan et al. (2002); 3 Zeng et al. (2008); 4 Kelly et al. (2010); 
5 Peijnenburg and Struijs (2006); 6 Yuwatini et al. (2006); 7 Fatoki et al. (2010); 8 Kolpin et al. 
(2002); 9 Huang et  al. (2008); 10 McDowell and Metcalfe (2001); 11 Clara et  al. (2010); 12 
Dargnat et al. (2009); 13 Hu et al. (2003); 14 –Vikelsoe et al. (2002); 15 Bjorklund et al. (2009); 
16 Teil et al. (2006); 17 Wang et al. (2011); 18 Liu et al. (2011); 19 Ribeiro et al. (2009); 20 Ying 
et al. (2009); 21 Zhao et al. (2009); 22 Voutsa et al. (2006); 23 Duong et al. (2010); 24 Chen et al. 
(2010); 25 Pojana et al. (2007); 26 Arditsoglou and Voutsa (2010); 27 Fernandez et al. (2009); 28 
Stasinakis et al. (2008); 29 Ko et al. (2007); 30 Furhacker et al. (2000); 31 Yamamoto et al. (2001); 
32 Harrad et al. (2009); 33 Fontana et al. (2009); 34 Covaci et al. (2005); 35 Kohler et al. (2008); 
36 Suzuki and Hasegawa (2006); 37 Sellstrom and Jansson (1995); 38 Ikonomou et al. (2002); 39 
Luross et al. (2002)

Table 6  (continued)
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Phthalates have been described as one of the most abundant and ubiquitous man-
made chemicals in the environment (Liao et al. 2009; Martin and Voulvoulis 2009). 
Because they are not chemically bound to the polymer resin in which they are used, 
they tend to slowly migrate to the surface of the product and leach or evaporate from 
the end-product to the surrounding environment, both during and after the useful 
life of a specific product (Martin and Voulvoulis 2009). DEHP and DBP are the 
most commonly occurring phthalates. Residues of both have been detected in mul-
tiple environmental compartments: surface waters (Kelly et  al. 2010), river sedi-
ments (Huang et  al. 2008), sewage sludge, wastewater effluent, and untreated 
wastewater (Clara et al. 2010), rainwater (Teil et al. 2006), stormwater (Bjorklund 
et al. 2009), and agricultural soils (Hu et al. 2003). The other phthalates are gener-
ally considered to be of minor importance.

The concentration of phthalates reported to exist in surface waters have ranged 
from sub μg/L (e.g., Kelly et al. 2010) to high mg/L levels in contaminated hotspots 
(e.g., Fatoki et  al. 2010), and to mg/kg in sediments (e.g., Kelly et  al. 2010). 
Concentrations reported for agricultural soils in China (23 locations; 0.89–10.03 mg/
kg) (Hu et  al. 2003), were much higher than those found in agricultural soils in 
Denmark (2 locations; 0.3–1,900 μg/kg) (Vikelsoe et al. 2002). The concentrations 
observed for China were thought to be influenced by the use of agricultural films 
containing phthalates (Hu et al. 2003). The maximum concentration of DEHP in 
final effluent from a European Waste Water Treatment Plant (WWTP) was reported 
to be 182 μg/L, and was derived from a review of studies of estrogenic compounds 
that had a median concentration of 5.3 μg/L (Martin and Voulvoulis 2009). In the 
Venda region of South Africa, it has been reported by Fatoki et al. (2010) that PBMs 
are indiscriminately disposed of as a common practice. This has caused river water 
pollution by phthalates at levels ranging from 0.16 to 10.17  mg/L (Fatoki et  al. 
2010). This is noted by Fatoki et al. (2010) as an issue of concern, because water 
from these rivers and their associated dams are the primary sources of potable water. 
This poses a risk to human health, because people who drink water contaminated 
with such levels exceed the USEPA established safe limit for phthalates (<6 μg/L) 
over many years, and may develop liver and reproductive problems (USEPA 2012).

BPA can be released into the environment through sewage treatment effluent, 
landfill leachate (Wintgens et al. 2003), or degradation of polycarbonate polymers 
(Mohapatra et  al. 2010). BPA residues are most commonly reported in surface 
waters and wastewater effluents, where they display concentrations up to 213.6 μg/L; 
sediments have been identified as being modest sinks (Wang et al. 2011) (Table 6). 
PBMs in landfills are thought to be a possible source of BPA in groundwater; in 
Japan, median concentration of 269 mg/L have been detected in sampled leachates 
(Yamamoto et al. 2001). The maximum concentration of BPA in final effluent from 
a European WWTP was reported to be 40.09 μg/L, with a median value of 0.36 μg/L 
(Martin and Voulvoulis 2009).

A review of the literature has indicted the PBDEs, TBBPA, and HBCD to be the 
most commonly occurring BFRs detected in environmental samples. PBDE and 
TBBPA differ in that PBDEs are generally used as an additive flame retardant, and 
thereby are not chemically bonded to the polymer matrix; in contrast, TBBPA is 
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primarily used as a reactive flame retardant and is covalently bonded to the polymer 
matrix (Alaee et al. 2003). Flame retardants, when used as additives (rather than a 
reactive compound), exhibit leaching and evaporation behavior similar to those dis-
played by the phthalates (Debenest et al. 2010). Levels in sediments are generally 
highest from urban and industrial areas, particularly downstream from WWTPs or 
from product manufacturing sites. Sellstrom and Jansson (1995) found high con-
centrations of TBBPA in sediments sampled downstream from plastic manufactur-
ing factories (270 μg/kg dwt), in comparison to upstream sediments (34 μg/kg dwt), 
indicating the factory as the source. Harrad et al. (2009) reported similar concentra-
tions of HBCD and TBBPA in water, sediments, and fish (see Table 6) from nine 
English lakes that had no major point-source inputs (i.e., from WWTP), with mini-
mal seasonal variations and found aqueous concentrations were significantly cor-
related, but no common source was identified. Hites (2004) also provided a review 
of PBDE concentrations present in human samples (0.03–193 ng/g for milk; 0.44–
6.03 ng/g for blood, lipid wt), outdoor and indoor air (82.6–1,780 pg/m3), marine 
mammals (0.42–4,950 ng/g lipid wt), birds (124–7,510 ng/g lipid wt for gull eggs), 
and fish (6.31–7,200 ng/g lipid wt).

4.3  Toxicity of Chemical Additives

Once released from the degraded polymer matrix, chemical additives may become 
available for uptake by living organisms. The phthalates and BPA have been found 
to cause a range of effects on fish, crustacean, amphibian and bacteria species; 
effects include mortality, delayed maturity, reduced vigor, induced morphological 
deformations, and reduced reproduction (Table  7). DEHP represents the most 
widely studied phthalate and is regarded to be one of the most toxic of the class 
(Jonsson and Baun 2003). However, its metabolite MEHP, which is considered to be 
itself toxic, has not been widely studied. DEHP has displayed toxicity to rats through 
impaired testis development at high doses (Table 6). Other important phthalates, 
such as DMP, DEP, DBP, and BBP, also exhibit similar toxic effects to DEHP. The 
toxicity of some of the minor phthalates (i.e., DIDP, DNIP, and DOP) is less well 
researched, possibly because their concentrations in most aquatic environments are 
reported at low μg/L or less (Table 6). Oehlmann et al. (2009) published a compre-
hensive review of the effects of phthalates and BPA on wildlife, and highlighted the 
lack of long-term exposure or toxicity data at environmentally relevant concentra-
tions, particularly in complex mixtures. Human exposure can occur through ambi-
ent environmental concentrations (Tickner et  al. 2001). DEHP containing PVC, 
since the 1960s, has been used to produce a range for medical devices and in the 
construction industry (Rossi and Lent 2006; Tickner et al. 2001). Rossi and Lent 
(2006) have proposed the phasing out and replacement of PVC, and recommend a 
preference towards PBMs that do not contain hazardous additives such as PP and 
PE as means of reducing phthalates exposure.
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BFRs exposure has been found to inhibit growth of plankton and algae colonies 
and reduce zooplankton reproduction (Debenest et al. 2010). Mice and rat studies 
have shown liver disturbances, nervous system damage and decreased thyroxine 
levels; pentaBDE has been found to accumulate in certain predatory birds and mam-
mals that are at the top of the food chain (Rhee et al. 2002). Another toxic com-
pound that is associated with polymer manufacturing is zinc, which has been 
identified as the dominant toxicant in wastewater from rubber manufacturing facto-
ries (Park et al. 2008). Exposure of Daphnia magna to accelerators (e.g., zinc diethyl 
dithiocarbamate (ZDEC) and zinc mercaptobenzothiazole (ZMBT)) that are used to 
produce rubber and latex products gave 48 h EC50 values that were lower than those 
reported for DMP, DEP, DBP, BBP, and MEHP (Jonsson and Baun 2003) (Table 7). 
This higher toxicity level indicates that the risks associated with other additives 
compounds used in PBM manufacturing are also important.

4.4  Conclusion

The phthalates, BPA and BFRs are considered to be the most important PBM addi-
tives, because these are considered to be biologically active. To be effective these 
chemicals often have properties that make them resistant to photo-degradation and 
biodegradation. These properties imply a potential for accumulation and persistence 
in the environment, and as such there is a growing body of literature dealing with 
the environmental occurrence and effects of these compounds. However, there are 
many other PBMs that incorporate an even greater number of additive compounds, 
and the risks of these compounds also need to be evaluated. An example are the 
halogen-free flame retardants, which are of growing interest as replacements for the 
more traditional BFRs, and are the subject of an interesting and in-depth review by 
Waaijers et al. (2013). These authors highlight that the environmental behavior and 
ecotoxicological properties of many of these compounds are only known to a lim-
ited extent.

5  Recommendations for Future Research

Considerable information is now available on the environmental effects of PBMs. 
As described previously in this review, there are several emerging areas of interest 
that need future research attention. These include research to:

	1.	 Better understand the sources and sinks for microscopic polymer particles (as 
highlighted by Browne et al. 2011); this research should address both terrestrial 
and freshwater sinks.

	2.	 Establish appropriate degradation test strategies consistent with realistic envi-
ronmental conditions, because the complexity of environmental systems is lost 
when only one process (e.g., hydrolysis) is assessed in isolation.
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	3.	 Establish appropriate analytical methods to characterize the formation and eco-
toxicity of both the physical and chemical constituents formed during PBM 
degradation.

	4.	 Evaluate the uptake and the long-term effects of very small polymer particles in 
both aquatic and terrestrial compartments.

	5.	 Evaluate the extent to which different polymer characteristics (i.e., the molecular 
bonds present in different materials) influence sorption behavior of anthropo-
genic compounds, and how these characteristics influence ecotoxicity.

6  Summary

There is now a plethora of polymer-based materials (PBMs) on the market, because 
of the increasing demand for cheaper consumable goods, and light-weight industrial 
materials. Each PBM constitutes a mixture of their representative polymer/s and their 
various chemical additives. The major polymer types are polyethylene, polypropyl-
ene, and polyvinyl chloride, with natural rubber and biodegradable polymers becom-
ing increasingly more important. The most important additives are those that are 
biologically active, because to be effective such chemicals often have properties that 
make them resistant to photo-degradation and biodegradation. During their lifecycle, 
PBMs can be released into the environment form a variety of sources. The principal 
introduction routes being general littering, dumping of unwanted waste materials, 
migration from landfills and emission during refuse collection. Once in the environ-
ment, PBMs are primarily broken down by photo-degradation processes, but due to 
the complex chemical makeup of PBMs, receiving environments are potentially 
exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached 
additives, and subsequent degradation products. In environments where sunlight is 
absent (i.e., soils and the deep sea) degradation for most PBMs is minimal.

The majority of literature to date that has addressed the environmental contami-
nation or disposition of PBMs has focused on the marine environment. This is 
because the oceans are identified as the major sink for macro PBMs, where they are 
known to present a hazard to wildlife via entanglement and ingestion. The pub-
lished literature has established the occurrence of microplastics in marine environ-
ment and beach sediments, but is inadequate as regards contamination of soils and 
freshwater sediments. The uptake of microplastics for a limited range of aquatic 
organisms has also been established, but there is a lack of information regarding soil 
organisms, and the long-term effects of microplastic uptake are also less well under-
stood. There is currently a need to establish appropriate degradation test strategies 
consistent with realistic environmental conditions, because the complexity of envi-
ronmental systems is lost when only one process (e.g., hydrolysis) is assessed in 
isolation. Enhanced methodologies are also needed to evaluate the impact of PBMs 
to soil and freshwater environments.
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1  �Introduction

Addictive substance use is most prevalent in people who are of reproductive-age. 
In a national prevalence survey performed among pregnant women aged 15–44 
years, 10.8% reported using alcohol, 17% reported smoking during pregnancy, and 
4.4% reported abusing one or more illicit substances (Fig.  1) (SAMHSA 2011). 
Substance abuse for a pregnant woman is twice as dangerous as for others, because:

•	 She may harm her own health and impair her ability to support a successful 
pregnancy

•	 In utero exposure to substances of abuse either may affect fetal development or 
may induce physiological changes (e.g., organic and/or neurocognitive) to the 
child later in life (Narkowicz et al. 2012)

More than 75% of infants exposed to drugs later suffer from major medical prob-
lems. Similar problems result from excessive use of tobacco (cigarettes) during 
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pregnancy. The cost of treating drug-affected infants is twice the cost of medical 
care for non-affected infants (Huestis and Choo 2002). The incidence of obstetric 
complications are also higher among drug abusing mothers; therefore, assessing in 
utero drug exposure is quite relevant and important in providing for adequate care 
of the mother and the offspring of a fair segment of the population (Huestis and 
Cone 1998). The problem is quite serious, since 3% of women use illicit substances 
during pregnancy and about 54% of women use legal substances, including alcohol 
and tobacco, which could be harmful to a fetus (Scharnberg 2003).

When one wishes to assess the incidence of addition, several approaches are pos-
sible. For example, one can monitor maternal drug or cigarette consumption by 
performing periodic urinalysis, weekly sweat analysis or by analyzing patches or 
hair samples (Huestis and Cone 1998; Huestis and Choo 2002). Another approach 
is to monitor addictive substance exposure, or exposure to tobacco smoke by testing 
alternative (also defined as nonconventional) biological specimens from the fetus or 
the newborn, from the pregnant or nursing mother, or from both fetus and mother. 
The advantages of such specimen types are that they can be collected in a noninva-
sive way (except for amniotic fluid), and offer early exposure detection at different 
gestational periods. Obviously, several factors that concern both specimen and ana-
lyte need to be taken into account when selecting biological material for determina-
tion of addictive substances by a chosen analytical technique. Toxic substances that 
are absorbed circulate within the physiological fluids of the body, accumulate in 
tissues, or are excreted unchanged or as polar metabolites. Biological fluids are typi-
cally complex matrices, and require special procedures for sample preparation 
(Polkowska et al. 2004).

In this article, we present information on the effects of prenatal exposure to 
addictive substances, and on the prospects and difficulty of using different biological 
specimens for monitoring and assessing in utero exposure to illegal drugs, tobacco, 
and alcohol.

In Table 1 we describe the abbreviations used in this paper.

Fig. 1  Addictive substance abuse among pregnant women aged 15–44, by age, 2009–2010 com-
bined (SAMHSA 2011)
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Table 1  Description of abbreviations used in this paper

Abbreviation Description

6-AM 6-Acetylmorphine
AIDS Acquired immunodeficiency syndrome
AMP Amphetamine
BAR Barbiturates
BE Benzoylecgonine
BENZ Benzodiazepines
BNE Benzoylnorecgonine
C6G Codeine-6-glucoranide
CNS Central nervous system
COC Cocaine
COCE Cocaethylene
COMT Catechol-O-methyltransferase
DI Direct immersion
EC Electrophoresis
ECG Ecgonine
EDDP 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine
EEE Ecgonine ethyl ester
EMDP 2-Ethyl-5-methyl-3,3-diphenylpyrroline
EME Ecgonine methyl ester
EMIT Enzyme multiplied immunoassay test
ETARA Ethyl arachidonate
ETLAU Ethyl laurate
ETLIN Ethyl linoleate
ETMIR Ethyl myristate
ETOLE Ethyl oleate
ETPAL Ethyl palmitate
ETSTE Ethyl stearate
FAEE Fatty acid ethyl esters
FAS Fetal alcohol syndrome
FASD Fetal alcohol spectrum disorders
FPI Fluorescence polarization immunoassay
GC Gas chromatography
HER Heroin
HIV Human immunodeficiency virus
HPLC High performance liquid chromatography
HS Headspace
IC Ion chromatography
LC Liquid chromatography
LLE Liquid–liquid extraction
LOD Limit of detection
LOQ Limit of quantification
M3G Morphine-3-glucuronide
M6G Morphine-6-glucuronide
MAMP Methamphetamine
MDA 3,4-Methylenedioxyamphetamine
MDEA 3,4-Methylenedioxy-N-ethylamphetamine
MDMA 3,4-Methylenedioxymethamphetamine

(continued)
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2  �Addictive Substance Use by Pregnant Women:  
A Social Problem

The term “addictive substances” normally refers to compounds that are illicit drugs, 
nicotine or alcohol. Addiction to these substances produces physical and psycho-
logical dependence in ways that cause health deterioration of the addict. In short, 
the drug user has a compulsive need to use the controlled substances for the purpose 
of functioning normally (SAMHSA 2011).

The percentage of women who use addictive substances is constantly growing. 
It has been shown that women aged 15–44 years (women of childbearing age) are 
the group that is the most frequent abusers of addictive substances. Such abuse is a 
major problem, not only because of the health impact to the pregnant woman and 
her offspring, but also because of the social costs it breeds, e.g., childcare neglect 
when the mother is dependent on addictive drugs (SAMHSA 2011).

As a result of drinking excessive alcohol or abusing illicit drugs, mothers are 
often deprived of their children, and consequentially the entire family suffers from 
the effects of the mother’s addiction (Kissin et al. 2001). Infants born to mothers 
dependent on addictive substances often end up with Foster Families. Children of 
alcohol- or illicit drug-addicted women often do not receive adequate care during 
their first months of life, and are exposed to maltreatment. In addition, the costs of 
medical care for children born to addictive drug-abusing mothers, who used drugs 
during pregnancy, are higher than for children born to women not using drugs. 
Surveys conducted among the general public, show that up to 92% of respondents 
said that the mother has an ethical obligation during pregnancy to behave in a way 
that is not detrimental to the health and life of the fetus (Anderson et al. 1997).

A pregnant woman is a special organ of society, and therefore requires special 
care during pregnancy and during the course of her treatment for addiction. Indeed, 
specialized programs have been created to help pregnant women in their fight 
against addiction (Narkowicz et  al. 2012). Such programs include the one being 
used at the Johns Hopkins Bayview Medical Center in Baltimore; this program 

Abbreviation Description

METH Methadone
MOR Morphine
MS Mass spectrometry
NAS Neonatal abstinence syndrome
NCOC Norcocaine
NMOR Normorphine
RIA Radio immunoassay
SIDS Sudden infant death syndrome
SPE Solid-phase extraction
SPME Solid-phase microextraction
THC ∆-9-Tetrahydrocannabinol
THC-COOH 11-Nor-∆-9-tetrahydrocannabinol-9-carboxylic acid

Table 1  (continued)

J. Płotka et al.



59

provides psychiatric and medical care to addicted pregnant women and these 
patients are under continuous ambulatory care.

Kissin et  al. (2001) conceived and provided an index called the Addiction 
Severity Index, which characterizes seven basic factors that are involved with the 
life and social functioning of addicted individuals. These areas are (Kissin et al. 
2001; SAMHSA 2011):

•	 Medical
•	 Employment/Support
•	 Drug
•	 Alcohol
•	 Legal
•	 Family/Social, and
•	 Psychiatric.

These factors often are extended to include child care, assistance and help with the 
upbringing of children, vocational training, education and counseling (Daley et  al. 
1998). Pregnancy can be a good moment in a woman’s life, in which care for the off-
spring acts as a stimulus to facilitate the cessation of addiction (Huestis and Choo 2002).

3  �The Effects of Prenatal Exposure to Addictive Substances

The effects of addictive substances on pregnant women may be classified into a 
chronology of categories: maternal effects; effects on the course of pregnancy and 
delivery, and effects on the fetus, newborn, and developing child (Marx et al. 2002). 
Substance abuse by pregnant women is one of the major problems of modern 
civilization and users of these substances can also be categorized according to what 
they abuse. These are women who:

•	 Use illicit drugs
•	 Smoke tobacco or utilize the so-called nicotine replacement therapy, and/or
•	 Drink alcoholic beverages

Each of these substance categories may adversely affect both the woman and her 
offspring. Illicit drugs are usually potent central nervous system stimulants, and 
their long-term consumption may destroy the whole organism. Excessive or chronic 
intake of illicit drugs and other addictive substances damage cells of the central 
nervous system. Neurons, in contrast to the other cells of the human body, do not 
easily regenerate, and therefore, one-time illicit drug consumption may produce 
lasting toxic damage to the body.

Tobacco smoking and its effects on mother and developing fetus is a common 
problem among pregnant women. A pregnant woman can either be exposed to 
tobacco smoke components by actively smoking or by being a passive smoker. An 
actively smoking woman is mainly exposed to mainstream smoke, which is absorbed 
via inhalation by mouth. In contrast, a passive smoker is exposed to the components 
of environmental tobacco smoke (ETS), which is a mixture of side stream and 
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exhaled mainstream smoke. ETS diffuses into the atmosphere and is diluted in 
ambient air, and undergoes various physical and chemical transformations that 
include reactions with the mouth during smoke inhalation. Another exposure source 
is side stream smoke that enters the environment from chemical substances not gen-
erated from burning tobacco (from the lit end of the cigarette between puffs) 
(Borgerdinga and Klusb 2005).

Excessive consumption of alcoholic beverages by pregnant women is another 
common societal problem. Ethyl alcohol acts primarily on the central nervous 
system, and at sufficient intake levels is poisonous. Alcohol poisoning is a life-
threatening consequence if large amounts are consumed in a short period of time. 
This is because alcohol quickly moves from the bloodstream into every part of the 
body that contains water, including major organs like the brain, lungs, kidneys, and 
heart, and distributes itself equally both inside and outside of cells. Ethyl alcohol is 
rapidly metabolized to acetaldehyde, which is the most toxic compound arising 
from the decomposition of alcohol. Acetaldehyde, at sufficient levels in humans, 
may cause nausea, vomiting, and headache (Quertemont and Didone 2006).  
In Table 2, we summarize the health effects that may result from prenatal exposure 
to several addictive substances.

Table 2  Effects on pregnant mothers, fetuses, and newborns that result from in utero exposure to 
addictive substances

Maternal effects

Effects during the 
course of pregnancy  
and delivery

Effects on the fetus the 
newborn and the developing 
child

Illicit drugs Anemia-results from iron 
and folic acid deficiency

Obstetric complications Over 75% of infants exposed 
to drugs have major medical 
problems versus only 27% 
of unexposed infants

Central mechanism that 
controls appetite and hunger 
is inhibited

Increased morbidity and 
mortality

Almost 20% of  
drug-exposed babies are 
delivered prematurely

Narcotics affect the 
absorption or utilization of 
ingested nutrients

Abortion and spontane-
ous abortion

Sudden infant death 
syndrome (SIDS)

Illegal drug abuse during 
pregnancy increases a 
mother’s risk of blood, heart, 
and skin infections, and other 
infectious diseases such as 
sexually transmitted diseases 
and human immunodefi-
ciency virus (HIV)

Intrauterine death, 
placental insufficiency, 
placenta previa and 
abruptio placenta

Neonatal abstinence 
syndrome (NAS)

Increased incidence of 
psychiatric disorders, for 
example chronic anxiety and 
depression, psychosis, 
personality changes, and 
delusions of paranoia

Premature rupture of 
membranes and 
premature delivery

Respiratory distress 
syndrome, congenital 
anomalies, and neurobe-
havioral changes

(continued)
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Maternal effects

Effects during the 
course of pregnancy  
and delivery

Effects on the fetus the 
newborn and the developing 
child

Eclampsia Fetal death
Gestational diabetes Premature birth
Post partum hemorrhage 
and septic thrombophle-
bitis and intrauterine 
growth retardation

Birth defects

Low birth weight, growth 
retardation
Development disorders
Long-term effects of illicit 
drugs abused during 
pregnancy, which are seen in 
older children, include: poor 
social adjustment, exhibit 
cognitive deficits, and 
learning disabilities
Children and teenagers who 
were exposed to illicit drugs 
prenatally can be more 
irritable, have difficulty 
focusing attention, and have 
more behavioral problems

Environmental 
tobacco smoke

47–72% of women from 
various age groups suffer 
from dysmenorrhea

Smoking aggravates the 
symptoms of pregnancy

Neurodevelopmental and 
behavioral disturbances (from 
changes in the child’s brain 
following fetal hypoxia)

Both active and passive 
smoking adversely affects 
fertility

Smoking increases  
the risk of the child  
being lost

Low birth weight (the link 
between maternal smoking 
and birth weight is weaker 
during the early stages of 
pregnancy, becomes stronger 
as the pregnancy advances, 
and is strongest in the third 
trimester)

Extrauterine  
pregnancies are more 
frequent

The thiocyanate ion, a 
metabolite of cyanide ions, 
inhibits iodine capture, 
which may inhibit the proper 
development of the brain and 
nervous system in infants

Morphological damage 
to the placenta may 
become apparent as 
early as the first 
trimester of pregnancy, 
and irreversible changes, 
such as necrosis, are 
recognizable after the 
9th week

Hyperactivity, reduced 
concentration

Table 2  (continued)

(continued)
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Maternal effects

Effects during the 
course of pregnancy  
and delivery

Effects on the fetus the 
newborn and the developing 
child

Nicotine binds to 
acetylcholine,  
which controls the 
absorption of nutrients, 
volume of fluid,  
blood flow, and the 
vascularization  
of the placenta

Weak reaction to auditory 
stimuli in infants in the first 
week of life

Chronic exposure to 
nicotine may cause  
the various known 
effects of tobacco 
smoking to manifest 
themselves  
in the fetus

Lower intelligence at 
preschool age

Fetal exposure  
to nicotine can lead  
to addictive behaviors,  
and thus to smoking  
in adult life
The action of irritants 
present in ETS may  
lead to chronic  
inflammation of the  
child’s respiratory  
tract, which in turn  
may cause asthma
Urinary tract disorders
Sudden infant death 
syndrome (SIDS)

Alcohol When women consume 
alcohol during pregnancy, 
the blood-alcohol content in 
the fetus reaches the same 
level as it does in the mother

Fetus is exposed not 
only to the teratogenic 
effects of alcohol,  
but also to the negative 
effects of the other 
factors that coexist  
in its mother’s life

Sudden infant death 
syndrome

A pregnant woman who 
consumes alcohol is also 
likely to follow a poor diet 
and exercise plan

Pregnant alcohol-
exposed women are 
more likely to 
experience obstetric 
complications, and 
increased morbidity  
and mortality

FASDs (Fetal alcohol 
spectrum disorders) 
include physical, mental, 
behavioral, and/or learning 
disabilities with possible 
lifelong implications

(continued)
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4  �Biomonitoring to Assess In Utero Exposures  
to Addictive Substances

Accurate identification of in utero exposure to addictive substances has important 
implications for the care of mothers and children. Maternal illicit drug use during 
pregnancy can be monitored by performing analyses on several key media; such 
media includes urine, sweat, oral fluid, and/or hair. The rate of drug absorption and 
disposition of addictive substances and metabolites into different matrices is depen-
dent on the route of drug administration and on the physiochemical characteristics 
of the drug (Huestis and Choo 2002).

Maternal blood was one of the first types of biological material that was analyzed 
to detect drugs. The analytical targets were either for illicit drug use during preg-
nancy, or for fetal exposure to drugs. However, the value of testing blood for drugs 
of abuse is limited because the window of detection is short and the fact that obtain-
ing the sample is invasive (Lozano et al. 2007).

Maternal effects

Effects during the 
course of pregnancy  
and delivery

Effects on the fetus the 
newborn and the developing 
child

She may also have several 
other problems, including 
comorbid medical or 
psychiatric disorders such as 
depression, and social 
problems

Fetal alcohol syndrome 
(FAS) is the most clinically 
recognizable form of FASD 
characterized by:
•  Prenatal and postnatal 
growth retardation
•  Functional or structural 
central nervous system 
(CNS) abnormalities such as 
mental retardation and 
behavioral problems
•  A pattern of minor facial 
and skull anomalies 
including small eye 
openings, altered nose and 
forehead structure, an absent 
or elongated groove between 
the upper lip and nose, a thin 
upper lip, a flattened mid 
face, and under development 
of the upper or lower jaw
FAS consequences are 
lifelong, and behavioral and 
learning difficulties are often 
greater than the degree of 
neurocognitive impairment

Sources: Chen et al. 2000; Dejmek et al. 2002; Eskenazi and Castorina 1999; Finnegan 1994; Gilmour 
et al. 2006; Huestis and Choo 2002; Jauniaux and Burton 2007; Jones 1974; Larkby and Day 1997; Marx 
et al. 2002; Miller and Hyatt 1992; Niemann and Anderson 2008; Otero et al. 2004; Phibbs et al. 1991; 
Rogers 2009; Vogel 1997; Zuckerman et al. 1989

Table 2  (continued)
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Other potential specimen types that can be monitored to evaluate the degree and 
type of drug exposure include the following: neonate cord blood, placenta, vernix, 
amniotic fluid, neonatal hair and urine, and meconium. As with maternal blood, 
measuring levels of drugs and their metabolites in cord blood reflects only fetal drug 
exposure during the previous hours or days before collection, and does not reflect 
chronic exposure during the entire gestation period. However, collecting other spec-
imen types is preferred because obtaining neonatal plasma is invasive and difficult. 
The placenta and vernix have been rarely sampled for testing, but are currently 
under evaluation to determine their usefulness (i.e., noninvasiveness of collection 
and ready availability at delivery; Esteban and Castaño 2009; Lozano et al. 2007).

Because amniotic fluid is already formed in the first weeks of pregnancy, the pres-
ence of drugs in this fluid can reflect exposure during the early fetal life. Although it 
is dangerous for the fetus, amniotic fluid can be sampled at any time during pregnancy, 
if detecting either parent drugs or their metabolites are essential for protecting the 
fetus. Meconium testing has also been shown to be an effective and practical means of 
detecting in utero drug exposure. Analysis of meconium provides more complete 
information on drug exposure during pregnancy than does analysis of neonatal urine 
or cord blood. Recently, drug determination in meconium has been successfully 
applied to assess intrauterine exposure to addictive substances (Lozano et al. 2007).

5  �Role of the Placenta in Biomonitoring  
of Addictive Substances

When performing biomonitoring studies on toxic substances, several liquid and solid 
tissue types are suitable for sampling. The particular tissues or fluids selected will 
depend on the goals of the experiment and what is available. Theoretically, the biologi-
cal material that is selected for further research should fulfill the following criteria:

•	 Sample collection will not pose a risk to the health or life of the donor
•	 The amount of analyte to be sampled will be determined by currently available 

techniques
•	 The sample size is sufficient for analysis
•	 Sample collection is convenient
•	 Samples can be easily stored until analysis

Placental tissue has a key role, when used for biomonitoring and assessing the 
degree of in utero exposure to addictive substances. The placenta is an organ that 
connects the developing fetus to the mother, and provides the following main func-
tions (Van der Aa et al. 1998):

•	 Nutrition
•	 Excretion
•	 Immunity
•	 Endocrine function, and
•	 Cloaking of the fetal immune system from that of the mother
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Unfortunately, the women who consume toxic illicit drugs, alcohol and their 
metabolites will transport these substances across their placentas, which can cause 
serious harm to the fetus (Leino et  al. 2011). Figure 2 schematically depicts the 
manner in which addictive substances can be transferred from mother to child 
through the placenta.

Tobacco smoke contains toxic compounds that are readily soluble in water and 
may easily transgress the placental barrier. Although most of these substances can 
be removed by xenobiotic detoxification enzymes, the smoke components in 
tobacco may directly affect the villous cytotrophoblast.

The placenta, like the liver, may play an important role in metabolizing toxic 
substances. The cytochrome P450 system (CYP) is a family of enzymes that control 
the concentrations of many endogenous and exogenous substrates. CYP fulfill their 
role by actively metabolizing a wide variety of xenobiotics (e.g., drugs and other 
toxic chemicals). CYP also metabolize endogenous compounds, such as steroid 
hormones and arachidonic acid. This family of enzymes is composed by multiple 
subunits that differ in their amino acid sequences. In the human body, 19 enzymes 
from subfamily of CYP P450s have been discovered, most of which are located in 
the liver. However, several enzymes such as CYPlAl, CYPZFl, and CYP4Bl are 
associated largely with extrahepatic organs. The activity of CYP enzymes may lead 
to the formation of reactive metabolites with toxic consequences (sometimes carci-
nogenic). To date, the mechanism and function of particular forms of CYP enzymes 
in human placental tissue are not well known. However, the appearance of the 
CYPIAI enzyme has been observed in placental samples from women who smoked 
during pregnancy. In addition, the mRNA and protein of CYP3A7, the prominent 

Fig. 2  Schematic of how 
xenobiotics are transferred 
from mother to child through 
the placenta
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form in fetal liver, have been observed to also exist in the early-term placenta 
(Hakkola et al. 1996).

The use of addictive substances by woman during pregnancy results in changes 
to the placenta. Due to prenatal exposure to addictive substances, morphological 
damage of the placenta may be observed in the first trimester of pregnancy, and 
irreversible changes (e.g., necrosis) may be seen after the first 9 weeks of pregnancy 
(Jauniaux and Burton 2007). Hakkola et al. (1996) studied the expression of CYP 
P450 forms and they described the external appearance of the placenta. It has been 
proved that the placenta from women who smoked during pregnancy were calcified 
or thick. Similarly, the placentas from women who abused illicit drugs during preg-
nancy have been reported to be calcified.

The placenta is a good biological entity to use for biomonitoring and assessing 
the effects of prenatal exposure to toxic and addictive substances (Al-Saleh et al. 
2011); the biomonitoring value of the placenta over blood or urine is that it can be 
used to assess long-term exposures (Myllynen et al. 2005). The placenta has other 
advantages for biomonitoring of toxic substances as well (Esteban and Castaño 
2009), viz., samples can be taken noninvasively and it is a matrix that reflects the 
character of constant contact with both the mother and the fetus.

Protecting the fetus and serving as a barrier to entry of xenobiotics are not the only 
placental functions. Another function of the placenta is to transfer nutrients and oxy-
gen from the mother to the fetus. The placenta also metabolizes chemical compounds, 
and thereafter assists in removing metabolites and waste products from the fetus.

There are several mechanisms responsible for the transport of addictive sub-
stances that are taken in by the mother. Among these mechanisms are passive diffu-
sion, facilitated transport, active transport, pinocytosis, and phagocytosis. Most 
compounds enter the placenta by passive diffusion, which process is described by 
Fick's law (Myren et al. 2007). Myren et al. (2007) and Van der Aa et al. (1998) 
defined the factors that affect the rate of transport as including the:

•	 Xenobiotic concentration gradient between the circulatory system of the mother 
and that of the child

•	 Surface area of the exchange membrane
•	 Thickness of the endothelio-syncytial membrane
•	 Blood flow rate through the placenta
•	 pH of both the maternal and fetal blood
•	 Physicochemical properties of the individual chemical compounds
•	 Status of maternal and child health, and
•	 Rate of the metabolism of the xenobiotics present

Xenobiotics can also enter and pass through the placenta via facilitated transport. 
The diffusion processes is facilitated by carrier-mediated mechanisms that operate 
along a concentration gradient, without making use of an outside energy source. 
Only a few drugs are known to be transported by this mechanism (Myren et al. 2007).

Substances may cross the placenta by active transport as well. Active transport 
takes place against an electrochemical or concentration gradient, but extracts an energy 
cost during the process. Active transport is also carrier-mediated. A total of 20 differ-
ent transport proteins have been detected in the human placenta (Myren et al. 2007).

Finally, transport may occur by pinocytosis or phagocytosis, in which the sub-
stance is invaginated into a cell membrane and is transferred to the other side of a 
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membrane as an enclosed vesicle. This route of placental transfer of xenobiotics is 
the least important, mainly because this process is very slow (Myren et al. 2007).

In Fig. 3 we diagram the various mechanisms by which xenobiotics are trans-
ported between the circulatory systems of the mother and child.

6  �Analysis of Addictive Substances in Biological Media

Above, we have described the important uses to which analytical drug residue data 
on pregnant mothers, their fetuses or the newborn can be put (Fig. 4). The methods 
used to perform these analyses ( e.g., GC-MS and LC-MS) are quite sensitive and 
can be used to accurately measure addictive substances and their metabolites that 
are biomarkers of in utero drug exposure. Those abused substances and their metab-
olites that are most commonly used as biomarkers of in utero drug exposure are 
summarized in Table 3.

In Fig. 5, we show the stages that are involved when analyzing for xenobiotic 
residues of interest in biological media. Sample preparation is critical because the 
addictive substance analytes must be isolated from complex biological matrices 
such as tissues, or bodily fluids. The direction taken in sample preparation is deter-
mined by the physicochemical properties of the analytes and the complexity of the 
sample tissue or fluid from which they are to be extracted. The methods used to 
separate and purify the analytes in these specimens commonly utilize methods such 
as LLE, SPE, and SPME. If the parent compound or metabolites are polar, and must 
be detected by gas chromatography, appropriate derivatization to form volatile ana-
lytes must be added to the sample preparation steps.

Before identifying and quantifying analytes of interest, immunoassay methods 
may also be used as screening tests. The most popular immunoassay tests are: 
EMIT, RIA, and FPI. After a rapid screening is completed, specific and sensitive 
chromatographic methods are used to obtain more detailed information (Gray and 

Fig. 3  Schematic of how 
various substances are 
transported to and through 
the placenta
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Fig. 4  Important factors gained from analyzing biological specimens from fetuses, newborns, and 
pregnant women (when these women have abused additive substances)

Table 3  Abused substances and their metabolites as biomarkers for biomonitoring of these substances

Abused 
substance Toxic substance Excretion substances—biomarkers

Tobacco smoke Nicotine, hydrogen cyanide,  
formaldehyde, kadm,  
PHA, benzene

Nicotine, kotonina, trans-3′-hydroksykotynina, 
thiocyanate ion, formaldehyde, kadm, 
1-hydroksy-benzo(a)piren, benzene, muconic 
acid, and S-phenyl mercapturic acid

Amphetamine 
group 
substances

Methamphetamine/ 
amphetamine

Methamphetamine, 
p-hydroxymethamphetamine, amphetamine, 
p-hydroxyamphetamine, glucuronide or 
glycine (hippuric acid) conjugate, benzoic 
acid, acid-labile precursor of benzyl methyl 
ketone, norephedrine, 
p-hydrohynorephedrine

(continued)
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Huestis 2007; Schütz et al. 2006). Although several chromatographic techniques are 
used to analyze for additive compounds in biological materials, the majority  
are based on GC-MS, LC-MS, or LC-MS-MS. In Table 4, we describe the charac-
teristics of biological media commonly sampled from mothers and fetuses.  

Abused 
substance Toxic substance Excretion substances—biomarkers

MDMA/MDA/MDE MDMA, MDA, MDE, 
3,4-dihydroxymethamphetamine, 3,4-dihy-
droxyamphetamine, 4-hydroxy-3-
methoxyamphetamine, 
4-hydroxy-3-methoxymethamphetamine, 
3,4-dihydroxyethylamphetamine

Opioids Heroin Heroin, morphine, 6-acetylmorphine
Morphine Morphine, morphine-3-glucuronide, morphine-

6-glucuronide, morphine-3-sulfate, normorphine
Methadone Methadone, 2-ethylidene-1,5-dimethyl-3,3-

diphenylpyrrolidine, 2-ethyl-5-methyl-3, 
3-diphenylpyrroline

Naloxone Naloxone, naloxone-3-glucuronide
Cocaine Cocaine Cocaine, benzoylecgonine, ecgonine methyl ester, 

anhydroecgonine methyl ester, norcocaine
Lidocaine Monoethylglycinexylidide, glycine, xylidide
Benzocaine Benzocaine, acetylbenzocaine

Cannabis Marijuana THC, 11-OH-THC, 8-β-hydroxy THC, 
THC-COOHTHC

Cannabidiol Cannabidiol, THC, 11-OH-THC
Cannabinol Cannabinol, THC, 11-OH-THC
THCV THC, THCV

Alcohol Ethanol Acetaldehyde, ethyl glucuronide, ethyl sulfate, 
fatty acid ethyl esters

Table 3  (continued)

Fig. 5  General scheme for preparing and analyzing biological samples of complex matrices

Effects of Addictive Substances During Pregnancy and Infancy and Their Analysis…
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This description includes advantages and drawbacks, and provides literature refer-
ences that address analytical procedures for determining markers of in utero drugs 
exposure in these specimens.

New techniques for analysis of addictive substances and their metabolites are 
routinely being developed; therefore, extraction efficiency, detection limits for 
addictive substances or their metabolites are improving, as are methods to analyze 
for substances in alternative matrices.

Although the wide spectrum of analytical methods available allows collecting 
important information on in utero exposure of addictive substances, there is still a 
dearth of knowledge about how addictive compounds are distributed in some human 
materials. Therefore, we propose that future research be performed to gather more 
robust data on addictive substances (tobacco smoke, illicit drugs and alcohol) in 
regard to their pharmacokinetics in humans, and how abused substances are mecha-
nistically diffused among human tissues.

7  �Summary

The use of addictive substances during pregnancy is a serious social problem, not 
only because of effects on the health of the woman and child, but also because drug 
or alcohol dependency detracts from childcare and enhances the prospect of child 
neglect and family breakdown. Developing additive substance abuse treatment pro-
grams for pregnant women is socially important and can help ensure the health of 
babies, prevent subsequent developmental and behavioral problems (i.e., from 
intake of alcohol or other additive substances such as methamphetamine, cocaine, 
or heroine) and can reduce addiction costs to society.

Because women of childbearing age often abuse controlled substances during 
their pregnancy, it is important to undertake biomonitoring of these substances in 
biological samples taken from the pregnant or nursing mother (e.g., blood, urine, 
hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meco-
nium, cord blood, neonatal hair and urine) and from both the mother and fetus (i.e., 
amniotic fluids and placenta). The choice of specimens to be analyzed is determined 
by many factors; however, the most important is knowledge of the chemical and 
physical characteristics of a substance and the route of it administration. Maternal 
and neonatal biological materials reflect exposures that occur over a specific time 
period, and each of these biological specimens has different advantages and disad-
vantages, in terms of accuracy, time window of exposure and cost/benefit ratio.

Sampling the placenta may be the most important biomonitoring choice for 
assessing in utero exposure to addictive substances. The use of the placenta in sci-
entific research causes a minimum of ethical problems, partly because its sampling 
is noninvasive, causes no harm to mother or child, and partly because, in any case, 
placentas are discarded and incinerated after birth. Such samples, when properly 
analyzed, may provide key essential information about fetal exposure to toxic 
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substances, and may provide the groundwork for protecting the fetus or newborn 
and the mother from further damage.

Several sensitive and specific bioanalytical methods are commonly utilized to 
accurately measure for drug biomarkers of in utero drug exposure. Moreover, sev-
eral immunoassay methods are used to rapidly screen for drugs in many biological 
specimen types. However, results from immunoassays should be carefully inter-
preted, and should be confirmed by more specific and sensitive chromatographic 
methods, such as GC-MS or LC-MS. Although techniques for analysis of addictive 
substances are still being developed or are being refined, current methods are effi-
cient and sensitive and provide valuable information on human exposures to addic-
tive substances and their metabolites.
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1  �Introduction

The introduction of toxic substances into the environment by anthropogenic or 
natural activities is widespread and causes significant perturbation. Therefore, 
increasing attention has been focused on better understanding the long-term eco-
logical effects of chronically exposed populations, communities, and ecosystems. 
The increased understanding of such effects has resulted not only from enhanced 
biomonitoring activities but also from developing new toxicity and ecotoxicity data 
for various species.

Genetic Structure and Diversity of Animal 
Populations Exposed to Metal Pollution

Patricia Mussali-Galante, Efraín Tovar-Sánchez, Mahara Valverde,  
and Emilio Rojas

P. Mussali-Galante • M. Valverde • E. Rojas (*) 
Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones 
Biomédicas, Universidad Nacional Autónoma de México, México, D.F. CP 04510, Mexico
e-mail: emilior@servidor.unam.mx 

E. Tovar-Sánchez 
Departamento de Sistemática y Evolución, Centro de Investigación en Biodiversidad y 
Conservación, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001,  
Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico

Contents

1  Introduction......................................................................................................................... 	 79
2 � Implications of Metal Toxicity on Population Genetics..................................................... 	 81
3 � Genotoxic Effects Versus Genetic Changes Caused by Natural Processes........................ 	 82
4 � Population Genetic Responses to Environmental Metal Stress.......................................... 	 84
5 � Genetic Markers for Assessing Genetic Variability  

in Environmentally Impacted Populations.......................................................................... 	 95
6 � Use of Sentinel Organisms for Genetic Ecotoxicological Studies...................................... 	 97
7 � Conclusions and Future Perspectives.................................................................................. 	 98
8 � Summary............................................................................................................................. 	 100
References................................................................................................................................. 	 101



80

Genetic change in exposed populations is one of the more subtle effects of envi-
ronmental exposures, and has potentially large, long-term effects (Van Straalen and 
Timmermans 2002). Thus, there are benefits for monitoring the genetic patterns of 
wild populations for assessing environmental impacts in natural systems (Belfiore 
and Anderson 1998; Medina et al. 2007).

Metals are among the most common substances released into the environment, 
and these compounds can have a profound effect on living organisms (Guttman 
1994; Bickham et al. 2000; EPA 2000; Dimsoski and Toth 2001; Theodorakis 2001; 
Moore et al. 2004; WHO 2007; Tremblay et al. 2008). This is under-scored by the 
fact that metal-induced effects are among the top ten concerns of the US 
Environmental Protection Agency (EPA 2000). Metals affect natural populations in 
many ways. Genetic changes are one of the most important alterations that may 
occur, and when they occur, they are capable of disrupting the genetic equilibrium 
at all levels of biological organization.

Genetic structure represents the rearrangement of allelic and genotypic frequen-
cies of populations and represents how genetic variation is distributed within and 
among populations. Evolution and the maintenance of genetic structure in space and 
time are dependent on natural selection forces, genetic drift, mating systems, recom-
bination, mutations, and gene flow (Loveless and Hamrick 1984; Coutellec and 
Barata 2011). In addition to these evolutionary forces, how genetic variation is dis-
tributed within and among populations is determined by exterior factors, such as 
ecological phenomena, particularly habitat disturbance and fragmentation, and life 
history traits of the species (Barret and Khon 1991). Ecological disturbances may be 
of natural (e.g., geologic processes, volcanic eruptions, and fires) or anthropogenic 
(e.g., agricultural practices, mining, and other industrial activities) origin.

Genetic ecotoxicology is the study of xenobiotic-induced changes in the genetic 
material of natural biota. Direct alterations to genes and gene expression may occur 
from exposures, or the pollutants may induce selective effects on gene frequencies 
(Anderson et al. 1994). In this context, contaminant-induced selection and genetic 
bottlenecks are mechanisms by which the genetic structure of populations can 
become altered. Both factors may affect the adaptive ability of a contaminant-
exposed population and may have consequences at the community and ecosystem 
levels (Gillespie and Guttman 1989; Theodorakis et al. 2000; Harper-Arabie et al. 
2004; Athrey et al. 2007; Brown et al. 2009). Consequently, changes in diversity 
and genetic structure parameters may be used as bioindicators of ecosystem health, 
which is defined as a comprehensive, multiscale, dynamic, hierarchical measure of 
system resilience, organization, and vigor (Ehrenfeld 1992).

Although numerous studies address the ecotoxicity of metals, few have addressed 
the topic of genetic ecotoxicity. Among studies that have focused on environmen-
tally stressed populations and their genetic population-level responses, two princi-
pal approaches have been utilized. In the first approach, genetic or molecular 
non-neutral markers are identified that are linked to resistance or sensitivity to envi-
ronmental stressors, or a combination of both stressors, in select species. In the 
second approach, changes in genetic diversity parameters are addressed in the 
exposed populations, by using neutral molecular markers, such as allozymes, mito-
chondrial DNA analyses, RAPDs (random amplified polymorphic DNA), SSRs 
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(single sequence repeats) or microsatellites, and AFLPs (amplified fragment length 
polymorphic DNA) (D’Surney et al. 2001; Hoffman and Daborn 2007).

In this review, we endeavor to summarize the key work that has been performed 
to assess the effects of metals on the genetic pattern of several organisms; these 
effects are often a result of metal-induced environmental stress on natural animal 
populations. In genetic ecotoxicology, it is important to recognize the differences 
between genetic changes that are due to genotoxic or mutagenic mechanisms of 
action, genetic alterations due to ecological processes, such as genetic drift and 
bottlenecks, and environmental changes that alter genetic variability in natural pop-
ulations, in terms of allele frequencies, heterozygosity levels and gene flow. 
Additionally, we address the potential relationship between exposure to chemical 
agents and changes in genetic structure, and the possible long-term consequences of 
chronically exposed populations. Another issue that we address is the use of sentinel 
species that are, or may be adequate to study genetic ecotoxicological questions.

Finally, we reach conclusions and make suggestions on what is required to 
strengthen this area of research, and we also propose a new class of biomarkers, 
termed “biomarkers of permanent effect.” These biomarkers are useful tools to esti-
mate ecosystem health through the evaluation of changes in structure and genetic 
diversity of the exposed populations.

2  �Implications of Metal Toxicity on Population Genetics

Metals are among the most toxic elements to nearly all living organisms (EPA 2000; 
WHO 2007). The relationship between metal toxicity and a plethora of effects in 
living organisms is well established. Studies of populations exposed to metals in 
occupational or environmental settings were among the first to establish a quantita-
tive relationship between effects and external exposure and/or internal dose received 
(Bernard 2008). The field of genetic toxicology is usually regarded as the study of 
the mechanisms of action of xenobiotics as regards their effects on DNA. The goal 
of research in this area is to assess the genetic-related risks posed to individuals by 
xenobiotics capable of inducing adverse health effects. For many years, studies in 
this field were focused on the effects of acute exposures to single toxicants at high 
doses. However, in genetic ecotoxicology, threats to populations and communities 
arising from chronic exposures to mixtures of chemical agents at lower doses (real-
istic exposures) are also of potential concern (Depledge 1994). Thus, establishing 
links between the molecular and cellular effects of metals and their possible conse-
quences at higher levels of biological organization becomes truly necessary when 
attempting to understand population level responses to chemicals, such as metals. 
Bickham and Smolen (1994) defined the term “emergent effects.” The research 
results they report explains that although the damage from xenobiotic exposure is at 
the cellular or subcellular levels, emergent effects are observed at higher levels of 
biological organization. However, the effects produced are not predictable by 
merely knowing the mechanism of action of the chemical agent in question. 
Therefore, these higher-level effects can be assessed in wild animal populations 
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only by using ecological indicators, such as shifts in the genetic pools of popula-
tions chronically exposed to environmental pollutants.

Because genetic variation is the basis for biodiversity and evolution (Duan et al. 
2001; Medina et al. 2007), and because the loss of genetic variability may be perma-
nent (depending on the population size and mutation rates), investigating how chemi-
cals exert their effects on the genetic pool in exposed populations (changes in genetic 
structure) is a priority in environmental biomonitoring and conservation programs.

Various authors (Van Straalen 1999; Van Straalen and Timmermans 2002; Maes 
et al. 2005) have described ways in which chemical agents may alter the genetic 
variability of an exposed population, to wit: (1) toxicants can be genotoxic (i.e., they 
directly or indirectly alter the DNA molecule) or mutagenic (i.e., they increase 
mutation rates). Genotoxic substances can affect different DNA repair processes by 
interacting with the key enzymes responsible for DNA damage repair, and thereby 
increase mutation rates; (2) toxicants may favor more tolerant genotypes and/or 
eliminate intolerant genotypes, changing the genetic composition of the exposed 
population towards a higher mean tolerance; (3) toxicants may cause bottlenecks 
that reduce the size of a population; and (4) toxicants may alter exchange of migrant 
individuals among populations.

Therefore, studying genetic ecotoxicology endpoints are as important as many 
other endpoints when being employed to predict the risks of populations exposed to 
pollutants.

3  �Genotoxic Effects Versus Genetic Changes Caused  
by Natural Processes

Understanding how contaminants affect population genetic parameters may provide 
key insights about the consequences of exposure at the population level of the ana-
lyzed species. Therefore, studying the genotoxic effects of metals should become a 
routine and vital component of ecotoxicology, along with performing biomonitor-
ing and ecological risk assessment (Theodorakis 2001; Benton et  al. 2002; 
Gardeström et al. 2008).

To achieve this goal, it is important to delineate between genetic changes that 
result from genotoxic exposure and genetic alterations that are a result of: evolu-
tionary forces, different mating systems, ecological factors or species life history 
traits, environmental changes that alter the genetic variability in natural populations 
in terms of allele frequencies, or heterozygosity levels and gene flow.

DNA damage from, for example, the formation of DNA adducts, base pair modi-
fications, DNA strand breaks, and chromosome rearrangements are among the most 
common biomarkers of early adverse effects from toxic exposure. These insults 
may have serious consequences on the health of the population. If these alterations 
occur in somatic cells, a number of immediate effects may occur, such as cell death, 
or the accumulation of mutations and/or transformation into a malignant phenotype 
(Weinstein 1988). DNA damage in somatic cells can reduce the longevity of the 
individual (Agarwal and Sohal 1994), alter the age structure of the population 
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(Theodorakis 2001), modify the size of the individual (individual size has 
implications for survival, fecundity, bioenergetics, and behavior; any perturbation in 
size structure has the potential to induce effects at the population level or above) or 
alter the sex proportion of the population (there may be gender-related responses to 
DNA damage) (Scheirs et al. 2006).

Because the DNA molecule is the unit of inheritance, DNA alterations (mutation 
and translocation) in germ cells can be passed to the next generation, causing tera-
togenicity, low viability, low fertility, and low reproductive success. Higher muta-
tion rates produce damaging effects and may lead to a decrease in the average fitness 
of the population (Anderson et  al. 1994; Guttman 1994; Belfiore and Anderson 
1998; Bickham et al. 2000; Yauk et al. 2000; Theodorakis 2001; Maes et al. 2005; 
Medina et al. 2007; Gardeström et al. 2008). Therefore, because genotoxic altera-
tions in somatic cells are numerous and affect adults, they affect the current popula-
tion, whereas germ cell mutations from genotoxic stress, although less numerous, 
may affect future generations and have long-term effects. Hence, alterations in both 
cell types potentially affect the genetic composition of populations in multiple ways 
(Bickham and Smolen 1994; Belfiore and Anderson 1998; Yauk et  al. 2000; 
Bickham et al. 2000) as depicted in Fig. 1.

The use of population genetic tools to analyze the effects of contaminants on a 
species is difficult and requires an extraordinarily detailed experimental design. To 

Fig. 1  Schematic representation of the relationships between the processes leading to decreased 
genetic diversity in animal populations exposed to metal pollution. Modified from Guttman (1994), 
Theodorakis (2001), and Staton et al. (2001)
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discriminate between chemically-induced versus natural process-induced altera-
tions in the genetic composition of natural populations, many authors (Endler 1995; 
Belfiore and Anderson 1998; Baker et  al. 2001; Staton et  al. 2001) have made 
recommendations to enhance the robustness of experimental design. First, using 
multiple reference sites along with multiple experimental sites is recommended 
(Ross et al. 2002). Second, correlating observed genetic effects with biomarkers for 
internal doses (i.e., contaminant levels in organs or tissues) and external exposures 
(i.e., levels of contaminants in air, soil, and water) is suggested. Third, it is recom-
mended that site sampling be performed over time to establish the patterns resulting 
from non-contaminated factors, such as revolving ecological conditions and popula-
tion cycles. To assess relationships between contaminant exposure and changes in 
genetic patterns, gradient effects should be evaluated (De wolf et al. 2004; Bourret 
et al. 2008; Durrant et al. 2011). Additionally, the use of biomarkers to detect early 
effects, such as different types of DNA damage, which are indicative of exposure to 
genotoxic contaminants in somatic cells and germ cells, should be used to deter-
mine the relationship between DNA damage and population genetic responses 
(Belfiore and Anderson 1998; Theodorakis 2001; Benton et al. 2002; Ross et al. 
2002; Moore et  al. 2004). Moreover, biomarkers should be chosen that reflect 
changes in the fitness of an organism (e.g., premature death, ability to mate, fecun-
dity, viability of offspring) because these changes can have the greatest influence at 
the population level (Evenden and Depledge 1997).

Chen and Hebert (1999) suggested using molecular and phylogenetic tools to 
analyze the mutations via a technique termed “terminal branch haplotype analysis.” 
A mutation originating from natural processes or one that is chemically induced 
should exhibit a low frequency, and its nucleotide sequence should differ by only 
one base pair from its more common ancestral haplotype. The analysis of nucleotide 
sequences should identify any new haplotypes originating at the branch tips of the 
phylogenetic tree. The variants that branch more deeply within the tree or differ by 
more than a single base substitution from the closest related haplotype are most 
likely the result of gene flow from close populations. This method could prove use-
ful for studies that use population genetic analysis as a toxicological investigation 
tool (Bickham et al. 2000; Theodorakis 2001; Theodorakis et al. 2001). In addition 
to obtaining information about the effects of chemical agents on genetic diversity, 
the foregoing approaches may provide additional information on how dispersal and 
migration patterns influence the biological effects caused by contamination 
(Theodorakis 2001; Eeva et al. 2006; Gardeström et al. 2008).

4  �Population Genetic Responses to Environmental  
Metal Stress

Population genetic responses to chemical exposures, especially metals, can have a 
profound effect on the genetic variability of chronically exposed populations. These 
responses are driven in two general directions: increased genetic variation resulting 
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from new mutations induced directly by the genotoxic agent(s), or decreased genetic 
variation resulting from population processes, such as bottlenecks or selection that 
will also alter allele and genotype frequencies in these populations. In both cases, 
the changes in genetic variation may result from adaptation to polluted environ-
ments (Bickham et al. 2000; Berckmoes et al. 2005; Maes et al. 2005; Gardeström 
et al. 2008; Durrant et al. 2011).

Since the year 2000, 33 studies were reported in the Hermes, PubMed and Biological 
abstracts databases, in which the genetic structure and diversity of animal populations 
exposed to metals were analyzed. Of these studies, nine were review articles (Bickham 
et  al. 2000; Clements 2000; Belfiore and Anderson 2001; Staton et  al. 2001; 
Theodorakis 2001; Van Straalen and Timmermans 2002; Medina et al. 2007; Morgan 
et al. 2007; Hoffmann and Willi 2008), and 24 were original research reports. Among 
these original reports, 15 aquatic and ten terrestrial ecosystems were examined.

In the aquatic ecosystem studies that were performed, 15 different species were 
analyzed, and a decrease in the genetic diversity of the exposed species was reported 
in ten of the publications. In contrast, no effects of metal pollution on the genetic 
diversity patterns of the exposed populations versus the reference population were 
reported in four of the studies.

A decreased genetic diversity in the exposed species was reported for the major-
ity of the studies (73.3%). In contrast, metal pollution had no effect on the genetic 
diversity patterns of the exposed populations versus the reference population in four 
aquatic species (26.7%) (Table 1).

In the studies performed on terrestrial ecosystems, ten different species were 
analyzed, and decreased genetic diversity was reported for 40% of these exposed 
species. In addition, 40% of the exposed species exhibited increased genetic diver-
sity, and genetic diversity was not affected by metal exposure in only two species 
(20%) (Table 1).

In the majority of the studies reviewed, mining activity, or processes related to 
mining constituted the source of the contamination. The most common metals 
found in the aquatic and terrestrial ecosystems were Cd, Zn, Cu, and Pb. However, 
the occurrence of these metals differed between the aquatic (Cd=Zn > Cu > Pb > Hg) 
and terrestrial (Cu > Cd > Pb > Zn > Ni) environments (Table 1).

Among the molecular markers used to assess the genetic diversity in the impacted 
populations, microsatellite markers were used (29.6%) most frequently, followed 
by allozyme electrophoretic techniques (25.9%), RAPD markers (18.5%), mito-
chondrial DNA analysis (14.8%) and other molecular markers (minisatellite muta-
tions, electrophoretic analysis, and AFLP) (11.1%) (Table 1).

In general, most of the aquatic ecosystem studies performed during the last 
decade disclosed that reduced genetic diversity occurred in the animal populations 
exposed to a single metal or a mixture of metals; however, this pattern became less 
clear when terrestrial ecosystems were analyzed (Table 1).

Among the reported studies, very different animal populations (from copepods 
to wild birds), environments (aquatic vs. terrestrial), exposure conditions (single or 
metal mixtures), types of metals, and degrees of disturbance (intensity, duration of 
exposure, affected area, and magnitude) were analyzed. Because the large number 
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of variables makes comparisons difficult, each study compared results with its own 
geographical reference site(s). In this review, we did not find means to make valid 
comparisons among studies on genetic diversity parameters.

There are many explanations for what causes reduced genetic diversity in exposed 
populations. Genotypic selection may affect genetic change at the population level. 
In addition, changes in population size may produce genetic bottlenecks and possi-
bly genetic drift of the population. Finally, changes in the demographic patterns and 
reduced migration rates may reduce the genetic diversity (Van Straalen and 
Timmermans 2002). Therefore, ecological processes, such as bottlenecks resulting 
from the genotoxic effects of metals, the selection of tolerant and the elimination of 
intolerant genotypes, or the reduction in offspring that contribute to the next genera-
tion may lead to a decrease in the genetic variation within populations that are 
chronically exposed to polluted environments. Because genetic variability is the 
basis for adaptation by natural selection, it is generally accepted that the loss of 
genetic variability makes it more difficult for a population to adapt to future environ-
mental changes. Any reduced variation can lead to an increased extinction rate 
(Anderson et al. 1994; Bickham et al. 2000; Tremblay et al. 2008) (Fig. 1).

The loss of genetic diversity in populations subjected to anthropogenic stress is 
referred to as “genetic erosion” and this may be a factor of concern in assessing the 
risk of toxic chemicals (Van Straalen and Timmermans 2002). Fratini et al. (2008) 
and Ungherese et al. (2010) validated the use of molecular markers in genetic stud-
ies to support the “genetic erosion hypothesis,” by showing that metal contamina-
tion has negative influences on genetic diversity. In contrast, Eeva et  al. (2006) 
reported increased genetic variation in populations impacted by metal pollution. 
The free-living insectivorous passerine (P. major) populations living near a smelter 
exhibited statistically higher nucleotide diversity than did a reference population in 
an unpolluted site, suggesting that high mutation rates occur in contaminated envi-
ronments. Additionally, Peles et al. (2003) reported higher levels of heterozygosity 
in an exposed population compared with the reference population. The report 
showed that the percentage of earthworms (Lumbricus rubellus) in the highest het-
erozygosity class was four times higher in the exposed than in the reference popula-
tion. Bourret et  al. (2008) assessed the level of heterozygosity, allelic richness, 
diversity, and internal relatedness (IR), a measure of individual genetic diversity in 
yellow perch (Perca flavescens) populations. A negative correlation was observed 
between each of the genetic diversity parameters and the metal concentrations. In 
contrast, the levels of IR indicated that the more contaminated individuals were 
genetically more diverse than the less contaminated individuals in both the contami-
nated and reference populations. These results suggest that the less inbred perch 
were more tolerant to metal contamination under certain circumstances. The authors 
explained that, under these circumstances, one would predict that individual fitness 
will increase with individual genetic diversity, and consequently, the selective pres-
sures exerted by Cd contamination should favor the maintenance of higher genetic 
diversity within the contaminated populations.

Reports of increased genetic diversity in exposed populations support the hypoth-
esis that the vast majority of mutations that negatively affect fitness are expected to 
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be deleterious; an increased mutation rate of a population will also increase its 
mutational load. Additionally, several field studies have demonstrated that muta-
tions accumulate more rapidly in environments that are more polluted (Yauk and 
Quinn 1996; Clements 2000; Rogstad et al. 2003; Gardeström et al. 2008; Peles 
et al. 2003). Therefore, it is expected that populations that are chronically exposed 
to pollutants will likely experience a steady decrease in fitness from an increasing 
mutational load, which ultimately has the potential to drive a population to extinc-
tion (Lynch et al. 1995).

Because individual fitness should increase with an individual’s genetic diversity, 
another possible scenario is based on the assumption that selective pressures favor 
more genetically diverse populations. Thus, contaminated populations may contain 
higher levels of genetic diversity (Bourret et al. 2008).

When using different genetic diversity endpoints, variable results (e.g., increased 
or decreased genetic variability) can be explained in a variety of ways:

	1.	 Differences in response to environmental stress have been attributed to species 
susceptibility; as stated earlier, different responses to stress among populations 
of a single species have been documented to occur (Diamond et al. 1991; Eeva 
et al. 2006). Moreover, different species in the same polluted environment pro-
duce diverse results, which have been attributed to differences in species metab-
olism (Eeva et al. 2006).

	2.	 Populations that belong to different ecosystems (terrestrial vs. aquatic) will 
exhibit different responses, mainly because the routes of exposure and the bio-
availability of metals are different between the systems.

	3.	 The use of different techniques to analyze the genetic parameters can produce 
different results. The majority of researchers have examined genetic variation 
using microsatellite markers and at allozyme loci. As stated previously, many 
microsatellite loci are considered to be one of the best molecular markers (Yauk 
and Quinn 1996; Athrey et al. 2007; Tremblay et al. 2008); their high mutation 
rates and high variability make them one of the most sensitive markers for ana-
lyzing genetic variability within and between populations that were exposed to 
different concentrations of genotoxins. Additionally, the quantification of the 
genetic variation at allozyme loci using electrophoretic techniques is the second 
most frequently used method. Most allozyme studies emphasize the impacts of 
heavy metals on allozyme diversity in aquatic organisms, because of the exten-
sive pollution of aquatic ecosystems with metals, and because there is evidence 
of many metals inhibiting or altering enzymatic activities (Nevo et  al. 1983; 
Benton et al. 2002; Keane et al. 2005; Maes et al. 2005). The results from studies 
of mosquito fish (Chagnon and Guttman 1989; Diamond et al. 1989; Newman 
et  al. 1989; Roark et  al. 2001) and aquatic invertebrates (Nevo et  al. 1978; 
Battaglia et al. 1980; Gillespie and Guttman 1989; Patarnello et al. 1991; Ma 
et al. 2000; Benton et al. 2002; Kim et al. 2003; Keane et al. 2005; Maes et al. 
2005; Gardeström et al. 2008) suggest that genotypic frequencies at allozyme 
loci are affected by contaminant exposure, although there is not a unique response 
pattern. Single metals and mixtures of metals may elicit different responses 
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among the array of genotypes at a locus and among populations of a single spe-
cies (Diamond et al. 1991; Lee et al. 1992). However, because the genetic pool of 
a population is constantly modified by natural processes, such as mutations, gene 
flow, genetic drift, and natural selection, the cause–effect relationships between 
genetic alterations measured using molecular markers and environmental stress 
are difficult to establish using organisms collected in the field (Medina et  al. 
2007). Thus, different techniques may yield different results.

	4.	 The chemical agents under investigation can also affect the results. Heavy metals 
have numerous mechanisms of action. Their toxicological properties vary 
depending on the compound, concentration, route of exposure, type of exposure 
(mixtures or single agents) and metabolism. Thus, results may vary because of 
the metal or metal-mixture analyzed. Moreover, it is important to consider that 
responses to metal stress may be influenced by other classes of chemical agents 
(e.g., polycyclic aromatic hydrocarbons) that may also occur in polluted environ-
ments. In such cases, reciprocal interactions, cascades, and indirect mechanisms 
can enhance or suppress the expected responses (Benedetti et al. 2007).

A number of researchers, who published the papers outlined in this review, mea-
sured metal concentrations in soil or water but did not measure the internal dose of 
the metals in tissues or organs of the exposed individuals (Duan et al. 2001; Peles 
et al. 2003; Berckmoes et al. 2005; Haimi et al. 2006; Jordaens et al. 2006; Matson 
et al. 2006; Athrey et al. 2007; Gardeström et al. 2008; Durrant et al. 2011). Internal 
metal concentrations may not have been measured because small body size (of the 
organisms involved) may have made such measurements difficult. In other studies, 
the internal dose, but not the external dose, was measured (Benton et al. 2002; Maes 
et al. 2005; Eeva et al. 2006; Bourret et al. 2008). However, both the internal dose 
and external doses were measured in several studies (Kim et al. 2003; Ungherese 
et al. 2010), although two of these studies do not specify the type of metals exam-
ined or the internal concentrations found (Ma et  al. 2000; Yauk et  al. 2000). 
Moreover, in the majority of the studies, the exposure conditions, such as the type 
and duration of the exposure, are not well characterized.

Despite these shortcomings, most authors report that metal-polluted environ-
ments affect the genetic structure of impacted animal populations. Bickham et al. 
(2000) suggested that the observed genetic effects are independent of the mechanism 
of action of the chemical agents involved. We think this assertion should be taken 
with caution, both because it is controversial and needs further analysis. Certainly, 
genetic structure effects may result from toxic exposures. However, it is yet to be 
established whether the accepted mechanism of toxic action of chemical agents are 
independent of observed genetic pattern effects for any given metal-exposed popula-
tion. From the available studies reviewed, it is clear that the authors of future genetic 
ecotoxicological studies should better describe the chemical agents under study, and 
better detail the exposure conditions (external and internal metal concentrations).

The majority of studies performed during the last decade that have assessed pop-
ulation genetic responses have demonstrated adverse effects. In particular, popula-
tions inhabiting environments with higher levels of contamination have exhibited 
lower genetic diversity and population differentiation, lower reproductive success, 
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reduced adaptive potential and lower fitness. Therefore, it appears that there is a 
potential association between metal contamination and changes in the genetic struc-
ture of exposed populations (Table 1). Unfortunately, there are only a limited num-
bers of such studies, in which the genetic diversity of terrestrial ecosystems impacted 
by metal pollution, have been analyzed.

5  �Genetic Markers for Assessing Genetic Variability  
in Environmentally Impacted Populations

The application of DNA sequencing and polymerase chain reaction-based technolo-
gies over the last 20 years has revolutionized the science of generating high through-
put genetic markers (D’Surney et al. 2001).

Molecular markers are observable traits (their expression indicates the presence 
or absence of certain genes) that play an important role in estimating the genetic 
diversity among individuals by comparing the genotypes at a number of polymor-
phic loci (Arif and Khan 2009). A number of molecular markers have been applied 
to genetic ecotoxicological research, including nuclear and mitochondrial DNA 
analyses, such as allozymes, restriction fragment length polymorphisms (RFLPs), 
SSRs, RAPDs, the DNA sequencing of mtDNA, and AFLPs (Table 1).

One of the oldest techniques used to assess genetic variability in natural popula-
tions is to analyze the electrophoretic shifts in the charge characteristics of enzymes 
produced by amino acid substitutions, namely allozyme analysis. The majority of 
allozymes exhibit codominant inheritance and the variants are attributed to nucleo-
tide substitutions that induce replacement of charged amino acids. This technique 
can detect one-third of amino acid substitutions. However, the generally low level 
of polymorphisms at allozyme loci often limits their resolving power for detecting 
population differences (Keane et al. 2005). Despite its limited resolution, allozyme 
analysis remains the simplest and most rapid technique for surveying genetic diver-
sity in single-copy nuclear genes (Bickham et al. 2000).

The RFLP method uses restriction enzymes to detect variations in the primary 
structure of DNA. The number of bases in the restriction site and the genome-based 
composition determine the number of restriction sites. RFLP probes are usually loci 
and alleles defined by a specific probe–enzyme combination (Lowe et al. 2004). 
These markers are codominant, and a major advantage of RFLP probes is that they 
make it possible to detect DNA and organelle DNA polymorphisms in total DNA 
extracts. In addition, RFLP results are highly repeatable, and large amounts of vari-
ation can be detected. However, the RFLP method requires large quantities of DNA 
and only a limited number of suitable nDNA markers are available. Moreover, the 
detection of RFLPs is expensive and time-consuming (Lowe et al. 2004).

SSRs are widely used to analyze for genetic structure and variability. SSRs are 
short tandem repeats of mononucleotide to tetranucleotide repeats, which are 
assumed to be randomly distributed throughout the nuclear and mitochondrial 
genomes. The SSR method detects length variations that result from changes in the 
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number of repeated units, and their mode of inheritance is codominant. Mutations 
in SSRs are high compared with other DNA markers. SSRs are regarded to be one 
of the best molecular markers (Yauk and Quinn 1996; Athrey et al. 2007; Tremblay 
et al. 2008), due to their high mutation rates and high variability, which make them 
sensitive markers for analyzing genetic variability within and between populations. 
Unfortunately, identifying SSRs is expensive and requires cloning and sequencing. 
Although SSR primer pairs appear to be species-specific, cross-species amplifica-
tion has been demonstrated, albeit with reduced variability being observed.

RAPDs utilize single decamer oligonucleotide primers to amplify regions of the 
genome by polymerase chain reaction (PCR). RAPD primers contain a random 
sequence and are relatively short, and many of them are used to sample the whole 
genome. Sites in the genome that are flanked by perfect or imperfect inverted repeats 
permit multiple annealing of the primers. The primer annealing sites occur through-
out the genome, from single-copy DNA sequences to multiple-copy DNA sequences, 
and in coding and noncoding regions. RAPDs are cheap, simple to use, require no 
sequence information, and a large number of putative loci can be obtained when 
using them. However, there are numerous disadvantages associated with these molec-
ular markers; RAPDs are dominant markers, meaning that they cannot distinguish 
heterozygotes from homozygotes at the phenotypic level, and their degree of repro-
ducibility is low. Additionally, the primer structure, product competition, product 
homology, allelic variation, genome sampling, and non-independence of the loci are 
examples of other weaknesses associated with this methodology (Lowe et al. 2004; 
Arif and Khan 2009). To overcome these disadvantages, modifications to the tech-
nique have been proposed, such as sequence characterized amplified regions (SCARs) 
and randomly amplified microsatellite polymorphisms (RAMPO) (Lowe et al. 2004).

One of the most powerful tools in modern molecular population genetics is the 
nucleotide sequence analysis of mitochondrial DNA (mtDNA) (Bickham et  al. 
2000). The mitochondrial protein-coding regions are regarded to be powerful mark-
ers for genetic diversity analysis. The most studied of the mitochondrial genes for 
genetic diversity analyses include cytochrome b (cyt b), NADH dehydrogenase sub-
unit 5, and mitochondrial cytochrome oxidase I (COI). Additionally, the highly 
polymorphic noncoding region of mtDNA, termed the control region (CR or 
D-loop), has been used in genetic diversity analyses because of its role in the repli-
cation and transcription of mtDNA. The D-loop region exhibits higher variation 
levels than the protein-coding regions because of the reduced functional constraints 
and the relaxed selection pressure. The advantages of the sequence approach include 
the ability to target different mitochondrial genes, thereby selecting for targets that 
have an appropriate evolutionary rate and higher resolution by revealing the nucleo-
tide sequence. Moreover, an advantage of the PCR-RFLP analysis of mtDNA is that 
homozygosity and heterozygosity values and allele/genotype frequencies can be 
determined for the genetic loci analyzed (Bickham et  al. 2000; D’Surney et  al. 
2001; Arif and Khan 2009).

AFLPs are multilocus markers that involve the selective amplification of a subset 
of restriction fragments generated by the digestion of DNA with restriction enzymes, 
followed by ligation to specific adapters. Similar to RAPDs, these markers are 
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dominant, although codominant AFLP markers may be detected because of small 
insertions or deletions in the restriction fragments (Lowe et al. 2004; Arif and Khan 
2009). Compared with RAPDs and SSRs, AFLP markers can generate ten times the 
number of potential markers per genome (D’Surney et al. 2001). Comparing the 
results obtained from using SSRs, mtDNA, or AFLPs (Lucchini 2003) suggests that 
AFLPs could be very useful for evaluating genetic diversity. Because they are easily 
amplified in any species, AFLP markers may prove to be a valuable tool for estimat-
ing genetic diversity in animal populations.

All of the aforementioned molecular markers have applications in genetic eco-
toxicology studies. Because none of the markers is ideal, marker choice should be 
based on the hypothesis that is being tested, the properties of the marker system, the 
organism under investigation, and the resources that are available for the research 
project.

6  �Use of Sentinel Organisms for Genetic  
Ecotoxicological Studies

An important step in establishing links between pollution effects and population 
level responses is the utilization of sentinel organisms or bioindicator species. 
Sentinel organisms are a set of taxa that can be utilized to survey locales for 
increased mutation stressors (Yauk and Quinn 1996).

A variety of organisms have been studied for their potential to be biological indi-
cators of different forms of chemical pollution. Certain species are known to be 
highly sensitive, either in their physiological response to contaminants, or by their 
ability to accumulate metals in a dose-dependent manner. These organisms respond 
to the environmental stress caused by one or more pollutants by changing their mor-
phology and/or metabolism, and the nature of such changes are observable and 
measurable. For bioindicators to be sensitive, it is often necessary that the xenobi-
otic of interest be accumulated (Markert et al. 1999).

In many cases, sentinel species are used to assess risk to species that may be 
closely related evolutionarily or may occupy a similar niche within an ecosystem. In 
general, many species of wild animals (especially aquatic organisms) have been 
used as sentinel organisms in ecotoxicological studies with metals. Examples of 
sentinel species include mosquitofish (Gambusia affinis) (Roark et al. 2001), many 
isopod species, copepods, and gastropods (Ross et  al. 2002; Storelli and 
Marcotrigiano 2005; Gardeström et  al. 2008), earthworms (Lumbricus rubellus) 
(Peles et al. 2003), many nematode species (Ekschmitt and Korthals 2006), zebra 
mussels (Dreissena polymorpha) (Sues et al. 1997), garden snails (Helix aspersa) 
(Nedjoud et al. 2009), various species of sea birds (Burger and Gochfeld 2004), two 
crayfish species (Austropotamobius pallipes and Pacifastacus leniusculus) (Antón 
et al. 2000), and many species of prawns, mussels, and oysters (Ma et al. 2000; Ross 
et al. 2002; Storelli and Marcotrigiano 2005).
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Although they are key components of ecosystems and occupy a variety of niches, 
few small mammalian species have been used as sentinel organisms. Small mam-
mals are however attractive sentinel organismal candidates, because they are impor-
tant nutrient recyclers, influence plant and insect communities, and serve as prey for 
numerous predators (Levengood and Heske 2008). Several adverse effects have 
been documented to occur in small mammals after chronic exposure to metals. 
Among these effects are teratogenesis, genotoxic-related diseases, and reproductive 
alterations (Baranski 1987; Talmage and Walton 1991; Sunderberg and Okarsson 
1992; Eisler 1997; Husby et al. 1999; Bisser et al. 2004).

Other factors that make small mammals ideal for studying pollution effects are 
their wide geographical distribution and abundance, the fact that adults remain 
established in the same localized area, they exhibit generalized food habits, short 
life spans, and high reproductive rates, and they are easily captured (Talmage and 
Walton 1991; Pascoe et al. 1994; Laurinolli and Bendell-Young 2006; Levengood 
and Heske 2008). Moreover, small mammals play an important role in food chains 
and are considered to be intermediates for metal transfer to higher trophic levels 
(Talmage and Walton 1991; Levengood and Heske 2008). In addition, mammals 
accumulate metals in their tissues when they live in or near smelters (Anthony and 
Koslowski 1982; Smith and Rongstad 1982; Beyer et  al. 1985; Ma et  al. 1991; 
Beyer and Storm 1995; Levengood and Heske 2008), mine tailings (Cooke et al. 
1990; Laurinolli and Bendell-Young 2006), and metal-processing industries 
(Johnson et al. 1978; Kisseberth et al. 1984).

Another advantage of using small mammals as sentinel species is our knowledge 
of their genome, which permits developing more than 100 polymorphic microsatel-
lite markers (Mullen et al. 2006) to evaluate genetic structure parameters.

Many organisms are exposed to complex mixtures of contaminants that represent 
a broad spectrum of different compounds. Consequently, it is likely that, when com-
pared with humans, many animal species have far higher exposure to these sub-
stances (Hebert and Murdoch-Luiker 1996), and therefore may be ideal models for 
surveys that attempt to quantify genotoxic, mutagenic, or ecotoxicological effects.

If we are to successfully predict ecosystem health effects, a multispecies approach 
for selecting sentinel organisms (different types of sentinels) is needed, and is more 
suitable for studying pollutant effects above the population level.

7  �Conclusions and Future Perspectives

The greatest challenge in genetic ecotoxicology is to demonstrate a convincing link 
between contaminant effects and responses at higher levels of biological organization. 
The studies that have assessed biomarkers of genetic diversity in animal populations, 
as they relate to ecosystem health, are limited in number, and most of the information 
derived from such studies has focused on aquatic ecosystems. Moreover, a clear rela-
tionship between contaminant effects and population-level responses are often lack-
ing, as are mechanistic explanations. Thus, the results of many studies demonstrate 
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correlation but not causation, which suggests that despite the fact that metal contami-
nation is present, other factors are causing the differences in the mutation rates.

The goal is to ensure reproducible and reliable results, and to produce more accu-
rate data for providing a deeper understanding of the relationship between metal 
exposure and alterations in the genetic diversity of impacted populations. To achieve 
this, we suggest that researchers include the following parameters in each future 
study they perform whenever possible:

	1.	 Describe the chemical nature of each pollutant in detail. In addition, the metal 
concentrations that appear in soil, air or water must be assessed. It is also essential 
to identify each of the metals involved in an exposure, rather than only referring 
to “metal mixtures” or “sites with heavy metal pollution.”

	2.	 Supplement any ecotoxicology data on populations with data at the community 
and ecosystem level. Such data are important because indicators at different lev-
els of biological organization provide different types of information essential to 
achieving a more robust ecological risk assessment (Clements 2000). The use of 
biomarkers for ecotoxicological studies has become a matter of priority and 
should be strengthened. It is particularly important in future studies to employ 
biomarkers for better assessing internal doses (metal concentration in tissues, 
organs, or biological fluids), early effects (genotoxicity assays), and susceptibil-
ity (genetic polymorphisms) in both somatic and germ cells. Integrating bio-
markers into genetic ecotoxicology surveys will provide solid evidence of the 
ecological effects of pollution, because they may reflect metal bioaccumulation 
levels that exist in the population. Because of their prognostic properties, bio-
markers are also useful for linking alterations at molecular and cellular levels 
with ecologically relevant responses.

	3.	 Expand the use of sentinel organisms by utilizing different species in future stud-
ies. Many of the major principles underlying molecular or population genetic 
processes are conserved across all five kingdoms of living organisms. Therefore, 
it is feasible to extrapolate ecological effects that occur in a selected few species 
of model organisms (Theodorakis 2001), especially sentinel organisms, to all 
organisms. Moreover, using several sentinel organisms, a “multispecies 
approach,” would enhance the ability to extrapolate results to higher levels of 
biological organization.

	4.	 Under field conditions, the experimental design should include gradients of envi-
ronmental metal contamination with several reference sites, in order to enhance 
the ability to identify cause–effect relationships.

	5.	 Increase sampling of reference populations that are in close proximity to exposed 
populations. Such research will increase the possibility that the observed changes 
in the genetic structure and diversity of the exposed population are the result of 
exposure to a polluted environment. Sampling in close geographical proximity 
reduces the possibility that the observed changes between or among populations 
will result from phylogeographic processes.

	6.	 Expand the use of genetic structure parameters to infer the fate of exposed popu-
lations. Bickham et  al. (2000) suggested that, “because population genetic 
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changes are expected to be independent of the mechanisms of toxicity, and sensi-
tive indicators of transgenerational effects, they represent the ultimate biomarker 
of effect.” Because genetic changes, especially the loss of genetic variability, 
might be permanent (depending on the population size and mutation rates) once 
variability is lost, the population cannot recover to what it was before the envi-
ronmental impact. Furthermore, strong evidence suggests that genetic population 
diversity may be a useful biomarker of ecosystem health. For these reasons, 
those engaged in this emerging field of study should concentrate on finding new 
biomarkers, namely “biomarkers of permanent effect.” Genetic variability may 
be used as a “biomarker of permanent effect,” which we define as “measures of 
changes or alterations in biological or/and chemical processes that once altered 
will not recover or will not be the same as they were originally” (as in the case of 
loss of genetic variability), and will result in permanent effects on populations.

	7.	 Seek opportunities to move ecotoxicology and biomarker research toward a more 
holistic approach (Chapman 2002). One such opportunity is to utilize the power 
of genomics as a tool to improve the understanding of toxicant impact on natural 
populations. In this context, “ecotoxicogenomics” will benefit from the applica-
tion of high-throughput technology, in which changes in the expression of hun-
dreds to thousands of genes (genomics), proteins (proteomics), and metabolites 
(metabolomics) are assessed simultaneously. Such methodologies add value to 
classical whole-organism testing methods, because they provide information on 
the molecular basis of exposure, and act as “early warning” signs that permit both 
more accurate classification of chemical exposures, and better prediction of the 
mode of action and the development of novel biomarkers. These approaches are 
addressed in a number of recent publications (Poynton et  al. 2007; Watanabe 
et al. 2008; Roh et al. 2009; Villenueve et al. 2012). Moreover, these methods 
provide a better understanding of how to extrapolate data from the laboratory to 
the field and from a few sentinel species to the whole-ecosystem (Lee et al. 2008).

Finally, because genetic variability is the basis for adaptation by natural selection 
and is one of the pillars of biodiversity and evolution (Anderson et al. 1994; Van 
Straalen and Timmermans 2002), attention must be paid to understanding the effects 
of xenobiotic exposure. Moreover, just demonstrating genetic, biochemical or phys-
iological responses to toxicants may not be sufficient to protect wildlife from diver-
sity loss or extinction; rather, a real effort must be undertaken to discover their 
effects on populations, communities, and ecosystems. Expanded interdisciplinary 
research, along with more detailed study designs, will be required to resolve the 
complex genetic ecotoxicology issues posed by environmental pollution.

8  �Summary

Studying the genetic diversity of wild populations that are affected by pollution 
provides a basis for estimating the risks of environmental contamination to both 
wildlife, and indirectly to humans. Such research strives to produce both a better 

P. Mussali-Galante et al.



101

understanding of the underlying mechanisms by which genetic diversity is affected, 
and the long-term effects of the pollutants involved.

In this review, we summarize key aspects of the field of genetic ecotoxicology 
that encompasses using genetic patterns to examine metal pollutants as environmen-
tal stressors of natural animal populations. We address genetic changes that result 
from xenobiotic exposure versus genetic alterations that result from natural ecologi-
cal processes. We also describe the relationship between metal exposure and 
changes in the genetic diversity of chronically exposed populations, and how the 
affected populations respond to environmental stress. Further, we assess the genetic 
diversity of animal populations that were exposed to metals, focusing on the litera-
ture that has been published since the year 2000.

Our review disclosed that the most common metals found in aquatic and terres-
trial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence 
between aquatic (Cd=Zn > Cu > Pb > Hg) and terrestrial (Cu > Cd > Pb > Zn > Ni) 
environments were observed. Several molecular markers were used to assess genetic 
diversity in impacted populations, the order of the most common ones of which 
were SSR’s > allozyme > RAPD’s > mtDNA sequencing > other molecular markers.

Genetic diversity was reduced for nearly all animal populations that were 
exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in 
Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the 
pattern was less clear when terrestrial ecosystems were analyzed.

We propose that future research in the topic area of this paper emphasizes seven 
key areas of activity that pertain to the methodological design of genetic ecotoxico-
logical studies. Collectively, these points are designed to provide more accurate data 
and a deeper understanding of the relationship between alterations in genetic diver-
sity of impacted populations and metal exposures. In particular, we believe that the 
exact nature of all tested chemical pollutants be clearly described, biomarkers be 
included, sentinel organisms be used, testing be performed at multiple experimental 
sites, reference populations be sampled in close geographical proximity to where 
pollution occurs, and genetic structure parameters and high-throughput technology 
be more actively employed. Furthermore, we propose a new class of biomarkers, 
termed “biomarkers of permanent effect,” which may include measures of genetic 
variability in impacted populations.
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1  �Introduction

Bioaccumulation describes the process by which anthropogenic chemicals are taken up 
by organisms from their environment and diet and are subsequently assimilated and 
distributed into tissues (Arnot and Gobas 2003; Borgå et al. 2004; Mackay and Fraser 
2000). Thus, bioaccumulation is a central framework within ecotoxicology, because it 
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helps define the maximum concentration that can be achieved by an organism in its tis-
sues, relative to the exposure media, and helps determine the potential chemical dose/
toxicity experienced by an individual. Therefore, understanding the dynamic processes 
that regulate chemical bioaccumulation in animals is essential for protecting species, 
ecosystems, and ultimately human health (Arnot and Gobas 2004; Kelly et al. 2004).

The rationale for studying the bioaccumulation of persistent organic pollutants 
(POPs) derives mainly from the high potential some organisms (and associated food 
webs) have to bioaccumulate them. Several reviews have been published on the bio-
accumulation of POPs in biota, and the approaches used to model their bioaccumu-
lation (Barber 2003, 2008; Connell 1988; Gobas 1993a; Gobas and Morrison 2000; 
Mackay and Fraser 2000; Nichols et al. 2009; Selck et al. 2012; Thomann 1981; 
Thomann et al. 1992; Walker 1990). State of the art POP bioaccumulation models 
continue to evolve and now incorporate many diverse concepts. These concepts 
include: hydrophobicity-driven equilibrium partitioning (DeBruyn and Gobas 2007; 
Gobas et al. 1986; Hamelink et al. 1971; Mackay 1982, Neely et al. 1974; Veith et al. 
1979), bioavailability constraints related to chemical sequestration in abiotic organic 
and inorganic carbon matrices (Black and McCarthy 1988; Cornelissen et al. 2005; 
Lohmann et al. 2005), biomagnification related to chemical exposure from food, and 
complex food web feeding relationships (Alonso et al. 2008; Arnot and Gobas 2004; 
Borgå et al. 2012; Campfens and Mackay 1997; Gobas et al. 1993b; Morrison et al. 
1997; Thomann et al. 1992), and biological vectors as sources of POPs introduction 
to and from ecosystems (Ewald et al. 1998; Gregory-Eaves et al. 2007; Krummel 
et al. 2003). More recently, biological mechanisms across a given species’ life cycle 
have also been described (Hickie et al. 1999, 2005, 2007; Ng and Gray 2009; Sijm 
et al. 1992; Yordy et al. 2010; Zhao et al. 2007).

The focus of this review is to draw attention to a non-steady state, non-equilibrium 
mechanism of bioaccumulation, herein described as bioamplification. In this paper, 
we apply bioamplification to POPs. The term bioamplification has recently been 
coined to define the condition in which an organism loses body weight and chemical 
partitioning capacity at a faster rate than it can eliminate those chemicals (Daley 
et  al. 2009, 2011). This causes an increase in the chemical concentration in the 
organism and in its tissues, when concentrations are expressed on a wet weight 
basis. A much greater increase in the concentration of chemical occurs, when tissue 
residues are expressed on a lipid-normalized basis. Although the term bioamplifica-
tion has been used previously in ecotoxicology to describe mercury biomagnifica-
tion (Potter et  al. 1975), and is sometimes used as the French translation of 
biomagnification, the past use of this term has been largely superseded by “biomag-
nification” (Connolly and Pedersen 1988). Notably, bioamplification is mechanisti-
cally distinguished from other bioaccumulation mechanisms (e.g., bioconcentration 
and biomagnification, see Sect. 2 below) in that concentrations of chemical become 
enriched in the organism without a change in the chemical mass balance in the ani-
mal, or when the concentration enrichment exceeds the mass increase of a chemical. 
MacDonald et al. (2002) explained this process as being analogous to solvent deple-
tion and one of several mechanisms (e.g., biomagnification) that contributes to 
“amplification” of chemical residues in organism tissues. Although bioamplification 
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is an independent bioaccumulation process that interacts with both bioconcentra-
tion  and biomagnification processes, it is rarely acknowledged or specifically 
addressed in risk assessments or in the bioaccumulation modelling literature.

2  �Bioamplification as an Independent Bioaccumulation 
Mechanism

The POPs literature has classically defined bioaccumulation as being contributed to 
by two main processes: bioconcentration and biomagnification. Both of these pro-
cesses are individually defined by how chemical exposures to the animal occur (see 
below). The two processes are commonly distinguished from one another on the basis 
that bioconcentration is often modeled as an equilibrium partitioning process (Barber 
2003; Mackay 1982), whereas biomagnification is modeled as a non-equilibrium 
kinetic process (Gobas et al. 1988). For clarity, the differences between bioconcentra-
tion, biomagnification, and bioamplification are defined and described below.

Bioconcentration describes the diffusive transport of chemicals across respira-
tory surfaces (Barber et al. 1988; Barber 2003; Leblanc 1995; Neely et al. 1974). 
Through bioconcentration, the organism accumulates and eventually equilibrates 
with its respired media via respiratory exchange and can approach or achieve a 
chemical fugacity similar to its respired media (Di Toro et al. 1991; Landrum et al. 
2001). Chemical fugacity is defined by the criteria for establishing chemical equi-
librium in reference to both the chemical concentration and partitioning capacity of 
the sample (Mackay 1979; Schwarzenbach et  al. 1993). For biological samples, 
chemical fugacity (Pa) is calculated as the chemical concentration (Corg, mol/m3) 
divided by the equilibrium distribution coefficient for the chemical of interest 
between the sample and air (Zorg, mol/m3/Pa) (Mackay 1979; Mackay and Paterson 
1981). When the chemical fugacity is equal between two interacting environmental 
media, the samples are considered to be in equilibrium with one another. This con-
sideration of chemical equilibrium cannot be deduced by direct comparison of wet 
weight chemical concentrations. However, kinetic-based bioconcentration models 
can be used to describe the approach of chemical fugacity toward equilibrium in an 
organism relative to its respired media.

Equilibrium partitioning-based bioconcentration models have shown a high 
degree of success for predicting POP bioaccumulation in laboratory bioconcentration 
tests, when water is the predominant exposure route (Di Toro et al. 1991; Landrum 
et al. 2001; Mackay 1982; Meylen et al. 1999). Under field conditions, the equilib-
rium partitioning model appears to be best suited to negligibly biotransformed hydro-
phobic organic chemicals over a log KOW range of approximately 3–5 (Barber 2008; 
Gobas and Morrison 2000; Meylen et al. 1999). Several comprehensive reviews of, 
and modelling approaches to bioconcentration have been completed (Arnot and 
Gobas 2006; Barber 2003; Barron 1990; Connell 1988; Devillers et al. 1998; Gobas 
and Morrison 2000; Mackay and Fraser 2000). Bioconcentration can be complicated 
when organisms respire water from both overlying and pore waters that are associated 
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with sediments (DiToro et al. 1991), and when these different water sources exhibit 
differences in chemical fugacity (DeBruyn and Gobas 2004). Furthermore, the bio-
concentration process is complicated by the presence of constituents in water and 
sediments (viz., suspended solids, dissolved organic matter, and/or black carbon) that 
alter chemical bioavailability and the freely dissolved concentrations of chemical in 
the respired media (Black and McCarthy 1988; Cornelissen et al. 2005).

Biomagnification is a non-equilibrium bioaccumulation process, and is com-
monly modeled under steady state conditions (Drouillard 2008). Biomagnification 
occurs when chemical exposures occur via ingestion of contaminated food (Connolly 
and Pedersen 1988). For negligibly biotransformed, highly hydrophobic chemicals, 
biomagnification can result in the chemical fugacity of an animal exceeding that of 
its food (DeBruyn and Gobas 2006; Gobas et al. 1993b; Kelly et al. 2007a). This can 
translate into elevated chemical fugacities in the organism, compared to the respired 
environmental media (Connolly and Pedersen 1988; Morrison et al. 1997). The rela-
tive importance of bioconcentration and biomagnification to the uptake and overall 
chemical bioaccumulation potential varies and depends on several factors that include 
the following: chemical hydrophobicity, chemical elimination rates, differences in 
chemical fugacity between ingested food and respired media, and whether the chemi-
cal fugacity in the animal is well below, approaching, or exceeds the chemical fugac-
ity in its respired media. The increased chemical fugacity in organisms resulting from 
contaminated food exposures can further propagate through successive trophic levels 
in a food web, and produce non-equilibrium food web biomagnification (Connolly 
and Pedersen 1988). Food web biomagnification of POP compounds has been widely 
demonstrated to occur for multiple animal species from both aquatic (Oliver and 
Niimi 1988; Russell et al. 1999a) and terrestrial (Czub and McLachlan 2004; Kelly 
and Gobas 2001, 2003; McLachlan 1996) food webs. A number of models have 
described the biomagnification of POPs in organisms and food webs (Arnot and 
Gobas 2004; Drouillard et  al. 2012; Gobas et  al. 1988, 1999; Kelly et  al. 2004; 
Mackay and Fraser 2000; McLachlan 1996; Schlummer et al. 1998).

Both bioamplification and biomagnification can be empirically distinguished 
from bioconcentration as mechanisms that raise the chemical fugacity of the organ-
ism above that of its respired media and that of its food. Bioamplification is distin-
guished from biomagnification in that the chemical fugacity in an animal is increased 
without a change in the chemical uptake rate into the organism. This specifically 
occurs when the animal experiences a rapid decrease in the partitioning capacity of 
its tissues at a rate that exceeds the chemical elimination rate. The result is that the 
chemical fugacity of the organism experiences an increase, even though the total 
mass of chemical in the organism does not change, or, if it does change, it does so to 
a lesser extent than the fugacity change that was measured. Therefore, bioamplifica-
tion occurs when there is a shift from steady state to non-steady state conditions as 
precipitated by a rapid weight loss event. Bioamplification may also occur during the 
uptake portion of the non-steady state bioaccumulation curve. In this case, bioampli-
fication increases the chemical fugacity of the animal over what would be normal for 
a non-steady state uptake trajectory, if no change in partitioning capacity was 
experienced by the animal. Bioamplification is more difficult to distinguish during 
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the uptake phase of the non-steady state bioaccumulation process. Properly defining 
bioamplification under this scenario requires simultaneous determination of parti-
tioning capacity changes, as well as characterizing changes in the mass balance of 
chemical in the animal. As in the steady state case above, bioamplification is verified 
when the change in chemical fugacity of the animal over a period of time exceeds the 
change in chemical mass balance in the animal over the same time interval.

A chief characteristic of bioamplification is that it results from weight loss. 
Negative growth in an organism and reduced partitioning capacity for the chemical 
under study are specific characteristics of bioamplification. Although growth dilu-
tion has long been adopted within bioaccumulation models, growth is commonly 
assumed to be constant and positive (Clark et  al. 1990; Gobas 1993a). 
Notwithstanding, growth is known to be highly dynamic over an animal’s life cycle, 
and is highly influenced by ecological and physiological factors (Blais et al. 2003; 
Chiuchiolo et  al. 2004; Czub and McLachlan 2004; DeBruyn and Gobas 2006; 
Hickie et  al. 1999; MacDonald et  al. 2002; Ng and Gray 2009; Norstrom et  al. 
2007). Growth dilution (or biodilution) becomes a non-steady state process when 
the growth rate of an organism changes over a period of time that is shorter than the 
time required for the animal to re-achieve steady state with a chemical in its envi-
ronment (McLachlan 1996). Although it has not been well studied, many animal 
species are known to lose weight during certain periods of their life histories. These 
weight loss events drive bioamplification, which represents the opposite of growth 
dilution (Clark et al. 1990; Kelly et al. 2004). Unless the animal dies, weight loss is 
predominantly a temporary condition, and is therefore often ignored or negated in 
bioaccumulation models. Therefore, bioamplification is not typically considered in 
steady state bioaccumulation models, because weight loss is not a component of the 
model algorithms. Arguably, excluding weight loss from bioaccumulation models 
has reduced interest in evaluating bioamplification as a separate phenomenon in 
natural systems (Gabrielsen et al. 1995; MacDonald et al. 2002).

Bioamplification, bioconcentration, and biomagnification are attenuated by 
chemical elimination. Chemical elimination restricts the types of chemicals and 
organisms for which bioamplification is likely to occur. Although bioamplification 
will always occur during weight loss events, the extent depends on the rate of chem-
ical elimination and the loss of partitioning capacity. Bioamplification will be maxi-
mized for POPs in aquatic food webs that (1) exhibit high hydrophobicity, because 
hydrophobicity inversely correlates with chemical elimination (Kelly et al. 2007a; 
Paterson et al. 2007ab), and (2) for chemicals that undergo little or no metabolic 
biotransformation (Boon et  al. 1989, 1994; Rasmussen et  al. 1990; Safe 1994). 
Consequently, bioamplification will be most prominent for chemicals that have high 
log KOW (>6.5) values, and exhibit food web biomagnification (Clark et al. 1990). 
For terrestrial food webs, chemicals that possess a log KOW >2 and a log KOA (octanol–
air partition coefficient) >6 should be regarded as having a high bioamplification 
potential, because they display slow respiratory elimination (Drouillard et al. 2012; 
Kelly et al. 2007a). From the organismal perspective, bioamplification is expected 
to occur in those species that exhibit: (1) pronounced weight or lipid loss at specific 
times during their life cycles and (2) slow elimination kinetics of chemicals relative 
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to the time frame required to produce weight loss. In the latter case, the extent of 
bioamplification achieved by an individual is expected to be correlated with animal 
body size, inversely related to the metabolic biotransformation capacity of the 
animal and, in most cases, be greater for terrestrial than aquatic organisms 
(Drouillard and Norstrom 2000; Fisk et  al. 1998; Kelly and Gobas 2001, 2003; 
Kelly et al. 2007a; Paterson et al. 2007b).

3  �Measurement of Bioamplification

The manner in which bioamplification is characterized is similar to how chemical 
bioconcentration factors (BCF), bioaccumulation factors (BAF), and biomagnifica-
tion factors (BMF) are quantified. In particular, the degree of bioamplification is 
characterized by expressing the ratio of chemical fugacity in an animal (forg(t)) rela-
tive to a reference state. Specifically, the reference state refers to the chemical 
fugacity of the animal prior to the weight loss event (forg(t−1)). Hence, the bioamplifi-
cation factor (BAmF) in fugacity notation is defined as:

	

BAmF
f

f

org t

org t

= ( )

−( )1 	

(1)

Alternatively, bioamplification can be expressed as the ratio of lipid-normalized 
or lipid-equivalent chemical concentrations for the animal post versus pre-weight 
loss events (see below).

If the animal has achieved steady state with its environment prior to the initial 
sampling event, a BAmF >1 provides evidence that bioamplification has occurred. 
Bioamplification can be further confirmed if both the BAmF >1 and the mass bal-
ance of chemical in the animal has not changed. Under non-steady state uptake 
conditions, the BAmF will always exceed 1, even when bioamplification does not 
occur. Under these circumstances, bioamplification can only be distinguished from 
bioconcentration and biomagnification by factoring in both the chemical mass bal-
ance in the animal and the BAmF ratio. When the magnitude of the BAmF is >1 and 
also exceeds the change in chemical mass balance in the organism, both following 
and prior to weight loss, bioamplification can be regarded to have occurred. Finally, 
under conditions of net chemical elimination, which may occur after an animal 
switches to a less contaminated diet, BAmFs >1 are always indicative of bioampli-
fication. Since the status of an organism (i.e., steady state, non-steady state net 
uptake, or non-steady state net depuration) is rarely known when samples are col-
lected in the field, BAmFs should generally be interpreted in conjunction with the 
chemical mass balance determined in the animal over the same time interval.

BAmFs are best described as changes in chemical fugacity, but lipid-normalized 
and lipid-equivalent ratios may be used as surrogate measures for chemical fugacity. 
Differences in the partitioning capacity of animals and their respective tissues are 
commonly calculated on the basis of the lipid content of the sample (Mackay and 
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Paterson 1981). Thus, correcting or normalizing for lipid content standardizes the 
fugacity capacity of different biological sample types. This normalization permits 
the comparison of relative chemical fugacities between differing sample types 
(Clark et al. 1988, 1990; Mackay 1991). BAmFs, expressed as the ratio of lipid-
normalized concentrations in an animal at two time intervals, are expressed as:

	

BAmF
C

C
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X
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org t
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= ×( )

−( )

−( )

( )1

1
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Where Corg(t), Corg(t−1) are the chemical concentrations (ng/g wet weight) in the 
animal at the two time intervals, and Xlipid(t), and Xlipid(t−1) refer to the mass fraction of 
lipid (g/g body weight) in the animal at each time interval, respectively.

Bioamplification is most often a direct consequence of lipid loss. Consequently, 
when studying this phenomenon it is important to accurately quantify lipids. However, 
it is important to note that the lipid content of tissue samples is usually operationally 
defined by the analytical method used to determine the lipids. Lipids are usually 
extracted from tissue samples with solvents that are then evaporated, and then sub-
jected to gravimetric analysis (Drouillard et  al. 2004; Randall et  al. 1998). Since 
solvent combinations used to extract lipids vary among studies, it is important to 
maintain consistency of method for lipid analysis in any comparative study. However, 
some lipid determination methods provide better surrogate measures of partitioning 
capacity than others. For example, Randall et al. (1998) recommended that the Bligh 
and Dyer (1959) technique, which uses a chloroform–methanol solvent mixture for 
total lipid extraction, be used for lipid normalization, because this method co-extracts 
both polar and neutral lipids (McElroy et al. 2011). Drouillard et al. (2004) compared 
lipid extractions from chloroform–methanol and dichloromethane–hexane in fish tis-
sues and found the two methods to produce different lipid results. However, when the 
authors compared lipid-normalized POP concentrations between tissues of individ-
ual fish, it was found that the dichloromethane–hexane procedure best compensated 
for differences in tissue partitioning capacities. Specifically, lipid-normalized POP 
concentrations between tissues were lower, when lipids from the dichloromethane–
hexane extraction procedure were utilized. The authors concluded that solvent mix-
tures that extract neutral rather than total lipids are most appropriate when the lipid 
result is used to measure POP partitioning capacity of tissues. Unfortunately, lipid 
determination methods are rarely standardized across studies, and most typically uti-
lize the same solvent combinations as for chemical extraction.

More recently, researchers have recognized that neutral lipids are not the only 
contributors to partitioning capacity of hydrophobic POPs in animal tissues. 
Biological sample partitioning capacities can be underestimated when the lipid con-
tent of the sample drops below 1% (DeBruyn and Gobas 2007; Gobas et al. 1999). 
Gobas et al. (1999) defined non-lipid organic matter (NLOM), essentially referring 
to lean dry protein (LDP) content, as having a partitioning capacity of approxi-
mately 3% of that provided by neutral lipids. DeBruyn and Gobas (2007) later 
revised this estimate to define the partitioning capacity of lean dry matter as having 
5% of the partitioning capacity of neutral lipid. For organisms or tissue samples 
having low lipid content, the lipid-equivalent concentration is suggested to better 
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represent chemical fugacity than lipid normalized concentrations. However, obtain-
ing estimates of NLOM or LDP requires analyzing both the neutral lipid content 
and moisture content of the sample. Expressing the BAmF on a lipid-equivalents 
basis is calculated as follows:

	

BAmF
C

C

X X

X

org t

org t

lipid t LDP t

lipid t

= ×
+( )( )

−( )

−( ) −( )

( )1

1 10 05.

++( )( )0 05. XLDP t 	

(3)

Where XLDP(t−1) and XLDP(t) refer to the mass fraction of lean dry protein in the sample 
at each time interval. Lean dry protein content (g) is typically calculated by subtracting 
the water content (g) and lipid content (g) from the wet weight (g) of the sample.

4  �Bioamplification Case Studies

Animal energetics encompasses the processes through which individuals acquire, 
assimilate, and allocate their food resources (Humphries et al. 2004; McNab 2001). 
To compensate for metabolic demands that are imposed by periods of energy imbal-
ances in an animal’s life cycle, animals are frequently required to rely on accumu-
lated somatic energy reserves. These periods, although perhaps brief, are expected 
to coincide with weight loss and bioamplification. In addition to generating water 
from catabolism, lipids are the most calorically rich tissue reserves, providing up to 
eight times the total energy available from protein and carbohydrate stores 
(McWilliams et al. 2004). Consequently, animals that maximize their lipid reserves 
prior to periods of nutritional stress are those most likely to successfully endure the 
event. The rates at which lipids are mobilized during a bioenergetic bottleneck 
depends on several key factors that include an animal’s field metabolic rate as influ-
enced by basal metabolism, thermoregulation costs and activity, and the duration of 
the bottleneck itself (Humphries et al. 2004). Although lipids are a critical compo-
nent for surviving energetically demanding events, protein turnover is also required 
for muscle repair. Moreover, species that undergo periods of intense exercise (i.e., 
migrations) require large protein stores (Golet and Irons 1999). Body size also mat-
ters, because large-bodied individuals often better withstand prolonged starvation 
events from their higher ratio of somatic energy reserves to metabolic rate (Bystrom 
et  al. 2006). Bioamplification of hydrophobic organic chemicals is predicted to 
occur frequently in nature, because mobilization of somatic lipid stores, and to a 
lesser extent, lean dry protein, represents the primary response of animals under 
conditions of an energy imbalance.

Fasting occurs in nearly all major taxonomic groups and often extends over pro-
longed periods (Wang et  al. 2006). Many animal species inhabit highly variable 
environments where nutrient abundance and quality are inconsistent and periods of 
starvation are common (Kirk 1997). Winter is often the most significant and recur-
ring period of energy imbalance experienced by animals during their life history. 
Nutrient abundance is a particular constraint for species inhabiting north temperate 
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or Arctic climatic zones, where cold temperature periods last several months and 
dominate the annual temperature cycle (Fort et  al. 2009; Webster and Hartman 
2007). Low temperatures, decreased food and water availability, and potential ice 
cover all exacerbate the energetic imbalances that animals experience during over-
wintering events. Animals often respond to suboptimal cold temperatures by 
employing specific strategies such as migration or hibernation, both of which entail 
bioenergetic consequences and can be associated with weight loss (Yahner 2012). 
Bioenergetic bottlenecks also result from natural physiological events that occur 
during the animals’ life history. This includes events such as metamorphosis, molt-
ing, and reproduction (Golet et  al. 2000; Lambert and Dutil 2000; Orlofske and 
Hopkins 2009). Although less common, weight loss may also result from disease.

In the following sections, we review bioamplification across taxonomic groups 
by examining laboratory and field studies that have been performed during different 
life stages or under different developmental conditions. These stages or conditions 
include embryo and larval development, metamorphosis, reproduction, overwinter-
ing, hibernation, migration and at other times of nutritional stress (e.g., disease). In 
Table 1, we present a list of selected cases studies from the literature that demon-
strate bioamplification.

4.1  �Bioamplification During Embryo and Juvenile Development

In addition to representing a highly dynamic period of tissue differentiation and 
animal development, embryo development for oviparous species is characterized by 
a dependence on maternally provided food resources. During this period, the mobi-
lization of endogenous lipid and protein reserves by the developing embryo has the 
potential to generate conditions suitable for POPs bioamplification (Kleinow et al. 
1999). Over the past 10 years, evidence for embryonically derived bioamplification 
has been observed among avian and fish species. For example, Drouillard et  al. 
(2003) developed a bioenergetic model for herring gull (Larus argentatus) embryos 
during the egg incubation period that predicted a steady decline in egg lipid mass 
during incubation. During this life stage, lipid-normalized polychlorinated biphenyl 
(PCB) concentrations that were quantified in developing chicks increased as a func-
tion of incubation date (Drouillard et al. 2003). Significantly, for pipping chicks, 
lipid-normalized PCB concentrations were higher than those quantified in the egg 
laying females (Drouillard et al. 2003). However, following hatching and the initia-
tion of exogenous feeding, growth dilution quickly attenuated the extent of bioam-
plification occurring in growing chicks (Drouillard et al. 2003).

For fish species such as yellow perch (Perca flavescens) and Chinook salmon 
(Oncorhynchus tshawytscha), life history characteristics can differ substantially 
during the embryo and larval development periods (Scott and Crossman 1973). 
Yellow perch spawn in the spring and are iteroparous (characterized by multiple 
reproductive events), wherein the larval stage emerges as free swimming individu-
als that are capable of external feeding (Post and McQueen 1988). In contrast, 
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Chinook salmon are semelparous (characterized by a single reproductive episode 
before death), spawn in the fall, and allocate substantial maternal resources into 
eggs to enhance their survival during periods of prolonged ice cover (Bull et  al. 
1996; Kaitaranta and Ackman 1981; Russell et al. 1999b; Wiegand 1996). Following 
hatching, larval Chinook salmon tend to remain on gravel substrates and are nour-
ished primarily by endogenous yolk reserves, because availability of external food 
remains low. These differences in the provisioning and timing of the use of maternal 
lipids produce important consequences for bioamplification during the early life 
stages of different fish species.

Daley et al. (2009) quantified the changes that occurred in proximate composi-
tion and PCB concentrations in yellow perch eggs during embryo development. 
These authors demonstrated a loss of egg dry mass over time and a decline in lipid 
content. Significantly, PCB fugacities quantified in yellow perch eggs at later stages 
of incubation were an average 2.7-fold (range: 1.8–5.4) higher than measured in 
newly fertilized eggs (Daley et al. 2009). For Chinook salmon eggs, no declines in 
lipid content were observed during the incubation period, and no concomitant bio-
amplification was observed (Daley et al. 2012). However, during the free swimming 
larval stage, juvenile Chinook salmon fry exhibited steady decreases in lipid content 
over time, which resulted in significant PCB bioamplification increases. For these 
fry, a maximum lipid-equivalent BAmF of 4.9 was determined by the end of yolk 
resorption (Daley et al. 2012). A similar magnitude of bioamplification has been 
observed in the early life stages of sole (Solea solea), whereby the lipid-normalized 
PCB concentrations peaked just prior to first feeding. The lipid-normalized concen-
trations in the late yolk sac larvae were approximately eightfold to tenfold higher 
than in the newly hatched larvae (Foekema et al. 2012).

Bioamplification-related increases in POP concentrations have also been observed 
during the development of juvenile grey (Halichoerus grypus) and northern elephant 
(Mirounga angustirostris) seals (Addison and Stobo 1993; Debier et  al. 2006). 
Northern elephant seal pups are generally abruptly weaned from the mother, but can 
fast for up to 2.5 months and potentially lose up to 30% of their post-weaning body 
mass (Debier et al. 2006). During this period, lipid- normalized PCB concentrations 
quantified in blubber samples from elephant seal pups exhibit bioamplification, in 
addition to elevated blood serum PCB levels (Debier et al. 2006). Bioamplification-
related increases in PCB concentrations have also been demonstrated during the 
post-weaning fast period in the blubber tissues of juvenile grey seals ranging from 0 
to 13 months of age (Addison and Stobo 1993). Decreased POP concentrations were 
observed when grey seal pups resumed feeding (Addison and Stobo 1993). This was 
similar to the growth dilution observed for herring gull chicks and yellow perch 
larvae on initiation of feeding (Drouillard et al. 2003; Daley et al. 2009).

These studies demonstrate that bioamplification typically generates chemical 
concentrations that increase during embryo and juvenile development until inde-
pendent external feeding is initiated by the animal. Such bioamplification trends can 
also be log KOW dependent, whereby the more hydrophobic chemicals achieve the 
greatest BAmFs during larval development (Daley et  al. 2012). Embryonic and 
larval/juvenile development also represents one of the periods in an animal’s life 
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history, when they are most sensitive to the toxic effects from chemical exposure. 
As such, bioamplification could represent an important mechanism that mediates 
chemical toxicity during this critical developmental period (Daley et  al. 2012; 
Foekema et al. 2012).

4.2  �Bioamplification During Metamorphosis

During metamorphosis, several changes to an animal’s biochemical, metabolic, and 
physiological functions may occur. In an experimental study using green frog (Rana 
clamitans) tadpoles, Leney et al. (2006a) dosed individuals with a PCB-Aroclor® 
mixture approximately three weeks prior to the onset of metamorphosis. Because 
tadpoles do not feed during metamorphosis, endogenous lipid mobilization was 
observed during this period, along with bioamplification of the PCB dose (Leney 
et al. 2006a). Bioamplification factors were maximized during tadpole metamor-
phosis by approximately 4.5-fold for the most hydrophobic PCB congeners (Leney 
et al. 2006a).

Aquatic insects have also demonstrated bioamplification during metamorphosis 
from pupae to larval life stages. Bartrons et  al. (2007) reported an approximate 
threefold increase, when comparing mean dry weight POP concentrations between 
pupae and larval stages across four species of aquatic invertebrates. It was con-
cluded that the increases in POP concentrations were due to the lack of feeding and 
subsequent loss of body weight during metamorphosis (Bartrons et  al. 2007). 
During metamorphosis from juvenile instar to adult life stages, non-feeding emer-
gent chironomids have been observed to increase PCB concentrations by approxi-
mately 4.6-fold, although this ratio was expressed on a fresh weight basis (Larsson 
1984). Similarly, Harkey and Klaine (1992) documented increased concentrations 
of the pesticide chlordane in adult Chironomus decorus following metamorphosis. 
Given the wide range of invertebrate species that undergo multistage metamorpho-
sis, it is likely that this phenomenon occurs commonly across this taxonomic group.

4.3  �Bioamplification During Reproduction

Reproduction represents a substantial energy investment for most taxonomic groups 
and often encompasses substantial periods of feeding, fasting, and, for mammalian 
species, a lactational period that entails significant energetic costs. For example, 
female elephant seals follow a prolonged feeding period with a 3-month period that 
includes fasting, competition for mates and breeding (Schneider 2004). In some 
phocid species, up to 40% loss of body mass occurs during reproductive activities, 
in comparison to the non-breeding season (Lydersen et  al. 2002). These species 
have a unique life history in that females undergo an extensive lactation period, 
which is consequently followed by molting, and both of these events incur 
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substantial energetic costs (Nilssen et al. 1995). For these individuals, the highest 
body condition indices occur prior to lactation and breeding (Lydersen et al. 2002). 
Individual females in poor physical condition during molting were determined to 
have blood PCB concentrations that were 7.2-fold higher than those measured from 
individuals having higher body lipid content (Lydersen et al. 2002). Increases in 
serum- and milk-PCB concentrations have also been documented in blood and milk 
samples collected from lactating female grey seals (Debier et al. 2003; Sørmo et al. 
2003). Additionally, adult harp seals (Phoca groenlandica) that fasted over a 28-day 
period were observed to lose up to 24 kg of body mass and also exhibited significant 
increases in blood POP concentrations by the termination of the fasting period 
(Lydersen et al. 2002). In nature, weight losses that occur during reproduction are 
often compounded when the animal molts, which could lead to BAmFs higher than 
those reported above (Lydersen et al. 2002).

Several avian species, including common eiders (Somateria mollissima), kitti-
wakes (Rissa tridactyla), and Adelie penguins (Pygoscelis adeliae), experience 
lengthy fasting periods during reproduction (Bustnes et  al. 2010; Henriksen et  al. 
1996; Subramanian et al. 1986). Female common eiders in Arctic regions have been 
demonstrated to lose approximately 25% of their body mass and 35% of lipid reserves 
during the egg incubation period (Bustnes et al. 2010). Similarly, female kittiwakes 
can lose up to 20% of their body mass from the pre-breeding to late chick rearing 
stages of reproduction (Henriksen et al. 1996). For these species, the bioamplifica-
tion-related changes in lipid-normalized POP concentrations ranged from 1.7- to 8.2-
fold across tissues, including blood, liver, brain, and adipose lipid reserves (Henriksen 
et al. 1996; Bustnes et al. 2010). Subramanian et al. (1986) indicated that maximum 
BAmFs of 3.5 and 2.8 can be achieved by male and female Adelie penguins, respec-
tively, during this species reproductive fasting period. Subramanian et al. (1986) also 
observed similar bioamplification-related changes in POP concentrations among 
liver, muscle, and brain tissues in Adelie penguins during reproduction.

Reproductive activities also often include courtship rituals and rigorous competi-
tion between male individuals, in efforts to ensure mating success. In the mayfly 
genera Hexagenia spp., male individuals engage in intensive mating swarms that 
lead to significant reductions in lipid reserves between the sub-imago and imago life 
stages (Daley et al. 2011). Mayflies have a unique life history in that the majority of 
their lifespan is spent burrowed in lake and river sediments. Mayflies emerge from 
sediments as sub-imagos and rapidly molt into their final reproductive adult imago 
stage (Edmunds et al. 1976). Adult male Ephemeropteran mayfly species, including 
H. Limbata and H. rigidia, also do not feed following their emergence and rely 
exclusively on accumulated lipid reserves during their search for mates. Daley et al. 
(2011) demonstrated that during this reproductive flight, male individuals lose up to 
50% of their lipid reserves, whereas females lose <10%. Further, lipid-normalized 
PCB-congener concentrations quantified in male mayflies were observed to bioam-
plify by roughly a factor of 2 during reproductive swarm events. This contrasts 
BAmFs of approximately 1 for PCB concentrations quantified in female mayflies 
which do not expend as much energy in reproductive swarms (Daley et al. 2011).
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4.4  �Bioamplification During Overwintering

In addition to the metabolic challenges associated with thermoregulation for both 
poikilotherms and homeotherms, reduced food availability often accompanies the 
extended cool–cold temperatures associated with winter months. For extreme lati-
tude fish species such as Arctic charr (Salvelinus alpinus), lipid reserves can be 
reduced by up to 80% during the overwinter period (Jobling et al. 1998). Jorgensen 
et  al. (1999) experimentally confirmed that PCB concentrations in the tissues of 
starved Arctic charr demonstrate bioamplification. Further, redistribution of the 
chemical from fat/muscle into liver and brain tissues occurred during overwintering 
(Jorgensen et al. 2002). Similar observations have been made for sole (Solea solea), 
whereby up to fourfold bioamplification of PCB concentrations in liver and muscle 
tissues occurred during experimental starvation trials and in wild collected overwin-
tering fish (Boon and Duinker 1985). Overwintering mesocosm studies have also 
confirmed the bioamplification of PCBs by overwintering yellow perch (Paterson 
et al. 2007a, b). Specifically, PCB lipid-normalized bioamplification factors ranging 
from 1.7 to 2.3 were generated during the overwintering months. This bioamplifica-
tion was consistent with a lack of chemical elimination and depletion of lipid 
reserves during the cold water period (Paterson et al. 2007a, b).

Avian and mammalian species, including the greater scaup (Aythya mariya), bald 
eagles (Haliaeetus leucocephalus), and Arctic fox (Vulpes lagopus), have also dem-
onstrated POP bioamplification during the overwinter season. Seasonal lipid mobi-
lization by greater scaup and bald eagles resulted in POP bioamplification factors in 
muscle and adipose tissues that were up to 5.5-fold during overwinter periods 
(Elliott et al. 1996; Perkins and Barclay 1997). Arctic foxes rely on sea bird forage 
during the spring and summer; however, as these prey items migrate from Arctic 
regions during the winter, individual foxes often face starvation (Fuglei and Oritsland 
1999; Sonne et al. 2009). During winter starvation, a significant negative relation-
ship between animal lipid content and POP concentrations was observed, which is 
consistent with POP bioamplification (Fuglei et al. 2007). Similar observations have 
also been made when comparing POP patterns quantified in winter-collected older 
lean foxes versus younger fatter individuals (Wang-Andersen et al. 1993).

4.5  �Bioamplification During Hibernation

Hibernation is generally characterized as a behavioral and/or physiological mecha-
nism invoked by species for enduring prolonged overwinter events and periods of low 
food availability. Current examples of hibernation-induced bioamplification include 
bat (Clark and Prouty 1977; Clark and Krynitsky 1983), amphibian (Angell and 
Haffner 2010), and bear species (Christensen et al. 2007), but is also likely to occur for 
the majority of animal taxa that undergo a state of hibernation, torpor, or estivation.

For bear species such as the grizzly (Ursus arctos horribilis), hibernation is referred 
to as pseudo-hibernation because the animal maintains a body temperature within a 
few degrees of normal; however, the potential for chemical elimination via defecation 
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and urination is minimized, because they are unlikely to feed (Hock 1960; Lyman et al 
1982; Nelson 1978; Svihla and Bowman 1954). In a study of hibernating grizzly bears, 
there was an average 2.21 lipid-normalized concentration effect for ΣPCBs in post-
hibernation compared to pre-hibernation bears (Christensen et al. 2007). For POPs 
such as dichloro-diphenyl-trichloroethane (DDT), which can be metabolized, no sig-
nificant increases in chemical residue were demonstrated (Christensen et al. 2007).

Unlike other bear species, polar bears (Ursus maritimus) remain active over the 
winter months, while searching for prey during the ice cover season. However, polar 
bears are regarded to endure a “walking hibernation” or pseudo-hibernation (Nelson 
et al. 1983; Ramsay et al. 1991). This occurs during the summer months when ani-
mals experience lengthy periods of low food availability from the lack of ice cover 
(Chow et al. 2011). Polischuk et al. (2002) sampled polar bears in July and August 
and demonstrated a BAmF of approximately 1.3-fold for lipid-normalized ΣPCBs, 
compared to animals sampled in the winter from September to November. The 
highest BAmFs of 1.5 was determined for female bears with nursing cubs (Polischuk 
et al. 2002). Elevated levels of POPs have also been quantified in blood samples 
collected from polar bears during the summer months, indicating the potential 
mobilization of these chemicals from inert fat stores into the circulatory system 
(Knott et al. 2011; Polischuk et al. 1995, 2002).

Some of the earliest observations of POP bioamplification during hibernation 
were reported for a range of bat species (Clark and Prouty 1977; Clark and Krynitsky 
1983). Hibernation in many bat species commonly occurs from early autumn to 
spring, and the animals typically rely on fat reserves to survive and recover during 
this period (Fenton and Barclay 1980). The depletion of lipid reserves during hiber-
nation has been observed for big brown (Eptesicus fuscus), little brown (Myotis 
lucifugus), and eastern pipistrelle (Pipistrellus flavus) bats (Clark and Prouty 1977; 
Clark and Krynitsky 1983). Critically, concentrations of POPs, including the DDT 
metabolite dichloro-diphenyl-dichloroethylene (DDE), have been demonstrated to 
bioamplify significantly during this hibernation (Clark and Prouty 1977; Clark and 
Krynitsky 1983). Of particular significance, mortalities in bat populations have been 
observed coincident with animal arousal from hibernation, when lipid reserves are at 
their lowest, and thus, the potential for bioamplification is maximized (Clark 1981).

Northern latitude amphibian species also respond to harsh winter conditions by 
entering a hibernation state. Recently, Angell and Haffner (2010) sampled hibernat-
ing green frogs from October–January to quantify changes in PCB dose kinetics and 
animal lipid contents. The lipid content of frogs declined through the sampling 
period, with maximum BAmFs of 1.4 occurring for more recalcitrant hydrophobic 
(log KOW >6.5) PCB congeners (Angell and Haffner 2010).

4.6  �Bioamplification During Migration

Migration is a ubiquitous life strategy that is demonstrated in nearly all major taxo-
nomic groups, including birds, mammals, fishes, reptiles, amphibians, and insects. 
Among these taxa, fishes and birds provide primary examples of extensive long 
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distance migrations that require energy demands from animals that are sufficient to 
bioamplify POPs.

Anadromous fish such as salmonid species often migrate long distances to return 
to natal streams and rivers to spawn. For example, the Yukon River Chinook salmon 
population is known to swim distances over 3,000  km during their migration 
(Beacham et al. 1989). Such extensive migrations have been demonstrated to deplete 
90% of somatic lipid reserves in some individuals that return to spawning sites 
(Hendry and Berg 1999). Such extensive loss of somatic energy reserves has been 
demonstrated to bioamplify POPs, including PCBs, up to tenfold in migrating sock-
eye salmon (Oncorhynchus nerka) over the combined duration of the migration and 
spawning events (DeBruyn et  al. 2004b; Ewald et  al. 1998; Kelly et  al. 2007b, 
2011). Similar examples of POP bioamplification have been demonstrated for 
migrating Atlantic (Salmo salar) (Hansson et al. 2009) and Chinook salmon popu-
lations (Kelly et al. 2011). Of particular significance, the magnitude of PCB bioam-
plification by salmonid species is positively correlated with both migration distance 
and chemical log KOW value (DeBruyn et al. 2004; Kelly et al. 2011). Similar to 
Pacific salmonids, the catadromous European eel (Anguilla anguilla) often returns 
to spawning grounds that are thousands of kilometers from feeding areas, and these 
animals tend to fast during migration (Olivereau and Olivereau 1997). This species 
can spend between 5 and 18 years in river- and coastal-feeding grounds prior to 
migrating to oceanic spawning grounds (Belpaire and Goemans 2007). Lipid-
normalized concentrations of the organochlorine insecticide lindane have been 
quantified at a level of 9,255  ng/g, in pre-spawning European eel populations 
(Belpaire and Goemans 2007). Van Ginneken et al. (2009) demonstrated that the 
depletion of lipid reserves in more actively swimming European eels resulted in 
PCB congener bioamplification up to 14-fold higher than levels found in resting 
individuals. Eels also demonstrated little capacity for eliminating chemicals during 
such non-feeding events (Duursma et al 1991). Many Anguillid eels, such as the 
European and American eel (Anguilla rostrata) are at-risk species for conservation, 
and the very high POP concentrations and low lipid reserves have been identified as 
factors contributing to eel population declines (Belpaire and Goemans 2007).

Numerous bird populations undertake lengthy migrations. However, less is 
known about how bird migration influences bioamplification, mainly because of 
difficulties associated with measuring POP concentrations and body condition dur-
ing migration events. Migration patterns among bird species also differ substan-
tially, resulting in widely different energy demands. For many bird species, 
migration involves flight over relatively large food-limited areas, thus providing 
minimal opportunities for refueling (Klaassen 1996). Additionally, in larger non-
gliding migratory species, active flight, rather than wind-assisted gliding, serves to 
more rapidly deplete energy reserves (Klaassen 1996). During such long distance 
migrations, wind direction and climate also affect metabolic costs. For example, 
headwinds increased the consumption of lipid stores (Colabuono et  al. 2012; 
Piersma 2002). Such rapid depletion of lipid stores during migration has been 
observed to result in the redistribution of POPs among lipid, liver and muscle tissues 
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in Antarctic migratory species (Colabuono et al. 2012). Critically, overall animal 
body condition, as indicated by lipid content and starvation status, have been deter-
mined to be important factors in the redistribution of POPs in animal tissues during 
bird migration (Colabuono et al. 2012; Sodergren and Ulfstrand 1972).

4.7  �Other Events Leading to Bioamplification

For some animal species, aphagia often occurs with the onset of disease, and this 
condition can generate the negative energy imbalance that is consistent with ener-
getic bottlenecks and weight loss. For example, California sea lions (Zalophus cali-
fornianus) exposed to the domoic acid neurotoxin cease feeding and can lose 
substantial body mass and blubber content (Hall et al. 2008). During a 12-day apha-
gia period, individuals exposed to this neurotoxin lost approximately 16% of their 
body mass and exhibited bioamplification (of PCBs, DDT, brominated flame retar-
dants, and other POP compounds) in blubber tissues (Hall et al. 2008). Stranded sea 
otters (Enhydra lutris nereis), which died from disease and emaciation, exhibited 
higher lipid-normalized DDT concentrations than did animals that died from acute 
trauma (Nakata et al. 1998). Similar patterns of POP bioamplification have been 
observed in stranded dolphins, relative to those caught as by-catch (Chou et  al. 
2004). The patterns of PCB bioamplification were consistent with higher levels of 
lipid mobilization in the diseased and starving animals that were found stranded 
(Chou et al. 2004). Evidence for POP bioamplification has also been observed in 
diseased black-backed gulls (Larus fuscus fuscus) and little brown bats (Hario et al. 
2004; Kannan et al. 2010). In addition, weight loss and starvation experiments have 
demonstrated POP bioamplification in humans (Chevrier et al. 2000; Pelletier et al. 
2002; Tremblay et al. 2004; Walford et al. 1999), birds (Defreitas and Norstrom 
1974; Ecobichon and Saschenbrecker 1969; Stickel et al. 1984), fish (Antunes et al. 
2007), and rodents (Dale et al. 1962; Jandacek et al. 2005; Ohmiya and Nakai 1977).

5  �Modelling POP Bioamplification

Non-steady state bioaccumulation models, and in some cases multi-life stage bioac-
cumulation models, have been described for POP compounds in marine mammals 
(Czub and McLachlan 2007; Hickie et  al. 1999, 2000, 2005, 2007; Yordy et  al. 
2010), birds (Clark et al. 1987, 1988; Drouillard et al. 2003; Norstrom et al. 1986a, 
2007), and fish (Drouillard et al. 2009; Foekema et al. 2012; Ng and Gray 2009; Sijm 
et al. 1992). However, relatively few of the studies just cited were focused explicitly 
on interpreting bioamplification peaks resulting from model simulations. Drouillard 
et al. (2003) used a non-steady state embryo bioaccumulation model to contrast dif-
ferences in lipid-normalized PCB concentrations in herring gull embryos through 
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incubation. The above simulation demonstrated that pipping-aged chicks can achieve 
bioamplification factors of 3.1 and 1.5, compared to fresh eggs and laying females, 
respectively. Foekema et al. (2012) applied an analogous approach to model hydro-
phobic POP bioaccumulation in the embryo stage of a fish, the common sole (Solea 
solea). Based on their simulations, the authors concluded that at the end of the yolk-
sac stage, sole larvae can achieve bioamplification factors of between 2 and 4, com-
pared to spawning parent fish for compounds having log KOW values exceeding 5.

There are few examples, in which non-steady state bioaccumulation models have 
been applied to adult life stages that incorporate realistic seasonal changes in whole 
body lipids, and assess the impact of this on POPs bioamplification. Norstrom et al. 
(2007) highlighted the importance of including seasonal changes in lipid content as 
a model variable, because of the close interaction that exists between whole body 
lipid content and POP toxicokinetics. Incorporating the effects of seasonal changes 
on lipid content is particularly important as it relates to chemical elimination by 
animals. For example, Clark et  al. (1988) used the herring gull bioenergetic and 
toxicokinetic model (described in Clark et al. 1987; Norstrom et al. 1986a, b) to 
predict pronounced seasonal changes in dieldrin and mirex chemical fugacities as 
they related to decreases in adult bird fat stores that occur each spring. Similarly, 
Czub and McLachlan (2007) applied a non-steady state bioaccumulation model to 
POPs in ringed seals. This model predicted seasonal bioamplification factors of 2 or 
more in seals that resulted from the blubber loss that occurs during molting in the 
spring and early summer. Drouillard et  al. (2009) established a non-steady state 
model for yellow perch that accounted for seasonal lipid changes and its effect on 
PCB depuration kinetics. Importantly, this last study showed that winter weight 
loss, as experienced by aquaculture-reared yellow perch, exceeded the rate of PCB 
elimination, enabling bioamplification to occur.

Model Simulations. To further demonstrate the application of multi-life stage, non-
steady state bioaccumulation models to predict bioamplification, two case studies 
are presented in the appendices for a fish and bird using previously reported models. 
For fish, a modified version of the yellow perch bioenergetic and toxicokinetics 
model reported by Drouillard et al. (2009) was adopted. The model was extended to 
include growth over most of the lifespan (age 1–9) of this species. Yellow perch 
ages as high as 7–9 years have been reported for North American populations, 
including the populations inhabiting the Great Lakes (Scott and Crossman 1998). 
Growth rates, temperature-dependent specific growth and temperature-dependent 
changes in whole body lipid content and lean dry protein were incorporated as 
described in Appendix 1. The fish bioenergetics sub-model used proximate compo-
sition, growth, and body size data in conjunction with water temperatures to predict 
daily food consumption and gill ventilation rates as described by Drouillard et al. 
(2009). Since the Drouillard et al. (2009) model was limited to describing chemical 
elimination, the model was modified to incorporate chemical uptake from water and 
food, by using equations described by Arnot and Gobas (2004). Simulations were 
initiated using a 1-year-old male fish that was assumed to be in equilibrium with 
water for a chemical having a log KOW of 6.5. The chemical was assumed to not be 
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subject to biotransformation by fish. Fish growth was simulated over an 8-year 
period, with fish fed a diet of constant proximate composition, energy density, and 
chemical concentration throughout the simulation. The chemical concentration in 
the diet was set such that the diet was in equilibrium with an assumed constant water 
concentration. Two simulation scenarios were modeled. In the baseline scenario, a 
constant temperature of 21  °C was maintained throughout the simulation, and 
hence, did not allow for seasonal weight loss to occur. The second scenario, referred 
to as the dynamic temperature scenario, allowed temperature to vary by season 
according to an annually repeating temperature profile recorded for Southern 
Ontario, Canada. Appendix 1 provides a full description of the yellow perch bioac-
cumulation model, parameters and algorithms used for model calculations.

For birds, a modified version of the herring gull bioenergetic and toxicokinetic 
model as described by Norstrom et al. (2007) was utilized (Appendix 2). The model 
was formulated to simulate what would occur in a male bird to avoid having to 
incorporate depuration of maternal residues to eggs, and to predict maximum bio-
amplification factors for this species. The model was adapted to predict chemical 
residues across multiple life stages, commencing with a pipping chick, followed by 
chick growth through fledging, to a subadult male life stage and reproductively 
active adult life stage over an 8-year simulation period. The bioenergetic portion of 
the model predicted daily growth, proximate composition, and feeding rate of a 
male bird as described in Norstrom et  al. (1986b). The toxicokinetic sub-model 
predicted chemical uptake from food and chemical elimination at daily intervals as 
described in Clark et al. (1987). A slight modification to the model was that the 
plasma/fat partition coefficient (KPF) was redefined as a plasma/lipid equivalent par-
tition coefficient to be consistent with the yellow perch model. This consideration 
reflects the current understanding of chemical partitioning within organisms 
(Debruyn and Gobas 2007). The values for KPF and the plasma clearance constant 
(k′pc) were chosen from those reported for Mirex to provide a non-biotransformed, 
highly hydrophobic chemical comparable to the fish simulations. As in the case of 
the yellow perch model, two simulations were performed. In the baseline simula-
tion, temperature and photoperiod were kept constant at 21 °C and 12 h/d across 
seasons and years. The seasonal scenario relied on an annually repeating tempera-
ture and photoperiod profile from Lake Ontario during 1997. The model was initial-
ized using a fresh egg concentration predicted from a 10-year old female adult 
model simulation (Clark et al. 1988). This female bird was fed a constant diet of the 
same concentration and energy density as had been used for male simulations. The 
female was also subjected to equivalent temperature and photoperiod profiles. 
Bioamplification of fresh egg residues in the pipping embryo was estimated by mul-
tiplying the fresh-egg lipid-equivalent concentration by a factor of 3.1 as suggested 
by Drouillard et al. (2003). The bird was subsequently modeled to feed on a con-
stant food source of similar proximate composition, energy density and chemical 
concentration over the duration of the study. A full description of model parameters 
and algorithms for the herring gull simulations are presented in Appendix 2.

In Fig. 1, we summarize the yellow perch model output for the baseline and sea-
sonal temperature scenarios. Body weight of the 1–8-year-old fish varied between 
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Fig. 1  Yellow perch model simulations for baseline and seasonal temperature scenarios. (a) Body 
weight (g) is simulated from a baseline constant temperature (dashed line) and a dynamic tempera-
ture scenario (solid line). Lipid-equivalents (g) are simulated for a baseline constant temperature 
(dotted line) and dynamic temperature scenario (long dash-dot). (b) Mass of chemical in the fish 
(μg) is presented for the baseline constant temperature (dotted line) and dynamic temperature 
scenario (solid line). (c) Chemical concentration (ng/g lipid-equivalents) is simulated for a base-
line constant temperature (dotted line) and dynamic temperature scenario (solid line)



128

4.8 and 230 g for the two scenarios (Fig. 1a). The upper limit of this range is similar 
to the 257 g body weight value reported for 8+-year-old yellow perch collected from 
the Bay of Quinte, Ontario, Canada (Scott and Crossman 1998). For the dynamic 
temperature scenario, body weights were marginally higher in the summer months, 
as a result of the temperature dependence of fish feeding rates and growth during 
warm water seasons (Kitchell et al. 1977). In contrast, winter growth approached 
zero. Differences in growth between simulations were more pronounced when com-
paring model predictions of fish whole-body lipid-equivalent weights over time. 
The baseline simulation produced lipid-equivalent weight estimates at the upper 
range of those predicted during the summer of the dynamic temperature scenario. 
These upper range estimates resulted from the high constant temperature used in the 
simulation. Lipid-equivalent weights in the baseline scenario mirrored body weight 
trends, whereas % lipid was constant at 8.6%. In the seasonal scenario, lipid-
equivalent weights showed strong seasonal cycles. In each year of the simulation, 
the % lipid decreased to a minimum value of 4.3% in the winter and to a maximum 
value of 9.3% in the summer. These values corresponded to a 2.1-fold difference in 
lipid content on a per annum basis.

Changes in the total fish body burden of chemical from the two scenarios are pro-
vided in Fig. 1b. Fish consumed less food during the winter and had lower lipid-
equivalent weights in the dynamic temperature simulation. Consequently, the total 
chemical mass accumulated by fish under the seasonal simulation was lower than 
that observed for the baseline scenario. The magnitude of these differences also 
increased with fish age. Figure 1c contrasts lipid-equivalent concentrations of the 
chemical in fish under the two scenarios. Lipid-equivalent concentrations were pre-
dicted to increase with age over the duration of the baseline scenario simulation. This 
observation is consistent with non-steady state bioaccumulation. This occurred since 
fish did not reach their maximum size as predicted by the von Bertalanffy growth 
model. The dynamic temperature scenario predicted pronounced seasonal oscilla-
tions for chemical concentrations in fish that were opposite those observed for whole 
body lipid-equivalents. Specifically, lipid-equivalent concentrations peaked on Feb. 1 
of each simulation year, coincident with animal minima for lipid-equivalent weights 
(Fig. 1a). In contrast, the lowest annual lipid-equivalent concentrations occurred on 
July 17th of each year, when lipid-equivalent weights were maximized.

In Table 2, we summarize the metrics for comparing model outputs from the yel-
low perch constant and dynamic temperature scenarios. Both of these scenarios pre-
dicted a non-steady state for fish over the simulation duration. Thus, temporal 
changes in chemical mass balance and lipid-equivalent concentrations are required to 
demonstrate the occurrence of bioamplification. The first column of Table 2 describes 
the ratio of maximum to minimum chemical mass (ng) in the fish for each year of the 
simulations. This mass balance ratio exceeded 1 in all simulation years and tended to 
be higher for the dynamic temperature scenario. BAmF values exceeded 1 in all 
simulations and approached a near constant value (1.89–1.90) for the later years of 
the dynamic temperature scenario. Moreover, BAmF values exceeded the chemical 
mass balance ratios for years 3–8 during this scenario, validating the occurrence of 
bioamplification. Bioamplification occurred despite the fact that the organism was 
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still in the uptake stage of the bioaccumulation curve (Fig. 1b). In contrast, BAmF 
values for the constant temperature scenario were close to 1 (1.02) by the last simula-
tion year and did not exceed the chemical mass balance ratio. This demonstrates that 
bioamplification did not occur during the constant temperature scenario.

Herring gull model outputs are provided in Fig. 2. Temporal changes in whole 
body and lipid-equivalent weights are depicted in Fig. 2a. Juveniles grew rapidly 
during the first 90 days of the simulations. Under the dynamic temperature sce-
nario, body weight and lipid-equivalent weights fluctuated according to an annual 
cycle each year following fledging. After the first simulation year, herring gull 
whole body and lipid-equivalent weights changed annually by 1.07- and 1.67-fold, 
respectively. Seasonal changes in herring gull lipid-equivalent weights were oppo-
site those observed for fish. Specifically, herring gull lipid-equivalent maxima 
occurred in the winter while minima occurred during the summer. Lipid-equivalent 
weights were always higher in the dynamic temperature scenario, relative to the 
baseline simulation, due to the high temperature (21 ºC) selected for constant tem-
perature simulation.

Figure 2b contrasts the magnitude of chemical mass accumulated by birds under 
the two scenarios. For the dynamic temperature scenario, male birds accumulated 
higher chemical mass, relative to that predicted under the baseline scenario. This 
occurred because of the higher lipid content predicted for birds under the dynamic 
temperature scenario. Bird chemical mass approached an asymptote between years 
2 and 4 of the simulation, with seasonal oscillations in chemical mass occurring 
after year 4. These oscillations were associated with courtship feeding and chick 
rearing costs that caused seasonal changes in animal food consumption rates. These 
behaviors contribute to increased chemical uptake followed by lags in elimination, 
with a gradual return to steady state by the following year. Unlike fish, rapid early 
growth by fledging chicks facilitated the steady state condition for the chemical 

Table 2  Model predicted changes in age specific mass balance, lipid equivalents, and BAmFs in 
yellow perch over the simulation duration

Year  
interval

∆Xfish max/min 
chemical mass (ng)  
in fish over a given year

BAmF max/min lipid  
equivalents concentration  
in fish over a given year

Across simulation ratio  
of the peak lipid equivalent  
concentration between scenariosa

0–1 6.77 (8.27)b 2.19 (1.49)b 1.36
1–2 2.61 (2.54) 1.98 (1.09) 1.38
2–3 1.82 (1.76) 1.96 (1.08) 1.42
3–4 1.50 (1.45) 1.95 (1.06) 1.46
4–5 1.33 (1.29) 1.93 (1.05) 1.49
5–6 1.23 (1.20) 1.91 (1.04) 1.53
6–7 1.16 (1.14) 1.90 (1.03) 1.56
7–8 1.12 (1.09) 1.89 (1.02) 1.59
aExpresses the ratio of the maximum lipid equivalent concentration determined in a given year for 
the dynamic temperature simulation scenario to the lipid equivalent concentration determined on 
the same day for the constant temperature scenario
bFirst number corresponds to the dynamic temperature scenario. Value in parentheses corresponds 
to the constant temperature scenario
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Fig. 2  Herring-gull model-simulations for baseline and seasonal temperature scenarios. (a) Body 
weight (g) is simulated from a baseline constant temperature (dashed line) and a dynamic tempera-
ture scenario (solid line). Lipid equivalents (g) are simulated for a baseline constant temperature 
(dotted line) and dynamic temperature scenario (long dash-dot). (b) Mass of chemical in the fish 
(μg) is presented for the baseline constant temperature (dotted line) and dynamic temperature 
scenario (solid line) (c) Chemical concentration (ng/g lipid-equivalents) is simulated for a baseline 
constant temperature (dotted line) and dynamic temperature scenario (solid line)
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under the baseline scenario. In contrast, steady state was not achieved until 5 years 
of age for birds under the dynamic temperature scenario. Greater seasonal oscilla-
tions in the magnitude and duration of chemical mass balance under the dynamic 
temperature scenario were attributed to temperature-dependent changes in feeding 
rates and reproduction-associated foraging costs occurring after year 4.

Trends in lipid-equivalent chemical concentrations throughout the herring gull 
life history are provided in Fig.  2c. Distinct bioamplification occurs for pipping 
chicks during the first 90 days of growth under both temperature scenarios. Under 
the baseline scenario, pipping chicks commenced with a lipid-equivalent concentra-
tion of 53.85 μg/g, which exceeds the maximum achieved by adult males (44.68 μg/g) 
by 1.2-fold. For the dynamic temperature scenario, pipping chicks had an initial 
lipid-equivalent concentration of 101.1 μg/g, which was 1.5-fold higher than the 
maximum predicted for adult males (66.9 μg/g). Although chemical mass in birds 
continued to increase with time (Fig. 2b), rapid growth dilution and a diet switch 
from highly contaminated yolk lipids to less contaminated external prey resulted in 
a precipitous drop in chick lipid-equivalent concentrations by day 37 (7.92 μg/g). 
These results demonstrate the importance of temporal lipid dynamics on chemical 
bioamplification in adult birds, chicks and at the time of maternal transfer.

In Table 3, we summarize the simulation metrics for the herring gull chemical 
concentrations, under the constant and dynamic temperature scenarios. BAmF val-
ues did not exceed the chemical mass balance ratio during any simulation year of 
the baseline scenario. Moreover, excluding year 1, BAmF values and chemical mass 
balance ratios were equal for each simulation year, suggesting an absence of bioam-
plification for older birds under this simulation. For the dynamic temperature simu-
lation, BAmF values exceeded chemical mass balance ratios and progressively 
increased from 1.48 to 1.69 from years 1 to 8. These results confirm the occurrence 
of bioamplification in herring gulls under the dynamic temperature scenario.

Table 3  Model predicted changes in age specific mass balance, lipid equivalents, and BAmFs in 
male herring gulls over the simulation duration

Year  
interval

∆Xfish max/min  
chemical mass (ng)  
in fish over a given year

BAmF max/min lipid  
equivalents concentration  
in fish over a given year

Across simulation ratio  
of the peak lipid equivalent 
concentration between scenariosa

0–1 11.17 (13.92)b 12.76 (8.65)b 1.88
1–2 1.45 (1.30) 1.48 (1.30) 1.22
2–3 1.16 (1.08) 1.55 (1.08) 1.38
3–4 1.11 (1.03) 1.62 (1.03) 1.47
4–5 1.07 (1.09) 1.64(1.09) 1.45
5–6 1.05 (1.08) 1.67 (1.08) 1.51
6–7 1.04 (1.07) 1.68 (1.07) 1.52
7–8 1.04 (1.07) 1.69 (1.07) 1.53
aExpresses the ratio of the maximum lipid equivalent concentration determined in a given year for 
the dynamic temperature simulation scenario to the lipid equivalent concentration determined on 
the same day for the constant temperature scenario
bFirst number corresponds to the dynamic temperature scenario. Value in parentheses corresponds 
to the constant temperature scenario
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Both models demonstrated the capacity of fish and birds to bioamplify hydro-
phobic, negligibly transformed chemicals throughout their life histories. This occurs 
primarily due to age-related changes in growth and seasonal weight loss. The tem-
poral bioamplification trends for fish and birds were different, because fish feed less 
in winter and have reduced body fat content, whereas birds increase food intake, 
thereby enhancing fat deposits in winter. These differences are expected to occur, 
because ectothermic and endothermic species respond differently to low tempera-
ture exposures. Under the dynamic temperature scenario, BAmFs for both fish and 
birds exceeded the maximum ratio of chemical mass balance by simulation years 
7–8. These results confirm that bioamplification occurred as it is defined in this 
review. Specifically, the rate of weight loss exceeded that for chemical depuration. 
For birds, bioamplification patterns were complex across the life stages included in 
the simulations. Pipping chicks exhibited a pronounced bioamplification peak dur-
ing early growth, followed by reduced bioamplification events that were associated 
with temporal changes in subadult foraging costs and reproductive activities for 
adult birds. Similar bioamplification peaks are likely to be present in pre-hatched 
yellow perch embryos as described by Daley et al. (2009) and modeled in larval sole 
by Foekema et al. (2012). However, such simulations were not included in the cur-
rent study owing to the absence of empirical information that described larval fish 
growth and proximate composition for the first simulation year. Additional factors 
(e.g., spawning costs related to mate competition and/or changes in food availabil-
ity) probably further contributed complexity to the fish bioaccumulation curve. 
However, these factors were not included in the model structure.

Additional research during the full life cycle of different species would prove 
beneficial for identifying critical exposure periods to hydrophobic chemicals that 
are associated with bioamplification events. Development of such models requires a 
comprehensive knowledge of changes in animal bioenergetics, proximate composi-
tion, and food types and availability that occur at both seasonal and annual temporal 
scales. Insights into other toxicokinetic parameters (e.g., chemical exchange effi-
ciency terms related to dietary assimilation, uptake and depuration across gills, and 
organism/fecal exchange) are also critical to establishing such a model structure. 
Although the theory behind extrapolating toxicokinetic parameters to multiple 
organisms, based on chemical attributes, is relatively well established, gaps do 
remain in our understanding of age and diet-related effects on such toxicokinetic 
parameters (Arnot and Gobas 2004). In contrast, limited empirical data are available 
for describing the physiological and proximate composition characteristics of spe-
cies across a range of natural habitats and over multiple life stages. Such paucity of 
information hinders the development of full life cycle chemical bioaccumulation as 
exemplified in this review. Finally, it should be noted that field sampling rarely con-
siders seasonal dynamics in animal lipid content, when timing of animal collection 
is arranged. Seasonally staggered sampling programs are required to track bioam-
plification over seasonal temperature cycles. However, most temporal biomonitor-
ing programs sample animals during restricted time periods (e.g., open water, 
summer months), because of sampling logistics and the need to characterize inter-
annual temporal chemical bioaccumulation trends (Bhavsar et  al. 2010; Gewurtz 
et al. 2011; Richman et al. 2011; Roose et al. 1998).
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6  �Implications of Bioamplification

Several of the case studies outlined in Sect. 4 demonstrate a central consequence of 
bioamplification: POP residues in the animal are redistributed from metabolically 
inert lipid reserves to more toxicologically sensitive tissues. Loss of animal lipid 
reserves has been associated with proportional increases in xenobiotic chemical 
concentrations in blood, liver, muscle, and brain tissues (Bustnes et al. 2010, 2012; 
Debier et  al. 2003, 2006; Henriksen et  al. 1996; Jørgensen et  al. 1999, 2002; 
Lydersen et  al. 2002; Perkins and Barclay 1997; Subramanian et  al. 1986). For 
example, DeFreitas and Norstrom (1974) starved pigeons for 7 days and observed a 
net mass transfer of PCBs from adipose into brain, liver, and muscle tissues. 
Henriksen et al. (1996) showed a steady decrease in body mass and lipids for breed-
ing kittiwakes, which resulted in a quadrupling of PCB concentrations in brain tis-
sue. Such changes occur because much of an animal’s capacity for chemical 
bioaccumulation is defined by the mass of adipose stores and it is these tissues that 
experience the greatest decreases during weight loss. Consequently, a twofold 
decrease in animal partitioning capacity causes an equivalent increase in chemical 
fugacity. This leads to commensurate increases in chemical wet weight concentra-
tions in blood and other lean tissues. Furthermore, lean tissue POP concentrations 
change rapidly following weight loss events, because the time required to achieve 
inter-tissue equilibrium is short (~1 week; Braune and Norstrom 1989; Clark et al. 
1987; Norstrom et al. 1986a), despite the time being long for the organism to achieve 
steady state with its environment (Drouillard et al. 2001). For a more detailed expla-
nation of how toxicokinetic processes regulate target site concentrations and the 
mechanisms of toxic action of POPs, readers are referred to the review articles of 
Escher et al. (2011), McCarty et al. (2011) and McElroy et al. (2011).

POP residues in blood are generally more available to target organs than those 
present in adipose stores, and thus blood residues pose greater toxicological risk 
(Knott et al. 2011). Studies involving insects, fish, and mammals have shown sig-
nificant positive relationships between animal lipid content and the LD50 value for 
chemicals, indicating that toxicity increases with a decreasing animal lipid content 
(Geyer et al. 1990, 1993). Birds have been shown to experience enhanced POP tox-
icity following periods of dramatic weight loss (Ecobichon and Saschenbrecker 
1969; Gabrielsen et al. 1995; Stickel and Stickel 1969). Van Velzen et al. (1972) 
observed that birds exposed to DDT doses from 100 to 300 μg/g, or subjected to 
weight loss from reduced food availability, exhibited no mortality. However, the 
combined effects of weight loss and DDT exposure caused significant mortality in 
brown-headed cowbirds (Molothrus ater). Fish having a low body lipid content (and 
poor condition) have been demonstrated to experience greater negative effects from 
PCB exposure (25–2,500 μg/kg food/day) than those having a higher lipid content 
and better condition (Quabius et al. 2000). These studies emphasize that the toxicity 
experienced by animals from POP exposure is best correlated to chemical fugacity 
rather than the whole body or tissue specific wet weight concentration.

POP bioamplification has the potential to modify chemical biotransformation rates, 
thereby enhancing toxic metabolite formation via first and second order kinetic 
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processes. Bioamplification also has the potential to alter POP bioaccumulation 
signatures in the animal’s tissues (Boon et al. 1989; Walker 1990). For example, the 
redistribution of PCBs from deep blubber layers into the bloodstream of bottlenose 
dolphins was suggested to induce cytochrome P450 mono-oxygenases, leading to 
enhanced production of PCB metabolites (Montie et  al. 2008). As  discussed in 
Sect. 4.4, Jorgensen et al. (1999, 2002) studied overwinter emaciation in Arctic charr 
and saw an increase in PCB concentrations in more sensitive tissues (e.g., kidney and 
brain). This long-term food deprivation in overwintering charr also led to marked 
increases in biomarker responses during this period of PCB redistribution. Leney et al. 
(2006b) demonstrated the onset of PCB biotransformation in green frogs immediately 
following metamorphosis, a period when bioamplification is maximized for this spe-
cies. However, it was not determined whether biotransformation was a consequence of 
bioamplification, or was from the ontogenetic changes associated with metamorphosis 
(Leney et al. 2006b). Christensen et al. (2007) reported that fasting animals, such as 
hibernating bears, experience prolonged exposure to toxic biotransformation prod-
ucts, from reduced capacity to eliminate them via urine and fecal egestion during this 
dormant state. Unfortunately, the information available is too limited to draw general 
conclusions on the specific interactions that take place between POP bioamplification, 
chemical biotransformation rates, and metabolite-mediated toxicity responses.

Because there are many bioenergetic bottlenecks at critical and highly sensitive 
periods of an animal’s life cycle, bioamplification of POPs may increase chemical 
toxicity during these susceptible periods. Bioenergetic imbalances and associated 
weight loss events are predicted to increase stress and enhance possibilities of 
chemical/stress toxicity interactions (Fuglei et  al. 2007; Knott et  al. 2011). For 
example, several POPs are known to interfere with behavioral responses such as 
predator avoidance (Schulz and Dabrowski 2001; Weis and Weis 1987). Therefore, 
bioamplification of POPs during larval and/or fry development may reduce the 
capacity for predator avoidance, when these animals become free-swimming indi-
viduals and are more susceptible to predation. Further, ontogenetic shifts from 
endogenous to exogenous food resources are often associated with elevated mortal-
ity. Thus, bioamplification could potentially augment mortality at this critical period 
for larval fish. While stranded cetaceans often have higher total POP burdens than 
healthy animals do, it is unknown what role bioamplification plays in such mortali-
ties (Chou et al. 2004). Amphibian metamorphosis represents a period of substan-
tive changes in gene transcription and translational activities, in addition to 
significant physiological and metabolic reorganization (Kawahara et  al. 1991). 
Subsequently, the potential for chemical interference during gene expression is 
higher during metamorphosis than during other life stages.

7  �Conclusions

In this review, we have demonstrated that bioenergetic bottlenecks and environmen-
tal stressors influence POP exposure dynamics for many taxonomic groups that 
utilize different life history strategies. The main conclusions of this review are:

J.M. Daley et al.



135

	1.	 Bioamplification occurs when an animal loses body mass and chemical parti-
tioning capacity at a faster rate than it can eliminate contaminants.

Bioamplification, explicitly, is a non-equilibrium, non-steady state process, in 
which chemical residues in animal tissues become concentrated from reductions 
in chemical partitioning capacity that occur due to rapid loss of body lipids, 
without a commensurate loss of chemical mass.

	2.	 Bioamplification leads to the mobilization of POPs from inert storage sites (e.g., 
adipose tissue) to other more sensitive tissues.

A major implication of bioamplification is that it increases chemical fugacity 
in the animal’s tissues. Several case studies demonstrate that this increase in 
fugacity results in the redistribution of contaminants from inert lipid stores (adi-
pose) to more toxicologically sensitive tissues.

	3.	 Bioamplification often occurs during sensitive life stages in the animal’s life 
history.

We have demonstrated that bioamplification often produces enhanced POP 
fugacities and tissue-specific chemical concentrations at critical periods in an 
animal’s life history. Common critical behavioral, ontogenetic and physiological 
events, when bioamplification has been demonstrated, include embryo develop-
ment, juvenile life stages, metamorphosis, reproduction, migration, overwinter-
ing, hibernation, and disease.

	4.	 As a bioaccumulation process, bioamplification is additive to bioconcentration 
and biomagnification mechanisms of chemical exposure.

As outlined in model simulations (Sect. 5), bioamplification can result in ani-
mals achieving the same magnitude of chemical concentrations predicted by 
steady state bioaccumulation models, prior to the animal actually achieving steady 
state with its exposure media (Figs. 1c and 2c). Bioamplification can increase the 
chemical concentration in an animal to levels that exceed the maximum concen-
tration predicted for a given species by steady-state biomagnification models.

	5.	 Examples of bioamplification of POPs can be found across the animal 
kingdom.

Case studies of bioamplification are presented and include examples across a 
range of animal taxa including invertebrates, amphibians, fishes, birds, and 
mammals. Occasionally, BAmFs were observed to approach or exceed BMFs 
reported for POPs compounds.  For example, observed BMFs for POPs in fish 
species often range from 5 to 10, whereas migrating salmon and eels have been 
shown to achieve BAmF’s that exceed 10 (Table 1).

8  �Future Directions

Bioamplification results in elevated POP fugacities and chemical concentrations 
during critical periods of the life history of many animal species. Consequently, 
understanding the dynamics of bioamplification and how behavioral, ontogenetic, 
and physiological changes during an animal’s life history alter critical tissue 
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residues is important to bioaccumulation and risk assessment studies. Unfortunately, 
bioamplification is rarely considered in such studies. Most POP bioaccumulation 
models fail to fully consider the full scope of ecological, climatic, and physiological 
variables that regulate POP kinetics and bioaccumulation. In recent years, several 
authors have called for acquiring more robust datasets and for integrating more 
thorough life history information, as means to better calibrate and validate models 
(DeBruyn and Gobas 2006; Muir and de Wit 2010; Ng and Gray 2009; Norstrom 
et al. 2007). In our view, the major data gaps that require attention in future bioam-
plification research include the following:

	1.	 Parameterization of life-stage specific toxicokinetic parameters and mapping 
their interactions with changing environmental conditions.

	2.	 Understanding seasonal and life-stage specific growth, weight loss, and proxi-
mate composition changes under realistic environmental conditions.

	3.	 Investigating the influence of multiple stressors (e.g., habitat alterations, climate 
change, species invasions, etc.) on growth, weight loss, and proximate composi-
tion in a given species.

	4.	 Development of full lifecycle (embryo to adult) non-steady state bioaccumula-
tion models.

Addressing these data gaps is not only essential for understanding and predicting 
POP bioaccumulation and biomagnification in food webs, but also for protecting 
wildlife, ecosystem, and human health.

9  �Summary

Persistent organic pollutant bioaccumulation models have generally been formu-
lated to predict bioconcentration and biomagnification. A third bioaccumulation 
process that can mediate chemical fugacity in an organism is bioamplification. 
Bioamplification occurs when an organism loses body weight and the chemical par-
titioning capacity occurs at a rate that is faster than the chemical can be eliminated. 
Although bioamplification has not been widely recognized as a bioaccumulation 
process, the potential consequences of this process are significant. Bioamplification 
causes an increase in chemical fugacity in the animal’s tissues and results in the 
redistribution of contaminants from inert storage sites to more toxicologically sensi-
tive tissues. By reviewing laboratory and field studies, we have shown in this paper 
that bioamplification occurs across taxonomic groups that include, invertebrates, 
amphibians, fishes, birds, and mammals. Two case studies are presented, and con-
stitute multi-life stage non-steady state bioaccumulation models calibrated for yel-
low perch and herring gulls. These case studies were used to demonstrate that 
bioamplification is predicted to occur under realistic scenarios of animal growth and 
seasonal weight loss. Bioamplification greatly enhances POP concentrations and 
chemical fugacities during critical physiological and behavioral events in an ani-
mal’s life history, e.g., embryo development, juvenile stages, metamorphosis, 
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reproduction, migration, overwintering, hibernation, and disease. Consequently, 
understanding the dynamics of bioamplification, and how different life history sce-
narios can alter tissue residues, may be helpful and important in assessing wildlife 
hazards and risks.

10  �Appendix 1: Description of the Yellow Perch Model  
and Associated Simulations

Simulations were performed by finite difference, using a daily time step. The model 
was set up using a Microsoft Excel spreadsheet, and the calculation algorithms and/
or constants for each variable of the model are summarized in Table 4. The model 
was initialized by assuming that day 1 corresponded to a 1-year-old fish (365 days 
old) hatched on May 20 of the previous year. The model was initialized at this life 
stage, because of a lack of data on growth, proximate composition changes and 
chemical toxicokinetics in larvae fish during the first year. The model was run for 
2,920 days (i.e., 8 years from the simulation initialization). In the simulations, fish 
growth was allowed to change as a function of age, following the precedent of a von 
Bertalanffy model fitted to 22 North American populations of yellow perch (Jackson 
et al. 2008). The von Bertalanffy model was used to predict the length (cm) of fish 
at a given age (in days) for the constant temperature scenario. Body length (cm) was 
converted to a body weight (g) value, by using a linear regression equation fitted to 
the log10 of body length versus log10 of body weight (this approach relied on unpub-
lished data that was generated for aquaculture-reared yellow perch; see Table 4).

For the dynamic temperature scenario, growth rates from the baseline simula-
tions were further modified to make growth rates temperature dependent, whereas 
overall growth rates generally matched those of the constant temperature simula-
tion. The modifications to the basic growth model are described as follows. On May 
20 of each year (i.e., reflecting the assumed birthday of the fish), the body weight of 
the fish was set to be equal to the body weight estimated for the constant tempera-
ture simulation. Body weights for other days in the year were calculated by a finite 
difference method as: BW(t) = BW(t−1) + GCYI × T; where GCYI is the temperature-
dependent growth constant for a given year interval and T is the water temperature 
(°C). The GCYI was iteratively fit for each year class so that the predicted body 
weight of fish at the next May 20th date corresponded to the body weight predicted 
under the constant temperature scenario. The fitted coefficients for each year class 
are described in the footnotes of Table 4.

Whole body lipid contents (g lipid per g body weight) were predicted from the 
temperature-dependent algorithm used for medium and large yellow perch described 
in Drouillard et al. (2009). For the constant temperature simulations, all fish had a 
constant fractional lipid content of 0.086 (by weight). For the dynamic temperature 
scenario, lipid content ratios varied between 0.043 and 0.093, depending on the 
temperature. Water content of the fish was predicted from the negative correlation 
between %moisture and %lipid as described in Drouillard et al. (2009). The lean dry 
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weight of fish was subsequently estimated by subtracting the water and lipid weights 
from the fish body weight. Daily changes in whole body lipid and lean dry weights 
were used to estimate growth increments, growth energy costs and lipid equivalent 
contents for each time step (see Table 4 for details). Daily estimates of food con-
sumption rates (g food consumed per g body weight per day) and gill ventilation 
rates (mL water ventilated per g body weight per day) for yellow perch were calcu-
lated from temperature and size dependent algorithms as described in Drouillard 
et al. (2009) and detailed in Table 4.

The uptake portion of the toxicokinetics sub-model used the calculation methods 
of Arnot and Gobas (2004). Uptake flux of chemical into fish from water (ng/d) was 
estimated as the product of gill ventilation rate (mL per g body weight per day), 
chemical extraction efficiency across gills (unitless), chemical concentration in 
water (ng per mL), and body weight (g) of fish. In both scenarios, the recommended 
value of 0.54 was used for the chemical extraction efficiency across gills. The 
uptake flux of chemical into fish from food (ng/d) was estimated as the product of 
the feeding rate, dietary assimilation efficiency of the chemical, chemical concen-
tration in food and body weight of fish. A constant value of 0.6 was used as the 
dietary assimilation efficiency value of the chemical. Chemical loss from fish (ng/d) 
via gills and feces were estimated as detailed in Drouillard et  al. (2009), and 
described in Table 4. For simplicity of the simulations, the same chemical extraction 
efficiency across gills was used as the uptake algorithm. Similarly, the organism/
feces chemical exchange efficiency was set to be equal to the dietary chemical 
assimilation efficiency described above.

Yellow perch model simulations were performed to predict bioaccumulation and 
bioamplification of a negligibly metabolized POP compound having a log KOW of 
6.5. Two different simulation scenarios were established to compare bioamplifica-
tion under an artificial baseline condition of constant temperatures and a seasonally 
dynamic scenario that is consistent with temperate aquatic ecosystems. The base-
line scenario involved a simulation, in which temperature was kept constant (21 °C; 
at the species optimum) across seasons and years. The seasonal scenario involved a 
simulation, in which an annual temperature profile that is consistent with measure-
ments made in aquaculture ponds of Southern Ontario, was applied to predict the 
seasonal variation in lipid content and its impact on chemical bioamplification. The 
same annual temperature profile was cycled across simulation years. In both simula-
tions, the model was initialized by assuming Age 1 fish were in chemical equilib-
rium with water. Fish were assumed to feed on a stable food source (constant in its 
proximate composition, energy density and chemical concentrations) over the dura-
tion of the simulation. The concentration of chemical in food was set so that the 
food was in equilibrium with the concentration of chemical in water.

The yellow perch non-steady state bioaccumulation model was developed using 
a Microsoft Excel spreadsheet. The model is a finite difference model run at a daily 
time steps for 2,920 days. The model was initialized with a temperature of 15.9 °C 
and fish aged 365 d (May 20, year 1), body weight of 4.84 g, lipid content of 7.5%, 
moisture content of 71.8%. The initial fish concentration was set to be in equilib-
rium with water. Food concentration was set to be in equilibrium with water. The 
food concentration we held constant throughout the experimental duration.

J.M. Daley et al.
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11  �Appendix 2: Description of the Herring Gull Model  
and Associated Simulations

The herring gull bioenergetic and toxicokinetics model is described in several 
papers (Norstrom et al. 1986a, b, 2007; Clark et al. 1987, 1988; Drouillard et al. 
2003). Most commonly, the model has been used to describe non-steady bioaccu-
mulation of POPs in adult female life stages over multi-year periods. However, the 
basic algorithms for chick growth and bioenergetics of early and late life stages for 
both sexes are detailed in Norstrom et al. (1986b). For simplicity, the herring gull 
model simulations were formulated for male birds to circumvent the need to con-
sider chemical depuration by egg laying, and to maximize predictions of bioampli-
fication in the species. The model was expanded to include three linked life-stages: 
a chick stage (post-pipping to fledging), immature adult (post fledging to 3.8 years), 
and a reproductive adult (3.8 years to 8 years) stage. The chick stage immediately 
experiences bioamplification from maternally deposited residues (Drouillard et al. 
2003), followed by growth dilution until fledging. The subadult male experiences 
seasonal temperature variation and proximate composition, but does not participate 
in reproductive activities (such as courtship, or the feeding and foraging costs asso-
ciated with rearing a clutch of chicks). Adult males experience additional foraging 
costs associated with the later activities. Although herring gulls have much longer 
life spans than the 8-year period of the model simulation, an 8-year duration was 
selected for consistency with yellow perch simulations.

For each life stage, the bioenergetic sub-model predicts growth, proximate com-
position, and food consumption as outlined in Norstrom et al. (1986a). The toxico-
kinetics model only considers chemical uptake from food, since air uptake by birds 
is negligible (Drouillard et al. 2012). Similar to the yellow perch model, the uptake 
flux of chemical into the bird from food (ng/d) was estimated as the product of the 
feeding rate, dietary assimilation efficiency of chemical, chemical concentration in 
food, and body weight of fish. A constant value of 0.9 was used as the dietary 
assimilation efficiency value for the chemical and was derived from data collected 
for ring doves (Drouillard and Norstrom 2000). The toxicokinetic parameters neces-
sary to describe chemical elimination included the plasma/fat partition coefficient 
(KPF) and plasma clearance coefficient (k′pc). For model simulations, the values of 
KPF and k′pc for mirex, measured in juvenile herring gulls (Clark et al. 1987), were 
used and were assumed to be constant across the different life stages. Mirex was 
chosen to represent a highly hydrophobic POP that is negligibly biotransformed in 
birds. A modification to the herring gull model not applied in previous publications 
of the model was that the chemical outflux was measured by multiplying the k′pc by 
the body weight and lipid equivalent concentration of chemical in the animal tis-
sues. Past iterations of the module used the lipid normalized concentration. This 
change was made to make the model more consistent with the yellow perch model. 
However, it should be noted that the fish and bird models differ fundamentally in 
how elimination flux is treated. In the herring gull model, k′PC is a constant, and 
elimination flux varies over the year only as a result of changes in the proximate 

Bioamplification as a Bioaccumulation Mechanism for Persistent Organic Pollutants…
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composition (lipid equivalent content) of the animal. In the fish model, elimination 
flux of the chemical depends on variation in proximate composition, as well as 
variation in gill ventilation and feeding rates. These differences result in a de-
coupling of feeding rates and chemical elimination in birds that causes lags in return 
to steady state, following sudden shifts in feeding rates. This is exemplified in 
Fig. 2c for the constant temperature, post-adult male simulation. No attempts were 
made to harmonize the two model organisms into a single toxicokinetic model, 
because we preferred to preserve the characteristics and attributes of the models that 
had been addressed in their original publications.

As for the yellow perch models, two simulation scenarios were established for 
herring gulls. The baseline simulation kept temperature and photoperiod constant at 
21 °C and 12 h/d across seasons and years. The seasonal scenario used temperature 
and photoperiod data from Lake Ontario that had been collected during 1997. The 
model used monthly mean temperature and photoperiod data and interpolated tem-
perature and photoperiods for each day of the simulation. The model cycled the 
same annual temperature profile across all years in each simulation. The model was 
initialized using a fresh egg concentration predicted from a 10-year adult female 
model simulation (Clark et al. 1988), wherein the female bird was fed a constant 
diet of the same concentration and energy density as that used for male simulations. 
The female simulation used a constant temperature and photoperiod to initialize the 
constant temperature simulation, and a variable temperature and photoperiod equiv-
alent to the Lake Ontario profile to initialize the dynamic temperature simulation. 
The simulated fresh egg concentration (μg/kg wet weight) from adult female simu-
lations was multiplied by the egg weight (85 g), and was divided by the fresh egg 
lipid content (7.2 g) as reported by Drouillard et  al. (2003) to estimate the lipid 
normalized egg concentration. Bioamplification of fresh egg residues in the pipping 
embryo was accounted for by multiplying the fresh egg lipid normalized concentra-
tion by a factor of 3.1 (Drouillard et al. 2003), and multiplied by the lipid equivalent 
content of the newly pipped chick to determine the total mass of chemical in the 
chick. The bird was grown out and was assumed to feed on a constant food source 
of proximate composition, energy density, and chemical concentration that was 
similar for the duration of the study. A full description of model parameters and 
algorithms employed is presented in Table 5.

The herring gull toxicokinetic model output was copied onto a Microsoft Excel 
spreadsheet. The model is a finite difference model and was run at a daily time steps 
for 3,137 days. The model was initialized with a 1-day-old pipping male chick 
hatched on May 29, 1997. The chick sub-model was used to calculate growth, prox-
imate composition, bioenergetics, and chemical toxicokinetics between days 1 and 
88. The output from the chick sub-model was linked to a subadult male model 
between days 89 and 1,398, i.e., up to 4 years. In the subadult model, immature 
birds were assumed to not participate in reproductive activities and therefore had no 
courtship feeding or chick provisioning costs. The output from the subadult male 
model was linked to a reproductive adult male model which covered simulation 
days 1,399–3,136.

J.M. Daley et al.
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