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Preface

The word “accretion” has a Latin origin (accretio) and means an augmentation
or increment of an initial amount by the addition of new portions. Astronomers
use this term to describe the falling of diffused matter onto a center of gravity.
Accretion onto compact stellar objects, for example, neutron stars and black holes,
is accompanied by an enormous output of energy. In the 1970s, the study of
such processes became of special importance. It was the time when the American
UHURU satellite discovered X-ray emission from accreting black holes and neutron
stars in binary stellar systems. Some time earlier, in the end of the 1960s, when I
was a graduate student at the physics faculty of the Moscow State University (MSU),
my scientific advisor academician Ya. B. Zeldovich suggested to me to calculate the
structure and radiation spectra of the shock wave arising when gas accretes onto a
neutron star. The choice of this particular scientific problem was triggered by the
following circumstances.

In 1962, a group of American scientists led by Prof. Riccardo Giacconi discov-
ered the first X-ray sources. Before that, astronomers had known only one X-ray
source of extraterrestrial origin, namely, the solar corona. The coronal gas, heated
to a million degrees by some then unknown mechanism, was known to produce X-
ray emission. The luminosity of the solar corona in X-rays is approximately one
millionth of the optical luminosity of the Sun (4 × 1033 erg/s). It was thus natural
to assume that other stars are also surrounded by hot coronae. However, simple
calculations showed that detectors available at that time could not detect coronae
even around the nearest stars located at distances of a few parsecs.

Nevertheless, astronomers tried to detect X-ray radiation from the Moon! The
Moon has no atmosphere, but perhaps some radiation could be produced by
fluorescence as the Moon’s surface is illuminated by X-rays from the Sun. To
investigate this, precisely at midnight of June 18, 1962, when a full moon was
shining, the Aerobee rocket was launched. It reached a height of 225 km. Its flight
continued for 350 s and was quite successful: two of the three Geiger counters, with
large surface and good sensitivity in the range 1.5–6 keV, were operating during
the flight. In this energy range, the Earth’s atmosphere is totally opaque. Suddenly,
instead of X-ray radiation from the Moon, a bright and before unknown source
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was discovered, which was far beyond the solar system in the direction of the
constellation Scorpius. It was named Sco X-1.

Ya. B. Zeldovich. Credit: Photo-

Archive of the Sternberg Astronom-

ical Institute

In the following years, new rocket flights
brought more and more discoveries of new X-ray
sources. Gradually, a sky map covered with X-ray
sources of different nature was created. The first
sources got their names according to their location
in the night sky (Cyg X-1, Cyg X-2, Her X-1, Cen
X-3, and so on). Later it was revealed that their
X-ray luminosities were thousands or even tens of
thousand times stronger than the Sun’s luminosity
in visual light. The epoch of X-ray astronomy,
an epoch of stunning discoveries in the universe,
began.

According to simple estimates made by
Ya. B. Zeldovich himself, the shock wave arising
when the gas surrounding a neutron star falls onto
its surface should produce radiation primarily in
the X-ray range. My goal was to carry out a full
calculation and investigate the process in detail.
The main difficulty was connected to the following
property: the mean free path of a falling particle

near the surface of the neutron star is much greater (tens of times) than the
characteristic scale of interaction between matter and radiation. In many such
problems, it is not necessary to calculate the structure of the shock wave: it is
sufficient to specify the changes in density, pressure, temperature, and other physical
parameters depending on the velocity and the adiabatic index of the falling gas. In
my problem, the density, temperature, and other parameters depended on the energy
release in the braking zone. Moreover, plasma oscillations may arise in this zone. To
describe these, the use of kinetic plasma equations is required rather than ordinary
hydrodynamics. In the end, however, I managed to show that shock wave emission
spectra from accreting neutron stars could explain the observational data obtained
with the recently launched instruments.

The first identifications of cosmic X-ray sources with their optical counterparts
appeared in the 1960s, allowing a determination of their luminosities and distances
to them. It became clear that the large luminosities of accreting neutron stars
could be provided only in close binary systems with mass flowing from the stellar
component to the neutron star.

When I was a student of astronomy, I attended a course in astrophysics given
by the director of the Sternberg Astronomical Institute, Prof. D. Ya. Martynov. In
his lectures, he paid special attention to the processes of mass exchange in binary
stellar systems through the inner Lagrangian point, and explained how due to the
relative orbital motion of the components, a stream of gas forms a disc-like envelope
around one of the stars. So, I decided to place a neutron star or even a black hole
as an accreting component in a binary system and found that in this case, a new
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type of accretion (namely, disc accretion!) is possible since the matter, which falls
onto such a powerful center of gravity as a neutron star or a black hole, possesses
a large angular momentum that prevents it from falling radially inwards. In a
first approximation, matter in the disc moves along nearly Keplerian orbits. Slow
radial movement of the disc matter toward the center of gravity accompanied by a
large energy output (disc accretion) can only be triggered by exchange of angular
momentum between adjacent layers of the differentially rotating disc. The reason
for such exchange could be turbulence and/or magnetic fields.

D. Ya. Martynov. Credit: Photo-

Archive of the Sternberg Astronom-

ical Institute

In 1969, the article with the calculation and
description of the shock wave structure was pub-
lished in “Astronomicheskii Zhurnal” and became
my diploma. This year, I became a postgraduate
student at the physics faculty of the MSU. Aca-
demician Ya. B. Zeldovich became my scientific
advisor.

As a postgraduate student, I continued to study
the structure and spectra of accretion discs that
form around accreting neutron stars and black
holes in close binaries due to mass flow from the
surface of an optical star.

The foundations of the theory of disc accretion
were published, also in “Astronomicheskii Zhur-
nal”, in 1972. The main part of the work was done
in collaboration with R. A. Sunyaev. Together
we developed the so-called standard model of
disc accretion. The work was presented at the
55th symposium of the International Astronomical
Union in Madrid in 1972 (Shakura and Sunyaev
1973b). It was there that the first observational
results from the UHURU satellite were presented
and the first theoretical models of compact X-ray sources in stellar binaries discov-
ered by UHURU were reported. Our report in Madrid was an introduction to a highly
influential article published in “Astronomy and Astrophysics” in 1973 (Shakura
and Sunyaev 1973a). On the basis of this article, I. D. Novikov and K. S. Thorne
calculated the relativistic corrections required by general relativity (Novikov and
Thorne 1973).

The pioneering work made together with R. A. Sunyaev is still topical today.
According to the NASA ADS data system, the number of references to this article
exceeds 8400 (as of April of 2018). It is our great pleasure to present to you this
book covering some of the most principal and important areas of modern theory of
disc and quasi-spherical accretion onto black holes and magnetized neutron stars.

In Chap. 1, the authors (G. V. Lipunova, K. L. Malanchev, and N. Shakura)
present the equations of disc accretion in the framework of the standard model, the
basics of the phenomenological theory of turbulent viscosity, and the properties of
thin accretion discs and their structure along the radial and vertical directions. The
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N. Shakura and R. A. Sunyaev in 1973 and 2017

authors describe analytical solutions to the basic equation of evolution of a non-
stationary viscous accretion disc, in the case of infinitely large discs and for discs in
binary systems enclosed within their Roche lobes. It is shown how the characteristic
time scale of variability in non-stationary disc accretion allows us to determine the
level of developed turbulence in accretion discs. A method for a joint numerical
solution of the evolution equation and the equations of vertical disc structure is
presented.

Chapter 2 (by N. Shakura) is devoted to motion of particles along spherical
geodesics around rotating black holes. Such motion is possible if the plane of the
outer parts of the accretion disc is tilted toward the equatorial plane of the rotating
black hole. A study of this motion is necessary for understanding the structure of a
warped disc. This chapter uses a special approach to determine how the quantities,
which are measured in the local frame of a fiducial observer in the axially symmetric
gravitational field, are related to each other. This approach allows us to better
understand the basic principles for measuring physical quantities in GR. These basic
principles, which are systematically presented in the next chapter, are required for a
more comprehensive understanding of the structure of relativistic accretion discs.

Chapter 3 (by V. V. Zhuravlev) presents a self-consistent model of a standard
relativistic accreion disc. The disc is aligned with the equatorial plane of a rotating
black hole, and calculation is performed taking full account of relativistic effects. In
the first half of the chapter, the author describes in detail how relativistic corrections
to the disc structure are deduced using a tetrad basis that is carried by an observer
comoving with the rotating matter. Further, using the basic simplifying assumptions
of the standard accretion disc model, the relativistic hydrodynamic equations are
projected onto the tetrad basis. After that, the author presents an explicit relativistic
generalization of radial profiles of the viscous stress and the energy flux from the
disc surface.

In Chap. 4, V. V. Zhuravlev outlines the theory of twisted relativistic accretion
discs. A warped disc forms around a rotating black hole if the outer parts of the
disc are not aligned with the black hole’s equatorial plane. The author derives
the equations describing the evolution of the shape of a twisted disc and the
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perturbations of density and velocity necessarily arising in such a disc. This is done
under some simplifying assumptions (namely, a small aspect ratio of the disc, slow
rotation of the black hole, and a small tilt angle of the disc rings with respect to
the black hole equatorial plane), nevertheless including all general relativity effects.
The author further presents an analysis of particular regimes of nonstationary twist
dynamics (the wave and diffusion regimes), both in the framework of Newtonian
dynamics and taking into account Einstein’s relativistic precession. At the end of
the chapter, a calculation of the shape of a stationary relativistic twisted accretion
disc for different values of free parameters of the model is presented.

In Chap. 5, the authors (P. K. Abolmasov, N. Shakura, and A. A. Chashkina)
examine the structure of accretion discs in distant quasars from the point of view
of the spatial information obtained with the help of quasar microlensing. This
exotic effect appears when strong lensing by a foreground galaxy is accompanied
by microlensing on individual stars in it. The authors of this chapter aim to
give a general introduction to QSO microlensing and to show the opportunities
of the method, providing a review of the recent results in this area. It is also
shown that the typical variability of the radiation (observed in different spectral
ranges) caused by microlensing allows us to study the structure of both subcritical
and supercritical (super-Eddington) accretion discs. The latter are characterized by
outflow of matter from the inner parts of the disc due to strong radiation pressure.
As a consequence, a quasi-spherical envelope forms with a radius determined by
processes of scattering by free electrons. This radius has different, presumably
weaker, dependence on wavelength, whereas the effective radius of the standard
subcritical disc is proportional to the wavelength as r ∼ λ4/3.

Chapter 6 (by V. V. Zhuravlev and D. N. Razdoburdin) is focused on the study
of transient growth of small perturbations in spectrally stable rotating shear flows,
in particular, those with a Keplerian profile of angular velocity. The mechanism of
perturbation growth is discussed in the simplest model of local two-dimensional
adiabatic perturbations in a spatially homogeneous flow. Furthermore, special
emphasis is placed on mathematical methods that make it possible to perform a
rigorous analysis of transient dynamics in disc models of various sophistication. The
transient growth of perturbations seems to be capable of transferring energy from a
background flow to perturbations in a homogeneous Keplerian flow (in the absence
of a magnetic field). Without this energy transport, the emergence of turbulence
and/or enhanced angular momentum flux towards the disc outskirts would not be
possible.

In Chap. 7, the authors (N. Shakura, K. A. Postnov, A. Yu. Kochetkova, and
L. Hjalmarsdotter) examine the theoretical model of quasi-spherical subsonic
accretion onto slowly rotating magnetized neutron stars. In this case, the accreting
matter slowly, with subsonic velocity, settles onto the rotating magnetosphere of the
neutron star, forming an elongated quasi-spherical envelope. The angular momen-
tum transfer in the envelope is effected through large-scale convective motions,
implying that the differential rotation law in envelopes above magnetospheres of
actual X-ray pulsars corresponds to an approximately isomomentum distribution.
The accretion rate in the envelope depends on the ability of the plasma to penetrate
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into the magnetosphere due to the Rayleigh–Taylor instability, if cooling processes
are taken into account. Subsonic infall of matter may occur at moderate X-ray
luminosities corresponding to accretion rates of Ṁ � 4 × 1016 g/s. In the case
of higher accretion rates, a region of free-falling matter arises in the flow above the
magnetosphere due to fast Compton cooling, making accretion highly nonstationary.
One can determine the basic parameters of the model and estimate the magnetic
field of the neutron star when observing acceleration and slowdown in the rotation
periods of equilibrium X-ray pulsars with known orbital periods, such as GX 301-2
and Vela X-1, in which quasi-spherical accretion from the stellar wind occurs. It is
possible to estimate the velocity of the stellar wind emitted by the optical counterpart
of an equilibrium pulsar in a binary, without conducting complex spectroscopic
measurements, if an independently measured magnetic field is known for the
neutron star. There is a maximal possible value for the slowdown rate of the neutron
star for accretion onto a nonequilibrium pulsar. Examples of such pulsars are GX
1+4, SXP 1062 and 4U 2206+54. Knowing the slowdown rate of the rotation of such
a pulsar and its X-ray luminosity, we may estimate a lower limit on the magnetic
field of the neutron star, which always turns out to be close to the standard value and
corresponds to the observed cyclotron peculiarities in measured spectra. The model
explains why rotation in nonequilibrium pulsars accelerates and slows down on long
timescales and why the pulsar frequency varies on short timescales. In different
binaries, these variations may display either a correlation or an anticorrelation with
the observed fluctuations in X-ray flux.

The authors of Chap. 8 (N. Shakura and K. A. Postnov) examine the conditions
under which the Velikhov–Chandrasekhar magneto-rotational instability (MRI) in
ideal and nonideal plasma may arise. In the presence of magnetic fields, this
instability arises in an axially symmetric hydrodynamic flow if the angular velocity
of the flow decreases outwards, whereas the angular momentum increases. The
growth rate of MRI decreases if the magnetic field becomes stronger; there is a
critical value of the magnetic field, above which the exponential growth gives way
to oscillations. The influence of viscosity and electrical conductivity of the plasma
on the development of MRI is studied. The limiting values (lower limits) of ion
mean free paths, for which MRI is still possible in thin discs obeying Kepler’s law
of rotation, are obtained.

On the other hand, the authors show that the MHD mode becomes stabilized
in a hydrodynamic flow, which is unstable according to the Rayleigh criterion (the
angular momentum decreases outwards), for small perturbation wavelengths.

Many excellent books have been published about accretion in astrophysics.
We would like to mention, in particular, Black-Hole Accretion Disks by S. Kato,
J. Fukue, and S. Mineshige; Oscillations of Disks by S. Kato; and Accretion Power
in Astrophysics by J. Frank, A. King, and D. Raine. We hope that the reader will
find the present volume useful as well.

Moscow, Russia Nikolay Shakura
April 2018
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Chapter 1
The Standard Model of Disc Accretion

Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

Abstract Accretion discs are powerful energy factories in our Universe. They
effectively transform the potential energy of gravitational interaction to emission,
thereby unraveling the physics of distant objects. This is possible due to the presence
of viscosity, driven by turbulent motions in accretion discs. In this chapter, we
describe the equations for disc accretion in the framework of the standard model.
We outline basic elements of the theory of turbulent viscosity and the emergence
of the α-parameter. We further describe the radial and vertical structure of thin
stationary accretion discs, and present analytical solutions to the basic equation of
the evolution of a viscous accretion disc for both an infinite disc and for a disc in
a binary system. Finally, we present a numerical method to solve the equations of
disc evolution and vertical structure simultaneously.

1.1 Introduction

The theory of disc accretion has tremendously broad applications in astrophysics—
it is used to study for example bright objects at a wide spectral range in our own
Galaxy, the luminous centres of other active galaxies, relativistic jets from compact
objects, protostars and the formation of planetary systems, and to explain the most
luminous sources of the universe, the gamma-ray bursts.
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The bases for the theory of standard disc accretion are found in the papers
by Shakura (1973) and Shakura and Sunyaev (1973). Other important early works
include the papers by Gorbatskii (1965), Lynden-Bell (1969), and Pringle and Rees
(1972). The development of the theories for the various processes connected to disc
accretion can be found in the textbooks by Kato et al. (1998), Frank et al. (2002) and
in the overview by Abramowicz and Fragile (2013). Galactic discs, discs in close
binaries and in protoplanetary systems are discussed in the textbook by Morozov
and Khoperskov (2005). Bisikalo et al. (2013) studied the gas dynamics of mass-
transfer in close binary systems. A short and comprehensive overview of standard
disc accretion, including aspects of discs in dwarf and X-ray novae, can be found in
Lasota (2015).

In this chapter we consider the basic properties of stationary and non-stationary
discs in the framework of the standard model of disc accretion, touching only lightly
upon relativistic effects. We derive the basic equations describing non-radial infall
of matter in astrophysical situations, where the effects of viscous stresses lead
to heating of the matter and subsequent emission of thermal energy that can be
observed by astronomical instruments from enormous distances.

Discs are formed around stars as a result of matter with non-zero angular
momentum being captured by the star’s gravitational field. The matter may originate
from the interstellar medium or be transferred from a close companion star. If the
matter is rotating in approximately a single plane, the structure is called an accretion
disc. As a result of transfer of angular momentum the matter moves towards the
central object and thereby releases its gravitational energy. This energy is transferred
to kinetic energy, increasing towards the centre, and to thermal energy of the plasma.
If the thermal energy can be emitted effectively, the disc is relatively thin.

We here consider geometrically thin ‘flat’ accretion discs. In a geometrically
thin disc, the half-thickness in the direction perpendicular to the disc plane is
much smaller than the distance to the centre at a given point in the disc. If a
geometrically thin disc has an optical depth much exceeding unity (τ � 1) in
the direction perpendicular to the disc plane, the equations of energy balance can
be written in a rather simple form. In this case the photons are absorbed and
dissipated or scattered many times before they leave the disc and we can assume
local thermodynamic equilibrium. In a geometrically thin disc we may also neglect
radial advection (the transfer of heat with matter moving radially). The condition of
local thermodynamic equilibrium suggests equal temperature of electrons and ions
in the plasma. Moreover, the standard models do not take into account mass loss
from the disc surface: the matter leaves the disc only through its inner boundary.
In reality, or rather in the current largely consistent picture of accretion discs, these
conditions are satisfied at distances far from the disc centre.

It is important to note that the accretion process is driven by viscosity caused by
turbulent motions of the matter in the disc. The characteristic time scale for changes
in the radial structure of the disc is called the viscous time scale. The viscous time
scale is related to the radial motion of matter in the disc. In the framework of the
standard equations for accretion discs, discussed in this section, the characteristic
viscous time scale τvis is much longer than the dynamic time scale τdyn, set by the
orbital velocity of matter in the disc. The viscous time scale is also much longer
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than the ‘hydrostatic’ time scale τhyd, on which the thickness of the disc changes
with pressure, and much longer than the ‘thermal’ time scale τth, that is, the time
for a given patch of the disc to radiate the stored thermal energy and to change the
temperature:

τvis � τdyn ; τvis � τhyd ; τvis � τth .

As in stars, the disc equilibrium structure depends on its luminosity. For a wide
range of accretion rates, the disc luminosity is proportional to the rate with which
matter flows into the disc. There is, however, a critical luminosity close to which
radiation pressure starts to play a decisive role for the formation of the disc
structure. This is the Eddington luminosity limit. Like in stars, the Eddington
luminosity is determined from the balance between the forces of radiation pressure
and gravitational forces acting on the proton. In the case of spherical symmetry:

LEdd = 4π cGM mp

σT

≈ 1.25 × 1038 M

M�
erg/s . (1.1)

We use the following notations: the universal gravitational constant G, the mass of
the central body M , the mass of the Sun M� ≈ 2 × 1033 g, the proton mass mp,
the Thomson cross section for electron scattering σT. Using the expression for the
effective luminosity in the accretion process L = ηaccr Ṁ c

2, we obtain the critical
accretion rate in the disc:

ṀEdd = 4π GM

c ηaccr κT
≈ 1.4 × 1018 M

M�
g/s ,

where we have set the energy conversion efficiency of accretion ηaccr = 0.1
(ηaccr = 1/12 in the Newtonian metric for a disc with the inner boundary at
radius 6GM/c2), and the Thomson cross section per gram κT ≈ 0.4 cm2/g. In disc
models the accretion rate is often normalised to this value. However, it is only an
approximate evaluation of the accretion rate, above which the disc becomes thick.
The thin disc approximation is no longer valid in a region, the radius of which is
proportional to the accretion rate, and this region may experience outflow of material
from the disc surface.

Various disc instabilities may arise at accretion rates lower than the critical
one. For example, at temperatures and densities corresponding to the conditions
for recombination of ions in the plasma, thermal instability arises which results in
a change in the vertical structure of the disc on thermal time scales (Meyer and
Meyer-Hofmeister 1981). In particular, this instability leads to outbursts in dwarf
novae. Close to the disc centre, if the radiation pressure exceeds the gas pressure,
viscous and thermal instabilities arise (Lightman and Eardley 1974; Shibazaki and
Hōshi 1975; Shakura and Sunyaev 1976). Nevertheless, there exists a wide range of
accretion rates at which the structure of the accretion disc can be treated as quasi
stationary.
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1.2 Disc Equations

When examining geometrically thin discs, it is convenient to work in cylindrical
coordinates (r , ϕ, z). We assume that accretion discs are axially symmetric. This
leads to the disappearance of all derivatives with respect to ϕ. For thick discs or for
a study of the structure of outflowing matter, spherical coordinates should be used.

1.2.1 Important Note

In the standard theory of disc accretion, as we outline it here following Shakura
and Sunyaev (1973), the viscous stress tensor is frequently written as a physically
positive value. In Chap. 1 this value appears under notation wt

rϕ = −wrϕ .

1.2.2 Continuity Equation

The continuity equation in cylindrical coordinates in the axial symmetric case takes
the form:

∂ρ

∂t
+ 1

r

∂

∂r
(ρ vr r)+ ∂

∂z
(ρ vz) = 0 . (1.2)

1.2.3 Equations of Motion

The equations of motion in cylindrical coordinates in the axial symmetric case are
written as:

∂vr

∂t
+ vr ∂vr

∂r
+ vz ∂vr

∂z
− v2

ϕ

r
= −∂Φ

∂r
− 1

ρ

∂P

∂r
+Nr, (1.3)

∂vϕ

∂t
+ vr ∂vϕ

∂r
+ vz ∂vϕ

∂z
+ vrvϕ

r
= Nϕ, (1.4)

∂vz

∂t
+ vr ∂vz

∂r
+ vz ∂vz

∂z
= −∂Φ

∂z
− 1

ρ

∂P

∂z
+Nz, (1.5)

whereΦ is the gravitational potential, P is the pressure, andNr , Nϕ , andNz are the
components of the viscous forceNNN per unit mass. We write the components ofNNN in
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the case of axial symmetry as:

ρNr = 1

r

∂

∂r
(rwrr)− wϕϕ

r
+ ∂wrz

∂z
, (1.6)

ρNϕ = 1

r2

∂

∂r
(r2wϕr)+ ∂wϕz

∂z
, (1.7)

ρNz = 1

r

∂

∂r
(rwzr )+ ∂wzz

∂z
, (1.8)

where wik are the components of the viscous stress tensor. We write these
components:

wrr = 2η
∂vr

∂r
+

(
ζ − 2

3
η

)
divvvv, (1.9)

wrϕ = wϕr = η
[
r
∂

∂r

(vϕ
r

)]
, (1.10)

wrz = wzr = η
(
∂vz

∂r
+ ∂vr

∂z

)
, (1.11)

wϕϕ = 2η
vr

r
+

(
ζ − 2

3
η

)
divvvv, (1.12)

wϕz = wzϕ = η∂vϕ
∂z
, (1.13)

wzz = 2η
∂vz

∂z
+

(
ζ − 2

3
η

)
divvvv , (1.14)

where

divvvv = 1

r

∂

∂r
(rvr )+ ∂vz

∂z
.

Here η is the dynamic coefficient of the shear viscosity due to the relative motion
of different layers of the flow, and ζ is the second viscosity (Landau and Lifshitz
1959). In the following, we will omit the effects of second viscosity.

For thin accretion discs, the only significant component of the viscous stress
tensor is wrϕ . As a result we have that

ρNϕ = 1

r2

∂

∂r
(r2wrϕ), (1.15)

wrϕ = ηr ∂
∂r

vϕ

r
= ηr ∂ω

∂r
, (1.16)

where ω = vϕ/r is the angular velocity of matter in the disc.
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We will consider thin stationary discs for which the partial derivatives with
respect to time in the equation of motion (1.3)–(1.5) become zero. For such discs
the most important terms in Eq. (1.3) are v2

ϕ/r and the gravitational potential
gradient. For a Newtonian gravitational potential Φ = −GM/r , neglecting the
self-gravitation of the disc, we obtain Kepler’s law:

ωK =
√
GM

r3 . (1.17)

In this case the radial component of the friction force and the pressure gradient are
negligible comparing to the gravitational force from the central body.

In the direction perpendicular to the disc plane, hydrostatic equilibrium is
established, in which the vertical gravity component is balanced by the vertical
pressure gradient. From (1.5) we have:

− 1

ρ

∂P

∂z
= GM

r3 z . (1.18)

1.2.4 Energy Conservation Equation

The energy conservation equation for the general case is written in the following
way (Landau and Lifshitz 1959; Kato et al. 2008):

∂E

∂t
+ div

[
(E + P)vvv − (vvv wik)+FFF th

]
= ρεmass , (1.19)

where E = ρ (e + v2/2 + Φ) is the sum of the thermal, kinetic and potential
energy per unit volume. Its change over time is a result of the energy flux arising
due to motion of the medium, the work of pressure and viscosity forces, and other
possible energy flows. In a thin plane disc, the energy flux connected to viscous
forces is radial and equals (−vϕ wrϕ). The vector FFF th contains other types of
thermal energy flows: radiative, conductive and convective. In a thin disc the main
contribution is given by Fz, which includes the radiative flux transferring energy
to the radiating disc surface. In general, there could be other heating or cooling
mechanisms operating within a unit volume (for example, nuclear reactions, Joule
dissipation or radiative cooling of the optically thin medium). The rate of such
heating or cooling per unit mass is εmass.
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1.2.5 Energy Dissipation

Let us consider the change of kinetic energy in the flow expressing the total velocity
derivative with the help of the Navier-Stokes equation (Eqs. (1.3)–(1.5)):

d

dt

(v2

2

)
= vvv

(
−∇Φ − 1

ρ
∇P +NNN

)
. (1.20)

Subtracting this equation from the equation for the total energy conversion (1.19)
and using the first law of thermodynamics

T ds = de + P d

(
1

ρ

)
,

where s is the specific entropy, we arrive at the following equation for the thermal
balance:

ρ T
ds

dt
= ε + ρ εmass − divFFF th , (1.21)

for a gravitational potentialΦ constant in time, where

ε = wik ∂vi
∂xk

(1.22)

is the dissipated energy per unit volume per unit time due to viscosity (summation
over indices).

In cylindrical coordinates for an axisymmetric flow:

ε = η
[

4

(
∂vr

∂r

)2

+ 2

(
∂vz

∂z

)2

+
(
∂vϕ

∂r
− vϕ

r

)2

+
(
∂vϕ

∂z

)2

+

+
(
∂vz

∂r
+ ∂vr

∂z

)2 ]
− 2

3
η

(
∂vrr

r∂r
+ ∂vz

∂z

)2

. (1.23)

In thin accretion discs, vϕ dominates significantly over other velocity terms. We
note that vϕ does not change with z in a thin disc. Thus, the dominant component in
the energy dissipation has the form:

ε = wrϕ
(
∂vϕ

∂r
− vϕ

r

)
= η

(
∂vϕ

∂r
− vϕ

r

)2

= η r2
(
∂ω

∂r

)2

. (1.24)
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1.2.6 Energy Source in the Disc

The main source of energy which dissipates in the disc due to friction, and which
in principle can be radiated, is the released potential energy as the matter moves
progressively closer to the gravitating body. Let us illustrate this for a thin Keplerian
disc.

With the help of expressions (1.7), (1.10) and (1.24), it can be shown that the
identity

ρ vϕ Nϕ + ε = 1

r

∂

∂r
(r vϕ wrϕ) . (1.25)

holds in a thin disc.
To write down ρ vϕ Nϕ , we use (1.20). Let the mass of the central object and its

gravitational potential be constant in time. We have:

ρ vr
∂

∂r

(v2

2
+Φ

)
= 1

r

∂(r vϕ wrϕ)

∂r
− ε. (1.26)

Here, we omit the term vr ∂P/∂r , which is small compared to the other terms, i.e.
we neglect the work performed by pressure forces in a Keplerian disc.

And thus, the energy from the gravitational interaction extracted as the matter
moves in the disc progressively towards the centre is transformed to kinetic energy
of orbital motion, then redistributed in the disc due to viscous forces transferring
angular momentum, and finally spent on heating of the disc (Lynden-Bell and
Pringle 1974; Shakura and Sunyaev 1976).

1.3 Viscosity in Accretion Discs

The key hypothesis in models for accretion discs is the turbulent nature of their vis-
cosity (Shakura 1973; Shakura and Sunyaev 1973; Zeldovich 1981; Fridman 1989;
Dubrulle 1993; Balbus and Hawley 1998; Richard and Zahn 1999; Bisnovatyi-
Kogan and Lovelace 2001; Marov and Kolesnichenko 2011). The values of the
coefficients of molecular viscosity obtained from studies of the properties of
liquids and gases cannot explain the observed properties of astrophysical discs. The
required rate of transfer of mass towards the disc centre and the accompanying
outward transfer of momentum can be explained only for very high values of
viscosity in the disc matter, exceeding the molecular viscosity by several orders
of magnitude. Turbulent motions of the matter may lead to significant stresses wrϕ
in the disc. In addition, the Reynolds number for accretion discs is very large and
this in itself may serve as a basis for development of turbulence regardless of the
specific mechanisms for it occurrence.
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Differential rotation in Keplerian gaseous discs is considered the basic source
of their turbulence. The angular momentum transfer by small-scale magnetic fields
in accretion discs was suggested in Shakura and Sunyaev (1973). In the late 1950s
and early 1960s, Velikhov (1959) and Chandrasekhar (1960) discovered the MHD-
instability in shear flows with angular velocity falling outwards in the existence of
a seed poloidal magnetic field. The importance of this instability for accretion discs
was shown in the calculations by Balbus and Hawley (see the reviews by Balbus
and Hawley (1991, 1998)). Disc accretion with the presence of magnetic fields was
studied by many authors (see, for example, Eardley and Lightman 1975; Galeev
et al. 1979; Coroniti 1981; Tout and Pringle 1992; Brandenburg et al. 1996).

At the present stage of development of theories of accretion discs, there is no
full consensus regarding how to express viscous stresses in a viscous flow. Most
authors describe the action of a small scale viscosity by a phenomenological α-
prescription (Shakura 1973; Shakura and Sunyaev 1973).

In Sect. 1.2 it was assumed that the derived equations describe the average
large-scale motions in the gas. Turbulence arises as a result of transfer of part
of the energy of the large-scale motions to random perturbations on smaller
scales. In general, such chaotic perturbations in the flow have a very complicated
structure and an individual description does not seem possible. Numerical solutions
to the associated non-linear equations cannot be achieved at present due to the
unreasonably large computational power needed for such a task, and an analytical
solution to the general spatially-unbounded problem with smooth initial conditions
have not been found either. A solution to the Navier-Stokes equations is one of the
seven Millennium Goals announced in 2000 by the Clay Mathematical Institute. In
applied problems, methods based on various approximations are mainly used, for
example the Reynolds method of averaging or large-eddy simulations (Deardorff
1970).

1.3.1 The Reynolds Equations and the Reynolds Tensor

Reynolds suggested a decomposition of the hydrodynamic fields in the real medium
into two components: an average field and a fluctuating (chaotic) field, followed by
an averaging of the equations. For example, for the velocity components we assume
vi = vi + v′i , for the pressure p = p+p′, etc. The average fields are always smooth
and slowly changing. The fluctuating fields are chaotic in both space and time. Note
that elsewhere in this chapter, we will use ρ without a bar for the local averaged
density of the turbulized matter.

Averaging the Navier-Stokes equations according to the rules suggested by
Reynolds leads to equations of motion for the average quantities—the Reynolds
equations. The method of averaging is not very important. It may be over time,
in space, or it may be a theoretical average over a statistical ensemble of various
hydrodynamic flows with common boundary conditions (Monin and Yaglom 1971).
Average quantities over space and time converge to theoretic-probabilistic mean
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values if the random process is stationary and spatially homogeneous. The second
condition is always a mathematical idealization. In practice, we can only talk about
homogeneity in some limited space and time domain. The general condition for
convergence of the values that are averaged over space and time to probabilistic
mean values is the condition of ergodicity.

Let us write down the Navier-Stokes equation in tensor notation:

ρ

(
∂vi

∂t
+ vk ∂vi

∂xk

)
= fi − ∂ (P δik)

∂xk
+ ∂wik

∂xk
, (1.27)

where fi are the components of an external force acting on a unit volume of matter.
For an incompressible fluid (ρ = const) we use the equalities

∂vk

∂xk
= 0 and

∂ (vivk)

∂xk
= vk ∂vi

∂xk
,

in particular, replacing the second term on the left in (1.27) with ∂(vivk)/∂xk.
We perform averaging according to the Reynolds rules (Monin and Yaglom 1971,

their chapter 2), part of which looks like the following:

f ′ = 0 ,
∂f

∂x
= ∂f

∂x
, vi · vk = vi · vk + v′i · v′k .

The average mass transfer due to turbulent motions is zero: ρ v′i = 0.
In the Reynolds-averaged Navier–Stokes equation, we find the appearance of an

additional term dependent on the pulsating velocity (with a prime) arising due to the
non-linearity of the original equation:

ρ

(
∂ vi

∂t
+ ∂ vivk

∂xk
+ ∂ (v′iv′k)

∂xk

)
= fi − ∂ (P δik)

∂xk
+ ∂wik

∂xk
.

To find out the meaning of the last term, we consider the average flow of momentum:

Πik = P δik + ρ vivk − (wik − ρ v′iv′k) . (1.28)

The two first terms on the right-hand side are responsible for the reversible
(mechanical) transfer of momentum by the average motion.

We see that for turbulent motion, the viscous tensor, dependent on the properties
of the medium, is accompanied by the term connected with chaotic flows. Thus,
turbulent motions lead to exchange of momentum between different regions of the
fluid. In other words, turbulent mixing acts like viscosity. The following way of
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writing the Reynolds equations emphasizes this interpretation:

∂ vi

∂t
+ vk ∂ vi

∂xk
= fi

ρ
− 1

ρ

∂ (P δik)

∂xk
+ ∂

∂xk

(
η
∂vi

∂xk
− v′iv′k

)
. (1.29)

Here, we use the expression for the viscous stress tensor in an incompressible fluid
wik = η (∂vi/∂xk + ∂vk/∂xi) (see, for example, Chapter 2 in Landau and Lifshitz
1959) and apply the incompressibility condition of the fluid.

The quantity

Rik = −ρ v′i v′k (1.30)

is called the Reynolds tensor for turbulent viscosity. The form of this term is
unknown and we should make more or less empirically based assumptions to
solve the Reynolds equations. The main problem of the phenomenological theory
of turbulence is finding the unknown turbulent flows (flow of momentum for the
equations above) expressed in the averaged parameters of the properties of the
medium. This problem is referred to as a closure problem.

1.3.1.1 Compressible Fluids

In the case of a compressible fluid, instead of the Reynolds average, the weighted
average as suggested by Favre (1969) is used. The weighted average velocity is
equal to ṽi = ρ vi/ ρ, where bars over the values indicate the Reynolds average
(time average). The velocity of the flow is then represented by the sum of the
weighted average and the fluctuating velocities: vi = ṽi + v′′i . Now v′′i �= 0 (average

over the ensemble) for ṽ′′i = 0 (weighted average, average over the ensemble), but,

as before, the turbulent motions do not lead to transfer of mass, ρv′′i = 0 (see, for
example, Marov and Kolesnichenko 2011, their chapter 3).

After such a representation of the hydrodynamic functions and averaging over
time of the Navier-Stokes equation for ρ �= const , we arrive at an equation of
motion, which also can be written in compact form, analogous to (1.29), but with an
additional term, which corresponds to the turbulent viscosity, of a more complicated
form:

R∗
ik = −ρv′′i v′′k + η

(
∂v′′i
∂xk

+ ∂v′′k
∂xi

− 2

3
δik
∂v′′k
∂xk

)
. (1.31)

We ignore here fluctuations in the coefficient of molecular viscosity η. Thus, if
density fluctuations are present in the medium, the viscosity tensor cannot be divided
into two constituents, one dependent on the properties of the environment only (the
viscosity η and the average velocity vi of the laminar flow) and the other dependent
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only on the turbulent dynamics of the flow (terms with fluctuating velocity). It is
expected, however, that the second term in the last expression, the term that includes
the molecular viscosity, is significantly smaller than the first term (Pletcher et al.
1997).

1.3.2 The Closure Problem

The form of the Reynolds tensor cannot be found from the hydrodynamic equations.
The second-order moment tensors for the velocity field v′i v′k can be expressed from

the third- or higher-order moments (v′i v′j v′k , etc.), but the number of unknowns is
always greater than the number of equations. The impossibility of finding a closed
system of equations for a finite number of moments is a consequence of the non-
linearity of the equations of hydrodynamics. In the case of weighted averaging, the
problem becomes even more complicated (Marov and Kolesnichenko 2011, their
chapter 3).

The need to solve practical problems have led to the performance of a large
number of experiments regarding turbulent flows. Based on these studies, semi-
empirical theories of turbulence have been worked out, which systematize the
obtained results.

Important steps in this direction were taken by Boussinesq (in the end of the
nineteenth century) and by Taylor, Prandtl and Karman in the 1920s and 1930s. The
semi-empirical models of turbulence are based on the analogy between turbulence
and molecular viscosity. An application of the simplest models allows us to close
the very first equations for hydrodynamic fields—the ones for lower moments (the
Reynolds equations). As a result, the Reynolds equations can be solved if Rik is
expressed from certain large-scale characteristics of the flow. These characteristics
describe the transfer of heat and momentum through the turbulent medium. Large-
scale characteristics of turbulence are to a great deal dependent on the geometry
of the boundaries of the flow and the nature of external influences, which are
always different in different situations. Therefore, on the one hand, we talk about
the ambiguity of semi-empirical closing relations. On the other hand, using more
complex closing relations leads to neither more general nor more exact solutions.
Thus, in most cases, preference is given to the simpler models, and the limits to their
applicability are studied (see Marov and Kolesnichenko 2011, their Sect. 1.1.6).

1.3.3 Coefficient of Turbulent Viscosity

The Reynolds equations can be solved only with the addition of closing relations,
which use the averaged characteristics of the turbulent flow (pressure, density,
temperature, and average velocity). This is the way semi-empirical models for
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Fig. 1.1 Coordinates in a
plane flow

turbulence are constructed. Most of these models are based on Boussinesq’s gradient
hypothesis (1897) which suggests that there is a linear connection between the
turbulent viscous tensor and the shear tensor which in turn is a linear combination
of the terms ∂v̄j /∂xi together with certain local proportionality coefficients (coeffi-
cients of turbulent transfer). It is, however, necessary to make concrete assumptions
regarding these coefficients.

Let us consider a small area inside a turbulent flow (Fig. 1.1). We consider this
area to be flat and assume that the average motion is directed along the plane of the
area (along the x-axis). Let the area be located in the plane z = 0. The frictional
force acting on a unit area, directed along the x-axis is equal to:

wxz − ρ v′xv′z = ρ ν
∂vx

∂z
− ρ v′xv′z .

According to what is called Bussinesq’s gradient hypothesis, there is an analogy
between the viscous and the turbulent flow of momentum and we may set:

− ρ v′xv′z = ρ νt
∂vx

∂z
, (1.32)

introducing the proportionality constant νt. This approach allows us to solve the
Reynolds equations using standard methods if we know the kinematic coefficient of
turbulent viscosity νt that replaces the usual coefficient of molecular viscosity. The
turbulent viscosity coefficient cannot be derived from microscopic considerations.

The gradient model works well for quasi-stationary flows. It is assumed that a
local equilibrium is formed in the structure of developed turbulence, in which the
characteristics of turbulence at every point of the flow are completely determined by
the local characteristics of the field of the averaged flow in the vicinity of this point
and by the local averaged parameters of the state of the medium itself.

In general, νt is significantly larger than ν. The turbulent viscosity coefficient,
as opposed to the molecular viscosity coefficient, does not describe the physical
properties of the fluid but the statistical properties of the fluctuations. Its value
depends on the method of averaging over the ensemble of analogous flows. A semi-
empirical model of turbulence can be constructed if νt is estimated in the course of
experiments. For example, it is known that in the case of motion of a turbulent flow
in a plane channel, νt cannot be constant since it has been established empirically
that νt → 0 close to the walls. In an infinite turbulent flow, however, it is often quite
reasonable to assume that νt = const (see Sect. 5.8 in Monin and Yaglom 1971).
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And thus, we moved from the unknown Reynolds tensor to the turbulent viscosity
coefficient, which is also unknown. Choosing this parameter is another separate task
and, to solve it, other semi-empirical theories have been proposed in turn. These
theories, in particular, use the concept of mixing length. This concept plays an
important role in the theory of turbulent viscosity in accretion discs.

1.3.4 Mixing Length

The concept of mixing length introduced by Prandtl to the theory of turbulence
(1925) allows us not only to express simply the coefficients of turbulent mixing (in
particular, the turbulent viscosity coefficient), using the length of the mixing path,
but also to obtain defining relations for turbulent flows in some particular cases. The
mixing length is the distance which a unit volume of gas travels in a turbulent flow
before this volume is mixed completely with the surrounding medium. This distance
is in a sense analogue to the mean free path in kinetic gas theory.

Turbulent stresses are the result of transfer of momentum due to fluctuations of
turbulent velocity. Prandtl’s hypothesis is that vortices, shifting as ‘trickles’ along
the z-axis for the path of the ‘mixing length’ ξ ′z, retain their momentum. This is
similar to the picture of turbulent diffusion of impurities. At the height z + ξ ′z, a
fluctuation v′x may be represented as the difference between the proper velocity
of a trickle vx(z) (the average velocity at the initial level) and the velocity of the
surrounding flow vx(z + ξ ′z). Linearization of the profile of the average velocity
vx yields: vx(z + ξ ′z) = vx(z) + ξ ′z ∂vx/∂z. We thus write the Prandtl relation for
transfer of momentum as:

v′x = −ξ ′z ∂vx/∂z . (1.33)

In the case of a plane shear flow, we get for the component of the Reynolds
tensor (1.30):

Rxz ≡ −ρ v′x v′z = ρ ξ ′z v′z
∂vx

∂z
. (1.34)

If we define the kinematic coefficient of turbulent viscosity as

νt = ξ ′z v′z , (1.35)

formula (1.34) is terminologically consistent with the gradient hypothesis (See
expression (1.32)). Formula (1.35) is similar to the formula for the molecular
viscosity coefficient: ν = lmvm, where lm is the mean free path of the molecules and
vm is the velocity of their thermal motion. The ‘amount of exchange’ in a turbulent
flow νt is also a product of the distance and velocity at which turbulent exchange
takes place—the mixing speed. The value of ξ ′z is essentially a random (fluctuating)
quantity.
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In order for formula (1.34) to be applied in practice, the mixing speed v′z should
also be estimated, which Prandtl does (1925). As a result of mixing, the mixing
speed itself should decrease as the conditions (velocities) in the medium are leveled
out. From this follows the assumption that the mixing speed should be proportional
to the velocity gradient of the average motion ∂vx/∂z. This simultaneously means
that the fluctuations of velocity in different directions have similar absolute values,
i.e. v′z ∼ v′x (Monin and Yaglom 1971).

We thus use (1.33), substituting in (1.34), and obtain:

Rxz = ρ (ξ ′z)2
∣∣∣∂vx
∂z

∣∣∣ ∂vx
∂z
,

where the modulus is inserted in order that the sign of the turbulent viscosity tensor
be the same as for ∂vx/∂z. This corresponds to the fact that momentum is transferred
from layers moving faster to those moving more slowly. Then for the kinematic
coefficient of the turbulent viscosity we obtain the Prandtl formula (1925):

νt = α∗ L2
∣∣∣∂vx
∂z

∣∣∣ , (1.36)

where α∗ is a dimensionless quantity of the order of 1. The local mixing path ξ ′z is a
too uncertain quantity and cannot be measured. Here, the distance L, or the mixing

length, is already not a random quantity. Its magnitude is of the order of
√
(ξ ′z)2 and

characterizes the scale of turbulence. Now, what is left is to establish the dependence
of L on the coordinates, for example, empirically.

The expression (1.36) may also be retrieved from dimensional considerations.
For this we use the principle of local similarity of turbulent transfer (Sect. 3.3 in
Marov and Kolesnichenko (2011)),—the coefficients of turbulent transfer in each
point depend only on the properties of the medium in this point, the local size of the
scale of turbulence L and on certain characteristics of the averaged flow. In other
words, νt is a function of the quantities ν, L, and ∂vx/∂z. The scale L characterizes
the geometry of the turbulent flow or the characteristic size. Far away from the
hard surface, ν can be excluded from the list of parameters, and the dimensional
considerations yield the Prandtl formula (1.36).

The constant factor α∗ is determined for each specific type of motion on the basis
of experimental data.

1.3.5 Turbulent Viscosity Parameter α

Let us consider an accretion disc, with orbital motion in circular orbits and orbital
velocities in the plane parallel to the disc symmetry plane. Placing an imaginary
wall perpendicular to the radius in a given point at a distance r� from the centre, we
find the frictional force applied per unit area of the wall.



16 G. Lipunova et al.

The averaged velocity of matter in the disc is tangential to the radius with
great accuracy since the orbital velocity dominates over other components. Let the
imaginary wall rotate around the centre with the averaged velocity of the flow. The
frictional force is directed tangentially and is equal to the density of the flow of the
ϕ-component of momentum in the radial direction. If we assume, as mentioned in
Sect. 1.3.1.1 after formula (1.31), that the first term in the turbulent viscosity tensor,
defined only by the dynamics of the flow, dominates over the others, which contain
the molecular viscosity coefficient η, then the rϕ-component for the frictional stress
on the wall is equal to

(wrϕ − ρ v′′r v′′ϕ) r=r� = (ρ ν r
dω

dr
− ρ v′′r v′′ϕ) r=r� ,

where we used the expression for the component of the stress tensor in cylindrical
coordinates (see Chapter 2 in the book by Landau and Lifshitz 1959).

According to common practice, we will define wt
rϕ as the quantity with opposite

sign to the component of the viscous stress tensor in the disc wrϕ .1 Using the
gradient hypothesis (see Sect. 1.3.3 and (1.32)) we can write:

wt
rϕ ≡ ρ v′′r v′′ϕ = −ρ νt r

dω

dr
, (1.37)

where νt is the kinematic coefficient of the turbulent viscosity [cm2/s]. For a
Keplerian disc, we get from (1.37):

wt
rϕ = 3

2
ωK νt ρ . (1.38)

As a consequence of the Prandtl hypothesis (1.35), νt = vt lt , where vt and
lt are the velocity and length of turbulent mixing, respectively, which both take
random values in a turbulent flow.2 Applying the Prandtl relation to describe the
radial transport of turbulent velocity

vt = lt r
∣∣∣∣dω

d r

∣∣∣∣
(cf. (1.33)), we get, substituting in (1.37), that

wt
rϕ = ρ v2

t ≡ m2
t ρ v

2
s ,

1With this definition, wt
rϕ will be positive in accretion discs. In other literature on the subject, the

definition trϕ = −wt
rϕ is often used instead.

2They are analogous to the quantities v′x and ξ ′z discussed in Sect. 1.3.4.
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where the averaged turbulent velocity squared (fluctuating component of the

velocity of matter in the disc) v2
t is expressed using the sound speed vs and the

Mach numberm2
t = v2

t /v
2
s .

The last formula can be rewritten as

wt
rϕ = αP , (1.39)

where the dimensionless quantity α is called the turbulent parameter and P is the
total pressure (the sum of gas and radiation pressures).

Disc models, in which turbulence is taken to be the source of viscosity and
where the connection (1.39) is used, are called α-discs. In the simplest models,
this coefficient is considered fixed within the whole accretion disc. Its value may
be found from a comparison with observations of transient phenomena, which are
manifestations of viscous evolution of discs in the case of non-stationary accretion
onto space objects.

Equating (1.38) to the quantity αρ v2
s , we obtain a relation between the dimen-

sionless turbulence parameter and the kinematic viscosity coefficient in a Keplerian
disc:

νt = 2

3
α v2

s
1

ωK

= 2

3
α vs zhyd , (1.40)

where we introduce the ‘hydrostatic half-thickness’ of the disc, which can be found
from approximate integration of (1.18):

zhyd ≡
√
p

ρ

1

ω2
K

= vs

ωK

.

Using (1.35), which is a consequence of the Prandtl hypothesis, we may write:

α = vt lt
2
3 vs zhyd

.

From general considerations it is clear that the α-parameter is a quantity whose value
does not exceed unity. Indeed, if the turbulent motions have velocities exceeding the
sound speed, these motions are quickly quenched by shock-waves. The inequality
lt > zhyd would suggest that the turbulence has an anisotropic character since the
transverse thickness of the disc is limited by the quantity ∼ zhyd.

The use of the α-parameter is justified in situations where it may be considered
approximately constant. As proved during the last decades, such an approximation
describes well a variety of observed phenomena in sources with disc accretion.
Numerical modelling of outbursts in dwarf novae and X-ray transients demonstrates
that the α-parameter can be considered constant for certain ranges of physical



18 G. Lipunova et al.

conditions in these astrophysical discs. Typical values from observations are 10−2−
1 (Meyer and Meyer-Hofmeister 1984; Cannizzo 1998; Kotko and Lasota 2012).

1.4 Thin Discs

1.4.1 Equations of Radial Structure

Let us write down the equations for disc accretion for geometrically thin α-discs. We
will neglect any dependence of the physical parameters in the disc on z, averaging
(integrating) along the vertical. We will consider discs without radial advection
(transfer of heat with matter moving radially) and without mass loss from the disc
surface. In such discs, the angular velocity of the rotating matter at each radius r
is approximately equal to the angular rotational velocity of a free particle. In other
words, vr � vϕ .

The parameters determining the structure of a geometrically thin disc are the
mass of the gravitating centre M , the inner radius of the accretion disc rin and the
accretion rate Ṁ .

1.4.1.1 Mass Conservation Equation

We introduce the surface density

Σ0(t, r) =
∫ +z0

−z0

ρ(t, r, z) dz , (1.41)

where z0 is the disc half-thickness at radius r . As agreed earlier, the velocities in
thin discs are independent of z. Integrating (1.2) along the disc height, we obtain:

∂Σ0

∂t
= −1

r

∂

∂r
(Σ0 vr r) . (1.42)

The product within parentheses on the right-hand side of this equation, multiplied
by 2π , is equal to the radial flow of the matter in the disc [g/s] through a cylindrical
surface with radius r .

1.4.1.2 The r-Component of the Equation of Motion

For a thin stationary disc, the dominant terms in this equation are

v2
ϕ

r
= ∂Φ

∂r
. (1.43)
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For a Newtonian potential, this equation corresponds to Kepler’s law:

ωK =
√
GM

r3/2 .

Other potentials that take into account the curvature of space around a
Schwarzschild black hole are discussed in Sect. 1.4.4.

1.4.1.3 The ϕ-Component of the Equation of Motion

After multiplying by ρ r2, we integrate vertically (1.4) and obtain the law of
conservation of the angular momentum

Σ0 vr r
∂ (ω r2)

∂r
= − ∂

∂r
(Wrϕr

2) , (1.44)

where

Wrϕ(t, r) =
∫ +z0

−z0

wt
rϕ(t, r, z) dz (1.45)

is the height-integrated component of the viscous stress tensor.

1.4.2 Solution for a Constant Accretion Rate

From the continuity equation (1.42) it follows that in the stationary regime

Σ0 vr r = const .

We determine the accretion rate as the mass of matter intersecting the surface of a
cylinder with radius r per unit time:

Ṁ ≡ −2πr vr Σ0 . (1.46)

The minus sign is inserted in order to make a quantity Ṁ positive and to compensate
for the fact that as matter moves towards the centre, vr < 0.

For a constant accretion rate, the equation of motion (1.44) can be easily
integrated:

Ṁ ω r2 − 2π Wrϕ r2 = const . (1.47)
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This is the law of conservation of angular momentum for a stationary disc. The
constant can be determined from the boundary conditions at the inner edge of the
disc:

Ṁ (h− hin) = F − Fin,

where F is the momentum of viscous forces between adjacent rings of the disc (the
viscous torque, a positive quantity in our notation)

F = 2π Wrϕ r2 , (1.48)

and h = ω r2 is the specific angular momentum, where the subscript indicates
quantities at the inner disc radius.

The equation of conservation of angular momentum can be written in the form:

Wrϕ = Ṁ ω

2π
f (r) or F = Ṁ h f (r) , (1.49)

where the function f (r) = 1 − hin/h + Fin/(Ṁ h) contains information about
inner boundary conditions for the viscous stress tensor (the form of f (r) at Ṁ(r) �=
const , see Sect. 1.5.3). For example, in the case of black holes, the viscous stress
tensor is set to zero since the inner radius of the disc is determined by the radius
of the last stable orbit, from which matter falls freely onto the black hole. Then, far
away from the inner radius, f (r) ≈ 1. For accretion onto a magnetized star, the
stress tensor at the inner edge of the disc depends on the strength of the magnetic
field and its radial distribution changes accordingly. For central objects with a
sufficiently strong magnetic field, accretion may seize at the inner radius of the
disc. Such discs are called disc reservoirs (Syunyaev and Shakura 1977). In a disc
reservoir F is radially constant close to the inner boundary, and at large radii F is
affected by the conditions at the outer boundary.

1.4.3 Radial Velocity of Matter in the Disc

Let us estimate the radial component of the velocity of matter in a disc in the
stationary regime from the ϕ-component of the equation of motion. For this, we
use (1.49) in the approximation f (r) ∼ 1, which is valid in the quasi-stationary
case, far away from the centre, and definition of accretion rate (1.46):

|vr | = Ṁ

2π r Σ0
= Wrϕ

ω r Σ0
.
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Obviously, this velocity, with which matter approaches the gravitating object,
depends on the value of the viscosity. We use the formula (1.38) and obtain:

|vr | = 3

2

νt

r
, (1.50)

whereWrϕ ≈ 2 z0w
t
rϕ and Σ0 ≈ 2 z0 ρ (cf. (1.41), and (1.45)).

The characteristic time scale for movement of the matter radially towards the
centre is

τvis ∼ r

|vr | =
2

3

r2

νt
.

Making an assumption regarding the α-viscosity in the disc and using the
relation (1.40) between νt and α, we re-write the obtained formulas in the form:

|vr | = α vs
z0

r
= α vϕ

(z0

r

)2
, (1.51)

τvis = 1

α ωK

(z0

r

)−2
. (1.52)

In a geometrically thin disc, the viscous time scale is much larger than the cha-
racteristic dynamic time scale

τdyn ∼ r

vϕ
∼ 1

ωK

. (1.53)

1.4.4 Accretion Onto a Black Hole

In Chap. 3, devoted to relativistic standard discs, a theory will be presented, the
basics of which were worked out by Novikov and Thorne (1973). For further
acquaintance with the astrophysical aspects of this theory we also recommend the
books by Shapiro and Teukolsky (1983), Thorne et al. (1986). Here, we outline only
the basics of the behavior of an accretion disc around a black hole.

Close to the black hole the curvature of space-time plays a crucial role for the
formation of an accretion disc. The thin-disc approximation, according to which
matter rotates in approximately circular orbits, breaks down. The flow of matter
onto the black hole speeds up, becomes highly supersonic in the radial direction
and, starting from some certain radius, goes in the free-fall regime.

At free fall, the momentum of the in-falling matter is conserved. In this case,
there is no outward flux flow of the viscous tensor, implying that it is equal to zero
at the disc inner boundary: Fin = 2πWrϕr2

in = 0. This condition is confirmed
by numerical one-dimensional calculations of the equations of hydrodynamics in a
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post-Newtonian potential (Shafee et al. 2008). It turns out that the conditions for the
viscous stress tensor to be equal to zero are satisfied close to the innermost stable
circular orbit.

For non-rotating black holes, the radius of the innermost stable circular orbit
rISCO = 3Rg, where the Schwarzschild radius Rg is the event-horizon radius of a
non-rotating black hole:

Rg = 2GM/c2 .

The radius rISCO for a rotating black hole is determined in the Kerr space-time metric
and given by formula (3.22) in Sect. 3.1.3.

At radii less than 3Rg, there is no energy release due to viscosity. We note that in
this area radiation may be generated as a result of processes which involve plasma
and magnetic fields.

Thus, for accretion onto a Schwarzschild black hole, the boundary condition at
the inner radius is written as

Wrϕ(r = 3Rg) = 0 .

We use Eq. (1.47) for Ṁ = const in the form

Ṁ(ωin − ω) = 2π Wrϕ ,

or, for the viscous torque,

F = Ṁ(h− hin) , (1.54)

where hin is the specific angular momentum of the matter at the innermost orbit
around the black hole.

If the viscous stress tensor is equal to zero at the inner boundary of a stationary
infinite disc, the function in (1.49) is:

f (r) = 1 − hin/h(r)+ Fin/(Ṁ h) = 1 − hin/h(r). (1.55)

In the Newtonian approximation, f (r) = 1 −√
rin/r and

Wrϕ = Ṁ ω

2π
(1 − √

rin/r) .

To approximately take into account the effects of general relativity in the vicinity
of non-rotating black holes, the Paczynski–Wiita potential can be used (Paczynsky
and Wiita 1980):

ΦPW = − GM

r − Rg
. (1.56)
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For free particles in circular orbits, the velocities can be found from (1.3):

v2
ϕ

r
= dΦ

dr
. (1.57)

As a result, we obtain

vPW
ϕ

c
= 1√

2

√
r Rg

(r − Rg)
,

and the specific angular momentum of a test particle in the Paczynski-Wiita potential
is:

hPW = vPW
ϕ r =

√
GM r

(1 − 2GM
c2 r

)2
. (1.58)

The modified potential (1.56) is often used (for example when substituting
into (1.43)) since it fits quite well the curvature effects of the space-time metric
around a Schwarzschild black hole. Other approximate potentials, in particular such
applicable to the case of rotating black holes, can be found in the book by Kato et al.
(1998).

Let us write down the Schwarzschild stationary metric as the square of the
interval between two events separated in time and space

ds2 = −(1 − Rg/r) dt2 + (1 − Rg/r)
−1 dr2 + r2(dθ + sin2 θ dϕ) .

Here, t, r, θ, ϕ are the Schwarzschild coordinates. Due to the curvature of space-
time near a black hole, the distance element dl along the radius, as measured by a
local observer, is longer than the corresponding coordinate element dr (see Fig. 1.2):

dl = dr√
1 − Rg/r

.

Fig. 1.2 Illustration of the
‘shrinking’ of a coordinate
element dr , corresponding to
an element of distance dl,
measured by a stationary
observer
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To describe the relativistic motion in the vicinity of a Schwarzschild black hole,
we may use the following ‘logarithmic’ potential (Landau and Lifshitz 1973; Thorne
et al. 1986; Abramowicz 2016):

Φ = c2

2
ln

(
1 − Rg

r

)
= c2 ln

√
1 − Rg

r
. (1.59)

Here
√

1 − Rg/r is the lapse function in the Schwarzschild metric. It determines
the redshift of the signal emitted from the vicinity of the black hole and the
difference between two time intervals, one of which, dt , is measured at infinity and
the other, dτl , by an observer in the local stationary reference frame:

dτl/dt =
√

1 − Rg/r . (1.60)

The time measured in the frame of moving particle is related to the time measured
by the local stationary observer as

dτp/dτl =
√

1 − v2/c2 . (1.61)

The momentum ppp and the energy Elocal of a relativistic particle with rest mass
mo relative to the local stationary observer are

ppp = mo vvv√
1 − v2/c2

, and Elocal = mo c
2√

1 − v2/c2
,

respectively, where v2 = v2
r + v2

ϕ for particles moving in the equatorial plane.
We may also introduce the notion of ‘energy at infinity’ E. This value remains
unchanged along the particle trajectory. Let us determine it.

Consider a particle travelling past a stationary observer who is located at a
distance r from the centre of a black hole. The equation of particle motion in the
reference system of this observer looks as follows:

dppp

dτl
= − mo√

1 − v2/c2
∇∇∇Φ . (1.62)

Note that the potential Φ is spherically symmetric. On multiplying Eq. (1.62) by vvv,
we obtain

vvv
d

dτl

(
movvv√

1 − v2/c2

)
= − mo vvv√

1 − v2/c2
∇∇∇Φ = − mo vvv eeer√

1 − v2/c2

dΦ

dl
, (1.63)
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where eeer is a unit radial vector in the Cartesian reference system of the local
observer. Further, we differentiate the left-hand side of (1.63):

1

2

mo√
1 − v2/c2

dv2

dτl
+ 1

2

mo v
2/c2

(1 − v2/c2)3/2

dv2

dτl
= − mo vvv eeer√

1 − v2/c2

dΦ

dl
.

When multiplying this by (1 − v2/c2)3/2, cancelling out the two equal terms
with opposite signs in the left-hand part of the equation and using the equality vr =
dl/dτl for the radial velocity, we obtain

1

2

d

dτl
(1 − v2/c2) = (1 − v2/c2)

dl

dτl

d

dl
ln(1 − Rg/r)

1/2 ,

which is equivalent to the following equation

d

dτl
ln(1 − v2/c2) = d

dτl
ln(1 − Rg/r) .

Finally, we obtain the following relationship:

(1 − Rg/r)
/
(1 − v2/c2) = const.

Hence, the value

E = mo c
2√

1 − v2/c2

√
1 − Rg

r
= Elocal

√
1 − Rg

r
= const , (1.64)

does not change for a freely moving particle, while the locally measured energy
Elocal varies in the gravitational field of the black hole. This value E is termed
‘energy-at-infinity’ (Thorne et al. 1986). For a photon, the rest mass of which is
mo = 0, Eq. (1.64) yields the relation between its frequency in the reference system
of the local observer νo and its frequency detected at infinity ν∞ = νo

√
1 − Rg/r ,

describing the redshift effect.
In the non-relativistic approximation, the expression for the energy EN of the

particle has the well-known form

E −mo c2 = EN = mo v2/2 −mo GM/r .

Let us now determine the components of the particle velocity in the equatorial
plane. A freely moving particle with mass mo keeps its angular momentum
unchanged

hp = mo vϕ r√
1 − v2/c2

. (1.65)
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When taking into consideration that v2 = v2
r + v2

ϕ , Eqs. (1.64) and (1.65) yield

v2
r

c2 = 1 − m2
o c

4

E2

(
h2

p

r2m2
o c

2 + 1

) (
1 − Rg

r

)
. (1.66)

Multiplying this by a factor E2/(m2
o c

4) and using (1.61) and (1.64) together with
the relation

v2
r

c2 = 1

c2

(
dr

dτp

)2
m2
o c

4

E2 ,

we may rewrite (1.66). As a result, we obtain the law of motion for a particle with
energyE, which is identical to the exact solution in GR, see Shapiro and Teukolsky
(1983):

1

c2

(
dr

dτp

)2

= E2

m2
o c

4 −
(

h2
p

r2m2
o c

2 + 1

) (
1 − Rg

r

)
.

Note that in the approximation of the Newtonian potential, this law of motion looks
as follows:

v2
r =

2

mo

(
EN +mo GM

r

)
− h2

N

r2m2
o

,

where hN = mo vϕ r = const .
Let us consider particles moving in circular orbits around a Schwarzschild

black hole. For such motion, both vr and dr/dτp become zero. For the sake of
convenience, we may introduce an effective potential (Shapiro and Teukolsky 1983):

V (r) =
(

h2
p

r2m2
o c

2
+ 1

) (
1 − Rg

r

)
.

For circular orbits, the first derivative of this potential becomes zero (the potential
has an extremum). The system of equations

dr

dτp
= 0 ,

∂V (r)

∂r
= 0

yields the following angular momentum in a circular orbit:

h2
p = m2

o r Rg c
2

2 − 3Rg/r
. (1.67)
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After squaring (1.65), we derive the tangential velocity, as measured by the local
observer, from (1.67):

vϕ

c
= 1√

2

√
Rg

r − Rg
. (1.68)

For the local observer, the angular velocity of a particle is

ωl = vϕ

r
= c√

2 r

√
Rg

r − Rg
. (1.69)

Using (1.60), we obtain for an observer at infinity:

ω = c
√
Rg√

2 r3/2
=

√
GM

r3/2 , (1.70)

that is, the classical expression following from Kepler’s law.
According to the Rayleigh criterion (Rayleigh 1917), stable orbits cannot exist

where dhp/dr < 0. This criterion implies that the last stable circular orbit has a
radius rISCO = 3Rg.

When substituting the velocity vϕ = c/2, which corresponds to rISCO, into (1.64),
we determine the energy of a particle rotating in the innermost possible stable
orbit. The energy of this particle, E = mo c

2 2
√

2/3, is less than its rest energy
at infinity, m0 c

2. This means that when a particle moves from infinity towards the
Schwarzschild black hole, that is, in the process of accretion, the released energy is
(m0 c

2−E) ≈ 0.0572m0 c
2. Thus, the energy conversion efficiency in the accretion

process onto a non-rotating black hole is equal to ∼ 6%. A calculation using the Kerr
metric shows that the binding energy of the particle is largest for an extremely-fast
rotating black hole and equals to 1 − √

1/3 ≈ 0.423 times the rest energy (Kato
et al. 2008).

Extracting the square root of (1.67), we find the specific angular momentum of a
particle in circular orbit in the Schwarzschild metric:

h = hp

mo
=

√
GM r√

1 − 3GM
c2 r

. (1.71)

Figure 1.3 (upper panel) shows the dependence of the specific angular momentum of
a test particle on the radius of the orbit in the gravitational field of the black hole. In
addition, the respective dependencies are shown in the Newtonian potential (dashed
line) and in the Paczynski–Wiita potential (dotted line). In the gravitational field of
the Schwarzschild black hole, the specific angular momentum h becomes minimum
at the radius of the innermost stable circular orbit 6GM/c2. In contrast to the case
of the Newtonian potential, the first derivative of the specific angular momentum,
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Fig. 1.3 Specific angular
momentum h of a test particle
in the gravitational field of a
black hole (uppermost panel)
and the viscous torque F(h)
in a stationary disc,
normalised values (lower
panels). The inner radius of
the disc is
rin = 3Rg = 6GM/c2. Solid
lines show the dependence in
the exact logarithmic
potential (1.59), dotted lines
show the same in the
Paczynski–Wiita potential,
dashed lines—in the
Newtonian approximation. In
the middle panel, a
rectangular area is drawn,
shown enlarged in the lower
panel
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dh/dr , vanishes at this radius (see Fig. 1.3, upper panel). The innermost stable orbit
is located at 3Rg in both the approximate Paczynski–Wiita potential (1.56) and
the exact potential (1.59). The binding energy in the Paczynski–Wiita potential,
however, differs from the value in the Schwarzschild metric:

(m0 c
2 − E)/(m0 c

2)

Newtonian potential: 1/12

Paczyński–Wiita potential: 1/16

Logarithmic potential and Schwarzschild metric: 1 − 2
√

2/3

Circular orbits exist only down to the radius where vϕ = c. In the logarithmic
potential, the innermost circular orbit lies at 3Rg/2, which coincides with the exact
value predicted by general relativity. In the Paczynski–Wiita potential, the innermost
circular orbit is located at 2Rg.

Figure 1.3 also shows the viscous torques in the disc as functions of radius given
by formula (1.54). Note that, for both the Paczynski–Wiita and the logarithmic
potentials, the torque itself, as well as its first derivative, vanishes at the innermost
stable orbit (see Fig. 1.3, lower panel).

1.4.5 Energy Release in Geometrically Thin Discs

Let us return to the study of discs in the Newtonian approximation. A detailed
analysis of the energy balance equation is given, for example, in the appendix of
the book by Kato et al. (1998). The energy dissipated in the disc per unit volume per
unit time is equal to

ε = ρ νt r
2
(

dω

dr

)2

. (1.72)

In the general case of optically thick discs, the energy release ε can be given in
the form of a power-law function of temperature and density (Tayler 1980).

In the simplest approximation for a geometrically thin disc, all the energy
released due to friction in a disc ring is radiated away from the top and bottom
surfaces of this ring. The energy released per unit time per unit surface area of a
geometrically thin disc in a calculation per one side of the disc is

Qvis(t, r) ≡
∫ +z0

0
ε(t, r, z) dz = −1

2
Wrϕ r

dω

dr
. (1.73)

Note that the last formula works also in the case of disc reservoirs (Syunyaev and
Shakura 1977), in which the accretion rate is zero. In view of (1.49), we have for an
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accreting disc:

Qvis = − Ṁ
4π
ω r

dω

dr
f (r) . (1.74)

For a Keplerian disc, the above expressions can be re-written in the form
(using (1.72)):

ε = 3

2
ωKw

t
rϕ = 9

4
ρ νt ω

2
K , Qvis = 3

4
ωKWrϕ = 3

8π
Ṁ
GM

r3 f (r) .

(1.75)

One can see that the viscous time scale (1.52) in a geometrically thin disc is much
larger than the characteristic thermal time scale, on which the thermal energy in a
unit volume changes:

τth ∼ ρ v2
s

ε
∼ 1

α ωK

, (1.76)

where we have replaced νt using (1.40).
For an accretion disc with a zero viscous torque at the inner boundary and with a

Keplerian distribution of angular momentum, we have (see Eq. (1.55)):

Qvis = 3

8π
Ṁ
GM

r3

(
1 −

√
rin

r

)
,

where rin is the radius of the inner boundary of the disc.
The most general expression for the viscous heat in a Keplerian disc, including

one with zero accretion rate, is:

Qvis = 3

8π

ωK F

r2 or Qvis = 3

8π
F
(GM)4

h7
K

, (1.77)

where hK is the specific angular momentum and F is the viscous torque (1.48).
The energy balance equation for geometrically thin discs reflects the fact that the

thermal energy released due to viscosity at radius r is completely radiated away at
the same radius:

Qvis(r) = Qrad(r) , (1.78)

whereQrad(r) is the radiated flux from one of the two surfaces of the accretion disc.
The last equation requires a modification if the accretion rate is high, � ṀEdd. It
turns out that the radial transport of heat should also be taken into account.
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In the approximation of a disc radiating like a blackbody, it is possible to
characterize its flux with an effective temperature:

Qrad = σSB T
4
eff , Teff ∝ r−3/4 . (1.79)

The effective temperature at the disc surface has its maximum Tmax at radius

rmax =
(

7

6

)2

rin ,

and is equal to

Tmax = 23/4
(

3

7

)7/4
(
GM Ṁ

π σSB r
3
in

)1/4

= 2

(
3

7

)7/4
(

Ld

π σSB r
2
in

)1/4

.

We introduced in the last formula the total bolometric luminosity from both sides
of the disc, equal to half the released gravitational energy of the matter falling from
infinity to the gravitating centre:

Ld = 4π
∫ rout

rin

Qrad r dr = 1

2
Ṁ
GM

rin
.

The specific potential energy of a particle moving from infinity to the inner edge of
the disc decreases from zero to −GM/rin. Half of this energy heats the disc and is
radiated and the other half goes into kinetic energy of rotation.

This ‘virial theorem’ does not apply to individual rings in the disc. We integrate
the energy released from the disc at distances r � rin from both sides of the disc:

2
∫

3

8π
Ṁ
GM

r3 2π r dr = 3

2
Ṁ
GM

r
,

and find that it is three times as high as the amount of released gravitational energy.
This happens since along with angular momentum, transferred outwards from the
centre during the accretion process, a part of the energy is transferred as well.

Indeed, using the definitions of the integrated quantities (1.45), (1.46), and (1.73),
let us multiply the energy balance equation (1.26) by 2πr and integrate it over disc
thickness, keeping in mind that we agreed to use the positive valuewt

rϕ = −wrϕ for
accretion discs. We obtain

Ṁ
∂

∂r

(v2
ϕ

2
+Φ

)
= 2π r × 2Qvis + ∂

∂r
(ωK F) , (1.80)

where F = 2π r2Wrϕ is the total viscous torque between neighboring rings in the
disc, introduced in Sect. 1.4.2. And thus, the energy from gravitational interaction,
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released as matter moves towards the centre, is dissipated (radiated from both sides
of the disc) and is redistributed over the disc as a result of the work of viscous forces
transferring angular momentum.

Another important conclusion can be drawn from considering the last equation.
The disc releases heat and radiates even if the accretion rate is zero. If the matter
cannot pass through the inner boundary, the radial motion of matter towards the
disc centre may be interrupted. This happens, for example, if the central object is a
neutron star with a strong magnetic field. While Ṁ = 0, the viscous forces do not
stop working, the matter is heated up and the heat turns into radiation. The energy in
such a disc, along with the angular momentum, comes from the neutron star through
the inner boundary of the disc.

1.4.6 Disc Radiation

The radiative flux in a unit solid angle from a flat accretion disc at distance d from
the disc is equal to

Fν = 2π

d2 cos i
∫ rout

rin

Iν r dr , (1.81)

where i is the inclination of the disc to the line of sight and Iν(r) is the intensity of
radiation from the disc surface.

In the disc photosphere, the following radiative processes are frequently consid-
ered (see, for example, Kato et al. 2008):

• Free-free and bound-free transitions,
• Scattering off free electrons,
• Compton scattering (scattering off cold electrons),
• Inverse Compton scattering (if the energy of the electrons and/or ions are very

high),
• Line broadening caused by the rotation of the disc.

The Planck spectrum describes the spectral density of electromagnetic radiation
emitted by an isothermal atmosphere if scattering is not taken into account. At every
radius, the disc radiates like a blackbody of temperature Teff with intensity:

Bν(Teff) = 2 h ν3

c2

1

ehν/kTeff − 1
. (1.82)

The spectral flux integrated along the disc radius in shown in Fig. 1.4.
For a disc spectrum as shown in Fig. 1.4, the power-law distribution describes

the middle interval. Let is determine the power-law index of this distribution.
Almost the whole disc, with the exception of the central parts (which, however,
give an overwhelming contribution to the total amount of the radiated energy),
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Fig. 1.4 Spectral distribution
of radiative flux density from
a standard optically thick,
geometrically thin disc in the
Newtonian metric. The
horizontal axis shows the
normalised radiation
frequency. The vertical axis
shows the spectral radiative
flux density in units of
[erg/Hz/cm2/s] normalised to
the maximum flux density at
h ν/k Tmax ≈ 0.8. The
maximum of distribution νFν
is at h ν/k Tmax ≈ 2.5

may be characterized by the effective temperature in the form of a simple power-
law function of radius (1.79). Substituting r = r0(T0/Teff)

4/3 and (1.82) in the
integral (1.81), we get

Fν = 16π

3 d2 cos i

(
k T0

h

)8/3
h ν1/3

c2 r2
0

∫ xout

xin

x5/3

ex − 1
dx ,

where we have made the substitution x = hν/kTeff = (hν/kT0) (r/r0)
3/4.

The radius r0 can be chosen rather close to rin, implying that T0 ≈ Tmax with
fairly good accuracy. Then x = (hν/kTmax)(r/rin)

3/4. At those frequencies where
the conditions xin � 1 and xout � 1 are satisfied, the value of the integral in the
last expression varies only little for different ν, and is approximately equal to the
integral from zero to infinity when expressed with the help of the special gamma
function and Riemann zeta function as (10/9) Γ (2/3) ζ(8/3) ≈ 1.93. Thus, for a
wide frequency range (rin/rout)

3/4 < hν/kTmax < 1, the spectral flux density of
disc radiation depends on the frequency according to Fν ∝ ν1/3.

For a homogeneous atmosphere where scattering is present, the spectrum will
differ from that of a blackbody (Felten and Rees 1972):

Iν �
√

�a

�a + �sc
Bν(Teff) ,

where �a is the absorption coefficient and �sc is the coefficient for scattering off free
electrons. If electron scattering dominates over absorption and if the disc spectrum
is susceptible to Comptonization, the change in shape of the X-ray spectrum from a
disc around a stellar mass compact object is approximately described by the spectral
hardening factor fc:

Fν = 1

f 4
c

π Bν(fc Teff) ,
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where Fν is the flux from a unit surface into a half-space. The product fc Teff is
called the colour temperature. The power of four is explained by the fact that the
total radiated energy from the disc is independent of the spectral shape.

1.5 Stationary α-Discs

As we have seen in Sect. 1.4, the use of the continuity equation and the equation of
motion, integrated (or averaged) along the vertical coordinate, enable us to find out
the radial structure of thin stationary accretion discs. Is is possible to separately
study the vertical and the radial structure of the disc because the characteristic
time scales, namely, viscous and hydrostatic ones, are significantly different. The
characteristic hydrostatic time scale corresponds to the time scale for changes in
the thickness of the disc at a given radius as a result of a change of its central
temperature. For dimensional reasons, this quantity is proportional to the disc half-
thickness divided by the sound speed, z0/vs ∼ 1/ωK ∼ τdyn, and corresponds to
the dynamical time which is much smaller than the viscous time in a thin disc (see
Sect. 1.4.3).

The vertical structure of accretion discs in the general case (stationary as well
as non-stationary) is described by a system of four ordinary differential equations,
the exact solution to which, for given boundary conditions, can be found using
numerical methods. In some sense, a calculation of the vertical structure of a disc
is similar to the calculation of the internal structure of stars (Tayler 1980). The
system of differential equations for the vertical structure of a disc was solved by a
number of authors (see, for example, Meyer and Meyer-Hofmeister (1982), Shaviv
and Wehrse (1986), Suleimanov (1992), Cannizzo (1992), Ketsaris and Shakura
(1998), Hameury et al. (1998), Dubus et al. (1999)).

The disc can be divided into different zones (A, B, and C) according to the
processes predominant in opacity formation and depending on comparative role of
gaseous and radiative pressure (Shakura and Sunyaev 1973). A high temperature
zone with main contribution from radiation pressure may arise in the central parts
of the disc—the so-termed zone A. In this region, the opacity is determined by
electron scattering. There are a number of studies devoted to the instabilities in
this region (Lightman and Eardley 1974; Shibazaki and Hōshi 1975; Shakura and
Sunyaev 1976). It was shown that zone A is thermally and viscously unstable. Its
vertical structure can be described using the polytrope approximation. Convection
plays an important role in the energy transfer to the disc surface (Bisnovatyi-Kogan
and Blinnikov 1976; Shakura et al. 1978). In addition, the standard model should
be modified since it is necessary to take into account non-Keplerian motion of
gas in the disc due to a significant contribution of the pressure gradient in the
equation of motion. It is also important to address the non-local character of the
energy balance equation because the heat is effectively transported together with
the radially moving matter (Paczynski and Bisnovatyi-Kogan 1981).
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For quick estimates, one can use the following expressions. The boundary
between zones A and B, where the gas pressure equals the radiative pressure, is
located at

RAB/(3Rg) ∼ 80 (mx α)
2/21 (Ṁ/ṀEdd)

16/21 .

The boundary between zones B and C, where the cross-sections of absorption and
scattering of photons are equal:

RBC/(3Rg) ∼ 330 (Ṁ/ṀEdd)
2/3 .

The outer boundary of zone C, beyond which recombination of hydrogen starts:

RC/(3Rg) ∼ 105 (Ṁ/ṀEdd/mx)
1/3 .

We have normalised here the accretion rate to its critical value ṀEdd = 1.4 ×
1018mx g/s (see Sect. 1.1), the radius, to the characteristic value of the inner radius
of a disc around a compact object, 3Rg ≈ mx × 8.9 × 105 cm (see Sect. 1.4.4), and
the mass of the central body, to the solar mass: mx = M/M�.

In this section, we consider only the stable zones of the disc where the standard
model holds. In Sect. 1.5.1 we write down the standard disc equations (Shakura and
Sunyaev 1973). In Sects. 1.5.2 and 1.5.3 we consider zones B and C, for which we
present stationary solutions.

1.5.1 Equations of Vertical Structure

1.5.1.1 Equation of Hydrostatic Balance

The equation of hydrostatic equilibrium along the z-coordinate in the Newtonian
metric in the case of a thin disc has the form:

1

ρ

dP

dz
= −ω2

K z , (1.83)

whereP(z) is the total pressure in the disc, equal to the sum of the radiation pressure
Prad(z) = aT 4/3, where a = 7.56×10−15 erg/cm3/K4 is the radiation constant, and
the gas pressure Pgas(z), which is determined from the equation of an ideal gas:

Pgas = ρ

μ

kT

mp
,

where μ is the mean molecular weight of matter in the disc, T (z) is the temperature
and ρ(z) the density of the matter.
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1.5.1.2 Energy Generation

The heat dissipated in the disc at a given radius between the plane of symmetry of
the disc and a given level at height z is a function of the vertical coordinate z:

Qvis(z) =
∫ z

0
ε dz̃ .

The rate of energy generation ε [erg/cm3/s] in a Keplerian disc is determined by the
viscous stress tensor. From (1.75) we have:

dQvis

dz
= 3

2
ωK w

t
rϕ . (1.84)

The component of the turbulent viscosity tensor in the disc wt
rϕ(z) is locally

expressed in terms of the total pressure in this location with the help of the α-
parameter

wt
rϕ = α P .

These equations represent the simplest hypothesis regarding energy release in the
disc. It is possible to model the disc vertical structure under more complicated
assumptions. For example, Nakao and Kato (1995) study the case of a disc with
turbulent diffusion determining the dependence of viscous heating, and the α-
parameter itself, on z.

1.5.1.3 Radiative Transfer in the Disc

If the opacity in the disc does not exceed certain values, energy is transferred
vertically towards the disc surfaces by electromagnetic radiation. Let us assume
that the condition of local thermodynamic equilibrium (LTE) holds inside the disc,
i.e. Kirchhoff’s law applies, according to which (Sobolev 1969)

jν = 4π�a(ν) Bν(T ) ,

where jν is the emission coefficient per gram [erg/Hz/s/g/sr], �a(ν) is the absorption
coefficient per gram [cm2/g], Bν(T ) is the Planck distribution [erg/Hz/cm2/s/sr] and
T (z) is the temperature.

We write down the moments of the stationary equation for radiative trans-
fer (Mihalas and Mihalas 1984), assuming that the medium is motionless in the
direction of radiation propagation, along the z-axis. The zeroth moment of the
transfer equation is given as a result of integrating the basic radiative transfer
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equation over all solid angles. After integrating over all frequencies we get

1

ρ

dQrad(z)

dz
= 4π(�P B(T )− �a J (z)) , (1.85)

where �a is the frequency-averaged absorption coefficient per gram, which is
equal to the Planck mean opacity coefficient �P (Mihalas and Mihalas 1984) at
thermodynamic equilibrium, Qrad(z) is the radiative energy flux along the z-axis,
B(T ) = σSBT

4/π the Planck function integrated over frequency and J (z) the mean
intensity of radiation entering the layer dz, integrated over frequency. The physical
meaning of this equation is clear: the change in the flux of radiative energy is equal
to the input of energy as a result of radiation of the matter (this term is written with
the help of Kirchhoff’s law) minus the energy absorbed by the matter.

The first moment of the equation of radiative transfer is obtained when we
multiply it by the cosine of the angle to the unit area, divide by c, and integrate
over all solid angles. This equation in principle expresses the conservation of the
total momentum of radiation.

1

ρ

dPrad(ν, z)

dz
= −(�a(ν)+ �s(ν))

Qrad(ν, z)

c
. (1.86)

where �s(ν, z) is the scattering coefficient, which is generally frequency-dependent,
Qrad(ν, z) is the radiative energy flux along the z-axis, and Prad(ν, z) is the radiation
pressure at frequency ν. Thus, the radiation pressure force balances the change in
momentum of the radiation caused by interaction with the matter.

If we consider the moments of the equation, we get rid of the angular coordinate.
The mean intensity of the radiation Jν is the zeroth moment of the intensity. The
spectral flux of radiative energy Qν is the first moment, and the radiation pressure
Prad is the second moment. As is well known, every moment of the transfer equation
contains a quantity a higher order. The solution to such systems of equations requires
imposition of certain additional closing relations. The main closing method for an
isotropic field is the Eddington approximation.

The mean intensity of radiation J (z) is related by definition to the radiation
energy density via the relation:

εrad = 4πJ

c
. (1.87)

For an isotropic radiation field, there exists a simple relation between the radiation
energy density and the radiation pressure:

Prad = εrad

3
. (1.88)

This approximation works well in the case of a geometrically thin disc (optically
thin as well as optically thick).
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An optically thick disc (optical depth τ � 1) may be studied in the ‘dif-
fusion approximation’. Let us consider the first moment of the radiative transfer
equation (1.85). We assume that the change in Qrad is insignificant there, and the
left-hand side of (1.85) is zero. Thus, the radiation field spectrum is close to that of
a blackbody: J (z) = B(T ). It follows from relation (1.87) that εrad = 4πB(T )/c ≡
aT 4, and taking into account the isotropy of the radiation field, integrating the
second moment of the radiative transfer equation (1.86) over frequency, we obtain:

c

3�Rρ

d(aT 4)

dz
= −Qrad , (1.89)

where the Rosseland opacity �R(z) is introduced

1

�R
≡

∫ ∞
0

1
�a(ν)+κs(ν)

∂Bν(T )
∂T

dν∫∞
0

∂Bν(T )
∂T

dν
. (1.90)

If we consider quantities averaged over z, we obtain:

Qrad = 1

3

c

�R ρ z0
εrad . (1.91)

With allowance for convection, the vertical structure of discs was studied by
Meyer and Meyer-Hofmeister (1982) for two variants of viscosity: proportional to
the gas pressure and to the total pressure.

1.5.1.4 Dependence of the Surface Density on z

We introduce the quantity Σ(z) for the surface density of the disc ‘gathered’ up to
a certain height z, and with the help of this quantity we rewrite (1.41):

dΣ

dz
= ρ . (1.92)

1.5.2 Solution for the Vertical Structure

This section describes an approach to the solution of the disc vertical structure
equations, proposed and implemented by Ketsaris and Shakura (1998). The method
consists in finding similar solutions to the system of equations converted to a
dimensionless form. The opacity coefficient and the rate of energy release are
expressed as power-law functions of ρ and T . The obtained solution is compared
to the numerical results of Suleimanov et al. (2007), and the agreement of the two
methods is shown.
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For sufficiently high temperatures (> 106 K), Thomson scattering off free
electrons plays the most important part. The corresponding region of the disc,
in which gas pressure dominates at the same time, is called zone B. Further out
from the centre, where photo-ionization of ions from heavy elements and free-
free transitions dominate, we have zone C. The contribution of radiation pressure
to the total pressure in these two zones is neglected. In zone B, this assumption
significantly limits the accuracy of the solution if Prad � (0.2–0.3) Pgas.

When calculating the disc vertical structure, we will assume that all heat from
the work of viscous forces at given r and z is transformed to radiative energy. In
particular, local energy balance (1.78) will apply. We replace everywhereQrad(z) =
Qvis(z) = Q(z).

We list together the equations of the vertical structure of the disc (1.83), (1.84),
(1.89), and (1.92):

1

ρ

dP

dz
= −ω2

K z ,

dΣ

dz
= ρ ,

dQ

dz
= 3

2
ωK w

t
rϕ ,

c

3�Rρ

d(aT 4)

dz
= −Q. (1.93)

The rate of energy release ε in α-discs is proportional to the pressure. The opacity
coefficient is written as follows:

�R = �0
ρς

T� . (1.94)

For hydrogen discs:

ς = � = 0, �0 = 0.4 cm2/g , if �T � �ff , (1.95)

ς = 1,� = 7/2, �0 = 6.45 × 1022 cm5 K7/2/g2 , if �ff � �T , (1.96)

and for discs with solar chemical abundances (Frank et al. 2002; Kurucz 1970,
1993):

ς = � = 0, �0 = 0.335 cm2/g , if �T � �ff ,

ς = 1,� = 7/2, �0 ≈ 5 × 1024 cm5 K7/2/g2 , if �ff � �T , (1.97)

Calculations of absorption in the plasma, including collective and quantum effects,
electron degeneracy, etc., performed by the OPAL project at Livermore laboratory
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Fig. 1.5 Dependence of the opacity coefficient on density and temperature according to the OPAL
project (Iglesias and Rogers 1996) and calculations for the low-temperature region in a medium
with solar composition (Ferguson et al. 2005). The horizontal line corresponds to the value of
the scattering coefficient off free electrons �0 � 0.34 cm2/g. Two fits are shown for a density of
ρ = 10−5 g/cm3, namely, (1.98) and the dependence �R = 1.2 × 1025 ρ T −7/2 cm5 K7/2/g2 that
gives a better fit in the high-temperature region (solid lines)

(Iglesias and Rogers 1996) (see Fig. 1.5) better fit another law in the absorption-
dominated region:

ς ≈ 1,� ≈ 5/2, �0 ≈ 1.5 × 1020 cm5 K5/2/g2 , if �ff � �T . (1.98)

For convenience, we introduce the dimensionless variable3

σ = 2Σ(z)

Σ0
,

and in addition the dimensionless functions of this variable:

p=P(z)/Pc , θ = T (z)/Tc , z′ = z/z0 , j = ρ(z)/ρc and q = Q(z)/Q0 .

3In the original paper by Ketsaris and Shakura (1998), the parameter Σ0 was defined as half the
total surface density of the disc. Due to this, there is a difference in the numerical coefficients in
some of the formulas given below compared to the formulas in Ketsaris and Shakura (1998).
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The symbols Pc, Tc, and ρc represent physical quantities in the equatorial plane of
the disc and Q0 = (ac/4) T 4

eff is the blackbody flux from one surface of the disc.
We rewrite the system of Eq. (1.93) in the following form:

dp

dσ
= −Π1Π2 z

′ ; Π1 = ω2
K z

2
0 μ

� Tc
;

dz′

dσ
= Π2

θ

p
; Π2 = Σ0

2 z0 ρc
;

dq

dσ
= Π3 θ ; Π3 = 3

4

α ωK � TcΣ0

Q0 μ
≡ α� TcΣ0

Wrϕ μ
;

dθ

dσ
= −Π4

q jς

θ�+3
; Π4 = 3

32

(
Tef

Tc

)4
Σ0 �0 ρ

ς
c

T�
c

.

(1.99)

The heating per gram ε/ρ = ∂Q/∂Σ determines the dependence of the
temperature on z. In principle, the intensive mixing in the disc can lead to a situation
where the energy output per unit mass is not dependent on the height z. The quantity
ε depends in this case only on the density. The temperature dependence disappears
from the equation describing the energy release (the third line in (1.99)), and Π3
becomes equal to 1. A solution for such a case was also obtained by Ketsaris and
Shakura (1998).

To find a solution to (1.99), i.e. to find the four functions p(σ), z′(σ ), q(σ), θ(σ )
and the four unknown parameters, it is necessary to set eight boundary conditions—
four at the surface of the disc and four in its symmetry plane. Ketsaris and Shakura
(1998) performed a numerical integration of the equations and tabulated values
Π1..4. These values are given in Tables 1.1 and 1.2. Figure 1.7 shows functions
z′(σ ), p(σ), θ(σ ), and q(σ) in the Kramer opacity regime. Plots for other cases can
be found in the work by Ketsaris and Shakura (1998).

In the symmetry plane of the disc for σ = 0, we have the obvious conditions:

p(0) = 1; z′(0) = 0; q(0) = 0; θ(0) = 1 .

The first two boundary conditions at the disc surface can also be straightfor-
wardly determined as:

z′ (1) = 1; q (1) = 1 .

The surface of the disc is defined as the level at which thermalization of radiation
occurs. We may find boundary conditions for the pressure and temperature from
approximate solutions to the equations of radiative transfer and hydrostatic balance
close to the disc surface. Note that there is a difference in boundary conditions for
different opacity regimes (see Fig. 1.6). In zone B, where absorption dominates,
the disc surface is defined as the level in the photosphere where the optical depth,
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Table 1.1 Dimensionless
parameters of the solution to
the equations of vertical
structure for Thomson
opacity versus the decimal
logarithm of the free
parameter δ

log δ Π1 Π2 Π3 Π4

6.00 6.99 0.492 1.150 0.460

5.80 6.96 0.493 1.150 0.460

5.60 6.92 0.495 1.150 0.460

5.40 6.87 0.496 1.150 0.460

5.20 6.82 0.498 1.150 0.460

5.00 6.77 0.500 1.150 0.460

4.80 6.70 0.503 1.150 0.460

4.60 6.63 0.505 1.150 0.460

4.40 6.55 0.508 1.150 0.460

4.20 6.47 0.512 1.150 0.460

4.00 6.37 0.516 1.150 0.460

3.80 6.26 0.520 1.149 0.460

3.60 6.13 0.525 1.149 0.460

3.40 5.99 0.531 1.149 0.460

3.20 5.84 0.538 1.149 0.460

3.00 5.67 0.546 1.149 0.459

2.80 5.48 0.555 1.148 0.459

2.60 5.26 0.566 1.147 0.458

2.40 5.02 0.578 1.146 0.458

2.20 4.76 0.593 1.145 0.456

2.00 4.47 0.610 1.142 0.454

1.80 4.15 0.629 1.138 0.450

1.60 3.81 0.652 1.133 0.444

1.40 3.43 0.678 1.126 0.435

1.20 3.03 0.707 1.117 0.420

1.00 2.61 0.740 1.105 0.398

0.80 2.19 0.776 1.091 0.366

0.60 1.77 0.813 1.075 0.324

0.40 1.38 0.849 1.059 0.274

0.20 1.03 0.884 1.044 0.219

0.00 0.74 0.914 1.032 0.166

calculated from the outside inwards, is equal to 2/3. In the zone with predominant
Thomson scattering, the disc surface is taken as the level where the effective optical
depth, calculated including scattering, is equal to 1.

Let us derive the remaining boundary conditions in two opacity regimes.

1.5.2.1 Kramers Opacity

We will measure the optical depth τ from the surface of the disc in the direction
of its symmetry plane, i.e. in the direction of decreasing height z. Deep inside the
photosphere, where τ ∼ 1, we will use the solution to the equations of radiative
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Table 1.2 Dimensionless
parameters of the solution to
the equations of vertical
structure for Kramers opacity
versus the decimal logarithm
of the free parameter τ0

log τ0 Π1 Π2 Π3 Π4 log τ

6.00 7.75 0.465 1.131 0.399 6.046

5.80 7.71 0.466 1.131 0.399 5.847

5.60 7.67 0.468 1.131 0.399 5.646

5.40 7.62 0.469 1.131 0.399 5.445

5.20 7.56 0.471 1.131 0.399 5.245

5.00 7.50 0.473 1.131 0.399 5.045

4.80 7.44 0.475 1.131 0.399 4.845

4.60 7.36 0.477 1.131 0.399 4.644

4.40 7.27 0.480 1.131 0.399 4.444

4.20 7.18 0.483 1.131 0.399 4.244

4.00 7.07 0.487 1.131 0.399 4.043

3.80 6.95 0.491 1.131 0.399 3.843

3.60 6.82 0.496 1.131 0.399 3.643

3.40 6.67 0.501 1.131 0.399 3.443

3.20 6.50 0.508 1.131 0.398 3.243

3.00 6.31 0.515 1.131 0.398 3.043

2.80 6.10 0.524 1.130 0.398 2.842

2.60 5.87 0.534 1.130 0.398 2.642

2.40 5.60 0.546 1.129 0.397 2.442

2.20 5.31 0.560 1.128 0.397 2.241

2.00 4.98 0.576 1.126 0.395 2.040

1.80 4.62 0.596 1.124 0.393 1.839

1.60 4.23 0.619 1.120 0.389 1.638

1.40 3.79 0.647 1.114 0.383 1.434

1.20 3.33 0.679 1.106 0.371 1.232

1.00 2.83 0.716 1.095 0.354 1.025

0.80 2.34 0.756 1.081 0.326 0.819

0.60 1.86 0.798 1.065 0.286 0.613

0.40 1.42 0.838 1.050 0.237 0.406

0.20 1.05 0.876 1.036 0.185 0.202

0.00 0.75 0.908 1.025 0.136 −0.001

The rightmost column shows the decimal loga-
rithm of the disc optical depth (1.114)

transfer and radiation balance for the case of LTE and for a frequency-independent
absorption coefficient in the Eddington approximation (Sobolev 1969):

T

Teff
=

(
1 + 3

2τ

2

)1/4

. (1.100)

Let the dimensionless variable σ = 1 at the level where τ = 2/3 and T = Teff.
Using the definition of the parameter Π4, we obtain the boundary condition for the
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Fig. 1.6 The surfaces at which the boundary conditions are set, the upper surface of the disc and
its equatorial plane (solid lines). Values of the dimensionless coordinate σ and functions at these
surfaces are shown. The arrows indicate directions of increasing height z′ = z/z0 and optical depth
τ , calculated from the exterior towards the equatorial plane. The two disc zones with different
opacity regimes are separated nominally by the grey bar. In zone B (on the left), the optical depth
at the disc surface τT(τ

∗ = 1) � 1. In zone C (on the right), τff = 2/3. The dashed line is the
level where the disc temperature equals the effective temperature of the outgoing radiation

dimensionless temperature θ :

θ (σ = 1) =
[

16

3

Π4

τ0

]1/4

,

where we have introduced the dimensionless parameter τ0, proportional to the total
optical depth of the accretion disc (see (1.96)):

τ0 = Σ0 �0 ρc

2 T 7/2
c

.

This quantity is a free parameter of the problem and varies widely (from a few to
∼ 106).

To determine the boundary condition for the dimensionless pressure, we use the
equation of hydrostatic balance (the first in system (1.93)). We divide both parts of
this equation by the opacity coefficient �R and replace variables using the formula

d τ = −�R ρdz

and making use of (1.96), arrive at:

1

2

dP 2

dτ
= ω2

K z0 � T 9/2

�0 μ
.

Close to the photosphere, the z coordinate practically does not change and is equal
to z0. Integrating the last equation from τ = 0 to τ = 2/3, we get as a result the



1 The Standard Model of Disc Accretion 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

σ

p

z’

q

θ

Fig. 1.7 Solution to the system of Eq. (1.99) in the form of dimensionless functions of the
dimensionless variable σ , proportional to the column density: temperature θ(σ ), pressure p(σ),
radiative flux q(σ ), and height from the equatorial plane z′(σ ). In the equatorial plane σ = 0, at
the disc surface σ = 1

boundary condition for the dimensionless pressure:

p (σ = 1) =
[

3

16 × 21/8

Π1Π2

Π4

(
16

3

Π4

τ0

)17/8

f (τ = 2/3)

]1/2

,

where

f (τ) =
∫ τ

0
(1 + 3

2
τ̃ )9/8 dτ̃ , f (τ = 2/3) ≈ 1.05 .

Figure 1.7 shows the solution to the system of equations for the given case.

1.5.2.2 Thomson Scattering

If scattering processes are of high importance in the photosphere, thermalization
occurs at the depth where the so-termed effective optical depth is of the order of 1:

τ ∗ = −
∞∫
z0

(�ff �T)
1/2 ρ dz ≈ 1 .
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The effective optical depth is accumulated as
√
�ff(�T + �ff) ρ dz (see for example

Zel’dovich and Shakura 1969, Mihalas 1978), which approximately gives the above
condition. At this level, the optical depth due to scattering is much larger than 1:

τT(τ
∗ = 1) = −

∞∫
z0

�T ρ dz� 1

and T � Teff (3 τT/4)1/4 from (1.100). Thus, the boundary condition for the
dimensionless temperature has the following form:

θ (σ = 1) �
[

8Π4 τT(τ
∗ = 1)

�TΣ0

]1/4

.

For the pressure, we have:

p (σ = 1) = 2Π1Π2
τT(τ

∗ = 1)

�TΣ0
.

A convenient free parameter turns out to be the quantity

δ = �TΣ0/2

τT(τ ∗ = 1)
. (1.101)

This parameter is the ratio of half the total optical depth due to scattering to the
optical depth due to scattering at the thermalization depth.

1.5.3 Radial Dependence of Physical Parameters in Stationary
α-Discs

In order to explain observations of sources with accretion discs as extended objects,
whose properties vary significantly from the centre to the periphery, we have to
calculate radial dependencies of the disc physical parameters. For this it is necessary
to solve the equation of angular momentum transfer, which was done for the case of
a stationary disc in Sect. 1.4, and also to solve the equations of vertical structure (see
the previous section). Analytical approximations for radial dependencies of the disc
parameters were given in the work by Suleimanov et al. (2007). We will describe
these analytical approximations below.

We consider the following physical parameters: surface density Σ(r), disc half-
thickness zo(r), density ρc(r) and temperature Tc(r) at the symmetry plane of the
disc for z = 0. It is necessary to define what we consider to be the surface of the
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disc. When studying observed spectra it turns out to be convenient to assume that the
disc surface corresponds to the level where the Rosseland optical depth τR = 2/3.

The vertical structure of the disc is determined by Eq. (1.99) for known values
of the dimensionless parameters Π1..4. We express the quantities z0, Σ , ρc, and Tc
from (1.99). The resulting expressions contain the basic given parameters of the
disc (accretion rate, mass of the central object, the turbulent α-parameter) as well as
the radial structure defined by ωK(r) and Wrϕ(r). We take the radial dependence of
the vertically integrated component of the viscous stress tensorWrϕ(r) for the case
of a stationary disc (1.74), and the angular velocity of rotation we set equal to the
Keplerian angular velocity ωK = √

GM/R3. The radial distribution of the radiative
flux from the disc surface is determined by viscous stresses Wrϕ(r). We recall that
the function f (R), which describes the influence of the boundary conditions on the
surface tensionWrϕ(r), is written as (cf. (1.49)):

f (r) = 2π Wrϕ(r)

Ṁ ω
= F

Ṁ h

in a disc with constant accretion rate. For a thin disc with a stress-free inner radius,
we have

f (r) = 8π

3

Qvis

Ṁ ω2
= 1 − hin

h
.

For the case Ṁ = Ṁ(r, t) �= const , it is necessary to use the function f (r) in its
general form

f (r) = F(h, t)

Ṁin(t) h
= F(h, t)/h

∂F (h, t)/∂h
∣∣
h=hin

. (1.102)

We normalise the accretion rate at the inner boundary of the disc and other param-
eters to their characteristic values in binary systems with stellar mass components:

M = mx M�, Ṁ = Ṁ17 × 1017g/s,
r = R7 × 107cm (zone B) or r = R10 × 1010cm (zone C).

(1.103)

As a characteristic value for the coefficient �0 from expression (1.94) we use
the quantity �∗T = 0.335 cm2/g in zone B, taken from an approximation to the
tabulated values (Kurucz 1970, 1993), for a medium with mass fraction of hydrogen
X = 0.69 and helium Y = 0.27 and �∗0 = 5 × 1024 cm5 K7/2/g2 in zone C (see
Frank et al. 2002, their chapter 5). The corresponding molecular weight μ=0.62. In
a medium with such chemical composition, absorption of the radiation is mainly due
to photoionization of ions of heavy elements. If we assume that all parametersΠ1..4
are equal to 1, �T = 0.4 cm2/g, �0 = 6.4×1022 cm5 K7/2/g2, and μ = 0.5, then the
expressions for the radial dependencies of the physical parameters become identical
to the expressions by Kato et al. (1998, their chapter 3) derived for hydrogen discs.
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1.5.3.1 Zone B

In this zone, the main contribution to the optical depth comes from scattering
off free electrons, and gas pressure dominates over radiation pressure. If we use
expression (1.74) for the heat dissipated in the disc due to viscosity, normalising the
parameters according to (1.103), we can solve the system of algebraic equations for
Π1..4 (the right part of the system (1.99)) and obtain:

z0/r = 0.0092m−7/20
x Ṁ

1/5
17 α−1/10 R

1/20
7 f (r)1/5

( μ
0.6

)−2/5
(
�T

�∗T

)1/10

Πz ,

Σ0 = 5.1 × 103m
1/5
x Ṁ

3/5
17 α−4/5R

−3/5
7 f (r)3/5

( μ
0.6

)4/5
(
�T

�∗T

)−1/5

ΠΣ [g/cm2],

ρc = 2.8 × 10−2m
11/20
x Ṁ

2/5
17 α−7/10 R

−33/20
7 f (r)2/5

( μ
0.6

)6/5 ×

×
(
�T

�∗T

)−3/10

Πρ [g/cm3],

Tc = 8.2 × 106m
3/10
x Ṁ

2/5
17 α−1/5 R

−9/10
7 f (r)2/5

( μ
0.6

)1/5
(
�T

�∗T

)1/5

ΠT [K].

(1.104)

The combinations of the dimensionless parametersΠz,ΠΣ ,Πρ , andΠT are related
in the following way to the parametersΠ1..4:

Πz = Π1/2
1 Π

1/10
3 Π

−1/10
4 ≈ 2.6 ,

ΠΣ = Π4/5
3 Π

1/5
4 ≈ 0.96 ,

Πρ = Π−1/2
1 Π−1

2 Π
7/10
3 Π

3/10
4 ≈ 0.67 ,

ΠT = Π1/5
3 Π

−1/5
4 ≈ 1.2 .

(1.105)

Their values versus the free parameter δ are shown in Fig. 1.8, left panel. The free
parameter δ is derived from the expression (1.101) and may be estimated from the
total optical depth of the disc τ and other disc parameters in the following way:

δ =
√
κ0ρcT

−7/2
c

�T

τ X(δ) , (1.106)

where τ = �TΣ0/2. The numerical factor

X(δ) = δ
∫ 1

1−1/δ
(P/Pc)

1/2 (T /Tc)
−9/4dσ ∼ 2 , (1.107)
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(a) (b)

Fig. 1.8 (a) Left: The dependence of the dimensionless factors Πz, ΠΣ , Πρ and ΠT for zone B
(formulas (1.105)). (b) Right: The same factors for zone C (formulas (1.111)). The logarithms of
the dimensionless parameters, characterizing the optical depth in each zone, are displayed along
the horizontal axes. The dependencies are borrowed from Suleimanov et al. (2007) and constructed
for values from Table 1.1 (graph to the left) and Table 1.2 (graph to the right)

which is independent of the absolute values of the disc parameters, is determined
through integration of the equations of vertical structure. The value of δ may be
found recursively with any desired precision, but this approach will be redundant
in the sense of astronomical application of the obtained radial dependencies. It is
sufficient to use the following estimate:

δ = 440m−1/20
x Ṁ

1/10
17 α−4/5R

3/20
7 f (R)1/10

( μ
0.6

)21/20
(
�T

�∗T

)−1/5 (
�0

�∗0

)1/2

.

(1.108)

At high accretion rates, there is a zone in the disc where radiation pressure dom-
inates (zone A). The radius at which the radiation pressure a T 4

c /3 is comparable to
the gas pressure ρc�Tc/μ in the symmetry plane of the disc (the boundary between
zones A and B, see Shakura and Sunyaev (1973)) may be approximately estimated
as

RAB ∼ 107m
1/3
x Ṁ

16/21
17 α2/21

( μ
0.6

)8/21
(
�T

�∗T

)6/7

cm. (1.109)

Here, we used characteristic values (1.105) for the dimensionless parameters Π1..4
and f (r) = 1.

When the accretion rate decreases, zone B shifts radially towards the centre of
the disc, giving way to zone C.
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1.5.3.2 Zone C

The main contribution to the opacity in zone C comes from absorption processes
in the form of free-free and bound-free transitions, and the gas pressure is much
higher than the radiation pressure. As before, from the right-hand part of the system
of Eq. (1.99) and from the expressions (1.74) and (1.103), we may find the radial
dependencies of the parameters of the disc:

z0/r = 0.020m−3/8
x Ṁ

3/20
17 α−1/10 R

1/8
10 f (r)

3/20
( μ

0.6

)−3/8
(
�0

�∗0

)1/20

Πz ,

Σ0 = 33m1/4
x Ṁ

7/10
17 α−4/5 R

−3/4
10 f (r)7/10

( μ
0.6

)3/4
(
�0

�∗0

)−1/10

ΠΣ [g/cm2],

ρc = 8.0 × 10−8m
5/8
x Ṁ

11/20
17 α−7/10 R

−15/8
10 f (r)11/20

( μ
0.6

)9/8 ×

×
(
�0

�∗0

)−3/20

Πρ [g/cm3],

Tc = 4.0 × 104m
1/4
x Ṁ

3/10
17 α−1/5 R

−3/4
10 f (r)3/10

( μ
0.6

)1/4
(
�0

�∗0

)1/10

ΠT [K],

(1.110)

We recall that Ṁ17 is the normalised accretion rate at the inner disc boundary. Note
that if Ṁ(r, t) �= const , we need to substitute the value of the accretion rate at the
inner boundary when using (1.104) and (1.110). This is convenient since in most
cases this value determines the energetics of observed accreting systems.

The combinations of dimensionless parameters are related to the parameters
Π1..4 in the following way:

Πz = Π19/40
1 Π

−1/20
2 Π

1/10
3 Π

−1/20
4 ≈ 2.6 ,

ΠΣ = Π1/20
1 Π

1/10
2 Π

4/5
3 Π

1/10
4 ≈ 1.03 ,

Πρ = Π−17/40
1 Π

−17/20
2 Π

7/10
3 Π

3/20
4 ≈ 0.76 ,

ΠT = Π−1/20
1 Π

−1/10
2 Π

1/5
3 Π

−1/10
4 ≈ 1.09 ,

(1.111)

and are shown in Fig. 1.8b as a function of the free parameter τ0,

τ0 = �0ρc

T
7/2

c

Σ0

2
= 500

Ṁ
1/5
17 f (r)

1/5

α4/5

( μ
0.6

) (
�0

�∗0

)2/5 Π
4/5
3 Π

3/5
4

Π
1/5
1 Π

2/5
2

, (1.112)

approximately equal to

τ0 ∼ 300 Ṁ1/5
17 α

−4/5
(
�0

�∗0

)2/5

. (1.113)
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The full optical depth of the disc

τ =
∫ h

0
�0 ρ

2 T −7/2dz (1.114)

is determined in the process of numerical solution of the vertical structure and is
uniquely dependent on τ0 (see Table 1.2). We also give the following formula,
approximating the tabulated values to an error of less than 1% for τ0 > 6:

τ ≈ 1.042 τ 1.006
0 . (1.115)

The dependencies of the parameters in zones B and C are depicted in Figs. 1.9
and 1.10. The boundary between zones B and C is approximately determined from

Fig. 1.9 From the top down: relative disc half-thickness z0/r , central Tc and effective temperature
Teff (dot-dashes) and surface density Σ0. The disc parameters are mx = 10, μ = 0.62, α = 0.3,
left: Ṁ17 = 33.6 or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. The solid
line shows the result from the numerical calculation in Suleimanov et al. (2007). The dotted line
shows the formulas (1.104) in zone B and the dashed line the formulas (1.110) in zone C. Figures
from Suleimanov et al. (2007)
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Fig. 1.10 From the top down: density in the disc symmetry plane ρc, ratio between radiation and
gas pressure, and optical depth τ . Disc parameters: mx = 10, μ = 0.62, α = 0.3, left: Ṁ17 = 33.6
or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. Notations as in Fig. 1.9. Figures
from Suleimanov et al. (2007)

equating �T and �0ρT
−7/2 in the equatorial plane of the disc

RBC ∼ 5 × 107m
1/3
x Ṁ

2/3
17

( μ
0.6

)−1/3
(
�0

�∗0

)−2/3 (
�T

�∗T

)4/3

cm

for characteristic values of the dimensionless parametersΠ1..4 and f (r) = 1.
As outer boundary of zone C we take the radius where recombination of

hydrogen atoms sets in (at Teff ∼ 104 K). When this happens, thermal instabilities in
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the disc start developing, and due to a significant increase in the opacity coefficient
of the matter, convection starts playing a role in the transfer of energy to the
surface (Meyer and Meyer-Hofmeister 1981, 1982). In such regions, it is no longer
correct to approximate the opacity coefficient �R using Kramers law. Equating the
right-hand side of (1.74) and σSB T

4
eff, we get:

RC ≈ 3.5 × 1010m
1/3
x Ṁ

1/3
17

(
Teff

5000 K

)−4/3

cm. (1.116)

Due to irradiation of the outer parts of the disc by the central source, the boundary
RC can be further from the centre. This happens if the radiative X-ray flux, falling
on the surface of the disc, thermalizes in its outer layers and heats them up so that
the effective temperature of the disc surface does not drop below ∼ 104 K (Dubus
et al. 1999).

1.5.3.3 Thickness of the Disc

For the discs in binary systems with stellar-mass components during outbursts, the
quantities lg(δ) and lg(τ0) lie in the range of 2–4. For these values, the considered
combinations of the quantities Π1,2,3,4 practically do not change with radius, and
inside each zone we may use the following characteristic values:

(zone B) Πz ≈ 2.6, ΠΣ = 0.96, Πρ = 0.67, ΠT = 1.2, (1.117)

(zone C) Πz ≈ 2.6, ΠΣ = 1.03, Πρ = 0.76, ΠT = 1.09. (1.118)

Let us consider a disc with matter consisting solely of hydrogen plasma (μ =
0.5), choosing for the opacity a value �R = 6.4 × 1022 ρ T −7/2 cm2/g (Kato et al.
(1998); in the work by Shakura and Sunyaev (1973) a similar value was used),
which is determined only by free-free electron transitions in the plasma. This value
is two orders of magnitude less than the value of the opacity due to bound-free
transitions �∗0 . However, the physical parameters depend only weakly on the opacity
coefficient (1.110). For example, the half-thickness of the disc changes due to a
direct decrease of �0, μ, and also Πz, since τ0 decreases almost by a factor of 10
(see (1.112) and Fig. 1.8b). Thus, the disc half-thickness z0 is ∼ 25% less for μ =
0.5 than for μ = 0.62.

The numerical solution to the equations of vertical structure as described in this
section gives a larger disc thickness compared to that of a vertically homogeneous
disc, namely, the ‘characteristic hydrostatic scale’. The latter is estimated as vs/ω,
where vs is the sound speed in the disc symmetry plane. The presence of the
factor two was indicated by Shakura and Sunyaev (1973). It is explained by the
inhomogeneity of the distribution of density and temperature over the thickness of
the disc. More exactly, this factor Πz ∼ √

Π1 ∼ 2.5, as can be seen from the first
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line in the system of Eq. (1.99):

z0 = √
Π1

√
� Tc

μ

1

ωK

. (1.119)

1.5.3.4 ‘Dead’ Discs

The formulas (1.104) and (1.110), describing radial dependencies in a disc, may be
applied also for ‘dead’ discs or disc reservoirs (Syunyaev and Shakura 1977), i.e.
discs in which transfer of matter through the inner boundary is not possible and thus
Ṁin = 0. Since the inner accretion rate and f (r) always show up as multiplicative
factors in (1.104) and (1.110), the formulas could be converted using Ṁin(t) f (r) =
F(h, t)/h (cf. (1.102)).

1.6 Non-stationary Disc Accretion

Outbursts in accreting sources, for example in binary systems and active galactic
nuclei, are of special interest. Bright events can be observed by instruments
operating in different ranges of the electromagnetic spectrum, supplying a wealth
of data about the physics of distant stars. Recently, due to the boom in studies
of exoplanets, the subject of disc evolution in protoplanetary systems has become
topical in astrophysics.

Transient phenomena in discs may be caused by different kinds of instabilities,
which in general develop on different time scales. In this section, we will address
the set up of and solution to the problem of non-stationary accretion in a viscous
disc. The problem corresponds to the disc evolution that takes place on viscous time
scales due to redistribution of angular momentum of matter in the disc.

1.6.1 Basic Equation of Non-stationary Accretion

In Sect. 1.4.1 we introduced the following quantities, integrated along the disc
thickness: the surface density Σ0 (1.41) and the integrated component of the
turbulent viscosity tensor Wrϕ (1.45). We write down again the obtained equations
for conservation of mass and angular momentum (1.42) and (1.44):

∂Σ0

∂t
= −1

r

∂

∂r
(Σ0 vr r) ,

Σ0 vr r
∂ (ω r2)

∂r
= − ∂

∂r
(Wrϕr

2) .
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Substituting the combination Σ0 vr r from the second line into the first, we obtain
the basic equation for non-stationary accretion:

∂Σ0

∂t
= 1

r

∂

∂r

[
1

∂(ω r2)/∂r

∂

∂r
(Wrϕ r

2)

]
. (1.120)

This is an equation of diffusion type, a parabolic equation of the second order in
partial derivatives.

The tensor component, integrated over the full thickness of the disc, is written
in the framework of the gradient hypothesis of transfer of angular momentum by
turbulent motions (1.38) in the following way:

Wrϕ(r, t) = 2

Z0∫
0

wt
rϕ dZ = 3ωK

Z0∫
0

νt ρ dZ . (1.121)

If the kinematic coefficient of the turbulent viscosity νt is independent of z, we get:

Wrϕ(r, t) = 3

2
ωK νtΣ0 . (1.122)

We introduce as a new independent parameter the specific angular momentum
h(r) = vϕ(r) r = ω r2. We further define the specific angular momentum of a free
particle, rotating in a Newtonian potential, as the quantity hK ≡ √

GM r . Herewith,
dr = 2 hK dhK/(GM).

In the case of Keplerian orbits, Eq. (1.120) taken together with (1.122) is written
in the following form:

∂Σ0

∂t
= 3

4

(GM)2

h3

∂2(Σ0 νt h)

∂h2 , h ≡ hK . (1.123)

We also consider an alternative version of this equation, convenient from the
point of view of establishing boundary conditions in an evolving disc. It is, in
addition, more appropriate for α-discs in models where the viscosity is parametrized
using the turbulent α-parameter considered as a constant value, rather than using the
kinematic viscosity coefficient νt.

We introduce the quantity F = 2π Wrϕr2, which is equal to the total viscous
torque, acting between neighbouring rings in the disc. At constant accretion rate
in the disc, and using for Wrϕ a notation of the form (1.49), for a stress free inner
boundaryWrϕ(r = rin) = 0, we may write the quantity of the total viscous torque
in the following way:

F = Ṁ√
GM r

(
1 −

√
rin

r

)
, Ṁ = const . (1.124)
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As we can see, F is linearly proportional to the specific angular momentum h =√
GM r at large distances.
In the new variables, the equation of transfer of angular momentum (1.44) takes

the form (note that vr has a negative value):

− 2π Σ0 vr r = Ṁ(r, t) =
[
∂h

∂hK

]−1
∂F

∂hK

, (1.125)

and Eq. (1.120):

∂Σ0

∂t
= 1

4π

(GM)2

h3
K

∂

∂hK

([
∂h

∂hK

]−1 ∂F

∂hK

)
. (1.126)

For a Keplerian disc, by definition, ∂h/∂hK ≡ 1.
Which method to use for solving the equation of non-stationary accretion (1.123),

depends on the form of the turbulent viscosity coefficient νt = νt(r,Σ0). In the
framework of the model for α-turbulence, when the turbulent viscosity tensor is
proportional to the pressure in the disc, the form of νt(r,Σ0), or in other words, the
relationship between F andΣ0, necessary for solving (1.126), may be derived from
the equations of vertical structure.

1.6.2 Solutions to the Linear Equation of Viscous Evolution in
the Disc

IfF is linearly dependent on the surface densityΣ0, in other words, if νt is a function
only of radius and does not depend on the surface density, then (1.123) becomes a
linear differential equation of diffusion type. In 1952, Lüst found particular solutions
to the equation of viscous accretion, proposed by his teacher Weizsäcker (1948), and
described the principles of constructing a general solution to both infinite and finite
problems.

For a disc of infinite extension, Lynden-Bell and Pringle (1974) used a method
of superposition of particular solutions to the equation of viscous evolution and,
in particular, found Green’s functions for two types of boundary conditions at the
inner boundary. With the help of Green’s functions it is possible to find F or Σ at
any moment in time and at any point for arbitrary initial conditions. The inner radius
of the disc in their solution is equal to zero. On long time scales, the dependencies in
the disc are self-similar and the accretion rate through the inner boundary declines
as a power law Ṁ ∝ t−(1+l), where the parameter l < 1. Pringle (1991) examined,
with the help of Green’s functions, an infinite disc with central inflow of angular
momentum. This problem describes the evolution of a disc surrounding a binary
system. A similar problem was solved by Tanaka (2011), with the difference that
the inner boundary of the disc was considered to be located at a finite, non-zero
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inner radius. King and Ritter (1998) studied the evolution of a disc with finite
radius and constant νt, and found that the accretion rate declines exponentially with
time. The problem of a finite disc was also studied numerically in Zdziarski et al.
(2009). The special case of Green’s function for a finite disc was constructed in
Wood et al. (2001) for a zero inner boundary. The full Green’s function, which
can be used together with an arbitrary initial distribution for two types of boundary
conditions, was found by Lipunova (2015). This work also described the procedure
of constructing a solution with non-zero and variable accretion rate at the outer
boundary.

Note that in all these cases, the characteristic viscous time scale τvis ∼ r2/νt is
constant in time.

1.6.3 Evolution of an Infinite Viscous Disc

Let us recall the solution obtained by Lynden-Bell and Pringle (1974). We write the
kinematic viscosity coefficient in the form

νt = ν0 r
b .

Then the relation F = 3π h νtΣ0 (cf. (1.122)) may be written in the following way:

F = 3π h ν0Σ0 r
b . (1.127)

For a Keplerian disc (h ≡ h∗), the equation of viscous torque (1.123) takes the
following form:

∂F

∂t
= 3

4
ν0 h

2b−2 (GM)2−b ∂
2F

∂h2 , (1.128)

or in a way similar to the notation in Lynden-Bell and Pringle,

∂2F

∂h2 = 1

4

(κ
l

)2
h1/ l−2 ∂F

∂t
, (1.129)

where the constant parameters are related in the following way:

1

2 l
= 2 − b , κ2 = 16 l2

3ν0 (GM)1/2l
. (1.130)

The general solution to the linear equation (1.129) may be found by expansion in
eigenfunctions and superposition of particular solutions. The method of superposi-
tion allows for a general solution, satisfying the given initial or boundary conditions.
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In the case of a linear equation, the method of separation of variables may also be
used.

We will search for a particular solution of the form F(h, t) = f (hc ξ) ×
exp(−s t), where s is some constant of the same dimension as that of the inverse
time, ξ = h/hc, and hc is some characteristic value of the specific angular momen-
tum of the matter in the disc. Substituting such a function F(h, t) into (1.129), we
obtain a Lommel’s transformation of the Bessel equation (see Sect. 4.31 in Watson
1944):

d2f

dh2 + s

4

(κ
l

)2
h1/ l−2 f = 0 ,

with the particular solution

f (x) = (k x)l [A(k) Jl(k x)+ B(k) J−l (k x)] ,

where Jl and J−l are Bessel functions of non-integer order, k2 = s κ2 h
1/ l
c and l are

constants and x = ξ1/2l = (h/hc)
1/2l, where ξ is the normalised specific angular

momentum. The general solution is equal to the superposition of particular solutions
with all values of the parameters k, A(k), B(k) such that the specific boundary and
initial conditions are satisfied:

F(h, t) =
∞∫

0

exp

(
− k2 t

κ2 h
1/ l
c

)
(kx)l[A(k) Jl(k x)+B(k) J−l(k x)] dk . (1.131)

For example, the condition F(h) = 0 for h = 0 leads to the vanishing of all
coefficients for Bessel functions with negative index: B(k) ≡ 0.

The following method was used to determine the coefficientsA(k) and B(k). Let
us choose a solution at t = 0, with the condition that all viscous stresses at the
centre are equal to zero F(h = 0) = 0, and write it using (1.131) in the form

F(h, t = 0) =
∞∫

0

(kx)l A(k) Jl(k x) dk .

We now use the Hankel inversion theorem (chapter II, theorem 19 in Sneddon
(1951), see also Watson (1944) and MacRobert (1932)) for continuous functions
f (k) in the form

f (k′) =
∞∫

0

x Jl(k
′x)

⎡
⎣

∞∫
0

k f (k) Jl(k x)dk

⎤
⎦ dx for l ≥ −1 .
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Substituting f (k) = kl−1 A(k), we see that the integral within square brackets is
equal to F(h, t = 0)/xl . It follows that

(k′)l−1A(k′) =
∞∫

0

F(h) Jl(k
′ x) x1−l dx , (1.132)

where F0(h) ≡ F(h, t = 0). From here we can determine the coefficients A(k′).
If the initial distribution F0(h) is given, then the solution to the linear differential

equation (1.129) has the form

F(h, t) =
∞∫

0

G(h, h1, t) F0(h1) dh1 ,

where G is the Green’s function that is the solution to (1.129) at all points for
h �= h1 and t �= 0, and for which it is true that G = 0 for t < 0 in physical
systems. It is possible to consider Eq. (1.129) as a linear system with input signal
F0(h1) and output signal F(h, t), in which the Green’s function has the role of a
‘weighting function’. As is well known, the Green’s function itself is a ‘response’
of the system to a delta impulse input signal, that is, it is a solution to (1.129), if the
initial condition is a Dirac δ-function:

F0 = δ(x − x1); F(h, t) = G(x, x1, t) .

Substituting this initial distribution into (1.132), we find an expression for A(k):

A(k) = (k x1)
1−l Jl(kx1) .

To obtain the Green’s function we substitute A(k) in expression (1.131):

G(x, x1, t) = xl x1−l
1

∞∫
0

exp

(
− k2 t

κ2 h
1/ l
c

)
k Jl(kx1) Jl(kx) dk .

The integral is found using Hankel’s tables for integral transforms:

G(x, x1, t) = κ2 h
1/ l
c xl x1−l

1

2 t
exp

(
−x

2
1 + x2

4t
κ2 h

1/ l
c

)
Il

(x x1

2t
κ2 h

1/ l
c

)
,

(1.133)

where Il is a modified Bessel function of the first kind (an Infeld function).
Figure 1.11 shows the Green’s function at four moments in time.

Let us choose the initial distribution F0 in the form of a Dirac delta function with
a physically motivated normalisation. We assume that the initial configuration is a
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Fig. 1.11 The Green’s function (1.133), found by Lynden-Bell and Pringle (1974), at four
moments in time: t1 = 0.001, t2 = 0.03, t3 = tmax = 0.1875 and t4 = 1. The parameters of
the solution are κ = 1, hc = 1, l = 1/3, x1 = 1

narrow ring at radius rs with total massM0. The specific angular momentum at this
radius is equal to hs = x2l

s hc. We write down the surface density for t = 0 as
Σ0(h, t = 0) = M0δ(r − rs)/2πrs . Using (1.127) and (1.130) we obtain for the
earlier introduced variable x = (h/hc)

1/2l:

F0(x) = 2 l M0 h
1−1/ l
c κ−2 x2l−1

s δ(x − xs) .

Here we used the equality δ(x−xs) dx = δ(r− rs) ds. The evolution of this narrow
ring is determined with the help of the obtained Green’s function:

F(x, t) =
∞∫

0

F0(x1)G(x, x1, t) dx1

and has the explicit form:

F(x, t) = M0 hc l (x xs)
l

t
exp

(
−x

2
s + x2

4t
κ2 h

1/ l
c

)
Il

(x xs
2t
κ2 h

1/ l
c

)
.

(1.134)

We now consider the accretion rate at the inner boundary Ṁin = (∂F/∂h)|h→0:

Ṁin(t) = x1−2l

2 l hc

∂F (x, t)

∂x

∣∣∣
x→0

= M0 τ
l
e

Γ (l)

e−τe/t

t1+l
.
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It is possible to rewrite the accretion rate using its peak value

Ṁin(t) = Ṁin,max

(τpl

t

)1+l
e−τe/t ,

where we have introduced the characteristic time scale for exponential growth τe
and power-law decline τpl:

τe = κ2 h
1/ l
s

4
= 1 + l

e
τpl .

The accretion rate reaches its peak value

Ṁin,max = Mdisc

tmax

(1 + l)l
e1+l Γ (l)

(1.135)

at time

tmax = κ2 h
1/ l
s

4(1 + l) =
τpl

e
. (1.136)

1.6.4 Solution for a Disc with a Fixed Outer Radius

The boundary conditions are of high importance for the type of solution to
Eq. (1.128). Above, we considered a solution in which the disc increases in size
without limitation. A part of the matter in the disc will with time acquire very high
values of the specific angular momentum. In a number of astrophysical situations,
it is clear that it is necessary to set conditions at a finite radius from the centre. This
concerns generally discs in binary systems. The torque of tidal forces, appearing
due to gravitational influence of the companion star and acting predominantly
in the narrow area inside the Roche lobe, leads to the disc being truncated at a
certain radius (Papaloizou and Pringle 1977; Paczynski 1977; Ichikawa and Osaki
1994; Hameury and Lasota 2005). Near the truncation radius, angular momentum
is transferred from the disc to orbital motion of the binary system.

Thus, the problem now needs to be solved for a finite interval. The method of
superposition of partial solutions is modified, and the general solution is found not
as an integral (1.131), but as a sum of all the partial solutions that fulfill the specific
boundary conditions (Lüst 1952):

F(x, t) =
∞∑
i=1

e−t k2
i κ

−2 h
−1/l
out (ki x)

l [Ai Jl(ki x)+ Bi J−l (ki x)] , (1.137)
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Here we have also changed the characteristic value of the specific angular momen-
tum to the value at the outer boundary hout, where the dimensionless parameter
x = 1.

Let us set the boundary conditions at the outer radius of the disc:

∂F

∂h
= Ṁout(t) at h = hout . (1.138)

In the simplest case, if Ṁout(t) = 0, this will be a homogeneous Dirichlet boundary
condition. At the inner radius, we consider the same condition as earlier: F(h) = 0
for h = 0. The use of these two conditions gives an equation that every particular
solution has to satisfy, that is, for any k

l Jl(ki)+ ki J ′l (ki) = 0 . (1.139)

Since there in the series, representing the general solution, remain only terms
with Bessel functions of positive order, the general solution at the starting point
t = 0 is:

F(x, 0) =
∞∑
i=1

(ki x)
l Ai Jl(ki x) . (1.140)

Series of the form
∞∑
i=1

kli Ai Jl(ki x) with the condition (1.139) are called Dini

series (see Watson 1944, Sect. 18.11). The function f (x) = F(x, 0) x−l can be
expanded in Dini series if it satisfies the Dirichlet conditions at the given interval,
and the coefficients of the expansion can be found as kli Ai = 2 f̄J (ki) J

−2
l (ki) (Wat-

son 1944; Sneddon 1951), where we have used the finite Hankel transform

f̄J (ki) =
1∫

0

x f (x) Jl(ki x) dx .

To find the Green’s function, we search for a solution to an initial condition of
the form of a δ-function: F(x, 0) = δ(x − x1). Using its properties, substituting
f (x) into the last expression, we get:

kli Ai = 2 x1−l
1
Jl(ki x1)

J 2
l (ki)

. (1.141)

In this way we obtain the Green’s function for a finite disc (Lipunova 2015):

G(x, x1, t) = 2 xl x1−l
1

∑
i

e−t k2
i κ

−2 h
−1/l
out

Jl(ki x1) Jl(ki x)

J 2
l (ki)

, (1.142)
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Fig. 1.12 Green’s function of a finite disc with a zero torque at the centre at times t1 = 0.001,
t2 = 0.01, t3 = t∞max = 3/64, t4 = 0.1, t5 = 0.3. The ring of matter was located at xs =
(h/hout)

1/2l = 0.5 at time t = 0. The parameters are κ = 1 and l = 1/3

where ki are the positive roots of the transcendental equation (1.139) and x =
(h/hout)

1/2l . The Green’s function is depicted in Fig. 1.12 for a few moments in
time. The curve at t3 = tmax (see (1.136)) corresponds to the maximum accretion
rate through the inner boundary of the disc.

For a specific initial distribution F(x, 0), the distribution at any point in time
t > 0 can be found as

F(x, t) =
1∫

0

F(x1, 0)G(x, x1, t) dx1 . (1.143)

The accretion rate at any point in time t > 0 is

Ṁ(x, t) =
1∫

0

F(x1, 0)GṀ(x, x1, t) dx1

/
hout , (1.144)

where the Green function for the accretion rate is

GṀ(x, x1, t) ≡ ∂G(x, x1, t)

∂x2l =

= (x x1)
1−l

l

∑
i

e−t k2
i κ

−2 h
−1/l
out ki

Jl(ki x1) Jl−1(ki x)

J 2
l (ki)

.

(1.145)
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The functions G and GṀ in the particular case of x1 = 1 are found in the form of
analytical asymptotics by Wood et al. (2001).

The initial distribution F can be expressed through the distribution of surface
density, using (1.127) and (1.130):

F(x, 0) = 16π l2

κ2 h1/ l r
2Σ(r) h , (1.146)

where r = h2/GM and h = hout x
2l .

For large times t , the first term in the sum (1.145) dominates and the time
dependence can be expressed as a simple exponential:

GṀ(0, x1, t)

∣∣∣
t>tvis

= kl1 x
1−l
1

2 l Γ (l)

Jl(k1 x1)

J 2
l (k1)

exp

(
− t k2

1

2 l tvis

)
.

The characteristic time scale for exponential decrease of the accretion rate is equal
to:

texp = h1/ l
out
κ2

k2
1

= 16 l2

3 k2
1

r2
out

νout
, (1.147)

where we have taken into account that νout = ν0 r
b
out. In Table 1.3, the first zero k1 of

the equation is shown for typical values of l. The table also provides the coefficients
for calculating characteristic time scales for the growth (1.136) and the exponential
decay (1.147) of the solution.

The disc becomes quasi stationary (i.e. the accretion rate practically does not
change with radius) in regions where r/rout < (t/texp)

2 l . The establishment of quasi
stationarity in the central regions of the disc on viscous time scales is a common
property for discs with any type of viscosity.

Table 1.3 Parameters of the Green function for a non-stationary disc

b l k1 tmax(r
2
s /νs)

−1 texp(r
2
out/νout)

−1 a0 Comments

0 1/4 1.0585 1/15 0.298 1.267 ν = const
1/2 1/3 1.2430 1/9 0.383 1.363 α-disc with h/r = const
3/5 5/14 1.2927 0.125 0.407 1.392 α-disc, τT � τff

3/4 2/5 1.3793 0.152 0.449 1.444 α-disc, τff � τT

1 1/2 1.5708 2/9 0.540 1.571 F(h) ∝ sin((π/2) h/hout)

2 ∞ – – – – tvis independent of r

The columns are: Exponent in the power law ν ∝ rb ; l from expression (1.130); the first zero of
Eq. (1.139); the numerical factor from (1.136) the numerical factor from (1.147); the parameter
describing the radial profile, a0 = Ṁin hout/Fout. The solution to the linear equation may apply to
α-discs on timescales of the order of or shorter than the viscous timescale. For α-discs the type of
opacity is shown
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Fig. 1.13 Normalised lightcurves of the X-ray novae GRO J0422+32 (1992), A 0620-00 (1975),
GS 1124-68 (1991), GS 2000+25 (1998) from Chen et al. (1997), 4U 1543-47 (2002) and XTE
J1753.5-0127 (2005) (results from ASM/RXTE). The X-ray energy range for each flare is indicated
in the plots. The solid curves show the peak-normalised accretion rates through the inner boundary
calculated according to (1.144) for l = 2/5 and texp as indicated for each flare. The initial
distribution of surface density in the disc is Σ ∝ r and the initial inner radius of the hot zone is
0.01× rout . For A 0620-00, two model lightcurves are shown, for inner radii, at t = 0, 0.001× rout
(solid line) and 0.3 × rout (dotted line), respectively. Figure from Lipunova (2015)

Bright X-ray flares, known as outbursts of X-ray novae, are observed in binary
systems consisting of a compact object and a low-mass normal star. It is well known
that in the ‘simplest’ cases, outbursts in X-ray novae show lightcurves with a fast rise
and an exponential decay, which are called FRED profiles (Chen et al. 1997). Such
lightcurves are nicely produced within the framework of the model for viscous discs
with a viscosity coefficient constant on time scales of the order of tvis (Fig. 1.13).
This is explained by the fact that on time scales of the order of one to two tvis,
a non-stationary α-disc and a disc such as considered in this section show similar
evolution.

In order to fit the constant-viscosity solution to the evolution of a viscous α-disc,
it is necessary to estimate the most appropriate value of parameter b in (1.128).
This can be done using the relation (1.40) between the kinematic viscosity and the
turbulence parameter:

νt = ν0 r
b � 2

3
α ωK r

2
(z0

r

)2 1

Π1
, (1.148)

where the parameter Π1 shows up from a consideration of the vertical structure,
see (1.99). The solution for a stationary disc with dominant gas pressure and
Kramers opacity gives z0/r ∝ r1/8 (see (1.110)), thus b � 3/4 or, equally, l � 2/5,
if we neglect the dependence of the disc thickness on the accretion rate.
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One can estimate α for an X-ray nova using (1.147) and (1.148) (Lipunova and
Malanchev 2017):

α ∼ 0.15

(
rout

2R�

)3/2 (
z0/rout

0.05

)−2 (
M

10M�

)−1/2 (
texp

30d

)−1

×Π1 . (1.149)

Here, one should substitute z0 corresponding to the peak of an X-ray nova outburst.
The main uncertainty in the above formula is the radius of the disk. In addition,
the evolution of the thickness of the α-disk leads to a variation of the numerical
factor in (1.149). However, a numerical modelling of the disk evolution can provide
a self-consistent value of α (see Sect. 1.7.3).

1.6.5 Solution to the Non-linear Equation for the Evolution
of a Viscous α-Disc

Earlier we considered the case when the coefficient of kinematic viscosity depends
solely on the radial coordinate in the disc. In the more general case, we may
represent νt as a power-law function of Σ and r . Such a dependence arises in
particular if we consider discs with α-viscosity. In this case, (1.123) becomes a non-
linear differential equation in partial derivatives. To search for a solution to such an
equation, similarity methods can be used in many cases. A self-similar solution to
a non-linear differential equation accurately describes the evolution if enough time
has passed since the initial moment.

As we have seen in the previous section, self-similar solutions to a linear
differential equation are characterized by the possibility to completely separate the
time and coordinate parts of the solution. A particular solution is thus a product of
functions of different variables. In the case of a nonlinear differential equation, such
a simple separation is in general not possible. To approach the problem, we may use
the method of introducing new dimensionless variables (parameters), which contain
combinations of the dimensional parameters (for example time and coordinates)
raised to various powers.

Self-similar solutions to non-linear differential equations can be divided into two
kinds (Barenblatt 1996, 2003). The self-similar solution is of the first kind if the
self-similar function, as well as the new dimensionless parameter, can be derived
from dimensional analysis. This case is also called a complete self-similarity. The
second kind, or incomplete self-similarity, is the more general case. Here the self-
similar function is a particular solution to the problem itself (a non-linear eigenvalue
problem, see Zeldovich and Raizer (1967)). A dimensional analysis does not allow
us to determine the self-similar function, and in particular, find to which powers the
dimensional parameters should be raised to produce a self-similarity dimensionless
variable. For incomplete self-similarity, the type of solution depends on the value of
the self-similar variable.
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If the constant coefficients in a self-similar function can be found from con-
servation laws, then the self-similar solution will be of the first kind (for example
energy conservation in J. I. Taylor’s blast wave (Barenblatt 2003)) and conservation
of the total angular momentum in an accretion disc (see further Sect. 1.6.6.3)).
Self-similar solutions of the first kind were found for accretion discs with a non-
linear viscous diffusion equation in the stage of evolution when the accretion rate
is decaying (Pringle 1974, 1991). Solutions of the second kind have also been
constructed (Lyubarskij and Shakura 1987). These solutions apply to an earlier
evolutionary stage, that is, the spreading of an original ring of matter into a disc
around the gravitating centre.

The form of the turbulence parameter νt is determined by the physical structure of
the disc, which is dependent on the astrophysical conditions. For an α-disc with two
variants of opacity (Kramers’ law and Thomson scattering), within the framework of
self-similar solutions of the first kind, it was found that the accretion rate declines
as ∝ t−19/16 and ∝ t−5/4, respectively (Pringle 1974; Filipov 1984; Lyubarskij
and Shakura 1987; Cannizzo et al. 1990; Pringle 1991). Lin and Pringle (1987)
considered a molecular disc with a gravitational instability generating an effective
viscosity νt ∝ Σ2 r9/2, and found that Ṁ ∝ t−6/5. Lin and Bodenheimer (1982)
studied the evolution of a protoplanetary disc under the influence of convective
turbulent viscosity (νt ∝ Σ2), for which Ṁ ∝ t−15/14. Ogilvie (1999) investigated
an advective accretion flow, the structure of which considerably differs from that of
a thin viscous disc, and, using similarity methods, found a solution in the case of
conserved total angular momentum.

The type of solution also depends on the boundary conditions. Pringle (1991)
in addition considered the general case of an infinite cold protostellar disc with
νt ∝ Σ3 and a central source of angular momentum. Such a formulation of the
problem corresponds to the evolution of a disc around a young binary system (see
also Ivanov et al. 1999). In Rafikov (2013), a detailed consideration of the evolution
of discs around binary black holes was presented, and self-similar solutions were
found with different conditions at the inner boundary, suggesting a certain mass
transfer through the inner boundary. Rafikov (2016) built self-similar solutions for
a ‘decretion’ disc (disc with mass ejection from the centre).

For a disc with a zero (or very small) viscous stress at the inner boundary and
with a limited outer radius, a solution was found by Lipunova and Shakura (2000).
According to them, Ṁ ∝ t−10/3 for Kramers opacity and Ṁ ∝ t−5/2 for Thomson
scattering (see Sect. 1.6.7 below).

If νt = ν0Σ
a rb, the kinematic viscosity coefficient is not constant in time

since the surface density varies. The relation F = 3π h νtΣ0 (cf. (1.122)) can be
presented in the following way:

F = 3π h ν0Σ
a+1
0 rb . (1.150)
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Then, for a Keplerian disc (h ≡ h∗), Eq. (1.123) takes the following form:

∂F

∂t
= D F

m

hn

∂2F

∂h2 , (1.151)

whereD is a dimensional constant,

D = a + 1

2
(GM)2

(
3

2

ν0

(2π)a (GM)b

)1/(a+1)

, (1.152)

and m and n are dimensionless constants,

m = a

a + 1
, n = 3a + 2 − 2b

a + 1
.

The values of the parametersD, m and n may be determined from the equations
of vertical structure. The parameter D in (1.151) can be seen as a sort of ‘diffusion
coefficient’. It may be found from the relation between Σ0, F and h (Filipov 1984;
Lyubarskij and Shakura 1987):

Σ0 = (GM)2 F 1−m

4π (1 −m)D h3−n . (1.153)

Comparing the equation of disc evolution in the linear and non-linear cases, (1.129)
and (1.151), we find thatD = 4 (l/κ)2 for m = 0.

The non-linear problem of non-stationary accretion has the following distinctive
features. Firstly, the self-similar solutions of the second kind exist only for m �=
0. Secondly, self-similar solutions of the first kind in the third stage, while they
exist for m = 0, have an exponential profile for r → ∞, characteristic for linear
problems (see for example Lynden-Bell and Pringle 1974). Form �= 0, the boundary
of the disc is fully determined.4

1.6.5.1 The α-Discs

Lyubarskij and Shakura (1987) give the equations of vertical structure in a form
similar to (1.99). The opacity is given as:

� = �0
ρς

T� .

4This property is similar to the one that arises in problems of thermal conductivity, when, due to
the non-linearity, the heatwave boundary sharply separates the heated zone from the rest of the
region (Zeldovich and Raizer 1967).
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Table 1.4 Dimensionless parameters in the equations of non-stationary accretion for different
forms of νt

m n a b ς � αpl

�T � �ff and (1.94) 2/5 6/5 2/3 1 0 0 −19/16

�ff � �T and (1.94) 3/10 4/5 3/7 15/14 1 7/2 −5/4

OPAL (Iglesias and Rogers
1996), full ionization of H and
He

1/3 1 1/2 1 1 5/2 −11/9

Convective turbulence (Lin and
Bodenheimer 1982)

2/3 8/3 2 0 – – −15/14

Molecular disc with
gravitational instability (Lin
and Pringle 1987)

2/3 −1/3 2 9/2 – – −6/5

The parameter αpl is the power-law index of the time-dependence during the stage of declining
accretion in an infinite disc: Ṁ ∝ tαpl

After a few algebraic manipulations of the equations in the right column
of (1.99), we may find the relation between Σ0, Wrϕ r2 and ω r2, which together
with (1.153) gives5:

D = 1

4(1 −m)(2π)m
{

26+ς+2�α8+ς+2�

Π
ς
1 Π

2ς
2 Π

8+ς+2�
3 Π2

4

(�
μ

)8+2�

×
(

9�0

8 a c

)2

(GM)12+8ς

} 1
10+3ς+2�

, (1.154)

where

ς = −11m− 2n− 2

7m− n− 1
, � = −1

2

37m− 4n− 10

7m− n− 1
(1.155)

or

m = 4 + 2ς

10 + 3ς + 2� , n = 12 + 11ς − 2�
10 + 3ς + 2� (1.156)

(see Table 1.4).
It is important to note that the ‘diffusion coefficient’D is only weakly dependent

on the opacity coefficient: as a power function of �0 with an index of 1/5 or 1/10.
This reduces the impact of the uncertainty due to the dependence of the real opacity
on the disc parameters. The combination of parametersΠ1,2,3,4 in (1.154) depends
only weakly on the optical depth τ , i.e. on the radius in the disc (see Tables 1.1

5Note that here F is a factor of 2π larger than in the paper by Lyubarskij and Shakura (1987), and
our quantityD is smaller by a factor of (2π)m.
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and 1.2). Thus, D may be considered a constant in the basic equation of non-
stationary accretion (1.151).

1.6.6 Evolution of α-Disc from a Ring of Matter

It turns out that the global evolution of the disc can in general be divided into three
stages: (1) the stage of formation of the disc from an initial ring made up of matter
at some radius, (2) the establishment of a quasi-stationary distribution of parameters
in the disc, and as a special case, increasing accretion rate onto the central body, and
(3) ‘spreading’ of the disc away from the centre, accompanied by a decrease of the
accretion rate.

The ring of matter around a star may be formed as a result of a mass-transfer from
the neighbouring component in a binary system. In the presence of effective mech-
anisms of viscosity, the differentially rotating ring starts to smear out into a disc.

At the first stage, material from the inner edge of the ring, losing angular
momentum to the outer layers, starts to move towards the centre. In the region
r � Rout, the flow evolves into some self-similar regime whose characteristics
are independent of the initial mass distribution profile. The inner edge of the disc,
which has the form of a stretched-out ‘tounge’, reaches the accreting centre in a
finite time (Fig. 1.14a). The self-similar solution breaks down close to the radius of
the innermost stable orbit around the black hole, or close to the magnetosphere of the
neutron star. Nevertheless, after some transition period, accretion again evolves into
another self-similar solution, the regime of quasi-stationary accretion (the second
stage).

At the second stage, a practically radially constant distribution is rapidly estab-
lished in the inner regions of the disc, by virtue of the small viscous time scales at
small radii. The region of the quasi-stationary solution gradually expands outwards
(Fig. 1.14b), while the accretion rate gradually increases in time. Meanwhile, in the
outer region, conditions remain close to the original.

Further, the disc gradually evolves into the third final stage (the decay stage,
Fig. 1.14c) at which the details of the initial distribution are ‘forgotten’, and only
some integral quantities conserved during the accretion are important in finding the
self-similar solution. This final stage is described by a self-similar solution of type
I, whereas the two preceding cases are described by self-similar solutions of type
II, i.e. solutions in which the self-similarity index is found not from dimensionality
arguments but in the process of integrating the ordinary differential equation for the
representative function (Lyubarskij and Shakura 1987).

Thus, each stage is characterized by the motions whose distinctive property is a
similarity that is conserved in the motion itself. This means that the distribution of
any quantity, for example, the viscous torque, may be represented in the form:

F(h, t) = hA1 tA2 f (ξ) , (1.157)
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Fig. 1.14 Illustration by Lyubarskij and Shakura (1987) of the process of evolution of non-
stationary disc accretion in the form of the dependence of viscous torques acting between adjacent
rings of the disc, as a function of the specific angular momentum: (a) stage of formation and
inward motion of self-similar ‘tounge’, (b) stage of formation of quasi-stationary regime, (c) stage
of accretion decay. Dashes denote the regions into which the material was ejected and in which the
solution is non self-similar. Each figure shows the distribution for three consecutive moments in
time t1, t2, t3. The calculated dependencies are shown in Figs. 1.16 and 1.17

where f is a function of a single self-similar variable ξ = C hA3 tA4 . For com-
pletely self-similar solutions, the parameters C and A1..4 may be determined from
dimensional arguments or from conservation laws. To determine the parameters for
non completely self-similar solutions, a non-linear problem should be solved; in
addition, the obtained parameters will depend on h and t .

1.6.6.1 ‘Tounge’-Formation Stage

Let us assume that the radius of the inner edge of the disc rin or the equivalent
value hin decreases as a power law hin ∝ (−t)γ (t = 0 when the centre is reached,
thus the minus sign). As seen from Eq. (1.151), the combination DFm t/hn+2 is
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dimensionless, which permits the solution to be represented as

F(h, t) = h(n+2)/m

(−D t)1/m y(ξ) ; 1 ≤ ξ = h

A (−t)γ ≤ ∞ , (1.158)

where y(ξ) is the representative function of the single self-similar variable ξ . It is
not possible for the dimensionless variable ξ to be a combination of h, t and D,
so we have to introduce the additional constant A of dimensionality [cm2s−(1+γ )],
where the previously unknown exponent γ must be determined in the course of
solving the problem. We thereby arrive at a self-similar problem of the second kind,
similar to the problem of a converging shock wave (Zeldovich and Raizer 1967;
Barenblatt 1996).

Substituting (1.158) into (1.151), we obtain an ordinary differential second-order
equation for the representative

ym
[
ξ2y ′′ + 2(n+ 2)

m
ξy ′ + (n+ 2)(n+ 2 −m)

m2 y
]− γ ξy ′ − y

m
= 0

which can be characterised as an equation for a non-linear oscillator with dissipation
(if γ is positive).

The boundary conditions are determined in the following manner. It is evident
that the accretion rate through the inner edge of the ring can be considered to equal
zero. Thus, at the inner boundary hin (corresponding to ξ = 1), both the function
F(hin, t) and its derivative ∂F (hin, t)/∂h must vanish (cf. (1.125)). Otherwise, a δ-
source (sink) appears with the substitution into Eq. (1.151). Consequently, we have
two conditions:

y(1) = y ′(1) = 0 .

Another condition follows from the requirement that all physical quantities remain
finite at time t = 0 (when the ‘tounge’ reaches the accreting centre), at any finite
radius. It follows from (1.158) that F(h, t) does not diverge as t → 0 and h �= 0
only if

y(ξ = ∞) = 0 .

Thus, the solution of the second-order equation must satisfy three conditions, which
is possible only for a specific value of γ .

Let us investigate qualitatively the equation for the representative function.
For this we turn to the variable x = ln ξ+C (substituting C will not affect the
resulting system of Eq. (1.159), but is important for adjustment of the solutions).
The derivative with respect to x will be denoted by a dot. We write the resulting
system of two equations of the first order:

ẏ = p ,

ṗ = y1−m

m
+ γy−mp − (n+ 2)(n+ 2 −m)

m2
y − 2n+ 4 −m

m
p . (1.159)



1 The Standard Model of Disc Accretion 73

We are interested in the solution which leaves the origin of the plane (p, y) at ξ =
1 and returns there at ξ = ∞. For y � 1 and p � 1, the system (1.159) has
asymptotic solutions of the form

p = γ

1 −my
1−m ; y =

( γ m

1 −m ln ξ
)1/m

, (1.160)

p = − y

γ m
; y = ξ− 1

γ m . (1.161)

The functions (1.160) give asymptotics when ξ → 1 and (1.161) when ξ → ∞,
respectively. The phase trajectories of the solutions to the equations are shown in
Fig. 1.15 for four values of γ .

Each point for which ẏ = 0 and ṗ = 0 is a singular point. There is a stable focus
in the phase plane with coordinates

p = 0 , y0 =
[ m

(n+ 2)(n+ 2 −m)
]1/m

.

For a certain γcr, there exists a closed solution (Fig. 1.15b). Numerical investigation
shows that for m = 2/5, n = 6/5 (the case �T � �ff), the sought after value is
γcr ≈ 0.595, and for m = 3/10, n = 4/5 (�ff � �T), it is γcr ≈ 0.696. The
phase trajectories are rearranged for some γ+ and the stability of the focus changes
(Fig. 1.15d).

Thus, the inner boundary of the disc moves towards the centre according to
the law: hin = A(−t)γcr (see Figs. 1.16 and 1.17). As follows from (1.161), the
asymptotic solution of the initial equation (1.151) for ξ → ∞ (i.e. for t → 0, when
the ‘tongue’ reaches the accreting centre), has the form

F = h
n+2
m

(−Dt) 1
m

[A(−t)γ
h

] 1
γ m = A

1
γcr m h

n+2
m − 1

γcr m

D1/m . (1.162)

We note that for large h, the profile F(h, t) does not change with time during the
‘tongue’ formation stage. By ‘sewing’ the obtained self-similar solution and the
initial profile F0(h) near the radius where the material was ejected at time (−t0),
we may also determine the constant A. Within a dimensionless factor, we have
from (1.162)

A = Fγcrm

0 Dγcr/h
γcr(n+2)−1
0 ,

where h0 = √
GM r0 is determined by the initial radius of the ring r0.
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Fig. 1.15 Phase portrait of the system of Eq. (1.165) for different values γ . The arrows indicate
the direction of change in ξ from 1 to ∞ (x from C to ∞). (a) For γ < γcr the solution inside
the separatrix, shown by the bold curve, reaches the stationary point (focus) on the horizontal axis
(0, y0). (b) A closed solution is found for γ = γcr and coincides with the separatrix. The separatrix
at the same time forms a limit cycle of solutions in the region bounded by it, for x → −∞. (c) For
γcr < γ < γ+, the separatrix (bold curve) is gradually compressed. (d) For γ = γ+ it is moving
towards the point (0, y0)

1.6.6.2 Quasi-Stationary Stage with Increasing Accretion

We seek a solution to (1.151) in the form:

F = h
n+2
m

(D t)1/m
y(ξ) , 0 ≤ ξ = h

A tβ
≤ ∞. (1.163)
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Fig. 1.16 Calculated profile F(h) in the Lyubarski–Shakura solution at three stages of self-similar
evolution: (a) formation of the ‘tongue’, t2/t1 = 1/4 (t is negative and approaches zero); (b) quasi-
stationary accretion, t2/t1 = 3 (t is now positive); (c) accretion decay, t2/t1 = 2. The quantities F
and h are normalised to arbitrary values. The dotted lines in the two upper panels give the symbolic
dependence of F(h) for regions where the (unknown) solution is non self-similar. The calculation
is performed for opacity parameters m = 2/5, n = 6/5

The time t is now positive. Substituting (1.163) into (1.151), we obtain the equation
for the representative function:

ym
[
ξ2y ′′ + 2(n+ 2)

m
ξy ′ + (n+ 2)(n+ 2 −m)

m2
y
]+ βξy ′ + y

m
= 0 (1.164)

or a system of two equations

ẏ = p ;

ṗ = −y
1−m

m
− β y−m p − (n+ 2) (n+ 2 −m)

m2 y − 2n+ 4 −m
m

p (1.165)
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Fig. 1.17 Calculated profiles F(h) in the Lyubarski–Shakura solution at the stages of ‘tongue’
formation (solid line) and quasi-stationary accretion (dashed line). At the first stage, we see the
movement of the inner edge of the ‘tongue’ towards the centre. In the second stage, we can see
how the zone of quasi-stationary accretion expands with time (F ∝ h). The accretion rate increases
with time from the lowest curve to the top. The quantities F and h are normalised to characteristic
values

As ξ → ∞, the asymptotic solution of this system has the form

p = − y

β m
; y = ξ− 1

βm ; (1.166)

we notice that the main contribution comes from the two last terms of (1.164). Hence
it follows that only if β = γcr, the distribution F(h, t) is the same as that at the
preceding stage (1.162). Thus, the self-similarity index remains as before. For ξ →
0 (at very large times t or at the accreting centre), there are two asymptotic solutions.
(Now the main contribution comes from the terms in square brackets in (1.164)).

p = −n+ 2

m
y ; y = ξ− n+2

m , (1.167)

p = −n+ 2 −m
m

y ; y = ξ− n+2−m
m . (1.168)

The first corresponds to (∂F/∂h)h→0 = 0, i.e. the solution without a material
sink (Ṁh→0 → 0), while the second corresponds to an accretion rate, radially
constant at small h. Near the gravitating centre, the accretion rate depends on time
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according to

|Ṁ| =
∣∣∣∂F
∂h

∣∣∣
h→0

≈ (Atβ)
n+2−m
m

(Dt)1/m
= A

n+2−m
m t

γcr(n+2−m)−1
m

D1/m
. (1.169)

It is this solution with a material sink that describes the second accretion stage in
our case (see Fig. 1.16b). We have |Ṁ| ∝ t1.67 for �T � �ff while the accretion rate
increases as |Ṁ| ∝ t2.47 for �ff � �T.

If we introduce the notation

Ṁ0 = F0

h0
, τ = hn+2

0

Fm0 D
or τ = hn+2−m

0

Ṁm
0 D

,

the accretion rate Ṁ(t) onto the gravitating centre during the quasi-stationary stage
can be expressed in terms of the accretion rate Ṁ0, determined by the initial value of
the viscous torque F0 acting on the ring of matter with specific angular momentum
h0:

Ṁ = Ṁ0

( t
τ

) γcr(n+2−m)−1
m

at t > τ .

1.6.6.3 Accretion Decay Stage: Spreading of the Disc

We again seek a solution to (1.151) in the form (1.163), but now the variable ξ varies
within the limits 0 ≤ ξ ≤ 1 (ξ = 1 corresponds to the outer radius of the disc rout
or the specific angular momentum hout = √

GMrout(t)). Thus, the solution for this
stage is described, as before, by (1.164) or the equivalent system (1.165) with the
boundary conditions y(0) = y(1) = y ′(1) = 0. The value of the self-similar index
β is now found from the law of conservation of the total angular momentum of the
material in the disc. Indeed, if the ring was initially located at a radius r0, much
greater than the radius of the innermost stable orbit, then the quantity

K = 2π

rout∫
0

Σ h r dr = const . (1.170)

is conserved during the accretion process. Substituting (1.163) into (1.170), with the
use of the relationship (1.153) betweenΣ0 and F , we obtain

K = 1

(1 −m)D
hout∫
0

F 1−m hn+1dh = A
n+2
m t

β(n+2)
m

(1 −m)D1/m t
1−m
m

1∫
0

y1−m(ξ) ξ
n+2−m
m dξ .

(1.171)
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From the condition ∂K/∂t = 0, we obtain β = (1 − m)/(n + 2). Moreover,
the expression (1.171) gives the exact relation for the constant A. For this β, the
required solution to the equation for the representative function (1.164) can be
found in explicit form. The method for solution of the non-linear ordinary second
order differential equation (1.164), or the equivalent system of first order (1.165), is
analogous to the solution of similar equations arising in heat propagation problems
with temperature dependent thermal conductivity (Zeldovich and Kompaneets
1950). Since Eqs. (1.165) contain the variable x only as a differential, the order
is lowered by introducing p(y) = dy/dx as a new unknown function of the
variable y

ym
[
p

dp

dy
+ 2n+ 4 −m

m
p + (n+ 2)(n+ 2 −m)

m2 y
]
+ β p + y

m
= 0 .

It is then convenient to introduce function Z(y) = p(y)+ y (n+ 2 −m)/m:

ym
[(
Z − n+ 2 −m

m
y
)dZ

dy
+ n+ 2

m
Z
]
+ β

(
Z − n+ 2 −m

m
y
)
+ y

m
= 0 .

We seek a solution of the form Z(y) = B y1−m. Collecting the coefficients of
powers of y1−m in the last equation, we obtain B = −β/(1−m). After substitution

of Z(y) = − β

1 −m y
1−m, the equation becomes a linear algebraic equation with

respect to y. The left part of the equation vanishes for β = (1−m)/(n+ 2). On the
other hand, the equality of β to this value is a necessary condition for the existence
of a self-similar solution at the stage of accretion decay (which follows from the
condition ∂K/∂t = 0). Thus,

p = − y
1−m

n+ 2
− n+ 2 −m

m
y

is a particular solution satisfying the boundary condition p(y = 0) = dy

dx

∣∣∣
x=0

= 0.

Integrating this expression is elementary, and with the boundary condition y(ξ =
1) = 0, the solution can be written as

y(ξ) =
[

m

(n+ 2) (n+ 2 −m)
]1/m( 1

ξn+2−m − 1

)1/m

. (1.172)

This solution implies that the integral on the right-hand side of (1.171), which is an

Euler integral of the first kind, is reduced to the beta-function B
(n+ 3 −m
n+ 2 −m,

1

m

)
with some coefficient, and the solution of the key equation (1.151) at the decay stage
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finally takes the form:

F = A
n+2
m

D1/m

[
m

(n+ 2)(n+ 2 −m)
]1/m

ξ (1 − ξn+2−m)1/m

t
=

= K m(1 −m)
(n+ 2) B

(
n+3−m
n+2−m,

1
m

) ξ (1 − ξn+2−m)1/m

t
.

The accretion rate decays according to:

Ṁ =
∣∣∣∂F
∂h

∣∣∣
h→0

= A
n+2−m
m

D1/m

[
m

(n+ 2)(n+ 2 −m)
]1/m

t−
n+3−m
n+2 .

The exponent in the time dependence of Ṁ(t) can also be expressed through the
exponents a and b, appearing in the expression νt ∝ Σa rb; it equals then 1 +
1/(5 a − 2 b+ 4). For �T � �ff we have Ṁ ∝ t−19/16 and Ṁ ∝ t−5/4 for �ff � �T.

At both the quasi-stationary stage and the decay stage, the total energy release in
the disc is determined primarily by the release of gravitational energy in the inner
regions of the disc. The disc luminosity is equal to ηaccr Ṁin c

2, where ηaccr is the
efficiency of energy release. During the ‘tongue’ stage, the energy release depends
largely on the initial distribution F(h) since the heat flux from a unit area of the disc
surface ∝ F/h7 (cf. (1.75)).

The presented solutions describe processes in real accretion discs to some
approximation. The assumption of constant opacity (or constant coefficients m and
n) does not hold for the entire disc throughout its full evolution. To completely take
into account changes in opacity, numerical calculations are required using tabulated
values of the opacity coefficients as functions of temperature and density. On the
other hand, the opacity coefficient has little effect on the presented solution, as it
appears in D as a factor raised to a very small power. It should be noted that the
opacity changes particularly strongly in regions with a variable degree of ionization.

1.6.7 Solution for α-Disc in a Binary System

As we have seen, the viscous evolution of a ring of matter eventually enters a stage of
unconstrained spreading, when parts of the matter in the disc acquire a high angular
momentum and reaches further and further from the centre. In binary systems, such
spreading of the disc cannot continue indefinitely due to the gravitational effects of
the companion star. Tidal forces from the companion star force the disc to be limited
to within a certain radius from the centre inside the Roche lobe.

Lipunova and Shakura (2000) found a solution describing the evolution of an
α-disc in a binary system. The obtained solution was used to model the optical and
X-ray lightcurves of the X-ray novae A 0620-00 and GU Mus 1124-68 during the
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decline after the peak of their outbursts. As a result, new constrains on the turbulence
parameter α were found (Lipunova and Shakura 2002; Suleimanov et al. 2008).

The angular momentum in the region of the outer radius is transferred from the
matter in the disc into orbital motion of the binary system. Papaloizou and Pringle
(1977) showed that the tidal truncation radius is on average ∼ 0.9 times that of the
Roche lobe. This radius is close to that of the last non-intersecting periodic orbit
calculated for a three-body problem (Paczynski 1977). Numerical calculations have
shown that the tidal stress tensor is important only in a rather narrow ring close
to the outer radius. Significant perturbations in this region lead to the formation of
strong spiral shock waves (Pringle 1991; Ichikawa and Osaki 1994; Hameury and
Lasota 2005).

Since the outflow of angular momentum takes place in a narrow region close
to the tidal truncation radius, we may choose not to examine this region in detail,
considering it simply a δ-type channel. The function F grows as r1/2 at radii much
smaller than the tidal truncation radius. There, the stationary disc behaves according
to the standard model, not ‘noticing’ the outer boundary conditions, and the
dependence of the viscous torque on the radius is described by expression (1.124).

We also assume in the framework of the mathematical problem that the outer
radius of the disc does not change, and that the rate of inflow of matter to the outer
disc is negligible. The assumption that the outer radius remains unchanged is valid
for transient activity phenomena during outbursts in some types of close binary
systems. Numerical calculations, in which long-term evolution of non-stationary
discs in binary systems (X-ray and dwarf novae) is modelled (DIM, Disc Instability
Models), take into account the variability of the outer radius of the disc (Lasota
2001). During powerful flares in X-ray novae, when the brightness of the source
may increase with up to a million times, the accretion rate inside the disc may be
considered to be much higher than the rate of inflow of matter from the companion
star. This corresponds to the vanishing of the derivative F(h, t) with respect to h at
the outer radius.

A solution to the basic equation of non-stationary accretion (1.151) for a disc
with a constant outer radius can be found using the method of separation of
variables:

F(h, t) = F(t)× fF (h/h0) . (1.173)

The quantity h0 = (GM rout)
1/2 equals the specific angular momentum at the outer

edge of the disc. The above mentioned properties of the viscous torque lead to the
following conditions at the outer radius:

fF (1) = 1, f ′
F (1) = 0 , (1.174)

the first of which is normalising, and the other expresses the fact that the viscous
torque has a maximum at the immediate vicinity of the disc outer radius (Fig. 1.18).
This is equivalent to the condition of zero accretion rate at rout. It can also be
said that the radial component of the velocity in the disc is zero at rout. A similar
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Fig. 1.18 Moment of viscous
forces F as a function of the
specific angular momentum h
in an accretion disc in a
binary system at two
moments in time. Time t2 is
later than t1. The accretion
rate declines with time

approach was used, for example, by Pringle (1991) in a study of a disc surrounding a
binary system. At the inner edge of such a disc, the angular momentum is transferred
from the binary system into the disc, and the stars gradually move closer to each
other.

Thus, tidal interactions determine the specific boundary conditions at the outer
edge of the disc, thereby not changing the form of the equation that we solve (1.123)
or (1.151).

Naturally, in reality the inner edge of the disc rin �= 0. In many situations,
however, rin/rout � 1.

Using h ≡ hK, we obtain from (1.125):

Ṁ(h, t) = f ′
F (h/h0)F (t)/h0 . (1.175)

Substituting the product of the functions into the equation for non-stationary
accretion (1.151), we obtain the time-dependent part of the solution, which gives
the following asymptotic for the disc evolution after the peak of the outburst:

F(t) =
(

hn+2
0

λmD (t + t0)

)1/m

. (1.176)

Here, D is a dimensional constant (1.154) that may be obtained by solving the
equations of vertical structure, λ is a separation constant, which may be found from
the boundary conditions imposed on fF (h/ho), and t0 is the integration constant in
units of time.

The law of accretion rate change is written as:

Ṁ(t) = Ṁ(0) (1 + t/t0)−1/m , (1.177)

where Ṁ(0) is the accretion rate at a certain moment in time t = 0, which can be
chosen as any time at the stage of declining accretion. Then, parameter t0 of the
solution is

t0 = hn+2
0

λmDFm(0)
,
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where F(0) is the value of F(h, t = 0) at the outer radius rout. Substituting
expression (1.152) for D and taking into account that Fout = 3π h0 νoutΣ0, we
get:

t0 = 4

3λ a

r2
out

νout(t = 0)
, (1.178)

where a is the power of Σ in the relation νt ∝ Σa rb.
After a separation of variables in the basic equation, we obtain a non-linear

equation for fF (ξ). It constitutes a particular case of the general Emden-Fowler
equation (Zaitsev and Polyanin 2012)

d2fF

dξ2
= −λξnf 1−m

F , (1.179)

the solution to which we seek as a polynomial

fF (ξ) = a0ξ + a1ξ
k + a2ξ

l + . . . . (1.180)

Substituting fF (ξ) with the polynome into (1.179), we obtain for the second and
the third term:

k = 3 + n−m, a1 = −λa1−m
0

k(k − 1)
,

l = 2k − 1, a2 = −λa−m0 a1

l(l − 1)
(1 −m) .

(1.181)

Table 1.5 gives the values for the constants a0 and λ, derived from the
boundary conditions (1.174) on fF (ξ) in the opacity regimes of pure scattering
and pure absorption as well as for an approximation based on the OPAL numerical
calculations of opacity (Iglesias and Rogers 1996). The corresponding functions fF
are shown in Fig. 1.19. The OPAL case turns out to be effectively somewhere in the
middle.

Table 1.5 Parameters of the analytical solution, presented by (1.176), (1.177), and (1.180), for
the truncated α-disc decay

m n λ a0 a1 a2 k l

�T � �ff 2/5 6/5 3.482 1.376 −0.396 0.019 3.8 6.6

�ff � �T 3/10 4/5 3.137 1.430 −0.460 0.030 3.5 6.0

OPAL 1/3 1 3.319 1.400 −0.425 0.025 11/3 19/3
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Fig. 1.19 The solution fF (ξ) for two cases: �ff � �T (solid line) and �T � �ff (dashes). The
plot also shows the function f (r), calculated using (1.102), that is included in the expression for
calculating radial dependencies of physical parameters (Sect. 1.5.3). The accretion rate practically
does not change with radius in the region, where f ≈ 1. The variable ξ = h/ho, where ho is the
specific angular momentum at the outer radius

The value a0, included in the expression for the accretion rate

Ṁin = Fmax

hmax
a0 ,

can also be calculated for the self-similar solution by Lyubarski & Shakura during
the concluding stage of disc decay (Sect. 1.6.6.3). Omitting the details, we only
mention that in an unconstrained disc, hmax likewise corresponds to the maximum
torque Fmax. It is remarkable that the values of a0 differ only by 2% between a
constrained and an unconstrained disc. This means that the profileF(h),in the region
of the disc whereF(h) increases, is practically independent of the conditions outside
this region.

1.6.7.1 Radial Dependencies for a Non-stationary Disc in a Binary System

Let us find the expressions for the evolution of physical parameters in the disc, using
Eqs. (1.99), (1.153), (1.154), and (1.176).

Note that the relations (1.104) and (1.110) contain another function, f (r)without
an index. Function f (r) is determined by relation (1.102). In the case of a stationary
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disc, we have fF = ξ f . In the case of a disc with a radially variable accretion rate,
for example a non-stationary disc, fF = a0 ξ f (r) (see Fig. 1.19).

Below, we derive expressions for the diffusion parameterD, surface densityΣo,
temperature in the central disc plane Tc, relative half-thickness z0/r , and optical
depth τ . We use for the mass of the compact objectmx =M/M�. The valuesΠ1..4
should be chosen according to the appropriate opacity regime. The parameter t0
depends on the accretion rate at t = 0:

t0 = hn+2−m
0 am0

λmD Ṁm
in (t = 0)

. (1.182)

It is important to remember that t0 depends on the type of opacity.

Scattering-Dominated Opacity Regime (�T � �ff)

Substituting the numerical values of the constants into (1.154), we obtain:

D [cm28/5/g2/5/s17/5] = 1.40 × 1038 α4/5m
6/5
x

( μ
0.5

)−4/5
Π−1
Σ �

1/5
T ,

(1.183)

with the help of which we re-write (1.182):

t0 [days] = 24.12 α−4/5
(
rout

R�

)7/5 (
Ṁin(t = 0)

1018g/s

)−2/5

m
1/5
x

( μ
0.5

)4/5
ΠΣ �

−1/5
T ,

(1.184)

where (1.95) determines �T. Substituting the combination Min t
1/m
0 from (1.184)

into the expression for the declining accretion rate Ṁ(t) = Ṁ(0) (1 + t/t0)−1/m,
and further the accretion rate and the function f (r) = fF /(a0

√
r/rout) into the

radial dependencies (1.104) in zone B, we obtain the radial dependencies of the
physical parameters in a non-stationary α-disc:

Σ0 [g/cm2] = 2.2 × 102 α−2m
1/2
x

(
t + t0
10d

)−3/2 (
rout

R�

)3/2 (
r

rout

)−9/10

f
3/5
F ×

(1.185)

×
( μ

0.5

)2
�
−1/2
T ΠΣ

5/2 ,

Tc [K] = 1.8 × 104 α−1m
1/2
x

(
t + t0
10d

)−1 (
rout

R�

)1/2 (
r

rout

)−11/10

f
2/5
F

μ

0.5
Π3 ,

(1.186)

z0

r
= 0.04 α−1/2m

−1/4
x

(
t + t0
10d

)−1/2 (
rout

R�

)3/4 (
r

rout

)−1/20

f
1/5
F (Π1Π3)

1/2 ,

(1.187)
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The dimensionless constants ΠΣ , Π1..4 were introduced in Sect. 1.5.2 where we
considered the vertical structure of the α-disc. Their interrelations are determined
by expression (1.105), in particularΠ3 = ΠT ΠΣ and (Π1Π3)

1/2 = Πz Π1/2
Σ , and

their values can be found in Table 1.1 and in Fig. 1.8. The effective optical depth of
the disc can be estimated with the help of τ ∗:

τ ∗ =
(
�0,T �0,ff ρc

T
7/2

c

)1/2

Σ0 = 1.5 × 102 α−1
(
t + t0
10d

)−1/4 (
rout

R�

)1/2

×

×
(
r

rout

)1/10

f
1/10
F

( μ
0.5

)5/4
�
−1/4
T

( �0,ff

1022

)1/2
(
Π4

3 Π
3
4

Π1Π
2
2

)1/4

,

where the units of �0,ff are [cm2K7/2/g2].

Absorption-Dominated Opacity Regime (�ff � �T)

This regime is established at lower temperatures and densities. In a similar fashion,
we obtain:

D [cm5/g3/10/s16/5] = 2.41 × 1034α4/5mx

( μ
0.5

)−3/4
Π−1
Σ

( �0,ff

1022

)1/10
,

(1.188)

t0 [days] = 36.41 α−4/5
(
rout

R�

)5/4 (
Ṁin(t = 0)

1018g/s

)−3/10

m
1/4
x × (1.189)

×
( μ

0.5

)3/4
ΠΣ

( �0,ff

1022

)−1/10
.

The value �0,ff [cm2 K7/2/g2] can be taken from (1.97) or (1.96).

Σ0 [g/cm2] = 9.9 × 102 α−8/3m
5/6
x

(
t + t0
10d

)−7/3 (
rout

R�

)13/6 (
r

rout

)−11/10

×
(1.190)

×f 7/10
F

( μ
0.5

)5/2 ( �0,ff

1022

)−1/3
Π

10/3
Σ ,

Tc [K] = 3.1 × 104α−1m
1/2
x

(
t + t0
10d

)−1 (
rout

R�

)1/2 (
r

rout

)−9/10

f
3/10
F

( μ
0.5

)
Π3 ,

(1.191)

z0

r
= 0.05 α−1/2m

−1/4
x

(
t + t0
10d

)−1/2 (
rout

R�

)3/4 (
r

rout

)1/20

f
3/20
F (Π1Π3)

1/2 .

(1.192)
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The dimensionless coefficients ΠΣ , Π1..4 were introduced in Sect. 1.5.2, when we
considered the vertical structure of the α-disc. Their values can be found in Table 1.2
and Fig. 1.8. We recall that the surface densityΣo is calculated between the bottom
and the top surface of the disc. The full optical depth (for which (1.112) applies in
the stationary case) is equal to:

τ = �0,ff ρc T
−7/2

c Σ0 = 2.4 × 102 α−4/3m
1/6
x

(
t + t0
10d

)−2/3 (
rout

R�

)5/6

×
(1.193)

×
(
r

rout

)−1/10

f
1/5
F

( μ
0.5

)3/2 ( �0,ff

1022

)1/3
(
Π4

3 Π
2
4

Π
1/2
1 Π2

)1/3

.

Luminosity Dependence in an α-Disc with a Constant Outer Radius

In order to calculate the bolometric luminosity of the disc, we assume a quasi-
stationary accretion rate Ṁ(t) = Ṁ(0, t) (1.175), since the main part of the energy
is released at distances from the centre r � rout. The quasi-stationarity is provided
by the fact that the characteristic time scale for evolution (viscous time scale) at
small radii is much smaller than that at large radii. Figure 1.19 illustrates this
behaviour by the fact that the function f (r) becomes approximately constant close
to the disc centre.

Substituting t0 into (1.177), we obtain for the luminosity L = ηaccr Ṁ(t) c
2,

where ηaccr is the efficiency of accretion:

LT(t) [erg/s] = 8.1 × 1038 α−2m
1/2
x

(
t + t0
10d

)−5/2 (
rout

R�

)7/2 ( η
0.1

)
×
(1.194)

×
( μ

0.5

)2
�
−1/2
T Π

5/2
Σ ,

if Thomson scattering dominates in the outer parts of the disc, and

Lff(t) [erg/s] = 6.7 × 1039 α−8/3m
5/6
x

(
t + t0
10d

)−10/3 (
rout

R�

)25/6 ( η
0.1

)
×

(1.195)

×
( μ

0.5

)5/2 ( �0,ff

1022

)−1/3
Π

10/3
Σ ,

if Kramer’s opacity dominates. The quantities t0 differ between expressions (1.194)
and (1.195) and are determined using formulae (1.184) and (1.189), respectively.

Note that the quantities t0(T) and t0(ff) in the two regimes are not independent
of each other. In a physically consistent model with a transition between the opacity
regimes, it is necessary to find an intersection between the two solutions. This may
be done by equating the torques F and the surface densities Σ0 in the two regimes
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Fig. 1.20 Bolometric disc luminosity LT and Lff for the parameters mx = 3, α = 0.3, μ = 0.5,
rout = R�. The dashed line shows the scattering dominated opacity regime and the solid line shows
the absorption dominated regime. The transition from the solution in the scattering regime to the
solution in the absorption regime is marked with a cross. The second intersection of the curves is
marked with a bar

at radius r = 0.5 rout. These two conditions specify the intersection time itself and
the difference between times t0 in the two regimes. The value of t0 in one of the
regimes is a free parameter, and can be chosen so that t = 0 corresponds to a certain
accretion rate.

Figure 1.20 shows the bolometric lightcurves for the parameters α = 0.3, mx =
3 and �0,ff = 6.45 × 1022 cm5 K7/2/g2 and �T = 0.4 cm2/g in the two opacity
regimes. Typical values forΠ1,2,3,4 are used. The normalised time in the absorption
regime (1.189) t0(ff) ≈ 107 days is obtained from the condition that the accretion
rate is Ṁ = 1018 g/s at t = 0. Equality between F and Σ in the two different
regimes occurs at radius r/rout = 0.5 when

t + t0(ff) = ttr ≈ 48d(mx/3)2/5 (α/0.3)−4/5 (μ/0.5)3/5 (rout/R�)4/5 .

The normalised time in the scattering regime can be uniquely determined: t0(T) ≈
90 days. The intersection of the lightcurves at time t = ttr − t0(ff) ≈ −59d is
marked with a cross in Fig. 1.20. We can see that there is a smooth transition between
the solutions in the two regimes at this time. There is another intersection of the
lightcurves at t ≈ −3d, which represent a second point where the two functions
FT(ξ, t + t0(T)) = Fff(ξ, t + t0(ff)) take on equal values. This intersection exists
only in a mathematical sense. The physical conditions in the disc at this moment are
such that absorption dominates the opacity, and the values of the physical parameters
in the disc, calculated according to (1.183)–(1.193), differ.

Let us not forget that we are working within the framework of the model
for a geometrically thin disc with sub-critical accretion. Therefore, the solution
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considered is applicable only for luminosity below the Eddington value LEdd ≈
1.4× 1038mx erg/s. Figure 1.20 shows that the evolution of the disc with L < LEdd
proceeds almost entirely in the absorption-dominated opacity regime.

When the temperature in the equatorial disc plane Tc drops at large radii down
to a value of ∼ 3 × 104 K, the opacity increases strongly due to the onset of
recombination in the plasma. The coefficientD significantly changes, and the given
solution is no longer applicable. As the mechanism of heat transfer to the surface
changes, the vertical structure of the disc readjusts on the characteristic thermal time
scale, and conditions arise for the onset of convection. This happens at t ≈ 80d for
the disc parametersmx = 3 and α = 0.3 (Fig. 1.20).

Figure 1.21 shows the bolometric lightcurve together with the lightcurves in two
X-ray bands from a disc perpendicular to the line of sight at a distance of 1 kpc.
The vertical line shows the moment in time after which the bolometric luminosity
of the disc becomes lower than LEdd. The shape of the lightcurves describes well
the exponential decay of the luminosity observed in outbursts of X-ray novae.

Suleimanov et al. (2008) modelled two outbursts of X-ray novae and compared
them with observed lightcurves in the X-ray and optical bands (Fig. 1.22). The
model included the illumination of the outer parts of the disc by the X-ray flux and
its conversion to optical emission. The model also included the effect of distortion
of the photon trajectories in the Kerr metric around the black hole (see Fig. 1.23) as
well as the presence of an extended disc atmosphere, capable of scattering the X-
ray emission at altitudes higher than the hydrodynamic thickness of the disc. As a
result, limits on the parameters of discs and binary systems were found. If we know
dynamical parameters of binaries from observations (their periods and companion

Fig. 1.21 Luminosity of the disc observed from a distance of 1 kpc, for parameters mx = 3,
α = 0.3, μ = 0.5, and rout = R�. The bolometric lightcurve (top) is shown together with the
lightcurves in two X-ray bands, 1–20 keV and 3–6 keV
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Fig. 1.22 Modelling of outbursts in X-ray novae A 06020-00 (1975) and GU Mus 1124-68 (1991)
from Suleimanov et al. (2008). The parameters of the models are shown in the figure. In addition
to the notations introduced in the text, we have the following parameters: the dimensionless Kerr
parameter a of the black hole, the factor η of conversion of X-rays into optical emission, and the
height of the scattering atmosphere z(r)

masses), we may find an interval of possible values for the turbulence parameter
α. Figure 1.22 shows an example of the modelled lightcurves together with the
corresponding parameters of the model.

1.7 Numerical Modelling of Non-stationary Disc Accretion

A numerical scheme, which is described in this section, is implemented in the
FREDDI6 code. FREDDI is intended for modelling the lightcurves of X-ray novae
with fast rise and exponential decay (Lipunova and Malanchev 2017). With the help
of FREDDI it is possible to describe the time-dependence of the accretion rate onto
the black hole Ṁ(t) and to obtain lightcurves in various energy bands.

6http://xray.sai.msu.ru/~malanchev/freddi/.

http://xray.sai.msu.ru/~malanchev/freddi/
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Fig. 1.23 Angular distribution Ψ (θ) of the intensity from a standard accretion disc around a
Kerr black hole, integrated over 1.5–6 keV (from Suleimanov et al. 2008). The angle θ is the
angle between the normal to the disc plane and the line of sight. Tmax is the maximum effective
temperature of the disc. The values of the dimensionless Kerr parameter a are indicated for
the curves. The dotted line shows the angular distribution for a thin disc in the Newtonian
approximation: Ψ (θ) = 2 cos(θ). The observed flux can be found as F = LΨ (θ)/(4πd)2, where
L is the bolometric luminosity, d is the distance to the disc. The function Ψ (θ) is calculated using
the code of Speith et al. (1995). The effects of limb-darkening are ignored here but are illustrated
in Figure 9 in Suleimanov et al. (2007)

1.7.1 Solution to the Equations of Viscous Evolution

Let us examine the equation of viscous evolution of an accretion disc (1.123)
obtained earlier in this chapter:

∂Σ0(hK, t)

∂t
= 1

4π

(GM)2

h3
K

∂

∂hK

([
∂h

∂hK

]−1
∂F (hK, t)

∂hK

)
, (1.196)

where t is the time, h(r) = ω(r) r is the specific angular momentum in the disc,
hK = √

GMr is the Keplerian angular momentum, and Σ0(h, t) is the surface
density of the disc and F(h, t) the viscous torque, acting on a layer of the disc.

We will consider the case of Keplerian rotation, when hK = h. Rotation in a
relativistic potential will complicate the computations and place restrictions on the
choice of nodes for the radial coordinate h. For a Schwarzschild potential, in the
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innermost regions of the disc, each following node must be located not further than
twice as far from the centre as the previous one.

For a full set-up of the problem of viscous disc evolution, we need to give
initial and boundary conditions. In the case of accretion onto a black hole, the
boundary condition at the inner disc radius Rin, corresponding to the innermost
stable orbit (3.22), is given as the viscous torque F being equal to zero. If the
accretion disc is limited by the magnetosphere of a neutron star or a young star,
the inner boundary condition on the value of F is set by the conditions at the
magnetospheric boundary. Thus, for a number of cases the inner boundary condition
of the problem is a first (Dirichlet) type condition.

The type of outer boundary condition also depends on the astrophysical situation.
In a binary system we may assume that angular momentum is removed only by tidal
forces from the outer edge of the disc, corresponding to hout. Then, together with the
assumption that matter flows into the accretion disc only through its outer boundary,
we obtain a boundary condition of the second (Neumann) type: ∂F/∂h = Ṁout(t).
In the more general case, if we take into account the radial distribution of tidal
forces, removal of angular momentum from the disc surface through disc winds,
capture of matter at a wide range of radii in the disc, etc., it becomes necessary
to include additional terms in the original equation (1.196). If we consider the
evolution of an infinite disc, for example a protoplanetary disc or a disc around
a supermassive black hole in an active galactic nucleus, then from a mathematical
point of view, a boundary condition at infinity is equivalent to the value and the
derivative of the torque being equal to zero. However, from the point of view
of numerical modelling, we cannot operate with infinite quantities of the specific
angular momentum h. We may solve this problem in two ways. Firstly, we may limit
the region of study to some value hout, to which, during the studied time-interval,
no significant amount of matter will be able to reach, and there establish a boundary
condition of the torque F being equal to zero. Secondly, we may replace the radial
coordinate hwith another coordinate, so that the infinite value h equals a finite value
of the new coordinate, for example: 1/h, 1− e−h or arcctgh. A change of the radial
coordinate, however, complicates the original equation, and, as a consequence, place
restrictions on the steps between the nodes for the new radial coordinate.

Equation (1.196) is written with respect to two unknown but related functions:
Σ0(h, t) and F(h, t). One of these quantities can be obtained for any value of the
specific angular momentum h, and for any moment in time t , if the other quantity
is known. Earlier in this chapter we studied the cases of linear and power-law
relationships betweenΣ0(h) and F(h), for which analytical solutions to Eq. (1.196)
are possible. However, in the general case, the problem (1.196) has to be solved
numerically. The problem is more convenient to solve with respect to the function
F(h, t), since the boundary conditions are set relative to this function. As we show
below, using F(h, t) as the unknown function is more convenient if we find the
relationship betweenΣ0 and F numerically from the equations of vertical structure.
Thus we will express the surface density as a function of the radial coordinate and
the torque:Σ0(F (h, t), h).
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Note that the problem at hand is a specific case of the non-linear diffusion
equation. Most often in physics, diffusion equations in which the non-linear
diffusion coefficient is contained in the spatial derivative, are studied. As mentioned
above, however, in our case it is more convenient to consider the problem with
regard to the function F(h, t). Then, the non-linear function Σ0(F (h, t), h) stands
in the left part of Eq. (1.196). Below we will present a method of solving the
equation, in which the non-linearity is included in the time-derivative. This method
has a lot in common with the method studied in detail in the classical books
on numerical methods, e.g., Press et al. (2002), used in the solution to diffusion
equations with the non-linearity in the right part of the equation.

Let us consider the problem of evolution of an accretion disc in a binary system
in the Newtonian potential, assuming that the removal of angular momentum is due
to tidal forces from the outer edge of the disc only:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Σ0(F (h, t), h)

∂t
= 1

4π

(GM)2

h3

∂2F(h, t)

∂h2 ,

F (hin, t) = Fin(t),

∂F

∂h

∣∣∣∣
out

= Ṁout(t),

F (h, 0) = F0(h),

h ∈ [hin, hout],
t ∈ [0, tfin],

(1.197)

where F0(h) is the initial condition satisfying the boundary conditions and tfin is the
time interval for which the calculation is performed.

To construct a finite difference scheme we introduce an arbitrary collection of
nodes hn:

h1 < h2 < · · · < hn < · · · < hN−1 < hN,

Δhn ≡ hn − hn−1,

n = 1 . . .N,

(1.198)

where h1 and hN correspond to the values of the specific Keplerian angular
momentum at the inner and outer radius, respectively. We will consider a solution
to the equation at the time-interval between t0, with already known values of the
desired function, and t0 +Δt , for which we need to determine these values.
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We substitute the two functions with their corresponding grid functions and
introduce the following designations:

F(hn, t0) ⇒ Fn, F (hn, t0 +Δt) ⇒ F̃n,

Σ0(F (hn, t0) , hn)⇒ Σn, Σ0(F (hn, t0 +Δt) , hn)⇒ Σ̃n,

Fin(t0) ⇒ Fin, Fin(t0 +Δt) ⇒ F̃in,

Ṁout(t) ⇒ F ′
out, Ṁout(t0 +Δt) ⇒ F̃ ′

out.

(1.199)

Let us start constructing the finite difference scheme. To begin with, we write
down the difference equations for the boundary conditions. The inner boundary
condition of the first kind is written in exact form as:

F1 = Fin. (1.200)

To write down the outer boundary condition of the second kind, we expand F̃N−1
in Taylor series around the point hN :

F̃N−1 = F̃N −ΔhN ∂F
∂h

∣∣∣∣
hN

+ Δh2
N

2

∂2F

∂h2

∣∣∣∣
hN

+ o(Δh2
N). (1.201)

Note that in all the expressions considered here and below for the derivatives
with respect to h, we use the value of the torque at time t0 + Δt . Thus constructed
numerical scheme is called implicit. It is numerically stable. As opposed to an
explicit scheme, in which the derivatives with respect to hwould be written using the
known value Fn at time t0, an implicit scheme guarantees that the errors introduced
in this step will not grow in the next steps.

Without going into details, we note that, in addition to the explicit and implicit
methods, there is also a mixed (Crank–Nicolson) method in which the values for
the function at t0 and t0 +Δt are both used to calculate the derivative with respect
to the spatial coordinate. In some cases, the Crank–Nicolson method gives a higher
accuracy of the solution. The node stencils used in the various methods are shown
in Fig. 1.24.

Fig. 1.24 Node stencils that are used for the n-th equation in the system (1.209) in different
schemes. We use the implicit method stencil
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Discarding the last term in (1.201), we obtain a simple expression for the
numerical value of the first derivative of F with respect to h, with accuracy up
to the first order of the expansion intervalΔhN :

∂F

∂h

∣∣∣∣
hN

= F̃N − F̃N−1

ΔhN
+ o(ΔhN). (1.202)

If we, however, in (1.201), substitute the value of the second derivative of F with
respect to h, expressed from the original equation (1.197), we may increase the
accuracy to the second order of ΔhN :

∂F

∂h

∣∣∣∣
hN

= F̃N − F̃N−1

ΔhN
+ΔhN 2πh3

N

(GM)2

∂Σ0(hN)

∂t
+ o(Δh2

N), (1.203)

where the expression for the derivativeΣ0 with respect to t by analogy with (1.202)
takes the form:

∂Σ0(hN)

∂t
= Σ̃N −ΣN

Δt
+ o(Δt). (1.204)

In this way we obtain a final expression for the outer boundary condition:

F̃N − F̃N−1

ΔhN
+ ΔhN

Δt

2πh3
N

(GM)2
(Σ̃N −ΣN)+ o(Δh2

N)+ o(Δt) = F̃ ′
out. (1.205)

Now that we have equations for the values of the function at both ends of the
interval over h, we obtain the difference form of the differential equation itself
from (1.197). Let us write down the Taylor expansion for F̃n−1 and F̃n+1 around
the point hn:

F̃n−1 = F̃n −Δhn ∂F
∂h

∣∣∣∣
hn

+ Δh2
n

2

∂2F

∂h2

∣∣∣∣
hn

+ o(Δh2
n),

F̃n+1 = F̃n +Δhn+1
∂F

∂h

∣∣∣∣
hn

+ Δh2
n+1

2

∂2F

∂h2

∣∣∣∣
hn

+ o(Δh2
n+1),

(1.206)

where n = 2 . . . N − 1.
For convenience we introduce the notation Δh = max (hn), where n = 2 . . .N .

Then, we may change o(Δhn) to o(Δh) everywhere.
The second derivative of F with respect to h may be expressed from (1.206):

∂2F

∂h2

∣∣∣∣
hn

= 2
F̃n−1

Δhn+1
Δhn+Δhn+1

− F̃n + F̃n+1
Δhn

Δhn+Δhn+1

ΔhnΔhn+1
+ o(Δh2). (1.207)
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Note that when using a homogeneous grid with respect to h, that is for Δhn =
Δhn+1 = Δh, the last expression takes a simpler form:

∂2F

∂h2

∣∣∣∣
hn

= F̃n−1 − 2F̃n + F̃n+1

Δh2 . (1.208)

Substituting the values of the derivatives (1.204) and (1.207) into the differential
equation from (1.197) and replacing the boundary conditions in (1.197) by their
difference analogues (1.200) and (1.205), we obtain a finite difference scheme for
the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πh3
n

(GM)2

Σ̃n −Σn
Δt

= 2
F̃n−1

Δhn+1
Δhn+Δhn+1

− F̃n + F̃n+1
Δhn

Δhn+Δhn+1

ΔhnΔhn+1
,

F̃1 = F̃in,

F̃N − F̃N−1

ΔhN
+ ΔhN

Δt

2πh3
N

(GM)2
(Σ̃N −ΣN) = F̃ ′

out,

n = 2 . . .N − 1.

(1.209)

Note that the level of accuracy in the obtained system is o(Δh2)+ o(Δt).
As a result, we have reduced the solution of the differential equations with

boundary conditions (1.197) to a subsequent solution of the system of N algebraic
equations (1.209) at each time-step between t = 0 and t = tfin. This system is not
linear, since Σn and Fn are related by the non-linear expression Σn = Σ0(Fn, hn).
One way to solve this system is to use the iterative root-finding algorithm for the
value Σ̃n. For this, some approximation to the value Σ̃(1)n must first be chosen (the
simplest variant is the value at the present time step Σn), and the system of linear
algebraic equations is solved to find the intermediate value of Σ̃(2)n = Σ0(F̃

(1)
n , hn)

and then the system of linear algebraic equations is solved again. This simple
iterative algorithm can be improved at the expense of extra memory usage; see
Anderson (1965) for details.

One may think of a number of criteria to stop the integration. We will use one of
them—the condition of small changes in the value for Σ̃(s)n between two sequential
iterations. We formalise this criterion:

max
n=2...N

∣∣∣∣∣
Σ̃
(s+1)
n + Σ̃(s)n
Σ̃
(s+1)
n

∣∣∣∣∣ < ε, (1.210)

where the top index in brackets refers to the number of performed iterations and ε
is the dimensionless accuracy in the search for the value of Σ̃n.
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Note that in each iteration, the solution to the system of linear algebraic equations
may be found by the tridiagonal matrix algorithm. The details of this algorithm can
be found in textbooks on numerical methods, for example Press et al. (2002).

The described scheme (1.209) is implemented in the FREDDI7 code. FREDDI is
intended for modelling the lightcurves of X-ray novae with fast rise and exponential
decay (Lipunova and Malanchev 2017). As initial conditions, we may choose either
a quasi-stationary distribution (see Sect. 1.6.7), describing the radial structure of the
disc after the peak in luminosity of the source, or the distribution corresponding to
a dense torus far away from the central black hole.

1.7.2 Solving the Equations of Vertical Structure

In Sect. 1.5.2 we derived the equations for the vertical structure (1.93):

1

ρ

dP

dz
= −ω2

K z,

dΣ

dz
= ρ,

dQ

dz
= 3

2
ωKwrϕ,

c

3�Rρ

d(aT 4)

dz
= −Q.

To solve these equations, we have to choose suitable boundary conditions. If we
consider the surface density at a given radius as known, we have only three boundary
conditions: Σ(z = 0) = 0, Σ(z = z0) = Σ0/2, and Q(z = z0) = 0. On the
other hand, if we consider the torque at a given radius as known, we may find the
necessary number of boundary conditions to solve the system (1.211).

By analogy with the arguments in Sect. 1.5.2, we obtain the boundary condition
for the pressure at the photosphere:

P(z = z0) = 2

3

ω2
Kz0

�R
. (1.211)

If we assume that energy is released only in layers below the photosphere, the
flux at the photosphere is determined by Eq. (1.73):

Q(z = z0) = 3

8π

FωK

r2
. (1.212)

7http://xray.sai.msu.ru/~malanchev/freddi/.

http://xray.sai.msu.ru/~malanchev/freddi/
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Due to symmetry, the flux is equal to zero in the plane of the disc:

Q(z = 0) = 0. (1.213)

We consider the emitted spectrum to be that of a blackbody, so we may take the
temperature in the photosphere to be equal to the effective temperature:

T (z = z0) =
(
Q(z = z0)

σSB

)1/4

. (1.214)

The boundary condition Σ = 0 may be set at the surface of the disc as well as
in its symmetric plane. It turns out that in the symmetry plane there are only two
boundary conditions, on the flux Q (1.186) and on the surface density. However,
if we set Σ equal to zero at the disc surface and integrate the system towards the
central plane, we can find the boundary values of all four unknown functions: the
pressure P (1.211), the surface density Σ , the flux Q (1.213), and the temperature
T (1.214). Thus, in what follows, we shall consider integration along the direction
from the disc surface towards its symmetry plane.

While all four boundary conditions at the photosphere are known, we still do not
know the disc half-thickness z0. For convenience in integrating the system (1.211)
from the photosphere to the symmetry plane, we rewrite it with aspect to the
alternative vertical parameter ẑ ≡ z0 − z:

1

ρ

dP

dẑ
= ω2

K (z0 − ẑ), (1.215)

dΣ

dẑ
= ρ, (1.216)

dQ

dẑ
= −3

2
ωKwrϕ, (1.217)

c

3�Rρ

d(aT 4)

dẑ
= Q, (1.218)

P(ẑ = 0) = 2

3

ω2
Kz0

�R
, (1.219)

Σ̂(ẑ = 0) = 0, (1.220)

Q(ẑ = 0) = 3

8π

FωK

r2 , (1.221)

Q(ẑ = z0) = 0, (1.222)

T (ẑ = 0) =
(
Q(ẑ = 0)

σSB

)1/4

, (1.223)

where Σ̂(ẑ) = Σ0/2 −Σ(ẑ) is calculated in the direction from the disc surface.
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This system consists of four equations, five boundary conditions and one
unknown—z0. We need to choose a value of z0 such that when integrating the
system (1.223) from ẑ = 0 to ẑ = z0, the boundary condition Q(ẑ = z0) = 0
is fulfilled. As an initial approximation, we can use values obtained analytically
(see Sect. 1.5.3), and then search for z0 using any method of root-finding.

1.7.2.1 Irradiation of the Accretion Disc

In X-ray binaries the outer parts of the disc with photospheric temperature of the
order of 104 K may be irradiated by photons from the inner parts of the disc, direct
or scattered in the corona, with temperatures of the order of 107 K. The surface of
a neutron star may serve as an additional source of hard photons. The surface of
protoplanetary discs, with temperatures of the order of 102 K, is irradiated by ultra
violet radiation from a newly formed star.

Let us consider the case with irradiation by hard radiation incident on the disc
surface at an angle arccos ζ . If the disc is illuminated by a point source located in
its centre, and if the disc itself can be considered as thin, we may use the relation

ζ = dz0

dr
− z0

r
. (1.224)

Then the illuminating flux incident on the disc surface at radius r equals
ζLx/(4πr2). If the source of the hard radiation is the disc itself, then the radiation
pattern is not isotropic. Assuming that the central source is point-like, the flux may
be written as ζLx/(4πr2)× Ψ (θ). The function Ψ (θ) is shown in Fig. 1.23, and θ
is the angle measured from the vertical axis.

A detailed calculation of the effect of irradiation on the vertical structure of the
disc is rather complicated, and was presented, e.g., in the work by Mescheryakov
et al. (2011b). In a first approximation, we may limit ourselves to changing the
boundary condition on the flux originating from the surface of the disc:

Q(ẑ = 0) = 3

8π

FωK

r2 + ζ Lx

4πr2 Ψ (θ).

In order to explain the observed optical lightcurves from X-ray novae, the
effective thickness of the disc for radiation interception in formula (1.224) needs to
be twice as large as z0 (Suleimanov et al. 2008). It is assumed in their calculations
that the lower layers of the disc atmosphere above the photosphere are opaque
to soft X-rays from the central parts of the disc. Furthermore, it was shown by
Mescheryakov et al. (2011a), from modelling lightcurves of the illuminated stellar
companion in the burster GS 1826-238, a low-mass X-ray binary with a neutron star,
that the effective thickness of the disc for interception of X-rays is approximately
twice as large as z0.
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Fig. 1.25 Lightcurve of the
X-ray nova A 0620-00 in the
photometric B-band. Data
from Duerbeck and Walter
(1976), Lloyd et al. (1977)
are shown with filled circles.
The solid line shows our
modelling of the lightcurve
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1.7.3 Example Numerical Modelling of a FRED Lightcurve
of an X-Ray Nova

Let us now turn to the numerical modelling of an outburst of X-ray nova A 0620-
00. The following parameters of the binary system are used: mass of the compact
object (a black hole) 6.6M�, mass of the optical companion 0.5M�, orbital period
0.323 days, inclination of the orbital plane to the line of sight 53.5◦, and distance to
the system 1.1 kpc. These parameters are observational results from analyses of the
lightcurves of the system in quiescence (Cantrell et al. 2010; Gou et al. 2010).

In Figs. 1.25 and 1.26, lightcurves of the source after the peak of the outburst in
1975 in soft X-rays and in the B-band are shown. The lightcurve of this outburst is an
example of a FRED-type lightcurve,8 in which a fast rise in luminosity is followed
by a quasi-exponential decay.

An interesting feature in most FRED-type lightcurves is the existence of a
secondary peak. The nature of this secondary peak is currently not understood.

To reproduce the secondary peak, it has been suggested that a significant amount
of matter was supplied to the disc by the donor star on the 43rd day after the
peak. Within the framework of this model, this matter instantaneously increases
the surface density of the disc in its outer parts, which leads to a jump in optical
luminosity (Fig. 1.25).

Due to the increase in surface density in the outer regions of the disc, a gradual
increase of the accretion rate takes place in the central regions of the disc. This leads
to an increase in temperature and thereby X-ray luminosity of the disc. In this way,
a local maximum shows up in the lightcurve (Fig. 1.26).

The maximal accretion rate Ṁmax ≈ 0.2 ṀEdd, and the α-parameter, ≈ 0.3,
are determined from the part of the X-ray lightcurve before the secondary peak.

8Fast-rise exponential-decay.
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Fig. 1.26 Lightcurve of the X-ray nova A 0620-00 at 3–6 keV. The vertical bars show data with
errors from Ariel 5 (Kaluzienski et al. 1977), and the solid line shows the model lightcurve

From the part of the optical lightcurve before the secondary peak, we estimate the
effective thickness of the disc for X-ray radiation interception, which turns out to be
≈ 2 z0 (Malanchev and Shakura 2015).

To model the lightcurve of an X-ray nova, one has to keep in mind that in general
the disc is not physically uniform, but has a hot inner part with ionized matter
(zones A, B and C; see Sect. 1.5) and a colder outer part with lower accretion rate.
When the disc cools down to temperatures at which hydrogen recombines, the α-
parameter decreases by approximately an order of magnitude (Smak 1984). In a
first approximation, we may assume that accretion in the cold outer parts ceases.
The boundary between the hot and cold parts gradually moves towards the centre
following the hydrogen recombination front.

The open code FREDDI is provided by the authors to model FRED-type light-
curves of X-ray novae. This code calculates the disc evolution for a fully ionized
disc, as well as for a disc with a cold front propagating inwards. Using this code, the
outburst of the X-ray nova 4U 1543-47 in 2002, hosting a black hole, was modelled
by Lipunova and Malanchev (2017).

Using FREDDI, estimates of α can be derived, which are more accurate
than (1.149):

α ≈ 0.21

(
Rhot

R�

)25/16 (
texp

30d

)−5/4 (
Ṁmax

1018 g/s

)−3/8

m
5/16
x , (1.225)

for the Kramers opacity, and

α ≈ 0.20

(
Rhot

R�

)12/7 (
texp

30d

)−9/7 (
Ṁmax

1018 g/s

)−3/7

m
2/7
x (1.226)
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for the OPAL approximation (Lipunova and Malanchev 2017). Here, Rhot is the
radius of the hot zone of the disc at the peak of an outburst. Power indexes in the
above expressions are obtained when substituting the thickness of the disk in (1.149)
by its analytic expression from (1.104) or (1.110). The numerical factors in the
expressions for α are found by fitting FREDDI results; their accuracy is around
5%.
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Chapter 2
The Properties of Spherical Geodesics
in the Kerr Metric

Nikolay Shakura

Abstract This small methodological chapter is devoted to considering the motion
of particles along spherical geodesical trajectories around rotating black holes. The
study of this motion is necessary for understanding the inner structure of the disc
tilted to the equatorial plane of the rotating black hole. Moreover, this chapter
uses a special approach to find out how the values that are measured in a local
Lorentz frame of observers falling freely in an axially symmetric gravitational field
are related to each other. This approach allows us to understand better the basic
principles of measuring physical values in general relativity. These basic principles,
which are systematically presented in the next chapter, are required for a more
comprehensive understanding the structure of relativistic tilted accretion discs.

In the Kerr metric, a squared interval may be expressed in the Boyer–Lindquist
coordinates as follows (see, for example, Misner et al. 1977):

ds2 = −
(

1 − 2r
ρ2

)
dt2 − 4ar sin2 θ

ρ2 dtdφ + ρ2

Δ
dr2 + ρ2dθ2 +

(
r2 + a2 + 2a2r sin2 θ

ρ2

)
sin2 θdφ2 , (2.1)

where

ρ2 = r2 + a2 cos2 θ , Δ = r2 − 2r + a2 , −1 ≤ a ≤ 1. (2.2)

In these coordinates,GM/c2 = 1 and c = 1, i.e. the distances are measured in units
of half a Schwarzschild radius of the black hole (BH). Thus an unit time isGM/c3.
The Kerr metric describes the structure of spacetime around a rotating BH with mass
M and specific dimensionless angular momentum a = J c/(GM2). There exist four
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integrals of motion in this metric: (a) the energy of a test particle E = −pt ; (b) the
projection of angular momentum of the particle onto the BH rotation axis Lz; (c)
the rest mass of the particlem; and (d) the so-called Carter integral of motion

Q = p2
φ + cos2 θ

[
a2(m2 − E2)+ L2

z

sin2 θ

]
, (2.3)

which is related to the square of the total angular momentum of the particle.
The motion of test particles in the Kerr metric reduces to solving the following

system of ordinary differential equations of the first order (Carter 1968):

ρ2 dr

dλ
= ±√

R(r) (2.4)

ρ2 dθ

dλ
= ±√

Θ(θ) (2.5)

ρ2 dφ

dλ
= −

(
aE − Lz

sin2 θ

)
+ aP

Δ
(2.6)

ρ2 dt

dλ
= −a

(
aE sin2 θ − Lz

)
+ (r2 + a2)P

Δ
, (2.7)

where differentiation is performed with respect to the affine parameter λ related to
the proper time of the particle τ = mλ, and

R(r) = P 2 −Δ
[
m2r2 + (Lz − aE)2 +Q

]
, (2.8)

Θ(θ) = Q− cos2 θ

[
a2(m2 − E2)+ L2

z

sin2 θ

]
, (2.9)

P = E(r2 + a2)− Lza . (2.10)

The general solution of the system of equations (2.4)–(2.7) may be expressed
through elliptical integrals (Bardeen et al. 1972). In spite of the apparent complexity
of the right-hand parts of these equations, the motion of particles in the Kerr metric
turns out fairly simple from a qualitative point of view. Indeed, let a particle of mass
mmove with a constant velocity along a straight line in empty space with respect to
a spherical system of coordinates. EquatingM = a = 0 in the system (2.4)–(2.10),
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we obtain

dr

dλ
= ±

√
E2 −m2 − L2

z +Q
r2 , (2.11)

r2 dθ

dλ
= ±

√
Q+ L2

z −
L2
z

sin2 θ
, (2.12)

r2 dφ

dλ
= Lz

sin2 θ
, (2.13)

dt

dλ
= E . (2.14)

It can be seen that the “effective repulsive potential”
L2
z+Q
r2 arises in this system of

coordinates, where L2
z +Q has the meaning of the total angular momentum relative

to the origin of the coordinate system. The rate of change of the radial component

dr/dλ becomes zero at the minimal travelling path rmin =
√
(L2
z +Q)/(E2 −m2).

In the general case, the equatorial plane of the coordinate system is oriented
arbitrarily with respect to the plane passing through the velocity vector and
the origin. The joint solution to Eqs. (2.12)–(2.13) makes it possible to find the
trajectory trace in the angular coordinates θ, φ. Note that if these planes are oriented
orthogonally, the angular velocity of the particle dθ/dλ changes the sign at the
moment the particle passes through the poles θp = 0, π of the coordinate system.
Naturally, the actual velocity of the particle does not change at all. Equation (2.14)
illustrates the well-known relativistic effect of time dilation in a moving coordinate
system.

Further, let us place a mass with a spherically symmetric gravitational field
(for example, a Schwarzschild BH) in the origin of the coordinate system. A com-
parison of (2.5) and (2.6) to (2.12) and (2.13) shows that if M �= 0 and a = 0, the
right-hand parts of the equations for the angular variables θ and φ remain the same
as for the free particle, implying that the general solution θ(φ) remains the same
for a spherically symmetric mass. This, in particular, means that the particle always
remains in the same plane when moving in a spherically symmetric gravitational
field. The gravitating mass in the origin of coordinate system effectively changes
the motion along the r coordinate (giving rise to gravitationally bound orbits with
energy E < m). In addition, the time dilation effect becomes more appreciable in a
gravitational field.

When examining a Kerr black hole (a �= 0), it is necessary to consider a
qualitatively new effect related to the particle’s being dragged additionally along
the φ coordinate (the Lense-Thirring effect) due to the vortical component of
the stationary gravitational field of the rotating BH. The part of the field due to
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gravitational potential,1 although remaining axially symmetric, loses its spherical
symmetry, providing the rotating BH with an effective quadrupole moment propor-
tional to Ma2, which complicates quantitatively the form of the right-hand parts of
Eqs. (2.4)–(2.7).

In many astrophysical applications (especially, accretion discs around rotating
BHs; see, for example, Bardeen and Petterson (1975) and the following chapters),
the so-called spherical orbits with r = const are of special interest.

In order for particles to move along spherical orbits, the following conditions
should be fulfilled (Wilkins 1972):

R(r) = E2(r4 + 2a2r + a2r2)− 4ELzar − L2
z(r

2 − 2r)−Δ(m2r2 +Q) = 0 ,
(2.15)

∂R

∂r
= E2(2r3 + a2 + a2r)− 2ELza − (r − 1)(L2

z +Q+m2r2)−Δm2r = 0 .

(2.16)

From these equations, the functions E(Q, r) and Lz(Q, r) may be expressed in an
explicit form. However, according to Bardeen et al. (1972), who was the first to
note this circumstance, it is more natural and convenient to perform calculations
in the reference frame of a fiducial observer (FIDO), who does not possess any
angular momentum with respect to the BH, although rotating with the Lense-
Thirring frequency relative to an infinitely remote observer. Any test particle with
zero projection of angular momentum onto the BH rotation axis (Lz = 0), will have
a zero φ component of velocity travelling near such a local inertial observer (see
further below).

In the general case, the squared interval in the stationary axially symmetric
metric is

ds2 = −e2νdt2 + e2ψ(dφ − ωdt)2 + e2λdr2 + e2μdθ2 . (2.17)

Since the non-diagonal metric coefficient gtφ = −ωgφφ is not equal to zero, it
turns out that a FIDO moves with the Lense-Thirring angular velocity:

ω = − gtφ
gφφ

. (2.18)

1The part that is responsible for the gravitational acceleration of a reference observer; see Thorne
et al. (1986) for details.
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The contravariant components of the metric tensor in Eq. (2.17) are:

gtt = −e−2ν, gtφ = −ωe−2ν, gφφ = e−2ψ − ω2e−2ν,

grr = e−2λ, gθθ = e−2μ . (2.19)

Thus it follows that the general expression for the squared four-momentum p of a
particle with mass m

pαp
α = gαβpαpβ = −m2 (2.20)

can be written in the form

−m2 = −e−2νp2
t − 2ωe−2νptpφ + (e−2ψ − ω2e−2ν)p2

φ + e−2λp2
r + e−2μp2

θ =
−e−2ν(pt + ωpφ)2 + e−2ψp2

φ + e−2λp2
r + e−2μp2

θ . (2.21)

In the reference frame of a FIDO, spacetime is locally flat (pseudo-Euclidean) and
can be described by the Minkowski metric gαβ = η(α)(β) = diag(−1, 1, 1, 1).2

The general formula for the four-momentum squared (2.20) is expressed using
physical values that can be measured by a FIDO, namely, the particle’s energy
p(t) = m/

√
1 − β2 ≡ mγ and three spatial components of the momentum

p(i) = mγβ(i) with i = r, θ, φ in the standard Lorentz-invariant manner:

− (p(t))2 + (p(r))2 + (p(θ))2 + (p(φ))2 = −m2 , (2.22)

where the spatial velocity components are related through the expression β2 =
(β(r))2 + (β(θ))2 + (β(φ))2.

In the general case, the energy E = −pt of a particle moving along some
path in a stationary axially symmetric metric (2.17) is conserved with respect to
an infinitely remote observer, and so is the particle’s angular momentum projected
onto the symmetry axis of the BH, Lz = pφ (Bardeen et al. 1972). Equations (2.21)
and (2.22) may be used to find the relationship between the energy and the spatial
components of the particle’s momentum (locally measured by a FIDO) through
these constants and metric coefficients:

p(t) = mγ = e−ν(E − ωLz), p(φ) = mγβ(φ) = e−ψLz,
p(r) = mγβ(r) = e−λpr, p(θ) = mγβ(θ) = e−μpθ (2.23)

(note that these quantities may also be directly calculated through the FIDO tetrad
components in the given metric; see the next chapter for details).

2More details on reference frames and the tetrad representation may be found in Sect. 3.2.
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Let us now examine the particular case of spherical orbits, for which p(r) = 0.
In this case, expressions for locally measurable velocity components can be derived
from Eqs. (2.22) and (2.23):

β(φ) = L̃z

Ẽ − ωL̃z
eν−ψ , (2.24)

β(θ) =
[

1 − e2ν(1 + e−2ψ)L̃2
z

(Ẽ − ωL̃z)2
]1/2

, (2.25)

where Ẽ = E/m and L̃z = Lz/m.
For further consideration, it is convenient to introduce the angular velocity of the

particle with respect to a remote observer:

Ω(r, θ) ≡ dφ

dt
= dφ/dτ

dt/dτ
= pφ

pt
= gφφpφ + gφtpt
gttpt + gφtpφ = ω + L̃z

Ẽ − ωL̃z
e2ν−2ψ.

(2.26)
Substituting (2.26) into (2.24), we obtain

β(φ) = (Ω − ω)eψ−ν . (2.27)

As a matter of fact, we have derived the well-known property that the particle, which
rotates with an angular velocity Ω = ω due to the Lense-Thirring frame-dragging
effect with respect to a remote observer, does not rotate in the reference frame of a
local FIDO: β(φ) = 0.

The motion of particles along spherical orbits crossing the BH equatorial plane is
confined in latitude (except for the degenerate case of Lz = 0), implying that there
exist angle coordinate values θ∗ and π−θ∗ (the turning points) above and below the
equatorial plane, respectively, where β(θ)(θ∗) = 0. This allows us to find the energy
for the spherical orbits using Eqs. (2.24), (2.25) and (2.27):

Ẽ = eν[1 + ω∗(Ω∗ − ω∗)e2(ψ−ν)]
[1 − (Ω∗ − ω∗)2e2(ψ−ν)]1/2 (2.28)

and the angular momentum projected onto the BH rotation axis:

L̃z = γβ(φ)eψ = (Ω∗ − ω∗)e2ψ−ν

[1 − (Ω∗ − ω∗)2e2(ψ−ν)]1/2 , (2.29)

where the angular velocities Ω∗ and ω∗, along with the corresponding metric
coefficients, are to be calculated at the turning points θ∗ or π − θ∗. At these points,
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the angular velocity of the particle can be derived from the geodesic equation

d2xμ

dλ2 + Γ μαβpαpβ = 0 . (2.30)

In case of spherical orbits, the first term vanishes for the radial component of
Eq. (2.30). Furthermore, p(θ)(θ∗) = 0 at the turning points, which yields

Γ ∗
rt tdt

2 + 2Γ ∗
rtφdtdφ + Γ ∗

rφφdφ
2

dλ2 = 0 , (2.31)

where in view of the axial symmetry of the problem, the Christoffel symbols depend
only on partial derivatives of the metric tensor over the r coordinate:

Γ ∗
rt t = −1

2

(
∂gtt

∂r

)
θ=θ∗

= −1

2
g∗t t,r; Γ ∗

rtφ = −1

2
g∗tφ,r , Γ ∗

rφφ = −1

2
g∗φφ,r .

(2.32)

Taking into account the definition of the angular velocity Ω = dφ/dt , we see that
Eq. (2.31) becomes an algebraic equation relative to Ω ; its two roots

Ω∗
1,2 =

−g∗tφ,r ±
√
g∗2
tφ,r − g∗φφ,rg∗t t,r
g∗φφ,r

(2.33)

correspond to the angular velocities at the turning points in direct spherical orbits
(coincident with the direction of BH rotation) and retrograde spherical orbits,
respectively. Using the explicit form of the Kerr metric (2.1), we find

Ω∗
1,2 = q∗

sin θ∗(±ρ2∗
√
r + aq∗ sin θ∗)

, (2.34)

where q2∗ = r2 − a2 cos2 θ∗ and ρ2∗ = r2 + a2 cos2 θ∗. Substituting (2.34) and
the values of the corresponding metric coefficients from the metric (2.1) into (2.28)
and (2.29) and cancelling out the common multiple ρ2∗

√
r/(ρ2∗

√
r ± aq∗ sin θ∗) in

the numerators and denominators of (2.28) and (2.29), we finally obtain:

Ẽ =
1 − 2r

ρ2∗
± aq∗

ρ2∗

√
1
r

sin θ∗[
1 − 3r

ρ2∗
± 2aq∗

ρ2∗

√
1
r

sin θ∗ + a2

ρ2∗r
cos2 θ∗

]1/2 , (2.35)



114 N. Shakura

L̃z =
± q∗
ρ2∗

√
1
r
(r2 + a2) sin θ∗ − 2ar

ρ2∗
sin2 θ∗[

1 − 3r
ρ2∗

± 2aq∗
ρ2∗

√
1
r

sin θ∗ + a2

ρ2∗r
cos2 θ∗

]1/2 . (2.36)

The direct substitution shows that (2.35) and (2.36) take the familiar form for
circular equatorial orbits with θ∗ = π/2 (Bardeen 1973), whereas for spherical
polar orbits with Lz = 0 and θ∗ = 0, the expression (2.35) coincides with the result
provided in Lightman et al. (1975).

In the end, using (2.9) (taking into account that dθ/dλ = 0, we have Θ(θ∗) = 0
at the points θ∗) along with (2.35) and (2.36), we find the Carter integral:

Q̃ = cos2 θ∗r ×
1 ∓ 4aq∗r2

ρ4∗

√
1
r

sin θ∗ − 4a2r
ρ4∗

cos2 θ∗ + a2(3r2+a2 cos2 θ∗)
ρ4∗

sin2 θ∗[
1 − 3r

ρ2∗
± 2aq∗

ρ2∗

√
1
r

sin θ∗ + a2

ρ2∗ r
cos2 θ∗

]1/2
. (2.37)

In disc accretion onto BHs, the angle θ∗ determines, at large distances, the
orientation of the disc plane relative to the BH equatorial plane. The structure of
tilted relativistic discs around rotating BHs is discussed in the next two chapters in
detail.
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Chapter 3
Relativistic Standard Accretion Disc

Viacheslav Zhuravlev

Abstract In this chapter we present a model of a standard accretion disc around
a rotating black hole taking general relativity effects into full account. This model
was first described in the paper by Novikov and Thorne (Black holes (Les Astres
Occlus). Gordon and Breach, New York, 1973) and has since then been used in
many studies to obtain convincing evidence of the existence of black holes, in
both stellar binary systems and active galactic nuclei. It remains topical since a
full account of the general relativistic properties of the motion of matter in the
disc, and the generation of disc emission, allows the position of the inner disc
radius and hence the black hole spin to be inferred from observations. In addition,
the standard accretion disc is the basis for more complicated theories of warped
(twisted) accretion discs, which are formed when the accreting matter moves outside
the equatorial plane of a rotating black hole.

Everywhere below, natural units, G = c = 1, are used. If the mass is measured
in units of the black hole mass, M , the unit of length is half the Schwarzschild
gravitational radius, Rg/2, such that Rg/2 = GM/c2 = 1 and the unit of time is
the light crossing time for a unit length.

In addition, Latin indices i, j, k . . ., taking values from 0 to 3, are used to denote
components of vectors, with the zero component standing for the time coordinate.
Also, wherever needed the Einstein summation convention is used.
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3.1 Space-Time Near Rotating Black Holes

3.1.1 The Kerr Metric

The properties of spacetime near a rotating black hole are described by an axially
symmetric and stationary metric of the form

ds2 =
(

1 − 2R
ρ2

)
dt2 − 4aR sin2 θ

ρ2 dtdφ − ρ2

Δ
dR2 − ρ2dθ2 −

(
R2 + a2 + 2a2R sin2 θ

ρ2

)
sin2 θdφ2 , (3.1)

where the signature (1,−1,−1,−1) is chosen and the following notations are used:

ρ2 = R2 + a2 cos2 θ , Δ = R2 − 2R + a2 , −1 ≤ a ≤ 1. (3.2)

The coordinates {t, φ,R, θ} are called the Boyer-Lindquist coordinates.1 Far
away from the gravitating body, the spatial part of these coordinates, in the limit of
a zero black hole spin parameter, a, transforms into the usual spherical coordinates,
where φ is the azimuthal angle. For a non-zero a, it transforms to generalized
spherical coordinates in which the surfaces of constant radial distance, R = const ,
represent spheroids with the aspect ratio R/(R2 + a2)1/2.

The space-time described by (3.1) is axially symmetric with respect to the line
θ = 0, called the black hole rotation axis. The plane corresponding to θ = π/2, is
called the black hole equatorial plane.

In (3.1) an important quantity appears:

ω = 2aR

Σ2 , (3.3)

which has the dimension of frequency. This is the angular velocity that any freely
moving observer acquires in the direction of the black hole rotation.

As described in the literature on the structure of rotating black holes (see,
e.g., Chandrasekhar (1992), paragraph 58), the metric (3.1) has several special
hypersurfaces, including the event horizon and the ergosphere. However, as we
show below, for the astrophysical problem under consideration, of most importance
is the dynamics of free circular motion of particles in the equatorial plane of
the gravitating body. This motion has additional features in comparison to the
corresponding Newtonian problem. Note that in the next chapter we also discuss
weakly elliptical orbits, slightly inclined to the equatorial plane.

1Unlike in the previous chapter, in this chapter the spherical radial coordinate in the Kerr metric is
denoted by R. The lowercase letter, r , is reserved for the cylindrical coordinates.
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We consider a standard, and hence geometrically thin, accretion disc. In this
chapter we discuss the basic case of a flat disc. By definition, this is a stationary flow
of matter with mirror symmetry with respect to its midplane and axial symmetry
with respect to the line perpendicular to this plane. Clearly, such a model flow can
be described by dynamical equations in an axially symmetric metric only if the disc
symmetry plane coincides with the equatorial plane of the black hole. To tackle the
problem, it is sufficient to know the form of the metric close to the plane θ = π/2.
Changing to cylindrical coordinates using the standard transformation

r = R sin θ, z = R cos θ,

all metric coefficients gik in (3.1) can be expanded in power series of the small
ratio z/r � 1. For geometrically thin discs, corrections to gik due to non-equatorial
motion up to (z/r)2 are sufficient. Indeed, one of the basic equations describing the
disc, namely, the projection of the relativistic analogue of the Euler equation onto
the direction normal to the disc plane, must be odd with respect to the coordinate
reflection z → −z due to the mirror symmetry of the disc. This means that in its
expansion in (z/r) only odd powers of (z/r)must be present. According to the main
assumption of the smallness of (z/r), only the first term in this expansion should be
kept. This, in turn, corresponds to an expansion in series of gik up to quadratic terms,
since only first derivatives of gik , characterizing the ‘strength’ of the gravitational
field, enter the dynamical equations.

Note, however, that hydrodynamic equations also contain a second covariant
derivative of the velocity field (see below), and hence the final expressions can
involve second derivatives of gik with respect to z, which may seem to require that
we keep terms of the order of (z/r)3 in gik . But this is not required, since, as follows
from the explicit form of the stress-energy tensor, such terms can appear only when
multiplied by some of the viscous coefficients, which in turn cannot be greater than
of the order of (z/r) being proportional to the characteristic mixing length in the
fluid. The latter is initially assumed to be less than the disc thickness.

As regards the other equations, namely (see below): the two projections of the
relativistic analogue of the Euler equation onto the disc plane, the energy balance
equation and the rest energy conservation law—the same symmetry considerations
imply that they are even under the coordinate reflection z → −z. Therefore, the
leading term is of the zeroth order in (z/r) in the metric expansion.

Using these expansions and expressions for the coordinate differentials

dR =
(

1 − 1

2

z2

r2

)
dr + z

r
dz,

dθ = z

r

dr

r
−

(
1 − z2

r2

)
dz

r
,
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we find the metric in the following form (see also Riffert and Herold 1995):

ds2 =
[

1 − 2

r
+ z2

r3

(
1 + 2a2

r2

)]
dt2 −

[
r2 + a2 + 2a2

r

− a2z2

r2

(
1 + 5

r
+ 2a2

r3

)]
dφ2 + 2a

r

[
2 − z2

r2

(
3 + 2a2

r2

)]
dtdφ−

{
1 − z2

r2D

[
3

r
− 4

r2 − a2

r2

(
3 − 6

r
+ 2a2

r2

)]}
dr2

D
− 2z

rD

(
2

r
− a2

r2

)
drdz−

[
1 + z2

r2D

(
2

r
− 2a2

r3 + a4

r4

)]
dz2, (3.4)

where the notation

D = 1 − 2

r
+ a2

r2

is introduced. Below, we also use (with a few exceptions) the notations introduced
in the original paper by Novikov and Thorne (1973) for the relativistic correction
coefficients.

Finally, the inverse of the matrix gik corresponding to a double-contravariant
tensor has the form:

gik =

∣∣∣∣∣∣∣∣
(gttgφφ − g2

tφ)
−1 ×

∣∣∣∣gφφ −gtφ
−gtφ −gtt

∣∣∣∣ 0

0 (grrgzz − g2
rz)

−1 ×
∣∣∣∣gzz −grz
−grz −grr

∣∣∣∣

∣∣∣∣∣∣∣∣
(3.5)

3.1.2 Circular Equatorial Geodesics

The expression for circular equatorial geodesics can be conveniently found from
the extremum condition for the distance along them. Here we follow the exposition
from Hobson et al. (2006), (their paragraphs 13.10 and 13.13). Indeed, for time-like
trajectories the functional

S =
∫
Lds =

∫
gik
dxi

ds

dxk

ds
ds,

should be minimal, which is equivalent to the Euler-Lagrange equations for L:

d

ds

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0, (3.6)
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where Uig ≡ dxi/ds ≡ ẋi is the four-velocity in Boyer-Lindquist coordinates. As
L does not explicitly depend on t and φ, the following quantities are conserved:

gtiU
i
g = k,

gφiU
i
g = −h,

where k and h have the meaning of the time and azimuthal covariant velocity
components, respectively.

In explicit form, using the components gik from (3.4) at z = 0, we find:

(
1 − 2

r

)
ṫ + 2a

r
φ̇ = k, (3.7)

2a

r
ṫ −

(
r2 + a2 + 2a2

r

)
φ̇ = −h. (3.8)

We temporarily assume that the motion is not necessarily circular and Urg �= 0.
Instead of the r-component of the Euler-Lagrange equations, it is more convenient
to use the condition of normalization of the four-velocity of particles with non-zero
mass:

gtt k2 − 2gtφkh+ gφφh2 + grr (Ur)2 = 1. (3.9)

This yields the following equation for k and h:

ṙ2

2
+ Veff (r) = k2 − 1

2
, (3.10)

where we introduce the effective potential

Veff = −1

r
+ h2 − a2(k2 − 1)

2r2 − (h− ak)2
r3 . (3.11)

The conditions for circular motion include, first, ṙ = 0 and, second, r̈ = 0
(for the particle to stay in a circular orbit). The latter condition is equivalent to the
vanishing of the derivative of Veff with respect to r:

1 + a2(k2 − 1)− h2

r
+ 3(h− ak)2

r2 = 0. (3.12)

Equation (3.10) with ṙ = 0 and Eq. (3.12) allow us to determine k and h as
functions of r and then, using (3.7) and (3.8), to find Utg and Uφg .

To solve the first problem, let us introduce the new variable μ ≡ h − ak and,
to facilitate manipulations, make the change u ≡ 1/r . Then Eq. (3.10), with ṙ = 0
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together with Eq. (3.12), yield the following equation for μ:

u2[(3u−1)2−4a2u3]μ4−2u[(3u−1)(a2u−1)−2ua2(u−1)]μ2+(au−1)2 = 0.
(3.13)

The solution of (3.13) for a stable circular prograde orbit has the form:

μ = − a
√
u− 1

[u(1 − 3u+ 2au3/2)]1/2 . (3.14)

Using (3.14) and (3.10) taken at ṙ = 0, we find the constants h and k, as well as
the componentsUig:

Ug
t = C−1/2 B, Ug

φ = (r3C)−1/2, Ug
r = Ugz = 0, (3.15)

where

B = 1 + a

r3/2 , C = 1 − 3

r
+ 2a

r3/2 . (3.16)

It is easy to verify that the modulus of this vector is equal to unity:

gik Ug
iUg

k = 1

The angular velocity as measured by the clock of an infinite observer (who
measures the coordinate time t), corresponding to such motion, is

Ω = dφ

dt
= r−3/2B−1. (3.17)

It follows that in the Schwarzschild case this value exactly coincides with the
Keplerian angular velocity.

3.1.3 Radius of the Innermost (Marginally) Stable Orbit

Stable circular motion is no longer possible when the minimum of the function
Veff (r, h(rc), k(rc)) disappears at r = rc, where rc is the radius of a circular orbit.
This is equivalent to the condition

d2Veff

dr2

∣∣∣∣∣
r=rc

= 0,
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which leads to the quartic equation

z4 − 6z2 + 8az− 3a2 = 0, (3.18)

where z ≡ r1/2.
Using the Ferrari method (see, e.g., Korn and Korn 2000), we write the

corresponding auxiliary cubic equation:

y3 − 12y2 + 12(3 + a2)y − 64a2 = 0. (3.19)

The real root of Eq. (3.19) is related to the Cardano solution to the corresponding
incomplete cubic equation and is given by

y1 = −2(1 − a2)1/3[(1 + a)1/3 + (1 − a)1/3] + 4. (3.20)

Next, having obtained y1, it is possible to use the Ferrari solution to write the
quadratic equation that gives two real roots of (3.18):

p2 +√
y1p + 1

2

(
−6 + y1 − 8a√

y1

)
= 0 . (3.21)

The larger root of (3.21), p1, determines the boundary of the stable circular motion
of a test particle in the equatorial plane, which we denote as r = rms . Thus,

rms = p2
1 = 3 + 4a√

y1
− (−y2

1/4 + 4a
√
y1 + 3y1)

1/2. (3.22)

It is easy to verify that the result (3.22) coincides with the expression presented in
Page and Thorne (1974), (see formula (15k) therein), taking into account that the
auxiliary values Z1,2 there take the form Z1 ≡ 3 − y1/2 and Z2 ≡ 4a/

√
y1 for

a ≥ 0 in our notation.
In the Schwarzschild metric, a = 0, we recover the well-known result that the

circular motion becomes unstable for r < 6, i.e. at distances smaller than three
gravitational radii from the black hole. For slow rotation, 1 � a > 0, we have
rms ≈ 6 − 4

√
6a/3, and hence the zone of stable motion moves closer to the event

horizon. In the limit case a = 1 we find rms = 1, i.e. the marginally stable circular
orbit coincides with the gravitational radius of a black hole of extreme spin.

During accretion, gas elements in the disc slowly approach rms by losing their
angular momentum due to the action of viscous forces. Once the gas elements fall
into the region with r < rms , due to instability of the circular motion, they no longer
need to lose angular momentum to approach the black hole. This means that the
matter falls freely inside rms , and the standard accretion disc model assumes that
rms is the inner disc radius.
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3.2 Choice of Reference Frame

3.2.1 Bases in General Relativity

Mechanical laws, formulated in the form of vector equations, can be written in
symbolic form irrespective of observer or reference frame. But to represent some
physical quantity describing a natural phenomenon in the form of a set of numerical
values, the measurement procedure should be specified. In Newtonian mechanics,
this means that the observer introduces a coordinate system, and then at each point
in space he/she arbitrarily constructs three basis vectors. The coordinate system and
the basis vectors can evolve over time, which is equal at all points. A tool measuring
time, together with the coordinate grid and a vector basis, form a reference frame,
in which any physical value (scalar, vector or tensor) can be measured, i.e. it can be
represented by a number or a set of numbers.

The situation in relativistic mechanics is different: since it is not possible to
consider time independently, it becomes the fourth component of the space-time
continuum. Therefore, the choice of reference frame reduces to the construction
of a coordinate system and four basis vectors determined at each point in space-
time. In general, this set of basis vectors is usually referred to as a tetrad. Here,
there is no universal observer any more; instead, a set of observers moving along a
certain family of world lines is considered. If one of the tetrad orts, conventionally
corresponding to the time direction, is tangent at each point to these world lines, the
tetrad is said to be ‘transported’ by the observers. The last statement can easily be
understood, since in such a basis, the four-velocity of each observer at any time has
a non-zero projection only on the ‘time’ ort. In other words, the observers are at rest
in this basis, i.e. transport it with them.

3.2.1.1 Coordinate Representation

Thus, the choice of coordinate system and the choice of the tetrad are independent
procedures. Nevertheless, if there is a coordinate system, xi , the tetrad is frequently
chosen in such a way that each basis vector, ei , is tangent to the corresponding
coordinate line. Here the moduli of orts of this so-called coordinate basis are
chosen such that their pairwise scalar products are equal to the corresponding metric
coefficients:

(ei · ek) = gik. (3.23)

We recall that in differential geometry (see paragraphs 3.1–3.4 in Hobson et al.
2006), such coordinate orts are introduced as objects isomorphic to the partial
derivatives of an arbitrary scalar function on the manifold with respect to the
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coordinates,

ei ≡ ∂

∂xi
. (3.24)

Any (tangent) vector is a linear combination of the coordinate orts, and the
components of this linear combination are called contravariant components of the
vector.

In addition to ei the so-called dual basis, ei, is introduced with the orts defined as

(ei · ej) = δij , (3.25)

where δij is the Kronecker symbol. The condition (3.25) implies that each ort of the
dual basis has a unit projection on the corresponding ort of the coordinate basis and
is orthogonal to all other orts of the coordinate basis.

The dual coordinate orts, in turn, are introduced as objects isomorphic to the
coordinate differentials,

ej ≡ dxi. (3.26)

Next, if we use the fact that any tangent vector A can be alternatively presented
as a linear combination of dual coordinate orts, whose coefficients are referred to
as covariant vector components, we obtain the well-known rule of lowering vector
indices:

Ak = Ai(ei · ek) = (Aiei · ek) = (Aiei · ek) = Ai(ei · ek) = Aigik. (3.27)

In a similar way it is easy to show that if we introduce the notation gik ≡ (ei · ek),
then due to the duality of bases, the matrix gik is inverse to the matrix gik , and the
rule of raising of vector indices holds. A similar representation in coordinate bases
can be extended to the more general case of tensors.

3.2.1.2 Tetrad Representation

In this and the subsequent sections we mostly follow the exposition given in
paragraph 7 of Chandrasekhar (1992). Assume that now we project the same vectors
and tensors on an arbitrary tetrad defined by the relations

e(a) = e(a)i ∂
∂xi
, (3.28)

where e(a)i are some functions of coordinates, and the indices labelling the tetrad
orts are in parentheses.
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From the duality condition (3.25) we can introduce the dual tetrad:

e(a) = e(a)i dxi, (3.29)

where e(a)i is the matrix inverse to e(a)i .
In these matrices, there are two kinds of indices: coordinate and tetrad ones. The

coordinate indices can be lowered or raised using the metric (3.1). We can impose
an additional constraint on the tetrad:

e(a)
ie(b)i = η(a)(b), e(a)

i
e(b)i = η(a)(b), (3.30)

where

η(a)(c) η
(c)(b) = δ(a)(b) (3.31)

are mutually inverse matrices and η(c)(b) = diag(1,−1,−1,−1) is the Minkowski
matrix. In other words, we require that the original and dual tetrads be orthonormal
in four-dimensional pseudo-Euclidean space.

Using the above relations, it is straightforward to show that

e(a)i e(a)j = gij , (3.32)

and therefore the following alternative expression for the interval squared holds:

ds2 = η(a)(b)(e(a)i dxi) (e(b)k dxk) = η(a)(b) e(a) e(b), (3.33)

which is useful below.
Note that the values in parentheses on the right-hand side of (3.33) can

be considered as infinitesimal shifts along the corresponding orts of the tetrad.
Therefore, in the introduced tetrad representation with an orthonormal tetrad, the
square of an interval takes exactly the same form as in the Minkowski space-time of
special relativity. Similarly, the expressions (3.28) can be thought of as directional
derivatives along the tetrad’s orts, and these have exactly the form that the usual
partial derivatives, with respect to coordinates in the coordinate basis, take when
changing from the coordinate basis to the tetrad one.

Using the definitions and relations given above, it is easy to see how the tetrad
components of vectors are expressed through their coordinate components. Tetrad
components of a vector are written as

A(a) = ei(a)Ai, A(a) = e(a)i Ai = ηabA(b). (3.34)

Conversely,

Ai = e(a)i A(a), Ai = ei(a)A(a).
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Similar expressions can be written for a tensor of any valence. For example, for
a two-covariant tensor, we have

T(a)(b) = ei(a)ej(b)Tij = ei(a)Ti(b),

and conversely,

Tij = e(a)i e(b)j T(a)(b) = e(a)i T(a)j . (3.35)

Note in conclusion that the relations (3.34) and isomorphism (3.26) can be used
to find contravariant components of the four-velocity in the tetrad representation:

U(a) = e(a)

ds
. (3.36)

That is, it is again a unit tangent vector along the world line, but now its
components are given by small shifts along the corresponding orts of the dual basis.
Using (3.34) it is easy to find the relation between the conventional coordinate
components of four-velocity, Ui = dxi/ds, and its tetrad components. Covariant
tetrad components are derived from contravariant ones using the standard rule in
special relativity: lowering a spatial index is equivalent to changing the sign of the
corresponding component.

3.2.1.3 Covariant Derivative in Tetrad Representation

Let us calculate the directional derivative along a tetrad ort from a contravariant
component of a vector:

A(a),(b) = ei(b)
∂

∂xi
A(a) = ei(b)

∂

∂xi
e
j

(a)Aj = ei(b)[ej(a)Aj ;i + Akek(a);i], (3.37)

where the semicolon denotes the usual covariant derivative in the coordinate basis.
Expression (3.37) can be recast to the form:

A(a),(b) = ej(a)Aj ;iei(b) + e(a)k;iei(b)ek(c)A(c), (3.38)

whence

e
j

(a)Aj ;ie
i
(b) = A(a),(b) − γ(c)(a)(b)A(c), (3.39)

where γ(c)(a)(b) are the so-called Ricci rotation coefficients,

γ(a)(b)(c) = e(b)k;iei(c)ek(a) . (3.40)
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An important point is that for orthonormal bases satisfying (3.30), the coefficients
γ(a)(b)(c) are antisymmetric in the first two indices. Indeed,

0 = (η(b)(a)),i = (e(b)kek(a));i = e(b)k;iek(a) + e(b)kek(a);i = e(b)k;iek(a) + ek(b)e(a)k;i.

Comparing this relation with (3.40) proves the stated property of the Ricci coeffi-
cients.

Finally, let us discuss one more useful property of coefficients (3.40): to calculate
these coefficients only partial derivatives of the components of the tetrad basis
orts are needed, and therefore the Christoffel symbols are not required. Indeed, we
consider auxiliary combinations

λ(a)(b)(c) = e(b)i,j [ei(a)ej(c) − ej(a)ei(c)], (3.41)

and rewrite them in the form

λ(a)(b)(c) = ei(a)ej(c)[e(b)i,j − e(b)j,i]. (3.42)

In the last expression, the ordinary partial derivatives can be substituted by covariant
ones, since the additional terms with Christoffel symbols are symmetric in i, j . Then
expression (3.42) is equal to the difference γ(a)(b)(c) − γ(c)(b)(a).

But in this case,

γ(a)(b)(c) = 1/2[λ(a)(b)(c)+ λ(c)(a)(b) − λ(b)(c)(a)] (3.43)

and, using (3.41), it is possible to calculate the Ricci rotation coefficients by taking
the partial derivatives of the components of the tetrad basis orts.

We now consider formula (3.39). The left-hand side represents simply the
projection on the tetrad basis of a rank-2 covariant tensor obtained by taking the
derivative of some vector field. Therefore, this combination has the meaning of the
covariant derivative of a vector in a non-coordinate basis.

Next, the right-hand side of (3.39) has exactly the same form as the covari-
ant derivative in a coordinate basis, with the only difference that it involves
tetrad indices (which can be raised or lowered, including for γ(a)(b)(c), using
the Minkowski metric). It can be shown that the same holds for contravariant
components of a vector field and for tensor fields in general.

Thus, as the components of a covariant derivative in a tetrad basis has the same
form as in a coordinate basis, it is convenient to use the same notations and terms
that are used in the coordinate basis. In particular, the Ricci rotation coefficients
are simply referred to as connection symbols in a given basis. We emphasize once
again that they should not be confused with the Christoffel symbols, which represent
another limit case of connection coefficients in a coordinate basis and have different
index symmetry.
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3.2.2 A Tetrad Transported by Rotating Observers

We construct a tetrad basis related at each point in space-time to observers moving
around a black hole in equatorial circular orbits with angular velocityΩ .

Strictly at z = 0, this is the free motion along geodesics found in Sect. 3.1.2.
However, for a small deviation from the equatorial plane, such motion, correspond-
ing to constant z, is possible only if there is some external supporting force. In the
case of a gas disc, for example, this force is due to the pressure gradient.

To start the construction, we direct the time ort of the tetrad along the world
line under discussion. Using the four-vector of the geodesic found in Sect. 3.1.2, we
write it in the form

e(t) = (Ugt + Z0)
∂

∂t
+ Ugφ ∂

∂φ
,

where we add the correction factorZ0(z/r) to the time coordinate component, since
the modulus of the vector e(t) should be equal to unity away from the equatorial
plane as well, whereas the vector Ug itself is unitary only at z = 0. Clearly, with
account for this correction, e(t) would correspond to the four-velocity of the real
motion. A calculation of the modulus of the vector e(t) in metric (3.4) shows that it
is equal to unity under the following condition:

Z0 = −
(z
r

)2 H

2rGC1/2 ,

where we introduce the relativistic correction coefficients

G = 1 − 2

r
+ a

r3/2
(3.44)

and

H = 1 − 4a

r3/2 + 3a2

r2 . (3.45)

Thus, the ort e(t) is transported by the observer rotating around the black hole
with a frequency equal to the φ-component of e(t), which is independent of z. This
frequency corresponds to the free circular motion in the equatorial plane of the black
hole, and rotation occurs in planes of constant z.

We now calculate the time ort of the dual basis. According to the convention rule
for raising and lowering coordinate indices, we have

e(t) = (Ugtgtt + Ugφgtφ) dt + (Ugtgφt + Ugφgφφ) dφ.
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Next, we consider the part of metric (3.4) containing the differentials dr and dz.
It can be rewritten in the form (see the result (3.33) in the previous section):

ds2
rz = −

[
e(r)

]2 −
[
e(z)

]2
,

where

e(r) = |grr |1/2 dr − grz

|grr |1/2 dz,

e(z) =
(
|gzz| − grz

2

|grr |
)1/2

dz

are the radial and vertical orts of the dual basis, respectively. The coordinate com-
ponents of the vectors e(t), e(r) and e(z) satisfy the orthonormality condition (3.30),
as can be easily verified by direct substitution.

The orthonormality condition for a tetrad can now be used to determine the fourth
ort corresponding to the azimuthal direction.

From three orthonormality conditions for three already known vectors, we obtain
that for these conditions to be consistent, the following relation should hold:

e(φ)r = e(φ)z = 0,

and the time and azimuthal components should be related as

e(φ)φ = − e(φ)t e(t)
t

e(t)φ
.

Finally, the normalization condition for e(φ) yields a quadratic equation for e(φ)t ,
and the sign of the solution is dictated by the additional requirement of the choice
of a right-hand triple of space orts of the tetrad.

We thus obtain the dual tetrad basis with the leading corrections in (z/r) due to
out-of-equatorial-plane motion in the form

e(t) = C−1/2
{
G+

(z
r

)2 1

2rG

(
D + 2a

r3/2

(
F − a

r3/2
+ a2

r2

))}
dt −

C−1/2
{
r1/2F +

(z
r

)2 a

rG
Z1

}
dφ, (3.46)

e(φ) = −
{(

D

rC

)1/2

+ 1

2

(z
r

)2 1 − a/r
r3/2 (DC)−1/2

}
dt +
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{
rB

(
D

C

)1/2

+ 1

2

(z
r

)2
[
(1 − a/r) B

(DC)1/2
− H

G

(
D

C

)1/2
]}

dφ, (3.47)

e(r) = D−1/2
{

1 − 1

2D

(z
r

)2
Z2

}
dr + z

r
D−1/2

(
2

r
− a2

r2

)
dz, (3.48)

e(z) =
(

1 + z2

r3

)
dz. (3.49)

To obtain the original basis, which we use to write the equations of motion, it
suffices to calculate the inverse of the matrix e(a)i , which yields

e(t) = C−1/2
[
B −

(z
r

)2 H

2rG

]
∂

∂t
+ (r3C)−1/2 ∂

∂φ
, (3.50)

e(φ) =
{

F

(rCD)1/2
+ O

(
z2

r2

)}
∂

∂t
+

{
G

r(DC)1/2
+ O

(
z2

r2

)}
∂

∂φ
,

(3.51)

e(r) =
{
D1/2 + 1

2

(z
r

)2 Z2

D1/2

}
∂

∂r
, (3.52)

e(z) = − z

r2 (2 − a2/r)
∂

∂r
+

(
1 − z2

r3

)
∂

∂z
. (3.53)

The following notations for the relativistic correction coefficients are introduced
in the expressions for the original and dual bases:

F = 1 − 2a

r3/2 + a2

r2 , (3.54)

Z1 = 3 − 5

r
− a

r1/2 + 3a

r3/2 − 3a2

r3 + a2

r2 + 2a3

r7/2 , (3.55)

Z2 = 3

r
− 4

r2 − a2

r2

(
3 − 6

r
+ 2a2

r2

)
. (3.56)

Here, we omit the terms ∼ O(z2/r2) in the expression for the azimuthal ort of
the original basis due to their complexity. In addition, as we will see below, these
terms are not required in the standard accretion disc model.

For the reader’s convenience, we here preserve the notations introduced in
Novikov and Thorne (1973) for the coefficients B,C,D,F,G, but use the standard
style of Latin letters, which is more familiar to the reader. In addition, the coefficient
H is equivalent to the coefficient C introduced in Riffert and Herold (1995). We
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would also like to point out that two other coefficients, A and B, introduced in
the same paper, are equivalent to our coefficients D and C, respectively. It can be
verified that the original and dual bases presented in Novikov and Thorne (1973)
coincide with the bases derived here at z = 0.

Using formulas (3.46–3.49) and (3.36), it is easy to deduce that solution (3.15)
indeed yields U(a) = (1, 0, 0, 0) in the equatorial plane.

3.2.2.1 The Connection Coefficients

Using (3.41) and then (3.43) and knowing the matrices of the original and dual bases
given above, we can calculate the connection coefficients γ(a)(b)(c).

Of the 64 coefficients, 16 are equal to zero due to anti-symmetry of γ(a)(b)(c) in
the first two indices. For the same reason, only half of the other coefficients (i.e. 24)
have to be found. Since we are interested in the region near the equatorial plane of
the black hole, it makes sense to separate these coefficients into two groups: those
that are ∼ (z/r)0 in the leading order, and those that are proportional to the first
power of (z/r). As mentioned in Sect. 3.1.1, the latter coefficients must appear in
the vertical projection of the relativistic Euler equation, while the former emerge in
other equations.

It can be shown that

(1) if there is no index (z) among the indices of γ(a)(b)(c), then γ(a)(b)(c) ∼ (z/r)0,
(2) if only one such index is present, then γ(a)(b)(c) ∼ (z/r), and, finally,
(3) if two indices (z) appear in γ(a)(b)(c), then this coefficient is of the second order

in (z/r).

Indeed, we examine formula (3.41). Here the brackets contain the original
basis components, which are summed with the coordinate derivatives of the dual
basis components (the raising of a tetrad index can only change the sign of the
component).
In case (1) (a), (b), (c) �= (z). As the (t)-, (φ)- and (r)-orts of the original basis
have no z-component, only terms which do not contain derivatives with respect to
z of the dual basis components, and have no z-component of the dual (r)-ort, make
a non-zero contribution to γ(a)(b)(c). Only in these two cases can the contribution
∼ (z/r) appear, and hence we prove statement (1).

Now, in (3.41) let (b) = (z) and (a), (c) �= (z). Then the non-zero contribution
can only be due to terms containing the z-component of the (t)-, (φ)- and (r)-orts of
the original basis, which are absent. Therefore, to check case (2) we should consider
only the variant when in (3.41) (a) = (z) or (c) = (z). Here, the terms containing
separately either r- or z-components of the (z)-ort of the original basis contribute.
In the first variant, the proportionality to ∼ (z/r) is due to exactly the component
er(z), while in the second, it is due to the derivative with respect to z of one of the
dual basis components that is always an even function of z, as can be easily verified.

We leave it to the reader to prove statement (3).
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Counting shows that there must be 9 connection coefficients without the index
(z), and hence an even function of z, and 12 coefficients with the index (z) and
hence odd functions of z. The calculation indicates that only 4 coefficients of the
first type are non-zero, namely:

γ(t)(φ)(r) = −1

2

H

r3/2C
γ(t)(r)(φ) = −r−3/2 (3.57)

γ(φ)(r)(t) = −r−3/2 γ(φ)(r)(φ) = −1

r

d

dr

(
rD1/2

)
. (3.58)

To compute coefficients (3.57) and (3.58) it is sufficient to use bases taken
without corrections in z. When constructing the standard disc model, the following
facts are also important. First, a direct calculation shows that another 5 connection
coefficients of this type are zero through corrections of the order of ∼ (z/r)2

inclusively. This is a rigorous result, since the coefficients γ(a)(b)(c) under discussion
have no derivatives of the basis components with respect to z, and therefore any
possible unaccounted for corrections due to the terms ∼ (z/r)3 in e(r)z and er(z)
cannot contribute. Second, a direct calculation similarly shows that γ(t)(z)(z) = 0
through the order ∼ (z/r)2.

A calculation of all non-zero coefficients of the second type is a much more
cumbersome task. But as we will see below, the only coefficient of this type that is
needed has the form

γ(z)(t)(t) = z

r3

H

C
.

We note that all connection coefficients of the type γ(a)(t)(t) vanish in the
equatorial plane z = 0. This is consistent with the requirement that the four-velocity
U(a) = (1, 0, 0, 0) must satisfy the geodesic equation at z = 0:

DUa

Ds
= Ub e(b)

(
U(a)

)
+ η(a)(c)γ(c)(b)(d)U(b)U(d) = γ(a)(t)(t) = 0. (3.59)

3.2.3 Relativistic Hydrodynamic Equations

Everywhere below, we only use the tetrad components of vectors, tensors and
covariant derivatives. Therefore, starting from this section, we will substitute the
tetrad notation by the standard one, which is familiar when using the coordinate
basis. This means that from now on we do not put tetrad indices in parentheses
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but denote them by the Latin letters i, j, k.2 In addition, we denote the connection
coefficients by Γ .

The stress-energy tensor of a viscous fluid with energy flux has the form (see,
e.g., paragraph 4.3 in Mihalas and Weibel Mihalas 1984 or paragraph 22.6 in Misner
et al. 1973)

T ik = (ρ + ε + p)UiUk − pηik + 2ησ ik + ζΘP ik − Uiqk − Ukqi, (3.60)

where ρ, ε, p, η and ζ are the rest-energy density, internal energy density, pressure
and two viscosity coefficients, respectively, as measured in the local comoving fluid
volume, and q is the energy flux inside the fluid as measured by a local comoving
observer.

The shear tensor is

σ ik = 1

2

(
Ui ;jP jk + Uk;jP ji

)
− 1

3
Uj ;jP ik, (3.61)

with the projection operator

P ik = ηik − UiUk. (3.62)

The divergence of four-velocity is

Θ = Ui ;i . (3.63)

The relativistic Euler equation is written as

Pis T
sk;k = 0. (3.64)

The energy conservation law has the form

Us T
sk;k = 0. (3.65)

The rest-energy conservation law reads

(ρ Uk);k = 0. (3.66)

The covariant derivative in a non-coordinate basis is

Ai ;j = ej (Ai)+ Γ ikjAk,

2If one of the symbols t, φ, r, z, appears among the indices, it means that the corresponding index
takes this value.
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while the divergence of a rank-2 contravariant tensor is

Aij ;j = ej (Aij )+ Γ ikjAkj + Γ j kjAik.

The energy flux vector and the shear tensor (the deformation tensor free from
pure scaling) are purely space-like objects:

Uiq
i = 0, Uiσ

ik = 0, σ i i = 0. (3.67)

3.3 Construction of the Standard Accretion Disc Model

3.3.1 Basic Assumptions and the Vertical Balance Equation

Thus, we consider a disc from the standpoint of local observers rotating around a
black hole near its equatorial plane with a relativistic Keplerian velocity. Before
writing down the dynamic equations in the projection onto tetrad ((3.50))–((3.53)),
we discuss the basic assumptions of the model and their consequences. In addition
to obvious assumptions about axial symmetry and stationarity of the flow (meaning
that the derivatives ∂t and ∂φ are zero) the main assumption, which we have already
used, is that of a small disc thickness, δ = h(r)/r � 1, where h(r) is the
characteristic height of the disc along the z-axis (more precisely, the disc half-
thickness).

The disc symmetry with respect to the plane z = 0 implies that Ut , Uφ , Ur , qt ,
qφ , qr , ρ, p, η, ζ , and ε are even functions of z, and Uz and qz are odd functions
of z.

We also assume that the characteristic scale of variations of these quantities in
the radial direction is much larger than that in the vertical direction, that is, their
ratio is greater than ∼ δ−1.3

Next, kinematic arguments suggest that

Uz ∼ δUr . (3.68)

If the energy flux determined by the vector q is proportional to the internal energy
gradient ε, then, for the local comoving observer, qtloc = 0 and qφloc, q

r
loc ∼ δqzloc.

Taking (3.68) into account implies that the projection of q onto the four-velocity
of circular equatorial motion is also small, i.e. of the order of ∼ δqzloc. From the

3We note that we also need to make the assumption that the velocity components in the disc plane,
Ur , Uφ , may only change substantially in the vertical direction on scales ∼ r . Otherwise, the
terms in the shear tensor could arise that strongly contribute dynamically to the vertical balance
condition, which would lead to a disc totally different from the basic case of interest here.
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standard Lorentz transformations, we obtain that qt, qφ, qr ∼ δqz, i.e. the energy
flux with respect to the tetrad should be directed almost normally to the disc plane.

Now, taking all of the above into account, we consider the projection of the
relativistic analog of the Euler equation (3.64) onto the ort ez in more detail:

T zk;k + UzUs T sk;k = 0. (3.69)

Using the symmetry of the physical quantities discussed above, and symmetry
properties of tetrad orts and connection coefficients (which become odd functions
of z if they have at least one index z), as discussed in Sect. 3.2.2, it is easy to check
that Eq. (3.69) is indeed an odd function of z. Further, we see that the first term
in (3.69) separately yields the term ∂zp, and other terms containing p are smaller
due to the smallness of Uz. All other terms together can always be written as ∼
zρf (r)(1 + g(r, z)) with the function g(r, z) ∼ O(δ0).

Thus, we arrive at the important conclusion that necessarily

1

ρ

∂p

∂z
∼ δ � 1. (3.70)

This means that in a thin disc the variables p, ∂rp ∼ δ2, are small relative to
the dominant action of the gravitational force in this direction. Therefore, particles
of the disc must move in trajectories close to geodesic ones. Clearly, in a steady-
state and axially symmetric flow, this can be realized only in two cases: when the
matter moves almost radially towards the gravitating centre (and the specific angular
momentum in the disc is close to zero everywhere) or when the matter moves in
almost circular orbits (and the specific angular momentum, oppositely, is maximal).
We note that both cases are consistent with the general assumptions discussed above
and the result (3.70). However, in the last case, strict vertical hydrostatic equilibrium
holds in the disc in the first order in δ. In other words, (3.69) can be rewritten in the
form

1

ρ

∂p

∂z
∼ zf (r)(1 + δ2 . . .). (3.71)

When the flow is almost radial, the corrections in parentheses in (3.71) are not
small, and their value is determined by the contribution from the prevailing radial
motion, when, due to the change in the disc thickness at each radius, the particles
are accelerated in the z direction.

Thus, the standard disc model includes one more independent assumption
regarding the closeness of the fluid particle trajectories to equatorial circular orbits
around the central black hole. Therefore, we will additionally assume that in our
reference frame Uφ,Ur ∼ sUt with s � 1 and later we will see how this second
small parameter is related to δ.
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Consequently, we write equations first not only in the leading order in δ but
also by assuming s = 0, i.e. that the flow moves along geodesic orbits and Ui =
(1, 0, 0, 0). Wherever needed, we then additionally evaluate the contribution from
the terms in the leading order in s.

3.3.1.1 Deformation of the Velocity Field

We first find the non-zero components of the shear tensor in the leading order. First,
the velocity divergence vanishes:

Θ = Uj ;j = Γ j kj U
k = Γ j 0j = 0. (3.72)

(Recall that Γ ijk are the tetrad connection coefficients, rather than Christoffel
symbols, which are connection coefficients in the coordinate basis.)

Next, we have

Ui;jP
jk = Γ itkηkk − Γ itt ,

and, in view of the symmetry in i and k, we see that the only non-zero components
of the shear tensor σ ik are

σ rφ = −1

2

(
Γ φtr + Γ r tφ

) = 1

2

(
1

2

H

r3/2C
+ r3/2

)
= 3

4

D

r3/2C
, (3.73)

σ rz = −1

2
Γ ztφ = O(z). (3.74)

3.3.1.2 Equation of Hydrostatic Equilibrium

Substituting Ui = (1, 0, 0, 0) in (3.69) and taking the smallness (due to the small
sound velocity in the flow), of several non-zero terms containing η and components
of q, into account, we obtain

∂p

∂z
= ρ Γ ztt = −ρ z

r3

H

C
. (3.75)

3.3.1.3 Radial Direction

The radial projection of the relativistic Euler equation for s = 0 reads

T rk;k = 0, (3.76)
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and excluding terms ∼ δ4 containing the connection coefficients and components of
q, we have only one non-zero term of the order of δ2 which has the form4

−[pηrk];k = D1/2 ∂p

∂r

Clearly, this term should be balanced by the leading terms ∼ s. Evidently, the
contribution from

[ρUrUk];k
should be considered first, and here it can only be due to terms containing one of the
connection coefficients of zeroth order in z and the time velocity component. There
is only one such term: 2Γ rtφU

tUφ = 2r−3/2Uφ .

Hence, we reach the important conclusion that s ∼ δ2, i.e. the velocity
components in the disc plane are

Ur,Uφ ∼ δ2, (3.77)

which is used when determining the force balance in the azimuthal direction.

3.3.2 Azimuthal Direction

We consider the last projection of the relativistic Euler equation, or more specif-
ically, its component along the azimuthal ort. Let us proceed in the same way as
above and first write down the terms that are present in the case s = 0. Again, we
take Ui = (1, 0, 0, 0) and see that

[(ρ + ε + p)UφUk];k = 0,

since Γ φtt = 0 through the order ∼ δ2 (see the discussion at the end of Sect. 3.2.2).
Next, the term including the pressure is absent by virtue of the axial symmetry, and
terms with qi cannot contribute to any order higher than ∼ δ4.

4The order of components qi can be estimated as follows. In the stationary case, the divergence of
the energy flux must be of the order of the power generated due to viscous dissipation, which is, in
turn, proportional to some scalar characterizing the degree of the velocity shear and the viscosity
coefficient η. In our case, the viscosity coefficient η < ρhcs ∼ δ2. The divergence is mainly due
to the term ∂zqz. This immediately implies that qz ∼ δ3 and qt,φ,r ∼ δ4.
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It thus remains to consider the contribution

[2ησφk];k = D1/2(2ησ rφ),r + (2ησφz),z + 4ηΓ φrφσ
rφ + ηO(δ2) =

= −3

2
D1/2

(
η
D

r3/2C

)
,r

+ (ηΓ tzφ),z + 3η (rD1/2),r
D

r5/2C
+ ηO(δ2). (3.78)

Here, we are also dealing with terms of the second order in δ2. Therefore, it is
necessary to find the leading contribution from terms ∼ s. Again, we consider only
the prevailing part due to the perfect fluid term:

(ηφi − UφUi)[ρUiUk];k.

The second part, which is proportional to Uφ , can be neglected since the term in
square brackets cannot contribute to the zeroth order in δ, as there are no connection
coefficients of the form Γ itt ∼ δ0, as was discussed at the end of Sect. 3.2.2.

As a result, we obtain

[ρUφUk];k = ρΓ φlkUlUk + ρΓ klkUφUl = ρ(Γ φtr + Γ φrt )Ur =

− ρ U
r

r3/2

(
1

2

H

C
− 1

)
≡ ρ U

r

2r3/2

E

C
, (3.79)

where

E = 1 − 6

r
+ 8a

r3/2 − 3a2

r2 . (3.80)

We now introduce the notation

Tν ≡
∫ +h

−h
T rφν = 2σ rφ

∫ +h

−h
η dz, (3.81)

where Tν is the vertically integrated density of the flux of the φ-component of
momentum in the radial direction. Then, by integrating (3.78) and (3.79) over the
disc thickness and combining them in one equation, we have

∂Tν

∂r
+ 2Tν
rD

(
1 − 1

r

)
+ ΣUr

2r3/2

E

CD1/2 = 0, (3.82)

where the contribution from σφz vanishes due to its being an odd function of z, and
we neglect the dependence of Ur on z, which gives rise to a higher-order correction
(see footnote 2). In formula (3.82) we have introduced the surface density of the
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disc

Σ ≡
∫ +h

−h
ρ dz. (3.83)

The important Eq. (3.82) together with known boundary conditions at the inner
disc radius allows us to calculate the profile Tν(r) for the disc, provided that the
radial velocity distribution is known.

We note that the equation for Tν can also be derived from the angular momentum
conservation law, which was used in the original paper by Novikov and Thorne
(1973) (see equations (5.6.3)–(5.6.6) therein).

3.3.3 Rest Energy Conservation Law and Radial Momentum
Transfer

To solve Eq. (3.82), the radial velocity profile should be specified. It can be obtained
from the rest energy conservation law (3.66):

er (ρUr)+ ez(ρUz)+ Γ ikiρUk = 0. (3.84)

Clearly, the substitutionUi = (1, 0, 0, 0) does not yield non-zero terms up to the
order ∼ δ2 (see the discussion at the end of Sect. 3.2.2). In our reference frame, this
fact can be easily understood: the circular axially symmetric motion corresponds to
zero velocity divergence. It is straightforward to check that the following terms ∼ s
will appear in the continuity equation:

D1/2(ρUr),r + (ρUz),z − (r D1/2),r

r
ρUr = 0, (3.85)

where the last term arises due to the contribution from Γ
φ
rφρU

r , and similar terms

with other velocity components, even if they appear, have an order higher than ∼ δ4.
After integrating over z, the contribution from the second term in (3.85) vanishes

since ρ → 0 far from the equatorial disc plane, and we obtain

(ΣUrrD1/2),r = 0. (3.86)

The combination whose derivative is found in (3.86) is a constant, which must be
identified as the radial flux of matter. After additional integration over φ we obtain
that

2π ΣUrrD1/2 = −Ṁ, (3.87)
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where Ṁ > 0 is the rate of the matter inflow into the disc at infinity, i.e. the mass
accretion rate.

After substituting (3.87) into (3.82), we finally obtain

dTν

dr
+ P1Tν + P2 = 0, (3.88)

where

P1 = 2

rD

(
1 − 1

r

)
,

P2 = − Ṁ
4π

E

r5/2CD
.

The solution to (3.88) with the boundary condition T |rms = 0 is written in the
form

Tν = 1

F(r)

∫ r

rms

P2(x)F (x) dx, (3.89)

F(r) = exp
(∫ r

rms

P1(x)dx

)
. (3.90)

The integral (3.90) is elementary, and as a result we obtain

Tν = Ṁ

4π r2D

∫ r

rms

E

r1/2C
dr. (3.91)

3.3.4 Energy Balance

Here, we consider Eq. (3.65). As above, let us set Ui = (1, 0, 0, 0) and find terms
of the leading order in δ. As in the case of the azimuthal projection of the relativistic
Euler equation, ‘perfect’ terms [(ρ + ε + p)UtUk];k and pη0k;k do not contribute
here. From the shear term, we have

[2ησ tk];k = Γ tlkσ lk = 2η[(Γtφr + Γtrφ)σ rφ +O(δ2)] = 2η[4σ rφ +O(δ2)].

Terms with qi contribute due to rapid change in the energy flux component
normal to the disc with z:

(Utqk);k = ∂qz

∂z
+O(δ4).
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Summing all terms, we obtain from the energy balance equation

∂qz

∂z
= 4η

(
σ rφ

)2 = 3

2
T rφν

D

r3/2C
, (3.92)

whence, after integrating over the disc thickness, we derive the important relation

Q = 3

4

D

r3/2C
Tν, (3.93)

where Q = qz(z = h) is the vertical energy flux escaping from the disc. At this
point it is appropriate to give the dimensional energy flux Q̃ [erg cm−2 c−1]:

Q̃ = 3

8π

Ṁ0GM

r̃3 Φ , (3.94)

where the dimensionless function Φ was obtained in the remarkable paper by Page
and Thorne (1974):

Φ =
[
χ − χ0 − 3

2a ln χ
χ0

−A −B − C

χ(χ3 − 3χ + 2a)

]
, (3.95)

where

χ ≡ √
r̃/R0 , R0 ≡= GM

c2 , χ0 ≡ √
r̃ms/R0

A = 3(χ1−a)2
χ1(χ1−χ2)(χ1−χ3)

ln χ−χ1
χ0−χ1

,

B = 3(χ2−a)2
χ2(χ2−χ1)(χ2−χ3)

ln χ−χ2
χ0−χ2

,

C = 3(χ3−a)2
χ3(χ3−χ1)(χ3−χ2)

ln χ−χ3
χ0−χ3

,

χ1 = 2 cos
( arccos a−π

3

)
, χ2 = 2 cos

( arccos a+π
3

)
,

χ3 = −2 cos
( arccos a

3

)
. (3.96)

The quantities χ1, χ2 and χ3 are the roots of the cubic equation

χ3 − 3χ + 2a = 0 .

Φ → 1 as r̃ → ∞, and Φ → (r̃ − r̃ms)2 at the inner edge of the disc r̃ → r̃ms .
Note that in the Newtonian model

ΦN(r̃) = 1 −
√
r̃ms

r̃
. (3.97)
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After specifying Q, we can calculate the radial profile of the effective tempera-
ture of the disc surface, since by definition Q = σT 4

eff . This is the universal result
of the standard accretion disc theory: Teff does not depend on the specific nature
of the dissipation of the kinetic energy of matter or on the mechanism of thermal
energy transfer towards the disc surface, and is proportional to the value of Ṁ , times
some universal known function of r .

Thus, we have obtained the explicit form of the viscous stress integrated over
the disc thickness, Tν , and the explicit form of the radiation energy flux from its
surface,Q. At the same time, we know only the combinationΣUr , and not each of
these variables separately. In addition, we should determine the disc half-thickness
profile, h(r), and the temperature, pressure and density distributions, T (r, z), p(r, z)
and ρ(r, z), inside it. To do this, the vertical disc structure should be calculated.

3.3.5 Energy Transfer Equation and the Vertical Disc
Structure

The vertical disc structure is defined by three equations. Two of them have already
been obtained above: the vertical hydrostatic balance equation (3.75) and the
thermal energy generation equation (3.92).

The remaining equation is the transfer equation for energy dissipating in the disc.
In the simplest case, the energy transfer is due to photon diffusion in the heated
matter. Strictly speaking, we should write a relativistic analogue of the radiation
heat conductivity equation, which is a variant of the kinetic Boltzmann equation for
photons when their mean free path is much smaller than the characteristic spatial
length of the problem. The Boltzmann equation is relativistically generalized in
Section 2.6 in Novikov and Thorne (1973), in which the full transfer equation is
given as Eq. 2.6.22 (where one must multiply the second term on the left hand
side by the intensity Iν due to a misprint). The standard transition to the diffusion
approximation yields the following equation (see expression 2.6.43 in Novikov and
Thorne 1973):

qi = 1

κ̃ρ

4

3
bT 3P ik(ek(T )+ akT ), (3.98)

where κ̃ is the Rosseland mean opacity of matter, T is the temperature, b is the
radiation constant and ak ≡ Uk;jUj is the four-acceleration. A discussion of
Eq. (3.98) can be also found on p. 165 of Mihalas and Weibel Mihalas (1984).

As regards (3.98), we first note that the four-acceleration never exceeds the order
∼ δ2, since the four-velocity itself differs from the geodesic value (free circular
equatorial motion) only in the second order in δ. In contrast, the derivative in the
first term in parentheses on the right-hand side of (3.98) for k = z raises the order
in δ, since T , as well as ε, vary significantly across the disc thickness. As a result,
as already discussed in Sect. 3.3.1, we see that qz is the leading component of the
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vector q and is determined by the equation

qz = − 1

3κ̃ρ

∂(bT 4)

∂z
, (3.99)

which is identical to the Newtonian form for a thin disc (see Chap. 1).
Equations (3.75), (3.92) and (3.99) must be supplemented with the equation of

state of matter

p(ρ, T ),

the opacity law

κ̃(ρ, T ),

and the explicit form of

η(ρ, T ), or T rφν (ρ, T )

depending on the type of parametrization of the turbulent viscosity in the disc.
In addition, it is necessary to set boundary conditions at the integration interval

z ∈ [0, h]. In the simplest case, we assume that the disc has no atmosphere and

ρ|z=h = T |z=h = 0.

Furthermore, the energy flux vanishes in the disc equatorial plane:

qz|z=0 = 0.

Finally,

2
∫ h

0
T rφν dz = Tν.

Note that the above equations and boundary conditions for the vertical disc structure
automatically guarantee the validity of Eqs. (3.87), (3.91) and (3.93) for the radial
disc structure.

After calculating the vertical structure, we can specify the surface density
distribution using (3.83) and then Ur using (3.87).
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3.3.6 Parametrization of Turbulent Viscosity and Explicit Disc
Structure

Estimates carried out in Shakura and Sunyaev (1973) and Novikov and Thorne
(1973), according to the algorithm described in Sect. 3.3.5, show that at sufficiently
high accretion rate Ṁ , which is the free parameter of the problem, radiation energy
becomes dominant in the inner parts of the disc. An estimate of the threshold value
of Ṁ can be found, for example, in Shakura and Sunyaev (1973) (see formula
2.18 therein). It turns out that the disc thickness far away from its inner radius is
independent of r and for Ṁ of the order of and above the critical value, Ṁcr (when
the disc luminosity reaches the Eddington value in the inner parts of the disc), δ > 1,
corresponding to a spherization of the flow (see expression 7.1 and the discussion
in Shakura and Sunyaev 1973). In addition, later studies showed that the radiation-
dominated region is both thermally (Shakura and Sunyaev 1976) and convectively
(Bisnovatyi-Kogan and Blinnikov 1977) unstable.

This implies that for a correct description of the inner parts of accretion discs at
high accretion rates, when δ increases, terms of higher order in δ should be taken into
account. These include the radial pressure gradient ∼ δ2 in the radial force balance
and the advection term, UrT ∂S/∂r ∼ δ4, which arises in the energy balance and
accounts for the radial heat transfer. The latter, in fact, implies that the heat diffusion
time in the vertical direction is comparable to its radial advection due to radial
transfer of matter. In other words, the main property of the standard accretion disc
model considered here—the local energy balance in the disc—is violated, i.e. the
heat generated due to turbulent energy dissipation is no longer released locally from
the disc surface. It was found that taking the new terms into account also allows for
a correct description in the region near rms , where in the standard model Ur → ∞,
and the construction of a stationary solution, with δ < 1 for Ṁ of the order of and
above Ṁcr , which is stable against thermal perturbations (the so-called ‘slim-disc’,
see Paczynski and Bisnovatyi-Kogan 1981 and Abramowicz et al. 1988 and their
citations list, and, e.g., Klepnev and Bisnovatyi-Kogan 2010). Later, these results
were confirmed by numerical simulations (see, e.g. Fujita and Okuda 1998 and Agol
et al. 2001). We would like to add that a transition from a standard disc to a slim
disc with increasing Ṁ, in the relativistic model around a rotating black hole, should
occur even earlier due to the higher accretion efficiency (which is, in turn, due to
both decreasing rms and additional angular momentum loss from the disc surface by
radiation).

Now, assuming that Ṁ � Ṁcr , let us estimate the disc semi-thickness profile,
which will be useful in the next chapter, in the simplest case when the pressure is
mainly determined by fully ionized hydrogen plasma, i.e.

p = 2ρkT/mp, (3.100)

where mp is the mass of a proton, kB is the Boltzmann constant, and the opacity is
determined by Thomson scattering, κ̃ = κT = 0.4 cm2/g.
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Let us also assume that the kinematic viscosity ν is independent of z and can be
parametrized in the form

ν = αcsh, (3.101)

where 0 < α < 1 is the Shakura parameter determining the turbulent viscosity in
the disc (see Shakura 1972 and Shakura and Sunyaev 1973), and cs is the speed of
sound in the equatorial disc plane. Herein, due to (3.100),

c2
s = 2kTc/mp, (3.102)

where Tc = T (z = 0).
Equation (3.99) yields

∫ h

0
dzqzρ = − 1

3κT
bT 4

∣∣∣∣
h

0
= 1

3κT
bT 4
c .

On the other hand,

∫ h

0
dzqzρ = CqF

∫ h

0
ρdz = 1

2
CqΣF,

where Cq is some correction factor of the order of unity corresponding to the
difference between the escaping radiation flux, Q, and its mean value along the
disc thickness. As a result, we obtain

Tc =
(

3κT
2

Cq

b
ΣF

)1/4

, (3.103)

Next, for simplicity we assume that the entropy is constant along z and, dividing
the left-hand side of (3.75) by ρ, we introduce the enthalpy, dw = dp/ρ,
integrate (3.75) over z and obtain the equatorial value of w, wc ≡ w(z = 0):

wc = −
∫ h

0
dw =

∫ h

0

z

r3

H

C
= h2

2r3

H

C
,

Hence, using that wc = nc2
s , where n is the polytropic index, we obtain

c2
s =

h2

2nr3

H

C
. (3.104)

Finally, as a result of definition (3.81), parametrization (3.101) and Eq. (3.91) we
find

Tν = 3

2

D

r3/2C
αΣcsh = Ṁ

2π

Y

r3/2D
, (3.105)
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where in the second equality we introduce the new variable

Y ≡ (2r)−1/2
∫ r

rms

E

r1/2C
dr, (3.106)

which in the Newtonian limit, far away from the inner edge of the disc, tends to
unity.

Equations (3.93), (3.102), (3.103) and (3.104) are sufficient to exclude all
unknowns exceptΣ and the free parameters Ṁ and α from (3.105). We thus obtain
the following surface density profileΣ:

Σ = Σ0α
−4/5Ṁ3/5r−3/5C3/5D−8/5H 2/5Y 3/5, (3.107)

where the dimensional constant Σ0 combines all relevant physical constants and
numerical coefficients. Its explicit form and numerical value (which depends on the
black hole mass to which we normalize all quantities) can be found by the reader.

Now, using formulas (3.104), (3.102), (3.103) and (3.107), it is possible to derive
the profile h(r). The resulting disc aspect ratio reads δ(r) = h(r)/r:

δ(r) = δ∗r1/20C9/20D−1/5H−9/20Y 1/5, (3.108)

where δ∗ is a constant that determines the characteristic disc thickness δ (which is
of the order of 0.001–0.01).

The observational appearance of relativistic standard accretion disc was modelled
for the first time in Cunningham (1975) (for a comprehensive review, see Gierlinski
et al. (2001) and Li et al. (2005), references therein and their citations list).
The Novikov-Thorne solution is also used as a background solution in theory of
relativistic twisted discs presented in Zhuravlev and Ivanov (2011) and discussed in
more detail in Chap. 4.
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Chapter 4
Relativistic Twisted Accretion Disc

Viacheslav Zhuravlev

Abstract A twisted disc forms around a rotating black hole each time when the disc
outskirts are not aligned with the black hole’s equatorial plane. We derive equations
describing the evolution of the shape of twisted discs and perturbations of density
and velocity necessarily arising in such a disc. This is done under the following
simplifying assumptions: a small aspect ratio of the disc, a slow rotation of the black
hole, and a small tilt angle of the disc rings with respect to the black hole equatorial
plane. Nevertheless, the GR effects are considered accurately. Additionally, an
analysisă of particular regimes of non-stationary twist dynamics (the wave andă
diffusion regimes) is presented both in the framework of the Newtonian dynamics
and taking into account Einstein’s relativistic precession. At the end of the chapter, a
calculation of the shape of a stationary relativistic twisted accretion disc for different
values of free parameters of the model is done.

4.1 Introductory Remarks

In the previous chapter we described a flat disc in the equatorial plane of a
rotating black hole. The axially symmetric structure of a flat disc is evident and
consistent with the symmetry of space near the black hole. If we now relax the main
assumption that the flow of matter at all distances coincides with the equatorial
plane, the question arises: what would be the dynamics of this more complicated,
stationary or non-stationary, flow? Is this flow similar to a disc in any way? For thin
discs as considered here, the answer to this question proves to be positive under
certain conditions.
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The Gravitomagnetic Force
The main reason for the deformation of (for example, an initially flat) disc is that the
black hole spin gives rise to an additional off-centre gravitational interaction with
the gas elements of the flow. It can be shown that far away from the event horizon,
but close to the equatorial plane of the black hole, this interaction is represented by
an axially symmetric force field directed towards the black hole spin axis in planes
parallel to the equatorial (see Thorne et al. (1986), Chapter 3, paragraph A). The
physical meaning of gravitomagnetic force becomes particularly obvious far away
from the gravitating body at r � Rg. In this case the equation of motion for a
particle of mass m near a body of massM , and proper angular momentum J , reads

mp
d2r

dτ 2 = mp
(

g + dr

dτ
× H

)
(4.1)

where

g = −M
r2 er (4.2)

is the standard radial component of the gravitational force, and

H = 2
J − 3er (Jer )

r3 f (4.3)

is an additional dipole field generated by the spinning body. By similarity of
Eq. (4.1) to the equation of motion for a charged particle moving in an electromag-
netic field, this additional field is referred to as gravitomagnetic, since it acts similar
to the Lorentz force. The gravitomagnetic force is directed perpendicular to the
spin of the central body. Clearly, this external force can change the proper angular
momentum of disc elements moving outside the equatorial plane of the black hole
(and hence deform the disc). Here, only the projection of the gravitomagnetic force
onto the angular momentum direction matters, which is proportional to the sine of
the angle between the angular momentum vector and the black hole spin axis. As
we will see shortly, the restriction that allows us to treat the new configuration as
a disc (both stationary and non-stationary) requires that the gravitomagnetic force
is smaller than the central gravitational attraction force, i.e. requires the parameter
a � 1 to be small. In addition, one more restriction can be formulated: the non-
complanarity of the disc with the equatorial plane of the black hole, as well as the
degree of its deviation from the planar form (i.e. twist, warp) should not exceed
certain small values for the disc to be hydrodynamically stable (see Ivanov and
Illarionov (1997) paragraph 7 and Zhuravlev and Ivanov (2011) paragraph 4.2.4).
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Hydrostatic Equilibrium in a Disc Under the Action of a Gravitomagnetic
Force
Let us split a thin planar disc into rings of narrow width. In each ring, the motion
of gas elements is mainly due to the gravitational attraction force from the central
body. The characteristic time of this motion is td ∼ Ω−1. In addition, td determines
the time it takes for the disc to restore hydrodynamic equilibrium across the ring,
since the disc aspect ratio (the ratio of the disc thickness to the radial distance) is of
the order of the ratio of the sound velocity to the orbital velocity. This conclusion
can be also arrived at by noticing that the vertical pressure gradient is δ−1 times
smaller than the unit mass gas element acceleration, i.e. exactly as small as the ratio
of the radial size of the ring to its vertical scale. Thus, we can conclude that if other
forces, acting on a given ring from the adjacent rings or from the black hole, lead
to dynamics with characteristic time tev much greater than the dynamical one, i.e.
tev � td , and hydrostatic equilibrium is maintained in the ring. In other words, the
ring remains flat, and the entire flow preserves a disc-like form. This is undoubtedly
so in a flat disc, since in this case equally oriented rings interact via the viscous force
acting in the azimuthal direction and the angular momentum changes due to inflow
and outflow of matter accreting through the ring, with both processes occurring on
the diffusion time scale, tν ∼ Ω−1δ−2 � td .

Now, let the disc be tilted with respect to the equatorial plane of the black hole
by a small angle β � 1. In a flat disc the gravitomagnetic force contributes only
to the modulus of acceleration of gas elements moving in circular orbits, but now,
due to the non-zero projection of this force (∝ β) onto the angular momentum of
the gas elements, this force makes the orbits precess around the black hole spin
axis. For free particles, this effect is described in detail in the second part of the
next paragraph in terms of the difference between the frequencies of circular and
vertical motion. We also show that the precession frequency is much smaller than
the circular frequency for a � 1 (see formula (4.14)), which is equivalent to the
condition tev � td for a ring composed of gas elements.

Differential Precession and the Twist of a Tilted Disc
Equation (4.14) suggests that the precession of the rings is differential, i.e. depends
on the distance to the centre. As a result, the relative orientation of initially coaxial
rings changes and the disc is no longer flat. However, we keep in mind that under the
condition tev � td , each of the rings behaves ‘rigidly’ in its own vertical direction,
which is now also a function of r . The new configuration is similar to a twisted (or
warped) disc, i.e. a flow symmetric relative to some (now not planar) surface, which
can be called the equatorial surface of the twisted disc. Here, the intersection of the
equatorial surface with a plane passing through the centre makes up a circle—the
instantaneous shape of orbits of gas elements rotating with a given radial distance r .
The disc turns into a set of rings, tilted with respect to the black hole equatorial plane
by a constant angle β, but with node lines (the line formed by the intersection of the
ring planes with the black hole equatorial plane) depending on r , see Fig. 4.1. The
node line is now determined by the position angle γ (r), measured in the equatorial
plane in the positive direction from some fixed direction to the ascending node of a
given ring.
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Fig. 4.1 The geometrical image of a twisted disc consisting of rings, each tilted with the same
angle β = const with respect to the plane A, but having a position angle γ depending on its radius.
The axis x′ is directed towards the ascending node of the particular ring (bold line). The disc is
intersected by the semi-transparent plane B, which contains this ring. The azimuthal angle ψ is
measured counterclockwise from the ascending node of the ring. It can be seen that the plane B is
partially below the disc surface (plotted in light colour in this case) and partially above it (plotted
in dark colour in this case). Additionally, two groups of points are plotted on the ring displayed by
the bold line: the first of them are located at ψ ± π/2 (filled circles), while the others are located
at ψ = 0, π (empty circles). The first group corresponds to the position on the ring, where the
normals to the plane B and to the disc surface coincide with each other, while the second group
corresponds to the position on the ring, where those normals are the most divergent

Radial Projection of the Pressure Gradient
The key point here is that the pressure gradient in a twisted disc, directed (as in
any thin disc in general) almost normal to its warped surface, is not normal to the
planes of the rings composing the disc. Therefore, we conclude that the pressure
gradient acquires two projections, see Fig. 4.2. The main projection is coaxial with
the rotational axis of each ring. Let us here denote it by (∇p)ξ , where ξ is the
distance from the equatorial surface of the twisted disc measured along the direction
of rotation of the ring (ξ reduces to z in the case of a flat disc). We note from
the beginning that (∇p)ξ ∝ ξ due to hydrostatic equilibrium across the ring.
The second projection of the pressure gradient, conventionally denoted as (∇p)r ,
lies in the ring’s plane along the radial direction connecting the disc centre and a
given gas element of the ring. The ratio of these two projections is a small value
proportional to the rate of change of orientations of the rings in the disc, which, in
turn, depends on the radial direction chosen in the plane of the given ring. From
purely geometrical considerations, we show in detail in what follows that for a disc
with β = const , the ratio (∇p)r/(∇p)ξ ∝ βdγ /dr cosψ , where ψ is the angle
measured in the azimuthal direction for the given ring from its ascending node to
the given gas element. Note that the normal to the twisted disc surface is orthogonal
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Fig. 4.2 A sketch of a zone of a twisted disc in the vicinity of an empty circle, located at the
particular disc ring at ψ = π , see Fig. 4.1. The straight line t is tangent to the ring, while the
straight line c is the intersection of the planes A and B in Fig. 4.1. The dashed part of the line
indicate that it is obscured to the observer by the disc surface. There are two normals originating
from the point displayed by an empty circle: one to the plane of the ring, npl , and one to the disc
surface, nsur

to the ring’s plane only in two diametrically opposite points—where the plane of
the given ring intersects with the planes of the adjacent rings. At β = const , these
points are characterized by ψ = ±π/2. At the same time, in other pair of points
with ψ = 0, π , the value of (∇p)r reaches both positive and negative maxima.

Flow Lines, Keplerian Resonance, and Perturbation of Velocity
Thus, in a flat disc, in the leading order in δ � 1, the dynamics in the radial
direction is controlled by the gravitational force, and the corrections ∼ δ2 are
neglected, whereas in a twisted disc the radial projection of the pressure gradient
starts additionally contributing to the radial balance. This addition, on the one hand,
depends on the degree of the twist, and on the other hand, increases proportionally
to the distance from the equatorial disc surface, ξ . Further, since it also depends
harmonically on the azimuthal direction, the gas elements (for ξ �= 0) are subjected
to a periodic, with the orbital period, disturbance by this force, and their orbits
become ellipses with low eccentricity. As is well known, the eigenfrequency of
the small oscillations of free particles in eccentric orbits is equal to the epicyclic
frequency, κ . As the pressure gradient projection considered here excites exactly
such oscillations, the radial profile of the epicyclic frequency, κ(r), is an important
characteristic that determines the shape of both stationary and non-stationary twisted
configurations. In the next section, we derive the required relativistic profile κ(r)
for equatorial circular orbits in the Kerr metric (see Eq. (4.10)). Note from the
beginning that in the special case of Newtonian gravity κ = Ω , and hence the action
of the external exciting force on gas elements with the same frequency results in a
resonance. This means that the amplitude of the perturbed motion, characterized by
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perturbation of the orbital velocity, v, increases without limit. This growth, however,
is always limited by the turbulent viscosity in the disc. Indeed, since the exciting
force amplitude ∝ ξ , so is the amplitude of v. But this would suggest the presence
of a vertical shear, ∂ξv, in each ring. Together with the vertical density gradient
(and hence the vertical gradient of the dynamic viscosity) in the disc, this gives
rise to a volume viscous force that damps the driving of individual layers of each
disc ring through a resonance force. Note that close to the black hole, where the
frequency κ deviates from Ω , the amplitude v remains limited even in the absence
of viscous forces. This allows for the existence of stationary twisted discs with low
viscosity around black holes, in which β(r) takes an oscillatory form (see Ivanov
and Illarionov (1997)).

The Asymmetrical Density Distribution in a Twisted Disc and the Torque due
to a Central Gravitational Force
Thus, we see that the twist of the disc caused by the gravitomagnetic force
necessarily results in a perturbation of the circular motion of gas elements in the
disc rings. The velocity field of this perturbation, v, depends on r (in addition to
being proportional to ∝ ξ , as explained above) and is determined by the current
shape of the disc. By virtue of the continuity of the flow, this gives rise to density
inhomogeneities outside the disc equatorial surface, ρ1 ∝ ξ . Since (∇p)r ∝ cosψ ,
these inhomogeneities take opposite signs in the diametrically opposite points of
any given ring. But this implies that the ring is subject to the total torque of the
central gravitational force acting on the domains with enhanced density outside of
the equatorial plane of the ring (i.e. outside ξ = 0). We denote this torque by Tg .
Since the disc is thin and the gravitational acceleration along the axis of a ring
is itself ∝ ξ , the corresponding component of the gravitational force, and Tg as
well, are quadratic in ξ . In addition, recall that the torque Tg is proportional to the
small warp magnitude, Tg ∝ βdγ /dr . Thus, we arrive at the conclusion that the
dynamics of the twisted disc rings is controlled by Tg , together with the torque due
to the gravitomagnetic force discussed earlier in this introductory section. Note that
in the case β = const considered here, (∇p)r and, correspondingly, ρ1 take their
maximum absolute values (with opposite signs) at ψ = 0, π , i.e. at the node line
of each ring,1 see also Fig. 4.4. But this implies that Tg lies in the plane formed
by the angular momentum of each ring and the black hole spin axis. By virtue of
the symmetry of the problem, the total contribution to Tg from other azimuths does
not alter its direction. Therefore, immediately after the gravitomagnetic force turns
an imaginary tilted planar disc into a twisted configuration with β = const , the
gravitational force acting on the asymmetrically located matter of the disc, relative
to the surface ξ = 0, tends to change the tilt angles of the disc rings: either to align
the rings with the equatorial plane of the black hole or, conversely, to remove them
from it. On the other hand, once β becomes dependent on r , the maxima of absolute

1For the sake of making the description as rigorous as possible, it is important also to add that
the coincidence of azimuthal location of maxima of (∇p)r and ρ1 occurs only when the effect of
viscosity on the gas elements of the ring is neglected.
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values of (∇p)r are shifted from the node line of each ring to some new ψ , which
gives rise to a component in Tg that also contributes to the precession motion of the
disc rings, just like the gravitomagnetic torque.

Additional Influence of the Viscous Torque
The dynamics of twisted discs as sketched above is complicated due to the presence
of non-zero viscosity in the disc. First of all, each ring of the disc is subjected to
the action of the viscous force arising due to the difference between the direction of
the tangential velocity of the ring and that of the adjacent rings. This difference is
maximal in the directions where the ring planes intersect, i.e. exactly where (∇p)r
vanishes, see Fig. 4.3. In the above example of a configuration with β = const ,
this corresponds to ψ = ±π/2, i.e. perpendicular to the node line of the rings. The
viscous force, being proportional to the difference in tangential velocities, is directed
at these points perpendicular to the ring plane and has different signs on different
sides of the node line. Therefore, the corresponding torque, Tν , is perpendicular
to the plane made up by the angular momentum of the ring and the black hole spin
axis. In other words, the viscous interaction between the disc rings leads only to their
precession around the black hole spin axis, see Fig. 4.4. Note also that the viscous
torque Tν ∝ βdγ /dr , which appears due to the difference between the tangential
velocities of adjacent rings, and Tν ∝ ξ2 due to the viscosity coefficient. It is
important to note that as soon as the profile β(r) is formed due to the gravitational
torque Tg , the viscous torque Tν also starts causing alignment/misalignment of the

n
pl 

= n
sur

Δυ
az

Fig. 4.3 A sketch of the zone of a twisted disc in the vicinity of the filled circle located at the
particular ring at ψ = π/2, see Fig. 4.1. The visible part of the disc is transparent in the figure,
while the part of it obscured by the semi-transparent plane B shaded, see Fig. 4.1. Dashed and
dot-dashed lines represent the rings adjacent to the particular ring, with larger and smaller radii,
respectively. There are two normals originating from the point indicated by the filled circle: to the
plane of the ring, npl , and to the disc surface, nsur . In addition, we have the velocities of the flow
rotation corresponding to the displayed rings, evaluated at the same ψ = π/2 and transported to
this point. Their difference is the relative velocity Δvaz, which causes the emergence of a viscous
force acting on the particular ring from the adjacent rings
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Fig. 4.4 A sketch of the forces acting on a particular ring in a twisted disc, see Fig. 4.1. Although
both the central gravitational force, Fg , and the viscous force, Fν , are non-zero everywhere
along the ring, their vectors are displayed here in the points of their maximum magnitude only,
see Fig. 4.1 and also Figs. 4.2 and 4.3. The full averages of these forces vanish, whereas the
corresponding full torques, Tg and Tν , are non-zero. In this case (look at the direction of the
angular momentum of the particular ring, L) the viscous torque causes precession of the ring,
whereas the central gravitational torque causes evolution of its inclination

ring with the equatorial plane of the black hole. This happens for the same reasons
as Tg also starts contributing to the precession motion, and as discussed above, the
location of the intersection between planes of adjacent rings becomes shifted in the
azimuthal direction.

Additional Advection Effects
In addition to causing the appearance of Tν , the viscosity in a twisted disc, like
in a flat accretion disc, leads to radial diffusion transfer of the angular momentum
component parallel to the equatorial plane of the black hole (which is non zero
exactly for a tilted/twisted disc) towards the disc centre, due to simple transport of
the accreting matter, and towards its periphery due to the corresponding outflow
of angular momentum. In the case of a relativistic disc, an additional loss of this
angular momentum component occurs due to thermal energy outflow in the form of
radiation from the disc surface (see Eq. (C6) in Zhuravlev and Ivanov (2011)).

All forces participating in the dynamics of a twisted disc appear in the so-called
‘twist’ equation—the master equation of the twisted disc theory. This equation is
derived and analyzed in the subsequent sections.
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4.1.1 Weakly Perturbed Circular Equatorial Motion: Epicyclic
Frequency and Frequency of Vertical Oscillations

In a twisted disc, we assume motion of matter outside the equatorial plane of the
Kerr metric. This motion is not necessarily circular in the projection onto that plane.
Therefore, we first analyze the properties of free particles moving in orbits slightly
different from circular ones.

We first assume that the particles move exactly in the equatorial plane but in
slightly non-circular orbits. This problem can be solved using relativistic hydrody-
namic equations with zero pressure, and by assuming that there is a small deviation
from the purely circular velocity. Also, instead of Eqs. (3.64) and (3.65), it is better
to use the original equations in the form

T ik;k = 0, (4.4)

where in the considered case of free motion, T ik = ρUiUk and ρ = const . Under
the last assumption, the velocity field, as follows from the rest-energy conservation
law (3.66), is divergence-free, and (4.4) is equivalent to the following equation:

Ui ;kUk = 0. (4.5)

We now consider a small deviation from the four-velocity of the circular equatorial
motion and denote it by vi . Unperturbed motion corresponds to rest in the projection
onto tetrad (3.50)–(3.53), used to construct the flat accretion disc model, i.e. is
given by the four-velocity Ui0 = {1, 0, 0, 0}. Substituting the sum Ui0 + vi in (4.5),
we obtain linear equations for small perturbations of the four-velocity vi , which is
assumed to be a function of t only:

vi ;kUk0 + Ui0;kvk = 0. (4.6)

Taking into account that Ui0;k = Γ itk, for i = 1, 2 we obtain the set of equations

vr ;t + Γ rtφvφ = C−1/2B
dvr

dt
− 2r−3/2vφ = 0, (4.7)

vφ ;t + Γ φtr vr = C−1/2B
dvφ

dt
+ r−3/2

(
1 − 1

2

H

C

)
vr = 0. (4.8)

It follows that small perturbations of the four-velocity components in the equatorial
plane of the rotating black hole oscillate in time. For example, vr satisfies the
equation

d2vr

dt2
+ 2C

r3B2

(
1 − H

2C

)
vr = 0, (4.9)
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which implies that the square of the frequency of these oscillations, epicyclic by
definition, has the form

κ2 = r−3B−2(2C −H) = r−3
(

1 + a

r3/2

)−2
(

1 − 6

r
+ 8a

r3/2 − 3a2

r2

)
. (4.10)

A somewhat different derivation of κ can be found in the Appendix in Okazaki
et al. (1987). It is important to note that (4.10) contains a derivative with respect
to the coordinate time, and therefore the epicyclic frequency is determined by the
clock of an infinitely remote observer, similarly to the circular frequency (3.17)
introduced above. By comparing Eq. (3.18), which defines the location of the
innermost stable circular equatorial orbit in the Kerr metric, rms , with (4.10), we
infer that κ2(rms) = 0. For r < rms the epicyclic frequency becomes imaginary, and
Eq. (4.9) has exponentially growing solutions. This must be true since, in this region,
free circular motion around a rotating black hole becomes unstable. In Sect. 3.1.3
this result was obtained from an analysis of the form of the effective centrifugal
potential, in which a test particle moves in an equatorial circular orbit. We see that
rms can be determined alternatively from the calculation of the profile κ2(r) in the
Kerr metric.

It is well known that for Newtonian motion, so-called Keplerian degeneration
occurs when κ = Ω for non-circular motion, which causes the non-relativistic orbits
to be closed. However, this symmetry is broken for relativistic free motion, and the
epicyclic frequency κ differs from Ω already close to a non-rotating (a = 0) black
hole, where its square is

κ2 = r−3
(

1 − 6

r

)
= Ω2

(
1 − 6

r

)
< Ω2. (4.11)

The difference between the epicyclic and circular frequencies results in the well
known effect of precession of the elliptical orbit. Far away from the horizon of a
Schwarzschild black hole, i.e. for r � 1, the frequency of the orbits rotation, called
the Einstein precession frequency, isΩp ≈ 3/r5/2.

Suppose now that we rotate together with the test particle at some radius. When
considering the problem in the projection onto tetrad (3.50)–(3.53), this particle
remains at rest. We now impart to the particle a small velocity in the direction
perpendicular to the equatorial plane. Equation (3.75) of hydrostatic equilibrium
for a flat disc implies that in our reference frame the particle, being in free motion,
is subjected to acceleration that is proportional to z and tends to return the particle
to z = 0. As a result, the test particle oscillates harmonically with a frequency the
square of which is

Ωlv
2 = H

r3C
, (4.12)
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where the superscript ‘l’ serves as a remainder that the frequency is measured in the
reference frame comoving with the particle in its main circular equatorial motion.
To re-define this frequency as measured by the clock of an infinite observer, as was
done for both circular and epicyclic frequencies, the frequencyΩlv must be divided
by the time dilation factor (the difference between the proper time of the particle
and the time at infinity), i.e. by the t-component of the four-velocity (3.15). Thus,
the square of the frequency of vertical oscillations is

Ωv
2 = r−3B−2H = r−3

(
1 + a

r3/2

)−2
(

1 − 4a

r3/2 + 3a2

r2

)
, (4.13)

which coincides, for example, with the expression presented in Kato (1990) (see also
Ipser (1996)). Equation (4.13) implies that around a non-rotating black hole Ωv =
Ω . This means that the vertical and circular motions have the same period, and the
total motion of the particle is again a circular motion in a closed orbit whose plane,
however, is now slightly tilted towards the initial equatorial plane. The situation
changes for a �= 0, since for Ωv �= Ω the orbit is not closed any more, and the
orbital plane starts precessing around the spin axis of the black hole. The frequency
of the orbital precession is equal to the difference between the circular and vertical
frequencies. For a slowly rotating black hole with a � 1 the precession frequency
of a slightly tilted orbit is

ΩLT = Ω −Ωv ≈ r3/2
(

1 − a

r3/2

)
− r3/2

(
1 − 3a

r3/2

)
= 2a

r3 � Ω. (4.14)

This is simply the angular velocity of the frame dragging by the rotating black hole
(see Eq. (3.3)) in the limit a � 1. The frequency ΩLT is also referred to as the
Lense-Thirring frequency.

In the most general case, where the test particle deviates from circular motion
simultaneously in the vertical and horizontal directions, the particle’s motion in
space can be described by a slightly elliptical orbit, with both plane and apse
line turning with an angular velocity proportional to the difference between the
circular and vertical frequency and the difference between the circular and epicyclic
frequency, respectively. For a � 1, the precession of the orbital plane occurs on a
timescale much longer than the dynamical time, tLT � td , where tLT ∼ Ω−1

LT (see
the discussion in the previous section).

4.2 Choice of Reference Frame

4.2.1 The Metric

Taking the general conclusions of Sect. 4.1 into account, we here consider slowly
rotating black holes, a � 1. In this case, a linear expansion of the Kerr metric in the
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parameter a is sufficient. Then the formula (3.1) takes the form

ds2 = (1−2/R)dt2 − (1−2/R)−1dR2 −R2(dθ2 + sin2θdφ2)+4
a

R
sin2θ dφ dt.

(4.15)

Metric (4.15) is identical to that of a non-rotating black hole written in
Schwarzschild coordinates, except for one non-diagonal term responsible for the
Lense-Thirring precession.

Our main purpose in this section is to introduce the relativistic reference frame
that follows the disc twist. The symmetry of the problem implies that the equations
of motion should have the simplest form in such a frame. As for a flat disc, it is
convenient to use some orthonormal non-coordinate basis. For this basis to follow
the disc shape, its two spatial orts should be tangential to the disc symmetry plane.
At each spatial point we take the orts of the ‘flat’ basis, which are determined,
say, by the equatorial plane of the black hole, and rotate them by the angles
β and γ , defining the disc shape. This is done in the simplest way by using a
Cartesian coordinate system with the z-axis parallel to the black hole spin. However,
we should first understand which four-dimensional basis (whose dual tetrad must
transform the metric (4.15) into the Minkowski metric) in the flat-space limit would
produce the spatial part described by the Cartesian reference frame.

This can be done by changing the radial variable in (4.15), namely, by passing
from R to the so-called ‘isotropic’ radial coordinate, RI :

R = RI
(

1 + 1

2RI

)2

. (4.16)

Substituting (4.16) into (4.15) yields

ds2 =
(

1 − 1
2RI

1 + 1
2RI

)2

dt2 −
(

1 + 1

2RI

)4

(dR2
I + R2

I dθ
2 + R2

I sin
2θdφ2)

+4
a sin2θ

RI

(
1 + 1

2RI

)2 dt dφ, (4.17)

where the second term represents an elementary spherical volume. Now, it is easy
to transform to Cartesian coordinates via the change {x = RI cosφ sin θ, y =
RI sinφ sin θ, z = RI cos θ}. Using R2

I sin2 θdφ = xdy − ydx we have

ds2 = K2
1dt

2 + 2aK1K3(xdy − ydx)dt −K2
2 (dx

2 + dy2 + dz2), (4.18)
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where

K1 = 1 − 1
2RI

1 + 1
2RI

, K2 =
(

1 + 1

2RI

)2

, K3 = 2

R3
I

1

1 −
(

1
2RI

)2 , (4.19)

are functions of RI = (x2 + y2 + z2)1/2 only.
Metric (4.18) generates the following dual basis

et = K1dt + aK3(xdy − ydx), ex = K2dx, ey = K2dy, ez = K2dz.

(4.20)

Note that basis (4.20) corresponds to observers at rest in Schwarzschild coordi-
nates, since their world lines, defined by the condition Ui = ei/ds = {1, 0, 0, 0},
correspond to the equalities dx = dy = dz = 0. Their identical clocks are
synchronized in such a way that in equal time intervals, determined by the ort
et , light travels an equal distance in any direction defined by the combination of
ex,y,z. If the observers were to use the coordinate time t , they would discover, for
example, that the light signal in the azimuthal direction, prograde with the black
hole spin, travels a larger distance than in the opposite (retrograde) direction. This
follows from the frame-dragging effect of a rotating black hole and is equivalent
to the well-known tilt of light cones in the azimuthal direction. Finally, we note
that another choice of orthonormal basis is possible in principle, which also
compensates for the space-dragging effect. This basis is called the frame of locally
non-rotating observers, and is moving with an azimuthal angular velocity equal
to (3.3). Mathematically, this corresponds to a correction of the azimuthal ort instead
of the time ort (see Bardeen et al. (1972)).

Below, we need to rotate the spatial part of (4.20), so as to obtain the dual twisted
basis and then the original basis, which, as we recall, is needed to write down the
projection of the hydrodynamic equations. For this, let us first introduce the twisted
cylindrical coordinates.

4.2.2 Twisted Coordinates

We define the twisted cylindrical coordinates {τ, r, ψ, ξ} such that the condition
ξ = 0 determines a coordinate surface coincident with the equatorial surface
of a twisted disc. Here, τ , r , ψ and ξ are the new time variable and twisted
analogues of the radial, azimuthal and vertical cylindrical coordinates, respectively.2

These coordinates were first introduced in Petterson (1977, 1978). At each fixed
r = const , the angle ψ is measured in the positive direction from the ascending

2Here and hereafter, r denotes the twisted radial coordinate.
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Fig. 4.5 Twisted cylindrical
coordinates {r, ψ, ξ }
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node of the circle ξ = 0 crossing the equatorial plane of the black hole. The relation
between {τ, r, ψ ξ} and {t, x, y z} can be obtained by a sequence of rotations at
each radial distance by the angles β(r, τ ) and γ (r, τ ) (Fig. 4.5).

Let us take the radius vector with coordinates

⎡
⎢⎢⎣

τ

r cosψ
r sinψ
ξ

⎤
⎥⎥⎦ , (4.21)

where the three spatial Cartesian coordinates are defined in a frame with the z-axis
tilted by the angle β(r, τ ) towards the black hole spin, and the x-axis lying in the
black hole equatorial plane and turned by the angle γ (r) relative to some direction
common for all r .

Next, we consecutively rotate this frame by the angle β(r, τ ) about its x-axis in
the negative direction and then by the angle γ (r, τ ) about its z-axis in the negative
direction. After these two rotations, this frame transforms into a ‘flat’ Cartesian
frame common for all r , with the xy-plane coinciding with the equatorial plane of
the black hole. Herewith, the new coordinates of the radius-vector are obtained by
multiplying (4.21) first by the matrix

A1(β) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cosβ − sin β
0 0 sin β cosβ

⎤
⎥⎥⎦ , (4.22)
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and then by the matrix

A2(γ ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

⎤
⎥⎥⎦ . (4.23)

As a result, we obtain the following relation between the twisted cylindrical and
the ‘flat’ Cartesian coordinates in the linear approximation in small β:

t = τ
x = r cos γ cosψ − sin γ (r sinψ − ξβ)
y = r sin γ cosψ + cos γ (r sinψ − ξβ)
z = rβ sinψ + ξ.

(4.24)

4.2.3 A Tetrad Transported by Observers Following the Twist

We now move from the ‘flat’ basis (4.20) to the twisted one by rotating its spatial
orts by the twisting angles at each spatial point. First, we need to perform the
rotation strictly opposite to what we did in the previous paragraph. This means
that we should take basis (4.20) as a column and first multiply it by the matrix
A2(−γ ) and then by the matrix A1(−β). After that, since we wish to obtain the
basis corresponding to the (twisted) cylindrical frame, it is necessary to additionally
‘advance’ the three spatial orts by the azimuthal angle ψ , which is achieved by
additional multiplication of the basis by the matrix A2(−ψ).

As a result, we obtain a twisted dual basis, which contains some linear combina-
tions of the ‘flat’ coordinate orts, {dt, dx, dy, dz}. It remains to express it as linear
combinations of coordinate orts of the twisted coordinate frame, {dτ, dr, dψ, dξ}.
For this, it is sufficient to take differentials of the coordinate transformation (given
by (4.24) in the linear approximation in β) and to substitute them in the twisted dual
basis obtained after the rotations. It can be verified that in linear order in β and a,
we have

eτ = (K1−arξK3∂ϕU)dτ+aξK3∂ϕ(Z−rW)dr+arK3(r−ξZ)dϕ−arK3∂ϕZdξ,

(4.25)

er = −ξK2Udτ +K2(1 − ξW)dr, (4.26)

eϕ = −ξK2∂ϕUdτ − ξK2∂ϕWdr + rK2dϕ, (4.27)

eξ = rK2Udτ + rK2Wdr +K2dξ, (4.28)
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where we introduce the new azimuthal variable ϕ = ψ + γ (r) and change to partial
derivatives with respect to the corresponding new coordinates.

We also introduce new variables characterizing the disc geometry:

Ψ1 = β cos γ, Ψ2 = β sin γ (4.29)

and from now on use them instead of the angles β and γ . Additionally,

Z = β sinψ = Ψ1 sin ϕ − Ψ2 cosϕ, U = Ż, W = Z′, (4.30)

where partial derivatives with respect to τ and r are denoted by the dot and the
prime.

It follows that for β = γ = 0 and with an additional transition to Cartesian
coordinates, basis (4.25)–(4.28) is transformed into the ‘flat’ basis (4.20).

As discussed above, observers transporting basis (4.20) are at rest in the
Schwarzschild coordinates. On the contrary, observers associated with basis (4.25)–
(4.28) move in space by following the changing shape of the twisted disc (in
non-stationary dynamics).

As we have seen in Chap. 3, the original basis, onto which the hydrodynamic
equations are projected is obtained by inverting the dual basis matrix. Using (4.25)–
(4.28) in an approximation linear in β and a, we have

eτ = 1

K1

(
∂τ + ξU∂r + ξ

r
∂ϕU∂ϕ − rU∂ξ

)
, (4.31)

er = 1

K2

(
−aξ K3

K1
∂ϕZ∂τ + (1 + ξW)∂r + ξ

r
∂ϕW∂ϕ − rW∂ξ

)
, (4.32)

eϕ = 1

K2

(
−aK3

K1
(r − ξZ)∂τ − aξ K3

K1
rU∂r +

(
1

r
− aξ K3

K1
∂ϕU

)
∂ϕ + ar K3

K1
rU∂ξ

)
,

(4.33)

eξ = 1

K2

(
ar
K3

K1
∂ϕZ∂τ + ∂ξ

)
. (4.34)

Using the original and dual bases, together with the algorithm presented in
Sect. 3.2.1, we can now calculate the connection coefficients. This very cum-
bersome but straightforward procedure yields the following non-zero connection
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coefficients in a linear approximation in β and a:

Γτrτ = K ′
1

K1K2
, Γτrϕ = a K3

K2
2

(
1 − 1

2 (r − ξZ)K4

)
,

Γτrξ = −a K3
K2

2
∂ϕZ

(
1 − 1

2r

(
r2 + ξ2

)
K4

)
, Γτϕr = −Γτrϕ,

Γτϕξ = a K3
K2

2

(
Z + ξ

2r (r − ξZ)K4

)
, Γτξτ = ξ

r

K ′
1

K1K2
,

Γτξr = −Γτrξ , Γτξϕ = −Γτϕξ ,

Γrϕτ = ξ
r

1
K1
∂ϕU − Γτrϕ, Γrϕr = ξ

r
1
K2
∂ϕW,

Γrϕϕ = (rK2)
′

rK2
2

− aξ K3
K1K2

∂ϕU, Γrξτ = U
K1

− Γτrξ ,

Γrξr = W
K2

− ξ
r

K ′
2

K2
2
, Γrξϕ = −ar K3

K1K2
U,

Γrξξ = K ′
2

K2
2
, Γϕξτ = 1

K1
∂ϕU − Γτϕξ ,

Γϕξr = 1
K2
∂ϕW, Γϕξϕ = − ξ

r

K ′
2

K2
2
− ar K3

K1K2
∂ϕU,

(4.35)

where K4 ≡ K3/K1(K1/K3)
′. The other non-zero Γijk , as usual, can be obtained

by taking the asymmetry in the first two indices into account.
Thus, the basis (4.31)–(4.34) together with the connection coefficients (4.35) are

the sum of two parts: the main part that persists at β = 0 and a small additional part
∝ β. In what follows, we denote these parts ‘B0’ and “B1’, respectively.

4.3 The Set of Twist Equations

4.3.1 Projection of the Dynamical Equations onto the Twisted
Basis for a Thin Disc

4.3.1.1 Separation of the Equations into Two Sets Describing a Flat and a
Twisted Disc

Let us use the relativistic hydrodynamic equations in the original form:

T ik;k = 0, (4.36)
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where the stress-energy tensor and its components are presented in Sect. 3.2.3.
Equations (4.36) should now be projected onto the twisted basis (4.31)–(4.34). To
do this, we assume that β � 1. In other words, mathematically we consider the
twist of the disc as a small perturbation to its ‘ground’ state, i.e. to the model
of a flat disc, also referred to as the background. It is important to note that the
appearance of a twist gives rise to new terms in the equations, not only due to the
bending of the basis, but also due to the appearance of additional perturbations of
the physical quantities themselves that enter the stress-energy tensor, including the
density, pressure and four-velocity.

Thus for a twisted disc, instead of (4.36), we may write

((T0
ik + T1

ik);k)0 + ((T0
ik + T1

ik);k)1 = 0, (4.37)

where T0
ik corresponds to the background state and T1

ik is a small Eulerian
perturbation of the stress-energy tensor. The indices 0 and 1 that follow the notation
of the covariant divergence mean that the divergence is taken in bases B0 and B1,
respectively.

The action of the covariant divergence with index 0 on T0
ik , evidently, yields 0,

since these are equations for the background:

(T0
ik;k)0 = 0. (4.38)

Then, in the approximation linear in β, we find the twist equations:

(T1
ik;k)0 + (T0

ik ;k)1 = 0. (4.39)

We assume that in a twisted disc the four-velocity, pressure, rest-mass energy
density, internal energy, viscosity coefficient and energy flux density, as defined in
their standard sense (see Sect. 3.2.3), are given by

Ui = Ui0 + vi, p = p0 + p1, ρ = ρ0 + ρ1, ε = ε0 + ε1,

η = η0 + η1, q
i = qi0 + qi1,

respectively. Here, the indices 0 and 1 denote values related to the background and
perturbations, respectively, and vi are perturbations of the four-velocity.3

3To shorten the equations, we omit the term with the second viscosity ζ : as it can be shown using
the analysis given below, this term does not contribute to the final equations in the leading order in
the small parameters of the problem.
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Thus, T ik0 is a stress-energy tensor which contains only unperturbed quantities in
accordance with definition (3.60) and its perturbation has the form

T ik1 = w1U
i
0U

k
0 + w0(v

iUk0 + Ui0vk)− p1η
ik + 2η1σ

ik
0 + 2η0σ

ik
1 −

Ui0q
k
1 − Uk0 qi1 − viqk0 − vkqi0, (4.40)

where w0 = ρ0 + ε0 + p0 is the background enthalpy and w1 = ρ1 + p1 + ε1 its
perturbation.

In addition, σ ik0 is a shear tensor which contains only unperturbed quantities in
accordance with definition (3.61), and σ ik1 is its perturbed part of the form

σ ik1 = 1

2
[(vi;j )0Pjk0 + (vk;j )0Pji0 ] − 1

3
(v
j

;j )0P
ik
0 +

1

2
[(U0

i
;j )0P

jk
1 + (U0

k
;j )0P

ji
1 ] − 1

3
(U0

j

;j )0P
ik
1 +

1

2
[(U0

i
;j )1P

jk
0 + (U0

k
;j )1P

ji
0 ] − 1

3
(U0

j

;j )1P
ik
0 , (4.41)

where P ik0 is the projection tensor that contains only unperturbed quantities in
accordance with definition (3.62), and its perturbation is written as P ik1 = −Ui0vk−
Uk0 v

i .
Everywhere below we omit the index 0 for the unperturbed quantities. In

addition, the viscous part of the stress-energy tensor in the disc is marked with “ν”
wherever necessary: T ikν ≡ 2ησ ik .

4.3.1.2 Additional Relations Used to Write the Equations

The relations given below are valid up to terms of the order of ∝ δ2, which is
sufficient for the theory of twisted discs in the leading order in the small parameter
δ. In deriving these relations, this simplification enables us to consider that in the
background solution, only Uτ and Uϕ are non-zero, while Ur ∝ δ2 and Ur can be
temporarily set equal to zero.

We first note that the following relation between the components Uτ and Uϕ is
used below:

(Uτ )2 = (Uϕ)2 + 1, (4.42)

which follows from the expression for the norm of the four-velocity in an orthonor-
mal basis. Constraint (4.42) is also useful in differential form:

UτdUτ = UϕdUϕ. (4.43)
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Next, since the normalization of the four-velocity is also valid in the twisted disc,
and the four-velocity perturbations are small, in the linear approximation we have

(Uτ + vτ )2 − (Uϕ + vϕ)2 = (Uτ )2 + 2Uτvτ − (Uϕ)2 − 2Uϕvϕ = 1,

and hence, with account for (4.42), vi is ‘orthogonal’ to Ui :

Uτvτ = Uϕvϕ. (4.44)

Finally, from the condition that σ ik is space-like, we have

σ rτUτ = σ rϕUϕ,

and thus, in the basis B0 used in this section, in the flat disc model, not only T rϕν ,
but also T rτν is non-zero in the order of δ that is of interest to us here:

T rτν = Uϕ

Uτ
T rϕν . (4.45)

Note that in basis (3.50)–(3.53) co-moving with the azimuthal motion, only the
component T rϕν is non-zero (see (3.73)).

4.3.1.3 Equation of Free Azimuthal Motion

The quantities corresponding to the background model and entering the twist equa-
tions (4.39) should be obtained separately from Eq. (4.38). For this, it is sufficient
to use the results from Chap. 3, taking only the transition from basis (3.50)–(3.53)
to the basis B0 into account.

Nevertheless, when deriving the twist equations, it is also necessary to use some
of equations (4.38) written exactly in the basis B0. This regards the r- and ξ -
projections of these equations in the leading order in the small parameter of disc
thickness which, as we know, describe its azimuthal rotation in the equatorial plane
of the black hole and its vertical hydrostatic equilibrium. We emphasize that these
relations are valid for both a stationary and a non-stationary accretion flow, for any
viscosity parametrization, as well as for any specific vertical and radial structure of
the flow. Only the condition δ � 1 is important.

At the first stage of deriving the twist equations we will need only the r-
projection of (4.38). Setting T ik = ρUiUk we find that T rk;k = 0 yields

K ′
1

K1
(Uτ )2 + aK3

K2
(2 − rK4)U

τUϕ − (rK2)
′

rK2
(Uϕ)2 = 0. (4.46)

Exactly this combination (4.46) is used in the derivation; however, it can be
checked that together with (4.42) in the approximation linear in a it gives the
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solution

Uϕ = (rS − 3)−1/2
(

1 − ar−1/2
S (rS − 3)−1

)
, (4.47)

where we have switched to the Schwarzschild radial coordinate rS which is equiva-
lent to r , which we used in Chap. 3 in the expression for Uϕg (see formula (3.15)). It
is easy to check that Uϕg = Uϕ/rS , as must be the case with the transition from the
coordinate basis to B0 taken into account.

4.3.1.4 ‘Gauge’ Condition of the Twisted Frame

The principal kinematic constraint for the twisted reference frame requires a
constant vertical position of fluid particles:

dξ

dτ
= 0, (4.48)

which is provided by fast establishment of hydrostatic equilibrium across the disc
compared to the dynamical time of the twist change, as discussed in Sect. 4.1.
However, as has been already noted in Hatchett et al. (1981), an important point
is that this does not mean that the projection of the four-velocity of the fluid onto eξ
is also zero, because our basis is non-coordinate and its orts are not tangent to the
coordinate lines.

By definition,

vξ = eξ

ds
.

Using (4.28) we have:

vξ = rK2U
dτ

ds
+ rK2W

dr

ds
;

where we should substitute dτ/ds and dr/ds in this relation in the zeroth order in
β, in other words, as values corresponding to the flat disc dynamics. Expressions for
eτ , eϕ and er at β = 0 give

dτ

ds
= 1

K1

(
Uτ − ar2K3

dϕ

ds

)
,

dr

ds
= Ur

K2
,
dϕ

ds
= Uϕ

rK2
, (4.49)

where by definition Ui ≡ ei/ds. As a result, we obtain

vξ = rUτKK2

K1
U + rUrW, (4.50)
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where

K =
(

1 − ar K3

K2

Uϕ

Uτ

)
.

In (4.50) the velocity componentsUτ and Ur should be taken from the correspond-
ing background solution for a flat disc.

4.3.1.5 Explicit Form of the Set of Equations of a Twisted Disc

Now, using (4.42)–(4.50), we write Eq. (4.39) in explicit form by keeping only the
terms in the leading order in the two small parameters δ and u ≡ td/tev .4 Here, we
take into account that quantities of ‘thermal’ origin in the background solution are
small, i.e. p, e, η ∝ δ2ρ and qξ ∝ δ3ρ, qr,ϕ ∝ δ4 (see Chap. 3).

We postpone discussing the effects of the fluid non-ideality for a while. Note that
this assumption not only concerns the vanishing of terms including the viscosity
coefficient and energy flux density, or their perturbations, but also implies the
absence of contributions ∝ Ur . To select the leading-order terms in the ideal fluid
approximation, we start by considering second terms in the τ -, r- and ϕ-projections
of (4.39). It turns out that such terms are proportional to δβ here, and in the r-
projection of (4.39) this contribution is due to the projection of the vertical pressure
gradient onto the orbital plane of motion of matter in the twisted disc (see the
analysis in Sect. 4.1, where this quantity was denoted by (∇p)r ). In addition, the
τ - and ϕ-projections of (4.39) involve terms ∝ δ−1uβ, which should be kept. On
the other hand, the first terms in the τ -, r- and ϕ-projections of (4.39) give rise
to terms containing Eulerian velocity perturbations, vτ,r,ϕ , as well as the Eulerian
rest-mass energy density perturbation, ρ1. Hence, we conclude that

vτ,r,ϕ ∝ max{δ, δ−1u} β, and ρ1 ∝ max{δ, δ−1u} ρβ. (4.51)

In addition, for reasons that become clear below, we temporarily keep partial
derivatives of vi and ρ1 with respect to time, despite their being u−1 times smaller
than the quantities themselves. Finally, the first terms of the τ - and ϕ-projections
of (4.39) also contain terms with the combination ∂ξρvξ , whose amplitudes are
restricted to the order ∝ max{δ, δ−1u} β by Eq. (4.50).

Now, using the result (4.51), it is easy to select the leading terms entering in the
τ -, r- and ϕ-projections of (4.39) due to fluid non-ideality. The most troublesome
here is the contribution due to the shear tensor perturbation, 2ησ ik1 , which appears

4As we discussed above, the smallness of td/tev is necessary to ensure that the accretion flow
outside the equatorial plane of the black hole can be considered a ‘disc’. In turn, this is jointly
ensured by the smallness of both δ and td/tLT � 1 (see Sect. 4.1.1).
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in T ik1 (see (4.40) and (4.41)). However, most of the terms from this contribution
contain jointly η ∝ δ2 and vi ∝ δβ. Therefore, it is necessary to include only the
terms in which the derivative with respect to ξ (lowering the order in δ) occurs
twice. This fact strongly reduces the number of ‘viscous’ terms to be kept. By
similar considerations, the final expressions will not contain terms with q, q1 and η1.
Finally, we stress once again that in addition to the purely ‘viscous’ terms mentioned
above, the contribution due to the radial advection that appears in the background
solution with non-zero viscosity should not be forgotten. We are concerned with the
terms that may appear in the ‘non-viscous’ part of the stress-energy tensor (see the
first term in (3.60)) due to the non-zero value of Ur ∝ δ2.

Taking all of the above into account and using the relations derived in the
previous three sections, we obtain the τ -, r- and ϕ-projections of (4.39) in the form

K
K2

K1
(Uτ )2ρ̇1 +

(
2Uϕ − ar K3

K2

(Uϕ)2 + (Uτ )2
Uτ

)
K2

K1
ρv̇ϕ + 1

r
UτUϕ∂ϕρ1+

1

r

(Uϕ)2 + (Uτ )2
Uτ

ρ∂ϕv
ϕ + ∂r (ρUτvr )+ ∂ξρUτvξ + (rK2

1K
2
2 )

′

rK2
1K

2
2

ρUτvr + Fτν =

r∂ξρ(U
τ )2K

K2

K1
U + ξ

r
ρUτUϕ∂ϕW, (4.52)

K
K2

K1
Uτ v̇r + Uϕ

r
∂ϕv

r −
[

2
K ′

1

K1Uϕ
+ a K1

rK2Uτ

(
r2K3

K1

)′]
vϕ + 1

ρ
F rν =

Wr
∂ξp

ρ
− aξ K2

3

K1K2

(
K1

K3

)′
ZUτUϕ, (4.53)

K
K2

K1
UτUϕρ̇1 +

(
(Uϕ)2 + (Uτ )2

Uτ
− 2ar

K3

K2
Uϕ

)
K2

K1
ρv̇ϕ + (Uϕ)2

r
∂ϕρ1

+2
Uϕ

r
ρ∂ϕv

ϕ + ∂r(ρUϕvr)+ ∂ξρUϕvξ + (r2K1K
3
2 )

′

r2K1K
3
2

Uϕρvr

−a K1

rK2

(
r2K3

K1

)′
Uτρvr + Fϕν = KK2

K1
r∂ξρU

τUϕU

+ξ
r
ρ(Uϕ)2∂ϕW, (4.54)
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where

K =
(

1 − ar K3

K2

Uϕ

Uτ

)
,

and Fτ,r,ϕν is the total contribution due to non-zero viscous forces and the radial
advection of matter in the background solution ∝ Ur .

Explicitly,

Fτν = Uϕ

Uτ
(∂ξT

ϕξ
ν − rW∂ξ T rϕν )− r∂ξρUτUrW, F rν = ∂ξT rξν ,

F ϕν = (∂ξT ϕξν − rW∂ξ T rϕν )− r∂ξρUϕUrW, (4.55)

where

T rξν = − η

K2
(∂ξ v

r + Uϕ∂ϕW), T ϕξν = − η

K2

(
∂ξ v

ϕ − 2a
K3

K2
Uτ (Uϕ)2Z

)
,

T rϕν = −ηr
(
Uϕ

rK2

)′
. (4.56)

We note that T rξν and T ϕξν have the meaning of perturbations of the viscous
stress tensor. In these expressions, the terms ∝ β contributing to the shear tensor
perturbations appear due to the twisted basis. Conversely, T rϕν relates to the
background. Nevertheless, for the sake of brevity, we use the same notation with
the index ν for these three quantities.

Finally, we assume in (4.52)–(4.56) that in the relativistic coefficients K1, K2
and K3, the argument RI is replaced by r , since R2

I = r2 + ξ2 and accounting for
the dependence on ξ here always gives rise to a small correction ∝ δ2 only.

It remains to write the explicit form of the ξ -projection of (4.39). Similarly,
we start with the contribution of terms in the ideal fluid approximation, and first
rearrange the first term in (4.39). The leading-order terms in δ here are, in particular,
ρvϕ and ρ1, but additionally multiplied by ξ . This means that their amplitudes are
restricted to the order max{δ2, u} β. Furthermore, vξ now enters the term Uϕρ∂ϕvξ

which also implies the raising of the order of smallness by δ compared to (4.52)–
(4.54) (it can be seen that in formulas (4.52) and (4.54) vξ enter in combination with
∂ξρ). Besides, of all terms of a ‘thermal’ origin we must now keep the term with
∂ξp1, since it also is of the order of δ2 due to the fact that p1 ∼ δ2ρ1 ∝ ρδ3β.

Turning now to the second term in the ξ -projection of (4.39), we write all terms
up to the order ∝ max{δ2, u} β. From similar considerations, the terms due to fluid
non-ideality (including ‘advective’ terms proportional to ∝ Ur ) are also kept here,
with their smallness increased by the coefficient δ compared to (4.52)–(4.54).
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We thus obtain the following equation:

Uϕ∂ϕv
ξ + r ∂ξp1

ρ
+ ξ (U

ϕ)2

r

(
1 − 2ar

K3

K2

Uτ

Uϕ

)
ρ1

ρ
+

2ξUϕvϕ
[
K ′

1

K1
− K ′

2

K2
− ar

2

K2
3

K1K2

(
K1

K3

)′ (
Uτ

Uϕ
+ Uϕ

Uτ

)]
+ r

ρ
F ξν =

−
[
K2

K1
∂ϕU − 2a

K3Z

K2
+ a ξ

2

r

K2
3Z

K1K2

(
K1

K3

)′]
rUτUϕ + ar2K3

K1
(Uϕ)2∂ϕU,

(4.57)

where

Fξν = 1

rK1K
3
2

∂r (rK1K
3
2T

rξ
ν )+ ∂ξT ξξν + 1

r
∂ϕT

ϕξ
ν +

∂ϕW(T
rϕ
ν + T rϕadv)+ a

K1

rK2

(
r2K3

K1

)′

∂ϕZ

(
Uϕ

Uτ
T rϕν + Uτ

Uϕ
T
rϕ
adv

)
, (4.58)

and T rϕadv = ρUϕUr . We do not provide the explicit form of T ξξν here, as it is not
required in the final form of the twist equations.

Everywhere in (4.57)–(4.58), except in the second term in square brackets on
the right-hand side of (4.57), the argument RI in the relativistic coefficientsK1, K2
and K3 is replaced by r . This term is an exception since it alone is of the zeroth
order in small parameters δ and u in Eq. (4.57). But because we have kept the terms
∝ max{δ2, u} in (4.57), in the term under discussion it should be necessary to take
corrections ∝ δ2 into account due to the dependence of the relativistic coefficients
K2 and K3 on ξ . We did not do this for the reason discussed in the next paragraph.

4.3.2 Completing the Derivation of the Twist Equations

We have thus written the twist equations in the leading orders in the small
parameters δ and u. All corrections linear in the Kerr parameter a have been taken
into account. If we temporarily set a = 0 and consider Eq. (4.57), we see that,
on the one hand, it contains terms proportional to the rate of change of the disc
twist, U , and on the other hand, it has terms containing perturbations of physical
quantities of the order ∝ δ2. Thus, we can say that a thin twisted disc evolves on
long timescales such that u ∼ δ2, due to internal forces only. Then it becomes clear
that Eqs. (4.52)–(4.54) are restricted to the order ∝ δ, and Eq. (4.57) is restricted to
the order ∝ δ2.
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At the same time, when the parameter a is non-zero, a ‘large’ term of the zeroth
order in δ and ∝ aZ arises on the right-hand side of Eq. (4.57). This term describes
the gravitomagnetic interaction of the rotating black hole with the tilted/twisted disc.
In order that all terms in (4.57) be balanced with each other, we must assume that
a ∼ δ2. But then it becomes clear that all additional corrections ∼ a in Eqs. (4.52)–
(4.54) are of the next order in δ and can be omitted. The same applies to all terms
∝ aδ2 in Eq. (4.57), including the correction ∝ δ2 due to the dependence of the
relativistic coefficients on RI in the gravitomagnetic term itself.

In fact, this means that when considering the dynamics of a twisted thin accretion
disc near a rotating black hole, it is sufficient to use the background model, i.e. the
corresponding flat disc, in the Schwarzschild metric with a = 0. The assumption of
slow black hole rotation was required as otherwise the accretion flow (including the
non-stationary one) could not be regarded as a disc, since the vertical hydrostatic
equilibrium there would be violated (see Sect. 4.1). Of course, these conclusions
only apply to slightly tilted/twisted and geometrically thin discs with β � 1, δ � 1.

In what follows, we therefore set a = 0 in all terms except the gravitomagnetic.
This significantly simplifies further calculations required for obtaining the twist
equations in the final form. Let us first analyze Eqs. (4.52) and (4.54). It is
convenient to consider their combinations, which will contain neither ρ̇ nor v̇ϕ .

Eliminating v̇ϕ for a = 0 we obtain the equation

Uϕ∂ϕρ1 + 1

(Uτ )2
ρ∂ϕv

ϕ + Uτ

K2
2

∂

∂r

(
rK2

2
ρvr

Uτ

)
=

ξUϕρ∂ϕW + Uϕ

(Uτ )2
(∂ξT

ϕξ
ν − rW∂ξ T rϕν ), (4.59)

where we have omitted the term ρ̇1, which is of the next order in δ, compared to the
other terms. In the Newtonian limit, as r → ∞, Eq. (4.59) reduces to the continuity
equation for perturbations.

Next, eliminating ρ̇1 for a = 0,5 we obtain the equation

K2

K1
v̇ϕ + 1

r

Uϕ

Uτ
∂ϕv

ϕ +
(
∂rU

ϕ

Uτ
+ K ′

1

K1

Uτ

Uϕ

)
vr + 1

ρUτ
(∂ξT

ϕξ
ν − rW∂ξ T rϕν ) = 0.

(4.60)

In the Newtonian limit, (4.60) reduces to the azimuthal component of the Navier-
Stokes equation for perturbations.

Finally, (4.53) with a = 0 takes the form

K2

K1
Uτ v̇r + Uϕ

r
∂ϕv

r − 2
K ′

1

K1Uϕ
vϕ + 1

ρ
∂ξT

rξ
ν = Wr ∂ξp

ρ
. (4.61)

5a = 0 also in the expression for T ϕξν .
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In the Newtonian limit, (4.61) reduces to the radial component of the Navier-Stokes
equation for perturbations.

It is important to explain why we have retained terms with v̇r and v̇ϕ in
Eqs. (4.60) and (4.61) although they are of the next order in δ. As mentioned
in Sect. 4.1, in the Newtonian limit the epicyclic frequency becomes equal to the
Keplerian circular frequency, which results in a resonance growth of the amplitude
of velocity perturbations of gas elements in the disc, under the action of the radial
projection of the vertical pressure gradient, (∇p)r , which is limited only by the
viscosity. Mathematically expressed, in the limit of an inviscid Keplerian disc,
Eq. (4.60) yields, in the leading order in the parameter u (with the term with ∝ v̇ϕ
omitted), a relation between vr and vϕ such that the sum of the second and the third
terms in (4.61) vanishes. But, as there is a term ∝ δβ in the right-hand side of (4.61),
it follows that v̇r (and hence v̇ϕ as well) acquires the first order in δ in the considered
case. Either viscosity or relativistic corrections eliminate the Keplerian resonance,
and the amplitudes of v̇r and v̇ϕ decrease again to the third order in δ.

Now, from Eq. (4.57) we need to derive the so-called twist equation that plays the
principal role in the theory of twisted discs. For this, we need to explicitly determine
the value ∂ξp/ρ, which is done in the next section. Although the Schwarzschild
approximation is sufficient, we also take linear corrections in a into account. This is
required below to obtain an additional expression for the Lense-Thirring frequency
in terms of the relativistic coefficients used in the twisted basis.

4.3.2.1 Equation of Vertical Hydrostatic Equilibrium

Let us write down the ξ -projection of (4.38) in the basis B0 to the leading order in
δ, as we did in Chap. 3, employing basis (3.50)–(3.53) (see Eq. (3.75)). Taking into
account that the four-velocity of the flow is {Uτ , 0, Uϕ, 0} in the leading order in
δ, we obtain the following equation

∂ξp

ρ
= ξ

r
(Uϕ)2

[
K ′

2

K2
−

(
Uτ

Uϕ

)2

+ ar K3K4

K2

Uτ

Uϕ

]
, (4.62)

where Uτ and Uϕ satisfy the normalization condition (4.42) and the geodesic
Eq. (4.46). With this in mind, we arrive at the final form of the hydrostatic
equilibrium equation

∂ξp

ρ
= −ξ

r

(Uϕ)2

r

(
1 − 2ar

K3

K2

Uτ

Uϕ

)
, (4.63)

where the Schwarzschild profiles of Uτ and Uϕ are used in the term including
parameter a.

It can be verified that with the substitution ξ → z/K2, Eq. (4.63) is equivalent
to (3.75) in a linear approximation in a. Here, we should only take into account that
rS = K2r , where rS is the Schwarzschild coordinate equivalent to the coordinate r
in (3.75).
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4.3.2.2 Twist Equation

Our goal is to rewrite (4.57) in divergent form. Without accounting for the
gravitomagnetic term, Eq. (4.57), in which we also set a = 0, must respect the
conservation law of the angular momentum projection of the twisted disc onto the
equatorial plane of the black hole (the conservation of the disc angular momentum
projection onto the black hole spin in our problem, linear in β, follows from
equations for the background, since the corrections due to the small tilt angle are
proportional to ∝ 1 − cosβ ∼ β2), which reflects spherical symmetry of the
Schwarzschild metric.

It turns out that to do this it is necessary to eliminate vϕ and ρ1, on the left-hand
side of equation (4.57). Therefore, we will use Eqs. (4.59)–(4.61) with v̇r = v̇ϕ = 0
for our purposes, since we will not deal with resonance combinations of vr and vϕ

that vanishes in the main order in u in the Keplerian inviscid limit (see the comment
to Eqs. (4.60) and (4.61) above).

First, on the right-hand side of (4.59) we rewrite the term with ∂ϕW through vr

and vϕ using (4.61) and (4.63) with a = 0. In the resulting expression for ρ1, we
replace vϕ using (4.60). Here, the derivative with respect to ϕ can be eliminated
using the harmonic dependence on ϕ (see (4.30) ). In other words, ∂ϕϕ = −1.
Substituting the obtained expressions for ρ1 and vϕ in (4.57), integrating over ξ ,
and performing integration by parts wherever necessary, using the fact that the
corresponding surface terms vanish as ρ → 0, we arrive at the compact equation

ΣUτUϕ

{
∂ϕU − aK1K3

K2
2

Z

}
+ ∂ϕW K1

K2

{
ΣUϕUr + T̄ rϕν

} =

− 1

2r2K4
2

∫
dξ { ∂r (ξrK1K

3
2U

ϕρ∂ϕv
r + r2K1K

3
2T

rξ ), (4.64)

where, as usual, Σ = ∫
ρ dξ is the surface density of the disc, and the bar

over T rϕ indicates that it is integrated over ξ . In the Appendix of Zhuravlev and
Ivanov (2011), it is shown that (4.64) can be used to obtain the angular momentum
conservation law for a twisted disc.

Equation (4.64) is a master equation governing the dynamics of twisted discs.
It is usually referred to as the “twist equation”. In Sect. 4.1 we gave a qualitative
description of the dynamics of a twisted disc splitted into rings. At the quantitative
level, this information is contained in (4.64). Let us explain the physical meaning
of each term in the twist equation. The first term on the LHS of (4.64) ∝ ∂ϕU

characterizes the rate of change of the horizontal component of angular momentum
for a particular ring of the twisted disc. The second term on the LHS of (4.64)
represents the gravitomagnetic torque, while the combination in front of Z gives the
Lense-Thirring frequency, see (4.68) in the next paragraph. Finally, the combination
∝ ∂ϕW shows the radiative transfer of the horizontal component of the angular
momentum for a particular ring, which arises due to accretion with speed Ur , as
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well as due to the action of viscous forces in the plane (r, ϕ). Further, the first
term on the RHS of (4.64) provides torque due to the central gravitational force,
which emerges due to the asymmetric density distribution perpendicular to the disc
equatorial surface. This term (along with the gravitomagnetic torque) remains non-
zero in the inviscid case. The last term on the LHS of (4.64) represents the viscous
torque acting from the adjacent rings divergent from the chosen ring. The force
associated with the latter torque is directed along the axis of rotation of the chosen
ring, see the corresponding paragraph in Sect. 4.1. With regards to the last two terms,
note that the central gravitational force is always larger than the viscous force. These
forces become comparable to each other in the most viscous discs with a viscosity
parameter α ∼ 1.

Equations (4.60), (4.61) and (4.64) represent a closed set of equations describing
the dynamics of twisted configurations provided that the corresponding model of
the background is specified. Unknown variables in this set include the velocity
perturbations vr and vϕ and the quantity Z characterizing the disc geometry. We
emphasize that in deriving these equations we essentially used only three main
assumptions: a � 1, δ � 1 and β � 1. This means that the equations describe the
dynamics of any geometrically thin accretion flow (disc) with any parametrization
of viscosity and any radial or vertical structure, in both the stationary and the non-
stationary case, (with non-stationary here, referring to a non-stationary background).
Consequently, the equations determine not only the dynamics of twist perturbations
propagating in a stationary flat disc, but also the dynamics of the twisted rings/tori,
when evolution of the geometry is accompanied with their expansion in the radial
direction due to turbulent viscosity, which means that the background itself is
evolving.

4.3.2.3 Once Again About the Characteristic Frequencies of the Problem

In Sect. 4.1.1, we already obtained relativistic expressions for the characteristic
frequencies of the problem. These include the circular and epicyclic frequencies
of free equatorial motion, as well as the frequency of vertical oscillations and the
precession frequency of tilted orbits. Here, we wish to obtain expressions for these
frequencies, but now in terms of the values used above to construct the theory of
twisted discs, i.e. in the basis B0. These expressions are required to write the twist
equations in a more compact form.

The circular frequency of free equatorial motion as measured by the clock of an
infinitely remote observer, which we already presented in Eq. (3.17), can be obtained
simply by dividing dϕ/ds by dτ/ds given in (4.49). We obtain

Ω = K1

KK2

Uϕ

rUτ
. (4.65)

Using (4.47) and (4.42), and remembering that rS = rK2, we can check that (4.65)
coincides with (3.17) in the linear approximation in a.
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We now consider small vertical deviations from the circular equatorial motion. In
Sect. 4.1.1, we discussed that the frequency of vertical oscillations as measured by
an infinitely remote observer, Ωv , is the locally measured frequency, Ωl , divided
by the t-component of the four-velocity of circular motion, Utg . The frequency
Ωl explicitly enters the equation of hydrostatic equilibrium (see Eq. (3.75) or
equivalent, Eq. (4.63) with the substitution ξ → z/K2). Using relations (4.49),
we express Utg ≡ dτ/ds in terms of Uτ :

Utg = KK−1
1 Uτ ,

whence

Ωl = ΩvKU
τ

K1
= Uϕ

rK2

Ωv

Ω
, (4.66)

where the final expression was obtained using (4.65).
But then, from a comparison of (4.66) with (4.63), we see that

Ωv = Ω
(

1 − ar K3

K2

Uτ

Uϕ

)
, (4.67)

where the Schwarzschild profiles for Uτ and Uϕ are used in the term with the
parameter a.

Then, using (4.14), we obtain the Lense-Thirring frequency

ΩLT = aK1K3

K2
2

. (4.68)

It is sufficient for our purposes to know the epicyclic frequency in the
Schwarzschild case with a = 0. This expression can be most easily derived directly
from the twist equations, more precisely, from the part of these equations that
describes the dynamics in the plane of the disc rings, i.e. from (4.60) and (4.61).
Setting the ‘viscous’ terms and radial projection of the pressure gradient on the
right-hand side of (4.61) equal to zero, as well as omitting the dependence of vr

and vϕ on ϕ, we obtain equations for the Eulerian perturbations which describe
free motion of gas elements slightly deviating from circular motion. Clearly, these
equations are equivalent to (4.7)–(4.8) which were written in the basis (3.50)–(3.53).
From these equations, we obtain the following equation for vr :

v̈r + 2
K1K

′
1

K2
2 (U

τ )2

(
∂rU

ϕ

Uϕ
+ K ′

1

K1

(Uτ )2

(Uϕ)2

)
vr = 0, (4.69)
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where the expression before vr is equal to κ2. It can be rewritten in a more compact
form

κ2 = 2
K ′

1(K1U
τ )′

K2
2U

τ (Uϕ)2
(4.70)

to ensure that it coincides with (4.11), considering that the radial Schwarzschild
coordinate rS = rK2 enters the last equation.

Finally, for convenience, we introduce the following quantity with the dimension
of frequency that appears in our problem. In the Schwarzschild case, a = 0,

Ω̃ = K ′
1

K2

1

UτUϕ
= rS − 3

r2
S(rS − 2)1/2

, (4.71)

which tends to the Keplerian value in the Newtonian limit.
Using (4.65), (4.70) and (4.71) allows us to write equations (4.60) and (4.61)

in a more compact form. Lense-Thirring frequency (4.68), evidently, enters the
gravitomagnetic term in (4.64). However, we address this rewriting in the next
section when considering a specific background model.

4.3.3 Twist Equations in the Particular Case of a Stationary
Vertically Isothermal α-Disc

We now consider the form which the twist equations take in the specific background
of a stationary α-disc, which was discussed in Chap. 3. This does not mean, however,
that only stationary twisted solutions are to be considered. In other words, the
equations we obtain are also applicable to arbitrary non-stationary dynamics of the
corresponding twisted disc. For example, they enable us to calculate the evolution of
the shape of an (infinite) initially flat disc instantly tilted to the equatorial plane of a
rotating black hole. The initial stage of the evolution of such a disc was qualitatively
described in Sect. 4.1. In addition, these equations describe the wave-like (in the
case of a disc with sufficiently small α < δ; see also Papaloizou and Lin (1995)) or
diffusion-like (in the case of a disc with sufficiently large α > δ; see also Papaloizou
and Pringle (1983)) dynamics of some twist perturbation imposed on the disc lying
initially in the equatorial plane of the black hole.

4.3.3.1 Explicit Form of the Necessary Background Profiles

The twist equations contain the quantity T̄
rϕ
ν (as well as η̄), related to the

corresponding flat disc model. We could obtain the explicit form of these quantities
by integrating the τ− and ϕ−projections of Eq. (4.38). However, it is simpler to
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use the results from Chap. 3, where we have already obtained this quantity, there
denoted by Tν (see Eq. (3.91)). We should only take into account that now we are
working in another basis than that used for the flat disc, and therefore the transition
from Tν to T̄ rϕν should be specified. First, using the orthogonality condition for the
shear tensor and, hence, for the viscous stress tensor, (3.67), we see that only one
component of the viscous stress tensor, T rϕν

′
, is non-zero in basis (3.50)–(3.53), as

the four-velocity there has only non-zero time components up to terms ∝ δ2. The
prime here marks basis (3.50)–(3.53). Further, the (orthonormal) bases are different
only in that an observer associated with basis (3.50)–(3.53) moves in the azimuthal
direction with the velocity of the free equatorial circular motion, whereas the basis
B0 corresponds to an observer at rest. Therefore, the transformations of vectors and
tensors must be equivalent to the usual Lorentz transformations. Using Landau and
Lifshitz (2000) (see Exercise 1, Paragraph 6 therein) we see that T rϕν = UτT

rϕ
ν

′

where Uτ is the Lorentz factor of azimuthal motion. Finally, it should be taken into
account that integration over ξ differs from that over z by the coefficient K2. As a
result, we obtain

T̄ rϕν = Uτ

K2
Tν. (4.72)

We note that it is possible to change from T rϕν
′

to T rϕν , using the relation (3.35), by
writing it for two bases, equating the right-hand sides and then multiplying one of
the sides of the obtained equalities by matrices inverse to the basis matrices there.
Here, we should only take into account that in the basis B0 the radial coordinate was
changed, (4.16), i.e. that rS = rK2 in the notation of this part of the chapter.

Next, for the case a = 0, which is sufficient here, it is easy to express Tν in
terms of elementary functions. Indeed, the integral in (3.91) can be used with the
substitution y ≡ √

rS :

∫
E

r
1/2
S C

drS =
∫
y2 − 6

y2 − 3
dy = y +

√
3

2
ln
y +√

3

y −√
3
.

For T̄ rϕ with account for (4.72) we finally obtain

T̄ rϕ = Ṁ

2π
Uτ r−3/2 L(r)

K
5/2
2 K2

1

, (4.73)

where

L = 1 −
√

6

y
−

√
3

2y
ln
(y −√

3)(3 + 2
√

2)

(y +√
3)

. (4.74)

By necessity, L = 0 at rS = 6. We note that L = Y (a = 0) where Y was defined
in (3.106).
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On the other hand, the expression for σ rϕ in (3.73), in our case a = 0 in the basis
B0, can be rewritten in the form

σ rϕ = 3

4

D

r
3/2
S C

Uτ = 3

4
K2

1U
ϕ
g U

τ
g U

τ = 3

4

K1

rK2
Uϕ(Uτ )2,

where, as usual, we use relations (4.49).
Then

T̄ rϕ = 3

2
η̄
K1

rK2
(Uτ )2Uϕ. (4.75)

As in Sect. 3.3.6, equating expressions (4.73) and (4.75) we obtain

η̄ = Ṁ

3π

(
r−1/2

UτUϕ

L

K3
1K

3/2
2

)
. (4.76)

In the Newtonian limit, far away from the inner edge of the disc, Eq. (4.76) gives
the well-known result η̄ = Ṁ/(3π).

We assume that the kinematic viscosity is proportional to the characteristic disc
half-thickness times the sound velocity in the disc:

ν ∼ αcshp, (4.77)

where hp is the proper characteristic disc half-thickness, which in our coordinate
system is hproper = K2h and α is the Shakura parameter, which is assumed to be
constant. Since (4.63) implies that cs ∼ √

P/ρ ∼ Uϕh/r , we finally define α by
the equality

ν = αK2U
ϕh2/r. (4.78)

Using (4.76) and (4.78), we obtain the relation

Σh2 = Ṁ

3πα

(
r1/2

Uτ (Uϕ)2

L

K3
1K

5/2
2

)
. (4.79)

To find Ur in the advective term in (4.64), we use the rest-energy conservation
law in the basis B0 for the stationary disc. Again, we use result (3.87). Recalling the
transition to the isotropic radial coordinate, the relation between the coordinate and
physical velocities (3.48) and (4.49), and the difference in the definitions of Σ , we
obtain

− Ṁ

2π
= ΣK1K

2
2 rU

r . (4.80)
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Then Ur can be derived from (4.80) and (4.79) as

Ur = −3α

2

δ2

L
K2

1U
τ (Uϕ)2

√
K2r. (4.81)

Finally, we need to know the profile δ(r). Note that this value is invariant under
the transition between the bases (3.50)–(3.53) and B0, since the change from hp to
h and from rS to r is scaled with the same coefficientK2.

In a gas-pressure-dominated disc with Thomson scattering opacity, it follows
from (3.108) with a = 0 that

δ(r) = δ∗K1/2
1 K

1/20
2 (Uτ )−9/10L1/5r1/20. (4.82)

In order to derive a simpler form of the twist equations, we need to specify the
vertical profile of the rest-energy density. Here we use it in its simplest form in an
isothermal disc:

ρ = ρc exp

(
− ξ2

2h2

)
, (4.83)

where ρc(r) is the equatorial density.

4.3.3.2 Switching to Complex Amplitudes

In the case of an isothermal disc, the velocity perturbations vr and vϕ in the form

vϕ = ξ(A1 sin ϕ + A2 cosϕ) vr = ξ(B1 sinϕ + B2 cosϕ) (4.84)

satisfy Eqs. (4.60) and (4.61), provided that ν does not change with the height, and
that the amplitudes A1, A2, B1 and B2 are functions of r and τ . Indeed, in this
case, all ‘thermal’ terms are ∝ ξ , and the dependence on ξ with the ansatz (4.84) is
identically satisfied in the considered equations.

Let us introduce the complex amplitudes

A = A2 + iA1, B = B2 + iB1 and W = Ψ1 + iΨ2 = βeiγ (4.85)

By constructing two combinations, (4.60) + i ∂ϕ (4.60) and (4.61) + i ∂ϕ (4.61),
we see that all terms in these combinations are ∝ e−iϕ . In particular, the terms
containing W and ∂ϕW transforms into terms containing −iW′e−iϕ and W′e−iϕ ,
respectively).
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As a result, we obtain the following complex equations

Ȧ − (i − α)ΩA + κ2

2Ω̃
B = −3

2
iαK1(U

τ )2UϕΩW′, (4.86)

Ḃ − (i − α)ΩB − 2Ω̃A = −(i + α)UϕΩW′, (4.87)

where we have used Eq. (4.78), as well as the expressions for the frequen-
cies (4.65), (4.70) and (4.71) obtained in Sect. 4.3.2.

In a similar way, by using (4.84) and (4.85) and constructing the combination
(4.64) + i ∂ϕ (4.64), we derive an equation for complex amplitudes. On the right-
hand side of this equation, an integration over ξ should be performed for the
derivative with respect to r . For an isothermal disc with density distribution (4.83),
the equality

∫
ρξ2dξ = Σh2 holds. Thus, the derivative with respect to r acts

on terms proportional to Σh2 or η̄. Instead of these combinations, we substitute
Eqs. (4.79) and (4.76) into our equation, and group common constant factors before
the derivative with respect to r . Additionally, instead of Ur and T̄ rϕ we substitute
expressions (4.81) and (4.73) into the left-hand side of our equation and then
divide the whole equation by Σ . The obtained equation contains Ṁ and Σ only
in the combination Ṁ/Σ , which we express through δ2 and other known quantities
using (4.79). Also using the expression for Lense-Thirring frequency (4.68), we
finally arrive at the following equation

Ẇ − iΩLTW + 3

2
αδ2K

2
1

K2
Uϕ

(
Uτ −K1(rK2)

1/2U
ϕ

L

)
W′ =

δ2K3
1U

ϕ

2r1/2K
3/2
2 L

∂

∂r

{
r3/2K

1/2
2

L

K2
1U

τUϕ
( (i + α)B + αUϕW′ )

}
. (4.88)

Equations (4.86)–(4.88) form a closed set of equations for the quantities A, B
and W as functions of r and τ . In the weak gravity limit they reduce to equations
(30), (31) and (33) in Demianski and Ivanov (1997).

Importantly, under the condition u ≡ td/tev � 1, the derived set of equations can
be reduced to two equations for the variables B and W, since (4.86)–(4.87) prove to
be equivalent to a single equation (4.105): see the next section, where this issue is
considered using the language of frequencies. A derivation of (4.105) can be found
later on in Sect. 4.4.2.
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4.4 Non-stationary Twist Dynamics

4.4.1 The Local Dispersion Relation

As noted in the introductory remarks to Sect. 4.3.3, Eqs. (4.86)–(4.88) describe also
non-stationary twist dynamics exhibited by an infinite stationary accretion α-disc.
Let us consider this dynamics in the example of harmonic twist perturbation, which
depends on τ and r as ∝ exp(−iωτ + ikr). For simplicity, we assume that the
perturbation is local, i.e. that k � 1. If so, we can neglect the radial variation of
the coefficients in Eqs. (4.86)–(4.88), as far as the typical spatial scale of changes in
these coefficients is much larger than the wavelength of the perturbation ∼ k−1.

Additionally, we assume that effects of viscous damping and General Relativity
are weak, i.e. α � 1 and r−1 � 1. The latter allows to shorten calculations, while
not overlooking any of the regimes of twist dynamics. In the leading order in small
parameters we have

Ȧ − (i − α)ΩA + Ω

2

(
1 − 4

r

)
B = −3

2
iαUϕΩW′, (4.89)

Ḃ − (i − α)ΩB − 2Ω

(
1 − 2

r

)
A = −

[
i

(
1 + V1

r

)
+ α

]
UϕΩW′, (4.90)

Ẇ − iΩLTW = δ2r

2

[
i

(
1 + V2

r

)
B′ + α(B′ + UϕW′)

]
, (4.91)

where V1 and V2 are constants that appear in the expansion of the relativistic
coefficients over small r−1, which we do not need to find explicitly for our purposes.
It is implied here that all known quantities entering Eqs. (4.89)–(4.91) take their
Newtonian values, thus,Ω = r−3/2, Uϕ = r−1/2, whereas τ and r are the variables
measured in absence of relativistic effects. In particular, this means that in this case
r = rS .

Changing the derivatives according to ∂/∂τ → −iω and ∂/∂r → ik and
excluding the Fourier amplitude corresponding to A, we obtain the set of algebraic
equations

[
ω2 + 2ω(1 + iα)Ω + (1 + iα)2Ω2 −Ω2 + 2ΩpΩ

]
B̂ =

[(
i

(
1 + V1

r

)
+ α

)
(ω + (1 + iα)Ω)− 3αΩ

]
UϕΩkŴ, (4.92)

δ2r

2

[
i

(
1 + V2

r

)
+ α

]
ikB̂ =

[
−i(ω +ΩLT )+ α δ

2r

2
Uϕk2

]
Ŵ, (4.93)

where B̂ and Ŵ are the Fourier amplitudes of the variables B and W.
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In (4.92)–(4.93) we used the Einstein frequency,Ωp ≡ 3Ω/r � Ω , introduced
in Sect. 4.1.1, see the expression for epicyclic frequency squared (4.11), and the
discussion in that section. Finally, we need to keep in mind that the solution we
are looking for must obey the condition ω � Ω by virtue of the smallness of
u = td/tev , see the discussion in the introduction to this chapter and the introductory
remarks to the derivation of the twist equations given on page 168.

First, let us pay attention to the terms in square brackets on the LHS of (4.92).
We find that the leading terms, both equal to Ω2, cancel each other out, leaving a
set of only small terms. This is how the Keplerian resonance, or alternatively, the
Keplerian degeneration (i.e. the coincidence of epicyclic and rotational frequencies),
briefly discussed in the introduction to this chapter, manifests itself and require that
we retain the terms v̇r and v̇ϕ in Eqs. (4.60)–(4.61), see the explanation on the page
173. Indeed, Eq. (4.92) would yield an infinite B̂ for any non-zero Ŵ in absence
of Ȧ and Ḃ, provided that α = Ωp = 0. On the other hand, if viscous damping
and/or relativistic precession is high enough, so that ω � min{αΩ,Ωp}, we can
neglect the influence of Ȧ and Ḃ, and accordingly, set ω = 0 inside the parenthesis
in question. Below we formulate a condition for when it is possible to do, in the
form of a restriction on the wavelength of the twist perturbation.

Similarly, the square brackets on the RHS of (4.93) contain terms that are small
compared to Ω . For this reason, we keep the terms inside the square brackets as
they are, and only consider the relation δ2rUϕ = Ωh2. The two remaining square
brackets, however, both include leading terms much larger than the corrections due
to viscosity and/or deviation from Keplerian dynamics. This implies that here we
may neglect these corrections.

Finally, we return to the terms in square brackets before B̂ on the LHS of (4.92).
Regardless of the relation between ω and αΩ , or between ω andΩp, we can always
drop the terms ω2, 2αωΩ and α2Ω2 as lower order terms compared to ω, αΩ and
Ωp.6

Taking all of the above into account, we arrive at the following dispersion relation

(ω + iαΩ +Ωp)[−i(ω +ΩLT )+ αΩ(kh)2/2] = −iΩ2(kh)2/4,

which immediately allows us to conclude that in order for the condition ω � Ω

to be satisfied, it is necessary to make the additional assumption that kh � 1, i.e.
that in our model, the twist perturbations must have a wavelength much larger than
the disc thickness. This, in turn, allows us to omit the term ∼ α on the LHS in the
square brackets. The dispersion relation takes the final form

(ω + iαΩ +Ωp)(ω +ΩLT ) = Ω2(kh)2/4, (4.94)

6Retaining the term ω2 in (4.92) and considering the inviscid Newtonian limit for the set of
Eqs. (4.92)–(4.93), we may obtain a cubic equation with respect to ω, and check that it always
has three real roots, one always being of the order of ∼ Ω , even for kh � 1, which violates the
restriction of slow evolution of the twist imposed in our model.
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and can be found in the Appendix to Zhuravlev et al. (2014), where a general
solution is presented. Here we restrict ourselves to consider certain limiting cases.

4.4.1.1 A Newtonian Viscous Disc

In order to study the strictly Newtonian dynamics of twist perturbation, we set
ΩLT = 0 andΩp = 0 in Eq. (4.94). We obtain the following solution

2
ω1,2

Ω
= −iα ± (k2h2 − α2)1/2. (4.95)

In the short wavelength limit, or equivalently, in the limit of sufficiently small
viscosity, when α � kh, we arrive at the following dispersion equation

2
ω1,2

Ω
= −iα ± kh, (4.96)

which is typical for waves propagating with phase speed equal to half the sound
speed in a disc and dissipating on a characteristic timescale ∼ α−1 times larger than
the Keplerian dynamical time. Since the phase speed ∼ hΩ does not depend on
k, there is no dispersion and an arbitrary twist perturbation propagates in the disc
conserving its shape. This kind of twist perturbation is also called a ‘bending wave’.

In the opposite case, when α � kh, i.e. when long wavelength perturbations
are considered or, equivalently, the disc is highly viscous, we obtain the couple of
imaginary solutions

ω1,2

Ω
= −iα, −i(kh)2/(4α). (4.97)

The meaning of the first root can be understood noting that it remains non-zero
in the limit kh → 0, which describes the motion of fluid elements in absence of
radial projection of the vertical pressure gradient, but with account for viscosity.
In the inviscid limit fluid elements move freely, which corresponds to nothing but
epicyclic oscillations. As discussed on p. 176, see Eq. (4.69), epicyclic motion is
described by the equations for velocity perturbations (4.60) and (4.61), together
with the assumption that W = α = 0. The non-zero viscosity causes damping of
the epicyclic oscillations. It can be verified that in the Newtonian limit, Eqs. (4.89)–
(4.90), with their RHSs set equal to zero yield the same decrement. Thus, ω−1

1 is
a damping timescale for epicyclic oscillations. Only the second root is relevant to
twist dynamics despite the fact that its absolute value is much smaller than that of
the first root.

As long as the viscosity is sufficiently high, ω � αΩ , we may set ω = 0 in the
square brackets on the LHS of Eq. (4.92), or, equivalently, in the first parentheses
on the LHS of (4.94), see the comments to Eqs. (4.92)–(4.93). It can be verified that
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in the latter case we immediately arrive at the solution ω2 in Eq. (4.97). Thus, in the
limit α � kh, the terms Ȧ and Ḃ can be omitted, and twist dynamics is controlled
by Ẇ in the left part of the (twist) equation (4.91). The dispersion relation for ω2
has a form, commonly produced by an equation of diffusion type. Hence, as far as
α � kh any twist perturbation arising in a disc at some instant diffuses in the disc.
The corresponding diffusion coefficient is

D = Ωh2/(4α) ∝ α−1 . (4.98)

For α � 1 the twist perturbation propagates in the disc substantially faster, than
the disc matter spirals inwards. Importantly, the diffusion coefficient depends on
viscosity in an unusual way, D ∝ α−1, due to Keplerian resonance, which is
the reason why the first parentheses in (4.94) contain only the term iαΩ in the
limit considered here. Physically, such a dependence is caused by the fact that the
magnitudes of the velocity perturbations induced by disc twist increase inversely
proportional to the value of the viscosity. In turn, the increase of the amplitudes
of vr and vϕ enhances the asymmetry of the mass density distribution along the
vertical direction in the disc and, consequently, the torque associated with the central
gravitational force acting on the disc, see the introduction to this chapter.

An analysis of the limiting cases of twist dynamics in a Newtonian viscous disc
as described here, as well as a confirmation of the conclusions with the help of
hydrodynamic simulations, was provided by Nelson and Papaloizou (1999). The
dispersion relation (4.95) can be found also in Lodato and Pringle (2007).

4.4.1.2 A Formally Inviscid Weakly Relativistic Disc

Let us now consider the opposite case when viscosity is small enough for relativistic
effects to become important, i.e. whenΩp � αΩ .

Setting α = 0 in Eq. (4.94) (assuming for simplicity thatΩLT = 0), we arrive at
the following solution

2ω1,2 = −Ωp ± ((Ωkh)2 +Ω2
p)

1/2. (4.99)

Again, in the short wavelength limit or, equivalently, in the limit of slow Einstein
precession whenΩp � Ωkh, we obtain

2ω1,2 = −Ωp ±Ωkh, (4.100)

which recovers (4.96) with the correction that viscous damping is replaced by
uniform precession.

In the case of small k or, equivalently, fast Einstein precession whenΩp � Ωkh,
we have two real solutions (cf. Eq. (4.97))

ω1,2 = −Ωp, (Ωkh)2/(4Ωp). (4.101)
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Note that in order to change from (4.96) and (4.97) to (4.100) and (4.101), it is
sufficient to make the replacement iαΩ → Ωp.

Similar to what was found in the previous section, the first root of (4.101) is
not relevant to the dynamics of twist perturbations. Instead, it describes relativistic
precession of elliptical orbits of free fluid elements, and can be obtained from
Eqs. (4.89)–(4.90) for α = 0 and with the RHS set equal to zero. However, in
this case the root ω2 does not correspond to the diffusion dispersion relation, but
to a wave with dispersion, since its phase speed ∝ k. This means that a wave
packet spreads as it propagates in the disc. Additionally, in this case the speed of
a wave packet is much less than the typical sound speed in a disc. It was noted in the
previous section that the terms Ȧ and Ḃ in Eqs. (4.89)–(4.90) are negligible in the
diffusion limit α � kh, and only the term Ẇ on the LHS of the twist equation (4.91)
remains to be responsible for the dynamics of the twist perturbation. Note that the
same situation occurs in the regimeΩp � Ωkh considered here.

Finally, we note that the phase speed of the twist perturbation, as well as its
dispersion rate, increases inversely proportional to Ωp. Similarly to this, the rate of
diffusion of the twist perturbation increases inversely proportional to α in the case
of a Newtonian viscous disc.

4.4.2 Reduction of the Set of Equations for Velocity
Perturbations

The review of the non-stationary dynamics of twist perturbation carried out in
the previous section makes it clear that the condition of slow evolution of the
twisted disc shape, i.e. the condition u � 1, inherent in the theory of twisted
discs, is equivalent to discarding the term ω2 in square brackets on the LHS of
Eq. (4.92), see the footnote on p. 183. Note that this remains valid without the
additional simplifying assumptions α � 1 and r−1 � 1, used only to avoid
cumbersome calculations. At the same time, the discarding of ω2 reduces the set
of twist equations with respect to τ down to the second order. The question arises
whether this could have been done from the beginning when writing down the set
of Eqs. (4.86)–(4.88). The discussion below suggests such a possibility.

Let us use the following combination of Eqs. (4.86) and (4.87), which does not
include terms containing the variable A,

Ḃ − 2Ω̃

(i − α)Ω Ȧ =
[

1 + κ2

(i − α)2Ω2

]
(i − α)ΩB −

[
(i + α)UϕΩ − 3iα

i − αK1(U
τ )2UϕΩ̃

]
W′.

(4.102)
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As expected (see the discussion after Eqs. (4.60)–(4.61) on p. 173) ), the
coefficient in front of B on the RHS of Eq. (4.102),

C ≡
[

1 + κ2

(i − α)2Ω2

]
(i − α)Ω,

vanishes in the limit α → 0, r−1 → 0. At the same time, the LHS of Eq. (4.102)
is always small with respect to ∼ ΩB, since u � 1. For this reason, it effects the
dynamics of twist perturbation only as far as |C | � Ω . This means that the LHS of
Eq. (4.102) can be used only when |C | � Ω , and (4.86) has the form

− iΩA + Ω

2
B = Ω O(max{uA, r−1B, αUϕW′}). (4.103)

Equation (4.103) gives that in the leading order with respect to all small
parameters appearing in it, the following equality holds

Ḃ = 2iȦ. (4.104)

By the same reasoning, it is sufficient to take the coefficient in front of Ȧ on the
LHS of Eq. (4.102) in the inviscid Newtonian limit. Hence, we find that Eq. (4.102)
can be written in the form

2Ḃ =
[

1 + κ2

(i − α)2Ω2

]
(i−α)ΩB−

[
(i + α)UϕΩ − 3iα

i − αK1(U
τ )2UϕΩ̃

]
W′.

(4.105)

The analysis performed above allows us to conclude that equation (4.105) is
equivalent to the more general set of the two equations (4.86)–(4.87), provided that
u � 1 (ω � Ω). It can be verified that equation (4.105) together with the twist
equation (4.88) reproduces the local dispersion relation (4.94). Additionally, in the
low frequency case, when ω � min{αΩ,Ωp}, the dynamics of twist perturbation is
provided by the balance of the first and the second terms on the RHS of Eq. (4.105),
which implies that Ḃ = 0.

So, in fact, the reduced equation for perturbations of the velocity (4.105) and the
twist Eq. (4.88) together fully describe all regimes of non-stationary twist dynamics
in a geometrically thin disc with α-prescription of viscosity. Note that a reduction
of the more general Eqs. (4.60) and (4.61) can be performed along the same lines.

4.5 Stationary Twisted Disc

4.5.1 Main Equation and Boundary Conditions

We now consider stationary solutions to the set of Eqs. (4.86)–(4.88). The main goal
of this section is to calculate the shape of a stationary twisted disc.
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Expressing B using W′ from expression (4.105) for Ḃ = 0, and substituting the
result into (4.88), assuming that Ẇ = 0, we obtain the following equation

K1

r
1/2
S L

d

drS

(
r

3/2
S L

K1Uτ
f ∗(α, rS)

dW
drS

)
− 3αUτ (1 − L−1)

dW
drS

+ 4ia

δ2K3
1 r

3
SU

ϕ
W = 0,

(4.106)

where the asterisk denotes complex conjugation and

f (α, rS) = (1 + α2 − 3iαK2
1 )

rS(i − α)
αrS(α + 2i)− 6

+ α. (4.107)

We note that Eq. (4.106) was written after switching to the Schwarzschild radial
coordinate rS . In what follows, we wish to consider only the case a > 0, i.e.
a prograde disc. Apparently, the problem has two free parameters. The first of
these is the combination δ̃ ≡ δ∗/

√|a|. Obviously, δ̃ ranges from 0 to ∞ and
characterizes the relative roles of the hydrodynamic and gravitomagnetic forces
acting on the disc rings. Secondly, (4.106) contains the disc viscosity parameter
0 < α < 1. Equation (4.106) in the strict Newtonian limit with non-zero viscosity
reproduces the corresponding equation (2.10) from Kumar and Pringle (1985)
and, additionally, with post-Newtonian corrections, reproduces equation (33) from
Ivanov and Illarionov (1997), which was confirmed in Zhuravlev and Ivanov (2011)
(see paragraph 4.1 therein).

The coefficients of Eq. (4.106) have a singular point at the inner edge of the
disc at rS = r̄S ≡ 6, where L vanishes. The regularity of the solution at r̄S must
yield a condition for the function W. Using this condition as the initial one, we
can integrate (4.106) from r̄S to infinity and to obtain the form of the stationary
twisted disc. We expand Eq. (4.106) in a power-series of small x0 = rS − r̄S � 1.
In practice, to do this, all quantities that take non-zero values at r̄S should be set
exactly equal to these values and L should be expanded to the main order in x0.
From (4.74), we find

L ≈ x2
0

72
, (4.108)

whence we see that another quantity in (4.106) that vanishes at the inner disc edge,
δ, can be written as

δ = δmsx2ε
0 ,

where ε is the power-law exponentL in Eq. (4.82). Accordingly, δms is also given by
Eq. (4.82), which is evaluated at r̄S and into which we now substitute the coefficient
72−1 from (4.108) instead of L.
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After that, it is easy to obtain the equation valid for x0 � 1,

d

dx0

(
x2

0
dW
dx0

)
+ C1x

2−4ε
0 W + C2

dW
dx0

= 0, (4.109)

where

C1 = − 2i

f (α, rS)

Uτ

Uϕ

ΩLT

K3
1 rSδ

2
ms

and

C2 = − 216α

f (α, rS)

(Uτ )2

rS

are taken at r̄S . We see that for any finite viscosity the last term in (4.109) becomes
dominant sufficiently close to the disc edge. Therefore, the boundary condition can
be straightforwardly written as

dW
dx0

∣∣∣∣
r̄S

= 0. (4.110)

On the other hand, from (4.109) with α = 0, we obtain a simpler equation, the
solution to which is a Bessel function:

W = Cx−1/2
0 J 1

2−4ε
(z) , (4.111)

where

z = √
C1
x1−2ε

0

1 − 2ε
. (4.112)

As x0 → 0 (4.111) tends to a non-zero constant but with a zero derivative with
respect to x0. Therefore, in this case we return to condition (4.110).

Due to the linearity of the problem, it is sufficient to take an arbitrary non-zero
value of W in r̄S , to set the first derivative of W at r̄S equal to zero, and, with
these boundary conditions, integrate (4.106) to infinity. The modulus and phase of
W give the profiles β(rS) and γ (rS) for a stationary twisted disc. In what follows,
we normalize the profile β to unity at infinity.
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4.5.2 A Disc with Marginally Small Viscosity

We consider a disc with very low viscosity separately. Clearly, it is possible to treat
the accretion disc analytically, formally setting α → 0, if simultaneously Ṁ → 0.
In such a disc, Ur → 0. It will, however, still have definite profiles of Σ and h.

In addition, to obtain an analytical solution, we consider the case δ̃ � 1; in other
words, we assume a sufficiently thin disc around a rapidly rotating black hole.

Setting α = 0 in (4.106) yields

d

drS

(
b
d

drS
W

)
+ λW = 0, (4.113)

where

b = r
5/2
S L

K1Uτ
, λ = 24aL

δ2K4
1U

ϕr
5/2
S

. (4.114)

The coefficients in (4.113) take real values, and therefore, there exist real
solutions to this equation. This means that in the absence of viscosity in a stationary
twisted disc γ = const , and may be set equal to zero by the corresponding choice of
reference frame. Therefore, the variable W is identical to the angle β in this section.

4.5.2.1 The Shape of the Disc Near Its Inner Edge

Earlier in this chapter, we have already presented the solution near the inner edge
of an inviscid disc (see Eq. (4.111) ). The constant C1 has in this case the explicit
form:

C1 = 24aUτ

r5
SK

3
1U

ϕδ2
ms

, (4.115)

for rS = r̄S .
Using the well-known approximation to the Bessel function for a small argument,

we obtain a relation between the constant C in (4.111) and the value of W at r̄S ,
W(rS) ≡ W0:

C = Γ
(

3 − 4ε

2(1 − 2ε)

)( √
χ

2(1 − 2ε)

)−1/2(1−2ε)

W0, (4.116)

where Γ (x) is the gamma-function.
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In addition, we need the asymptotic to (4.111) for z� 1. Clearly, z can be large,
even for x � 1, since

√
C1 ∼ δ̃−1 � 1. Hence, for z� 1 we obtain

W ≈ C
√

2

πxz
cos

(
z− π

2

1 − ε
1 − 2ε

)
. (4.117)

4.5.2.2 The Shape of the Disc at Large Distances

We now consider Eq. (4.106) for rS � 1 and α → 0. Importantly, we cannot
set all variables in (4.106) to their Newtonian values and make the viscosity
simultaneously vanish. This already follows from the fact that then f (α,R) →
1/(2α) → ∞. Physically, this reflects the fact that, as we mentioned above, in
the absence of viscosity in a strictly Newtonian potential, a Keplerian resonance
occurs when the circular and epicyclic frequencies coincide, and perturbations in the
twisted disc grow infinitely due to the action of the radial projection of the vertical
pressure gradient. Therefore, a stationary twist is impossible in this case. Taking the
next-order term in the expansion of f (α, rS) in small r−1

S into account, we obtain

f (α, rS) ≈ 1

2α
(

1 + 3i
αrS

) . (4.118)

As α → 0, f (α, rS) now remains finite at any finite rS . Nevertheless, it makes the
leading contribution due to relativistic effects, and all other variables in (4.106) can
now be set equal to their Newtonian values Uτ = 1, Uϕ = r

−1/2
S , L = 1 and

K1 = 1. Moreover, we neglect the weak dependence of δ on rS far from the black
hole and set δ = δ∗.

After that, by introducing the new independent variable x1 ≡ r
−1/2
S � 1, we

obtain the equation

x1
d2

dx2
1

W − 2
d

dx1
W + 96δ̃−2x4

1 W = 0. (4.119)

The solution to (4.119) can again be expressed in terms of a Bessel function:

W = x3/2
1 (A1J−3/5(z1)+ A2J3/5(z1)), (4.120)

where

z1 = 8

5

√
6δ̃−1x

5/2
1 , (4.121)

A1 and A2 are constants.
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When rS is large enough so that z1 � 1, the first and second terms respectively
in (4.120), multiplied by x3/2

1 , tend to a non-zero constant and to zero. This allows
us to express the constant A1 in terms of the value of W at infinity, W∞:

W∞ =
(

5

4
√

6

)3/5 δ̃3/5

Γ (2/5)
A1. (4.122)

In the opposite case, at z1 � 1, i.e. closer to the black hole, we obtain another
asymptotic form:

W ≈
√

5δ̃

2π
√

24
r
−1/8
S

[
A1 cos

(
z1 + π

20

)
+ A2 sin

(
z1 − π

20

)]
. (4.123)

4.5.2.3 A WKBJ-Solution for the Disc Shape

Throughout the disc the asymptotic solutions (4.117) and (4.123) can be matched by
a WKBJ-solution to Eq. (4.113). Indeed, since we are considering the case δ̃ � 1,
the ratio of λ and b in (4.113), λ̃ = λ/b, is large at all rS such that z and z1 are large.

The WKBJ-solution has the form

W ≈ C3

(λb)1/4
cos

(∫ rS

r̄S

√
λ̃drS + φWKBJ

)
, (4.124)

where the constants C3 and φWKBJ should be chosen so that (4.124) is smoothly
matched with formula (4.117) in the corresponding region. It can be verified that
this yields

φWKBJ = −π
2

1 − ε
1 − 2ε

(4.125)

and

C3 = 61/4

√
1 − 2ε

πK1Uτ
C, (4.126)

where we assume thatK1 andUτ are evaluated at rS = r̄S = 6 and L ≈ x2/72 near
r̄S .

Further, in the limit rS → ∞we can set λ and b before the cosine in (4.124) equal
to their Newtonian values. In addition, the integral in (4.124) can be represented

as I (rS) ≡ ∫ rS
r̄S

√
λ̃drS = I − ∫∞

rS

√
λ̃drS , where I = ∫∞

r̄S

√
λ̃drS . Taking into

account that the Newtonian value λ̃ = 24δ̃−2R−9/4, we have that
∫∞
rS

√
λ̃drS ≈
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8
√

6
5 δ̃

−1r
−5/4
S , and therefore

W ≈ C3
δ̃1/2

241/4 cos

(
8
√

6

5
δ̃−1r

−5/4
S − I − φWKBJ

)
. (4.127)

Solution (4.127) must be smoothly matched with expression (4.123) in the corre-
sponding region, which yields the values of constants A1 and A2. It can be verified
that these are

A1 =
√

2π

5
C3 cos

(
I + φWKBJ − π

20

)/
cos

π

10
,

A2 =
√

2π

5
C3 sin

(
I + φWKBJ + π

20

)/
cos

π

10
. (4.128)

Thus, Eqs. (4.111), (4.124) and (4.120) together with coefficients (4.126), (4.128)
and phase (4.125), determine the shape of an inviscid stationary relativistic twisted
disc at all distances in the range from rS = r̄S to rS = ∞.

4.5.2.4 Resonance Solutions in a Low-Viscosity Disc

We note that Eqs. (4.116), (4.126), (4.128) and (4.122) provide a relation between
W0 and W∞:

W∞ = Ctot(δ̃)W0, (4.129)

where the explicit form of Ctot(δ̃) follows from these formulas. In particular, as
follows from (4.122) and (4.128), Ctot(δ̃) ∝ cos(I + φWKBJ − π

20 ).
We hence conclude that for some discrete set of δ̃ for which cos(I + φWKBJ −

π
20 ) = 0 so W∞ = 0 despite that W0 �= 0.

From Eq. (4.114), it is possible to represent the integral I in the form I = δ̃−1Ĩ ,
where Ĩ does not depend on δ̃. This allows us to write the singular values of δ̃
explicitly:

δ̃k = Ĩ

π
2

(
11
10 + 1−ε

1−2ε + 2k
) , (4.130)

where k is an integer number.
The values of δ̃k correspond to a balance between the external gravitomagnetic

force and the internal pressure gradient in the disc that leads to disc twist even
if the matter flowing into the disc at infinity moves in the equatorial plane of the
black hole. Note that, naturally, for these δ̃k there also exists a solution in the
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Fig. 4.6 Ratio of the tilt angle of the inner disc edge to the tilt at infinity, β0/β∞, as a function of
the parameter δ̃. The solid curve shows the numerical solution to equation (4.106) with α = 0. The
dotted curve represents the analytical dependence C−1

tot (δ̃), where Ctot is given by equation (4.129).
The dashed, dash-dotted and dash-dot-dashed curves are obtained by numerical integration of
Eq. (4.106) with α = 10−4, 10−3 and 10−2, respectively

form of a flat disc lying entirely in the black hole equatorial plane. This non-
uniqueness of the solution disappears with any appearance of low viscosity in the
disc, for which W∞ = 0 always implies W0 = 0. For small α � 1, the disc
‘feels’ these ‘resonance’ solutions, and its inner parts deviate significantly from the
equatorial plane of the black hole, even when the outer parts of the disc lie almost
in the equatorial plane. Figure 4.6 shows the curve corresponding to the analytical
solution (4.129), as well as several curves for a viscous twisted disc obtained by
integrating the original equation (4.106). We see that already for α = 10−3 the
discussed resonances are almost entirely suppressed.

4.5.3 Disc Behavior in the Plane of the Parameters α and δ̃

In conclusion, we present a full study of regimes of behavior of a stationary twisted
relativistic disc near a rotating black hole. It is convenient to show the results of
a numerical integration of Eq. (4.106) in the plane of the free parameters of the
problem, δ̃ and α. The first parameter varies in the range 10−3 < δ̃ < 10 and the
second parameter in the range 0 < α < 1. As follows from Fig. 4.7, at small δ̃, i.e.
when the gravitomagnetic force exceeds the internal forces in a twisted disc, it either
lies in the equatorial plane of the black hole, i.e. β0/β∞ → 0, or, conversely, the tilt
of its rings strongly increases in the inner parts of the disc, with oscillations of β(rS)
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Fig. 4.7 Contours of constant ratio β0/β∞ in the parameter plane (δ̃, α). The numbers show the
value of β0/β∞ for each curve. The dashed curve in the right part of the figure separates the region
where the change in β with rS is more than 10% of β∞ (to the left) from the region where the disc
twist is insignificant, and β deviates by less than 10% from β∞ (to the right)

along the radial coordinate. Note that for low viscosity, these oscillations become
so strong that the corresponding gradient of the tilt angle, β ′, leads to supersonic
perturbations of the velocity components, vr and vϕ , at heights of the order of
the disc thickness, ξ ∼ h. This, in turn, must lead to the generation of various
hydrodynamic instabilities and sound waves, which cause additional disc heating
(and hence also an increase in δ̃), as well as growth of α. These processes should
partially suppress the oscillations of β discussed above.

Disc alignment into the equatorial plane of the black hole occurs at sufficiently
high viscosity, when the condition α > δ̃ is satisfied with a large margin, and is
referred to as the Bardeen-Petterson effect (Bardeen and Petterson 1975). It is seen
from Fig. 4.7 that this effect occurs only in sufficiently viscous and thin discs. But
already for δ̃ ∼ α the ratio β0/β∞ becomes of the order of unity, which means
absence of disc alignment. At the same time, oscillations of β disappear. Figure 4.8
shows the profiles of β(rS) when β0/β∞ = 1 for several δ̃. We see that for not
very small δ̃, the twisted disc has a sufficiently smooth shape, which suggests the
possibility of the existence of such configurations in nature. We note that β behaves
non-monotonically: it first decreases and then increases with the decrease of rS .
The latter can have important implications both for the disc structure itself and
for its observational manifestations. For example, the hot inner regions of such a
disc should illuminate its outer parts much stronger compared to the flat disc case.
Clearly, this is due to the disc inner parts being tilted with respect to the outer parts.
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Fig. 4.8 The dependence of β on rS along the curve in Fig. 4.7 for which β0/β∞ = 1. The
parameter δ̃ takes the values 10−3, 10−2, 10−1 and 1 for the solid, dashed, dash-dotted and dash-
dot-dashed curves, respectively

In the region where δ̃ is of the order of or greater than unity, the action of the
gravitomagnetic force becomes insignificant, and the disc is weakly twisted. In
Fig. 4.7, the area to the right of the dashed line is where β(rS) deviates from β∞ by
less than 10%. It is also worth noting that for δ̃ > 0.1 the Bardeen-Petterson effect
is completely absent for any α.

4.6 Conclusions

We have presented a detailed technical derivation of the governing equations for the
evolution of the shape of a relativistic twisted disc, as well as for perturbations of
the velocity and density inside it. Only three simplifying assumptions have been
used: the smallness of the disc aspect ratio, δ � 1, the slowness of the black
hole rotation, a � 1, and the smallness of the tilt of the disc rings with respect
to the equatorial plane of the black hole, β � 1. This allowed us to formulate
Eqs. (4.60), (4.61) and (4.64) for three variables describing Eulerian perturbations
of the azimuthal velocity, vr and vϕ and the geometrical form of the disc, Z. In
general, the dependence of vr and vϕ on the twisted coordinates r , ξ and τ , and
the dependence of Z on r and τ should be found. In accordance with Eq. (4.30),
all these variables depend harmonically on the azimuthal coordinate. The governing
equations contain the profiles of the background solution, representing an accretion
disc with similar radial and vertical structure but lying in the equatorial plane of
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the black hole. We note once again that not only the twisted disc but also the
background itself can be non-stationary, since when deriving the set of Eqs. (4.60),
(4.61), (4.64), only one assumption about the background, the smallness of δ � 1,
was used. Therefore, in addition, the twist equations enable us to study the evolution
of tilted/twisted gaseous tori/rings near a rotating black hole as they are spreading
in the radial direction, in other words, as non-stationary accretion proceeds due to
turbulent viscosity.

In the particular case of a stationary, vertically isothermal background with α-
parametrization of the viscosity, the twist equations have been reduced to the simpler
equations (4.86), (4.87) and (4.88) for the complex amplitudes A and B describing
the velocity perturbations, and W describing the disc geometry, which depend only
on r and τ . Here, the solution for a flat relativistic disc, which was presented in detail
in Chap. 3, was utilized. The corresponding stationary problem can be described
by a second-order linear differential equation for W (see Eq. (4.106)). An analytic
integration of this equation for a formally inviscid disc with δ̃ � 1 enabled us to
find the singular resonance solutions for a discrete set δ̃k , which in fact corresponds
to an instability in a flat non-tilted disc, where the latter can acquire a twisted shape
near the black hole, even with its outer part lying in the black hole equatorial plane.
This instability, however, rapidly disappears already for α ∼ 10−3 and for α > δ̃,
provided that δ̃ < 0.1, numerical calculations show the Bardeen-Petterson effect.
At the same time, already for α ∼ δ̃, alignment of the inner parts of the disc into
the equatorial plane of the black hole does no longer occur, and for δ̃ ≥ 0.1 smooth
but non-monotonic profiles β(r) appear (see Fig. 4.8), which suggests their stability
under perturbations and the possibility of their realization in nature. The last effect
is confirmed by the first numerical simulations of tilted thin relativistic accretion
discs with δ ∼ α ∼ a ∼ 0.1 carried out in the recent papers by Teixeira et al. (2014)
and Zhuravlev et al. (2014). In these papers, a comparison with the semi-analytic
model based on the solution of the set of Eqs. (4.60), (4.61), (4.64) was also done
for a slightly tilted vertically barotropic torus.

Observational confirmation of the existence of twisted accretion discs around
rotating black holes has just started to emerge. Apparently, one of the most direct
pieces of evidence of their existence is the observation of maser sources at subparsec
scales in the disc around a supermassive black hole in the nucleus of NGC 4258
(Neufeld and Maloney 1995; Herrnstein et al. 1996). The subsequent modeling in
Martin (2008) and Caproni et al. (2007) showed that the disc twist in this case can
be due to the Bardeen-Petterson effect. In the recent paper by Wu et al. (2013),
observations of jets in the nucleus of NGC 4248 were used to independently estimate
the black hole Kerr parameter a ∼ 0.7 and, in a similar model, to calculate the
radius of the disc alignment into the equatorial plane of the black hole in agreement
with observations. Additional but more indirect arguments favoring the presence of
twisted discs in galactic nuclei were obtained, for example, in Cadez et al. (2003)
and Cadez and Calvani (2005), where the observed profiles of the X-ray iron line
Kα were calculated for different accretion disc models. It was concluded that in
many cases, the observed line profile can be more easily explained in the model of
a twisted disc than in the model of a flat disc, with some specific radial intensity
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distribution. In Wu et al. (2010), a similar modeling of hydrogen Balmer lines was
performed. These should arise due to the heating of the outer parts of a twisted
disc by hard emission from its inner parts, which have much larger tilt angles than
in the case of a flat disc. The presence of twisted discs is also suspected in binary
stellar systems with black holes. For example, this could be the case in the two
microquasars, GROJ1655-40 and V4641 Sgr, in which a tilt of the jets relative to
the orbital plane was discovered (see Martin et al. (2008b,a)).

As mentioned above, Eqs. (4.60), (4.61) and (4.64) also describe the non-
stationary dynamics of a torus tilted with respect to the equatorial plane of a black
hole. If δ > α, the action of the gravitomagnetic force must lead to solid-body
precession of the torus, since in this case the twist (also called bending) waves,
propagating at almost the speed of sound, smear out the dependence of γ on r due
to the Lense-Thirring effect. Similar non-stationary models are invoked to explain
the variability of Balmer line profiles, as well as the precession of jets in active
galactic nuclei (see, e.g., Caproni et al. (2004)). In many papers, precessing tori are
used to explain low-frequency quasi-periodic oscillations in X-ray binary systems
(see, e.g., Veledina et al. (2013)). Of special interest is the modeling of observational
manifestations of a tilted accretion disc around the black hole in the centre of our
Galaxy (Dexter and C. 2013).

The theory of relativistic twisted discs presented here can also be successfully
applied both to constructing self-consistent models of individual objects, and to
making further theoretical predictions regarding the dynamics of accretion flows
around rotating black holes.
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Chapter 5
Structure of Accretion Discs in Lensed
QSOs

Pavel Abolmasov, Nikolay Shakura, and Anna Chashkina

Abstract As early as in 1937, Zwicky wrote about gravitational lenses acting as
‘space telescopes’, allowing the observation of faint and distant objects, the fluxes
from which may be considerably enhanced due to the lensing. It is clear today that
gravitational lensing may be helpful in performing another important task, one of
the main purposes of telescopic observations, namely, increasing spatial resolution.
The images of strongly lensed QSOs are affected by microlensing effects in the
halo of the lensing galaxy. In contrast to the classical strong lensing, these effects
are sensitive to the size and form of an object. The purpose of this chapter is to give
a general introduction to quasar microlensing and to illustrate the capabilities of
the method, with a review of the latest results in this field, concentrating especially
on the results obtained in our three recent papers.

5.1 Introduction: Gravitational Lensing and Microlensing

5.1.1 Light Bending by a Thin Gravitational Lens

Gravitational lensing is deviation of light from a straight path when travelling in a
gravitational field. A light ray can trace very complex curves in strong gravitational
fields, turning by many hundreds of degrees (this takes place, for example, in the
vicinities of black holes, see Sect. 5.2.4). As a rule, however, gravitational lenses
distort the direction of light propagation and, consequently, the apparent source
position, by no more than a few arcseconds or tens of arcseconds. In doing so, one
source may yield several images displaced with respect to each other. The largest

P. Abolmasov (�) · A. Chashkina
Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow, Russia

Tuorla Observatory, University of Turku, Piikkio, Finland

N. Shakura
Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow, Russia

Kazan Federal University, Kazan, Russia

© Springer International Publishing AG, part of Springer Nature 2018
N. Shakura (ed.), Accretion Flows in Astrophysics, Astrophysics
and Space Science Library 454, https://doi.org/10.1007/978-3-319-93009-1_5

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93009-1_5&domain=pdf
https://doi.org/10.1007/978-3-319-93009-1_5


202 P. Abolmasov et al.

separations between images are observed when clusters and groups of galaxies act
as lenses, as in SDSS J1004+4112 and, particularly, SDSS J1029+2623 (Inada
et al. 2006), where the separation between the images is currently the largest
observed at approximately 22.′′5. These angular distances are quite reachable for
large telescopes, and the largest separations may be visible even using amateur
instruments, (20′′ is the size of the apparent disc of Mars at its closest approaches.
Lensed QSOs are, however, too faint to observe through amateur instruments), but
sometimes (for example, in the case of QSO J2237+0305) we have to work nearly
at the limit of the angular resolution for ground-based instruments (∼1′′).

We may talk about the following kinds of gravitational lensing:

• weak lensing, which produces a single, slightly amplified and deformed, image
of the source

• strong lensing, which forms a few resolvable images of a single object, and
• microlensing, in which images of the object cannot be resolved, providing

nothing else but total fluxes as the only observable characteristics.

This is an observational classification affected by the sensitivity and resolution of
the devices in use. A fairly detailed and up-to-date introduction to these three kinds
of lensing may be found in the proceedings of the 33rd Saas-Fee summer school:
Schneider (2006, 2005), Kochanek (2006), and Wambsganss (2006). Clusters of
galaxies often act as weak lenses, where the weak lensing can be used to reconstruct
the mass distribution in the cluster. There are also many examples of strong
lensing; at least a few dozens of QSOs are luckily situated behind foreground
galaxies and are strongly lensed by them. As we will see below, characteristic
separations between the images may amount to several arcseconds. The stars of our
Galaxy separate images approximately by milliarcseconds, thus potentially acting
as microlenses.

The smallness of the deflection angles simplifies the general task of describing
strong lensing, and offers a possibility to write down the lens equation in an
algebraic form. Thin lens approximation is an important simplification: the extent of
the lens along the line of sight is considered to be much smaller than the distances
between the lens, the source, and the observer. This approximation is analogous to
that used in geometric optics. The thin lens approximation is also known as the thin
screen or ‘single-screen approximation’, referring to a flat ‘screen’ perpendicular
to the line of sight, on which all the masses affecting the propagation of light are
meant to be concentrated. Each elementary mass ΔM on the ‘screen’ changes the
direction of a light ray by some small angle towards the lens,

Δα = 4GΔM

pc2 , (5.1)

where p is the minimal distance between a passing photon and an elementary mass,

p � 2GM

c2 . The combined effect of multiple masses is a vector sum, or an integral

over all the elementary masses (see the formula (5.4) below).
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Fig. 5.1 The formation of images in the thin lens approximation. The bold lines (solid and dotted)
depict schematically the paths of photons and the thin lines connect the observer with the false
images. The dotted and solid lines correspond to two different images at the opposite sides of the
lens in the picture frame. The source position (that would be seen in the absence of the lens) is
shown in blue and the observed images are represented in teal. The lower image is upside down

The smallness of the lens size allows us to consider the path of light as a polyline
composed of two segments (see the diagram in Fig. 5.1). Let us designate the
distance between the source and the observer as DS , the distance between the lens
and the observer as DL, and the distance between the lens and the source as DLS .
Note that on cosmological length scales, we have to use ‘angular-size distances’
(see, for example, Zeldovich and Novikov 1975), which differ from the comoving
distance by a factor of 1 + z (unchangeable for two static objects in the expanding
universe), where z is the redshift (the redshifts of the lens and the source will be
designated as zL and zS , respectively). Generally speaking, the distance DS to
the source is not equal to the sum of the distances DLS and DL. However, the
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Fig. 5.2 Three different distances used in the standard cosmological Λ-CDM model (ΩΛ = 0.7,
Ωk = 0) as functions of redshift: the photometric distance (dotted line), the comoving distance
(dashed line) and the angular-size distance (solid line). The horizontal line corresponds to a Hubble
length of DH = c/H0 � 4.1 Gpc

relationship among the three distances in a flat universe has a fairly simple form:

DS = DLS + 1 + zL
1 + zS DL (5.2)

More general aspects concerning distances in cosmology are considered, for
example, in Hogg (1999). Note that the angular-size distance is a non-monotonous
function of redshift, having a maximum at zmax ∼ 1.6 (corresponding to a distance
of Dmax � 1.75 Gpc, see Fig. 5.2) in the standard ΛCDM cosmological model
with ΩΛ ∼ 0.7 and a modern Hubble constant of H0 = 70 km s−1/Mpc. As a
result, more distant objects may have larger apparent sizes in a certain range of
redshifts, being easier to resolve than closer objects. Image scales of distant QSOs
and galaxies with redshifts of z ∼ 0.5–8 vary from ∼5 kpc/′′ at the ends of the
interval to ∼8 kpc/′′ near zmax. The two other characteristic distances, namely, the
comoving (physical) distance and the photometric distance, monotonously grow
with redshift.

For most problems of gravitational lensing, the thin screen approximation is valid
with good accuracy. If we take into account that the lens is extended along the line of
sight, this yields a next-order correction in respect to deviations; hence, systematic
uncertainties connected with the limitations of thin lens approximation are of the
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next order in l/D, where l is the size of the source along the line of sight and
D is the distance to it. There is only one case of astrophysical importance when
deviations from the thin lens approximation may have a noticeable value, namely,
the lensing by clusters of galaxies. All characteristic angles of the problem are small,
allowing us to sum up linearly the effects of all the gravitational forces bending the
light ray. However, the lens equation is non-linear in the general case, which leads to
multiple images and specific peculiarities in microlensing curves, giving ultimately
a possibility to examine the spatial structure of sources with the use of microlensing
(for more details, see Sect. 5.2.1 below).

5.1.2 Transformation of the Plane of the Sky

The mathematical apparatus for gravitational lensing is considered in a more strict
and detailed manner in the monograph by Zakharov (see Zakharov 1997 and
references therein, and also the overview Zakharov and Sazhin 1998). There are
two aspects of the problem, which we touch upon here only briefly, not going into
details: (1) it is convenient to use the method of potentials when using the thin lens
approximation, namely, to examine the shift in position of a point-like source as a
gradient of a scalar function (potential) that is given in the plane of the sky; (2) the
lens equation can be obtained using the minimization of a functional—as a rule,
optical length of a travel time along a null geodesic, in accordance with Fermat’s
principle (see Blandford and Narayan 1986).

Lensing can be treated as single-valued mapping from the plane of the sky, in
which the lens is situated (or, simply, the lens plane; the other name is “the image
plane”) and where the coordinates are given by the two-dimensional vector θ , onto
the source plane (vector β). Generally speaking, the deflection angle α̂ is also a
vector, which is calculated, as we mentioned before, as a sum (integration) of the
deviations created by the mass elements:

α̂(ξ) =
∑
i

Δαi =
∑
i

4Gmi
c2

ξ − ξ ′∣∣ξ − ξ ′
∣∣2 . (5.3)

The right-hand side contains a sum of terms similar to (5.1), which are directed
away from the mass mi in the lens plane. Let us introduce the surface density of the
lens Σ(ξ ) at the point ξ in the form dm = Σ(ξ )dξ , where dm is the mass per unit
area in the lens plane. When changing from summation to integration, we obtain:

α̂(ξ ) = 4G

c2

∫
ξ − ξ ′∣∣ξ ′ − ξ

∣∣2Σ(ξ ′)dξ ′. (5.4)
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In case of circular symmetry,

α̂(ξ ) = 4GM(ξ)

c2

ξ

ξ2 (5.5)

where

M(ξ) = 2π
∫ ξ

0
Σ(ξ ′)ξ ′dξ ′. (5.6)

All the angles in the problem are small, which allows us to significantly simplify
the calculations. As can be seen from Fig. 5.1, DLS α̂ = DSα implying that the
relationship between the position of the source (given by vector β) and the position
of its image θ = ξ/DL has the form

θ = β + α = β + DLS

DS
α̂(DLθ). (5.7)

It can be seen that the position of the source β is a single-valued function of the
image position θ . The inverse mapping β → θ is not single-valued in the general
case as several images may correspond to one source. This property is valid even for
the simplest models, such as a point-like lens, and is due to the fact that the equation
is not linear with respect to θ . The dotted line in Fig. 5.1 illustrates the path of a
photon that takes part in the formation of the second image. The relationship (5.7)
is known as the lens equation if considered as an equation (or, more precisely, a
system of two equations) relative to θ .

5.1.3 Symmetric Lenses

5.1.3.1 Point-Like Lenses

A lens that has a circular symmetry (Σ = Σ(|θ |) = Σ(θ)) shifts the apparent
position of a source along the straight line passing through the centre of lens
symmetry. From this point onwards, we will refer to it simply as a symmetric lens.
From Eq. (5.5), the relationship between the apparent shift of the image relative to
the source and the deflection angle may be derived:

α(θ) = DLS

DS
α̂(θ) = 4GM

c2

DLS

DSDL

θ

|θ |2 , (5.8)

which makes it possible to move from (5.7) to the equation for a point-like lens:

β = θ − θ2
Ein

θ

|θ |2 , (5.9)
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where θEin is the characteristic angular radius known as the Einstein-Chwolson
radius (Einstein 1936; Chwolson 1924):

θEin =
√

4GM

c2

DLS

DSDL
. (5.10)

For a point-like lens, the physical meaning of θEin corresponds to the angular radius
of the Einstein ring, a ring image of the point-like source that arises when the
observer, the lens and the source are lying on the same straight line.

Equation (5.9) has two solutions,

θ1,2 = β

2
± 1

2

√
β2 + 4θ2

Ein. (5.11)

The different signs of the solutions mean that the images arise on different sides
of the lens. As the source moves away from the lens, one image is approaching
the source, while the other is moving towards the lens. The violation of coaxial
alignment leads to the splitting of the ring into two distorted images, one of them
strictly within and the other strictly outside of θEin. For a point-like lens, Eq. (5.9)
has two solutions,

θ1,2 = β

2
± 1

2

√
β2 + 4θ2

Ein. (5.12)

These two solutions with the different signs correspond to two images arising on
different sides of the lens. As the source moves away from the lens, the position of
one image is approaching the source, meanwhile the other is approaching the lens.

Einstein rings are observed as a particular case of strong lensing by galaxies
(Kochanek et al. 2001). In a more general case, the Einstein-Chwolson radius still
remains a characteristic angular scale for splitting images in lensing.

It is useful to estimate characteristic angular scales of the effect for different
cases. In particular, for stars in the halo of our galaxy (DL ∼ DS ∼ DLS ∼ 10 kpc,
M ∼ M�), θE ∼ 10−3′′, for massive galaxies at cosmological distances (DL ∼
DS ∼ DLS ∼ 1 Gpc, M ∼ 1012M�), θE ∼ 1′′. Individual stars in remote galaxies
produce deviations on the order of microarcseconds.

5.1.3.2 Time Scales

In some cases, it is important to verify the time scale defined by the relative
tangential velocities. As a rule, the motion of the source relative to the lens
is important in case of microlensing by stellar mass objects. The characteristic
time scale, namely, the time of passing θE , amounts to several years for stellar
mass lenses at cosmological distances. This time scale for stars of our galaxy is
considerably less, about a few days. In order to estimate it correctly, we need to
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know the proper motions of the source and the lens, vS,Lμ :

vS,Lμ = v
S,L
t

(1 + zS,L)DS,L , (5.13)

where vS,Lt are the tangential velocities of the source and the lens measured in
a comoving reference frame. Remember that the proper motion is an angular
displacement per unit time. When studying the structure of the source, it is
convenient to use the effective velocity veff, which is defined as a transverse physical
distance by which the source moves with respect to the direction towards the lens
(see also Sect. 5.2.1). The factor 1+ z accounts for the effects of cosmological time
dilation. Knowing the relative proper motion vμ = veff/DS , it is easy to estimate
the time scale as t ∼ θEin/vμ:

t ∼
√

4GM

c2 × DLSDS

DL

1

veff
�

� 13.5

(
M

M�

)1/2 (
DLSDS

DLGpc

)1/2 1000 km s−1

veff
.yr

(5.14)

5.1.3.3 The Isothermal Sphere

Another important particular case is the lensing by an isothermal sphere (see the
review by Kochanek (2006), as well as Kormann et al. (1994), where the more
general case of an isothermal ellipsoid is considered). In this case, the surface
density depends onR inversely, asΣ(R) ∝ R−1, while the mass grows linearly with
the radius (and thus is unlimited indicating that this solution, generally speaking, has
little physical meaning). The simplicity of the isothermal sphere model lies in the
fact that the dispersion of velocities σ 2 is constant for virial motions. Herewith, the
expression for the mass within a sphere of radius ξ may be written as

M(ξ) = σ 2

G
ξ. (5.15)

The above formula follows from the virial theorem as the potential energy for a test
particle with the mass m is −GMm/ξ , and the mean kinetic energy is mσ 2/2.

Substituting (5.15) into the lens equation (5.9) yields one or two solutions
obeying the equation:

θ = β + 4σ 2

c2

DLS

DS
× θ

|θ | . (5.16)

The primary image is shifted relative to the source by a fixed angle in the
outward direction from the lens centre, while the secondary image appears only
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if β < 4σ 2

c2
DLS
DS

. The isothermal sphere is the simplest model used to describe
the gravitational fields of elliptical galaxies. By order of magnitude, Δθ ∼ 1′′,
becoming greater with the growing dispersion of velocities in the lensing galaxy.
Formula (5.16) also illustrates the principal role of massive galaxies among gravita-
tional lenses (Kochanek and Keeton 1997). The image is significantly amplified in
the area (solid angle) proportional to σ 4, but only if the isothermal law is valid at
distances larger than the Einstein-Chwolson radius.

5.1.4 Asymmetric Lenses

The use of centrally symmetric models for extended lenses is almost never justified
(Kochanek 2006) since small deviations from symmetry in the mass distribution
result in a qualitative change of the pattern, giving rise to various singularities and
multiplication of images, the number of which increases from two or three to five
or even more. At the same time, non-symmetric models are more complex from a
mathematical point of view, having a greater number of parameters, which hinders
their application to observational data.

In some cases, there are analytic solutions to the lens equation. A fairly complete
catalogue of models used is given by Keeton (2001). For most models, the number
of solutions amounts to three or five (depending on the source position), but it also
may be higher. As a rule, one of the images is attenuated and cannot be actually
observed, implying that the majority of strong lenses produce two or four images
of the point-like background object. The existence and brightness of the central
attenuated image are sensitive to the form of potential near the galactic centre. This
can be demonstrated, for example, by Eq. (5.9), which has a singularity at zero for a
point-like lens that leads to the finite limit lim

θ→0
α(θ) and, consequently, to the chance

of ‘losing’ one solution to the equation.
Each of the observed images is distorted and amplified, which may be described

in terms of a linear transformation of the plane β → θ ,

Aij = ∂βi

∂θj
= δij − ∂αi

∂θj
. (5.17)

Here, i, j = 1..2, and δij is the Kronecker delta symbol (1 for i = j , 0 for
i �= j ). The matrix Aij contains all the information regarding the deformation of
a source with an infinitely small angular size. Traditionally, the contributions due to
convergence � and ‘shear’ γ are separated:

A = (1 − �)
(

1 0
0 1

)
− γ

(
cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

)
. (5.18)
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This decomposition exists and is unique for any symmetric matrix A; it may be
perceived as a definition of the values �, γ , and ψ . For convergence, the following
relationship is also valid:

� = 4πG

c2

DLSDL

DS
Σ (5.19)

The values �, γ , and ψ have a clear physical meaning that is well illustrated by
expression (5.18): a source having circular form is mapped to an ellipse with the
semi-major and semi-minor axes of 1−�+γ and 1−�−γ , respectively, turned by
the angle ψ on the celestial sphere. The physical meaning of the matrix determinant
is the ratio of the solid angles of the source and image. As the effects we are
considering are expected to preserve the radiation intensity, 1/ detA indicates also
to what extent the observed flux from a point-like source changes (the amplification
factor). A negative Jacobian would mean that the image is ‘turned inside out’, that
is, no combination of motions and stretches can identify such an image with the
source.

detA = (1 − �)2 − γ 2 (5.20)

At the points where detA = 0, generally speaking, the area of an infinitely small
object increases by an infinite factor. Since lensing does not change the intensity,
the ratio of the solid angles is equal to the ratio of the observed fluxes, which is
particularly important in case of microlensing. Hence, the amplification factor is

μ = 1

(1 − �)2 − γ 2 . (5.21)

In particular, if we know the relationship α(θ) for a symmetric lens, then � =
(θα(θ))′

2θ , γ = θ
2

(
α(θ)
θ

)′
, and ψ = ϕ. The amplification factor for an image in this

case can be easily calculated as μ = θdθ
βdβ

. This is the stretching factor in the source
plane for a narrow ring with radius β.

Figure 5.3 shows the amplification curve for a point-like lens and the positions
of the source and the two images. The maximum amplification corresponds to the
coalescence of the two images into an Einstein ring; as the source moves away from
the lens, one image is approaching the source, while the other (weakened) one is
approaching the lens.
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Fig. 5.3 Lensing by a point-like mass. Left: the amplification curve for an object passing at a
distance of 0.1θEin from the lens. Right: the positions and shapes of two images of the object are
schematically shown for four selected values: u = β/θEin. The diameter of the source is 0.2θEin,
which is greater than the minimal angular distance to the lens; that is why the images coalesce into
the “Einstein ring” near the amplification maximum

5.1.4.1 Caustics

For a point-like source, amplification diverges when the determinant A becomes
zero. It is obvious that an extended object will be amplified by some finite value
determined by its size and the behaviour of detA close to zero.1

If the lens parameters are smooth functions of the coordinates, the properties of
the zeros of the determinant detA are described by the bifurcation theory (Arnold
et al. 2003) for the time delay Δt (the time for the photon to pass along the
trajectory; see also Sect. 5.1.4.2), which is a smooth function of the source position
on the celestial sphere. In this case, the coordinates of the source can be treated as
two external control parameters.

1For a fold caustic considered below, the amplification decreases inversely proportional to the
distance to the caustic in the image plane, μ ∝ Δθ−1, or μ ∝ Δβ−1/2 (see later this section). The
integral of this expression over a restricted solid angle converges. For a more complex singularity
(for example, a cusp), the finiteness of amplification follows from the asymptotic behaviour of
amplification which decreases inversely proportional to the distance to this singularity (a point), or
slower (Gaudi and Petters 2002).
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A fold caustic is the simplest kind of singularity (A2) considered in catastrophe
theory, which corresponds to the occurrence or disappearance of a pair of solutions
to the lens equation for small variations in the source position. In the plane β, it is
generally a smooth curve limited by other singularities (two caustics almost always
meet in an A3-singularity called a cusp). In what follows, we will imply a fold-
type singularity when speaking about caustics. A vanishing Jacobian means that
an image of the source is infinitely stretched in some direction. This direction is
perpendicular to the caustic. Deformation of the image in the direction of caustic
can be neglected. Therefore, in the lens equation, instead of the vectors β and θ ,
we may use the scalars Δβ and Δθ which become zero at the caustic. In these
terms, detA = dΔβ/dΔθ . An asymptotic expression for amplification near the
caustic may be obtained using the expansion of the lens equation in powers of Δθ ,
the distance from the image to singularity. When detA approaches zero, the lens
equation in the direction perpendicular to the caustic may be written as Δβ = C ×
(Δθ)2+O(Δθ)4, whereC is some constant andΔβ is the angular distance from the
object to the caustic. This gives, in a quadratic approximation, two solutions with
the amplification coefficients μ � 1/ detA � dΔθ/dΔβ ∝ Δβ−1/2. The specific
form of the coefficients in this dependence is not very important; what is essential
is the asymptotic form of the amplification for an object that crosses the straight
caustic:

μ(Δβ) = μ0 + μ1√
Δβ
. (5.22)

Here, μ0 is the amplification on the side of the singularity where the number of
images is fewer by two and μ1 is the coefficient characterizing its amplitude.

5.1.4.2 Delays

Catastrophe theory allows us to treat any bifurcation as the occurrence of a pair of
extrema for some function defined in the space of all task parameters (internal ones,
such as the coordinates of the image, and control ones, namely, the source position).
In case of lensing, the time needed to pass the trajectory characterized by a given
set of control parameters may be chosen as such a function. Herewith, the images
may correspond not only to minima and maxima of this function but also to saddle
points. This behavior may be described in terms of Fermat’s principle, as was done,
for example, in the paper by Blandford and Narayan (1986).

In connection to this, it is interesting to mention QSOs, which are variable objects
with ‘red’ noise power spectra that resemble Bernoulli random walk (Webb and
Malkan 2000; Collier and Peterson 2001). Variability has been detected on almost
all scales, from a few days to time intervals comparable to the time spans of the
observations (decades). As a rule, variability becomes uncorrelated on time scales
of tens or hundreds of days (depending on the BH mass). On shorter time scales, the
variability has an ‘infrared’ power spectrum with a slope greater than 2.
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Delays are characterized by time scales of the order of
DL

c
θ2
Ein ∼

∼ 100 M

1012M�
DLS
DS

days. For this reason, if an observing run is long enough, it
is convenient to use the variability of individual images to measure these delays
with the help of cross-correlation of individual light curves. The resulting values
can be used to verify the model of the lens and to determine the Hubble constant
independent of distance scale (Kochanek and Schechter 2004).

5.1.4.3 Optical Depth

Microlensing optical depth is an important factor that characterizes the probability
of lensing by foreground objects and specifies the general pattern of microlensing.
The optical depth may be defined as the convergence obtained as a result of
integration over all the screens (all the distances at which the lensing masses are
localized):

τ = 4πG

c2

1

DS

∫
DLSDLdΣ. (5.23)

The distances DL,LS generally change along the line of sight. It is easy to verify
that τ , when defined in this manner, is calculated as ordinary optical depth with
the area within the ‘Einstein ring’ as a cross-section: σ = π(DLθEin)

2. We may
say that for τ � 1, the optical depth determines the probability for a background
source to appear within the Einstein ring of some microlens. Since the cross-
section is linear in mass, the superposition of cross-sections and optical depths
will in general be approximately linear, too. A linear approximation is sufficient to
estimate the number of microlensing events in our galaxy, where τ ∼ 10−6 (see, for
example, Hamadache et al. 2006). If a galaxy with fixed parameters is moving away,
its optical depth will grow with DL, reaching a noticeable value at cosmological
distances:

τgal � 4πGΣ

c2

DLSDL

DS
� 0.06

Σ

100M� pc−2

DLS

DS

DL

1 Gpc
. (5.24)

This determines, among other things, the importance of taking microlensing effects
into account in case of strong lensing (see Sect. 5.2.1 below) and the nonlinear
character of this microlensing. If τ � 1 for some reason, chances are high that there
are several lenses that affect the position, form and amplification of the object image.
In this case, the definition of optical depth given above has no physical meaning.

There is another case when we have to be cautious in using the value of (5.23),
namely, when applying it to the optical depth of the universe as a whole when
considering the lensing of sources with high zS . A direct estimate using the flat
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ΛCDM-model yields:

τ (z) = 4πG

c2

∫ z

0

DLSDL

DS

dΣ

dz
dz =

= 4πG

c2

∫ z

0

DLSDL

DS
ρ(z)

dDCL

dz
dz =

= 4πGρcrΩM
c2

∫ z

0

DLDLS

DS

dDCL

dz
(1 + z)3dz,

(5.25)

where ρ(z) = ΩMρcr × (1 + z)3 is the local density of inhomogeneous matter,

ρcr = 3c2

8πG
D−2
H is the critical density, and DH = c/H0 � 4.1 Gpc is the Hubble

length. The distances designated by C superscripts are physical distances. It can be

shown that for the flat ΛCDM model, dDCL/dz = DH
(
ΩΛ + (1 + z)3ΩM

)−1/2
,

where ΩΛ,M are the densities of dark energy and inhomogeneous matter in terms
of ρcr .

τ (z) = 3

2
ΩM

∫ z

0
(1 + z)3 DL

DH
×

(
1 − 1 + zL

1 + zS
DL

DS

)
×

× dz√
ΩΛ + (1 + z)3ΩM

(5.26)

An estimate for a source at zS ∼ 10 proves to be approximately 0.1, which
is two or three orders of magnitude higher compared with calculations including
the inhomogeneous distribution of matter in galaxies and clusters of galaxies, τ ∼
10−3–10−4 (Hilbert et al. 2007).

5.1.5 Microlensing

Remember that we talk about microlensing in those cases when individual images
cannot be resolved and photometry is the only source of information. Total
amplificationμ becomes the most essential value. The amplification for an extended
source is calculated as

μtot =
∫
IμdΩ∫
IdΩ

, (5.27)

where the integration is performed over the solid angle in the source plane, μ =
1/ detA and I is the intensity. The integral of intensity over the source plane yields
the total flux.
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5.1.5.1 Amplification by a Point-Like Lens: Classical Microlensing

As noted above, a point-like lens produces two images. The amplification factors
for these two images can be found as the ratios of the area elements of the image
and the source

μ1,2 = θ1,2dθ1,2

βdβ
. (5.28)

Substitution of (5.11) into this expression yields

μ1,2 = 1

4

⎛
⎝1 ± β√

β2 + θ2
E

,

⎞
⎠ ×

(
β ±

√
β2 + θ2

E

)
(5.29)

μ1,2 = 1

2
± 1

4

⎛
⎝

√
1 + 4

u2 + 1√
1 + 4

u2

⎞
⎠ , (5.30)

where u = β
θEin

. It can easily be seen that the algebraic sum of two amplifications
is equal to 1, whereas the sum of moduli gives the total amplification factor for a
point-like source placed at an angular distance β from the lens (Einstein 1936):

μ = u2 + 2

u
√
u2 + 4

. (5.31)

This amplification may be expressed as a function of time for the case when the
source and the lens have a constant relative velocity. In the general case, the object
passes at a finite angular distance β0 from the lens, which corresponds to the
maximal amplification possible in microlensing. A time scale is specified by the
time needed to pass the Einstein-Chwolson radius: tEin = θEinDS/veff .

5.1.5.2 Multiple Microlensing and Caustic Network

The point-like lens case is degenerate since the determinant detA is equal to zero
only if β = 0 (this is by the way valid for any axially symmetric lens). The character
of the transition to multiple lensing may be clearly illustrated using the following
example. Let us take a point-like lens and add a constant shear γ into the expression
for α(θ) in a manner such that

βx = θx ×
(

1 − θ2
E

θ2 − γ
)
, (5.32)

βy = θy ×
(

1 − θ2
E

θ2 + γ
)
. (5.33)
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The celestial sphere image proves to be additionally stretched in the direction of the
y-axis. The combination of the lensing by the point-like mass and the artificially
introduced deformation leads to the occurrence of areas in the plane β, where there
are three or five images. The boundary between them represents on the plane a
curve that encloses an area with the size ∼ γ θE . On this curve, the Jacobian of the
transformation of the plane also becomes zero: detA = 0. For a small perturbation
γ � 1, this curve is an astroid composed of four caustics and four cusps (see also
Zakharov and Sazhin 1998; Chang and Refsdal 1984). A source located within the
astroid gives rise to two extra images, the intensities of which decrease when moving
away from the caustics, reaching a minimum at the centre of the pattern.

If a fairly wide binary acts as a lens, each of the two stars in the binary perturbs
the lensing pattern of the other. Then, γ � θ2

E,2/θ
2
2 , where the subscript ‘2’ indicates

that this value is defined with respect to the second lens. If the distance is estimated
as θ2 �

√
θEinθE,2, the perturbations are too large for the point-like lens model

or the perturbed ‘astroid’ model described above to be used. If there are numerous
lenses at distances of the order of θE from each other, the astroids merge to form a
single caustic network and the number of images of the source increases manyfold.

An example amplification map for multiple microlensing is shown in Fig. 5.4.
The lensing was calculated for an area measuring approximately 15 microarc-
seconds, and the Einstein-Chwolson radius for one solar mass was taken to be
2.85 ms, which corresponds to a characteristic distance to the lenses of the order
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Fig. 5.4 Left: an example of an amplification map calculated using a reverse ray tracing technique.
Right: the model light curves for an object passing along the straight lines shown on the map (left).
The amplification curves are shown as solid lines for a very small source (comparable in size
with the map resolution), dashed lines for a source with a Gaussian two-dimensional brightness
distribution, dotted lines for a source with an intensity distribution corresponding to the standard
accretion disc model. The half-light radii for both non-trivial intensity distributions are the same
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of 1 Gpc. Masses of 13 lenses are randomly distributed in accordance with a power-
law slope of −1.3 (which is somewhat lower than the Salpeter function slope;
see, for example, Bastian et al. 2010). The intensity distribution of the object
has a characteristic angular size of approximately 0.13 ms, which corresponds to
the accretion disc around a black hole with the mass of 108M� at a redshift of
approximately 2 (more details, as well as the accretion disc intensity distribution,
can be found below in Sect. 5.2.3).

5.2 Microlensing of Accretion Discs

5.2.1 Microlensing of Strongly Lensed Quasars

Microlensing of strongly lensed QSOs by stars of the lensing galaxy is an important
and nearly unique case of microlensing at high optical depth. The optical depth of a
chosen galaxy with surface density Σ does not depend on the characteristic masses
of its stars or other microlenses and can be expressed as

τgal � 0.06
Σ∗

100M� pc−2

DLS

DS

DL

1 Gpc
. (5.34)

Here,Σ∗ is the surface density of inhomogeneous matter, such as stars and compact
objects. Dark matter is treated here as a substance that, although contributing to the
mass of the galaxy, is distributed smoothly, thus having no effect on microlensing.
Nevertheless, some models (involving, for example, mirror matter that is able to
form compact configurations; see Berezhiani et al. 2005) predict that particles
of dark matter can accumulate to form ‘dark stars’ or substellar mass objects.
Microlensing by hypothetical objects of the dark halo was considered in Paczynski
(1986).

The characteristic size of the caustic network and, hence, the time scales of
microlensing variability depend on the masses of the microlenses. The fact that the
lensed QSOs do not demonstrate flux variations on time scales shorter than months
indicates that the lenses are stellar-mass objects, not hypothetical ‘dark stars’ with
masses three orders of magnitude lower.

The radioquasar QSO 0957+561 (Walsh et al. 1979) was the first discovered
strongly lensed QSO. Today a hundred or so such objects are known and reasonably
well studied (Muñoz et al. 1998), among them 10–15 radioloud, which is in agree-
ment with the proportion between radio-bright and radio-quiet quasars (∼7–8%, see
Ivezić et al. 2002).

Knowing the positions of the images, we may try to restore the mass distribution
in the lensing galaxy. If this proves to be too ambitious a task, we may at
least impose limits on it. The fluxes observed from individual images can differ
noticeably from those predicted in the strong lens model. There are two main
factors leading to occurrence of flux anomalies detected from lensed QSO images:
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absorption in the lensing galaxy and lensing on smaller scales (by satellites or
the spiral arms of the lensing galaxy, or even by individual stars within this
galaxy). Therefore, the main method for studying microlensing effects is the
analysis of anomalous fluxes from individual images, especially their variability,
since interstellar extinction changes appreciably only on the larger, parsec-scale,
distances. Examination of the variability at different wavelengths may help elimi-
nate fluctuations in interstellar extinction. An analysis of variability of the images of
SDSS 0924+0219 provides evidence for an insignificant role of variable extinction
in the formation of flux anomalies, at least for this particular object (Floyd et al.
2009).

However, QSOs are variable objects; the only chance for us to confidently distin-
guish the variability due to microlensing from the intrinsic brightness variations
of the object would be to significantly resolve uncorrelated components in the
variability of individual images. Therefore, microlensing is a disturbance when
studying intrinsic QSO variability and time delays between individual images. Vice
versa, intrinsic variability becomes a disturbance if the aim is to find and analyze
the variations of flux anomalies.

QSO J2237+0305 (aka the Einstein cross, or Huchra’s lens) is an extremely
favourable object for studying microlensing effects. The object is unique, firstly, in
the sense that the lens is a nearby galaxy at z = 0.039. This redshift corresponds to
a distance of approximately 160 Mpc, whereas most strong lenses known so far are
distant objects at z ∼ 0.5 and DL ∼ 1 Gpc. Secondly, the lens is a low-mass spiral
galaxy (M ∼ 2 × 1010M�, according to Ferreras et al. 2005). Thirdly, the QSO
with a good accuracy (of the order of a tenth of an arcsecond) is directly behind the
galactic nucleus. Finally, the intrinsic variability of the QSO is fairly weak (of the
order of 0.1 mag) and the delays between images are negligible, a few hours up to
maybe days rather than dozens or hundreds of days as characteristic for most of the
lensed QSOs (Eigenbrod et al. 2008).

The proximity of the lens implies, among other things, a high proper motion
(approximately inversely proportional to the distance DL), while the small mass of
the lens indicates that the Einstein radius is comparatively small and the images are
rather close to the nucleus. As a consequence, the optical depth for microlensing
is fairly high, τ ∼ 1. The combination of these factors provides a basis for the
expectation that we might detect several microlensing events per year (crossings of
caustics or other singularities). This was predicted as early as in Chang and Refsdal
(1979). Since then, the magnitude of the effect has been repeatedly estimated under
different assumptions.

Uncorrelated variability of the images of the Einstein cross was found already in
Irwin et al. (1989) on the basis of a high spatial resolution photometric observational
run about a month long. Since then, the object has been observed with different
telescopes on a regular basis (this will be discussed in more detail in Sect. 5.3.1).

Evidently, to the familiar forms of observational information including energy
distribution in the spectrum, intrinsic variability, and polarization, we may now
add one more method, microlensing, which is sensitive to the intensity distribution
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on the celestial sphere on a length scale of the Einstein-Chwolson radius (of the
order of microarcseconds and smaller). The sensitivity of the method can be clearly
illustrated using a straight caustic model, which has been applied on repeated
occasions to describe peaks on amplification curves of lensed QSOs. The structure
of the fold caustic naturally appears when examining the vicinity of a line in the
source plane, where the Jacobian of the mapping vanishes (see Sect. 5.1.2 above).
The amplification factor for a point-like source is the following function of the
distance between the source and the caustic:

μ(x, y) = μ0 + μ1

√
ζ0

y
. (5.35)

Here, μ0 is the amplification factor without the caustic; μ1 ∼ 1 is the so-called
caustic strength, or amplitude; y is the distance between the source and the caustic;
ζ0 is some characteristic angular scale, which is close to the typical angles θE
for lensing stars. A source having a finite size R will be amplified approximately
by a factor of Δy × μ ∼ √

R. Already this estimate alone leads us to conclude
that the pattern of a microlensing event, especially the amplitude with which the
amplification μ changes, is sensitive to the size and form of the source, hence
being capable of providing additional information on the object. Information about
accretion disc sizes in QSOs is not only highly desired as a test for the standard
accretion disc model (see Sect. 5.2.2) and as a probe for the parameters of the central
black hole (see Sect. 5.2.4), but also is unlikely to be obtained in a more direct way.
A distant QSO (DS ∼ 1 Gpc) observed in the optical range has an accretion disc
with an angular size of the order of one microarcsecond. As has been proved earlier
in Sect. 5.1.3.1, this value has the same order of magnitude as the Einstein-Chwolson
radius for a stellar mass lens at a distance ofDL ∼ 1 Gpc. Thus, microlensing effects
allow us to reach angular resolutions unprecedented in the history of observational
astrophysics.

Since our main goal is to study the structure of emitting objects, we will use
distances in the source plane (obtained when multiplying the angular distances by
DS). The distance normalization ζ0 = √

1 − � × DSθEin is the stellar Einstein-
Chwolson radius projected onto the source plane with allowance for strong lensing,
which may be treated as a transformation of the plane independent of microlensing.
This normalization was used, for example, in Witt et al. (1993).

When considering an accretion disc, it is convenient to use the system of
coordinates α, β oriented along the semi-major and semi-minor axes of the disc
projection onto the plane of the sky (see Abolmasov and Shakura 2012b). Along
with that, we use the coordinate system x, y aligned with the caustic and rotated
relative to the coordinate system α, β by some angle ψ (see diagram in Fig. 5.5).
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Fig. 5.5 A qualitative diagram of an accretion disc lensed by a straight caustic. The grey sector
shows the amplified area behind the caustic. The side of the disc closest to the observer is outlined
in bold. The two coordinate systems used in the calculation are shown. Illustration taken from
Abolmasov and Shakura (2012b)

If there is a relative motion of an extended object and the caustic, the full
amplification at time t can be calculated as (see formula (18) in Abolmasov and
Shakura 2012b)

μ(t) = μ1
√
ζ0 ×

∫
I1(y)×Δy−1/2 ×Θ(Δy)dy∫

I1(y)dy
+ μ0, (5.36)

whereΘ(x) is the Heaviside function,Θ(x > 0) = 1 and Θ(x < 0) = 0, and

I1(y) =
∫ +∞

−∞
I (x, y)dx. (5.37)

Here, Δy = y − veff(t − t0). The effective velocity of transverse motion (see also
Sect. 5.1.3.2) can be understood as the distance in the source plane per unit time of
the observer, and is composed of the peculiar velocities of the source vS , the lens
vL, and the observer vo projected on the normal to the caustic specified by the unit
vector n:

veff = vS · n
1 + zS − vL · n

1 + zL
DS

DL
+ vo · n

1 + zL
DLS

DL
. (5.38)

The motion of the lens is generally dominant since the apparent peculiar velocities
decrease as ∝ (1 + z)−1 due to time dilation. The amplitudes of the peculiar
velocities (in the co-moving restframes) change only slightly with the redshift,
remaining of the order of ∼500 km s−1 (Raychaudhury and Saslaw 1996). The
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overwhelming majority of galaxies have peculiar velocities less than vmax �
2000 km s−1, which allows us to estimate the maximal physically justified velocity
veff as

veff � vmax

√
(1 + zS)−2 + (1 + zL)−2 × (DS/DL)2. (5.39)

This estimate corresponds to the situation when vS is perpendicular to vL,
or to an average over all the possible orientations of vS and vL. If the
proper motions of the lens and the source are directed in precisely opposite
directions, the maximal effective velocity value may grow up to veff, max ∼
vmax

(
(1 + zS)

−1 + (1 + zL)
−1 × (DS/DL)

)
. As a rule, veff ∼ vmax, the time

of passage of one Einstein-Chwolson radius being tEin ∼ DSθEin/veff ∼ 30 year.
Due to the factorDS/DL, this characteristic time appears significantly shorter (and
the passages through caustics more frequent) for lenses fairly close to observer.
The Einstein cross is unique since the lens is so close to us, its redshift (∼0.04)
corresponding to a distance of DL � 160 Mpc. When the distance to the source is
of the order of 1 Gpc, we might expect only one event during a period of several
years.

5.2.2 The Standard Accretion Disc Model

The standard thin disc model was introduced in the works by Shakura (1972),
Shakura and Sunyaev (1973) and generalised to the relativistic case in Novikov
and Thorne (1973), Page and Thorne (1974) and Riffert and Herold (1995). It is
the discussion about the nature of quasars that gave rise to the relativistic model. In
contrast to binaries, where generally a wide spectral range from optics to ultraviolet
is available where the nonrelativistic model is applicable within the accuracy of
∼ GMBH/Rc

2 ∼ 10−3, the optical discs of active galactic nuclei (AGNs) are
relatively small in comparison with the inner edges of their accretion discs (no larger
than some hundreds ofGMBH/c2). Therefore, QSOs and other galactic nuclei may
demonstrate relativistic effects even at optical wavelengths. However, this depends
on the mass and the accretion rate, both values for AGNs being able to change by
some orders of magnitude, within a range of millions to billions of solar masses and
from ∼ 10−2 to � 10M� year−1, respectively.

The main assumptions of the standard accretion disc theory are:

• axially symmetric and stationary disc
• small geometric thickness of the disc (which allows us to separate variables in the

dynamic equations, calculating independently the vertical and the radial structure
of the disc)

• all the other velocity components are small in comparison with vϕ ; radial velocity
is used only in the equation for angular momentum transfer

• the optical depth of the disc is large
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• there is no substantial heat transfer in the radial direction
• the component Trϕ of the viscous stress tensor, when integrated over the vertical

coordinate z, is proportional to the pressure of the disc P integrated over z: T rϕ =
αΠ , where α is a dimensionless constant normally smaller than unity

• the boundary condition is: Trϕ = 0 at the radius of the innermost stable orbit of
the black hole.

Viscous stresses may be due to magnetic fields or turbulence. In both cases, the
constancy of α is ensured by equipartition understood as proportionality between
the energy density of the magnetic field B2/8π , or turbulent motions ρ〈v2

t 〉, and the
thermal energy density. Thus, the turbulent component of the viscous parameter can
be estimated as the mean turbulent Mach number squared, αt ∼

〈
M2
t

〉
.

The standard thin disc implies a zero boundary condition at its inner edge which
corresponds to the innermost stable orbit in case of a BH: Trϕ(Rin) = 0. A nontrivial
boundary condition at the inner edge of the disc may arise in case of accretion onto
a rapidly rotating compact object with a strong magnetic field (see Siuniaev and
Shakura 1977; it is important here that the inner radius of the disc should be greater
than the corotation radius). The applicability of this solution for accretion onto
supermassive BHs was discussed in Agol and Krolik (2000). Large-scale magnetic
fields confined by the pressure in the disc in the so-called ‘magnetically-arrested
disc’ accretion regime, may create a torque acting on the inner edge of the disc. The
angular momentum flux produced by magnetic stresses at the inner edge of the disc
cannot significantly exceed the angular momentum flux produced by viscous forces
since the pressure of the magnetic field is restricted by the pressure in the disc.

Large optical thickness of the disc makes it possible to calculate its spectrum and
brightness distribution using the local black-body approximation. The bolometric
radiation flux is determined by the local dissipation of energy in the deep layers of
the disc

Q = 3

8π

GMṀ

R3 f (r, a) . (5.40)

Here, −1 < a < 1 is the rotation parameter of the BH, which is considered to
be negative when the angular momentum of the disc and of the BH are oppositely
directed. The small letter r , here and elsewhere, designates distances normalized to
the BH mass, r = Rc2/GM . For convenience, the accretion rate Ṁ may also be

expressed in the dimensionless form, Ṁ = LEdd

c2 ṁ, where LEdd = 4πGM

�T c
is the

Eddington luminosity limit and �T is the opacity due to electron scattering.
The correction factor f (r, a) includes the effect of the presence of an inner edge

as well as the relativistic effects in the thin disc. In the simplest case of the standard
Shakura-Sunyaev thin disc,

f = 1 −
√
rin

r
. (5.41)
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In reality, the situation is more complex even for thin disc due to the transonic nature
of the flow and to relativistic effects. More details can be found in Chap. 1 of this
book and in Sect. 5.2.4 below.

Here, rin = rISCO(a) is the radius of the ‘innermost stable circular orbit’, within
which stable circular orbits are not possible and the assumption of a Keplerian
velocity profile in the disc cannot apply; accretion of matter without angular
momentum transfer begins and viscous stresses vanish. The dependence rISCO(a)
and the correction factor for the relativistic case will be considered in Sect. 5.2.4.

Since the standard disc is optically thick, the radiation from its surface may
be considered thermal with the temperature determined by local energy release.
Equating the temperature of the local black-body radiation to the effective temper-
ature (σT 4 = Q, where σ is the Stefan-Boltzmann constant), the locally observed
monochromatic intensity at frequency ν may be written as follows:

Iν = 2hν3

c2

1

exp
(
hν
kT (r)

)
− 1

. (5.42)

Here, h, c and k are the Planck constant, the speed of light and the Boltzmann
constant, respectively. The integrated flux from the accretion disc, which is observed
at the angle i to the normal and situated at redshift z (which corresponds to some
distance D(z)), may be determined by integration over solid angle. Let us denote
the frequency in the reference frame of the QSO as νem and the frequency received
by the observer as νobs = νem/(1 + z) (for the moment, we take into account
only the cosmological redshift; the motion of the radiating matter in the disc and
strong gravity effects will be considered in Sect. 5.2.4 below). The total observed
monochromatic flux is

Fν =
∫
IνdΩ =

= 2π cos i 1
(1+z)3D2

∫ +∞
Rin

I emν RdR.
(5.43)

Here, we pass from integration over solid angle Ω to integration over disc radius
R. Provided that the relativistic effects in the vicinity of the BH may be neglected,
an element of the solid angle is dΩ = RdRdϕ/D2, where D is the angular-size
distance (see Sect. 5.2.4). The observed intensity differs from the intensity in the
comoving system by a factor of (1 + z)−3 related to the cosmological expansion of
the universe. When passing from one reference frame to another, the value Iν/ν3 is
preserved (see, for example, Rybicki and Lightman 1986).

Fν ∝ ν1/3
obs (GM)

4/3ṁ2/3 cos i × 1

D2 × (1 + z)8/3 . (5.44)

The proportionality factor is provided, for example, in our paper (Abolmasov and
Shakura 2012a). This estimate is correct far away from the limits of integration
(kTmin � hν � kTmax). From the point of view of spectral energy distribution,



224 P. Abolmasov et al.

this is an intermediate asymptotic scaling Fν ∝ ν1/3. It is important to mention that
formula (5.44) may also be used to estimate BH masses. The mass is involved in

combination with the dimensionless accretion rate, Fν ∝
(
M2ṁ

)2/3
.

5.2.3 Intensity Distribution

The data of QSO microlensing make it possible to examine the spatial structure
of the disc, regardless of the integrated spectrum, even on angular scales that are
currently too small for us to resolve directly. The statistics of anomalous fluxes and
the analysis of amplification curves (see Sect. 5.3.1) provide information concerning
mainly the half-light radii R1/2 defined as

∫ R1/2
Rin

I (R)RdR∫ +∞
Rin

I (R)RdR
= 1

2
. (5.45)

The physical meaning of this value is fairly obvious: half of the observed flux comes
from within a circle with radius R1/2. This definition is applicable to any source if
there is a clear identification of the centre. The monochromatic intensity (5.42) may
be written, with a precision up to an inessential common multiplier, as

Iν ∝ 1

exp

((
R
Rd

)3/4
f−1/4

)
− 1

, (5.46)

where Rd is the radial scale of the disc (see, for example, Morgan et al. 2010):

Rd � 10.2

(
λem

0.25mcm

)4/3 (
M

109M�

)−1/3

ṁ1/3 × GM

c2 , (5.47)

and λem is the radiation wavelength in the QSO reference frame. If the effect of the
outer and inner edges of the disc is considered negligible, then R1/2 � 2.44Rd .
This relation is fulfilled with good accuracy in the spectral range in which the
intermediate asymptotics is valid. For a disc with finite outer size and nonzero
inner radius, the relationship R1/2(Rd) is weaker and saturates at long and short
wavelengths. Therefore, the half-light radius on long and short wavelengths is
usually shorter and longer, respectively, than the radius calculated using the power-
law asymptotics (see Fig. 5.6).

Not calling into question the conclusions of Mortonson et al. (2005), let us note
that the accretion disc has several spatial scales, the smaller of them having an
advantage in microlensing. When crossing the straight caustic, an item the size
of ΔR will be amplified as μ ∝ (ΔR)−1/2. The intensity distribution in the
inner parts of the disc, where hν � kT , is approximately described by a power
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Fig. 5.6 Solid curve: the half-light radius as a function of the characteristic radius Rd of a standard
disc that radiates locally as a black body (the outer radius is Rout = 100). Dotted line: the
approximation R1/2 = 2.44Rd . The radii are given in arbitrary units

law, Iν � 2ν2kT /c2 ∝ R−3/4. The integration over solid angle near the caustic
demonstrates that the amplification factor variations related to the inner edge of
the disc are larger by approximately a factor of (Rd/Rin)1/4 than the amplification
variations related to the rest of the disc. However, these become apparent only in
close vicinity to the caustic crossing events. Numerical calculations by Jaroszynski
et al. (1992) show that the caustic crossings may be sensitive to the structure of the
inner edge of the disc.

The radius of the inner edge of the disc is

Rin = rin(a)GM
c2 , (5.48)

where the normalized value rin is determined using formula (5.56) from the
next section. The shape of the lightcurve maximum is determined mainly by the
parameterX:

X = Rd
Rin

= 1
rin(a)

(
k
h
λ

1+z
)4/3 (

3
2 ṁ

c
GMσ�T

)1/3 �
� 92

(
λ/1μ
1+z

)4/3 (
ṁ
2.5

)1/3
(

M
109M�

)−1/3
r−1

in (a).

(5.49)

We provide below convenient to use formulas that do not take into account
relativistic effects. However, the effects of general relativity are of the same order
of magnitude as the effects caused by the presence of the inner edge of the disc,
the former becoming more important for a disc tilted to the line of sight. Thus, the
formulas given below (see Abolmasov and Shakura 2012b) should be used with
caution.
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To calculate the amplification curve, it is convenient first to integrate the
brightness distribution with respect to the x coordinate:

I1(y) =
∫
I (x, y)dx ∝

∝
√
J
K
y
∫ +∞
tin

dt

exp

((
y2

r2
d

J×(1+t2)
)3/8

f−1/4

)
−1

, (5.50)

where t is a dimensionless variable of integration.

K = K(i,ψ) = cos2ψ + sin2ψ

cos2 i
, (5.51)

which can be viewed as a factor of disc area decrease due to inclination,

J = J (i, ψ) = sin2ψ + cos2ψ

cos2 i
− sin2 ψ cos2 ψ

K(i,ψ)
tan4 i, (5.52)

f = 1 −
(

1

J

r2
in

y2

1

1 + t2
)1/4

(5.53)

is the temperature correction factor we already know, and

tin =
⎧⎨
⎩

0 if y ≥ rin/
√
J√

1 − 1
J

(
rin
y

)2
if y < rin/

√
J .

(5.54)

Generally speaking, the inclination and the radial scale of the disc are degenerate:
the y coordinate is included in combinations with the radial scales only as y

√
J/rd

and y
√
J/rin. Examples of calculated amplification curves for discs with different

positions of the inner edge are shown in Fig. 5.7.

5.2.4 Account for General Relativity Effects and Location of
the Inner Edge of the Disc

To find the value rISCO as a function of the rotation parameter a for a rotating black
hole, we should solve the equation (see Bardeen et al. 1972):

r2 − 6r + 8ar1/2 − 3a2 = 0. (5.55)

The solution to this equation may be written as follows:

rISCO = 3 + Z2 − sign (a)
√
(3 − Z1)(3 + Z1 + 2Z2), (5.56)
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Fig. 5.7 Amplification curves for the simplified disc model (without relativistic effects). The
radial scale of the disc is Rin = 13.46GM/c2, the Kerr spin parameter ranges from −0.99 to 0.99,
where a negative sign means counterrotation. Illustration from Abolmasov and Shakura (2012b)

where

Z1 = 1 + (1 − a2)1/3
(
(1 + a)1/3 + (1 − a)1/3

)
, (5.57)

and

Z2 =
√

3a2 + Z2
1. (5.58)

The correction factor f was analytically obtained for the relativistic thin accretion
disc in Page and Thorne (1974):

f = 3
2

1
x2(x3−3x+2a)

×
×

(
x − x0 − 3

2a ln x
x0

− A1 − A2 − A3

)
.

(5.59)

Here:

A1 = 3(x1 − a)2
x1(x1 − x2)(x1 − x3)

ln

(
x − x1

x − x1

)
, (5.60)

A2 = 3(x2 − a)2
x2(x2 − x3)(x2 − x1)

ln

(
x − x2

x − x2

)
, (5.61)
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A3 = 3(x3 − a)2
x3(x3 − x1)(x3 − x2)

ln

(
x − x3

x − x3

)
, (5.62)

x = √
r (5.63)

x0 = √
rISCO (5.64)

x1 = 2 cos

(
1

3
arccos a − π

3

)
(5.65)

x2 = 2 cos

(
1

3
arccos a + π

3

)
(5.66)

x3 = −2 cos

(
1

3
arccos a

)
(5.67)

These x1,2,3 values are the three solutions to the cubic equation x3 − 3x + 2a = 0
(Page and Thorne 1974) expressed in trigonometric form. An analogous notation
will be used in Sect. 5.3.3.2 for the position of the spherization radius.

It should be noted here that the domain of applicability of the thin disc model is
limited by several potentially important effects:

• disc inclination with respect to the BH rotation axis; it was shown that the
Bardeen-Petterson effect (Bardeen and Petterson 1975), which tends to align
the accretion disc with the equatorial plane of the BH, operates only for high
viscosity and small thickness of the disc (see Ivanov and Illarionov 1997;
Zhuravlev and Ivanov 2011). In the general case, however, the disc may remain
inclined while approaching the innermost stable circular orbit; or it may pass
to an essentially nonlinear mode of alignment, with formation of shockwaves
having velocities of the order of the Keplerian velocity ∼ vK sin i

• deviations from the approximation of the geometrically thin, optically thick disc;
different models predict formation of a corona or advection-dominated flows
for low accretion rates (Narayan and Yi 1995; Meyer et al. 2000) and thick
advective discs for high accretion rates (Sadowski 2011); formation of essentially
supercritical flows with winds is also possible (Shakura and Sunyaev 1973;
Poutanen et al. 2007)

• deviations from the model of local blackbody radiation; the use of stellar
atmospheres (Kolykhalov and Sunyaev 1984) cannot explain many of the
observational properties of QSOs such as the almost total absence of the Lyman
jump; electron scattering and some other effects that may influence the spatial
properties of QSO discs will be considered in Sect. 5.3.1.1.

However, even a thin disc in perfect alignment with the BH does not prevent
certain effects to dramatically alter its apparent brightness distribution. These are
bending of photon trajectories and relativistic aberration. The photon trajectories
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were analytically calculated using elliptic integrals in Dexter and Agol (2009) as a
part of the geokerr software, which is available at http://www.astro.washington.
edu/users/agol/geokerr. We calculated the forms of geodesics using geokerr, after
which the Doppler factor (the ratio of the frequency in the observer reference frame
to the frequency in the reference frame comoving with the disc) was determined
from the law of conservation of energy and angular momentum of the photon along
the trajectory as follows (Abolmasov and Shakura 2012b):

δ = kt

kiui
= 1

ut (1 +Ωl) . (5.68)

Here, Ω is the orbital frequency in the disc, l = a sin i is the specific angular
momentum that is determined through the impact parameter of a given point on
the celestial sphere (see Fig. 5.5). The time component of the four-velocity is
determined from the normalization condition (gikuiuk = −1) as follows:

ut = (−(gtt + 2gtϕΩ + gϕϕΩ2)
)−1/2 =

=
(
ρ2 Δ
Σ2 − Σ2

ρ2 (Ω − ωLT )2
)−1/2

.
(5.69)

The Keplerian frequency as measured by a distant observer is

Ω = 1

r3/2 + a . (5.70)

The invariance of the value Iν/ν3 results in the fact that the relativistic Doppler
effect appears only in the form of radiation frequency shift:

Iν � Δνobsδ3I 0
ν (νem) ∝

∝
(

exp
(

1
δ
(r/rd)

3/4 f (r, a)1/4
)
− 1

)−1
.

(5.71)

At large distances (r � rin and r � rd), the Doppler effect remains essential, pro-
ducing a noticeable intensity asymmetry, due to the strong (exponential) behaviour
of the Planck curve for hν � kT . If we expand the expression for monochromatic
intensity in powers of δ−1 for small r−1, we obtain δ−1 � 1 + sin i√

r
, which implies

that the intensity contrast between the approaching and the receding sides of the
disc increases with distance as follows

I+ − I−
I+ + I− � (r/rd)3/4 sin(i)√

r
∝ r1/4. (5.72)

http://www.astro.washington.edu/users/agol/geokerr
http://www.astro.washington.edu/users/agol/geokerr


230 P. Abolmasov et al.

5.2.5 Applications to Actual Lightcurves: QSO J2237+0305
and SBS J1520+530

We have chosen the lightcurves of two objects, QSO J2237+0305, also known as
‘the Einstein cross’, and SBS J1520+530 (Abolmasov and Shakura 2012b). The
main properties of these two objects are given in Table 5.1. Detailed studies of
QSO J2237+0305 were carried out under the OGLE project (Woźniak et al. 2000)
targeted to search for classical microlensing events in our galaxy. Lightcurves were
obtained for all the four images observed by OGLE-II and OGLE-III; all the data
are available at http://ogle.astrouw.edu.pl. Figure 5.8 shows the lightcurves of the
QSO J2237+0305 images based on OGLE photometric data. So far, the search for
correlated variability of individual images has not been successful, although there
are upper limits for the delays between individual images (Vakulik et al. 2006).
Certain parts of the lightcurves visually resemble caustic crossings in shape; for this
reason, the straight caustic model is sometimes used to describe the amplification

Table 5.1 The observational data for QSO J2237+0305 (A and C images) and
SBS J1520+530 used in Abolmasov and Shakura (2012b)

SBS J1520+530 QSO J2237+0305 (A) QSO J2237+0305 (C)

zS 1.855 1.695

zL 0.72 0.039

Range of dates (V), JD-2450000 1400−1650 1200−1650

Number of observations (V) – 53/52 83

Range of dates (R), JD-2450000 1200−3000 1450−1510 –

Number of observations (R) 253 51/49 –

Fig. 5.8 Magnitudes of the QSO J2237+0305 images according to OGLE-II,III data. The arrows
indicate two events that seem to correspond to caustic crossings. Illustrations were taken from
Woźniak et al. (2000) and Udalski et al. (2006)

http://ogle.astrouw.edu.pl
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curves (Bogdanov and Cherepashchuk 2004; Shalyapin et al. 2002; Gil-Merino et al.
2006).

For the other examined object, SBS J1520+530 with only two detected images,
the optical depth due to lensing is assumed to be less than that for the “Einstein
cross”, the lens being situated much further away. This object is known to be
variable; the time delay between the two images is measured with a good accuracy
as Δt � 130 days. Knowing the lag between the variability of the two components,
we may separate the variability due to microlensing by shifting one time series by
Δt relative to the other. After that, we may interpolate the shifted time series for A
onto a time grid of the series for B and vice versa, thus obtaining a series of B/A
flux ratios (keeping both interpolated curves to prevent information loss, although
slightly violating statistics as the data set becomes redundant; see Fig. 5.9).

The fitting was performed using the dynamical method in the space of the
following parameters: the caustic crossing moment t0, the caustic parameters μ0,1,
the radial scale of the disc rd, the shape parameter X (see Sect. 5.2.3), and the
effective transverse velocity veff. Since the use of the relativistic model implied the

Fig. 5.9 Top panel: The observed flux ratios of the QSO SBS J1520+530 B and A images and
the model fitting: the simplified model without relativistic effects (dashed curve) and the Kerr
disc model (solid curve). The optimal parameters of the Kerr model: a = −0.5, i = 80◦, ψ =
330◦. Lower panel: the residuals with respect to the Kerr model. Illustration from Abolmasov and
Shakura (2012b)
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Fig. 5.10 One of the amplification events detected for QSO J2237+0305 (image A). Left panel:
R-band data; right panel: V-band data. The dashed curve represents the simplified model, the solid
curve takes into account relativistic effects. The optimal model parameters are: a = 0.2, i = 70◦,
ψ = 96◦. Asterisks and grey circles correspond to different photometric methods. Illustration
from Abolmasov and Shakura (2012b)

calculation of intensity maps for a set of values of a, rd, and inclination i, a grid of
intensity maps was produced first and then a search for an optimal solution for every
map was performed. For a more detailed description of the results see Abolmasov
and Shakura (2012b), where Tables 2 and 3 provide the optimal parameter values.
The example of a fitted lightcurve near one of the ‘events’ is given in Fig. 5.10.

As a whole, the obtained solutions demonstrate that some interesting things may
be happening near the inner edge of the disc: either the inner parts are strongly
inclined with respect to the observer or they are simply brighter and more distinct
against the background of the disc, in a greater extent than we would expect. Either
alternative may be connected with the misalignment between the BH and accretion
disc planes. Almost certainly, there is an appreciable angle between these two
planes. Alignment processes are still poorly understood and may involve formation
of shockwaves within inner parts of accretion discs or weakly interacting precessing
rings, which may produce effects similar to the observed. At the same time, a
satisfactory result is obtained for SBS J1520+530 when using a model involving
two caustics or two accretion discs (see below the final paragraph of Sect. 5.3.1).
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5.3 The Problem of Large Radii and Observational Evidence
for Supercritical Accretion

5.3.1 Observed Estimates of Disc Sizes

As early as 1979, it was proposed to use the microlensing effects produced by
the stars of the lensing galaxy to study the spatial structure of QSO discs (Chang
and Refsdal 1979). The effect itself was discovered 10 years later (Irwin et al.
1989) but proved to be difficult to use: consecutive fitting of the microlensing
lightcurves beyond the approximation of a single straight caustic (see above)
requires huge computer power and nontrivial techniques for comparison between
observational data and simulated results. Today, the standard technique for mod-
elling microlensing processes is the construction of two-dimensional amplification
maps by means of inverse ray-tracing using random distribution of lensing stars
over the celestial sphere (Wambsganss 2006). The masses and positions of the
stars are chosen randomly. A light ray trajectory is constructed for every point
of some field of view in the image space (as if the ray was emitted from the
eye of the observer. Hence the name ‘inverse ray-tracing’). The Jacobian of the
transformation of the plane of the sky, detA, is then determined (see Sect. 5.1.4),
allowing us to obtain the amplification factor μ. The amplification map for an
extended source is obtained from the amplification map for a point-like source
using two-dimensional convolution with source intensity distribution. Subsequently,
individual model lightcurves can be obtained by varying the initial coordinates of
the source and the components of relative proper motion.

The distribution of amplification μ is sensitive to the size of the source (which
determines mainly the maximal possible value of μ) and to the microlensing optical
depth (Kofman et al. 1997). Some other parameters of stellar population, such as
the mass distribution of stars, are also of importance. The mean stellar mass itself
does not in general affect the distribution in μ for a point-like source, but affects the
characteristic angular scale of the caustic network.

The opportunity to confidently measure QSO sizes did not appear until the
beginning of the new millennium. Anomalous fluxes, or more precisely, anomalies
of fluxes (the ratios of observed amplifications to those obtained in the strong lens
model) were considered in the optical and X-ray range for a sample of ten objects in
Pooley et al. (2007). The statistics of amplifications due to microlensing is directly
linked to the object size (in terms of the mean Einstein-Chwolson radius). The
goal of Pooley et al. (2007) was to solve the inverse problem of reconstructing the
possible mean disc sizes to reproduce the observed distribution over flux anomalies.

The results obtained by Pooley et al. (2007) made it possible to derive several
nontrivial conclusions about the structure of QSO discs: (1) the size of an average
QSO in the near UV range is considerably larger than predicted by the standard
multicolour thin disc theory (see Sect. 5.2.2 above); (2) the sizes of X-ray-emitting
regions are much smaller and comparable to the radius of the innermost stable
circular orbit.
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The former conclusion received further qualitative support in Morgan et al.
(2010), although the magnitude of the effect turned out to be somewhat lower: the
QSO disc sizes appeared on average approximately a factor of three larger than
predicted by theory. It is worthwhile to indicate more precisely which values were
compared with each other. Along with disc sizes estimated through microlensing
effects, I-band photometric fluxes measured by the Hubble Space Telescope were
used. The monochromatic flux at the given frequency νobs was calculated using
formula (5.44) for the standard disc.

For the broadband spectrum of an accretion disc, we may recalculate the flux
Fν to I-band magnitude with good accuracy. From the above expression (5.44) for
monochromatic flux, we may derive the value M2ṁ, on which the characteristic
radius depends according to formula (5.47). In this manner, a working formula for
determining the disc size was obtained (Morgan et al. 2010)

RI � 2.83 × 1015 1√
cos i

D

DH
×

(
λI

1mcm

)3/2

× 10−0.2(I−19) cm. (5.73)

We will use these photometric data and disc sizes in Sect. 5.3.3.2 below. Morgan
et al. (2010) interpret the observed inconsistency as a result of strong deviations
from the standard model, potentially related to a very low actual efficiency of
accretion: the observed intensity of the disc is much smaller than expected for its
estimated angular size.

As quasar microlensing effects depend on wavelength (since the monochromatic
disc sizes depend on wavelength), it is often referred to as chromatic lensing in
contrast to strong lensing and microlensing produced by an isolated lens, where
chromatic effects are not important. Flux anomalies from lensed QSOs depend
appreciably on wavelength, although not always in the manner predicted by the
standard model (Floyd et al. 2009).

Formula (5.47) implies that the approximate relationship R ∝ λ4/3 should be
valid for the standard model in a wide range of wavelengths (mainly, from optics
to UV). As a matter of fact, the maximal slope, which is 4/3, should be observed
on a limited interval between the inner and outer edges of the disc, decreasing
at both longer and shorter wavelengths (see Fig. 5.6). Many alternative models of
disc accretion also predict power-law dependencies R(λ), although with different
exponents; for this reason, it is convenient to introduce the structural parameter
ζ = d lnR/d ln λ. For a power-law functionR(λ), the structural parameter does not
depend on wavelength and R ∝ λζ .

Blackburne et al. (2011) present an analysis of multi-wavelength data for 12
objects. The dependencies R(λ) were compared with theoretical predictions (flux-
based radii were calculated using formula (5.73) for the standard disc). This work
confirms in general the abnormally large ‘disc’ sizes for most of the sources.
However, a stunning diversity of R(λ) curves becomes apparent. As a rule, the size
of the disc usually increases with wavelength, although this does not seem to be a
general property (for example, the disc size of WFI J2033–4723 decreases slightly
with wavelength). For more than a half of all objects, ζ � 0; some, however, are



5 Structure of Accretion Discs in Lensed QSOs 235

10−1 100

λem, μm

1015

1016

R
1/
2

Fig. 5.11 The half-light radius as a function of wavelength for MGJ 0414+0534 (open circles)
and HE J1113–1641 (solid circles). The data were taken from Blackburne et al. (2011). The grey
solid lines show power-law fits to the data; for comparison, the dashed red line shows a power law
with slope 4/3

well fitted by the standard disc model (this concerns both the dependence slope
and the normalization). Among the latter, the most prominent is MGJ 0414+0534,
the only radioloud object in the sample, with the greatest BH mass of approximately
2×109M� (Bate et al. 2008). Figure 5.11 shows how the size changes with observed
wavelength for two QSOs with very different ζ . One of them is MGJ 0414+0534
mentioned above, for which power-law fitting yields ζ = 1.55 ± 0.4. The
dependence R1/2(λ) for the second object, HE J1113–1641, is almost flat with
ζ = 0.05 ± 0.20.

The chromatic lensing data for many objects may be described in terms of the
approximate values of ζ estimated by fitting the observed R(λ) dependence. There
is a clear correlation between ζ and BH mass (see Fig. 5.12): the dependenciesR(λ)
are almost flat for low masses, M � 3 × 108M� (on average, however, ζ � 0); for
massive objects with M � 109M�, at least in some cases ζ � 1. The latter class of
objects includes MG J0414+0534 and the Einstein cross.

Along with the accretion disc model with scattering in an extended envelope
which will be described below in more detail, different models were proposed to
explain the abnormally large and ‘grey’ QSO sizes. Most of these models suggest
that the disc emits locally as a blackbody. It is easiest to assume that the slope
ζ < 4/3 arises simply as a consequence of another (steeper) dependence of the
temperature on the radius in the disc. This may be, for example, an accretion disc
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Fig. 5.12 The structural parameter ζ as a function of BH mass. This parameter is calculated using
the QSO sizes published in Blackburne et al. (2011). The illustration was taken from Abolmasov
and Shakura (2012a)

with a nontrivial boundary condition at the inner edge (Agol and Krolik 2000), for
which ζ � 8/7. Such a model was suggested in Floyd et al. (2009) to explain the
multiwavelength properties of SDSS 0924+0219. It seems that ζ < 1 for many
objects, implying that there should be some other solution. It is worthwhile to note
also the work by Yan et al. (2014), in which the objects with small ζ are supposedly
considered to be related to binary black holes. If it is a fairly close binary, two
accretion discs having similar sizes and luminosities might be observed. With that,
the size of the emitting area measured through microlensing will be close to the
size of the binary and will no longer depend on wavelength. If the separation
between the BHs in this binary is of the order of a few tenths of a parsec (which
is comparable with the sizes of accretion discs themselves), many properties in
brightness distribution of lensed QSOs may be qualitatively explained quite well.
Particularly, the unusual shape of the SBS J1520+530 amplification curve, which is
difficult to explain in the model with one caustic and one accretion disc, is easily
explained in terms of a binary.

5.3.1.1 Scattering in a Disc Atmosphere

Atmospheres of accretion discs are fairly hot and rarefied. For this reason, their
spectra should clearly show the effects of electron scattering. These effects are
especially interesting in those cases when an appreciable part of energy dissipating
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in the disc is eventually transferred into heat above the effective photosphere. If the
local viscous stresses scale with gas pressure (see Blaes et al. (2011); this may be
considered as a generalization of the α law in the Shakura-Sunyaev disc model; see
Sect. 5.2.2 above), a translucent atmosphere becomes approximately isothermal. To
prove this, let us consider the transfer equation for the radiation energy density u

d

dz

(
D
d

dz
u

)
= αΩp. (5.74)

Here,D = c

3�ρ
is the radiation diffusion coefficient,Ω is the angular frequency of

rotation (dependent on radius but constant along the vertical coordinate),p is the gas
pressure, � is the Rosseland mean opacity, and the optical depth is dτ = −�ρdz.
Assume that � = const (which is the case, in particular, if the electron scattering is
dominant). Dividing both parts of the equation by �ρ, we obtain:

d2

dτ 2 u = α

�

p

ρ
Ω. (5.75)

For gas pressure, p/ρ ∝ T . At the same time, u = aT 4, where a is a constant
related to the Stefan-Boltzmann constant. Therefore, we can write

d2u

dτ 2 = Ku1/4, (5.76)

where K is a constant. It is easy to see that the solution of this equation is u ∝
τ 2/3, or T ∝ τ 1/6, which is a very weak dependence. Numerical computations
of accretion disc atmospheres (see, for example, Hubeny and Hubeny 1998) also
predict that the temperature reaches a plateau in the outer layers of the atmosphere,
for τ � 5.

Scattering, even coherent, leads to deviations in the radiation field from the
thermal law. An example demonstrating the emergence of these deviations is
given in Mihalas (1978, Chapter 6.1). Coherent scattering may be treated as an
additional source of absorption plus an additional contribution to the source function
proportional to the mean intensity. Such a description corresponds to the case of
isotropic coherent scattering, reproducing some essential features of actual hot
atmospheres. For example, the radiation that escapes from a semi-infinite isothermal
atmosphere would have lower intensity for the same colour temperature. With
that, the monochromatic intensity would change by some factor depending on the
contributions of different opacity sources (see Mihalas 1978, Section 6.1):

Iν(τ = 0) � λ1/2
ν × Bν, (5.77)
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where λν = αabs/(αabs + αsc) is the relative contribution of true absorption to
opacity, αsc = ρ�sc is the linear coefficient of absorption due to scattering, and
αabs is the absorption coefficient due to true absorption. The observed intensity
Iν is lower than the blackbody intensity Bν of the same temperature by the the
dilution factor dν defined as Iν = dνBν . Further on, we will consider dilution factor
averaged over frequencies (I = d · B). Since the integrated flux that escapes from
the disc should remain unchanged, the dilution factor d < 1 implies that the actual
temperature, which determines the shape of the spectrum and may be identified with
the colour temperature for the dilution factor independent of frequency, is higher
than the effective temperature by a factor of d−1/4.

We may follow qualitatively the effects arising due to electron scattering,
including coherent scattering, using the following simplified model. Assume that
the disc radiates locally as a blackbody but its radiation is diluted; this means that
the effective temperature is not coincident with the colour temperature, and

σT 4
eff = d(r)σT 4

colour, (5.78)

where d(r) is the dilution factor. The effective temperature depends only on the
energy released in the disc, changing with radius approximately as Teff ∝ r−3/4. If
we assume that the dilution factor changes with radius also according to a power
law, d = d0 (r/r0)

γ , then both the slope of the accretion disc spectrum (defined as
Fν ∝ νβ ) and the disc brightness distribution law will change. We obtain Tcolour ∝
r−(3+γ )/4, and for the structural parameter introduced in Sect. 5.3.1

ζ = 4

3 + γ . (5.79)

Integration of the diluted spectrum over frequency allows us to estimate the slope of
the integrated spectrum far away from the maximal and minimal frequencies:

β = 1 − γ
3 + γ . (5.80)

For any accretion disc that radiates locally as a black body with a power-law
temperature dependence on radius, the relationship β = 3−2ζ is valid. Meanwhile,
for any disc with Teff ∝ r−3/4 and a power-law dependence of the dilution factor on
radius, the above formulas yield β = ζ−1. For another interesting case of a ‘passive
disc’, in which most of the angular momentum is carried from the inner edge,
whereas the angular momentum transfer by accreting matter may be considered
negligible, Teff ∝ r−7/8 and β = 3

2ζ − 1 (Fig. 5.13).
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Fig. 5.13 Structural parameter ζ and spectral slope β for the local blackbody models (solid line)
and for the models with diluted blackbody radiation (dotted lines) with a fixed effective temperature
distribution in the disc Teff ∝ r−3/4

5.3.2 Nonlocal Scattering

We will consider the envelope as extended and the scattering as nonlocal in those
cases when a photon is emitted and undergoes the latest scattering at essentially
different distances from the centre of the disc (the BH). This is possible, for
example, if the disc gives rise to an optically thick wind.

An extended scattering atmosphere around an accretion disc does not affect
significantly its spectrum as long as the atmosphere remains optically thin with
regard to true absorption and comptonization effects are not too strong. Due to
geometrical reasons, only a small part of all the photons emitted by the disc and
scattered in an extended atmosphere returns back. For this reason, the above effects
leading to an increase in the colour temperature are not important. On the other hand,
multiple scattering in an extended envelope totally changes the spatial properties of
the object, whose apparent size is now determined by the size of the photosphere
rather than the disc. The object will have similar intensity distributions at all the
wavelengths if the opacity does not depend on wavelength. The radiation will
always be appreciably diluted, with the apparent size of the object larger than the
‘blackbody’ radius of the disc.

Thus, the use of a scattering envelope allows us to solve two problems, namely,
to explain large apparent QSO radii and weak dependencies of these radii on
wavelength. Three essentially different models of such an envelope can be proposed:
(1) a static corona consisting of gas with virial temperature, (2) gravitationally
unbound outflow from the accretion disc, and (3) a gravitationally bound inflow
feeding the accretion disc, which we will consider later in Sect. 5.3.4. Since we deal
with bright objects characterized by high radiation density near the disc, there is a
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problem of Compton cooling in the first model (Pietrini and Krolik 1995). Moreover,
there are serious reasons to suggest that intense accretion is accompanied by winds
and ejections, the optical depth of which due to scattering may be greater than unity.
For simplicity, let us consider a model of a spherically symmetric stationary wind
(see also Abolmasov and Shakura 2012a).

For constant wind velocity vw and a total mass loss rate through the wind Ṁw,
the wind density changes as follows:

ρ = Ṁw

4πR2vw
. (5.81)

The radial optical depth is obtained as an integral of opacity times density �ρ over
the line of sight from the observer to a given distance R:

τ (R) =
∫ +∞

R

�ρ(R)dR = �Ṁw

4πvwR
. (5.82)

The size of the photosphere can be found as the radius where τ = 1

R1 = R(τ = 1) = fw�Ṁ

4πvw
, (5.83)

where fw � 1 is the fraction of accreting matter ejected from the disc. More detailed
calculations indicate that the brightness distribution in the atmosphere with this
density profile has an optically thick core and power-law optically thin wings, the
resulting half-light radius being approximately R1/2 � 1.06R1.

5.3.2.1 Radiation Transfer in an Extended Atmosphere

An optically thick wind forms an envelope with density decreasing according to the
power law ρ ∝ R−2. In the general case, the radiation transfer in the atmosphere of
this disc is described by the following equation (see Mihalas (1978, Chapter 7.6),
the case of a ‘grey extended atmosphere’):

χ
∂

∂R
(I)+ 1 − χ2

R

∂

∂χ
(I) = −�ρ(R)(S − I), (5.84)

Here, I = I (R, χ) is the monochromatic intensity, χ = cos θ is the cosine
of the angle θ between the radiation propagation direction and the radius vector,
and S = S(R) is the source function. Since we consider isotropic scattering,
the source function can be equated to the intensity J averaged over angles. As a
simple approximation to describe the intensity distribution over angles, the method
of moments is often used, in which the dependence of intensity on the angle θ is
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parametrized by three (or more) moments:

J = 1

2

∫ +1

−1
Idχ (5.85)

is the zeroth moment having the physical meaning of intensity averaged over all
directions. Note that dχ = d cos θ = sin θdθ .

H = 1

2

∫ +1

−1
Iχdχ (5.86)

is the first moment having a physical meaning related to the radiative flux of energy
(up to a factor of 4π).

K = 1

2

∫ +1

−1
Iχ2dχ (5.87)

is the second moment, related to radiation pressure. The moments of orders higher
than two are considered equal to zero. Moreover, it is convenient to make use of
the so called Eddington approximation, in which K = f J . This proportionality is
present, for example, in an isotropic radiation field where f = 1/3, and also in
radiation field formed by a point-like source, where f = 1. By fixing f we can,
first, integrate Eq. (5.84) over χ . The second of the two independent equations of
radiative transfer is obtained by multiplying (5.84) by χ and then integrating over
χ . This yields a closed system of equations in the Eddington approximation:

{
1
R2

d
dR

(
R2H

) = 0
d
dR (f J )+ 3f−1

R
J = −�ρH (5.88)

It can easily be seen that the system of equations can be essentially simplified both
for f = 1/3 and for f = 1. The first approximation works well at large optical
depths (deep in the envelope), the second applies at small optical depths (where
radiation propagates essentially radially). In the first case, the mean intensity J
changes as J ∝ C1R

−3. In the second case, J ∝ C2R
−2 × (1 + τ ), where C1,2

are some constants. The assumption C1 = C2 = H(τ = 1) might satisfy both
asymptotics. However, the total flux cannot be kept constant in this case (the first
equation (5.88) is not fulfilled any more); for this reason, we suggest the following
modified law for the source function:

S(r) = H0r
−2 ×

(
1 + d × r−1/2 + r−1

)
, (5.89)
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where r = R/R1 = 1/τ and d is a free parameter. If we know how the source
function depends on the (radial) optical depth τ , we can calculate the intensity as a
function of the impact parameter P :

I = �T
∫ +∞

−∞
S
(√
P 2 + l2

)
e−τl (P ,l)ρ

(√
P 2 + l2

)
dl, (5.90)

where �T is the opacity due to scattering and τl is the optical depth along the line of
sight,

τl = �T
∫ l
−∞ ρ

(√
P 2 + l2

)
dl =

= R1
P

(
arctg l

P
+ π/2) . (5.91)

Substituting the expression for the source function, we can express the observed
intensity distribution as

I (p) = H0 ×
(
u2(p)+ u3(p)+ d × u5/2(p)

)
, (5.92)

where x = l/R1 and p = P/R1 and

uk(p) = p−(k+1)
∫ π

0
e−θ/p sink θdθ. (5.93)

The parameter d is chosen so that the solution should reproduce the total luminosity
2π

∫ +∞
0 I (p)pdp = 4πH0. Numerical estimates yield d � −0.097 (Fig. 5.14).

Finally, the half-light radius R1/2 can be calculated for the obtained intensity
distribution using formula (5.45). Numerical calculations result in R1/2 � 1.063R1,
where R1 is the radius of the photosphere at which the radial optical depth is τ = 1.

θ

R

R1

P

l

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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3.0

3.5
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4.5

y
/R

1

Fig. 5.14 Left: diagram illustrating the calculation of the intensity distribution in Sect. 5.3.2.1.
Here, P is the impact parameter, l is the variable of integration. Right: the intensity distribution for
the model in use. The levels of equal optical depth τl (0.1, 1, 2 and 5) along the line of sight are
shown by solid lines, and the half-light radius R1/2 by a dotted line
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5.3.3 The Supercritical Accretion Regime

As repeatedly mentioned above, the standard accretion disc model has its applica-
bility limits, the first of which, the Eddington limit, was pointed out as early as 1973
by Shakura and Sunyaev (1973).

The Eddington limit (Eddington 1925) arises due to radiation pressure. An
isotropic source coincident with the gravitating centre produces a dynamical effect
on the surrounding matter through the pressure of its radiation. For an opacity �,
this radiation pressure force acting upon a unit mass is

�F = �L

4πR2 . (5.94)

If this force is balanced by the gravitational force (which is also inversely propor-
tional to the distance squared, thus eliminating R in the classical approximation),
matter becomes gravitationally unbound, which leads to wind launching and may
halt the accretion process itself. In the spherically symmetric case, this luminosity
limit is

LEdd = 4πGMc

�
. (5.95)

The luminosity released during accretion is L = ηṀc2, where η is the accretion
efficiency, which is independent of Ṁ andM for the standard disc but is sensitive to
the position of the inner edge of the disc (and, respectively, to the rotation parameter
a). The accretion is considered supercritical if the luminosity L > LEdd, although
this is a fairly uncertain boundary, depending on both the geometry of the accretion
flow (the Eddington limit is obtained in the assumption of spherical symmetry)
and its dynamics. In the case of an accretion disc, it is more correct to locally
compare the vertical component of gravity with the radiation pressure. A version
of such a local approach to the Eddington limit was used in our paper: Abolmasov
and Shakura (2012a). In such a local approach, it is convenient to normalize the
accretion rate to an ‘Eddington’ value that does not contain the global accretion
efficiency η:

Ṁ∗ = LEdd

c2
= 4πGM

c�
, (5.96)

Radiation pressure in the inner parts of the accretion disc dominates over gas
pressure. This is the so called ‘zone A’ of the standard disc, in which the transition to
supercritical accretion occurs for all reasonable values of BH masses. Here, the disc
thickness H is determined from the balance between the radiation pressure force
and the vertical component of the BH gravity

�

c
Q = �

c

3

8π

GMṀ

R3 f = GM

R3 H, (5.97)
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which yields in the nonrelativistic approximation

H = 3

8π

�Ṁ

c

(
1 −

√
Rin

R

)
= 3

2

GM

c2 ṁ

(
1 −

√
Rin

R

)
. (5.98)

It can easily be seen that an increase in accretion rate gives rise to the occurrence
of a thick disc. When the total luminosity exceeds the Eddington limit, part of
the released radiation energy is converted to kinetic energy of the flow, leading to
formation of massive noncollimated outflows. If we assume that the transition to
supercritical accretion occurs under the condition H(R) > R, we may identify the
maximal radius at which the disc still remains locally supercritical. Traditionally,
this radius Rsph is named the spherization radius (Shakura and Sunyaev 1973)
as the thicker the disc the closer it approaches spherical symmetry. The simplest
nonrelativistic case, which takes into account the presence of the inner edge of the
disc, allows us to estimate rsph as the largest solution to the equation

r

1 − 1/
√
r
= 3

2

ṁ

rin
. (5.99)

This equation has a positive solution starting from ṁ = 4.5rin, which may be
considered as the critical value of the accretion rate. Solving the above equation
allows us to express the spherization radius as

Rsph = 3

2

GM

c2 ṁ× ψ2(ṁ/xin). (5.100)

Here, the correction factor ψ , calculated in the assumption of zero stress, accounts
for the presence of the inner edge of the disc. When Eq. (5.99) has three real roots,
the relevant is the largest of them

ψ(x) = 2√
3

cos

(
1

3
arccos

(
− 3√

2x

))
. (5.101)

For ṁ� 1, the function ψ(ṁ/xin) quickly approaches unity, and

Rsph � 3

2
ṁ× GM

c2 , (5.102)

which is consistent with the classical definition of the spherization radius (Shakura
and Sunyaev 1973).
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5.3.3.1 Size of the Photosphere

Assume that a QSO accretion disc is surrounded by a wind which is spherically
symmetric and carries away an appreciable part of the accreting matter (the outflow
rate is fwṀ , where fw � 1 is the mass fraction ejected in the wind). Since most of
the mass is lost by the disc at radii close to the spherization radius, the velocity of
the outflow is close to virial at Rsph

vw = βw

√
2GM/Rsph = 2√

3

βw

ψ
ṁ−1/2c, (5.103)

where βw � 1 is a scaling dimensionless constant of the order of unity, and ψ is the
correction factor determined using expression (5.101). It can be shown that the use
of the nonrelativistic formula is quite reasonable since post-Newtonian corrections
to the expression (5.103) are generally within a couple per cent. The radial optical
depth due to scattering is

τ =
∫ +∞

R

�T ρdR. (5.104)

The continuity equation allows us to estimate the density in the wind as ρ =
Ṁ

4πvwR2 . Substituting the expression for density and setting τ = 1, we obtain the

following estimate for the photospheric radius:

R1 =
√

3

2

fw

β
ṁ3/2ψ × GM

c2 . (5.105)

This estimate is valid if the local Eddington limit is violated somewhere in the disc.
As we have already mentioned, a transition to the supercritical accretion regime

may be treated as a local process (energy flux becomes sufficient to throw a test
particle away to infinity), even if a large geometrical thickness of the disc restricts
the applicability of this approach. Considered locally, the Eddington limit depends
on GR corrections which make the effective vertical gravity near the equatorial plane
two or three times larger. Moreover, the effects related to disc thickness should be
accounted for: the deviations from the Kepler rotation law, dependence of angular
velocity on height, and radial heat advection. Taken together, these effects seem to
raise the value of the limit by a factor of a few, slightly decreasing the size of the
spherization radius (Abolmasov and Chashkina 2015) (Fig. 5.15).
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X−rays outflow

photosphere

(τ∼1)

accretion disc

Fig. 5.15 The accretion disc, the wind and the scattering envelope produced by the wind. The
area in red is the disc with size depending on the wavelength. The envelope (hatched) is unable to
hide the disc at long wavelengths. It seems that there is a channel in the envelope through which
(directly or after reflection/scattering) the X-rays from the inner parts of the disc may be observed

5.3.3.2 Evidence for Supercritical Accretion

Let us assume that a QSO is the source of a wind producing a scattering envelope,
the optical depth and the size of which, in general, depend on the wind strength,
and increases with the rate of matter ejection and thus with the accretion rate.
Some QSOs (those hidden below scattering envelopes) will have significantly
larger effective disc sizes depending more weakly on wavelength, since the size
of the scattering photosphere does not depend on wavelength. Most probably, the
envelopes are actually nonspherical and translucent. However, for simplicity we will
use the approximation of a spherical envelope with a clearly outlined photosphere.
Despite the fact that in reality such a photosphere should be fairly fuzzy, with
strong limb darkening, all the intensity distribution and limb darkening effects are
almost independent of wavelength. The size of the photosphere does not depend
on wavelength as long as scattering by free electrons remains the main source of
opacity. We estimated the accretion rates and the masses of the objects from the
sample of Morgan et al. (2010), for which disc sizes through microlensing are
known and fluxes in the photometric I band are available. The accretion rates and BH
masses were determined using simultaneous solution of Eqs. (5.44) and (5.105) for
M and ṁ. Unfortunately, the original tables and plots contained a calculation error;
the correct results are given in Abolmasov and Shakura (2013) and in this book in
Table 5.2 and Fig. 5.16. Figure 5.17 shows the corresponding accretion rates in solar
masses per year. The masses obtained are essentially lower than the ‘virial’ masses
Mvir calculated using the reverberation method or through emission line widths
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Fig. 5.16 The masses and the dimensionless accretion rates obtained in a self-consistent way in
the framework of the scattering envelope model for a = 0.9 (left) and a = 0 (right). The dotted
horizontal lines indicate the critical accretion rates, the solid lines show the ṁ values for which the
apparent sizes of accretion discs and envelopes become comparable. The uncertainties correspond
to a significance level of 1σ , considering the uncertainties in determining the source sizes and the
magnitudes. The asterisk indicates that the data were taken from Morgan et al. (2012); all the other
data were taken from Morgan et al. (2010). This illustration together with the next one were taken
from Abolmasov and Shakura (2013)

Fig. 5.17 The masses and the dimensional accretion rates obtained in a self-consistent way in the
framework of the scattering envelope model for a = 0.9 (left) and a = 0 (right). The notation is
the same as in the previous figure

(Vestergaard and Peterson 2006), while the accretion rates are suspiciously high. If
we abandon the use of self-consistent mass estimates in favour of virial masses, the
accretion rates become ṁ ∼ 10–100, consistent with some independent estimates
of maximal accretion rates in distant QSOs (Collin et al. 2002). Using (5.44)
to estimate BH masses seems to be incorrect since this formula is valid for
the standard disc, not taking into account neither the decrease of accretion rate
within spherization radius nor any of the true absorption processes affecting the
observed QSO spectrum. Two circumstances should be noted: first, the optical Icorr
magnitudes are determined using a strong lens model with an amplification factor
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of tens or hundreds, potentially vulnerable to systematic errors. Second, the QSO
radiation which is detected in the optical to near infrared range, has been emitted in
UV, thus being very sensitive to absorption by interstellar dust (one magnitude of
absorption in the V band corresponds to absorption of two to four magnitudes at 0.1–
0.2 µm). The presence of dust in galactic centres is rather expected, and taking this
into consideration enables a substantial decrease of the accretion rates and increase
of the BH masses, making them consistent with virial estimates. For this, dust
extinction of the order of 1−2 mag is sufficient, which corresponds to absorption
lower than ∼ 0.5 mag at optical wavelengths. Taking into account absorption Aν
yields a correction for the observed flux F obs

ν = 10−0.4AνF emν . Estimates for the
accretion rate and the BH mass will depend on the absorption as

ṁ ∝ 10−0.3Aν , (5.106)

M ∝ 100.45Aν, (5.107)

and

Ṁ ∝ 100.15Aν . (5.108)

On the other hand, interstellar extinction does not affect the shape of the amplifi-
cation curves and therefore cannot affect the observed values of the ζ parameter.
Possible contribution of systematic uncertainties due to interstellar extinction was
considered for SDSS 0924+0219 in Floyd et al. (2009).

Systematic uncertainties in our calculations may be introduced by other reasons
as well. First, the formulas in use contain the dimensionless coefficients fw (the
fraction of accreting matter ejected in the form of a wind) and βw (the ratio of
the terminal wind velocity to the escape velocity at the spherization radius). The
first coefficient is less than unity by definition. The second coefficient may be more
or less than unity, depending on how the momentum and energy are redistributed
in the outflowing matter. If the wind from the spherization radius is accelerated
approximately radially, its velocity is:

v(R) �
√

2

(
L

LEdd
− 1

)
×

(
GM

Rsph
− GM

R

)
. (5.109)

Close to the Eddington limit, L/LEdd ∼ ṁcrη ∼ 4.5. Therefore, βw �√
L/LEdd − 1 ∼ 2. Lower values of βw may arise in cases when the main

contribution to the expansion of the envelope comes from matter launched at
relatively large radii in the disc (this result is supported by numerical calculations of
Sadowski et al. 2014). In this case, a decrease in velocity approximately by a factor
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of 10 (βw ∼ 0.1) makes it possible to reconcile, on average, the mass estimates with
the virial ones as the resulting quantities scale with the parameter as

ṁ ∝ βw, (5.110)

M ∝ β−1/2
w , (5.111)

and

Ṁ ∝ β1/2
w . (5.112)

Another very important effect, which is able to appreciably change the expected
envelope size, is the presence of additional opacity mechanisms. The accretion rates
and masses depend on the opacity � as follows2:

ṁ ∝ �−2 (5.113)

M ∝ � (5.114)

Ṁ ∝ �−1 . (5.115)

The presence of additional absorption mechanisms allows us to explain why the
mean value ζ is not zero for QSOs with envelopes. For instance, free-free scattering
in a comparatively hot wind (hν � kT ) results in the following dependence of the
size of the photosphere on wavelength (see Cassinelli and Hartmann 1977):

R1 ∝ λ 2
2n−3m/2−1 , (5.116)

if ρ ∝ r−n and T ∝ r−m. In particular, ζ = 8/9 for n = 2 and m = 1/2.
A lot remains unclear in the schematic scenario outlined above. In particular,

the X-rays we observe come from a source that is much more compact than the
envelope. We may assume that the shape of the envelope differs from spherical and
has a channel to release X-rays (as shown in Fig. 5.15). It is also unclear how the
low masses obtained in Abolmasov and Shakura (2012a) can be reconciled with
the virial mass estimates. Maybe, further numerical calculations will help finding
the answer. Note for example that an optically thick wind subjected to different
instabilities may become highly inhomogeneous near a photosphere arising at a
distance of the order of hundred gravitational radii (Takeuchi et al. 2013). This
differs considerably from radii calculated according to formula (5.105).

2The photospheric size is proportional to R1 ∝ �Ṁ , while the product MṀ ∝ F
3/2
ν does not

depend on opacity; the Thomson opacity �T , which is included in the Eddington luminosity
normalization, is considered fixed.
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5.3.4 Scattering by Inflowing Matter

As we could see above, the observed properties of lensed QSOs may be explained
using a scattering envelope model if the wind velocity is assumed to be very
small, less than one tenth of the virial velocity at the spherization radius. Such
a small dimensionless factor, far less than unity, is unlikely to arise during wind
acceleration: this requires the total mechanical energy of the wind to be equal to
zero with a precision of the order of βw � 1, too much of a fine tuning to represent
reality. Only the smallness of the total mechanical energy can ensure a low wind
velocity (compared to the virial velocity in the acceleration area) at large distances.
On the other hand, during accretion of matter with high angular momentum, it is
quite natural to expect very small radial velocities determined by loss or viscous
transfer of the angular momentum. If both inflows and outflows exist, it is more
reasonable to expect the disc radiation to be scattered by the inflowing gas rather
than by the wind. The angular momentum of the accreting matter definitely needs
to be high to form an accretion disc.

Many active galactic nuclei (AGNs), including QSOs, are surrounded by gas-dust
tori (Elitzur 2008) and areas radiating in broad emission lines, BLR (Peterson 2006).
The gas-dust torus seems to be a reservoir from which the active galactic nucleus
receives matter to accrete. The data available for well-studied galactic nuclei, such
as NGC5548 (Kollatschny and Zetzl 2013), indicate that the geometries of the BLR
resemble tori or geometrically thick discs with axis ratios different for different
emission lines. On the other hand, there is evidence (Doroshenko et al. 2012; Grier
et al. 2013) that the gas in BLR has, on average, radial velocities directed inwards.
This contradicts the widespread conception that broad lines form in the disc wind
(see, for example, Korista 1999).

A possible contribution of this inflowing scattering substance to the observed
spatial properties of the QSO ‘disc’ is estimated in Abolmasov (2017). A reasonable
fit to the observational data can be achieved by assuming a radial inflow velocity of
the order of one per cent of the virial, the size of the scattering area being of the
order of 104 gravitational radii. Assuming that the accretion rates of the objects
of the sample are close in absolute values and constitute a few solar masses per
year (consistent with the observed values within an order of magnitude), we can
reproduce the separation of objects into two groups with different values of ζ (see
Fig. 5.12) and absolute values of the observed radii. However, for this to work, the
contribution of the scattered radiation should be significant, which requires large
geometrical thickness and high scattering efficiency.

This approach is able to qualitatively explain the fact that the ζ parameter is
noticeably larger than zero for most of the objects, although appreciably less than
that for the standard disc. This rather expected effect may be illustrated using the
following simplified model. Let us assume there is a disc for which the half-light
radius is Rd = Rd(λ). If, instead of the disc, we see a halo with intensity distribution
I ∝ R−2 between Rd and some fixed outer radius Rout, the half-light radius of the
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halo will be R1/2 � √
RdRout ∝ R

1/2
d . In terms of the slope of the dependence

R1/2(λ), this means ζ becomes equal to half of the structure parameter for Rd.
The simplified assumption of coherent scattering by a geometrically thick

accretion flow is not able to conclusively resolve the problem. The solution to
the problem seems to be directly related to other problems of accretion onto
supermassive black holes. First, there are inconsistencies in the spectra of QSOs:
the predictions of the standard theory of multi-temperature accretion disc do not fit
well with the shapes of QSO spectra in the range 0.1–1µm, the area of the ‘big blue
bump’, where it is supposed to work. It seems quite reasonable (this possibility
was considered by Lawrence 2012) that the observed radiation of the ‘big blue
bump’ is not emitted by the surface of the accretion disc itself. Instead, it is emitted
further away from the BH, in the gas ionized and heated by harder disc radiation.
In this case, the shape of the observed spectrum is determined by local microscopic
processes, namely, ionization, radiation transfer, and cooling, rather than by energy
release per unit area of the emitting surface. This model allows us to explain why the
QSO spectra in UV and optics are approximately of constant shape and why there
is no strong Lyman jump at all. If emitting regions are ionized by comparatively
hard radiation with energies of a few tens of eV, recombination will not result in
the emergence of any appreciable Lyman emission jump since Lyman continuum
quanta will be emitted mainly at high optical depths, being effectively reprocessed
into Lyα quanta (this effect of a ‘Lyman greenhouse’ was considered in Abolmasov
and Poutanen 2017). It seems that to accurately explain the spatial properties of the
emitting areas in lensed QSOs it is necessary to develop a detailed physical model
for scattering and reprocessing of the radiation of the disc, capable of reproducing
both the continuum and the emission-line components of QSO emission together
with their spatial properties. Such a unified spectral model might be applied not only
to the photometric estimates of accretion discs and their spectral properties but also
to the data on microlensing-induced spectral variability of QSOs, that are currently
being gradually accumulated (O’Dowd et al. 2015; Braibant et al. 2016; Guerras
et al. 2013a). In principle, a much larger amount of information on the emitting area
could be derived from the evolution of emission line profiles since amplification of
areas with different radial velocities, velocity dispersions and physical conditions
do not occur simultaneously.

5.4 Conclusions

It appears as if the opportunities provided by QSO microlensing are far from being
exhausted and further advance in this area will require further improvement in the
methods involved in the analysis of the observational data and elimination of the
numerous sources of systematical errors (see, for example, Vernardos and Fluke
(2014) where such biases are discussed for strong lensing models). It is likely that
not only the size but also the disc brightness distribution may soon be reproduced
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on the basis of the amplification curves, allowing us to directly verify models of
accretion flows and scattering envelopes.

The effects of broad emission-line microlensing could become an important
source of information. It has now become clear that microlensing often distorts
line profiles, affecting one wing more than the other. The regions producing such
lines should be spherically asymmetric, resemble thick discs and, likely, rotate fast
enough (Braibant et al. 2014). The FeII and FeIII emission line blends seem to
form approximately in the same area as the UV continuum radiation (Guerras et al.
2013b). Unfortunately, there have been no effects detected so far which might be
related to chromatic lensing of IR radiation from QSOs since the available data on
far IR variability are very scarce.

The question of what may be the nature of the X-ray emission in QSOs requires
special attention. The sizes of the X-ray sources estimated using microlensing data
often turn out comparable to the assumed size of the innermost stable orbit (Morgan
et al. 2012). Possibly, the X-rays could be caused by shocks arising between the
innermost stable orbit and the event horizon, in the area that emits the energy stored
in an accretion disc of finite thickness (see Introduction in Abolmasov 2014 and the
discussion therein). The source of the X-rays may also be some sort of hot corona,
although very compact, with a size of the order of the radius of the innermost stable
circular orbit (Cao 2009).
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Chapter 6
Transient Dynamics of Perturbations
in Astrophysical Discs

Dmitry Razdoburdin and Viacheslav Zhuravlev

Abstract This chapter reviews some aspects of one of the major unsolved problems
in understanding astrophysical (in particular, accretion) discs: whether the disc
interiors may be effectively viscous in spite of the absence of magnetorotational
instability. In this case, a rotational homogeneous inviscid flow with a Keple-
rian angular velocity profile is spectrally stable, making the transient growth of
perturbations a candidate mechanism for energy transfer from regular motion to per-
turbations. Transient perturbations differ qualitatively from perturbation modes and
can grow substantially in shear flows due to the non-normality of their dynamical
evolution operator. Since the eigenvectors of this operator, alias perturbation modes,
are mutually nonorthogonal, they can mutually interfere, resulting in transient
growth of their linear combinations. Physically, a growing transient perturbation
is a leading spiral whose branches are shrunk as a result of the differential rotation
of the flow. This chapter discusses in detail the transient growth of vortex shear
harmonics in the spatially local limit as well as methods for identifying the optimal
(fastest growth) perturbations. Special attention is given to obtaining such solutions
variationally, by integrating the direct and adjoint equations forwards and backwards
in time, respectively. The material is presented in a newcomer-friendly style.

6.1 Introduction: Modal and Non-modal Analysis
of Perturbations

A salient feature of disc accretion is that it is impossible without a dissipation
mechanism for the differential rotation energy of matter. It is the internal friction in
the disc, i.e. irreversible interaction of its adjacent rings, that leads to the transfor-
mation of gravitational energy of the accreting matter into heat and electromagnetic
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radiation, which simultaneously allows the matter to flow towards the centre and the
angular momentum to flow outwards to the disc periphery.

Direct dissipation is already possible due to the microscopic viscosity of the
gas (plasma). However, in astrophysical conditions it turns out to be absolutely
insufficient to explain the observed properties of discs. Essentially, discs are too
large for the characteristic accretion time, tν , to be explained by microscopic
viscosity. For example, in protoplanetary discs with typical size L ∼ 10 a.u., where
the kinematic viscosity is estimated to be νm ∼ 107 cm2/s, the accretion time is
tν = L2/ν ∼ 1013 years, (see Section 3.3.2 in Armitage 2009). Apparently, tν
is several orders of magnitude larger than the age of the Universe. At the same
time, observations of gas-dust discs around young stars suggest that their lifetime
is as short as only a few million years (see, for example, the review by Youdin and
Kenyon (2013)). A similar conclusion is obtained for hot accretion discs around,
in particular, black holes in close binary systems. In this case, for much smaller
scales, L ∼ 1010 cm, and somewhat smaller viscosity of the hydrogen plasma
νm ∼ 105 cm2/s, we get tν ∼ 3 × 107 years, which exceeds by many orders
of magnitude, for example, the duration of X-ray Nova outbursts caused by non-
stationary disc accretion (see the review by Remillard and McClintock (2006)).

At the same time, it is known from statistical hydromechanics (see the discussion
of the Reynolds equations in Monin and Yaglom (1971), v. 1, Ch. 3) that the
presence of significant correlating fluctuations of the velocity components in a
flow is equivalent to the presence of a high effective viscosity, that exceeds the
microscopic viscosity because the mixing scale of matter in the flow is much
larger than the free path length of individual particles. In turn, the high effective
viscosity enhances the angular momentum transfer towards the disc periphery,
thus decreasing tν to the observed values. The perturbations under discussion can
generally be regular: for example, accretion can be due to tidal waves generated
in the disc by the secondary companion of a binary system (see Menou 2000).
However, it is more natural to assume that these perturbations are generated by
turbulence in the fluid. The turbulence takes its energy on the one hand from the
rotational motion of matter on large scales, and on the other hand, via interaction
of perturbation components with different wave numbers and cascades this energy
to small scales where its direct dissipation into heat occurs due to microscopic
viscosity.

It is important to recognize that energy transfer from a regular flow to per-
turbations should be mediated by some linear mechanism that follows from the
dynamics of small perturbations described by linearized hydrodynamic equations.
This can be rigorously proved for vortex fluid motion using the Navier-Stokes
equations (see Schmid and Henningson (2001), Section 1.4, as well as Henningson
and Reddy (1994)). Therefore, a first natural step in a theoretical study of turbulence
generation in a given (stationary) flow is to search for exponentially growing
linear perturbations against a steady-state background. Such perturbations are
usually referred to as modes, and the corresponding analysis is dubbed modal or
spectral analysis of perturbations, since it is used to determine eigenvalues of the
corresponding dynamical operator of the problem: (complex) mode frequencies.
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Turbulence arising from growing modes is called supercritical . In astrophysical
flows with Keplerian angular frequency, spectral (magneto-rotational) instability
with corresponding supercritical (MHD) turbulence has been found in analytical
and numerical calculations Balbus and Hawley (1991), Hawley et al. (1995) and
Stone et al. (1996) (see also reviews Balbus and Hawley (1998) and Balbus (2003))
for discs with a frozen seed magnetic field. Nevertheless, the magneto-rotational
instability does not operate in cold low-ionized discs. Protoplanetary discs, accretion
discs in quiescent states of cataclysmic variables and the outer parts of accretion
discs in active galactic nuclei provide examples. Thus, it would be very important to
show that differential rotation alone is capable of exciting turbulence in Keplerian
discs. This property of Keplerian flows is universal, unlike the presence of a seed
magnetic field together with sufficiently high degree of ionization of matter, or
the existence of flow inhomogeneities due to the vorticity jump (see, for example,
the review by Fridman and Bisikalo (2008)), or the appearance of radial velocity
gradients (see the review by Kurbatov et al. (2014)), of vertical and/or horizontal
gradients of some thermodynamic values (see, for example, Lovelace et al. 1999;
Klahr and Hubbard 2014). However, generation of turbulence in a homogeneous
Keplerian flow without magnetic field remains questionable so far.

The main difficulty here is that such a flow is spectrally stable: the specific
angular momentum for the Keplerian rotation increases with radial distance from the
centre, therefore according to the Rayleigh criterion (Rayleigh (1916) and Landau
and Lifshitz (1987), v. 6, paragraph 27) the growth of axially symmetric modes
is impossible; in turn, non-axisymmetric modes cannot grow since the necessary
Rayleigh condition on the existence of extremum of vorticity in the background
flow (Rayleigh 1880; Charney et al. 1950) is not fulfilled. In spite of that (and as
follows from laboratory experiments and numerical simulations), turbulence arises
in spectrally stable flows as well. In this case it is called subcritical . The plane-
parallel Couette flow provides the simplest and the most prominent example (see
the classical monographs by Drazin and Reid (1981) and Joseph (1976)).

In the theory of hydrodynamic stability, the transition of some flow (with
non-zero microscopic viscosity) to a turbulent state is usually characterized by a
set of critical Reynolds numbers Re (see Section 1.3.2 in the book Schmid and
Henningson (2001)). The smallest of them is the number ReE such that at Re < ReE
there are no initial perturbations, irrespective of their amplitudes, whose energy
would grow at the initial time t = 0. ReE can be derived from the Reynolds-Orr
energy equation (see Section 1.4 in Schmid and Henningson 2001). For a Couette
flow ReE ∼ 20. For Re > ReE initially growing perturbations at t = 0 arise, but
as long as Re < ReG, again there are no initial perturbations with an amplitude that
would not decay at t → ∞. This is the definition of the second critical number
ReG > ReE. Finally, at higher values Re > ReG perturbations appear that can
sustain their amplitude at all times, and starting from some ReT > ReG the transition
to a turbulent state is experimentally observed. For a Couette flow ReT ∼ 360. The
largest of the critical Reynolds numbers is ReL > ReT, starting from which growing
modes arise, i.e. the flow becomes spectrally unstable. For a Couette flow, as well
as for a Keplerian flow of interest here, ReL = ∞. However, the case of Keplerian
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flow is different in that up to the present time, the value of ReG remains unknown,
and ReT has not been measured neither theoretically nor experimentally.

On the one hand, a general opinion has emerged that for Keplerian flows ReG =
ReT → ∞. This is based on the indirect argument that (locally) the action of the
tidal and Coriolis forces on the perturbation, which are absent in a Couette flow,
strongly stabilizes the shear flow (see Fig. 9 in the review by Balbus and Hawley
(1998), in which the results from Balbus et al. (1996) are shown). This conclusion
is supported by local numerical simulations Hawley et al. (1999), Shen et al. (2006)
and series of laboratory experiments Ji et al. (2006), Schartman et al. (2009) and
Schartman et al. (2012), in which stability of a quasi-Keplerian flow was observed
up to Re = 2 × 106. Here we assume the quasi-Keplerian flow to be a so-called
anti-cyclonic flow (see, for example, the definition in Lesur and Longaretti (2005)),
where the specific angular momentum increases while the angular velocity itself, in
contrast, decreases towards the periphery.1

On the other hand, in a cyclonic flow subcritical turbulence is observed at finite,
although large values ReT, see Taylor (1936), Wendt (1933) on experiments with
spectrally stable Taylor-Couette flows, as well as their analysis in astrophysical con-
text in Zeldovich (1981) and later in Richard and Zahn (1999). In addition, negative
results obtained in numerical experiments mentioned above can be explained by
insufficient numerical resolution, as discussed in Longaretti (2002). In a subsequent
paper by Lesur and Longaretti (2005), the dynamics of perturbations in cyclonic and
anti-cyclonic flows was compared numerically. It was concluded that the required
numerical resolution in the second case is much higher than in the first case, and
the current computational power is insufficient to discover turbulence in a Keplerian
flow; also it is impossible to argue that the stabilizing action of the Coriolis force
in this case excludes the existence of a finite value of ReT < ∞. At last, another
laboratory experiment presented in Paoletti and Lathrop (2011) and Paoletti et al.
(2012) shows the appearance of subcritical turbulence and angular momentum
transfer outwards in a quasi-Keplerian flow. The contradictory results claimed
by different experimental groups show the complexity of the experiment due to
inevitable arising of secondary flows induced by experimental tools. Presently, the
influence of axial boundaries on the laboratory flow is discussed (see Avila 2012;
Edlund and Ji 2014).

Anyway, it can be stated that of all types of homogeneous rotating flows,
quasi-Keplerian (anti-cyclonic) flows turns out to be the most stable relative to
finite-amplitude perturbations. Nevertheless, the smallness of microscopic viscosity
in astrophysical conditions mentioned above simultaneously means that huge
Reynolds numbers should exist in the discs. For example, if in the protoplanetary
disc discussed above we take its thickness H ∼ 0.05L = 0.5 a.u. as the natural
limiting scale of the problem, which corresponds to the sound velocity in the disc
at this radius cs ∼ 0.5 km/s, we get Re ≈ 1010. In other astrophysical discs Re
can be even higher. Apparently, considering all negative results, the possibility of

1In a cyclonic flow both these quantities increase with distance from the centre.
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turbulence in astrophysical Keplerian flows still spans several orders of magnitude:
106 < ReT < 1010.

Thus, a search for the critical value ReT for Keplerian flows continues, and in
the present chapter we will discuss in detail the necessary condition for turbulence
and/or enhanced angular momentum transfer to the disc periphery—the transition
of energy from a regular flow to perturbations in such a flow. As mentioned above,
this transition should be mediated by a linear mechanism. Here, since a Keplerian
flow is spectrally stable, only (small) perturbations different from modes can
provide such a mechanism. The existence of such transiently growing non-modal
perturbations in a shear flow was suggested already in papers by Kelvin (1887)
and Orr (1907a,b). In astrophysics, this problem was studied in stellar dynamics
(see Goldreich and Lynden-Bell 1965; Julian and Toomre 1966). However, in the
context of hydrodynamic stability, rigorous treatment of such perturbations and
methods to determine them were elaborated only in the 1990s and were dubbed
non-modal perturbation analysis. To stress the inapplicability here of traditional
modal analysis, the corresponding concept of the transition to subcritical turbulence
due to transient growth of perturbations was called the bypass transition . The non-
modal analysis of perturbations was formulated in Farrell (1988), Butler and Farrell
(1992), Reddy et al. (1993), Reddy and Henningson (1993), (see also the reviews
by Trefethen et al. (1993), Schmid (2007) and the book by Schmid and Henningson
(2001)). These papers showed that mathematically the non-modal growth is due to
non-orthogonality of the perturbation modes. If modes with a physically motivated
norm are non-orthogonal to each other, their linear combinations can grow in this
norm, in spite of each separate mode being decaying, as in a spectrally stable flow
(see Fig. 6.5 in Sect. 6.3.1). In turn, the modes are non-orthogonal due to non-
normality of the linear dynamical operator governing the perturbation evolution (see
the introductory information about the operators in the same section). A non-normal
operator does not commute with its adjoint operator, which is due to a non-zero
velocity shear in the regular flow (see the concluding part of Sect. 6.3.4 below for
more detail). Here, the higher Re, the higher the degree of non-orthogonality of the
modes to each other and, correspondingly, the higher transient growth is possible.
The papers mentioned above argue that the maximum possible transient growth of
perturbations during a fixed time, called the optimal growth, is determined by the
norm of a dynamical operator that can be obtained by calculating singular vectors
of the operator (see Sect. 6.3.1 for more detail). Finally, the operator norm is tightly
related to the notion of the operator’s pseudospectrum (see Trefethen et al. 1993;
Schmid and Henningson 2001).

Later this method was applied to astrophysical flows in Ioannou and Kakouris
(2001), Yecko (2004), Mukhopadhyay et al. (2005), where different models were
used to search for optimal perturbations demonstrating the optimal growth. In
particular, it was shown that for a Keplerian velocity profile, the growth can be
substantial only starting from Re ∼ 106, while in a similar setup for an iso-
momentum profile and a Couette flow the growth starts already at Re ∼ 103 (see the
discussion in Mukhopadhyay et al. 2005). Here, the papers by Meseguer (2002) and
Maretzke et al. (2014) should also be mentioned, where the transient dynamics in
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a spectrally stable Taylor-Couette flow including both cyclonic and anti-cyclonic
regimes is discussed. A correlation was found in Meseguer (2002) between the
experimentally obtained stability boundary in a laminar flow (see Coles 1965) and
the optimal growth value; Maretzke et al. (2014) found that for one and the same Re
number, in a quasi-Keplerian regime the transient growth is minimal. Using the
correlation from Meseguer (2002), the authors Maretzke et al. (2014) estimated
ReT ∼ 105 for the quasi-Keplerian regime. As in the numerical experiments Balbus
et al. (1996), Hawley et al. (1999) and Shen et al. (2006) mentioned above, the
effective Re, caused by the numerical viscosity, were hardly above ∼ 104 ÷ 105,
it is not surprising that in these studies the Keplerian profile was stable against
perturbations.

Presently, there are in addition a lot of astrophysical studies of the transient
growth of local perturbations using the Lagrangian method, where a transformation
to the reference frame co-moving with the shear is performed and separate shear
harmonics are considered (see Sect. 6.2.2). It was found that in the local space limit,
transiently growing vortex shear harmonics emit wave shear harmonics of various
type (depending on the compressibility or certain inhomogeneities in the flow) at
the moment of swing (see Sect. 6.2.2), which themselves demonstrate non-modal
growth (Lominadze et al. 1988; Fridman 1989; Chagelishvili et al. 1997, 2003;
Tevzadze et al. 2003; Afshordi et al. 2005; Bodo et al. 2005; Tevzadze et al. 2008;
Heinemann and Papaloizou 2009a,b; Tevzadze et al. 2010; Volponi 2010; Salhi and
Pieri 2014).

Finally, Umurhan et al. (2006) and Rebusco et al. (2009) investigated the non-
linear transient dynamics of three-dimensional perturbations taking into account
the global structure of the flow in the model of a geometrically thin disc with α-
viscosity. As in Ioannou and Kakouris (2001), these papers discussed the possibility
of exciting non-modal perturbations by weak turbulence, already present in the
disc, and giving rise to low effective viscosity parametrized by the α-parameter.
In Sect. 6.2.3 we will also consider the influence of the effective viscosity on the
transient growth of vortices on different scales in comparison to the disc thickness.
Thus, the transient growth of perturbations can be discussed not only in the context
of the bypass transition of a laminar flow to turbulence, but as a mechanism to
enhance the angular momentum transfer in a disc with pre-existing weak turbulence
producing low viscosity. In the final case this turbulence can be mathematically
treated as an external stochastic perturbation in a shear flow, which transits into
a quasi-stationary state with significant amplitude increase of perturbations due to
non-normality of the linear operator governing their dynamics (see Ioannou and
Kakouris 2001).

The purpose of this chapter is to consider in detail the transient growth phe-
nomenon using the simplest example of two-dimensional adiabatic perturbations in
a homogeneous rotating shear flow with a quasi-Keplerian angular velocity profile.
In Sect. 6.2 we present an analysis of the shear vortex harmonics that are responsible
for the transient growth in the spatially local treatment of the problem, and discuss
the mechanism of perturbation growth using them as an example. Sections 6.3
and 6.4 are mainly devoted to methods of studying the non-modal perturbation
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growth as well as to finding the optimal perturbations with maximum growth.
Two methods of obtaining the optimal growth curve are presented: a matrix and
a variational one. The variational method is less applied, especially in astrophysical
studies (see Zhuravlev and Razdoburdin 2014). However, it is essentially more
universal than the matrix method. For example, using this method, we calculated
in this chapter one of the optimal transient perturbations in a geometrically thin
quasi-Keplerian flow with free boundaries (Fig. 6.2) as well as the most unstable
perturbation mode (Fig. 6.1), which we discuss in detail in the concluding part
of Sect. 6.4.2. A comparison of Figs. 6.2 and 6.1 shows that these two types of
perturbations are indeed qualitatively different: the transient spiral is wound up
by the flow and its amplitude increases, while the modal spiral rotates as a solid
body and demonstrates a monotonic but very weak growth due to the low instability
increment. Here, the phase velocity of the modal spiral is such that its corotation
radius, at which the energy is transferred from the regular flow, lies inside the flow.
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Fig. 6.1 Contours of the most unstable perturbation mode with azimuthal wave number m = 2
in the model of a quasi-Keplerian thin torus described in Sect. 6.3.2. Parameters of the calculation
are: Characteristic disc aspect ratio: δ = 0.3, inner and outer boundaries are at r1 = 1 and r2 = 4,
respectively, polytropic index of matter: n = 3/2. The mode increment and phase velocity are
�[ω] ≈ 0.001 and �[ω] ≈ 0.26, respectively. Shown is the time (in units of inverse Keplerian
frequency at the inner disc edge) since the conventional moment when the mode had the unit
amplitude. The arrow shows the rotational direction of matter in the disc. The method of calculation
is described in Sect. 6.4.2
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Fig. 6.2 Contours of the perturbationm = 2, demonstrating a maximum possible transient growth
of acoustic energy at time topt = 10 counted from the beginning of the perturbation evolution
in units of the inverse Keplerian frequency at the inner disc edge. The initial perturbation has
conventionally unity amplitude and the model of the flow is the same as that in Fig. 6.1. The
method of calculation is described in Sect. 6.4.2
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6.2 Analytical Treatment of Two-Dimensional Vortices

6.2.1 Adiabatic Perturbations in a Rotational Shear Flow

Consider first the dynamics of small adiabatic perturbations in a perfect fluid with
an isentropic equation of state. Perturbations will be described using the Euler
approach, i.e. as variations of physical quantities such as density ρ, velocity v and
pressure p at a given point of space at a given time in the perturbed flow relative to
the unperturbed background.2 For simplicity we assume no entropy gradients in the
fluid. Then, on the right-hand side of the Euler equations it is convenient to switch
from the pressure gradient to the enthalpy gradient. Indeed, under constant entropy
the enthalpy differential per unit mass is dh = dp/ρ (see Landau and Lifshitz
1980), and this is valid in both the background and perturbed flows. Therefore, for
the Euler perturbations we get δ(∇p/ρ) = ∇δh. Making use of this relation, we
write down the equations for δρ, δh and δv (see also Landau and Lifshitz (1987),
paragraph 26) in the form:

∂δv
∂t

+ (v · ∇)δv + (δv · ∇)v = −∇δh, (6.1)

∂δρ

∂t
+∇ · (ρδv)+∇ · (δρv) = 0, (6.2)

where we have assumed that v and ρ are the velocity and density of the unperturbed
(background) flow, which itself can evolve in time. Equations (6.1) and (6.2) are
linear since perturbations are small, and all quadratic terms are omitted.

6.2.1.1 The Model and Basic Equations

To write down the projections of the corresponding equations, let us specify the
model we wish to consider to illustrate the transient dynamics. First of all, we
assume that the background flow is stationary and purely rotational, which is well
satisfied in astrophysical discs. This means that the flow is axially symmetric, and it
is convenient to use the cylindric coordinate system (r, ϕ, z) in which the velocity
has only an azimuthal non-zero component v = (0, vϕ, 0). Below we will also use
the angular velocity of the flow,Ω = vϕ/r . It is important to note that isentropicity
of the fluid (which is a particular case of barotropicity) immediately implies that
vϕ and Ω depend only on the radial coordinate (see Tassoul 1978, paragraph 4.3).
At the same time, the density in Eqs. (6.1) and (6.2) is a function of both r and z:

2See the monograph by Pringle and King (2007) concerning applications of hydrodynamics
to astrophysical problems, in particular, on the application of the theory of hydrodynamic
perturbations.
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ρ = ρ(r, z). Most interesting, from a phenomenological point of view, is the case
of a geometrically thin disc, where H(r)/r � 1 and H is the disc semi-thickness.
The thin-disc approximation will be useful here to find how the density ρ changes
with height above the equatorial disc plane. Let us use the hydrostatic equilibrium
condition in the background flow:

∂h

∂z
= −Ω2(r)z, (6.3)

where the vertical gravity acceleration due to the central gravitating body around
which the disc rotates stands on the right-hand side. This acceleration is written here
ignoring quadratic corrections in the small parameter z/r . Integrating (6.3) with the
condition h(z = H) = 0 yields the vertical enthalpy distribution:

h = 1

2
(ΩH)2

(
1 − z2

H 2

)
. (6.4)

Next, due to the constant entropy assumption p ∝ ργ , where γ = 1 + 1/n is the
adiabatic index of matter written via the polytropic index n. This means that the
square of the sound velocity in the background flow is a2 = γp/ρ, and the density
will be mainly dependent on z as follows:

a2 ∝
(

1 − z2

H 2

)
, ρ ∝

(
1 − z2

H 2

)n
. (6.5)

Finally, for simplicity we will consider only perturbations in which δv is
independent of z. Generally, this very strong assumption needs justification. In
particular, it is relevant to ask: if we choose initial perturbations with such a
property, will this be conserved in the further evolution, and if not, how rapidly
will this assumption be violated? The answer depends on the vertical disc structure.
For example, in Okazaki et al. (1987) it was shown that in the particular case
of isothermal vertical density distribution (n → ∞), small perturbations with a
homogeneous velocity field in z are exact solutions to Eqs. (6.1) and (6.2). In the
more general case with finite n this is no longer the case. However, for example
three-dimensional simulations of barotropic toroidal flows indicate that the most
unstable perturbations there depend only weakly on z (see Frank and Robertson
1988). This can be related to the fact that when the angular velocity is independent of
z, the Reynolds stresses, responsible for the energy transfer from the main flow to the
perturbations, do not depend on the vertical component of the velocity perturbation
(Kojima 1989; Kojima et al. 1989). At last, the three-dynamical study of transient
dynamics of vortices in a Keplerian flow by Yecko (2004) also shows that the
most rapidly growing perturbations in a vertically non-stratified medium are almost
independent of z (see also Maretzke et al. 2014). Now, looking at the vertical radial
and azimuthal projections of (6.1), we see that our assumption implies independence
of δh on z, and therefore the right-hand side of the vertical projection of (6.1)
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vanishes. Then, if we additionally assume that vertical velocity perturbations are
absent initially, δvz = 0, these will remain absent. Therefore, the perturbed flow, as
well as the background flow, will remain in vertical hydrostatic equilibrium. It can
be shown that the assumption of vertical hydrostatic equilibrium in the perturbed
flow is equivalent to the assumption of a homogeneous velocity perturbation field
in the z direction, i.e. one assumption always follows from the other. At the same
time, if the fluid is not isentropic and there is a radial entropy gradient in the disc,
the simplifying assumptions made above are insufficient to set δvz to zero.

We have thus come to the conclusion that we will deal with a flat velocity
perturbation field, i.e. δv = {δvr , δvϕ, 0}, with δvr and δvϕ , like δh, being dependent
on the radial and azimuthal coordinates only. However, it is important to emphasize
that this is not the case for δρ that enters the continuity equation (6.2). Here it is
convenient to use the relation between the pressure and density variations in an
isentropic fluid, dp = a2dρ, which is a consequence of the barotropic equation of
state. Due to the universal character of this relation, small Eulerian perturbations
will be related in the same way, i.e. δp = a2δρ, where a2 is the speed of sound in
the background flow. Consequently,

δρ = (ρ/a2)δh, (6.6)

and this expression will be plugged into (6.2), after which only background
quantities in Eq. (6.2) will depend on the radial coordinate. When integrating
Eq. (6.2) in its new form over z, we should keep in mind that

H∫
−H

ρ

a2
dz = √

π
Γ (n)

Γ (n+ 1/2)

ρ

a2

∣∣∣∣
z=0

,

H∫
−H

ρdz ≡ Σ = √
π
Γ (n+ 1)

Γ (n+ 3/2)
ρ|z=0,

(6.7)

where we have used relation (6.5) and introduced the surface density Σ .
Using the fundamental property of the gamma-function, Γ (z + 1) = zΓ (z),

in (6.2), we can explicitly write down the set of Eqs. (6.1), (6.2) for azimuthal
complex Fourier harmonics δvr , δvϕ , δh ∝ exp(imϕ)

∂δvr

∂t
= −imΩ δvr + 2Ωδvϕ − ∂δh

∂r
, (6.8)

∂δvϕ

∂t
= − κ

2

2Ω
δvr − imΩ δvϕ − im

r
δh, (6.9)

∂δh

∂t
= − a

2∗
rΣ

∂

∂r
(rΣδvr )− ima2∗

r
δvϕ − imΩ δh, (6.10)

where a2∗ ≡ na2
eq/(n + 1/2), and aeq is the background speed of sound in

the equatorial disc plane. In addition, κ2 = (2Ω/r)d/dr(Ωr2) is the square of
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the epicyclic frequency, i.e. the frequency of free oscillation of the fluid in the
(r, ϕ) plane, which can be easily checked by writing (6.8), (6.9) for δh = 0 and
substituting there the solution δvr , δvϕ ∝ exp(−iωt). We would like to point out
that reducing the three-dimensional problem to an effectively two-dimensional one
in a thin disc clearly can be performed by simply changing from volume density to
surface density, and replacing the polytropic index with n + 1/2 as in the original,
not integrated over z equations, as was first shown in Churilov and Shuhman (1981).

6.2.1.2 Types of Perturbations

The set of Eqs. (6.8)–(6.10) describes the dynamics of two types of perturbations
inside the disc which are possible in the two-dimensional formulation of the
problem: vortices and density waves.3 The separation between them for transient
perturbations will be described below in the local framework that allows the simplest
physical interpretation of the behavior of perturbations in a differentially rotating
flow. In addition, when there are free radial boundaries in the background flow (for
example, in a disc with finite radial extension when at some inner and outer radii
Σ vanishes and the shear acquires a super-Keplerian angular velocity gradient),
surface gravity waves arise near the boundaries (see papers Blaes and Glatzel
(1986), Glatzel (1987a,b)). This occurs because of the presence of a somewhat
significant radial pressure gradient in the flow, equivalent to a non-zero gravitational
acceleration, which gives rise to waves similar to ocean waves running over the free
surfaces (or radial density jumps).

6.2.1.3 On Perturbation Modes

These types of perturbations were studied in detail in the 1980s using the spectral
method, when the set of Eqs. (6.8)–(6.10) was solved for particular temporal Fourier
harmonics ∝ exp(−iωt) called modes (see the reviews by Narayan and Goodman
(1989) and Narayan (1991)). In this analysis, the local dispersion relation gives
only real values of ω in all astrophysically important cases where Ω(r) is such
that the specific angular momentum Ωr2 increases with radius outwards. This
means local stability of the discs and prohibits exponential growth of small-scale
perturbations, which is also in accordance with the well-known Rayleigh criterion
for the particular case of axially symmetric perturbations (see paragraph 27 in
Landau and Lifshitz (1987)). Unlike this case, the global setup of the problem for
axially non-symmetric modes, when the set of differential equations with respect to
the radial coordinate with the corresponding boundary conditions at the inner disc
radius and at infinity (or at the outer disc boundary) is solved, yields a discrete set
of ω, where there can be complex frequencies as well (see, for example, Papaloizou

3Density waves are also frequently referred to as inertial-acoustic waves.
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and Pringle 1984, 1985, 1987; Glatzel 1987a,b; Goldreich et al. 1986; Kojima 1986;
Kato 1987; Sekiya and Miyama 1988, etc.) The non-zero real part of the frequency
corresponds to the angular velocity of solid-body rotation of a given mode in the
flow. Generally, solid-body azimuthal motion of perturbations of constant phase
with the same azimuthal velocity �[ω]/m at all r is the main distinctive feature of
modes distinguishing them from other types of perturbations. Here � means the real
part of the frequency ω. A non-zero imaginary part of the frequency, �[ω], means
that the (canonical, see Friedman and Schutz (1978)) energy and angular momentum
are exchanged between this mode and either the background flow (Goldreich and
Narayan 1985; Drury 1985; Narayan et al. 1987; Papaloizou and Pringle 1987)
or the mode with (canonical) energy of the opposite sign (Glatzel 1987b, 1988;
Savonije and Heemskerk 1990). In the literature, the first mechanism is also referred
to as the Landau mechanism, and the second one—as mode coupling. The energy
exchange in both cases is resonant, i.e. always occurs in the so-called critical layer
at the radius where ω = m�[Ω], which is called the corotation radius. For a
detailed discussion of the physics of these resonant mechanisms of mode growth
(decay), see the monograph by Stepanyants and Fabrikant (1989). Nevertheless, in
flows with almost Keplerian rotation both the mode coupling and their interaction
with the background are extremely slow, and the corresponding increments even
for a substantial disc aspect ratio H/r ∼ 0.1 is only one hundred thousandth of
the characteristic Keplerian frequency (see Zhuravlev and Shakura 2007a,b). This
result led to the general conclusion that at least in the simplest barotropic discs the
modes cannot underly any hydrodynamic activity and, in particular, cannot induce
turbulence or any other variant of enhanced angular momentum transfer to the flow
periphery.

6.2.1.4 On Perturbation Measurements

To conclude this section, let us discuss the problem of perturbation measurements.
Indeed, in the present chapter we are interested in how strongly can some pertur-
bations grow in a given time interval. To describe this quantitatively, it is necessary
to introduce a norm of perturbations which would characterize the amplitudes of
δvr , δvϕ, δh at a given time. This should be a real and positive definite quantity.

The most natural choice is the total acoustic energy of the perturbation in the
disc. A derivation of the expression for the acoustic energy density can be found for
example in a 65 of Landau and Lifshitz (1987). Here we rewrite this expression in a
more convienient way:

E = 1

2

∫
rdrdϕdz

(
ρ0|δv|2 + a2

ρ0
|δρ|2

)
= 1

2

∫
rdrdϕdz

(
ρ0|δv|2 + ρ0

a2 |δh|2
)
.

(6.11)

In the second term we use perturbation of enthalpy δh instead of perturbation of
density δρ. These two quantities are connected via the expression: δρ = δp/a2 =
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ρ0δh/a
2. The integrated expression does not depend on the azimuthal coordinate,

and the integral over the vertical coordinate can easily be calculated with the help
of the expressions (6.7). Thus we get the final form of the expression for the total
acoustic energy of the perturbation:

E = π
∫
Σ

(
|δvr |2 + |δvϕ |2 + |δh|2

a2∗

)
r dr (6.12)

After taking the derivative of (6.12) with respect to time and making use of
Eqs. (6.8)–(6.10), we obtain (see also expression (8) from Savonije and Heemskerk
(1990)):

dE

dt
= −2π

∫
dΩ

dr
rΣ�[δvr δv∗ϕ] r dr − 2πrΣ�[δvrδh∗] |r1,r2, (6.13)

where the symbol ∗ means complex conjugation and r1 and r2 are the inner and
outer boundaries of the flow, respectively. Here r2 can be at infinity. As Σ → 0 at
the flow boundaries, the second term on the right-hand side of (6.13) disappears,
and we see that E can be variable precisely in a differentially rotating flow. Without
rotation or for solid-state rotationE remains constant in time. It is important to note
that the increase/decrease of E will imply that the average flow amplitudes δvr , δvϕ
and δh, also increase/decrease, since (6.12) contains squares of modules of these
values taken with the same signs. Note that for modes, Eq. (6.13) implies

dE

dt
∝ exp(2�[ω]t), (6.14)

i.e. the small increments obtained for quasi-Keplerian flows allow us to conclude
that the total acoustic energy of modes there E � const on dynamic ∼ Ω−1 and
acoustic ∼ (ΩH/r)−1 time scales.

Our task now is to understand how E can change over such time intervals for
arbitrary perturbations. By introducing the perturbation vector q(t) as a set of
functions {δvr (r), δvϕ(r), δh(r)} taken at some time t , the norm of the perturbation
can be chosen as

||q(t)||2 = E(t). (6.15)

6.2.2 Local Approximation: Transition to Shear Harmonics

The easiest solution to the problem formulated above can be obtained in the spatially
local approximation. In this approximation it is assumed that the characteristic scale
of perturbations, λ, is a small fraction of some fiducial radial coordinate r0 around
which the dynamics of the perturbation is studied, λ � r0. We introduce the new
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radial variable x ≡ r − r0 � r0 and also the new azimuthal variable y ≡ r0(ϕ −
Ω0t) � r0, where Ω0 ≡ Ω(r0) is the angular velocity of rotation of the new
coordinate system. Here in Eqs. (6.8)–(6.10) only the leading terms in small x are
retained. In practice, this means that only the linear dependence on x has to be taken
into account in the angular velocity profile:

Ω = dΩ

dx

∣∣∣∣
r0

x = −qΩ0
x

r0
� Ω0, (6.16)

where q ≡ −(r/Ω)(dΩ/dr)|r=r0 and Ω(x = 0) = 0, since we are working in
the frame rotating with angular velocity Ω0. The corresponding linear background
velocity is vlocy = r0Ω = −qΩ0x.

Next, on the right-hand side of Eqs. (6.8)–(6.10) we only keep terms of the order
up to ∼ x/λ and drop the terms ∼ x/r0 and lower. For clarity, we also write down
the coefficient before δvr in the term from (6.9) that includes κ2:

− κ
2

2Ω
= −2Ω − r dΩ

dr
= 2qΩ0

x

r0
+ (r0 + x)qΩ0

r0
= 3qΩ0

x

r0
+ qΩ0

and we find that it is sufficient to take into account only the term qΩ0. Next, bearing
in mind that the new reference frame is not inertial, it is necessary to add the
perturbed Coriolis force components 2Ω0δvϕ to the right-hand side of (6.8) and
−2Ω0δvr to the right-hand side of (6.9).

After substituting im → ∂/∂ϕ in the set (6.8)–(6.10), i.e. after returning back
to the arbitrary dependence of the Eulerian perturbations on ϕ and by denoting
the local analogues of perturbations of the velocity components as ux , uy and W ,
respectively, we arrive at the following equations:

(
∂

∂t
− qΩ0x

∂

∂y

)
ux − 2Ω0uy = −∂W

∂x
, (6.17)

(
∂

∂t
− qΩ0x

∂

∂y

)
uy + (2 − q)Ω0ux = −∂W

∂y
, (6.18)

(
∂

∂t
− qΩ0x

∂

∂y

)
W + a2∗

(
∂ux

∂x
+ ∂uy

∂y

)
= 0. (6.19)

The set of Eqs. (6.17)–(6.19) was first derived in Goldreich and Lynden-Bell
(1965)4 (see also Regev and Umurhan (2008), where it is described for different
background flow models).

4Even earlier, in the context of lunar dynamics, the local approach to study the motion of matter
was utilized by Hill (1878).
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6.2.2.1 Transition to Shear Harmonics

A convenient property of the set of Eqs. (6.17)–(6.19) is that by changing to
variables corresponding to the co-moving shear reference frame, it is possible
to make it homogeneous in both x and y, which, in turn, enables us to split
any arbitrary perturbation into individual spatial Fourier harmonics (SFHs) with
certain wave numbers kx and ky . Indeed, let us introduce the new dimensionless
variables x ′ = Ω0x/a∗, y ′ = Ω0(y + qΩ0xt)/a∗, t ′ = Ω0t .5 Such a substitution
corresponds to a change of partial derivatives according to the rule

a∗
Ω0

∂

∂x
= ∂

∂x ′
+ qt ′ ∂

∂y ′
,

a∗
Ω0

∂

∂y
= ∂

∂y ′
, Ω−1

0
∂

∂t
= ∂

∂t ′
+ qx ′ ∂

∂y ′
(6.20)

Making use of (6.20), we arrive at a set of equations in which all coefficients
depend only on t ′. We now substitute into this system SFH written in the form

f = f̂ (kx, ky, t ′) exp(ikxx
′ + ikyy

′), (6.21)

where f is any unknown variable, f̂ is its Fourier amplitude, kx and ky are the
dimensionless wave numbers along axes x ′ and y ′, respectively, expressed in units
Ω0/a∗. Changing back to variables x, y in particular solutions (6.21) reveals that
they represent perturbations periodic in space whose phase forms a plane front with
orientation depending on time for ky �= 0. The dimensionless wave number along x
has the form

k̃x(t) ≡ kx + qkyt (6.22)

and changes with time: the wave vector turns around during advection by the shear
flow, which was first noted by Kelvin (1887) and Orr (1907a,b) so the SFH are
often called shear harmonics. We directly note that for k̃x < 0 the wave vector is
directed inwards, and on the global scale for Fourier harmonics with wave number
m this corresponds to so-called leading spirals with arms pointing turned in the disc
rotation direction. Inversely, the case k̃x > 0 corresponds to trailing spirals with
arms pointing oppositely to the disc rotation. If at the initial time kx < 0, the arms
of the initially leading spiral are deformed and shortened by the flow, and the so-
called swing moment occurs, ts , when the wave vector of SFH is strictly azimuthal
and k̃x(ts ) = 0, after which the spiral becomes trailing, and its arms are stretched by
the flow (see Fig. 6.2). This process is well-known in the dynamics of stellar galactic
discs (see paragraph 6.3.2 in Binney and Tremaine (2008)).

5Due to the vertical hydrostatic equilibrium in the disc, this means that we express the length in
units of its semi-thickness, H = a∗/Ω0.
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Thus, for SFH we arrive at the following set of ordinary differential equations:

dûx

dt
= 2ûy − i k̃x(t)Ŵ , (6.23)

dûy

dt
= −(2 − q)ûx − i kyŴ , (6.24)

dŴ

dt
= −i ( k̃x(t)ûx + kyûy ), (6.25)

where ûx and ûy are expressed in units a∗ and Ŵ in units a2∗. Here and below we
will omit the prime for the time variable notation.

6.2.2.2 Potential Vorticity

Equations (6.23)–(6.25) have an important property: the quantity

I = k̃x(t)ûy − kyûx + i(2 − q)Ŵ (6.26)

is the invariant of motion, which can be easily verified by direct calculation of
dI/dt .

It turns out that I (to the multiplication factor i) is SFH of the Eulerian pertur-
bation of the potential vorticity. The potential vorticity ζ , which is by definition the
vorticity itself divided by density, ζ ≡ ω/ρ (see Johnson and Gammie 2005), is
conserved in all fluid elements in plane-parallel barotropic flows. Therefore, for its
Eulerian perturbation we have

δ

(
dζ

dt

)
= dδζ

dt
+ (δv∇)ζ 0 = 0, (6.27)

where ζ 0 is the potential vorticity of the background flow. As in both background
and perturbed flows the velocity fields are plane-parallel, the vorticity has only one
non-zero z-component, which we will consider scalar below.

Next, by definition (in a non-rotating cylindrical coordinate system), the potential
vorticity in the background flow is

ζ0 = (rΣ)−1d/dr(Ωr2) = κ2/(2ΩΣ) = (2 − q)Ω/Σ, (6.28)

and should be constant in the local space approximation in use, since the velocity
shear is then constant, cf. (6.16). Therefore, the second term in the last equality
in (6.27) vanishes, and we see that δζ is indeed conserved. Apparently, the first
two terms in (6.26) arise due to perturbation of the vorticity itself, which is equal
to the curl of the velocity perturbation, and the third term emerges due to the
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non-zero density perturbation represented by the dimensionless quantity Ŵ (the
coefficient 2 − q here arises due to multiplication by the constant background
vorticity, cf. (6.28)).

6.2.2.3 Inhomogeneous Wave Equations: Density Waves and Vortices

We now differentiate Eq. (6.24) with respect to t and take into account the relations
following from Eqs. (6.23), (6.25), as well as the definition (6.26), to obtain a new
equation:

d2ûy

dt2
+K(t)ûy = k̃x(t)I, (6.29)

where K(t) ≡ k̃2
x(t) + k2

y + 2(2 − q). Apparently, (6.29) represents a detached
wave equation for azimuthal velocity component perturbation, ûy , with an inhomo-
geneous part ∼ I (see Bodo et al. 2005).

In a similar way, from (6.23) and (6.25) we derive two equations of the same
type:

d2ûx

dt2
+K(t)ûx + 2iqkyŴ = −kyI, (6.30)

d2Ŵ

dt2
+K(t)Ŵ + 2iqkyûx = −2iI, (6.31)

which can be separated by changing variables û± = (ûx ± Ŵ )/2 (see Heinemann
and Papaloizou 2009a).

Let us now consider in more detail, for example, Eq. (6.29). Its general solution
is the sum of the general solution of the corresponding homogeneous equation and
a partial solution of the inhomogeneous equation. First, we consider both these
solutions in the solid-body rotation limit, i.e. without shear, q = 0. Then all
coefficients in (6.29) turn constant and

• the homogeneous equation has partial fundamental solutions û(dw)y ∝ exp(±iωt)
with frequency ω = √

K , corresponding to the density waves propagating in
opposite directions,

• the partial solution with non-zero right-hand part can be taken as the constant
ûvy = (kx/K) I . In other words, u(v)y corresponds to the zero frequency ω = 0
and represents a static perturbation. This perturbation, apparently, has a non-zero
vorticity and corresponds to a vortex (it is possible to show that divergence of the
velocity perturbation for this solution vanishes, by taking the similar solution for
ûx from Eq. (6.30), ûvx , and checking that the combination kxûvx + kyûvy = 0).
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6.2.2.4 Amplification of Density Waves

Accounting for the non-zero shear, the density wave frequency becomes a func-
tion of time. For example, for leading/trailing spirals this frequency gradually
decreases/increases with a simultaneous wavelength increase/decrease, which, in
turn, in the absence of viscosity, leads to a monotonic decrease/increase in the
energy and amplitude of the density waves. Such growth of density-wave amplitudes
was studied in Chagelishvili et al. (1994, 1997). The reason for this growth can
be understood from the fact that due to the axial symmetry of the background
flow, the canonical angular momentum of the wave, Jc, should be conserved (see
Friedman and Schutz 1978). From here we obtain that, following equation (52)
from Friedman and Schutz (1978), the canonical energy, Ec ∼ ωJc, linearly
increases starting from some sufficiently long time, since ω = √

K (see above). The
conservation of Jc for the local perturbation considered here is discussed in Section
3.2 of Heinemann and Papaloizou (2009a). Unlike Jc, the canonical energy itself
in this case is not conserved any more, since the time-variable frequency makes the
problem inhomogeneous in time. This growth (or decrease) of the energy, despite
that the wave frequency ω is present here, is already essentially non-modal, since
ω is a function of time, which, in turn, is connected precisely to the deformation of
SFH by the shear flow.

In the present chapter, however, we will be more interested in the ‘classical’
variant of non-modal growth, which is called ‘transient’ in the literature. In the
simplest model considered here it is represented by the vortex solution which for
q �= 0 becomes dynamical and, oppositely to the waves, is aperiodic.

6.2.2.5 The Vortex Existence Criterion

Before discussing in detail the behavior of the vortex solution, let us analyze the
justification for the decoupling of perturbations in waves and vortices made above in
the presence of a shear. Indeed, immediately after k̃x becoming variable, the solution
ûvy does not exactly satisfy Eq. (6.29) anymore, since a non-zero second derivative of

ûvy appears. Moreover, in the limit k̃x → 0 Eq. (6.29) becomes homogeneous, and its

solution describes density waves only. The region, in which k̃x → 0, corresponds to
the swing of SFH, and thus we see that the vortex solution becomes poorly defined
there: the vortex must share wave properties. This means that we cannot neglect the
second time derivative in Eq. (6.29) anymore for slowly evolving solutions. In other
words, ûvy cannot be considered, even approximately, as a solution of Eq. (6.29). Let
us discuss in more detail the criterion of decoupling of density waves and vortices
in a shear flow.

In order to do this, we use the fact that vortex dynamics is possible only in
subsonic flows (see Landau and Lifshitz (1987), end of Sect. 10). In the considered
case of an infinite flow this means that the difference in the fluid velocity on the
characteristic scale of the problem must be smaller than the sound velocity. The
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characteristic spatial scale is determined by the instant spatial period of SFH in the
radial direction, λx ∼ H |k̃x|−1. For the infinitesimal perturbations considered here,
its is sufficient to apply the condition of vortex dynamics for the background flow,
and then the velocity difference is given simply by the change in the flow azimuthal
velocity, i.e. for a flow with constant shear we get

λxqΩ0/a∗ = q

|k̃x |
� 1, (6.32)

Thus, the spatial radial period of the vortex harmonics must be smaller than the disc
thickness. It is important to note that the condition (6.32) does not directly contain
the azimuthal wave number ky , and hence perturbations can be vortex even if their
azimuthal spatial scale exceeds the disc thickness. In connection with this, it is most
important to consider the case of initially leading spirals, i.e. SFH with kx < 0. For
such spirals, the swing occurs at

ts = −kx/(qky) > 0, (6.33)

i.e. when k̃x = 0. Clearly, if the initial spiral was vortex-like, and therefore |kx | � 1,
and its evolution was initially described by the approximate solution ûvy , then in
some time interval around ts the vortex approximation is not valid, and the complete
Eq. (6.29) should be integrated. Let us call this time interval the swing interval
and obtain the condition under which its duration will be much shorter than the
characteristic time for evolution of SFH, determined by the time of spiral unwinding,
ts (see Zhuravlev and Razdoburdin 2014).

The moments in time at which the vortex approximation breaks down can be
estimated from the limiting case of equality in the condition (6.32):

ts1,s2 = ts
(

1 ± q

kx

)
, (6.34)

from where we see that the swing interval is much shorter than the evolution time
of the entire vortex spiral, ts2 − ts1 � ts , once

|kx | � 2q, (6.35)

which does not contain ky . The condition (6.35) implies that to study vortex
dynamics, we can use the solution ûvy each time when at the initial moment the
spiral is sufficiently strongly wound irrespective of the value of ky , i.e. in both the
true short-wave limit ky � 1 and the long-wave limit ky � 1. In the last case,
the vortices will be referred to as ‘large-scale’. Here we exclude the case ky ∼ 1,
since as was shown numerically in Chagelishvili et al. (1997), Bodo et al. (2005)
and analytically studied in the WKB approximation in Heinemann and Papaloizou
(2009a), in this case during the swing the vortex additionally generate a pair of
density waves corresponding to trailing spirals and propagating inside and outside
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the disc. This process is asymmetric, since only density wave generation is possible
by vortices, and not vice versa. In Heinemann and Papaloizou (2009a) analytical
expressions for the amplitude and phase of the generated wave were obtained. It
was shown that its amplitude is proportional, at first, to the vortex vorticity I , and at
second, to the combination ε−1/2 exp(−4π/ε) (see formula (53) in Heinemann and
Papaloizou (2009a)). Here ε is the small WKB parameter

ε = qky

k2
y + κ2/Ω2

0

, (6.36)

were, again, κ2/Ω2
0 = 2(2 − q). Expression (6.36) implies that the excitation of

density waves is exponentially suppressed in both the short-wave and long-wave
limits and is significant only for ky ∼ 1 (here we specify that we will not consider
the extreme cases where q � 1, and therefore ε � 1 even for ky ∼ 1, as well as
when q → 2, and hence ε � 1 even for ky � 1).

Thus, the vortex solution of Eq. (6.29) exists when the condition (6.35) holds
together with the requirement ky � 1 or ky � 1, which excludes density wave
generation with non-zero vorticity during the swing of a vortex SFH. At the same
time, these restrictions provide a criterion to separate waves and vortices in the
perturbed flow. Indeed, under such constraints density waves with zero vorticity
propagate in the flow independently of vortices and represent the high-frequency
branch of solutions to Eq. (6.29) with zero right-hand side. Similarly, for example,
sound and wind exist independently in the Earth atmosphere.

6.2.2.6 Vortex Solution

Below we will only consider the evolution of vortex SFH in a shear flow. To
conclude Sect. 6.2.2, we also obtain vortex solutions for ûx and Ŵ . This can be done
most easily by neglecting the second time derivatives of ûx and Ŵ in Eqs. (6.30)
and (6.31), as has been done with Eq. (6.29) to obtain uvy . Thus, we will have for all
three quantities:

ûvx = − K + 4q

K2 + 4q2k2
y

kyI, (6.37)

ûvy =
k̃x

K
I, (6.38)

Ŵv = 2i
qk2
y −K

K2 + 4q2k2
y

I, (6.39)

It is important to note that the existence of an aperiodic vortex solution in the
form (6.37)–(6.39) is possible because of the main simplifying assumption on the
local constant velocity shear which provides the existence of time invariant I . This
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enables us to reduce the set of three homogeneous first-order equations (6.23)–
(6.25) to one inhomogeneous second-order equation (6.29). (Other dynamical
variables can be obtained from the known solution ûy(t), which gives two inde-
pendent wave solutions (the general solution to the corresponding homogeneous
equation) and one aperiodic vortex solution (the partial solution (6.29)). However,
taking into account the gradient of velocity shear in the flow, the invariant I
disappears, and a reduction of the set of Eqs. (6.23)–(6.25) becomes impossible.
From this set we will thus need to obtain directly three independent solutions, two
of which, as before, will correspond to the density waves, and the third solution will
describe the vortex wave called the Rossby wave (see the discussion in paragraph 4
in Bodo et al. (2005)).6

6.2.3 Vortex Amplification Factor

To measure the growth of local perturbations, the average density of their acoustic
energy can be taken as the local analogue of norm (6.12):

E = 1

2S̄

∫
S

(
(�[ux])2 + (�[uy])2 + (�[W ])2

a2∗

)
dxdy. (6.40)

where S̄ is the area of the integration region S.
After substituting the dimensionless SFH (6.21) into (6.40) and integrating over

their spatial period we obtain the local variant of norm (6.15):

||q||2 = 1

2

(
|ûx |2 + |ûy |2 + |Ŵ |2

)
. (6.41)

Making use of the vortex solution for SFH (6.37)–(6.39), we get the norm in the
following form:

||q||2 =
[
k̃2
x

K2 + 4 + k2
y

K2 + 4q2k2
y

]
I 2. (6.42)

Below we shall utilize the growth factor as the main quantity characterizing
perturbation dynamics:

g(t) ≡ ||q(t)||2
||q(0)||2 , (6.43)

which is, in other words, the norm of a perturbation with respect to its initial value.

6See Brekhovskikh and Goncharov (1985), paragraph 43, for a discussion of Rossby waves arising
due to the gradient of the velocity shear (the gradient of vorticity) in an incompressible rotating
flow.
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• Short-wave perturbations. For ky � 1 we can in any case omit the factor 4
in (6.42) in the numerator of the second term, the term 4q2k2

y in the denominator

of the second term, as well as the term 2(2 − q) = κ2/Ω2
0 in the quantity K .

Then

g ≈ k2
x + k2

y

k̃2
x + k2

y

, (6.44)

which is the result obtained in Lominadze et al. (1988) (see also formula 4 in
Afshordi et al. (2005)). Expression (6.44) shows that SFH initially taken as a
leading spiral with kx < 0 increases in amplitude until time (6.33), and at the
swing moment, when k̃x = 0, reaches maximum in the norm and then decays.
The energy transfer from the background flow to perturbations is described
in detail in terms of fluid particles in Chagelishvili et al. (1996) (see Fig. 2
therein). Similar to the well-known lift-up effect (see the book by Schmid and
Henningson (2001), paragraph 2.3.3 for more detail), it is based on ‘pickup’ of
fluid particles by the main flow as they move into a region with different shear
velocity. However, it also has an important additional ingredient being interaction
of particles with each other at the planes of pressure extrema, resulting in growth
of their velocity respective to the background flow, even in situations where the
lift-up effect does not work.

6.2.3.1 On the Transient Growth Mechanism

Here we present an additional discussion clarifying the transient growth mechanism.
As mentioned in the Introduction and discussed in Sect. 6.2.2, a differentially
rotating flow shortens the length of the leading spiral arms of a transiently growing
vortex until the swing moment (see Fig. 6.2). Due to the barotropicity of the
perturbed flow, the velocity circulation along a fluid contour coinciding with the
spiral arm boundary must be constant. Consequently, the contour shortening must
lead to a compensating increase in gas velocity along the spiral’s boundary. Consider
this suggestion more rigorously in the local space limit (see the scheme in Fig. 6.3).
Let us calculate the velocity circulation for the most simple fluid contour. Without
perturbations, this is naturally a parallelogram with one pair of sides (call them
the base of the parallelogram) along the background stream lines, i.e. parallel to
the y axis and symmetrical on both sides from the level x = 0. The condition
that these sides move synchronously with the fluid automatically implies that the
entire contour is co-moving with the background flow, since the velocity in the
flow is linear in x. Now let us switch to the reference frame co-moving with the
shear, in which Eqs. (6.23)–(6.25) were written. In this frame, the background
velocity together with the velocity circulation along the given contour are zero.
Next, taking into account small perturbations, the velocity circulation must change,
strictly speaking, for two reasons. Firstly, a velocity perturbation arises, u (as
determined in the shear reference frame), and secondly, even the contour taken at
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Fig. 6.3 Illustration of the physical reasons for transient growth of two-dimensional vortices in
the local space limit (see Sect. 6.2.2). We consider here the case of a short-wave (ky � 1) vortex
SFH with kx < 0. A liquid contour co-moving with the background flow at two instants is shown:
at the initial time t = 0 and at the time of the SFH swing when k̃x = 0. See text (Sect. 6.2.3.1) for
an explanation of why it is possible to ignore deformation of the contour by perturbations. At t = 0
the contour has the form of a parallelogram with one pair of sides along the y-axis symmetrically
relative to x = 0 and another pair along two SFH fronts, with the phase difference between them
equal to π . Here, u is the velocity perturbation vector, k0 and k show the SFH wave vector at
different time moments. Δx and Δy are the parallelogram’s height and base, respectively

the time t = 0 as a parallelogram starts being deformed due to additional shifts
caused by perturbations. In the second case, however, for the small perturbations
considered here, only the contribution due to the corresponding change in the
background velocity circulation will be important. But this addition is absent, since
in the shear reference frame the background velocity is zero at all points. Thus,
all we need to do is to calculate the circulation u along a contour co-moving with
the background flow. At time t = 0 we take it such that the parallelogram sides
coincide with the SFH front lines separated by the phase π (see Fig. 6.3, where the
initial front direction is denoted by the wave vector k0). As in the shear frame SFH,
by definition, has constant space phase front lines, it is clear that at times t > 0 they
remain coinciding with the contour’s sides. Now, note that we consider the case
ky � 1. Therefore Ŵv → 0, and from (6.25) we derive the orthogonality condition
u ⊥ k. Consequently, the velocity perturbation is directed along the parallelogram’s
sides and always points to their going around. As for the parallelogram’s bases,
their contribution to the circulation will be mutually cancelled, since along them
the projection of the velocity u does not change, while the going around direction
becomes opposite. With account for the above considerations, the perturbed flow
circulation in the co-moving shear frame for the left contour in Fig. 6.3 reads:

C |t=0 = 2Δy

(
1 + k2

y

k2
x

)1/2

|u|t=0.
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For the right contour in Fig. 6.3 taken at the spiral swing moment, we similarly find:

C |t=ts = 2Δx |u|t=ts .

By equating these two expressions, we see that the circulation conservation law
yields for the vortex SFH with ky � 1:

g(ts) = |u(ts)|2
|u(0)|2 = k2

x + k2
y

k2
y

, (6.45)

This coincides with the result following from (6.44) for the spiral swing time.
Thus, we have been convinced that the transient growth of a vortex is in fact due

to its perimeter (its ‘size’) shortening by the background shear flow with constant
velocity circulation, C = const , along this perimeter. It is important to note that
C , as well as the corresponding vorticity flux, is the measure of the vortex rotation.
Therefore, it is appropriate to compare it with a body compressing with angular
momentum conservation, since in that case the body’s angular velocity increases
inversely with the moment of inertia, ωrot ∝ I−1

rot , and the rotation energy Erot =
1/2Irotω2

rot ∝ I−1
rot increases with time. In our case, the background flow does work

on shortening the vortex size and thus transfers it the kinetic energy.
Finally, note also that as the differential rotation is purely shear, i.e. occurs

with zero divergence of the background flow, the area subtended by the contour
considered above must keep constant. Indeed, the area of the parallelogram is the
product of its base (which is constant since the flow in homogeneous in y) times its
height (which is constant since there is no radial background velocity). Therefore,
due to the constant C and hence the vorticity perturbation flux through the contour,
the vorticity perturbation itself is constant. The same conclusion was obtained in
Sect. 6.2.2 from the discussion of the invariant (6.26).

6.2.3.2 Estimation of Optimal Growth

Knowing the physical mechanism of the transient vortex growth, let us return to
expression (6.44) for their growth factor in the case of short azimuthal wavelength.
Clearly, the growth factor of an individual SFH is a function of three arguments,
g = g(kx, ky, t). However, it is possible to consider a more general characteristic
of the transient dynamics which is called the optimal growth of perturbationsG. By
definition,

G ≡ max∀ kx
{g}. (6.46)

Formula (6.46) gives the maximum possible amplification among all vortices
with given ky which can occur during a time interval t . Note that below we will also
employ an analogue to (6.46) used for the global space problem described by the set
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of Eqs. (6.8)–(6.10) (see formula (6.94)), where the valueG will be determined for
all perturbations with fixed azimuthal wave numberm.

There are rigorous mathematical algorithms to search for the optimal growth,
which we will discuss in the next Section. Here, for analytical estimates in the local
space limit, it will be sufficient to recognize that since the growth factor g(kx, ky, t)
of a certain SFH has maximum at k̃x = 0, it is reasonable to suppose that G can be
estimated as

G ≈ g(kx = −kyqt), (6.47)

in other words, to adopt that of all SFH with given ky , the harmonics that swings at
time t reaches maximum possible growth by this time.

Making use of definition (6.47), from (6.44) we obtain the simple expression:

G1 ≈ (qt)2, (6.48)

which can be also found in Afshordi et al. (2005) (see formula (5) therein). Note that
in that paper corrections toG1 due to non-zero vertical projection of the wave vector
and a finite value of ky were also obtained. As we see, in a sufficiently long time it is
possible to reach arbitrarily large amplitude growth of small-scale vortices ky � 1.
This growth, however, is power-law and not exponential, as would be expected from
a modal instability of the flow.

• Long-wave perturbations. We now turn to another limiting case where ky � 1
and the azimuthal space period of SFH is much larger than the disc thickness
(see Zhuravlev and Razdoburdin 2014). In this case, in the second term in (6.42)
we omit k2

y in the numerator and 4q2k2
y in the denominator, and also assume that

K = k̃2
x + κ2/Ω2

0 . Here, by the condition (6.35), we see that ||q(0)||2 ≈ k−2
x .

Then, for the SFH growth factor we obtain

g ≈ k2
x

k̃2
x + 4

(k̃2
x + κ2/Ω2

0 )
2
, (6.49)

This quantity increases for k̃x decreasing with time, i.e., similar to the short-
wave vortices, transient growth occurs for kx < 0. Note that now the maximum
g, attained during the spiral swing, is proportional to the square of the value
kx itself, but not to the square of the ratio kx/ky , as in the case of the short
wavelength vortices (cf. (6.44)). In addition, another important difference is that
now g depends on the epicyclic frequency as κ−4. Such a strong dependence
can be important in discs with super-Keplerian angular velocity gradient. In thin
discs this can occur in the inner regions of relativistic discs, where κ → 0 when
approaching their inner boundary.
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Following the definition (6.47), we obtain from (6.49) the corresponding optimal
growth factor:

G2 ≈ 4Ω4
0

κ4 k
2
y(qt)

2. (6.50)

Note that both (6.48) and (6.50) are valid only for sufficiently large timespans since
in order to obtain this expression we used the condition kx = −qkyt , but at the same
time the condition kx � 1 must hold, as required by (6.35). Formula (6.50) shows
that for rotation profiles weakly different from Keplerians, when κ ∼ Ω0, for equal
time intervals G2 � G1, since the azimuthal wave number now explicitly entering
the optimal growth factor is small, ky � 1.7 Therefore, in the local space limit
considered here, small-scale vortices extract energy from the flow more efficiently
than large-scale ones. However, it is interesting to learn which of them can display
the highest growth over the entire time interval. In an inviscid flow G1,2 → ∞
mostly due to small-scale SFH, as we just noted. Nevertheless, a shear flow can
have noticeable effective viscosity due to, for example, some weak turbulence. Then
the dependence G(t) turns out to have a global maximum Gmax corresponding to
the maximum possible non-modal growth of perturbations irrespective of the time
intervals we have considered so far. Physically, the decrease ofG(t) after some long
time is related to the fact that more tightly wound spirals have larger swing times
ts . This in turn means smaller radial scale of the perturbations and hence smaller
dissipation time of perturbations due to viscosity. Ultimately, the leading transient
spirals faster start decaying than growing due to unwinding by the flow. It is the
valueGmax for cases ky � 1 and ky � 1 that we would like to compare below.

6.2.3.3 Role of Viscosity

The effect of viscosity on the maximum possible transient growth of vortices can be
estimated as follows (an accurate viscosity calculation is a much more complicated
problem, which was solved in Razdoburdin and Zhuravlev (2017)). For sufficiently
long time intervals qt � 1 we have kx � ky for any of the two limits of ky we
consider. Therefore, in a shearless flow the spiral would decay in the characteristic
viscous timeΔtν ∼ λ2

x/ν, where ν is the kinematic viscosity coefficient. Performing
a standard viscosity parametrization using the Shakura-Sunyaev α-parameter, ν =
αa∗H , we get that Δtν ∼ (Ω−1

0 αk2
x)

−1 rapidly decreases with increasing |kx |. At
the same time, the larger |kx |, the longer the transient growth time of the spiral,
Δttg ∼ |kx/(qky)|. Simultaneously with arising of a shear in the flow, the spiral
starts unwinding, and therefore the viscous dissipation is delayed. Thus, the equality

7In Sect. 6.4.2 below we calculate G in the global problem (see Fig. 6.14), which implies that as
m → 1, the difference in the transient growth rate between vortices with azimuthal wavelength
shorter and longer than the disc thickness is significantly smaller.
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of these characteristic times, Δttg = Δtν , gives the lower limit on the duration of
the transient growth of vortices in a viscous flow. Using it we obtain:

max(Δttg) � α−1/3(qky)
−2/3 (6.51)

It can be verified that expression (6.51) reproduces the estimate made in Afshordi
et al. (2005) (see formula (81) therein).

The upper limit on the optimal growth time (6.51), Gmax ≡ G(max(Δttg)), is
given by its inviscid value taken for G1 or G2. We then obtain that for ky � 1

(Gmax)1 ≈ α−2/3q2/3k
−4/3
y , (6.52)

(see also formula (83) in Afshordi et al. (2005)). At the same time, for ky � 1 we
have

(Gmax)2 ≈ 4Ω4
0

κ4 α
−2/3q2/3k

2/3
y . (6.53)

This result is shown in Fig. 6.4 for some small α and several different shears
q: Keplerian and super-Keplerian. We see that even for the Keplerian shear, when
κ = Ω0, for ky different from 1, (Gmax)2 � (Gmax)1. This occurs because the
large-scale vortices are significantly less dissipative, which more than compensate

Fig. 6.4 Estimate of the maximum possible transient growth of acoustic energy in a disc with
efficient viscosity α = 0.001. The solid, dashed and dotted lines correspond to q = 1.5, 1.6
and 1.7, respectively. The three uppermost right and left curves are obtained using formula (6.52)
and (6.53), respectively
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of their low growth rate compared to the small-scale vortices. Note also that despite
(Gmax)2 decreasing with decreasing ky , this occurs at lower rate compared to the
case of (Gmax)1 decreasing with increasing ky . As a result, the integral transient
growth of large-scale vortices at all ky increases in comparison with small-scale
ones. An even more significant advantage of large-scale vortices appears for super-
Keplerian shears, when q > 3/2, due to (Gmax)2 ∝ κ−4 (see the comment after
formula (6.49)). Clearly, the deviation from q = 3/2 by several per cents would
increase the transient growth rate of perturbations by a factor of a few.

As discussed in Zhuravlev and Razdoburdin (2014), the estimate (6.53) is in
reasonable agreement with exact calculations of the optimal growth rate in thin
discs in the global space limit for low azimuthal wave numbersm. Thus, large-scale
vortices are also able to provide additional transportation of angular momentum to
the periphery of a disc with pre-existing weak turbulence.

In Sect. 6.3 we provide a rigorous mathematical justification of algorithms to
search for the most rapidly growing perturbations in shear flows. Such perturba-
tions will be called optimal, and the corresponding amplification, as we already
mentioned, will be referred to as the optimal growth G. The solutions presented
in the Introduction and shown in Figs. 6.1 and 6.2 were obtained using one of these
algorithms. We will also provide another example of calculation ofG by solving the
general set of Eqs. (6.8)–(6.10) in a geometrically thin disc (see Fig. 6.14 below).
When discussing mathematical aspects of the non-modal dynamics of perturbations
in shear flows, already in the introductory part to the next section we will see that the
transient growth phenomenon can be treated as a consequence of non-orthogonality
of perturbation modes, which will be evident, in particular, from consideration of
simple analogues presented in Figs. 6.5 and 6.6.

Fig. 6.5 The increase in the sum of two non-orthogonal vectors, q = f1 + f2, with decreasing
lengths but conserved angle between each other. It is assumed that q1 = q2 = 1
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Fig. 6.6 The increase in the sum of two non-orthogonal vectors, q = f1 + f2, with conserved
lengths but changing angle between each other. It is assumed that q1 = q2 = 1

6.3 Calculation of Optimal Perturbations

6.3.1 Definition and Properties of Singular Vectors

General solutions to the initial value problem of evolution of small perturbations,
as described by the general Eqs. (6.1)–(6.2), supplemented by appropriate boundary
conditions, can be conveniently studied using abstract concepts of the functional
space of the so-called state vectors of the system, as well as the notion of
linear operators acting on these vectors. In Sect. 6.2.1, in addition to the set
of Eqs. (6.8)–(6.10), we have already introduced the particular case of the state
vector as a set of azimuthal Fourier harmonics of Eulerian perturbations q(t) ≡
{δvr (r), δvϕ(r), δh(r)}, taken at some fixed instant t . In this section we will take
on the original general case when q(t) ≡ {δv(r), δh(r), δρ(r)}.

Let us consider some properties of a dynamical operator Z acting in the Hylbert
space of vectors q and corresponding to the set of Eqs. (6.1)–(6.2). This operator
transforms the initial perturbation vector q(0) to the consecutive vector q(t), i.e. in
the operator form the set of equations can be written as

q(t) = Zq(0). (6.54)

Since the operator Z controls dynamics of linear perturbations in a flow it is often
called dynamical operator. First, let us recall some terms of linear operator theory.
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6.3.1.1 Linear Operators: From the Particular to the General

There are a lot of linear operator types. Let us list those of them that we will need
below, from the more particular to the more general case. We start with positive
definite operators, for which the inner product (Zq,q) > 0 for any vector q. By
definition, the eigenvalues of a positive definite operator are positive. Indeed, by
multiplying the equation Zq = λq with q, we see that its left-hand side is positive,
and the right-hand side is the product of the eigenvalue and a positive value, hence
the positive eigenvalue.

Self-adjoint (Hermitian) operators, which are identical to their adjoint operators,
Z = Z† (Korn and Korn 1968, paragraph 14.4), are most frequently used in different
physical problems. Eigenvalues of a self-adjoined operator are real values (Korn and
Korn 1968, paragraph 14.8).

In turn, self-adjoined operators are a particular case of normal operators . An
operator Z is called normal if it commutes with its adjoint operator: ZZ† = Z†Z
(Korn and Korn 1968, paragraph 14.4). All eigenvalues of a normal operator are
complex conjugates of its adjoint operator’s eigenvalues. Eigenfunctions of the
operators Z and Z† coincide. Additionally, eigenvectors of a normal operator corre-
sponding to different eigenvalues are orthogonal (Korn and Korn 1968, paragraph
14.8). Therefore, to calculate the operator norm of these operators, it is sufficient to
find their eigenvalues. We recall that the norm of an operator Z mapping a Hylbert
space H into itself is the number (Vilenkin et al. 1972, Ch. 1)

||Z|| = sup
x∈H

||Zx||
||x|| (6.55)

The norm of the dynamical operator is very useful, because it allows us to calculate
the limit of the vector’s norm growth under the action of this operator.

For a normal operator this problem is solved quite easily. To illustrate this, we
(following Schmid 2007) consider an important particular case in which the operator
Z can be represented as an operator exponent: Z = eAt (see Sect. 6.3.3.1 for more
detail). The operator A is time-independent, and its eigenvalues are traditionally
denoted as {−iω1,−iω2, . . .−iωN }, whereω can take both real and complex values.
In this case, eigenvalues of the operator Z are {e−iω1t , e−iω2t , . . . e−iωN t }.

Let us denote the set of eigenvectors of the operator Z as yj . All vectors in the set
yj are orthogonal to each other due to the normality of the operator Z. Moreover,
all these vectors can be considered to be orthonormal. This means that the scalar
product of two different vectors from the set is equal to zero, while the square of
each vector is equal to unity: (yj , yk) = δjk . We now consider some vector x with
the following decomposition over the eigenvectors of Z: x = ∑

ξjyj . Thus, we get
that

Zx =
∑

ξjyje−iωj t (6.56)
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This is the so called spectral representation of a linear operator (see Korn and
Korn 1968). With the help of this representation, the norm of a normal operator
can easily be found. Since eigenvectors of normal operators are orthonormal, the
expression (6.55) can be rewritten as:

||Z||2 = sup
ξj

√∑
ξ2
j e2� [ωj ]t

√∑
ξ2
j

(6.57)

It is easy to see that the maximum value of the operator norm is reached when the
weights of all eigenvectors, except the one corresponding to the maximal imaginary
part of the eigenvalue, vanish.

||Z|| = e2ωmax t , (6.58)

where ωmax = max
j

(� [ωj ]
)
. Thus we have shown that to calculate the operator

norm for a normal operator, it is enough to find the eigenvalue with the maximal
imaginary part. However, as will be shown below, the operator for linear perturba-
tions in shear flows is not normal, so calculating the eigenvalue with the maximal
imaginary part is not sufficient to find the maximal possible growth of perturbations.

Finally, the most general are the non-normal operators , i.e. those that do not
commute with their adjoint operator: ZZ† �= Z†Z. Eigenvalues of these operators
can be both purely real and complex, and their eigenvectors are non-orthogonal to
each other. The non-orthogonality of the eigenvectors complicates calculation of
the operator’s norm. For this reason, the energy of a combination of modes is not
equal to the sum of the energy of each mode, i.e. the Parceval rule is not valid and
non-zero cross terms appear. In other words, due to interference in time between
non-orthogonal modes, perturbations described by such an operator can increase
even if there are no growing modes. This energy growth of perturbations, which is
mathematically related to the non-normality of the dynamical operator, was dubbed
the transient growth of perturbations. In the context of stability of hydrodynamical
flows, non-normal operators and examples were discussed in Farrell and Ioannou
(1996a), as well as in Sects. 6.3 and 6.4 of Schmid and Henningson (2001).

The dynamical operator can relate to the different variants described in this
section for different parameters of the problem. For example in Sect. 6.3.4.2, we will
show that for solid-state rotation the operator is normal, and for all other rotation
laws—non normal.

6.3.1.2 Simple Geometrical Example of the Non-orthogonality of
Eigenvectors

A simple geometrical example can illustrate the transient growth mechanism. Let us
introduce two vectors on the plane (x, y) symbolizing two perturbation modes. We
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write them in the form of two complex numbers, f1 = f0e−iω1t , f2 = f0e−iω2t+iψ ,
where the numbers ω1,2 can be complex as well. In this form the analogy between
f1,2 and perturbation modes will be the most clear. The real and imaginary part of
each of the vectors f1,2 yields the x- and y- vector components, respectively. Clearly,
�[ω1,2] corresponds to the angular velocity with which both vectors rotate on the
plane, and �[ω]1,2 corresponds to the rate of change of their respective lengths.
Below we will assume that imaginary parts of ω1,2 are negative, which corresponds
to the shortening of f1,2. We recall that in the case of modes, real parts give angular
velocities of the solid-body rotation of the spiral pattern in the flow (see Fig. 6.1),
and imaginary parts give their decay rate, in analogy with a spectrally stable flow.
In addition, we will assume that at time t = 0 the vectors have the same length f0
and the angle between them is ψ .

Now take the vector q = f1 + f2 and calculate the quantity similar to (6.43),
which gives the rate of change of the square of the length q with time:

g = e2�[ω1]t + e2�[ω2]t + 2e�[ω1+ω2]t cos(�[ω1 − ω2]t + ψ)
2(1 + cosψ)

. (6.59)

This shows that for angles close to π the denominator in (6.59) is small, and any
insignificant increase in the numerator will lead to a large increase in g. Consider
two particular examples. In the first case assume that �[ω1,2] = 0, and in the second
case that �[ω1,2] = 0. For simplicity, assume cosψ ≈ −1 + ε, where ε � 1.

Then for the case �[ω1,2] = 0 we see that if we additionally admit a large
difference in decrements, |�[ω1]| � |�[ω2]|, after some long time g will be

g ≈ e2�[ω2]t

2ε
, (6.60)

which corresponds to g � 1 on time intervals such that |�[ω1]t| � 1 but
simultaneously |�[ω2]t| � 1. This means that despite the decrease in length of each
particular vector, in the case of strong non-orthogonality (which is characterized by
strong difference of ε from 1), their sum exhibits a transient growth up to values
∼ ε−1 (Fig. 6.5). Only at later times will g decrease again at a rate determined
by the most slowly decreasing vector. A similar effect takes place for transient
perturbations, which can be represented as a sum of decaying modes with zero phase
velocity.

In the opposite case �[ω1,2] = 0, from (6.59) the following approximate formula
can be derived:

g ≈ 1 − cos(�[ω1 − ω2]t)
ε

, (6.61)

which is valid when the value of cosine in the numerator is not too close to
unity. Apparently, unlike the example with the sum of non-orthogonal vectors
with decreasing length (when the length q first increases to a maximum and then
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monotonically decreases down to zero at t → ∞), the length of the sum of the
rotating vectors exhibits an oscillating growth, by returning many times to ever
increasing values ∼ ε−1 in equal time intervals ∼ |�ω1 − �ω2|−1, as is evident
from the illustration in Fig. 6.6. Unlike the first case, it would be inappropriate to
refer to this second possible variant of the mode superposition growth as ‘transient
growth’, as we did, for example when analyzing local SFH in Sect. 6.2.3. Therefore,
it is more appropriate to call it ‘non-modal growth’. One example of such a non-
modal growth of a superposition of neutral modes with non-zero phase velocities is
considered in Sect. 6.3.2 and was studied in Razdoburdin and Zhuravlev (2012).

6.3.1.3 Singular Vectors

We have thus just demonstrated how non-orthogonality of the modes leads to
transient growth of perturbations. In many physical and astrophysical problems, the
evolution of linear perturbations is determined precisely by non-normal operators
with non-orthogonal eigenvectors. Here the non-normality of Z is provided by a
shear in the background flow. We can verify this by deriving the set of adjoint
dynamical equations corresponding to the action of the adjoint operator Z† (see
Sect. 6.3.4.1).

It follows that knowledge of a non-normal operators eigenvalues only is insuffi-
cient to fully describe possible (transient) growth of perturbations in the system. In
addition, the pair inner products (‘angles’) between the eigenvectors on the chosen
norm of perturbations must be known. One more potential complication to the
problem with a non-normal dynamical operator is that it becomes impossible to
guarantee the completeness of the set of its eigenvectors, and hence, to guarantee
the adequacy of the solution of the problem when using the eigenvectors as a basis
for decomposition of an arbitrary perturbation.

For all these reasons, in order to compute the maximal transient growth rate of
perturbations, below we will use the technique of singular values and vectors. As
will be shown, the singular vectors form a complete orthonormal set, which allows
us to employ them as a basis to describe the evolution of perturbations. Moreover,
the singular values, unlike eigenvalues, enable us to calculate the perturbation
energy growth at any given time even for non-normal operators.

The non-negative real number σ is called the singular number of a linear operator
Z if there are such vectors u and v of unit length that

Zv = σu

Z†u = σv
(6.62)

The vectors u and v are called the left and right singular vectors, respectively,
corresponding to the singular value σ .

Note that the singular values and vectors are related to the eigenvalues and
eigenvectors of the composed self-adjoint operators ZZ† and Z†Z. To see this, let
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the operator Z† act on vector Zv and the operator Z act on vector Z†u and then use
the definition (6.62):

Z† (Zv) = Z† (σu) = σZ†u = σ 2v (6.63)

Z
(

Z†u
)
= Z (σv) = σZv = σ 2u (6.64)

Thus, vectors v and u are eigenvectors of the operators Z†Z and ZZ†, respec-
tively. And since they are eigenvectors of self-adjoint operators, they form a
complete orthonormal set of functions. The squares of the singular values are
eigenvalues of the composite operators.

The operators ZZ† and Z†Z are positive definite, since for any vector f the
inequalities

(
f,ZZ†f

) = (
Z†f,Z†f

)
> 0 and

(
f,Z†Zf

) = (Zf,Zf) > 0 hold. And
since all eigenvalues of a positive definite operator are positive, the singular values
are real.

Now, if we rewrite the expression for the operator norm (6.55) with the help of
definition (6.62) for some unit norm vector x decomposed over an orthogonal set of
singular vectors: x = ∑

j

ξjvj

||Z||2 = sup
ξj

||
∑
j

ξj σjuj ||2 = sup
ξj

∑
j

(
ξjσj

)2 = max
j
σ 2
j (6.65)

Thus, the norm of the operator Z is limited by the maximum singular value of
this operator. Going back to the dynamics of perturbations, we conclude that the
maximal growth of a perturbation is limited by the maximal singular value of the
dynamical operator. In most physical problems, it is natural to assume that the
maximal singular value is finite (i.e. the perturbation can not demonstrate infinite
growth during a finite time interval), and the set of singular values is discrete.

The singular values and corresponding singular vectors are usually numbered in
order of decrease (see Golub and Reinsch 1970). So, the growth of a perturbation
is limited by the first singular value of the corresponding dynamic operator, and the
first singular vector is the perturbation that exhibit such a growth.

The above considerations imply that to calculate the maximum possible perturba-
tion growth rate it is sufficient to calculate the first singular value, called the optimal
growth in the literature, and the right singular vector corresponding to this value
will be the sought for (optimal) perturbation demonstrating the maximum possible
growth rate. Below we present two methods of calculation of singular values and
corresponding singular vectors.
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6.3.2 The Matrix Method for Optimal Solutions

The first method to calculate singular vectors will be referred to here as the matrix
method. It is based on singular value decomposition of the matrix of a dynamical
operator. As a rule, the set of eigenvectors is used as the basis for the matrix
calculation.

Note that there is another possible variant, which was used, for example, in
Ioannou and Kakouris (2001), when the space is covered by a grid of points, and
each perturbation is given by a column of numbers corresponding to the values of the
perturbation at these points. A dynamical operator corresponds to a matrix obtained
by a difference approximation to the derivatives in the dynamical equations. A
singular-value decomposition of this matrix enables us to calculate the singular
vectors at the grid points. The large size of the operator matrix is a shortcoming
of this approach, which requires a lot of time to calculate the singular value
decomposition. An advantage is that it is not necessary to calculate the operator’s
eigenvectors. In this section, we describe the matrix method in the eigenvector basis.

The problem is to find the linear combination of the dynamical operator
modes whose norm exhibits the largest growth by the given time. Assume that
the sequence of eigenvectors {f1, f2, f3 . . . fN } and the corresponding eigenvalues
{e−iω1t , e−iω2t , e−iω3t . . . e−iωN t)} of the operator Z are known. In the space of linear
combinations of eigenvectors, the representation of an arbitrary perturbation vector
has the form (see paragraph 4.3.2 and Section 4.4 in Schmid and Henningson (2001)
for more detail)

q =
N∑
j=1

κj f̂j , (6.66)

where the numbers {κ1, κ2, κ3 . . . κN } are coordinates of the vector q in the eigen-
vector basis. Note that the time dependence of q is essentially in its coordinates.

The inner product of two vectors q and g in this representation can be calculated
from the known coordinates using the metric matrix M:

(q, g) =
∑
i,j

(
q†

)i
Mijgj , (6.67)

where the elements of the metric matrix are equal to the inner product of the
eigenvectors:

Mij =
(
fi , fj

)
(6.68)

Note that the matrix M is positive definite.
Now the problem of calculation of the maximum possible perturbation growth

is reduced to finding the values κj for which the growth of the perturbation norm,
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determined using these values according to formula (6.66), is maximal at the given
moment in time.

The representation of an operator Z in the eigenvector basis can be easily
calculated by letting this operator act on the basis element:

Zfj = fj (τ ) = e−iωj τ fj , (6.69)

Therefore, in the set of basis eigenvectors, an operator can be represented
by a diagonal matrix P with complex exponents on the main diagonal: P =
diag{e−iω1τ , e−iω2τ , e−iω3τ . . . e−iωNτ }

Next, let us use the first equality from definition (6.62), Zv = σu, and rewrite it
in the matrix form:

P = UΣV−1 (6.70)

The matrix Σ is diagonal with the singular values on the diagonal, Σ =
diag{σ1, σ2, σ3 . . . σN }. Columns of matrices U and V represent right and left
singular vectors, respectively.

Now let us write the inner product for two arbitrary singular vectors q and g as

(q, g) =
∑
i,j

(
q†

)i
Mijgj =

∑
i

(
(Fq)†

)i
(Fg)i, (6.71)

where the matrix F is the Cholesky decomposition of the metric matrix M = FT F
(for a more detailed description of this decomposition see for example Sect. 4.2
in Golub and Van Loan (1996)). As the matrix M is positive definite, its Cholesky
decomposition always exists and is unique.

Sets of singular vectors are orthonormal. Therefore the following relations for
matrices V and U hold:

V†FT FV = I, (6.72)

U†FT FU = I, (6.73)

where I is the identity matrix.
Thus, matrices inverse to V and U are expressed through Hermitian-conjugate as

follows:

V−1 = V†FT F, (6.74)

U−1 = U†FT F. (6.75)
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Making use of these relations in (6.70) yields

P = UΣV†FT F = F−1FUΣV†FT F. (6.76)

Rewrite this in the form:

FPF−1 = (FU)Σ (FV)† ≡ ŨΣṼ†. (6.77)

Now it is clear that the right-hand side of this equality becomes the same as
the so-called singular value decomposition (SVD) of the matrix FPF−1. Recall that
the singular value decomposition is a factorization of a matrix in the form ŨΣṼ†

where Ũ and Ṽ are orthogonal matrices and Σ is a diagonal matrix with positive
numbers on the main diagonal (see Golub and Van Loan (1996) for more details).
This factorization exists for any real matrix and is unique. It is easy to be convinced
that the matrices Ũ, Ṽ and Σ satisfy the singular value decomposition conditions,
and therefore to calculate singular values and vectors it is sufficient to perform this
decomposition for the matrix FPF−1. The singular value decomposition procedure
is a standard tool in many linear algebra software packages (for example in the GNU
Scientific Library).

The original matrices U and V are calculated using F−1: U = F−1Ũ, V = F−1Ṽ.
The maximum number on the diagonal of the matrix Σ is the first singular value at
time t , and the corresponding column of the matrix V is the first singular vector in
the eigenvector basis.

6.3.2.1 Illustration of the Matrix Method

The matrix method has been used in many studies on stability of laboratory flows
(see, for example, Butler and Farrell 1992; Reddy and Henningson 1993; Hanifi
et al. 1996; Meseguer 2002; Malik et al. 2006; Maretzke et al. 2014) and in
astrophysical papers Yecko (2004), Mukhopadhyay et al. (2005), Zhuravlev and
Shakura (2009). Here, we elucidate it by a simple semi-analytical study (Razdobur-
din and Zhuravlev 2012), where the eigenvector basis8 is calculated in the WKB
approximation in a geometrically thin and barotropic quasi-Keplerian torus with free
boundaries. For simplicity, only the modes whose corotation radius is outside the
outer boundary of the torus are considered. (See Sect. 6.2.1 for a discussion of the
mechanism of energy exchange between the modes and the background flow at the
corotation radius in the context of the spectral problem corresponding to Eqs. (6.8)–
(6.10)). When the corotation radius is outside the flow, the energy of the modes
is conserved. This means that they do not show exponential growth or decay, i.e.
their frequencies ω are real values (see expression (6.14)). These perturbations are

8Henceforth, the eigenvectors of an operator Z multiplied by the eigenvalues, i.e. by the time
dependence e−iωt , will be referred to as perturbation modes.
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referred to as neutral modes. Nevertheless, due to their mutual non-orthogonality,
in other words, due to the non-orthogonality of the eigenvectors of the dynamical
operator acting on the perturbations, we expect a non-modal growth of their linear
combinations (see the analogy in Fig. 6.6 and comments to it in the text).

The modes we wish to obtain below physically correspond to inertial-acoustic
waves, which form a solid-body rotating pattern in the disc, i.e. whose azimuthal
projection of the wave vector that is constant in time and space. Here, as will be
seen from the WKB analysis, their characteristic radial wavelength is close to the
disc thickness H . As for their characteristic azimuthal scale, λϕ , it can be both
larger and smaller than H , determined by the azimuthal wave number m entering
the set of Eqs. (6.8)–(6.10). Results concerning the optimal perturbation growth will
be presented for the case λϕ � H (see Fig. 6.8).

We will see that in that case the optimal perturbation does not have the form of
a spiral unwound by the flow, which we discussed in the context of the transient
growth of vortices (see Fig. 6.2), but is a wave packet initially located at the outer
boundary of the torus and further propagating towards its inner boundary. At the
moment of reflection from the inner boundary, its total acoustic energy reaches
maximum and then decreases while the packet goes back to the flow periphery.
After reflection from the outer boundary the process repeats. Thus, the non-modal
growth in this case is oscillating rather than transient, as must be the case according
to the analogy shown in Fig. 6.6.

6.3.2.2 Background Flow

Consider a toroidal flow of finite radial size as a model background flow. The
azimuthal velocity component will correspond to the power-law angular velocity
radial profile:

Ω = Ω0

(
r

r0

)−q
, (6.78)

where r0 is the distance to the gravitating centre in the equatorial plane of the torus
at which rotation has the Keplerian frequencyΩ0, 2 > q > 3/2. Assume that matter
moves in the external Newtonian gravitational potential produced by a central point-
like mass:

Φ = − Ω2
0 r

3
0

(r2 + z2)1/2
.

As will be clear below, in this case the parameter q characterizes the torus thickness
which approaches zero as the angular velocity profile becomes close to Keplerian.
As in Sect. 6.2.1, we use here the polytropic equation of state and write the force
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balance using the enthalpy h:

∂h

∂r
= Ω2r − ∂Φ

∂r
,

∂h

∂z
= −∂Φ

∂z
,

(6.79)

where the first and the second equations correspond to the projection of the Euler
equation on the radial and vertical direction, respectively. The joint integration
of (6.79) yields

h(r, z) = Ω2
0 r

3
0

(r2 + z2)1/2
+ Ω2

0 r
2q
0

2(1 − q)r
2(1−q) + C,

where the integration constant C is determined from the condition that h(r1, 0) = 0
at the inner boundary of the torus r1 < r0.

Then, in dimensionless coordinates x̂ ≡ r/r0, ŷ ≡ z/r0 we obtain

h = (Ω0r0)
2
[
(x̂2 + ŷ2)−1/2 − x̂−1

1 + 1

2(q − 1)

(
x̂
−2(q−1)
1 − x̂−2(q−1)

)]
.

(6.80)

Here x̂1 ≡ r1/r0. The enthalpy distribution (6.80) also gives the outer radial
boundary of the torus x̂2 > 1, where h(x̂2, 0) = 0. The quantity x̂d = x̂2 − x̂1
will be called the radial extension of the flow.

Now it is not difficult to move to the case of the quasi-Keplerian, geometrically

thin torus of interest here: q = 3
2 + ε2

2 , ε � 1. Using this assumption, the enthalpy
profile can be simplified to

h

Ω2
0 r

2
0

= Ĥ 2

2x̂3

[
1 −

(
ŷ

Ĥ

)2
]
, (6.81)

where Ĥ (x) is the dimensionless thickness of the torus in units of r0:

Ĥ = δ x̂
[
x̂1(1 + ln x̂)− x̂(1 + ln x̂1)

x̂1 − 1 − ln x̂1

]1/2

(6.82)

Here, we have introduced a descriptive small parameter

δ ≡ Ĥ (x̂ = 1) = 21/2ε

(
1 − 1 + ln x̂1

x̂1

)1/2

� 1,

that defines the characteristic aspect ratio of the disc-like torus with δ � x̂d . It is
not difficult to make sure that expression (6.81) is equivalent to (6.4).
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Equations (6.81), (6.82) fully determine the quasi-Keplerian background flow
which will be used to illustrate the matrix method of determination of the non-
modal growth of the superposition of modes. In the next section, we will solve the
spectral problem for such a flow, i.e. we will find the perturbation mode profiles.

6.3.2.3 Modes

Modes are non-stationary perturbations with exponential time dependence
∝ exp(−iωt). They are also solutions to the operator equation (6.54) determining
evolution of a linear perturbation in the flow. This means that modes are state
vectors which we obtain by the operator Z acting on its eigenvectors fi :

fi (t) = Zfi = e−iωt fi .

Again, the numbers exp(−iωt) are eigenvalues of Z that we will need to find along
with its eigenvectors.

In practice, we will not use the equation exactly in the form (6.54), but instead
derive an equivalent ordinary differential equation of the second order in the radial
coordinate for an Eulerian enthalpy perturbation. As everywhere in this chapter, we
will assume that hydrostatic equilibrium always holds, i.e. that δvz = 0. As we
deal with a thin torus, δ � 1, our perturbations taken originally in the form of
azimuthal Fourier harmonics ∝ exp(imϕ) satisfy the set of Eqs. (6.8)–(6.10), which
contains the background variables integrated over z (see Sect. 6.2.1). The modal
analysis implies the substitution ∂/∂t → iω, after which from (6.8) and (6.9) we
find that complex Fourier harmonics of the Eulerian velocity perturbations, which
are denoted here as vr and vϕ , are expressed through the Fourier harmonics of the
enthalpy perturbation, which is denoted here as W, as follows:

vr = i

D

[
ω̄
dW
dx̂

− 2mΩW
x̂

]
, (6.83)

vϕ = 1

D

[
κ2

2Ω

dW
dx̂

− mω̄W
x̂

]
, (6.84)

where D ≡ κ2 − ω̄2, κ2 = 2Ω
x
d
dx̂

(
Ωx̂2

)
is, as usually, the epicyclic frequency

squared, and ω̄ ≡ ω−mΩ is the shifted frequency. Below in this section we assume
that all frequencies are in units of the frequencyΩ0 and time is in units ofΩ−1

0 .
Plugging (6.83) and (6.84) into the continuity equation (6.10), we obtain the

following equation for W:

D

x̂Σ

d

dx̂

(
x̂Σ

D

dW
dx̂

)
−

[
2m

ω̄

D

x̂Σ

d

dx̂

(
ΩΣ

D

)
+ (n+ 1/2)

D

h∗
+ m2

x̂2

]
W = 0,

(6.85)
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where

Σ (r) =
H∫

−H
ρdz ∝ Ĥ

(
Ĥ 2

x̂3

)n
and h∗ = Ĥ 2

2x̂3 . (6.86)

Here h∗ is the dimensionless background enthalpy in the equatorial disc plane
(cf. (6.81)). To reproduce the surface density dependence on r given above, Σ(r),
it is enough to recall that Σ ∼ Hρ|z=0, and ρ ∼ hn for a polytropic equation of
state. Equation (6.85), as well as its more general analogue for three-dimensional
perturbation modes, is often used in the literature. Their derivation and analysis can
be found, for example, in papers Goldreich et al. (1986), Kato (1987), Sekiya and
Miyama (1988), Kojima (1989), Kato (2001).

As we have already mentioned, the integration of Eq. (6.85) is complicated by
resonances: corotational, where ω̄ = 0, and Lindblad resonances, where D = 0.
These points are singular for (6.85). However, in order to illustrate the matrix
method of optimization, we will restrict ourselves to calculation of only part of
the modes with resonances lying outside the outer boundary of the flow, x̂2. The
condition that the inner Lindblad resonance lies at x̂ > x̂2 implies

ω < (m− 1)Ω(x̂2), (6.87)

where in the condition D = 0 we have set κ ≈ Ω due to the nearly Keplerian
angular velocity profile in a thin torus. Recall also that ω is a real value. Note that
for m = 1 the inner Lindblad resonance is at x̂ = 0, and hence there are no modes
with m = 1 satisfying the condition (6.87). For this reason, we will consider only
modes withm > 1. Thus, under the restrictions made, the term ∝ D/h∗ ∼ δ−2 will
be large everywhere in the flow, and therefore the solution to the equation can be
found in the WKB approximation.

A WKB solution to Eq. (6.85) can be written as

W = C0S1 cos(S0 + ϕ0), (6.88)

in which S0 ∼ δ−1, and S1 ∼ δ0.
Plugging (6.88) into (6.85) yields its decomposition in δ. By collecting terms

with similar powers of δ, namely, δ−2 and δ−1, we find the explicit form of functions
S0 and S1:

S0 =
x̂∫

x̂1

(
(n+ 1/2)

−D
h∗

− m2

x̂2

)1/2

dx̂,

S1 =
(−D
x̂Σ

)1/2 (
(n+ 1/2)

−D
h∗

− m2

x̂2

)−1/4

.

The phase ϕ0 is fixed by the boundary conditions.
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The WKB solution (6.88) is irregular at the boundary points x̂1 and x̂2 at which
h∗ → 0. It is possible to find a WKB-solution that is regular at the boundaries
(see Heading 2013), but here, let us use another common way of matching (6.88)
with an approximate regular solution to the original equation (6.85) near x̂1 and x̂2.
This matching should yield a discrete set of eigenfrequenciesω, as well as the value
of ϕ0.

In order to find the regular solution near x̂1 and x̂2, we change to the new radial
coordinate x̃ ≡ |x̂ − x̂1,2| and expand Eq. (6.85) in the main order of the variable
x̃ � 1. Technically, this means that all variables from (6.85) that are non-zero at
x̂1,2 are set to their exact values at x̂1,2. The disc semi-thickness, vanishing at the
boundaries, is approximated as Ĥ = Ĥ1,2x̃

1/2. Here for the constant Ĥ1,2 we get

Ĥ1,2 = δx̂1,2

∣∣∣∣ ln x̂1,2

1 + ln x̂1,2 − x̂1,2

∣∣∣∣
1/2

We obtain the following near-boundary equation:

x̃
d2W
dx̃2 + (n+ 1/2)

dW
dx̃

+ E1,2W = 0, (6.89)

where E1,2 = (2n+ 1)(−D1,2) x̂
3
1,2

H 2
1,2

, D1,2—are the values of D at points x̂1,2.

The regular solution to (6.89) at x̃ = 0 has the form:

W = C1,2 x̃
−(2n−1)/4 Jn−1/2(z̃), (6.90)

where z̃ = 2E1/2
1,2 x̃

1/2.
Note that Eq. (6.89) at x̃ → 0 is equivalent to the boundary condition for

the enthalpy perturbation at the free boundary of the flow, which states that the
Lagrangian enthalpy perturbation vanishes at the boundary points x̂1,2, Δh|x1,2 = 0
(see, for example Glatzel 1987a).

As the denominator z̃ contains the small δ, at some distance from the boundary
points z̃ � 1 yet under the condition x̃ � 1. In this region, W is given by the
asymptotic of (6.90) for large arguments:

W ≈ C1,2 x̃
−n/2(4π2E1,2)

−1/4 cos
(

2E1/2
1,2 x̃

1/2 − nπ/2
)

(6.91)

The matching of (6.91) and the WKB solution yields the zero phase ϕ0 = −nπ/2
in Eq. (6.88) and the following dispersion equation:

x̂2∫
x̂1

(
(2n+ 1)

−Dx̂3

Ĥ 2
− m2

x̂2

)1/2

dx̂ = π(n+ p), (6.92)
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Fig. 6.7 In this figure solutions within different parts of the torus are shown. The solid line denotes
a solution (6.90), and the dotted line a WKB-solution. The right panel shows the right borderland
of the torus. The WKB solution has an infinite derivative in this region, so the solution (6.90) is
regular here. On the left panel a larger region is shown. When the distance from the boundary
x2 is increasing, the differences between the two solutions become more significant. However,
in a certain region both of the solutions are very similar. The following parameters were used:
δ = 0.003, n = 1.5, m = 10, xd = 2.0

where p is an integer number. Solving (6.92) for different p yields a discrete set of
ω that enters D. This is the sequence of eigenfrequencies of neutral modes that we
are interested in.

The modes profiles are given by Eqs. (6.88) and (6.90) with account for the
relations between the corresponding constants (see Fig. 6.7):

C0

C1
=

(
Ĥ 2n+1

1

2πx̂3n−1
1 (−D1)

)1/2

,
C2

C1
= (−1)p

⎡
⎣
(
x̂2

x̂1

)3n−1 D2

D1

(
Ĥ1

Ĥ2

)2n+1
⎤
⎦

1/2

(6.93)

After obtaining the profile W(x̂) for a given ωi , the corresponding complex
Fourier harmonics of the Eulerian velocity perturbations vr (x̂) and vϕ(x̂) can be
calculated from (6.83) and (6.84). Thus, we find the whole eigenvector fi ≡
{vr , vϕ, W} of operator Z corresponding to its eigenvalue exp(−iωit).

6.3.2.4 Optimal Growth

The explicit form of eigenvectors of a dynamical operator allows us to calculate the
optimal growth, i.e. to find the linear combination of these vectors that demonstrates
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the maximum increase of the norm at a given time. The optimal growth at the
time t is

G(t) = max
q(0)

||q(t)||2
||q(0)||2 . (6.94)

This is a generalization of (6.46) for the spatially global case.
The inner product of two vectors from the linear span of N eigenvectors of Z

is introduced such that the square of the corresponding norm recovers the acoustic
energy of the perturbation (6.15):

(f, g) = π
r2∫
r1

Σ

(
(vr )f (vr )

∗
g + (vϕ)f (vϕ)∗g + (n+ 1/2)

(W)f (W)
∗
g

h∗

)
rdr,

(6.95)

where the indices ‘f ’ or ‘g’ indicate the relation of some physical variable to
the vector f or g, respectively. We recall that by vr , vϕ and W here we mean
azimuthal Fourier harmonics of the Eulerian perturbations of the velocity and
enthalpy components, respectively.

Now, let us apply the procedure of calculation of the optimal combination of
eigenvectors described above. As we have the eigenvectors in analytical form, the
matrix M can be obtained by simple numerical integration of a combination of
elementary functions using the inner product formula (6.95):

Mij = (fi , fj ) (6.96)

Next, we perform the Cholesky decomposition M = FTF and then the singular
value decomposition of the matrix FPF−1. Both these procedures are standard in
numerical methods of matrix algebra.

In Fig. 6.8 we show an example of the dependence of the maximum possible
energy growth, G(t), among all superpositions of 20 neutral modes at time t , on a
time scale of the order of the sonic time ts ∼ (δΩ0)

−1 and ∼ 10ts , respectively.
The left panel of Fig. 6.8 also shows the energy growth of the optimal mode
combinations g(t). Clearly, the curves g(t) touch the general optimal growth curve
G(t), as must be the case, each at its own optimization time. The optimal growth
itself in this model has a quasi-periodic form by reaching maxima at times ∼ ts , and
the thinner the torus, the higher values g the mode superposition can reach.

6.3.2.5 The Angular Momentum Flux

In Sect. 6.3.2.4 we have shown that some combinations of modes can demonstrate a
significant growth in acoustic energy. Consider in more detail what this optimal
perturbation is. The perturbation amplitude growth suggests that the main flow
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Fig. 6.8 The left panel shows the optimal growth curve G(t) (the solid curve) of a linear
combination of slow modes in a thin disc for δ = 0.002. The dashed lines show the growth
factor of the total acoustic energy g(t) of the particular optimal perturbations as a function of
time. These perturbations are optimal for time intervals t = 250, 290, 390 expressed in units
of the characteristic Keplerian period 2πΩ−1

0 . The right panel shows curves of G(t) only. The
solid, dashed and dotted lines correspond to δ = 0.001, 0.002, 0.003, respectively. The linear
combination shown has the dimensionality N = 20, parameters are xd = 1.0, m = 25, n = 3/2
(Figure is quoted from Razdoburdin and Zhuravlev (2012))

transfers energy to perturbations. The first term on the right-hand side of (6.13) is
responsible for this, and its integrand sometimes is referred to as the Reynolds stress
(which we denote as FR , see Kojima (1989)). It turns out that FR is simply related
to the density of the specific angular momentum flux excited by perturbations, F :
FR = − dΩ

dx̂
F (see Sections 2.3 and 4 of Savonije and Heemskerk 1990). Clearly,

for Keplerian rotation, FR and F have the same sign: if the perturbation energy
increases, F > 0, angular momentum flux to the torus periphery takes place, and
vice versa.

In order to calculate the evolution of the profileF for the optimal superposition of
modes represented by the curve g(t) for t = 290 in Fig. 6.8, let us use the following
expression for F

F = x̂Σ < δvrδvϕ > . (6.97)

Figure 6.9 shows how the radial distribution of F changes in the interval (x̂1, x̂2).
At first, we see that F is radially localized, and its localization region changes
with time: during the perturbation growth phase it shifts towards the inner torus
boundary, whereas during the perturbation decay phase it moves back to the outer
boundary. Therefore, in this case the non-modal growing perturbation is represented
by a wave packet containing a set of neutral modes (each of the modes, as we recall,
rotates like a solid body with an angular velocity somewhat smaller than the angular
velocity of the flow). Initially, this wave packet is localized near the outer boundary
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Fig. 6.9 Radial profiles of the azimuthally averaged angular momentum flux density F of the
optimal perturbation, which corresponds to g(t) shown in Fig. 6.8a for the optimization time t =
290. (a) Profiles of F at the instants t = 50, 100, 150, 200, 240 before the g(t) maximum. Each
profile has one large maximum shifting from the outer disc boundary x2 to the inner disc boundary
x1 as t increases. (b) Profiles of F at the instants t = 290, 350, 400, 450 after the g(t) maximum.
Correspondingly, each profile has one large minimum shifting from the inner disc boundary x1 to
the outer disc boundary x2 as t increases further. The linear combination has the dimensionality
N = 20, and the parameters are δ = 0.002, xd = 1.0, m = 25, n = 3/2 (Figure from Razdoburdin
and Zhuravlev (2012))

of the torus and moves towards the inner boundary. This causes outflow of angular
momentum to the disc periphery, since F > 0, and its acoustic energy increases. At
the moment of reflection from the inner boundary, the sign of F and the direction
of motion of the wave packet reverse, which later leads to a decrease in its acoustic
energy, and the angular momentum flows back to the inner parts of the torus. As
there is no viscous dissipation and the background flow is stationary, obviously, the
evolution of the optimal perturbation will continue to repeat itself: the wave packet,
after reflecting from the outer boundary, will go back towards the inner boundary.
Note also that the obtained shape of G(t) suggests that during the evolution of this
particular type of perturbations there are epochs (time intervals counted from the
conventional start of the perturbation evolution) when there is no combination of
modes to be amplified. These epochs correspond to minima on the curve G(t) (see
Fig. 6.8). The reason is that only the wave packets localized near the outer disc
boundary can exhibit significant growth. At the same time, the velocity of their
radial motion is determined by the sound velocity in the flow, and hence the time
intervals ‘favourable’ for non-modal growth always take the value ∼ x̂d/δ.

If we plot the lines of constant phase of perturbations corresponding to the
optimal wave packet on the plane (r, ϕ), it turns out that at the growth stage it
corresponds to a trailing spiral. It is opened at the initial time, but while propagating
towards the inner boundary it winds up stronger and stronger. Oppositely, after the
reflection from the inner boundary, it transforms into a tightly wound leading spiral,
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and while moving back towards the outer boundary the degree of winding gradually
decreases. This behavior of the optimal perturbation is similar to the process of
enhancement/weakening of the shear density waves by a shear flow we discussed in
Sect. 6.2.2 in the context of the spatially local problem.

The rate of spiral twist is controlled by the dynamical time-scale, while the rate
of radial drift—by the time-scale of sound. Thus for smaller δ, the spiral manages to
be twisted more strongly during the drift from the outer to the inner boundary. For
that reason a decrease of δ (see Fig. 6.8) leads to an increase of the maximal factor
of transient amplification.

6.3.3 Alternative: A Variational Approach

Singular vectors can be found alternatively by a variational method . This method
represents a generalization of the power iterations procedure of looking for matrix
eigenvalues and eigenvectors in a finite dimensional framework (see, for example,
the monograph by Golub and Van Loan (1996)). The variational method requires
less computational power than the matrix method (Luchini 2000), and, importantly,
it can be applied to non-stationary background flows, as well as used to solve the
non-linear problem of transient dynamics of finite-amplitude perturbations. Unlike
the matrix method, it does not require discrete representation of the dynamical
operator, i.e., for example the decomposition of perturbations by eigenvectors,
whose computation in a shear flow faces the known difficulty while bypassing the
corotation and Lindblad resonances (see Lin 1955).

As for linear dynamics, the variational method turns out to be equivalent to
solving the more simple problem of seeking the maximum eigenvalue of the
operator Z†Z (see Sect. 6.3.1 and, for example, Andersson et al. (1999) as well).
That is why we start with solving exactly that problem, whereas a derivation of the
variational method itself, directly from the variational principle, will be given below
together with a generalization to the non-linear case.

6.3.3.1 Linear Autonomous Operators

In Sect. 6.3.1, after the singular values were introduced, we discussed that the first
singular value is simultaneously the maximum eigenvalue of the composite operator
Z†Z, and the first right singular vector is the corresponding eigenvector of this
operator. First, let us try to understand what the action of Z†Z on the initial state
vector q(0) is equivalent to. Here, the action of the first (right) part of the composite
operator is known from its definition (6.54): this is the integration of the equations of
perturbation dynamics, for example, the set (6.8)–(6.10), until time t starting from
the initial condition q(0). We symbolically rewrite this as

∂q
∂t

= Aq. (6.98)
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Note that due to the linearity of the problem, the operator A in (6.98) does not
depend on q itself.

The subsequent action of the operator Z† on q(t) is not difficult to understand
if the operator A is autonomous, i.e. time-independent (see Farrell and Ioannou
1996a).

Then, the integration of (6.98) can be written in the operator form: q(t) =
eAtq(0), i.e. A and Z are related as

Z = eAt . (6.99)

The right-hand side of (6.99) is called the operator exponent and should be
understood as an infinite series I + At + (At)2/2 + . . ..

The operator adjoint to Z can also be written through the operator exponent Z† =
eA†t, where A† is the operator adjoint to A. A† is defined by the Lagrange relation(
Aq, q̃

) = (
q,A†q̃

)
, where q and q̃ are arbitrary vectors. This expression for Z†

follows from the application of the conjugation operation to the infinite operator
series given above. Now consider the inner product:

(
∂q
∂t
, q̃

)
= (

Aq, q̃
) = (

q,A†q̃
)
. (6.100)

On the other hand,

(
∂q
∂t
, q̃

)
= ∂

∂t

(
q, q̃

) −
(

q,
∂ q̃
∂t

)
= ∂

∂t

(
eAtq(0), q̃

)
−

(
q,
∂ q̃
∂t

)
=

(
q(0),

∂

∂t

(
eA†t q̃

))
−

(
q,
∂ q̃
∂t

)
.

(6.101)

Combining (6.100) and (6.101) yields the identity:

(
q(0),

∂

∂t

(
eA†t q̃

))
−

(
q,
∂ q̃
∂t

)
=

(
q,A†q̃

)
. (6.102)

It is easy to see that if q̃ and ∂q̃
∂t

are related as

∂ q̃
∂t

= −A†q̃, (6.103)

then q̃(t) = e−A†tq̃(0) and the identity (6.102) is fulfilled for an arbitrary q.
Thus, the action of operator Z† = eA†t is equivalent to integration of Eq. (6.103)

backwards in time from the instant t with initial condition q(t) down to the instant
t = 0. Equation (6.103) is called the adjoint equation.
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Additionally, note that although the operator Z can be represented as Z = eAt and
Z† as Z† = eA†t, the composite operator cannot be represented as Z†Z = e(A+A†)t.
In order to see this, it is sufficient to employ the series expansion of those operators.

Thus, the action of the composite operator Z†Z on the initial vector q(0) is
equivalent to integration of the original equation (6.98) with the initial condition
q(0) forwards in time up to the instant t , and to subsequent integration of the adjoint
equation (6.103) with the initial condition in the form of the vector q(t) we have just
obtained by integrating (6.98)—backwards in time down to t = 0.

If the action of the composite operator Z†Z on some vector is equivalent to its
multiplication by a constant, this vector is a right singular vector of Z, and the
constant is the square of the corresponding singular value: Z†Zv = σ 2v. However,
we need only the first, i.e. the largest, right singular vector. In order to obtain it,
consider an iteration procedure with one step consisting of action by the composite
operator Z†Z with subsequent normalization of the result to unity. To show
convergence of iterations to the first singular vector, consider the decomposition

of an arbitrary state vector over the singular vectors q(0) =
∞∑
k=1
qkvk(0) and let it be

acted on by the iteration operator: Z†Zq(0) =
∞∑
k=1
σ 2
k qkvk(0).

Obviously, the iteration operator increases the weight of each singular vector
in proportion to the square of its singular value. Thus, the limit

(
Z†Z

)p→∞
q(0),

where p is a natural number, for an arbitrary initial state vector q(0) is equal to the
first right singular vector, since it corresponds to the maximum singular value. The
rate of divergence depends on the difference between the singular vectors.

Note that in order to converge exactly to the first singular vector, the initial
approximation should not be orthogonal to it, so that in the decomposition of the
vector q(0) the weight of the first singular vector is non-zero, q1 �= 0. Otherwise,
the action of the iteration operator will not increase this weight: σ 2

1 q1 = 0. In
the latter case, the iteration scheme will converge to the singular vector with the
largest singular value among all vectors that have non-zero weight in the initial
decomposition.

After all remarks, we would like to stress once again that in order to find the first
right singular vector it is necessary to apply an iteration procedure, which includes
the integration of the original equation (6.98) forwards in time and of the adjoint
equation (6.103)—backwards in time with the subsequent normalization to unity in
each iteration step.

6.3.3.2 Linear Non-autonomous Operators

In the case of a time-dependent operator A (so-called non-autonomous operator,
see Farrell and Ioannou (1996b)), the action of operator Z† also corresponds to
integration of Eq. (6.103) backwards in time, which can be verified as follows.
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For the non-autonomous operator A, the action of operator Z can be factorized
as a product of actions of infinitesimal operators:

Z(τ ) = lim
n→∞

n∏
j=1

eA(tj )δt , (6.104)

where δt = τ/n; (j − 1)δt < tj < jδt , see Farrell and Ioannou (1996b).
The conjugation of the product of operators yields

Z†(τ ) = lim
n→∞

1∏
j=n

eA†(tj )δt . (6.105)

Clearly, at each time interval δt the integration is performed backwards in time, and
the intervals themselves are ordered with decreasing j . Therefore the action of Z†

is again equivalent to integration of (6.103) backwards in time.
Thus, like in the case of autonomous operators, the action of Z†Z is equivalent to

consecutive integration of (6.98) forwards in time and of (6.103) backwards in time.
Correspondingly, the iteration procedure to search for the first singular vector

presented above is applicable to non-autonomous operators as well.

6.3.3.3 Calculation of Consecutive Singular Vectors

Singular vectors produce an orthogonal set of vectors that can be used as a basis
for decomposition of any linear perturbation. Thus, it could be useful to calculate
not only the first but also the consecutive singular vectors. Therefore, below we will
briefly describe their calculation using the variational method.

In order that the iterations described above converge not to the first singular
vector but to a vector with numberN , it is sufficient that the domain of the iteration
operator completes the subset of linear combinations of previousN − 1 vectors, or,
what is equivalent, the initial approximation is orthogonal to the already obtained
singular vectors, i.e. the condition

(
q(0), vj (0)

) = 0 should be satisfied for j < N .
In this case, the action of the iteration operator will be orthogonal to the obtained
singular vectors:

(
Z†Zq(0), vj (0)

)
=

(
Z†Z

∞∑
k=N

qkvk(0), vj (0)

)
=

( ∞∑
k=N

σ 2
k q
kvk(0), vj (0)

)
= 0

(6.106)
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Thus, if we expand some vector over the singular vectors in the form

q(0) =
∞∑
k=1

qkvk(0), (6.107)

then the change of the initial condition in the iteration procedure by q(0) −
N−1∑
k=1

qkvk(0) provides the convergence of power iterations to the singular vector

number N . Thus, having the previous N − 1 singular vectors it is always possible
to calculate the next one.

6.3.3.4 Generalization to the Non-linear Case

In the case of non-linear dynamics, the justification for iterative computation of
optimal growth presented in the two previous sections becomes invalid. However,
in a somewhat generalized form it can be obtained directly from the variational
principle, as we will show below.

The problem is formulated as a search for the initial condition demonstrating the
maximum growth of the norm at a given time, i.e. it is required to find a vector such
that q(0), for which the functional

G (τ ) = ||q(t)||2
||q(0)||2 (6.108)

reaches maximum provided that the vector q satisfies the dynamical equations
written in operator form (6.98). To do this, a technique similar to the well-known
Lagrange multipliers method of finding conditional extremum of a function is used.

The Lagrangian necessary to find the conditional extremum in this case includes
two terms: the functional whose maximum is searched for, and the so-called
‘penalty’ term, which is non-zero only if q does not satisfy the dynamical equations
(6.98) (see also Corbett and Bottaro (2001), Guégan et al. (2006) and the review
Schmid (2007)):

L
(
q, q̃

) = G (q)−
t∫

0

(
q̃, q̇ − A(q)q

)
dτ. (6.109)

Apparently, the penalty term in (6.109) is written as the inner product of the
Lagrange multipliers (entering q̃) and Eq. (6.98), and additionally integrated over
time. Unlike the well-known problem of finding conditional extremum of a function,
the Lagrangian in this case is a functional defined for all possible shapes of q, and
the Lagrange multipliers themselves are functions rather than numbers.
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The extremum of (6.109) is reached when variations of the Lagrangian with
respect to q and q̃ vanish simultaneously. These variations are defined as (see book
Gunzburger (2003))

∂L

∂q
δq = lim

ε→0

L
(
q + εδq, q̃) −L

(
q, q̃

)
ε

(6.110)

∂L

∂ q̃
δq̃ = lim

ε→0

L
(
q, q̃ + εδq̃) −L

(
q, q̃

)
ε

, (6.111)

where δq and δq̃ are arbitrary functions taken at any time.
Variation with respect to indefinite multipliers clearly reads

∂L

∂ q̃
δq̃ = − lim

ε→0

1

ε

t∫
0

(
εδq̃, q̇ − A(q)q

)
dτ = −

t∫
0

(
δq̃, q̇ − A(q)q

)
dτ.

(6.112)

Equating (6.112) to zero we obtain, by arbitrariness of δq̃, Eq. (6.98). To compute
variations with respect to the state vectors we use the Lagrange identity:

(
q̃,Aq

) =(
A†q̃,q

)
(see, for example, Marchuk (1998) for more detail about adjoint operators

in non-linear problems) and take the penalty term by parts, after which the
Lagrangian can be rewritten as

L
(
q, q̃

) = G (q)− (
q̃,q

) ∣∣∣∣
t

0
+

t∫
0

( ˙̃q + A†(q̃)q̃,q
)
dτ. (6.113)

Taking into account the smallness of ε and the real-valued inner product,9 we
then calculate the variation with respect to the state vectors:

∂L

∂q
δq = lim

ε→0

1

ε

[ ||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 − ||q(t)||2

||q(0)||2 − (
q̃(t), εδq(t)

)+

+ (
q̃(0), εδq(0)

)+
t∫

0

( ˙̃q + A†(q̃)q̃, εδq
)
dτ

⎤
⎦ ,

(6.114)

9 A real-valued inner product is additionally required only in this section to obtain in simple form
the constraints (6.118) and (6.119), see below.
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Here the first term can be recast in the form

lim
ε→0

1

ε

||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 = lim

ε→0

1

ε

||q(t)||2 + ε(δq(t),q(t)) + ε(q(t), δq(t))
||q(0)||2 + ε(δq(0),q(0))+ ε(q(0), δq(0)) .

(6.115)

As the inner product is real-valued, we have (δq(t),q(t)) = (q(t), δq(t)), and so
the transformation can be continued:

lim
ε→0

1

ε

[ ||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 − ||q(t)||2

||q(0)||2
]

= lim
ε→0

1

ε

[ ||q(t)||2 + 2ε(δq(t),q(t))
||q(0)||2 + 2ε(δq(0),q(0))

− ||q(t)||2
||q(0)||2

]
=

= lim
ε→0

1

ε

[
2ε(δq(t),q(t))

||q(0)||2 − 2ε(δq(0),q(0))||q(t)||2
||q(0)||4

]
=

= 2(δq(t),q(t))
||q(0)||2 − 2(δq(0),q(0))

||q(t)||2
||q(0)||4 ,

(6.116)

which ultimately gives the variation:

∂L

∂q
δq = 2(δq(t),q(t))

||q(0)||2 − 2(δq(0),q(0))
||q(t)||2
||q(0)||4 − (

q̃(t), δq(t)
)+

+ (
q̃(0), δq(0)

)+
t∫

0

( ˙̃q + A†(q̃)q̃, δq
)
dτ.

(6.117)

Since the variations of δq taken at different instants are independent from each
other, equating (6.117) to zero yields the equation for indefinite multipliers (6.103),
which provides the vanishing of the Lagrangian variation in the interval 0 < τ < t ,
as well as the relations between q and q̃, which are necessary for the Lagrangian
variations to vanish at moments τ = 0 and τ = t:

q̃(t) = 2

||q(0)||2 q(t) (6.118)

q(0) = ||q(0)||4
2||q(t)||2 q̃(0). (6.119)

The vectors q and q̃ satisfying Eqs. (6.98) and (6.103) and the constraints (6.118)
and (6.119) turn the Lagrangian variations to zero, and hence precisely for them the
functional (6.108) reaches extremum.
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Fig. 6.10 Schematics of the
iteration loop to search for the
optimal perturbation at time
T satisfying the general
set (6.98) (see the review
Schmid (2007))

As for linear systems, the joint solution of equations can be found using the
power iteration method schematically shown in Fig. 6.10. This issue is further
discussed in papers Cherubini et al. (2010, 2011), Cherubini and De Palma
(2013). Note once again that for linear perturbations the optimization of the
functional (6.108) is reduced to looking for the maximal eigenvalue of the composite
operator Z†Z.

6.3.4 Adjoint Equations

6.3.4.1 Derivation of Adjoint Equations

In order to obtain an explicit form of adjoint equations to the set (6.8)–(6.10), we
will use the norm identical to the total acoustic energy of the perturbations (6.15).
The inner product corresponding to this norm is given by Eq. (6.95), which we have
already used. We represent (q̃,Aq) as

(q̃,Aq) = π
rout∫
rin

Σ

[
δṽr

(
imΩδv∗r + 2Ωδv∗ϕ −

∂δh∗

∂r

)

+δṽϕ
(
− κ

2

2Ω
δv∗r + imΩδv∗ϕ +

imδh∗

r

)
+

+δh̃
a2∗

(
− a

2∗
Σr

∂

∂r

(
rΣδv∗r

) + ima∗2

r
δv∗ϕ + imΩδh∗

)]
rdr.

(6.120)

Now, using the Lagrange identity (q̃,Aq) = (A†q̃,q) and Eq. (6.103) in the
left part of this expression, we represent the inner product according to (6.95). The
right-hand side can be rearranged in a way to get the components of δq in the form
of multipliers. Here, the spatial derivatives are rearranged using integration by parts.
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We obtain

π

rout∫
rin

Σrdr

[
−δv∗r

∂ṽr

∂t
− δv∗ϕ

∂ṽϕ

∂t
− δh∗ ∂h̃

∂t

]
=

= π
rout∫
rin

Σrdr

[
δv∗r

(
imΩδṽr − κ2

2Ω
δṽϕ + ∂δh̃

∂r

)

+ δv∗ϕ
(

2Ωδṽr + imΩδṽϕ + im

r
δh̃

)
+

+ δh∗
(

1

rΣ

∂

∂r
(rΣδṽr )+ im

r
δṽϕ + imΩ

a2∗
δh̃

)]

− πrΣδh̃δv∗r
∣∣∣∣
rout

rin

− πrΣδṽr δh∗
∣∣∣∣
rout

rin

.

(6.121)

The substitutions on the right-hand side of (6.121) vanish since Σ → 0 at the
boundaries.

The components of variation δq are arbitrary and independent, so (6.121) is
transformed into three independent equalities each corresponding to a certain
component of δq. These equalities result in a set of adjoint equations:

∂δṽr

∂t
= −imΩ δṽr + κ2

2Ω
δṽϕ − ∂δh̃

∂r
, (6.122)

∂δṽϕ

∂t
= −2Ωδṽr − imΩ δṽϕ − im

r
δh̃, (6.123)

∂δh̃

∂t
= − a

2∗
rΣ

∂

∂r
(rΣδṽr )− ima2∗

r
δṽϕ − imΩ δh̃. (6.124)

Changing to the local space limit in (6.122)–(6.124) (as we did in Sect. 6.2.2
to obtain the set (6.17)–(6.19) from Eqs. (6.8)–(6.10)) we get an explicit form of
equations adjoint to the set (6.17)–(6.19):

(
∂

∂t
− qΩ0x

∂

∂y

)
ũx − (2 − q)Ω0ũy = −∂W̃

∂x
, (6.125)

(
∂

∂t
− qΩ0x

∂

∂y

)
ũy + 2Ω0ũx = −∂W̃

∂y
, (6.126)

(
∂

∂t
− qΩ0x

∂

∂y

)
W̃ + a2∗

(
∂ũx

∂x
+ ∂ũy

∂y

)
= 0, (6.127)
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where tildes above ux , uy and W means that these quantities compose an adjoint
state vector.

Finally, changing to the co-moving reference frame in (6.125)–(6.127) yields
adjoint equations for a particular SFH:

d ˆ̃ux
dt

= (2 − q) ˆ̃uy − i k̃x(t)
ˆ̃
W, (6.128)

d ˆ̃uy
dt

= −2 ˆ̃ux − i ky
ˆ̃
W, (6.129)

d
ˆ̃
W

dt
= −i ( k̃x(t) ˆ̃ux + ky ˆ̃uy ). (6.130)

Applying the power iteration method jointly to (6.8)–(6.10) and (6.122)–(6.124)
for global azimuthal Fourier harmonics of two-dimensional perturbations, or to the
sets (6.23)–(6.25) and (6.128)–(6.130) for the local SFH, we automatically arrive at
the optimal initial profiles of the enthalpy and velocity component perturbations that
maximize the total acoustic energy growth at a given time interval. This problem in
application to Keplerian flows was solved by Zhuravlev and Razdoburdin (2014).

To illustrate this iteration algorithm, let us consider convergence of two different
initial conditions to an optimal perturbation in a global approach (i.e. with usage
of the sets (6.8–6.10) and (6.122–6.124)). In Fig. 6.11 a change of the perturbation
profile at t = 0 during the iteration procedure is shown. It is easy to see that neither
the profile nor the amplification factor of the resulting perturbations depends on the
initial profile. However, the initial profile have influence on the convergence rate.

6.3.4.2 Non-normality Condition for Z

Here we show that non-normality of the dynamical operator determined by the set
of Eqs. (6.8)–(6.10) is a direct consequence of the angular velocity gradient in the
flow. We already discussed this in Sect. 6.3.1, where we introduced the notion of
singular vectors. Now we can prove this rigorously in a rather general case, since
the explicit form of the operator A†, defined by the set (6.122)–(6.124), is known.
First, let us calculate the commutator of A and A†:

[
A,A†

]
=

⎛
⎜⎜⎝

16Ω4−κ4

4Ω2 0 im
2rΩ

(
4Ω2−κ2

)
0 κ4−16Ω4

4Ω2
4Ω2−κ2

2Ω
∂
∂r

ima∗2

2rΩ

(
κ2−4Ω2

) a2∗
rΣ

∂
∂r

(
rΣ
2Ω

(
κ2−4Ω2

))+ a2∗
2Ω

(
κ2−4Ω2

)
∂
∂r

0

⎞
⎟⎟⎠ .

(6.131)

It is not difficult to see that
[
A,A†

]
vanishes for κ = 2Ω , which corresponds to

solid-body rotation. In this case the commutator
[
Z,Z†

] =
[
eAt , eA†t

]
can easily
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Fig. 6.11 Illustration of iteration convergence for two different initial conditions. In the top left
panel initial radial profiles of |δh| are shown. In the top right, middle left, middle right and bottom
left panels radial profiles of |δh| are shown after 25, 80, 120 and 350 iterations respectively. In the
bottom right panel the amplification factor Gp as a function of iteration number p is shown. Solid
lines denote the radial disturbance of |δh| for an initial profile in the form of a‘double gaussian
function’ (the sum of two gaussian distributions with different mean). Dotted lines denote the
initial profile in the form of a single gaussian function. For both initial conditions, initial velocities
are equal to zero before iterations start. A Shakura-Sunyaev disc was used as background flow.
The azimuthal number was set to m = 5, the polytropic index n = 3/2, the optimization time
T = 3 and δ = 0.05 (see paper Zhuravlev and Razdoburdin (2014) for a detailed description of
the background flow)
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be found, since for commuting operators the product of their operator exponents
is equal to the exponent of their sum, which can be easily verified by writing the
operator exponents as the corresponding infinite series

[
eAt , eA†t

]
= eAteA†t − eA†teAt = e

(
A+A†

)
t − e

(
A†+A

)
t = 0. (6.132)

Thus, the operator Z becomes normal for solid-body rotation.
The inverse statement is also valid: if Z is normal at any time t , the rotation

is solid-body. To see this, use the Campbell-Baker-Hausdorff formula (Richtmyer
1981, Ch. 25) to represent the composite operators ZZ† and Z†Z:

eAteA†t = exp

((
A + A†

)
t + t2

2

[
A,A†

]
+ t3

12

[
A,

[
A,A†

]]

− t
3

12

[
A†,

[
A,A†

]]
+ . . .

)
(6.133)

eA†teAt = exp

((
A† + A

)
t + t2

2

[
A†,A

]
+ t3

12

[
A†,

[
A†,A

]]

− t
3

12

[
A,

[
A†,A

]]
+ . . .

)
=

= exp

((
A† + A

)
t − t2

2

[
A,A†

]
+ t3

12

[
A,

[
A,A†

]]

− t
3

12

[
A†,

[
A,A†

]]
+ . . .

)
.

(6.134)

The equality
[
eAt , eA†t

]
= 0 is fulfilled for any t , therefore the terms with the

same powers of t must be independently equal to zero, which is possible only if the
commutator

[
A,A†

] = 0. The last equality is valid for solid-body rotation only.
This implies that solid-body rotation is necessary and sufficient for the dynamical

operator Z of the set (6.8)–(6.10) to be normal. Thus, any deviation from solid-body
rotation, for example the appearance of an angular velocity gradient in astrophysical
discs, makes the dynamical operator non-normal and perturbation modes non-
orthogonal to each other.

6.4 Optimal Perturbations in Keplerian Discs

In the concluding section of this chapter we would like to briefly discuss the
use of the variational method to search for optimal perturbations in astrophysical
discs. We consider geometrically thin discs with an almost Keplerian azimuthal
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velocity profile in the background flow. In the numerical calculations we are going to
consider a radially infinite disc with only an inner (free) boundary and a thin quasi-
Keplerian torus with inner and outer radial boundaries. The latter configuration was
used in Sect. 6.3.2 for the analysis of superposition of neutral modes to illustrate the
matrix method of optimization. However, for the sake of methodology, we start with
the simplest analytically tractable problem of transient growth of local short-wave
perturbations with ky � 1 which we discussed in detail in Sect. 6.2.3.

6.4.1 Local Approximation

Indeed, let us apply the power iteration method to the sets (6.23)–(6.25), (6.128)–
(6.130) in the limit ky � 1 corresponding to an incompressible fluid. In this limit,
the set (6.23)–(6.25) can be reduced to one equation for ûx :

dûx

dt
+ 2qky

k̃x

k2
y + k̃2

x

ûx = 0, (6.135)

giving the analytical solution

ûx(t) = ûx(0)
k2
x + k2

y

k̃2
x + k2

y

, (6.136)

which, of course, repeat (6.37) for ky � 1.
At the same time, the adjoint equations (6.128)–(6.130) in the limit of an

incompressible fluid suggest that the quantity ˆ̃ux conjugate to ûx is conserved10:

d ˆ̃ux
dt

= 0. (6.137)

Obviously, after p iterations of the arbitrary initial profile ûinx (kx, ky, t = 0) we
obtain that it is multiplied by the factor:

[
k2
x + k2

y

(k̃x(t)2 + k2
y

]p
. (6.138)

With account for renormalization of the solution at each iteration, while p →
∞, the factor (6.138) suppresses all SFH composing ûinx (kx, ky, t = 0) except the

10It can be verified that the value of I , which is conserved in the direct equations (6.23)–(6.25),
becomes time-dependent in the adjoint equations (6.128)–(6.130) (see the Appendix in paper
Zhuravlev and Razdoburdin (2014)).
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optimal SFH corresponding to a maximum of (6.138) as a function of kx . For a fixed
time interval t this kx takes the value

kx = 1/2ky (−qt − ((qt)2 + 4)1/2). (6.139)

Plugging (6.139) into the SFH growth factor (6.44) yields the sought for optimal
growthG, which for the local problem is defined as (6.46):

G(t) = (qt)2 + qt[(qt)2 + 4]1/2 + 4

(qt)2 − qt[(qt)2 + 4]1/2 + 4
. (6.140)

Expression (6.140) represents the first singular value which the iteration loop for
short-wave local vortices converges to. Comparison of optimal growth factor given
by expression (6.140) with growth rate of individual perturbations can be found in
Fig. 6.12. Apparently, for large time intervals, qt � 1, it gives G ≈ (qt)2, which
reproduces the approximate estimate of G according to formula (6.48).

Also note that an exact result (6.140) could be obtained in this simple example
directly from the expression for the growth factor (6.44) by calculating the
maximum of g as a function of kx at a fixed t .

For arbitrary ky the optimal growth can be obtained by numerical forwards-
backwards integration of the full set of direct and adjoint equations, which are
ordinary differential equations for SFH.
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Fig. 6.12 Comparison of growth rate of individual perturbations, acquired with the help of
Eq. (6.44) (dotted lines) for ky = 100, q = 1.5, with optimal growth rate from Eq. (6.140) (solid
line). Initial kx for individual perturbations are chosen to provide swing at moments t = 3, 4, 5. It
is easy to see that for all moments G(t) ≥ g(t)
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Fig. 6.13 Illustration to the
numerical scheme of
integration of
Eqs. (6.8)–(6.10)
and (6.122)–(6.124)

6.4.2 Global Problem

In the case where the azimuthal scale of perturbations is comparable to the
horizontal disc scale it is necessary to numerically solve the set of partial differential
equations (6.8)–(6.10) and (6.122)–(6.124), which was done in paper Zhuravlev and
Razdoburdin (2014), using a second-order explicit difference scheme (leap-frog)
(see, for example, Frank and Robertson 1988).

In this difference scheme, each equation is separated into real and imaginary parts
and on the plane (r, t) 4 grids are introduced. Unknown variables are calculated in
the nodes of these grids using the corresponding differences (Fig. 6.13). The nodes
are shifted with respect to each other by half a time step Δt and/or by half a radial
stepΔr . This allows the use of a central approximation to the calculated derivatives
with respect to r and t , which provides an accuracy of the order of (Δr)2 and (Δt)2.
The time step is determined using the radial step and the Courant condition that
follows from the local dispersion relation, which can be obtained from the equations
being integrated.

6.4.2.1 Comparison of the Transient Growth of Vortices in Global and
Local Space Limits

As a background flow, consider an infinite Keplerian disc that has only an inner
boundary at r = r1. To see how the cylindrical geometry of the disc and, mainly,
the accurate profile of the Keplerian angular velocity,Ω = Ω(r1)(r/r1)−3/2, affect
the transient growth, we assume for simplicity that all other values in the equations
for the perturbations are constant:

Σ = const, aeq = (δ/
√

2n)(Ωr)|r1. (6.141)

As shown in paper Zhuravlev and Razdoburdin (2014), an account for a more
realistic distribution ofΣ and aeq (for example, as in standard accretion discs) does
not change the qualitative conclusions presented below. The results of local and
global calculations of optimal perturbations using the variational method are shown
in Fig. 6.14.
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Fig. 6.14 Comparison of the optimal growth for small-scale and large-scale vortices (see
Sect. 6.2.3) in the global and local space limits. The solid and dotted curves are calculated for local
SFH using formula (6.46) using an iteration loop for Eqs. (6.23)–(6.25) and (6.128)–(6.130) for
ky = 12.5 and ky = 0.125, respectively. Harmonics with m = 5 are taken as global perturbations.
The optimal perturbations are calculated using formula (6.94) using an iteration loop for Eqs. (6.8)–
(6.10) and (6.122)–(6.124) with the polytropic index n = 3/2. Using the relation (m/r)H ∼ ky ,
for similar large-scale and small-scales vortices, a disc with δ = 0.05 (the dashed-dotted line) and
a formally thick disc with δ = 5 (the dashed line) were considered, respectively. In both cases time
is expressed in units ofΩ(r1)−1

Here we compare the transient growth of vortices with azimuthal scale both
smaller and larger than the disc thickness. The main qualitative conclusion is that
the growth rate of small-scale vortices (λϕ < H ) decreases much faster, as one
proceeds from the shearing sheet approximation to the scales of order of the disc
radial size (i.e. from m = ∞ to m ∼ 1), than that of large-scale vortices (λϕ > H ).
It can be verified that in the limiting case of global perturbations with m = 1, the
value of G for small-scale and large-scale vortices differ to within a factor of 1.5–
2 only, for the given parameters and for time intervals up to t ∼ 20. At the same
time, for local vortices, the value of G for λϕ < H and λϕ > H differs by several
orders of magnitude. This suggests that global large-scale vortices in thin Keplerian
discs can also exhibit a growth of dozens of times on quite short time scales of the
order of a few Keplerian periods at the inner disc boundary. In turn, this may imply
importance of transient growth of perturbations for angular momentum transfer on
scales much larger than the disc thickness.

6.4.2.2 Transient Spirals and Modes in a Quasi-Keplerian Torus

Finally, let us return to the disc model considered above for illustration of the matrix
method (see Sect. 6.3.2). As is well known (see, for example, Glatzel (1987a,b),
Glatzel (1988), as well as Zhuravlev and Shakura (2007b)), this flow demonstrates
a weak spectral instability, since there are exponentially growing inertial-acoustic
modes present. As we have already mentioned in Sect. 6.2.1, their increments
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rapidly decrease with decreasing relative geometrical thickness of the torus, i.e.
with Ω approaching a Keplerian profile. Then, perturbations can grow only due
to the transient mechanism of shortening of leading spirals by the shear flow (see
the discussion in Sect. 6.2.3), which occurs on short time scales of the order of a few
Keplerian periods in the flow. However, in the intermediate case, where the pressure
gradient in the torus is sufficiently high, both non-modal and modal perturbation
growth can occur simultaneously but on different time scales. The exponential
growth of modes will always dominate over the transient growth starting from
some large time intervals. Interestingly, essentially this means that as calculating
the first singular value of the dynamical operator employing the variational method,
starting from some t the curveG(t) should become exponential corresponding to the
most unstable mode. At the same time, the iteration loop, which always converges
to the optimal initial perturbation vector q(t = 0), must then give not a leading
spiral, but a mode. Whereas the spiral starts being shrunk by the shear flow and
enhanced due to the perimeter shortening (see the discussion in Sect. 6.2.1) at the
time t > 0, the mode rotates like a solid body with angular velocity equal toΩ at the
corotation radius inside the flow, since its amplitude increases due to the resonance
energy exchange with the flow at this radius. Thus, the method of optimization of
perturbations can be applied both to study the transient growth of perturbations and
to find the profiles and increments of the most unstable modes in arbitrary complex
shear flows, i.e. to solve the spectral problem as well.

An example of the calculation of a transient spiral and of an unstable mode
in the same toroidal flow by joint solution of the set (6.8)–(6.10) and (6.122)–
(6.124), employing the variational method, was presented in Figs. 6.1 and 6.2 in
the Introduction. As we see, even for δ = 0.3 the maximal increment is very low,
and it takes ∼103 Keplerian periods for the most unstable mode to at least double
its amplitude. At the same time, the transient growing spiral increases by a factor of
6 already after a few rotational periods at the inner disc boundary.

6.5 Conclusions

This chapter is devoted to the transient dynamics of perturbations, which is of
special interest in the theory of astrophysical discs, in particular accretion discs.
Exponentially growing perturbations do not exist in a homogeneous inviscid
Keplerian flow, provided that there are no conditions for the magneto-rotational
instability. Nevertheless, observations suggest that also in this case angular momen-
tum should be somehow transported outwards. At least, this implies that there
should be some mechanism of energy transfer from the regular rotational motion
to hydrodynamical perturbations. In spectrally stable flows the transient growth
mechanism is responsible for this. Here it was introduced by a simple example
of two-dimensional vortices and it was discussed that the reason for their growth
is the shortening of the length of leading spirals by the differential rotation of
the flow (see Figs. 6.2 and 6.3). Notwithstanding their seeming simplicity, these
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(quasi-)columnar structures exhibit the strongest ability to extract energy from
spectrally stable differentially rotating flows (see Maretzke et al. 2014). Physically,
the energy growth of vortices takes place due to their own angular momentum
conservation, which in the local limit is expressed by the conservation of their
potential vorticity and the existence of the invariant I (see Sect. 6.2.2). Here we con-
sidered both small-scale (ky � 1) and large-scale (ky � 1) vortices and compared
their optimal growth with account for non-zero effective viscosity in the disc (see
Fig. 6.4). Importantly, the transient growth of large-scale vortices strongly increases
for super-Keplerian rotation, which can be significant in relativistic discs where
q > 3/2. In this chapter, special attention was given to the mathematical aspects
of non-modal analysis and to methods of optimal perturbations computation. We
have discussed in detail that the transient growth is a consequence of non-normality
of the governing dynamical operator of the problem and non-orthogonality of its
eigenvectors, i.e. modes of perturbations (see Figs. 6.5 and 6.6). Therefore, the
growth of arbitrary perturbations can be adequately studied by calculating not
eigenvectors but singular vectors of this operator. We have considered two methods:
a matrix and variational one and applied them to the particular problems (see
the corresponding results in Figs. 6.8 and 6.14). The matrix method requires a
discrete representation of the dynamical operator, for example, in the basis of its
eigenvectors. The variational method is reduced to iterative integration of the set of
direct and adjoint equations forwards and backwards in time, respectively. We have
emphasized that the variational method is more universal and can be applied to the
study of non-modal dynamics of perturbations in non-stationary flows, as well as to
non-linear problems.

As was discussed, the transient growth of perturbations is used in the concept
of bypass transition to turbulence in laminar flows. It can be also important as
a mechanism of enhanced angular momentum transfer and stimulation of the
accretion rate in weakly turbulized discs. Note that turbulence emerging due to the
bypass mechanism is fundamentally different from ‘classical’ turbulence, in which
the energy transfer from the background flow is mediated by modes exponentially
growing on large spatial scales, whereas the non-linear interactions nothing but
redistribute this energy between modes with other wave vectors k (the so-called
direct or inverse cascade). This means that in phase space an energy flux εT (k) arises
which brings (in the case of direct cascade) the kinetic energy of perturbations to
small scales where viscous dissipation occurs. In this picture, the mode distribution
over the directions of k in phase space is of minor importance, and εT can be non-
zero only along the direction of change of the module k. A completely different
situation should arise if the transient growth of perturbations is responsible for
the energy transfer from the background flow. This linear mechanism appears as
leading spirals in the disc, i.e. spatial Fourier harmonics corresponding to only such
values k that kx/ky < 0. In a spectrally stable flow, where there is no energy
supply to the leading spirals, initial perturbations inevitably decay as the leading
spirals turn into trailing ones. Thus, the turbulent state here is possible only due
to positive non-linear feedback, which can exist only in the appearance of non-
zero εT also in the direction of positional change of the vector k, i.e. in the phase
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space angles, when the trailing spirals return a part of their energy to the leading
spirals, sufficient to sustain transient growth. Simultaneously, the rest of the energy
stored in the trailing spirals dissipates into heat due to their ultimate transition to
higher k. Here, heat dissipation can be not due to a direct cascade, but to a purely
linear winding up of the trailing spiral by the flow, i.e. to the increase in time of the
ratio kx/ky > 0 at ky = const . As we see, the transverse cascade is an essential
part of the alternative picture of turbulence in a shear flow, which is the angular
redistribution of spatial Fourier harmonics of perturbations (see, for example, the
appendix in Chagelishvili et al. (2003)). The maintenance of transient growth of
small perturbations by the transverse cascade was studied in detail in Horton et al.
(2010) for a two-dimensional Couette flow. These profound changes in the concept
of the possible structure of turbulent flows should affect both analytical estimates
of the turbulent viscosity coefficient (see, for example, Canuto et al. 1984), and
numerical simulations of turbulence in astrophysical discs (see, for example, Simon
et al. (2009), Davis et al. (2010), where spectral properties of turbulence averaged
over the directions of k were mostly studied). Note that we deliberately cited here
numerical simulations in discs containing magnetic fields, in which modal growth
of perturbations due to the magneto-rotational instability takes place. The point is
that recent studies Squire and Bhattacharjee (2014a,b) show that even in Keplerian
flows, where the magneto-rotational instability operates, the optimal transiently
growing perturbations dominate over exponentially growing modes on short time-
scales. Like in an unmagnetized flow, these transient perturbations are locally
represented by shear harmonics. Thus, non-modal dynamics of perturbations can be
an essential tool in extracting energy from the background flow in MHD-turbulent
accretion discs as well. Another hint of this is the recent paper Mamatsashvili et al.
(2014), which studied numerically (similar to Horton et al. 2010) the transverse
cascade of shear harmonics in a spectrally stable plane-parallel magnetized flow
and demonstrated that two-dimensional turbulence arises due to a positive feedback
with linear transient growth of shear harmonics. The plane Poiseuille flow provides
another example of a shear flow in which the bypass transition to turbulence turns
out to be more preferable than the ‘classical’ mechanism, despite the presence of
growing modes. Here we mention Schmid et al. (1996) and Reddy et al. (1998),
who numerically studied not the developed turbulence (as is usually done in most of
papers on MHD-turbulence in Keplerian flows), but some scenarios of the transition
to turbulence from regular initial small perturbations of different types (see also
Ch. 9 of book Schmid and Henningson (2001)). It turned out that the previously
accepted scenario of a transition due to secondary instability of saturated modes
requires much more time and/or significantly higher initial perturbation amplitudes
than a transition due to secondary instability of the so-called streaks grown due
to the transient mechanism. For the sake of clarity, we stress that streaks in the
3D model of a plane Poiselle flow grow from the so called vortex rolls due to the
lift-up mechanism, which is also a variant of transient growth, but differs from the
(swing) amplification of 2D vortices considered throughout this work. Anyhow, as
follows from Fig. 1 of Schmid et al. (1996), the time of turbulence development
from regular initial perturbations strongly depends on their amplitudes. This is not
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surprising, since vortex rolls (just like the 2D spatial Fourier harmonics studied
above) of smaller amplitude require more time to saturate, after which secondary
instability comes into play leading directly to a breakdown to turbulence. Clearly,
the time for such a transition can be as long as hundreds of characteristic shear times,
and nevertheless this does not affect later the properties and power of turbulent
motions. Although we at present have results only from studies of plane-parallel
flows, in the future results may be obtained in a similar way for quasi-Keplerian
flows with high Reynolds numbers, since locally such flows differ from plane-
parallel flows only by the presence of the Coriolis force stabilizing the flow. At
last, additional useful evidence presented here are the simplified finite-dimensional
dynamical models of non-normal systems with positive feedback that recover basic
properties of transition to turbulence in spectrally stable shear flows (see Trefethen
et al. 1993; Waleffe 1995). For example, in Fig. 10 of Trefethen et al. (1993) it can be
seen that the time for such a simplified model to reach one and the same ‘turbulent’
state increases with a decrease of the initial perturbation amplitude and ultimately
becomes infinite.

To conclude, we stress once again that here we have not discussed the aspects
of three-dimensional perturbation dynamics. Meanwhile, there are indications that
taking into account the natural inhomogeneity of the disc due to vertical density
and pressure gradients gives a qualitatively new picture of both the transient
growth of perturbations and the subsequent transition to turbulence (see Lominadze
2011). Here, the perturbation dynamics is essentially three-dimensional, and it can
be shown that for three-dimensional transient vortices there is a time-conserved
analogue of the invariant of motion I (see Tevzadze et al. 2003, 2008). The new
numerical calculations carried out in Marcus et al. (2014) also point out that taking
into account the disc vertical inhomogeneity can result in its destabilization in
the subcritical regime at high Reynolds numbers, unlike the case observed in a
homogeneous flow (see Shen et al. 2006).
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Chapter 7
Quasi-Spherical Subsonic Accretion
onto Magnetized Neutron Stars

Nikolay Shakura, Konstantin Postnov, Alexandra Kochetkova,
and Linnea Hjalmarsdotter

Abstract A theory of quasi-spherical subsonic accretion onto slowly rotating
magnetized neutron stars is presented. In this regime, the accreted matter settles
with subsonic velocities onto the rotating magnetosphere forming an extended
quasi-spherical shell. The accretion rate in the shell is determined by the ability
of the plasma to enter the magnetosphere due to the Rayleigh-Taylor instability
with account for cooling. This accretion regime may be established for moderate
X-ray luminosities, corresponding to accretion rates Ṁ < Ṁ† � 4 × 1016 g s−1.
For higher accretion rates a free-fall gap appears, due to strong Compton cooling
of the flow above the magnetosphere, and accretion becomes highly non-stationary.
Observations of spin-up and spin-down in equilibrium wind-fed X-ray pulsars with
known orbital periods (like GX 301-2 and Vela X-1) enable the determination
of the basic dimensionless model parameters and estimation of the neutron star
magnetic field. In equilibrium pulsars with independently measured magnetic fields,
the model enables the stellar wind velocity to be independently estimated. For non-
equilibrium pulsars, there exists a maximum spin-down rate of the accreting neutron
star. The model can also explain bright flares in Supergiant Fast X-ray Transients if
stellar winds of the O-supergiant companions are magnetized.
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7.1 Introduction

The X-ray pulsar phenomenon appears during accretion of matter onto rotating
strongly magnetized neutron stars (NSs) in binary systems. If the secondary
companion of the binary (the optical star) fills its Roche lobe, an accretion disc is
formed around the NS. If the secondary companion is an early type massive star, the
NS may accrete from its powerful stellar wind. In this case, depending on the stellar
wind parameters, either an accretion disc forms around the NS magnetosphere or
accretion proceeds quasi-spherically. The strong magnetic field of the NS (of the
order of 1012–1013 G) alters the accretion flow near the NS magnetosphere that
forms at a certain distance from the NS. The plasma flow gets frozen into the
magnetic field and is canalized towards the polar cap region onto the NS surface,
where hot spots or accretion columns are produced. If the magnetic dipole axis is
misaligned with the NS rotation, pulsating X-ray emission may be observed. Most
X-ray pulsars exhibit stochastic variations of the NS spin frequency and X-ray flux.
Many sources also show long-term variability in the NS spin frequency, when the
latter increases (spins-up) or decreases (spins-down) on average, as well as switches
between spin-up and spin-down (so-called spin reversals) (see Bildsten et al. (1997)
for a detailed review and references).

The most studied case is accretion through a geometrically thin disc onto
relativistic compact stars (Shakura and Sunyaev 1973). Here, the spin-up torque
acting on the NS can be written as Pringle and Rees (1972) Ksu ≈ Ṁ

√
GMRA .

The inner radius of the disc around an X-ray pulsar is determined by the Alfvén
surface RA located at distance RA ∼ Ṁ−2/7, therefore Ksu ∼ Ṁ6/7, i.e. for disc
accretion, the spin-up torque is almost linearly dependent on the mass accretion
rate (X-ray luminosity). The spin-down torque for disc accretion is, in the first
approximation, independent of Ṁ: Ksd ∼ −μ2/R3

c , where Rc = (GM/(ω∗)2)1/3
is the corotation radius, ω∗ is the NS rotational frequency and μ is the NS
dipole magnetic moment. In fact, the torques in disc accretion are determined
by complex disc-magnetospheric interaction (see, for example, Ghosh and Lamb
(1979), Lovelace et al. (1995) and the discussion in Kluźniak and Rappaport (2007))
and may thus have a more complicated dependence on the mass accretion rate and
other parameters.

Measurements of NS spin-up/spin-down in X-ray pulsars can be used to estimate
a very important NS characteristic – its magnetic field. The NS spin period in X-
ray pulsars is usually close to the equilibrium value Peq , at which the total torque
applied to the NS vanishes, K = Ksu + Ksd = 0. Therefore, by assuming that
the observed NS spin frequency is ω∗ = 2π/Peq , the equation for the equilibrium
period with known Ṁ enables the NS magnetic field to be estimated.

In the case of quasi-spherical accretion, which may take place in binary systems
in which the optical star does not fill its Roche lobe and no disc is formed, the
situation turns out to be more complicated. Clearly, to spin-up or spin down a NS in
this regime, the amount and sign of the angular momentum of matter gravitationally
captured from the stellar wind are important.To within a factor of the order of
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one (which can be positive or negative, see, for example, numerical simulations
(Fryxell and Taam 1988; Ruffert 1997, 1999)), the torque applied to the NS in
this case is proportional to ṀωBR2

B , where ωB = 2π/PB is the orbital angular
frequency, RB = 2GM/(V 2

w + v2
orb) is the Bondi gravitational capture radius, Vw

is the stellar wind velocity near the NS, and vorb is its orbital velocity. In reality,
the orbital eccentricity in high-mass X-ray binaries (HMXBs) is usually non-zero,
and the stellar wind can be variable and inhomogeneous. Therefore, the spin-up
torque Ksu can be a complicated function of time. The spin-down torque in this
case is even more uncertain since it is no longer possible to write down a simple
relation like −μ2/R3

c (the corotation radius Rc does not have a physical meaning in
quasi-spherical accretion; in slowly rotating X-ray pulsars it is much larger than the
Alfvén radius at which in fact the angular momentum transfer from the accreting
matter to the NS magnetosphere occurs). For example, the use of the braking torque
in the form −μ2/R3

c formally leads to very high magnetic fields for long-period
X-ray pulsars (of the order of 1014 G and even higher). This is apparently a result
of an underestimation of the spin-down torque applied to the NS magnetosphere in
the quasi-spherical accretion regime.

The matter captured from the stellar wind may accrete onto the NS in different
ways. Indeed, if the X-ray flux from the accreting NS is high enough, the stellar
wind matter, heated downstream the bow shock, rapidly cools down by the radiation
via Compton cooling and falls freely onto the magnetosphere. The velocity of the
freely falling matter rapidly exceeds the sound speed, and a shock appears above
the magnetosphere. This regime of accretion was studied in Burnard et al. (1983).
Depending on the specific angular momentum vector direction (along or opposite
to the orbital angular momentum), the NS can spin-up or spin-down. However, if
the X-ray flux (more precisely, the energy density of photons) is below a certain
value, the plasma heated behind the Bondi radius has no time to cool down, and the
fall of matter towards the magnetosphere may proceed subsonically (the settling
accretion regime). In the last case, a hot quasi-spherical shell arises around the
magnetosphere (Davies and Pringle 1981) (see Fig. 7.1). Due to additional energy
release (especially close to the base of the shell), the temperature gradient across
the shell becomes superadiabatic, giving rise to large-scale convective motions in
the shell. The convection generates turbulence, and thus the motion of a fluid parcel
in such a shell is very intricate. If the plasma is able to enter the magnetosphere and
then fall onto the NS, the accretion rate in the entire shell will be determined by the
magnetosphere. For example, under certain conditions, a shell may be present, but
the accretion rate through it may be very small. Thus, in the shell, there may be slow
subsonic settling of matter on top of large-scale convective motions. This accretion
regime is possible at relatively low X-ray luminosities, Lx < 4 × 1036 erg s−1 (see
below), and is radically different from the numerical calculations of quasi-spherical
accretion onto NSs mentioned above. When a quasi-spherical shell is present, its
interaction with the rotating NS magnetosphere will spin-up or spin-down the NS
depending on the sign of the difference between the angular velocity of the accreting
matter and the magnetospheric boundary. Therefore, in the settling accretion regime,
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Fig. 7.1 Schematics of quasi-spherical accretion from the stellar wind of the optical component
of a binary system (to the left) onto a magnetized NS (to the right). In the subsonic settling regime,
a quasi-spherical shell (dark region) is formed between the bow-shock (the parabolic curve) and
the NS magnetosphere with radius RA, in which large-scale convective motions appear that may
remove angular momentum from the magnetosphere. The outer radius of the shell is determined
by the gravitational capture Bondi radius RB

both spin-up and spin-down of the NS is possible, even if the specific angular
momentum of the captured stellar wind matter is aligned with the orbital angular
momentum. Here the angular momentum may flow towards the rotating neutron
star or outwards through the shell.

In the literature, there are several models (see especially Illarionov and Kompa-
neets (1990) and Bisnovatyi-Kogan (1991)), in which the spin-down torque applied
to the NS magnetosphere in the case of quasi-spherical accretion is written as
Ksd ∼ −ṀR2

Aω
∗. With account for the standard definition of the Alfvén radius,

RA ∼ Ṁ−2/7μ4/7, this torque is proportional to Ksd ∼ −μ8/7Ṁ3/7. In our model,
the matter of the shell settles down with a subsonic velocity as it cools down
near the magnetospheric boundary, and the Alfvén radius is determined differently:
RA ∼ Ṁ−2/11μ6/11 (see below).

There can be two different mechanisms of angular momentum removal from the
rotating magnetosphere outwards the shell. In the first case (we call it moderate
coupling), the angular momentum transfer is mediated by convective motions in
the shell, and the spin-down torque in the settling accretion regime depends on
the accretion rate as Ksd ∼ −Ṁ3/11. In this case the characteristic velocity of
convective motions is subsonic. In addition, a settling regime is possible in which the
angular momentum transfer is due to the shear turbulence near the magnetosphere
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(the case of weak coupling). In this case, the characteristic velocity of the shear
flow near the magnetosphere is of the order of its linear rotational velocity. Then
Ksd ∼ μ2/R3

c ∼ μ2ω∗2/(GM), i.e. in the weak coupling regime the spin-down
torque does not depend on the accretion rate at all.

To stress the difference between the two possible subsonic accretion regimes
(the moderate and weak coupling), we may rewrite the spin-down torque due to
convection (the moderate coupling) using the corotation radius and the Alfvén

radius in the form Ksd ∼ −μ2/

√
R3
cR

3
A ∼ −(μ2/R3

c )(Rc/RA)
3/2 (see below in

Sect. 7.11). As the factor (Rc/RA)3/2 ∼ (ωK(RA)/ω
∗) in reality may be of the

order of a factor 10 or larger, the use of the spin-down torque in the ‘traditional’
form μ2/R3

c may strongly overestimate the NS magnetic field.
The dependence of the spin-down torque on the accretion rate in the quasi-

spherical accretion regime suggests that variations in the mass accretion rate (and
hence in the X-ray luminosity) should result in a change from spin-up (at high
luminosities) to spin-down (at low luminosities) at some critical value of the
mass accretion rate Ṁ (or RA), which will be different for different sources. This
phenomenon (also known as ‘torque reversal’) is indeed observed in some X-ray
pulsars with quasi-spherical accretion, for example, in Vela X-1, GX 301-2 and GX
1+4, and below we consider these objects in more detail.

7.2 Two Regimes of Quasi-Spherical Wind Accretion

We start with the basic physical picture of quasi-spherical wind accretion onto NSs
in binary systems. Quasi-spherical accretion is most likely to occur in wind-fed
high-mass X-ray binaries when the optical star of early spectral class (OB) does not
fill its Roche lobe, but experiences significant mass loss via stellar wind. We shall
discuss the wind accretion regime, in which a bow shock forms in the stellar wind
around the compact star. The characteristic distance at which the bow shock forms
is approximately equal to the gravitational capture (Bondi) radius

RB = 2GM/(v2
w + v2

orb) , (7.1)

where vw is the wind velocity (typically 100–1000 km/s), vorb is the orbital velocity
of the NS, which is usually much smaller than vw , so below we will neglect it. The
rate of gravitational capture of mass from a wind with density ρw near the orbital
position of the NS is the Bondi-Hoyle-Littleton mass accretion rate:

ṀB � ρwR2
Bvw ∝ ρwv−3

w . (7.2)
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7.2.1 Supersonic (Bondi-Hoyle-Littleton) Accretion

As noted in the Introduction, there can be two different cases of quasi-spherical
accretion. The classical Bondi-Hoyle-Littleton accretion takes place when the
shocked matter cools down rapidly, and falls freely towards the NS magnetosphere
(see Fig. 7.2) by forming a shock at some distance above the magnetosphere.
Here the shocked matter cools down (mainly by Compton processes) and enters
the magnetosphere via the Rayleigh-Taylor instability (Arons and Lea 1976). The
magnetospheric boundary is characterized by the Alfvén radius RA, which may be
calculated from the balance of the ram pressure of the infalling matter and the
magnetic field pressure at the magnetospheric boundary: ρv2

ff (RA) = B2/8π .

Making use of the mass continuity equation in the shell, Ṁ = 4πR2ρ(R)vff (R),
and assuming a dipole NS magnetic field, the standard result (Davidson and Ostriker
1973) is obtained:

RA =
(

μ2

Ṁ
√

2GM

)2/7

. (7.3)

The captured matter from the wind carries a specific angular momentum jw ∼
ωBR

2
B (Illarionov and Sunyaev 1975). Depending on the sign of jw (prograde

or retrograde), the NS can spin-up or spin-down. This regime of quasi-spherical
accretion occurs in bright X-ray pulsars with Lx > 4 × 1036 erg s−1 (Burnard et al.
1983; Shakura et al. 2012).

Fig. 7.2 Supersonic (Bondi-Hoyle-Littleton) accretion onto a magnetized NS
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7.2.2 Subsonic (Settling) Accretion

If the captured wind matter behind the bow shock at RB remains hot (when the
plasma cooling time is much longer than the free-fall time, tcool � tff ), a hot quasi-
static shell forms around the magnetosphere, and subsonic (settling) accretion sets
in (see Fig. 7.3). In this case, both spin-up and spin-down of the NS is possible, even
if the sign of jw is positive (prograde). The shell mediates the angular momentum
transfer from the NS magnetosphere via viscous stresses due to convection and
turbulence. In this regime, the mean radial velocity of matter in the shell ur is
smaller than the free-fall velocity uff : ur = f (u)uff , f (u) < 1, and is determined
by the plasma cooling rate near the magnetosphere (due to Compton or radiative
cooling):

f (u) ∼ [tff (RA)/tcool(RA)]1/3. (7.4)

In the settling accretion regime, the actual mass accretion rate onto the NS may be
significantly lower than the Bondi mass accretion rate,

Ṁ = f (u)ṀB . (7.5)

Settling accretion occurs for Lx < 4 × 1036 erg s−1 (Shakura et al. 2012).

Fig. 7.3 Subsonic settling accretion onto a magnetized NS
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7.2.3 The Structure of a Subsonic Shell Around a Neutron
Star Magnetosphere

Let us consider the torques acting on a magnetized NS quasi-spherically accret-
ing from the stellar wind of an optical star. The wind matter is gravitationally
captured by the moving NS, and a bow-shock is formed near the Bondi radius
R∼RB . Suppose a quasi-spherical shell is formed around the NS magnetosphere as
described above. In such a shell, the temperature remains high (of the order of the
virial temperature, see Davies and Pringle (1981)), and the key question arises as to
whether the hot plasma may enter the magnetosphere. Two-dimensional calculations
(Elsner and Lamb 1977) showed that hot monoatomic ideal gas is stable against the
Rayleigh-Taylor instability at the magnetospheric boundary, suggesting that plasma
cooling is needed for the plasma to enter the magnetosphere. However, a careful
consideration of 3D-calculations (Arons and Lea 1976) shows that the hot plasma
is marginally stable at the magnetospheric boundary (to within a 5% accuracy of
these calculations). Compton cooling and possible dissipative processes (magnetic
reconnection, etc.) facilitate the plasma entering the magnetosphere. Below we show
that subsonic settling accretion from a hot shell enables NS spin-down.

In the zero approximation, we may neglect both rotation and radial motion of
matter in the shell and consider its structure in hydrostatic equilibrium. The velocity
of radial motion of matter in the shell ur is below the sound speed cs . Under these
assumptions, the characteristic heating/cooling time of the plasma should be shorter
than the characteristic free-fall time.

In the general case, there is gas pressure and anisotropic turbulent motion in
the shell, so Pascal’s law is violated. Then the hydrostatic equilibrium equation
may be derived from the equations of motion (7.54) with the stress tensor com-
ponents (7.57)–(7.59) and zero viscosity (see Sect. 7.3 for more detail):

− 1

ρ

dPg

dR
− 1

ρR2

d(P t‖R2)

dR
+ 2P t⊥
ρR

− GM

R2 = 0 (7.6)

Here Pg = ρc2
s /γ is the gas pressure and P t stands for the contribution due to

turbulent motions:

P t‖ = ρ < u2‖ >= ρm2‖c2
s = γPgm2‖ (7.7)

P t⊥ = ρ < u2⊥ >= ρm2⊥c2
s = γPgm2⊥ (7.8)

(< u2
t >=< u2‖ > +2 < u2⊥ > is the turbulent velocity dispersion while m2‖ and

m2⊥ are the radial and tangential turbulent Mach numbers squared. For example, for
isotropic turbulence we havem2‖ = m2⊥ = (1/3)m2

t , wheremt is the turbulent Mach
number). The total pressure is given by the sum of the gas and turbulent terms:
Pg + Pt = Pg(1 + γm2

t ). Generally, the turbulent Mach numbers in the shell may
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depend on radius, however in our model we will treat them as constants. Moreover,
the turbulent heating (important from the dynamical point of view, see Sect. 7.7)
changes the physical parameters in real X-ray pulsars by less than a factor two.

In the first approximation, we assume that the entropy S in the shell constant. For
an ideal gas with the adiabatic exponent γ and the equation of state P = KeS/cV ργ ,
the density may be expressed as a function of temperature ρ ∼ T 1/(γ−1). Integrating
these hydrostatic equilibrium equation (7.6) yields:

RT

μm
=

(
γ − 1

γ

)
GM

R

(
1

1 + γm2‖ − 2(γ − 1)(m2‖ −m2⊥)

)
= γ − 1

γ

GM

R
ψ(γ,mt ) .

(7.9)

(In this solution we have neglected the integration constant which is not important
deep inside the shell. It could be important in the outer parts of the shell, but as
these parts are located close to the shock and near ∼ RB and are not spherically
symmetric, their structure should be calculated numerically.)

Note that including turbulence somewhat decreases the temperature in the shell.
However, the most essential here is that the turbulent anisotropy, due to convection
in the stationary case changes the radial distribution of the angular velocity. Below
we will show that in the case of isotropic turbulence, the rotation of the shell can
be close to quasi-Keplerian, ω(R) ∼ R−3/2. In the case of strongly anisotropic
turbulence with m2‖ � m2⊥, a distribution of the angular velocity with constant

specific angular momentum (isomomentum law), ω(R) ∼ R−2, may be established.
Below we will see that shells around real X-ray pulsars most likely have an
isomomentum angular velocity distribution.

Let us now determine how the density changes in a quasi-static shell in the inner
layers with R � RB . For a fully ionized gas with γ = 5/3, we find the density
changes as:

ρ(R) = ρ(RA)
(
RA

R

)3/2

(7.10)

and the gas pressure changes as:

P(R) = P(RA)
(
RA

R

)5/2

. (7.11)

These equations describe the structure of an ideal static adiabatic shell above the
magnetosphere. Of course, for R ∼ RB the problem becomes significantly non-
spherically symmetric, and to calculate the structure of the outer parts of the shell
numerical methods are required.

Corrections to the adiabatic temperature gradient due to convective transport of
energy in the shell are calculated in Sect. 7.6.
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7.2.4 The Alfvén Surface

By definition, at the magnetospheric boundary (the Alfvén surface), the total
pressure (including isotropic gas pressure and the possibly anisotropic turbulent
pressure) is balanced by the magnetic field pressure B2/(8π):

Pg + Pt = Pg(RA)(1 + γm2
t ) =

B2(RA)

8π
. (7.12)

The magnetic field at the Alfvén radius is determined by the dipole magnetic
field of the neutron star and the field produced by currents flowing over the
magnetosphere (in the magnetopause):

Pg(RA) = K2

(1 + γm2
t )

B2
0

8π

(
R0

RA

)6

= ρRT

μm
(7.13)

where the dimensionless coefficient K2 takes into account the contribution from
the magnetospheric currents, and the factor 1/(1 + γm2

t ) appears due to turbulent
pressure. For example, in the model by Arons and Lea (1976) (see Eq. (31) in that
paper), K2 = (2.75)2 ≈ 7.56. Near the magnetospheric cusp (where the curvature
of the magnetic field lines is maximal), the size of the Alfvén surface is about 0.51
times the equatorial size (Arons and Lea 1976). Everywhere below we will assume
that RA is the equatorial Alfvén surface unless stated otherwise.

The plasma enters the magnetosphere mainly via the Rayleigh-Taylor instability.
In the stationary case, we may introduce a constant accretion rate Ṁ onto the neutron
star. From the continuity equation in the shell we find

ρ(RA) = Ṁ

4πur(RA)R2
A

. (7.14)

Clearly, the radial velocity of the matter entering the magnetosphere is below the
free-fall velocity, therefore we introduce the dimensionless coefficient f (u) =
ur/

√
2GM/R < 1. Then the density at the magnetospheric boundary reads

ρ(RA) = Ṁ

4πf (u)
√

2GM/RAR2
A

. (7.15)

For example, in the model Arons and Lea (1976) f (u) ≈ 0.1. In our case, at high
X-ray luminosities the dimensionless factor f (u)may be as high as ≈0.5 (however,
still at luminosities below the critical value ∼ 4 × 1036 erg s−1, for which settling
accretion may occur).

If we imagine that the magnetosphere is fully impenetrable and the accretion rate
in the shell Ṁ → 0, then ur → 0 and f (u) → 0. However, the density near the
magnetospheric boundary remains finite. In some sense, the matter leaks through
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the magnetosphere onto the neutron star, and the leakage rate can be either very low
(Ṁ → 0) or have a finite non-zero value (Ṁ �= 0).

Eliminating density from Eq. (7.13) with the help of the continuity equation and
making use of (7.9) together with the definition of the dipole magnetic moment,

μ = 1

2
B0R

3
0

(where R0 is the neutron star radius and B0 is the magnetic field at the NS pole,
which in the 3D-case is two times as high as the equatorial field), we find the
expression for the Alfvén radius at the quasi-spherical accretion stage:

RA =
[

4γ

(γ − 1)

f (u)K2

ψ(γ,mt)(1 + γm2
t )

μ2

Ṁ
√

2GM

]2/7

. (7.16)

It should be emphasized that when a hot shell is present, the Alfvén radius is
determined by the static gas pressure (and a possible contribution from turbulent
motions) at the magnetospheric boundary and has a certain value even for a zero
mass accretion rate through the shell. The dependence of the factor f (u) on Ṁ
in the settling accretion regime with account for cooling will be obtained below
(see Eq. (7.29)). In the supersonic accretion (Bondi) regime, evidently, f (u) = 1.
Note that in the Bondi regime (Bondi 1952) a subsonic flow can be formed, but
with a smaller (compared to the maximum possible) accretion rate Ṁ. In the Bondi
regime (i.e. in the adiabatic regime without heating/cooling of the gas), the choice
of solution is determined by the boundary conditions.

7.2.5 The Mean Rate of the Flow of Matter Through
the Magnetosphere

In this Section, we will consider the case of isotropic turbulence, i.e., we will set the
factor Kt = ψ(γ,mt )(1 + γm2

t )ψ(γ,mt )(1 + γm2
t ) that enters the Alfvén radius

definition (7.16) equal to one.
As noted above, the plasma enters the magnetosphere of the slowly rotating

neutron star due to the Rayleigh-Taylor instability. The boundary between the
plasma and the magnetosphere is stable at high temperatures T > Tcr , but becomes
unstable at T < Tcr , and remains in a neutral equilibrium at T = Tcr (Elsner and
Lamb 1977). The critical temperature is:

RTcr = 1

2

cosχ

κRA

μmGM

RA
. (7.17)
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Here κ is the local curvature of the magnetosphere, χ is the angle that the outer
normal to the magnetospheric surface makes with the radius-vector at a given point.
The effective gravity acceleration can be written as

geff = GM

R2
A

cosχ

(
1 − T

Tcr

)
. (7.18)

The temperature in the quasi-static shell is given by (7.9), and the condition for
magnetospheric instability can thus be rewritten as:

T

Tcr
= 2(γ − 1)

γ

κRA

cosχ
< 1 . (7.19)

Consider, for example, the development of the interchange instability when
cooling (predominantly Compton cooling) is present. The temperature changes as
(Kompaneets 1957; Weymann 1965):

dT

dt
= −T − Tx

tC
, (7.20)

where the Compton cooling time is

tC = 3

2μm

πR2
Amec

2

σT Lx
≈ 10.6[s]R2

9Ṁ
−1
16 . (7.21)

Here me is the electron mass, σT is the Thomson cross section, Lx = 0.1Ṁc2

is the X-ray luminosity, T is the electron temperature (which is equal to the ion
temperature since the timescale of electron-ion energy exchange here is the shortest
possible), Tx is the X-ray temperature and μm = 0.6 is the molecular weight.
The photon temperature is Tx = (1/4)Tcut for a bremsstrahlung spectrum with
an exponential cut-off at Tcut , typically Tx = 3–5 keV. The solution to Eq. (7.20)
reads:

T = Tx + (Tcr − Tx)e−t/tC . (7.22)

We note that Tcr ∼ 30 keV � Tx ∼ 3 keV, and see that for t ≈ 2tC the temperature
decreases down to Tx . In the linear approximation the temperature changes as:

T ≈ Tcr (1 − t/tC) . (7.23)

Plugging this expression into (7.18), we find that the effective gravity acceleration
increases linearly with time as:

geff ≈ GM

R2
A

t

tC
cosχ . (7.24)
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Correspondingly, the velocity of matter due to the instability growth increases with
time as:

ui =
t∫

0

geff dt = GM

R2
A

t2

2tC
cosχ . (7.25)

Let us introduce the mean rate of the instability growth

< ui >=
∫
udt

t
= 1

6

GM

R2
A

t2

tC
= 1

6

GM

R2
AtC

(
ζRA

< ui >

)2

cosχ . (7.26)

Here ζ � 1 and ζRA is the characteristic scale of the instability that grows at the rate
< ui >. Therefore, for the mean instability growth rate at the linear stage, we find

< ui >=
(
ζ 2GM

6tC

)1/3

= ζ 2/3

121/3

√
2GM

RA

(
tff

tC

)1/3

cosχ . (7.27)

As the factor cosχ � 1, we will omit it below. Here we have introduced the
characteristic time as

tff = R
3/2
A√

2GM
, (7.28)

which is close to the free-fall time at a given radius. Therefore, the factor f (u)
becomes:

f (u) = < ui >

uff (RA)
. (7.29)

Substituting (7.27) and (7.29) into (7.16), we find for the Alfvén radius in this
regime:

R
(C)
A ≈ 1.37 × 109[cm]

(
ζ
μ3

30

Ṁ16

)2/11

. (7.30)

Plugging (7.30) into (7.29), we obtain the explicit expression for f (u) in the
Compton coolingregime:

f (u)C ≈ 0.22ζ 7/11Ṁ
4/11
16 μ

−1/11
30 . (7.31)

In the radiation cooling regime, the cooling time is

t
(rad)
cool = 3kT

2μmneΛ(T )
= √

T /Krad, (7.32)



344 N. Shakura et al.

where Λ(T ) ≈ 2.5 × 10−27
√
T (in CGS units) is the radiation cooling factor

(here we take into account the Gaunt-factor and that the real cooling function at
high temperatures goes slightly higher than for a pure free-free emission). With this
cooling time, the temperature decreases as

dT

dt
= −Krad

√
T , (7.33)

yielding a non-exponential temperature decay with time

T

T0
=

(
1 − 1

2

Kradt√
T0

)2

. (7.34)

In the linear approximation, when t � t
(rad)
cool , we get for the radiation cooling law

T

Tcr
= 1 − t

t
(rad)
cool

, (7.35)

similarly to (7.23) for Compton cooling, and find that

R
(rad)
A ≈ 1.05 × 109[cm]ζ 4/81μ

16/27
30 Ṁ

−6/27
16 , (7.36)

f (u)rad ≈ 0.1ζ 14/81μ
2/27
30 Ṁ

6/27
16 . (7.37)

A necessary condition for angular momentum removal from the magnetosphere
by convection in the shell is the subsonic settling of matter (the Mach number for
the settling velocity M ≡ ur/us < 1), a condition which for γ = 5/3 reduces
to the inequality f (u) < 1/

√
3. Clearly, for accretion rates about 1016 g s−1 and

below this condition is satisfied. It is also important to note that convection and
removal of angular momentum in the shell almost cease when the mean radial
settling velocity of matter ur becomes higher than the convective velocity uc, i.e.,
when the convective Mach number mc = uc/cs ∼ mt is smaller than the usual
Mach number M = ur/cs . Oppositely, when the Mach number of the radial flow
is smaller than the turbulent Mach number M < mt ∼ mc, angular momentum can
be removed from the rotating magnetosphere through the settling shell.

When the accretion rate in the shell exceeds some critical value, Ṁ > Ṁ†,
the velocity of the accreting matter near the Alfvén surface may exceed the speed
of sound, and a supersonic flow with free-fall velocity of the matter appears in
some layer above the magnetosphere. This prevents the angular momentum transfer
outwards from the rotating magnetosphere. In this case, the settling accretion regime
cannot be realized: a shock emerges above the magnetosphere, and interaction
of the plasma with the magnetosphere must be treated following the scheme
considered, for example, in Burnard et al. (1983). Depending on the character of
the inhomogeneities in the captured stellar wind, the specific angular momentum of
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the matter may be both positive and negative. Therefore, in the supersonic regime,
intermittent episodes of both NS spin-up and spin-down are possible.

By assuming a limiting value of the dimensionless settling velocity f (u) = 0.5
(below which it is still possible to remove angular momentum from the rotating NS
magnetosphere, see Sect. 7.7 for more detail), from Eq. (7.29) we obtain a maximum
possible mass accretion rate in the settling regime with angular momentum removal:

Ṁ
†
16 ≈ 3.7ζ−7/4μ

1/4
30 . (7.38)

Note that a similar value for the critical accretion rate in the settling regime will
be obtained from a comparison of the characteristic Compton cooling time with the
time of convective motions near the Alfvén radius.

To conclude this section, we note that low-luminosity X-ray pulsars may enter
the regime of plasma entry into the magnetosphere, due to radiative cooling, via a
change in the X-ray radiation beam structure when most of the X-ray photons form
a pencil-beam emission diagram illuminating the magnetospheric cusp. This makes
it possible to explain the temporal appearance of ‘switched-off’ states (with low X-
ray luminosity) in Vela X-1 and other X-ray pulsars, which display a phase jump in
their X-ray pulse profiles (Doroshenko et al. 2011).

7.3 The Structure of a Quasi-Spherical Rotating Shell
with Subsonic Accretion

In this section, we will give a detailed derivation of the equations describing the
structure of a quasi-spherical shell in the settling accretion regime. We will use
the tensor components as measured by a physical observer (the velocity ua and
the viscous stress tensor componentsWab).1

7.3.1 Basic Equations

We start with writing down the Navier-Stokes equation in spherical coordinates
R, θ, φ.

Due to the huge values of the Reynolds number in the shell (∼1015–1016

for typical accretion rates 1017 g s−1 and magnetospheric radii ∼ 108 cm), strong
turbulence develops in the shell. In this case, the Navier-Stokes equations are
referred to as Reynolds equations. In the general case, the turbulent viscosity

1Not to be confused with the covariant components in curvilinear coordinates.
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depends on the coordinates. Therefore the hydrodynamical equations take the
form:

1. The continuity equation:

∂ρ

∂t
+ 1

R2

∂

∂R

(
R2ρur

)
+ 1

R sin θ

∂

∂θ
(sin θ ρuθ )+ 1

R sin θ

∂ρuφ

∂φ
= 0. (7.39)

2. The R-component of the equation of motion:

∂ur

∂t
+ ur ∂ur

∂R
+ uθ

R

∂ur

∂θ
+ uφ

R sin θ

∂ur

∂φ
− u2

φ + u2
θ

R
= −GM

R2 +NR (7.40)

3. The θ -component of the equation of motion:

∂uθ

∂t
+ ur ∂uθ

∂R
+ uθ

R

∂uθ

∂θ
+ uφ

R sin θ

∂uθ

∂φ
+ uruθ − u2

φ cot θ

R
= Nθ (7.41)

4. The φ-component of the equation of motion:

∂uφ

∂t
+ ur ∂uφ

∂R
+ uθ
R

∂uφ

∂θ
+ uφ

R sin θ

∂uφ

∂φ
+ uruφ + uφuθ cot θ

R
= Nφ (7.42)

Here, the physically measurable components of forces (including the viscous
force and pressure gradient) are written in the form:

ρNR = 1

R2

∂

∂R

(
R2WRR

)
+ 1

sin θ R

∂

∂θ
(WRθ sin θ)+ 1

sin θ R

∂

∂φ
WRφ−Wθθ

R
−Wφφ
R

(7.43)

ρNθ = 1

R2

∂

∂R

(
R2WθR

)
+ 1

sin θ R

∂

∂θ
(Wθθ sin θ)+ 1

sin θ R

∂

∂φ
Wθφ

− cot θ
Wθθ

R
+ cot θ

Wφφ

R
(7.44)

ρNφ = 1

R3

∂

∂R

(
R3WφR

)
+ 1

sin θ R

∂

∂θ

(
Wφθ sin θ

) + 1

sin θ R

∂

∂φ
Wφφ (7.45)

The physically measurable components of the stress tensors include both the gas
pressure Pg (we assume it to be isotropic) and the pressure due to turbulent degrees
of freedomP t (generally, anisotropic). These components are determined following
the classical Landau and Lifshitz (1987) treatment, however, with account for the
anisotropic turbulent pressure:

WRR = −Pg − P tRR + 2ρνt
∂ur

∂R
− 2

3
ρνtdivu (7.46)

Wθθ = −Pg − P tθθ + 2ρνt

(
1

R

∂uθ

∂θ
+ ur

R

)
− 2

3
ρνtdivu (7.47)
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Wφφ = −Pg−P tφφ+2ρνt

(
1

R sin θ

∂uφ

∂φ
+ ur

R
+ uθ cot θ

R

)
− 2

3
ρνtdivu (7.48)

WRθ = ρνt
(

1

R

∂ur

∂θ
+ ∂uθ

∂R
− uθ

R

)
(7.49)

Wθφ = ρνt
(

1

R sin θ

∂uθ

∂φ
+ 1

R

∂uφ

∂θ
− uφ cot θ

R

)
(7.50)

WRφ = ρνt
(

1

R sin θ

∂ur

∂φ
+ ∂uφ

∂R
− uφ

R

)
. (7.51)

In the problem considered here, the turbulence is such that P tRR = P t‖ , P tθθ =
P tφφ = P t⊥. The turbulent pressure components can be expressed via turbulent Mach
numbers and will be presented in Sect. 7.6.

In spherical coordinates, the velocity divergence divu reads:

divu = 1

R2

∂

∂R

(
R2ur

)
+ 1

R sin θ

∂

∂θ
(sin θ uθ )+ 1

R sin θ

∂uφ

∂φ
. (7.52)

7.3.2 Symmetries of the Problem

Let us consider a spherically symmetric (
∂

∂φ
= 0), stationary(

∂

∂t
= 0) and

purely radial gas accretion (uθ = 0). For such a problem setup, the continuity
equation (7.39) is:

Ṁ = 4πR2ρur = const . (7.53)

The constant in this expression is determined by the conditions of plasma entering
the magnetosphere.

The Reynolds equations under these assumptions read as follows. The R-
component of the equation of motion (7.40) is:

ρ

(
ur
∂ur

∂R
− u2

φ

R

)
= −ρGM

R2 + 1

R2

∂

∂R

(
R2WRR

)

+ 1

sin θ R

∂

∂θ
(WRθ sin θ)− Wθθ

R
− Wφφ

R
. (7.54)
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The θ -component of the equation of motion (7.40) is:

−ρ u
2
φ cot θ

R
= 1

R2

∂

∂R

(
R2WθR

)
+ 1

sin θ R

∂

∂θ
(Wθθ sin θ)−cot θ

Wθθ

R
. (7.55)

The φ-component of the equation of motion (7.40) is:

ρ

(
ur
∂uφ

∂R
+ uruφ

R

)
= 1

R3

∂

∂R

(
R3WφR

)
+ 1

sin θ R

∂

∂θ

(
Wφθ sin θ

)
(7.56)

The components of the viscous stress tensor take the form:

WRR = −Pg − P t‖ −
4

3
ρνt

(
ur

R
− ∂ur

∂R

)
(7.57)

Wθθ = −Pg − P t⊥ + 2

3
ρνt

(
ur

R
− ∂ur

∂R

)
(7.58)

Wφφ = −Pg − P t⊥ + 2

3
ρνt

(
ur

R
− ∂ur

∂R

)
(7.59)

WRθ = ρνt 1

R

∂ur

∂θ
(7.60)

Wθφ = ρνt
(

1

R

∂uφ

∂θ
− uφ cot θ

R

)
(7.61)

WRφ = ρνt
(
∂uφ

∂R
− uφ

R

)
(7.62)

Equations (7.57)–(7.62) relate the components of the stress tensor Wik to the
strain tensor (the rate of the shear tensor) Sik = (1/2)(∂ui/∂xk + ∂uk/∂xi):

Wik = −2ρνtSik (7.63)

Here

νt � 1

3
ut lt (7.64)

is the turbulent viscosity coefficient, lt is the size of the largest eddies, and ut is
the magnitude of velocity pulsations on the scale of these eddies (see, for example,
Thorne and Blandford 2017, chapter 15). The coefficient νt is determined by the
properties of the turbulent flow itself, which is different from the kinematic viscosity
coefficient, which is determined by the intrinsic property of the fluid. To describe the
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Reynold stresses for an anisotropic eddy viscosity, instead of one turbulent viscosity
coefficient, 81 independent parameters (components of a 4th-rank tensor) appear
(see, for example, Monin and I’Aglom 1971). Unfortunately, there is no theory
of turbulence. To describe turbulent stresses, empirical formulas that can be tested
experimentally are employed.

L. Prandtl in his studies of plane-parallel flows (along the x-axis, for example)
introduced relations between the turbulent mixing length lt , the velocity of turbulent
pulsations ut and the characteristic velocity shear in the direction perpendicular to
the mean flow (z):

ut = lt
∣∣∣∣dudz

∣∣∣∣ . (7.65)

Then the turbulent viscosity coefficient reads:

νt = C0l
2
t

∣∣∣∣dudz
∣∣∣∣ (7.66)

where C0 ∼ 1 is a universal dimensionless constant, the precise value of which
should be determined from the presently non-existent theory of turbulence. Thus,
the turbulent stresses depend quadratically on the shear amplitude,

Wzx = ρC0l
2
t

(
du

dz

)2

, (7.67)

and a non-linearity appears that in the general case strongly complicates the
problem. Here we should stress that in fact expression (7.67) for Wzx is not a
component of some tensor any more, and can be applicable only in a particular
coordinate system.

Consider a possible generalization of Prandtl’s law for turbulent viscosity in
the case of an axially symmetric flow. If turbulence is strongly anisotropic, there
exists one more empirical law for turbulent viscosity, Wasiutynski’s law (see below),
which does not reduce to Prandtl’s law for isotropic turbulence. This more general
case for anisotropic turbulence will be discussed separately in Sect. 7.5.

7.4 Structure of the Shell for Prandtl’s Turbulent Viscosity

7.4.1 The Empirical Prandtl Law for Turbulent Viscosity
in Axially Symmetric Flows

Consider an axially symmetric flow with a very high Reynolds number. By
generalizing Prandtl’s law for turbulent velocity derived for plane-parallel flows,
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we can write the turbulent velocity scaling in the form: ut ∼ ltR(∂ω/∂R). Using
gas-dynamical similarity laws, we assume lt ∼ R, so that

ut = C1R
2
∣∣∣∣ ∂ω∂R

∣∣∣∣ . (7.68)

Note that in our case the turbulent velocity is determined by convection, and ut �
0.5uff (see Sect. 7.7). This means that the constant C1

C1 ∼ ut/〈uφ〉, (7.69)

can be very large since 〈uφ〉 � ut . Therefore, the turbulent viscosity coefficient is
equal to

νt = 〈ut lt 〉 = C2C1R
3
∣∣∣∣ ∂ω∂R

∣∣∣∣ (7.70)

Here C2 ≈ 1/3 is a numerical factor arising from statistical averaging. Below we
will use the new coefficient C = C1C2 which can be much larger than one.

For this viscosity law the turbulent stressesWRφ are:

WRφ = ρνtR ∂ω
∂R

= ρCR4
(
∂ω

∂R

)2

. (7.71)

Note that in axially symmetric flows with angular momentum increasing out-
wards (in particular, in Keplerian flows), a stabilization of the flow appears
(Zeldovich 1981) which is absent in plane-parallel flows. The stabilization criterion
can be characterized by the dimensionless ratio of two energies, the ‘Taylor
number’, according to Zeldovich, Ty = Es/Et . Here Es is a measure of the flux
stabilization, the kinetic energy needed to interchange two adjacent parcels of gas
of mass m, a and b, by a distance Δr � r , while keeping the specific angular
momentum j = ωr2 constant,

Es = 1

2
m(u′2a − u2

a)+
1

2
m(u′2b − u2

b) � 2m
ω

r

d(ωr2

dr
(Δr)2 (7.72)

(here ua,b = ja,b/ra,b and u′a,b = ja,b/rb,a are the velocities before and after the
change in positions). The energyEt is the energy dissipated in, for example, chaotic
turbulent motions (see Zeldovich (1981) for more detail):

Et = 1

2
m(u2

a − (ua′′)2 +
1

2
m(u2

b − (ub′′)2 (7.73)

where u and u′′ are velocities after ω smoothing, which are defined by

j = m(r2
a + r2

b )ω = mr2
aωa +mr2

bωb . (7.74)
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Finally, we obtain2

Ty = Es

Et
= 4

d(ωr2)2/dr

r5(dω/dr)2
. (7.75)

The Taylor number is analogous to the gradient Richardson number, which is

Ri = N2

(du/dr)2
, (7.76)

where N is the Brunt-Väisälä frequency,

N2 = g

T

(
∂T

∂r
+ g

cp

)
, (7.77)

and du/dr is the mean vorticity. Following Bradshaw (1969), it is possible to define
another analogue to the Richardson number as

‘Ri’ = �2

(du/dr)2
, (7.78)

where

�2 = 1

r3

d(ωr2)2

dr
(7.79)

is the epicyclic frequency. Clearly, ‘Ri’ = 1/4Ty.

7.4.2 The Angular Momentum Transfer Equation

A similar problem (rotation of a sphere in a viscous fluid) is solved in Landau and
Lifshitz (1987). It is shown there that in this problem the variables may be separated,
and one can write uφ(R, θ) = uφ(R) sin θ . Note that the angular velocity ω(R) =
uφ(R)/R is independent of the polar angle θ . Our problem setup is different from
the rotation of a sphere in a viscous fluid in several aspects: (1) there is a gravity
force, (2) the turbulent viscosity changes with the distance R and, in general, may
depend on the angle θ , and (3) there is radial motion of matter (accretion). These
differences lead, as we will show below, to a radial dependence of the rotational
velocity uφ(R) ∝ R−1/2. (Recall that uφ ∝ R−2 in the case of a rotating sphere in
a viscous fluid).

2Not to be confused with the standard definition of the Taylor number in viscous Taylor-Couette

flows, Ta = 4ω
2r4

ν
.
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We start by solving Eq. (7.56). At first, note that in order to have uφ(θ) ∼
sin θ , according to (7.61), we must have Wθφ = 0. Next, using the continuity
equation (7.53) and the definition of the angular velocity, we can write Eq. (7.56)
in the form of the equation of angular momentum transfer by viscous forces:

Ṁ

R

∂

∂R
ωR2 = 4π

R

∂

∂R
R3WRφ . (7.80)

We may integrate Eq. (7.80) over R to obtain

ṀωR2 = 4πR3WRφ +D , (7.81)

wereD is an integration constant. We then rewrite Eq. (7.62) using the derivative of
the angular velocity:

WRφ = ρνtR ∂ω
∂R

. (7.82)

Substituting this expression into (7.81) yields

ṀωR2 = 4πρνtR4 ∂ω

∂R
+D . (7.83)

This equation for the viscous angular momentum transfer is similar to the one
for accretion discs (Shakura and Sunyaev 1973) but, however, differs due to the
spherical symmetry of the problem under consideration.

The left-hand side of Eq. (7.83) describes the advective transfer of the angular
momentum averaged over the sphere (1/2

∫ π
0 ωR

2 sin2 θ sin θdθ = (1/3)ωR2)
during the mean motion towards the gravitating centre (accretion). The accretion
rate Ṁ here is negative, as well as the value of the derivative ∂ω

∂R
. The first term

on the right-hand side describes the angular momentum transfer outwards by the
turbulent viscosity force.

The constantD is determined from the equation

D = K1K2

(
uc

uff

)
μ2

R3
A

ωm − ω∗

ωK(RA)
(7.84)

(see Eq. (7.185)). Here we consider accretion onto a magnetized neutron star. For
D < 0, the advective term on the left-hand side of (7.83) dominates over the viscous
angular momentum transport outwards. Oppositely, for D > 0, the viscous term
in (7.83) dominates. In the case Ṁ = 0 (when no plasma enters the magnetosphere),
there is only viscous angular momentum transfer.

Now we rewrite (7.84) in the form

D = K1K2

(
uc

uff

)
μ2

R6
A

R3
A

ωm − ω∗

ωK(RA)
(7.85)
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and use the pressure balance condition

P(RA) = Pg(RA)(1 + γm2
t ) =

B2(RA)

8π
= K2

2π

μ2

R6
A

. (7.86)

Using the continuity equation in the form

|Ṁ| = 4πR2ρf (u)
√
GM/R ,

and the gas pressure Eq. (7.13), we can recast the integration constantD/|Ṁ | to the
form

D

|Ṁ| = K1K2

(
uc

uff

)
(γ − 1)

γ
ψ(γ,mt )

(ωm − ω∗)R2
A

2
√

2f (u)
(1 + γm2

t ) . (7.87)

Consider the rotation of a neutron star near equilibrium with ω̇∗ = 0. In this case,
from Eq. (7.188) we find

ωm − ω∗ = − z
Z
ω∗ , (7.88)

hence using the expression for Z (7.187) we obtain:

D

|Ṁ| = −zR2
Aω

∗ . (7.89)

We stress that for equilibrium neutron star rotation the value of the constant D is
fully determined by the dimensionless specific angular momentum of matter near
the Alfvén surface z.

7.4.3 The Rotation Law in the Shell

Equation (7.83) can be used to find the rotation law in the shell ω(R). At large
distances, R � RA (remember that RA determines the location of the shell base),
the constant D is small compared to other terms, and we can set D ≈ 0. Thus,
when deriving the rotation law, we will neglect this constant in the right-hand side
of Eq. (7.83). Next, we substitute (7.70) and the density distribution (which, as we
show below, does not differ from the hydrostatic distribution)

ρ(R) = ρ(RA)
(
RA

R

)3/2

(7.90)
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into Eq. (7.83). We thus obtain:

∣∣Ṁ∣∣ωR2 = 4πρ(RA)

(
RA

R

)3/2

CR7
(
∂ω

∂R

)2

. (7.91)

After integration of this non-linear equation, we find

2ω1/2 = ±4

3

K1/2

R3/4 +D1 , (7.92)

where

K = |Ṁ|
4πρ(RA)CR

3/2
A

(7.93)

andD1 is the integration constant. In Eq. (7.92) we choose only the positive solution
(the sign minus with constant D1 > 0 corresponds to a solution with angular
velocity increasing outwards, which is possible if the neutron star spin period is
very large). If D1 �= 0, at large distances R � RA (near the external bow shock)
solid-body rotation would lead to ω → const ≈ ωB . (However, we remind the
reader that our treatment is not applicable to the external shock region.) At small
distances from the Alfvén surface, the influence of this constant is insignificant, and
we will neglect it below. Then we find

ω(R) = 4

9

|Ṁ|
4πρ(RA)CR3

A

(
RA

R

)3/2

= ωm(RA/R)3/2 (7.94)

i.e. a quasi-Keplerian rotation law, ω(R) ∼ R−3/2. The constant ωm in Eq. (7.94) is
obtained after plugging Ṁ from the continuity equation at R = RA into Eq. (7.94):

ωm ≡ ω̃ω(RA) = 4

9
ω̃
|ur(RA)|
CRA

. (7.95)

(Here the correction factor ω̃ > 1 is introduced to account for the deviation of the
exact solution from the quasi-Keplerian law near RA.)

As the radial velocity of the matter in the settling accretion regime ur(RA) is
smaller than the free-fall velocity, the above equation implies that ωm < ωK(RA),
i.e. smaller than the Keplerian angular rotation velocity. For a self-consistent
solution, the coefficient C in Prandtl’s law should be determined, according to
Eq. (7.95), from the ratio of the radial velocity of the matter ur to the linear rotational
velocity uφ:

C = 4

9
ω̃
|ur(RA)|
ωmRA

= 4

9
ω̃
|ur(RA)|
uφ(RA)

. (7.96)
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Note that this ratio is independent of the radius R and remains constant along the
shell radius. Indeed, the radial dependence of the velocity ur follows from the
continuity equation with account for the density distribution (7.90)

ur(R) = ur(RA)
(
RA

R

)1/2

. (7.97)

For quasi-Keplerian rotation uφ(R) ∼ 1/R1/2, and thus the ratio ur/uφ remains
constant.

Finally, the angular velocity of the shell near the magnetosphere ωm is related to
the angular velocity near the external shock as

ωm = ω̃ωB
(
RB

RA

)3/2

. (7.98)

In reality, when approachingRA, the integration constantD (that we have neglected
at large distances R � RA) should be taken into account. Therefore, the rotation
law near the magnetosphere should be somewhat different from the quasi-Keplerian
one.

We stress the principal difference of the accretion regime we consider from disc
accretion. In disc accretion, the radial velocity of the matter is much smaller than the
velocity of turbulent motions, and the tangential velocity is almost Keplerian and is
much larger than the turbulent velocity. In quasi-spherical subsonic accretion, the
radial velocity of the matter is not determined by the rate of angular momentum
transfer. Instead, the radial velocity depends solely on the ‘permeability’ of the
neutron star magnetospheric boundary to infalling plasma. In our case, it turns
out to be of the order of the velocity of convective motions in the shell. The
tangential velocity in the quasi-Keplerian law obtained above is much smaller than
the convective velocities in the shell. Also note that in disc accretion the turbulence
can be effectively described by the single dimensionless parameter, α ≈ u2

t /u
2
s

with 0 < α < 1 (Shakura and Sunyaev 1973). The gas in an accretion disc rotates
differentially with a supersonic (almost Keplerian) velocity, whereas in our case the
shell rotates differentially with a significantly subsonic velocity at any radius, and
the turbulence in the shell is subsonic. It is also evident that our case is significantly
different from free-fall accretion onto the magnetosphere with the formation of a
shock, which was considered, for example, in Arons and Lea (1976).

7.4.4 The Case Without Accretion

We now consider the situation where the plasma cannot penetrate the magnetosphere
and there is no accretion onto the neutron star. This case is similar to the subsonic
propeller considered in Davies and Pringle (1981). Then Eq. (7.83) takes the form:

0 = 4πρνtR4 ∂ω

∂R
+D . (7.99)
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(Remember that the constant D is determined by the neutron star spin-down rate,
D = I ω̇∗ < 0.) Solving this equation as before, we obtain the rotational law in the
shell for the case without accretion:

ω(R) = ωm
(
RA

R

)7/4

, (7.100)

where

ωm = I |ω̇∗|
7πρ(RA)νt (RA)R3

A

. (7.101)

From (7.70) we find:

νt (RA) = 7

4
CωmR

2
A , (7.102)

therefore for ωm we get:

ωm = 2

7

(
I |ω̇∗|

πCρ(RA)R
5
A

)1/2

. (7.103)

On the other hand, the angular velocity of matter near the magnetosphere ωm is
related to the parameters near the external shock as:

ωm = ωB
(
RB

RA

)7/4

. (7.104)

A further discussion of this case and applications to possible observational evidence
of hot shells around non-accreting magnetized neutron stars can be found in Postnov
et al. (2017).

7.5 The Structure of the Shell and the Rotation Law
for Wasiutynski’s Turbulent Viscosity Law

Parndtl’s rule for turbulent viscosity used above relates the scale and velocity
of turbulent pulsations to the mean angular rotational velocity of matter, and is
successfully applied in cases where the turbulence is generated by the shear flow
itself. In our problem, the turbulence arises due to large-scale convective motions
in the gravitational field. During radial convection, strongly anisotropic turbulent
motions may appear (the radial dispersion of the chaotic motions may be much
larger than the dispersion in the tangential direction), and Prandtl’s law may be
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inapplicable. The anisotropic turbulence is much more complicated and poorly
understood.

In the first approximation, we may use the empirical expression for the compo-
nentWRφ , derived by Wasiutynski (1946)3:

WRφ = ρ
(
νtR

dω

dR
+ (νr − νt ) 1

R

dωR2

dR

)
, (7.105)

or

WRφ = 2ρ(νr − νt )ω + νrρR dω
dR

, (7.106)

where the radial and tangential kinematic viscosity coefficients are

νr = C‖〈|ut‖|〉R

and

νt = C⊥〈|ut⊥|〉R ,

respectively. The dimensionless constants C‖ and C⊥ are of the order of one. In the
isotropic case, νr = νt ,WRφ ∼ dω/dR, and in the strongly anisotropic case, νr �
νt , WRφ ∼ d(ωR2)/dR. Using these definitions and plugging (7.106) into (7.81),
we obtain:

ωR2
(

1 − 2C⊥〈|ut⊥|〉
|ur |

)
= C‖

〈|ut‖|〉
|ur |

Rd(ωR2)

dR
− D

|Ṁ| . (7.107)

Note that due to the self-similar structure of the shell ut‖ ∼ ut⊥ ∼ ur ∼ R−1/2,
and therefore the ratios 〈|ut‖|〉/ur and 〈|ut⊥|〉/ur are constants. The above equation
has an obvious solution:

ωR2 + D

|Ṁ|
1

1 − 2C⊥
〈|ut⊥|〉|ur |

=
⎡
⎣ωBR2

B + D

|Ṁ|
1

1 − 2C⊥
〈|ut⊥|〉|ur |

⎤
⎦

(
RB

R

) |ur |
C‖〈|ut‖|〉

(
1−2C⊥

〈|ut⊥|〉
|ur |

)
(7.108)

(here the integration constant is defined such that ω(RB) = ωB ).

3In Wasiutynski’s paper, all equations are written for covariant components of the stress tensor
τRφ , while here we, following Landau and Lifshits, write all values for physically measurable
components, i.e.WRφ = τRφ/(R sin θ), etc.
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Now consider the equilibrium situation with ω̇∗ = 0. Then, as we remember,

D

|Ṁ| = −zω∗R2
A ,ωm = (1 − z/Z)ω∗ .

At first, consider the case of strongly anisotropic almost radial turbulence for
which 〈|ut⊥|〉 = 0. Here the specific angular momentum at the Alfvén radius is

ωmR
2
A

[
1 + z

1 − z/Z

((
RB

RA

) |ur |
C‖〈|ut‖|〉 − 1

)]
= ωBR2

B

(
RB

RA

) |ur |
C‖〈|ut‖|〉 . (7.109)

We see that for very weak accretion (or in the limit when there is no accretion at all)
|ur | � C‖〈|ut‖|〉, i.e. virtually isomomentum rotation is established in the shell.

The next case is when the anisotropy is such that C⊥〈|ut⊥|〉/|ur | = 1/2. Then
a strictly isomomentum angular momentum distribution is established in the shell:
ωmR

2
A = ωBR2

B .
If the turbulence is fully isotropic, then C⊥〈|ut⊥|〉 = C‖〈|ut‖|〉 = C̃〈|ut |〉. By

denoting ε = |ur |/(C̃〈|ut |〉), we find:

ωmR
2
A

[
1 +

(
z

1 − z/Z
)(

1

2/ε − 1

)(
1 −

(
RA

RB

)2−ε)]
= ωBR2

B

(
RA

RB

)2−ε
.

(7.110)

Note that for ε → 0 (no accretion through the magnetosphere) ωm → ωB , i.e., we
get solid-body rotation without accretion (cf. the first case above). For ε = 3/2,
the rotation is almost quasi-Keplerian. Recall that quasi-Keplerian rotation was
obtained above using Prandtl’s turbulent viscosity prescription. Then it was the
unique solution. For anisotropic turbulence, in contrast, quasi-Keplerian rotation
is a particular case of a more general solution that is obtained using Wasiutynski’s
turbulent viscosity law.

As shown in Shakura et al. (2012), the quasi-Keplerian rotation in the shell is
less favored by observations. Therefore, we conclude that in quasi-spherical shells
at the stage of subsonic settling accretion an almost isomomentum rotation, caused
by the anisotropic turbulence due to convection, is most likely.

7.6 Corrections to the Radial Temperature Gradient

Let us estimate how strongly the temperature gradient in the shell differs from
the adiabatic law when convective motions are present. Multiplying Eq. (7.186)
by (1/2)(ωm − ω∗) yields the convection heating rate caused by the shell-
magnetosphere interaction:

Lc = 1

2
ZṀR2

A(ωm − ω∗)2 . (7.111)
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Multiplying the same Eq. (7.186) by ω∗ yields the rate of change of the neutron
star’s mechanical energy:

Lk = ZṀR2
Aω

∗(ωm − ω∗) . (7.112)

Thus, the energy balance equation can be presented in the form:

Lt = Lc + Lk = 1

2
ZṀR2

A(ω
2
m − ω∗2) . (7.113)

Note that the formula obtained for Lc looks like the equation describing the energy
release in the boundary layer of an accretion disc (Koh et al. 1997; Shakura and
Sunyaev 1988).

The convective energy flux is

qc = Lc

4πR2 = ZṀR2
A(ωm − ω∗)2

8πR2 . (7.114)

On the other hand, the convective energy flux can be related to the entropy gradient
(see Shakura et al. 1978):

qc = −ρνcT dS
dR

, (7.115)

where S is the specific entropy (per gram). Here νc is the radial thermal conductivity
coefficient,

νc =< uclc >= ChucR , (7.116)

where the characteristic scale of convection is lc ∼ R, the velocity of the convective
motions uc ∼ cs ∼ R−1/2, and Ch is a numerical factor of the order of one. Thus

νc = νc(RA)
(
R

RA

)1/2

. (7.117)

Next, make use of the thermodynamic identity for the specific enthalpy H :

dH

dR
= 1

ρ

dPg

dR
+ T dS

dR
. (7.118)

Recall that the enthalpy can be written in the form

dH = cpdT ,
where

cp = T
(
∂S

∂T

)
p

= γ

γ − 1

R

μm
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is the specific thermal capacity at constant pressure. We now express T (dS/dR)
from Eq. (7.115) and use the hydrostatic equilibrium equation (7.9) in the form

dPg/ρ

dR
= − R

μmcp

GM

R2 ψ(γ,mt )

to cast the identity (7.118) into the form

dT

dR
= − 1

cp

[
GM

R2 ψ(γ,mt )−
Zur(RA)

2νc(RA)

(
RA

R

)
R2
A(ωm − ω∗)2

]
. (7.119)

By definition, the adiabatic temperature gradient is determined by the first term on
the right-hand side, (dT /dR)ad = g/cp . Equation (7.119) can be integrated to find
the real dependence of the temperature on radius in a convective shell:

T = 1

cp

[
GM

R
ψ(γ,mt )− Zur(RA)

2νc(RA)
R3
A(ωm − ω∗)2 ln

(
R

RA

)]
. (7.120)

Near the equilibrium (I ω̇∗ = 0) we may use Eq. (7.88) to obtain

T = 1

cp

[
GM

R
ψ(γ,mt)− |ur(RA)|

2Chuc(RA)
ω∗2R2

A

z2

Z
ln

(
R

RA

)]
. (7.121)

This solution shows that in the region between RA and RB in the shells around
slowly rotating X-ray pulsars (i.e. those in which ωm � ωK(RA)), the temperature
distribution is similar to the adiabatic law with a temperature gradient close to (but
still steeper, enabling convection) the adiabatic one (7.9):

T ≈ γ − 1

γ

GM

RR
ψ(γ,mt) . (7.122)

Here we have taken into account only the energy release caused by the angular
velocity difference near the magnetosphere. In fact, there can be additional energy
sources in the shell, for example, heating of plasma due to magnetic reconnection
and turbulence (see Sect. 7.7), etc.

7.7 Dynamics of Static Spherically-Symmetric Gas Flow

In this section, we will consider the gas-dynamic equations for a spherically
symmetric flow of an ideal gas onto a Newtonian gravitating center. This problem
was first solved in the classical paper by Bondi (1952) in the case of an adiabatic
accretion. The adiabatic gas outflow from stars (stellar wind) was later studied by
Parker (1963). A detailed and thorough discussion of the problem can be found
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in the monograph by Beskin (2010). Here we will focus on the role of gas cool-
ing/heating near the Alfvén surface, including the effect of turbulence/convection
(generally, anisotropic) in the gas flow through a shell around the magnetosphere
around a rotating neutron star. As discussed above, at low X-ray luminosities the
quasi-static gas shell can remove angular momentum from the rotating neutron star
magnetosphere via convective turbulent motions of the gas. If the mass accretion
rate through the shell exceeds some critical value, strong Compton cooling gives
rise to the appearance of a free-fall zone above the magnetosphere, and the angular
momentum cannot be transferred upstream such a flow.

The equation of motion (7.54) in the absence of viscosity reads:

ur
dur

dR
= − 1

ρ

dPg

dR
− 1

ρ

dP t‖
dR

− 2(P t‖ − P t⊥)
ρR

− GM

R2
(7.123)

Here Pg = ρc2
s /γ is the gas pressure and P t is the pressure due to turbulent

pulsations, which in general may be anisotropic:

P t‖ = ρ < u2‖ >= ρm2‖c2
s = γPgm2‖ (7.124)

P t⊥ = 2ρ < u2⊥ >= 2ρm2⊥c2
s = 2γPgm2⊥ (7.125)

(here < u2
t >=< u2‖ > +2 < u2⊥ > is the turbulent velocity dispersion, m2‖ and

m2⊥ are radial and tangential Mach numbers squared).
From the first law of thermodynamics we find:

dE

dR
= Pg

ρ2

dρ

dR
+ T dS

dR
, (7.126)

where the specific internal energy (per gram) is

E = cV T = c2
s

γ (γ − 1)
, (7.127)

and the specific thermal capacity (per gram) is

cV = R

μm

1

γ − 1
. (7.128)

From the second law of thermodynamics the change in the specific entropy of
the gas can be written through the rate of change of the specific heat dQ/dt
[erg s−1 g−1] as

T
dS

dR
= dQ

dR
= dQ/dt

ur
. (7.129)
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Using the continuity equation

Ṁ = 4πR2ρur , (7.130)

we find

1

ρ

dρ

dR
= − 2

R
− 1

2u2
r

du2
r

dR
. (7.131)

Making use of the relation c2
s = γRT , we finally obtain:

1

c2
s

dc2
s

dR
= (γ − 1)

[
− 2

R
− 1

2u2
r

du2
r

dR

]
+ dQ/dt

urcV T
. (7.132)

Note that this equation can be also derived from the equation of state of an ideal gas
written in the form

Pg = KeS/cV ργ , (7.133)

whereK is some constant.
Using Eq. (7.132), the gas pressure gradient can be presented in the form:

1

ρ

dPg

dR
= c2

s

cP ur

dQ/dt

T
+ c2

s

[
− 2

R
− 1

2u2
r

du2
r

dR

]
(7.134)

Plugging (7.134) into the equation of motion finally yields:

1

2

1

u2
r

du2
r

dR
=

[
c2
s (1 + γm2‖)

(
2
R
− dQ/dt
cP urT

)
− 2c2

s

(m2‖−m2⊥)
R

− GM
R2

]
/

[
u2
r − c2

s (1 + γm2‖)
]
. (7.135)

Also, note that in a strongly anisotropic case wherem2‖ = m2
t � m2⊥, the role of the

turbulence increases compared to the isotropic case where m2‖ = m2⊥ = (1/3)m2
t .

We may also introduce the Mach number in the flow M ≡ ur/cs . Then from
Eqs. (7.132) and (7.135) we can derive the equation for the Mach number:

[M 2−(1+γm2‖)]
M 2

dM 2

dR
={

2
[
(γ−1)M 2−(γ+1)(m2‖−m2⊥)

]
R

−
[
M 2+γ (1+γm2‖)

]
cP T

dQ
dR

− (γ+1)GM
R2c2

s

}
, (7.136)

where we have used the substitution (dQ/dt) = ur(dQ/dR). Equa-
tions (7.132), (7.135) and (7.136) can be applied to describe the dynamics of
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the accreting flow in terms of pairs of independent variables (ur , cs), (ur ,M ) or
(cs,M ). Here we will consider the behavior of the flow near the singular point
only. To this goal, we can use Eq. (7.135).

Equation (7.135) has one singular saddle point in which the denominator in the
right-hand side vanishes:

u2
r = c2

s (1 + γm2‖) . (7.137)

For a solution to exist in this point, the numerator in the right-hand side must also
vanish, which yields the quadratic equation for the flow velocity in the singular
point:

u2
r

2

R

(
1 + (γ − 1)m2‖ +m2⊥

1 + γm2‖

)
− ur

(
dQ/dt

cP T

)
− GM

R2 = 0 . (7.138)

Recall that in the adiabatic case (dQ/dt = 0) without turbulence, in the singular
point we would simply have

u2
r = c2

s =
GM

2R
. (7.139)

We stress that in the presence of turbulence, the velocity in the singular point
increases. For example, for γ = 5/3 and a strong anisotropic turbulence we
find u2

r = c2
s (1 + (5/3)m2‖); for an isotropic turbulence the correction is smaller:

u2
r = c2

s (1+ (5/9)m2
t ). Due to turbulence, the transition through the sound velocity

(the sound point where u2
r = c2

s ) occurs above the saddle point, and there is no
singularity at the sound point.

The turbulent heating rate in the quasi-static shell c (dQ/dt)+t can be deter-
mined as:

(
dQ

dt

)+

t

= 1

2

< u2
t >

tt
, (7.140)

where the characteristic turbulent heating time is

tt = αt R
ut

= αt R
mtcs

. (7.141)

Here αt is a dimensionless constant determining the turbulent energy dissipation
rate, and the turbulent Mach number ism2

t ≡ m2‖+2m2⊥. Thus, the turbulent heating
rate can be written in the form

(
dQ

dt

)+

t

= c3
s

2αtR
m3
t . (7.142)
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In the case of Compton cooling we have

(
dQ

dt

)−

C

= −cV (T − Tx)
tC

, (7.143)

were tC is the characteristic Compton cooling time (7.21).
Equation (7.138) can now be recast to the form

u2
r

2

R

(
1 + (γ − 1)m2‖ +m2⊥

1 + γm2‖

)
− u2

r

cs

ur

γ (γ − 1)m3
t

2αtR
+ ur(1 − Tx/T )

γ tC
− GM

R2
= 0 .

(7.144)

As we are studying an accretion processes, the sign of the velocity ur = dR/dt is
negative, ur = −|ur |. Then, the absolute value of the flow velocity at the singular
point where the sound velocity is cs/|ur | = −1/(1 + γm2‖)1/2 can be found from
the quadratic equation:

u2
r

2

R

(
1 + (γ − 1)m2‖ +m2⊥

1 + γm2‖

)
+ u2

r

1

(1 + γm2‖)1/2
(γ − 1)m3

t

2αtR

− |ur |(1 − Tx/T )
γ tC

− GM

R2 = 0 . (7.145)

In this case, the solution to Eq. (7.138) reads:

|ur | = R(1 − Tx/T )
4γ tCA

+
√

2GM

R

[
1

4A
+ R

2GM

R2(1 − Tx/T )2
16γ 2t2CA

2

]1/2

, (7.146)

where we have introduced the dimensionless factor

A = 1 + (γ − 1)m2‖ +m2⊥
1 + γm2‖

+ (γ − 1)(m2‖ + 2m2⊥)3/2

4αt (1 + γm2‖)1/2
. (7.147)

For isotropic turbulence withm‖ = m⊥ = 1/
√

3,mt = 1, for γ = 5/3 this factor is
A ≈ 1.23, and for strongly anisotropic turbulence when m‖ = 1,m⊥ = 0,mt = 1,
this factor is A ≈ 0.8.

In units of the free-fall velocity, the solution to Eq. (7.146) has the form:

f (u) = |ur |
uff

= (1 − Tx/T )
4γA

(
tff

tC

)
+ 1

2

[
1

A
+ (1 − Tx/T )2

4γ 2A2

(
tff

tC

)2
]1/2

.

(7.148)
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With the onset of Compton cooling the temperature changes exponentially:

T = Tx + (Tcr − Tx)e−t/tC . (7.149)

When cooling is slow, tff /tC � 1, the critical point lies under the Alfvén surface,
and through the flow down to the magnetosphere no transition through the sound
speed occurs. It is under such conditions that slow settling accretion can be realized.
If the critical point lies above the Alfvén surface, a supersonic transition in the flow
takes place before the flow encounters the magnetosphere, and thus the appearance
of a shock is expected. Both turbulence and rapid cooling shift the critical point
upstream the flow.

In the case of rapid cooling, tff /tC � 1, T → Tx , so that ur/uff ≈ 1/2
(cf. (7.139) for an adiabatic flow), but the critical point lies above the Alfvén
surface, and in the flow above the magnetosphere a free-fall zone appears. The ratio
f (u) = |ur |/uff reaches maximum at tff /tC ≈ 0.46 for the typical temperature
ratio Tcr/Tx = 10, and depending on the value of the factor A = 0.8 ÷ 1.23
(anisotropic or isotropic turbulence) it turns out to be equal to f (u) = 0.5–0.6.

7.8 Physical Conditions in the Shell

To form a hot shell around a NS magnetosphere, the matter downstream the bow
shock at the gravitational capture radius should not cool down too rapidly and fall
freely towards the magnetosphere. In other words, the cooling time of the gas heated
up behind the shock tcool should exceed the plasma free-fall time.

Behind the front of a strong shock, the gas heats up to the temperature

Tps = 3

16
μm
v2
w

R
≈ 1.36 × 105[K]

( vw

100 km/s

)2
. (7.150)

The radiation cooling time of a plasma is

tcool = 3kT

2μmneΛ
(7.151)

where ρ is the plasma density, ne = Yeρ/mp is the electron number density (in a
fully ionized solar plasma, the molecular weight is μm = 0.6 and the lepton number
is Ye ≈ 0.8);Λ is the cooling function of collisional equilibrium plasma that can be
approximated as (Raymond et al. 1976; Cowie et al. 1981)

Λ(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0, T < 104 K
1.0 × 10−24T 0.55, 104 K < T < 105 K
6.2 × 10−19T −0.6, 105 K < T < 4 × 107 K
2.5 × 10−27T 0.5, T > 4 × 107 K .

(7.152)
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Compton cooling becomes effective starting from the radius Rx at which the gas
temperature T , determined from the hydrostatic formula (7.9), exceeds the Compton
temperature of radiation Tx . The Compton cooling time (see (7.21)) is:

tC ≈ 1060[s]Ṁ−1
16

(
R

1010 cm

)2

. (7.153)

Compton heating starts above some radius Rx at which Tx = T . For the
temperature distribution in the shell according to formula (7.9), we find Rx ≈
2 × 1010 cm. Note that both Compton and photoionisation heating is controlled by
the photoionization parameter ξ (Tarter et al. 1969; Hatchett et al. 1976)

ξ = Lx

neR2 . (7.154)

In most parts of the accreting flow the density follows the law n ∼ R−3/2, therefore
ξ ∼ R−1/2, and with account for the continuity equation, ξ does not depend on the
X-ray luminosity. The characteristic value of ξ is:

ξ ≈ 5 × 105f (u)R
−1/2
10 . (7.155)

Should the Compton processes be effective everywhere, such a high value
of the photoionization parameter ξ would suggest that the plasma heats up to
Compton temperatures of the order of several keV up to very large distances
∼1012 cm. However, at large distances the Compton time exceeds the characteristic
gas accretion time:

tC

taccr
= tCf (u)uff

R
≈ 20f (u)Ṁ−1

16 R
1/2
10 , (7.156)

which means that Compton heating is ineffective in the falling matter. Therefore, far
from the magnetosphere the gas temperature is determined by the photoionization
only and cannot exceed Tmax ≈ 5×105 K (Tarter et al. 1969), which is much smaller
than Tx ∼ 3 keV.

The effective gravitational capture radius corresponding to the sound velocity of
the gas in the photoionization heating region is

R∗
B = 2GM

c2
s

= 2GM

γRTmax/μm
≈ 3.5 × 1012[cm]

(
Tmax

5 × 105 K

)−1

. (7.157)

Everywhere up to the shock, photoionization keeps the temperature at about �
Tmax . The sound velocity corresponding to Tmax , is about 80 km s−1. If the stellar
wind velocity exceeds 80 km s−1, a bow shock arises near the Bondi radius with
the post-shock temperature given by formula (7.150). If the stellar wind velocity
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is below this value, the shock disappears and accretion occurs from the region
determined by the effective radius R∗

B .
The photoionization heating time at the effective Bondi radius 3 × 1012 cm is

tpi ≈ (3/2)kTmax/μm
(hνeff − ζeff )nγ σeff c ≈ 2 × 104[s]Ṁ−1

16 . (7.158)

(here hνeff ∼ 10 keV is the characteristic photon energy, ζ is the effective
ionization potential, σeff ∼ 10−24 cm2 is the typical photoionization cross-section
and nγ = Lx/(4πR2hνeff c) is the photon number density). The ratio of the
photoionization time to the accretion time at the effective Bondi radius is

tpi

taccr
≈ 0.07f (u)Ṁ−1

16 . (7.159)

At stellar wind velocities vw > 80 km s−1 the shock arises near the classical
Bondi radius RB lying inside the effective Bondi radius R∗

B , determined by
formula (7.157).

The radiation cooling time of plasma heated downstream the shock RB is
expressed through the velocity of the stellar wind being captured vw as:

tcool ≈ 4.7 × 104[s]Ṁ−1
16 v

0.2
7 . (7.160)

The photoionization heating time behind the shock front can also be expressed
through the wind velocity:

tpi ≈ 3.5 × 104[s]Ṁ−1
16 v

−4
7 . (7.161)

A comparison of these two characteristic times shows that at low wind velocities,
radiative plasma cooling is important, and free-fall supersonic (Bondi) accretion
onto the neutron star with conservation of the specific angular momentum of the
accreting matter sets in.

Thus, at low wind velocities the plasma behind the bow shock front cools down
and falls freely. When approaching the gravitational centre, the photoionization
heating becomes important, and the plasma temperature attains the level Tmax ≈ 5×
105 K. Should this occur at the radius Rpi corresponding to Tmax < GM/(RRpi),
the plasma with constant temperature Tmax continues falling freely towards the
magnetosphere, above which a shock is formed. However, if Tmax > GM/(RRpi),
the subsonic settling accretion regime is possible even at low wind velocities.

For wind velocities vw � 100 km s−1, the gas temperature behind the shock
exceeds Tmax , photoionization heating is unimportant, and the settling accretion
regime may be established in the shell if the radiation cooling time is longer than
the accretion time. By comparing these two time-scales, we obtain the critical mass
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accretion rate, depending on the stellar wind velocity, below which the settling
regime is possible:

Ṁ
‡
16 � 0.12v3.2

7 . (7.162)

Here we should stress the difference between the critical mass accretion rate Ṁ‡

and the value Ṁ†, obtained above. For Ṁ > Ṁ‡ the plasma rapidly cools down
in the wind gravitational capture zone and falls freely towards the magnetosphere
(unless photoionization heats it up above the virial temperature), whereas for Ṁ >

Ṁ† � 4 × 1016 g s−1 determined by Eq. (7.38), a free-fall supersonic zone appears
immediately above the magnetosphere.

7.9 X-ray Emission and Quasi-Periodic Pulsations
from the Hot Shell

The spectra of X-ray pulsars are dominated by the emission formed in accretion
columns near the surface of magnetized neutron stars. A hot optically thin shell
above the magnetosphere generates proper thermal emission. However, if all
gravitational energy of the accreting matter were released in such a shell, its X-ray
luminosity would be reduced by a factor RNS/RA compared to the emission from
the accretion column, i.e. it would be less than 1% of the total X-ray luminosity. In
addition, the shell should scatter the X-ray emission from the accretion column, but
for the scattering to be effective, the Comptonization parameter y should be of the
order of one. The Thomson optical depth in the shell is obviously very small. Indeed,
from the continuity equation, formula (7.16) for the Alfvén radius and Eq. (7.29) for
the dimensionless factor f (u) at the subsonic settling accretion, we find:

τT =
∫ RB

RA

ne(R)σT dR ≈ 3.2 × 10−3Ṁ
8/11
16 μ

−2/11
30 .

Therefore, at temperatures near the magnetospheric boundary (see (7.9)) the
Comptonization parameter y is small:

y = 4kT

mec2
τT ≈ 2.4 × 10−3 .

This means that the X-ray spectrum generated in the zone of main accretion energy
release near the neutron star surface is not affected by scattering off electrons in the
hot shell.

Large-scale convective motions in the shell occur on a specific time scale of the
order of the free-fall time, which may give rise to features in the time variability
power density spectra (for example, quasi-periodic oscillations, QPOs). QPOs have
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been detected in spectra of some X-ray pulsars (see e.g. Marykutty et al. 2010 and
references therein). The expected QPO frequency should fall into the mHz range.
Such QPOs were indeed detected in some cases (Sidoli et al. 2016a).

A stronger effect may be related to the appearance of a dynamical instability in
the shell due to, for example, Compton cooling enhancement leading to a runaway
increase of the accretion rate through the shell. This instability would give rise to
a sharp increase in X-ray luminosity, as observed in SFXTs (see our discussion in
Sect. 7.10 for more detail).

7.10 Bright Flares in Supergiant Fast X-ray Transients

In this section, we consider another possible application of the theory of subsonic
settling accretion to bright outbursts observed in supergiant fast X-ray transients
(Shakura et al. 2014a).

Supergiant Fast X-ray Transients (SFXTs) are a subclass of HMXBs associated
with early-type supergiant companions (Pellizza et al. 2006; Chaty et al. 2008;
Rahoui et al. 2008), and characterized by sporadic, short and bright X–ray flares
reaching peak luminosities of 1036–1037 erg s−1. Most of them were discovered by
INTEGRAL (Molkov et al. 2003; Sunyaev et al. 2003; Grebenev et al. 2003; Sguera
et al. 2005; Negueruela et al. 2006). They show high dynamic ranges (between 100
and 10,000, depending on the specific source; e.g. Romano et al. (2011, 2014)) and
their X-ray spectra in outburst are very similar to accreting pulsars in HMXBs. In
fact, half of them have measured neutron star spin periods similar to those observed
from persistent HMXBs (see Sidoli 2012 for a review).

The physical mechanism driving their transient behavior, related to the accretion
by the compact object of matter from the supergiant wind, has been discussed by
several authors and is still a matter of debate, as some of them require particular
properties of the compact objects hosted in these systems (Grebenev and Sunyaev
2007; Bozzo et al. 2008), and others assume peculiar clumpy properties of the
supergiant winds and/or special orbital characteristics (in’t Zand 2005; Walter and
Zurita Heras 2007; Sidoli et al. 2007; Negueruela et al. 2008; Ducci et al. 2009;
Oskinova et al. 2012).

The typical energy released in a SFXT bright flare is about 1038–1040 ergs
(Shakura et al. 2014a), varying by one order of magnitude between different sources.
That is, the mass falling onto the NS in a typical bright flare varies from 1018 g to
around 1020 g.

The typical X-ray luminosity outside outbursts in SFXTs is about Lx,low �
1034 erg s−1 (Sidoli et al. 2008), and below in this section we shall normalize the
luminosity to this value, L34. At these low X-ray luminosities, the plasma entry
rate into the magnetosphere is controlled by radiative plasma cooling. Further, it is
convenient to normalize the typical stellar wind velocity from hot OB-supergiants
vw to 1000 km s−1 (for orbital periods of about a few days or larger the NS orbital
velocities can be neglected compared to the stellar wind velocity from the OB-star),
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so that the Bondi gravitational capture radius isRB = 2GM/v2
w = 4×1010[cm]v−2

8
for a fiducial NS mass ofMx = 1.5M�.

7.10.1 Magnetospheric Shell Instability

Let us assume that a quasi-static shell hangs over the magnetosphere around the NS,
with the magnetospheric accretion rate being controlled by radiative plasma cooling.
We denote the actual steady-state accretion rate as Ṁa so that the observed X-ray
steady-state luminosity is Lx = 0.1Ṁac2. Then from the theory of subsonic quasi-
spherical accretion (Shakura et al. 2012) we know that the factor f (u) (the ratio
of the actual velocity of plasma entering the magnetosphere, due to the Rayleigh-
Taylor instability, to the free-fall velocity at the magnetosphere, uff (RA) =√

2GM/RA) reads (Shakura et al. 2013a, 2014b)

f (u)rad � 0.036ζ 7/11L
2/9
34 μ

2/27
30 . (7.163)

(see also (7.37) above).
The shell is quasi-static (and likely convective). It is straightforward to calculate

the mass of the shell using the density distribution ρ(R) ∝ R−3/2 (Shakura
et al. 2012). Using the mass continuity equation to eliminate the density above the
magnetosphere, we readily find

ΔM ≈ 2

3

Ṁa

f (u)
tff (RB) . (7.164)

Note that this mass can be expressed through measurable quantities Lx,low, μ30
and the (not directly observed) stellar wind velocity at the Bondi radius vw(RB).
Using (7.163) for the radiative plasma cooling, we obtain

ΔMrad ≈ 8 × 1017[g]ζ−7/11L
7/9
34 v

−3
8 μ

−2/27
30 . (7.165)

This simple estimate (7.165) shows that for a typical wind velocity near the NS
of about 500 km s−1 the typical mass of the hot magnetospheric shell is around
1019 g, corresponding to 1039 ergs released in a flare if all the matter from the
shell is accreted onto the NS. Variations in stellar wind velocity between different
sources by a factor of ∼2 would produce the one-order-of-magnitude spread inΔM
observed in bright SFXT flares.

As noted in Shakura et al. (2013a), if there is an unstable flow of matter through
the magnetosphere, a large quantity of X-ray photons produced near the NS surface
should rapidly cool down the plasma near the magnetosphere, further increasing
the plasma fall velocity uR(RA) and subsequently the NS accretion luminosity Lx .
Therefore, in a bright flare the entire shell may fall onto the NS from the outer
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radius of the shell on the free-fall time scale tff (RB) ∼ 1000 s. Clearly, the shell
will be replenished by new wind capture, so the flares will repeat as long as a rapid
mass-entry rate into the magnetosphere is sustained.

7.10.2 Magnetized Stellar Wind as the Flare Trigger

We suggest that the shell instability described above can be triggered by a large-scale
magnetic field sporadically carried by the stellar wind of the optical OB companion.
Observations suggest that about ∼10% of hot OB-stars have magnetic fields up to a
few kG (see Braithwaite (2013) for a review and discussion). It is also well known
from Solar wind studies (see e.g. reviews Zelenyi and Milovanov (2004), Bruno and
Carbone (2013) and references therein) that the Solar wind patches carrying tangent
magnetic fields has a lower velocity (about 350 km s−1) than the wind with radial
magnetic fields (up to ∼700 km s−1). Fluctuations of the density and velocity of
stellar winds from massive stars are known from spectroscopic observations (Puls
et al. 2008), and velocity fluctuations up to 0.1 v∞ ∼ 200–300 km s−1 are typical.

The effect of the magnetic field carried by the stellar wind is twofold: first, it
may trigger rapid mass entry to the magnetosphere via magnetic reconnection (a
phenomenon well known in the Earth dayside magnetosphere, (Dungey 1961)),
and secondly, the magnetized parts of the wind (magnetized clumps with a tangent
magnetic field) have a lower velocity than the non magnetized ones (or the ones
carrying the radial field). As discussed in Shakura et al. (2014a) and below, magnetic
reconnection may increase the plasma fall velocity in the shell from inefficient,
radiative-cooling controlled settling accretion with f (u)rad ∼ 0.03–0.1, up to the
maximum possible free-fall velocity with f (u) = 1. In other words, during a bright
flare subsonic settling accretion turns into supersonic Bondi accretion. The second
factor (slower wind velocity in magnetized clumps with tangent magnetic field)
strongly increases the Bondi radius RB ∝ v−2

w and the corresponding Bondi mass
accretion rate ṀB ∝ v−3

w .
Indeed, we may write down the mass accretion rate onto the NS in the unflaring

(low-luminosity) state as Ṁa,low = f (u)ṀB with f (u) given by expression (7.163)
and ṀB � πR2

Bρwvw. Eliminating the wind density ρw using the mass continuity
equation, written for the spherically symmetric stellar wind from the optical
star with power Ṁo, and assuming a circular binary orbit, we arrive at ṀB �
1
4Ṁo

(
RB
a

)2
. Using the well-known relation for the radiative wind mass-loss rate

from massive hot stars Ṁo � ε L
cv∞ where L is the optical star luminosity, v∞ is the

stellar wind velocity at infinity, typically 2000–3000km s−1 for OB stars and ε �
0.4−1 is the efficiency factor (Lamers et al. 1976); in the numerical estimates below
we shall assume ε = 0.5. It is also possible to reduce the luminosity L of a massive
star to its mass M using the phenomenological relation (L/L�) ≈ 19(M/M�)2.76

(see e.g. Vitrichenko et al. 2007). Combining the above equations and using Kepler’s
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third law to express the orbital separation a through the binary period Pb , we find
for the X-ray luminosity of SFXTs in the non-flaring state

Lx,low � 5 × 1035[erg s−1]f (u)
(

M
10M�

)2.76−2/3

(
v∞

1000 km s−1

)−1 (
vw

500 km s−1

)−4 (
Pb
10d

)−4/3
, (7.166)

which for f (u) ∼ 0.03–0.1 corresponds to the typical low-state luminosities of
SFXTs of ∼1034 erg s−1.

It is straightforward to see that a transition from the low state (subsonic accretion
with slow magnetospheric entry rate f (u) ∼ 0.03–0.1) to supersonic free-fall
Bondi accretion with f (u) = 1, due to a velocity decrease by a factor of two in
the magnetized stellar wind would, for example, lead to a flaring luminosity of
Lx,f lare ∼ (10 ÷ 30) × 25Lx,low. This shows that the dynamical range of SFXT
bright flares (∼300–1000) can be naturally reproduced by the proposed mechanism.

7.10.3 Conditions for Magnetic Reconnection Near
the Magnetosphere

For magnetic field reconnection to occur, the time the magnetized plasma spends
near the magnetopause should be at least comparable to the reconnection time,
tr ∼ RA/vr , where vr is the magnetic reconnection rate, which is difficult to assess
from first principles (Zweibel and Yamada 2009). In real astrophysical plasmas
the large-scale magnetic reconnection rate can be as high as vr ∼ 0.03–0.07vA
(Zweibel and Yamada 2009), and phenomenologically we can parametrize it as
vr = εrvA with εr ∼ 0.01–0.1. The longest time-scale the plasma penetrating into
the magnetosphere spends near the magnetopause is the instability time, tinst ∼
tff (RA)f (u)rad (Shakura et al. 2012), so reconnection may occur if tr /tinst ∼
(uff /vA)(f (u)rad/εr ) � 1. As close to RA (from its definition) vA ∼ uff ,
we arrive at f (u)rad � εr as a necessary condition for reconnection. According
to (7.163), this condition is satisfied only at sufficiently low X-ray luminosities,
pertinent to ‘quiet’ SFXT states. This explains why in HMXBs with convective
shells at higher luminosity (but still lower than 4 × 1036 erg s−1, at which settling
accretion is possible), reconnection from magnetized plasma accretion will not lead
to shell instability, but only to a temporal establishment of the ‘strong coupling
regime’ of angular momentum transfer through the shell, as discussed in Shakura
et al. (2012) and below in Sect. 7.11. Episodic strong spin-ups, as observed in GX
301-2, may be manifestations of such ‘failed’ reconnection-induced shell instability.

Therefore, it seems likely that the key difference between steady HMXBs like
Vela X-1, GX 301-2 (showing only moderate flaring activity) and SFXTs is that
in the first case the effects of possibly magnetized stellar winds from optical OB-
companions are insignificant (basically due to the rather high mean accretion rate),
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while in SFXTs with lower ‘steady’ X-ray luminosity, large-scale magnetic fields,
sporadically carried by clumps in the wind, can trigger SFXT flaring activity via
magnetic reconnection near the magnetospheric boundary. The observed power-law
SFXT flare distributions, discussed in Paizis and Sidoli (2014), with respect to the
log-normal distributions for classical HMXBs (Fürst et al. 2010), may be related to
the properties of magnetized stellar wind and physics of its interaction with the NS
magnetosphere (Shakura et al. 2014a; Sidoli et al. 2016b).

7.11 Angular Momentum Transfer to the Neutron Star
Magnetosphere and Spin-Up/Spin-Down of X-ray
Pulsars

Consider a quasi-static shell around a neutron star magnetosphere in which the
subsonic settling regime is established. We stress that in this regime, the accretion
rate onto the neutron star is determined by the gas density at the shell base, which
is directly related to the gas density downstream the bow shock in the stellar wind
in the gravitational capture region, and by the ability of the plasma to enter the
magnetosphere through the Alfvén surface.

The rotation law in the shell depends on the treatment of the turbulent viscosity
(see Sect. 7.5 if Prandtl’s law for isotropic turbulence is used), and also on any
possible turbulence anisotropy due to convection (Sect. 7.6). In the latter case, the
anisotropy gives rise to more powerful turbulence in the radial direction compared
to the tangential motions. Thus, as we have shown in Sects. 7.4 and 7.5, a series
of solutions appears that describe the radial dependence of the angular velocity of
matter in a convective shell. Below we will use pure power-law rotation:

ω(R) ∼ R−n . (7.167)

The quasi-Keplerian case corresponds to n = 3/2, and the isomomentum distribu-
tion to n = 2, which in some sense describe limiting cases of the possible solutions.

When approaching the bow shock, R → RB , the angular velocity of gas
approaches the orbital angular velocity of the binary system (for simplicity, we
consider circular orbits): ω → ωB . Near the bow shock the problem is no longer
spherically symmetric, the characteristics of the flow may be very complicated
(parts of the matter may, for example, bend the hot shell), and the solution should
be sought for numerically. As there are no such solutions at present, we will assume
that the assumption of power-law rotation in the shell is valid up to the bow shock
located at the Bondi radius RB :

RB � 2GM/(V 2
w + v2

orb) ,

where Vw is the stellar wind velocity at the location of the neutron star orbit, and
vorb is the neutron star orbital velocity.
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This means that the angular velocity of the rotation of the shell at the magneto-
spheric boundary ωm is related to the orbital angular velocity ωB as

ωm = ω̃ωB
(
RB

RA

)n
. (7.168)

(Here the numerical coefficient ω̃ > 1 takes into account the deviation of the rotation
law in the shell near the magnetosphere from a pure power-law dependence, see
above in Sects. 7.4 and 7.5.)

Let the neutron star magnetosphere rotate with the angular velocityω∗ = 2π/P ∗,
where P ∗ is the neutron star spin period. The matter at the base of the shell rotates
with the angular velocity ωm, which, in general, differs from ω∗. If ω∗ > ωm, the
plasma-magnetosphere interaction provides angular momentum transfer from the
magnetosphere to the shell, and in the opposite case ω∗ < ωm—from the shell to
the magnetosphere.

In the general case, the coupling of the matter with the magnetosphere can
be moderate or strong. In the strong coupling regime, the toroidal magnetic field
component Bt is proportional to the poloidal component Bp , and we can write
Bt ∼ −Bp(ωm − ω∗)t , so that |Bt | can grow up to ∼ |Bp|. This regime may be
realized around a rapidly rotating magnetosphere, when the NS angular velocity ω∗
is comparable to or even exceeds the Keplerian angular frequency ωK(RA). In the
latter case, the so-called propeller regime sets in. In the moderate coupling regime,
plasma may enter the magnetosphere via instabilities at a rate faster than required
for the magnetic field toroidal component to grow to the value of the poloidal
component, therefore Bt < Bp .

7.11.1 The Case of Strong Coupling

Let us first consider strong coupling. In this case, powerful large-scale motions
of gas in the shell may lead to turbulent diffusion of the magnetic field and its
dissipation. This process is characterized by the turbulent diffusion coefficient of
the magnetic field ηt . Then the toroidal magnetic field (see, for example, Lovelace
et al. (1995) and references therein) is

Bt = R2

ηt
(ωm − ω∗)Bp . (7.169)

The turbulent magnetic diffusion coefficient is related to the kinematic viscosity
coefficient: ηt � νt . The latter can be written in the form

νt =< ut lt > . (7.170)



7 Quasi-Spherical Subsonic Accretion onto Magnetized Neutron Stars 375

According to the phenomenological Prandtl’s law connecting the mean characteris-
tics of a turbulent flow (the velocity ut , the characteristic spatial scale lt and shear
ωm − ω∗) we have:

ut � lt |ωm − ω∗| . (7.171)

In our case, the turbulence scale should be determined by the maximum scale
of the energy pumping into turbulent motions from the rotating non-spherical
magnetosphere surface. This scale is determined by the velocity difference between
the rigidly rotating magnetosphere and the accreting matter which still does not
interact with the magnetosphere, i.e. lt � RA. This scale determines the turn
velocity of the largest turbulent eddies, and on smaller scales a turbulence cascade
develops. Plugging this scale into Eqs. (7.169)–(7.171) we find that in the strong
coupling regime Bt � Bp.

The torque arising from the plasma-magnetosphere interaction acts on the
neutron star and changes its angular momentum according to the equation

I ω̇∗ =
∫
BtBp

4π
%dS = ±K̃(θ)K2

μ2

R3
A

(7.172)

where I is the moment of inertia of the neutron star, % is the distance to
the rotational axis, and K̃(θ) is a numerical coefficient depending on the angle
between the rotational axis and the magnetic dipole axis. The coefficient K2
appears in (7.172) for the same reason as in Eq. (7.13). The positive sign (spin-
up) corresponds to angular momentum transfer to the neutron star (ωm > ω∗).
The negative sign (spin-down) corresponds to angular momentum removal from
the neutron star to the surrounding shell (ωm < ω∗).

At the Alfvén radius, the matter enters the magnetosphere and acquires the
angular velocity of the neutron star rotation. Then it falls freely onto the neutron
star and supplies it with the angular momentum it acquired at the Alfvén radius RA
from the magnetospheric interaction. As a result, the neutron star spins up at a rate

I ω̇∗ = +zṀR2
Aω

∗ (7.173)

where z is a numerical coefficient taking into account the specific angular momen-
tum of the infalling matter. If the matter falls from the magnetospheric equator,
z = 1; if the matter falls strictly along the neutron star spin axis, z = 0. If all the
matter would enter evenly across a spherical magnetosphere, then we would have
z = 2/3.

Finally, we find that the total torque applied to the neutron star in the strong
coupling regime changes the neutron star spin at a rate

I ω̇∗ = ±K̃(θ)K2
μ2

R3
A

+ zṀR2
Aω

∗ . (7.174)
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Using (7.16), we may exclude Ṁ from this equation to obtain in the spin-up
regime (ωm > ω∗)

I ω̇∗ = K̃(θ)K2μ
2

R3
A

[
1 + z 4γf (u)√

2(γ − 1)(1 + γm2
t )ψ(γ,mt )K̃(θ)

(
RA

Rc

)3/2
]

(7.175)

where R3
c = GM/(ω∗)2 is the corotation radius. In the spin-down regime (ωm <

ω∗) we find

I ω̇∗ = − K̃(θ)K2μ
2

R3
A

[
1 − z 4γf (u)√

2(γ − 1)(1 + γm2
t )ψ(γ,mt )K̃(θ)

(
RA

Rc

)3/2
]
.

(7.176)

Note that in both cases RA should be smaller thanRc; if not, the propeller regime
would set in, and accretion would stop. In the propeller regimeRA > Rc, the matter
does not fall onto the neutron star surface, and there is no powerful generation of
X-ray emission. In this case, the shell downstream the bow shock can cool down
rapidly (see below) likely giving rise to the standard Illarionov-Sunyaev propeller
regime (Illarionov and Sunyaev 1975), which is accompanied by the outflow of
matter from the magnetosphere.

In both regimes (spin-up and spin-down), the neutron star angular velocity
ω∗ approaches the angular velocity of matter at the magnetospheric boundary,
ω∗ → ωm(RA). The difference between ω∗ and ωm is small, and therefore the
second term in the square brackets in Eqs. (7.175) and (7.176) is much smaller than
one. Also note that by approaching the propeller regime (RA → Rc) the accretion
rate decreases, f (u) → 0, the second term in the square brackets vanishes, and
the evolution of the neutron star spin is determined solely by the braking torque
−K̃(θ)μ2/R3

A. (In the propeller regime ωm < ωK(RA), ωm < ω∗, ω∗ > ωK(RA)).
Therefore, the neutron star spins down until reaching the Keplerian frequency at
the Alfvén radius. In this regime, the specific angular momentum of matter moving
towards or outwards from the magnetosphere is, of course, conserved.

Near the equilibrium (ω∗ ∼ ωm), relatively small fluctuations of the mass
accretion rate Ṁ in the shell give rise to a very strong fluctuations in the pulsar
frequency ω̇∗ since the toroidal component of the magnetic field can change the
sign from +Bp to −Bp. If the strong coupling regime can indeed happen in nature,
this could be its distinctive feature. It is known (see, for example, Bildsten et al.
(1997) and on-line Fermi/GBM data4 that real X-ray pulsars sometimes display
rapid transitions from spin-up to spin-down without a corresponding change in X-
ray luminosity. It is not excluded that strong coupling may switch-on due to the
magnetic field frozen in the plasma that has not yet entered the magnetosphere.

4http://gammaray.nsstc.nasa.gov/gbm/science/pulsars/lightcurves/.

http://gammaray.nsstc.nasa.gov/gbm/science/pulsars/lightcurves/
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Some thoughts regarding accretion of a magnetized plasma onto a rotating neutron
star magnetosphere can be found in Ikhsanov and Beskrovnaya (2012).

7.11.2 The Case of Moderate Coupling

The strong coupling regime considered above can be realized in the limiting case
where the toroidal magnetic field Bt reaches a maximum possible value∼ Bp due to
magnetic turbulent diffusion. Usually, the plasma coupling with the magnetosphere
is mediated by various instabilities, whose characteristic growth time is insufficient
for the toroidal time to increase significantly. As discussed above in Sect. 7.2.3, the
shell at the magnetosphere is very hot, so without cooling the plasma turns out to
be marginally stable with respect to the Rayleigh-Taylor instability (see, e.g., the
model calculations in Arons and Lea (1976)).

The torque due to magnetic forces applied to the neutron star reads:

I ω̇∗ =
∫
BtBp

4π
%dS (7.177)

where Bt is the toroidal magnetic field component which arises if there is a
difference between the angular velocity of matter ωm and the magnetosphere
angular velocity ω∗. On the other hand, there is a mechanical torque acting on the
magnetosphere from the base of the shell caused by the turbulent stressesWRφ :

∫
WRφ%dS , (7.178)

where the viscous turbulent stresses can be written as

WRφ = ρνtR ∂ω
∂R

. (7.179)

To specify the turbulent viscosity coefficient

νt = 〈uclt 〉 , (7.180)

we assume that the characteristic scale of turbulence close to the magnetosphere is

lt = ζdRA , (7.181)

where we have introduced the dimensionless factor ζd � 1, characterizing the size
of the zone in which there is an effective exchange of angular momentum between
the magnetosphere and the shell base. The characteristic velocity of the turbulent
pulsations uc is determined by the mechanism of turbulence in the plasma above
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the magnetosphere. In the case of strong convective motions in the shell, caused by
heating of its base, uc ∼ cs , where cs is the sound speed.

Equating the torques (7.177) and (7.178) and allowing for (7.179) and (7.181),
we get

ρucζdR
2
A

∂ω

∂R
= BtBp

4π
(7.182)

We now eliminate the density from this expression using the pressure balance at the
magnetospheric boundary and the expression for the temperature (7.9), and make
the substitution

∂ω

∂R
= ωm − ω∗

ζdRA
. (7.183)

Then we find the relation between the toroidal and poloidal components of the
magnetic field in the magnetosphere:

Bt

Bp
= K2

γ√
2(γ − 1)

(
uc

uff

)(
ωm − ω∗

ωK(RA)

)
. (7.184)

(Note that there is no dependence on the width of the layer characterized by the
parameter ζd ). Substituting (7.184) into (7.177), the spin-down rate of the neutron
star may be written as:

I ω̇∗ = K1K2

(
uc

uff

)
μ2

R3
A

ωm − ω∗

ωK(RA)
. (7.185)

where K1 ∼ 1 is a constant arising from integration of the torques over the surface
of the magnetosphere.

Using the definition of the Alfvén radius RA (7.16) and the expression for the
Keplerian frequency ωK , we can write (7.185) in the form

I ω̇∗ = ZṀR2
A(ωm − ω∗). (7.186)

Here the dimensionless coefficient Z is

Z = K1

(
uc

uff

)
1

f (u)
. (7.187)

Taking into account that the matter falling onto the neutron star brings the angular
momentum zṀR2

Aω
∗, we ultimately get

I ω̇∗ = ZṀR2
A(ωm − ω∗)+ zṀR2

Aω
∗ . (7.188)
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Here 0 < z < 1 is a numerical coefficient which is ∼ 2/3 if the matter enters across
the magnetospheric surface with equal probability at different magnetospheric
latitudes. Substituting ωm(RA) = ωB(RB/RA)

2 for an iso-angular-momentum
shell, we can rewrite the above equation in the form

I ω̇∗ = ZṀωBR2
B − Z(1 − z/Z)ṀR2

Aω
∗ . (7.189)

Substituting for the coupling coefficient Z, in the case of Compton cooling we
can rewrite (7.188) in a form explicitly showing the spin-up (Ksu) and spin-down
(Ksd) torques:

ω̇∗ = AṀ 7
11 − BṀ3/11 = Ksu −Ksd . (7.190)

Here the spin-up/spin-down coefficients A and B do not explicitly depend on Ṁ .
For a characteristic value of the accretion rate Ṁ16 ≡ Ṁ/1016 g/s, the spin-up

and spin-down torques read (in CGS units):

Ksu ≈ 5.29 × 10−13[ rad

s

2

]K1

(
uc

uff

)
ζ−

7
11μ

1
11
30

(
v8√
δ

)−4 (
Pb

10d

)−1

Ṁ
7/11
16 I−1

45

(7.191)

Ksd ≈ 5.36 × 10−12[ rad

s

2

](1 − z

Z
)K1

(
uc

uff

)
ζ−3/11μ

13/11
30

(
P ∗

100s

)−1

Ṁ
3/11
16 I−1

45 .

(7.192)

Here I45 = I/1045 g cm2 is the NS moment of inertia, and the dimensionless factor
δ � 1 takes into account the actual location of the gravitational capture radius.

Another approach to the problem of interaction of a quasi-spherically accreting
magnetized plasma with rotating NS magnetospheres is presented in Ikhsanov et al.
(2014).

7.12 Equilibrium Pulsars

For equilibrium pulsars we set ω̇∗ = 0 and from (7.188) we get

Zeq(ωm − ω∗)+ zω∗ = 0 . (7.193)

Close to equilibrium we may vary (7.188) with respect to Ṁ . Variations in δṀ may
in general be caused by changes in the density δρ as well as in the velocity of the



380 N. Shakura et al.

stellar wind δv (and thus the Bondi radius). For density variations only we find (see
Eq. (67) in Shakura et al. (2013b) for more detail)

Zeq,ρ = I ∂ω̇
∗

∂Ṁ
|eq

4
11ω

∗R2
A

≈ 2.52

(
∂ω̇∗
∂y

|y=1

10−12

)(
P ∗

100s

)
ζ−4/11Ṁ

−7/11
16 μ

−12/11
30 .

(7.194)

On the other hand, by equating this value to the definition of the coupling coefficient
Z (see (7.187) above), we can find the dimensionless combination of the theory
parameters:

Π0 ≡
K1

(
uc
uff

)
ζ 3/11 ≈ 0.55

(
∂ω̇∗
∂y

|y=1

10−12

)(
P ∗

100s

)
Ṁ

−3/11
16 μ

−13/11
30 . (7.195)

The equilibrium period of an X-ray pulsar with known NS magnetic field can be
found from (7.189) (or, which is the same, by equating the spin-up and spin-down
torques from (7.191) and (7.192)):

Peq ≈ 1000[s](1 − z/Zeq)ζ 4/11μ
12/11
30,eq

(
Pb

10d

)
Ṁ

−4/11
16

(
v8√
δ

)4

. (7.196)

In equilibrium, from this formula we may determine another dimensionless combi-
nation of the theory parameters:

Π1 ≡
(

1 − z
Zeq

)
ζ 4/11

δ2
≈ 0.1

(
P ∗

100s

)(
Pb

10d

)−1

Ṁ
4/11
16 μ

−12/11
30 v−4

8 . (7.197)

Because of the strong dependence of the equilibrium period on the (usually,
poorly measurable) wind velocity, for pulsars with independently known magnetic
fields μ, it is more convenient to estimate the wind velocity, assuming P ∗ = P ∗

eq :

v8 ≈ 0.56

⎡
⎣

(
1 − z

Zeq

)
ζ 4/11

δ2

⎤
⎦
−1/4

Ṁ
1/11
16 μ

−3/11
30,eq

(
P∗/100s

Pb/10d

)1/4

, (7.198)

which is only weakly dependent on Ṁ and the theory parameterΠ1.
In the possible case of mass accretion rate variations due to wind velocity

changes only, the coupling coefficient Zeq,v reads (see Eq. (68) in Shakura et al.
(2013b)):

Zeq,v ≈ 0.76

(
∂ω̇∗
∂y

|y=1

10−12

)(
P ∗

100s

)
ζ−4/11Ṁ

−7/11
16 μ

−12/11
30 + 7

10
z . (7.199)
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Table 7.1 Parameters for the
equilibrium X-ray pulsars

Equilibrium pulsars

Pulsar GX 301-2 Vela X-1

Measured parameters

P ∗(s) 680 283

PB (d) 41.5 8.96

vw(km/s) 300? 700

μ30 2.7 1.2

Ṁ16 3 3
∂ω̇
∂y

|y=1(rad/s2) 1.5 × 10−12 1.2 × 10−12

Derived parameters

f (u)ζ−7/11 0.32 0.30

Zeqζ
4/11 4.32 3.49

Π0 1.28 1.11

v8Π
1/4
1 (km/s) 530 800

Clearly, in this case the coupling is weaker. Below we will consider only the wind
density variations. In principle, if z > 0 and (ωm − ω∗) > 0, (7.193) implies
that there can be no equilibrium at all – the pulsar can only spin-up. However, two
well-measured equilibrium pulsars (see below) show that an equilibrium does exist,
suggesting that in these objects (ωm − ω∗) < 0.

To illustrate the theory outlined above, we show the measured and obtained
model parameters of two well-known persistent X-ray pulsars, Vela X-1 and GX
301-2 (see Table 7.1).

It is clear from Table 7.1 that for Vela X-1 the observed and derived parameters
are in good agreement, with the value of the dimensionless theory parameter
Π0 ∼ 1, as expected from very general hydrodynamic similarity principles (Sedov
1959). It is remarkable that the parameter Π0 ∼ 1 in GX 301-2 as well, suggesting
a common physics of hydrodynamic interactions in these objects. However, the
observed wind velocity in GX 301-2 is inferred from observations to be around
300 km/s, which is almost twice as low as that derived using our theory. To obtain
such a low velocity from (7.198), the dimensionless parameterΠ1 should be around
10, which is unrealistically high (in fact, this parameter should not be higher than
(1). From this we conclude that in GX 301-2 the observed wind velocity is likely
estimated far from the region interacting with the NS.

7.13 Non-equilibrium Pulsars

It is convenient to introduce the dimensionless parameter

y ≡ Ṁ

Ṁeq
(7.200)
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where Ṁeq represents the accretion rate at which ω̇∗ = 0:

Ṁeq =
(
B

A

)11/4

. (7.201)

Equation (7.190) can be rewritten in the form

I ω̇∗ = AṀ
7

11
eq y

7
11

(
1 − y− 4

11

)
. (7.202)

A plot of the function ω̇∗(y) is shown schematically in Fig. 7.6. The function ω̇∗(Ṁ)
reaches minimum at Ṁ = Ṁcr :

Ṁcr = Ṁeq
(

3

7

) 11
4

, (7.203)

In other words, ω̇∗ attains a minimum for the dimensionless parameter

ycr =
(

3

7

) 11
4

< 1. (7.204)

The minimum ω̇∗ for y = ycr (i.e. the maximum possible spin-down rate of the
pulsar) is

I ω̇∗
min = −4

3
AṀ

7
11
eq y

7
11 . (7.205)

Numerically, the maximum spin-down rate at ycr is

ω̇∗
sd,min ≈ −1.12 × 10−12[rad/s2](1 − z/Z)7/4K1

(
uc
uff

)

μ2
30

(
v8√
δ

)3 (
P ∗

100 s

)−7/4 (
Pb
10d

)3/4
. (7.206)

Then, from the condition |ω̇∗
sd | ≤ |ω̇∗

sd,min| follows a lower limit on the neutron star
magnetic field:

μ30 > μ
′
30,min ≈ 0.94

∣∣∣ ω̇∗sd
10−12rad/s2

∣∣∣1/2 (1 − z/Z)−7/8
[
K1

(
uc
uff

)]−1/2

(
v8√
δ

)−3/2 (
P ∗

100 s

)7/8 (
Pb
10d

)−3/8
. (7.207)
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Table 7.2 Parameters of non-equilibrium X-ray pulsars

GX 1+4 SXP1062 4U 2206+54

Measured parameters

P ∗(s) 140 1062 5560

PB (d) 1161 ∼300a 19(?)

vw(km/s) 200 ∼300b 350

μ30 ? ? ?

Ṁ16 1 0.6 0.2

ω̇∗sd −2.34 × 10−11 −1.63 × 10−11 −1.1 × 10−13

Derived parameters

μ′′
30,min ≈2.4 ≈10 ≈0.6

a Estimate of the source’s position in the Corbet diagram
b Estimate of typical wind velocity for Be X-ray binaries

At very low accretion rates y � 1 the spin-up torque Ksu can be neglected, and
the spin-down rate of the pulsar is

ω̇∗
sd ≈ −0.54 × 10−12[rad/s2](1 − z

Z
)K1

(
uc
uff

)
ζ−3/11

μ
13/11
30 Ṁ

3/11
16

(
P ∗

100 s

)−1
. (7.208)

From this we obtain a lower limit on the neutron star magnetic field that does not
depend on the stellar wind velocity or the binary orbital period:

μ30 > μ
′′
30,min ≈ 1.68

∣∣∣ ω̇∗sd
10−12rad/s2

∣∣∣11/13
(1 − z

Z
)−11/13

[
K1

(
uc
uff

)]−11/13
ζ 3/13

Ṁ
−3/13
16

(
P ∗

100 s

)11/13
. (7.209)

As an example, consider the steady spin-down behavior in several slowly rotating
moderate-luminosity X-ray pulsars (GX 1+4, SXP 1062, 4U 2206+54) within
the framework of the quasi-spherical settling accretion theory. The results are
summarized in Table 7.2.

7.14 On the Possibility of the Propeller Regime

The very slow rotation of the neutron stars in X-ray pulsars GX 1+4, GX 301-2
and Vela X-1 which we consider here as examples, ω∗(RA) < ωK(RA), means that
in these objects the propeller regime, in which the gas is ejected from the rotating
magnetosphere with a parabolic velocity and the neutron star spins down, can hardly
occur.
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We start with estimating an important ratio of the viscous stresses (∼BtBp) to
the gas pressure (∼B2

p) at the magnetospheric boundary. This ratio is proportional to
the ratio of the magnetic field components, Bt/Bp (see Eq. (7.184)), and is always
less than one (in the moderate coupling regime). This implies that only large-scale
convective motions with turbulent radial scaling of eddies can be present in the shell.
Whenω∗ > ωK(RA), a centrifugal barrier appears and accretion ceases. In this case,
the maximum possible braking torque applied to the neutron star will be of the order
of ∼ −K2μ

2/R3
A because of the strong plasma-magnetosphere coupling. In this

regime, the toroidal magnetic field component, Bt , is comparable to the poloidal,
Bp. It can not be excluded that the hot shell with isomomentum angular rotation
will be conserved also in this case, and that the angular momentum removal from the
rotating magnetosphere will be mediated by this shell. If the characteristic cooling
time of the shell plasma is shorter than the gas free-fall time, the shell disappears
and, probably, a thin storage disc as considered in Syunyaev and Shakura (1977)
will be formed. No accretion occurs through such a disc, it only mediates the angular
momentum removal from the rotating magnetosphere.

7.15 Do Slow X-ray Pulsars Have Prograde or Retrograde
Accretion Discs?

The analysis of real slow X-ray pulsars presented above suggests that they have
convective magnetospheric shells with isomomentum angular rotation. Therefore,
we will consider only the case with ω ∼ R−2. Equation (7.189) implies that for
ω̇∗ = 0 the equilibrium spin frequency of the neutron star is

ω∗
eq = ωB

1

1 − z/Z
(
RB

RA

)2

. (7.210)

We stress that such an equilibrium in our model is possible only if a settling
accretion shell is present above the magnetosphere. At high accretion rates Ṁ >

Ṁ∗ � 4 × 1016 g s−1 accretion proceeds in the free-fall regime, and no hot shell is
formed above the magnetosphere.

The equilibrium period of an X-ray pulsar in the quasi-spherical settling accretion
regime is determined by formula (7.196):

Peq � 1000[s]μ12/11
30 (Pb/10d)Ṁ−4/11

16 v4
8 . (7.211)
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For comparison, in the case of standard disc accretion the equilibrium period is:

Peq,d ≈ 10[s]μ6/7
30 Ṁ

−3/7
16 . (7.212)

Therefore, the long spin periods observed in some X-ray pulsars may be explained
in the presence of an accretion disc only by assuming a very strong (magnetar-
like) magnetic field of the neutron star. Another explanation based on retrograde
accretion discs (i.e. those with angular momentum opposite to the orbital) around
magnetospheres of such X-ray pulsars is also discussed in the literature (see, for
example, Nelson et al. (1997) and references therein). A conversion of the torques
due to the temporal formation of a retrograde accretion disc from the stellar wind
can, in principle, lead to very long spin periods even in X-ray pulsars with standard
magnetic fields. Such discs may be formed due to inhomogeneities in the captured
stellar wind (Ruffert 1997, 1999). The observed torque reversal in some X-ray
pulsars could be explained, in principle, by this mechanism. In the case of GX 1+4
with long-term stable spin-down it is highly unlikely to observe a stable retrograde
disc on timescales much longer than the binary orbital period (see González-Galán
et al. (2012) for more detail). For GX 301-2 and Vela X-1, the direct proportionality
of the torques to the X-ray luminosity (see Figs. 7.4 and 7.5) also does not support
the presence of a retrograde accretion disc (Fig. 7.6).

Fig. 7.4 Torque-luminosity correlation in GX 301-2, ω̇∗ as a function of BATSE data (20–40 keV
pulsed flux) near the equilibrium frequency (Doroshenko et al. 2010). The assumed X-ray flux at
equilibrium (in terms of the dimensionless parameter y) is shown by the vertical dotted line
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Fig. 7.5 The same as in Fig. 7.4 for Vela X-1 (V. Doroshenko, PhD Thesis, 2010, IAAT)

y=M/M eq

w*

. .

.

00

ycr

1

Vela X-1
GX301-2

GX 1+4
SXP1062

Fig. 7.6 Schematics of the dependence of ω̇∗ on the dimensionless accretion rate y. The figure
shows the position in the diagram for equilibrium pulsars with y ∼ 1 and for non-equilibrium
pulsars at steady spin-down with y < ycr

7.16 Conclusions

In Shakura et al. (2012) we constructed a theoretical model of quasi-spherical
subsonic accretion onto slowly rotating magnetized neutron stars. In this model,
the accreting matter is gravitationally captured from the stellar wind of the optical
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component and settles subsonically onto a rotating magnetosphere through a hot
extended quasi-static gas shell. In the shell, large-scale convective motions occur,
mediating the angular momentum transfer, and depending on the difference of the
velocity of the gas and the magnetosphere at the magnetospheric boundary, spin-up
or spin-down of the X-ray pulsar can be observed.

A detailed analysis and comparison with observations of the two slowly rotating
X-ray pulsars GX 301-2 and Vela X-1, which both demonstrate correlative changes
of the spin-up/spin-down torques with X-ray luminosity near the equilibrium
period of the neutron star, likely suggests strongly anisotropic convection in
their magnetospheric shells leading to rotation with a constant specific angular
momentum, ω ∼ R−2. A statistical analysis of long-period X-ray pulsars in Be-
binary systems in the Small Magellanic Cloud (Chashkina and Popov 2012) also
favors the rotation law ω ∼ R−2. The accretion rate through the magnetospheric
shell is determined by the ability of the plasma to enter the magnetosphere. The
settling accretion regime, which enables angular momentum removal from the
neutron star magnetosphere may be realized at low accretion rates Ṁ < Ṁ† �
4 × 1016 g/c (X-ray luminosities L < L† � 4 × 1036 erg s−1). At higher accretion
rates (and, correspondingly, at higher X-ray luminosities) rapid Compton cooling
of the plasma above the magnetospheric boundary causes a free-fall gap to emerge
above the magnetosphere, and the accretion becomes highly non-stationary.

Spin-up/spin-down observations of long-period X-ray pulsars (i.e. measurements
of the torque ω̇∗, or ∂ω̇∗/∂Ṁ near the torque reversal point) allow the basic
dimensionless parameters of the model to be inferred as well as the neutron star
magnetic field to be independently estimated. Such an analysis was carried out for
the equilibrium X-ray pulsars GX 301-2 and Vela X-1 and suggest magnetic fields
in agreement with estimations from cyclotron line measurements in these sources.

Measurements of the equilibrium pulsar period P ∗, the orbital binary period
Pb and the neutron star magnetic field estimate μ make it possible to estimate
the stellar wind velocity v from the optical companion without using complicated
spectroscopic measurements. For non-equilibrium pulsars, there is a maximum
possible value of the spin-down at the accretion stage depending on P ∗, Pb, μ and
v. For such pulsars (e.g., GX 1+4, SXP 1062, 4U 2206+54) the observed spin-down
rate and X-ray luminosity can be used to obtain a lower limit on the neutron star
magnetic field, which in all cases is found to be close to the standard neutron star
magnetic field ∼1012–1013 G and is in agreement with cyclotron line measurements.

In the model of subsonic quasi-spherical accretion, the observed long-term stable
periods of spin-up or spin-down of the neutron stars in some X-ray pulsars can be
quantitatively explained by a change of the mean accretion rate onto the neutron
star (with a corresponding change in X-ray luminosity). Apparently, such variations
are related to the properties of the stellar wind from the optical companion in these
X-ray binaries.

The model predicts a specific behavior of the frequency variations δω̇∗ on top
of a steady spin-up or spin-down, as a function of the accretion rate variations δṀ .
There is a critical mass accretion rate, Ṁcr , below which an anti-correlation of the
frequency fluctuations δω̇∗ with δṀ should be observed. This is the case in GX 1+4
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at the long-term steady spin-down stage presently observed. Above this accretion
rate, the frequency fluctuations δω̇∗ relative to the mean value should correlate with
the mass accretion rate fluctuations δṀ . This is the case in the equilibrium X-ray
pulsars Vela X-1 and GX 301-2 around the equilibrium period and in GX 1+4 at the
steady spin-up stage. The model also gives a quantitative explanation of the relative
amplitude and sign of the observed frequency fluctuations in GX 1+4.
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Chapter 8
On the Properties of
Velikhov-Chandrasekhar MRI
in Ideal and Non-ideal Plasmas

Nikolay Shakura and Konstantin Postnov

Abstract In this chapter, conditions of the Velikhov-Chandrasekhar magneto-
rotational instability (MRI) in ideal and non-ideal plasmas are examined. A
linear WKB analysis of hydromagnetic axially symmetric flows shows that in the
Rayleigh-unstable hydrodynamic case where the angular momentum decreases with
radius, the MRI branch becomes stable, and the magnetic field suppresses the
Rayleigh instability at small wavelengths. We investigate the limiting transition
from hydromagnetic flows to hydrodynamic flows. The Rayleigh mode smoothly
transits to the hydrodynamic case, while the Velikhov-Chandrasekhar MRI mode
completely disappears without the magnetic field. The effects of viscosity and
magnetic diffusivity in the plasma on the MRI conditions in thin accretion discs are
studied. We find the limits on the mean free-path of ions allowing MRI to operate
in such discs.

8.1 Introduction

In the end of the 1950s—beginning of the 1960s, E. Velikhov and S. Chandrasekhar
studied the stability of sheared hydromagnetic flows (Velikhov 1959; Chandrasekhar
1960). In these papers, the magneto-rotational instability (MRI) in axisymmetric
flows with magnetic fields was discovered. MRI arises when a relatively small
seed poloidal magnetic field is present in the fluid. This instability was applied
to astrophysical accretion discs in the influential paper by Balbus and Hawley
(1991), and has since then been considered the major reason for the turbulence
arising in accretion discs (see Balbus and Hawley 1998 for a review). Non-linear
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numerical simulations (e.g. Hawley et al. 1995; Sorathia et al. 2012; Hawley et al.
2013) confirmed that MRI can sustain turbulence and dynamos in accretion discs.
However, semi-analytical and numerical simulations (see, for example, Masada and
Sano 2008; Stone 2011; Hawley et al. 2013; Suzuki and Inutsuka 2014; Nauman and
Blackman 2015) suggest that the total (Reynolds + Maxwell) stresses due to MRI
are insufficient to cause effective angular momentum transfer in accretion discs, in
terms of the phenomenological alpha-parameter αSS (Shakura and Sunyaev 1973),
giving rather low values αSS ∼ 0.01–0.03. Note that from the observational point
of view, the alpha-parameter can be reliably evaluated, e.g. from analysis of non-
stationary accretion discs in X-ray novae (Suleimanov et al. 2008), dwarf-nova and
AM CVn stars (Kotko and Lasota 2012), and turns out to be an order of magnitude
higher than typically found in the numerical MRI simulations.

In this chapter we use the local linear analysis of MRI in the WKB-approximation
by Balbus and Hawley (1991) to examine properties of MRI for different laws
of differential rotation in weakly magnetized flows, Ω2(r) ∝ r−n, i.e. when
the solution to the linearized MHD equations in the Boussinesq approximation is
searched for in the form ∼ ei(ωt−kr r−kzz), where kr , kz are wave vectors in the radial
and normal direction to the disc plane, respectively, in cylindrical coordinates.

In this approximation, the dispersion relation represents a biquadratic algebraic
equation. A linear local analysis of unstable modes in this case was performed
earlier (see, e.g., Balbus 2012). Here we emphasize the different behaviour of stable
and unstable modes of this equation for different rotation laws of the fluid. We show
that in the Rayleigh-unstable hydrodynamic case, where the angular momentum
decreases with radius, the Velikhov-Chandrasekhar MRI does not arise, and the
magnetic field suppresses the Rayleigh instability at small wavelengths.

Then we turn to the analysis of a non-ideal plasma characterized by a non-zero
kinematic viscosity ν and magnetic diffusivity η. This problem has been addressed
previously by different authors (see, e.g. Balbus and Hawley (1998), Sano and
Miyama (1999), Ji et al. (2001), Balbus (2004), Islam and Balbus (2005), Pessah
and Chan (2008), among others), aimed at studying various aspects of the MRI
physics and applications. To keep the paper self-contained, we re-derive the basic
dispersion relation in the general case and investigate its behaviour for different
values of the magnetic Prandtl number Pm = ν/η and the kinematic viscosity ν.
Specifically, we consider the limitations implied by the viscosity in accretion discs
with finite thickness, and find phenomenologically interesting constraints on the
disc parameters where MRI can operate. Below we delineate the derivation of the
dispersion equation for non-ideal plasma in the Boussinesq approximation for both
adiabatic and non-adiabatic perturbations for different magnetic Prandtl numbers,
Pm = ν/η, and different values of the kinematic viscosity ν. Then we consider
limitations on the viscosity in thin accretion discs in which MRI can operate.



8 On the Properties of Velikhov-Chandrasekhar MRI in Ideal and Non-ideal Plasmas 395

8.2 Derivation of the Dispersion Equation for a Non-ideal
Plasma

Here we generalize the derivation of the MRI dispersion equation (8.36) given in
Kato et al. (1998) to the case of a non-ideal plasma with arbitrary kinetic coefficients
ν and η (see also Ji et al. 2001).

The system of non-ideal MHD equations reads:

1) Mass conservation equation

∂ρ

∂t
+∇ · (ρu) = 0 , (8.1)

2) Navier-Stokes equation including gravity force and Lorentz force

∂u

∂t
+ (u∇) · u = − 1

ρ
∇p −∇φg + 1

4πρ
(∇ × B)× B + νΔu (8.2)

(here φg is the Newtonian gravitational potential),
3) Induction equation

∂B

∂t
= ∇ × (u × B)+ ηΔB , (8.3)

4) Energy equation

ρRT

μ

[
∂s

∂t
+ (u∇) · s

]
= Qvisc −∇ · F + η

4π
[∇ × B]2 . (8.4)

where s is the specific entropy (per particle), R is the universal gas constant, μ
is the molecular weight, T is the temperature, and terms on the right stand for
viscous, energy flux F and Joule dissipation, respectively.

5) These equations should be completed with the equation of state for a perfect gas,
which is convenient to write in the form:

p = Kes/cV ργ , (8.5)

where K is a constant, cV is the specific volume heat capacity and γ = cp/cV
is the adiabatic index (5/3 for a monoatomic gas).

We will consider small axially symmetric perturbations in the WKB approx-
imation with space-time dependence ei(ωt−kr r−kzz), where r, z, φ are cylindrical
coordinates. The unperturbed magnetic field is assumed to be purely poloidal: B0 =
(0, 0, B0). The velocity and magnetic field perturbations are u = (ur, uφ, uz) and
b = (br , bφ, bz), respectively. The density, pressure and entropy perturbations are
ρ1, p1, and s1 over the unperturbed values ρ0, p0, and s0, respectively. To filter out
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magnetoacoustic oscillations arising from the restoring pressure force, we will use
the Boussinesq approximation, i.e. consider incompressible gas motion ∇·u = 0. In
the energy equation we neglect Eulerian pressure variations, p1(t, r, φ, z) = 0, but
Lagrangian pressure variations δp(t, r(t0), φ(t0, z(t0)) are non-zero. (Recall that for
infinitesimally small shifts the perturbed gas parcel acquires the pressure equal to
that of the ambient medium; see e.g. Spiegel and Veronis (1960) and Kundu et al.
(2012) for discussion of the Boussinesq approximation).

In the linear approximation, the system of differential non-ideal MHD equations
is reduced to the following system of algebraic equations.

a) The Boussinesq approximation for gas velocity u is ∇ · u = 0:

krur + kzuz = 0 . (8.6)

b) The radial, azimuthal and vertical components of the Euler momentum equation
are, respectively:

iωur − 2Ωuφ = ikr p1

ρ0
− ρ1

ρ2
0

∂p0

∂r
+ i c

2
A

B0
(krbz − kzbr )− νk2ur , (8.7)

iωuφ + κ2

2Ω
ur = −i c

2
A

B0
kzbφ − νk2uφ , (8.8)

iωuz = ikz p1

ρ0
− ρ1

ρ2
0

∂p0

∂z
− νk2uz (8.9)

Here k2 = k2
r + k2

z so that in the linear order νΔu → −νk2{ur , uφ, uz},1 and
we have introduced the unperturbed Alfvén velocity c2

A = B2
0/(4πρ0).

To specify the density perturbations ρ1/ρ0, we need to address the energy
equation. First, we consider adiabatic perturbations, i.e. require that

∂s

∂t
+ (u · ∇)s = 0 . (8.10)

For small density perturbations from Eq. (8.5) we obtain for entropy perturbations

s1

cV
+ γ ρ1

ρ0
= 0 , (8.11)

and after substituting this into Eq. (8.10) we get

iωγ
ρ1

ρ0
+ uz ∂ lnpρ−γ

∂z
+ ur ∂ lnpρ−γ

∂r
= 0 (8.12)

1Here we neglect terms ∼ (kr/r) compared to terms ∼ k2, see also discussion in Acheson (1978).
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(cf. Eq. (122) in Balbus and Hawley 1998). Hence in the absence of entropy
gradients we obtain

1

ρ0

∂ρ1

∂t
= 0 . (8.13)

Consider now the more general case of non-adiabatic linear perturbations. To do
this, we need to specify the right-hand side of the energy equation (8.4). Let us start
with the last term. Writing for the magnetic field B = B0+b and taking into account
that for the unperturbed field ∇ × B0 = 0, we see that the Joule dissipation term
is quadratic in magnetic field perturbations b, so we exclude it from consideration.
The heat flux divergence is

∇ · F = ∇(−κT∇T ) = −κTΔT , (8.14)

where κT is the temperature conductivity coefficient. From the equation of state for
an ideal gas written in the form p = ρRT/μ, we find for small perturbations with
zero Eulerian pressure variations p1/p0 = 0

ρ1

ρ0
= −T1

T0
, (8.15)

i.e. in the axially symmetric waves considered here the density variations are in
counter-phase with the temperature variations.

The viscous dissipative function Qvisc can be written as Qvisc = ρνΦ, where
the functionΦ in polar coordinates is

Φ = 2

[(
∂ur
∂r

)2 +
(

1
r

(
∂uφ
∂φ

)
+ ur

r

)2 +
(
∂uz
∂z

)2
]

+
[
r ∂
∂r

( uφ
r

) + 1
r
∂ur
∂φ

]2 +
[

1
r
∂uz
∂φ

]2

+
[
∂ur
∂z

+ ∂uz
∂r

]2 − 2
3 (∇ · u)2 . (8.16)

All terms but one in this function are quadratic in small velocity perturbations; this
term has the form:

νρ

(
∂uφ

∂r
− uφ

r

)2

. (8.17)

Writing for the azimuthal velocity uφ = uφ,0 + uφ,1 (here for the purposes of this
paragraph and only here we specially mark the unperturbed velocity with index 0,
not to be confused with our notations uφ for perturbed velocity in Eqs. (8.7)–(8.8)
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above and below). Thus we obtain for the viscous dissipation

Qvisc = νρr dΩ
dr

[
r
dΩ

dr
− 2ikruφ,1 − 2

uφ,1

r

]
+ quadratic terms . (8.18)

Here Ω = uφ,0/r is the angular (Keplerian) velocity of the unperturbed flow. The
first term in parentheses describes the viscous energy release in the unperturbed
Keplerian flow. For this unperturbed flow we have

∂s0

∂t
= νμ [r(dΩ/dr)]

2

RT
= 9

4
νμ
Ω2

RT
. (8.19)

Thus, the entropy of the unperturbed flow changes along the radius. However, on a
scale of the order of or smaller than the disc thickness, the entropy gradient can be
neglected. The second term in Eq. (8.18) vanishes if kr = 0, i.e. we consider two-
dimensional perturbations with only kz �= 0. As a result, the energy equation with
zero entropy gradients in the Boussinesq limit becomes

ρ0RT0

μ
s1 = −2ikrνρ0r

dΩ

dr
uφ,1 − κT k2T0

T1

T0
. (8.20)

Like in the linearized equation ∇ · u = 0, here we have neglected the term uφ,1/r .
By substituting Eqs. (8.11) and (8.15) into Eq. (8.20), we find the relation between
the density variations and uφ in the Boussinesq limit with zero entropy gradients:

ρ1

ρ0

(
iωcp + κT k

2

ρ0R/μ

)
= 2ikrνr(dΩ/dr)

RT0/μ
uφ (8.21)

Here cp = γ cV = γ /(γ − 1) is the specific heat capacity (per particle) at constant
pressure.

To describe the effects of thermal conductivity, it is convenient to introduce the
usual dimensionless Prandtl number:

Pr ≡ νρ0Cp

κT
. (8.22)

(Here Cp = cpR/μ). Substituting Eq. (8.22) into Eq. (8.21) yields:

ρ1

ρ0
= γ /(γ − 1)

(iω + νk2/Pr)

2ikrνr(dΩ/dr)

RT0/μ
uφ (8.23)

It is straightforward to include the density perturbations in the non-adiabatic
case (8.21) in the analysis. This significantly complicates the final dispersion
equation (see Eq. (8.32) below). We stress again that the two-dimensional case with
kr = 0 produces the dispersion relation for small local perturbations which is exact
even in the case of non-adiabatic perturbations.
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c) The three components of the induction equation with account for ηΔB →
−ηk2{br, bφ, bz} read:

iωbr = −iB0kzur − ηk2br , (8.24)

iωbφ = −iB0kzuφ + r dΩ
dr
br − ηk2bφ , (8.25)

iωbz = iB0krur − ηk2bz . (8.26)

Following Kato et al. (1998), we express all perturbed quantities through uz:

ur = −kz
kr
uz , (8.27)

uφ = kz

kr

κ2

2Ω (iω + ηk2)2 + c2
Ak

2
z r
dΩ
dr[

(iω + νk2)(iω + ηk2)+ c2
Ak

2
z

]
(iω + ηk2)

uz , (8.28)

br

B0
(iω + ηk2) = i k

2
z

kr
uz , (8.29)

bφ

B0
(iω + ηk2) = −ikzuφ + ir dΩ

dr

(iω + ηk2)

k2
z

kr
uz , (8.30)

bz

B0
(iω + ηk2) = −ikzuz , (8.31)

The system of linear equations (8.6) and (8.27)–(8.31) contains the equation
∇ · b = 0. Indeed, by multiplying Eqs. (8.29) and (8.31) by kr and kz, respectively,
and summing up the obtained equations, we get krbr + kzbz = 0. Substituting
Eqs. (8.27)–(8.31) into Eq. (8.7) and rearranging the terms, we arrive at the disper-
sion relation (8.48).

The dispersion relation in the general case of non-adiabatic perturbations with
kr �= 0, i.e. with non-vanishing density perturbations ρ1 (see Eq. (8.21)) is:

ω4∗∗ +
(
kz

k

)2 [(
iω + ηk2

)2
κ2 + c2

Ak
2
z (κ

2 − 4Ω2)
]

[
1 − γ−1

γ
ikr

(iω+νk2/Pr)

(
A− kr

kz
B
)]

= 0 , (8.32)

where ω∗∗ is determined as

ω2∗∗ = −(iω + νk2)(iω + ηk2)− c2
Ak

2
z . (8.33)
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The coefficients A and B are:

A = ν
(
d lnΩ

d ln r

)(
1

p0

dp0

dr

)
; B = ν

(
d lnΩ

d ln r

)(
1

p0

dp0

dz

)
. (8.34)

Although the terms with A and B arising from the viscous dissipation function are
proportional to (kr/r)(ν/ω) and (k2

r /kzr)(ν/ω), they are retained in our analysis
since for large viscosities they may become comparable to or even higher than one.
The expression in the square brackets in Eq. (8.32) above can be rewritten in the
equivalent form:

[
1 + γ − 1

γ

iν

(iω + νk2/Pr)

(
kr

kz

)
d lnΩ/d ln r

RT0/μ
(kzgr,eff − krgz)

]
, (8.35)

where gr,eff = −1/ρ0(dp0/dr) and gz = −1/ρ0(dp0/dz) are the effective radial
and vertical gravity accelerations in the unperturbed flow, respectively. Clearly, for
kr = 0 we return to Eq. (8.48) with k = kz. Note that for kr �= 0 Eq. (8.32) is a
fifth-order algebraic equation. For perturbations with kr = 0 this equation becomes
a fourth-order algebraic equation, which already has exponentially growing MRI
modes. For completeness, it would be desirable to investigate this five-order
equation. However, in the absence of a magnetic field Eq. (8.32) turns into a third-
order algebraic equation. As we show in Shakura and Postnov (2015), one of the
Rayleigh modes in this case can become exponentially unstable at long wavelengths
even in the Rayleigh-stable case of Keplerian rotation.

8.3 Linear Analysis for an Ideal Fluid

The dispersion relation for local small axially symmetric disturbances in the
simplest case of an ideal fluid without entropy gradients reads (see also Balbus and
Hawley 1991; Kato et al. 1998):

ω∗4 −
(
kz

k

)2

κ2ω∗2 − 4Ω2
(
kz

k

)2

k2
z c

2
A = 0 . (8.36)

Here

ω∗2 = ω2 − c2
Ak

2
z , (8.37)

k2 = k2
r + k2

z ,

κ2 = 4Ω2 + r dΩ
2

dr
≡ 1

r3

dΩ2r4

dr
(8.38)
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is the epicyclic frequency, and

c2
A = B2

0/(4πρ0) (8.39)

is the unperturbed Alfvén velocity squared. The initial magnetic field B0 is assumed
to be purely poloidal (directed along the z-coordinate) and homogeneous.

The solution to the biquadratic equation (8.36) has the form:

ω2 =
(
kz

k

)2
⎡
⎣c2
Ak

2 + κ2

2
±

√
κ4

4
+ 4Ω2c2

Ak
2

⎤
⎦ . (8.40)

We will examine solutions to this equation by assuming k2
z /k

2 ≡ k2
z/(k

2
r + k2

z ) =
const , i.e. the direction of the wave vector in the r − z plane is conserved, which
is not restricting our analysis. Depending on the sign of the root ω2, one of three
modes can exist: the stable oscillating mode for ω2 > 0, the indifferent equilibrium
(neutral) mode for ω2 = 0, or the exponentially growing mode for ω2 < 0.

According to the classical Rayleigh criterion (Lord Rayleigh 1916), if the
epicyclic frequency κ2 > 0 (in this case the angular momentum in the flow increases
with radius), the equilibrium is stable. If κ2 < 0 (the angular momentum decreases
with radius), the equilibrium is unstable. If κ2 = 0 (the angular momentum does not
change with radius), the equilibrium is indifferent.

8.3.1 The Ideal MHD Case

Let us start with discussing the behaviour of different modes of the dispersion
relation (8.36) in the ideal MHD case. It is instructive to investigate the asymptotics
of these modes with decreasing (but non-zero) seed magnetic field (see Sect. 8.3.2
for more detail about the limiting transition for a vanishing magnetic field).

If a magnetic field is present, there are five different types of solutions to
Eq. (8.40) depending on how the angular velocity (angular momentum) changes
with radius.

Case 1 κ2 > 4Ω2, n < 0. In this case there are two stable modes (see Fig. 8.1),
which at large k2 (in the short-wavelength limit) approach the asymptotic behaviour
ω2 = (kz/k)

2c2
Ak

2. With decreasing (but non-zero) seed magnetic field amplitude
B0 (and corresponding unperturbed Alfvén velocity cA), one mode tends to the
classical Rayleigh branch ω2

R = (kz/k)2κ2 (the horizontal dashed line in Fig. 8.1),
and the second mode tends to the neutral branch ω2

VC → 0.

Case 2 0 < κ2 < 4Ω2, 0 < n < 4. In this case the Rayleigh mode ω2
R behaves

almost in the same way as in case 1 (upper curves in Fig. 8.2). For the mode ω2
VC

(lower thick curves in Fig. 8.2) the instability arises in the interval: 0 < k2c2
A <
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ω2

k2

k2
kz

2

κ2

0

κ2> 4Ω2

n<0

ω2
VC

ω2
VC

ω2
R ω2

R

Fig. 8.1 Schematic behaviour of two branches of the dispersion equation (8.36) (the ‘Reynolds
mode’ ω2

R , thin curves, and the ‘MRI mode’ ω2
VC , thick curves) for two values of the Alfvén

velocity c2
A (two values of the seed magnetic field B0). The dashed straight lines show the

asymptotic behaviour of the solutions at large k2: ω2 = (kz/k)
2c2
Ak

2. The smaller the seed
magnetic field, the flatter the slope of the asymptotes. Case 1, where the angular velocity and
angular momentum increasing with radius (κ2 > 4Ω2; n < 0)

ω2

k2

k2
kz

2

κ2

0

0< κ2< 4Ω2

0<n<4

ω2
VC ω2

VC

ω2
R ω2

R

Fig. 8.2 The same as in Fig. 8.1 for the case of decreasing angular velocity with radius but
increasing angular momentum (0 < κ2 < 4Ω2; 0 < n < 4) (case 2)
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nΩ2. It is in this case that the MRI instability occurs in a Keplerian accretion disc
with n = 3 and κ = Ω . With decreasing B0 the critical wave number separating the
stable and unstable behaviour

k2
cr (ω

2 = 0) = nΩ
2

c2
A

(8.41)

tends to infinity. The maximum instability growth rate characterized by the mini-
mum of the mode ω2

VC occurs at

k2
max =

n(8 − n)
16

Ω2

c2
A

. (8.42)

By substituting Eq. (8.42) into Eq. (8.40), we find for the MRI mode

ω2
VC,max = −n

2

16

(
kz

k

)2

Ω2 = − n

8 − n
(
kz

k

)2

c2
Ak

2
max . (8.43)

With decreasing (but non-zero) B0 and c2
A, ω2

V C(k
2
max)→ −0 as k2

max → ∞.

Case 3 κ2 = 0, n = 4. In this case (see Fig. 8.3) both the Rayleigh mode ω2
R and

the MRI modeω2
V C leave zero with infinite derivatives (positive and negative for the

Rayleigh and MRI modes, respectively). In the presence of a finite seed magnetic
field, the ω2

VC mode displays the MRI. As B0 becomes small (but non-zero), both
modes asymptotically approach the neutral mode ω2 → 0.

Case 4 κ2 < 0, 4 < n < 8. In this case (see Fig. 8.4) in the absence of a magnetic
field the instability according to the Rayleigh criterion emerges (the bottom dashed

ω2

k2
0

κ2= 0

n=4

ω2
VC

ω2
VC

ω2
R

ω2
R

Fig. 8.3 The same as in Fig. 8.1 for the case of constant angular momentum (κ2 = 0; n = 4) (case
3). Both the Rayleigh and MRI branches have infinite derivatives dω2/dk2 at k2 = 0
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Fig. 8.4 The same as in
Fig. 8.1 for the case of
decreasing angular
momentum (κ2 < 0;
4 < n < 8) (Case 4).
Instability according to the
Rayleigh criterion occurs.
The Rayleigh branch has a
negative derivative at k2 = 0

ω2

k2
0

κ2<0
4<n<8

k2
kz

2

κ2

ω2
VC

ω2
VC

ω2
R

ω2
R

horizontal line in Fig. 8.4) with ω2
R = κ2(kz/k)

2. If a magnetic field is present,
the Rayleigh instability is stabilized by the magnetic field at k2 > k2

cr (bottom thin
curves in Fig. 8.4). Note that k2

cr and k2
max here are the same as in Case 2. While

similar to the MRI mode, this is now the Rayleigh mode ω2
R that is unstable and

reaches a maximum growth rate ω2
R,max determined by Eq. (8.43). In contrast, the

Velikhov-Chandrasekhar mode ω2
V C (upper thick curves in Fig. 8.4) remains stable

at all wavenumbers, and with decreasing (but non-zero) magnetic field ω2
V C → +0.

We stress again that the difference between the Rayleigh and MRI modes is due to
their different asymptotic behaviour as B0 → +0: the Rayleigh mode is unstable
and behaves as ωR → −κ2k2

z /k
2, unlike the stable Velikhov-Chandrasekhar mode.

Case 5 κ2 < 0, n > 8. The only difference of this case from Case 4 is that the
Rayleigh mode ω2

R leaves zero with a positive derivative (bottom thin curves in
Fig. 8.5).

8.3.2 On the Behaviour of MRI for a Vanishing Magnetic Field

The transition to the purely hydrodynamic case without magnetic field should
be treated separately. Let us consider asymptotic solutions (8.40) for a vanishing
magnetic field. In the leading order in cA the two branches of the dispersion relation
are:

ω2
R �

(
kz

k

)2 [
κ2 + c2

Ak
2
(

1 + 4Ω2

κ2

)]
, (8.44)
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Fig. 8.5 The same as in
Fig. 8.4 for the case (κ2 < 0;
n > 8) (case 5 in the text); the
Rayleigh branch has a
positive derivative at k2 = 0

ω2

k2
0

κ2<0
n>8

k2
kz

2

κ2

ω2
VC

ω2
VC

ω2
R

ω2
R

which we have referred to as the Rayleigh mode since in the absence of a magnetic
field it tends to the classical Rayleigh mode ω2

R = (kz/k)2κ2, and

ω2
VC � kz2c2

A

(
1 − 4Ω2

κ2

)
, (8.45)

which we have refered to as the Velikhov-Chandrasekhar mode and which is
manifestly unstable for Keplerian motion (κ2 = Ω2).

Note that unlike for the Rayleigh mode, setting the magnetic field to zero in
Eq. (8.45) leads to a paradoxical result: ω2

VC = 0. This ‘neutral mode’ is fictitious,
it does not exist in the purely hydrodynamic case. To see this, let us write down
the linearized system of perfect fluid equations in the Boussinesq approximation
(see (8.6)–(8.9) and Eq. (8.13) in Sect. 8.2):

krur + kzuz = 0

iωur − 2Ωuφ = ikr p1
ρ0

iωuφ + κ2

2Ω ur = 0

iωuz = ikz p1
ρ0

(8.46)

It is easy to find the dispersion relation in this case:

ω2 =
(
kz

k

)2

κ2 , (8.47)
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which is the classical Rayleigh branch. No neutral mode ω2 = 0 arises. The neutral
mode ω = 0 does exist in the purely hydrodynamic case but only for a specific
choice of radial perturbations with ur = uz = kz = 0 and −2Ωuφ = ikr(p1/ρ0)

(see (8.46)). The odd mode ω2 = 0 arising in the limiting transition to a vanishing
magnetic field formally appears from Eq. (8.36) since the fourth order of this
dispersion relation is entirely due to the expression in square brackets ∼ ω2 in
the denominator of Eq. (8.28), which for the case B = 0 is cancelled out by the
expressions in brackets ∼ ω2 in the numerator.

Similarly, no smooth transition to the hydrodynamic case occurs if viscosity is
included (see below). The absence of a smooth transition to the ideal hydrodynamic
case when B → 0 was first noted by Velikhov (1959). At the same time, the
transition to the classical Rayleigh mode with vanishing magnetic field proceeds
smoothly.

8.4 Linear Analysis for a Fluid with Viscosity and Magnetic
Diffusivity

Let us now consider the more general case of a non-ideal viscous fluid with finite
electric conductivity characterized by the kinematic viscosity coefficient ν and resis-
tivity (magnetic diffusivity) η. Naturally, in problems with viscosity and magnetic
diffusivity there is no initial steady state. The angular momentum is redistributed
by viscosity on the time scale τν ∼ R2/ν, and the magnetic field changes on the
magnetic diffusion time scale τη ∼ R2/η, where R is the characteristic size of the
system. Everywhere below we will assume these timescales to be extremely long
compared to the Keplerian rotation time and the characteristic instability growth
time, if conditions are suitable for the latter to arise. The dispersion relation in this
case can be derived following the local linear analysis of MRI performed, e.g. in the
monograph by Kato et al. (1998), taking into account viscosity and conductivity in
the WKB-approximation (see Sect. 8.2, with zero density perturbations Eq. (8.13)):

ω4∗∗ +
(
kz

k

)2 [(
iω + ηk2

)2
κ2 + c2

Ak
2
z (κ

2 − 4Ω2)

]
= 0 , (8.48)

where ω2∗∗ is determined by Eq. (8.33).
The dispersion relation (8.48) is identical to the one derived for a rotating liquid

metal annulus in the incompressible limit (Ji et al. 2001).2 This equation was
also derived and mathematically analysed in Pessah and Chan (2008). However,
that paper focused on the application of the MRI mode to the calculations of the

2Note that those authors searched for a stable differential rotation law between cylinders with given
viscosity and electric conductivity while we are investigating conditions for MRI in a viscous,
electrically conducting flow in a gravitational field with given differential rotation law.
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Reynolds and Maxwell stresses in the differentially rotating flow. In what follows
we shall discuss the constraints on MRI modes in astrophysical accretion discs,
where the free-path length of particles (and hence the viscosity) is limited by the
disc thickness.

The magnetic Prandtl number is introduced as Pm = ν/η. Using the standard
expressions for ν and η for fully ionized hydrogen plasma from Spitzer (1962), we
readily find

Pm ≈ 3.4 × 10−28 T 4

ρ lnΛeHΛpH
, (8.49)

where T is the temperature, ρ is the density and ΛeH and ΛpH are electron and
proton Coulomb logarithms, respectively.

As was shown by Balbus and Henri (2008), the magnetic Prandtl number can be
of the order of one in the inner parts of accretion discs around neutron stars and
black holes.

8.4.1 The Case of the Magnetic Prandtl Number Pm=1

Here we will discuss the exact analytic solution to Eq. (8.48) for the important
particular case Pm = 1 (which can be derived, for example, from the general analytic
solution found in Pessah and Chan 2008) and obtain restrictions on the maximum
mean free-path length of ions in accretion discs at which MRI disappears due to
non-ideality effects.

The exact solution to Eq. (8.48) for Pm = 1 is

ω = iνk2 ±

√√√√√
(
kz

k

)2
⎡
⎣c2
Ak

2 + κ2

2
±

√
κ4

4
+ 4Ω2c2

Ak
2

⎤
⎦ . (8.50)

Here the plus sign before the second square root corresponds to the Rayleigh branch,
and the minus sign corresponds to the Velikhov-Chandrasekhar (MRI) branch. We
shall examine below the MRI branch only.

We note that the first square root in this equation contains the solutions (8.40) to
Eq. (8.36):

ω = i
(
νk2 −

√
−ω2

ν=0

)
. (8.51)

(Recall that for regions with MRI ω2 < 0). Also note that like in the ideal MHD
case considered above in Sect. 8.3.2, here there is no smooth transition from the MRI
mode to the hydrodynamic case with viscosity with a vanishing magnetic field. As
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can be straightforwardly derived from Eqs. (8.6) to (8.9) in Sect. 8.2, the dispersion
relation for the hydrodynamic case with viscosity reads:

(iω + νk2)2 +
(
kz

k

)2

κ2 = 0 . (8.52)

While the Rayleigh mode (with a positive sign before the second square root in
Eq. (8.50)) tends to the mode given by Eq. (8.52) when magnetic field is vanishing,
the MRI mode (with a negative sign before the second square root in Eq. (8.50))
completely disappears (there is no mode iω + νk2 = 0 without magnetic field,
unless kz = 0).

Below we will consider the case kz = k, i.e. with kr = 0. For further analysis it
is convenient to rewrite the dispersion relation (8.48) in the dimensionless form. We
introduce the dimensionless variables:

ω̃ ≡ ω/Ω; k̃ ≡ cAk

Ω
; κ̃2 ≡ κ2/Ω2; ν̃ ≡ νΩ

c2
A

. (8.53)

For Keplerian discs the dimensionless epicyclic frequency is κ̃2 = 1. In dimension-
less variables, the solution to Eq. (8.48) takes the form:

ω̃ = i
⎛
⎝ν̃k̃2 ±

√
−k̃2 − 1

2
∓

√
1

4
+ 4k̃2

⎞
⎠ . (8.54)

Of the four solutions to Eq. (8.54) we choose the one for the MRI mode:

ω̃ = i
⎛
⎝ν̃k̃2 −

√
−k̃2 − 1

2
+

√
1

4
+ 4k̃2

⎞
⎠ . (8.55)

Now we find the neutral point ω̃ = 0. Squaring Eq. (8.55) twice, we obtain the
equation for the critical wavenumber k̃cr separating unstable (k̃ < k̃cr ) and stable
(k̃ > k̃cr ) perturbations:

ν̃4k̃6 + 2ν̃2k̃4 + (1 + ν̃2)k̃2 − 3 = 0 . (8.56)

Without viscosity we recover the old result: k̃2
cr = 3 (see Eq. (8.41)). It is easy

to check that for the dimensionless viscosity ν̃ = 4/5 the neutral point is k̃cr =√
15/16, i.e. here the neutral point coincides with the maximum wavenumber kmax

at which maximum MRI growth occurs in the inviscid case (see Eq. (8.42) above).
For a large dimensionless viscosity ν̃ � 1, the asymptotic solution to Eq. (8.55)
reads

k̃cr �
√

3

ν̃
. (8.57)
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Therefore, at arbitrarily high viscosity there exists an interval of wavenumbers 0 <
k̃ < k̃cr where MRI is still at work, but the MRI increment here is very small.

Actually, in realistic models of accretion discs with finite thicknessH we should
take into account that there is a lower limit for k corresponding to the obvious
restriction on the maximum perturbation wavelength λ < 2H :

k = 2π

λ
>
π

H
≡ kmin . (8.58)

Therefore, in dimensionless variables we obtain the MRI condition in the form:

k̃min ≤ k̃ ≤ k̃cr . (8.59)

It is also convenient to change from the disc thicknessH to the characteristic thermal
velocity in the disc cs , since in accretion discs the hydrostatic equilibrium along the
vertical coordinate yields

cs = ΠΩH (8.60)

whereΠ is a numerical coefficient. For example, in the standard geometrically thin
Shakura-Sunyaev α-discΠ = 1/

√
4Π1 � 1/

√
20 (see Ketsaris and Shakura 1998).

Thus, in an inviscid fluid k̃cr = √
3, k̃min = πΠ(cA/cs), and the MRI condition

Eq. (8.59) takes the form

πΠ

(
cA

cs

)
≤ √

3 . (8.61)

Essentially, this is the well-known condition that for MRI to operate the seed
magnetic field should not exceed some critical value.

In a non-ideal plasma the MRI condition Eq. (8.61) becomes

πΠ

(
cA

cs

)
≤ k̃cr . (8.62)

Note that k̃cr decreases with ν̃. For example, if ν̃ is high, Eq. (8.57) implies very
small values of k̃cr and, correspondingly, very low cA giving rise to MRI with
uninterestingly small increments. The schematic behaviour of the MRI mode at non-
zero viscosity is shown in Fig. 8.6. For an arbitrary finite viscosity ν̃ the neutral point
ω̃(k̃cr ) separates exponentially growing small perturbations ∝ exp(iωt) (the lower
part of Fig. 8.6 where Imω̃ > 0) from exponentially decaying ones (the upper part of
Fig. 8.6). At zero viscosity, however, the function ω̃(k̃) (the curve labeled by ν̃ = 0)
ends at the point k̃cr =

√
3, since in this case at k̃ ≥ kcr , ω̃ becomes purely real and

small perturbations start to oscillate.
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Fig. 8.6 Schematics of the influence of viscosity on the MRI condition 0 < k̃ < k̃cr . Shown
are curves of the imaginary part of ω̃ as a function of the dimensionless wave number k̃2. With
increasing viscosity, the MRI interval shifts to the left and shrinks (see also Fig. 1 in Pessah and
Chan 2008)

In the case of high viscosity it is convenient to express the ratio cA/cs through
the dimensionless viscosity ν̃. Using the conventional definition of the viscosity
coefficient ν = csl, where l is the effective mean-free path of ions with account
for the Coulomb logarithm, and our convention for the thermal velocity in the
disc (8.60) introduced above, we find:

ν̃ ≡ ν Ω
c2
A

= 1

Π

(
cs

cA

)2 (
l

H

)
. (8.63)

Finally, we obtain the MRI condition in the convenient form:

l

H
≤ 1

π2Π
ν̃k̃2
cr . (8.64)

In the particular case Pm=1 we may explicitly find ν̃k̃2
cr from Eq. (8.55):

ν̃k̃2
cr =

√
−k̃2

cr −
1

2
+

√
1

4
+ 4k̃2

cr , (8.65)

so that condition (8.64) takes the form:

l

H
≤ 1

π2Π

√
−k̃2

cr −
1

2
+

√
1

4
+ 4k̃2

cr . (8.66)
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(This formula should be used when ν �= 0, i.e. when k̃2
cr < 3). Consider first the

case of low viscosities where k̃2
cr ≈ 3. By introducing the small parameter ε =

3 − k̃2
cr � 1 and expanding the left-hand side of Eq. (8.66) in ε, we obtain

l

H
≤ 1

π2Π

√
41

49
ε . (8.67)

Now consider the special case where k̃cr coincides with the wavenumber of

maximum MRI increment in the ideal fluid: k̃cr = k̃max =
√

15
16 (see Eq. (8.42)).

This is realized at ν̃ = 4/5. Here we find the limit

(
l

H

)
≤ 1

π2Π
0.75 ≈ 0.34. (8.68)

Finally, in the high-viscosity limit for Pm=1 ν̃ � 1, substituting the asymp-
totic (8.57) into Eq. (8.64) making use of the expression for dimensionless viscos-
ity (8.63) we obtain

(
l

H

)
≤

√
3

π

(
cA

cs

)
, Pm = 1, ν̃ � 1 . (8.69)

Note that this constraint is insensitive to the disc vertical structure parameterΠ . This
condition can be checked for particular microphysics plasma properties in different
thin Keplerian discs.

8.4.2 The Case of an Arbitrary Magnetic Prandtl Number

The generalization of the above analysis to an arbitrary Prandtl number is straight-
forward. First, for given Pm and ν̃ we solve the dimensionless Eq. (8.48) to find
k̃cr (ν̃,Pm). at the neutral point where ω̃(k̃cr ) = 0.

To do this, it is convenient, for the sake of brevity, to introduce the new
dimensionless variables

y ≡ k̃2, X = iω̃ + ν̃y (8.70)

and rewrite dimensionless dispersion relation (8.48) in the equivalent form:

X4 + 2 1−Pm
Pm
ν̃yX3 +

[(
1−Pm

Pm

)2
ν̃2y2 + 2y + 1

]
X2 +

[
1−Pm

Pm
ν̃y(y + 1)

]
X +

(
1−Pm

Pm

)2
ν̃2y2 + y2 − 3y = 0 . (8.71)
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(Here we assumed Keplerian discs with κ̃ = 1 and used the condition kz/k = 1).
Noticing that at the neutral point determined by the condition ω̃(ycr ) = 0 we have
X = ν̃ycr , we arrive at the equation for ycr :

ycr

[
ν̃4y3

cr + ν̃2ycr(2ycrPm + 1)+ Pm
2(ycr − 3)

]
= 0 . (8.72)

At Pm = 1 this equation, of course, coincides with Eq. (8.56). The non-trivial real
solution to the cubic equation in the square brackets of Eq. (8.72) reads:

ycr ≡ k̃2
cr = A − 2Pm

3ν̃2
− 1

A

(
1

3ν̃2
− Pm

2

9ν̃4

)
, (8.73)

where

A =
[(

1
27ν̃6 + 2Pm

2

27ν̃8 + Pm
3

ν̃8 + 9Pm
4

4ν̃8 + Pm
4

27ν̃10 + Pm
5

9ν̃10

)1/2 +

Pm
3ν̃4 + 3Pm

2

2ν̃4 + Pm
3

27ν̃6

]1/3
. (8.74)

At high dimensionless viscosities there is an asymptotic to the solution (8.73) for
Pm/ν̃

2 � 1:

ycr = k̃2
cr ≈

3Pm
2/ν̃2

1 + Pm
2/ν̃2

= 3Pm
2

ν̃2 +O

(
Pm

2

ν̃2

)2

. (8.75)

Note that this asymptotic may also be found in Pessah and Chan (2008) (their Eq.
(97)) and for small Pm can be derived for Keplerian rotation and k = kz from Eq.
(3) in Ji et al. (2001).

Thus, the general MRI condition for arbitrary non-ideal plasma (8.62) takes the
form:

(
cA

cs

)
≤ 1

πΠ
k̃cr (ν̃,Pm) . (8.76)

The result of a calculation of k̃cr for a range of magnetic Prandtl numbers Pm and
dimensionless viscosities ν̃ can be found in Pessah and Chan (2008) (see e.g. their
Figs. 6 and 7) and is illustrated in Fig. 8.7.

In the limiting case of high dimensionless viscosities Pm/ν̃
2 � 1, which may be

realized in the outer parts of thin Keplerian accretion discs (see Eq. (8.49) above),
using asymptotic (8.75) and definition (8.63), we find the restriction on the mean-
free path of ions in the disc

(
l

H

)
≤

√
3Pm

π

(
cA

cs

)
, Pm/ν̃

2 � 1 . (8.77)
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Fig. 8.7 The dimensionless critical wavenumber k̃cr as a function of the dimensionless viscosity
coefficient ν̃ for different magnetic Prandtl numbers Pm. Lines from bottom to top correspond to
Pm=0.01, 0.1, 0.3, 3, 10, 30, 100, 300

which is the generalization of Eq. (8.69) to an arbitrary magnetic Prandtl number.
Using the expression for the dimensionless viscosity (8.63), the condition for the
power-law asymptotic Pm/ν̃

2 � 1 can be recast to the inequality

Pm/ν̃
2 � 1 ⇔

(
l

H

)2

� ΠPm

(
cA

cs

)4

. (8.78)

Therefore, the MRI condition can be written in terms of the interval for l/H in a
Keplerian disc as

√
ΠPm

(
cA

cs

)2

�
(
l

H

)
≤

√
3Pm

π

(
cA

cs

)
. (8.79)

8.5 Conclusions

In this chapter we have extended the original analysis of MRI in ideal MHD
plasmas carried out by Balbus (2012). First, we emphasize that hydromagnetic
flows in which the angular momentum increases or decreases with radius are
different from the point of view of MRI development. In the classical Rayleigh-
unstable case where the angular momentum decreases with radius, the Velikhov-
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Chandrasekhar MRI mode is stable, while the Rayleigh mode is unstable (see
Figs. 4, 5); the magnetic field stabilizes the Rayleigh mode in the short-wavelength
limit. When the angular momentum in the flow increases with radius, MRI arises
at long wavelengths (small wave numbers k, see Fig. 8.2). However, the local
WKB approximation should be applied with caution at long wavelengths. At long
wavelengths, the Ansatz for the solution should rather be used in the global form
f (r)ei(ωt−kr r−kzz). Note that in the original papers by Velikhov and Chandrasekhar,
they analyzed the linear stability of magnetized flows between cylinders exactly
in that approximation (see also Sano and Miyama (1999) for a global analysis of
perturbations in an inviscid magnetized proto-planetary disc with non-zero magnetic
diffusivity).

Further, in the phenomenologically interesting case of thin Keplerian accretion
discs, viscosity may restrict MRI growth. This situation may arise in the inner parts
of an accretion disc. Indeed, at high temperatures the mean free path of ions l ∼
T 2 can become comparable to the characteristic disc thickness H at H < r (thin
discs). This means that the flow should be treated kinetically (see, for example,
recent 2.5D hybrid calculations (Shirakawa and Hoshino 2014) or the discussion of
MRI in rarefied astrophysical plasmas with Braginskii viscosity in Islam and Balbus
2005). The weak seed magnetic field does not grow under these conditions, i.e. the
high ion viscosity can suppress MRI. Clearly, this interesting regime requires further
study.

At large magnetic Prandtl numbers Pm � 1, which may be present in the
innermost parts of accretion discs around neutron stars and black holes, the
kinematic viscosity ν is much larger than the magnetic diffusivity η. In this case
the plasma may become collisionless, and the hydrodynamic description fails. Our
analysis shows that, in principle, a collisionless regime (where the ion mean-free
path is comparable to or larger than the disc thickness, l ∼ H ) may be established
in Keplerian discs even for magnetic Prandtl numbers Pm � 1 (see Eq. (8.79)).

We have also obtained the dispersion relation for local small perturbations in the
Boussinesq limit for non-adiabatic perturbations (see Eq. (8.32)). This is a fifth-
order algebraic equation, in contrast to the fourth-order dispersion relation for
adiabatic perturbations or non-adiabatic perturbations with kr = 0 in a non-ideal
plasma (8.48). Also note that when the density perturbations are expressed through
the entropy gradients (see Eq. (2.2h) in Balbus and Hawley 1991), the frequency
appears in the denominator but the final dispersion relation (2.5) in Balbus and
Hawley (1991) remains a fourth-order equation in ω, even when taking the entropy
gradients into account. Apparently, the difference is due to the fact that in the case of
non-adiabatic perturbations the density variations are proportional to the azimuthal
velocity perturbations uφ (see our Eq. (8.21)) and not to uz and ur as in the case
considered by Balbus and Hawley (1991). The analysis of the effect of non-adiabatic
perturbations deserves a separate study and will be addressed in a future work.

Perturbations with kr = 0 represent waves propagating along the z-coordinates,
and when their wavelength is comparable to the disc thickness, the WKB approx-
imation becomes problematic. Perturbations with kz = 0 propagate along the
r-coordinate, which is much larger than the disc thickness for thin accretion discs.
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However, for such perturbations with k = kr and kz = 0, the second term
in Eqs. (8.48) and (8.32) vanishes, and therefore from Eq. (8.33) we find two
perturbation modes

ω1 = iνk2 , ω2 = iηk2 , (8.80)

i.e. decaying standing waves for any seed magnetic field. This may suggest that in
poloidal magnetic fields purely radial perturbations with k = kr do not grow. The
situation is different when an azimuthal magnetic field is present. This case should
be considered separately and has been investigated for a range of astrophysical
applications in other works (see, e.g., Acheson 1978; Sano and Miyama 1999;
Ruediger et al. 2014; Kirillov et al. 2014).

We conclude that in thin Keplerian accretion discs the addition of viscosity
may strongly restrict the MRI conditions once the mean free path of ions becomes
comparable to the disc thickness. This limitation should be taken into account in the
direct numerical simulations of MRI in astrophysical accretion discs.
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Index

Accretion disc
half-light radius, 224
instabilities, 3
irradiation, 98
supercritical, 228, 243
surface density, 18
twisted, 150

Accretion rate, 19
critical, 3, 243, 246

Adjoint equation, 306
Alfvén radius, 336, 341
Alfvén surface, 340
Alfvén velocity, 401

Bondi radius, 335, 373
Bondi-Hoyle-Littleton accretion, 336
Boussinesq approximation, 394, 396
Boussinesq’s gradient hypothesis, 13
Boyer-Lindquist coordinates, 116
Brunt-Väisälä frequency, 351

Compton cooling, 342, 343, 364, 366
Compton heating, 366
Comptonization parameter, 368
Convection, 358
Corotation radius, 376

Dead discs, disc reservoirs, 20, 54

Eddington luminosity, 3, 88, 243
Effective optical depth, 45

Einstein cross, 218, 230
Einstein ring, 207
Einstein-Chwolson radius, 207
Energy-at-infinity, 25
Epicyclic frequency, 401

Gravitational lensing
caustics, 211
microlensing, 202, 214
quasar microlensing, 201, 217
strong, 202
thin lens approximation, 202, 204
weak, 202

Gravitational potential
logarithmic, 24
Newtonian, 6
Paczynski-Wiita, 23

Gravitational time dilation, 24
Growth of perturbations

growth factor, 279
matrix method, 293
non-normal operator, 289
normal operator, 288
optimal growth, 282
power iterations, 305
shear harmonics, 273
singular values, 291
singular vectors, 291
swing amplification, 281
swing time, 273
transient, 263
variational method, 305
vortex solution, 278
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Innermost stable circular orbit, 121

Joule dissipation, 397

Kerr metric, 107, 116
epicyclic frequency, 156
frequency of vertical oscillations, 157

Kirchhoff’s law, 36

Lense-Thirring effect, 112, 157

Magnetic diffusivity, 406
Magnetic Prandtl number, 407
Magnetic reconnection, 372
Magnetized stellar wind, 371
Magneto-rotational instability, 393

MRI mode, 403
thin Keplerian discs, 412
Velikhov-Chandrasekhar mode, 404

MHD equations, 395

Navier-Stokes equation, 4, 10, 345

Opacity coefficient, 39

α-parameter, 17, 36, 144
determination, 65, 89, 100

Photoionization heating, 367
Photoionization parameter, 366
Planck distribution, 32
Plasma cooling function, 365
Prandtl number, 398
Propeller regime, 376, 383

Quasi-periodic oscillations, 368

Radiation cooling, 343
Radiation transfer equation, 36

diffusion approximation, 38
Rayleigh criterion, 27, 403
Rayleigh modes, 400, 403
Rayleigh-Taylor instability, 341
Reynolds equations, 10, 347
Reynolds tensor, 11
Richardson number, 351

Rosseland opacity, 38

Schwarzschild metric, 23
Schwarzschild radius, 22, 115
Settling accretion, 337
Spectral hardening factor, 33
Standard disc, 2, 133, 221

bolometric luminosity, 31, 86
characteristic time scales, 3, 21, 30
heating, 29, 36
intensity angular distribution, 88, 98
maximum effective temperature, 31
radial structure of zone B, 48
radial structure of zone C, 50
relativistic energy flux, 140
spectrum, 32
thickness, 54
vertical structure, 39, 96

boundary conditions, 41, 44, 46, 97
dimensionless parameters, 41, 49
relativistic, 142

viscous evolution, 79
viscous stress, 17

relativistic, 139
viscous torque, 20, 55
zones A, B, C, 34

Stellar wind
mass loss, 371
velocity, 380

Supergiant fast X-ray transients, 369

Taylor number, 350
Tetrad, 122

rotating observers, 129
twisted, 162

Toroidal magnetic field, 378
Turbulence

anisotropic, 338
bypass transition, 263
subcritical, 261
supercritical, 261

Turbulent heating, 363
Turbulent viscosity, 8, 348, 377

kinematic coefficient, 13, 15, 17, 57, 67
Prandtl’s law, 15, 349, 375
Wasiutynski’s law, 357

Twist equation, 174
Twisted coordinates, 161
Twisted disc

bending wave, 184
diffusion coefficient, 185
geometry, 150, 151, 153
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Keplerian resonance, 151, 173
local dispersion relation, 183
perturbation of orbital velocity, 151, 173
relativistic dispersion, 186
stationary configurations, 195
stationary resonance solutions, 193
torques, 154

Viscous disc evolution, 56, 66
diffusion constant, 68, 69
exponential decay, 64, 88
Green function, 59, 62
numerical model, 80, 89

finite difference scheme, 92
FREDDI code, 89, 96, 100

power-law decay, 61, 79, 81, 86
power-law growth, 77
self-similar solutions, 56, 67

Viscous dissipative function, 397
Viscous stress, 5

thin disc, 5, 16, 19

WKB approximation, 395

X-ray novae, 65, 80, 88
X-ray pulsars, 376

equilibrium period, 379, 380, 384
spin-up/spin-down torques, 379
strong coupling regime, 374


	Preface
	References

	Acknowledgements
	Contents
	1 The Standard Model of Disc Accretion
	1.1 Introduction
	1.2 Disc Equations
	1.2.1 Important Note
	1.2.2 Continuity Equation
	1.2.3 Equations of Motion
	1.2.4 Energy Conservation Equation
	1.2.5 Energy Dissipation
	1.2.6 Energy Source in the Disc

	1.3 Viscosity in Accretion Discs
	1.3.1 The Reynolds Equations and the Reynolds Tensor
	1.3.1.1 Compressible Fluids

	1.3.2 The Closure Problem
	1.3.3 Coefficient of Turbulent Viscosity
	1.3.4 Mixing Length
	1.3.5 Turbulent Viscosity Parameter α

	1.4 Thin Discs
	1.4.1 Equations of Radial Structure
	1.4.1.1 Mass Conservation Equation
	1.4.1.2 The r-Component of the Equation of Motion
	1.4.1.3 The φ-Component of the Equation of Motion

	1.4.2 Solution for a Constant Accretion Rate
	1.4.3 Radial Velocity of Matter in the Disc
	1.4.4 Accretion Onto a Black Hole
	1.4.5 Energy Release in Geometrically Thin Discs
	1.4.6 Disc Radiation

	1.5 Stationary α-Discs
	1.5.1 Equations of Vertical Structure
	1.5.1.1 Equation of Hydrostatic Balance
	1.5.1.2 Energy Generation
	1.5.1.3 Radiative Transfer in the Disc
	1.5.1.4 Dependence of the Surface Density on z

	1.5.2 Solution for the Vertical Structure
	1.5.2.1 Kramers Opacity
	1.5.2.2 Thomson Scattering

	1.5.3 Radial Dependence of Physical Parameters in Stationary α-Discs
	1.5.3.1 Zone B
	1.5.3.2 Zone C
	1.5.3.3 Thickness of the Disc
	1.5.3.4 `Dead' Discs


	1.6 Non-stationary Disc Accretion
	1.6.1 Basic Equation of Non-stationary Accretion
	1.6.2 Solutions to the Linear Equation of Viscous Evolution in the Disc 
	1.6.3 Evolution of an Infinite Viscous Disc
	1.6.4 Solution for a Disc with a Fixed Outer Radius
	1.6.5 Solution to the Non-linear Equation for the Evolution of a Viscous α-Disc
	1.6.5.1 The α-Discs

	1.6.6 Evolution of α-Disc from a Ring of Matter 
	1.6.6.1 `Tounge'-Formation Stage
	1.6.6.2 Quasi-Stationary Stage with Increasing Accretion
	1.6.6.3 Accretion Decay Stage: Spreading of the Disc

	1.6.7 Solution for α-Disc in a Binary System
	1.6.7.1 Radial Dependencies for a Non-stationary Disc in a Binary System


	1.7 Numerical Modelling of Non-stationary Disc Accretion
	1.7.1 Solution to the Equations of Viscous Evolution
	1.7.2 Solving the Equations of Vertical Structure
	1.7.2.1 Irradiation of the Accretion Disc

	1.7.3 Example Numerical Modelling of a FRED Lightcurve of an X-Ray Nova

	References

	2 The Properties of Spherical Geodesics in the Kerr Metric
	References

	3 Relativistic Standard Accretion Disc
	3.1 Space-Time Near Rotating Black Holes
	3.1.1 The Kerr Metric
	3.1.2 Circular Equatorial Geodesics
	3.1.3 Radius of the Innermost (Marginally) Stable Orbit

	3.2 Choice of Reference Frame
	3.2.1 Bases in General Relativity
	3.2.1.1 Coordinate Representation
	3.2.1.2 Tetrad Representation
	3.2.1.3 Covariant Derivative in Tetrad Representation

	3.2.2 A Tetrad Transported by Rotating Observers
	3.2.2.1 The Connection Coefficients

	3.2.3 Relativistic Hydrodynamic Equations

	3.3 Construction of the Standard Accretion Disc Model
	3.3.1 Basic Assumptions and the Vertical Balance Equation
	3.3.1.1 Deformation of the Velocity Field
	3.3.1.2 Equation of Hydrostatic Equilibrium
	3.3.1.3 Radial Direction

	3.3.2 Azimuthal Direction
	3.3.3 Rest Energy Conservation Law and Radial Momentum Transfer
	3.3.4 Energy Balance
	3.3.5 Energy Transfer Equation and the Vertical DiscStructure
	3.3.6 Parametrization of Turbulent Viscosity and Explicit Disc Structure

	References

	4 Relativistic Twisted Accretion Disc
	4.1 Introductory Remarks
	4.1.1 Weakly Perturbed Circular Equatorial Motion: Epicyclic Frequency and Frequency of Vertical Oscillations

	4.2 Choice of Reference Frame
	4.2.1 The Metric
	4.2.2 Twisted Coordinates
	4.2.3 A Tetrad Transported by Observers Followingthe Twist

	4.3 The Set of Twist Equations
	4.3.1 Projection of the Dynamical Equations onto the Twisted Basis for a Thin Disc
	4.3.1.1 Separation of the Equations into Two Sets Describing a Flat and a Twisted Disc
	4.3.1.2 Additional Relations Used to Write the Equations
	4.3.1.3 Equation of Free Azimuthal Motion
	4.3.1.4 `Gauge' Condition of the Twisted Frame
	4.3.1.5 Explicit Form of the Set of Equations of a Twisted Disc

	4.3.2 Completing the Derivation of the Twist Equations
	4.3.2.1 Equation of Vertical Hydrostatic Equilibrium
	4.3.2.2 Twist Equation
	4.3.2.3 Once Again About the Characteristic Frequencies of the Problem

	4.3.3 Twist Equations in the Particular Case of a Stationary Vertically Isothermal α-Disc
	4.3.3.1 Explicit Form of the Necessary Background Profiles
	4.3.3.2 Switching to Complex Amplitudes


	4.4 Non-stationary Twist Dynamics
	4.4.1 The Local Dispersion Relation
	4.4.1.1 A Newtonian Viscous Disc
	4.4.1.2 A Formally Inviscid Weakly Relativistic Disc

	4.4.2 Reduction of the Set of Equations for Velocity Perturbations

	4.5 Stationary Twisted Disc
	4.5.1 Main Equation and Boundary Conditions
	4.5.2 A Disc with Marginally Small Viscosity
	4.5.2.1 The Shape of the Disc Near Its Inner Edge
	4.5.2.2 The Shape of the Disc at Large Distances
	4.5.2.3 A WKBJ-Solution for the Disc Shape
	4.5.2.4 Resonance Solutions in a Low-Viscosity Disc

	4.5.3 Disc Behavior in the Plane of the Parameters α and δ̃

	4.6 Conclusions
	References

	5 Structure of Accretion Discs in Lensed QSOs
	5.1 Introduction: Gravitational Lensing and Microlensing
	5.1.1 Light Bending by a Thin Gravitational Lens
	5.1.2 Transformation of the Plane of the Sky
	5.1.3 Symmetric Lenses
	5.1.3.1 Point-Like Lenses
	5.1.3.2 Time Scales
	5.1.3.3 The Isothermal Sphere

	5.1.4 Asymmetric Lenses
	5.1.4.1 Caustics
	5.1.4.2 Delays
	5.1.4.3 Optical Depth

	5.1.5 Microlensing
	5.1.5.1 Amplification by a Point-Like Lens: Classical Microlensing
	5.1.5.2 Multiple Microlensing and Caustic Network


	5.2 Microlensing of Accretion Discs
	5.2.1 Microlensing of Strongly Lensed Quasars
	5.2.2 The Standard Accretion Disc Model
	5.2.3 Intensity Distribution
	5.2.4 Account for General Relativity Effects and Location of the Inner Edge of the Disc
	5.2.5 Applications to Actual Lightcurves: QSO J2237+0305 and SBS J1520+530

	5.3 The Problem of Large Radii and Observational Evidence for Supercritical Accretion
	5.3.1 Observed Estimates of Disc Sizes
	5.3.1.1 Scattering in a Disc Atmosphere

	5.3.2 Nonlocal Scattering
	5.3.2.1 Radiation Transfer in an Extended Atmosphere

	5.3.3 The Supercritical Accretion Regime
	5.3.3.1 Size of the Photosphere
	5.3.3.2 Evidence for Supercritical Accretion

	5.3.4 Scattering by Inflowing Matter

	5.4 Conclusions
	References

	6 Transient Dynamics of Perturbations in Astrophysical Discs
	6.1 Introduction: Modal and Non-modal Analysis of Perturbations
	6.2 Analytical Treatment of Two-Dimensional Vortices
	6.2.1 Adiabatic Perturbations in a Rotational Shear Flow
	6.2.1.1 The Model and Basic Equations
	6.2.1.2 Types of Perturbations
	6.2.1.3 On Perturbation Modes
	6.2.1.4 On Perturbation Measurements

	6.2.2 Local Approximation: Transition to Shear Harmonics
	6.2.2.1 Transition to Shear Harmonics
	6.2.2.2 Potential Vorticity
	6.2.2.3 Inhomogeneous Wave Equations: Density Waves and Vortices
	6.2.2.4 Amplification of Density Waves
	6.2.2.5 The Vortex Existence Criterion
	6.2.2.6 Vortex Solution

	6.2.3 Vortex Amplification Factor
	6.2.3.1 On the Transient Growth Mechanism
	6.2.3.2 Estimation of Optimal Growth
	6.2.3.3 Role of Viscosity


	6.3 Calculation of Optimal Perturbations
	6.3.1 Definition and Properties of Singular Vectors
	6.3.1.1 Linear Operators: From the Particular to the General
	6.3.1.2 Simple Geometrical Example of the Non-orthogonality of Eigenvectors
	6.3.1.3 Singular Vectors

	6.3.2 The Matrix Method for Optimal Solutions
	6.3.2.1 Illustration of the Matrix Method
	6.3.2.2 Background Flow
	6.3.2.3 Modes
	6.3.2.4 Optimal Growth
	6.3.2.5 The Angular Momentum Flux

	6.3.3 Alternative: A Variational Approach
	6.3.3.1 Linear Autonomous Operators
	6.3.3.2 Linear Non-autonomous Operators
	6.3.3.3 Calculation of Consecutive Singular Vectors
	6.3.3.4 Generalization to the Non-linear Case

	6.3.4 Adjoint Equations
	6.3.4.1 Derivation of Adjoint Equations
	6.3.4.2 Non-normality Condition for Z


	6.4 Optimal Perturbations in Keplerian Discs
	6.4.1 Local Approximation
	6.4.2 Global Problem
	6.4.2.1 Comparison of the Transient Growth of Vortices in Global and Local Space Limits
	6.4.2.2 Transient Spirals and Modes in a Quasi-Keplerian Torus


	6.5 Conclusions
	References

	7 Quasi-Spherical Subsonic Accretion onto Magnetized NeutronStars
	7.1 Introduction
	7.2 Two Regimes of Quasi-Spherical Wind Accretion
	7.2.1 Supersonic (Bondi-Hoyle-Littleton) Accretion
	7.2.2 Subsonic (Settling) Accretion
	7.2.3 The Structure of a Subsonic Shell Around a Neutron Star Magnetosphere
	7.2.4 The Alfvén Surface
	7.2.5 The Mean Rate of the Flow of Matter Through the Magnetosphere

	7.3 The Structure of a Quasi-Spherical Rotating Shell with Subsonic Accretion
	7.3.1 Basic Equations
	7.3.2 Symmetries of the Problem

	7.4 Structure of the Shell for Prandtl's Turbulent Viscosity
	7.4.1 The Empirical Prandtl Law for Turbulent Viscosity in Axially Symmetric Flows
	7.4.2 The Angular Momentum Transfer Equation
	7.4.3 The Rotation Law in the Shell
	7.4.4 The Case Without Accretion

	7.5 The Structure of the Shell and the Rotation Law for Wasiutynski's Turbulent Viscosity Law
	7.6 Corrections to the Radial Temperature Gradient
	7.7 Dynamics of Static Spherically-Symmetric Gas Flow
	7.8 Physical Conditions in the Shell
	7.9 X-ray Emission and Quasi-Periodic Pulsations  from the Hot Shell
	7.10 Bright Flares in Supergiant Fast X-ray Transients
	7.10.1 Magnetospheric Shell Instability
	7.10.2 Magnetized Stellar Wind as the Flare Trigger
	7.10.3 Conditions for Magnetic Reconnection Near the Magnetosphere

	7.11 Angular Momentum Transfer to the Neutron Star Magnetosphere and Spin-Up/Spin-Down of X-ray Pulsars
	7.11.1 The Case of Strong Coupling
	7.11.2 The Case of Moderate Coupling

	7.12 Equilibrium Pulsars
	7.13 Non-equilibrium Pulsars
	7.14 On the Possibility of the Propeller Regime
	7.15 Do Slow X-ray Pulsars Have Prograde or Retrograde Accretion Discs?
	7.16 Conclusions
	References

	8 On the Properties of Velikhov-Chandrasekhar MRI in Idealand Non-ideal Plasmas
	8.1 Introduction
	8.2 Derivation of the Dispersion Equation for a Non-ideal Plasma
	8.3 Linear Analysis for an Ideal Fluid
	8.3.1 The Ideal MHD Case
	8.3.2 On the Behaviour of MRI for a Vanishing MagneticField

	8.4 Linear Analysis for a Fluid with Viscosity and Magnetic  Diffusivity
	8.4.1 The Case of the Magnetic Prandtl Number Pm=1
	8.4.2 The Case of an Arbitrary Magnetic Prandtl Number

	8.5 Conclusions
	References

	Index

