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Preface

The editors would like to dedicate this text to the late Dr. Bill Costerton, who is

regarded as “The Father of Biofilm.” Bill spent the good part of his career working

tirelessly to alert and convince the medical community about the existence and

importance of biofilms. The fact that many medical specialties are now addressing

the “biofilm problem” is in no small degree because of his contributions and those

of the scientists he trained and mentored.

Biofilms comprise microbial microcolonies adhered to a surface and surrounded

by a sticky exopolysaccharide matrix. Once adherent, microbes multiply and

anchor themselves in quite intricate structures, which appear to allow for commu-

nication and transfer of nutrients, waste, and signaling compounds. Microbial

biofilms constitute a major cause of chronic infections, especially in association

with medical devices. Biofilms are extremely difficult to eradicate with conven-

tional antibiotics and therefore represent an enormous healthcare burden.

While the “biofilm concept” has, for the most part, become accepted by the

medical community, clinicians are left with the dilemma of how to diagnose and

treat these infections. While there are a number of books highlighting research

progress on understanding mechanisms of biofilm establishment and their roles in

disease, there are currently no existing resources which provide a comprehensive

review of the available antibiofilm options.

The purpose of this book is to provide a survey of the recent progress that has been

made on the development of antibiofilm agents. Biofilm experts from across the

globe have contributed and related their expertise on topics ranging from diagnosing

and characterizing biofilm infections to treatment options and finally regulatory

challenges to the commercial development of antibiofilm drugs. We intend for this

book to serve as a valuable resource for medical professionals seeking to treat

biofilm-related disease, academic and industry researchers interested in drug discov-

ery, and instructors who teach microbial pathogenesis and medical microbiology.

Lubbock, TX Kendra P. Rumbaugh

Aligarh, Uttar Pradesh, India Iqbal Ahmad

November 2013
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Part I

Medical Biofilms



Biofilms in Disease

Michael Otto

Abstract Biofilms contribute to a majority of infectious diseases caused by bac-

terial and fungal pathogens. These range from chronic infections of indwelling

medical devices and wounds to frequently fatal, serious infections like endocarditis.

Biofilm research was initially focused on “environmental” biofilms, such as those

present in wastewater tubing. More recently, “medical” biofilms as present during

human infection have gained increased attention, and several animal models to

mimic biofilm-associated infection in vivo have been established. Furthermore,

biofilm research has shifted from the use of laboratory to clinical strains and is

being complemented by the genetic analysis of isolates originating from biofilm

infection. Often these investigations showed that in vitro results only have limited

relevance for the in vivo situation, revealing the necessity of more intensive in vivo

biofilm research. This introductory chapter will present an overview of biofilm

infections, resistance, and the general model of biofilm development. It will also

introduce important biofilm molecules and principles of regulation in premier

biofilm-forming pathogens and finish with a general outline of possible routes of

anti-biofilm drug development.

1 Introduction

According to the World Health Organization, infectious diseases are the second

most frequent cause of death worldwide, responsible for more than 13 millions of

deaths per year, which is second only to diseases of the heart. Many of these deaths

are due to bacteria. Acute respiratory infections are the most frequent causes of

deaths among infectious diseases; they are often directly due to, or exacerbated by,
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bacterial pathogens. In addition, bacteria cause a wide array of nonfatal but

nevertheless severe infections, such as infections of the skin and soft tissues, the

lung, the intestine, and the urinary tract, to name but a few.

Many bacterial infections occur in the hospital in patients with a weakened

immune system, which is due to underlying genetic or infection-related immune

deficiencies, or the generally weakened status of the patient. Widespread antibiotic

resistance often makes these infections extremely difficult to treat.

Another important reason for the problems associated with treating bacterial

infections is the formation of biofilms. The National Institutes of Health estimated

that more than 60 % of microbial infections proceed with the involvement of

biofilms. Biofilms are sticky agglomerations of bacteria or other microorganisms.

They significantly decrease the efficacy of antibiotics and the patient’s immune

defenses.

In nature, bacteria commonly form biofilms. However, for more than a century,

microbiological research was limited to growing bacteria under artificial conditions

which we now know barely reflect their natural biofilm mode of growth. William

J. Costerton, a pioneer of biofilm research, introduced the biofilm concept and the

term “biofilms” to microbiology in the 1970s (Costerton et al. 1978). Initially

focused on in vitro research and “environmental” bacteria, biofilm research over

time increasingly included the investigation of “medical” biofilms formed by

bacterial pathogens during infection.

Medical biofilm research comes with significant challenges that biofilm

researchers are still struggling to cope with. This is due to the fact that in vitro

biofilmmodels, despite the fact that they revealed many molecular determinants and

principles of biofilm formation, barely reflect the situation that the bacteria encoun-

ter in the human host. The more recent focus on establishing animal models of

biofilm infection and the capacity to directly investigate infectious isolates by

modern genetic methods has taken biofilm research to a new level. Notably, con-

cepts developed based on in vitro biofilm research often were not confirmed on the

in vivo level, demonstrating the necessity to complement in vitro biofilm research by

appropriate methods to ascertain their in vivo relevance (Joo and Otto 2012).

2 Biofilm Infections

Among the many types of infection in which biofilms are involved, a few have

gained particular attention from researchers, owing to their frequency, severity, or

potential model character for other biofilm-associated infections. Infections on

indwelling medical devices, such as catheters or joint prostheses, are virtually

always biofilm related. Owing to the high number of surgical interventions being

performed nowadays, they are very common. By far the most important pathogens

causing infections of indwelling medical devices are Staphylococcus aureus and

coagulase-negative staphylococci, such as Staphylococcus epidermidis (Otto 2008).
As these bacteria are commensals on the human skin and mucosal surfaces,

4 M. Otto



device-related infections commonly are caused by contamination of the devices

during insertion, with the infectious isolates originating either from healthcare

personnel or the patient. Of note, infected devices can be a source for life-

threatening secondary infections, such as septicemia.

Biofilms on contact lenses are a common cause of keratitis (Elder et al. 1995).

Similar to device-associated infections, they develop by contamination with com-

mensal bacteria, often involving coagulase-negative staphylococci, corynebacteria,

bacilli, Streptococcus pneumoniae, Pseudomonas aeruginosa, or Serratia
marcescens. The fungi Candida albicans and Fusarium ssp. also are frequent

causes of biofilms on contact lenses.

Probably the most widespread biofilm infection is dental plaque, the source of

several dental infections such as caries or periodontitis (Pihlstrom et al. 2005). In

contrast to infections of indwelling medical devices, which are normally due to one

single infectious isolate, dental plaque is a multi-species bacterial biofilm commu-

nity (Hojo et al. 2009). Group B streptococci and lactobacilli are especially frequent

among dental plaque-causing bacteria. We are only beginning to understand the

many interactions between the members of the dental plaque biofilm community.

Urinary tract infections often involve biofilms. Most frequently the infecting

bacterium is Escherichia coli (Marcus et al. 2008). Middle-ear infection (Otitis
media) also is a common biofilm-associated disease, especially in children

(Bakaletz 2007). The infecting bacteria include predominantly S. pneumoniae,
Haemophilus influenzae, and Moraxella catarrhalis. Moreover, biofilms may con-

tribute to streptococcal pharyngitis (“Strep throat”) (Murphy et al. 2009) and

chronic wound infections (Percival et al. 2012). The latter often contain

polymicrobial biofilms with skin-related and other bacteria, including anaerobes.

Unless complications occur, the biofilm-associated infections discussed so far

are not life-threatening. However, there are also examples of extremely severe and

frequently fatal diseases that involve biofilms. Infective endocarditis has a partic-

ularly high fatality rate and involves bacterial biofilms forming on the valves of the

heart (Que and Moreillon 2011). S. aureus, Viridans group streptococci, and

coagulase-negative staphylococci are the most common causes.

Cystic fibrosis (CF, mucoviscidosis) is an autosomal recessive genetic disorder,

caused by a mutation in the gene coding for the cystic fibrosis transmembrane

conductance regulator (CFTR), which is involved in regulating sodium and chloride

transfer across membranes (Riordan et al. 1989). Patients suffering from CF are

particularly prone to chronic bacterial infection (Cohen and Prince 2012). S. aureus
and H. influenzae dominate at early age, while P. aeruginosa is isolated in 80 % of

cases from patients older than 18 years (Rajan and Saiman 2002). P. aeruginosa
bacteria infecting the lungs of CF patients very likely grow in biofilms (Singh

et al. 2000). Accordingly, P. aeruginosa CF isolates often show a characteristic

“mucoid” phenotype associated with biofilm formation (May et al. 1991).

Owing to its involvement in CF infection as an especially severe form of biofilm-

associated infection, in addition to the fact that molecular tools are more readily

available for this bacterium compared to many other biofilm pathogens, biofilm

formation in P. aeruginosa has been, and still is, the most intensely investigated

Biofilms in Disease 5



biofilm-forming bacterium. Much of what we know about biofilms and biofilm

development stems from investigation using P. aeruginosa. However, we have also
increasingly become aware of the fact that many mechanisms of biofilm formation

discovered in P. aeruginosa have less of a model character than previously

assumed, as the molecular mechanisms of biofilm formation may significantly

differ between different biofilm-forming pathogens. Of note, an important problem

associated with the model character of P. aeruginosa for biofilm infection is the fact

that P. aeruginosa CF infections are difficult to mimic in animal infection models

(Hoffmann 2007).

3 Biofilm Resistance

It has often been stressed that biofilms provide resistance to mechanisms of host

defense, in particular, leukocyte phagocytosis. However, there have been

conflicting results as to whether biofilm cells are inherently resistant to phagocy-

tosis (Gunther et al. 2009). As investigation performed in staphylococcal biofilms

suggests, protection is likely due mainly to the production of the extracellular

biofilm matrix, which may inhibit the engulfment of biofilm cell clusters by

phagocytes (Guenther et al. 2009; Vuong et al. 2004a). Furthermore, the matrix,

which consists of polymers with low immunogenicity, shields biofilm cells from

recognition of bacterial cell surface-exposed epitopes by the immune system

(Thurlow et al. 2011).

Many antibiotics have significantly lower efficacy against biofilm as compared

to planktonic (i.e., free-floating) cells (Stewart and Costerton 2001). The difference

can reach factors of around 1,000 (Davies 2003). Biofilm resistance (or strictly

speaking, tolerance, as opposed to specific mechanisms of resistance) is due to

different reasons. The extracellular biofilm matrix provides a mechanical shield,

preventing at least some antibiotics from reaching their target, often the bacterial

peptidoglycan, the cytoplasmic membrane, or intracellular targets such as protein or

DNA biosynthesis molecules. Furthermore, biofilm tolerance is due to the physio-

logical status of biofilm cells, which is characterized by low activity of cell

processes such as cell wall, protein, or DNA biosynthesis. Thus, the many antibi-

otics that target those processes are barely active against cells in biofilms (Davies

2003).

4 General Model of Biofilm Formation

Research initially performed in P. aeruginosa, but in the meantime also in many

other bacteria, revealed a general model of how biofilms develop (O’Toole

et al. 2000). For bacterial pathogens, the first step is attachment to tissue surfaces.

Rarely, attachment may proceed directly on abiotic surfaces, such as on catheters,

6 M. Otto



but because human matrix proteins soon cover any foreign device in the human

body, this form of attachment likely only plays a minor role even in device-

associated biofilm infections. In the case of motile bacteria, such as

P. aeruginosa, attachment may be preceded by active motion toward the surface,

whereas nonmotile bacteria have to rely on passive modes of motion in that first

step of biofilm development.

After attachment is accomplished, the bacteria proliferate and surround them-

selves with the characteristic biofilm matrix. This matrix is composed of many

different molecules. Some are specific to the given bacterium, such as the

exopolysaccharides and secreted proteins produced by many biofilm bacteria.

Others may be produced by a large subset of bacteria, such as teichoic acids

found in Gram-positive bacteria. As biofilms are in a stationary mode of growth,

the biofilm matrix also comprises molecules that are released from dying cells. In

particular, extracellular DNA (eDNA) was found to contribute to the biofilm matrix

in many bacteria (Whitchurch et al. 2002). Electrostatic interactions between

oppositely charged matrix polymers are believed to play a key role in matrix

formation. It needs to be stressed that for some of these molecules, evidence for a

participation in the biofilm matrix is only derived from in vitro investigation, such

as in the case of eDNA. The environment in the human host contains factors, such

as nucleases and proteases, which have the potential to interfere strongly with the

composition of the biofilm matrix. Especially eDNA may be degraded by the

efficient human serum DNaseI (Whitchurch et al. 2002). It may be because the

human host cannot degrade them that biofilm bacteria produce specific biofilm

exopolysaccharides, several of which have a proven function in in vivo biofilm

formation (Rupp et al. 1999; Conway et al. 2004; Hoffmann et al. 2005).

Were it only for the biofilm matrix components, biofilms would be unstructured

“clumps” of cells, and expansion of a biofilm would hardly be possible without

leaving cells in deeper layers prone to death due to limited nutrient availability.

However, we know from microscopic analysis that biofilms have a characteristic

three-dimensional structure with cellular agglomerations in “mushroom” shape and

channels that provide nutrients to those deeper layers. The molecular factors that

facilitate channel formation have recently gained much attention. Several biofilm-

forming bacteria were found to produce surfactant molecules to structure biofilms

in that fashion (Otto 2013). Notably, the same forces that underlie channel forma-

tion are responsible for the detachment of cell clusters from a biofilm, a mechanism

that leads to dissemination of the pathogenic bacteria to the bloodstream, and thus

may cause second-site infections.

Biofilm formation is under the control of a series of regulatory systems, which

often differ considerably between different biofilm-forming bacteria. However,

there are also generally applicable concepts in biofilm regulation. In several

bacteria, such as E. coli, sensory and regulatory systems trigger biofilm develop-

ment upon contact with a surface (Otto and Silhavy 2002). Furthermore, the general

switch from the planktonic to the biofilm mode of growth is often under control

of the second messenger cyclic di-GMP (Romling et al. 2013). Finally, cell

Biofilms in Disease 7



density-dependent regulation (“quorum sensing,” QS) controls biofilm differentia-

tion in many microorganisms (Irie and Parsek 2008).

5 Biofilm Pathogens

While the general model of biofilm formation gives a good overall outline that is

applicable to many biofilm-forming bacteria, most biofilm microorganisms produce

highly specific biofilm factors. Some of those that were thoroughly investigated

shall briefly be introduced in the following.

Biofilm formation in P. aeruginosa is best understood, at least in vitro. This

species produces three main biofilm exopolysaccharides, the negatively charged

alginate, the mannose-rich neutral “Psl,” and the glucose-rich “Pel” exopolysac-

charides (Ryder et al. 2007). Production of alginate in particular is associated with

the “mucoid” phenotype of P. aeruginosa strains isolated from cystic fibrosis

infection (May et al. 1991). The impact of QS on biofilms was first described in

P. aeruginosa, where as in many other bacterial pathogens, it has a strong impact on

the production of biofilm factors and biofilm development in general (Davies

et al. 1998). QS regulation in P. aeruginosa involves at least three systems (Rhl,

Las, and Qsc) forming a QS network (Jimenez et al. 2012). Early experiments

performed in P. aeruginosa indicated that QS is a positive regulator of biofilm

expansion (Davies et al. 1998), but we know now that the impact of QS on biofilm

development is more complicated, affecting a series of factors involved in biofilm

growth and structuring (Joo and Otto 2012). Rhamnolipids, for example, are

QS-controlled surfactants that facilitate P. aeruginosa biofilm structuring (Boles

et al. 2005). Furthermore, pili (or fimbriae) in P. aeruginosa provide motility and

are not only important for reaching a surface, but also in QS-regulated detachment

processes (Gibiansky et al. 2010), where cells regain pili-mediated motility starting

in the center of biofilm “mushrooms” (Purevdorj-Gage et al. 2005).

S. aureus and coagulase-negative staphylococci contribute to a number of

biofilm infections and dominate among pathogens causing infections of indwelling

medical devices. Much of our knowledge on staphylococcal biofilm formation

stems from research on the human commensal S. epidermidis (Otto 2009).

S. epidermidis—as most other staphylococci—produces an exopolysacharide

termed polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine

(PNAG). PIA/PNAG is a linear homopolymer of N-acetyl glucosamine with partial

de-acetylation that introduces positive changes in the otherwise neutral molecule

(Mack et al. 1996; Vuong et al. 2004b). It has a demonstrated significant function in

in vitro and in vivo biofilm formation, although not all staphylococcal biofilm-

forming strains (especially S. aureus) appear to rely on PIA/PNAG to form biofilms

(Rohde et al. 2007). A large number of proteins also contribute to the formation of

the staphylococcal biofilm matrix, such as the accumulation-associated protein Aap

(Conrady et al. 2008). The biofilm-structuring surfactant phenol-soluble modulin

(PSM) peptides of staphylococci are controlled by the accessory gene regulator

8 M. Otto



(Agr) QS system (Periasamy et al. 2012; Wang et al. 2007) and the

exopolysaccharide PIA/PNAG by the LuxS QS system (Xu et al. 2006).

Group B Streptococci (GBS) such as Streptococcus mutans participate to a

significant extent in dental plaque formation. S. mutans secretes glucosyl trans-

ferases and glucan binding proteins, which produce water-soluble and -insoluble

glucans that facilitate biofilm formation (Banas and Vickerman 2003). Many GBS

produce a polysaccharide capsule that contains moieties with similarity to host

saccharides, which thus—in addition to their role in biofilm matrix formation—

may provide protection from host defenses (Wyle et al. 1972). Biofilm formation in

streptococci is regulated by a series of global regulators, including competence

systems, which regulate the uptake of DNA (Suntharalingam and Cvitkovitch

2005). The competence/QS signal peptide CSP (competence-stimulating peptide)

has a major role in controlling these phenotypes (Li et al. 2001).

In E. coli, a pathogen frequently involved in urinary tract infection, different

forms of pili (type I fimbriae, curli fimbriae, and conjugative pili) participate in

attachment and biofilm formation (Beloin et al. 2008). The Cpx system senses the

surface and neighboring bacteria, affecting production of flagellae and biofilm

maturation (Otto and Silhavy 2002). Interestingly, despite the fact that E. coli is
not closely related to staphylococci, it produces the same matrix exopolysaccharide

PIA/PNAG (called PGA in E. coli) (Wang et al. 2004), indicating that specific

biofilm-related genes have been distributed far beyond species and genus barriers.

Acinetobacter baumannii is a biofilm-forming pathogen often involved with

hospital-acquired pneumonia that has recently received much attention (Cerqueira

and Peleg 2011). A. baumannii can form biofilms on abiotic surfaces that survive

for several days, in which pili produced by the csu operon play a preeminent role

(Tomaras et al. 2008). However, these pili are not important for attachment to

mammalian cells (de Breij et al. 2009), exemplifying that in vitro results regarding

biofilm factors may have limited relevance for the in vivo situation. A. baumannii
produces two biofilm molecules that have previously been described in staphylo-

cocci: PIA/PNAG (Choi et al. 2009) and the biofilm-associated protein (Bap)

(Loehfelm et al. 2008), again showing that key biofilm factors were distributed

across genus barriers even between Gram-negative and Gram-positive bacteria.

C. albicans is the most frequent fungal human pathogen. While C. albicans
biofilm development follows the same general model as do bacteria, the participat-

ing molecules are not related, owing to the fact that this pathogen is a eukaryotic

organism (Cuellar-Cruz et al. 2012). Attachment occurs via cell wall proteins and is

followed by the production of hyphae and a matrix that consists of several different

polymers. Similar to bacteria, QS regulation has a strong impact on Candida
biofilm development, with tyrosol and farnesol being the most important QS signals

(Singh and Del Poeta 2011).

Biofilms in Disease 9



6 In Vitro and In Vivo Analysis of Biofilm Development

Analyzing biofilm formation in in vitro models ranges from simple microtiter plate

assays to sophisticated flow reactors. Flow constantly provides fresh media to the

biofilm cells and is often applied to mimic environmental biofilms, such as those

formed in wastewater tubing. Which in vitro model best mimics “medical” biofilms

as present during infection is debatable. Many observations and findings indicate

that results achieved using in vitro biofilm models are difficult to transfer to the

in vivo situation (Joo and Otto 2012). Nevertheless, modeling biofilm formation

in vitro has the advantage that the biofilms can be analyzed using state-of-the-art

microscopic techniques, such as confocal laser scanning microscopy (CLSM). By

taking regular interval pictures of a biofilm forming in a flow cell, movies can be

produced using CLSM that give detailed insight into biofilm development.

In addition to the genetic analysis of infectious isolates, the analysis of biofilms

during infection relies primarily on animal models of biofilm-associated infection.

Some biofilm infections, such as indwelling device-related infection, are easier to

mimic in animal models than others, such as lung infection during cystic fibrosis or

dental plaque formation. For that reason, we have a better understanding of in vivo

biofilm factors in bacteria that cause device-related infections than many other

biofilm-related diseases. Clearly, the development of better models of biofilm-

associated infection is a premier task of current and future biofilm research.

7 Targeting Medical Biofilms

Biofilm formation is still a problem for drug development that has not been

satisfactorily addressed. With the development of novel antibiotics almost having

come to a halt (Cooper and Shlaes 2011), companies are often not focusing on

biofilm-associated infections, as those are regarded as even more complicated to

tackle. At least it is now common practice to monitor the efficacy of a drug in

development against in vitro biofilms.

Generally, one can envision two different approaches to combat medical

biofilms. First, novel antibiotics may be developed that have increased efficacy

against biofilms. These should be antibiotics that penetrate the biofilm matrix and

have a bactericidal rather than bacteriostatic mode of action. Second, drugs specif-

ically inhibiting attachment, proliferation, or even biofilm structuring may target

biofilm formation itself. It is also conceivable to develop drugs that promote biofilm

dispersal, leaving biofilm cells more prone to attack by conventional antibiotics.

However, biofilm molecules that are conserved in different biofilm pathogens are

rare. This approach thus has the disadvantage of limited applicability and market-

ability. Some regulatory factors may be more widespread, but inhibiting regulators

in antibacterial drug development requires much caution. Unfortunately, the out-

look regarding the timeframe for the availability of drugs that are active against

10 M. Otto



biofilms is rather bleak, necessitating more extensive efforts both in general biofilm

research and in the development of biofilm-active antibiotics.
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The Use of DNA Methods to Characterize

Biofilm Infection

Randall Wolcott and Stephen B. Cox

Abstract Because of biofilm’s fundamental properties—its polymicrobial nature

(genetic diversity) and “viable but not culturable” microbial constituents—clinical

cultures are wholly unsuited for evaluating chronic infections associated with

biofilm. DNA-based technologies (molecular methods) have a number of advan-

tages for evaluating human infections. Real-time PCR and sequencing technologies

are particularly robust for identifying microorganisms in human environments

because of development of their methods by the human microbiome project.

DNA methods enjoy much higher sensitivity and specificity than cultivation

methods for identifying microorganisms regardless of their phenotype. Moreover,

real-time PCR can be quantitative in an absolute sense, while sequencing methods

yield accurate relative quantification of all constituents of the sampled infection.

All methods for microbial identification have biases, yet molecular methods suffer

the least from these biases. Although DNA-based identification of microorganisms

has the limitation that sensitivities to antibiotics cannot be determined in a Petri

dish and must be determined by identifying mobile genetic resistance elements

within the microbes, molecular methods are a significant improvement in the

identification of microorganisms for human infections and are currently the only

reliable technology for diagnosing biofilm infection.

1 DNA-Based Testing
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The human microbiome project (HMP) has forever changed how microorganisms

will be identified (Chain et al. 2009). The HMP was established to identify and to

quantitate bacteria living in normal human environments such as the gut, oral

cavity, skin, urogenital, etc. Several challenges for the project were that the

microbes in these host environments are polymicrobial, they are not quantifiable

by cultivation methods, and they generally exist in a biofilm phenotype. In fact, the

vast majority of the species known to inhabit normal host environments are not

routinely culturable (Petrosino et al. 2009), which is characteristic of the biofilm

phenotype (Fux et al. 2005). These facts led investigators to employ molecular

methods.

Molecular methods are based on the idea of direct examination of the bacterial

DNA existing in the sample to allow for identification of the bacteria that are

present. There has been a very rapid and fluid progression of molecular technolo-

gies that can analyze microbial DNA. However, to get any of these molecular

technologies to give a meaningful analysis, high-quality DNA first must be

obtained. Therefore, one of the most important obstacles to using molecular

methods for identifying and quantitating microorganisms in human infections is

obtaining good microbial DNA from the sample (i.e., the process of DNA extrac-

tion). There are a number of excellent kits and laboratory methods for obtaining

microbial DNA from mixed samples (samples that contain both microbial and

human DNA). However, each method has different extraction efficiencies, and

these efficiencies may vary for the different species within the sample. Yet even

with these challenges, many extraction methods can approach 96 % efficiency

(Fitzpatrick et al. 2010).

The process of DNA extraction, especially from samples that contain some of

the host products, also can extract substances that inhibit later analysis of the

microbial DNA. For example, polymerase chain reaction (PCR) is a common

method used to amplify microbial DNA, yet the process can be inhibited by sub-

stances found in the sample. These PCR inhibitors include complex polysaccha-

rides, bile salts, hemoglobin degradation products, polyphenolic compounds, heavy

metals, and, most frequently, large amounts of human DNA (Stauffer et al. 2008).

Many of the more common PCR inhibitors can be effectively mitigated, but if the

inhibitors cannot be identified and controlled, resampling may be necessary. Once

good DNA is obtained from the sample, most current molecular instrumentation

can obtain reliable clinical results.

PCR is a widely used method of processing DNA that has a relatively long

history of use in the clinic (Krishna and Cunnion 2012; Reddington et al. 2013).

PCR utilizes primers that attach to complementary regions of bases in the microbial

DNA and, through a polymerase reaction, create copies of this area. This copying

process doubles the amount of target sequence with every cycle of the PCR. Real-

time PCR has the ability to quantitate, in an absolute sense, how much microbial

DNA is in the original sample. The number of cycles required before the real-time

signal reaches a detection threshold (cycle threshold number or ct number) can be

correlated to an absolute number of microbes present in the original sample. This is

an extremely powerful feature of real-time PCR that can used to quantify “bacterial
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load” (Verhoeven et al. 2012). However, PCR has several important limitations.

Most limiting is the fact that real-time PCR requires a primer sequence to be

developed for each species of microorganism present in the sample. With the

literally thousands of different microorganisms that can be in human chronic

infections, constructing thousands of primers for each analysis is inefficient, costly,

and currently not feasible.

There also are a number of different parameters involved in the process of

performing PCR, such as chemistries (e.g., Syber Green, TaqMan), platforms (e.

g., Roche v. Abbott), factors in plate preparation, etc., that can impact results.

Incomplete optimization of these parameters can lead to amplification inefficien-

cies, inconsistent reproducibility, random PCR products, and other problems. The

optimization of chemistries, primers, and instrument variables is focused on

improving sensitivity of the primer to the target microbe without sacrificing spec-

ificity for the organism (prevention of cross-reactivity with other species). Optimi-

zation must also take into account dynamic range so that minor species are detected

and quantitated as accurately as the dominant species in the sample.

Diagnostic laboratories painstakingly optimize all of the PCR variables by

choosing appropriate instruments, chemistries, and primers to mitigate the potential

negative impacts of these variables. However, there are still limits to quantitative

PCR methods. For example, even though the reported results will be extremely

specific for the microbial species present, due to DNA extraction efficiencies for

different species, different amplification efficiencies for different species, and other

variables, quantification of the microbes in the sample remains mildly inconsistent.

Calculating bacterial load by real-time PCR often yields up to an order of magni-

tude variation for known quantities (usually lower), yet this seems to be an

acceptable level of variability for clinical decision-making.

Although real-time PCR can rapidly yield usable information on bacterial load

and identify a limited number of microbial species, it is impractical for PCR to be

used alone for the identification and quantification of microbes in most human

infections. Investigators in the HMP encountered the same limitations and quickly

turned to sequencing (Aagaard et al. 2012). One of the technologies used early on in

the HMP was a whole metagenome survey of the microbes present. This method-

ology looks at all genes present in a sample, which is an excellent way to determine

species of fungi, bacteria, and even viruses present in an infection. The problem

with determining all the genes present was that it required a massive number of

sequencing base pairs (bp-ATCG) for a sample, which only allowed a small number

of samples to be evaluated per sequencing run. These surveys also lost some of their

quantitative ability (Fodor et al. 2012).

An alternative methodology was developed in which a very specific gene, the

ribosomal 16S rDNA gene for bacteria or 18S rDNA gene for fungi, can be

amplified through a PCR step and then sequenced. The use of the 16S rDNA

gene as an indicator of bacterial taxonomic relationships traces back to the

pioneering work of Woese and Fox (1977). This method provides two important

pieces of information. Once the 16S or 18S region has been sequenced, it can be

compared to a database of known sequences, thus yielding the genus and species
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with a high level of confidence. In addition, this method can allow for relative

quantification of the microbes present within each sample. The number of “copies”

of the gene for each species in the sample can be totaled, allowing for each species

to be expressed as a percent of that total number. Although it does not provide for

absolute quantification, this method does allow investigators to determine the

dominant, major, and minor species within a sample (Rhoads et al. 2012a). Because

this approach focused on sequencing only a single gene from each microbe, it

allowed for several hundred samples to be analyzed on the same plate in a single

run, greatly reducing the cost and increasing the speed of analysis. It was mainly

through the development of sequencing technologies and methods that allowed

investigators to elucidate fully the microorganisms present in the human

microbiome (Morgan et al. 2013).

Sequencing is the molecular method for determining the exact order of nucleo-

tides (i.e., adenine, thymine, cytosine, guanine) of a specific fragment of DNA or an

entire genome. Sequencing instruments, such as the Roche 454, the PacBio (Pacific

Biosciences), and Ion Torrent (Life Technologies), use different methods, but they

all accurately determine the sequences of long segments of specific regions of

microbial DNA, such as the 16S rDNA gene for bacteria and the 18S rDNA gene

for fungi. These technologies can give a 99 % accurate code for the targeted gene,

which is easily translated into taxonomic identification.

The microbial gene that codes for the 16S ribosomal subunit is conserved in all

prokaryotic organisms except for a small subgroup of Archaea. The 16S ribosomal

DNA has about 1,500 nucleotides, which contain nine hypervariable regions (v1–

v9), and allows for the ability to identify bacteria at the species level. Fortunately,

v1 can differentiate Staphylococcus to a genus level, and if the first three regions

(v1–v3) can be sequenced, then the majority of other bacteria can be resolved to a

genus level with a high degree of certainty. The 16S ribosomal DNA has been

called the genomic fingerprint, and a 400+ nucleotide sequence of the 16S ribo-

somal DNA region is capable of reliably reading this genomic fingerprint.

Often, sequencing is carried out at multiple points along the 16S gene. It has

been demonstrated that sequencing two fragments of the 16S gene consisting of

762 based pairs and 598 base pairs is more accurate in identifying bacteria than a

single fragment of 1,343 base pairs (Jenkins et al. 2012). Therefore, sequencing

methods often use primer sets consisting of two or more primers that cover different

regions of the 16S gene. These primer sets can have some bias in how efficiently

they sequence specific bacterial species.

Once sequencing has been completed, a data analysis pipeline is needed to begin

processing the data. The data analysis process consists of two major stages: quality

checking and diversity analysis. During the quality checking stage, denoising

(Quince et al. 2009, 2011) and chimera checking (Haas et al. 2011) are performed

on all the reads within the data. Each read is quality scanned and deficient reads are

removed from the sample. The primary output of this stage is high-quality

sequences. During the diversity analysis, sequences from each sample are run

through an algorithm (typically involving a match to a database of known
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sequences) to determine the taxonomic information for each sequence. Reference

databases exist for sequences from the 16S, 18S, 23S, ITS, and/or SSU regions.

Bioinformatics, the post-analysis processing of the massive data, therefore

becomes the overseer of the quality of the reported results to the clinician. It is

very difficult for clinicians to abandon the visible, tangible, and familiar microor-

ganism growing in a Petri dish for the very complex “black box” type of results

produced by bioinformatics. However, current laboratory regulations requiring

strict validation and reproducibility coupled with proficiency testing of unknown

samples can allow the clinician to feel very comfortable with these new molecular

methods. Also, a closer examination of clinical cultures demonstrates that clinicians

may have placed their faith in an insufficient method all along.

2 Clinical Cultures: The Land of the Blind

Medical microbiology has clung to cultivation methods even while environmental

microbiology migrated to DNA methods for microbial identification decades ago.

This failure to take advantage of new technologies to improve microbial identifi-

cation has left clinicians “blind” to the microbial reality of most infections. Many

deficiencies in traditional cultivation methods make routine clinical cultures unac-

ceptable for medical microbiology.

Only a handful of media, such as tryptic soy agar, blood agar, nutrient agar,

brain–heart infusion agar, and a few others are used to plate routine samples and

they are grown at only one temperature (usually 37 �C) for 24–48 h. These

experimental conditions have been worked out to be adequate for Staphylococcus
species, Streptococcus species, Pseudomonas aeruginosa, and several other bacte-

ria that can grow under these limitations. However, the vast majority of bacterial

and fungal species do not grow under these laboratory conditions. Therefore,

hundreds to even thousands of specialty media have been developed along with

various algorithms for microbes that require different atmospheres, nutrients, length

of time, temperature, etc., to be grown. No other single fact could be more

convincing for making the argument that routine clinical cultures are inadequate

for diagnosing human infection.

Also, bacteria in the biofilm phenotype are notoriously difficult to grow in

routine clinical cultures because they are “viable but not culturable.” Biofilm

infections also tend to be polymicrobial. Early investigators at the time of Koch

found, “No matter how ingenious the machinery, how careful the researchers, they

kept ending up with beakers of mixed bacteria. The inability to get anything but

mixed cultures led many scientists to believe that the bacteria had to be in mixed

groups in order to thrive, that they could never be separated. . .” (Hager 2006). To
solve this problem, Koch developed the methodology of pure culture very similar to

that of our current clinical culture.

Koch found on the semiliquid surface of agar infused with necessary nutrients

that only one species of bacteria in his clinical sample would propagate and the rest
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of the bacteria, “the contaminants,” would not grow or would be outcompeted.

What we now know is that the experimental design of the nutrient-enriched agar

plate encourages planktonic phenotype propagation of the bacterial species in an

exponential growth phase pattern. We also know that the experimental design has

significant bias for the bacterial species that propagate well under the experimental

conditions of temperature, nutrient, time, etc. This creates a huge selection bias to

grow the microorganisms which the medical microbiologists have decided in

advance are the pathogens. With molecular methods, we have discovered even

more shortcomings of clinical cultures.

Many clinicians continue to hold Koch’s view of one microorganism producing

one clinical infection. While this generally may be true for acute infections that are

commonly produced by bacteria in the planktonic phenotype, it does not hold true

for biofilm infection. Chronic infections are associated with biofilm phenotype

bacteria (Del Pozo and Patel 2007) and are often polymicrobial, which confounds

the methods of clinical cultures. When molecular methods are compared with

clinical culture to identify the microbes, we start to understand why clinical cultures

provide little help in managing most chronic infections.

In pleural effusion samples, which tend to be culture negative even when the

patient shows clear signs of infection, the use of universal 16S PCR, “bacterial

load,” demonstrated bacteria in 82 % of the clinically infected samples, whereas

clinical cultures grew bacteria only 55 % of the time. Utilizing a single molecular

test improved bacterial identification by 27 %. It should also be noted that this

individual PCR test had only 0.9 % false positives whereas clinical cultures had a

2.6 % false positive rate (Insa et al. 2012).

Also, it has been found to be more advantageous to first identify the microor-

ganisms utilizing molecular methods and then select media and growth conditions

to cultivate the microorganisms present. Up to 20 different growth conditions were

necessary to cultivate microorganisms in a single cystic fibrosis study (Sibley

et al. 2011). This demonstrates that the “one size fits all” routine clinical culture

is inadequate to handle the diversity of chronic infections.

A retrospective study that evaluated 168 chronic wounds with both clinical

culture and molecular diagnostics (PCR and pyrosequencing) revealed the compre-

hensiveness of molecular methods (Rhoads et al. 2012a). Evaluating chronic

wounds at a genus level for bacterial taxa only, cultures identified 17 different

bacterial genera, whereas the DNA methods identified 338 bacterial taxa. Cultures

underreported the diversity of the wound microbiota, but even more importantly,

they failed to identify the most abundant bacteria in the wound over half the time

(Rhoads et al. 2012b). Cultures obtained from polymicrobial biofilm infections fail

to identify the diversity by a factor of 20-fold and fail to identify the cornerstone

genus over half the time.

To improve on the design of the previous study, a prospective study was

conducted in which 51 consecutive chronic wounds had a single sample taken

from their surface (Rhoads et al. 2012b). The sample was homogenized and a

portion was sent for clinical culture, a portion sent for PCR and pyrosequencing,

and the remaining saved for further analysis if necessary. Once the clinical culture
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was complete and all the sub-plates identified by phenotypic methods (biochemis-

tries) the sub-plates were submitted for sequencing. The results showed that

5 wounds (10 %) were culture negative and 9 of the 46 remaining wounds (19 %)

had discrepant results between the bacterial isolate identified by culture versus

sequencing. For example, culturing methods identified P. aeruginosa, whereas
sequencing evaluating the same sub-plate identified Salmonella enterica. Once
again, culture failed to demonstrate the most abundant species over 50 % of the

time (Rhoads et al. 2012a). It may be that one main reason clinicians struggle to

manage chronic infections is because traditional culturing methods consistently

report minor constituents of the infections rather than the dominant culprits.

Over 68 % of patients receive at least one course of antibiotics for the manage-

ment of their chronic wounds (Howell-Jones et al. 2005). Unfortunately, multiple

studies have demonstrated that treating wounds based on culture results does not

improve the outcomes of the healing of the wound (Lipsky et al. 2004, 2011; Siami

et al. 2001). This information has led some investigators to conclude that even

though pathogens such as P. aeruginosamay be present in the wound, the pathogen

is not doing any harm. That conclusion is made because when chronic infections are

treated with anti-pseudomonal antibiotics specifically for P. aeruginosa identified

by culture, there is no improvement in wound healing outcomes (Joseph 2013). The

confusing results from clinical culture, which leads clinicians and scientists alike to

conclude that pathogens may not behave pathogenically or that bacteria don’t

matter in certain chronic infections (O’Meara et al. 2010), may be due to the

inadequacies of the cultivation methods.

Although routine clinical cultures are inadequate for evaluating chronic infec-

tions, we must first determine if the proposed replacement (i.e., molecular methods)

is any better. That is, will adopting molecular methods improve clinical outcomes

for chronic infections produced by biofilm phenotype microorganisms? After all, by

growing bacteria, medical microbiologists can apply antibiotic discs and determine

the “real-world” sensitivity of the isolated bacteria. Also, even though it has been

demonstrated that DNA degrades quite quickly (2–3 days) once the bacteria dies

within the host infection (Post et al. 1996), there is no clear determination that the

microbial DNA identified by molecular methods is associated with a living bacte-

rial cell. However, in a chronic wound infection model, when wound biofilm was

comprehensibly diagnosed utilizing molecular methods and the microorganisms

identified specifically treated, healing outcomes did improve (Dowd et al. 2011).

Regardless, the primary tenant of medicine is for the clinician to fully diagnose the

disease, and as demonstrated above, clinical cultures are mostly blind to the

microbial reality of polymicrobial biofilm infection.
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3 Advantages of DNA Diagnosis: The One Eye

An Oslerian (Sir William Osler) model of medicine mandates that the clinician

diagnose a malady as fully as possible to formulate the most appropriate treatment

available. Evidence-based medicine often requires not only diagnosis before the

treatment regimen but also frequent intervals of reevaluation during the treatment to

show efficacy. So, no matter the generation of the clinician or which model of

medicine to which the clinician ascribes, diagnosis of the condition is fundamental.

Diagnosis prior to treatment is especially important in the management of chronic

infections.

However, most clinicians treating chronic infections have abandoned the fun-

damental principle of initial diagnosis. The problem seems to lie not in the

clinicians but in the diagnostic tools available. Many different culturing methods

have been tried, yet they do not improve outcomes in the treatment of chronic

infections. The inadequacy of cultivation methods has led to a de facto management

of chronic infections by an educated guess, trial and error method.

The transition toward adopting molecular methods for medical microbiology

need not be difficult. For virology there are no other reliable methods other than

nucleic acid-based analysis. Almost a decade ago it was established that not only

was DNA-based testing more accurate and reliable than clinical culture, but it also

had the advantage of reduced time to diagnosis and high throughput (Mothershed

and Whitney 2006). New methods have also been developed to identify various

different antibiotic resistance determinants while at the same time providing

genetic surveillance for new and existing pathogens (Weile and Knabbe 2009).

Indeed from 2001 to 2007, 215 novel bacterial species were identified in human

infections by sequencing methods with 100 of these new species identified in four

or more individual patients (Woo et al. 2008). Molecular methods offer faster and

higher throughputs while staying true to the original purpose of identifying and

quantifying microbes. Recent studies demonstrate that close to 100 % sensitivity

and specificity can be achieved for evaluating clinical infections (Hansen

et al. 2010). One issue is that molecular methods may be identifying too many

microorganisms, leading the clinician to over treat a specific infection.

DGGE and imaging methods showed that there was much more diversity present

in wounds than clinical cultures were reporting (Davies et al. 2004; James

et al. 2008). Clinicians managing other chronic infections such as chronic

rhinosinusitis (Stephenson et al. 2010), cystic fibrosis (Goddard et al. 2012), middle

ear infections (Laufer et al. 2011), and burns utilized molecular methods to show

similar findings. It has been generally agreed that these and other chronic infections

are associated with bacteria propagating in biofilm phenotype (Del Pozo and Patel

2007). Although molecular methods can identify microbes regardless of their mode

of growth, the same is not true for clinical cultures. Molecular technology provides

the clinician a more robust understanding of the infection, but also forces the

clinician to consider multiple microbial species. At the same time, molecular
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methods do not provide any clear information on which species are producing the

infection and which species are merely contaminants.

New methods are rapidly developing where microRNA (Martens-Uzunova

et al. 2013) and messenger RNA (Mutz et al. 2013) can be sequenced and identified.

This will provide critical information as to the inner workings of microbial cells

which should provide insight as to strategies being used to cause infection. This

may shed light on which microorganisms within the community are behaving as

pathogens.

Before a bacterial species can be deemed a pathogen, or more importantly before

that species can be dismissed as a contaminant, the clinician must take into account

the synergies which arise within a polymicrobial infection. By including multiple

bacterial and/or fungal species into a single community, the biofilm achieves

numerous advantages such as passive resistance (Elias and Banin 2012), metabolic

cooperation (Fischbach and Sonnenburg 2011), by-product influence (Elias and

Banin 2012), quorum-sensing systems, an enlarged gene pool with more efficient

DNA sharing (Madsen et al. 2012), and many other synergies that give the

polymicrobial infection a competitive advantage. It is best to view a biofilm as a

single entity possessing multiple genetic resources to allow it to adapt and thrive

regardless of the stresses it encounters. In general, a more diverse population (i.e.,

greater the gene pool) will make the biofilm more robust in terms of its survivability

(Tuttle et al. 2011).

Metabolic cross feeding has been well established between genetically distinct

species. It has been shown that Streptococcus gordonii produces peroxide that can
cause Aggregatibacter actinomycetemcomitans (Aa) to produce a factor H binding

protein which limits the host’s ability to kill Aa through a complement mediated

lysis (Ramsey et al. 2011). This metabolic cooperation has been identified in

numerous polymicrobial models (Dalton et al. 2011; Mikx and van der Hoeven

1975; Kuboniwa et al. 2006).

Waste products, molecules that bacteria produce that are end products and are of

no benefit to the metabolizing member, are released into the local biofilm environ-

ment. Many of these metabolites such as ammonia, lactic acid, and carbon dioxide

can have significant influence on the surrounding microorganisms (Elias and Banin

2012). Studies have demonstrated that Fusobacterium nucleatum and Prevotella
intermedia generate ammonia which raises the pH suitable for Porphyromonas
gingivalis (Takahashi 2003) and that F. nucleatum also provides an increased

carbon dioxide environment which increases the pathogenicity of P. gingivalis
(Diaz et al. 2002).

Passive resistance is when one of the members in the biofilm possesses a

resistance factor that can protect other members of the biofilm which do not have

the factor. There are numerous biofilm defenses which limit the effectiveness of

antibiotics. For example, a beta-lactamase producing strain of Haemophilus influ-
enza was cocultured with Streptococcus pneumoniae deficient in any resistance

factors. Haemophilus influenza increased the MIC/MBC of S. pneumoniae by

amoxicillin (Weimer et al. 2011).
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The clinical concern relative to the synergies of polymicrobial biofilm is that the

infection will be more severe and recalcitrant to treatment. There are many exam-

ples which show that this is indeed the case. Low levels of P. aeruginosa mixed

with Staphylococcus aureus increased infection rates in a rat model (Hendricks

et al. 2001). In the mouse model, Prevotella increases the pathogenicity of S. aureus
(Mikamo et al. 1998). Escherichia coli produced marked increase in the size of

abscess formation with Bacteroides fragilis in a diabetic mouse model

(Mastropaolo et al. 2005). There also is clinical evidence to suggest that

polymicrobial infections are more severe (Tuttle et al. 2011).

The synergies and general recalcitrance produced by polymicrobial infections

argue for the full evaluation of every infection. This means not only identification

of all species present but also their quantification. However, there is currently not

enough information to give clear direction on which microorganisms are important

to treat. Also, therapeutic tools for managing polymicrobial infections in conjunc-

tion with or separate from antibiotics are generally not available. If a clinician has

no specific tools to address all the diversity of a polymicrobial infection then is it

valuable to get the test in the first place?

4 The Clinical Use of Molecular Methods: Two Eyes

Identifying and quantitating the microorganisms present in an infection are only

part of the diagnosis of an infection. Clinical findings play the major role in

determining if the microorganisms present are harming the host. It is only through

stereoscopic vision of laboratory results and clinical observation that we can clearly

see the power of the detailed information provided by molecular methods. Just as

when sophisticated imaging technologies emerged such as MRI, the full meaning

and nuances of the images provided could not be appreciated until there was clinical

application and experience.

Clinicians seem to be divided by the information provided by DNA-based

testing. The unfamiliar microbes can both elucidate and complicate the diagnosis

of chronic infections produced by biofilm. Through years of use of molecular

methods in real-world chronic infections (mainly chronic wounds) several impor-

tant principles have emerged. Uncommon bugs occur commonly in chronic wounds

and many chronic infections. The clinical challenge of treating rare microbes is

more difficult but doable. Literature searches usually will yield usable treatment

options for the genera that are identified. Even though we like to know the species

identification, most antibiotics, biocides, quorum-sensing inhibitors, and ancillary

treatments work at the genus or even the family level for many microbes. That is, a

treatment that would kill a rat would in general kill a mouse. Therefore, unfamiliar

microbes for treatment purposes can be grouped with closely related microbes

which are more familiar (e.g., Raoultella planticola and Klebsiella spp.) or cate-

gorized by common groupings such as gram negative, gram positive, anaerobic, etc.

But all of the grouping and comparing of microbes to form a treatment plan
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highlight the main inadequacy of molecular methods, which is the lack of antibiotic

sensitivity data similar to that provided by culture methods.

There are several strategies for managing chronic biofilm infections with the

lack of antibiotic sensitivity information. First, if the infection is accessible to

topical treatment, high concentrations of antibiotics far in excess of resistance

factors can overwhelm most mobile genetic element-induced antibiotic resistance.

Second, if systemic antibiotics will be necessary then certain mobile genetic

elements with limited diversity, such as mecA cassettes, van genes, and others

can be identified by real-time PCR. Third, if sensitivity data is still critical, then

molecular diagnosis is still very often the quickest and most cost-effective way to

proceed because many microbes are not initially grown in routine clinical culture.

By first identifying the microbes of interest by molecular methods, custom nutrients

and methods can be used to cultivate microbes for sensitivity work or genomic

study (Sibley et al. 2011). With the emerging massive increase in capacity per run,

advances in bioinformatics and computing, along with steady decreases in costs, it

is becoming feasible to evaluate all the genes in a sample which may allow

molecular methods to eventually assess resistance directly in the near future.

Dealing with diversity is made easier by the data provided by DNA-based

diagnostics, but caveats remain. Sequencing provides a relative abundance for

each species identified in the sample; however, it yields no “absolute” quantifica-

tion for how much microbial material is present. Real-time PCR has the ability to

give reproducible estimates of the number of microbes per gram of tissue (such as

105/g) which is termed the “microbial load” or “bacterial load.” Several factors can

fictitiously lower the value for “microbial load,” such as inefficient extraction,

decreased primer efficiency, and small variations throughout the analysis. As a

result, a low “microbial load” should never be discounted as “not a significant

infection.” The diagnosis of infection is a clinical decision; therefore, chronic

infection itself should always dictate treatment. To evaluate the progression or

improvement of an infection it may be necessary to have the lab run the initial

sample with subsequent samples in the same run to mitigate these variations, which

allows for better comparison.

Quantification of microbes in the polymicrobial infections often encountered in

biofilm infection is indispensable. For example, if a sample contains just 1 %

MRSA but the bacterial load is 108/g then there are still 106 MRSA even though

it is a minor component of the biofilm. So MRSA coverage would be reasonable.

But 1 % MRSA with a bacterial load of 105/g (103 MRSA) requires only observa-

tion which can greatly reduce the use of first-line MRSA antibiotics.

The diversity can be daunting at first, but it is amazing how the many disparate

microbes resolve down to treatment groups that require only one or two treating

agents. For example, a group of microbes in chronic wounds consisting of MRSA,

Streptococcus, Peptoniphilus, Anaerococcus, Bacteroides, Pseudomonas, and

Serratia can effectively be treated with the use of clindamycin and amikacin. By

collapsing the gram positives and anaerobes into one treatment group covered by

clindamycin and then covering the gram negatives with amikacin, only two
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antibiotics are needed. In fact, high-dose (250 times MIC) amikacin can also

provide double coverage for MRSA.

One study showed that by just adding the ability to assess chronic wounds with

molecular methods (PCR and sequencing), the use of expensive first-line methicil-

lin-resistant S. aureus (MRSA) treatments was greatly reduced (Wolcott

et al. 2010). Molecular methods identified S. aureus along with the mecA cassette

in a majority of the wounds evaluated, yet the quantification showed that MRSA

was a minor population (less than 1 % of the bacteria present) and therefore was

observed and not actively targeted by antibiotic therapy. Wound care outcomes

were improved over standard of care with molecular diagnostics used in this

manner. The study demonstrates that using currently available treatments directed

by a better understanding of the microbial diversity in question improves outcomes.

Now that molecular tools are available to fully define an infection, it will be up to

clinicians to develop appropriate solutions. For example, in the companion study to

the one noted above, personalized gels to address what were considered the

important species identified within the wound biofilm (usually greater than 1 %)

were developed to treat each patient. Molecular diagnostics along with multivalent

personalized treatment yielded much better healing outcomes (Dowd et al. 2011).

5 Conclusions

Dealing with the complexity of the results is just the beginning—DNA diagnostics

face other barriers in routine clinical use. Clinicians must deal with accessibility,

choosing the appropriate laboratory for the analysis, and, as always, cost. Yet the

cost of DNA extraction, sequencing, bioinformatics, etc., currently rivals cultiva-

tion methods and will continue to drop rapidly. Accessibility is still a barrier.

Technologies now exist which very easily could move molecular diagnosis to

the bedside in the next several years. Until then, reference laboratories currently

offer the best choice of different DNA diagnostic tests utilizing multiple platforms.

Nevertheless, the main barrier for general acceptance is the level of enthusiasm of

the clinician for translating this technology into managing infections in individual

patients. Not until clinicians embrace molecular methods for identifying and

quantitating microbes will molecular methods revolutionize the management of

chronic infections.
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Imaging Biofilms in Tissue Specimens

Garth James and Alessandra Marçal Agostinho Hunt

Abstract Microscopic imaging can be used to provide direct evidence of the

presence of biofilms in tissue samples. However, successful imaging requires a

series of well-planned and executed steps as well as adequate controls. The steps

can include sample collection, fixation, embedding and sectioning, staining, and

imaging. Each of these steps is discussed in this chapter. Selection of an appropriate

staining technique is one of the key considerations for sample analysis. A variety of

staining techniques ranging from general stains to highly specific molecular probes

are available. For fluorescence microscopy, staining complications can include

tissue autofluorescence, fixation-induced autofluorescence, and nonspecific bind-

ing. To assess the impact of these potential complications, it is best to use multiple

complementary staining techniques as well as adequate controls. A variety of

microscopic techniques have been used to image biofilms in tissue samples includ-

ing light microscopy, transmission and scanning electron microscopy,

epifluorescent microscopy, and confocal scanning laser microscopy. The latter

technique has advantages of minimal sample manipulation, three dimensional

imaging, and enables the use of specific fluorescent molecular probes.

1 Introduction

There has been an increasing consensus that a number of diseases are related to

biofilms, so the ability to detect biofilms through imaging of tissue represents an

important tool not only for biofilm research but also for diagnosis and evaluation of
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treatments. Biofilms consist of tridimensional microbial communities where spatial

relationships between bacterial populations and host tissue may be important for

biofilm function and interactions with host cells. Thus, it is desirable to image tissue

specimens with minimal manipulation to preserve biofilm architecture. Biofilm

bacteria are embedded in extracellular polymeric substances (EPS). An ideal

technique for imaging biofilms in tissues would allow the visualization of encasing

EPS as well as microbial cells.

Imaging of bacteria and fungi in tissue has been performed for many years using

methods and dyes developed for conventional pathology. In fact, histopathology of

infectious diseases has played an important role on the identification of etiologic

agents (Gupta et al. 2009). Classic techniques like Brown and Brenn Gram staining

for tissue have been applied for more than 80 years (Engbaek et al. 1979), but

despite their proven value they require that the tissue be exposed to a series of

chemical rinses. In addition, while bacterial cells can be differentiated from host

cells and structures by means of morphology, imaging of EPS poses a challenge.

In this chapter, certain aspects that influence biofilm imaging in tissues will be

discussed including sample collection, fixation, embedding and sectioning,

staining, and microscopy. Although electron microscopy can be used for high-

resolution analysis of tissue samples, this chapter focuses primarily on fluorescence

microscopy. Specific examples from published studies of microorganisms and

biofilms in tissue are used when possible.

2 Specimen Collection

There are a variety of methods for collecting tissue samples for biofilm analysis and

method choice is at the discretion of the clinician. If surgical debridement of tissue

is necessary, the debrided material is a convenient source of specimens for analysis.

Punch biopsies of various diameters can also be collected. One advantage with both

of these methods is that they provide underlying tissue from the wound. This can be

helpful for showing biofilm attachment to the tissue and the extent of tissue

invasion. However, both of these methods are invasive and the necessity of the

procedures and potential risks to the subject must be considered. Wound specimens

can also be collected by curettage, which is a less invasive procedure and routinely

conducted during standard wound care. Topical anesthetics, such as a lidocaine gel,

can be used to prevent or reduce pain during specimen collection. Typically,

specimens are collected at the advancing edge of the wound, although the microbial

populations can vary at different locations within the wound. Specimens should be

placed in an appropriate fixative as soon as possible after collection.
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3 Specimen Fixation

Fixation is a chemical process intended to impede autolysis or putrefaction of the

specimen by stopping biochemical reactions, thereby preserving tissues. It also

inactivates bacteria, fungi, and viruses, providing biosafety for lab personnel

(Rubbo et al. 1967). Thus, fixation is an important and necessary step in tissue

preparation for microscopy. Certain fixatives, such as glutaraldehyde, are known to

induce specimen fluorescence (Collins and Goldsmith 1981). This fixation-induced

fluorescence is caused by a reaction between the amines and proteins from the

tissue and the aldehyde groups in the fixative generating fluorescent products

(Wright Cell Imaging Facility 2013). Thus, for fluorescence microscopy, it is

important to select a fixative that will provide adequate preservation of tissue

while inducing minimal fluorescence. The authors have found freshly prepared

paraformaldehyde (4 %) to be a suitable fixative for fluorescence microscopy.

4 Intrinsic Autofluorescence, Fixation-Induced

Fluorescence, and Nonspecific Binding

A certain level of intrinsic fluorescence is expected from tissues due to the presence

of flavins and porphyrins. This phenomenon can be useful for orientation purposes

during microscopic analysis particularly when non-visible dyes, such as Cy5, are

used. However, high levels of background fluorescence can interfere with the

visualization of microorganisms by fluorescence microscopy. As discussed above,

fixatives can also induce autofluorescence in tissues. The emission spectra of

intrinsic or induced autofluorescence is very broad compared to the spectra of

typical fluorophores used for fluorescence microscopy, which makes it difficult to

separate wanted from unwanted fluorescence by traditional filtering methods

(Wright Cell Imaging Facility 2013).

Several techniques using quenching chemical solutions have also been devel-

oped with the goal of reducing unwanted tissue fluorescence. These methods

include the use of pontamine skye blue, Sudan black B, sodium borohydrate, trypan

blue, and ammonia–ethanol (Cowen et al. 1985; Sun et al. 2011; Oliveira

et al. 2010; Srivastava et al. 2011; Raghavachari et al. 2003); however, their

efficacy is variable. Baschong et al. (2001) studied the effect of three separate

reagents on reducing autofluorescence of three different types of tissue. These

authors found that no single reagent was able to decrease autofluorescence in all

samples and that the selection of an appropriate autofluorescence quenching agent

required a trial-and-error search process.

The nonspecific binding of molecular probes in tissue samples is another prob-

lem that can occur during imaging of biofilms. While designed to be specific

for targeted microorganisms, probes for immunofluorescence and fluorescence in

situ hybridization (FISH) can be subject to significant nonspecific binding.
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For example, the authors used a general eubacterial probe, EUB 338 tagged with a

Cy3 fluorophore, to image mouse tissue infected with Staphylococcus aureus. For
certain samples, probing revealed red fluorescent aggregates that resembled

microcolonies of cocci. However, the same aggregates were observed in control

samples (not infected) and cocci were not observed in sections stained using a tissue

Gram stain. This led to the suspicion that the probe was nonspecifically binding to

mast cells present in the tissue. This example serves to underscore the importance of

appropriate controls and complementary alternative staining methods when using

species-specific probes. A study published by Wallner and collaborators (1993)

investigated the effect of several parameters on fluorescent rRNA-targeted oligo-

nucleotide probe binding and specificity. These authors found that excessively high

probe concentrations lead to an increase in nonspecific binding that was likely due

to attachment of probes to cell components rather than mispairing of the probe

sequence to nontarget sequences.

5 Embedding and Sectioning of Tissues

Embedding is the process of casting a tissue section in a selected medium. In this

process, the tissue is infiltrated with a liquid medium, which solidifies, allowing

sectioning into thin slices while preserving tissue structure and morphology. The

selection of an embedding medium depends on the type of tissue, sectioning

technique, and the staining techniques to be used. The medium needs to adhere to

the tissue and be elastic enough to withstand the sectioning procedure, while

impeding the permanent deformation of the tissue to preserve morphology and

structure. A number of embedding media have been developed. Low-temperature

agarose gels and gelatin have been used for embedding tissue to be sectioned with

vibratomes. These media are useful for tissues that can’t stand high temperatures.

Plastic resin media, either epoxy or acrylic, have been extensively used for embed-

ding undecalcified tissue, such as bone and teeth and for imaging of tissue-implant

combinations such as stented vessels (Rippstein et al. 2006). They also perform

well for sections thinner than the normal 4–6 μm usually collected from renal and

bone marrow biopsies (Bruce-Gregorios 2006). Epoxy resins allow fast embedding

of the tissue and give good contrast for electron microscopy (Luft 1961); however,

there are some disadvantages. The epoxide groups in the resin may reduce the

antigenicity of the tissue, thus impacting immunohistochemistry. In addition, epoxy

resins are toxic, can cause allergic reactions, and the vinylcyclohexane dioxide

component is known to be carcinogenic (Bruce-Gregorios 2006). Acrylic resins are

made of esters of acrylic or methacrylic acid and have been preferred for embed-

ding hard tissues due to ease of use and good quality of the subsequent staining

(Bruce-Gregorios 2006). The most common medium used for tissue embedding is

paraffin. This can be conducted using automated systems, resulting in a fast and

uniform way of preparing specimens. All water content has to be removed from

tissue prior to paraffin embedding because paraffin is not miscible with water.
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Dehydration is typically accomplished with a graded ethanol series, followed by

infiltration with xylene or a xylene substitute such as SafeClear™.

Cryoembedding and cryosectioning of tissue has been used routinely in the

medical field, especially when a fast diagnosis of pathology is required, such as

during surgery. These techniques do not provide the best preservation of tissue

morphology but are often suitable for specific applications. Cryoembedding of

tissues has the advantages of being a fast and simple technique for preparing

samples for sectioning and requires virtually no reagents other than the embedding

medium. Like other embedding media, the water content of the samples needs to be

replaced prior to embedding. In cryoembedding, this prevents ice crystal formation

within the tissue during freezing.

For biofilm analysis in tissue specimens, cryosectioning and cryoembedding

have proven to be suitable methods (Han et al. 2011). After fixation, the tissue

specimen was dehydrated in a 30 % sucrose solution until it sank to the bottom of

the flask, which was an indication that the solution had penetrated the entire

specimen. The sample was then placed in a small metal or plastic disposable tray

with a freezing medium (Tissue-Tek® O.C.T™ Compound) and snap-frozen on a

block of dry ice. Sections were then cut with a cryostat, a refrigerated microtome

with temperature of about �20 to �30 �C. After cutting, the tissue sections were

picked up on plus microscope slides and then stained or frozen for later analysis.

6 Staining

Both conventional and fluorescent stains have been used for staining bacteria in

tissue. Hematoxylin and eosin (H&E) is a traditional histological stain that has been

used to demonstrate the presence of microorganisms in tissue. Hansen et al. (2006)

and Marx and Tursun (2012) applied H&E to biopsies of patients with osteoradio-

necrosis and detected the presence of large aggregates of bacteria next to areas of

necrotic bone. Gram staining of tissue has also been used for many years, and

several techniques, such as the Brown and Brenn Gram stain and Brown and Hopps

Gram stain, have been tested and compared (Engbaek et al. 1979). Sizemore

et al. (1990) used fluorescently labeled wheat germ agglutinin to label Gram-

positive bacteria. This lectin binds specifically to N-acetylglucosamine in the

peptidoglycan layer of Gram-positive microbes and does not stain Gram-negative

bacteria due to their outer membrane. Although conventional Gram staining can

provide good differentiation of Gram-positive bacteria, the identification of Gram-

negative bacteria can be impaired by coloring of the host tissue. As an alternative,

several attempts were made to develop fluorescent dyes to differentially Gram stain

microorganisms. Mason et al. (1998) developed a combination of hexidium iodide

(HI) and SYTO 13 to Gram label bacteria for both flow cytometry and fluorescence

microscopy. When used in combination, Gram negatives were stained green by

SYTO 13, while Gram positives were stained by both SYTO 13 and HI, resulting in

red–orange fluorescence due to the quenching properties of HI. Han et al. (2011)
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used a commercially available fluorescent Gram staining kit for tissue to examine

chronic wound biopsies for the presence of biofilms. Fixed tissue biopsies from

15 patients were cryoembeded, cryosectioned, stained with ViaGram™ Red + Bac-

terial Gram-Stain and Viability Kit (Life Technologies, Carlsbad, CA), and exam-

ined using epifluorescence microscopy. The images revealed distributions of

microorganisms varying from scattered bacterial cells to dense biofilms.

The use of fluorescent dyes for detecting biofilms in tissues has increased as new

fluorochromes for general and species-specific staining have been engineered.

However, staining bacteria enmeshed in EPS and attached to tissue remains chal-

lenging. As discussed previously, autofluorescence and nonspecific stain binding to

tissue components can hinder the detection of bacteria. A further challenge is

distinguishing bacterial EPS from the host extracellular matrix (HECM). Often,

the detection of EPS around bacterial cells is desired as evidence of biofilm. HECM

is present in all animal tissues and organs and consists of a diverse group of

proteins, glycoproteins, and proteoglycans that form basement membranes and all

interstitial structures of the body (Byron et al. 2013; Hynes 2009). EPS is composed

of carbohydrates, proteins, DNA, and may also contain host components. Thus, the

overall composition of EPS is similar to HECM and EPS stains also bind HECM.

Unfortunately, no reliable stains that can differentiate EPS from HECM have yet

been described.

7 Fluorescent Stain Selection

7.1 General Stains

Pilot experiments are highly recommended for determining appropriate staining

protocols for a particular set of specimens. The type of tissue, amount of biofilm,

and fixation method may influence the outcome of staining, so testing a diverse

array of stains, concentrations, and staining times may result in identifying the best

approach. The combination of SYTO® 9, a green nucleic acid stain, and propidium

iodide, a red nucleic acid stain has been used for staining of biofilms in tissue by

several groups. Both stains are part of commercially available LIVE/DEAD® kits

from Life Technologies. SYTO® 9 stains the nucleic acids of bacteria with either

damaged or intact membranes, while propidium iodide rapidly penetrates bacteria

with damaged membranes. Thus, when these two components are used together to

stain bacteria for an appropriate contact time, bacteria with intact cell membranes

fluoresce green, while bacteria with damaged membranes fluoresce red. Kathju

et al. (2012) successfully used SYTO® 9 and propidium iodide to verify the

presence of biofilms in tissue from a patient suffering from hidradenitis

suppurativa. The specimen was examined by CSLM and the images agreed with

the culture results, revealing the presence of cocci and rods which were stained

green (live) and red (dead) and arranged in clusters. Anderson et al. (2012) also
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used SYTO® 9 and propidium iodide to study the effect of different strains of

S. aureus on vaginal mucosa. Although the dyes also stained the mucosal cells,

there was morphological evidence of coccal micro-colonies between the epithelial

cells. More recently, Tsai et al. (2013) examined biopsies from patients suffering

from nasopharyngeal cancer who developed osteoradionecrosis for the presence of

biofilm. Clusters of bacteria were detected using SYTO® 9 and propidium iodide

and the authors observed that far more samples were positive for biofilm according

to imaging than through culturing techniques.

The authors have observed that the combination of Sytox® green and wheat

germ agglutinin conjugated with Texas Red® (WGR-TR) allowed the detection of

microorganisms in tissue, regardless of type, fixative, embedding medium, and

sectioning technique (Fig. 1). These dyes are components of a commercially

available kit, ViaGram™ Red + Bacterial Gram-Stain and Viability Kit (Life

Technologies, Carlsbad, CA). Sytox® green is a high affinity nucleic acid stain,

and in fixed tissue samples, stains all Gram-negative and Gram-positive microor-

ganisms and the nuclei of mammalian cells, but not HECM. The bacteria are readily

differentiated from the mammalian cells and other structures by size and morphol-

ogy. The fluorescently labeled lectin, WGA-TR, stained HECM and probably also

EPS. When both green and red channel images taken separately on a

epi-fluorescence or CSLM are combined using imaging software, the resulting

image allows the clear visualization of bacterial cells as well as their spatial

localization on the tissue.

7.2 Immunofluorescence

Immunofluorescence (IF) utilizes species-specific antibodies labeled with

fluorophores to tag microorganisms. This can involve directly labeled primary

antibodies or detection of unlabeled primary antibodies with fluorescently labeled

secondary antibodies. In order to successfully bind, antibodies need to have spec-

ificity and be applied in the correct concentration to antigens with accessible

epitopes (Harlow and Lane 1999). Furthermore, to be able to bind to targets within

a biofilm, the antibody needs to penetrate the EPS that surrounds the microbial

cells. Nonetheless, antibodies against group A Streptococci have been successfully

used to image these bacteria in mouse wounds (Connolly et al. 2011) and within the

crypts of the palatine tonsils from children (Roberts et al. 2012). The authors have

used immunofluorescence and CSLM to image S. aureus biofilm cryosections of

mouse tissue samples (Figs. 2 and 3). Transmitted light microscopy was used as an

alternate imaging method. As with other imaging techniques, it is important to

include alternate imaging methods as well as both positive and negative controls to

confirm results. For IF, nonspecific binding of both primary and secondary anti-

bodies is possible. Nonspecific binding can be reduced using a variety of blocking

agents including serum, albumin, and skim milk powder. The binding of antibodies

to nontarget bacteria with similar epitopes to target bacteria is also a possible
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complication in IF. Again, adequate controls and complementary imaging methods

can be used to avoid erroneous results. For the detection of particular species within

biofilms, IF and FISH are attractive complementary techniques for microscopic

analysis.

7.3 Fluorescent In Situ Hybridization

The use of molecular techniques to fluorescently tag specific microorganisms is an

attractive approach. Particularly because imaging the spatial distribution of targeted

microorganisms in relation to tissue structures and other microorganisms is possi-

ble. FISH is a molecular technique that uses fluorescent-labeled rRNA oligonucle-

otide probes which combined with microscopy or flow cytometry allows the

detection of microorganisms. This technique facilitates the rapid and specific

identification of microbial cells in their natural environments and can be used in

phylogenetic, ecological, diagnostic, and environmental studies (Amann

et al. 2001; Bottari et al. 2006; Moter and Göbel 2000). As discussed previously,

controlling specimen and fixation-induced autofluorescence as well as nonspecific

binding are important aspects of FISH. Moter and Göbel (2000) wrote a compre-

hensive review of FISH. Although emphasizing the many applications of FISH for

detection of microorganisms in systems ranging from water to environment to

medicine, the authors described a series of pitfalls of the method. The drawbacks

discussed included the occurrence of false positive results due to autofluorescence

of bacteria or tissue and the nonspecific binding of the probes. False negative results

were also highlighted, particularly the problems with penetration of the probe into

bacterial cells (particularly Gram negative bacteria) and the detection of cells with

low rRNA contents. Bacteria of low RNA content is of particular concern for

analysis of biofilms in tissue samples where the bacteria may have a low metabolic

Fig. 1 Epifluorescence

micrograph of a thin section

from a human wound

specimen biopsy stained

with Sytox® green and the

fluorescent lectin, wheat

germ agglutinin conjugated

with Texas Red®. The host

extracellular matrix (and

likely also bacterial

extracellular polymeric

substances) appears red due

to lectin binding and is

colonized by biofilms of

cocci (green spheres)
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rate. FISH has been applied to a variety of tissues types. Sunde et al. (2003) used

FISH to demonstrate the presence of bacteria in periapical lesions of infected root

canals, while Nistico et al. (2009) applied FISH on middle ear and upper respiratory

mucosa and Rudkjøbing et al. (2012) utilized FISH to examine lung explants from

end-stage cystic fibrosis patients.

A variant of FISH, peptide nucleic acid-based fluorescence in situ hybridization

(PNA-FISH) uses DNA analogs with an uncharged polyamide backbone instead of

Fig. 2 Transmitted light (a) and epifluorescence (b) micrographs of a thin section from Staphy-
lococcus aureus-infected mouse wound specimen stained with fluorescent anti-S. aureus anti-

bodies. The S. aureus cells appear as dark spheres in the transmitted light image and fluorescent

rings in the epifluorescence image. The ring appearance is typical of immunofluorescent staining,

due to binding of the antibodies to cell surface antigens. The use of complementary imaging

techniques help in the interpretation of staining results

Fig. 3 Epifluorescence micrograph of a thin section from Staphylococcus xylosis-infected
mouse tissue specimen stained with a Cy3-labeled S. xylosis FISH probe

(50-CATGCGGTTCTAAATGTTATCCGGT-30). This FISH probe was designed by Dr. Elinor

deLancey Pulcini, Center for Biofilm Engineering. An S. xylosis biofilm is apparent in this

micrograph

Imaging Biofilms in Tissue Specimens 39



sugar phosphates. Because of the neutral back bone, diffusion of PNA probes

through hydrophobic cell walls may be facilitated and help overcome the problem

of probe penetration into Gram-negative bacteria. Fazli et al. (2011) applied

specific and universal bacterial PNA-FISH probes to chronic venous leg ulcer

biopsies to identify wounds containing either P. aeruginosa or S. aureus. The two
groups were then evaluated for the presence of neutrophils. Overall, microorgan-

isms were observed in large aggregates (biofilms) and ulcers harboring

P. aeruginosa correlated with the presence of higher neutrophil counts. This

association between P. aeruginosa biofilms and neutrophils was hypothesized to

cause the persistent inflammatory response and delayed wound healing in

P. aeruginosa-infected wounds. The association of P. aeruginosa and neutrophils

was also observed in experimentally infected mouse wounds using PNA-FISH to

detect P. aeruginosa and DAPI (40,6-diamidino-2-phenylindole) to detect neutro-

phils (Trøstrup et al. 2013). Regardless of the PNA-FISH approach, these examples

underscore the potential for the analysis of spatial relationships between microor-

ganisms and host cells to aid in the understanding and diagnosis of disease.

8 Microscopy

The use of microscopy to demonstrate the presence of biofilms in tissue samples has

been increasing. Akiyama et al. (1996) used light and transmission electron micros-

copy of skin biopsy thin sections to image the time course of S. aureus growth

within inoculated mouse wounds. Microcolonies of S. aureus were detected as soon
as 3 h after inoculation. James et al. (2008) evaluated samples from chronic and

acute human wounds using Gram staining and light microscopy as well as scanning

electron microscopy (SEM) and found that chronic wounds were more likely to

harbor biofilms. Freeman et al. (2009) also used Gram staining and light micros-

copy to demonstrate the presence of biofilms in horse wound biopsies.

While light microscopy has been successfully used to detect bacteria in tissue,

fluorescence microscopy has been fundamental for the study of biofilms. Not only

does fluorescence microscopy provide excellent spatial resolution and the detection

of broad emission profiles, it also enables the labeling of specific tissue structures

and bacterial cells within a sample (Coling and Kachar 2001). In particular, the

application of confocal scanning laser microscopy (CSLM) has revolutionized

biofilm imaging. Conventional microscopy techniques require that samples are

observed as thin sections on a slide but CSLM allows the examination of fully

hydrated relatively thick biofilms. This enables sample preparation with minimal

manipulation, helping to ensure that biofilms keep their original morphology and

architecture. This attribute is particularly valuable for examining spatial relation-

ships between bacteria within biofilms and host cells and tissue. Confocal micros-

copy was developed and patented by Marvin Minsky in 1955. It was primarily used

in physical and medical sciences until the 1990s when it was first applied for the

study of biofilms (Lawrence et al. 1991). CSLM uses optical imaging to create a
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virtual slice or plane, many micrometers deep, within a sample, without the

disturbing light emissions from slices out of the focal plane (Nwaneshiudu

et al. 2012). The specimen is moved in the z direction and the stack of images

collected is then combined using computer software. The resulting three-

dimensional reconstructed image provides a high degree of resolution and detail.

Computer image analysis can be combined with CSLM for the determination of

various parameters including number of cells, area of coverage, individual dimen-

sion measurements, and spatial orientation (Lawrence and Thomas 1999).

For several years CSLM has been used for analysis of suspected bacteria-

harboring tissue in addition to culturing and molecular techniques to confirm the

presence of biofilms. Neut and collaborators (2003) evaluated joint explants from

revision surgeries in which infection was suspected. The analysis involved tissue

and biomaterial culturing as well as CSLM of the prosthesis. The samples were

stained with LIVE/DEAD® BacLight™ Bacterial Viability Kits and showed the

presence of green (live) cell clusters. A CSLM-based study was also conducted by

Hall-Stoodley et al. (2006) to test the hypothesis that chronic otitis media is a

biofilm-related infection. Fifty-two biopsies from 26 children suffering from otitis

media with either effusion or recurrent disease were analyzed in addition to

16 samples from control subjects. The mucosa samples were stained using generic

dyes, species-specific probes, and antibodies and underwent thorough examination.

All control samples were negative for biofilm presence, while 46 samples from the

test group were positive for biofilms according to either a general or specific

staining method. Bacteria in the tissue were clearly identifiable in the samples

and ranged from micro-colonies to large clusters. A case report published in 2008

also reported the use of CLSM to investigate the cause of a persistent infection

following a total joint arthroplasty (Stoodley et al. 2008). The patient had recurring

pain and infection episodes for years despite several interventions. CSLM analysis

of fluid, tissue, and cement collected at his final surgical revision revealed the

presence of biofilm. These examples show that CSLM can be a powerful tool for the

diagnosis of biofilm-related diseases. However, as stated by Stoodley et al. (2008),

it involves expensive equipment that is not generally available in hospitals for

examinations. It also requires an experienced operator and the analysis of samples

is a time-consuming process. These drawbacks limit the routine use of CSLM for

medical diagnostics.

9 Defining and Quantifying Biofilm

Biofilms are generally defined as communities of microorganisms attached to a

surface and enmeshed in an extracellular polymer matrix. For practical purposes

related to the microscopic examination of tissue specimens, the presence of micro-

bial aggregates closely associated with tissue is usually accepted as adequate

evidence of biofilm. Although demonstrating the presence of EPS would provide

further evidence of biofilm, as discussed previously, distinguishing EPS from the
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extracellular matrix of the host tissue is difficult with currently available staining

methods. For quantifying biofilm, most studies have used a simple presence or

absence determination. Han et al. (2011) used a 6-point scale to classify the amount

of biofilm in wound biopsies, with zero representing the absence of bacterial cells

and five indicating the presence of a thick, continuous film. Adoption of a standard

classification system for the amount of biofilm present would be an important tool

to allow comparisons between multiple examiners in the same or different research

groups.

10 Future Prospects

Considering that biofilms are being increasingly implicated in a variety of diseases,

particularly those involving chronic infections, the use of imaging to detect biofilms

in tissues will be an increasingly important tool. New advances in microscopy

equipment, techniques, stains, and probes will likely improve our ability to detect

and quantify biofilms. This, in turn, will increase our understanding of biofilm

infections and lead to improvements in the diagnosis and treatment of disease.

11 Conclusions

Imaging biofilms in tissue samples is a task that demands a series of well-planned

and executed steps that starts with sample collection and culminates in image

collection and interpretation. Improper handling of the sample or negligence in

any of the steps may directly impact the imaging outcome. Ultimately the detection

of biofilms in tissues can be successfully achieved when appropriate staining

methods and microscopy techniques are applied and proper controls are utilized.

A trained and knowledgeable microscopist is also fundamental for the successful

analysis of samples.
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Mechanisms of Drug Resistance in Fungi

and Their Significance in Biofilms

Rajendra Prasad, Abdul Haseeb Shah, and Sanjiveeni Dhamgaye

Abstract Infections caused by opportunistic human fungal pathogens are very

common and have shown steady increase in recent years. The typical hosts,

which are prone to fungal infections, are those who possess suppressed immune

systems due to conditions such as HIV and transplantation surgery. Due to

prolonged chemotherapy, fungal cells also develop tolerance to the most commonly

used azole antifungals by employing several strategies. Interestingly, biofilms

which are routinely formed by fungal cells on medically implanted devices employ

different strategies to become highly resistant to antifungals. Apart from the known

tactics, newer approaches have revealed novel mechanisms and regulatory circuits

that are responsible for the development of multidrug resistance. Overcoming the

major clinical hurdle of fungal resistance demands a great deal of knowledge about

the function of fungal machinery that is used under drug stress.

1 Introduction

Fungi are very diverse eukaryotic organisms, which can exist as unicellular or in

various multicellular forms. Phylogenetically, they are clustered with higher

eukaryotes and hence evolutionary are closer to mammalian systems. Notably,

the closeness of fungi to metazoans makes them ideal eukaryotic models; however,

their similar cellular machinery poses a challenge in combating their infections.
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While most fungi are nonpathogenic, there are a large number of them, belonging to

almost every phylum, which are pathogenic to humans, animals, and plants

(Heitman 2011). Fungi as pathogens are involved in many afflictions, which

range from superficial to life-threatening disseminated infectious diseases (Odds

1988). Human fungal pathogens are mostly opportunistic, implying that a success-

ful infection depends upon the status of the immune defense system of the host.

Advancement in preventive measures like immune suppression during organ trans-

plantations and life threatening diseases like AIDS help opportunistic fungi find

suitable hosts in which to thrive. These common opportunistic fungal species are

either Candida species like Candida alibicans, C. glabrata, C. tropicals,
C. paropsilosis, C. dubliniensis, C. guilliermondii, C. krusei, C. lusitaniae, or
non-Candida fungi like Aspergillus fumigatus, Cryptococcus neoformans,
Histoplasma caspulatum, Microsporum canis, Paracoccidioides brasiliensis, Pen-
icillium marneffei, Blastomycoides dermatitidis, and Pneumocystis sp. (Sanglard

et al. 2009; Heitman 2011; Gow et al. 2011).

Candida species are one of the most prevalent causes of systemic fungal

infections in humans. Among Candida species, C. albicans is well adapted to thrive
in most of the organs and niches of humans, making it the most successful human

fungal pathogen. Not surprisingly, C. albicans alone contributes to 50–60 % of

Candida infections followed by non-albicans species, which mostly include

C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei (Silva et al. 2011; Prasad
et al. 2012). Infections due to uncommon fungi and pathogenic molds like

Trichosporon species, Fusarium, and Scedosporium species have also been

reported. Trichosporon species causes diseases similar to hepatic candidiasis

while Fusarium and Scedosporium species are commonly found in hospital-

acquired fungal infections and show high levels of resistance to amphotericin B

(AMB) and azoles (Fridkin 2005; Bonatti et al. 2007).

Many opportunistic pathogens pose an additional threat because of their ability

to acquire tolerance to antifungal treatments leading to the development of

multidrug resistance (MDR). For this, fungi have developed several strategies to

tolerate most of the mainstream antifungal drugs like azoles, polyenes, allyamine,

and echinocandins. Notably, many of the mechanisms of MDR are also common to

multidrug-resistant cancer or bacterial cells and have been discussed and reviewed

in recent years (Sanglard and Odds 2002; Prasad and Kapoor 2005; Sanglard

et al. 2009; Cannon et al. 2009; Morschhäuser 2010; Prasad and Goffeau 2012).

In this chapter we provide a snapshot of the current MDR environment and discuss

some of the strategies of azole resistance adopted by fungal cells.

2 MDR Strategies

The limited availability of antifungals is a major impediment for the effective

treatment of fungal infections (Ghannoum and Rice 1999). This is further

compounded by the fact that the generation of newer antifungals has lagged behind,
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when compared to the pace of emergence of fungal infections. The components of

the fungal cell wall (CW) such as mannans, glucans, and chitins, and a few of the

enzymes of the ergosterol biosynthetic pathway, are unique to fungal cells

(St Georgiev 2000; Munro et al. 2001) and have been targeted for the development

of antifungal agents. Among the enzymes of the ergosterol biosynthetic pathway,

squalene epoxidase, P45014DM or CYP51 (ERG11), Δ14-reductase (ERG24), and
Δ8-Δ7-isomerase (ERG2) have been the targets of most antifungal agents (Sanglard

et al. 2003).

Amongst the known antifungals, azole derivatives like fluconazole (FLC),

ketoconazole (KTC), and itraconazole (ITC) have been the most widely used

triazoles for combating fungal infections. Azoles specifically inhibit the

P45014DM enzyme, which results in the accumulation of 14-methylated sterols

and results in the disruption of membrane structure and function (Vanden Bossche

et al. 1989). Fungal cells have adopted several strategies to cope with incoming

drugs (particularly azoles), which are discussed briefly.

2.1 Target Alteration

One of the most common events associated with the development of drug tolerance

in fungi relates to the azole target protein. The target of azoles, the P45014DM

protein, is modified in resistant cells by the replacement of native amino acids

leading to poor binding of the drug without affecting its function. Investigators

from different groups compared the sequences of the ERG11 (encodes P45014DM

or Erg11 protein) gene of resistant C. albicans strains with the published ERG11
sequence to that of FLC-susceptible strains and identified several point mutations.

Biochemical analysis of these mutations showed that several point mutations in the

protein reduce its affinity for azoles. These mutations, single or in combination, do

not permit normal binding of FLC to target proteins without affecting ergosterol

biosynthesis (Wang et al. 2009; Morio et al 2010). A comparison of sequence

disparity of the Erg11 protein between susceptible and resistant clinical isolates of

C. albicans revealed several mutations in the resistant isolates predominantly

localized to certain hot spot regions. Such bunching of critical residues, which

probably affects azole binding to target proteins, was subsequently confirmed by

different studies (Wang et al. 2009). A few of the Erg11 protein mutations, when

expressed in Saccharomyces cerevisiae, were shown to confer even higher resis-

tance against azole antifungals (Favre et al. 1999). Notably, the I-helix stretch of the

Erg11 protein, which is highly conserved in the cytochrome P450 family, does not

show any spontaneous mutations. The exact placement of all the identified muta-

tions in a 3D model of the protein confirmed that these mutations are not randomly

distributed but rather are clustered in select hot spot regions (Marichal et al. 1999;

Wang et al. 2009).

Mutations in drug target enzymes clearly are an important mechanism resulting

in the emergence of FLC resistant C. albicans strains. However, sequence
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comparison between resistant and susceptible isolates also identified point muta-

tions in susceptible isolates as well, which were absent in their resistant counter-

parts and thus implied that these may not contribute to enhanced drug susceptibility

(Morio et al. 2010). While mutations in Erg11 proteins are routinely reported, many

also remain to be confirmed, which could be established by expressing each variant

in a heterologous system. Some studies point out that a change from heterozygosity

to homozygosity for a mutated ERG11 gene could also contribute to increased

resistance to drugs (Ge et al. 2010).

2.2 Overexpression of P45014DM

Resistance to FLC in many clinical isolates is commonly associated with the

overexpression of the ERG11 gene (Hoot et al. 2011; Flowers et al. 2012; Sasse

et al. 2012). The zinc cluster transcription factor Upc2p regulates the expression of

ERG11 and other genes involved in ergosterol biosynthesis (White and Silver

2005). It has been observed that an overexpression of UPC2 increases azole

resistance, whereas its disruption results in hypersusceptibility to azoles. A com-

parison of sequence of UPC2 between matched pair azole susceptible and resistant

isolates resulted in the identification of a base substitution causing a point mutation

in the encoded protein. This gain of function (GOF) mutation led to an

overexpression of ERG11 and hyper-resistance to azoles (Heilmann et al. 2010;

Hoot et al. 2011; Flowers et al. 2012). In addition, promoter deletion analysis

indicated that azole drugs induce the expression of ERG11 through its azole

responsive cis-acting elements (ARE) in the promoter. The presence of ARE

alone was not able to stimulate reporter gene expression in the upc2Δ/upc2Δ
nulls, thus confirming that azoles manifest their effect on ERG11 expression

through transcription factor (TF) Upc2p (Oliver et al. 2007).

2.3 Alterations in Other Enzymes of the Ergosterol
Biosynthetic Pathway

Recently, ERG3 mutations have been found to occur frequently either alone or in

combination with ERG11mutations, leading to a change in the ratios of various cell

sterols and increased resistance to azoles and polyenes. Mutations have been found

in ERG3, which are imperative in drug resistance even when drug efflux pumps

were not the causal factor (Martel et al. 2010a, b; Morio et al. 2012). The cyto-

chrome P450 spectral studies performed in a system reconstituted with purified

ERG5 (Δ22-desaturase or CYP61) of C. glabrata revealed interactions between

azoles and the heme-protein, implying that ERG5 could also be a target for azoles

and may contribute to antifungal resistance (Lamb et al. 1999). Recently, a
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C. albicans drug-resistant clinical isolate was detected with a combination of a

single mutation in the ERG5 gene along with a ten-amino acid duplication in the

ERG11 gene. The mutant, in addition of being resistant to azoles, showed resistance

to AMB due to the depletion of membrane ergosterol levels (Martel et al. 2010a, b).

ERG6 in C. glabrata is involved in azole resistance due to various base pair

alterations leading to missense mutations (Vandeputte et al. 2007). Similarly, an

erg6Δ disruptant of the C. lusitaniae strain was susceptible to AMB due to

decreased membrane ergosterol levels. Coinciding with this, several clinical iso-

lates of C. lusitaniae show increased expression of ERG6 along with a decrease in

ERG3 gene expression and enhanced resistance to AMB (Young et al. 2003).

Together, the azole-induced upregulation of ERG11, along with other genes of

the ergosterol biosynthetic pathway, suggests the existence of a common mecha-

nism of upregulation in C. albicans (Henry et al. 2000). Transcript profiling of ITC

treated Candida showed differential regulation of almost 300 genes that included

genes involved in transcription, RNA processing, metabolism, CW maintenance,

cell cycle control, cell stress, etc. (De Backer et al. 2001). Another study demon-

strated that almost 15 % of genes differentially expressed on KTC treatment fall

under the category of sterol metabolism including: NCP1, MCR1, CYB5, ERG2,
ERG3, POT14 (ERG10), ERG25, ERG251, and ERG11 in a wild-type strain of

C. albicans (Liu et al. 2005). The other major categories of genes that were affected

in that study have roles in small molecule transport (16 %), CDR1, CDR2, HGT11,
HGT12, PRT9; cell stress (9 %), DDR49, MCR1, SSA4; CW maintenance, ALS4,
CRH11, etc. While a global regulation of ERG genes was evident from the

transcript profiling, several genes of diverse functions as well as of unknown

functions were also either up- or down-regulated by the drug treatment. This

reinforces the idea that azoles could contribute to multiple, yet unknown pheno-

types that still remain to be identified. The dissection of the mechanisms mediating

these phenotypes could provide newer insights into the phenomenon of MDR.

2.4 Drug Import

It is presumed that the hydrophobic nature of drugs permits their easy import by

passive diffusion. However, the contribution of drug import to the overall scenario

of MDR is not well established. Nonetheless, there are a few studies that showed

passive diffusion of drugs was an important determinant of MDR. For example,

fluctuations in membrane fluidity affect passive diffusion and susceptibility to

drugs. The erg mutants of S. cerevisiae or of C. albicans were shown to possess

high membrane fluidity, which led to enhanced diffusion and susceptibility to

azoles (Kohli et al. 2002; Prasad et al. 2010). Recently, permeability constrains

imposed by Candida cells have been reemphasized towards the development of

MDR. In one instance, it was shown that azoles can enter in C. albicans, C. kruesi,
and C. neoformans cells by diffusion (Mansfield et al. 2010). The kinetics of import

in de-energized cells established that FLC import proceeds via facilitated diffusion

Mechanisms of Drug Resistance in Fungi and Their Significance in Biofilms 49



(FD) through a transporter rather than by passive diffusion. Other azoles compete

for FLC import, suggesting that all azoles utilize the same FD mechanism. FLC

import was also shown to vary among C. albicans-resistant clinical isolates,

suggesting that altered FD may be a previously uncharacterized mechanism of

resistance to azole drugs (Mansfield et al. 2010). However, the identification of a

membrane transporter protein involved in FD of azoles remains elusive (Mansfield

et al. 2010). Interestingly, drug inactivation that is a common mechanism in

bacteria has not been observed in Candida cells.

2.5 Drug Efflux

Increased efflux, which leads to reduced intracellular accumulation of drugs, is

another prominent mechanism of MDR in fungi (Prasad and Kapoor 2005). In

C. albicans, for example, this is achieved by increasing the efflux of drugs from

cells by overproducing the plasma membrane (PM) efflux pump proteins. An

induction in the expression levels of genes encoding efflux pump proteins, partic-

ularly ATP Binding Cassette (ABC) multidrug transporter proteins Cdr1 and Cdr2

or Major Facilitator Superfamily (MFS) efflux pump protein Mdr1, have been

commonly observed in azole-resistant clinical isolates of C. albicans (White

et al. 2002; Prasad and Kapoor 2005; Karababa et al. 2004; Kusch et al. 2004).

Invariably, MDR Candida cells, which show enhanced expression of efflux pump

encoding genes, also show simultaneous increase in the efflux of drugs, thus

implying a causal relationship between efflux pump encoding gene expression

levels and intracellular concentration of the drug (Cannon et al. 2009).

2.5.1 ABC Transporters

An inventory of C. albicans ABC transporters revealed that there are 28 putative

ABC superfamily members, including 12 half transporters, that largely remain

uncharacterized (Gaur et al. 2005). These putative ABC proteins could be grouped

into five “known” subfamilies, including C. albicans Pdr protein (CaPdrp), and a

sixth “others” category that includes soluble ABC non-transporter proteins

unrelated to the existing fungal subfamilies. The Pdr protein subfamily of

C. albicans comprises seven full-size members: Cdr1p, Cdr2p, Cdr3p, Cdr4p,

Cdr11p, CaSnq2p, and Ca4531. The C. albicans Cdr1p and Cdr2p proteins are

active multidrug transporters, while Cdr3p and Cdr4p do not efflux drugs and play

no apparent role in the development of antifungal resistance (Prasad and Goffeau

2012). Other transporters in related fungi, including CgCDR1 (Sanglard

et al. 1999), CgCDR2 (PDH1) (Miyazaki et al. 1998), and SNQ2 (Torelli

et al. 2008) in C. glabrata, ABC1 in C. krusei (Katiyar and Edlind 2001), and

AFR1 (Sanguinetti et al. 2006) in C. neoformans, are multidrug transporters and

play a role in the development of MDR in these pathogenic species.
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Full ABC proteins are made up of two (or three) transmembrane domains

(TMDs) and two cytoplasmic nucleotide-binding domains (NBDs) (Fig. 1). Based

on biochemical and crystallographic evidence, it appears that the “half proteins,”

which have only one NBD and one TMD, function as homo- or heterodimers. In the

forward topology, the TMDs precede the NBDs (TMD-NBD), whereas the NBDs

come first in the reverse topology (NBD-TMD) (Rutledge et al. 2011). NBD’s are

the nucleotide binding sites, which bind ATP required to power the efflux of

substrates bound within TMD’s drug binding sites. Each TMD is usually comprised

of six transmembrane segments (TMS), which generally are continuous alpha

helices arranged to form drug binding sites (Prasad and Goffeau 2012).

2.5.2 MFS Transporters

MFS transporters, which are also called uniporter–symporter–antiporter family, are

the second major superfamily of transporters divided into 29 families (Saier

et al. 1999). A phylogentic analysis identified 95 potential MFS transporters in

C. albicans (Gaur et al. 2008). Most MFS transporters consist of two domains of six

TMSs within a single polypeptide chain with few exceptions as shown in Fig. 2

(Stephanie et al. 1998). On the basis of hydropathy and phylogenetic analysis, the

drug efflux MFS proteins can be divided into two distinct types: Drug: H+

Antiporter-1 (DHA1), consisting of 12 TMSs, and Drug: H+ Antiporter-2 (DHA2)

that contains 14 TMSs. Homologues of MDR1 have been identified from

C. dubliniensis and C. glabrata, which are designated as CdMDR1 and CgMDR1,
respectively (Moran et al. 1998; Sanglard et al. 1999). It appears that increased

expression of CdMDR1 is one of the main mechanisms of FLC resistance in

Fig. 1 Schematic representation of ABC transporters involved in multidrug resistance in yeast,

depicting two nucleotide binding domains (NBDs) in the cytosolic region and two membrane

spanning domains (TMDs) arranged in reverse topology (NBD-TMD)2
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C. dubliniensis clinical isolates (Moran et al. 1998). Since CgMDR1 confers

specific resistance to FLC, its constitutive expression in C. glabrata may be

responsible for the intrinsically low susceptibility of this yeast species to FLC

(Sanglard et al. 1999).

Among all the MFS proteins, only one member, MDR1, has been implicated

clinically to be involved in azole resistance. FLU1, a close homologue of MDR1,
has also been isolated by its ability to confer fluconazole resistance in hypersus-

ceptible S. cerevisiae transformants. However, overexpression of FLU1 has not

been detected in FLC-resistant clinical isolates of C. albicans. None of the other

95 members of this superfamily are implicated in MDR (Gaur et al. 2008). As an

important MDR gene of the MFS family,MDR1 has been extensively studied for its
role in drug resistance. The functional evaluation of critical amino acid residues of

the Mdr1 protein revealed that the residues of TMS5 which harbor antiporter motifs

(G(X6)G(X3)GP(X2)GP(X2)G) are potentially significant for their functionality

and contribute to drug: H+ transport. Independent of the substrate specificity of the

antiporter, the antiporter motif in the predicted TMS5 is conserved in all of the

functionally related subgroups in bacteria and plants. Multiple-sequence analysis of

the MFS transporters revealed that proteins within this family share greater simi-

larity between their N-terminal halves than their C-terminal halves, and it is

assumed that the later half is responsible for substrate recognition (Paulsen

et al. 1996).

Fig. 2 Predicted topology of MFS drug: H+ antiporter involved in drug transport. It has

12 (DHA1) or 14 (DHA2) TMSs and does not contain NBDs, but TMS5 harbors an H+-antiporter

motif, which couples electrochemical gradient of protons to drug transport
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3 Regulation of MDR Genes

As discussed above, the MDR strains overexpress two ABC transporter encoding

genes, CDR1 and CDR2, which are homologous to the pleiotropic drug-resistance

transporter Pdr5 from S. cerevisiae (Coste et al. 2004). In C. albicans, FCR1 and

TAC1 were identified as ScPDR1–PDR3 homologs. While in S. cerevisiae the

FCR1 gene product behaved as a transcriptional activator, in C. albicans it acted
as a negative regulator (Talibi and Raymond 1999). Only Tac1p has been experi-

mentally proven to function as a transcriptional activator of C. albicans drug efflux
transporter genes, such as CDR1 and CDR2 (Coste et al. 2004). Most of the MDR

strains present a loss of heterozygocity and/or aneuploidy at the TAC1 locus,

combined to GOF mutations of TAC1 (Coste et al. 2004).

Another TF, CaNDT80, has diverse roles as it controls the expression of not only
CDR genes but of ERG and MDR1 genes as well (Sasse et al. 2011). CaNDT80 is

required for constitutive overexpression of the CDR1 and ERG genes but is

dispensable for MDR1 and CDR2 drug-mediated induction, indicating its contribu-

tion in nearly all the predominant mechanisms of drug resistance in C. albicans.
Notably, there was a slight increase in CDR2 expression in CaNDT80 mutants

indicating the gene’s repressible nature. The role of CaNDT80 in FLC resistance

was not prominent as CaNDT80 mutant cells were more resistant to FLC than the

wild-type strain (Sasse et al. 2011).

Another family of TFs controlling drug transporter genes belongs to bZip family

(Alarco and Raymond 1999). C. albicans harbors a homologue of the YAP protein

family designated as Cap1 protein which is involved in oxidative stress and also

regulates expression of genes encoding members of both the MFS and ABC

transporter superfamilies (Alarco and Raymond 1999). There is an intricate inter-

play between MRR1, CAP1, and UPC2 TFs that governs the induction and consti-

tutive overexpression of MDR1 (Schubert et al. 2011). Interestingly, a mutation in

MRR1 resulted in the constitutive overexpression of MDR1 even in the absence of

UPC2 or CAP1, whereas a GOF mutation in UPC2 slightly activated MDR1
expression, which was dependent on the presence of MRR1. The activated form

of CAP1 was also partially dependent on MRR1 for expression of MDR1. On the

other hand, induction of MDR1 by drugs was also shown to be independent of

UPC2 but required MRR1 and was partially dependent on CAP1 (Schubert

et al. 2011). In addition to MDR1, the global regulator UPC2 also regulates other

mediators of MDR such as CDR1/CDR2 and ergosterol biosynthesis genes includ-

ing the FLC target ERG11. Yet another TF that has been implicated in the

regulation ofMDR1 expression is Mcm1p, a member of the MADS box TF family.

The MDRE/BRE in the MDR1 promoter contains a putative Mcm1p binding site

(Riggle and Kumamoto 2006). Table 1 lists some of the known regulators of MDR

genes.

Three additional zinc cluster TFs were identified by Sanglard and coworkers

(CTA4, ASG1, and CTF1) and all complemented the FLC hypersusceptibility of

S. cerevisiae nulls of pdr1 pdr3 and restored PDR5 expression via the cis-acting
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sequence, the pleiotropic drug resistance responsive element (PDRE) used by Pdr1

and Pdr3. Notably, the deletion of their counterparts in Candida neither affected the

drug-induced expression of CDR1, CDR2, and MDR1 nor their level of resistance.

Therefore, the role of these TFs in MDR in Candida is yet to be uncovered (Coste

et al. 2008).

4 Novel Mechanisms of MDR

In addition to the well-known mechanisms and circuitry implicated in drug resis-

tance, there are various novel pathways or unconventional mechanisms, which are

emerging as new MDR determinants in Candida cells. Some of these mechanisms

are discussed briefly in the succeeding text (Table 2).

4.1 Mitochondria and Cell Wall Integrity Affects Drug
Susceptibility

Protein kinase C (PKC) regulates CW integrity during growth, morphogenesis, and

response to stress. The genetic impairment of Pkc1 confers hypersensitivity to

multiple drugs that target synthesis of the key cell membrane sterol ergosterol,

including azoles, allylamines, and morpholines. Deletion of C. albicans PKC1 in

turn makes fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuates

virulence (LaFayette et al. 2010). Notably, Pkc1 enables survival of cell membrane

stress at least in part via the mitogen-activated protein kinase (MAPK) cascade in

S. cerevisiae and C. albicans through distinct downstream effectors. Strikingly,

Table 1 MDR regulators in C. albicans and S. cerevisiae and their target genes

TFs Target genes References

Candida albicans

TAC1 CDR1, CDR2, IFU5, HSP12, RTA3, GPX1, CHK1, LCB4,
NDH2, SOU1, etc.

Liu et al. (2007)

MRR1 MDR1 Morschhauser

et al. (2007)

NDT80 CDR1, ERG genes, MDR1, CDR2 Sasse et al. (2011)

MCM1 MDR1, EFG1, WOR1, WOR2, CZF1 Tuch et al. (2008)

CAP1 CAP1, GLR1, TRX1, SOD1, CAT1, PDR16, MDR1, FLU1,
YCF1, FCR1

Znaidi et al. (2009)

UPC2 CDR1, MDR1, YOR1, MET6, ERG genes Znaidi et al. (2008)

Saccharomyces cerevisiae

PDR1 PDR5, PDR15, PDR10, SNQ2, YOR1, HXT9, HXT11 Bauer et al. (1999)

PDR3 SNQ2, HXT9, HXT11, PDR5, PDR15, YOR1 Bauer et al. (1999)

YAP1 SNQ2, YCF1 Bauer et al. (1999)
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inhibition of Pkc1 phenocopies inhibition of the molecular chaperone Hsp90 or its

client protein calcineurin. PKC signaling is also required for calcineurin activation

in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin

independently regulate drug resistance via a common target in C. albicans
(LaFayette et al. 2010).

Mitochondrial dysfunction in pathogenic fungi or model yeast causes altered

susceptibilities to antifungal drugs. In C. galbrata and S. cerevisiae loss of mito-

chondrial DNA (mtDNA) is linked to increased resistance to azoles by upregulation

of ScPDR1 and CgPDR1, respectively, which upregulates their target genes

ScPDR5 or CgCDR1 and CgCDR2 (Shingu-Vazquez and Traven 2011). The

mutants defective in mitochondrial electron transport display increased suscepti-

bility to FLC in C. albicans cells. The null mutants goa1Δ and ndh51Δ, which are

defective in electron transport, show decreased resistance to FLC along with the

downregulation of CDR1 and CDR2 (Sun et al. 2013). Thus, implying that cell

energy is required for azole susceptibility and that downregulation of efflux genes

may be an outcome of this dysfunction. The mitochondrial dysfunction is also been

shown to interact with CW stress pathways. A recent study showed that the Ccr4-

Pop2 mitochondrial mRNA deadenylase was required for CW integrity, tolerance

to echinocandin caspofungin and virulence in a mouse model. The study provided

evidence that the CW defect of the deadenylase mutants (Ccr4-Pop2) is not only

linked to mitochondrial dysfunction but also impact phosholipid homeostasis.

Recently, lipidomics of MDR clinical isolates of C. albicans also suggest a link

between mitochondrial dysfunction and CW integrity (Dagley et al. 2011). Data

presented suggested that a decrease in the mitochondrial lipid phospahtidyl glycerol

Table 2 List of TFs with novel roles in MDR

TFs Original function Implication in drug resistance References

CZF1 Regulates white opaque

switching and hyphal

growth

Upregulated in drug-resistant

strains

Brown et al. (1999),
Dhamgaye

et al. (2012a)

RCA1 Regulates carbonic

anhydrases

Homozygous nulls resistant to FLC Cottier et al. (2012),
Vandeputte

et al. (2012)

STP2 Amino acid regulated TF,

regulates amino acid

permease genes

Homozygous nulls are susceptible

to antifungal malachite green

and other compounds

Martinez and Ljungdahl

(2005), Dhamgaye

et al. (2012b)

STP4 C2H2 TF (not clear) Induced under core caspofungin

response

Cheng et al. (2006),

Blankenship

et al. (2010)

ZCF3 Required for filamentous

growth

Resistance to rapamycin and

flucytosine

Nobile et al. (2012)

AHR1 Regulates adhesion genes,

involved in white

opaque switching

Upregulated in drug-resistant strain Askew et al. (2011),

Dhamgaye

et al. (2012a)

ZFU2 Required for yeast form

adherence

Upregulated in drug-resistant

strains

Finkel et al. (2012)
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(PG) in azole-resistant isolates could be linked to compromised CW integrity and

drug resistance in C. albicans cells (Singh et al. 2013).

Evidence of cross talk between CW and MDR comes from another unrelated

study. RNAseq of an MDR strain and its isogenic drug susceptible counterpart led

to the identification of an upregulated TF encoding gene CZF1, which was involved
in hyphal transition and white/opaque switching (Vinces et al. 2006). Notably,

CZF1 was also co-induced with CDR1 and CDR2 in MDR isolates. Interestingly,

the inactivation of CZF1 increased the resistance of the cells to CW perturbing

agents, through the overexpression of beta glucan synthesis genes. The study

proposed a positive role of CZF1 on MDR and a negative role on CW integrity

(Dhamgaye et al. 2012a). The mechanism of cross talk between CW stresses,

mitochondrial dysfunction, and MDR is not completely lucid, but these examples

reiterate their interdependence to mitigate cellular stresses.

4.2 Lipids in MDR

On the basis of several studies, a close interaction between membrane lipids and

drug-extrusion pump proteins has been recognized (Marie and White 2009). For

example, the drug-extrusion pump proteins, particularly belonging to ABC super-

family, are predominantly localized within microdomains of PM (rafts) and thus are

sensitive to the nature and the physical state of the membrane lipids (Pasrija

et al. 2008). For example, any imbalance in the main constituents of membrane

rafts, such as sphingolipids or ergosterol levels, result in abrogated functionality of

the drug extrusion pumps (Prasad et al. 2006). It has also been observed that the

ABC drug-efflux proteins in yeast (Pdr5p and Yor1p in S. cerevisiae, and Cdr1p and
Cdr2p in C. albicans) can translocate phospholipids between the two monolayers of

the PM (Smriti et al. 2002).

The adaptation of C. albicans to tolerate antifungals is accompanied by many

specific and global changes in lipids (Singh et al. 2013). Recently, the detailed

lipidomics of several genetically matched (isogenic) as well as select sequential

azole sensitive and resistant clinical isolates of C. albicans provided a comprehen-

sive evaluation of lipids as the determinants of drug resistance and showed that each

resistant isolate possessed a characteristic lipid composition. Development of azole

tolerance also impelled the remodeling of molecular species of lipids. The fact that

lipidomic response of match pair isolates was associated with simultaneous

overproduction of efflux pump membrane proteins suggested a possible common

regulatory mechanism between the two phenomena (Singh et al. 2013). Such a

common link has already been observed in S. cerevisiae and C. glabrata, where
genes encoding efflux pumps, such as ScPdr5 or CgCdr1 and CgCdr2, play an

important role in regulating lipid levels (Shahi and Moye-Rowley 2009).
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4.3 Iron Levels Affect MDR

For its survival in host cells, Candida, like many other pathogens, has also adapted

many complex strategies to scavenge depleted iron from the host environment

(Nyilassi et al. 2005). In fact, the availability of iron can serve as a common

adaptive signal for pathogens to induce the expression of virulence traits

(Mekalanos 1992). Recent studies have already established a role for iron in

systemic infections, whereby the requirement of a high-affinity iron transporter

(CaFtr1p) for infection in a mouse model was shown (Ramanan and Wang 2000).

Similarly, the requirement of a siderophore transporter (Arn1p) for epithelial

invasion (Heymann et al. 2002) and iron dependent endothelial cell injury (Fratti

et al. 1998) suggests that iron plays a vital role in the virulence of C. albicans. The
role of iron in MDR is well established in mammalian cells, where HIF1 is

activated under low iron concentrations that in turn induce the expression of its

target gene MDR1 (Epsztejn et al. 1999).

Iron depletion in C. albicans with bathophenanthrolene disulfonic acid and

ferrozine as chelators enhanced its susceptibility to FLC and several drugs (Prasad

et al. 2006). Several other species of Candida also display increased sensitivity to

FLC because of iron restriction. Iron uptake mutants, namely ftr1 and ftr2, as well
as the copper transporter mutant ccc2, which affects high-affinity iron uptake in

Candida, showed increased susceptibility to FLC. The effect of iron depletion on

drug sensitivity appeared to be independent of the efflux pump proteins Cdr1p and

Cdr2p. This study showed that iron deprivation led to the lowering of membrane

ergosterol and an increase in membrane fluidity, resulting in enhanced passive

diffusion of drugs. Transcriptome analysis of iron deprived cells showed a connec-

tion between calcineurin signaling and iron homeostatsis. Notably, iron-deprived

cells phenocopy deletion of calcineurin pathway genes by showing susceptibility to

alkaline pH, membrane perturbing agents, and salinity stress (Hameed et al. 2011).

5 Biofilms and MDR

Biofilms are complex microbial conglomerates which are predominantly surface

attached and enclosed by a thick layer of polysaccharides, making them extremely

drug resistant and difficult to eradicate (Kumamoto 2002; Fanning and Mitchell

2012). Using an in vitro model, Mukherjee et al. demonstrated that C. albicans
biofilm formation proceeds in three developmental phases: (1) early phase involv-

ing adhesion of fungal cells, (2) intermediate phase during which the blastospores

coaggregate, proliferate, and produce a carbohydrate-rich extracellular matrix

(ECM), and (3) maturation phase, in which the fungal cells are completely encased

in a thick ECM (Mukherjee et al. 2003). Fungal biofilms show an increase in drug

resistance with MIC values ranging from 30- to 2,000-fold higher than their

corresponding planktonic cells, which is also developmental phase dependent
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(Hawser and Douglas 1994). Because of the very high level of resistance to azoles,

biofilms are a serious clinical threat as they can develop robustly on most surgically

implanted synthetic devices (Douglas 2003). Currently, echinocandins and liposo-

mal AMB are the only drug formulations that show some efficacy against fungal

biofilms (Ramage et al. 2002; Kuhn et al. 2002; Uppuluri et al. 2011).

Since C. albicans is the fungi most widely associated with human infections, and

because biofilm formation is so important to its pathogenesis, it has gained enor-

mous focus (Kumamoto 2002; Seneviratne et al. 2008). In addition to C. albicans
many of non-albican Candida species (NACS), including C. parapsilosis,
C. tropicalis, C. dubliensis, and C. glabrata, also form drug-resistant biofilms to

different extents and in different conditions. Although there are many reports of

biofilm formation by NACS, those formed by C. albicans are most extensive and

complex (Kumamoto 2002). Biofilms formed by different Candida species differ

largely in their chemical composition, extent of extracellular matrix (ECM), struc-

ture and thickness. For example, C. parapsilosis and C. tropicalis form robust

biofilms while C. glabrata biofilms are generally underdeveloped (Silva

et al. 2011). A. fumigatus biofilms, like Candida, produce large amounts of ECM

and are highly drug resistant with galactosaminogalactan and galactomannan being

their major polysaccharide components (Seidler et al. 2008; Loussert et al. 2010).

C. neoformans develops biofilms on medically implanted devices. In addition to

showing enhanced resistance to various drugs, cryptococal biofilms also impact

resistance against many different environmental stress conditions (Martinez and

Casadevall 2006, 2007). The MDR biofilms on medically implanted devices are

also seen with Trichosporon asahii which is the major cause of disseminated

trichosporonosis (Di Bonaventura et al. 2006). It has been demonstrated that

biofilms formed by Pneumocystis species are sensitive to the quorum sensing

molecule farnesol similar to Candida species, thus suggesting the possible involve-
ment of a more closely related pathway in these two different fungi (Cushion

et al. 2009).

6 Major Contributors of MDR in Biofilms

There are many mechanisms which are prevalent in the formation of biofilms that

contribute to enhanced antifungal resistance. As compared to planktonic cells

where an increased expression of drug efflux pump genes like CDR1, CDR2,
CaMDR1 (Prasad et al. 1995; Sanglard et al. 1997; Pasrija et al. 2007) have an

active role in azole tolerance, in sessile cells the efflux pump dependent decreased

susceptibility to drugs occurs only in early stages of biofilm development. At later

stages of biofilm formation Candida strains lacking these transporters are found to

be equally resistant to azole antifungals (Mukherjee et al. 2003). Although drug

efflux pumps do not seem to be an important contributor of drug resistance in

Candida biofilms, they seem to play a role in the development of azole drug

resistance in A. fumigates biofilms. Azole drug treatment also led to an increase

58 R. Prasad et al.



in AfMDR4 drug efflux pump gene expression in these biofilms and a subsequent

increase in drug resistance, which could be reversed by the presence of an efflux

pump inhibitor (Rajendran et al. 2011).

Several studies show that ECM comprised predominantly of β-1, 3 glucans is

most predominantly linked to antifungal resistance in biofilm. ECM acts as a barrier

which imposes restriction on free diffusion of drugs within the biofilm. Therefore,

the nature and extent of ECM determines the drug diffusion and threshold of

resistance for the particular biofilm community (Seneviratne et al. 2008). There

are several studies where glucan levels were linked to MDR of biofilms. For

example, by exploiting FKS1 mutant strains (defective in β-1, 3 glucans synthase),

it was shown that glucan production in the mutant strain was reduced to 60 % to that

of wild-type cells rendering biofilms susceptible to azoles (Nett et al. 2010). Sim-

ilarly, HSP90 in addition to having a role in biofilm dispersion has also been linked

to biofilm hyper resistance to antifungals since it also regulates the production of

ECM components (Robbins et al. 2011). The presence of ECM has also been shown

to be responsible for the development of persister cells within fungal biofilms.

Persister cells evolve from similar susceptible cells but escape the drug assault by

being located within the biofilm matrix, grow slowly and develop tolerance to drugs

(Lewis 2005).

Although, the presence of ECM seems to be the major contributor of MDR in

biofilms, in some cases where ECM is underdeveloped (like early stages of

biofilms), sessile cells grown planktonically still show enhanced drug resistance.

It seems there are several diverse cellular pathways leading to increased drug

resistance in biofilms (Baillie and Douglas 2000; Blankenship and Mitchell

2006). In most of the tested conditions, no one mechanism of biofilm resistance

was the sole determinant of increased resistance, as each controls specific devel-

opmental stages of biofilm.

In conclusion, all the evidence related to MDR and its mechanism in fungal

cells, including those in biofilms, suggests that it is a multifactorial phenomenon,

where not only MDR efflux pumps but also drug target alteration and transcrip-

tional activation have an active role. Several other factors also contribute to the

development of drug tolerance in fungi, in this context emerging roles of mito-

chondria, CW and lipids in MDR deserve more attention. The blocking of efflux

pumps to expel incoming drugs is a common strategy pursued which has resulted in

the identification of a few select inhibitors and modulators. However, such

approaches, while promising, may not be sufficient to sensitize MDR cells, partic-

ularly when one considers the existence of several efflux proteins which may still be

drug transporters and the contribution of yet unknown factors. Multi-target thera-

peutic strategies would be an ideal comprehensive approach in combating not only

fungal infections but also in preventing the development of MDR.
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the transcription factor Upc2p causes constitutive ERG11 upregulation and increased flucon-

azole resistance in Candida albicans. Antimicrob Agents Chemother 54:353–359

Heitman J (2011) Microbial pathogens in the fungal kingdom. Fungal Biol Rev 25:48–60

Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by

azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44:2693–2700

Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF (2002) The siderophore

iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type

siderophores and is required for epithelial invasion. Infect Immun 70:5246–5255

Hoot SJ, Smith AR, Brown RP, White TC (2011) An A643V amino acid substitution in Upc2p

contributes to azole resistance in well-characterized clinical isolates of Candida albicans.
Antimicrob Agents Chemother 55:940–942

Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression

profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to

drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079

Katiyar SK, Edlind TD (2001) Identification and expression of multidrug resistance related ABC

transporter genes in Candida krusei. Med Mycol 39:109–116

Kohli A, Smirti, Mukhopadhyay K, Rattan A, Prasad R (2002) In vitro low-level resistance to

azole in Candida albicans is associated with changes in membrane fluidity and asymmetry.

Antimicrob Agents Chemother 46:1046–1052

Mechanisms of Drug Resistance in Fungi and Their Significance in Biofilms 61



Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA (2002) Antifungal susceptibility

of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

Antimicrob Agents Chemother 46:1773–1780

Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

Kusch H, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M et al (2004) A

proteomic approach to understanding the development of multidrug-resistant Candida albicans
strains. Mol Genet Genomics 271:554–565

LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M et al (2010) PKC signaling

regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of

Mkc1, calcineurin, and Hsp90. PLoS Pathog 6:e1001069

Lamb DC, Maspahy S, Kelly DE, Manning NJ, Geber A, Bennett JE et al (1999) Purification,

reconstitution, and inhibition of cytochrome P-450 sterol delta22-desaturase from the patho-

genic fungus Candida glabrata. Antimicrob Agents Chemother 43:1725–1728

Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70:267–274

Liu TT, Lee REB, Barker KS, Lee RE, Wei L, Homayouni R et al (2005) Genome-wide expression

profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in

Candida albicans. Antimicrob Agents Chemother 49:2226–2236

Liu TT, Znaidi S, Barker KS, Xu L, Homayouni R et al (2007) Genome-wide expression and

location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6:2122–2138

Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B et al (2010) In vivo biofilm

composition of Aspergillus fumigatus. Cell Microbiol 12:405–410

Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE et al (2010) Azole drugs are imported by

facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog 6(9):

e1001126

Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W et al (1999) Contri-

bution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole

resistance in Candida albicans. Microbiology 145:2701–2713

Marie C, White TC (2009) Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep

3:123–131

Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG et al (2010a) Identification and

characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents

Chemother 54:4527–4533

Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG et al (2010b) A clinical isolate of

Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5
(encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents

Chemother 54:3578–3583

Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to anti-

fungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033

Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on

surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and

UV light. Appl Environ Microbiol 73:4592–4601

Martı́nez P, Ljungdahl PO (2005) Divergence of Stp1 and Stp2 transcription factors in Candida
albicans places virulence factors required for proper nutrient acquisition under amino acid

control. Mol Cell Biol 25:9435–9446

Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in

bacteria. J Bacteriol 174:1–7

Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C et al (1998) Fluconazole resistance

associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in
Candida glabrata. Antimicrob Agents Chemother 42:1695–1701

Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC (1998) Identifica-

tion and expression of multidrug transporters responsible for fluconazole resistance in Candida
dubliniensis. Antimicrob Agents Chemother 42:1819–1830

62 R. Prasad et al.



Morio F, Loge C, Besse B, Hennequin C, Le Pape P (2010) Screening for amino acid substitutions

in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates:
new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66:373–384

Morio F, Pagniez F, Lacroix C, Miegeville M, Le Pape P (2012) Amino acid substitutions in the

Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of

two novel mutants with impaired virulence. J Antimicrob Chemother 67:2131–2138
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Horizontal Gene Transfer in Planktonic

and Biofilm Modes

Melanie Broszat and Elisabeth Grohmann

Abstract Horizontal gene transfer (HGT) is an important means to obtain and

maintain plasticity of microbial genomes. Basically, bacteria apply three different

modes to horizontally exchange genetic material: (1) conjugative transfer mediated

by mobile genetic elements (MGE), (2) DNA uptake via transformation, and

(3) transduction. The three modes rely on different prerequisites of the participating

cells: conjugative transfer depends on close cell to cell contact between a donor and

a recipient cell and is mediated through multi-protein complexes, denominated type

IV secretion systems (T4SS), and DNA transformation does not rely on cell–cell

contact but is the uptake of free DNA from the environment by a competent

bacterial cell. In some bacteria it is also mediated by a T4SS. The third mechanism

depends on the presence of a bacteriophage, which can transfer genomic DNA from

one host cell to another. Experimental evidence exists that all three modes occur in

planktonic cultures and recent data have also been provided for the occurrence of all

three ways in biofilms. Regulation of these HGT events and their consequences for

the acting microbes and the biofilms they live in are discussed in this chapter.

Additionally, we focus on modern techniques to visualize and to quantify HGT in

planktonic and biofilm modes.

1 Introduction

HGT is the most important means for the spread of antimicrobial resistance and

virulence genes between related but also among unrelated bacteria. If antimicrobial

resistance traits are taken up by pathogenic bacteria, multiple-resistant pathogens

can evolve which then can further disseminate their resistance factors among the

microbial population. Conjugative transfer mediated by MGEs is the most
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important mechanism for this efficient horizontal gene spread. Various excellent

recent reviews exist on the mechanistic details of conjugative plasmid transfer

among bacteria mediated by T4SS, with emphasis on mechanistic details for

Gram-negative bacteria (Alvarez-Martinez and Christie 2009; Fronzes

et al. 2009; Waksman and Fronzes 2010; Wallden et al. 2010; Thanassi

et al. 2012; Zechner et al. 2012). Therefore, there is no particular need to focus

on it in this chapter. Instead, we will put emphasis on the occurrence of all three

modes of HGT, as well as on specialized modes of HGT, for which only recently

some mechanistic details have been elucidated, such as for the intra- and inter-

genomic transfer of pathogenicity islands, their regulation and consequences for

survival, and fitness of the participating microbes, in different environments.

Biofilms are the predominant mode of life for bacteria in nature. Bacteria living

in biofilms have been shown to be better protected from harmful impacts from their

environment than their planktonic counterparts. Indeed, biofilm-associated bacteria

exhibit increased resistance to antimicrobials, water stress, osmotic pressure, or

grazing by protozoans (Costerton et al. 1999; Hogan and Kolter 2002) and adapt

more readily to environmental changes via specialized communication systems,

denominated quorum-sensing (Parsek and Greenberg 2005; Schuster et al. 2013).

The evolution, adaptation, and ecology of bacteria are intertwined mechanisms.

Genes that are transferred horizontally between bacteria contribute essentially to

bacterial evolution; interspecies HGT may lead to entirely new genetic combina-

tions, which occasionally impose serious threats to human health (Madsen

et al. 2012). Biofilm formation is essentially a product of interbacterial relations.

Biofilms can consist of only one species, but in most cases natural biofilms contain

different species, characterized by primary colonizers, which start “conquering” the

habitat of choice, followed by secondary colonizers which establish in the matrix of

the biofilm. In any case, the formation of a stable mature biofilm is the product of

social interactions that have evolved through adaptations (Madsen et al. 2012). For

several decades, both HGT and biofilms have been central areas of microbiological

research in environmental as well as medical microbiology, resulting in the recog-

nition of their high significance for bacterial adaptation and evolution. A growing

number of studies showed that plasmid biology (in particular of conjugative

plasmids) and biofilm community structure and functions are intertwined through

many complex interactions, ranging from the genetic level to the community level.

This fact points towards a principal role of the concerted action of these activities in

socio-microbiology and bacterial evolution (Fig. 1; Madsen et al. 2012).

There is growing evidence that conjugative plasmids can promote the formation

of biofilms or at least increase or accelerate their formation through genetic traits

encoded on their genomes (May and Okabe 2008; Yang et al. 2008; D’Alvise

et al. 2010; Madsen et al. 2012). This chapter will review the state of the art of

interconnections between MGEs, MGE-mediated HGT, and biofilm formation.

However, not only conjugative transfer of plasmids and integrative conjugative

elements (ICE) has been shown to take place in biofilms, but experimental evidence

also exists for the occurrence of bacterial transformation via DNA uptake from the
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environment and for phage-mediated transduction. Recent knowledge on these

processes and their regulatory networks will be summarized.

A variety of classical and molecular tools are available to monitor and quantify

HGT in biofilms; most elaborated tools exist for the assessment of conjugative

plasmid transfer in biofilms and in planktonic modes, ranging from classical

selection for transconjugants (bacterial recipients which have acquired the plasmid

via conjugation) on selective plates to (confocal) fluorescence microscopy to detect

fluorescently labeled transconjugants or fluorescence-activated cell sorting (FACS)

Fig. 1 The interconnection between biofilm formation and horizontal gene transfer (Madsen

et al. 2012)
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(Nancharaiah et al. 2003; Arends et al. 2012; Reisner et al. 2012). Further more

sophisticated tools are currently being developed to distinguish via distinct fluores-

cence labels of the plasmids involved between plasmid donors and transconjugants

(P. Modrie and J. Mahillon, unpublished data; Broszat and Grohmann,

unpublished data).

2 Modes of Horizontal Gene Transfer

As outlined above, there exist three major mechanisms of HGT between and among

bacterial populations; all three of them contribute significantly to the horizontal

dissemination of bacterial traits and the extraordinary adaptability of microbes to

changing environmental conditions. Some special types of HGT, such as the

excision, transfer, and reinsertion of genomic islands, particularly of pathogenicity

islands, into a distinct genome, will be also discussed.

2.1 Conjugative Transfer

The conjugative plasmid systems are the largest and most widely distributed

subfamily of T4SSs, with systems described for most species of the Bacteria and

some members of the Archaea (Alvarez-Martinez and Christie 2009). The overall

process of conjugative DNA transfer can be dissected into three biochemical

reactions: DNA substrate processing, substrate recruitment, and DNA translocation

(Pansegrau and Lanka 1996; Ding et al. 2003; Christie et al. 2005; Schröder and

Lanka 2005; Alvarez-Martinez and Christie 2009). In the DNA processing reaction,

DNA transfer and replication (Dtr) proteins initiate processing by binding a cognate

origin of transfer (oriT) sequence on the conjugative element. The Dtr proteins

include a relaxase and one or more accessory factors (for some plasmid systems,

such as the broad-host-range plasmid pIP501, no accessory factors have been found

so far (Kopec et al. 2005; Kurenbach et al. 2006), and when bound to oriT, the
resulting DNA–protein complex is termed the relaxosome (Alvarez-Martinez and

Christie 2009). Accompanying the nicking reaction, relaxase remains bound to the

50-end of the transferred plasmid strand (T strand). The bound relaxase, probably

together with other relaxosome components, mediates recognition of the DNA

substrate by a cognate T4SS. The relaxase guides the T strand through the translo-

cation channel. In the recipient cell, the relaxase catalyzes the re-circularization of

the T strand and may also be involved in second-strand synthesis or recombination

into the chromosome (Draper et al. 2005; César et al. 2006; Alvarez-Martinez and

Christie 2009). The self-transmissible plasmids are only one of two major sub-

groups of conjugative elements. The second group of conjugative elements, orig-

inally denominated “conjugative transposons” and more recently termed ICEs

(Integrative and Conjugative Elements), is also present in many bacterial and
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archaeal species (Burrus et al. 2002; Burrus and Waldor 2004; Juhas et al. 2007,

2008; Alvarez-Martinez and Christie 2009). These elements are excised from the

chromosome through the action of a recombinase/excisionase complex and

followed by the formation of a circular intermediate. Then the circularized inter-

mediate is processed at oriT in the same way as described for conjugative plasmids.

In the recipient cell, ICEs reintegrate into the chromosome (or plasmid) by homol-

ogous recombination or through the action of an integrase encoded by the ICE itself

(Alvarez-Martinez and Christie 2009). Conjugative plasmids and ICEs are recruited

to the transfer machine through interactions between the relaxosome or processed

DNA transfer intermediate and a highly conserved ATPase termed the type IV

coupling protein. This protein interacts with the translocation channel, which

consists of the mating-pair formation proteins (Christie 2004; Schröder and

Lanka 2005; Alvarez-Martinez and Christie 2009). Two types of mating-pair

formation proteins, an ATPase and a polytopic membrane subunit, are associated

with all T4SSs, whereas other mating-pair formation proteins are less phylogenet-

ically conserved. In Gram-negative bacteria, the mating-pair formation proteins

build the secretion channel, as well as a pilus or other surface filaments, to achieve

attachment to target cells (Lawley et al. 2003; Christie and Cascales 2005; Alvarez-

Martinez and Christie 2009). In Gram-positive bacteria, surface adhesins rather

than conjugative pili apparently mediate attachment (Grohmann et al. 2003;

Alvarez-Martinez and Christie 2009). For the majority of Gram-positive bacteria

the origin and nature of the surface adhesins or other surface located factors

involved in attachment and/or recognition of the recipient cell have not been

elucidated so far.

2.2 DNA Uptake via Transformation

DNA transformation is based on the uptake of free DNA from the environment and

therefore does not rely on MGEs; it is only encoded by the acceptor bacterium.

Natural competence is the developmental state of the bacterium in which it is

capable of taking up external DNA and to recombine this DNA into the chromo-

some, thereby undergoing natural transformation (Seitz and Blokesch 2013). A

wide variety of bacterial species can develop natural competence and consequently

take up external DNA (for recent reviews, see Lorenz andWackernagel 1994; Chen

and Dubnau 2004). The main steps to uptake external DNA include (1) binding of

double-stranded DNA outside the cell to a (pseudo-) pilus structure elaborated by

the acceptor cell, (2) extension and retraction of the pilus, driven by ATP-dependent

motor proteins, that mediate the uptake of the double-stranded DNA through the

secretin pore, which spans the outer membrane of the acceptor cell, (3) binding of

the double-stranded DNA by the DNA-binding protein ComEA which occurs in the

periplasmic space, (4) transport across the inner membrane which is carried out by

ComEC concomitantly with the degradation of one strand by an unidentified

nuclease, (5) single-stranded DNA reaches the cytoplasm and is decorated by
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DNA processing protein A (DprA) and a single-strand binding protein to protect it

against degradation, and (6) DprA recruits RecA, which catalyzes homologous

recombination with the genomic DNA of the acceptor cell (Seitz and Blokesch

2013). Details of the DNA-uptake complexes have been reviewed in Averhoff and

Friedrich (2003), Claverys et al. (2009), Burton and Dubnau (2010), and Allemand

et al. (2012). However, less is known about the initiation of competence, particu-

larly in Gram-negative bacteria. Current knowledge of environmental signals,

which drive natural competence and transformation in Gram-negative bacteria,

has been summarized by Seitz and Blokesch (2013). For Gram-positive bacteria,

the signals triggering competence have been recently reviewed by Claverys

et al. (2006).

2.3 DNA Transduction

Transduction is the process in which bacterial DNA gets erroneously packaged into

the heads of phages; when the phage infects another bacterial cell the packaged

DNA is incorporated into the new host genome (Roberts and Mullany 2010).

Phages are often highly specific to their bacterial hosts, able to infect even after

significant periods of hiatus, and reproduce rapidly when their ecosystem permits.

The viral genome is stored in safety, usually DNA encapsulated in the protein

“head,” until the virion attaches itself to a bacterial host cell for genome insertion

(Brabban et al. 2005). This attachment process is specific involving the precise

recognition of cell surface receptors, such as proteins and lipopolysaccharide

elements, by specialized phage recognition structures (anti-receptors). When the

viral genome has been introduced into the host, the life cycles of the lytic or

temperate phages diverge. This divergence is determined by both the phage biology

(lytic phages can only reproduce via a lytic life cycle while temperate phages can

either reproduce lytically or enter lysogeny) and the cellular environment. Phages

are grossly classified based on their life cycle (lytic vs. temperate), although finer

subdivisions are based on their morphological characteristics (tailless vs. tailed),

nature of the genome (e.g., DNA vs. RNA or single-stranded vs. double-stranded),

and other factors (Brabban et al. 2005). In the last two decades, it has become more

common to classify phages at a molecular level through the comparison of specific

genes with the well-characterized T-4-like phages (Tétart et al. 2001).

2.4 Transfer of Genomic Islands

Genomic islands (GEI) are in essence discrete DNA segments differing widely

between closely related bacterial strains to which usually some past or present

mobility is attributed (Juhas et al. 2008). GEIs represent a broad and diverse group

of DNA elements with a large variety of sizes and abundance in bacterial genomes
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(Dobrindt et al. 2004). The coding capacity of GEIs is not limited to pathogenicity

functions, but can be very diverse, including traits such as symbiosis (Sullivan

et al. 2002), sucrose and aromatic compound metabolism (Gaillard et al. 2006),

mercury resistance, and siderophore synthesis (Larbig et al. 2002). Bioinformatics

studies have shown that GEIs tend to carry more novel genes (i.e., genes that do not

have orthologs in other species) than the rest of the genome (Hsiao et al. 2005). This

suggests that GEIs have become strongly selected for adaptive and auxiliary

functions. Juhas et al. (2009) proposed that the term GEI should be used for the

overarching family of discrete “DNA elements” which are part of a cell chromo-

some and can drive or have driven strain differentiation.

As not all GEIs contain the same components, it is difficult to define a unifying

mode of GEI functioning or lifestyle (referring to the functions required for

maintenance, excision, transfer, or integration). Interestingly, many GEIs for

which self-mobility has been shown can excise from the chromosome, encode the

full capacity for horizontal self-transfer to another cell, and reintegrate into the

target site in the new host chromosome (Juhas et al. 2009). GEIs that encode all

these features and self-transfer by conjugation are part of a well-defined group of

elements that have been named ICEs (Burrus and Waldor 2004). A wide variety of

GEIs are intimately connected to phages and conjugative plasmids through their

evolutionary origins. As a consequence, besides transformation, their transfer often

occurs via conjugation and transduction (Jain et al. 2002; Chen et al. 2005; Juhas

et al. 2009). GEIs do not necessarily encode the whole genetic information for self-

transfer, and several cases are known in which GEIs are packaged by another

co-residing lysogenic phage or mobilized by a plasmid or the conjugative system

of an ICE (Shoemaker et al. 2000).

Hall (2010) recently published an excellent review on Salmonella genomic

islands and their dissemination. Salmonella genomic island 1 (SGI1), the first island

of this type, was found in S. enterica serovar Typhimurium DT104 isolates, which

are resistant to seven different antibiotics. Early studies by Schmieger and

Schicklmaier (1999) demonstrated that SGI1 was moved into new hosts by trans-

duction via a phage produced by the DT104 isolates. SGI1 cannot transfer itself into

a new host because it does not encode a full set of conjugative transfer genes, but it

is mobilizable (Doublet et al. 2005). It can be transferred into Salmonella spp. or

Escherichia coli hosts if an IncA/C plasmid is present in the donor to supply the

conjugative transfer machinery (Doublet et al. 2005). SGI1 is found in many

different S. enterica serovars. It carries class 1 integrons containing five antibiotic

resistance genes conferring resistance to seven antibiotics, namely, ampicillin,

chloramphenicol, florfenicol, streptomycin, spectinomycin, sulfamethoxazole, and

tetracycline.
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3 Horizontal Gene Transfer in Liquid, on Surfaces,

and in Biofilm Mode

It has been known for a long time that conjugative DNA transfer takes place on

surfaces as well as in liquid medium in the laboratory. For transfer to take place in

liquid medium the mating partners need to have special surface structures evolved

such as conjugative pili in Gram-negative bacteria (for recent reviews, refer to

Schröder and Lanka 2005; Silverman and Clarke 2010) and adhesins in Gram-

positive bacteria, such as enterococci (for a recent review, consult Dunny 2007;

Palmer et al. 2010). For conjugative transfer on surfaces, which in the laboratory in

essence is performed on filters placed on top of agar plates, close contact between

the mating partners is acquired through high cell densities of donor and recipient

cell. Conjugative DNA transfer in biofilms has been shown for the first time by

Hausner and Wuertz (1999) for conjugative plasmids and by Roberts et al. (1999)

for conjugative transposons, now termed ICEs. Ghigo was the first to claim that

conjugative plasmids per se can encode traits that induce biofilm formation of

planktonic bacteria (Ghigo 2001).

3.1 Interconnection Between HGT and Biofilm Formation

Recent research has revealed that HGT and biofilm formation are connected

processes (Madsen et al. 2012). Biofilm formation depends on interbacterial rela-

tions and bacterial interactions: A biofilm is a gathering of bacterial cells embedded

in a self-produced polymeric matrix consisting of extracellular polymeric sub-

stances (EPS), mainly exopolysaccharides, proteins, and nucleic acids. Biofilms

may adhere to an inert or biotic surface or exist as free-floating communities.

Biofilm cells often show an altered phenotype regarding growth rate and gene

transcription, and they exhibit enhanced tolerance towards antibiotics and immune

responses. Biofilms offer excellent conditions for bacterial interactions because of

(1) the high-density and well-organized diverse microbial community allowing

physical contact between the cells and (2) the matrix that concentrates various

chemical compounds (e.g., communication signals and extracellular DNA). Fur-

thermore, environmental biofilms are generally multispecies communities. A char-

acteristic feature is their organization of cells into matrix-enclosed structures,

varying in size from smaller microcolonies to large and sometimes “mushroom-

shaped” structures, which enable nutrient supply and waste product removal for

cells resident in the deeper biofilm layers. Nowadays it is generally accepted that

the biofilm mode is the predominant mode of growth in natural bacterial habitats

(Madsen et al. 2012).

In the following sections we will provide evidence and arguments for biofilms as

microbial community structures that can promote plasmid transfer and stability.
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Conversely, we will also show that conjugative plasmids can in turn promote

biofilm formation.

3.2 Conjugative Transfer in Biofilms

Numerous experimental data provide evidence that conjugative transfer occurs at

higher frequencies between members of biofilm communities than when bacteria

are in a planktonic state (Hausner and Wuertz 1999; Sørensen et al. 2005; Madsen

et al. 2012). This is very well illustrated by the fact that more transconjugants can be

found after mating on a filter compared with mating in liquid culture. This is

typically explained by the fact that biofilms are dense communities that accelerate

the spread of MGEs (Madsen et al. 2012). It has been demonstrated that high HGT

frequencies of plasmids can enable them to persist as molecular parasites (Bahl

et al. 2007), whilst other MGEs are only transmitted vertically. It is likely that a

trade-off exists between horizontal and vertical transmission of MGEs—a trade-off

that may be facilitated by the costs that the MGEs impose on the host (Andersson

and Levin 1999; Bergstrom et al. 2000; Madsen et al. 2012). Plasmids that are only

maintained through high transfer frequencies may thus only be able to persist in

biofilms (Lili et al. 2007).

In the following sections, examples of efficient conjugative plasmid transfer in

biofilms are given.

3.2.1 Conjugative Plasmid Transfer Among Gram-Negative Bacteria

in Biofilms

Although biofilms represent the most common bacterial lifestyle in clinically and

environmentally important habitats, there is rare information on the extent of HGT

in the spatially structured populations in biofilms (Król et al. 2011). Król and

coworkers studied the factors that affect transfer of the promiscuous multidrug

IncP-1 resistance plasmid pB10 in E. coli biofilms grown under varying conditions:

in closed flow cells, plasmid transfer in surface-attached submerged biofilms was

very low, whereas a high plasmid transfer frequency was observed in a biofilm

floating at the air–liquid interface in an open flow cell with low flow rates.

Extensive plasmid transfer was detected only in the narrow zone near the interface;

much lower transfer frequencies in the lower zones/deeper biofilm layers coincided

with rapidly decreasing oxygen concentrations. Król et al. (2011) concluded that

the air–liquid interface could be a hot spot for plasmid-mediated HGT due to high

densities of juxtaposed donor and recipient cells. However, conjugative transfer

was not limited to the air–liquid interphase when the E. coli recipient strain was a

good biofilm former, which is the case for many pathogenic E. coli strains (Król
et al. 2011; Beloin et al. 2008; Kaper et al. 2004). In these cases conjugative transfer

also occurred efficiently in submerged biofilms.
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Hennequin et al. (2012) studied the plasmid transfer capacity of a CTX-M-15

beta lactamase producing Klebsiella pneumoniae isolate in both planktonic and

biofilm conditions. Plasmid transfer frequencies in biofilms reached very high

frequencies of about 0.5 per donor cell, in comparison to the planktonic mode

where they amounted to 10�3/donor. Ma and Bryers (2013) quantified conjugative

transfer of the Pseudomonas TOL plasmid in biofilms as a function of limiting

nutrient concentrations. Frequencies of plasmid transfer within biofilm populations

were affected by limiting substrate loading in the following way: low concentra-

tions of the limiting substrate, in this case, glucose, generated thinner biofilms

comprised of more porous biofilm clusters that allowed greater penetration of donor

cells throughout the clusters with more exposure of recipient population to donor

cells, which resulted in an increase of plasmid transfer frequencies (Ma and Bryers

2013). The opposite held true at high substrate concentrations that produced very

dense compact biofilm clusters, with corresponding low plasmid transfer

efficiencies.

ICEAfe1 is a 291-kbp ICE that was identified in the genome of the booming

bacterium Acidithiobacillus ferrooxidans. Bustamante et al. (2012) investigated the

excision of the element and expression of relevant genes under normal and

DNA-damaging growth conditions. Both basal and mitomycin C-inducible excision

as well as expression and induction of the genes for integration/excision were

observed, suggesting that ICEAfe1 is an actively excising SOS-regulated MGE

(Bustamante et al. 2012). The presence of a complete set of genes for self-transfer

functions that are induced in response to DNA damage additionally suggested that

ICEAfe1 is capable of conjugative transfer to suitable recipients. Transfer of

ICEAfe1 may provide selective advantages to other acidophilic bacteria in the

ecological niche through dissemination of gene clusters expressing CRISPRs and

exopolysaccharide biosynthesis enzymes, probably by resistance to phage infection

and biofilm formation, respectively (Bustamante et al. 2012). The presence of a

number of genes predicted to encode proteins involved in the synthesis of

exopolysaccharides that contribute to biofilm formation could enhance the persis-

tence of these bacteria in the environment and/or help to improve mineral dissolu-

tion (Rohwerder et al. 2003; Bustamante et al. 2012).

3.2.2 Conjugative Plasmid Transfer Among Gram-Positive Bacteria

in Biofilms

Roberts et al. (1999) used a constant depth film fermenter to demonstrate that

transient bacteria may be able to act as a donor to oral bacteria in an oral biofilm

community in the short time that they are present in the oral cavity. Tn5397
(a conjugative transposon carrying tetM) in a B. subtilis donor was shown to

transfer to a streptococcal recipient growing as part of an artificial oral biofilm in

the constant depth film fermenter. The B. subtilis donor was not recovered from the

biofilm 24 h after inoculation, showing that even though the donor bacteria are no

longer present, their genetic information can persist (summarized in Roberts and
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Mullany 2010). Tn916-like conjugative transposons have been shown to be com-

mon in tetracycline-resistant Veillonella spp. and some of them were transmissible

within a mixed-species consortium in the oral cavity consisting of 21 tetracycline-

sensitive members (Ready et al. 2006). Sedgley and coworkers (2008) also pro-

vided evidence that the conjugative plasmid pAM81 was able to transfer between

Streptococcus gordonii and E. faecalis in the root canals of human teeth in vivo.

Cook and colleagues demonstrated that growth in biofilms alters the induction of

conjugative transfer by a sex pheromone in E. faecalis harboring the conjugative

plasmid pCF10. Mathematical modeling suggested that a higher pCF10 copy

number in biofilm cells would enhance a switch-like behavior in the pheromone

response of donor cells with a delayed but increased response to the mating signal

(Cook et al. 2011). Variations in plasmid copy number and a bimodal response to

induction of conjugative transfer in populations of plasmid-harboring donor cells

were both observed in biofilms, which is consistent with the predictions of the

model. The pheromone system may have evolved such that donors in biofilms are

only induced to transfer when they are in extremely close proximity to potential

recipients in the biofilm (Cook et al. 2011). In contrast to the popular notion of

biofilms being the optimal niche for conjugation (Hausner and Wuertz 1999), Cook

and coworkers observed reduced efficiency of pCF10 transfer in biofilms. Their

mating experiments employed biofilms grown in vitro with inducing pheromone

produced by the recipient cells. The authors argued that their results reflect the

anatomy of enterococci and differences in the cell attachment mechanisms used by

the conjugative transfer machines of Gram-positive vs. Gram-negative bacteria:

E. faecalis cells are not motile. When E. faecalis cells colonize a surface and initiate
biofilm growth or attach and become part of a preexisting biofilm, they probably

remain in the same location until they die or detach to reenter the planktonic phase

(Cook et al. 2011). There is very low probability that donor and recipient cells get

into close/intimate contact for the exchange of pCF10. In the pCF10 T4SS, mating

pair formation is mediated by the surface adhesin Asc10 (encoded by the prgB gene

on pCF10) which can stably bind the surfaces of cells that randomly collide; there

are no sex pili that could attach cells that are not in direct wall-to-wall contact. In

planktonic cultures of sufficient population density, however, random diffusion

increases the probability of collision between donors and recipients, and induced

donors can form stable mating pairs extremely efficiently (Cook et al. 2011).

Ghosh et al. (2011) investigated the enterococcal populations of dogs leaving the

veterinary intensive care unit (ICU) for multidrug resistance, the capacity for

biofilm formation, and HGT. The enterococcal diversity based on 210 isolates

was low as represented by E. faecium (54.6 %) and E. faecalis (45.4 %). Most

isolates were resistant to various antibiotics. All E. faecalis strains were biofilm

formers in vitro. In vitro intra-species conjugation assays demonstrated that

E. faecium were capable of transferring tetracycline, doxycycline, streptomycin,

gentamicin, and erythromycin resistance traits to human clinical strains. High

transfer rates (10�5–10�4) for both tetracycline and doxycycline resistance traits

were observed, indicating potential involvement of Tn916 (Ghosh et al. 2011). The
study demonstrated that companion animals after release from the ICU and on
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antibiotic treatment harbor a large multidrug-resistant enterococcal community.

Genotyping of E. faecium strains revealed very low clonal diversity, their possible

nosocomial origin, and close relatedness to human clinical isolates. Ghosh and

coworkers recommended restricted contact after release from ICU between treated

dogs and their owners to avoid health risks.

Due to the particular structure of their cell wall mycobacteria are neither

considered as Gram-negative nor as Gram-positive bacteria. Nguyen and coworkers

(2010) investigated conjugative transfer of chromosomal DNA between different

strains of Mycobacterium smegmatis. They showed that efficient DNA transfer

between different strains occurred in a mixed biofilm and that the process required

expression of the lsr2 gene, a gene product involved in biofilm formation, in the

donor but not in the recipient strain. Transfer occurred predominantly at the biofilm

liquid–air interface.

As demonstrated above, higher HGT frequencies in biofilms is the general

observation. Nevertheless, there are also examples of spatial constraints within

biofilms that may hinder the spread of plasmids in an already-established biofilm

(Merkey et al. 2011). Król and coworkers (2011) showed how the transfer of an

IncP-1 plasmid has spatial and nutritional constraints and occurred predominantly

in the aerobic zone in an E. coli biofilm. Madsen et al. (2012) speculated that a

prerequisite for successful transfer of certain plasmids in a biofilm community is

that the plasmid is present in the initial phases of biofilm formation. This can be

fulfilled if the biofilm priming probabilities are encoded by the plasmid itself

(Madsen et al. 2012).

3.3 Transformation in Biofilms

Successful transformation of a bacterial cell depends on physicochemical factors of

the DNA molecules, such as their size, conformation, and concentration of the

transforming DNA and other environmental factors, such as UV light, salt, pH,

temperature, and the presence of extracellular nucleases (Roberts and Mullany

2010). Furthermore, there are genetic obstacles to overcome for successful trans-

formation, such as the presence of restriction systems and the ability of the

incoming DNA to either replicate autonomously or integrate into the recipient

genome (Ogunseitan 1995; Roberts and Mullany 2010).

Transformation has no requirement for live donor cells as the DNA released upon

cell death is the principal source of transforming DNA. In addition, some bacteria,

such as Neisseria gonorrhoeae, can actively release DNA into their environment.

Therefore, one of the rate-limiting steps for transformation of bacteria growing in a

biofilm is the longevity of DNA molecules in both the biofilm and the cytoplasm of

the transformed cell (Roberts and Mullany 2010). Roberts and Mullany (2010)

summarized recent experimental data on transformation in oral biofilms: Mercer

et al. (1999) studied the persistence of Lactococcus lactis chromosomal and plasmid

DNA in human saliva. They found, although the DNAwas partially degraded, that it
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was still visible on an agarose gel after 3.5 min incubation. Furthermore, the

presence of plasmid DNA of about 500 bp length was demonstrated by PCR after

24 h of incubation in human saliva. Duggan et al. (2000) demonstrated that pUC18

could transform E. coli to ampicillin resistance following 24 h incubation in clarified

ovine saliva. A recent study by Hannan and coworkers showed that the genomic

DNA of a Veillonella dispar strain carrying the conjugative transposon Tn916 could
transform Streptococcus mitis to tetracycline resistance within an oral biofilm grown

in a fermenter (Hannan et al. 2010).

Tribble et al. (2012) studied chromosomal DNA transfer between

Porphyromonas gingivalis, a Gram-negative anaerobe residing exclusively in the

human oral cavity. Their results revealed that natural competence mechanisms are

present in multiple strains of P. gingivalis, and DNA uptake is not sensitive to DNA

source or modification status. Tribble and coworkers (2012) were the first to

observe extracellular (e) DNA in P. gingivalis biofilms and predicted it to be the

major DNA source for HGT and allelic exchange between strains. They proposed

that exchange of DNA in plaque biofilms by a transformation-like process is of

major ecological importance in the survival and persistence of P. gingivalis in the

challenging oral environment.

Certain oral streptococci produce hydrogen peroxide under aerobic growth

conditions to inhibit competing species like Streptococcus mutans. By using Strep-
tococcus gordonii as a model organism Itzek and coworkers demonstrated hydro-

gen peroxide-dependent eDNA release (Itzek et al. 2011). Under defined growth

conditions, the eDNA release was shown to be entirely dependent on hydrogen

peroxide. Chromosomal DNA damage seemed to act as the intrinsic signal for the

release. Interestingly, the generation of eDNA was found to be coupled with the

induction of the S. gordonii natural competence system. Consequently, the produc-

tion of hydrogen peroxide triggered the transfer of antimicrobial resistance genes

(Itzek et al. 2011). Thus, the eDNA found in the oral cavity can serve as a pool for

novel genetic information, since hydrogen peroxide production by one species can

induce the release of eDNA in other species. Itzek et al. (2011) argued that

hydrogen peroxide is potentially much more than a toxic metabolic by-product;

rather, it could serve as an important environmental signal that facilitates species

evolution by HGT of genetic information and an increase in the mutation rate.

The action of a competence-specific murein hydrolase, CbpD, strongly increases

the rate of HGT between pneumococci. CbpD is the key component of a bacteri-

olytic mechanism termed fratricide. It is secreted by competent pneumococci and

mediates the release of donor DNA from sensitive streptococci present in the same

environment (Wei and Håvarstein 2012). Recent data from Wei and Håvarstein

demonstrated that the fratricide mechanism has a strong positive effect on

intrabiofilm HGT, indicating that it is important for active acquisition of homolo-

gous donor DNA under natural conditions. Additionally, they found that competent

biofilm cells of S. pneumoniae acquire a resistance marker much more efficiently

from neighboring cells than from the growth medium. This could be explained by

the fact that externally added DNA is not able to penetrate into the biofilm and is

therefore available only to competent cells that are exposed to the growth medium.
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Vibrio cholerae, the causative agent of cholera and a natural inhabitant of

aquatic environments, regulates various behaviors by a quorum-sensing system

conserved among many members of the genus Vibrio. The quorum-sensing system

is mediated by two extracellular autoinducers, CAI-1, which is secreted only by

vibrios, and AI-2, which is produced by many bacteria (Antonova and Hammer

2011). In marine biofilms on chitinous surfaces, quorum-sensing-proficient

V. cholerae cells become naturally competent to take up eDNA. It could be

hypothesized that V. cholerae can switch to the competent state in a chitinous

environmental biofilm by responding to autoinducers derived from members of the

multispecies bacterial consortium (Antonova and Hammer 2011). Antonova and

Hammer (2011) also showed that comEA transcription and the horizontal uptake of

DNA by V. cholerae are induced in response to purified CAI-1 and AI-2, and also

by autoinducers originating from other vibrios cocultured with V. cholerae within a
mixed-species biofilm.

3.4 Transduction in Biofilms

Roberts and Mullany (2010) summarized recent data on transduction in the human

oral cavity. One of the main barriers to the activity of phage in oral biofilms is the

access to the cells within the EPS secreted by the biofilm residents themselves

(Sutherland 2001). Little is known about the effect of phage and the extent to which

transduction contributes to genetic exchange within oral biofilms. There are some

studies that indicate transduction may be occurring within the oral cavity. Although

these works demonstrated the isolation of distinct phages from human saliva

(Bachrach et al. 2003; Hitch et al. 2004), DNA transduction mediated by these

phages to bacteria resident in oral biofilms could not be demonstrated so far.

Evidence for the involvement of phage in the HGT of DNA among residents of

oral biofilms only comes from studies carried out in vitro: for instance, tetracycline

resistance encoded on Tn916 and chloramphenicol resistance present on plasmid

pKT210 have been transferred between Actinobacillus actinomycetemcomitans by
the generalized transducing phageAaØ23 (Willi et al. 1997). Additional evidence

that this phage may be transducing DNA between bacteria in the oral cavity was

obtained by isolation of phage particles from subgingival plaque from periodontitis

patients (Sandmeier et al. 1995; Willi et al. 1997).

Dissemination of Shiga toxin (Stx)-encoding phages is the most likely mecha-

nism for the spread of Stx-encoding genes and the emergence of new Stx-producing

E. coli (STEC) (Solheim et al. 2013). Solheim and coworkers observed transfer of

Stx-encoding phages to potentially pathogenic E. coli in biofilm at both 20 �C and

37 �C, with the infection rates being higher at 37 �C than at 20 �C. The study of

Solheim and coworkers is the first to show HGT in a laboratory grown biofilm

mediated by a temperate phage.
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3.4.1 Evidence for Transduction as an Important Means to Disseminate

Antibiotic Resistance

Brabban et al. (2005) summarized the current knowledge of the role of temperate

phages in the dissemination of antibiotic resistance. As transformation and conju-

gation are not common modes of HGT in Salmonella, phage-mediated transduction

has been suggested as the most important mode. The phages ES18 and PDT17 have

been shown to transduce antibiotic resistance genes in S. TyphimuriumDT104, with

PDT17 having been found integrated into the genome of all strains of DT104 so far

studied (Schmieger and Schicklmaier 1999). This observation is consistent with the

fact that the core resistance genes in S. Typhimurium DT104 are chromosomally

encoded in a tight cluster as part of Salmonella genomic island I (43 kb), well within

the size that a phage could package and transduce (Schmieger and Schicklmaier

1999; Cloeckaert and Schwarz 2001; Brabban et al. 2005). Most of the other studied

strains of Salmonella carry complete prophages within their genomes, many of

which are capable of generalized transduction upon induction, spontaneous or

otherwise (Schicklmaier et al. 1999; Mmolawa et al. 2002; Bossi et al. 2003;

Brabban et al. 2005).

Brabban and coworkers also summarized recent observations on the induction of

phages from the lysogenic state to the lytic pathway. In particular, antibiotics

affecting DNA metabolism (such as the quinolones trimethoprim, norfloxacin,

and ciprofloxacin) can induce phages to leave their prophage state and reproduce

lytically, even at sub-inhibitory concentrations. Matsushiro and coworkers

observed a 1,000-fold increase in phage titers and a 60-fold increase of Shiga

toxin production within 6 h of in vitro ciprofloxacin exposure (Matsushiro

et al. 1999). Experiments using growth-promoting antibiotics typically used in

animal husbandry found that olaquindox and carbadox (both DNA targeting agents)

increased both phage and Stx production (Köhler et al. 2000). This phenomenon is

not limited to E. coli O157:H7, but it has been also reported that antibiotic

resistance transfer occurred in V. cholerae at much higher efficiency when the

SOS response was induced by antibiotics (Beaber et al. 2004; Hastings et al. 2004).

Brabban et al. concluded that the use of antibiotics, whether therapeutically or as a

growth promoter, not only provides a selective pressure on bacterial populations

that favors resistant strains, but it also potentially increases the number of trans-

duction and lysogenic conversion events within the population (Brabban

et al. 2005).

The poultry industry faces a significant challenge in dealing with antibiotic

resistant strains of S. typhimurium, P. aeruginosa, and E. coli that infect and can

alter productivity of poultry flocks (Vandemaele et al. 2002; Walker et al. 2002;

Brabban et al. 2005). Thus, the continued presence of antibiotic resistant strains of

these common food-borne pathogens among poultry and other livestock coupled

with the prevalence of transducing phages in the gastrointestinal tract of these

animals is a matter of concern for public health officials worldwide (Brabban

et al. 2005). For example, multiple antibiotic resistance cassettes can be transduced
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into antibiotic susceptible strains of Pseudomonas aeruginosa by phages released

from multiple antibiotic resistant lysogenic strains of P. aeruginosa or by general-

ized transducing phages that already carry multiple antibiotic resistance markers

(Blahova et al. 1999, 2000; Brabban et al. 2005). Resistance to imipenem,

ceftazidime, and cefotaxime was transduced into antibiotic susceptible

P. aeruginosa by a phage released from a lysogenic strain (Blahova et al. 1999;

Brabban et al. 2005).

3.5 Transfer of Genomic Islands

Recently, a novel T4SS has been identified in N. gonorrhoeae that secretes chro-

mosomal DNA in the surrounding environment in a non-contact-dependent manner

(Hamilton et al. 2005; Juhas et al. 2009). This T4SS is localized in the large,

horizontally acquired gonococcal genetic island present in the chromosome of

N. gonorrhoeae, thus, by facilitating chromosomal DNA secretion this GEI also

encodes the mechanism of its own dissemination by transformation (Juhas

et al. 2009).

A new conjugation type GEI-encoded T4SS has been also described. It is

evolutionarily distant from all previously described T4SSs and plays a key role in

the horizontal transfer of a wide variety of GEIs originating from a broad spectrum

of bacteria, including Haemophilus spp., Pseudomonas spp., Erwinia carotovora
(Pectobacterium carotovorum), Salmonella enterica serovar Typhi, Legionella
pneumophila, and others (Juhas et al. 2007, 2008, 2009) by conjugation.

The 153-kb E. faecalis pathogenicity island (PAI) was first described by Shankar
et al. (2002). It encodes several pathogenicity factors, among them the enterococcal

surface protein (esp) conferring increased biofilm formation and colonization, a

cytolysin with hemolytic, cytolytic, and antibacterial activity, the aggregation

substance, surface proteins, and general stress proteins (Shankar et al. 2002). The

E. faecalis PAI is widely distributed among isolates of different origins, clonal

types, and complexes, and it probably evolved by modular gain and loss of internal

gene clusters (McBride et al. 2009). Laverde Gomez et al. (2011) demonstrated for

the first time precise excision, circularization, and horizontal transfer of the entire

PAI from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb)

contained some deletions and insertions as compared to the PAI of the reference

strain MMH594, transferred precisely and integrated site specifically into the

chromosome of E. faecalis and E. faecium. The internal PAI structure was

maintained after transfer. Biofilm formation and cytolytic activity were enhanced

in E. faecalis transconjugants after acquisition of the PAI. A 66-kb conjugative

pheromone-responsive erythromycin resistance plasmid (pLG2) that was trans-

ferred in parallel with the PAI was sequenced. It contains complete replication

and conjugation modules of enterococcal origin in a mosaic-like composition; it is

likely that it promotes horizontal transfer of the PAI (Laverde Gomez et al. 2011).
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Many phages are able to transfer GEIs, as passengers in their genomes. Members

of the Staphylococcus SaPI island family were shown to be induced to excise and

replicate by certain resident temperate phages that are also involved in their

packaging into small phage-like particles (Maiques et al. 2007; Ubeda

et al. 2007; Juhas et al. 2009) that are transferred from donor to recipient cells at

frequencies commensurate with the plaque-forming titer of the phage (Ruzin

et al. 2001; Juhas et al. 2009). The high-pathogenicity island of Yersinia pseudo-
tuberculosis (Lesic et al. 2004) and GEIs of the marine cyanobacterium

Prochlorococcus (Coleman et al. 2006) have also been reported to be transferred

by phages (Juhas et al. 2009).

Self-transfer via conjugation has also been described for some GEIs. For the

ICEHin1056, transfer frequencies of 10�1–10�2 (transconjugants/recipient) were

reported between two H. influenzae strains (Juhas et al. 2007). ICEclc of Pseudo-
monas sp. strain B13, a distant member of the same ICEHin1056 subfamily, was

shown to be self-transferable at similar frequencies to P. putida, Cupriavidus
necator, and P. aeruginosa (Gaillard et al. 2006; Juhas et al. 2009).

Although GEIs basically can do the same job as self-transmissible plasmids,

Juhas and coworkers argued that GEIs conceptually may have a number of advan-

tages over a plasmid, one of the most notable being that GEIs are integrated in the

host chromosome. Thus, unlike replicating plasmid molecules, GEIs do not need to

continuously ensure coordinated replication, partitioning, or maintenance, and as

there is often only a single copy of the GEI present per genome, its replication cost

may not be as heavy a burden to the host cell (Gaillard et al. 2008).

4 Factors Promoting Biofilm Formation

4.1 Environmental Factors Promoting Biofilm Formation

Many studies provide evidence that sub-inhibitory concentrations of antibiotics

promote biofilm formation. Hennequin et al. (2012) showed that the presence of the

antibiotic cefotaxime at subminimal inhibitory concentrations enhanced biofilm

formation of a K. pneumoniae isolate that is highly resistant to this antibiotic.

Two further studies showed that sublethal doses of antibiotic could exacerbate

biofilm formation. Bagge et al. (2004) reported that sublethal concentrations of the

beta-lactam antibiotic, imipenem, not only affected fivefold gene regulation of

34 genes in P. aeruginosa but also resulted in a 20-fold increase in alginate matrix

synthesis that translated to an increase in biofilm volume and two orders of

magnitude higher cell numbers (Ma and Bryers 2013). Hoffman et al. (2005)

showed similar results for both P. aeruginosa and E. coli biofilms exposed to the

aminoglycoside, tobramycin.

Lebreton et al. (2012) identified an oxidative stress sensor and response regulator

in the important multidrug-resistant nosocomial pathogen E. faecium belonging to
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the MarR family; it was denominated AsrR, antibiotic and stress response regula-
tor. Deletion of asrR led to overexpression of two major adhesins, acm and ecbA,
which resulted in enhanced in vitro adhesion to human intestinal cells, increased

biofilm formation, and enhanced Tn916 DNA transfer frequencies (Lebreton

et al. 2012).

Nguyen and coworkers (2010) investigated the influence of the presence of

heavy metals on biofilm formation and DNA uptake capacity of Mycobacterium.
Cu2+ was shown to stimulate biofilm formation. In addition, a small but reproduc-

ible increase in DNA transfer efficiency (up to tenfold) was detected in the presence

of 100 μM Cu2+.

4.2 Mobile Genetic Element-Encoded Traits Promoting
Biofilm Formation

As already indicated, Ghigo was the first to demonstrate that natural conjugative

plasmids can express factors that induce planktonic bacteria to form or enter biofilm

communities, which favor the infectious transfer of the plasmid (Ghigo 2001).

The Enterococcus PAI whose intra- and interspecies genomic transfer has been

demonstrated by Laverde Gomez et al. (2011) encodes the enterococcal surface

protein (esp), which is involved in enterococcal biofilm formation (Shankar

et al. 2002).

Burmølle et al. (2012) determined the nucleotide sequence of three newly

isolated conjugative IncX plasmids from Enterobacteriaceae. Their sequences

revealed a remarkable occurrence of gene cassettes that promote biofilm formation

in K. pneumoniae or E. coli. Two of the plasmids were shown to induce biofilm

formation in a crystal violet retention assay in E. coli. Sequence comparisons

revealed that all these plasmids contain the mrkABCDF gene cassette coding for

type 3 fimbriae, which have been shown to promote cell attachment and biofilm

formation on abiotic surfaces (Norman et al. 2008; Ong et al. 2008). The type

3 fimbriae gene cassette was demonstrated to originate from pathogenic

K. pneumoniae (Burmølle et al. 2012). Thus, these data suggested an apparent

ubiquity of a mobile form of an important virulence factor and are an illuminating

example of the recruitment, evolution, and dissemination of genetic traits through

plasmid-mediated HGT (Burmølle et al. 2012).

84 M. Broszat and E. Grohmann



5 Monitoring of Horizontal Gene Transfer

A variety of monitoring techniques, either PCR-based or fluorescence microscopy

based, have been designed in the last two decades to quantitatively follow the

horizontal spread of metabolic traits or virulence factors under different conditions

and in distinct environments.

Jussila et al. (2007) designed a molecular profiling method for HGT of

aromatics-degrading plasmids. The method was successfully applied during

rhizomediation and conjugation in vivo. It is based on the PCR detection of the

TOL plasmid-specific xylE gene.

With increasing areas of transgenic crops during the last decades and the

necessity of biological control agents as alternative to chemical pesticides, the

establishment of techniques for environmental risk assessment has become neces-

sary for the evaluation of biological control microorganisms released into the

environment (Kim et al. 2012). Kim and coworkers investigated the possible

HGT between released recombinant agricultural microorganisms and indigenous

soil microorganisms. A recombinant B. subtilis strain and a recombinant plant

growth-promoting P. fluorescens strain were used as model microorganisms (Kim

et al. 2012). Soils of cucumber or tomato plants cultivated in the greenhouse were

inoculated with the recombinant bacteria. For a 6-month period the soils were

investigated for the presence of the recombinant bacteria by PCR, real-time PCR,

Southern hybridization, and terminal restriction fragment length polymorphism

fingerprinting. No positive signals for the recombinant B. subtilis and

P. fluorescens strains were detected in the soils suggesting that horizontal gene

flow from B. subtilis or P. fluorescens to soil bacteria in the greenhouse did not

occur during the 6-month period (Kim et al. 2012).

In complex microbial communities with a high background of antibiotic resis-

tance genes detection of HGT of resistance genes is challenging. One option to

overcome the problem is labeling the antibiotic resistance gene. This approach was

carried out by Haug et al. (2010). The conjugative multiresistance plasmid pRE25,

originating from E. faecalis, was tagged with a 34-bp random sequence marker

spliced by tet(M). The plasmid construct, denominated pRE25*, was introduced

into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker.

The plasmid pRE25* was shown to be fully functional compared with its parental

pRE25 and could be transferred to Listeria monocytogenes and Listeria innocua at

frequencies of 6 � 10�6 to 8 � 10�8 transconjugants per donor. Different markers

on the chromosome and the plasmid enabled independent quantification of donor

and plasmid via specific quantitative PCR, even if antibiotic resistance genes

occurred at high numbers in the background ecosystem. Haug and coworkers

concluded that E. faecalis CG110/gfp/pRE25* is a potent tool for the study of

horizontal antibiotic resistance transfer in complex environments such as biofilms,

food matrices, or colonic models (Haug et al. 2010).

Over the last decade, advances in reporter gene technology have provided new

insights into the extent and spatial frequency of HGT in vitro and in natural
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environments (Sørensen et al. 2005; Reisner et al. 2012). This methodology

involves integration of genes encoding reporter proteins such as GFP in the

conjugative plasmid of interest. In this way, the fate of plasmids in a bacterial

community can be monitored in situ nondestructively. By this approach, spread of

different IncP-1 and IncP-9 plasmids was monitored in a variety of environments

including agar surface-grown colonies (Christensen et al. 1998; Krone et al. 2007;

Fox et al. 2008), biofilm model systems (Christensen et al. 1998; Hausner and

Wuertz 1999; Król et al. 2011; Seoane et al. 2011), freshwater microcosms

(Dahlberg et al. 1998), or plant leaves (Normander et al. 1998).

Nancharaiah and coworkers were the first to use a dual-labeling technique

involving GFP and the red fluorescent protein (DsRed) for in situ monitoring of

HGT via conjugation (Nancharaiah et al. 2003). A GFPmut3b-tagged derivative of

narrow-host-range TOL plasmid (pWWO) was delivered to P. putida KT2442,

which was chromosomally labeled with dsRed by transposon insertion via biparen-
tal mating. GFP and DsRed were coexpressed in donor P. putida cells (Nancharaiah
et al. 2003). Donors and transconjugants in mixed culture or sludge samples were

discriminated on the basis of their fluorescence through confocal laser scanning

microscopy. Conjugative transfer frequencies on agar surfaces and in sludge micro-

cosms were determined microscopically without cultivation. The new method

worked well for in situ monitoring of HGT in addition to tracking the fate of

microorganisms released into a laboratory sequencing batch biofilm reactor treating

synthetic wastewater (Nancharaiah et al. 2003).

Interestingly, spatial analysis of green fluorescence in various studies conducted

by different laboratories revealed that invasive spread of IncP plasmids was neither

detectable in recipient colonies on agar surfaces nor in recipient microcolonies in

flow-chamber biofilms suggesting that local factors limit plasmid transfer

(Christensen et al. 1998; Fox et al. 2008). Reisner et al. (2012) aimed to reveal

the local distribution of IncF plasmid transfer in agar surface-grown colonies. To

this goal, they developed a dual-color labeling strategy: E. coli donor cells

expressing a chromosomally encoded LacI repressor and carrying PA1/04/03-cfp*-
tagged conjugative plasmids were combined with recipient cells lacking a func-

tional LacI protein. Since cfp*expression from PA1/04/03 is under tight control of the

LacI repressor in the donor cells, cyan fluorescence can only emerge after transfer

of the tagged conjugative plasmid to a recipient cell. To differentiate donor from

recipient cells a PA1/04/03-yfp*-tagged E. coli CSH26 strain was utilized as recipient
strain. Transconjugant cells are therefore distinguishable by expressing both cyan

and yellow fluorescence (Reisner et al. 2012). Reisner and coworkers investigated

two different plasmids, R1 and R1drd19. High-resolution in situ analysis through

epifluorescence and confocal microscopy revealed that plasmid invasion did not

reach beyond the first five recipient cell layers at the donor/recipient interface for

both plasmids (Reisner et al. 2012). Extension of in situ analysis to other prototyp-

ical plasmids of the IncF, IncI, and IncW families revealed similarly limited levels

of recipient colony invasion. The results were in agreement with previous studies

monitoring IncP plasmid invasion in agar colonies and biofilm setups (Christensen

et al. 1998; Fox et al. 2008). Fox and coworkers found that replenishment of
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nutrients increased IncP plasmid invasion and regular disturbance of the spatial

organization in the biofilm strongly improved plasmid invasiveness (Fox

et al. 2008).

Arends and coworkers also used a dual fluorescence approach differing from that

described above in the way that two differently labeled plasmids, a mobilizable

GFP-labeled plasmid based on the transfer region of broad-host-range Inc18 plas-

mid pIP501 and a RFP-labeled non-mobilizable plasmid, were used (Arends

et al. 2012; Arends, Schiwon, and Grohmann, unpublished data). Donors and

transconjugants were distinguished by using fluorescence microscopy: donors

exhibited green and red fluorescence (GFP and RFP), whereas recipients, which

had acquired the mobilizable plasmid, showed only green fluorescence. Using this

approach conjugative transfer among distinct Gram-positive bacteria and from the

Gram-positive E. faecalis to the Gram-negative E. coli could be visualized (Fig. 2).
A similar approach was applied for monitoring conjugative plasmid transfer among

Gram-positive bacteria using GFP-labeled mobilizable plasmid, CFPopt-labeled

non-mobilizable plasmid, and YFP-labeled conjugative plasmid (P. Modrie and

J. Mahillon, unpublished results).

6 Conclusions and Perspectives

HGT mediated via all three major modes, conjugation, transduction, and transfor-

mation occurs efficiently in planktonic cultures and in microbial biofilms. A general

feature is that HGT occurs with higher frequencies in biofilm mode. HGT enables

bacteria to obtain and maintain the extraordinary plasticity of their genomes and is

an important mechanism for the enormous adaptability of bacteria to changing

environmental conditions.

Many questions concerning the trigger of HGT in different environments still

remain unanswered. In their recent review on GEIs, Juhas and coworkers suggested

that we are unwittingly, by changing the conditions for bacteria in hospitals—via

antibiotic stress—and in the environment—via pollution—generating selective

conditions which promote the success of self-transferable and stress-responsive

Fig. 2 Fluorescent microscopy images of E. faecalis T9 (a), B. subtilis subsp. natto (b), and

E. coli XL10 (c) transconjugants expressing GFP
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GEIs. Undoubtedly, as shown throughout the chapter, GEIs and other MGEs play a

crucial role in the evolution of a broad spectrum of pathogenic or environmental

bacteria (Juhas et al. 2008). Hence, deciphering the environmental signals promot-

ing HGT of the diverse sets of MGEs could help establishing conditions in hospitals

and healthcare centers which are less favorable to HGT of antibiotic resistance and

virulence traits and/or enable the design of novel potential transfer inhibitors (“so-

called eco-evo drugs,” as summarized in Baquero et al. 2011).

Furthermore, the development of new monitoring tools for the quantification of

HGT events in complex environments has enabled to estimate the extent of

horizontal gene transmission in natural habitats through mimicking natural condi-

tions in laboratory microcosms or biofilm models. However, there is still urgent

need of the design of in situ tools, which can be applied to measure HGT events

nondestructively in diverse real-life aquatic and terrestrial environments. One

major methodological obstacle to overcome will be the high background signals,

e.g., in the case of fluorescence labels, of real-life environments.
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The Role of Quorum Sensing in Biofilm

Development

Kendra P. Rumbaugh and Andrew Armstrong

Abstract Quorum-sensing (QS) systems have been discovered in over 100 micro-

bial species, many of which use these cell-to-cell signaling mechanisms for the

coordinated production of biofilms. While our understanding of QS dynamics in

laboratory culture conditions has dramatically expanded over the last few decades,

we still understand very little about how these systems govern bacterial behavior in

complex, natural settings. What we do know is that QS can influence every stage of

biofilm formation; however, this influence is dependent on the microorganism and

the type of QS system it employs. Furthermore, QS can both positively and

negatively regulate biofilm formation in different environmental conditions. Inves-

tigations of QS in situ have been hampered by a lack of experimental tools;

however, innovative new strategies are being developed that should help shed

light on the involvement of QS in complex, polymicrobial biofilms. While devel-

oping agents that modulate QS to control microbial biofilm formation has faced

significant hurdles, there are some promising agents in development and a more

complete understanding of the role QS plays in biofilm formation should help drive

future advances.

1 Overview of QS

Biological fitness and success in an environment are often dependent on adaptations

for cooperation within a species as well as communication between multiple

species competing for resources. Amongst multicellular organisms these behaviors

have been studied in depth; however, much less understanding has been obtained

regarding similar strategies in unicellular organisms. Traditional microbiological

investigations, focused on monoculture studies, have elucidated vast amounts of
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information about growth and virulence characteristics, yet recent discoveries on

the capacity of bacteria to communicate with one another have revealed a com-

plexity and fitness that rival that of multicellular species (Haruta et al. 2009). This

communication is accomplished primarily through chemical cell-to-cell signaling,

or QS, which is population dependent and influences gene expression within a

community of cells, often creating cooperation and allowing for successful coloni-

zation in a variety of environments, as well as initiation of pathogenicity and

infectious disease processes (Miller and Bassler 2001).

QS systems have been discovered in over 100 microbial species and are associ-

ated with dozens of different signals, receptors, and effector molecules. Here we

give a very general overview of the most common types of QS systems. The basic

QS system consists of a constitutively expressed signal molecule, or autoinducer

(AI), and a corresponding receptor that, when cell density and signal concentration

have reached a threshold, regulates gene expression (Fig. 1). In general, AIs either

diffuse in and out of cells and activate intracellular receptors, which directly

influence gene expression, or are pumped out of cells and bind to transmembrane

receptors (usually two-component), resulting in downstream changes in gene

expression (Fig. 1). Many Gram-negative bacterial QS systems feature acylated
homoserine lactones (AHLs, an abbreviation often used synonymously with HSL

for homoserine lactone) as signal molecules produced by an AI synthase LuxI

homolog. Typically, these signal molecules bind an intracellular LuxR homolog

receptor that is a ligand-activated transcriptional regulator (Bassler 1999). For

example, two systems have been identified in Pseudomonas aeruginosa that follow
this pattern. The LasI/R and RhlI/R systems are activated by N-3-oxododecanoyl
homoserine lactone (3OC12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL),

respectively, and influence a range of behaviors including biofilm formation and

production of virulence factors (Pearson et al. 1997; de Kievit 2009).

Characteristically, Gram-positive QS systems feature small peptide AIs that are

actively exported from the cell and bind to transmembrane receptors, which are

often two-component signal transduction systems, as in the AgrC/A system of

Staphylococcus aureus (Otto 2013). What is unique about the Agr system is the

utilization of a regulatory RNA molecule as the global gene effector (Novick and

Geisinger 2008). Alternatively, some peptide AIs are actively transported into the

bacterial cell by specific oligopeptide permeases and bind to cognate intracellular

regulatory proteins, which in turn regulate the transcription of target genes (Wil-

liams 2007). A third archetypical QS system utilizes derivatives of 4,5-dihydroxy-

2,3-pentanedione, collectively known as autoinducer-2 (AI-2) and produced by the

synthase LuxS, as its quorum signal. AI-2 is produced by a large variety of both

Gram-negative and Gram-positive bacterial species and influences many behaviors

such as bioluminescence, virulence factor production, and secretion (Taga

et al. 2001).

Observations of QS systems have not only allowed for a greater understanding of

communication within a single bacterial species, but also of competition and

cooperation between multiple species. Dozens of unique signaling molecules

have been identified within many different classes of chemicals including AHLs,
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quinolones, and small peptides. Many of these molecules were previously

disregarded as metabolic by-products; however, it has since been demonstrated

that they play roles in chemical communication and transcriptional regulation.

While it is known that some QS systems upregulate the production of molecules

that can be used as antimicrobials in the presence of other bacteria, many

autoinducers, such as AI-2, are not unique to a single bacterial species and are a

potential mechanism of interspecies communication and subsequent cooperation

(Taga et al. 2001; Williams et al. 2007).

Fig. 1 Simplified diagram of AHL-mediated QS in Gram-negative bacteria and oligopeptide-

mediated signaling in Gram-positive bacteria. (a) AIs are constitutively synthesized by AI

synthase proteins. AHLs (green) typically diffuse out of the cell, while oligopeptides (red) are
actively exported from the cell. (b) As the bacterial population increases, the quorum signals

accumulate in the outside environment. Once a threshold concentration is reached, AHLs will

freely enter into neighboring cells and bind to their cognate intracellular receptors, which then

become activated transcriptional regulators and directly affect gene transcription. Alternatively,

oligopeptide AIs either bind to transmembrane receptors, which are often two-component signal

transduction systems, or are actively transported into the bacterial cell by specific oligopeptide

permeases and bind to cognate intracellular regulatory proteins. These regulatory proteins may act

directly to initiate the transcription of target genes or may influence the expression of secondary

gene effectors, such as regulatory RNAs
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2 The Connection Between QS and Biofilms

Many factors influence the ability of microbes to construct biofilms. Environmental

conditions such as the availability of nutrients, composition of the microbial

population, surface properties, flow, and other physical forces will all affect the

temporal sequence of biofilm developmental stages. For many microbes, the ability

to “communicate” is advantageous for building biofilms. Intuitively this makes

sense. It would be almost impossible for a team of construction workers to erect a

skyscraper without the ability to communicate with each other. In the biblical

Tower of Babylon story, God thwarted the people’s plan to build a tower to heaven

by cursing them with the inability to communicate. Similarly, it is assumed that the

ability of many microbes to build biofilms can also be thwarted if microbial

communication is inhibited.

The first published study that linked QS with biofilm formation demonstrated

that P. aeruginosa lasI mutants, who were unable to synthesize 3OC12-HSL,

formed biofilms that were flat, undifferentiated, and less resistant to dispersion

with sodium-dodecyl sulfate than biofilms made by their wild-type parent strain

(Davies et al. 1998). In the interim 15 years, many reports have been published that

link QS and biofilm formation by several different organisms (see Table 1 for

examples). Parsek and Greenberg (2005) proposed that QS and biofilms have been

inextricably linked because both areas of study consider social phenomena

exhibited by bacteria and thus suggested the term “sociomicrobiology” be used to

encompass both. However, while QS and biofilms tend to be lumped together, our

understanding of how, and under what circumstances, QS influences biofilm for-

mation is still very limited. And while it may be intuitive that biofilm formation

relies on bacterial communication, this is not always the case. The QS systems of

several different microorganisms either negatively influence different stages of

biofilm formation (Table 1) or have no effect on it. Y. pestis is an example of a

bacterial species whose QS system is apparently not involved in biofilm formation

(Jarrett et al. 2004).

3 QS-Dependent Biofilm Processes

It is generally accepted that for many microbes QS plays an important, if not

essential, role in their ability to construct optimal biofilms. This notion is based

on numerous studies with several different microbial species that have demon-

strated altered biofilm formation by QS mutants. However, observing that a mutant

forms a biofilm with less or more biomass, or an altered three-dimensional shape,

than a wild-type strain after a defined amount of time does not tell us what processes

were deficient or what fitness consequences this has for the mutant. The formation

of a biofilm is a dynamic process. In general, biofilm formation involves five

different stages (Stoodley et al. 2002) (Fig. 2): (1) Reversible attachment of the
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Table 1 Examples of QS-dependent biofilm-related processes in different microbes

Microorganism

Implicated QS genes

and/or signals

QS-regulated,

biofilm-related

process References

Aeromonas
hydrophila

ahyI
Endogenous signal:

C4-HSL

Maturation Lynch et al. (2002)

Bacillus cereus plcR, papR
Endogenous signal: AI-2

Promotes dispersal Hsueh et al. (2006),

Auger et al. (2006)

Burkholderia cepacia cciI/R, cepI/R
Endogenous signals:

C6-HSL, C8-HSL

Attachment

maturation

Tomlin et al. (2005),

Huber et al. (2001,

2002)

Campylobacter jejuni luxS
Endogenous signal: AI-2

Not defined Reeser et al. (2007)

Candida albicans Endogenous signal:

farnesol; exogenous

signals: 3OC12-HSL,

BDSF, cis-2-

decenoic acid, CSP,

SDSF, AI-2

Promotes dispersal;

promote hyphal

formation

Ramage et al. (2002),

Hogan et al. (2004),

Davies and Marques

(2009),

Boon et al. (2008),

Jarosz et al. (2009),

Vilchez et al. (2010),

Bamford et al. (2009)

Helicobacter pylori luxS
Endogenous signal: AI-2

Negatively regu-

lates attachment

Cole et al. (2004)

Klebsiella pneumonia luxS
Endogenous signal:

AI-2; exogenous sig-

nal: cis-2-decenoic

acid

Development of

microcolonies;

promotes

dispersal

Balestrino et al. (2005),

Davies and Marques

(2009)

Listeria
monocytogenes

luxS; agrA, C and D Not defined;

attachment

Challan Belval

et al. (2006), Rieu

et al. (2007)

Lactobacillus
plantarum

lam operon Attachment Sturme et al. (2005)

Pantoea stewartii esaI/R
Endogenous signal:

3OC6-HSL

Negatively regu-

lates attachment

von Bodman

et al. (1998),

Koutsoudis

et al. (2006)

Pseudomonas
aeruginosa

lasI/R
Endogenous signals:

3OC12-HSL; cis-2-

decenoic acid; exog-

enous signal: DSF

Maturation; pro-

motes dispersal;

maturation

Davies et al. (1998),

Davies and Marques

(2009), Ryan

et al. (2008)

Rhodobacter
sphaeroides

cerI/R
Endogenous signal:7,8-

cis-N-(tetradecenoyl)
homoserine lactone

Negatively

regulates

aggregation

Puskas et al. (1997)

Serratia liquefaciens swrI
Endogenous signals:

C4-HSL, C6-HSL

Maturation Labbate et al. (2004)

Serratia marcescens swrI
Endogenous signals:

C4-HSL

Attachment Labbate et al. (2007)

(continued)
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microbe to a surface mediated by pili, flagella, or other surface appendages or

specific receptors; (2) the secretion of exopolymeric material, which results in

irreversible attachment; (3) cell proliferation, resulting in the formation of a

microcolony; (4) growth of the microcolony and differentiation of the biofilm,

culminating in a “mature” biofilm community with characteristic structural features

such as water channels and towering clusters of cells; and (5) active dispersion or

passive detachment of biofilm cells. So at what stages of biofilm formation is QS

important? Collectively, QS has been shown to be important during all five stages

of biofilm development, but the specific QS-controlled stages differ between

microbes, which employ different mechanisms of QS.

Table 1 (continued)

Microorganism

Implicated QS genes

and/or signals

QS-regulated,

biofilm-related

process References

Sinorhizobium
meliloti

sinI, expR Exopolysaccharide

synthesis

Gao et al. (2012),

Sorroche et al. (2010)

Staphylococcus
aureus

agr
Endogenous signal: AIP

Negatively regu-

lates attachment

maturation,

dispersal

Reviewed in Otto (2013)

Staphylococcus
epidermidis

agr; luxS Negatively regulate

attachment

maturation;

dispersal

Yao et al. (2006),

reviewed in Otto

(2013), Xu

et al. (2006)

Streptococcus
gordonii

luxS
Endogenous signal:AI-2

Maturation;

polymicrobial

interactions

Blehert et al. (2003),

McNab et al. (2003)

Streptococcus mutans luxS Maturation Merritt et al. (2003),

Wen and Burne

(2004)

Streptococcus
pneumonia

luxS
Endogenous signal:AI-2

Attachment or

microcolony

formation

Vidal et al. (2011)

Vibrio cholera hapR, cqsA Maturation; pro-

motes dispersal

Hammer and Bassler

(2003), Zhu and

Mekalanos (2003)

Vibrio scophthalmi luxS/R Not defined Garcia-Aljaro

et al. (2012)

Vibrio vulnificus smcR Shift to biofilm

phenotype,

maturation

McDougald et al. (2001,

2006)

Xanthomonas
campestris

rpfF, rpfC, and rpfG
Endogenous signal: DSF

Dispersal Dow et al. (2003), Slater

et al. (2000)

Yersinia
pseudotuberculosis

ypsI/R and ytbI/R
Endogenous signals:

multiple AHLs

Not defined Atkinson et al. (2011)
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3.1 Agr QS System-Dependent Biofilm Processes

QS can influence the attachment of a microbe to a surface by influencing the

expression or functions of appendages that help anchor the microbe. For

S. aureus, S. epidermidis, Listeria plantarum, and L. monocytogenes cell attach-

ment in the earliest stages of biofilm development is regulated, at least in part, by

their agr QS systems, which control the production of several adhesion proteins in

addition to others factors (Cramton et al. 1999; Mack et al. 2007; Sturme

et al. 2005; Rieu et al. 2007). However, the agr systems of S. aureus and

S. epidermidis negatively control attachment, while the L. monocytogenes agr
system and the homologous lam system in L. plantarum positively control attach-

ment. The agr system also regulates biofilm maturation and dispersal in S. aureus
and epidermidis through its control of phenol-soluble modulins (PSMs), which are

amphipathic, α-helical peptides that act as surfactants thought to disrupt

noncovalent interactions between biofilm cells and matrix components (reviewed

in Otto 2013).

3.2 HSL-Mediated Biofilm Processes

For many Gram-negative bacterial species, QS is mediated by the production of

HSL-based signals. These AIs are synthesized by members of the LuxI family of AI

synthases and typically bind to intracellular receptors, which are LuxR homologs.

Several examples of the HSL-based QS systems that are involved in biofilm

formation are listed in Table 1 and include AhyI/R in A. hydrophila, LasI/R, and

Fig. 2 Stages of biofilm development. Reversible attachment of the microbe to a surface is

mediated by pili, flagella, or other surface appendages or receptors. This is followed by the

secretion of exopolymeric material, which results in irreversible attachment. The attached cells

proliferate, resulting in the formation of a microcolony. These microcolonies grow and differen-

tiate into a mature biofilm community with characteristic structural features such as water channels

and towering clusters of cells. Active dispersion or passive detachment of biofilm cells that can

adhere at other locations results in cyclic periods of biofilm growth. Collectively QS has been

shown to be important at every stage of biofilm development as indicated by the red dots, depicting
quorum signals
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RhlI/R in P. aeruginosa, SwrI/R in S. liquefaciens, and YpsI/R and YtbI/R in

Y. pseudotuberculosis. While precise roles of the endogenous HSL signals have

not been elucidated for all of these microbes, they are typically involved in some

aspect of biofilm maturation.

R. sphaeroides, Serratia marcescens, Burkholderia cepacia, and Pantoea
stewartii are examples of bacterial species that use HSL-based QS systems to

control attachment. Mutations in the Cep and Cci QS systems of B. cepacia (Tomlin

et al. 2005) and the Swr system in S. marcescens (Labbate et al. 2007) inhibited the
microbes’ ability to adhere to surfaces, resulting in thinner, less dense biofilms.

However, mutations in the Esa QS system of Pantoea stewartii resulted in signif-

icantly better adhesion due to higher expression of EPS (von Bodman et al. 1998;

Koutsoudis et al. 2006). Inactivation of the Cer system in R. sphaeroides resulted in
more pronounced self-aggregation in liquid cultures, which could be reversed by

adding the native HSL signal.

3.3 LuxS or AI-2 QS System-Dependent Biofilm Processes

The LuxS-based QS systems of many bacteria are also involved in varied stages of

biofilm formation (Table 1). ForH. pylori luxS-mediated QS appears to promote the

planktonic lifestyle, as mutations in luxS promoted H. pylori attachment (Cole

et al. 2004). The same is true for S. epidermidis where luxS appears to negatively

regulate biofilm formation presumably through inhibiting exopolysaccharide

expression, thus reducing adhesion (Xu et al. 2006). Interestingly, S. epidermidis
also possesses an agr-type QS system, which regulates biofilm formation in a

similar way, but through different pathways. Conversely, luxS appears to promote

attachment of S. pneumoniae, as strains with mutations in luxS formed biofilms with

80 % less biomass (Vidal et al. 2011). In S. mutans and S. gordonii luxS is involved
in biofilm maturation. S. mutans luxS mutants formed biofilms with lower biomass

and altered structures that proved more sensitive to acid killing (Merritt et al. 2003;

Wen and Burne 2004). Mutations in luxS also altered microcolony formation by

S. gordonii and disrupted its ability to form polymicrobial biofilms with luxS-
deficient P. gingivalis (Blehert et al. 2003; McNab et al. 2003).

4 Methods for Studying QS in Biofilms

QS by planktonic cells has been intensely studied, and, for many microbial species,

much is known about the timing and conditions required for optimal QS. The

structures of many signals and the details of several QS signaling pathways have

been elucidated. However, in most cases, we have very little understanding of how

these processes occur in biofilm settings. Furthermore, QS studies have only been

performed in a limited number of laboratory culturing conditions. We know that
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environment dictates bacterial behavior, so applying the QS rules of engagement

seen in planktonic cell cultures to all populations is intrinsically flawed. Therefore,

it is important that investigators study biofilms in as close to their native state as

possible. In addition, most of the studies discussed above were based on the

behavior displayed by strains harboring mutations in different QS regulators. As

these QS regulators can control a significant portion of the transcriptome, teasing

out exactly what role cell-to-cell communication plays can be challenging. As

Parsek and Greenberg noted, “Perhaps the best way to evaluate the role of quorum

sensing is to monitor the signaling process in situ in a developing biofilm of a wild-

type strain and determine if the onset of quorum sensing corresponds to any

discernible transition in development, such as changes in structure or an increase

in antimicrobial tolerance” (Parsek and Greenberg 2005). The methods described

below have been developed to meet this goal.

4.1 QS Monitor Strains

Probably the most straightforward way to determine when and where QS is

involved in biofilm formation is to use QS reporter strains to monitor the activity

of QS in situ. De Kievit et al. used this approach to study the roles of the las and rhl
QS systems in biofilm formation by P. aeruginosa (De Kievit et al. 2001). Biofilms

grown in vitro with P. aeruginosa strains harboring lasI and rhlI transcriptional
fusions to green fluorescent protein (GFP) were imaged after 4, 6, and 8 days of

growth in polycarbonate flowcells. Prior to imaging, biofilm cells were stained with

propidium iodide-Syto85 so that all cells could be visualized in the red spectra,

while only those producing GFP could be visualized in the green. The investigators

found lasI expression was maximal at 4 days and then decreased over time, while

rhlI expression was more stable but occurred in fewer cells. They also found that

bacterial cells closest to the polycarbonate surface maximally expressed both genes

and expression of the QS genes decreased with increasing biofilm height. This study

clearly showed that QS occurred in biofilms, but the percentage of cells expressing

lasI or rhlI was very limited, both in number and in the area of the biofilm in which

they resided.

Similar strategies have been used to monitor QS in P. aeruginosa lung infections
in animal models and measure the effects of QS inhibiting agents in situ (Hentzer

et al. 2003; Wu et al. 2004). Yarwood et al. also used a GFP-fusion strain to

examine the contribution of the agr QS system to S. aureus biofilm formation

in vitro (Yarwood et al. 2004). The investigators found that agr’s influence on

biofilms was highly dependent on growth conditions, with agr expression enhanc-

ing biofilm development under some conditions and having no effect or inhibiting

biofilm development under other conditions. They also noted that Agr-dependent

expression occurred in patches within cell clusters in the biofilm and sometimes

inversely correlated with detachment of cells from the biofilm.
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4.2 Biofabricated Microenvironments to Study Signaling
Dynamics

While being able to visualize when and where the expression of QS-related genes

occurs within a given biofilm community, and test what environmental factors

influence this expression, is of extreme value, these data do not give us much

information about the fate of the signals themselves. Many analytical methods have

been used to detect and quantify AHLs from cultures and extracts including liquid

chromatography-mass spectrometry (Lepine and Deziel 2011), thin-layer chroma-

tography (Ravn et al. 2001), proton nuclear magnetic resonance (Cao and Meighen

1989; Schaefer et al. 2000), and electrospray ionization-ion trap mass spectrometry

(Frommberger et al. 2003). While surface-enhanced Raman spectroscopy holds

promise for measuring AIs in situ (Pearman et al. 2007), at present only the use of

live monitor strains, as described above, effectively allows for the detection of

AHLs in situ.

The fate of quorum signals will be influenced by physical, chemical, and

biological factors in the biofilm environment and subject to diffusion limitation,

nonspecific binding, and signal interference. While experiments addressing how

these factors affect microbial communities are much harder to conduct than simply

determining when genes are turned on or off, some novel bioengineering

approaches have been employed to try to better understand the dynamics of

signaling in biofilms. Luo et al. used a microfluidics approach to preassemble or

biofabricate biofilm-like environments in which pH and chemical gradients could

be locally generated for the assembly of cell-polysaccharide composites in spatially

localized and physically separated hydrogel layers (Luo et al. 2012). Populations of

E. coli strains that were constructed to either “transmit” an AI-2 signal or “receive”

the signal were placed strategically into these biofabricated biofilms so temporal

and spatial aspects of AI-2 production, diffusion, and cell uptake could be studied.

Visualization of active “transmitting” and “receiving” by the two populations was

accomplished by epifluorescence microscopy as the transmitting population was

engineered to express AI-2 and GFP simultaneously, whereas RFP production by

the receiving population was induced at a threshold AI-2 concentration. The

investigators found that signaling could be postponed or completely inhibited by

adjusting flow conditions, independent of cell density.

To study the effects of bacterial density and environmental forces on QS in

community structures, Connell et al. used mask-based multiphoton lithography to

construct three-dimensional picoliter-scale microcavities, which they called lobster

traps (Connell et al. 2010). The extremely small volume and versatility of design

allowed the investigators to capture a single bacterium in traps of different volumes

and monitor their proliferation and QS behavior. As the traps were constructed with

cross-linked bovine serum albumin they were permeable to small molecules,

allowing for controlled exposure to antibiotics and the study of antibiotic tolerance

within the populations. Recent modifications to this approach were described by the

same group, which allowed for strategic “3D printing” of different species of
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bacteria within highly porous, cross-linked gelatin structures (Connell et al. 2013)

(Fig. 3). These innovative strategies should prove invaluable for studying cell-to-

cell signaling interactions between polymicrobial populations and provide new

insights into the dynamics of QS in biofilm formation.

5 Efficacy of QS Modulators as Antibiofilm Agents

Academically, it is of interest to understand how QS impacts biofilm formation by

different microbes, but in regard to developing antibiofilm agents that target QS, it

is essential. For example, if QS in a specific species is only required for attachment

or at early stages of biofilm formation, then treating already mature biofilms with a

QS inhibitor (QSI) would be ineffective. Similarly, treating bacteria that use QS to

negatively regulate biofilm formation (e.g., S. aureus) with a QSI could be detri-

mental. Unfortunately, as the information presented above illustrates, different

classes of signals can positively or negatively regulate different stages of biofilm

formation in different species. Therefore, developing a universal LuxS inhibitor, for

example, would be unrealistic. Furthermore, potential effects of any QS modulating

agent on off-target microbial species or on host cell signaling pathways would have

to be carefully studied. On a positive note, as most QS-modulators are not bacte-

riocidal, they should pose less of a risk to the development of resistance in target

Fig. 3 Gelatin-based

micro-3D printed

polymicrobial community.

Cut-away 3D mask

reconstruction (upper) and
bright-field image (lower)
of a nested polymicrobial

community with an

S. aureus microcluster

confined in a 1 pL

hemispherical cavity

surrounded by a high-

density P. aeruginosa
population confined in a

30 pL square cavity. The

5-μm-thick roofs used to

seal inner cavities and the

outer chambers are not

visible in the bright-field

images (scale bars, 10 μm).

Images courtesy of

J. Connell and M. Whiteley
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microbes, although there is recent evidence that challenges this theory (Garcia-

Contreras et al. 2013).

While universal QS modulators (QSMs) are unlikely to be developed due to the

high level of variability in the ways QS influences biofilm formation by different

microbes, one agent has shown promise as a broad spectrum QSM. A fatty acid

compound produced by P. aeruginosa, called cis-2-decenoic acid, was shown to

induce the dispersion of biofilms formed by E. coli, Klebsiella pneumoniae, Proteus
mirabilis, Streptococcus pyogenes, Bacillus subtilis, Staphylococcus aureus, Can-
dida albicans, and P. aeruginosa itself, at nanomolar concentrations in vitro

(Davies and Marques 2009). This compound was found to be structurally similar

to the DSF, BDSF, and SDSF biofilm-related signals made by X. campestris,
B. cenocepacia, and S. mutans, respectively (Dow et al. 2003; Boon et al. 2008;

Vilchez et al. 2010). While not all of these related compounds induce dispersal,

they may represent a class of QSMs that could be used to fight biofilms across a

wide range of microbes.

Of course, fighting microbes with QSMs is not a new idea. Mother Nature

evolved ways to do this long before we conceived of it. Although biological sources

are being heavily screened for natural compounds that modulate QS, the most cited

examples are the halogenated furanones produced by the Australian macroalga

Delisea pulchra. It is thought that the macroalga evolved to produce these com-

pounds as an innate defense against biofilm-related infections. The furanones,

which are structurally similar to AHLs, inhibited QS-controlled processes in several

Gram-negative bacterial species, including Serratia liquefaciens, Vibrio fischeri,
and P. aeruginosa (Givskov et al. 1996). These early studies led to an abundance of
work examining the efficacy of synthetic furanones, which showed efficacy against

P. aeruginosa, when used in combination with antibiotics (Hentzer et al. 2003; Wu

et al. 2004). In the intervening years dozens of QSMs have been synthesized or

purified and have demonstrated efficacy against dozens of different microbes. Many

of these QSMs are discussed in other chapters of this book and there have been

several excellent recent reviews written on the topic (see e.g., LaSarre and Federle

2013; Zhu and Kaufmann 2013).

Many investigators and companies have pursued development of QSMs, and

while several have been shown to work very well in vitro, for the most part that

efficacy has not translated to in vivo studies (with the exception of the synthetic

furanones discussed above). There are several explanations for this; for example, it

is possible that QS is not as important in vivo as it appears to be in vitro. As

mentioned above, most studies have only been performed in laboratory cultures

using strains that have mutations in global regulators. It is possible that observa-

tions seen in these simplified model systems do not represent what happens in

complex natural environments. Even more likely is that the biodelivery of these

QSMs has not been optimized for in vivo applications. However, recent work by

O’Loughlin et al. demonstrated the efficacy of meta-bromo-thiolactone, an analog

of the native P. aeruginosa AHL autoinducers, to inhibit biofilm formation and

virulence in a nematode model and in human cell culture (O’Loughlin et al. 2013).

Although there is still a long path to demonstrating clinical efficacy and
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commercialization, reports such as this indicate that progress is being made in the

development of these alternative antimicrobials.

6 Conclusions

Important advances have been made in the field of microbiology over the last three

decades. Our understanding of bacteria as social organisms that live in communities

and communicate with each other has challenged the ways in which we view

microbes. Along with the basic science advances in sociomicrobiology have

come translational studies aimed at developing new agents to fight biofilms.

Many of these endeavors have focused on modulating QS in hopes of disrupting

environmental or medically related biofilms. Unfortunately the urgent need to

develop antibiotic alternatives has somewhat put the cart before the horse in regard

to our incomplete understanding of QS in biofilm formation. Although our percep-

tions of microbial communities have evolved, in many ways our methods for

studying them have lagged behind. For example, while we know that the environ-

ment clearly affects QS, biofilm formation, and the link between the two, most

biofilm studies are still performed under a small number of in vitro laboratory

culture conditions with laboratory-adapted strains. It is unrealistic to infer that

observations seen in vitro occur in natural environments.

When it comes to understanding the role of QS in biofilm formation, many

important questions still need to be addressed. Many QS mutants display reduced or

altered biofilm formation, but what consequences does this have? Does it make

them easier to eradicate with conventional agents? What is the role of communi-

cation in population homeostasis, and who is capable of communicating with

whom? Does the ability of different microbes to “communicate” with each other

contribute to cooperative or synergistic community interactions versus antagonistic

interactions between non-communicators? Furthermore, we still do not fully under-

stand how signals are perceived between microbial species or by the host. While

there are still many unknowns, the good news is that the sociomicrobiology field

continues to grow and diversify, incorporating other disciplines such as evolution-

ary biology, bioengineering, computer science, and physics. The resulting interdis-

ciplinary approaches will undoubtedly result in new and exciting ways in which to

study microbial social interactions within biofilms.
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Current and Emergent Control Strategies

for Medical Biofilms

Mohd Sajjad Ahmad Khan, Iqbal Ahmad, Mohammad Sajid,

and Swaranjit Singh Cameotra

Abstract In nature, microorganisms prefer to live in structured microbial commu-

nities rather than as free-floating planktonic cells. These dynamic microbial com-

munities are termed biofilms, in which transitions between planktonic and sessile

modes of growth occur interchangeably in response to different environmental

cues. Such phenomenas are advantageous for microbial pathogens but disadvanta-

geous for human health. Due to the increased resistance/tolerance of biofilm cells to

antimicrobial treatment, it becomes difficult to eradicate pathogens, which results

in relapses of infections even after appropriate therapy. In clinically relevant

biofilms, Pseudomonas spp., Staphylococcus spp., and Candida spp. are the most

frequently isolated microorganisms. These microorganisms are able to adhere to

and colonize surfaces of medical devices such as central venous catheters, intra-

uterine devices, voice prostheses, and prosthetic joints, resulting in the develop-

ment of a biofilm. Many antimicrobial agents are now being used against microbial

biofilms. However, inappropriate use of conventional antibiotic therapy may also

contribute to inefficient biofilm control and to the dissemination of resistance.

Consequently, new control strategies are constantly emerging to control biofilm-

associated infections, such as the antifungal lock therapy, improved drug delivery,

penetration of matrix-attacking extracellular polymetric substances, and regulation
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of biofilm inhibition/disruption by manipulating small molecules. The present

chapter is focused on describing the clinical aspects of biofilm formation and

deleterious effects associated with their presence. This chapter will highlight

current and emergent control strategies for biofilms.

1 Introduction

While microbes are often thought to be multiplying and growing as free floating

cells, most microbes live in aggregations and form complex structures termed

biofilms. These organized structures are communities of microorganisms that

form on solid or liquid interfaces and provide protection to individual cells by

producing extracellular polymeric substances (EPS). The cells in the biofilms

exhibit an altered phenotype compared with corresponding planktonic cells, espe-

cially in regard to gene transcription, and in interacting with each other (Donlan

2002; Hall-Stoodley et al. 2004). Biofilms result from a natural tendency of

microbes to attach to biotic or abiotic surfaces. The formation of biofilms starts

by irreversible attachment of microorganisms to a surface, which can vary from

mineral surfaces and mammalian tissues to synthetic polymers and indwelling

medical devices, followed by the production of extracellular substances by one or

more of the attached microorganisms (Nikolaev and Plankunov 2007; Dongari-

Bagtzoglou 2008).

Typically, most of the research on infectious microorganisms is conducted on

single-celled (planktonic forms) of bacteria and fungi because of ease of study and

manipulation. Consequently, most of the drugs developed have efficacy against

planktonic forms of microbes, and unfortunately these drugs do not work or work

poorly against the same organisms in their biofilm form. Moreover, the failure of

antibacterial and antifungal drugs to combat such infections is due to the increased

resistance and/or tolerance of the organisms in their biofilm state. The National

Institute of Health estimates that biofilms cause more than 80 % of infections,

which have imposed an enormous cost on human health (Sachachter 2003). Most

infections on biomedical devices and mucosal surfaces, including oral and

uro-genital tracts, are reportedly caused by the biofilm growth of Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyrogens,
and Candida albicans (Donlan 2001; Wilson 2001; Douglas 2002).

Development of effective strategies to control or prevent biofilm-associated

infections requires a thorough understanding of the biofilm development process

(Jain et al. 2007). The adhesion of bacteria to a surface depends on a number of

microbiological, physical, chemical, and material-related parameters. Biofilms may

consist of mono or mixed species, are highly interactive, and employ a range of

cell-to-cell communication or “quorum sensing” (QS) systems (Hogan 2006;

Jayaraman and Wood 2008). This phenomenon for promoting collective behavior

within a population is important for ensuring survival and propagation by enhanc-

ing access to nutrients and niches, as well as for providing protection (Nikolaev and

118 M.S.A. Khan et al.



Plankunov 2007). The dense population structure in biofilms also increases the

opportunity of gene transfer between the species which can convert a previously

avirulent commensal organism into a highly virulent pathogen (Molin and Tolker-

Nielson 2003). The enhanced efficiency of gene transfer in biofilms induces

enhanced stabilization of the biofilm structure but, more importantly, also facili-

tates the spread of antibiotic resistance (Molin and Tolker-Nielson 2003; Wuertz

and Hausner 2004). The increasing emergence of drug resistance to commonly used

antibiotics and antifungals has increased the need for the identification of novel

therapeutics and approaches. Therefore, understanding how antibiotic resistance

develops is a prerequisite to the design of intervention strategies intended to

minimize the threat of biofilm-associated infections. This chapter outlines our

understanding and current state of knowledge of the nature of microbial biofilms

in clinical context with emphasis on novel prophylactic and therapeutic strategies

targeting prevention and management of biofilms.

2 Clinical Significance of Biofilms

It is estimated that the majority of clinical infections exist as biofilms rather than as

planktonic cells. In medical settings, biofilms can occur in several places, such as

the intestinal brush border (e.g., Vibrio cholerae), urethral lining (e.g., Neisseria
gonorrhoeae), lymphoid patches in the intestine (e.g., Salmonella typhimurium)
(Costerton et al. 1999), antibiotic-recalcitrant acne (Coates et al. 2003), chronically

infected tonsils (Chole and Faddis 2003), cystic fibrosis (lungs) (Prince 2002),

urinary and central venous catheters, and mechanical heart valves (Donlan 2002).

A list of microorganisms causing infection due to biofilm growth on tissues or

medical devices is given in Table 1. Intravascular administration of antibiotics is

used to prevent surgical site and other infections, but the formation of a biofilm

makes antibiotic therapy ineffective at eradicating the bacteria or fungi. The

formation of biofilms with low sensitivity to antibiotics in the course of chronic

infections, such as cystic fibrosis, is a matter of great concern (Il’ina et al. 2004).

A range of mucosal to systemic fungal infections have been reported to be

caused by opportunistic pathogen Candida spp. such as oral candidiasis, vaginitis,

and candidemia. Vulvovaginal infections are among the most common infections

caused by C. albicans. Most women experience a vaginal Candida infection at

some point in their lifetimes (Mardh et al. 2002). Oropharangeal candidiasis occurs

most commonly in immunocompromised individuals, especially people infected

with HIV and cancer patients (De Repentigny et al. 2004; Davies et al. 2006).

Recent evidence suggests that the majority of such diseases produced by this

pathogen are associated with biofilm growth (Ramage et al. 2005; Hasan

et al. 2009; Dongari-Bagtzoglou et al. 2009).

The polymicrobial nature of oral biofilms associated with dental plaque and

periodontitis has made them a pioneering model of interspecies interactions and

highlights the level of complexity in biofilm research (Kuramitsu et al. 2007;
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Shirtliff et al. 2009). Such a complex interaction can be seen in the biofilms formed

between C. albicans and S. epidermidis (Fig. 1). A study conducted by Harriott and

Noverr (2009, 2010) on polymicrobial versus monomicrobial biofilms suggested

that S. aureus may become coated in the matrix secreted by C. albicans. The
enhancement in S. aureus resistance to vancomycin within the polymicrobial

biofilm required viable C. albicans, and this was in part facilitated by C. albicans
matrix. However, the growth or sensitivity to amphotericin B (AMB) of C. albicans
was not altered in the polymicrobial biofilm. Peters et al. (2010) reported that the

pathogenicity of S. aureus was increased due to its interaction with C. albicans in a
mixed biofilm.

Overall, biofilms are increasingly being recognized by the public health com-

munity as an important source of bacterial and fungal pathogens for all classes of

patients, especially immunocompromised individuals and those with indwelling

medical devices. Biofilm device infections can lead to significant morbidity and

mortality, and may impair device function. Removal and/or replacement of devices

are often the only treatment options, which can be very costly and also risky to the

patients.

Table 1 Microorganisms that commonly cause biofilm-associated infection on tissues and

indwelling medical devices (Donlan 2001; Wilson 2001; Donlan and Costerton 2002; Chuang

et al. 2006; Kokare et al. 2009; Muller et al. 2011)

Microorganism

Sites of biofilm formation

Indwelling devices Organs

Enterococcus
spp.

Artificial hip prosthesis, central venous catheter,

intrauterine device, prosthetic heart valve, uri-

nary catheter

Intestinal tract

Coagulase-nega-

tive

staphylococci

Artificial hip prosthesis, artificial voice prosthesis,

central venous catheter, intrauterine device,

prosthetic heart valve, urinary catheter, contact

lenses

Skin, respiratory, gastro-

intestinal mucosa,

middle ear

Klebsiella
pneumoniae

Central venous catheter, urinary catheter Pyogenic liver abscess,

endopthalmitis

Pseudomonas
aeruginosa

Artificial hip prosthesis, central venous catheter,

urinary catheter, contact lenses

Lungs of cystic fibrosis

patients, wounds,

burns

Staphylococcus
aureus

Artificial hip prosthesis, central venous catheter,

intrauterine device, prosthetic heart valve

Skin wounds, burns

Streptococcus
spp.

Endocarditis valve Teeth

Lactobacillus sp. Intrauterine devices Vagina and teeth

Actinomyces sp. Lenses Teeth

Candida albicans Artificial voice prosthesis, central venous catheter,

intrauterine device, contact lenses

Vaginal mucosa, oral

mucosa, nail bed

Aspergillus
fumigatus

Endotracheal tubes, pace makers Bronchial tract, lungs of

cystic fibrosis

patients
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3 Biofilms: A Challenge for Antibiotic Therapy

The pathogenicity of biofilms is amplified by two of their major characteristics:

(1) their increased tolerance to antimicrobials; (2) their protection of cells against

the host’s defense mechanisms. Overall, the combined action of different mecha-

nisms is believed to contribute to increased resistance and tolerance in biofilms:

slow growth; phenotypic variation and differential regulation of the cell metabolic

activity caused by nutrient limitation, stress, and cell density; over-expression of

resistance genes and amplified expression of efflux pumps; a changing sterol

composition in the membrane; limited diffusion of antibiotics and immunological

molecules through the extracellular matrix; and presence of persisters in the

biofilm, which are able to tolerate high concentrations of antibiotics.

Microbes within biofilms are significantly more resistant to standard antibiotic

therapy and may require up to 1,000 times the antibiotic dose to achieve efficacy

(Davies 2003; Lewis 2005). Therefore, the doses of antibiotics used effectively

against planktonic cells are usually not enough to tackle biofilms, leading to

resistant subpopulations remaining in the biofilm and causing recurring infections.

This has led to a more judicious approach for antibiotic use in order to limit further

development of resistant strains. The emergence of biofilm-associated infections

and rise in resistant strains has threatened the efficacy of current antimicrobial

agents, and therefore newer antimicrobial tools and strategies are needed to combat

such infections. Here, we have reviewed some of the novel and successful strategies

and approaches being used to prevent and control the biofilm infections.

Fig. 1 Scanning electron

micrograph of a mixed-

species biofilm of Candida
albicans and
Staphylococcus
epidermidis. Smaller

bacterial cells can be seen

adherent to both yeasts and

hyphae (Shirtliff et al. 2009)
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4 Novel Strategies to Combat Biofilm-Associated Infections

Efforts to develop successful treatments for biofilm-associated infections are

urgently needed in clinical practice. These new strategies must take into account

the differences in physiology and antibiotic/host defense susceptibility of biofilm

embedded microorganisms. The genetic and phenotypic versatility of the cells

within biofilms represent a challenge for discovering new methods of treatment

and prevention of biofilm-associated infections. Biofilm penetration by biocides or

antibiotics is typically strongly hindered. To increase the efficiency of new treat-

ment strategies against bacterial and fungal infections, factors that lead to inhibition

of biofilm growth, disruption, or eradication of biofilms are being sought

(Francolini and Donelli 2010). These factors include microbial products, enzymes,

sodium salts, metal nanoparticles, antibiotics, acids, chitosan and its derivatives, or

plant products. All of these factors influence biofilm structure via various mecha-

nisms and with different efficiencies.

4.1 Use of Combination Therapy

Conventional therapies target individual microbial species without consideration

that most biofilms are polymicrobial. However, a careful attempt should be made to

identify the causative microorganisms in a biofilm community. Appropriate man-

agement of mixed infections requires the administration of antimicrobials that are

effective against all the components of the biofilms. Many nosocomial infections

involve microbial biofilms and persistence of chronic infections is attributed to the

persistence of polymicrobial biofilms (Brogden and Guthmiller 2002; Hall-

Stoodley and Stoodley 2009). The standard treatment for such infections involves

two or more antibiotics, referred to as combination therapy (Brook 2002). The use

of novel antibiotic combinations may increase the effectiveness of antibiotic

therapies.

Another potential strategy could be to sensitize the bacteria or fungal biofilms by

synthetic or natural compounds (other than antibiotics). For example, Jabra-Rizk

et al. (2006) reported the sensitization of S. aureus bioflms by farnesol, a fungal QS

molecule. The combined effect of gentamicin at 2.5 times the MIC and farnesol at

100 μM (22 μg/mL) was able to reduce bacterial populations by more than 2 log

units and demonstrated a synergy between the two agents. This observed sensiti-

zation of resistant strains to antimicrobials and the observed synergistic effect with

gentamicin indicates a potential application for farnesol as an adjuvant therapeutic

agent for the prevention of biofilm-related infections. Using a combination

approach we have demonstrated that the phenolic compounds eugenol and phenyl

aldehyde cinnamdehyde potentiate the activity of flucoanzole against biofilm

forming drug-resistant strains of C. albicans (Khan and Ahmad 2012a).
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4.2 Prevention Against Catheter-Related Blood Stream
Infections

Biofilms play a pivotal role in healthcare-associated infections, especially those

related to the implantation of medical devices, such as intravascular catheters,

urinary catheters, and orthopaedic implants. Implants act as passive surfaces

prone to bacterial adhesion and biofilm formation. This tendency can result in

implant-associated infection of the surgical site. In spinal surgery, implant-

associated deep body infections are still a major problem (Trampuz and Widmer

2006). Some bacteria produce slime, which is responsible for bacterial adhesion

and formation of biofilms on artificial surfaces. This slime is composed of proteins,

hexosamines, neutral sugars, and phosphorus-containing compounds. If slime-

forming bacteria colonize an artificial surface and develop a biofilm, this layer

protects the bacteria from antibiotic agents. Thus, treatment against implant-

associated infection must target the development of a biofilm (Secinti et al. 2011).

The most successful approaches for the control and prevention of infections due

to adhesion, colonization, and biofilm formation on medical devices have been

described in a review article by Francolini and Donelli (2010). Readers are

suggested to go through this article for more detailed strategies currently in use

for preventing biofilm formation on medical implants. In this chapter we will be

reviewing developments in novel strategies to prevent biofilm infection of implants

and tissues.

4.2.1 Lock Therapy Approach

Nosocomial infections associated with medical devices represent a large proportion

of all cases of hospital-acquired infections (Bell 2001). In particular, insertion of

any vascular catheter can result in a catheter-related infection, as microorganisms

can colonize external and internal catheter surfaces. Adherence to the catheter

surface is facilitated by host proteins such as fibronectin and fibrinogen, which

can then lead to biofilm formation (Christner et al. 2010). Such problems can be

overcome by one of the approaches termed lock therapy. This approach is currently

recommended and employed in treating catheter-related bloodstream infections

(CRBSI), in particular for long-term catheters, according to the Infectious Diseases

Society of America’s guidelines (Mermel et al. 2009). The choice of antibiotics

used in the lock technique is dependent on the pathogen suspected of infecting the

catheter lumen, characteristics of the organism (i.e., ability to produce slime,

adherence to host proteins), and the pharmacodynamic properties of the antimicro-

bial agent. Lock therapy involves the coating of high doses of an antimicrobial

agent [from 100- to 1,000-fold the minimal inhibitory concentration, (MIC)]

directly into the catheter in order to “lock” it for a certain period of time (from

hours to days) (Carratala 2002). If host proteins such as fibronectin, fibrinogen, and

fibrin are present in the catheter lumen, heparin may increase the efficacy of the
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antibiotics. Liposomal AMB and echinocandisn have been used successfully in a

rabbit model of C. albicans biofilm infection (Schinabeck et al. 2004; Donlan

2008). While these results are promising for potential use of the lock technique to

treat infected catheters, 100 % biofilm inhibition could not be achieved (Tournu and

Dijck 2012). Synergistic antibiofilm combinations, between classical antimicrobial

agents and other compounds such as the mucolytic agent N-acetylcysteine, ethanol,
or the chelating agent EDTA, are being used as lock solutions and appeared to be

very effective against S. epidermidis and C. albicans individual and mixed biofilms

(Venkatesh et al. 2009). In a similar approach, recent findings suggest that the

combination of antibacterial agents with Gram-positive activity, including doxy-

cycline and tigecycline, with known antifungals, such as AMB, caspofungin, and

fluconazole, can be useful for the treatment of C. albicans biofilms (Miceli

et al. 2009; Ku et al. 2010).

The prevention of CRBSI has also been the focus of research and randomized

controlled trials. The clinical effectiveness of central venous catheters (CVCs)

treated with anti-infective agents (AI-CVC) in preventing CRBSI has been shown

by Hockenhull et al. (2009). Antifungal impregnated CVCs have also been tested in

animal models. Caspofungin was employed to prevent C. albicans biofilm forma-

tion in a murine biofilm model. C. albicans biofilm formation was reported to be

greatly reduced in CVCs that had been pretreated for 24 h with high doses of

caspofungin (Lazzell et al. 2009). The antibiofilm potential of liposomal AMB as a

lock solution to inhibit C. albicans, Candida glabrata, and Candida parapsilosis
biofilms in vitro has been reported by Toulet et al. (2012). Thus, the use of the lock

technique or preventive impregnation of antifungals in combating catheter-

associated infection seems promising, but not yet convincing from a cost-effective

point of view, as huge doses are still needed to eradicate microbial growth.

4.2.2 Material Coatings and Novel Antibiofilm Surfaces

Among the promising approaches to combat biofilm infections is the generation of

surface modification of devices to reduce microbial attachment and biofilm devel-

opment. Typically, this strategy uses the incorporation of antimicrobial agents to

prevent colonization (Smith 2005). Implanted materials are prone to biofilm for-

mation affecting health in general and duration of the implant in particular. Surface

characteristics, such as roughness, free energy, and chemistry, can influence the

type and the feature of the biofilms (Teughels et al. 2006). For example, C. albicans
adhesion is enhanced if the roughness of denture materials is increased (Radford

et al. 1998). Currently, coatings may be engineered to promote selective adhesion to

cells or tissue in bone implants but not to microbes. They may also address the

second phase of biofilm development involving QS, by inhibiting cell–cell com-

munication signals (Bruellhoff et al. 2010; Xiong and Liu 2010). Biomaterial

modifications are a way to prevent biofilm development and have been the focus

of intense research. While most research has focused on bacterial biofilms, the
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efficacy of biomaterial modifications also appears to inhibit Candida biofilms

(Tournu and Dijck 2012).

Surface Modifications

The surface properties of medical devices constitute a major factor contributing not

only to their stability in the body but also to their performance and lifetime in vivo

and their colonization by microorganisms. Accordingly, albumin adhesion to sur-

faces is potentially beneficial since it has been shown to prevent binding of

microorganisms, while fibrinogen has the opposite effect (Anderson et al. 2008).

Chemical grafting of polyethylene and polypropylene surfaces with functionalized

cyclodextrins changes the protein adsorption profile of these polymers by promot-

ing adsorption of albumin and reducing the adhesion of fibrinogen to the material

surface (Nava-Ortiz et al. 2010). These modified substrates were able to incorporate

the antifungal agent miconazole very well and retarded biofilm formation by

C. albicans. Modified polyethylene and silicone rubbers proved to be very efficient

in inhibiting C. albicans biofilm formation (Contreras-Garcia et al. 2011). These

materials are cytocompatible and also capable of releasing considerable amounts of

nalidixic acid for several hours. This may further potentiate efficacy of treated

surfaces to prevent formation of biofilms.

Biofilms on voice prostheses consist of mixed populations. Modification of the

silicone surface of the prostheses has been employed to limit C. albicans coloni-
zation, as opposed to incorporation of antimicrobial agents in order to avoid the

occurrence of resistance (De Prijck et al. 2010a). Silicone disks grafted with C1 and

C8 alkyl side chains demonstrated reduced microbial adherence and inhibited

biofilm formation by C. albicans by up to 92 %. Similarly, grafting of silicone

rubber with cationic peptides, such as the salivary peptide Hst5 and synthetic

variants, inhibited biofilm formation by up to 93 %, in a peptide-dependent manner

(De Prijck et al. 2010b).

Preconditioning surfaces with surfactants also has potential to prevent bacterial

adhesion and inhibit formation of biofilms. Splendiani et al. (2006) screened

22 surfactants for their potential to increase the cell wall charge of a Burkholderia
sp. strain and reduce the ability to attach and form biofilms. The authors demon-

strated that some surfactants affected the development of flagella, demonstrating

significant changes in the ability of bacteria to attach in the presence of the

surfactant. In addition to surfactants, biosurfactants synthesized by microbes have

also been used as coating agents for medical implants leading to a reduction in

hospital infections caused by biofilm growth (Rodrigues et al. 2006).

Surface Coatings

Microbicidal or static materials have been employed to fabricate or coat the

surfaces of medical devices and have a great potential in reducing or eliminating
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the incidence of biofilm-related infections. Studies have reported the use of several

compounds and synthetic analogues to prevent biofilm formation such as farnesol,

quaternary ammonium salts, and silver ions, which were shown to effectively

inhibit both bacterial and fungal biofilm formation (Gottenbos et al. 2001; Hashi-

moto 2001; Jabra-Rizk et al. 2006; Shirtliff et al. 2009). One particular study

highlighted the role of two quaternary ammonium silanes (QAS) to coat silicone

rubber tracheoesophageal shunt prostheses, yielding a positively charged surface.

One QAS coating [(trimethoxysilyl)-propyldimethyloctadecylammonium chloride]

was applied through chemical bonding, while the other coating, Biocidal ZF, was

sprayed onto the silicone rubber surface. This was the first report on the inhibitory

effects of positively charged coatings of tracheoesophageal shunt prostheses on the

viability of yeasts and bacteria in mixed biofilms (Oosterhof et al. 2006). Although

the study initially aimed at reducing voice prosthetic biofilms, its relevance extends

to all biomedical surfaces where mixed biofilms develop and become problematic.

Similarly, dental resin material coated with thin-film polymer formulations

containing the polyene antifungal nystatin, AMB, or the antiseptic agent chlorhex-

idine were used in C. albicans and mixed biofilm prevention (Redding et al. 2009).

The polysaccharide dextran is widely used in medicine and is also one of the

main components of dental plaque. Cross-linked dextran disks soaked with AMB

solutions, described as amphogel, killed fungi within 2 h of contact and could be

reused for almost 2 months without losing their efficacy against C. albicans
(Zumbuehl et al. 2007). This antifungal material is biocompatible and could be

used to coat medical devices to prevent microbial attachment.

Another option is to coat biomaterial surfaces with organic molecules to prevent

protein adsorption which may also inhibit biofilm formation (Njoroge and

Sperandio 2009). Coating of medical material surfaces has been employed and

tested with several types of coating molecules, including the naturally occurring

polymer chitosan and antimicrobial peptides such as Histatin 5 (Hst5). Histatins, a

family of histidine-rich cationic peptides, are secreted by the major salivary glands

in humans, especially histatin 5, which possess significant antifungal properties. A

recent study demonstrated that histatin 5 exhibited antifungal activity against

C. albicans biofilms and to a lesser extent against C. glabrata biofilms developed

on denture acrylic (Konopka et al. 2010).

Naturally occurring antimicrobial peptides are promising therapeutic agents

against pathogens such as C. albicans. But they are difficult and expensive to

produce in large quantities and are also often sensitive to protease digestion.

Therefore, their development as coating agents has been hampered. The search

for new and improved antimicrobial peptides has led to the study of peptide

mimetics. Synthetic analogs that mimic the properties of these peptides have

many advantages and exhibit potent and selective antimicrobial activity (Tew

et al. 2002). New classes of antimicrobial peptides were designed to mimic trans-

membrane segments of integral membrane proteins and were tagged with lysine

residues to facilitate solubilization in aqueous media. These peptides, designated

kaxins, have a non-amphipathic hydrophobic core segment, which distinguishes

them from many natural linear cationic antimicrobial peptides. With this peptide
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Stark et al. (2002) showed that placing all of the K residues on the N-terminus and

generating all-D enantiomeric versions, in combination with decreasing the length

of the hydrophobic segment, resulted in shorter peptides that generally displayed

increased antimicrobial activity. Generation of these shorter peptides is cost-

effective and has shown potential applications in surface coatings. Karlsson and

coworkers showed in 2009 that β-peptides (β-amino acid oligomers), at a concen-

tration near the MIC, completely inhibited C. albicans planktonic cells from

forming a biofilm by a toxicity mechanism involving membrane disruption. The

same group reported in 2010 that fabrication of multilayered polyelectrolyte thin

films promoted the surface-mediated release of an antifungal β-peptide. These films

inhibited the growth of C. albicans on film-coated surfaces. In addition, β-peptide-
containing films inhibited hyphal elongation by 55 %. This approach could ulti-

mately be used to coat the surfaces of catheters, surgical instruments, and other

devices to inhibit drug-resistant C. albicans biofilm formation in clinical settings

(Karlsson et al. 2010). The utility and potential of selected peptides as therapeutic

molecules, including the β-glucan synthesis inhibitors, the histidine-rich peptides,

and the LL-37 cathelicidin family, are being determined and could be used as

coating compounds against adherence and biofilm formation (Matejuk et al. 2010;

Tsai et al. 2011).

Chitosan, a polymer isolated from crustacean exoskeletons, recently proved to

be active against Candida biofilms in vitro. Surfaces coated with chitosan reduced

the viable cell number in biofilms by more than 95 % in the case of C. albicans and
also for many bacteria such as S. aureus (Carlson et al. 2008). Chitosan is a

hydrophilic biopolymer that is industrially obtained by means of N-deacetylation
of crustacean chitin. It is active against a wide range of pathogenic microbes

including fungi, bacteria, and viruses (Rabea et al. 2003) by disrupting cell mem-

branes as cells settle on to its surface. The use of such polymers offers a biocom-

patible tool for coating medical devices. Chitosan has been used to pretreat

catheters and prevent C. albicans biofilm formation as validated in an in vivo

CVC biofilm model by Martinez et al. (2010). The investigators demonstrated

that mature C. albicans and C. parapsilosis biofilms were susceptible to chitosan

in vitro. Chitosan decreased the metabolic activity and survival of Candida species

biofilms, with more than 95 % killing of the sessile cells after 0.5 h treatment with

2.5 mg/mL chitosan.

Use of Nanoparticles

Nanotechnology is providing new ways to manipulate the structure and chemistry

of surfaces to inhibit bacterial colonization. It is a new discipline with many

applications in biological sciences and medicine, and is discussed in detail in

other chapters included in this book. Nanomaterials are applied as coating mate-

rials, as well as in treatment and diagnosis (Colvin 2003). The advantages of

nanoparticles are their high surface-to-volume ratios, quantum confinement, and

nanoscale sizes. These properties allow more active sites of nanoparticles to
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interact with biological systems, including bacteria and fungi. This is the most

important difference between nanoparticles and typical antimicrobial agents and

could minimize the risk of developing antimicrobial resistance (Hernandez-

Delgadillo et al. 2012). The mechanism of antimicrobial activity for nanoparticles

is not completely understood. However, the positive charge of metal ions is known

to be critical for antimicrobial activity, because it allows for their electrostatic

attraction with the negative charge of the bacterial cell membrane. It has been

reported that silver nanoparticles can damage DNA, alter gene expression, and

affect membrane-bound respiratory enzymes (Kim et al. 2007). Nanoparticles of

titanium, silver, copper oxide, selenium diamond, iron oxide, carbon nanotubes,

and biodegradable polymers have also been studied for their use in diagnosis and

treatment and their reported antimicrobial activities are summarized below.

As shown in Fig. 2, incorporation of cross-linked quaternary ammonium

polyethylenimine (QPEI) nanoparticles in dental resin composite at a low concen-

tration exerted a significant in vivo antibiofilm activity and potent broad spectrum

antibacterial activity against salivary bacteria (Beyth et al. 2010). The antibacterial

and antifungal effects of silver ions have long been known, and silver seems to

inhibit biofilm formation by S. epidermidis, P. aeruginosa, and Candida spp. as

evident from various studies (Kalishwaralal et al. 2010; Secinti et al. 2011;

Monteiro et al. 2011a, b). These findings highlighted that nanoparticle silver

ion-coated titanium implants are safe and provide a means to treat Candida-
associated denture stomatitis. Recently, inhibition of biofilm formation by a

S. aureus clinical isolate, with silver nanoparticle-coated catheters, was reported

by Namasivayam et al. (2012). They also found that these naonoparticles exhibited

synergistic effects to eradicate biofilms with the antibiotics ofloxacin, cephalexin,

and neoflaxin.

In another study, glass slides coated with zinc oxide (ZnO) nanoparticles

restricted the biofilm formation of common bacterial pathogens. The generation

of hydroxyl radicals, originating from the coated surface, was found to play a key

role in antibiofilm activity (Applerot et al. 2012). Functionalized magnetite (Fe3O4/

C18) nanoparticles have the potential to improve the antibiofilm properties of

textile dressings against C. albicans biofilms (Anghel et al. 2012). In addition,

these functionalized surface-based approaches are very useful in the prevention of

wound microbial contamination and subsequent biofilm development on viable

tissues or implanted devices. Recently, zerovalent stable colloidal bismuth

nanoparticles were shown to possess antimicrobial activity against S. mutans and
C. albicans growth and completely inhibited their biofilm formation. The results are

similar to those obtained with chlorhexidine, the most commonly used oral anti-

septic agent, and suggest that zerovalent bismuth nanoparticles could be an inter-

esting antimicrobial agent to incorporate into an oral antiseptic preparation

(Hernandez-Delgadillo et al. 2012, 2013a, b).
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4.3 Disruption of Biofilms

Since biofilms must release and disperse cells into the environment in order to

colonize new sites (Kaplan 2010), biofilm dispersal is another promising area of

research that may lead to the development of novel agents to promote biofilm cell

detachment. Furthermore, since the biofilm matrix also contains polysaccharides

and DNA, a promising strategy could be the use of enzymes (e.g., DNase and

alginate lyase) that can disrupt and dissolve biofilms by attacking surface poly-

saccharides and the extracellular DNA which is critical for the early development

of biofilms (Arciola 2009; Taraszkiewicz et al. 2013).

Xavier et al. (2005) proposed a kinetic model to assess the feasibility of

strategies for the removal of biofilms by using substances that induce detachment

by affecting the cohesiveness of the EPS. Detachment-promoting agents are

enzymes, chelating agents, or any other agents that reduce EPS cohesiveness

through a variety of mechanisms. Promoting detachment is the least investigated

of the possible strategies to remove unwanted biofilms. However, the use of sub-

stances to induce biofilm removal directly by destroying the physical integrity of

the biofilm matrix would be an attractive alternative for both medical and industrial

applications where complete biofilm removal is essential. This approach could also

overcome the problem of recalcitrant infections of biofilms due to persister cells.

Fig. 2 Biofilms formed on resin composite incorporating QPEI nanoparticles and on nonmodified

resin composite. Scanning electron micrographs (�10,000) of biofilms formed on resin composite

(a) and resin composite with incorporated QPEI nanoparticles (b) (Beyth et al. 2010)
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4.3.1 Biofilm-Disrupting Enzymes

The two most well-studied biofilm-dispersing enzymes are deoxyribonuclease I

(DNase I) and dispersin B (DspB) (Kaplan 2009), but other extracellular enzymes

have also been explored as antibiofilm agents.

Deoxyribonuclease I. Deoxyribonuclease I (DNase I) degrades extracellular

DNA (eDNA), a newly highlighted structural component of biofilms that confers

firmness and stability. Tetz et al. (2009) reported a strong negative impact of DNase

I on the structures of biofilms formed by Acinetobacter baumannii, Haemophilus
influenzae, K. pneumoniae, E. coli, P. aeruginosa, S. aureus, and S. pyogenes.
Using DNase I at a concentration of 10 μg/mL, they observed degradation of mature

24 h-old biofilms by 53.85, 52.83, 50.24, 53.61, 51.64, 47.65, and 49.52 %,

respectively. Moreover, bacterial susceptibility to selected antibiotics

(azithromycin, rifampin, levofloxacin, ampicillin, and cefotaxime) increased in

the presence of 5 μg/mL DNase I.

The antibiofilm activity of DNase I (130 μg/mL) in combination with selected

antibiotics toward C. albicans biofilms has been estimated by Martins et al. (2012).

In their study, reduction of viable counts by 0.5 log10 units was observed for

C. albicans biofilms incubated with DNase I. Treatment of C. albicans with

AMB alone (1 μg/mL) resulted in a 1 log10 unit reduction in cell viability, which

increased to 3.5 log10 units in combination with DNase I. At higher concentrations

of AMB (>2 μg/mL) and DNase I, cell viability was reduced by 5 log10 units.

DispersinB. DispersinB is a naturally occurring N-acetylglucosaminidase enzyme

produced by a periodontal disease-associated oral bacterium, Aggregatibacter
actinomycetemcomitans. This 41 kDa enzyme consists of a single chain containing

361 amino acid residues and is a highly active and stable glycoside hydrolase that

functions in a narrow pH range. DispersinB specifically hydrolyses the glycosidic

linkages of poly-β-1, 6-N-acetylglucosamine in the polysaccharide adhesins of

bacteria, which are needed for biofilm formation, and are present in the polysac-

charide matrix of mature biofilms, without affecting bacterial growth (Itoh

et al. 2005). Thus, it inhibits as well as disperses bacterial biofilms and has been

reported to be active against biofilms produced by various organisms such as

E. coli, S. aureus, S. epidermidis, and P. fluorescence (Itoh et al. 2005; Rohde

et al. 2007).

Lysostaphin. Lysostaphin is a natural staphylococcal endopeptidase that can

penetrate bacterial biofilms (Belyansky et al. 2011). Promising antibiofilm results

have been obtained for lysostaphin. The antimicrobial properties of lysostaphin

were analyzed by Walencka et al. (2005), who reported the biofilm inhibitory

concentration (BIC) of the enzyme for various S. aureus and S. epidermidis clinical
strains. In addition, the combined use of lysostaphin with oxacillin resulted in

increased susceptibility of the biofilm-growing bacteria to the antibiotic. Likewise,

Aguinaga et al. (2011) reported a synergistic effect of lysostaphin in combination

with doxycycline leading to significantly increased antibiotic susceptibility against
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methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA)

strains.

Other Enzymes. Alkawash et al. (2006) showed application for lyase in the

destruction of biofilms made by two mucoid P. aeruginosa strains. Treatment of

the biofilms with gentamycin (64 μg/mL) in combination with alginate lyase (20 U/

mL) resulted in biofilm matrix liquefacation. Incubation of the biofilm with lyase

and gentamycin for 96 h resulted in the complete eradication of the biofilm structure

and living bacteria. The antibiofilm activity of α-amylases against strains of

S. aureus was analyzed by Craigen et al. (2011). This enzyme effectively reduced

biofilm formation in the case of S. aureus. Time-course experiments for S. aureus
showed that biofilms were degraded by 79 % within 5 min and by 89 % within

30 min of incubation with α-amylases. Amylase at doses of 10, 20, and 100 mg/mL

reduced biofilms by 72, 89, and 90 %, respectively, and inhibited matrix formation

by 82 %. In addition, they also investigated antibiofilm activities of amylases from

different biological sources. The most effective biofilm reduction was reported for

the α-amylase isolated from Bacillus subtilis. Although enzymes derived from

human saliva and sweet potato had no effect against preformed biofilms, all of

the tested enzymes, regardless of origin, were highly effective in inhibiting biofilm

formation. Lactonase was also identified as a potential antibiofilm agent. Kiran

et al. (2011) showed that biofilms formed by P. aeruginosa strains exhibited growth
inhibition of 68.8–76.8 % in the presence of the enzyme (1 U/mL). They also found

that 0.3 U/mL of the enzyme disrupted the biofilm structure and led to increased

ciprofloxacin and gentamycin penetration and antimicrobial activity.

4.3.2 Photodynamic Therapy

Another innovative approach to disrupt biofilms is to expose them to photodynamic

substances (Njoroge and Sperandio 2009). Antimicrobial Photodynamic Therapy

(APDT) consists of three major components: light, a chemical molecule known as a

photosensitizer, and oxygen. Photodynamic therapy (PDT) is based on the concept

that a certain nontoxic photoactivatable compound or photosensitizer (PS) can be

preferentially localized in certain tissues. These photosensitizers can be excited by

absorbing a certain amount of energy from light of the appropriate wavelength.

After excitation, photosensitizers usually form a long-lived triplet-excited state that

will then generate reactive oxygen species (ROS), such as singlet oxygen and

superoxide from which energy can be transferred to biomolecules or directly to

molecular oxygen, depending on the reaction type. This results in oxidation of

biomolecules, especially proteins involved in transport and membrane structure, in

microorganisms leading to cell damage and death (Hamblin and Hasan 2004).

Recent studies have shown that antimicrobial effects can be obtained with the use

of photosensitizers belonging to different chemical groups such as phenothiazine

dyes [methylene blue (MB) and toluidine blue O (TBO)]; porphyrin and its deriv-

atives, TMPyP (5-,10-,15-,20-tetrakis (1-methylpyridinium-4-yl)-porphyrin), tetra
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p-toluenesulfonate; fullerenes; and cyanines and its derivatives (Taraszkiewicz

et al. 2013).

The phenothiazinium salts are most commonly used in the clinic, and combina-

tions of MB or TBO together with red light are used to disinfect blood products,

sterilize dental cavities and root canals, and treat periodontitis (Wainwright 2003)

and also have been actively investigated for the eradication of bacterial biofilm

growing on dental plaques and oral implants (Saino et al. 2010). Tri-meso

(N-methyl-pyridyl), meso (N-tetradecyl-pyridyl) porphine (C14) was exploited

for inactivation of two structurally distinct S. epidermidis biofilms grown on

Ti6Al4V alloy by Saino et al. (2010). They also compared its photosensitizing

efficiency with that of the parent molecule, tetra-substituted N-methyl-pyridyl-

porphine (C1). Their data suggested that C14 is a potential photosensitizer for the

inactivation of staphylococcal biofilms for many device-related infections which

are accessible to visible light.

Kishen et al. (2010) evaluated the ability of a cationic, phenothiazinium photo-

sensitizer, methylene blue (MB), and an anionic, xanthene photosensitizer, rose

bengal (RB), to inactivate and disrupt biofilms produced by E. faecalis (OGIRF and

FA 2-2). The role of a specific microbial efflux pump inhibitor (EPI), verapamil

hydrochloride in the MB-mediated antimicrobial photodynamic inactivation (aPDI)

of E. faecalis biofilms, was also investigated. Their results showed that APDT with

cationic MB produced superior inactivation of E. faecalis strains in a biofilm along

with significant destruction of the biofilm structure when compared to anionic RB

(P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when

the EPI was used with MB (P < 0.001). These experiments demonstrated the

advantage of a cationic phenothiazinium photosensitizer combined with an EPI to

inactivate biofilm bacteria and disrupt biofilm structure as shown in Fig. 3.

Collins et al. (2010) studied the effect of TMP on P.aeruginosa biofilms. In their

study, a significant decrease in biofilm density was observed, and the majority

of the cells within the biofilm were nonviable when 100 μM TMP and 10 min of

irradiation (mercury vapor lamp, 220–240 J/cm2) were used. Moreover, the use of

225 μM TMP and the same light dose resulted in almost complete disruption and

clearance of the biofilm. Biel et al. (2011a, b) demonstrated that MB-mediated

APDT was highly effective in the photo-eradication of multispecies bacterial

biofilms (multidrug-resistant P. aeruginosa and MRSA). They observed a signifi-

cant decrease in CFU/mL (>6 log10 units) when 300 μg/mLMB and a light dose of

60 J/cm2 (diode laser, 664 nm) were used. The reduction was >7 log10 units when

500 μg/mL MB and two light doses of 55 J/cm2 separated by a 5-min break were

used. Recently, Meire et al. (2012) observed a statistically significant 1.9 log10

reduction in the viable counts of E. faecalis biofilms treated with 10 mg/mL MB

and exposed to a soft laser at an output power of 75 mW (660 nm) for 2 min.

Since APDT represents an alternative method of killing resistant pathogens,

efforts have been made to develop delivery systems for hydrophobic drugs to

improve the photokilling. In this regard a study was conducted by Ribeiro

et al. (2013) to evaluate the photodynamic effect of chloro-aluminum phthalocya-

nine (ClAlPc) encapsulated in nanoemulsions (NE) on MRSA and MSSA
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suspensions and biofilms. Suspensions and biofilms were treated with different

delivery systems containing ClAlPc. For biofilms, cationic NE-ClAlPc reduced

cell metabolism by 80 and 73 % of susceptible and resistant strains, respectively.

Although anionic NE-ClAlPc caused a significant CFU/mL reduction for MSSA

and MRSA, it was not capable of reducing MRSA biofilm metabolism. Moreover, a

very recent study has shown improved efficacy of twofold positively charged

porphyrin (XF-73) in comparison to fourfold positively charged porphyrin

[5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine, tetra-p-tosylate salt]

Fig. 3 The three-dimensional CLSM reconstruction of E. faecalis biofilms subjected to aPDI

(inset shows the sagittal section). (a) The untreated biofilm. (b) The biofilm incubated with

100 μM RB followed by irradiation at 40 J/cm2. (c) The biofilm incubated with 100 μM MB

followed by irradiation at 40 J/cm2 (The colors represent: green viable, red dead, yellow interme-

diate) (Kishen et al. 2010)
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against C. albicans planktonic cells and biofilms (Gonzales et al. 2013). Overall,

this therapy is a very effective means of biofilm disruption and may represent an

alternative treatment for eradicating resistant strains.

4.4 Biofilm Control Through Microbial Interactions or
Interference

The existence of multiple interspecies interactions or the simple production of a

metabolite can interfere with biofilm formation and development (Rossland

et al. 2005; Valle et al. 2006). Competition for substrates is considered to be one

of the major evolutionary driving forces in the bacterial world, and numerous

experimental data obtained in the laboratory, under controlled conditions, have

shown how different microorganisms may effectively outcompete others because

they are better able to utilize a given energy source (Simoes et al. 2007).

P. aeruginosa and Candida in a dual species environment mutually suppress

biofilm development, both quantitatively and qualitatively (Bandara et al. 2010).

In their study, Bandara et al. found that P. aeruginosa attached to C. albicans
hyphae in a mixed-species biofilm and killed the fungi, whereas the yeast forms

could not be killed. Isolation and purification of microbial compounds that mediate

these types of interactions could lead to the development of new antibiofilm agents.

Commensal bacteria are known to inhibit pathogen colonization; however,

complex host–microbe and microbe–microbe interactions have made it difficult

to gain a detailed understanding of the mechanisms involved in the inhibition of

colonization (Wertheim et al. 2005). In an attempt to understand these

relationships, Iwase et al. (2010) found that the serine protease Esp, secreted by a

subset of S. epidermidis, which are commensals, inhibited biofilm formation and

nasal colonization by S. aureus. Furthermore, Esp enhanced the susceptibility of

S. aureus biofilms to immune system components. In vivo studies have also shown

that Esp-secreting S. epidermidis eliminates S. aureus nasal colonization. These

findings indicate that Esp hinders S. aureus colonization in vivo through a novel

mechanism of bacterial interference, which could lead to the development of novel

therapeutics to prevent S. aureus colonization and infection. Two of the most

commonly used strategies, designed to exploit microbe–microbe interactions, are

discussed below.

4.4.1 Use of Probiotics

A novel mechanism for prophylactic or therapeutic management of biofilm-

associated diseases is by microbial interference, through the use of probiotics.

Probiotics are live microbial supplements which beneficially affect the host by

improving its microbial balance, producing metabolites which inhibit the
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colonization or growth of other microorganisms, or by competing with them for

resources such as nutrients or space. The use of antibiotics and immunosuppressive

drugs often causes alterations in the composition of host microflora particularly in

the oral cavity and intestinal and urogenital tracts. Therefore, the introduction of

beneficial microbial species is a very attractive option to reestablish the microbial

equilibrium and prevent disease (Gupta 2009).

The most commonly used genera in probiotic preparations are Lactobacillus,
Bifidobacterium, Escherichia, Enterococcus, Bacillus, Streptococcus, and Saccha-
romyces. The use of probiotics creates a biofilm niche less conducive to prolifer-

ation of pathogens and their virulence factors via immune modulation and pathogen

displacement activity. This phenomenon has been shown to be effective in varied

clinical conditions such as antibiotic-associated diarrhea and Helicobacter pylori
infections (Gupta 2009; Dobrogosz et al. 2010). One example is use of lactobacilli

to improve urogenital health in women. Four probiotic strains Lactobacillus
rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112

were shown to interfere with the biofilms of salivary Streptococcus mutans. This
antimicrobial activity against S. mutans was found to be pH dependent (Soderling

et al. 2011).

There have also been reports of the inhibitory effect of probiotic Enterococcus
faecium WB2000 on biofilm formation by cariogenic streptococci. Dental caries is

a very common chronic disease arising from the interplay among the oral flora,

teeth, and dietary factors. The major etiological players are the two α-hemolytic

“mutans group” streptococci: S. mutans and Streptococcus sobrinus. The effect of
Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of some

of the selected streptococcal strains was reported by Tahmourespour and

Kermanshahi (2011). This strain was used for its ability to inhibit biofilm formation

among mutans and non-mutans oral streptococci. In the presence of the probiotic

strain, streptococcal adhesion was reduced and this reduction was not significantly

higher if the probiotic strain was inoculated before the oral bacteria. The Lactoba-
cillus acidophilus had a significantly higher effect on adherence of mutans strep-

tococci than non-mutans streptococci ( p < 0.05). It is expected that adhesion

reduction is likely due to bacterial interactions and colonization of adhesion sites

by the probiotic strain before the streptococci. Adhesion reduction can be an

effective way to decrease the cariogenic potential of oral streptococci. Moreover,

the ability of E. faecium WB2000 and JCM5804 and Enterococcus faecalis
JCM5803 to inhibit biofilm formation by seven laboratory oral streptococcal strains

and 13 clinical mutans streptococcal strains was assayed by Suzuki et al. (2011).

E. faecium WB2000 inhibited biofilm formation by 90.0 % (9/10) of the clinical

S. mutans strains and 100 % (3/3) of the clinical S. sobrinus strains.

4.4.2 Use of Phages as Antibiofilm Agents

Phages are ubiquitous in nature. Bacteriophages are viruses that infect bacteria and

may provide a natural, highly specific, nontoxic, feasible approach for controlling
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several microorganisms involved in biofilm formation (Kudva et al. 1999). The

ability of these phages to inhibit and/or eradicate biofilms has been demonstrated

for biofilms of several pathogens including P. aeruginosa, K. pneumonia, E. coli,
Proteus mirabilis, and S. epidermidis, and these studies are summarized here

briefly.

Biofilms of E. coli strains 3000 XIII developed on the surfaces of

polyvinylchloride coupons in a modified Robbins device were infected and lysed

using bacteriophage T4D. Similar studies with phage E79 infecting P. aeruginosa
indicated that phages were infecting the surface organisms but access to the cells

deep in the biofilm was restricted (Doolittle et al. 1995). Investigators have dem-

onstrated the use of bacteriophages in killing S. aureus and P. fluorescens biofilms;

however, the infection of biofilm cells by phages is extremely conditional on their

chemical composition and environmental factors such as temperature, growth

stage, media, and phage concentration (Sillankorva et al. 2004; Chaignon

et al. 2007).

The crucial role of titers of specifically selected phages with a proper virion-

associated exopolysaccharide (EPS) depolymerase in the development of phage

therapy were shown by Cornelissen et al. (2011). They carried out an experiment to

investigate the in vitro degradation of single-species Pseudomonas putida biofilms,

PpG1 and RD5PR2, by the novel phage Q15, a “T7-like virus” EPS depolymerase.

Phage Q15 formed plaques surrounded by growing opaque halo zones, on seven out

of 53 P. putida strains. This has happened because of EPS degradation. Since halos

were absent on infection-resistant strains, they suggested that the EPS probably acts

as a primary bacterial receptor for phage infection. EPS degrading activity of

recombinantly expressed viral tail spike was also confirmed by capsule staining.

Application of bacteriophages in controlling mixed biofilms of Pseudomonas
fluorescens and Staphylococcus lentus has also been reported. Sillankorva

et al. (2010) challenged the biofilms with phage phiIBB-PF7A, specific for

P. fluorescens, and the results obtained showed that phiIBB-PF7A readily reached

the target host and caused a significant population decrease. This phage was also

capable of causing partial damage to the biofilms leading to the release of the

non-susceptible host (S. lentus) from the dual species biofilms.

Phage therapy has been successfully employed in the treatment of lung infec-

tions of cystic fibrosis caused by colonization of S. aureus and further predominant

growth of P. aeruginosa biofilms. The treatment is very difficult with antibiotics

due to several fold increased drug resistance (Brussow 2012). Applications of

bacteriophages φMR299-2 and φNH-4 eliminated P. aeruginosa in the murine

lung and cystic fibrosis lung airway cells (Alemayehu et al. 2012).

Recently, potential of the bacteriophage-derived peptidase, CHAPK, for the

rapid disruption of biofilm was reported against staphylococci, associated with

the bovine mastitis (Fenton et al. 2013). Purified CHAPK was able to prevent

biofilm formation and also completely eliminated biofilms of S. aureus DPC5246
within 4 h. The CHAPK lysin also reduced S. aureus in a skin decolonization model.

Furthermore, Shen et al. (2013) found rapid degradation of S. pyogenes biofilms by

PlyC, a bacteriophage-encoded endolysin. Laser scanning confocal microscopy
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revealed that lytic action of PlyC destroys the biofilm as it diffuses through the

matrix in a time-dependent fashion, and biofilm rapidly become refractory to

traditional antibiotics.

Phage therapy is very effective in killing drug-resistant strains because of its

specificity toward particular bacterial populations. Formation of a protected biofilm

environment is one of the major causes of the increasing antibiotic resistance

development. These facts emphasize the need to develop alternative antibacterial

strategies, like phage therapy (Cornelissen et al. 2011).

4.5 Nature’s Own Biofilm Inhibitors

Interest in studying natural products derived from plant sources for the discovery of

new biologically active compounds is not uncommon as many traditional medicines

have been rooted. Some of the most active antibiofilm compounds discovered to

date have been based upon the molecular scaffolds of natural products isolated from

marine natural products (Worthington et al. 2012).

4.5.1 Plant Products

The prevention or control of biofilms by interfering with QS systems is one possible

strategy; however, other studies have indicated that phytochemicals can inhibit

interspecies coaggregation (Weiss et al. 1998), prevent bacterial adhesion (Kuzma

et al. 2007), and inactivate mature single and multispecies biofilms (Niu and Gilbert

2004; Knowles et al. 2005). There is a novel trend in the antibiofilm research area

toward the identification of natural products, such as plants and their extracts with

antibiofilm activity. Plants offer a virtually inexhaustible and sustainable resource

of very interesting classes of biologically active, low-molecular weight compounds.

Several microbes in complex ecological niches or in association with biofilms

produce compounds that act as antibiofilm agents to gain advantage over others.

Certain marine plants are known to produce compounds that inhibit biofilm forma-

tion in order to prevent microbes from attaching and blocking the sunlight. The best

characterized example is the red algae Delisea pulchra that produces halogenated

furanones to ward off bacterial biofilms (Ren et al. 2004). Several marine plants and

microbes have been shown to inhibit biofilm formation.

Plant extracts and essential oils from several medicinal plants have been

exploited as antibiofilm agents for pathogenic biofilm forming bacteria and fungi.

In this respect, xanthorrhizol isolated from Curcuma xanthorrhiza (Rukayadi

et al. 2011) and the oil of Boesenbergia pandurata rhizomes (Taweechaisupapong

et al. 2010) and Ocimum americanum (Thaweboon and Thaweboon 2009) showed

potent in vitro activity against Candida biofilms. Nostro et al. (2007) studied the

effect of oregano essential oil, carvacrol, and thymol on biofilm made by S. aureus
and Staphylococcus epidermidis strains. They found that sub-inhibitory
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concentrations of the oils attenuated biofilm formation by S. aureus and

S. epidermidis strains on polystyrene microtiter plates. Agarwal et al. (2008) stud-

ied 30 plant oils for their activity against C. albicans biofilms. Peppermint, euca-

lyptus, ginger grass, and clove oils resulted in a reduction in C. albicans biofilm
formation. Dalleau et al. (2008) performed a study on 10 terpenic derivatives,

corresponding to major components of essential oils, for their activity against

C. albicans biofilms. Almost all the studied terpenic derivatives showed antibiofilm

activity; however, carvacrol, geraniol, and thymol exhibited the strongest activity.

Moreover, these compounds also proved to be efficient against biofilms made by

C. glabrata and C. parapsilosis. In addition, Hendry et al. (2009) have shown potent
antibiofilm activity from the main component of eucalyptus oil, 1,8-cineole, against

C. albicans biofilms.

Harjai et al. (2010) reported anti-QS activity by fresh Allium sativum extract

[fresh garlic extract (FGE)] and subsequently inhibited P. aeruginosa biofilm

formation by 6 log10 units. Moreover, in vivo prophylactic treatment in a mouse

model of kidney infection with FGE (35 mg/mL) for 14 days resulted in a 3 log10

unit decrease in the bacterial load on the fifth day after infection compared to

untreated animals. They found that FGE also protected renal tissue from bacterial

adherence and resulted in a milder inflammatory response and histopathological

changes in infected tissues. FGE inhibited expression of P. aeruginosa virulence

factors such as pyoverdin, hemolysin, and phospholipase C. Moreover, killing

efficacy and phagocytic uptake of bacteria by peritoneal macrophages was

enhanced by administration of garlic extract.

Issac Abraham et al. (2011) reported efficacy of Capparis spinosa (caper bush)

extract to inhibit biofilm formation by 73 %, at a concentration of 2 mg/mL, in

E. coli. Also, for the pathogens Serratia marcescens, P. aeruginosa, and

P. mirabilis, biofilm biomass was reduced by 79, 75, and 70 %, respectively.

Moreover, the mature biofilm structure was disrupted for all of the studied patho-

gens. Furthermore, the addition of C. spinosa extract (100 μg/mL) to a bacterial

culture resulted in swimming and swarming inhibition. Similarly, Melia dubia
(bead tree) bark extracts were examined by Ravichandiran et al. (2012) at a

concentration of 30 mg/mL. In their study, these extracts reduced E. coli biofilm
formation by 84 % and inhibited expression of virulence factors, such as hemoly-

sins, by 20 %. Bacterial swarming regulated by QS was inhibited by 75 %, resulting

in decreased biofilm expansion. Recently, our group (Khan and Ahmad 2012a, b)

has shown antibiofilm activity by Cymbopogon citratus and Syzygium aromaticum
essential oils and active compounds, namely cinnamaldehyde and eugenol, in drug-

resistant strains of C. albicans (Fig. 4).

Interference with Quorum Sensing

A new drug target is to interfere with the process of QS, a phenomenon of

communication cross talk. This phenomenon is used by many pathogenic microor-

ganisms to establish a biofilm and control much of their virulence arsenal.
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The process is regulated by means of extracellular signal molecules (Rasmussen

et al. 2005). Although the exact role of QS in various stages of biofilm formation,

maturation, and dispersal and in biofilm resistance is not entirely clear, the use of

QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. It is

conceivable that QS inhibition may represent a natural, widespread, antimicrobial

strategy with significant impact on biofilm formation (Dong et al. 2002). Acting on

biofilms by interfering with their command language, QS can provide an alternative

to the ineffective conventional biofilm control strategies (Rasmussen and Givskov

2006).

QS has been shown to be responsible for the development of resistance to

various antimicrobial agents and immune modulation in biofilm entities. Several

organisms seem to have evolved the ability to interrupt this process. Examples

include plants (e.g., tomato, rice, and pea) and soil bacteria that secrete compounds

that alter homoserine lactone activity and Delisea pulchra, which secretes a halo-

genated furanone that inhibits QS signaling (Bauer and Robinson 2002). This

suggests that synthetic analogs of such substances, or novel compounds from

drug discovery efforts, could interrupt QS in one or more (Stewart 2003) ways.

QS signaling can be interrupted in several manners like targeting to ligand-receptor

pathways, i.e., by inhibiting ligand synthesis, transport, or release; inhibiting

receptor synthesis and processing; and perhaps most analogous to current pharma-

cotherapy, inhibiting enzyme activity or ligand-receptor binding (Raffa et al. 2005).

Furthermore, the use of QS inhibitors may control biofilm formation by making

biofilms more susceptible to antibiotics as well as to host defenses (Bjarnsholt and

Givskov 2007; Jayaraman and Wood 2008; Hoiby et al. 2010). Attenuation of

bacterial virulence or biofilms by QSI rather than by antibiotics is a very interesting

concept, which could prove to be a new target with less risk of inducing resistance

Fig. 4 Scanning electron micrograph of the 48 h-old C. albicans 04 biofilm formed on catheter

discs in the absence and presence of eugenol or cinnamaldehyde. In (a) biofilm formed in the

absence of active compounds, dense network of cells and hyphae along with exopolysaccharide

material are observed, and in (b) biofilm formed in the presence of eugenol at 100 mg/L, no

exopolysaccharide material and aggregation of cells are observed (Khan and Ahmad 2012b)
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(Lazar 2011). This strategy could lead to the development of new and efficient

natural products for biofilm control.

Adonizio et al. (2008) have shown that certain plant extracts from Southern

Florida caused the inhibition of QS genes and QS-controlled factors, with marginal

effects on the growth of P. aeruginosa. Lonn-Stensrud et al. (2009) have shown that
furanones may inhibit biofilm formation through interference with QS and thus

represent promising agents for protecting surfaces from being colonized by

S. epidermidis. Our group has also shown that pea seedling inhibits QS in

P. aeruginosa PA01 and Cromobacterium violaceum CV12472 (Fatima

et al. 2010).

Ding et al. (2011) screened 46 active components found in traditional Chinese

medicines (TCMs) that inhibit bacterial biofilm formation. Six of 46 active com-

ponents found in TCMs were identified as putative QSIs based on molecular

docking studies. Of these, three compounds inhibited biofilm formation by

P. aeruginosa and Stenotrophomonas maltophilia at a concentration of 200 μM.

A fourth compound (emodin) significantly inhibited biofilm formation at 20 μM
and induced proteolysis of the QS signal receptor TraR in Escherichia coli at a
concentration of 3–30 mM. Emodin also increased the activity of ampicillin against

P. aeruginosa. Therefore, they suggested that emodin might be suitable for devel-

opment into an antivirulence and antibacterial agent based on disruption of

biofilms. Brackman et al. (2011) have shown that QSI (baicalin hydrate,

cinnamaldehyde, and hamamelitannin) increased the success of the antibiotics

vancomycin, tobramycin, and clindamicin by increasing the susceptibility of bac-

terial biofilms and/or by increasing host survival following infection. Damte

et al. (2013) screened for anti-QS activity in 97 indigenous plant extracts from

Korea, through biomonitor bacterial strains, Chromobacterium violaceum
(CV12472) and P. aeruginosa (PAO1), and found 18 plant extracts to exhibit

anti-QS activity against both reporter systems. Sarabhai et al. (2013) have

published a first report on the anti-QS activity of ellagic acid derivative compounds

from T. chebula fruit. They found that these compounds downregulated the expres-

sion of the lasI/R and rhlI/R genes with concomitant decreases in N-acyl
homoserine lactones (AHLs) in P. aeruginosa PAO1 causing attenuation of its

virulence and enhanced sensitivity of its biofilm to tobramycin.

These data confirm that plant and microbial products have anti-QS, antiseptic,

and antivirulence factor properties and can easily inhibit biofilm formation as well

as disrupt the mature biofilm structure. These natural products represent a virtually

inexhaustible and sustainable source of biocide-free antibiofilm agents with novel

targets, unique modes of action, and proprieties with potential for utilization in

clinical perspectives. Testing sublethal concentrations of plant-derived compounds

for disrupting microbial biofilms could be of great importance to reveal mecha-

nisms other than killing activity to overcome the emergence of drug-resistant

strains. This strategy could offer an elegant way to develop novel biocide-free

antibiofilm strategies. The studies conducted in this regard and significance and

future prospects are well reviewed by Villa and Cappitelli (2013), and readers are
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directed to this chapter to get more insight on plant-derived products as effective

antibiofilm agents.

4.5.2 Microbial Metabolites

The secondary metabolites of several microorganisms, ranging from furanone to

exo-polysaccharides, have been suggested to have antibiofilm activity in various

recent studies. Among these, E. coli group II capsular polysaccharides were shown

to inhibit biofilm formation of a wide range of organisms, and marine Vibrio
sp. were found to secrete complex exopolysaccharides having the potential for

broad-spectrum biofilm inhibition and disruption (Abu Sayem et al. 2011). Extracts

from coral associated Bacillus horikoshii (Thenmozhi et al. 2009) and actinomy-

cetes (Nithyanand et al. 2010) inhibit biofilm formation of S. pyogenes. The

exoproducts of marine Pseudoalteromonas impair biofilm formation by a wide

range of pathogenic strains (Dheilly et al. 2010). Most recently, exopolysaccharides

from the marine bacterium Vibrio sp. QY101 were shown to control biofilm-

associated infections (Jiang et al. 2011). Abu Sayem et al. (2011) reported

antibiofilm activity from a newly identified ca. 1,800 kDa polysaccharide, which

has simple monomeric units of α-D-galactopyranosyl-(1!2)-glycerol-phosphate,

against a number of both pathogenic and nonpathogenic strains without bactericidal

effects. This polysaccharide was extracted from a Bacillus licheniformis strain

associated with the marine organism Spongia officinalis. Musthafa et al. (2011)

have shown the antibiofilm potential of ethyl acetate extract of marine Bacillus
sp. SS4 using a static biofilm ring assay. Their study showed a concentration-

dependent reduction in the biofilm-forming ability of PAO1 by these compounds.

Members of the actinomycetes family are a rich source of bioactive compounds

including diverse antibiotics.

Role of QS Molecules

Gram-negative bacteria predominantly use AHLs as autoinducers, which show

variation in the length and oxidation state of the acyl side chain. In V. fischeri,
AHL synthesis occurs when the luxI gene is activated to produce the AHL synthase

enzyme LuxI. When these AHLs reach a threshold intracellular concentration, they

bind to the transcriptional activator LuxR and lead to activation of the luxR gene

set. AHLs are able to freely diffuse in and out of bacterial cells, allowing the total

AHL concentration to correlate to the total bacterial concentration, thus enabling

population density-based control of gene expression. This cascade of events ulti-

mately leads to the control of gene expression resulting in the control of virulence

factor production and biofilm formation and maintenance (Finch et al. 1998). A

huge amount of work has been reported involving the biological consequences of
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chemically modified AHL derivatives in a variety of QS systems. Work from the

Blackwell group has documented the synthesis and identification of a number of

natural and synthetic AHLs with the ability to modulate QS in P. aeruginosa and

Agrobacterium tumefaciens (Geske et al. 2005). They also found two of their most

active synthetic AHLs retarded biofilm formation in P. aeruginosa PA01.

QS in Gram-positive bacteria is predominantly mediated by autoinducing pep-

tides (AIPs) but may not exclusively utilize peptide signaling molecules for com-

munication. Small molecules known as γ-butyrolactones have been identified as

signaling molecules in some species of Streptomyces (Takano et al. 2001). The agr
and TRAP (target of RNA-III activating peptide) QS systems in S. aureus regulate a
number of virulence phenotypes, including biofilm formation. The RNA-III acti-

vating protein (RAP) activates TRAP via phosphorylation, leading to increased cell

adhesion and biofilm formation, in addition to inducing expression of the agr
operon (Fux et al. 2003). It has been demonstrated that the RNA-III inhibiting

peptide (RIP) inhibits phosphorylation of TRAP, leading to reduced biofilm for-

mation (Giacometti et al. 2003).

A small molecule termed autoinducer-2 (AI-2) is one of the putative universal

QS mechanisms shared by both Gram-negative and Gram-positive bacteria. AI-2

molecules are derived from the precursor molecule (S)-4,5-dihydroxy-2,3-

pentanedione (DPD), and the synthase enzyme that drives DPD production has

been found to be conserved in over 55 bacterial species (Waters and Bassler 2005).

An adenosine analogue of DPD was found to block AI-2-based QS without

interfering with bacterial growth. This compound was subsequently shown to affect

biofilm formation in Vibrio anguillarum, Vibrio vulnificus, and V. cholerae
(Brackman et al. 2009).

Indole is a putative universal intercellular signal molecule amongst diverse

bacteria that plays a direct role in the control of biofilm formation (Lee

et al. 2007). Another attractive target for control of biofilm formation is interfering

with c-di-GMP signaling using either c-di-GMP analogues or with small molecules

that interfere with the synthesis or degradation of c-di-GMP (Sintim et al. 2010).

Bis-(3050)-cyclic di-guanylic acid (c-di-GMP) is a second messenger signaling

molecule that is thought to be ubiquitous in bacteria. Diguanylate cyclases

(DGCs) and phosphodiesterases (PDEs) are responsible for the synthesis and

breakdown of c-di-GMP, respectively (Yan and Chen 2010). There is increasing

evidence that the transition between the planktonic and biofilm lifestyle of

P. aeruginosa is regulated via proteins with DGC or PDE activities through control

of c-di-GMP levels (Tamayo et al. 2007). It has also been observed that

exopolysaccharide synthesis (and thus the exopolysaccharide-dependent formation

of biofilms) is regulated by c-di-GMP in various proteobacterial species such as

V. cholera, P. aeruginosa, P. fluorescens, A. tumefaciens, E. coli, and Salmonella
enterica (Ryjenkov et al. 2005).
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Role of Biosurfactants

Many bacteria are capable of synthesizing and excreting biosurfactants with anti-

adhesive properties (Rodrigues et al. 2004; van Hamme et al. 2006). Biosurfactants

are amphihilic biological compounds that are produced extracellularly or intracel-

lularly by a wide variety of microorganisms, which include bacteria, yeasts, and

filamentous fungi (Cameotra and Makkar 2004). These biosurfactants have prom-

ising applications in biomedical sciences (Singh and Cameotra 2004).

Biosurfactants produced by Lactococcus lactis impaired biofilm formation on

silicone rubber (Rodrigues et al. 2004). Surfactin from Bacillus subtilis dispersed
biofilms without affecting cell growth and prevented biofilm formation by micro-

organisms such as Salmonella enterica, E. coli, and P. mirabilis (Mireles

et al. 2001). Valle et al. (2006) demonstrated that E. coli expressing group II

capsules released a soluble polysaccharide into their environment that induced

physicochemical surface alterations, which prevented biofilm formation by a

wide range of Gram-positive and Gram-negative bacteria. Many other researchers

have demonstrated the potential for biofilm control by various other biosurfactants

made by bacteria and fungi (Davey et al. 2003; Walencka et al. 2008). Two

lipopeptide biosurfactants produced by B. subtilis and B. licheniformis have been

shown by Rivardo et al. 2009 to exhibit anti-adhesive activity by selectively

inhibiting biofilm formation of two human pathogenic strains, E. coli CFT073
and S. aureus ATCC29213. Davies and Marques (2009) found that P. aeruginosa
produces cis-2-decenoic acid, which is capable of inducing the dispersion of

established biofilms and of inhibiting biofilm development by B. subtilis, E. coli,
S. aureus, Klebsiella pneumoniae, P. aeruginosa, P. mirabilis, S. pyogenes, and the
yeast C. albicans, when applied exogenously. The authors also suggested that this

molecule is functionally and structurally related to a class of short-chain fatty acid

signaling molecules.

Fracchia et al. (2010) reported biofilm inhibitory activity by a Lactobacillus-
derived biosurfactant against human pathogenic C. albicans. Rufino et al. (2011)

have isolated a biosurfactant rufisan from the yeast Candida lipolytica UCP0988

that exhibited antimicrobial and anti-adhesive activities against many Streptococ-
cus spp. Monteiro et al. (2011a, b) have evaluated the effects of a glycolipid-type

biosurfactant produced by Trichosporon montevideense CLOA72 in the formation

of biofilms in polystyrene plate surfaces by C. albicans CC isolated from the apical

tooth canal. Biofilm formation was reduced up to 87.4 % with use of this

biosurfactant at a 16 mg/mL concentration. This biomolecule did not present any

cytotoxic effects in a HEK 293A cell line at concentrations of 0.25–1 mg/mL. Their

studies indicated a possible application of the referred biosurfactant in inhibiting

the formation of biofilms on plastic surfaces by C. albicans.
Recently, Padmapriya and Suganthi (2013) found antimicrobial and anti-

adhesive activity of a biosurfactant produced by Candida tropicalis and

C. albicans against a variety of urinary and clinical pathogens such as Bacillus,
C. albicans, Citrobacter, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa,
Salmonella, and S. aureus. A study from our group, Singh et al. (2013) has
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demonstrated Candida biofilm disrupting ability by di-rhamnolipid (RL-2) pro-

duced by P. aeruginosa DSVP20.

The antibiofilm activity of a glycolipid biosurfactant isolated from the marine

actinobacterium Brevibacterium caseiMSA19 was evaluated by Kiran et al. (2010)

against pathogenic biofilms in vitro. The disruption of the biofilm by the MSA19

glycolipid was consistent against mixed pathogenic biofilm bacteria. Therefore, it

could be suggested that the glycolipid biosurfactant can be used as a lead compound

for the development of novel antibiofilm agents.

Janek et al. (2012) have recently identified a biosurfactant, Pseudofactin II,

secreted by Pseudomonas fluorescens BD5, the strain obtained from freshwater

from the Arctic Archipelago of Svalbard. Pseudofactin II showed anti-adhesive

activity against several pathogenic microorganisms (E. coli, E. faecalis, Entero-
coccus hirae, S. epidermidis, P. mirabilis, and two C. albicans strains), which are

potential biofilm formers on catheters, implants, and internal prostheses. Up to

99 % prevention was achieved by 0.5 mg/mL pseudofactin II. In addition,

pseudofactin II dispersed preformed biofilms. Pseudofactin II can be used as a

disinfectant or surface coating agent against microbial colonization of different

surfaces, e.g., implants or urethral catheters.

An overview of all the above-discussed strategies to control biofilms is given in

Fig. 5. The targets of each approaches at different stages of biofilms and their

interrelation are depicted.

4.6 Small Molecule Control of Biofilms

Given the prominence of biofilms in infectious diseases, there has been an increased

effort toward the development of small molecules that inhibit and/or disperse

bacterial biofilms through non-microbicidal mechanisms. It will be meaningful to

distinguish molecules that have the ability to affect biofilm development via

non-microbicidal mechanisms, as the pressure on bacteria or fungi to evolve

resistance to these agents will be significantly reduced or even eliminated

(Worthington et al. 2012). Due to the scarcity of known molecular scaffolds that

inhibit/disperse bacterial biofilms, high throughput screening (HTS) has been

employed in attempts to discover leads for new anti-biofilm modulators. Here, we

have briefly summarized the application of chemical databases for the discovery of

lead small molecules, using HTS approaches, which mediate biofilm development.

These approaches are grouped into three steps:

1. The identification and development of small molecules that target one of the

bacterial signaling pathways involved in biofilm regulation

2. Chemical library screening for compounds with antibiofilm activity

3. The identification of natural products that possess antibiofilm activity, and the

chemical manipulation of these natural products to obtain analogues (using

structure activity relationship (SAR) method) with increased activity.
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Natural products provide a diverse array of chemical structures and possess a

plethora of biological activities. A number of natural products that possess the

ability to inhibit or disperse bacterial biofilms have been used as the starting points

for medicinal chemistry programs in which synthetic manipulation of the natural

product scaffold has allowed for the design of more efficacious compounds. Much

of the natural product inspiration for these programs has come from compounds

isolated from plants and marine organisms. It is known that QS pathways heavily

influence the formation of biofilms, in addition to the production of other virulence

factors. A diverse range of biomolecules serve as the facilitators for QS systems in

bacteria. Therefore, extensive research in this area has produced a number of

analogues with the ability to modulate QS-dependent enzymes. These molecules

compose the vast majority of compounds thus far investigated for biofilm control.

AHLs have served as one of the primary scaffolds studied over the past 30 years for

the design of potential biofilm inhibitors (Geske et al. 2008). A considerable

amount of work has been published involving the biological consequences of

chemically modified AHL derivatives in a variety of QS systems and reviewed by

Worthington et al. (2012). Here, we focus on using small molecules to derive novel

compounds capable of controlling biofilm-associated infections (Fig. 6).

Fig. 5 Depiction of targets of various approaches acting at different stages of biofilm growth and

their interrelationship to control biofilm infections
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4.6.1 Application of Chemical Library Screening

One of the first reports detailing the screening of a large library of compounds with

the objective of identifying novel small molecules that possessed antibiofilm

activity was reported from Biosignals (Sydney, Australia). It has developed over

200 furanone-like compounds and evaluated them as biofilm inhibitors in preven-

tive therapy. Other natural product compounds from plants make up the material for

Sequoia Sciences (San Diego, CA) to design biofilm inhibitors. They have devel-

oped a high-throughput strategy for extracting, purifying, and structurally charac-

terizing libraries of natural product compounds from plants. They generated a

library of over 150,000 natural compounds for evaluation as antibiofilm compounds

(Sachachter 2003). In 2005, workers from the Wood group (Ren et al. 2005)

screened 13,000 compounds. The study revealed a hit (0.08 %), identified as ursolic

acid 57, as a compound which effectively inhibited E. coli biofilm formation at

concentrations as low as 22 μM without affecting growth. In the same year, the

Hergenrother group reported the identification of iron salts as effective

nonantibiotic inhibitors and disruptors of P. aeruginosa biofilms from a screen of

over 4,500 compounds which belonged to the University of Illinois Marvel Library

Compound Collection (MLCC) (Musk et al. 2005).

Work from the Blackwell group has documented the synthesis and identification

of a number of natural and unnatural AHLs with the ability to modulate QS in

Fig. 6 Principle of small molecule high throughput screening from natural products for develop-

ment of anti-biofilm agents
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P. aeruginosa and Agrobacterium tumefaciens (Geske et al. 2005). They also

demonstrated that two of their most active synthetic AHLs could retard biofilm

formation in P. aeruginosa PA01. Other research that includes the modification of

AHLs to discern their effects on QS and biofilm formation in P. aeruginosa comes

from the Suga group. The work exploited the synthesis of a 96-member library

constructed through solid phase protocols to mimic AHLs by replacing the

homoserine lactone moiety with a variety of functionalities. A noteworthy com-

pound identified within this study was AHL derivative 8, which had no effect on

biofilm growth, yet elicited a noticeable change in the biofilm morphology of

P. aeruginosa PA01 (Smith et al. 2003a, b). Analogues of P. aeruginosa AHLs in

which the lactone functionality was replaced by a ketone had additional

difluorination between the β-keto amide positions (Glansdorp et al. 2004).

Junker and Clardy (2007) have developed a HTS method for small molecule

inhibitor of P. aeruginosa biofilms at the Institute of Chemistry and Cell Biology-

Longwood (ICCB-L) at Harvard Medical School, Boston, MA (http://iccb.med.

harvard.edu/). They have obtained 66,095 compounds, from natural products of

microbial or plant origin and also some commercial chemical compounds, to

identify those that prevent biofilm formation without affecting planktonic bacterial

growth. The screen is a luminescence-based attachment assay that has been vali-

dated with several strains of P. aeruginosa and compared to a well-established but

low-throughput crystal violet staining biofilm assay. They have determined the

potencies of 61 compounds against biofilm attachment and have identified 30 com-

pounds that fall into different structural classes as biofilm attachment inhibitors

with 50 % effective concentrations of less than 20 μM. The most active compound

discovered was shown to possess an IC50 value of 530 nM for biofilm inhibition.

This makes this compound as one of the most active biofilm modulators ever

disclosed against either Gram-positive or Gram-negative bacteria. Their study has

highlighted these small-molecule inhibitors for identification of their relevant

biofilm targets or potential therapeutics for P. aeruginosa infections.

A structure-based virtual screen (SB-VS) for the identification of putative QS

inhibitors was carried out using a focused database comprising compounds that

possess structural similarities to the known QS inhibitors furanone C30, patulin, the

P. aeruginosa LasR natural ligand (3-oxo-C12-AHL 5), and a known QS receptor

agonist TP-1, (Yang et al. 2009). This screen led to the discovery of three com-

pounds, which were all recognized drugs, salicylic acid, nifuroxazide, and

chlorzoxazone, and were subsequently shown to significantly inhibit

QS-regulated gene expression at concentrations at which they did not affect bacte-

rial growth. In addition to affecting QS regulated virulence factor production, these

compounds were shown to affect biofilm formation by PA01. Screening of approx-

imately 66,000 compounds and natural product extracts from the Center for Chem-

ical Genomics at the University of Michigan to identify compounds that affected

induction of a V. cholerae c-di-GMP-inducible transcriptional fusion led to the

discovery of a novel benzimidazole (Sambanthamoorthy et al. 2011). This com-

pound was examined for its ability to inhibit biofilm formation by a number of

pathogenic bacterial strains. Compound 61 was shown to be a broad spectrum

Current and Emergent Control Strategies for Medical Biofilms 147

http://iccb.med.harvard.edu/
http://iccb.med.harvard.edu/


inhibitor of biofilm formation, significantly inhibiting biofilm formation by

P. aeruginosa (CF-145), K. pneumoniae, Erwinia amylovora, and Shigella boydii
at 100 μM, by MRSA USA300, and by S. aureus Newman at 25 μM, using the

minimum biofilm eradication concentration (MBEC) static assay, without affecting

bacterial growth. These signaling molecule derivatives are particularly important

because the biological activity of nearly every compound in this class is not driven

by microbicidal properties.

5 Conclusions

Biofilms have great importance for public health because of their role in certain

infectious diseases and their importance in a variety of device-related infections.

Most of our understanding of infections is based on research that has examined free-

living organisms. The results do not necessarily apply to biofilm organisms, since

metabolic and synthetic characteristics of free-living organisms can change when

they assume the biofilm mode of growth. Microbial adhesion and biofilm formation

are major concerns in control strategies. Drug resistance, virulence, and pathoge-

nicity of microorganisms are often enhanced when growing in a biofilm, and new

strategies are therefore required to control biofilm formation and development. A

greater understanding of biofilm processes should lead to novel, effective control

strategies for biofilm control and a resulting improvement in disease management.

The similarity of QS processes to ligand-receptor binding could be exploited as a

guide to direct novel antibiotic drug design efforts based on standard pharmaco-

logic principles and drug discovery processes. The unique nature of their mecha-

nism should provide these new antibiotics with greater activity against currently

resistant bacteria. In addition, plant and microbial products in combination with

other antimicrobial strategies such as antibiotics or photodynamic inactivation

could provide an effective bactericidal tool for the treatment of various bacterial

and yeast infections. Furthermore, development of high throughput methods to

identify natural compounds or their analogues will be a promising strategy to

overcome the problem of biofilm management.
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The Effect of Plasmids and Other

Biomolecules on the Effectiveness

of Antibiofilm Agents

L.C. Gomes, P.A. Araújo, J.S. Teodósio, M. Simões, and F.J. Mergulhão

Abstract This chapter describes the impact of cell transformation with a recom-

binant plasmid and the effects of the presence of selected biomolecules (bovine

serum albumin—BSA, alginate, yeast extract and humic acids) on biofilm resis-

tance to quaternary ammonium compounds (QACs), which are often used in

medical applications to prevent microbial contamination. Two case studies are

presented, the first concerning cell transformation with recombinant plasmids and

the second addressing potential interfering substances. In the first case study, the

pET28 and pUC8 plasmids were used to transform Escherichia coli JM109(DE3),

and biofilm formation, removal and antimicrobial susceptibility to the cationic

biocide benzyldimethyldodecylammonium chloride (BDMDAC) were assessed.

Plasmid-bearing cells formed biofilms with higher cell densities, whereas

non-transformed cells had higher viabilities. It was found that biocide treatment

was not efficient for biofilm removal and that the thickness of the biofilms formed

by non-transformed cells is less affected by the treatment, a fact that can be

associated with a higher protein content of the biofilm matrix. Despite being

unsuccessful at removing the biofilms, BDMDAC was very effective at killing

the cells since complete inactivation was attained for transformed and

non-transformed strains. In the second case study, it was possible to conclude that

BSA, alginate and yeast extract resulted in mild interferences in the antibacterial

activity of benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide

(CTAB) against Bacillus cereus and Pseudomonas fluorescens. Humic acids have a

severe impact on the activity of these QACs and can even trigger metabolic

activation in some circumstances. These observations suggest that the presence of

the tested biomolecules should be taken into account when using QACs as disin-

fection agents.
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1 Introduction

Biofilms cause serious problems in environmental, industrial and biomedical fields.

Nevertheless, the biofilms with the worst reputation are those found in the health

sector (Bryers 2008), since more than 50 % of all microbial infections in humans

are believed to be linked to the formation of biofilms (Costerton et al. 1999). This

chapter focuses on biofilms made by Bacillus cereus, Escherichia coli and Pseu-
domonas fluorescens, which can be hugely problematic in both medical and indus-

trial environments.

With over 250 serotypes, the Gram-negative bacterium E. coli is a highly

versatile organism ranging from harmless gut commensal to a dangerous pathogen

(Beloin et al. 2008). Its frequent community lifestyle and the availability of a wide

array of genetic tools have contributed to establish E. coli as an excellent model

organism for biofilm studies (Beloin et al. 2008; Wood 2009). In the health sector,

pathogenic strains of E. coli are responsible for 70–95 % of urinary tract infections,

one of the most common bacterial diseases (Dorel et al. 2005; Jacobsen et al. 2008).

These infections are especially frequent in cases of catheterisation (due to biofilm

development on the indwelling catheters) where the incidence of infection increases

5–10 % per day (Dorel et al. 2005). B. cereus also exists in hospital environments

and can attach to the surface of catheters and cause persistent and chronic infec-

tions, especially among immunosuppressed patients (Kuroki et al. 2009; Bottone

2010). P. fluorescens is an unusual agent for disease in humans. Nonetheless, this

bacterium demonstrates haemolytic activity and it has been known to infect donated

blood (Gibb et al. 1995). Other strains from the Pseudomonas genus are notorious
for their impact in medical settings. For example, Pseudomonas aeruginosa has

been shown to form biofilms on the tissues of the cystic fibrosis lung (Govan and

Deretic 1996) and on abiotic surfaces such as contact lenses and catheter lines

(Miller and Ahearn 1987; Nickel et al. 1985).

The biofilm mode of growth leads to a large increase in resistance to antimicro-

bial agents, including antibiotics, biocides, and preservatives, compared with cul-

tures grown in suspension (Stewart and Costerton 2001; Brown and Smith 2003). In

fact, when cells exist in a biofilm, they become 10 to 1,000 times less susceptible to

the effects of antimicrobial agents. Some factors that contribute to biofilm resis-

tance to antibiotics and biocides include physical or chemical diffusion barriers to

agent penetration within the biofilm matrix, slow growth rate of biofilm cells due to

nutrient limitation, activation of the general stress response, and the presence of

“persister” cells or antibiotic-resistant small-colony variants (Mah and O’Toole

2001). This high level resistance makes most device-related infections difficult or

impossible to eradicate by conventional antimicrobial chemotherapy. Therefore,

there is now a perceived need to elucidate resistance mechanisms and develop

effective antibiofilm strategies.

In the first case study presented in this chapter, the effects of a QAC—

benzyldimethyldodecylammonium chloride (BDMDAC)—on transformed and

non-transformed E. coli cells were assessed regarding their biofilm removal
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capacity and bacterial inactivation. Some biocides, such as the QACs, are used

externally on the skin to prevent or limit microbial infection (antiseptics and topical

antimicrobials) and for preoperative skin disinfection and are incorporated into

pharmaceutical products (preservatives) to avoid microbial contamination (Russell

2003). The cationic biocide BDMDAC has already demonstrated strong

antibacterial activity, causing damage of the cytoplasmic membrane and the con-

sequent release of essential intracellular components (Ferreira et al. 2011). In the

second case-study presented on this chapter, the influence of potential interfering

substances (bovine serum albumin—BSA, alginate, yeast extract and humic acids)

was studied on the antimicrobial activity of other two QACs—benzalkonium

chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB)—against

B. cereus and P. fluorescens, as it was previously shown that the presence of

organic matter can affect the efficiency of biocides (Russell 2003). The biomole-

cules used throughout this experiment are recognised as potentially interfering

agents in the European Standard EN-1276 (1997) and biofilm matrix components

that have an important role in biofilm resistance against antimicrobial agents

(Cloete 2003).

1.1 The Influence of Plasmids on Biofilm Formation
and Resistance

A plasmid is an extrachromosomal, circular and double-stranded DNA molecule

that carries its own origin of replication. Under natural conditions, many plasmids

are transmitted to new hosts by conjugation, a procedure by which donor cells can

transfer genes to recipient cells. However, the plasmids used in this work—pET28

and pUC8—are incapable of directing their own conjugation because they lack the

tra gene and therefore they are non-conjugative plasmids (Ehlers 2000).

The pET28 vector (Fig. 1) is a 5.4 kb plasmid harbouring a kanamycin resistance

gene and a pMB1 origin of replication, and is usually present in about 20–60 copies

per cell (Prather et al. 2003). This vector is used for recombinant protein expression

using the transcriptional promoter and termination sequences from phage T7.

Recombinant proteins are expressed as fusions with histidine residues to enable

purification with a nickel affinity column. Expression of the T7 polymerase that will

transcribe the cloned gene is achieved through the inducible lacUV5 promoter that

is present in the host cell chromosome via a lysogenic insertion. To prevent “leaky”

expression from this promoter, a copy of the lacI repressor is also present on the

plasmid to reduce toxicity effects related with the expression of the cloned gene

prior to induction.

The pUC8 vector (Fig. 2) is a 2.7 kb plasmid containing the blaTEM-1 ampicillin-

resistance gene (Paterson and Bonomo 2005) and a mutated pMB1 origin of

replication, which is responsible for its high copy number (500–700 copies per

cell) (Prather et al. 2003). It also contains the β-lactamase promoter to transcribe the
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resistance gene and a fragment of the lacZ gene for α-complementation. When a

gene is cloned in this plasmid using the existing multiple cloning site, it disrupts the

lacZ fragment. When this recombinant plasmid containing the cloned gene is

transformed into suitable host cells, the colonies can be readily selected through a

procedure called “blue/white” screening.

1.2 Physiological Effects of the Presence of Plasmids

Plasmid presence can have a variety of effects on host physiology. Some investi-

gations have considered plasmids as “cellular parasites” (Diaz Ricci and Hernández

2000) since it was recognised that the introduction and expression of foreign DNA

in a host organism often changes the metabolism of that organism as a consequence

of the “metabolic burden” (Glick 1995). The term “metabolic burden” (sometimes

also called “metabolic load” or “metabolic drain”) is defined as the amount of host

cell resources (raw materials and energy) that is required to maintain and express

foreign DNA (Glick 1995). Concerning the physiological alterations at culture

level, several studies with E. coli have shown that plasmid-bearing cells exhibited

Fig. 1 Plasmid pET28

map. This plasmid harbours

(1) a pMB1 origin of

replication (Ori), (2) a

repressor for the lac
promoter (lacI), (3) a
transcriptional promoter

from the T7 phage

(T7 promoter), (4) an

affinity purification tag

(HIS-Tag), (5) a T7

transcriptional terminator

(T7 terminator), and (6) a

kanamycin resistance gene

(Kan)

Fig. 2 Plasmid pUC8 map.

This plasmid harbours (1) a

mutated pMB1 origin of

replication (Ori), (2) a

lactose promoter [P(Lac

promoter)], (3) an

α-complementation site for

blue/white screening, (4) a

β-lactamase promoter [P

(Bla)], and (5) an ampicillin

resistance gene (Amp)

164 L.C. Gomes et al.



lower specific growth rates than plasmid-free cells (Cheah et al. 1987; Ryan

et al. 1989; Khosravi et al. 1990; Seo and Bailey 1985; Birnbaum and Bailey

1991; Ow et al. 2006; Flores et al. 2004), resulting in lower biomass yields at the

end of fermentation (Ow et al. 2006). The larger the plasmid size (Khosravi

et al. 1990; Ryan et al. 1989; Cheah et al. 1987) or higher the copy number (Seo

and Bailey 1985; Birnbaum and Bailey 1991), the more severe will be the impact on

cell growth. Cheah et al. (1987) compared the behaviour of plasmid pUC8 and four

recombinant derivatives containing inserts of different sizes. Although growth in

log phase was unaffected by plasmid size, maximum cell density decreased as

plasmid size increased and, with the largest plasmid, cell death was accelerated

once the stationary phase of cell growth was reached (Cheah et al. 1987). Growth

retardation in plasmid-bearing cells is possibly caused by the redirection of intra-

cellular resources such as amino acids, nucleotides and metabolic energy to support

plasmid-related activities and by inhibitory mechanisms on host cell metabolism

(Simões et al. 2005b; Andersson et al. 1996). At the cellular level, alterations in the

amount of E. coli cell proteins and ribosomal components have been shown to occur

after the introduction of multicopy plasmids (Birnbaum and Bailey 1991). The

levels of stress proteins were higher for recombinant strains, while metabolic

enzymes showed lower values. Cell filamentation can also occur during plasmid

DNA production in E. coli, causing a decrease in growth rate or, eventually, no

further cell division, leading to low biomass and plasmid DNA productivity

(Teodósio et al. 2012). Another detrimental effect of the metabolic burden is a

reduced cellular viability in plasmid-bearing cells (Diaz Ricci and Hernández

2000), possibly as a result of the increased stress suffered by these cells. Nonethe-

less, it is clear that the metabolic burden associated with the plasmid alone is small

when compared to the effect of recombinant protein expression (Andersson

et al. 1996; Bentley et al. 1990; Da Silva and Bailey 1986).

We may think that plasmids will always affect hosts negatively because they

rarely encode functions that are absolutely necessary for their growth, but that is not

necessarily true. In nature, plasmids usually provide cells with a growth advantage,

showing that under certain culture conditions plasmids can positively affect host

performance (Diaz Ricci and Hernández 2000). Rhee et al. (1994) observed that

E. coli JM109 displays a better growth and a higher metabolic activity in a minimal

media when carrying three plasmids than without plasmids. Diaz Ricci and

Hernández (2000) have confirmed those results using different culture conditions

and other plasmids. An additional report suggested that the presence of a low copy

number plasmid, encoding multiple antibiotic resistance, did not affect the maxi-

mum growth rate (Klemperer et al. 1979).

The close proximity of bacterial cells in biofilms provides an excellent environ-

ment for the exchange of genetic material (Ong et al. 2009) carried by the plasmid.

Thereby, the effects of E. coli plasmids on biofilm formation have been described

on numerous studies, the vast majority of which have used conjugative plasmids

(Ghigo 2001; Reisner et al. 2003, 2006; May and Okabe 2008; Yang et al. 2008;

Król et al. 2011; Norman et al. 2008). Ghigo (2001) provided the first evidence that

natural conjugative plasmids induce the biofilm formation of different E. coli K-12
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strains, despite that most laboratory E. coli K-12 strains are poor biofilm formers.

Interestingly, Ghigo’s results suggest that the conjugative pili responsible for the

horizontal transfer of the plasmid may also act as cell adhesins, which connect the

cells and stabilise biofilm structures in hydrodynamic biofilm systems (Ghigo

2001). These results were supported by Reisner et al. (2003) who noted that biofilm

formation was most common for natural E. coli isolates that harboured conjugative
plasmids. Their data suggested that initial attachment to the surface was not

improved in the presence of a derepressed IncF plasmid; however, the difference

in biofilm development between plasmid-free and plasmid-carrying strains became

pronounced after 20 h. Plasmid-carrying strains continued to accumulate biomass

and give rise to a dramatically different biofilm architecture (Reisner et al. 2003).

Later, May and Okabe (2008) reported that the conjugative factor of F plasmid was

involved in colonic acid and curli production during biofilm formation, which

promoted cell–surface adherence.

Few studies have addressed the effect of non-conjugative plasmids on biofilm

formation. E. coli O157:H7 carries a 92-kb virulent and non-conjugative plasmid

(pO157) (Burland et al. 1998; Lim et al. 2010b) that influences biofilm formation

and architecture (Lim et al. 2010a). Under smooth flow conditions, pO157 enabled

biofilm development through increased production of extracellular polymeric sub-

stances (EPS) and generation of hyperadherent variants (Lim et al. 2010a). It has

been reported (Huang et al. 1993, 1994) that when a plasmid containing a mutated

pMB1 origin (the same as in pUC8) was transformed into E. coli DH5α, the
plasmid-bearing cells formed biofilms with a higher cell density when compared

to non-transformed cells. Conversely, Gallant et al. (2005) revealed that strains of

E. coli carrying TEM-1-encoding plasmid vectors (like that used in this work) grew

normally but showed reduced adhesion and biofilm formation.

1.3 The Effects of Potential Interfering Substances
on Biofilm Resistance

It is assumed that organic material can potentially interfere with the microbiocidal

activity of disinfectants and other antimicrobial compounds (Otzen 2011; Aal

et al. 2008; Russell 2008; Stringfellow et al. 2009). This interference is usually

due to the reaction between the biocide and the organic matter, reducing the

concentration of antimicrobial agent for attacking microorganisms. Another possi-

bility is that organic material protects microorganisms from biocide action (Russell

2008). Consequently, longer contact times and/or higher disinfectant dosages are

needed to maintain biocide effectiveness when organic matter is present (Ruano

et al. 2001).

Many references related to the study of interfering substances can be found in

literature; however, most refer to the effects caused by BSA and water hardness.

Aal et al. (2008) evaluated the bactericidal activity of disinfectants referred in the
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German Veterinary Society guidelines as references for testing disinfectants used in

the dairy and food industries. In order to simulate the conditions found in real life,

they used low fat milk as an organic load and reported the significance of choosing

an appropriate disinfectant because the inclusion of a challenging substance

(organic material) is important to access the proper bactericidal activity. Bessems

(1998) demonstrated that a QAC tested on three microorganisms (a Gram-positive,

a Gram-negative bacterium and a yeast) had a similar killing rate in the absence of

interfering substances. After the inclusion of 17dH water hardness, a strong reduc-

tion of the killing activity was found for the Gram-negative bacteria; however, the

same behaviour was not observed for the other two microorganisms. Jono

et al. (1986) assessed the effect of dried yeast extract and human serum on the

activity of BAC, concluding that the bactericidal activity of the QAC was inhibited

by solutions of 2.5 % dried yeast extract and 10 % human serum. The inhibition by

yeast extract was more pronounced than human serum at the given concentrations.

They also concluded that the presence of dried yeast increased the concentration of

biocide necessary to kill bacteria.

In the treatment of oral infections, one potential factor reducing the activity of

the disinfecting agents is also the chemical environment of the root canal. The root

canal system contains a complex mixture of organic and inorganic compounds.

Portenier et al. (2001) showed that a number of organic compounds, including BSA,

reduced the antimicrobial effectiveness of root canal medicaments (calcium

hydroxide, chlorhexidine and iodine potassium iodide). Later, Pappen

et al. (2010) revealed that high concentrations of BSA significantly decreased the

antimicrobial activity of sodium hypochlorite against oral microorganisms.

2 Case Studies

2.1 Case Study 1: The Influence of Plasmids pET28
and pUC8 on Biofilm Formation and Resistance

The influence of the presence of a non-conjugative plasmid on the biofilm-forming

and resistance capacity of E. coli cells was studied in a flow cell system (Fig. 3), as

described by Teodósio et al. (2012). The planktonic cell concentration was similar

for transformed and non-transformed strains, but the number of sessile cells was

higher for the plasmid-bearing strains when compared to the non-transformed strain

(Teodósio et al. 2012). This observation has also been reported by other authors

(Huang et al. 1993, 1994). Diaz Ricci and Hernández (2000) showed that, in certain

conditions, plasmids can positively affect cell growth of E. coli JM109, as it did

here in regard to biofilm. The percentage of viable biofilm-associated cells was

about 2-fold lower for the transformed strains (Teodósio et al. 2012). Previous

studies suggest that cells bearing a plasmid may suffer from a metabolic burden

resulting from plasmid maintenance, replication and/or protein expression (Glick

The Effect of Plasmids and Other Biomolecules on the Effectiveness of. . . 167



1995; Ow et al. 2006; Wang et al. 2006). A detrimental effect of the metabolic

burden was a reduced cellular viability in plasmid-bearing cells, an outcome

previously mentioned by Diaz Ricci and Hernández (2000), possibly as a result

of the stress suffered by these cells. An increase in glucose metabolism in

transformed cells may have been accompanied by the increase in ATP and fermen-

tation by-products, and this accumulation of end-products caused metabolic stress

(Diaz Ricci et al. 1991, 1992). As it is known that several stress conditions favour

biofilm formation, the conjugation of the above-mentioned stress factors may have

stimulated biofilm formation by the transformed strains as thicker biofilms were

obtained in these cases (Teodósio et al. 2012).

Biofilm susceptibility experiments were performed using a quaternary ammo-

nium compound—BDMDAC—that was circulated in the system (Fig. 3) at the

same flow conditions used for biofilm formation (Teodósio et al. 2012). The tested

biocide treatment was not sufficient for complete biofilm removal. It seems that the

biofilms formed by the non-transformed strain were more resistant to this treatment,

although the total number of cells was relatively constant for all tested strains

during the treatment (Teodósio et al. 2012). In a previous study (Simões

et al. 2005a), the same concentration of a quaternary ammonium compound was

also ineffective in removal of Pseudomonas biofilms. Simões et al. (2005a) dem-

onstrated that the presence of BAC increased biofilm mechanical stability. On the

Fig. 3 Schematic

representation of the flow

cell system used to study the

effect of non-conjugative

plasmids on the biofilm-

forming and resistance

capacity of E. coli strains
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other hand, it is known that the antimicrobial mode of action of certain cationic

surfactants as QACs has been attributed to their positive charge, which promotes an

electrostatic interaction with negatively charged sites on cell membrane (Cloete

et al. 1998). So, it is believable that electrostatic interactions could increase cell-to-

cell cross-linking by preventing cell removal, resulting in more compact biofilms.

Possibly, the QAC cations may also cross-link the anionic groups of biofilm poly-

mers (such as polysaccharides), providing greater binding force in a developed

biofilm. The content of the main EPS components in bacterial biofilms (proteins

and polysaccharides) was analysed, and a higher protein content and similar

polysaccharide percentage was determined for the non-transformed strain

(Teodósio et al. 2012). The results showed that protein content is probably a better

indicator for biofilm resistance than the polysaccharide composition, as suggested

by Pereira and Vieira (2001).

Despite being unsuccessful at removing the biofilms, BDMDAC was very

effective on killing the cells since complete inactivation was attained for all the

strains. However, cells transformed with pUC8 were the most resistant to inactiva-

tion with this biocide, indicating that antimicrobial susceptibility of biofilms can be

plasmid dependent (Teodósio et al. 2012).

2.2 Case Study 2: The Effects of the Presence of BSA,
Alginate, Yeast Extract and Humic Acids on Biofilm
Resistance

The antibacterial activity of BAC, CTAB and their combination was determined by

respirometry (Simões et al. 2005b) in the absence and presence of four potentially

interfering substances (Araújo et al. 2013). Higher inactivation rates were observed

for B. cereus when compared to P. fluorescens at the same QAC concentration.

B. cereus is more susceptible due to the fact that it is a Gram-positive bacterium that

lacks an outer membrane, which typically provides increased protection to Gram-

negative bacteria (Araújo et al. 2013). This result was also reported by Lawrence

(1950), who has shown that Gram-positive bacteria are more affected by cationic

surfactants because of their higher ratio between acidic and basic groups,

e.g. nucleus and enzyme systems, than Gram-negative bacteria.

The selected interfering substances influenced the antimicrobial activity of the

QACs to some extent. The inactivation of B. cereus was not significantly affected

by the presence of any interfering substance, except that the presence of humic

acids increased concentrations necessary for total inactivation (Araújo et al. 2013).

The antimicrobial action of the QACs against P. fluorescens was not significantly
influenced by the presence of most potential interfering substances, except for

humic acids, and the antimicrobial activity of the QACs against the bacterial

consortium was significantly affected by the presence of the tested interfering

substances (Araújo et al. 2013). Humic acids were the interfering substances that
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had the most notorious effect in reducing the surfactant activity. Ishiguro

et al. (2007) reported that cationic surfactants bind intensely to humic substances

and Koopal et al. (2004) also verified the formation of complexes of humic acid-

cationic surfactant.

Respiratory activity potentiation happened when the QACs were used on

P. fluorescens and the bacterial consortium in the presence of humic acids and

yeast extract (Araújo et al. 2013). Humic acids were proposed to replace synthetic

surfactants in industrial applications (Visser 1985), so it is possible that their

inclusion in a solution of QACs may interfere with the chemical characteristics of

the solution, leading to an apparent reduced antimicrobial efficacy. Since QACs are

membrane active agents, their use at sub-lethal concentrations could improve

membrane permeability and consequently the nutrient influx. Humic acids might

be broken down to smaller molecules that could be utilised by cells as a carbon

(Camper 2004) or nutrient source (Salati et al. 2011). In fact, it was found that the

growth rates of many anaerobic and aerobic microorganisms are increased by

humic substances that stimulate enzyme activity (Hartung 1992; Pouneva 2005).

In a similar way, yeast extract is a nitrogen source widely used as component of

growth media (Hakobyan et al. 2012).

3 Conclusions

The main aim of this work was to analyse the impacts of cell transformation with a

recombinant plasmid and also the presence of organic compounds on the antimi-

crobial activity of different biocides. In the case of plasmids, biocide treatment

results indicate that transformed cells are more resistant to short exposure periods

and that BDMDAC is ineffective for E. coli biofilm removal but effective for

biofilm inactivation. This result can be explained by a high protein content of the

biofilm formed by the plasmid-free strain. From the tested interfering substances,

humic acids have the most severe impact on the biocide activity, even causing

metabolic activation in some circumstances. These results highlight the importance

of specific biomolecules on the efficacy of biocides that are currently used in

medical applications.
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Aal S, Hunsinger B, Böhm R (2008) Determination of the bactericidal activity of chemical

disinfectants bacteria in dairies according to the DVG-guidelines. Hyg Med 33:463–471

Andersson L, Yang S, Neubauer P, Enfors S-o (1996) Impact of plasmid presence and induction on

cellular responses in fed batch cultures of Escherichia coli. J Biotechnol 46:255–263
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Antimicrobial Coatings to Prevent Biofilm

Formation on Medical Devices

Phat L. Tran, Abdul N. Hamood, and Ted W. Reid

Abstract Under different environmental conditions, bacteria colonize and develop

biofilms on diverse surfaces including those of medical devices. The development

of biofilms on medical devices is one of the most serious challenges that the

healthcare systems face. In response, various methods have been developed to

prevent biofilm formation on such devices. In this chapter, we discuss different

strategies designed to prevent biofilm formation on three medical devices: central

venous catheters, urinary tract catheters, and contact lenses. These strategies are

based on modifying the surface of these devices by either coating or impregnating

them with a variety of antimicrobial agents. For central venous catheters, we

describe coating with silver, chlorhexidine silver sulfadiazine, or organoselenium.

For urinary tract catheters, we describe coating with hydrogel, silver, triclosan,

gendine, nitric oxide, and antibiotics. We also describe novel approaches to prevent

biofilm development on urinary tract catheters including the utilization of quorum-

sensing inhibitors and biological coatings (bacteria or bacteriophages). For contact

lenses, we discussed coating with either a non-covalent coating (furanones, silver,

or polyquaternium compounds) or a covalent coating (furanones, polyquaternium

compounds, cationic peptides, or organoselenium). We review the mechanism

(s) through which each agent inhibits biofilm development and the influence of
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the material from which the medical device was made on the quality of coating

formed by different agents on these devices. Additionally, we review different

in vitro assays, animal models for biofilm development, and clinical trials used to

assess the effectiveness of each agent and the rate of success of each coating based

on these assessments. Finally, we summarize any reported toxicity associated with

these coatings.

1 Introduction

Biofilms are microbially derived sessile communities in which the cells are irre-

versibly attached to a substratum, interface, or to each other (Donlan and Costerton

2002). Within the biofilm, bacteria are embedded within an extracellular polysac-

charide matrix (EPS) (Donlan and Costerton 2002). The growth as well as the

expression of different bacterial genes within the biofilm is different from those of

their free-living counterpart (Donlan and Costerton 2002). Available evidence,

from studies performed on Pseudomonas aeruginosa, suggests that biofilms

develop in four stages: reversible attachment, irreversible attachment, maturation,

and dispersion (Sauer et al. 2002). In the reversible attachment, P. aeruginosa
attaches to a substrate using its polar flagellum (Sauer et al. 2002). During irre-

versible attachment P. aeruginosa becomes nonmotile, and this transition involves

the development of bacterial clusters (Sauer et al. 2002). These bacterial clusters

will develop and their thickness increases during the maturation stage (Sauer

et al. 2002). During maturation, pores and channels develop within the biofilm.

During the dispersion stage, some bacteria detach from their biofilm structure.

Within the biofilm, microorganisms are highly resistant to different antimicrobial

agents including antibiotics, germicides, and disinfectants (Sauer et al. 2002).

Among the different mechanisms that contribute to their resistance are the ability

of the EPS to reduce the penetration of antimicrobial agents; the alternation in the

growth of microorganisms within the biofilms; and the physiological changes that

are induced by the alternation in the growth mode (Suci et al. 1994; Duguid

et al. 1992; Desai et al. 1998).

Biofilm develops on numerous medical devices causing extensive medical and

economical losses. Among these medical devices are the following: urinary cath-

eters, central venous catheters, prosthetic heart valves, contact lenses (CLs), contact

lens cases, dental unit water lines, and intrauterine devices. Therefore, medical

devices that prevent or significantly reduce biofilm development are urgently

needed. The most successful approach so far has been coating the medical device

surface with antimicrobial agents. In this chapter, we describe different strategies

that were developed to coat these medical devices (urinary catheters, central venous

catheters, contact lenses, and contact lens cases) with different antimicrobial

agents.
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2 Central Venous Catheters

2.1 Catheter-Related Blood Stream Infections

Central venous catheters (CVCs) are used in patient management including chron-

ically ill patients and patients requiring acute or long-term medical care (Novikov

et al. 2012). They are used to deliver medications and nutritional support that

cannot be provided solely through peripheral venous catheters and to measure

different hemodynamic parameters (Maaskant et al. 2009). CVCs were primarily

used in intensive care units (Hewlett and Rupp 2012). However, currently CVCs are

used in other healthcare settings, as well as long-term care facilities, home health

care, and outpatient hemodialysis centers (Hewlett and Rupp 2012). Catheter-

related blood stream infections (CRBSIs) result in significant morbidity and mor-

tality and a tremendous increase in healthcare cost (Hewlett and Rupp 2012). A

recent epidemiology study indicated that the mortality rate associated with central

venous catheter-related infections may reach as high as 36 % (Akoh 2011). It is

estimated that in the USA, 80,000 CRBSIs occur in intensive care units each year

(Mermel 2000), and there are a total of 250,000 cases/year if entire hospitals are

considered (Maki et al. 2006). Microbial pathogens may access and colonize the

external surface of short-term intravenous catheter through patients’ skin at the

insertion sites (Mermel 2011). The pathogens may later colonize the luminal

surfaces of the catheters and cause blood stream infections (Hewlett and Rupp

2012). Although other routes of inoculation are thought to be involved less fre-

quently, CRBSIs can also be caused by hematogenous seeding of the catheter from

a distant site or by infusion of a contaminated substance (Hewlett and Rupp 2012).

The surface of the central venous catheter is very suitable for the colonization of

different microbial pathogens (Casey et al. 2008). Once inserted, the catheter

surface is covered by a film of different host proteins including fibrin, collagen,

fibrinogen, elastin, laminin, and fibronectin (Vaudaux et al. 1994). All these factors

facilitate the colonization of microbial pathogens and the development of biofilm

on both the external and internal surfaces of the catheter.

The most commonly isolated microorganism from the blood of patients with

catheter-related blood stream infections are the following: coagulation negative

staphylococci, Staphylococcus aureus, enterococci, and other bacteria that are

commonly found on skin (Betjes 2011; O’Grady et al. 2011). The mortality rate

among patients on dialysis who become infected with S. aureus CRBSIs may reach

20 % (Betjes 2011). Gram-negative pathogens including P. aeruginosa and

Acinetobacter baumannii may be associated with CRBSIs but to a lesser degree

than Gram-positive species (Prospero et al. 2006; Miller and O’Grady 2012).

Different antimicrobial agents have been either coated or incorporated into the

polymer of CVCs, and the efficacy of these agents in inhibiting either microbial

colonization or the incidence of catheter-related blood stream infections was

evaluated, as is discussed below.
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2.2 Antimicrobial Coatings of CVCs

2.2.1 Silver

Several clinical trials demonstrated that silver impregnated central venous catheters

did not significantly reduce the rate of catheter colonization and the incidence of

CRBSIs (Dunser et al. 2005; Bach et al. 1999; Moretti et al. 2005). Hagau

et al. demonstrated that in critically ill patients, silver impregnated venous catheters

had no effect on the bacterial colonization of the catheters (Hagau et al. 2009).

Whereas standard catheters were first colonized 3 days after the insertion, silver-

integrated catheters were first colonized 5 days after insertion (Hagau et al. 2009).

However, over time, the incidence of colonization and infection between silver

impregnated and standard polyurethane catheters may be significantly different

(Hagau et al. 2009). Corral et al. conducted a randomized controlled trial to

evaluate the effectiveness of Oligon vantex silver catheter (OVSC) in reducing

the rate of catheter colonization in critically ill patients (Corral et al. 2003). OVSC

was produced from a thermoplastic polyurethane elastomer by incorporating silver

particles at 0.5–1 % (w/w). As such, the continuous release of silver particles from

the inserted catheter would produce a maximum antimicrobial effect (Hentschel

and Munstedt 1999). In comparison with standard polyurethane CVCs, OVSC

reduced the incidence of catheter colonization by only 16 % more than the controls

(Corral et al. 2003). Silver iontophoretic catheters are utilized in the USA for long-

term catheter-related catheterization. These catheters consist of two silver wires

connected to an electrical power source that is disposed in a parallel and helical

manner around the proximal subcutaneous segment of the catheter (Hentschel and

Munstedt 1999). The iontophoretic reaction allows a controlled and sustained

release of silver ions (Raad et al. 1996). However, a randomized controlled trial

demonstrated no significant difference between silver-iontophoretic catheters and

control catheters in the incidence of catheter colonization and CRBSIs (Bong

et al. 2003).

2.2.2 Chlorhexidine Silver Sulfadiazine

Chlorhexidine [1, 6-bis(40-chlorophenylbiguanide)hexane] is a divalent cationic

biguanide agent (Kampf and Kramer 2004). As a cation, it binds to the negatively

charged bacterial cell wall, displaces the cations that stabilize the cell membrane,

and cause it to be leaky (Russell 1986). At high concentrations, chlorhexidine

binding destroys the structural integrity of the membrane which leads to cell

death (Russell 1986). When used together, chlorhexidine and silver sulfadiazine

function in a synergistic way. Chlorhexidine is a very effective disinfectant with a

broad spectrum bactericidal activity against Gram-positive and Gram-negative

bacteria. However, it is most effective against Gram-positive bacteria. As a cationic

agent, it disrupts bacterial cell membranes and increases the uptake of silver salts
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(Bong et al. 2003). First generation chlorhexidine silver sulfadiazine (CH-SS)-

coated CVCs were coated with CH-SS on the external luminal surface only (Bach

et al. 1996). Several clinical trials demonstrated the effectiveness of these catheters

in reducing the rate of catheter colonization and CRBSIs in comparison with the

standard non-coated catheters (Veenstra et al. 1999; Tennenberg et al. 1997; Brun-

Buisson et al. 2004). Later on, a second generation catheter was developed. The

internal surface of these catheters is coated with chlorhexidine only. The coating

extends into the extension set and hubs (Miller and O’Grady 2012). The external

surface, however, is coated with chlorhexidine and silver sulfadiazine (Miller and

O’Grady 2012). In addition, the amount of chlorhexidine in the outer surface is

three times that on the inner surface which allows for an extended release of CH-SS

(Miller and O’Grady 2012). Randomized, prospective, controlled clinical trials

revealed that the use of these second generation CH-SS catheters reduced the

overall risk of catheter colonization and CRBSIs (in comparison with uncoated

catheters) (Rupp et al. 2005; Brun-Buisson et al. 2004; Ostendorf et al. 2005).

However, coated catheter did not reduce the incidence of catheter-related bacter-

emia (Brun-Buisson et al. 2004; Ostendorf et al. 2005). Due to the extensive

utilization of CH-SS catheters, the threat of chlorhexidine-resistant bacteria from

these devices may occur. The emergence of chlorhexidine-resistant mutants among

Gram-negative bacteria including; Proteus species, P. aeruginosa, and Serratia
species has been reported (Stickler et al. 1993a; Marrie and Costerton 1981).

Reduced susceptibility of staphylococci to chlorhexidine has also been reported

(Horner et al. 2012) and was found to involve efflux pumps (Horner et al. 2012).

CH-SS are largely safe and nontoxic; however, some patients developed anaphy-

lactic reaction from using them (Oda et al. 1997; Pittaway and Ford 2002).

2.2.3 Minocycline/Rifampicin

In addition to antiseptics, CVCs have also been coated with antibiotics, with the

most extensively analyzed being those coated with minocycline and rifampicin.

Minocycline (7-dimethylamino-6-deoxytetracycline) is a second generation, semi-

synthetic tetracycline that has been used as an antibiotic against Gram-negative and

Gram-positive bacteria (Garrido-Mesa et al. 2013). Minocycline, which binds to the

30S subunit ribosome and inhibits protein synthesis, has a longer half-life than

tetracycline (Garrido-Mesa et al. 2013; Klein and Cunha 1995). Rifampicin, which

is a synthetic bactericidal antibiotic, is used to treat infections caused by different

bacteria includingMycobacterium and methicillin-resistant S. aureus (MRSA), and

also used as a prophylactic therapy against Neisseria meningitis infections. By

inhibiting the DNA-dependent RNA polymerase, rifampicin inhibits bacterial

DNA-dependent RNA synthesis (Calvori et al. 1965). Mutations within the RNA

polymerase that alter the rifampicin binding sites lead to rifampicin-resistant

bacterial strains (Feklistov et al. 2008). Minocycline/rifampicin were impregnated

on the external and internal surfaces of CVCs. Multicenter, randomized, prospec-

tive trials showed that minocycline/rifampicin impregnated catheters significantly
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reduced catheter colonization and the incidence of CRBSIs (Darouiche et al. 1999;

Raad et al. 1997). In comparison with the first generation CH-SS catheters,

minocycline/rifampicin catheters reduced the rate of catheter colonization by

threefold and the rate of CRBSIs by 12-fold (Raad et al. 1997). Among critically

ill patients, minocycline/rifampicin CVCs significantly reduced nosocomial blood-

stream infections and the length of stays in intensive care units (Hanna et al. 2003).

The catheters also reduced the risk of catheter-related infections in patients with

acute renal failure (Chatzinikolaou et al. 2003). In vivo analysis revealed that

following 21 days of sequential exposure to different Gram-positive pathogens,

including methicillin-resistant S. aureus, methicillin-resistant Staphylococcus
epidermidis (MRSE), and vancomycin-resistant enterococci (VRE), minocycline/

rifampicin catheters retained their antibacterial activity (Aslam and Darouiche

2007). In vitro and in vivo studies using a rat subcutaneous implantation model

showed that when challenged with rifampicin-resistant S. aureus, antiseptic-coated
catheters were less susceptible to colonization than the minocycline/rifampicin

catheter (Sampath et al. 2001).

2.2.4 Organoselenium Coating of Hemodialysis Catheters

Selenium catalyzes the formation of superoxide radicals (O2
•–) which inhibits

bacterial attachment to solid surfaces. The detailed mechanism of function of

selenium compounds is described in the “Antimicrobial mechanism of selenium”

section. Covalent binding of organoselenium to solid surfaces prevents bacterial

colonization of those surfaces (Tran et al. 2009).

Cellulose discs coated with organoselenium methacrylate polymers inhibited

colonization and biofilm formation by S. aureus and P. aeruginosa (Tran

et al. 2009). Using in vitro and in vivo biofilm assays, Tran et al. demonstrated

the effectiveness of hemodialysis catheters coated with the organoselenium agent

(selenocyanato diacetic acid, SCAA) in preventing biofilm development by

S. aureus (Tran et al. 2012b). Small pieces of uncoated polyurethane decathlon

high flow, long-term catheters were coated internally and externally by covalent

attachment of SCAA (Tran et al. 2012b). To visualize the biofilm by confocal laser

scanning microscopy (CLSM), Tran et al. utilized the S. aureus strain AH133

(Malone et al. 2009; Tran et al. 2012b). This strain carried plasmid pMC11 which

contains the gene that codes for green fluorescent protein (Malone et al. 2009). The

inhibitory effect of SCAA-coated catheter pieces in vitro was examined using two

systems: the static biofilm system and the flow-through continuous culture system

(Schaber et al. 2007). In the static biofilm system, catheter pieces were incubated

with AH133 in Tryptic Soy broth (TSB) for 24 h using 24-well microtiter plates.

The pieces were then rinsed and vigorously vortexed to detach bacterial cells, and

the amount of the biofilm was assessed using a crystal violet assay. In addition, the

number of S. aureus AH133 cells within the biofilm was determined. In comparison

with uncoated catheter pieces, SCAA-coated pieces reduced AH133 biofilm by

over 5 logs (Tran et al. 2012b). To assess the stability of the SCAA coating, catheter
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pieces were stored in PBS at room temperature for 6–8 weeks before utilizing them

in the static biofilm system. Regardless of the storage time, the SCAA-coated pieces

still significantly inhibited the development of AH133 biofilms (Tran et al. 2012b).

In the flow-through continuous-culture system, catheter pieces were colonized with

AH133 for 1 h and subjected to a continuous stream of TSB for 5 days using a

peristaltic pump (Tran et al. 2012b). Image analysis revealed the AH133 formed

well-developed biofilms on the outer and inner surfaces of the uncoated catheters

(Tran et al. 2012b). However, no biofilm was detected on either surface of the

SCAA-coated catheter pieces (Tran et al. 2012b).

Tran et al. utilized the murine model of biofilm development to determine if

SCAA-coated catheter inhibits the development of AH133 biofilm in vivo (Tran

et al. 2012b). Catheter pieces were subcutaneously inserted in the back of adult

mice (Tran et al. 2012b). Strain AH133 was inoculated within the vicinity of the

inserted catheter pieces (Tran et al. 2012b). After 3 days, the catheter pieces were

extracted, and biofilms were analyzed (Tran et al. 2012b). Strain AH133 formed

mature biofilm on the inner and outer surfaces of the uncoated catheter pieces

(Fig. 1) (Tran et al. 2012b). Structural aspects of the biofilm were examined using

the COMSTAT program (Heydorn et al. 2000). On uncoated catheter pieces,

AH133 produced biofilm with marked biomass, average thickness, surface area,

and surface area/biomass ratio (Tran et al. 2012b). In contrast, no biofilm developed

on either the outer or the inner surfaces of the SCAA-coated catheter pieces (Tran

et al. 2012b).

3 Urinary Tract Catheters

3.1 Catheter-Associated Urinary Tract Infections

Catheter-associated urinary tract infections (UTIs) are the most common type of

healthcare-related infections, accounting for about 40 % of healthcare associated

infections in the USA (NNIS 2004; Tambyah 2004). In the USA, more than

30 million bladder catheters are placed annually (Tambyah 2004). As a result,

thousands of cases of catheter-associated UTIs occur (Feng et al. 2000). It is

estimated that 10–50 % of patients undergoing short-term catheterization (up to

7 days) develop catheter-associated urinary tract infections whereas almost all

patients undergoing long-term catheterization (greater than 28 days) will develop

catheter-associated urinary tract infections (Stickler 1996).

The urinary tract catheter system may either be closed or open. Whereas in the

closed system, the catheter empties into a plastic bag, in the open system, the

catheter drains into an open collection container (Kaye and Hessen 1994). There-

fore, open system catheters become contaminated quickly and patients develop

catheter-associated urinary tract infections (Stickler 1996). In vitro and in vivo

studies demonstrated the development of bacterial biofilm on urinary catheters.
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Several studies documented the development of biofilm on urinary catheters

obtained from patients (Nickel et al. 1989; Stickler et al. 1993b). A buildup of a

conditional film that is formed from electrolytes, organic molecules, and host

proteins, on the surface of the urinary catheters, provides a suitable surface for

attachment and colonization of bacterial pathogens (Donlan and Costerton 2002;

Siddiq and Darouiche 2012). Single species bacteria including Staphylococcus
epidermidis, Enterococcus faecalis, Escherichia coli, and Proteus mirabilis ini-

tially colonize the urinary tract catheter (Donlan and Costerton 2002). If the

catheter remains in place, biofilms formed by mixed species including Pseudomo-
nas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae develop (Stickler

1996). Compared with biofilms developed on other devices, many urinary catheter

biofilms are associated with the precipitation of minerals such as calcium phosphate

(hydroxyapatite) and magnesium ammonium phosphate (sturvite) (Tunney

et al. 1999). Certain microorganisms within the urinary catheter biofilm produce

urease enzyme which hydrolyzes the urea of the urine producing ammonia. The

ammonia produced increases the local pH and causes the precipitation of these

minerals (Donlan and Costerton 2002; Tunney et al. 1999). These mineral

Fig. 1 Selenium coating inhibited the in vivo development of S. aureus biofilm on inner and outer

surfaces of the hemodialysis catheter. This was done using the murine model of biofilm develop-

ment (described in detail in the published article: Tran et al., An organo-selenium inhibits

S. aureus biofilms on hemodialysis catheters in vivo. Antimicrob Agents Chemother. 56:972–
978. 2012). Catheter pieces were examined by confocal laser scanning microscopy. Control,

mouse with uncoated catheter pieces implanted; Selenium, mouse with selenium-coated catheter

pieces implanted
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containing biofilm, termed encrustations, are primarily found by urease producing

bacteria including Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas
aeruginosa, Proteus vulgaris, and Morganella morganii (Stickler et al. 1993a,

1998).

3.2 Antimicrobial Coatings of Urinary Tract Catheters

3.2.1 Hydrogels

Hydrogels are cross-linked, hydrophilic polymers that decrease microbial adher-

ence and encrustation (Saint et al. 1998). Due to the potential difference in the

catheter material or the type of the hydrogel, the efficacy of the hydrogel-coated

catheter in preventing catheter-associated urinary tract infections is not universally

accepted (Siddiq and Darouiche 2012). Using an in vitro model of catheterized

bladder and human urine that was inoculated with Proteus mirabilis obtained from

an encrusted catheter, Morris and Stickler (Morris and Stickler 1998) assessed the

degree of encrustation on different catheters by determining the amount of calcium

and magnesium deposited on the bladder. Although all tested catheters were

eventually blocked, the mean time to blockage for hydrogel gated latex catheters

was longer than that of uncoated silicone (34 h vs. 47 h) (Morris and Stickler 1998)

(Beiko et al. 2004).

3.2.2 Silver

The antibacterial activity of silver has been appreciated since ancient times. Silver

ions produce a broad spectrum bactericidal effect (Clement and Jarrett 1994) by

interacting with thiol groups and subsequently inactivating several vital enzymes

(Flemming et al. 1990; Liau et al. 1997). Silver ions also enhance pyrimidine

dimerization within the DNA molecule through photodynamic reactions and inter-

fere with DNA replication (Fox and Modak 1974; Russell and Hugo 1994). Using

electron microscopy and X-ray microanalysis, Feng et al. demonstrated that silver

causes several morphological changes in Escherichia coli and Staphylococcus
aureus by detaching the cytoplasmic membrane from the cell wall (Feng

et al. 2000). In addition, small, electron-dense molecules were deposited around

the cell wall or within the bacteria (Feng et al. 2000). Furthermore, silver was

detected within the electron dense molecules, the cytoplasm, and the DNA mole-

cules (Feng et al. 2000).

Meta analysis showed that urinary catheters coated with silver alloy were more

effective in preventing urinary tract infection than those coated with silver oxide

(Saint et al. 1998; Davenport and Keeley 2005). Silver alloy-coated catheters

reduced catheter-associated urinary tract infection by 45 % (Davenport and Keeley

2005). The greatest reduction was detected in postoperative patients, intensive care
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patients, and burn patients (Davenport and Keeley 2005). Schumm and Lam

analyzed the results of different clinical trials that were conducted to determine

the effectiveness of indwelling catheters in preventing urinary tract infections in

adults who underwent short-term urinary catheterization (Schumm and Lam 2008).

Less than a week after catheterization, silver alloy catheters significantly reduced

the incidence of asymptomatic bacteriuria (Schumm and Lam 2008).

3.2.3 Triclosan

Triclosan (2, 4, 40-triclora 20-hydroxydiphenyl ether) is a nonionic broad spectrum

antimicrobial agent that has been utilized in numerous medical and personal care

products (Bhargava and Leonard 1996). Triclosan activity is concentration and

formulation dependent (Bhargava and Leonard 1996) and specifically targets the

enoyl-acyl carrier protein reductase (FabI) component of the type II fatty acid

synthesis system, inhibiting fatty acid synthesis (Heath et al. 1998, 2002). Triclosan

is a slow binding inhibition of FabI in Gram-negative and Gram-positive bacteria

(Heath et al. 1999). Pseudomonas aeruginosa is resistant to triclosan due to the

presence of FABI, a triclosan insensitive isofunctional FAD-dependent enoyl acyl

carrier protein, as well as a multidrug efflux pump (Schweizer 1998).

In vitro studies showed that triclosan-eluting urethral stents inhibited the growth

of common bacterial uropathogens including Enterococcus faecalis, Klebsiella
pneumoniae, Staphylococcus aureus, and Proteus mirabilis in a dose-dependent

way but had no effect on Pseudomonas aeruginosa (Chew et al. 2006). Sublethal

concentrations of triclosan did not affect the adhesion and internalization of

uropathogenic Escherichia coli to kidney or bladder cells in vitro, but significantly

reduced the amount of TNF-α secreted by a bladder cell line (Elwood et al. 2007).

Cadieux et al. utilized the rabbit urinary tract infection model to examine the

effectiveness of triclosan impregnated stents on the growth and survival of Proteus
mirabilis (Cadieux et al. 2006). Triclosan impregnated stents significantly reduced

the number of viable Proteus mirabilis recovered in urine (Cadieux et al. 2006).

However, there was no significant difference in the encrustation between the

control and triclosan impregnated stents (Cadieux et al. 2006). Based on the results

of a clinical study, Cadieux et al. suggested that a triclosan eluting stent alone is not

sufficient to reduce device-associated infections in patients who needed long-term

urethral stents (Cadieux et al. 2009). In this study, patients received a control stent

for 3 months (Cadieux et al. 2009). The control stent was then removed and

replaced with a triclosan stent for an additional 3 months (Cadieux et al. 2009).

Overall, similar types of microorganisms were isolated from urine culture and the

stent during each indwell period (Cadieux et al. 2009). Another model to prevent

catheter encrustation is the catheterized bladder model in which triclosan is directly

delivered into the residual urine in the catheterized bladder (Stickler et al. 2003;

Jones et al. 2005). Instead of water, the retention balloon was inflated with triclosan

(Stickler et al. 2003; Jones et al. 2005). Triclosan, which diffused through the

balloon membrane, attacked planktonic cells and prevented the colonization of

184 P.L. Tran et al.



the catheter surface (Stickler et al. 2003; Jones et al. 2005). In addition, the

reduction in bacterial activity would prevent the increase in the urinary pH (Stickler

et al. 2003; Jones et al. 2005). Analysis of Proteus mirabilis biofilm development

using this model showed that in comparison with a control catheter, a latex catheter

inflated with triclosan had a controlled urinary pH, reduced the number of bacteria

in urine, and showed no surge of encrustation (Williams and Stickler 2008).

However, different results were obtained when the model was utilized to determine

if triclosan prevented encrustation by microflora of uropathogens that commonly

infect patients undergoing long-term catheterization (Williams and Stickler 2008).

While Proteus mirabilis, Escherichia coli, and Klebsiella pneumoniae were elim-

inated from the residual urine, there was no effect on Enterococcus faecalis and
Pseudomonas aeruginosa (Williams and Stickler 2008).

3.2.4 Gendine and Nitric Oxide

Hachem et al. described Gendine as a novel antimicrobial catheter coating (Hachem

et al. 2009). In comparison with uncoated and silver hydrogel-coated catheters,

Gendine-coated catheters significantly reduced biofilm produced by different path-

ogens including Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella
pneumoniae, and Candida (Hachem et al. 2009). Gendine-coated catheters were

more efficient than silver hydrogel-coated ones in preventing Escherichia coli
colonization in a rabbit model (Hachem et al. 2009).

Regev-Shoshani et al. impregnated Foley urinary catheters with nitric oxide

(NO) (Regev-Shoshani et al. 2010). NO, which is a small naturally produced,

hydrophobic, free radical gas, is bacteriostatic and bacteriocidal (Fang 1997;

McMullin et al. 2005). Coated catheters slowly released NO over 14 days and

prevented bacterial colonization and biofilm formation on the luminal and exterior

surfaces of the catheters (Regev-Shoshani et al. 2010).

3.2.5 Antibiotics

Antibiotic-coated urethral catheters have also been developed. Norfloxacin, a

fluroquinolone synthetic antibiotic, was impregnated into a coating layer on the

outer and inner surfaces of a urethral catheter (Park et al. 2003). Norfloxacin-coated

catheters generated a considerable zone of inhibition against Escherichia coli,
Klebsiella pneumoniae, and Proteus vulgaris for 6 days (Park et al. 2003). A similar

approach was used to generate gentamicin-coated catheters (Cho et al. 2003).

Kowalczuk et al. (Kowalczuk et al. 2012) described covalent and non-covalent

attachment of sparfloxacin to the surface of heparin-coated urinary catheters. The

catheters prevented colonization and biofilm development of Escherichia coli,
Staphylococcus aureus, and Staphylococcus epidermidis for about 3 days

(Kowalczuk et al. 2012), and inhibition assays confirmed their antimicrobial activ-

ity (Kowalczuk et al. 2012). Pugach et al. (1999) described silicon Foley catheters
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that were externally coated with ciprofloxacin liposome. The average time to

positive E. coli urine cultures improved from 3.5 to 5.3 days when ciprofloxacin

liposome-coated catheters were compared to uncoated catheters in a rabbit model

(Pugach et al. 1999). Coated catheters also decreased the bacteremia rate by 30 %

(Pugach et al. 1999). The risk associated with the antibiotic-coated urinary catheters

is the emergence of antibiotic-resistant strains (Siddiq and Darouiche 2012). Due to

the higher concentration of bacteria in urine than on skin, such a risk is greater with

urinary than vascular catheters (Siddiq and Darouiche 2012).

3.2.6 Quorum-Sensing Inhibitors

The cell-to-cell communication system (quorum sensing, QS) influences biofilm

development and the production of different virulence factors in Gram-negative and

Gram-positive bacteria (Njoroge and Sperandio 2009). One of the Staphylococcus
aureus QS systems consists of RNAIII activating protein (RAP) which phosphor-

ylates its target protein, the 21 Kda TRAP (Njoroge and Sperandio 2009). The QS

inhibitor RNAIII-inhibiting peptide (RIP) inhibits TRAP phosphorylation (Gov

et al. 2001). RIP has been shown to inhibit biofilm formation and staphylococcal

infection (Balaban et al. 2005). Cirioni et al. (2007) implanted RIP-coated urethral

stents in rat bladders and examined the effectiveness of RIP-coated catheters in

inhibiting Staphylococcus aureus biofilm. RIP suppressed the formation of Staph-
ylococcus aureus on urethral stents and significantly reduced the number of Staph-
ylococcus aureus microorganisms (CFU/ml) in urine cultures (Cirioni et al. 2007).

When the RIP-coated urethral stents were utilized in conjunction with the antibiotic

teicoplanin (intraperitoneally injected), no bacteria were recovered either on the

stent or in urine cultures (Cirioni et al. 2007).

3.2.7 Biological Coatings

A novel approach to prevent the development of catheter-associated biofilm by

pathogenic bacteria in patients who require a long-term urinary catheter is coating

the surfaces of the catheter with benign bacteria (Sunden et al. 2006). Studies were

conducted using the nonpathogenic Escherichia coli strain 83972 which persis-

tently colonized a person without symptomatic infection during 3 years of obser-

vation (Andersson et al. 1991). An in vivo study showed that the non-p fimbriae

PapG deletion mutant of 83972 (Hu2117) reduced the colonization of urinary

catheters by different uropathogens (Trautner et al. 2002). An initial clinical

study showed that the introduction of a Hu2117-coated indwelling catheter in a

human bladder reduced the incidence of symptomatic urinary tract infections

(Trautner et al. 2007). However, both in vitro and in vivo studies demonstrated

that in comparison with the absence of uropathogens, the adherence of 83920 or

Hu2117 to an unmodified silicone urinary catheter is low (Trautner et al. 2007,

2008). Mannose is the ligand for FimH which is the adhesive component of type I
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fimbriae in 83920 (Bouckaert et al. 2005). Therefore, Trautner et al. (2012) cova-

lently immobilized mannose on silicone substrates. Pre-exposure of the mannose-

modified surface to Escherichia coli 83920 produced a protective biofilm that

reduced the adherence of Enterococcus faecalis by 80-fold (Trautner et al. 2012).

However, in clinical trial, Pseudomonas aeruginosa overgrew Escherichia coli
Hu2117 on urinary catheters (Prasad et al. 2009). Therefore, Liao

et al. (2012) attempted to add a P. aeruginosa lytic phage to the Hu2117 catheter.

Fu et al. (2010) had previously shown that pretreatment of catheter pieces with a

cocktail of P. aeruginosa lytic phages successfully reduced the 48-h mean Pseu-
domonas aeruginosa biofilm cell density by 99.9 %. Treatment of Escherichia coli
Hu2117-coated catheter segments with P. aeruginosa phages prevented Pseudo-
monas aeruginosa colonization (Liao et al. 2012).

4 Contact Lenses

4.1 Contact Lens-Related Bacterial Infection

More than 250 million people in the world wear contact lenses. One of the early

problems for contact lenses was poor oxygenation of the cornea, caused by the fact

that the contacts were made of an impermeable hard acrylic polymer. This problem

was overcome by the advent of the use of a silicone hydrogel polymer for the

manufacture of the lenses. While these lenses are safer for the cornea from an

oxygenation standpoint, they still cause acute red eye infections as well as cases of

corneal ulceration. In fact the advent of silicone hydrogel lenses has not reduced the

incidence of these events (Willcox 2013). In a recent report (Yildiz et al. 2012), it

was found that out of 507 cases of corneal ulcers, at a single institution,

223 (43.9 %) were contact lens related. In addition, the investigators observed a

significant increase in the number of cases of presumed bacterial keratitis associ-

ated with soft contact lens wear over the 3-year period of their study.

Microbial adhesion to contact lenses is believed to be one of the initiating events

in the formation of many corneal infiltrations, including microbial keratitis, that

occur during contact lens wear (Willcox 2013). In earlier days, patients were told to

take their lenses out daily for removal of protein and lipids, which accumulated

from the tear film, as well as for sterilization. Now, newer lenses can be worn for

30 days with FDA approval. This extended wear is potentially a situation where a

biofilm can form and cause grave damage to the eye (Poggio et al. 1989; Holden

et al. 1996; Sankaridurg et al. 1996b, 1999, 2000; Jalbert et al. 2000; Keay

et al. 2000; Corrigan et al. 2001). In a 1989 epidemiological study (Poggio

et al. 1989), the investigators found almost a five times higher incidence of

ulcerative keratitis among extended-wear soft contact lens users compared with

daily wear soft contact lens users. Later studies with extended wear contacts

showed 4–7 times the risk of ulcerative keratitis (Dart et al. 1991; Schein
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et al. 1989). When daily disposable CLs became available (1995–1999), it was

supposed that frequent replacement of the lenses would reduce the risk of microbial

keratitis. However, an epidemiological study from the Netherlands reported that the

expected reduction in cases did not happen (Cheng et al. 1999). This is also seen in

the more recent study by (Yildiz et al. 2012), where they also saw an increase in the

number of cases with time.

Bacterial colonization of CLs has also been implicated in CL-induced inflam-

mation. Specifically, CL acute red eye (CLARE), CL peripheral ulcer (CLPU), and

infiltrative keratitis have all been associated with adherence of bacteria to hydrogel

CLs. In particular, many CLARE cases have been associated with Haemophilus
influenzae (Sankaridurg et al. 1996a), Acinetobacter sp. (Corrigan et al. 2001),

Pseudomonas aeruginosa (Holden et al. 1996; Sankaridurg et al. 1996b),

Aeromonas hydrophila (Sankaridurg et al. 1996b), Serratia liquefaciens
(Sankaridurg et al. 1996b), Serratia marcescens (Holden et al. 1996), and Pseudo-
monas putida (Holden et al. 1996). Infiltrative keratitis and CLPU have been

associated with Staphylococcus aureus (Jalbert et al. 2000), Streptococcus
pneumoniae (Sankaridurg et al. 1999), Abiotrophia defective (Keay et al. 2000),

Acinetobacter sp. (Corrigan et al. 2001).

Fungal biofilms are also associated with contact lens-related infections. Fusar-
ium keratoplasticum sp. nov. and Fusarium petroliphilum stat. nov. are two phylo-

genetic species that are among the most frequently isolated fusaria in outbreaks of

contact lens-associated keratitis (Short et al. 2013). Other in vitro studies showed

that Acanthamoeba castellanii trophozoites (Beattie et al. 2011) and Candida spp.

(albicans, parapsilosis, tropicalis, glabrata, and krusei) (Estivill et al. 2011) are
also capable of forming biofilms on different medical devices. In addition, bacteria

are thought to have a role in fungal attachment. For instance, Pseudomonas had
been shown to enhance the absorption of Acanthamoeba to contact lenses

(Simmons et al. 1998).

While bacterial contaminates that colonize contact lenses have been studied for

many years (Hovding 1981), and biofilms themselves have been studied for almost

20 years (Costerton et al. 1978), until recently most of the studies on contact lens

biofilms were devoted to looking at methods of sterilization (Szczotka-Flynn

et al. 2010). However, it is known that the biofilms on lenses protect bacteria and

fungi from disinfectants. It has been shown that fungal hyphae can penetrate the

surface of most types of CLs (Willcox 2013). Also, Acanthamoeba adhere in

greater numbers to first-generation silicone hydrogel lenses compared with the

second-generation or hydroxyethyl methacrylate-based soft lenses (Willcox 2013).

Bacteria that are known to form biofilms on contact lenses include: Pseudomo-
nas aeruginosa (Burnham et al. 2012; Henriques et al. 2005); Staphylococcus
epidermidis and S. aureus (Catalanotti et al. 2005; Henriques et al. 2005); and

Serratia marcescens (Hume et al. 2003). Also, in a study of 28 contact lens patients

with keratitis, the bacterial genera, Achromobacter, Stenotrophomonas, andDelftia,
were found in all clinical groups (Wiley et al. 2012).
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4.2 Antimicrobial Coating of Contact Lenses

In an attempt to improve the safety of the extended wear lenses, different materials

have been developed in order to reduce the possibility of biofilm formation which

could lead to bacterial keratitis and corneal ulcers. These compounds fall into two

main classes: (1) Compounds that must leach off the lens in order to kill bacteria or

inhibit their ability to form biofilms and (2) those compounds that are covalently

attached to the lens and yet can either kill bacteria or inhibit their ability to form

biofilms. These different coating materials are discussed in detail below and are

listed in Table 1 along with their advantages and disadvantages.

Table 1 Coatings to block biofilm formation on contact lenses

Active component Mechanism of Action Advantages/disadvantages

(a) Coatings non-covalently attached

Furanones Inhibition of quorum sensing Toxic to murine fibroblasts; showed

enhancement of biofilms at low

conc.a

Silver Formation of silver thiol bonds with

enzymes and membrane pro-

teins, possibly intercalates with

DNA

Toxic to mammalian cells; limited

activity; turns tissue black;

expensive; causes less killing

with Gram-positive bacteriab

Polyquaternium

compounds

Chelation of bacterial components Requires direct contact with bacte-

ria; causes cytotoxicity and

inflammationc

(b) Coatings covalently attached

Furanones

(fimbrolides)

Quorum-sensing inhibition Only causes about 1 log killingd

Polyquaternium

compounds

Rupture of bacterial cell membrane Only causes about 1 log killinge

Cationic peptides

(melimine)

Unknown Causes 1–4 logs of killing; stability

unknown from proteolysisf

Organoselenium

(polymerized

throughout the

contact lens)

Catalysis of superoxide formation Causes 5–7 logs of killing for Gram

negatives and Gram positives;

stable for the life of the lens

(if incorporated into the poly-

mer); inexpensiveg

aKuehl et al. (2009)
bAtiyeh et al. (2007), Trop et al. (2006), Poon and Burd (2004), Hidalgo et al. (1998), Lee and

Moon (2003), Willcox et al. (2010)
cPaimela et al. (2012)
dZhu et al. (2008)
eTiller et al. (2001, 2002)
fWillcox et al. (2008), Cole et al. (2010), Chen et al. (2012), Dutta et al. (2013)
gMathews et al. (2006), Tran et al. (2012a, 2013)
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4.2.1 Compounds That Are Released from Lenses

Furanones

These are quorum-sensing blockers. These compounds showed an ability to inhibit

biofilm on medical device polymers (Baveja et al. 2004) but yielded equivocal

results with contact lenses for their ability to block biofilm formation (George

et al. 2005). However, a more recent paper (Kuehl et al. 2009) showed that these

compounds (1) will inhibit biofilm formation; (2) need to be free to inhibit biofilms;

however, (3) were toxic for murine fibroblasts; and (4) at sub-inhibitory concen-

trations, showed an enhancement of S. aureus biofilm formation (Table 1). This

would appear to make them poor candidates for addition to contact lenses.

Polyquaternium Compounds (Polyquats)

These compounds have only been used in contact lens case solutions (Alcon, Inc.).

They are thought to kill by chelation of bacterial components (Weisbarth

et al. 2007). If these compounds do kill by chelation then they would have a limited

range of activity. Also, they have been shown to increase cytoxicity and inflam-

mation in human corneal epithelial cells (Paimela et al. 2012) (Table 1). They may

also kill by cell wall rupture (see below under “Covalent attachment to the Lens”).

They generally consist of long-chain molecules with cationic ends and can be

attached to surfaces. It is felt that the cationic end pierces components of the

bacterial cell wall causing it to rupture and die. This is thought to be an advantage

since it would not lead to the development of resistance in microorganisms.

However, since these long-chain compounds need to have direct contact with the

microorganisms in order to penetrate their cell walls, this would restrict the amount

of killing that could take place and the surface could become overwhelmed by

bacteria with time.

Silver

Silver is widely used since it has antimicrobial activity against a broad spectrum of

bacteria (Yin et al. 1999) and fungi (Wright et al. 1999). It is thought that silver

atoms bind to thiol groups in essential enzymes and subsequently cause their

deactivation. Silver also forms stable sulfur–silver bonds with proteins in the cell

membrane that are involved in ion transport (Klueh et al. 2000). It was also

proposed that Ag+ enters the cell and intercalates between the purine and pyrimi-

dine base pairs disrupting the hydrogen bonding between the two antiparallel

strands and denaturing DNA molecules (Klueh et al. 2000). Many antimicrobial

medical devices use silver as their active agent. However, silver has been shown to

be cytotoxic to fibroblasts and keratinocytes (Atiyeh et al. 2007; Trop et al. 2006;
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Poon and Burd 2004; Hidalgo et al. 1998; Lee and Moon 2003) (Table 1). Also,

with bandages, enough silver to inhibit biofilm formation has been shown to stain

tissue black. Those characteristics would tend to rule it out for contact lens use;

however, silver-impregnated contact lens cases are on the market (CIBA Vision). In

a study with silver impregnated etafilcon A lenses, Willcox et al. showed complete

inhibition at 20 ppm silver against P. aeruginosa and approximately 6 logs of

inhibition against S. aureus at 20 ppm silver (Willcox et al. 2010). At 20 ppm silver,

they only showed 1 log of inhibition against Acanthamoeba.

4.2.2 Compounds That Can Be Covalently Attached to a Contact Lens

and Inhibit Biofilm Formation

Fimbrolides (Furanones)

These are also quorum-sensing inhibitors. While these furanones were shown to

have toxicity to mammalian cells (see above under furanones), the safety of the

fimbrolide class of furanones attached to a contact lens was studied by a short-term

clinical assessment (Zhu et al. 2008) (Table 1). They found that the fimbrolide-

coated lenses reduced biofilm formation by 67–92 % for different bacteria and 70 %

for Acanthamoeba. They also saw no significant ocular response, by slit lamp, after

1 month in an animal model or overnight in humans.

Polyquaternium Compounds (Polyquats) and Polymeric Pyridinium

Compounds

These compounds generally consist of long-chain molecules with cationic ends and

can be attached to surfaces. The mode of action of these materials as well as the

limitation of this type of compound has been discussed above. Also, studies on

these compounds attached to surfaces show only about one log of biofilm inhibition

on contact lenses (Tiller et al. 2001, 2002) (Table 1).

Cationic Peptides (Melimine)

A peptide was synthesized that contained portions of the sequences of the antimi-

crobial cationic peptides mellitin and protamine. The peptide was named melimine.

This peptide was covalently attached to contact lenses and was able to reduce

approximately 80 % of S. aureus and P. aeruginosa adhesion in vitro (Willcox

et al. 2008; Cole et al. 2010; Chen et al. 2012) (Table 1). A rabbit study showed a

reduction in contact lens-induced acute red eye and contact lens-induced peripheral

ulcers (Cole et al. 2010). A later study found that attachment of melimine to

etafilcon A lenses inhibited P. aeruginosa, S. aureus, A. castellanii, and Fusarium
solani by 3.1, 3.9, 1.2, and 1.0 logs, respectively (Dutta et al. 2013). However, there
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is no data on stability of these peptides on the lens and no data on the ability of the

lens to still demonstrate antimicrobial activity after time in an eye.

Organoselenium

The use of selenium-coated lenses to block bacterial attachment has been reported

(Mathews et al. 2006). This study was based upon the ability of organo-selenium

compounds covalently attached to a polymer matrix to generate superoxide radi-

cals. In this case an organo-selenium compound was covalently attached to the

surface of a contact lens, and the lens was studied after two months in a rabbit eye.

No effects were seen on the rabbit eye after two months of wear. The lenses from

the eye were then tested against P. aeruginosa. The lenses were studied by scanning
electron microscopy and no biofilm was present on the lens, while control lenses

showed extensive biofilm growth. Similar lenses were shown to completely inhibit

biofilm formation by S. aureus, P. aeruginosa, and S. marcescens (control lenses
showed over 6 logs of growth under the same conditions) (Tran et al. 2012a). In

addition, it was shown that human transformed corneal epithelial cells could grow

(in vitro) under the lens with no toxic effect, and the lenses were fully active after

soaking for over 90 days in PBS (Tran et al. 2013). More recently, a seleno-

methacrylate compound was copolymerized in a hydrogel lens and displayed no

loss of superoxide generating activity (Tran et al. 2013).

4.3 Antimicrobial Mechanism of Selenium

Selenium is best known for its nutritional essentiality as the catalytic trace element

component of enzymes, for example, glutathione (GSH) peroxidases and

thioredoxin reductase. In these selenium enzymes the selenium atom catalyzes

the oxidation of glutathione and the reduction of H2O2 to water. However, the

organo-selenium molecule has recently been shown to function as a catalyst for the

formation of superoxide radicals (O2
•�) (Fig. 2) from the oxidation of thiols (Seko

and Imura 1997). A possible mechanism by which the organoselenium molecule

serves as a catalytic generator of superoxide radicals (O2
•�) from the oxidation of

thiols as was reported by Chaudiere et al. in 1992. This catalytic ability of selenium

has been known for over 60 years (Feigl and West 1947), but the pro-oxidative

characteristics of several selenium compounds were elucidated much later (Seko

et al. 1989).

Superoxide radical formation appears to account for most of the observed

toxicity of selenium towards different bacteria such as Staphylococcus epidermidis,
Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, and

Escherichia coli in vitro (Babior et al. 1975; Bortolussi et al. 1987; Hoepelman

et al. 1990; Kramer and Ames 1988; Rosen and Klebanoff 1981). It has also been

shown that organo-selenium can be covalently attached to different biomaterials
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and medical devices such as intravenous catheter, contact lenses, and block the

formation of Staphylococcus aureus and Pseudomonas aeruginosa biofilms (Low

et al. 2011; Mathews et al. 2006; Reid et al. 2010; Tran et al. 2009, 2012b) (Table 1).

Concentrations of organo-selenium as low as 0.1 % or 0.2 % were sufficient to

inhibit bacterial attachment to these materials. As can be seen in Fig. 2, an organo-

selenium molecule can serve as a reducing agent and donate electrons to oxygen.

This oxidized selenium molecule can then become reduced back to its original state

by obtaining electrons from sulfhydral compounds. In vivo a large source of

sulfhydral compounds is glutathione, which is found in body fluids at around

150 μM.

It is important to remember that although selenium has the ability to catalyze the

formation of superoxide radicals, selenium is essential for life (Thomson 2004)

with a recommended dietary allowance of 55 micrograms per day for both men and

women (Institute for Medicine, Food and Nutrition Board 2000). This is because

selenium is incorporated into 25 different proteins in the body (Kryukov

et al. 2003). Also, superoxide radicals are utilized as second messengers for normal

cell growth mechanisms. Superoxide radicals in body fluids have an estimated half-

life of 400 ns or less and a diffusion pathway of 55–3,000 nm (Saran and Bors

1989). This is probably why no toxicity was observed in corneas from eyes

containing contact lenses coated with organoselenium (Mathews et al. 2006). In

addition, cancer patients given milligram quantities of organo-selenium for a year

showed no observed toxicity (Reid et al. 2004).

Fig. 2 Organoselenium catalyzes the formation of superoxide radicals. Selenium promotes

bacterial toxicity through the catalytic production of the short-lived superoxide radical on the

surface of any material to which it is attached. As seen in the reaction above, the molecule R-Se� is

regenerated. Thus, RSe� is catalytic and is not changed by the reaction. The other important

component in the reaction is free sulfhydryls. Sulfhydryl species are abundant in all body fluids.

Many bacterial membranes also contain sulfhydryl groups
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5 Contact Lens Cases

5.1 Bacterial Contamination of Contact Lens Cases

A recent review found that 24–81 % of lens storage cases are contaminated with

biofilms, with the frequency of contamination increasing in wearers suffering from

microbial keratitis (reviewed by Szczotka-Flynn et al. 2010). In another study, more

than 70 % of the cases used in daily wear for 1 month were contaminated regardless

of the case type. Contamination of contact lenses is less frequent and associated

with fewer organisms than lens cases, but correlates more closely with organisms

that cause corneal infections (Das et al. 2007; Martins et al. 2002; McLaughlin-

Borlace et al. 1998). Inadequate case cleaning is the most common cause occurring

in 72 % of contact lens wearers (Radford et al. 1993).

5.2 Antimicrobial Coating of Contact Lens Cases

There is a need for an effective means of maintaining storage cases free from

bacterial and fungal contamination. The only two types of compounds that have

been tested for this purpose are silver compounds and organoselenium

compounds.

5.2.1 Silver

The use of silver to keep lens cases free from contamination has been reviewed

recently (Dantam et al. 2011). They found that a silver impregnated case,

MicroBlock (CIBA Vision), was the best at reduction of P. aeruginosa (2.4 logs),

Serratia marcescens (3.3 logs), D. acidovorans (2.8 logs), Fusarium solani (0.5
logs), in solution. The i-clean case (Sauflon Pharmaceuticals) was the best at

reduction of S. aureus (5.4 logs), and Nano-case (Marietta Vision) was most

effective at Stenotrophomonas maltophilia (0.2 logs). All of these studies only

measured the reduction of bacteria growing in solution. Oddly, only the

MicroBlock demonstrated release of silver into solution and did this over a

28-day period. More recently it was found in a patient study, where the cases

themselves were monitored, more than 70 % of the storage cases used in daily

wear CL care for a month were contaminated irrespective of whether they

contained silver impregnation or not (Dantam et al. 2012). However, silver-

impregnated cases were colonized by reduced levels of Gram-negative bacteria.

If the silver cases did not remain wet, they showed 94 % contamination.
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5.2.2 Organoselenium

While reduction of bacterial number in solution is important, cleaning of the case is

the main problem. Most patients replace the cleaning solution every day; however,

many don’t clean the case. Thus, in order to prevent bacterial colonization of lenses

and solutions, it is important to reduce the ability of bacteria to form biofilms on

lens cases. Recently, it was shown that a case made with organo-selenium incor-

porated into the polymer of a polypropylene case eliminated biofilm formation on

the case material (Reid et al. 2012, 2013). It was found that organoselenium

completely inhibited biofilm formation by S. aureus, P. aeruginosa, Stenotro-
phomonas maltophilia, and E. coli in vitro. In addition it was found that this

complete inhibition was still present after 8 weeks of soaking the case, and the

same results were obtained when the case was maintained dry. Thus, if the lens case

solution was changed daily, no contamination should occur for a contact lens stored

in the case.

6 Summary

It is now well recognized that biofilm development is a serious problem for medical

devices. Solutions for this problem have progressed over the last 10 years. Initially,

devices were impregnated with materials such as silver and other antimicrobials

that would leach out from the device in order to control bacterial attachment. These

earlier attempts had toxicity problems and led to the development of covalent

attachment of materials such as quaternary amines, furanones, and

organoselenium compounds. These resulted in a more stable device coating with

less toxicity. Recently, it was found that the organoselenium compounds could be

incorporated during the polymerization process and still inhibit microbial attach-

ment. This could provide an antimicrobial that is uniformly distributed throughout

the device. Thus, the device could degrade or wear, with time, and still have an

antimicrobial surface.
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Medicinal Plants and Phytocompounds: A

Potential Source of Novel Antibiofilm Agents

Iqbal Ahmad, Fohad Mabood Husain, Meenu Maheshwari,

and Maryam Zahin

Abstract Medicinal plants and plant-derived bioactive compounds are well known

for their contribution to primary health care as a source novel drug discovery for

various ailments. Emergence and spread of microbial drug resistance due to various

mechanisms has impacted the efficacy of almost all old and new antibacterial drugs.

The biofilm mode of microbial growth has significantly increased the survival

strategies and resistance levels of microbes to drugs, making the treatment of

infections more difficult. Currently, efforts are going on to develop novel strategies

including targeting biofilms to treat infections. Various natural products are known

to inhibit biofilm formation or preformed biofilms. In recent years medicinal plants

and phytocompounds were reported with promising antibiofilm activity in vitro

from different parts of the world. In this chapter we have reviewed the current

literature on antibiofilm agents derived from medicinal plants and/or plant-derived

compounds. Plant extracts and phytocompounds of various classes have been found

effective against bacterial or fungal biofilms, with some compounds showing

activity against both. Such compounds are expected to be effective against mixed

biofilms. Interestingly, certain quorum-sensing inhibiting plant extracts or com-

pounds can also inhibit biofilms made by bacteria such as Pseudomonas
aeruginosa. The majority of the antibiofilm phytocompounds identified so far

have been tested in vitro; however, only a few compounds have been reported

effective under in vivo condition. This could be due to the lack of access of the

investigators to suitable animal models for different diseases to assess the thera-

peutic efficacy of these antibiofilm agents. The results of this chapter indicated that

the phytocompounds may be effective alone or in combination with antibiotics, as

in the treatment of systemic infection. However, further investigation on their mode
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of action and in vivo efficacy are prerequisites to obtain broad-spectrum antifungal

agents of clinical value.

1 Introduction

Infectious diseases are one of the leading causes of morbidity and mortality globally

and their magnitude is higher in developing and underdeveloped countries. The

antibiotic era during the twentieth century had reduced the threat of infectious

diseases. Nevertheless, over the years, there has been an increase in drug resistance

among pathogenic bacteria. The increased prevalence of antibiotic resistance has

led to the introduction of combination therapy which has increased treatment

efficacy and contained drug resistance to some extent (Athamna et al. 2005).

Although combination therapy provided the answer to antibiotic resistance for a

while, there have been reports of emerging resistance to drugs in combination and

multidrug resistance in common pathogenic bacteria (so called “superbugs”)

(Rodas-Suárez et al. 2006). The major groups of problematic MDR bacteria include

Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA),

and ESβL producing MDR enteric bacteria and others (Ahmad et al. 2009). The

problem of drug resistance in fungi, especially Candida albicans, has also become a

problematic issue in the treatment of fungal infections.

Various mechanisms of bacterial drug resistance are known, which arise as a

result of mutations and/or acquisition of new resistance genes by genetic exchange

mechanisms (Tenover 2006). Among the other factors contributing to the ability of

microbes to combat antimicrobials is their ability to exist in biofilms that allow

them to withstand harsh environmental conditions. These biofilms have been

implicated in a wide range of hospital infections and food spoilages, thus posing

a serious concern in both the food and medical industries. Biofilm formation and

antibiotic resistance among bacterial pathogens represents a major hurdle in human

health (Rogers et al. 2010). A report from the U.S. National Institutes of Health

states that >80 % of microbial infections are biofilm based (Davies et al. 1998).

Biofilms are structural communities encased in a self-secreted exopolymeric sub-

stance (EPS). It has been reported that bacteria living within biofilm are 1,000-fold

more tolerant to antibiotics and are inherently insensitive to the host immune

response (Caraher et al. 2007).

Due to the increase in complexity of most microbial infections and the resistance

to conventional therapy, researchers have been compelled to identify alternatives

for the treatment of infections (Ahmad et al. 2009). In the last few years, efforts

have been directed towards developing preventive strategies that can be used to

disarm microorganisms without killing them (Cegelski et al. 2008; Rasko and

Sperandio 2010). An innovative approach is the use of antibiofilm agents that are

effective at inhibiting biofilm formation and destroying preformed biofilms (Roman

et al. 2013). In addition, as these substances do not exert their action by killing cells,

they theoretically do not impose a selective pressure to cause the development of
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resistance (Rasko and Sperandio 2010). Observing the processes of biofilm forma-

tion, it is reasonable to expect that interfering with the key steps that orchestrate

genesis of virtually every biofilm could be a way for new preventive strategies that

do not necessarily exert lethal effects on cells but rather sabotage their propensity

for a sessile lifestyle. Various strategies and agents have been found useful in

preventing biofilm formation on various surfaces including medical devices.

Many of these compounds are useful in destroying biofilms in medical settings as

well as preventing biofouling. In search of broad-spectrum antibiofilm agents,

medicinal plant extracts and natural products have attracted the attention of scien-

tists (Villa and Cappitelli 2013). Plant extracts, and other biologically active

compounds isolated from plants, have gained widespread interest in this regard as

they have been known to cure diseases and illnesses since ancient times (Ahmad

and Beg 2001). Plant extracts/compounds are widely accepted due to the perception

that they are safe and they have a long history of use in folk medicine as immune

boosters and for the prevention and treatment of several diseases (Ahmad

et al. 2006).

Over the years, the use of medicinal plants, which form the backbone of

traditional medicine, has grown to an estimated 80 % of the population, of mostly

developing countries that rely on traditional medicines for their primary health care

(Ahmad et al. 2006). Modern science and technological advances are accelerating

the discovery and development of innovative, plant-derived pharmaceuticals that

have improved therapeutic activity and reduced side effects. Plant-derived sub-

stances under intensive research for possible applications include crude extracts of

leaves, roots, stems, and individual compounds isolated from these essential oils

and oil components. Although a considerable amount of research on plants and the

active constituents is currently underway, the focus is mainly on their antimicrobial

properties against planktonic bacteria. Resistant biofilms remain largely unexplored

even though they have been shown to be more tolerant to antimicrobial agents than

their planktonic counterparts (Costerton et al. 2003; Caraher et al. 2007;

Taraszkiewicz et al. 2013).

To overcome the problem of multidrug resistance in pathogenic microorgan-

isms, various strategies have been suggested and some have been implemented in

chemotherapy such as the combinational approach (Ahmad et al. 2009). With

increased understanding of the role of biofilms in pathogenesis and drug resistance,

disruption of biofilms has been considered a novel drug target. Thus, antibiofilm

agents with broad-spectrum activities and proven safety could be ideal candidates

for drug development to combat infection caused by majority of biofilm-forming

pathogens. There has been an ongoing effort to obtain such agents from various

natural products including phytocompounds. Reports have appeared in the last few

years indicating a promising potential of medicinal extracts and phytocompound to

be exploited in chemotherapy alone or in combination with classical antibiotics. In

this chapter we have reviewed the scientific reports published in the last decade to

provide the current state of knowledge on the possible role of medicinal plant

extracts or phytocompounds as antibiofilm agents.

Medicinal Plants and Phytocompounds: A Potential Source of Novel Antibiofilm. . . 207



2 Antibiofilm Compounds from Plants

The role of natural products, including medicinal plants and phytocompounds, as

anti-infective agents is well established and has been discussed in several excellent

review articles (Cowan 1999; Gibbons 2005; Savoia 2012). Considering the vast

diversity in the chemical structures of phtyocompounds and their known bioactiv-

ities (Harborne et al. 1999), it is expected that medicinal plant extracts and

phytocompounds will hopefully provide promising antibiofilm agents if screened

systematically.

Many plant extracts and compounds are already known to change the hydropho-

bicity and adhesion of bacteria to attachment sites (Ahmad and Aqil 2007). In the

last few years an increasing number of reports have been published showing a

possible role of phytocompounds in interfering with biofilm processes (Rezanska

et al. 2012) and in few cases mechanism has been proposed.

Biofilm formation involves adhesion, maturation, and differentiation steps.

Molecular mechanisms have also been explored in C. albicans and other pathogens
(Khan and Ahmad 2013). The role of microscopic techniques like scanning electron

microscopy (SEM), transmission electron microscopy (TEM), confocal laser scan-

ning microscopy (CLSM), and atomic force microscopy (AFM) has made the study

of biofilm inhibition easier (Khan and Ahmad 2013). Some of the plants and their

derived bioactive compounds acting on different stages of biofilm formation are

listed in Table 1.

3 Inhibitors of Bacterial Biofilm

In recent years various studies have indicated roles for natural products in inhibiting

biofilm and associated functions. Sandasi et al. (2010) demonstrated that seven

culinary herbs reduced biofilm adhesion of both the clinical and the type strains of

Listeria monocytogenes by at least 50 % but only three (Rosmarinus officinalis,
Mentha piperita, and Melaleuca alternifolia) inhibited preformed biofilms.

Al-Bakri et al. (2010) studied the antibiofilm activity of seven Salvia species and

found that both, plant extract and volatile oil of S. triloba, demonstrated an

antibiofilm activity against MRSA clinical strains. S. triloba extract, at a concen-

tration of 0.78 mg/mL, exhibited an 86.2 % and 83.4 % reduction against MRSA

strains and a 98.3 % reduction against S. aureus. On the other hand, S. triloba
volatile oil at 12.5 % concentration demonstrated 99.8 % and 94.3 % biofilm

reduction in MRSA strains which was comparable to that of S. aureus (98.7 %).

The antibiofilm activity of the folkloric medicinal plant Andrographis paniculata
against biofilm forming P. aeruginosa isolated from cystic fibrosis sputum was

studied, and it was found that six extracts of A. paniculata showed significant

antibiofilm activity, with methanolic extract inhibiting biofilm growth maximally

(Murugan et al. 2011). Streptococcus mutans, a gram-positive oral bacterium, has
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long been implicated as a primary causative agent of dental caries. The biofilm

forming potential of these bacteria has been targeted using natural products.

Embilica officinalis fruit extract (benzene fraction), Trachyspermum ammi seed
extract (petrol ether fraction), and Salvadora persica have been found to be

effective inhibitors in vitro (Hasan et al. 2012; Khan et al. 2012; Al-Sohaibani

and Murugan 2012). Extensive studies of the anti-Staphylococcus epidermidis
biofilm activity of 45 aqueous extracts were published by Trentin et al. (2011). At

4 mg/mL, the most effective were extracts derived from Bauhinia acuruana
branches (orchidtree), Chamaecrista desvauxii fruits, B. acuruana fruits, and

Pityrocarpa moniliformis leaves, which decreased biofilm formation by 81.7,

87.4, 77.8, and 77 %, respectively. When applied at tenfold lower concentration,

noteworthy biofilm inhibition was observed only in the presence of Commiphora
leptophloeos stem bark (corkwood) and Senna macranthera fruit extracts (reduc-

tions of 67.3 and 66.7 %, respectively). The extract 220D-F2 from the root of Rubus

Table 1 Inhibitory action of selected plants and their derived bioactive compounds at different

stages of biofilm formation

Inhibitor Organism Stage of action References

Ursolic acid E. coli,
V. harveyi,
P. aeruginosa

Adherence Ren et al. (2005)

Garlic extract C. albicans Adherence,

maturation

Shuford et al. (2005)

R. officinalis, E. angustifoli,
T. vulgaris, M. piperita
extract

L. monocytogenes Adherence Sandasi et al. (2010)

Boesenbergia pandurata oil C. albicans Maturation Taweechaisupapong

et al. (2010)

Naringenin, kaemferol,

quercitin, apigenin

V. harveyi Maturation Vikram et al. (2010)

Proanthocyadins A1,

Curcuma longa (oil),

Kaurenoic acid

S. mutans Adherence Daglia et al. (2010),

Lee et al. (2011a, b),

Jeong et al. (2013)

T. catappa, C. spinosa,
C. cyminum extract

P. aeruginosa Maturation Taganna et al. (2011), Issac

Abraham et al. (2011,

2012)

C. leptophloeos,
B. acuruana,
P. moniliformis extract,
Allicin

S. epidermidis Adherence Trentin et al. (2011), Cruz-

Villalón and Pérez-

Giraldo (2011)

Eugenol, carvone, caeveol,

carvacrol, thymol

P. aeruginosa Adherence Soumya et al. (2011a, b)

Muscari comosum extract C. albicans Dispersion Villa et al. (2012)

R. Ulmifolus extract S. aureus Adherence Quave et al. (2012)

Chelerythrine, sanguinarine,

DHBF, proAc

S. aureus,
S. epidermidis

Maturation Artini et al. (2012)

Cinnamaldehyde, carvacrol,

thymol, eugenol

L. monocytogenes Maturation Upadhyay et al. (2013)
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ulmifolius was used to inhibit S. aureus biofilm formation to a degree that can be

correlated with increased antibiotic susceptibility without limiting bacterial growth

(Quave et al. 2012). Achyranthes aspera, an ethanomedicinal herb, was evaluated

for its potential to inhibit growth and biofilm formation by a cariogenic

S. mutansisolate. The biofilm inhibition percentage obtained for methanol, benzene,

petroleum ether, and aqueous extracts (125 μg/mL) were <94, <74, <62, and

<42 %, respectively (Murugan et al. 2013). In addition to the plant extracts, various

polysaccharides isolated from plants including okra fruit (Lengsfeld et al. 2004;

Wittschier et al. 2007), aloe vera (Xu et al. 2010), liquorice root (Wittschier

et al. 2007, 2009), ginseng (Lee et al. 2004, 2006, 2009), and blackcurrant

(Wittschier et al. 2007) have been shown to inhibit binding of Helicobacter pylori
to gastric cells and mucin in vitro.

The essential oil of Curcuma longa inhibited the formation of S. mutans biofilms

by interfering with its adherence at concentrations higher than 0.5 mg/mL (Lee

et al. 2011a, b). Essential oil and hydrosol of Satureja thymbra and polytoxinol, a

compound based on essential oil, were shown to be effective against biofilms

formed by Salmonella, Listeria, Pseudomonas, Staphylococcus, and Lactobacillus
spp. (Al-Shuneigat et al. 2005; Chorianopoulos et al. 2008). Essential oil compo-

nents, viz., eugenol (structure 1), carvone, caeveol, carvacrol, and thymol (structure

2), interfered with adherence phenomena and inhibited biofilm formation by

P. aeruginosa strains (Soumya et al. 2011a, b). Kavanaugh and Ribbeck (2012)

demonstrated that certain essential oils can eradicate bacteria within biofilms with

higher efficiency than certain important antibiotics, making them interesting can-

didates for the treatment of biofilms.

H3CO

HO

1

CH3

OH

H3C CH3

2

Phytocompounds have also been evaluated for their biofilm inhibitory potential.

Zeng et al. (2008) carried out an analysis of 51 active compounds used in traditional

Chinese medicine. Five of them had a proven ability to inhibit biofilm formation,

with the flavonoid baicalein (structure 3) being the most effective. This substance is
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contained, for example, in Oroxylum indicum or in the roots of Scutellaria
baicalensis. Baicalin, the glucuronide of baicalein, has significant antibiofilm

activity against Burkholderia cenocepacia or B. multivorans (Brackman

et al. 2009). Jeon et al. (2009) studied the antibiofilm activity of myricetin (structure

4) (flavonol) and tt-farnesol (structure 5), compounds ubiquitously found in fruits

(cranberries and red wine grapes), and propolis (a resinous mixture collected from

tree buds, sap flows, or other botanical sources by honey bees), against S. mutans
causing dental caries. They showed that the mixture of the natural products, in

combination with fluoride, disrupted the accumulation and structural organization

of EPS and bacterial cells in the matrix, which affected the biochemical and

physiological properties of the biofilms.

O

OOH
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HO
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OH O
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Cranberry (Vaccinium macrocarpon) contains less frequent A-type linked

proanthocyanidins. In contrast to the more frequent proanthocyanidins containing

B-type linkages, the A-type showed far greater anti-adhesive activity to

uropathogenic E. coli (Howell et al. 2005). Daglia et al. (2010) found that

dealcoholised red wine was able to inhibit S. mutans biofilm formation on human
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teeth. Proanthocyanidins, for example, proanthocyanidin A1 (structure 6), were the

components most involved in the anti-adhesion and antibiofilm activity. Aesculetin

(structure 7), present in horse chestnut or Aesculus hippocastanum, was proved to

be efficient in preventing biofilm formation by S. aureus (Durig et al. 2010).

Hancock et al. (2010) studied the biofilm inhibitory activity of ellagic acid

(EA) (structure 8) and tannic acid (TA) (structure 9) against two E. coli strains
VR50, a urinary tract strain and F18, a commensal isolate. Both compounds

reduced biofilm formation in VR50 and F18 significantly. TA and EA reduced

biofilm formation by 44–80 and 22–26 %, respectively. However, no synergistic

effect of the two compounds was observed.
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Plant auxin 3-indolylacetonitrile (IAN) was found to inhibit the biofilm forma-

tion of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN

more effectively inhibited biofilms than indole for the two pathogenic bacteria.

Additionally, IAN decreased the production of virulence factors including 2-heptyl-

3-hydroxy-4(1H)-quinolone (PQS), pyocyanin, and pyoverdine in P. aeruginosa.
DNA microarray analysis indicated that IAN repressed genes involved in curli

formation and glycerol metabolism, whereas IAN induced indole-related genes and

prophage genes in E. coli O157:H7. It appeared that IAN inhibited the biofilm

formation of E. coli by reducing curli formation and inducing indole production

(Lee et al. 2011a, b). Boswellic acids are pentacyclic triterpenes, which are pro-

duced in plants belonging to the genus Boswellia. One of the acid acetyl-11-keto-b-
boswellic acid (AKBA) (structure 10) inhibited the formation of biofilms by

S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms

generated by these bacteria (Raja et al. 2011).

HO

HO
O
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Coenye et al. (2012) investigated five plant extracts with antibiofilm activity.

Sub-MIC concentrations of Rhodiola crenulata (arctic root), Epimedium
brevicornum (rowdy lamb herb), and Polygonum cuspidatum (Japanese knotweed)

extracts inhibited Propionibacterium acnes biofilm formation by 64.8, 98.5, and
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99.2 %, respectively. Moreover, active compounds (resveratrol, icariin, and

salidroside) within the extracts were identified and tested against three P. acnes
strains. The most effective compound was resveratrol from P. cuspidatum, which
reduced biofilm formation by 80 % for each strain at a concentration of 0.32 %

(w/v). Icariin extracted from E. brevicornum reduced biofilm formation by 40–70 %

at concentrations of 0.01–0.08 % (w/v). The antibiofilm activity of salidroside

(0.02–0.25 % concentration) extracted from R. crenulata was strain dependent

and yielded a biofilm reduction of 40 % for P. acnes LMG 16711 and less than

20 % for other tested strains. Importantly, the antibiofilm activity was detected at

sub-inhibitory concentrations. Two phenolics ferulic and gallic acids demonstrated

preventive action on biofilm formation and showed a higher potential to reduce the

mass of biofilms formed by the Gram-negative bacteria (Borges et al. 2012).

Plant-derived compounds Chelerythrine (CH) (structure 11), Sanguinarine

(SA) (structure 12), DiHydroxyBenzoFuran (DHBF) (structure 13), and proAntho-

cyanidin A2-phosphatidylCholine (proAc) (structure 14) were evaluated for biofilm

formation inhibition and mature biofilm disruption in S. aureus and S. epidermidis.
All four compounds affected biofilm formation, with comparable efficacy; in fact

the inhibition ranged between 1.3 and 5.5-fold of the strongest inhibitory effect

(SA on S. epidermidis). On S. aureus, SA and CH showed a similar inhibitory action

with EC50 values of 24.5 and 15.2 μM, respectively, while DHBF and proAc were

more effective, EC50 ¼ 8.2 and EC50 ¼ 6.9 μM, respectively. S. epidermidis
RP62A was more sensitive to the compounds, with CH, SA, and proAc inhibiting

at EC50 ¼ 8.6, 4.4, and 7.6 μM, respectively, while the DHBF was less effective

with EC50 ¼ 23.5 μM (Artini et al. 2012).
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The antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 was

examined (Cho et al. 2013). Three species of Carex plant extracts inhibited

P. aeruginosa biofilm formation by more than 80 % without affecting planktonic

cell grow that a concentration of 200 μg/mL. The most active extract of Carex
pumila, the resveratrol dimer ε-viniferin (structure 15), was one of the main

antibiofilm compounds effective against P. aeruginosa. The compounds trans-
resveratrol (structure 16) and ε-viniferin dose-dependently inhibited the biofilm

formation of two P. aeruginosa strains, PAO1 and PA14. Specifically, trans-
resveratrol inhibited P. aeruginosa PAO1 biofilm formation by 92 % at 50 μg/
mL, and ε-viniferin inhibited P. aeruginosa PA14 biofilm formation by 82 % at

50 μg/mL without affecting planktonic cell growth. Interestingly, ε-viniferin
inhibited the biofilm formation of enterohemorrhagic Escherichia coli O157:H7
by 98 % at 10 μg/mL (Cho et al. 2013).
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Kumar et al. (2013) evaluated the inhibition of biofilm formation in the presence

of zingerone alone and its ability to increase the susceptibility of the pathogen to

ciprofloxacin. SEM of catheter surfaces showed thinner P. aeruginosa biofilms in

the presence of zingerone. Further, biofilm was inhibited and eradicated in the

presence of zingerone (structure 17) alone and in combination with ciprofloxacin.

Highly significant inhibition ( p � 0.001) was observed when the phytocompound

and antibiotic were used as adjunct therapy. Brandenburg et al. (2013) showed that

both the D and L isoforms of tryptophan inhibited P. aeruginosa biofilm formation

on tissue culture plates, with an equimolar ratio of D and L isoforms producing the

greatest inhibitory effect. Addition of D-/L-tryptophan to existing biofilms inhibited

further biofilm growth and caused partial biofilm disassembly.
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In a study conducted by Upadhyay et al. (2013), sub-MICS of plant-derived

compounds like cinnamaldehyde (structure 18), carvacrol, thymol (structure 2), and
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eugenol (structure 1) were investigated for inhibiting Listeria monocytogenes
biofilm formation and inactivating mature biofilms at 37, 25, and 4 �C on polysty-

rene plates and stainless-steel coupons. All compounds inhibited biofilm synthesis

and inactivated fully formed Listeria monocytogenes biofilms on both matrices at

all temperatures tested (P < 0.05). Real-time quantitative PCR data revealed that

all compounds tested downregulated critical Listeria monocytogenes biofilm-

associated genes (P < 0.05). Kaurenoic acid (KA), a single chemical compound

from A. continentalis, was investigated for its inhibitory effect on the ability of

S. mutans to adhere to saliva-coated hydroxyapatite beads (S-HAs) and biofilm

formation. The adherence of S. mutans was significantly inhibited in a dose-

dependent manner in the presence of KA. In addition, the adherence to S-HAs

was obviously inhibited at 3–4 μg/mL of KA. Biofilm formation was significantly

inhibited at 3 μg/mL of KA and completely inhibited at 4 μg/mL of KA. Biofilm

formation on the surface of resin teeth was also significantly inhibited when treated

with 3 μg/mL of KA and completely inhibited at 4 μg/mL (Jeong et al. 2013).
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4 Inhibitors of Fungal Biofilm

Xanthorrhizol isolated from Curcuma xanthorrhiza (Rukayadi et al. 2011) and the

oil of Ocimum americanum (Thaweboon and Thaweboon 2009) showed potent

in vitro activity against Candida biofilms. In 2008, 30 plant oils including

10 terpenic derivatives and corresponding to the major components of essential

oils were tested for their activity against C. albicans biofilms (Agarwal et al. 2008).

Almost all the studied terpenic derivatives showed antibiofilm activity; however,

carvacrol, geraniol, and thymol exhibited the strongest activity. Moreover, these

compounds also proved to be efficient against biofilms of C. glabrata and

C. parapsilosis (Dalleau et al. 2008). Polyphenols, extracted from green tea, also

showed effects against C. albicans biofilms. Epigallocatechin-3-gallate (structure

19), the most abundant polyphenol in green tea extract, reduced the C. albicans
biofilm metabolic activity by 80 % (Xie and Lou 2008). (R)-goniothalamin, the

most abundant styryl lactone in the Goniothalamus genus (Annonaceae family),

was active against C. albicans biofilms (Martins et al. 2009). Peppermint, eucalyp-

tus, ginger grass, and clove oils resulted in a reduction in C. albicans biofilm

formation. The main component of eucalyptus oil, 1,8- cineole, showed potent

antibiofilm activity against C. albicans biofilms (Hendry et al. 2009). Candida
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biofilm formation was also inhibited more effectively by Boesenbergia pandurata
(finger root) oil; biofilms were reduced by 63–98 % when sub-MIC volumes (from

4 to 32 μL/mL) were used. Moreover, a significant disruption of mature biofilms

was observed when similar volumes of the tested oils were applied (Taweechai-

supapong et al. 2010). Additionally, the antifungal activity of tea tree oil has been

studied by De Prijck and coworkers against C. albicans biofilms. The tea tree oil

was released from modified polydimethyl siloxane disks as a model for incorpo-

rating antifungals into medical devices to prevent biofilm formation by Candida
spp. (De Prijck et al. 2010). The efficacy of sub-lethal concentrations of Muscari
comosum bulb extract in modulating yeast adhesion and subsequent biofilm devel-

opment on abiotic surfaces and its role as extracellular signal responsible for

biofilm dispersion was reported (Villa et al. 2012).
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Purpurin (structure 20) (1,2,4-trihydroxy-9,10-anthraquinone), a natural red

anthraquinone pigment commonly found in madder root (Rubia tinctorum L.) at

sub-lethal concentrations (3 μg/mL), inhibited C. albicans biofilm formation and

reduced the metabolic activity of mature biofilms in a concentration-dependent

manner. SEM images showed that purpurin-treated C. albicans biofilms were

scanty and exclusively consisted of aggregates of blastospores (Tsang et al. 2012).
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Khan and Ahmad (2012a) reported that essential oil components eugenol and

cinnamaldehyde were more active against preformed biofilms than amphotericin B

and fluconazole against both clinical and reference strains of C. albicans
(C. albicans 04 and C. albicans SC5314, respectively). At 0.5� MIC, eugenol

and cinnamaldehyde were the most inhibitory compounds against biofilm formation.

Light and electron microscopic studies revealed the deformity of three-dimensional
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structures of biofilms formed in the presence of sub-MICs of eugenol and

cinnamaldehyde. Combination studies showed that synergy was highest between

eugenol and fluconazole (fractional inhibitory concentration index ¼ 0.14) against

preformed biofilms of C. albicans SC5314. In another study, promising in vitro

antibiofilm activity by Cymbopogon citratus and Syzygium aromaticum oil was

demonstrated against C. albicans strains that displayed formation of moderate to

strong biofilms. Tested oils were more active against preformed biofilms compared

to amphotericin B and fluconazole. At 0.5� MIC, Cymbopogon citratus followed
by Syzygium aromaticum were inhibitory against biofilm formation. Light and

electron microscopic studies revealed the deformity of three-dimensional structures

of biofilms formed in the presence of sub-MICs of Cymbopogon citratus (Khan and
Ahmad 2012b).

5 Broad Spectrum Inhibitors of Biofilm

Huber et al. (2003) investigated biofilm inhibition by three compounds (�)-

epigallocatechin (EGCG), ellagic acid, and tannic acid against Burkholderia
cepacia. While treatment with tannic acid showed no real reduction in film thick-

ness, both EGCG and ellagic acid produced a marked reduction, with ellagic acid

being the most effective. Antibiofilm activity of green tea polyphenols was also

demonstrated on the attached pathogenic yeast, C. albicans (Evensen and Braun

2009), with EGCG being more effective than epigallocatechin or epicatechin-3-

gallate (structure 19). This study suggests that the metabolic instability produced by

the catechin-induced proteasome inactivation was a contributor to the decrease in

the growth rate constant as well as biofilm formation and maintenance.

Shuford et al. (2005) have reported the effect of fresh garlic extract on both the

adherence and mature phases of C. albicans biofilms. Reduction assays of the

biofilms using XXT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)

carbonyl]-2H tetrazoliumhydroxide) showed reduction at both phases. However,

this study revealed nothing as to the nature of this inhibition. Rasmussen

et al. (2005) identified garlic extract as having specificity for quorum-sensing-

controlled virulence genes in P. aeruginosa. In vitro analysis of P. aeruginosa
biofilms showed considerable destruction of the biofilm when exposed to a combi-

nation of garlic extract and tobramycin. Exposure to either compound alone had

little to no effect on the biofilm. Allicin (structure 21), applied at sub-inhibitory

concentration, was involved in specific enzymatic inhibition of polysaccharide

intracellular adhesin (PIA) synthesis. Suppression of PIA production, the main

substance in S. epidermidis agglutination, led to the prevention of biofilm formation

by this pathogen (Cruz-Villalón and Pérez-Giraldo 2011).
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Carneiro et al. (2011) tested sub-MIC concentrations of casbane diterpene

(structure 22) (CS) extracted from Croton nepetaefolius bark against two Gram-

positive bacteria (S. aureus and S. epidermidis), five Gram-negative bacteria (Pseu-
domonas fluorescens, P. aeruginosa, Klebsiella oxytoca, K. pneumoniae, and

E. coli), and three yeasts (Candida tropicalis, C. albicans, and C. glabrata).
S. aureus and S. epidermidis biofilms were significantly disrupted when CS was

applied (125 and 250 μg/mL, respectively). Among Gram-negative bacteria,

K. oxytoca biofilm formation was not affected by CS, and K. pneumoniae biofilms

were reduced by 45 %. Administration of CS at a concentration of 125 μg/mL

caused complete inhibition of P. fluorescens biofilms (by 80 %). However, lower

concentrations of CS supported P. aeruginosa biofilm formation. Similar results

were obtained for E. coli. The authors explained the observed phenomena by the

enhanced production of exopolysaccharides due to the stress induced by the pres-

ence of CS in the culture. Further, casbane diterpene activity against C. albicans
and C. tropicalis was observed, reducing biofilm formation by 50 % (at concen-

trations of 62.5 and 15.6 μg/mL, respectively). Weak antibiofilm activity has been

also found in peppermint (Mentha piperita) extract against biofilms of

P. aeruginosa and C. albicans (Sandasi et al. 2011).
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Studies with cinnamaldehyde and 2-nitrocinnamaldehdye showed an inhibitory

effect on the biofilms of two Vibrio mutants, V. anguillarum 4411 and V. vulnificus
LMG (Brackman et al. 2008). The authors observed that cinnamaldehyde affected

the total mass of the biofilm but not the number of viable cells. These results, in

addition to further analysis, led to the conclusion that these compounds were

affecting the production/accumulation of the exopolysacccharide matrix

(Brackman et al. 2008). As discussed in the previous section, cinnamaldehyde is

also a potent inhibitor of Candida biofilms (Khan and Ahmad 2012a), thus this

compound could potentially be a broad spectrum biofilm inhibitor.
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6 Quorum-Sensing Inhibitors as Antibiofilm Agent

Quorum sensing (QS) plays a vital role in biofilm formation and virulence factor

production in several bacterial species (De Kievit et al. 2001). Consequently,

compounds that interfere with QS systems are expected to interfere with biofilm

formation also. Extracts of the south Florida plants, Conocarpus erectus, Bucida
buceras, and Callistemon viminalis, showed considerable inhibition of

QS-regulated LasA protease, LasB elastase, pyoverdin production, and biofilm

production in P. aeruginosa (Adonizio et al. 2008). Aqueous extracts of edible

plants and fruits such as Ananas comosus, Musa paradiciaca, Manilkara zapota,
and Ocimum sanctum also demonstrated a significant reduction in the biofilm

formation abilities of P. aeruginosa strain PAO1 (Musthafa et al. 2010). Taganna

et al. (2011) found that a tannin-rich component of Terminalia catappa leaves

(TCF12) was able to inhibit the maturation of biofilms of P. aeruginosa to signif-

icant levels. The methanolic extract obtained from Cuminum cyminum, a traditional
food ingredient in South Indian dishes, was shown to act as quorum-sensing

inhibitor (QSI). By interfering with the acyl-homoserine lactone activity, it

inhibited biofilm formation in several bacterial pathogens (Issac Abraham

et al. 2012). The extract of Capparis spinosa also showed a high degree of anti-

quorum-sensing activity in a dose-dependent manner without affecting the bacterial

growth of Serratia marcescens, P. aeruginosa, E. coli, and Proteus mirabilis. At a
concentration of 2 mg/mL, an inhibition of E. coli biofilm formation by 73 % was

observed. For the pathogens Serratia marcescens, P. aeruginosa, and P. mirabilis,
biofilm biomass was reduced by 79, 75, and 70 %, respectively. Moreover, the

mature biofilm structure was disrupted for all of the studied pathogens (Issac

Abraham et al. 2011). Similarly, 83 % P. aeruginosa biofilm inhibition was

achieved with Lagerstroemia speciosa (giant crape myrtle) extract, a concentration

of 10 mg/mL. Application of the extract to P. aeruginosa PAO1 biofilms increased

bacterial susceptibility to tobramycin. Significant inhibition of QS-regulated viru-

lence factors: LasA protease, LasB elastase, and pyoverdin production, was also

recorded (Singh et al. 2012). Melia dubia (bead tree) bark extracts reduced E. coli
biofilm formation by 84 % at a concentration of 30 mg/mL. Bacterial swarming,

regulated by QS, was inhibited by 75 %, resulting in decreased biofilm expansion

(Ravichandiran et al. 2012).

The biofilm inhibitor ursolic acid (structure 23) was identified from 13,000

samples of compounds purified from whole plants and separated parts such as

fruits, leafs, roots, and stems. Ursolic acid from the tree Diospyros dendo added

at the rate of 10 μg/mL decreased biofilm formation in E. coli, V. harveyi, and
P. aeruginosa PAO1. Transcriptome analyses showed the induction of chemotaxis

and motility genes in E. coli treated with the plant-derived compound, suggesting

that ursolic acid may function as a signal that tells cells to remain motile, hindering

cell adhesion or destabilizing already formed biofilms (Ren et al. 2005).

Hamamelitannin (structure 24) extracted from the bark of Hamamelis virginiana
(witch hazel) did not affect the growth of Staphylococcus spp., but it did prevent
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biofilm formation and cell attachment in vitro. Further evidence was provided by

implantation of grafts (soaked in hamamelitannin) into an animal model, which

drastically decreased the bacterial load in comparison to the controls (Kiran

et al. 2008). Two furocoumarins, bergamottin (structure 25) and dihydroxyber-

gamottin (structure 26), isolated from grape fruit juice, were shown to have strong

AI-1 and AI-2 inhibitory activities at concentrations as low as 1 μg/mL. Further

investigation showed that both compounds inhibited biofilms made by E. coli
O157:H7, Salmonella typhimurium, and P. aeruginosa, without inhibition of bac-

terial growth (Girennavar et al. 2008). Vanillin (structure 27) (4-hydroxy-3-

methoxybenzaldehyde), a well-known food flavoring agent, was studied for its

QSI properties against different individual acylhomoserine lactone (AHL) mole-

cules using bioindicator strains. Vanillin showed significant inhibition in short-

chain [C4-HSL (69 %) and 3-Oxo-C8-HSL (59.8 %)] and long-chain AHL mole-

cules. Biofilm formation by A. hydrophila on a polystyrene surface was also

inhibited up to 46.3 %. Results suggested that vanillin could be used as a potential

QSI compound that reduces biofilm formation on RO membranes (Ponnusamy

et al. 2009).
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A number of flavonoids found in citrus species, including naringenin (structure

28), kaempferol (structure 29), apigenin (structure 30), and quercetin (structure 31),

which are antagonists of homoserine lactones and AI-2-mediated cell–cell signal-

ing in V. harveyi, were able to inhibit biofilm formation by V. harveyi BB120 and

E. coli O157:H7 in a dose-dependent manner (Vikram et al. 2010). Flavan-3-ol

catechin, one of the flavonoids from the bark of Combretum albiflorum, reduced
biofilm formation by P. aeruginosa PAO1 (Vandeputte et al. 2010).
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The antibiofilm activity of curcumin (structure 32) against uropathogens using a

standard quantitative biofilm assay revealed a concentration-dependent reduction in

biofilm biomass of uropathogens when treated with curcumin. Curcumin, at 100 μg/
mL, efficiently dislodged the biofilm biomass by 52 %, 89 %, 52 %, and 76 % in

E. coli, P. aeruginosa PAO1, P. mirabilis, and S. marcescens, respectively. In
addition, curcumin was found to be very effective in disrupting the mature

(preformed) biofilms of uropathogens. The CLSM images indicated major disrup-

tion in the biofilm architecture as well as reduced thickness in curcumin-treated

mature biofilms of uropathogens. In E. coli, the thickness of the biofilm was

reduced from 16 to 10 μm, whereas in P. mirabilis it was 11 μm in the control

and 6.36 μm in curcumin-treated biofilm. Likewise, S. marcescens also displayed a
higher reduction from 12 to 3.78 μm in biofilm thickness (Packiavathy et al. 2012).

Six sesquiterpene lactones (SLs) of the goyazensolide and isogoyazensolide type

isolated from the Argentine herb Centratherum punctatum were found to alter

biofilm formation, elastase activity, and production of N-acyl-homoserinelactones

(AHLs) at lower concentrations. Compounds 2, 3, and 5 displayed significant

inhibitory effects on P. aeruginosa biofilm formation at 0.5 μg/mL, compound

3 being (1.32 μM) the most potent (42 %) (Amaya et al. 2012). Lastly, ellagic acid

derivatives from Terminalia chebula showed a significant reduction ( p < 0.001) in

QS-regulated production of extracellular virulence factors in P. aeruginosa PAO1.

Biofilm formation and alginate were significantly ( p < 0.05) reduced with

enhanced (20 %) susceptibility to tobramycin (Sarabhai et al. 2013).
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7 In Vivo Efficacy of Antibiofilm Agents

Various phytocompounds have been reported to possess antibiofilm activity

in vitro; however, their in vivo efficacy has not yet been fully explored. The

in vivo use of garlic extracts as a potential therapy for lung infections was reported

by Bjarnsholt et al. (2005). Mice infected with P. aeruginosa and treated with a

garlic/tobramycin combination showed significantly improved clearing of their

bacterial infections as compared to a placebo control group. Highly effective

antibiofilm activity was observed for fresh Allium sativum extract (fresh garlic

extract, FGE). Fourfold treatment of a P. aeruginosa biofilm with FGE (at 24 h

intervals) resulted in biofilm reduction by 6 log10 units. Moreover, in vivo prophy-

lactic treatment of a mouse model of kidney infection with FGE (35 mg/mL) for
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14 days resulted in a 3 log10 unit decrease in the bacterial load on the 5th day after

infection compared to untreated animals. In addition, FGE protected renal tissue

from bacterial adherence and resulted in a milder inflammatory response and

histopathological changes of infected tissues (Harjai et al. 2010).

Cady et al. (2012) demonstrated that S-phenyl-L-cysteine sulfoxide and its

breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm

formation by P. aeruginosa. These organosulfur compounds did not reduce plank-

tonic cell growth and only affected biofilm formation. In a Drosophila-based
infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide signif-

icantly reduced the P. aeruginosa recovered 18 h postinfection (relative to the

control) and were nonlethal to the fly hosts.

To determine the effects of the crude and petroleum ether fraction of T. ammi on
the oral colonization and cariogenic potential of S. mutans in vivo, a mouse model

was utilized. The caries score was found to be reduced in the treated groups,

reducing the total smooth surface as well as the sulcal surface caries. The percent-

age of total smooth surface caries and sulcal surface caries was 84.83 % and

87.61 % for crude extract and 53.93 % and 73.11 % for the petroleum ether fraction

of T. ammi, respectively (Khan et al. 2012).

8 Conclusions

Plants represent a sustainable source of antibiofilm agents which have unique

modes of action and properties. Present screening and evaluation results of medic-

inal plants and phytocompounds are promising. It is expected that sub-MICs of

plant-derived compounds might offer an elegant way to interfere with various steps

involved in biofilm formation. These antibiofilm compounds might also be effec-

tive in enhancing antibacterial drug efficacy through improved penetration. Isola-

tion of active compounds from extracts and exploring the mode of action of

phytocompounds is further needed in order to identify the most ideal broad-

spectrum agents. Many compounds derived from plants or active fractions of

extracts have shown promising activity in vitro. Such compounds are expected to

exhibit activity in in vivo models, e.g., activity of garlic and its derived compounds

have shown encouraging biofilm inhibitory activity in vivo in different animal

models. Other compounds have to be tested in vivo to uncover their therapeutic

potential.
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Cruz-Villalón G, Pérez-Giraldo C (2011) Effect of allicin on the production of polysaccharide

intercellular adhesin in Staphylococcus epidermidis. J Appl Microbiol 110:723–728

Daglia M, Stauder M, Papetti A, Signoretto C, Giusto G, Canepari P, Pruzzo C, Gazzani G (2010)

Antiadhesion and antibiofilm activities of high molecular weight coffee components against

Streptococcus mutans. Food Chem 119:1182–1188

Dalleau S, Cateau E, Bergès T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against

Candida biofilms. Int J Antimicrob Agents 31(6):572–576

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The

involvement of cell-to-cell signals in the development of a bacterial biofilm. Science

280:295–298

De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in

Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol

67:1865–1873

De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ (2010) Prevention of Candida albicans
biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethy-

lenimine. Mycopathologia 170(4):213–221

Durig A, Kouskoumvekaki I, Vejborg RM, Klemm P (2010) Chemoinformatics-assisted devel-

opment of new anti-biofilm compounds. Appl Microbiol Biotechnol 87:309–317

Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of

biofilm formation and proteasome inactivation. Can J Microbiol 55:1033–1039

Gibbons S (2005) Plants as a source of bacterial resistance modulators and anti-infective agents.

Phytochem Rev 4:63–78

Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK, Pillai SD, Patil

BS (2008) Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm

formation in bacteria. Int J Food Microbiol 125(2):204–208

Hancock V, Dahl M, Vejborg RM, Klemm P (2010) Dietary plant components ellagic acid and

tannic acid inhibit Escherichia coli biofilm formation. J Med Microbiol 59(4):496–498

Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: a handbook of bioactive

compounds from plants. Taylor and Francis, London

Harjai K, Kumar R, Singh S (2010) Garlic blocks quorum sensing and attenuates the virulence of

Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 58:161–168

228 I. Ahmad et al.



Hasan S, Danishuddin M, Adil M, Singh K, Verma PK (2012) Efficacy of E. officinalis on the

cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress

quorum-sensing mechanism. PLoS One 7(7):e40319

Hendry ER,Worthington T, Conway BR, Lambert PA (2009) Antimicrobial efficacy of eucalyptus

oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microor-

ganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64(6):1219–1225

Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type

cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochem-

istry 66:2281–2291

Huber B, Eberl L, Feucht W, Polster J (2003) Influence of polyphenols on bacterial biofilm

formation and quorum-sensing. Z Naturforsch C 58:879–884

Issac Abraham SV, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR (2011)

Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42:658–668

Issac Abraham SV, Palani A, Khadar Syed M, Shunmugiah KP, Arumugam VR (2012)

Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary

metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45:85–92

Jeon JG, Klein MI, Xiao J, Gregoire S, Rosalen PL, Koo H (2009) Influences of naturally occurring

agents in combination with fluoride on gene expression and structural organization of Strep-
tococcus mutans in biofilms. BMC Microbiol 9:228–237

Jeong S, Kim B, Keum K, Lee K, Kang S, Park B, Lee Y, You Y (2013) Kaurenoic acid from

Aralia continentalis inhibits biofilm formation of Streptococcus mutans. Evid Based Comple-

ment Alternat Med 160592:9

Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas
spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061

Khan MSA, Ahmad I (2012a) Antibiofilm activity of certain phytocompounds and their synergy

with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621

Khan MSA, Ahmad I (2012b) Biofilm inhibition by Cymbopogon citratus and Syzygium
aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140:416–423

Khan MSA, Ahmad I (2013) Microscopy in mycological research with especial reference to

ultrastructures and biofilm studies. In: Mendez-Vilas A (ed) Current microscopy contributions

to advances in sciences and technology microscopy. FormatexSpain, Spain, pp 646–659

Khan R, Adil M, Danishuddin M, Verma PK, Khan AU (2012) In vitro and in vivo inhibition of

Streptococcus mutans biofilm by Trachyspermum ammi seeds: an approach of alternative

medicine. Phytomedicine 19(8–9):747–755

Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V,

Orlando F, Shoham M, Balaban N (2008) Discovery of a quorum-sensing inhibitor of drug-

resistant Staphylococcal infections by structure-based virtual screening. Mol Pharmacol

73:1578–1586

Kumar L, Chibber S, Harjai K (2013) Zingerone inhibit biofilm formation and improve antibiofilm

efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–78, http://
dx.doi.org/10.1016/j.fitote.2013.06.017

Lee JH, Lee JS, Chung MS, Kim KH (2004) In vitro anti-adhesive activity of an acidic polysac-

charide from Panax ginseng on Porphyromonas gingivalis binding to erythrocytes. Planta Med

70:566–568

Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH (2006) Pectin-like acidic polysaccharide

from Panax ginseng with selective antiadhesive activity against pathogenic bacteria.

Carbohydr Res 341:1154–1163

Lee JH, Shim JS, Chung MS, Lim ST, Kim KH (2009) In vitro anti-adhesive activity of green tea

extract against pathogen adhesion. Phytother Res 23:460–466

Lee JH, Cho MH, Lee J (2011a) Indole production promotes Escherichia coli mixed culture

growth with Pseudomonas aeruginosa by inhibiting quorum signalling. Environ Microbiol

13:62–73

Medicinal Plants and Phytocompounds: A Potential Source of Novel Antibiofilm. . . 229

http://dx.doi.org/10.1016/j.fitote.2013.06.017
http://dx.doi.org/10.1016/j.fitote.2013.06.017


Lee KH, Kim BS, Keum KS, Yu HH, Kim YH, Chang BS, Ra JY, Moon HD, Seo BR, Choi NY,

You YO (2011b) Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm

formation. J Food Sci 76:H226–H230

Lengsfeld C, Titgemeyer F, Faller G, Hensel A (2004) Glycosylated compounds from okra inhibit

adhesion of Helicobacter pylori to human gastric mucosa. J Agric Food Chem 52:1495–1503

Martins CV, de Resende MA, da Silva DL (2009) In vitro studies of anticandidal activity of

goniothalamin enantiomers. J Appl Microbiol 107(4):1279–1286

Murugan K, Selvanayaki K, Al-Sohaibani S (2011) Antibiofilm activity of Andrographis
paniculata against cystic fibrosis clinical isolate. Pseudomonas aeruginosa. World J Microbiol

Biotechnol 27:1661–1668

Murugan K, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA (2013) Antibiofilm and quorum

sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: an
in vitro and in silico study. Pharm Biol 51:728–736

Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian SK (2010) Evaluation of anti-

quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine

lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy

56:333–339

Packiavathy IASV, Priya S, Pandian SK, Ravi AV (2012) Inhibition of biofilm development of

uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. Food Chem

148:453–460, http://dx.doi.org/10.1016/j.foodchem.2012.08.002

Ponnusamy K, Paul D, Kweon JH (2009) Inhibition of quorum sensing mechanism and Aeromonas
hydrophila biofilm formation by vanillin. Environ Eng Sci 26:1359–1363
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Staphylococcus aureus Biofilm Formation

and Inhibition

Carolyn B. Rosenthal, Joe M. Mootz, and Alexander R. Horswill

Abstract Staphylococcus aureus is a prominent cause of chronic infections. Gen-

erally these infections are considered to be communities of bacteria that are matrix-

encased and attached to a surface, which is frequently referred to as a biofilm. These

infections can occur on host tissue, such as on bone in osteomyelitis and heart

valves in infective endocarditis, or they can occur on foreign implanted materials.

In this review, we summarize the latest knowledge in the basic principles of

S. aureus biofilm formation, and we outline the current understanding of biofilm

matrix components and the impact of quorum sensing in modulating biofilm

structure. A strong emphasis is placed on biofilm inhibition through an examination

of the latest literature on exogenous enzyme approaches or small-molecule treat-

ments for inhibiting biofilms. These small molecules include a number of recently

reported natural products with bioactivity against S. aureus biofilms and some

limited examples of anti-biofilm synthetic compounds. Overall the goal is to

provide readers with a basic understanding of S. aureus biofilm development and

give a fresh look at the ever-growing array of new treatment options that may lead

to innovative therapies for these challenging chronic infections.

1 Introduction

Staphylococcus aureus is a notorious pathogen capable of causing a spectrum of

acute and chronic infections. A tremendous amount of effort has been placed on

understanding the acute nature of disease caused by this pathogen and there is

continual concern about the growing levels of antibiotic resistance (DeLeo and

Chambers 2009; Chambers and Deleo 2009; Gordon and Lowy 2008; Spellberg

et al. 2013). At the same time, S. aureus is one of the most common etiological
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agents of chronic infections. It is the leading cause of infective endocarditis and

osteomyelitis (Fowler et al. 2005; Lew and Waldvogel 2004), a common cause of

foreign body infections (Zimmerli et al. 2004), and a frequent invader in chronic

lung disease (Valenza et al. 2008). It is generally believed that the ability of

S. aureus to attach to surfaces, or to itself, and develop a matrix-encased community

of cells called a “biofilm” is a factor in the progression of chronic disease

(Kiedrowski and Horswill 2011).

S. aureus biofilm development has been a focal point of research over the last

decade. Numerous studies have investigated surface adhesins, matrix components,

and transcriptional regulators, all with the goal of better understanding how

S. aureus forms a biofilm and with the eventual goal of improving treatment

options. The challenge presented by biofilm infections is that these structures are

characterized by resistance to chemotherapies and host defenses, properties that

promote bacterial persistence in the host (Parsek and Singh 2003; del Pozo and

Patel 2007; Patel 2005; Brady et al. 2008; Costerton 2005; Otto 2013). However,

when a S. aureus biofilm is dispersed, it regains susceptibility to antimicrobials

(Lauderdale et al. 2010; Boles and Horswill 2008), suggesting that an improved

understanding of formation and dispersal mechanisms could aid the development of

more effective treatments for chronic infections.

How significant are S. aureus biofilm infections to our healthcare system? For

purposes of this review, we will cover implant-associated infections, which are a

growing problem for healthcare systems worldwide. Annually, there are two mil-

lion nonvascular indwelling devices implanted in the USA, nearly half of which

will become infected (Darouiche 2004; Zimmerli et al. 2004). S. aureus and

coagulase negative staphylococci are the most common isolates (Blot et al. 2005;

Darouiche 2004; Mermel et al. 2009; Warren et al. 2006; Wu et al. 2003), account-

ing for nearly two-thirds of this type of infection. For treating implant infections,

long courses of antibiotics are required and additional surgeries are often necessary

(Darouiche 2001), sometimes leading to the removal of the infected device

(Darouiche 2004; Zimmerli et al. 2004). All of these additional procedures worsen

patient outcomes. Both catheter-related bloodstream infections and implant-

associated infections add significant burden to the healthcare system (Blot

et al. 2005; Darouiche 2004), which manifests as an increase in the length of a

hospital stay and raised total costs (Dimick et al. 2001). In order to improve patient

outcomes and reduce the burden on our healthcare systems, a better understanding

of how S. aureus forms and disassembles a biofilm is needed.

In this review, we will closely examine advances in our knowledge of S. aureus
biofilm development. We will summarize S. aureus adhesins and matrix compo-

nents that are important for a biofilm to form, signaling mechanisms that modulate

biofilm integrity, and enzymatic mechanisms of biofilm dispersal. As an emphasis

in this review, we will focus on the growing field of small-molecule biofilm

inhibitors that have been identified from natural products and synthetic libraries.

Since there is more literature on S. aureus biofilms than can be covered here, the

interested reader is referred to other recent reviews to obtain additional perspective
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(Gotz 2002; O’gara 2007; Kiedrowski and Horswill 2011; Boles and Horswill

2011; Kaplan 2010; Otto 2013).

2 S. aureus Biofilm Development

A bacterial biofilm can be defined as a community of cells encased in an extracel-

lular matrix. In the staphylococci, biofilm development is thought to occur in four

stages: (1) attachment; (2) microcolony formation; (3) maturation; and (4) detach-

ment (see Fig. 1). During the first stage, free-floating cells attach to an abiotic or

biotic substratum such as a foreign body or host tissue. The mechanisms used to

facilitate attachment are largely dependent upon substrate surface chemistry, with

electrostatic or hydrophobic interactions facilitating bacterial attachment to abiotic

surfaces and various non-covalent interactions mediating adhesin attachment to

biotic surfaces. Following this phase, bacteria multiply to form microcolonies

(Stage 2), which are defined as small aggregates of cells that contain some matrix

material. It is often considered an intermediate stage of biofilm formation that links

the attachment step with the mature biofilm, and it is sometimes not considered a

separate stage. However, it has been repeatedly observed through in vitro studies

(Shanks et al. 2005; Yarwood et al. 2004; Bateman et al. 2001) and in clinical

samples (Stoodley et al. 2008), and for these reasons we will consider the

microcolony an independent stage. The continued growth of microcolonies and

production of biofilm matrix components result in the significant accumulation of

biomass and development of a mature biofilm (Stage 3). This stage has the

characteristic surface structure often associated with bacterial biofilms, such as

tower formation and water channels, and the cells display the maximal level of

resistance to antimicrobials. Finally, mechanical and active mechanisms can trigger

cellular detachment from the biofilm (Stage 4). During this stage, the biofilm matrix

is typically targeted for degradation resulting in bacterial dissemination, which

allows free-floating cells to reinitiate the biofilm development process at new sites.

Detachment of the biofilm restores bacterial susceptibility to chemotherapies and is

an active area of research interest (Lauderdale et al. 2010; Boles and Horswill 2008,

2011; Kaplan 2010).

3 S. aureus Biofilm Matrix

One of the most important components of bacterial biofilms is the extracellular

matrix material that is essential for cellular encasement and community function.

The biofilm matrix provides protection against both mechanical and chemical

environmental stresses, including resistance against antimicrobial peptides, antibi-

otics, and uptake by phagocytes. A great deal of effort has been spent on identifying

the components of the S. aureus biofilm matrix, and what has become clear is that
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the matrix composition varies across strain types and is highly dependent on the

environmental conditions promoting biofilm development. Much of the current

knowledge of the biofilm matrix is based on studies of enzymes or molecules that

destroy this cohesive material, and many of these matrix-degrading agents are

summarized in Table 1.

The first extensively studied matrix component is the exopolysaccharide termed

PIA (Polysaccharide Intercellular Adhesin) or PNAG (Poly N-AcetylGlucosamine).

PIA is primarily composed of a β1-6 acetylglucosamine homopolymer, is partially

de-acetylated (15–20 %), and is negatively charged (Mack et al. 1996). It is

produced and secreted by the proteins encoded in the ica (intercellular adhesion)
gene locus, icaADBC (Cramton et al. 1999), which include a N-acteylglucosamine

transferase (IcaA and IcaB) (Gerke et al. 1998), a predicted exporter (IcaC) (Gerke

et al. 1998), and a deacetylase (IcaD) (Vuong et al. 2004b). This collection of

proteins builds the PIA polymer from UDP-N-acetylglucosamine to a structure that

is over 100 subunits in length. The ica locus is important for biofilm formation in

many S. aureus strains and expression is induced by a variety of environmental

conditions including low oxygen, glucose, osmolarity, temperature, and in the

presence of sub-inhibitory concentrations of antibiotics (Fitzpatrick et al. 2005;

Cramton et al. 2001). However, in a number of studies, S. aureus strains have been
identified that do not require the ica locus to generate a robust biofilm, and many of

these strains are clinical MRSA isolates (Beenken et al. 2003; Lauderdale

et al. 2010; Boles et al. 2010; Boles and Horswill 2008; O’neill et al. 2007).

The PIA-independent S. aureus strains rely on proteins and extracellular DNA

(eDNA) as the important components of the biofilm matrix. In the host, biofilm

development initiates with attachment to extracellular matrix material including

fibrinogen, fibronectin, and collagen, which coat foreign bodies (Francois

et al. 1998, 2000). S. aureus possesses numerous surface-exposed MSCRAMMs

(Microbial Surface Components Recognizing Adhesive Matrix Molecules) as well

Fig. 1 Schematic of S. aureus biofilm development. Stage 1, a subpopulation of planktonic cells

lyse, release eDNA, and adhere to a conditioned surface using a combination of surface adhesins,

eDNA, and PIA. Stage 2, the attached cells grow to a microcolony that begins to display some

morphological features of a biofilm. Stage 3, the biomass accumulates and the structure matures

into an established biofilm that displays the expected characteristics, such as tower formation and

antimicrobial resistance. Stage 4, active (quorum-sensing) or mechanical mechanisms lead to

biofilm detachment and a return to the planktonic state. Multiple factors are involved in the

detachment phase, such as proteases and PSMs
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as secreted proteins that contain binding domains for these matrix proteins (Foster

and Hook 1998). Many S. aureus MSCRAMMs have an important role in biofilm

formation including SasC (Schroeder et al. 2009), SasG (Conrady et al. 2008;

Corrigan et al. 2007), FnbpAB (O’neill et al. 2008), Protein A (Merino

et al. 2009), and ClfB (Abraham and Jefferson 2012). These adhesins are particu-

larly important in the initiation of endovascular infections, bone and joint infec-

tions, and prosthetic device infections (Gordon and Lowy 2008). In addition to

MSCRAMMs, other surface proteins, such as Bap (Trotonda et al. 2005), have been

identified with important biofilm roles, but the mechanisms through which these

additional proteins contribute to attachment and/or cell–cell adhesion are still under

investigation.

As outlined above, eDNA is an important matrix material that is thought to be

released into the surrounding milieu by the carefully regulated autolysis of a

subpopulation of cells (Mann et al. 2009; Rice et al. 2007). The eDNA provides

Table 1 Natural signaling and enzymatic mechanisms of modulating S. aureus biofilms

Process or agent Mechanism References

Native mechanisms that modulate S. aureus biofilm integrity

Autoinducing

peptide

(AIP)

agr quorum-sensing signal disperses biofilms Boles and Horswill (2008),

Lauderdale et al. (2010)

PSMs Surfactant properties promote dispersal of

Staphylococcal biofilms

Periasamy et al. (2012),

Vuong et al. (2000)

Nuclease Degradation of eDNA in biofilm matrix Kiedrowski et al. (2011),

Mann et al. (2009)

V8 protease Cleavage of fibronectin-binding proteins

(FnbpAB)

McGavin et al. (1997), Marti

et al. (2010), O’neill

et al. (2008)

Staphopains

(cysteine

proteases)

Cleavage of unknown surface or biofilm matrix

proteins

Mootz et al. (2013)

D-amino acids Improper incorporation of D-amino acids into

peptidoglycan, reduced production of sur-

face proteins

Hochbaum et al. (2011),

Kolodkin-Gal et al. (2010)

Hyaluronate

lyase

Enzyme that cleaves hyaluronic acid and may

prevent biofilms

Pecharki et al. (2008)

Additional enzyme mechanisms

Dispersin B N-acetylglucosaminidase that cleaves

PIA/PNAG

Kaplan et al. (2004)

Lysostaphin Glycylglycine endopeptidase that cleaves the

pentaglycine cross-bridge of staphylococ-

cal peptidoglycan

Wu et al. (2003)

Esp protease S. epidermidis protease able to inhibit S. aureus
nasal colonization and biofilm formation

Sugimoto et al. (2013), Iwase

et al. (2010)

LasB protease Pseudomonas aeruginosa protease capable of

inhibiting S. aureus biofilm formation

Park et al. (2012)
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structural support for the biofilm and may be involved in cell-to-cell or cell-to-

surface adhesion. β-toxin is the only protein identified in the S. aureus biofilm

matrix that can hold onto eDNA and provide bridging support (Huseby et al. 2010).

β-toxin has a three-dimensional structure that resembles Nuc (Huseby et al. 2007),

and it is capable of binding eDNA and oligomerizing to form higher ordered states.

The multimer is protease susceptible, providing the first link between eDNA and

proteins in forming the biofilm framework, and S. aureus mutants in β-toxin are

defective in biofilm formation in vitro and in vivo (Huseby et al. 2010). However,

many clinical strains of S. aureus do not produce β-toxin due to the presence of a

converting prophage (van Wamel et al. 2006), suggesting that other eDNA-binding

proteins await identification in the biofilm matrix.

4 Quorum Sensing in S. aureus Biofilms

In S. aureus, biofilm formation and detachment are regulated by the agr (accessory
gene regulator) quorum-sensing system (see Fig. 2). Quorum sensing is a common

mechanism utilized by most bacteria to respond to their environment and coordi-

nate a group response. In S. aureus, this self-population monitoring leads to global

changes in gene expression that influence biofilm formation, and the signal that

controls these events is an autoinducing peptide (AIP). The agr quorum-sensing

system is a chromosomal locus that encodes the proteins that produce and respond

to the AIP signal (reviewed in Thoendel et al. 2011; Novick and Geisinger 2008).

Under low agr expression conditions, cell surface protein expression is high while

secreted enzyme expression is low, making S. aureus cells more adherent and

sessile. When a critical threshold of AIP is reached, either due to growth of the

cellular community or the accumulation of a high local signal concentration, a

regulatory change occurs that leads to increased expression of the RNAIII tran-

script. RNAIII is a 514-bp transcript that is major agr effector, and high levels of

this transcript induce production of extracellular virulence factors that include

toxins, superantigens, and exo-enzymes. Multiple studies have linked the induction

of the agr system with the inhibition of S. aureus biofilms (Yarwood et al. 2004;

Boles and Horswill 2008; Lauderdale et al. 2010; Periasamy et al. 2012), and

currently the primary inhibitory factors are thought to be exo-enzymes and

phenol-soluble modulins (PSMs). These studies have demonstrated that there is

an inverse correlation between agr expression and levels of biofilm biomass,

resulting in the characteristic waves of biofilm growth and detachment seen

throughout S. aureus biofilm development (Yarwood et al. 2004).

The PSMs are surfactant molecules that have been identified in both S. aureus
and S. epidermidis and are under direct control by the response regulator AgrA,

which induces their transcription (Wang et al. 2007; Vuong et al. 2004a; Queck

et al. 2008). In S. aureus, genetic deletion of the psmα and psmβ operons results in

increased biofilm biomass and induction of PSMs is able to detach established

biofilms (Periasamy et al. 2012). In the related pathogen Staphylococcus
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epidermidis, the prevention of PSMβ expression limited dissemination using a

mouse model of foreign body infection (Wang et al. 2011b). Altogether, these

results emphasize the significance of PSMs as modulators of biofilm development.

The other major class of molecules positively regulated by the agr system and

impacting biofilm development are the extracellular proteases. Numerous studies

have demonstrated that various regulatory conditions that lead to high extracellular

protease levels negatively impact S. aureus biofilm formation (Mootz et al. 2013;

Boles and Horswill 2011; Lauderdale et al. 2009, 2010; O’neill et al. 2008; Marti

et al. 2010; Tsang et al. 2008; Zielinska et al. 2012). Most S. aureus strains secrete
at least ten proteases including a metalloprotease (Aur), seven serine proteases

(SspA and SplA-F), and two cysteine proteases (Staphopains ScpA and SspB). All

of these proteases are induced when RNAIII levels accumulate (Thoendel

et al. 2011), and not surprisingly, the deletion of all these proteases results in

increased abundance of secreted and surface-associated virulence factors (Kolar

et al. 2013). Several proteins with biofilm roles have been identified that are cleaved

by these core proteases. For instance, Aur metalloprotease cleaves surface-exposed

clumping factor ClfB (McAleese et al. 2001) and PSMs (Zielinska et al. 2011). The

increased stability of PSMs in an aurmutant leads to increased osteoblast cell death

and bone destruction in a murine model of osteomyelitis (Cassat et al. 2013). SspA

(V8) serine protease degrades the fibronectin-binding MSCRAMMs (McGavin

et al. 1997) as well as Protein A (Karlsson et al. 2001), and there is evidence that

SspA might be important in biofilm remodeling (McGavin et al. 1997; Marti

Fig. 2 Quorum-sensing-mediated detachment of S. aureus biofilms. S. aureus biofilms were

grown for 2 days with a constitutive RFP expressing plasmid and an agr-controlled GFP plasmid.

AIP signal was added to the growth media and biofilm integrity and fluorescence were monitored

for 2 days (for further details, see Boles and Horswill 2008). In panel (a), AIP was added to a

S. aureus wild-type strain, and in panel (b) it was added to a Δagr mutant strain. The images are

reconstructions of confocal microscopy pictures, and they show that the wild-type strain will

detach from the biofilm during quorum-sensing induction. Reprinted with permission from Boles

and Horswill (2008)
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et al. 2010; O’neill et al. 2008). The Staphopains have been implicated as inhibitors

of biofilm formation on both biotic and abiotic surfaces (Mootz et al. 2013). Both

ScpA and SspB cleave the host proteins fibrinogen and collagen (Ohbayashi

et al. 2011), and in addition, ScpA is capable of degrading elastin (Potempa

et al. 1988). Therefore, the Staphopains may prevent S. aureus biofilm formation,

or disassemble established biofilms, through a complex mechanism of cleaving

both S. aureus-specific proteins and host proteins. However, the protein targets of

Staphopains have yet to be elucidated within a biofilm. The other major family of

secreted proteases are the Spl proteases, which were initially linked to biofilm

dispersal (Boles and Horswill 2008). However, these enzymes have very specific

cleavage sites and their targets and role in biofilm development are not yet clear.

5 Enzymatic Mechanisms of Biofilm Inhibition

In this section, we will cover enzymatic treatments that can inhibit S. aureus biofilm
formation. While S. aureus-secreted proteases have demonstrated self-cleavage

capability, other bacterial proteases can tap into these pathways and we present

some examples that lead to biofilm inhibition. Some of the other enzymes

presented, such as nuclease and hyaluronate lyase, are produced by S. aureus but
are not part of the quorum-sensing dispersal pathway discussed above. Finally, we

cover commercially produced enzymes that have demonstrated successful inhibi-

tion of S. aureus biofilms in vitro and in vivo.

5.1 Proteases

Recently, the serine protease Esp produced by S. epidermidis has gained attention

as a cross-species inhibitor of S. aureus nasal colonization (Iwase et al. 2010). Esp

is a homolog of the S. aureus V8 (SspA) protease that is known to have anti-biofilm
properties (Marti et al. 2010; O’neill et al. 2008). Follow-up studies have demon-

strated that Esp cleaves surface and secreted proteins in S. aureus that influence

biofilm formation (Sugimoto et al. 2013), with one of the most important of these

being the major autolysin Atl (Chen et al. 2013). Other bacterial pathogens produce

cross-acting proteases with activity against S. aureus biofilms. As one example,

Pseudomonas aeruginosa secretes the elastase LasB, which prevents S. aureus
biofilm formation and disperses established biofilms (Park et al. 2012). Finally,

there have been many demonstrations that commercial proteases, such as proteinase

K and trypsin, have anti-biofilm properties against many S. aureus biofilm forming

strains (Lauderdale et al. 2010; Boles and Horswill 2008; O’neill et al. 2007;

Chaignon et al. 2007).
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5.2 Nuclease and Other DNases

The first identified and probably best studied S. aureus enzyme is nuclease (Nuc).

Nuc is a potent, secreted endonuclease that can degrade single- and double-stranded

DNA, as well as RNA, in a calcium-dependent manner (Cunningham et al. 1956;

Cuatrecasas et al. 1967). Although nuc gene expression was originally thought to be
part of the agr regulon, recent studies have shown it is controlled by the SaeRS

two-component system (Olson et al. 2013b). Exogenous treatment of Nuc enzyme,

or controlled expression of nuc, prevents S. aureus biofilm formation (Kiedrowski

et al. 2011). S. aureus mutants lacking nuc produce larger biofilms compared to

wild-type strains due to accumulation of high MW eDNA, and this phenotype is

conserved across S. aureus strain types (Kiedrowski et al. 2011). In addition to the

S. aureus Nuc, other DNases have been shown to prevent S. aureus biofilm

formation on diverse abiotic surfaces, such as glass, titanium, and plastic

(Lauderdale et al. 2010; Izano et al. 2008; Mann et al. 2009).

5.3 Hyaluronate Lyase

Hyaluronate lyases are secreted bacterial enzymes that cleave the β-1,4 glycosidic

bond of hyaluronic acid, a host matrix polymer (Hynes and Walton 2000). The

S. aureus hyaluronate lyase, encoded by the gene hysA, was initially described as a

“spreading factor” for its ability to promote infection dissemination in a murine

skin infection model (Duran-Reynals 1933). More recently, it has been demon-

strated that many S. aureus strains contain multiple forms of this enzyme (Hart

et al. 2013). The abundance of hyaluronic acid in the mammalian host, particularly

at in vivo biofilm infection sites (Jiang et al. 2011; Laurent and Fraser 1992), makes

it a potential component of the biofilm matrix in vivo. Recent studies in our

laboratory have found that there is increased biofilm formation in the presence of

hyaluronic acid in a MRSA hysA mutant, and exogenous addition of purified HysA

reduced biofilm formation (Rosenthal and Horswill, unpublished observations).

Along these lines, the Streptococcus intermedius hyaluronate lyase was shown to

be important for biofilm dispersal (Pecharki et al. 2008). These findings suggest that

the role of hyaluronate lyase in S. aureus biofilm dispersal warrants further

investigation.

5.4 Dispersin B

Dispersin B is an enzyme produced by the dental pathogen Actinobacillus
actinomycetemcomitans that has been shown to function as a N-acetyl-
glucosaminidase. When added exogenously to staphylococcal biofilms, the enzyme
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can cleave PIA in the biofilm matrix and rapidly degrade the established biofilm

(Donelli et al. 2007; Kaplan et al. 2004). Kaplan et al. demonstrated that concen-

trations as low as 40 ng/mL resulted in greater than a 50 % decrease in an

established S. epidermidis biomass after 9 min, and 4.8 μg/mL completely

abolished biomass in 2 min. Dispersin B is not bacteriocidal, demonstrating that

the rapid effect on biofilms is a result of PIA digestion in the matrix and destabi-

lization of the structure. However, many lineages of S. aureus form

PIA-independent biofilms that do not respond to Dispersin B treatment and instead

are sensitive to DNases or proteases (Izano et al. 2008). To date, no endogenous

staphylococcal PIA-degrading enzymes have been identified, but it is possible that

they remain to be discovered.

5.5 Lysostaphin

Lysostaphin is a glycylglycine endopeptidase produced by Staphylococcus
simulans, and this enzyme cleaves the pentaglycine cross-bridge of staphylococcal

peptidoglycan (Schindler and Schuhardt 1964). While this enzyme is known for its

ability to lyse S. aureus cells at low concentrations, it has also been found to be

effective at inhibiting both S. aureus and S. epidermidis biofilms. At a low concen-

tration, lysostaphin will kill S. aureus cells in a biofilm and disrupt the extracellular

matrix in vitro on polystyrene and polycarbonate surfaces (Wu et al. 2003). When

administered in combination with nafcillin, lysostaphin was able to eradicate

established S. aureus biofilms in catheters implanted into the jugular veins of

mice (Kokai-Kun et al. 2009). Additionally, when catheters were pretreated with

lysostaphin, the mice were completely protected from MRSA infection of the

indwelling catheters. While this is an intriguing new method of enzymatic biofilm

dispersal, the exact mechanism by which this occurs is still unknown. One possi-

bility is that there is cell wall debris in the matrix, which is targeted by lysostaphin

resulting in biofilm disruption. Alternatively, the destruction of the biofilm could be

due to rapid lysis of cells followed by matrix destabilization (Wu et al. 2003).

Despite our limited understanding of the lysostaphin anti-biofilm mechanism, the

success of using this enzyme to treat staphylococcal biofilm infections suggests that

it could be attractive for further development.

6 Small-Molecule Inhibitors of S. aureus Biofilms

In recent years, there have been increasing reports of naturally occurring and

synthetic small molecules that inhibit S. aureus biofilm formation (listed in Table 2).

In many cases for these molecules, the anti-biofilm mechanism is not known in

detail, nor has the agent been tested in animal models of infection. We will present

the highlights from a few of the better characterized examples (see Fig. 3).
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Table 2 Synthetic and natural product small molecules that inhibit S. aureus biofilms

Process or agent Anti-biofilm mechanism References

Natural products

Cis-2-decanoic acid Unknown Davies and Marques

(2009)

Tannic acid Induction of IsdA and potential

modulation of cell wall

Lee et al. (2013), Payne

et al. (2013)

Ellagic acid Unknown Quave et al. (2012)

Magnolol Inhibition of autolysis and eDNA

release

Wang et al. (2011a)

4,5-Disubstituted-2-

aminoimidazole-triazole

conjugates

Zinc-chelation Su et al. (2011)

N-acetyl-L-cysteine Unknown Drago et al. (2013)

Synthetic

Chelators Metal chelation Venkatesh et al. (2009)

Aryl rhodanines Inhibition of attachment Opperman et al. (2009)

Fig. 3 Structures of natural product inhibitors of S. aureus biofilm formation. Representative

examples of bacterial-derived compounds are shown along with plant- or marine-derived

compounds
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6.1 Natural Product Inhibitors

As outlined in the preceding sections, many bacteria can produce agents that

prevent biofilm formation. In one recent example, D-tyrosine, D-phenylalanine,

and D-proline, as well as a mixture of D-amino acids, were shown to be effective

at inhibiting S. aureus biofilm formation (Kolodkin-Gal et al. 2010; Hochbaum

et al. 2011). One mechanism could be the improper incorporation of D-amino acids

in the peptidoglycan peptide side chains in the place of the terminal D-alanine. In

support of this proposal, the addition of D-alanine restored biofilm formation in the

presence of both D-tyrosine and the D-amino acid mixture. Additionally, biofilms

that were treated with D-amino acids were found to have fewer surface proteins

when compared to biofilms treated with L-amino acids by confocal microscopy

(Hochbaum et al. 2011). The anti-biofilm characteristics of D-amino acids are not

limited to S. aureus, as the authors found that D-amino acids also prevented biofilm

formation in other bacteria, such as Bacillus subtilis and Escherichia coli. Consid-
ering D-amino acids are produced in late biofilm cultures by B. subtilis, there may

be some general conserved nature to this biofilm dispersal strategy across bacterial

species.

In another recent example of a bacterial derived agent, the fatty acid messenger,

cis-2-decanoic acid, was identified from culture supernatants of P. aeruginosa as

being broadly biofilm inhibitory (Davies and Marques 2009). The fatty acid

disrupted established biofilms across a large variety of bacterial species, including

S. aureus, and the authors postulated that it might function as a signaling molecule

in multispecies biofilms to induce dispersal in a synchronized manner. More

recently, cis-2-decanoic acid has been shown to enhance the effectiveness of

antibiotics against S. aureus biofilms (Jennings et al. 2012). However, more work

is required to determine the specific mechanism through which biofilm degradation

occurs.

Plants are an abundant source of natural products and increasingly compounds

are being identified that are bioactive against S. aureus. Recently, ellagic acid

derivatives were identified from Rubus ulmifolius (Elmleaf blackberry) as being

anti-biofilm in nature (Quave et al. 2012). Ellagic acid prevented biofilm formation

in all lineages of S. aureus and enhanced the susceptibility of these biofilms to

antibiotics. Additionally, the ellagic acid bioactivity was effective on human

plasma conditioned surfaces to provide a more relevant mimic of the in vivo disease

state. At this time, preliminary studies suggest the anti-biofilm mechanism is not

through alteration of PIA production or inhibition of sarA expression (Quave

et al. 2012). More studies are needed to further define the ellagic acid mode of

action against S. aureus biofilms.

Tannic acid is another example of a plant-derived natural product that has

recently been shown to be anti-biofilm in nature (Lee et al. 2013; Payne

et al. 2013). In looking at the tannin-induced change in S. aureus extracellular

proteins, the immunodominant surface protein A (IsdA) increased in abundance. In

follow-up analysis, induced expression of the isdA gene was found to inhibit biofilm
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formation and an isdA mutant was not sensitive to treatment, further suggesting the

tannic acid triggered increase in IsdA levels is the reason for the biofilm phenotype.

Tea is abundant in tannins and the exposure of S. aureus biofilms to tea replicated

these findings in vitro. Importantly, the authors also demonstrated that tannins were

anti-biofilm in vivo using a rat model of throat colonization (Payne et al. 2013).

IsdA is a lytic transglycosylase and could be modifying the S. aureus peptidoglycan
and altering biofilm development. Supporting this proposal, a catalytically inactive

form of IsdA had no effect on the biofilm capacity. However, the exact mechanism

of IsdA on biofilm limitation awaits further elucidation.

As another recent example of plant-derived compounds, magnolol, a major

component isolated from the stem bark ofMagnolia species, has been demonstrated

to have anti-biofilm properties against S. aureus (Wang et al. 2011a). Through

transcriptional profiling, it was shown that magnolol decreased cidA expression and

increased lrgAB expression, both loci with known connections to autolysis (Rice

and Bayles 2008). Supporting the profiling, magnolol treatment reduced S. aureus
autolysin activity in a dose-dependent manner (Wang et al. 2011a), suggesting that

this natural product controls lysis and eDNA release, which is essential for

S. aureus biofilm formation (Rice et al. 2007).

Finally, there has been success from marine-derived natural products in identi-

fying anti-biofilm agents. Multiple reports have demonstrated that the

2-aminoimidazole motif found in the sponge-derived natural products oroidin and

related compounds are effective at preventing S. aureus and other bacterial patho-

gens from forming biofilms (Su et al. 2011; Stowe et al. 2011). These compounds

can synergize with antibiotics to increase the potency against MRSA biofilm

(Rogers et al. 2010). Interestingly, the 2-aminoimidazole scaffold might be func-

tioning as a biofilm inhibitor through a zinc chelation mechanism (Rogers

et al. 2009). There are critical S. aureus surface proteins, like SasG, that are

important for biofilm formation and require zinc to build a proper surface structure

(Gruszka et al. 2012; Conrady et al. 2008; Corrigan et al. 2007). Whether or not the

2-aminoimidazole containing compounds function through SasG inhibition mech-

anism or through another zinc-dependent process remains to be determined.

6.2 Synthetic Inhibitors

Some success has been achieved by screening combinatorial libraries for anti-

biofilm compounds. The aryl rhodamines are an interesting class of compounds

identified initially by screening against S. epidermidis biofilms and successfully

tested against other bacterial pathogens like S. aureus (Opperman et al. 2009).

These compounds are broadly anti-biofilm against a diverse array of clinical

S. aureus isolates in the low micromolar range, and they retain some activity against

other Gram-positive pathogens. The aryl rhodamines inhibit attachment of

S. aureus to surfaces, although the exact mechanism of action is not yet clear.
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Multiple chelators are known to inhibit staphylococcal biofilm formation. The

chelator EDTA was found to be effective at decreasing S. aureus and S. epidermidis
adherence and biofilm formation (Kadry et al. 2009; Venkatesh et al. 2009; Shanks

et al. 2006), and additionally, the calcium chelator EGTA was found to be effective

at preventing biofilm formation of S. epidermidis. Polysaccharide production and

surface hydrophobicity were significantly reduced when S. epidermidis strains were
treated with both EDTA and EGTA (Kadry et al. 2009). Whether some of these

EGTA anti-biofilm properties will function against S. aureus are unclear. While the

exact mechanism of action for these chelators against S. aureus biofilms is still

unknown, it is tempting to speculate that they could be inhibiting the function of

metal-dependent surface proteins that are important for biofilm formation (Conrady

et al. 2008).

7 Conclusions and Future Perspectives

Significant advances in the S. aureus biofilm field have been made in the past

decade. Through ongoing studies on biofilm formation mechanisms, a tremendous

number of surface factors and transcriptional regulators have been identified that

contribute to biofilm development. In this review, we focused on the basics of

S. aureus biofilm development, provided an overview on matrix components, and

described the agr quorum-sensing system as one example of a prominent biofilm

regulator. The rest of the article summarized the many recent examples of enzyme

and small-molecule-based anti-biofilm mechanisms. Due to space limitations,

many other adhesins were not covered in detail herein, such as Atl (Bose

et al. 2012; Houston et al. 2011), FnbpAB (Geoghegan et al. 2013), and Bap

(Valle et al. 2012), and there are recent exciting advances in our knowledge of

these structures. There are also a number of characterized regulators that have been

demonstrated to have biofilm roles, such as SarA (Beenken et al. 2010; Tsang

et al. 2008; Beenken et al. 2003), MgrA (Trotonda et al. 2008), ArlRS (Fournier and

Hooper 2000), and CcpA (Seidl et al. 2008), to name a few. The many complexities

of autolysis and eDNA release during S. aureus biofilm development were also only

briefly covered (Mann et al. 2009; Rice and Bayles 2008; Rice et al. 2007). Due to

the rapid growth in knowledge on the S. aureus biofilm development pathways,

much of this information extends beyond this review, and the interested reader is

encouraged to examine the recent literature. All these advances are important as our

understanding of biofilm formation and dispersal mechanisms continues to grow,

and the hope is this new insight will aid our ability to pioneer approaches to

preventing S. aureus biofilms.

Going forward, there are many factors that will have to be considered as we

continue investigating developmental pathways and inhibitors of S. aureus biofilm
formation. It is increasingly being appreciated that S. aureus preferentially binds to
matrix proteins in vivo rather than directly to abiotic material (Walker and Horswill

2012; Beenken et al. 2010; Mootz et al. 2013). As research advances, adapting
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biofilm assays to take this into account will be important to properly assess the

efficacy of new anti-biofilm therapies. Additionally, there should be consideration

of other surfaces for S. aureus biofilm formation. This pathogen has the ability to

bind human mucin proteins that are abundant in many host environments (Shuter

et al. 1996), and mucin has been shown to enhance biofilm capacity and antimi-

crobial tolerance of other lung pathogens (Landry et al. 2006). S. aureus can even

grow on some of the sugars that would be liberated from glycosylated mucins in

such an environment (Olson et al. 2013a), and growth on sugars often favors biofilm

formation due to acid secretion (Boles and Horswill 2008). There also needs to be

consideration for the tremendous differences across S. aureus strain types in terms

of biofilm capacity, and there should be attempts to assess effectiveness across

various biofilm techniques, such as flow cells or the newer microfluidic-based

methods (Moormeier et al. 2013). The simple microtiter plastic attachment assays

are useful as an investigation starting point, but they do not always have the

robustness and consistency to make broad conclusions about S. aureus biofilms.

Beyond assays, there are other factors that should be taken into account as the

S. aureus biofilm field advances. For instance, there are few definitions of what

constitutes a S. aureus biofilm. Currently, a structure has to “look like a biofilm” by

some type of microscopy method and display enhanced resistance to antimicro-

bials. There are no uniform dimensions (size, thickness) or other standards that can

be relied upon as a general biofilm definition. As the field progresses, there should

be consideration for more standardization in S. aureus biofilm research and defining

these structures in a rigorous manner for study comparisons across the field. If

researchers had key biomarkers of biofilms to track, such as a gene or secreted

product that is only induced in a biofilm in a conserved manner, there would be

tremendous benefit to monitoring this biomarker during treatment tests in vitro or

in vivo.

In this review, natural mechanisms of S. aureus biofilm dispersal were covered,

along with many enzyme and small-molecule treatment approaches. The field is

evolving quickly and many alternative and creative strategies to prevent S. aureus
biofilms are under investigation. Phage therapy is one example that is currently

being explored to prevent or eliminate established biofilms (Kelly et al. 2012).

Electrical currents have shown promise in preliminary studies to prevent S. aureus
biofilms and those of other pathogens (del Pozo et al. 2009), and additional

mechanism studies suggest that hypochlorous acid (bleach) produced from media

salts could be the reason for the anti-biofilm activity (Sandvik et al. 2013). The

semimetal gallium has shown promise in preventing S. aureus biofilms in prelim-

inary in vitro studies (Baldoni et al. 2010). There are also many examples of

alterations of surface chemistry as an anti-biofilm strategy, and as one representa-

tive, Slippery Liquid-Infused Porous Surfaces (SLIPS) were recently shown to be

effective at preventing S. aureus attachment and biofilm development (Epstein

et al. 2012).

The field of S. aureus biofilms has made tremendous strides in recent years as

our understanding of surface adhesins, regulatory networks, enzyme treatments,

natural product and synthetic inhibitors, and quantitative assays continues to
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improve. Despite these successes, many areas outlined herein are still in need of

further improvement as the field continues to mature. Perhaps most importantly,

only a select few of the current in vitro biofilm-related discoveries have transitioned

to animal model confirmation. Due to the high level of variability in biofilm results,

it will be critically important to continue testing new treatment approaches in

relevant animal models of biofilm infection. Altogether, the recent advances in

biofilm knowledge hold great promise for developing effective approaches for

treating some of the devastating S. aureus chronic infections.
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Novel Targets for Treatment of Pseudomonas
aeruginosa Biofilms

Morten Alhede, Maria Alhede, and Thomas Bjarnsholt

Abstract Pseudomonas aeruginosa causes infection in all parts of the human

body. The bacterium is naturally resistant to a wide range of antibiotics. In addition

to resistance mechanisms such as efflux pumps, the ability to form aggregates,

known as biofilm, further reduces Pseudomonas aeruginosa’s susceptibility to

antibiotics. The presence of such biofilms is acknowledged to equal a persistent

infection due to their inherent high tolerance to all antimicrobials and immune cells.

In this chapter we discuss the mechanisms of biofilm tolerance. The latest biofilm

research is reviewed and future treatment strategies such as quorum sensing inhib-

itors, silver, and antibodies are thoroughly evaluated.
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1 Pseudomonas aeruginosa

P. aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. It is
found in environments such as soil, water, plants, common food, and mammalian

tissues but are not a part of the normal human flora (Hardalo and Edberg 1997). The

complete sequence of the genome of P. aeruginosa strain PAO1 was published in

Nature in the year 2000 and was noted for its large size of 6.3 million base pairs and

5,570 open reading frames (30 % larger than Escherichia coli K12) (Stover

et al. 2000).

Depending on the habitat, P. aeruginosa holds the potential to express an

impressive arsenal of virulence factors, which are regulated by 468 transcriptional

regulators (Stover et al. 2000). In spite of its huge arsenal of toxins, the bacterium

primarily infects hospitalized and immunocompromised humans where it causes

chronic infections in tissues such as heart (endocarditis) (Reyes and Lerner 1983),

respiratory tracts of cystic fibrosis (CF) patients (Bjarnsholt et al. 2009), paranasal

sinuses (rhinosinusitis) (Oncel et al. 2010), chronic wounds (Fazli et al. 2009),

caries (El-Solh et al. 2004), osteomyelitis (Sapico 1996), and intravenous catheters

and stents (Tacconelli et al. 2009). Chronic P. aeruginosa infections are particularly
common in patients at intensive care units, and it is the most frequent Gram-

negative etiologic agent associated with infections of indwelling catheters and

foreign body implants (Brouqui et al. 1995).

The bacterium causes chronic pulmonary infections in 80 % of adults with the

genetic disorder CF and is also a common cause of bacterial pneumonia in patients

with HIV (FitzSimmons 1993; Afessa and Green 2000; Emerson et al. 2002;

Schaedel et al. 2002). In otherwise healthy individuals persistent P. aeruginosa
infections can be found in relation to periodontitis, keratitis, otitis media, and burn

wounds (Barbosa et al. 2001; Post 2001; Fleiszig and Evans 2002).

2 Biofilms of P. aeruginosa

In chronic infections the bacteria persists despite the host defense and antibiotic

treatment. The ability for P. aeruginosa, and most other bacteria, to grow as

aggregated and sessile communities is one important factor involved in its persis-

tence in chronic infections. The term biofilm is applied to bacterial cells that live as

aggregates embedded in a self-produced matrix, which can be on a surface or in

suspension. Biofilm is a life-form that increases the bacterial survival of environ-

mental insults including otherwise detrimental effects of antibiotics and immune

cells (Stewart and Costerton 2001; Aaron et al. 2002; Jesaitis et al. 2003).

The importance of the bacterial biofilm phenotype is becoming increasingly

renowned as improved methods to study aggregated bacteria have become avail-

able. Therefore, a dramatic accumulation of evidence for its widespread presence

has occurred. Especially within chronic infections, biofilms have been found to play
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a detrimental role. In this respect, the increased tolerance of biofilms has strength-

ened the belief that a chronic infection equals the biofilm state of growth (Burmølle

et al. 2010; Høiby et al. 2010). Once a mature biofilm has formed, it is almost

impossible to eradicate it with antimicrobials and a chronic inflammation will

occur. The best option is to remove or debride the infected tissue or implant, and

if that is not an option chronic suppressive therapy seems to be the only alternative

(Høiby et al. 2010).

The tolerance of biofilms has been linked to its slow growth since both in vitro

aggregates in suspension and flow-cell biofilms have the same slow growth rate as

stationary phase shaking cultures (Alhede et al. 2011). Interestingly, a recent study

showed that the growth rate of biofilms is independent of age, but that the tolerance

to antibiotics increases with age. It was found that the tolerance towards antibiotics

was reversible by physical disruption, suggesting that internal structures of the

matrix components plays the major role in surviving otherwise lethal treatments

with antibiotics and resistance to phagocytes (Alhede et al. 2011).

In addition to the inherent tolerance of the biofilm, traditional resistance mech-

anisms (e.g., efflux pumps and other adaptive resistance systems) are also promi-

nent players in biofilm infections (Ciofu 2003; Haagensen et al. 2007; Pamp

et al. 2008). The implication of adaptive resistance in metabolically active biofilm

cells has led to the effective combination therapy for early eradication of

P. aeruginosa in cystic fibrosis patients (Hansen et al. 2008). However, due to the

rise in multi-resistant strains, and the fact that mature biofilms are close to impos-

sible to eradicate, new and alternative targets are needed in order to treat chronic

biofilm infections.

3 Novel Treatments

As stated by (Høiby et al. 2010), the first and preferred strategy against biofilm

infection would be to prevent invading bacteria from forming aggregates. Since the

aggregates show increased tolerance to both antibiotics and the immune system,

development of drugs that impede surface attachment or other specific events in the

early stages of aggregation may keep infecting bacteria in a planktonic, susceptible

state (Bjarnsholt et al. 2005a, b). Killing infecting bacteria has long been the

preferred strategy. This has been achieved by conventional antimicrobials targeting

basal life processes of the bacteria. But the dissemination of resistance and the lack

of new antimicrobials have initiated the search for new strategies. It is generally

accepted that the application of lethal or growth inhibiting compounds will impose

a selective pressure upon the bacteria resulting in resistance genes and hence a

purification in the population (Nnis System 2004; Clatworthy et al. 2007; Hawkey

2008; Spellberg et al. 2008; Boucher et al. 2009). Therefore, a constant develop-

ment of new drugs is essential, as drugs already in use become obsolete.
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3.1 Weakening of Biofilm

Most pathogenic bacteria including P. aeruginosa produce compounds that impair

the immune system, e.g., inhibition of antimicrobial production, antimicrobial

degradation, inhibition of chemotaxis, and induction of apoptosis and necrosis

(Kharazmi et al. 1984a; Bortolussi et al. 1987; Kharazmi 1991; Allen et al. 2005;

Bjarnsholt et al. 2005a, b; Jensen et al. 2007; Alhede et al. 2009). Once a chronic

infection has been established, the most obvious alternative to antibiotic-mediated

killing would be to attenuate the bacteria with respect to pathogenicity in order to

enable the immune system to clear the biofilm infection (Bjarnsholt and Givskov

2007). The novel treatment strategies explained in the following sections all target

the biofilm in such a way that it becomes susceptible to antibiotic treatment or the

immune system.

4 Quorum Sensing Inhibitors

Probably, the most studied novel strategy in antimicrobials is the development of

quorum sensing inhibitors (QSIs). This strategy targets the regulation of virulence

expression since bacteria, including P. aeruginosa, regulate a range of social

behaviors (e.g., metabolism, virulence, and motility) to exploit their survival

potential. Cooperative behaviors are maintained through inter- and extracellular

chemical crosstalk comparable to higher organisms (Shapiro 1998). Gram-negative

bacteria execute their cross talk by means of signal molecules such as N-acyl
homoserine lactones (AHLs) (Withers et al. 2001). Among those synchronized

activities is the expression of virulence factors (Davies et al. 1998; Smith and

Iglewski 2003). This type of bacterial communication was termed QS by (Fuqua

et al. 1994). QS systems allow bacteria to “sense” bacterial density in the environ-

ment and respond by gross changes in gene expression. It has been proposed that

this mechanism enables arrest in the production of virulence factors until enough

bacteria have been amassed to defeat the host defense (Waters and Bassler 2005).

One of the most important virulence factors produced by the model organism

P. aeruginosa is rhamnolipid. Jensen and colleagues found that P. aeruginosa
produces the compound in a QS regulated manner and proved that the bacterium

kills PMNs with this substance in liquid culture and biofilms (Jensen et al. 2007).

Later, Alhede et al. demonstrated that P. aeruginosa biofilms growing in vitro in

flow cells initiate rhamnolipid production upon contact with human neutrophils

(PMNs). Hence, the bacterium is able to detect the presence of these immune cells

and react by producing rhamnolipid in a QS-dependent manner. Due to the mole-

cules bipolar structure, the rhamnolipids were found to stick to the biofilm surface

and thus create a shield that kills immune cells (Alhede et al. 2009). The effect of

rhamnolipids in vivo has been shown in several studies and clearly demonstrates

how potent this compound is. Mutants not able to produce rhamnolipids are cleared
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at a faster rate than corresponding wild-type bacteria (Alhede et al. 2009; van

Gennip et al. 2009). Further stressing the importance of rhamnolipids is the

association between the production of rhamnolipids by colonizing P. aeruginosa
isolates and the development of Ventilator Associated Pneumonia (VAP). The

authors of the study showed that VAP occurred more frequently in patients colo-

nized during the entire observation period by isolates producing high levels of

rhamnolipids (Kohler et al. 2010).

In addition to rhamnolipids, QS regulates a range of other virulence factors such

as proteases, elastases, and lipases (Kharazmi et al. 1984a, b; Doring et al. 1986;

Kharazmi et al. 1986, 1989; Kharazmi 1991). Attenuating bacteria by targeting the

regulation of virulence will assist the immune system and consequently facilitate

eradication (Hentzer et al. 2003b; Bjarnsholt et al. 2005a, b). It has been put forward

(yet not proven) that this strategy imposes a weaker selective pressure with respect

to development of resistance compared with conventional antibiotics (Hentzer

et al. 2003a). However, even though QSIs target non-vital functions, the fitness of

the bacteria could be reduced as a consequence of lost virulence and the presence of

immune cells and thus impose selection (Defoirdt et al. 2010).

In addition to controlling the production of virulence factors, QS has also been

shown to control biofilm tolerance to antibiotics such as tobramycin, ciprofloxacin,

and ceftazidime. QS-deficient biofilms are more prone to killing by these antibiotics

(Bjarnsholt et al. 2005a, b; Bjarnsholt and Givskov 2007) and are less tolerant to

PMNs (Jesaitis et al. 2003; Bjarnsholt et al. 2005a, b) than a QS proficient biofilm.

Since a large number of virulence factors are controlled by QS, blockage will likely

result in many beneficial effects.

Numerous researchers have searched for compounds that could block the QS

system and thereby enable biofilm eradication (Bjarnsholt and Givskov 2008).

Several proof of concept studies have been published, but the first promising

compounds were the synthetic furanones C-30 and C-56 (Hentzer et al. 2003b;

Wu et al. 2004). QSIs do not kill or detach the biofilm directly but they render the

biofilm more susceptible to antibiotics, as was the case with these furanones. In

vitro, P. aeruginosa biofilms were significantly less tolerant to 100 μg/mL

tobramycin when treated with furanone C-30 (Hentzer et al. 2003b). In addition,

in vivo studies in a pulmonary mouse model confirmed the potential of the

furanones by demonstrating that bacteria were cleared faster in furanone-treated

vs. untreated mice (Hentzer et al. 2003b; Wu et al. 2004). Recently, two QSIs from

natural sources have been isolated: Iberin from horseradish and Ajoene from garlic

(Jakobsen et al. 2012a, b).

QS deficiency leads to reduced tolerance to a variety of conventional antibiotics,

and QSI compounds that block production of the rhamnolipid shield should make

the biofilm more prone to eradication by the immune system (Bjarnsholt

et al. 2005a, b; Rasmussen et al. 2005; Alhede et al. 2009). Consequently, prophy-

lactic administration of QSIs or administration of QSIs in combination with anti-

biotics or other antimicrobials may become a useful strategy in the treatment of

biofilm infections. Recently, an interesting paper from Christensen et al. showed a

synergistic effect of combining tobramycin with a QSI in a murine implant
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infection model. Significant clearance was found with all tested QSIs (C-30,

Ajoene, and horseradish juice), and the authors stressed the point that the best

application of this treatment was on early initiation (Christensen et al. 2012) (see

Fig. 1). The authors speculated that the effect seen was due to a reduction in

extracellular DNA (eDNA). eDNA has been shown to reduce the effect of

aminoglycoside via cation chelation (Mulcahy et al. 2008; Chiang et al. 2013),

and the release of eDNA has been shown to be controlled by QS (Allesen-Holm

et al. 2006). Further, QS controlled virulence factors (e.g., rhamnolipid) are known

to lyse immune cells which leads to release of the host DNA (Jensen et al. 2007;

Alhede et al. 2009). The presence of eDNA from both bacteria and host seems to be

suppressed by QSIs and could thus explain the higher susceptibility to tobramycin.

Fig. 1 Synergistic antibacterial efficacy of combination treatment with tobramycin and quorum-

sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection

mouse model. Clearance of implants pre-colonized with wild-type P. aeruginosa inserted in the

peritoneal cavity of BALB/c mice treated with either placebo (open circles), QSI ( filled triangles),
tobramycin (TOB) (open triangles), or a combination of TOB and QSI (QSI + TOB) ( filled
squares). Squares, triangles, and circles represent cfu/implant in individual mice and horizontal
bars represent the medians. The QSIs depicted are furanone C-30 (a), Ajoene (b + d), and

Horseradish extract (c + e). Adopted from Christensen et al. (2012)
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5 DNase

As stated earlier in this chapter, the matrix of the biofilm plays a very important role

in the tolerance to antimicrobials. In addition to its vital stabilizing effect

(Montanaro et al. 2011), eDNA has been shown to chelate cations in the biofilm

(i.e., aminoglycosides). Hence, targeting eDNA seems to be an important

antibiofilm target.

In 2002, cleaving DNA with DNases was demonstrated to be effective in

preventing biofilm formation of P. aeruginosa in vitro in flow cells (Whitchurch

et al. 2002). However, DNase treatment of already existing biofilms only had an

effect on immature biofilms younger than 84 h. Older biofilms seemed to be

independent of the stability offered by DNA (e.g., more polysaccharide) or able

to inactivate the DNase (Whitchurch et al. 2002). Similar results were shown by

(Tetz et al. 2009), who also showed that coadministration of DNase together with

β-lactam antibiotics to a 24-h-old P. aeruginosa biofilm, significantly reduced the

biomass as compared to the control (Tetz et al. 2009).

DNases are thus promising drugs against biofilm formation and are already

administered to chronically infected CF patients with significant result (Frederiksen

et al. 2006; Alipour et al. 2009; Kaplan 2009). It has been shown that necrotic

PMNs release F-actin and DNA that via filament bundles enhance P. aeruginosa
biofilm formation in vitro (Walker et al. 2005; Parks et al. 2009). As in the case

without the presence of PMNs, inhibition of biofilm formation in the presence of

DNase was observed, but only in young biofilms. Interestingly, it was found that the

mature biofilms could be disrupted with a combination of the DNase and polyvalent

anion polyaspartat (Tang et al. 2005; Parks et al. 2009). It was hypothesized that the

bundles of F-actin and DNA are stabilized by multivalent cations (i.e., histones and

antimicrobial peptides) and are dissolved by multivalent anions such as

polyaspartate. The dissociation of the bundles increases the access of DNase to

cleavage sites and thus facilitates biofilm disruption (Tang et al. 2005; Tolker-

Nielsen and Hoiby 2009).

These finding might explain the efficacy of inhaled DNase in CF, which is

associated with a reduction in infectious burden and incidences of pulmonary

exacerbations (Robinson 2002; Frederiksen et al. 2006). The potential of DNase

treatment can be enhanced by the addition of anionic polymers to disrupt biofilms

in vivo. However, Tolker-Nielsen and Høiby foresee several problems with

polyvalent anions that need to be addressed before CF patients can be treated.

First, they speculate that the anions will either bind to or struggle to diffuse into the

sputum. Second, they point out that biofilms that give rise to PMN accumulation

and lung tissue damage are located in the respiratory part of the airways, where

inhalation therapy (i.e., DNase and polyaspartate) is out of reach (Tolker-Nielsen

and Hoiby 2009). If the above problems can be solved, this treatment will help

thousands of patients with CF, but it also seems to be promising for other biofilm

infections.
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6 Silver

The antibacterial effect of silver has been known and utilized since the nineteenth

century but was “forgotten” with the introduction of antibiotics. With the emer-

gence of multiple resistant bacteria, silver is facing its revival (Chopra 2007). The

main focus of silver as an antimicrobial agent has been in the topical treatment of

infected wounds. The mode of action of silver is multiple, unlike most antibiotics.

Silver interferes with several components of bacterial cell structures and functions,

including cell membrane integrity, respiratory chains, transmembranous energy and

electrolyte transport, and enzyme activities (Lansdown 2002).

In general it is very difficult to compare the antimicrobial efficiency of silver

containing products (i.e., dressings) because of a complete lack of standardized test

methods, and the fact that silver is used in many different formulations (e.g., silver

nitrate, silver sulfadiazine (SSD), and nano crystalline silver). Most silver dressings

exploit the highly reactive silver cation to achieve their antimicrobial effect.

Manufacturers are then distinguished by how the silver is incorporated into the

dressing and the amount of silver that is released (Toy and Macera 2011).

Silver’s multiple of modes of action are proposed to be less affected by the

microenvironmental variations found in biofilms than are antibiotics (Bjarnsholt

et al. 2007). Furthermore, silver is known to decrease bacterial adhesion and

destabilize the biofilm matrix (Klueh et al. 2000; Chaw et al. 2005). Hence, silver

could prove to be an efficient antibiofilm drug. Many silver-containing wound

dressings have shown very promising results against P. aeruginosa when they are

growing in dilute solutions (Parsons et al. 2005; Castellano et al. 2007); however,

few studies have examined its efficacy against biofilms (Kostenko et al. 2010;

Bowler et al. 2012). As is the case with all other antimicrobials, we have found

that silver containing dressings loose their effect as the biofilm matures

(unpublished data). Bjarnsholt et al. demonstrated that to eradicate a mature

in vitro biofilm (4 day old) with silver sulfadiazine, concentrations as high as 5–

10 μg/mL were needed. This concentration is 10–100 times higher than that used to

eradicate planktonic bacteria. These observations indicate that the concentration of

silver in currently available wound dressings is too low for treatment of chronic

biofilm wound infections (i.e., mature biofilms) (Bjarnsholt et al. 2007) (See Fig. 2).

In another study, it was found that cells in some regions of a 24-h-old biofilm

survived 7 days of silver treatment, but that the surviving cells were highly

susceptible to tobramycin and ciprofloxacin. The antimicrobial efficacy of the

dressings was correlated to the type of base material of the dressing and the silver

species loaded (Kostenko et al. 2010).

As stated above, silver containing products are used in wound treatment to

combat a broad spectrum of pathogens. However, evidence of their effectiveness

in preventing wound infection or promoting healing is lacking. Furthermore,

standardized tests are also lacking, so direct comparisons are not possible. In

spite of this, a large survey of 26 randomized trials investigated the effects of

silver-containing wound dressings and topical agents in preventing wound infection
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and healing of wounds (Storm-Versloot et al. 2010). Among burn wounds only one

trial showed fewer infections with silver nitrate when compared with a non-silver

dressing. Interestingly, three trials showed significantly more infections with SSD

than with the non-silver dressings. In non-burn wounds, most comparisons found no

significant differences in infection rates comparing SSD/silver-containing dressings

with non-silver dressings. And of most interest, only one comparison showed a

significant reduction in healing time using a silver-containing hydrofiber dressing

(Storm-Versloot et al. 2010).

Thus, it seems that the clinical competence of silver dressings are limited, which

could be due to the widespread presence of biofilms that requires unreachable

concentrations of silver. The consequence of an infected wound is a stalled healing

process and hence a chronic wound. This is in particular true in wounds infected

with P. aeruginosa (Bjarnsholt et al. 2008).

7 Antibodies

Antibodies against bacterial components facilitating adhesion and accumulation on

surfaces, such as the polysaccharide intercellular adhesin (PIA) and the

accumulation-associated protein (Aap) in Staphylococcus aureus (Maira-Litran

et al. 2004; Sun et al. 2005) and Opr86 in P. aeruginosa (Tashiro et al. 2008),

have shown promising results in preventing biofilm formation in vitro.

A successful anti-pseudomonas strategy in CF is polyclonal IgY antibodies from

egg yolk (Kollberg et al. 2003; Nilsson et al. 2008). Yolk antibodies, which are

essentially an extract of egg yolk in water, should not induce inflammatory

Fig. 2 Silver sulfadiazine and tobramycin treatment of P. aeruginosa biofilms. GFP-tagged wild-

type P. aeruginosa and QS mutant biofilms were grown for 4 days in flow chambers. On the fourth

day, silver sulfadiazine (10, 5, or 1 μg/mL) or tobramycin (340 μg/mL) was added to the medium.

To assess the extent of the bacterial killing, propidium iodide was added to the media on day 5. The

representative pictures show biofilms after 24 h of silver sulfadiazine (SSD) or tobramycin

treatment (Bjarnsholt et al. 2007)
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reactions because they do not bind to human Fc receptors or complement system

(Larsson et al. 1993), and should thus be safe. The IgY egg yolk antibodies were

found by Nilsson et al. to bind flagellin as the major antigen (Nilsson et al. 2007).

Flagellin is the main protein of the flagella and is crucial for establishing infections

in hosts as well as being involved in chemotaxis, motility, and adhesion. As a

consequence, anti-Pseudomonas IgY has been shown to prevent adhesion of

Pseudomonas to dermal epithelial cells in vitro. A secondary positive effect of

binding flagellin is the potential to dampen local inflammation since the accessi-

bility of the bacteria to TLR5 is attenuated (Smith et al. 2003; Shanks et al. 2010).

Flagella are very abundant in bacteria and hence egg yolk antibodies have been

shown to be immunoreactive against several strains of P. aeruginosa (Nilsson

et al. 2007).

In a long-term study (12 years) of oral treatment with anti-pseudomonas egg

yolk antibodies, a significantly lower number of positive P. aeruginosa cultures

were found in the treated group compared to the control group (2.3 vs. 7 per

100 treatment months). In addition, a lower incidence of chronic P. aeruginosa
infection was found in the treatment group. Although the data were collected from a

small number of patients (17 vs. 23), the data strongly suggest that prophylaxis with

a combination of anti-pseudomonas antibodies and antibiotics has great potential

(Nilsson et al. 2007, 2008).

Fully human IgG1 monoclonal antibodies, targeting flagellin type b, have

recently been found to markedly decrease P. aeruginosa motility and to improve

survival of mice in a lethal pulmonary mouse model using a multidrug-resistant

P. aeruginosa strain (Adawi et al. 2012). The authors found that a double dose

paradigm administered postinfection, kept 75 % of the mice alive until day 7 com-

pared to 20 % in the formulation- and isotype control (Adawi et al. 2012). Several

similar studies have found that anti-flagellin antibodies can reduce mortality and

morbidity in murine P. aeruginosa-infected burn models (Pollack et al. 1984;

Barnea et al. 2006, 2009).

From the information above, it is clear that prophylactic treatment with anti-

bodies has overcome initial disappointing clinical studies and now seems to be a

persuasive and promising treatment regime (Bone 1991, 1996).

8 Perspectives for Future Treatment

Infections with aggregating bacteria have proven to be hard to prevent and treat.

Recent findings of biofilm and aggregate heterogeneity have opened a window of

novel treatment strategies. Research has shown that distinct subpopulations have

different susceptibility to antimicrobials and therefore the biofilm should preferably

be eradicated with more than one regimen. Combinations of already approved

antimicrobials have shown good results in vivo, but new combinations including

novel compounds such as QSIs, DNase, silver, or antibodies could ultimately be the

end of chronic infections. The synergistic use of these novel drugs in combination
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with conventional antibiotics could improve the efficacy of treatment by attenuat-

ing the renitent biofilm and target several subpopulations within it.

Text Box: How to Test Antibiofilm Drugs.

We have noted that most novel antibacterial compounds and dressings are

only tested on either planktonic cultures (including plates) or on very young

biofilms (younger than 48 h). Matures biofilms are involved in most chronic

infections and we know that the MIC values of antimicrobials increase

dramatically in the first days of a biofilm life. Hence, we recommend that,

in addition to traditional tests on planktonic cultures, efficacy tests on mature

biofilms should be included when testing a novel compound for its

antibacterial efficacy.

Some of the most active antibiotics have recently been shown to have dual

activities. In addition to working as conventional antibiotics they also function as

QSIs (Mizukane et al. 1994; Nalca et al. 2006; Hoffmann et al. 2007; Skindersø

et al. 2008). Three out of twelve tested antibiotics (azithromycin, ceftazidime, and

ciprofloxacin) could effectively inhibit the production of several QS virulence

factors including rhamnolipid and elastase (Skindersø et al. 2008).

These antimicrobials set the bar for future drugs targeting chronic infections by

combining several targets in one drug. In addition to the discovery of new drug

scaffolds and designing effective combinations of existing compounds, another

important task is to identify drug targets that are ubiquitous in many bacteria.

Consequently, a drug that would hit a ubiquitous target could then be used to

eradicate many different pathogenic organisms and hopefully attract the interest

of the pharmaceutical industry. The increase in multiresistant bacteria, the scarcity

of newly approved antibiotics, and the desperate lack of leads in the pipeline has

raised the need for new strategies against infections. From the data presented, it

seems that combinations of treatments seem to be the right way of fighting biofilm

infections with P. aeruginosa as well as other pathogens.
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Abstract Fungal infections constitute a major threat for an expanding population

of immunosuppressed patients, as these infections carry unacceptably high mor-

bidity and mortality rates due to, among other reasons, the limited arsenal of

antifungal agents. One of the main factors complicating antifungal therapy is the

formation of fungal biofilms, resulting in frank resistance to most antifungal drugs,

which is multifactorial in nature. Although Candida albicans remains the most

frequent etiologic agent of fungal biofilm infections, there is an increased recogni-

tion that infections caused by other yeasts and filamentous fungi are also associated

with the formation of biofilms, both on biomedical devices and host tissues. During

the last decade an increasing number of studies have begun to uncover the driving

forces behind the formation of fungal biofilms and the molecular basis of biofilm

resistance; together with new powerful technologies, they may pave the road for the

development of newer therapeutics for the prevention and treatment of these

recalcitrant infections.
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1 Fungal Infections, Fungal Biofilms, and Their

Clinical Significance

Fungal infections represent a significant clinical problem as advances in modern

medicine prolong the lives of an expanding population of severely compromised

patients (Brown et al. 2012). The opportunistic pathogenic fungi Candida spp.,

Aspergillus spp., and Cryptococcus neoformans are among the most common

etiologic agents of mycoses, but infections caused by other yeasts and moulds are

on the rise (Brown et al. 2012). Unfortunately, these infections are frequently not

recognized (diagnosed) and are treated inadequately, leading to unacceptably high

morbidity and mortality rates (Brown et al. 2012). Moreover, these devastating

infections place an additional financial burden to our healthcare system (Wilson

et al. 2002). Over the last two decades there has been an increasing recognition of

the role that biofilms play during fungal infections. Biofilm formation has important

clinical implications since sessile cells within these microbial consortia display

characteristics that are drastically different from planktonic populations, most

notably increased resistance to antifungal drugs. In addition, biofilms provide a

safe haven for fungal cells, can become a persistent source of infections, and can

adversely affect the function of implanted devices, which further complicates the

clinical management of these patients. Overall fungal biofilm formation adversely

impacts the health of these patients at an alarmingly increasing rate and with

soaring economic consequences.

Candida spp., and in particular C. albicans, are the fungal species most fre-

quently associated with formation of biofilms (Kojic and Darouiche 2004; Ramage

et al. 2005, 2006, 2009). It is now well established that different forms of candidi-

asis, now the third to fourth most common nosocomial infection in US hospitals and

abroad (Banerjee et al. 1991; Beck-Sague and Jarvis 1993), such as catheter-related

candidemia, candiduria, and endocarditis, involve biofilm formation (Kojic and

Darouiche 2004; Ramage et al. 2006). Other manifestations such as denture sto-

matitis and oral and vaginal candidiasis are also associated with biofilm formation

(Harriott et al. 2010; Ramage et al. 2004). Somewhat ironically, the increase in

Candida infections in the last few decades has almost directly paralleled the

increase and widespread use of a broad range of medical implant devices, such as

stents, shunts, prostheses, implants, endotracheal tubes, pacemakers, and various

types of catheters, mainly in populations with impaired host defenses (Ramage

et al. 2006). Most notably, Candida spp. are the third leading cause of central

catheter-related infections, with the overall highest crude mortality (Crump and

Collignon 2000). Studies of catheter-related candidiasis have unequivocally shown

that retention of vascular catheters is associated with prolonged fungemia, high

antifungal therapy failure rates, increased risk of metastatic complications, and

death (Pappas et al. 2009; Pfaller and Diekema 2007; Viudes et al. 2002).

Besides Candida, other yeasts and filamentous fungi whose biofilm-forming

ability are associated with clinical settings have been described and include Cryp-
tococcus, Aspergillus, Coccidioides, Pneumocystis, Malassezia, Penicillium,
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Histoplasma, Saccharomyces, Trichosporon, Blastoschizomyces, Pneumocystis,
and some zygomycetes (reviewed in Fanning and Mitchell 2012; Pitangui

et al. 2012; Ramage et al. 2009). For example, the opportunistic yeast Cryptococcus
neoformans causes life-threatening meningitis in immune deficient individuals,

particularly HIV-infected patients. This encapsulated yeast can colonize and sub-

sequently form biofilms on ventricular shunts, peritoneal dialysis fistulas, and

cardiac valves (Martinez and Casadevall 2007; Martinez et al. 2006; Ravi

et al. 2009). Different Trichosporon species (also opportunistic yeasts) have been

associated with biofilm formation on catheters, breast implants, and cardiac grafts

(Krzossok et al. 2004; Pini et al. 2005; Reddy et al. 2002). Cushion et al. postulated

that the attachment and growth of Pneumocystis spp. within the lung alveoli

resembles a biofilm and developed in vitro methods for the formation and suscep-

tibility testing of Pneumocystis biofilms (Cushion and Collins 2011; Cushion

et al. 2009). Invasive aspergillosis caused by Aspergillus spp. is now a major

problem at cancer treatment centers and solid organ transplantation units (Patterson

et al. 2000), with recent studies pointing to a role for biofilms in different manifes-

tations of these infections (i.e., prosthetic valve endocarditis) and in the overall

pathogenesis of aspergillosis (Loussert et al. 2010; Mowat et al. 2009; Muszkieta

et al. 2013). A case report described a patient with recurrent meningitis associated

with a Coccidioides immitis biofilm at the tip of a ventriculo-peritoneal shunt

(Davis et al. 2002). A recent report described Histoplasma capsulatum attachment

to pneumocyte cells and subsequent biofilm formation (Pitangui et al. 2012). In

contrast to Candida, which as a strict commensal is only found inside the host, some

of these fungi are ubiquitous in nature and it is entirely possible that formation of

these attached microbial communities can also contribute to their survival in the

environment (Martinez and Casadevall 2007; Ravi et al. 2009; Pini et al. 2005).

2 Fungal Biofilm Formation and Structural

Characteristics of Fungal Biofilms

Traditionally, techniques used for fungal biofilm formation were cumbersome and

allowed for the formation of only a few biofilms at a time (Ramage et al. 2005).

However, more recent research on fungal biofilms has been greatly simplified and

expedited by the development of relatively simple methodologies, most notably the

96-well microtiter plate model for the formation of fungal biofilms (Pierce

et al. 2008; Ramage et al. 2001a). This technique involves the formation of multiple

equivalent fungal biofilms on the bottom of wells of microtiter plates, combined

with a colorimetric method that measures the metabolic activities of cells within the

biofilm. Although originally developed for Candida, it was subsequently adapted

for Cryptococcus, Aspergillus, and other fungi (Martinez and Casadevall 2007;

Mowat et al. 2009; Pierce et al. 2008; Ravi et al. 2009). Overall this microtiter plate-

based model of biofilm formation offers an easy, economical, flexible, and robust
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alternative for biofilm formation that is compatible with the broadly accessible

96-well microplate platform. One additional advantage of this method is that it can

also be easily adapted for antifungal susceptibility testing (Pierce et al. 2008;

Ramage et al. 2001a).

The architecture of fungal biofilms may differ depending on environmental

conditions, the fungal species, and the substrate on which biofilms are formed.

From an architectural point of view, mature fungal biofilms exhibit a complex

three-dimensional structure and extensive spatial heterogeneity, with atypical

microcolony/water channel architecture, and are encased within a matrix of self-

produced exopolymeric material (Blankenship and Mitchell 2006; Chandra

et al. 2001; Nett and Andes 2006; Ramage et al. 2001b, 2005). Figure 1 shows a

C. albicans biofilm. In general, the structural features of fungal biofilms seem to

represent an ideal spatial arrangement for the uptake of essential nutrients, excre-

tion of metabolic and toxic products, as well as communication between cells and

the environment. Fungal biofilm development occurs though different phases,

including initial attachment and colonization, proliferation, maturation, and ulti-

mately dispersion so that the “biofilm life cycle” can be repeated all over again

(Chandra et al. 2001; Ramage et al. 2009; Uppuluri et al. 2010a) (Fig. 2). In the case

of C. albicans, the most studied organism in regard to its biofilm-forming ability,

biofilm formation is inextricably linked to filamentation, and this may also hold true

for other filamentous fungi (Lopez-Ribot 2005; Nobile et al. 2006a; Nobile and

Mitchell 2006; Ramage et al. 2002d; Uppuluri et al. 2010b). Also, adhesive

interactions, both cell-to-surface and cell-to-cell (Nobile et al. 2006a, b, 2008;

Nobile and Mitchell 2005, 2006), as well as quorum sensing mechanisms (Ramage

et al. 2002b) play a preponderant role during biofilm development. Although most

of the structural information about fungal biofilms comes from in vitro models,

even with their intrinsic limitations, the fact that different groups of investigators

have reported similar architectural characteristics for biofilms formed in vivo (both

in animal models and retrieved directly from patients) is reassuring (Andes

et al. 2004; Lazzell et al. 2009; Ricicova et al. 2010; Schinabeck et al. 2004;

Shuford et al. 2006).

3 Biofilm Antifungal Drug Resistance

Fungi are eukaryotic and there is a paucity of selective pathogen-specific targets for

drug development. Thus, in stark contrast with antibacterial antibiotics, the current

list of antifungal drugs is exceedingly short, mostly limited from the clinical point

of view (and in particular for the treatment of invasive fungal infections) to three

classes of antifungal agents: polyenes, azoles, and echinocandins (Odds et al. 2003;

Ostrosky-Zeichner et al. 2010). For example, amphotericin B, a broad-spectrum

polyene that binds to ergosterol and compromises membrane integrity, remained

the “gold standard” of antifungal therapy during decades after its introduction in the

1950s; but its efficacy is severely limited by its inherent toxicity (Odds et al. 2003).
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Azoles (i.e., fluconazole, voriconazole) inhibit ergosterol biosynthesis and were

originally developed in the 1980s and 1990s; however, a major problem with these

fungistatic agents has been the widespread emergence of resistance (including

cross-resistance against multiple azole derivatives) (Odds et al. 2003; Sanglard

et al. 2009). The echinocandins (i.e., caspofungin), first introduced in the 2000s, are

semisynthetic lipopeptide antibiotics that inhibit the synthesis of 1,3-β-D-glucan, a
key structural component of the fungal cell wall. They are generally considered

fungicidal against yeast but fungistatic against moulds (Odds et al. 2003; Perlin

2011). Despite their recent introduction, resistance is emerging (Hernandez

et al. 2004; Perlin 2011; Wiederhold et al. 2008). From the very early reports on

fungal biofilms, it was already demonstrated that sessile cells within these

Fig. 1 A scanning electron

microphotograph showing a

C. albicans biofilm

Fig. 2 The different stages of fungal biofilm formation
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communities show intrinsic resistance to azole derivatives, as well as displaying

high levels of resistance against polyenes (Chandra et al. 2001; Ramage

et al. 2001a, b). On the other hand, echinocandins seemed to be active against

biofilms (Bachmann et al. 2002; Kuhn et al. 2002; Ramage et al. 2002c).

From the clinical perspective, the most salient feature of fungal biofilms is their

high levels of resistance to most conventional antifungal agents (Ramage

et al. 2012). The current consensus is that fungal biofilm resistance is a complex

phenomenon that cannot be explained by one mechanism alone; instead, it is

multifactorial in nature and may involve distinct molecular mechanisms of resis-

tance as compared to those displayed by planktonic cells. Potential contributory

mechanisms to fungal biofilm resistance include: (1) the increased cellular density

of fungal cells within the biofilm, basically a simple concept of “safety in numbers,”

as elegantly demonstrated by the Chaffin group (Perumal et al. 2007); (2) the

existence of subpopulations of “persister” cells, dormant variants of regular cells

that form stochastically in microbial populations and are highly tolerant to antifun-

gal treatment and associated with tolerance and chronic infection (LaFleur

et al. 2006; Lafleur et al. 2010); (3) differences in the metabolic and physiological

status of cells (Baillie and Douglas 1998a, b); (4) the distinct sterol composition of

the cell wall membrane of sessile as compared to planktonic cells, in particular

decreased ergosterol levels, which may impact amphotericin B activity; (5) the

protective effect of the biofilm matrix, most notably glucans in the Candida biofilm
matrix with the ability to bind azole derivative and also polyenes (Al-Fattani and

Douglas 2006; Nett et al. 2007; Nobile et al. 2009); (6) the upregulation of efflux

pumps, which may occur physiologically during the biofilm mode of growth as a

means to facilitate the removal of toxic products, but may concomitantly result in

increased efflux of antifungal molecules (Mukherjee et al. 2003; Ramage

et al. 2002a); (7) a highly regulated network orchestrated by the hsp90 molecular

chaperone, also with connections to the calcineurin pathway (Robbins et al. 2011).

For an excellent, contemporary, and comprehensive review on the topic of biofilm

antifungal drug resistance please refer to Ramage et al. (2012).

4 Inhibition of Fungal Biofilms

The high morbidity and mortality rates associated with fungal biofilm infections

clearly indicate an urgent and unmet need to develop novel strategies, both pre-

ventative (i.e., inhibition of biofilm formation) and therapeutic (i.e., against

preformed biofilms), to control fungal biofilms in clinical settings, and this is

certainly an area of active research. Much of this work has been facilitated not

only by our increasing understanding of mechanisms involved in fungal biofilm

development at the cellular and molecular level but also by lessons learned during

the clinical management of patients (Nobile et al. 2012; Nobile and Mitchell 2006;

Ramage et al. 2009, 2012).
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4.1 Conventional Antifungal Agents

As mentioned before, fungal cells within biofilms display dramatically reduced

susceptibility to most conventional antifungals, perhaps with the exception of

echinocandins. They are up to 1,000 times more resistant to azole derivatives,

and they also showed decreased susceptibility to polyenes as compared to their

planktonic counterparts (Chanda and Caldwell 2003; Ramage et al. 2001a). In truth,

polyenes such as amphotericin B and nystatin exhibit biofilm activity; but unfortu-

nately they do so at concentrations which are exceedingly high and generally

considered unsafe due to their intrinsic toxicity (Ramage et al. 2002c). However,

liposomal formulations of amphotericin B display unique efficacy against Candida
biofilms (Kuhn et al. 2002), most likely due to their improved safety profile and

perhaps enhanced penetration due to encapsulation. Very importantly,

echinocandins display excellent anti-biofilm activity at therapeutic concentrations

(Bachmann et al. 2002; Kuhn et al. 2002; Ramage et al. 2002c). Initial experiments

with caspofungin (the first echinocandin to reach the market) demonstrated its

excellent in vitro activity against C. albicans biofilms, and soon after was corrob-

orated for micafungin, anidulafungin, and non-albicans Candida spp. (Kucharikova
et al. 2011). These observations were further extended to in vivo animal models and

to clinical experience with patients (Kucharikova et al. 2010, 2013; Tumbarello

et al. 2012). Thus, the excellent anti-biofilm activity of echinocandins has been one

of the main factors for them to become first line therapy against candidiasis,

particularly when a biofilm etiology (i.e., catheter-related candidemia) is suspected

(Pappas et al. 2009; Tumbarello et al. 2012). Although these three echinocandins

are considered equally effective, a recent report described drug- and species-

specific differences in susceptibility among biofilms of different Candida spp.,

with C. lusitaniae and C. guilliermondii biofilms generally exhibiting reduced

susceptibility (Simitsopoulou et al. 2013). Also, it is important to note that the

anti-biofilm activity of echinocandins is not universal, as other fungal biofilms,

such as those formed by A. fumigatus, are relatively resistant to treatment with this

new class of antifungal agents (Fanning and Mitchell 2012; Ramage et al. 2012).

4.2 Combination Therapy

The existence of different classes of antifungal drugs with different molecular

targets opened new possibilities for combination therapy against fungal biofilms.

An in vitro study using fluconazole, amphotericin B and caspofungin against

Candida biofilms pointed towards indifference for all antifungal combinations

tested (Bachmann et al. 2003). However, the combination between amphotericin

B and caspofungin may benefit from a rapid initial killing by the polyene followed

by a more sustained effect by the echinocandin (Bachmann et al. 2003; Ramage

et al. 2002c). In contrast, there was a trend towards antagonism with the
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fluconazole/caspofungin combination, which was particularly evident at higher

concentrations of the azole (Bachmann et al. 2003). A possibility also is to combine

a conventional antifungal with another agent that potentiates its anti-biofilm activ-

ity. For example, LaFleur and colleagues performed primary screens for potentia-

tors of the anti-biofilm activity of clotrimazole (an azole antifungal which per se is

not effective against C. albicans biofilms) (LaFleur et al. 2011). Both calcineurin

inhibitors (i.e., cyclosporine, FK506) and hsp90 inhibitors (i.e., geldanamycin),

when used in combination with antifungals, were able to overcome biofilm drug

resistance (Robbins et al. 2011; Uppuluri et al. 2008). Another possibility is to

target the biofilm matrix; for example, Martins and colleagues (Martins et al. 2010,

2012a) demonstrated that addition of DNase (as extracellular DNA is a component

of the fungal biofilm matrix) improves the anti-biofilm activity of some antifungal

drugs. Martinez et al. tested combinations of conventional antifungals and specific

monoclonal antibodies against C. neoformans biofilms, but unfortunately the anti-

bodies antagonized the effects of the antifungal agents (Martinez et al. 2006).

4.3 Antifungal Lock Therapy

As mentioned before, yeasts, particularly Candida spp., are one of the main causes

of catheter-related bloodstream infections (Crump and Collignon 2000; Kojic and

Darouiche 2004; Raad 1998; Ramage et al. 2006). The use of antifungal lock

solutions (supra-pharmacological concentrations of antifungals locally inside the

catheter) is receiving increasing interest as a strategy to prevent and treat these

infections (Cateau et al. 2008; Walraven and Lee 2013). Some of the most prom-

ising antifungal lock therapy strategies include not only the use of antifungal agents

such as amphotericin and echinocandins and antibacterial antibiotics with antifun-

gal effects such as minocycline and rifampin but also the use of antiseptics such as

ethanol, anti-microbial peptides, and anti-occlusive agents such as EDTA, heparin,

and citrate (Sherertz et al. 2006; Sousa et al. 2011; Walraven and Lee 2013).

However, to date, there is little comparative or clinical data between the different

potential antifungal lock therapy strategies to permit specific recommendations for

its use (Walraven and Lee 2013).

4.4 Search for New Molecules Active Against
Fungal Biofilms

Of course, the development of novel anti-biofilm agents may also involve the

search for new molecules active against cells within biofilms. Indeed this is

currently an area of very active research, which has been greatly facilitated by

the development of simple and inexpensive microtiter plate-based models for the
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formation and antifungal susceptibility testing of fungal biofilms, as mentioned

before (Pierce et al. 2008; Ramage et al. 2001a). In particular, there is an increasing

interest in the examination of anti-biofilm activity of a variety of natural products

(reviewed in Sardi et al. 2013), either by themselves or as potentiators of conven-

tional antifungals (You et al. 2013). There is also considerable interest in screening

synthetic small molecule compounds present in different commercially available

chemical libraries (Pierce et al. 2011).

The development of a completely new drug is an arduous and extremely costly

proposition, as any new medicine has to endure a demanding approval process by

the Food and Drug Administration (FDA) in order to make sure that the drug is safe

for consumption. Thus, repurposing already FDA-approved drugs as antifungal

agents may decrease the time and effort in bringing drugs with novel antifungal

activity from the bench to the bedside (Tobinick 2009). In this regard, most recently

our group carried out a comprehensive screen of a small molecule library consisting

of 1,200 FDA-approved off-patent drugs to identify inhibitors of C. albicans
biofilm formation (Siles et al. 2013). We found not only several bioactive com-

pounds including well-known antifungals and antiseptics but also several miscel-

laneous drugs with no previously reported antifungal activity and which may be

further developed as anti-biofilms agents.

4.5 Other Strategies for Fungal Biofilm Inhibition

Other strategies for inhibition of fungal biofilms may be as diverse as the develop-

ment of biomaterials which do not support fungal adherence and colonization or

coating of biomaterials to prevent adhesion of fungal cells and subsequent biofilm

formation. For example, impregnation of plastics with caspofungin or voriconazole

inhibited the development of Candida biofilms (Bachmann et al. 2002; Valentin

et al. 2012). A novel thin-film coating incorporating different antifungals effec-

tively inhibited C. albicans biofilm formation as a potential preventive therapy for

denture stomatitis (Redding et al. 2009). C. albicans biofilm cells grown on denture

acrylic were sensitive to killing by histatin 5, a naturally occurring antimicrobial

peptide in saliva, and coating the surface of acrylic with chlorhexidine or histatin

5 prevented biofilm growth (Pusateri et al. 2009). Chitosan, a polymer of chitin

isolated from crustacean exoskeletons, damaged C. albicans and C. neoformans
biofilms, both in vitro and in vivo (Martinez et al. 2010a, b).

Another possibility is to use modulators of quorum sensing mechanisms, cer-

tainly an area of increasing interest in the prevention and treatment of bacterial

biofilms. Farnesol is the main quorum sensing molecule produced by C. albicans
and it inhibits biofilm formation in vitro, but somewhat surprisingly, exogenous

administration of farnesol increased C. albicans virulence in vivo (Navarathna

et al. 2007). In contrast, a cocktail solution, mimicking the composition of alcohols

present in a C. albicans culture supernatant (which also includes farnesol), exerted a
protective effect against candidiasis in vivo (Martins et al. 2007, 2012b). Some
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bacteria secrete quorum sensing and other antifungal molecules (e.g., homoserine

lactones and phenazines secreted by Pseudomonas aeruginosa, mutanobactins

secreted by Streptococcus mutans) that inhibit or kill C. albicans biofilms (Gibson

et al. 2009; Hogan et al. 2004; Joyner et al. 2010; Morales et al. 2010; Wang

et al. 2012).

Photodynamic therapy (PDT), mediated by the action of reactive oxygen species

generated by the photoactivation of a photosensitizer by a light source, represents a

relatively new therapeutic technique with potential applications for the treatment of

fungal biofilm infections, in particular superficial mycoses such as denture stoma-

titis and oropharyngeal candidiasis (Costa et al. 2013; Junqueira et al. 2012; Pereira

et al. 2011). Another potential strategy, which may be particularly relevant in the

case of catheter-associated biofilm infections, is to target dispersion, as fungal cells

dispersed from the biofilms are responsible for fungemia, dissemination,

extravasation, and ultimately the establishment of foci of invasive mycoses at

distal organs, which are the forms associated with the highest mortality rates

(Uppuluri et al. 2010a).

5 A Nano-Biofilm Chip for High-Throughput Antifungal

Drug Discovery

One of the main impediments for the development of newer antibiotics, including

antifungals, has been the fact that conventional microbiological culture techniques

are mostly incompatible with modern methodologies for drug discovery that are

dominated by high-throughput screening (HTS) and its “hunger for speed.” To

overcome this major bottleneck, Srinivasan and colleagues recently described the

nanoscale culture of C. albicans, on a microarray platform (Srinivasan et al. 2011,

2013). The microarray, designated CaBChip (for Candida albicans Biofilm Chip),

consisted of a standard microscope slide containing 1,200 individual C. albicans
biofilms (“nano-biofilms”), each with a volume of approximately 30 nL, encapsu-

lated in an inert alginate matrix (see Fig. 3). The authors demonstrated that these

nano-biofilms, despite a 3,000-fold miniaturization over conventional biofilms

(formed on microtiter plates), are similar in their morphological, architectural,

growth, and phenotypic characteristics, including antifungal drug resistance

(Srinivasan et al. 2011, 2013). The nanobiofilm chip is amenable to automation

and is fully compatible with standard microarray technology and equipment. It

allows for rapid and easy handling, minimizing manual labor, and drastically

reducing assay costs (Srinivasan et al. 2011, 2013). It enables true high-throughput

screening in the search for new anti-biofilm drugs. The techniques should be

adaptable to other biofilm-forming species, including polymicrobial biofilms, and

should accelerate the antifungal drug discovery process by permitting fast, efficient,

and economical screening of thousands of compounds.
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6 Summary

There is an increasing recognition of the role that biofilms play during fungal

infections, further complicating antifungal treatment for these already difficult to

treat infections. The area of fungal biofilm research has witnessed strong growth in

the last two decades, with significant technological advances, the application of

powerful molecular technologies, and a vigorous translational emphasis. Hopefully

in the not so distant future, we should be able to harness this knowledge for the

development of new therapeutic strategies to conquer this formidable challenge.
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Biofilm Control Strategies in Dental Health

Jorge Frias-Lopez

Abstract The human oral microbiota is one of the most diverse biofilms coloniz-

ing the human body consisting of over 700 individual taxa. Two of the most

common human diseases, caries and periodontal disease, are the result of a healthy

microbial biofilm becoming a dysbiotic one due to mechanisms not completely

understood. These are special cases of infectious diseases in which the origin of the

infection is not an exogenous organism but a commensal organism that somehow

overgrows and modifies the features of the microbial biofilm to its advantage.

Dental Unit Water Systems (DUWS) deserve special consideration when studying

biofilm control methods in oral health. In dentistry, dental chair units (DCU) are

equipped with complex networks of plastic pipes that supply water to the DCU

instruments and constitute an ideal environment for the growth of biofilms, espe-

cially bacterial biofilms. In the present chapter we present a brief overview of

different methods that have been used in dentistry to control biofilm growth both in

the oral cavity as well as in DUWS, with special focus on new strategies whose goal

it is to modulate the composition and growth of the biofilm rather than the complete

removal of the microbial community.

1 Introduction

The origins of oral microbiology are intertwined with the beginnings of microbi-

ology as a science. Antonie van Leeuwenhoek (1632–1723) was the first scientist to

describe microbes sampled from the oral biofilm (commonly called dental plaque).

Using his primitive microscope, he was able to describe with high precision a large

number of microorganisms of different shapes that were centuries later identified as

common inhabitants of the oral biofilm growing on teeth, also known as dental
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plaque. In September 1683, Leeuwenhoek wrote to the Royal Society about his

observations on the plaque between his own teeth, “didn’t clean my teeth for three

days and then took the material that has lodged in small amounts on the gums above

my front teeth. . . I found a few living animalcules” (He and Shi 2009). With those

simple descriptions Antonie van Leeuwenhoek initiated the study of oral microbial

ecology and gave us a first indication of the complexity of the bacterial community

colonizing our oral cavity (Bardell 1983). In recent years, dental plaque has been

evaluated and discussed as a biofilm that may contain bacteria, archaea, viruses, and

yeast (Marsh 2004, 2006). Nonetheless, the vast majority of the oral biofilm

biomass is of bacterial origin.

In 2002, Donlan and Costerton defined a biofilm as “a microbially derived

sessile community characterized by cells that are irreversibly attached to a substra-

tum or interface or to each other, are embedded in a matrix of extracellular

polymeric substances that they have produced, and exhibit an altered phenotype

with respect to growth rate and gene transcription.” (Donlan and Costerton 2002).

In fact, a biofilm is an accumulation of microbial cells within a matrix, optimizing

the use of the available nutritional resources. The physiology of bacteria growing in

biofilms is completely different than the physiology of bacteria growing in plank-

tonic conditions. The susceptibility of microorganisms to antimicrobials is consid-

erably reduced in biofilms (Larsen and Fiehn 1996; Roberts and Mullany 2010). It

has also been shown, in established biofilms, that the effect of antimicrobials on

bacterial vitality is limited to the most superficial layers (Zaura-Arite et al. 2001).

Thus, the efficacy of antimicrobials against existing biofilms appears to be limited.

Dental plaque incorporates all of the features of biofilm architecture and micro-

bial community interaction and its establishment follows an ordered sequence of

events that results in a well organized and distinct architecture (Kolenbrander 2000;

Kolenbrander et al. 2002, 2010) (See Fig. 1). The dental biofilm is different in that it

is extremely complex with more than 600 contributing oral bacterial taxa in the oral

cavity (Paster et al. 2006). Many of them are not cultivable species, and the only

information we possess about them derives from their 16S rRNA phylogenetic

affiliation (Dewhirst et al. 2010; Paster et al. 2001, 2006). Moreover, the possibility

exists that novel microorganisms may yet be found and that they may be important

in oral diseases.

Only 20–25 % of the oral environment is tooth surface, the rest are mucosal

surfaces that may be important contributors to periodontal microbial biofilms. For

tooth surfaces, pellicle formation is the preconditioning stage that defines the

reversible–irreversible attachment of the colonizing bacteria. Attachment is defined

as a slime layer forming around the colonizing pioneer bacteria, which consists

mainly of Gram-positive cocci and rods that divide and form microcolonies. If this

early supragingival plaque is unregulated, owing to the absence of effective oral

hygiene, the bacterial composition can mature into a more complex flora in a three-

stage scenario. The first stage is predominantly Gram-positive cocci and is

represented by the streptococcal species, the second stage is cross-linking via

fusobacterium species, and the third stage is predominantly Gram-negative

organisms.
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Mature oral biofilms are robust and resilient, acting as reservoirs of antibiotic

resistance and virulence in deep periodontal pockets. Their uncontrolled growth

eventually may lead to disease. A defining characteristic of the multispecies dental

plaque biofilm, as well as other microbial biofilms, is communication either from

cell to cell or from microcommunity to macrocommunity. This dynamic commu-

nication, called “quorum sensing,” provides a mechanism for bacteria to monitor

each other’s presence and to modulate gene expression in response to changes in

population density. With the advent of Next Generation Sequencing technologies,

there has been a renewed interest on studying the composition of the oral

Fig. 1 Dental biofilm formation follows a defined sequence of events, and the biofilm has a well-

defined architecture. Model of oral biofilm showing the dynamics of formation from the bottom

with oral streptococci to the top with a more mature biofilm and the presence of gram-negative

bacteria. Species–species interactions are mediated by specific molecules, and the final result is a

biofilm with well-defined architecture (From Kolenbrander et al. 2002)
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microbiome (Peterson et al. 2013; Wade 2013; Zaura et al. 2009). These studies

have confirmed the high diversity of the oral microbiome as well as the main traits

in composition already described in previous studies where the predominant taxa in

healthy samples belonged to Firmicutes (genus Streptococcus, family

Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria,
Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces),
while Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and

Fusobacteria (genus Fusobacterium) appear to be more associated with disease.

Important factors for shaping the composition and structure of oral biofilms are

the highly variable conditions in its environment. Access to nutrients follows the

daily intake by the host, with long periods of low concentrations of nutrients

followed by short periods of high concentrations of a large variety of different

nutrients. These fluctuations have a major impact in selecting the species of bacteria

that can survive and colonize the oral cavity.

In this brief review we present the main strategies that have been used to control

the growth and composition of oral biofilms and other biofilms important in dental

health and a final summary of future directions that could lead to better control of

the communities present in the oral cavity.

2 Biofilm-Associated Oral Diseases

In healthy individuals the oral microbial biofilm is in homeostasis with its environ-

ment and the host. However, changes in response to variations in host physiology

and environmental factors may lead to a shift from a health-associated biofilm to a

disease-associated biofilm. The nature of these changes is not completely under-

stood and is the focus of an important part of research in oral microbiology studies.

Two of the most common human diseases, caries and periodontal disease, are the

result of a healthy microbial biofilm becoming a dysbiotic one due to mechanisms

not completely understood. These are special cases of infectious diseases in that the

origin of the infection is not an exogenous organism but a commensal organism that

somehow overgrows and modifies the features of the microbial biofilm to its

advantage.

Dental caries is caused by an overgrowth of acidogenic organisms usually linked

to a diet rich in fermentable carbohydrates that can be used as nutrients by the

microorganisms growing in the oral biofilm, resulting in the release of lactic acid to

the surface of the tooth and leading to the formation of cavities characteristic of

dental caries. Most cases of caries can be associated with the presence of high

numbers of Streptococcus mutans or Lactobacillus as the main organisms respon-

sible for the production of acid on the teeth (Loesche et al. 1975; Takahashi and

Nyvad 2011). Nonetheless, the colonization of S. mutans is the result of ecological
changes in the environment and shifts in the structure of the biofilm. Among

important virulence factors of this pathogen, its ability to form and sustain a biofilm

is vital not only to its survival and persistence in the oral cavity but also for its
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pathogenicity as well. Under low sugar concentrations, acidification is rare and

short-lived but if high sugar concentrations persist the acidogenicity of the envi-

ronment increases, selecting for aciduric strains. S. mutans and Streptococcus
gordonii, a non-cariogenic streptococci, are found in inverse proportion in the

oral biofilm (Loesche et al. 1975). S. gordonii can antagonize the colonization of

S. mutans by inactivating competence stimulating peptide (CSP) and thus

maintaining a healthy biofilm. Under prolonged acidogenic conditions, mutans

streptococci, lactobacilli, as well as aciduric strains of non-mutans streptococci,

Actinomyces, bifidobacteria, and yeast become dominant and lead to the establish-

ment of a cariogenic biofilm that can cause disease (Takahashi and Nyvad 2011).

The other most common oral disease, periodontitis, is responsible for half of all

tooth loss in adults and is a widespread and serious health condition that occurs in

moderate form in 39 % of American adults and in severe form in 9 % of adults, with

prevalence of 70 % in adults older than 65 (Eke et al. 2012). Periodontal disease is a

polymicrobial bacterial biofilm-mediated pathology that leads to a progressive loss

of the bone which, if left untreated, results in loosening and eventual tooth loss

(Albandar et al. 1999; Oliver et al. 1998). Löe and collaborators demonstrated the

role that accumulation of dental plaque has as the etiological agent of gingivitis, the

first stage in developing periodontitis (Lang et al. 1973). Thus, controlling the

growth of dental plaque is a key element in maintaining dental health (Listgarten

1988).

Periodontitis is triggered mainly by the presence of a complex microbial biofilm

that colonizes the sulcular space between the tooth surface and the gingival margin.

This biofilm undergoes a change in composition from health to the most severe

forms of periodontitis. As briefly described above, during the succession of colo-

nization of the teeth, the early colonizers are predominantly Gram-positive and later

shift to a more Gram-negative community. Socransky, Haffajee, and colleagues

defined the organisms within the subgingival microbiota, placing them in five

“complexes.” This concept emphasized that microorganisms create their own

habitat, interact with each other, and are implicated in disease severity (Socransky

et al. 1998; Socransky and Haffajee 2005; Haffajee et al. 2008) (Fig. 2). The

organisms in the plaque reflected the environmental conditions. The most virulent

combinations were strict anaerobes, and the less virulent microorganisms thrived in

a relatively low-oxygen (microaerophilic) environment. In a detailed analysis using

a checkerboard DNA–DNA hybridization approach of more than 13,000

subgingival samples from nearly 200 adults, Socransky and colleagues demon-

strated that certain bacterial complexes were associated with either health or disease

(Socransky et al. 1998). The presence of certain complexes such as the “red

complex” (Porphyromonas gingivalis, Tannerella forsythia, and Treponema
denticola) were associated more commonly with clinical indicators of periodontal

diseases and were detected rarely in the absence of bacteria from other complexes.

Finally, though it is not a disease, halitosis or bad breath is a common medical

and social problem caused in most cases by the resident biofilm in the dorsal surface

of the tongue (Zalewska et al. 2012). These bacteria produce volatile sulfur

compounds (VSC) that are the cause of halitosis.

Biofilm Control Strategies in Dental Health 295



The objective in the prevention of caries and periodontal diseases is therefore to

maintain the equilibrium between the host and the resident microflora. Strategies

may aim at reducing the total biofilm mass or the levels of specific groups of

pathogens, but not in totally eradicating the biofilm.

3 Microbial Biofilm Formation and Contamination

in Dental-Unit Water Systems

Dental Unit Water Systems (DUWS) deserve a special consideration when studying

biofilm control methods in oral health. In dentistry, dental chair units (DCU) are

equipped with complex networks of plastic pipes that supply water to the DCU

instruments and constitute an ideal environment for the growth of biofilms, espe-

cially of bacterial biofilms. The first reports on DUWS contamination were

published in the early 1960s. Since then a large number of publications reporting

DUWS contamination have populated the specialized literature (Coleman

et al. 2009; O’Donnell et al. 2011).

Although the number of bacteria in water supplies is relatively low, it is common

for them to be able to attach to the surface of the plastic tubing system of the

DUWS. Once they attach they start secreting exopolysaccharides that protect them

Fig. 2 Different bacterial species from subgingival plaque samples appear together forming

different well-defined clusters. Figure shows the different clusters or “complexes” of bacteria

that appear in association in subgingival plaque as defined by Socransky et al. (1998). The red

cluster always appears associated with severe periodontitis and not in healthy samples. The red
arrow shows the succession of complexes from health to disease as well as their location in the

periodontal pocket (Adapted from Socransky et al. 1998 with permissions)
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against the action of antimicrobial agents, facilitating the establishment of a mature

biofilm. The fact that water is not constantly running and could be stagnant for long

periods of time further increases the odds of a biofilm growing in the DUWS.

The initial colonizers, mostly environmental Gram-negative heterotrophic bac-

teria, are in general not pathogenic organisms and they are not considered a public

health threat. The real problem resides in the fact that important pathogens can

attach to this nonpathogenic biofilm and colonize it, creating a focus of infection

due to the resilience of biofilms. Known human bacterial pathogens recovered from

DUWS include Pseudomonas species, particularly P. aeruginosa, Legionella spe-

cies, particularly L. pneumophila, and nontuberculosis mycobacterial species

(Coleman et al. 2009; O’Donnell et al. 2011). Moreover, DUWS output water can

also be a major source of bacterial endotoxins released from the cell walls of Gram-

negative bacteria, which can create serious health problems in certain groups of

patients (e.g., asthmatic patients) and stimulate the release of pro-inflammatory

cytokines in gingival tissue during oral surgery.

Nonchemical methods to control bacterial growth in DUWS, such as flushing or

adding filters to the tubing, can be useful to reduce the bacterial content on the

output water but have no effect on the bacterial community growing in the biofilm.

If a pathogen has colonized the pipe system of a DUWS, these methods do not have

any effect in controlling its presence, and the DUWS should be treated with specific

chemicals that also target bacteria growing in biofilms.

4 Biofilm Control Strategies in Oral Health

In the following sections we present a brief overview of different strategies for

controlling biofilms important to oral health in a broad sense. This discussion will

not just consider methods that completely remove the biofilm but rather, in the case

of the oral biofilm, methods that control the biofilm to restore homeostasis, which

should be the ultimate goal of all these treatments. The breath of approaches is

summarized in Table 1. We divided the different approaches into three main

categories: physical, chemical, and biological control of oral biofilms. However,

we have not included other strategies that may restore biofilm homeostasis but do

not use a direct targeting of the biofilm, such as changing diet habits to a low-sugar

intake, which may be the best prevention of caries but does not specifically target

the oral biofilm to prevent disease. In some cases the distinction between physical,

chemical, or biological treatments is difficult to delimit. For instance, tooth

brushing represents a physical control of the oral biofilm but is almost always

done in the presence of some antimicrobial agent contained in the toothpaste. In

those cases where delimiting the nature of the approach is blurry, we discuss their

properties together.
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5 Physical Methods to Control Oral Biofilms

5.1 Mechanical Plaque Control

One of the most commonly used, simpler and more efficient strategies for oral

biofilm control is the physical removal of dental plaque by mechanical methods.

Mechanical plaque control is highly effective for the prevention and control of

periodontal disease, but it requires a well motivated patient who uses the devices in

a proper fashion for a sufficient duration of time and with adequate frequency,

which is seldom the case. The toothbrush is the most effective device for the

removal of dental plaque without requiring professional cleaning. Flossing and

interdental cleaning with brushes can remove plaque from proximal tooth surfaces,

and there is evidence that it can reduce caries (Andlaw 1978) and gingivitis

incidence (Iacono et al. 1998). Tooth brushing is usually accompanied by the use

of a toothpaste that contains an antimicrobial agent. Common antimicrobial agents

added to toothpastes are fluoride salts and triclosan. The efficacy of fluoride

toothpaste in reducing dental caries is well established (Andlaw 1978; Barbier

et al. 2010), while triclosan has been proven effective in controlling plaque growth

(Mandel 1994; Phan and Marquis 2006; Teles and Teles 2009). Triclosan is a

polychloro phenoxy phenol that inhibits fatty acid biosynthesis in bacteria and is

used as a disinfectant in a large variety of products (Wright and Reynolds 2007).

Even with good oral hygiene, accumulation and mineralization of plaque can

occur. In these cases professional cleaning is necessary and is usually performed

using manual, sonic, or ultrasonic scalers to remove calculus and plaque to maintain

oral health.

Once a pathogenic biofilm has colonized the teeth, causing either caries or

periodontitis, dental plaque removal has to be performed by specialized profes-

sionals to guarantee the complete removal of the pathogenic community. Common

procedures used in treating periodontitis are scaling and root planing. This consists

of removal of plaque and calculus inside the periodontal pocket, between the gums

and the teeth, eliminating as much as possible of the oral community, thus restarting

the process of colonization by health-associated organisms.

Although these mechanical methods are highly efficient in controlling oral

biofilms, they are hampered by the fact that few people follow a thorough tooth-

brush protocol that guarantees removal of most of the accumulated dental plaque,

especially in interdental sites, the elimination of the oral biofilm is extremely

difficult. The development of alternative antibacterial therapeutic strategies,

which complement mechanical cleaning with other methods that control microbial

growth in the oral cavity, therefore becomes important.
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5.2 Photodynamic Therapy

Photodynamic therapy refers to the use of a chemical compound called a photo-

sensitizer, which absorbs light and is preferentially taken up by bacteria and

subsequently activated by light of the appropriate wavelength in the presence of

oxygen to generate oxygen free radicals that are toxic to microorganisms (Soukos

and Goodson 2011) (Fig. 3). One of the advantages of using photodynamic therapy

is that, because of the molecular nature of the oxygen free radicals, it is unlikely that

microorganisms will develop resistance to the cytotoxic action of these compounds.

Photodynamic therapy has emerged as an alternative to antimicrobial regimes

designed to complement mechanical methods in eliminating pathogenic compo-

nents of the biofilm. Unlike mechanical methods that do not discriminate which

organisms are removed, photodynamic therapy targets the organisms that take up

the phothosensitizer but not the rest of the biofilm, thus allowing for a more targeted

control of the oral biofilm. For a thorough review of photosensitizers and their

clinical use in oral health, I would address the reader to the review by Soukos and

Goodson on the use of photodynamic therapy to control oral biofilms in disease

(Soukos and Goodson 2011).

Several laboratories have demonstrated the susceptibility of cariogenic bacteria,

both in suspension and biofilms, to photodynamic therapy using toluidine blue O or

disulfonated aluminum phthalocyanine (AlPcS2) as photosensitizers. Toluidine

blue O-induced photodynamic therapy was able to achieve a 10-fold reduction of

S. mutans when the organism was embedded in a collagen matrix mimicking

carious dentin or present in decayed teeth (Williams et al. 2004). Moreover, the

combined application of photodynamic therapy and casein phosphopeptide-

amorphous calcium phosphate, a compound with established remineralization

Fig. 3 Mechanism of

photodynamic therapy. A

photosensitizer is taken up

by bacteria and gets

activated by the appropriate

wavelength. The

photosensitizer transfers the

energy to molecular oxygen

and generates free radicals

that will kill bacteria that

have incorporated the

photosensitizer (Adapted

from Soukos and Goodson

(2011) with permissions)
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capabilities (Reynolds 1997), proved to be a successful treatment approach in

removing the cariogenic bacteria and arresting root surface caries in vivo (Vlacic

et al. 2007).

Organisms associated with periodontal disease have also been targeted by

photodynamic therapy strategies, especially to reduce their number after scaling

and root planing. Methylene blue has been extensively used as a photosensitizer,

being applied directly to the dental pockets and exposed to red light via a fiber optic.

Other photosensitizers have also been used in experimental settings on planktonic

organisms, biofilms, and model animals. Although, in general there is a decrease in

the number of bacteria, the elimination of periodontal pathogens is not complete

and the reduction of total biofilm load is limited.

Finally, an exciting line of research in phototherapy is based on the observation

that some organisms in the mouth already have “natural” photosensitizers in their

cells; hence, phototherapy can be applied without the addition of any chemicals.

Thus, oral black-pigmented bacteria (species of Porphyromonas and Prevotella),
which are important organisms associated with periodontal disease, have endoge-

nous porphyrins that when exposed to blue light release oxygen radicals that kill

them. These kinds of approaches are advantageous because they are less aggressive

and specifically target the group of bacteria associated with disease, while leaving

the rest of the biofilm intact and thus shifting the composition from a disease-

associated biofilm to a health-associated one. Moreover, the wavelengths used in

phototherapy are not harmful to host cells (Soukos and Goodson 2011).

5.3 Nanoparticles and the Control of Oral Biofilms

In recent years bio-nanotechnology has increasingly been in the spotlight as a new

way of treating medical conditions, either as a more specific delivery system for

drugs or as a technology that allows for the creation of better biomaterials to be used

in medicine. Nanotechnology refers broadly to a field of applied science and

technology whose unifying theme is the control of matter on the atomic and

molecular scale, between approximately 1 and 100 nm. One key element in

designing nanoparticles is that the materials used for their synthesis must be safe

to use in the human body, which limits the number of compounds available.

In photodynamic therapy, nanoparticles made of the biodegradable polymer

poly(D,L-lactide-co-glycolide) (PLGA) have been used to encapsulate different

photosensitizers and deliver them to the pocket before shining it with light (Allaker

2010). The use of nanoparticles solves one of the major problems of using photo-

sensitizers in a clinical setting, which is their poor penetration in to the biofilm, thus

reducing the effectiveness of the treatment. Encapsulating these photosensitizers in
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nanoparticles facilitates their penetration and increases the phototoxicity of the

treatment and the reduction of oral biofilm biomass.

Another use of nanoparticles is in dental materials with antimicrobial activity

such as filling materials, cements, sealants, materials for temporary restorations,

coating materials, and adhesives. These dental materials contain a compound linked

to the inert matrix that has antimicrobial activity and will kill bacteria that try to

colonize. Among the materials used for this purpose, silver and copper have

received the most attention. For centuries it has been known that certain metals

have antibacterial activity, although their mechanisms of action are not completely

understood. Nonetheless, studies have shown that the positive charge on the metal

ion is critical for antimicrobial activity, allowing for the electrostatic attraction

between the negative charge of the bacterial cell membrane and positively charged

nanoparticles. In terms of the molecular mechanisms of inhibitory action of silver

ions on microorganisms, it is known that DNA loses its ability to replicate in the

presence of these ions (Feng et al. 2000), and the expression of ribosomal subunit

proteins and other cellular proteins and enzymes necessary for ATP production

becomes inactivated (Yamanaka et al. 2005). Most of the experimental results

involving metal nanoparticles have been obtained in vitro, and biosafety concerns

should be addressed before they can be used in vivo.

Other materials with better biocompatibility have been used to produce

nanoparticles that control oral biofilms. Yudovin-Farber et al. have recently devel-

oped quaternary ammonium poly(ethylene imine) (QA-PEI) nanoparticles as an

antimicrobial to incorporate into restorative composite resins (Yudovin-Farber

et al. 2008). This may have distinct advantages over the composite resins currently

used to restore hard tissues, which are known for allowing the buildup of biofilms

on both teeth and the restorative material. Particles based upon the element silicon,

for the rapid delivery of antimicrobial and anti-adhesive capabilities to the desired

site within the oral cavity, have received much attention for their physical proper-

ties. The use of silica nanoparticles to polish the tooth surface may help protect

against damage by cariogenic bacteria, presumably because the bacteria can be

removed more easily. This effect is due to the forces of interaction, which are

weaker between an organic substance and flat surfaces in comparison with rough

corrugated surfaces. Other novel systems based upon silica have been investigated

with respect to the control of oral biofilms. The use of nitric oxide (NO)-releasing

silica nanoparticles to kill biofilm-based microbial cells has recently been reported

(Hetrick et al. 2009). Finally, the application of hydroxyapatite nanoparticles has

been shown to affect oral biofilm formation and provide a remineralization capa-

bility (Hannig and Hannig 2010).
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6 Chemical Methods to Control Oral Biofilms

Chemical control is the most common approach to control dental biofilms after

mechanical plaque removal. The compounds used in biofilm control are designed to

prevent the formation of the biofilm and/or to remove an established biofilm. As

mentioned previously, mechanical methods are not enough to control the growth of

oral health related biofilms, hence the need for complementing mechanical removal

with other approaches. In the case of DUWS, physical methods are not effective

against the established biofilm and only by using chemical compounds can the

biofilm be controlled. For treatment of DUWS, biosafety issues are not an important

concern and toxic compounds have been used to remove biofilms. However, in the

treatment of human patients, biosafety of the products used is one main consider-

ation in devising a strategy for controlling biofilms, limiting the number of options

to chemical compounds with low or no toxicity.

6.1 Chemical Control of Biofilms in DUWS

Biofilm control of DUWS deserves a separate section given that the list of chemical

agents used includes compounds that cannot be used as antiplaque agents due to

their toxicity. Table 2 is based on O’Donnell et al. (2011) and shows a summary of

compounds that have been used for controlling biofilms in DUWS. In all cases these

compounds minimize the contamination of output water but not all of them have an

effect on biofilm removal. Of all these compounds, chlorhexidine gluconate, glu-

taraldehyde, sodium hypochlorite, hydrogen peroxide, hydrogen peroxide and

silver, alkaline peroxide, sodium fluoride and EDTA showed efficacy in controlling

biofilms with different degrees of success (O’Donnell et al. 2011). However, once

the biofilm is established it is almost impossible to completely remove it from the

water system. A more efficient approach would be to devise materials for

manufacturing pipes, similar to what we described in the previous section on

nanoparticles, which contain compounds that prevent or reduce the formation of

the bacterial biofilm.

6.2 Use of Antiseptics in Plaque Control

Many chemicals with antimicrobial properties have been used historically to

prevent and treat oral diseases. However, it was not until the 1960s, with progress

in understanding the bacterial etiology of caries and periodontal diseases, that the

interest in antimicrobials regained momentum. In a series of seminal studies, Löe

et al. demonstrated that chlorhexidine mouth rinses could inhibit the development

of plaque and gingivitis even in the absence of oral hygiene (Löe and Schiott 1970).
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The list of antiplaque agents used in toothpastes and mouth rinses is long. Thus, for

the purpose of this review, we will comment on the most commonly used antimi-

crobial compounds used in oral health products (Table 3).

As of today, the most effective antimicrobial agent for plaque control has been

chlorhexidine (Baehni and Takeuchi 2003). Chlorhexidine is among the most tested

compound, and its antiplaque properties are well known. One main feature of

chlorhexidine that makes it so successful in controlling plaque is that it is adsorbed

on to the enamel surface or the salivary pellicle on the teeth so that bacterial

adhesion is inhibited (Pratten et al. 1998; Rölla and Melsen 1975). Moreover,

once chlorhexidine attaches to the surface of the teeth it stays there for long periods

of time before it is washed out by saliva flow, thus maintaining its antiplaque

activity even long after the mouthwash has been used.

At low concentrations chlorhexidine is bacteriostatic against most oral bacteria

and can interfere with the metabolism of oral bacteria by inhibiting sugar transport

and acid production in cariogenic streptococci, various membrane functions in

streptococci, and a major protease (gingipain) in the periodontal pathogen

Table 2 Chemical agents used to treat contamination of Dental Unit Water Systems (DUWS)

Compound

Biofilm

removal

Output water

contamination Treatment

Chlorexidine gluconate, chlorhexidine gluco-

nate, and alcohol

Variable Effective Intermittent

Activated chlorine dioxide Not effective Effective Intermittent

Chlorine dioxide and sodium phosphate mouth

rinse

Not effective Effective Residual or

continuous

Glutaraldehyde, glutaraldehyde, and quater-

nary ammonium salts (very toxic)

Variable Effective Intermittent

Sodium hypochlorite and citric acid Not effective Effective Intermittent

Hydrogen peroxide

Hydrogen peroxide and silver

Alkaline peroxide

Effective Effective Intermittent

Residual or

continuous

Electrochemically activated solutions Very effective Very effective Residual or

continuous

Paracetic acid Not effective Not effective Intermittent

Povidone-iodine Not effective Effective Intermittent

Sodium fluoride Partial

elimination

Effective Intermittent

Sodium perborate Not effective Variable Intermittent

EDTA Effective Effective Intermittent

Citric acid and sodium-p-toluol-
sulfonechloramide and sodium EDTA

Not effective Effective Residual or

continuous

Sodium-p-toluol-sulfonechloramide and

sodium EDTA

Not effective Effective Residual or

continuous

P-hydroxybenzoeicacidester,
polyaminoprophylbiguanid,

1,2-prophyenglycol

Not effective Effective

Adapted from O’Donnell et al. (2011). “Management of dental unit waterline biofilms in the 21st
century”
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Porphyromonas gingivalis. In several biofilm models, chlorhexidine was shown to

inhibit bacterial growth and biofilm formation (Houari and Di Martino 2007;

Modesto and Drake 2006). At high concentrations, the agent is bactericidal and

acts as a detergent by damaging the bacterial cell membrane and interfering with

biofilm formation (Hope and Wilson 2004). However, because of its attachment to

the surface of teeth, chlorhexidine has one negative effect that prevents its daily use,

namely a brown-yellow staining on the teeth if it is used for long periods of time.

Triclosan is another widely used antimicrobial in oral health products to prevent

plaque formation. Several large clinical trials have shown that toothpastes

containing triclosan and zinc citrate significantly reduced plaque and gingival

scores (Binney et al. 1997; Owens et al. 1997). The mechanism of action of

triclosan is by inhibiting FabI-related enoyl-ACP reductases, key enzymes in

fatty acid biosynthesis essential for membrane formation (Heath et al. 2001; Moir

2005).

Table 3 Antiplaque compounds used commonly in mouthwashes and toothpastes

Mechanims of action References

Chlorhexidine Inhibits bacterial adhesion

Bacteriostatic at high concentrations

At sublethal concentrations inhibits:

(a) sugar transport and acid pro-

duction in cariogenic streptococci,

(b) various membrane functions in

streptococci, including inhibiting

enzymes responsible for

maintaining an appropriate intra-

cellular pH, and (c) a major prote-

ase (gingipain) in the periodontal

pathogen, Porphyromonas
gingivalis

Baehni and Takeuchi (2003), Hope

and Wilson (2004), Houari and Di

Martino (2007), Löe and Schiott

(1970), Modesto and Drake

(2006), Pratten et al. (1998), Rölla

and Melsen (1975)

Triclosan Inhibits fatty acid biosynthesis and

FabI-related enoyl-ACP reductase

enzymes

Binney et al. (1997), Heath

et al. (2001), Owens et al. (1997)

“Essential oils”

(Listerine)

Bacterial cell wall destruction, bacte-

rial enzymatic inhibition, and

extraction of bacterial

lipopolysaccharides

Leszczyńska et al. (2011), Mandel

(1994)

Hexetidine Competitive action with thiamine Afennich et al. (2011)

Cetylpyridinium

chloride

(CPC)

Membrane destabilization Leszczyńska et al. (2011)

Amine fluoride/

stannous

fluoride

Stannous ions bind to lipotechoic acid

on the surface of Gram-positive

bacteria and reverse the charge on

the surface of the cell or tin ions

displace calcium ions, altering

enzyme functions in the cell

Bansal et al. (1990), Bullock

et al. (1989), Kay and Wilson

(1988), Mayhew and Brown

(1981)
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“Listerine” is the commercial name of a commonly used mouth rinse that

contains “essential oils” as active antimicrobial compounds. In its formulation we

found thymol (0.06 %), eucalyptol (0.09 %), methyl salicylate (0.06 %) and

menthol (0.04 %). Listerine acts on the biofilm by destabilizing the bacterial cell

wall (Leszczyńska et al. 2011).

Hexetidine is also a common antiplaque agent added to mouthwashes.

Hexetidine is a very safe oral antiseptic with broad antibacterial and antifungal

activity in vivo and in vitro. Hexetidine has lower antiplaque activity than chlor-

hexidine but without the negative staining effect (Afennich et al. 2011). Given

hexetidine is a pyrimidine derivative, the most likely mechanism of action is by

exerting a competitive action with thiamine.

Cetylpyridinium chloride (CPC) is a quaternary ammonium compound with

broad spectrum antibacterial activity that adsorbs readily to oral surfaces. This

molecule has both hydrophilic and hydrophobic groups, providing the possibility

for hydrophilic and hydrophobic interactions. The positively charged hydrophilic

region of the CPC molecule has high binding affinity for bacterial cells whose

surface has net negative charge. The strong positive charge and hydrophobic region

of CPC enables the compound to interact with the microbial cell surface and

integrate into the cytoplasmic membrane. As a result of this interaction, there is

disruption of membrane integrity resulting in cell death (Leszczyńska et al. 2011;

Tattawasart et al. 2000).

Finally, both amine fluoride (Kay and Wilson 1988) and stannous fluoride

(Mayhew and Brown 1981) possess bactericidal activity against oral bacteria. In

addition, amine fluoride has been shown to inhibit the growth of mixed bacterial

populations found in subgingival plaque (Bansal et al. 1990; Bullock et al. 1989).

Additionally, stannous and amine fluorides can also inhibit the adhesion of Strep-
tococcus sanguis to glass conditioned with either saliva or bovine serum albumin.

6.3 Antibiotics and the Oral Biofilm

The use of antibiotics in oral medicine has a long history, especially as prophylactic

agents for preventive management. In addition, antibiotics are used for therapeutic

reasons in cases where infections of oral hard and soft tissues, such as teeth and

gingiva, cannot be controlled by local debridement and can spread to distant organs

and therefore require supplemental therapy. Nonetheless, the use of antibiotics in

dental practice has been restricted by clinicians to limit spreading antibiotic resis-

tance among oral isolates. Moreover, bacteria growing in biofilms are more resis-

tant to antibiotics than their planktonic counterparts. Antibiotic concentrations

necessary to inhibit biofilms can be 10–1,000 times higher than those needed to

inhibit bacteria growing planktonically (Simões 2011). The mechanism by which

bacteria become more resistant in the biofilm is not completely understood and is

likely multifactorial. Lewis has proposed that a fraction of the biofilm are persister

or dormant variants of regular cells that have a reduced metabolism by a
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toxin–antitoxin mechanism and thus are less affected by the presence of antibiotics

(Lewis 2010).

A wide variety of antibiotics have been used in oral health. The list comprises

among others: amoxicillin, tetracycline, minocycline, doxycycline, azithromycin,

clindamycin, and metronidazole (Leszczyńska et al. 2011). Amoxicillin is one of

the most commonly used antibiotics. It is a semisynthetic penicillin with broad

antimicrobial spectrum and is used in periodontology to fight some subgingival

bacterial species. However, many bacteria isolated in subgingival plaque samples

are resistant to amoxicillin (Handal et al. 2004; Rams et al. 2013; van Winkelhoff

et al. 1997). Nonetheless, the combination of amoxicillin, metronidazole with

scaling and root planing leads to a beneficial change in the composition of the

subgingival microbiota by reducing the concentration of anaerobic pathogens such

as P. gingivalis and P. intermedia and allowing the growth of host-compatible

species (Mestnik et al. 2012; Socransky et al. 2013).

The combination ciprofloxacin–metronidazole has proven to be effective in

elderly patients and patients that have enteric rods in their subgingival plaque

(Slots 2012). Azithromycin is effective against Gram-negative aerobic and anaer-

obic bacteria, has a long half-life in periodontal tissues, and has been successfully

used as an adjuvant in the treatment of chronic periodontitis (Muniz et al. 2013).

Clindamycin is a pyranoside antibiotic that has been tested in several clinical

studies. Nevertheless, resistance of oral microorganisms to clindamycin seems to

be widespread (Skucaite et al. 2010), and thus it is only recommended in cases

where there is intolerance to other antibiotics. Tetracycline and its homologues are

commonly used in dental practice as a prophylactic agent and for treatment of oral

infections (Payne and Golub 2011; Sgolastra et al. 2011). These compounds have

antimicrobial and antiinflammatory activities. However, tetracyclines have a large

number of adverse effects such as nausea, vomiting and have negative interaction

with penicillins.

A more controlled delivery system for antibiotics, and by that matter antiseptics,

is by using a local drug delivery system, where the active agent is placed directly

into the diseased pocket to treat periodontitis (i.e., analogous to topical application).

Using this system allows for a reduction in the total amount of antibiotic used,

lowering the potential side effects, and also preventing the negative consequences

of systemic antibiotics, e.g., disrupting the gut flora. These drug delivery systems

include fibers, strips, gels, etc., with a polymer matrix that contains the compound

to be released. Currently, there are commercial systems that contain tetracycline,

doxycycline, metronidazole, minocycline, and azithromycin (Leszczyńska

et al. 2011).

The main objection to the extensive use of antibiotics to control oral biofilms is

the potential spread of antibiotic resistance and the public health implications of

their uncontrolled use. The oral biofilm is a perfect setting for the transmission of

antibiotic resistance genes due to its complexity in composition and the large

number of bacteria that colonize it, especially in the case of the subgingival plaque

(Mullany et al. 2012; Roberts and Mullany 2010).
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Bacterial resistance to antibiotics is acquired by different mechanisms. Resis-

tance to penicillin is primarily acquired by alteration of the penicillin-binding

proteins and/or production of β-lactamases. However, a very small proportion of

the subgingival microbiota are resistant to penicillins. Bacteria become resistant to

tetracyclines or macrolides by limiting their access to the cell, by altering the

ribosome in order to prevent effective binding of the drug, or by producing

tetracycline/macrolide-inactivating enzymes (Soares et al. 2012) Periodontal path-

ogens are frequently resistant to these drugs. Moreover in the case of tetracyclines,

their use could actually initiate the mobilization of elements carrying resistance

genes (Salyers and Shoemaker 1997).

6.3.1 Antimicrobial Peptides

Antimicrobial peptides (AMPs) are a special class of broad spectrum antibiotics

that has attracted a great deal of interest in controlling oral biofilms and have great

potential as new therapeutic compounds against bacterial pathogens. They are

naturally synthesized molecules produced by a wide range of organisms and also

an important element of the innate immune system of eukaryotes. AMPs mount a

rapid, nonspecific response against colonization by a pathogen, especially in the

early stages of invasion. Their mechanism of action is based on the fact that

mammalian cells have no net charge on their membranes, while bacterial cells

have a negative net charge. This interaction causes the antimicrobial peptides to

produce pores in the cell wall, thus causing bacterial cell death. There are also

antimicrobial peptides whose targets are not bacteria. Antimicrobial peptides

against virus, fungi, protists, parasites, and even against insects and tumor cells

have been identified (Lucchese et al. 2012).

Gingival epithelial cells shape the oral microbiome by secreting antimicrobial

peptides directly into the gingival crevice, which inhibits the growth of pathogens

(da Silva et al. 2012). The oral epithelium produces two important AMPs:

β-defensins and LL-37. Both are produced in the subgingival epithelium and may

play an important role in the homeostasis of dental plaque. However, the activity of

these peptides against bacteria growing in structured biofilms is limited (Folkesson

et al. 2008), in part compromised by the production of exopolysaccharides by the

biofilm and also by the emergence of resistance against AMPs.

To increase the effectiveness of peptides against oral biofilms, one strategy has

been to design synthetic peptides, based on the knowledge gained using natural

peptides, to improve their efficacy in controlling biofilms (Helmerhorst et al. 1999;

Younson and Kelly 2004). Some of these synthetic peptides inhibit colonization of

the biofilm by the pathogenic organism while others have direct antimicrobial

activities killing the target of interest.

A critical early step in any bacterial infection is adherence of the pathogen to the

host. Blocking this first step of colonization can prevent invasion of the plaque by

the pathogen and thus maintain a healthy biofilm. One way to prevent this adhesion

is to use adhesion epitopes to block receptor sites that pathogens utilize to adhere to
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other organisms in the biofilm. Most of these efforts have focused on preventing the

attachment of S. mutans to control the cariogenic biofilm. In the case of S. mutans
initial adherence to the tooth surface is mediated by an adhesin that is expressed on

the surface of the bacterium, the streptococcal antigen I/II (SA I/II). A synthetic

peptide (p1025) corresponding to residues 1025–1044 of the adhesin has been used

to block adhesion of S. mutans to teeth but had no effect on adhesion and coloni-

zation of other health-associated organisms such as Actinomyces (Kelly et al. 1999;
Younson and Kelly 2004).

Synthetic peptides can also be used to kill the pathogen of interest. Histatin-

derived peptides have antibacterial activity in in vitro oral biofilm models as well as

ex vivo treatment of plaque bacteria (Helmerhorst et al. 1999).

A more targeted approach with great potential has been developed by Eckert

et al. (2006). This technique called Specifically Targeted Antimicrobial Peptides

(STAMPs) is based on the fusion of a species-specific targeting peptide domain

with a wide-spectrum antimicrobial peptide domain. The targeting domain provides

specific binding to a selected pathogen and facilitates the targeted delivery of an

attached antimicrobial peptide (Fig. 4).

6.4 Natural Products

The use of natural products to prevent or treat diseases dates back thousands of

years in almost every civilization around the world. The term “natural product”

refers to a substance produced by living organisms that has distinct pharmacolog-

ical effects. Due to this broad definition natural products provide a diverse array of

chemical structures and possess a plethora of biological activities. A number of

Fig. 4 Illustration of the

basic structure and

mechanism of action of the

specifically targeted

antimicrobial peptides

(STAMPs). Adapted from

Eckert et al. (2012). (a)

Basic structure of STAMPs

showing the targeting

region specific for the

targeted organisms and the

antimicrobial region

consisting of a peptide with

killing activity. (b)

STAMPs specifically target

the pathogen of interest

while leaving the healthy

biofilm intact (Eckert

et al. 2012)
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natural products that possess the ability to inhibit or disperse bacterial biofilms have

been used as the starting points for medicinal chemistry programs in which syn-

thetic manipulation of the natural product scaffold has allowed for the design of

more active compounds. Much of the natural product inspiration for these programs

has come from compounds isolated from plants and marine organisms that use them

as chemical warfare against other organisms. One of the main advantages of using

natural products for biofilm control in oral formulations is their low or nonexistent

toxicity.

In most cases, the active component in natural products used in oral health is

polyphenol. Polyphenols constitute one of the most common groups of substances

in plants and are considered secondary metabolites involved in chemical defense.

The number of known plant polyphenols is enormous, including a wide variety of

molecules that contain at least one aromatic ring with one or more hydroxyl groups

in addition to other substitutions. A variety of potential mechanisms of action by

which polyphenols exert antimicrobial effects have been reported (Ferrazzano

et al. 2011; Furiga et al. 2008; Grenier and La 2011; Hannig et al. 2008). They

have the ability to inactivate bacterial toxins, which has generated increasing

interest because plant polyphenols could represent a new source of agents to fight

antibiotic-resistant human pathogens. For instance, apple peel polyphenol-rich

extract has been shown to inhibit vacuolation by the vacuolating bacterial toxin

(VacA) of Helicobacter pilori (Pastene et al. 2010).
A large variety of polyphenols, from as diverse origins as tea, grape juice, cocoa,

coffee, and red wine, have been shown to inhibit initial adherence to the tooth

surface, especially in the case of the cariogenic bacterium S. mutans (Ferrazzano
et al. 2011; Hannig et al. 2008). For example, S. mutans produces glucan that

facilitates its attachment to teeth. Glycosyltransferase (GTF) is an essential enzyme

in the production of glucan, and it is inhibited by polyphenols from tea, hampering

the initial stages of biofilm colonization by S. mutans (Hamilton-Miller 2001).

Polyphenols from apples also inhibit S. mutans GTFs. A high molecular weight

hop bract polyphenol (HBP) also inhibited adherence of S. mutans via the action of
GTFs involved in water-insoluble glucan synthesis, but did not suppress the growth

or acid production of the bacteria (Tagashira et al. 1997). Other polyphenols with

similar activities have been isolated form cranberries (Yoo et al. 2011), grapes

(Yano et al. 2012), tea (Xu et al. 2011; Yano et al. 2012), cacao (Ito et al. 2003), and

red wine (Furiga et al. 2008).

There are also reports that polyphenols inhibit adhesion of periodontal patho-

gens. Polyphenol-enriched extract from the plant Myrothamnus flabellifolia
inhibited P. gingivalis adhesion and cell invasion by interaction with outer mem-

brane proteins of the bacterial cell (Löhr et al. 2011). (�)-Epigallocatechin gallate

(EGCg), the dominant component of tea polyphenols, inhibited the growth and

adherence of P. gingivalis onto buccal epithelial cells (Sakanaka et al. 1996).

Finally, polyphenols from cranberries inhibited P. gingivalis biofilm formation by

an unknown mechanism (Yamanaka et al. 2007).

Natural compounds also have antibacterial activities. Camellia sinensis (used to
make green tea and oolong tea) has been widely studied for its antibacterial
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activities against caries-related bacteria, using both in vitro and in vivo models

(Ferrazzano et al. 2009; Hassani et al. 2008). Although the composition of green tea

is complex, specific catechins from green tea have been associated with

antibacterial activity against S. mutans and Streptococcus sobrinus (Nakahara

et al. 1993). This inhibitory effect appears to be related to the presence of three

hydroxy moieties 30, 40, and 50 on the B ring of the catechin and epicatechin

molecular structure (Miyake et al. 2011). However, the exact mechanisms of action

and their putative target(s) remain to be elucidated. Among the polyphenols from

green tea with potential use in periodontal disease treatment, Epigallocatechin

3 gallate (EGCG) and Epicatechin 3 Gallate (ECG) are the most predominant

catechins. These catechins have antioxidant, antimicrobial, anticollagenase,

antimutagenic, and c hemopreventive properties (Venkateswara et al. 2011).

Several groups have identified natural plant-derived inhibitors effective on

P. gingivalis proteases. More specifically, polyphenols isolated from cranberry

and green tea were found to inhibit Arg-gingipain and Lys-gingipain produced by

P. gingivalis (Yamanaka et al. 2007). These enzymes have been suggested to play

multiple roles in the pathogenic process of periodontitis. Additionally, green tea

polyphenols inhibit the production of toxic end metabolites by P. gingivalis such as
n-butyric, phenylacetic, and propionic acid (Sakanaka and Okada 2004).

Finally, one interesting natural product with antimicrobial activity and a very

different origin, which has been used experimentally to inhibit oral bacteria, is

honey. Although the number of studies is small, honey has been shown to have

antimicrobial activity against S. mutans (Ahmadi-Motamayel et al. 2013) and

potential use in periodontal disease (Molan 2001).

6.5 Quorum Sensing

Quorum sensing (QS) is a complex regulatory process dependent on bacterial cell

density (Miller and Bassler 2001) and is typically involved in the regulation of

genes involved in biofilm maturation and maintenance (Hammer and Bassler 2003;

Joo and Otto 2012). QS controls the production of virulence factors in both Gram-

positive and Gram-negative pathogenic bacteria (Rutherford and Bassler 2012).

Thus, inhibitors of QS, in addition to possessing anti-biofilm activity, could also

counteract bacterial pathogenicity.

The majority of bacteria present in the oral biofilm can sense their microenvi-

ronment using QS mechanisms. In Gram-negative bacteria, autoinducers, the mol-

ecules used in QS, belong to the chemical class of the acyl-homoserine lactones

(AHLs) (Fuqua and Greenberg 1998), in Gram-positive bacteria autoinducing

peptides (AIPs) control QS mechanisms (Sturme et al. 2002), while a third class

of autoinducers, autoinducer-2 (AI-2), is conserved in both Gram-negative and

Gram-positive bacteria (Rickard et al. 2006). This latter autoinducer, AI-2, is

especially important in multispecies biofilms such as dental plaque where Gram-

negative and Gram-positive bacteria coexist. AI-2 promotes biofilm formation and
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maturation in multispecies communities. The luxS gene, responsible for the expres-

sion of AI-2, is conserved among many species of bacteria, including S. mutans,
S. gordonii, Streptococcus oralis, P. gingivalis, A. actinomycetemcomitans, and
other oral microorganisms (Frias et al. 2001; Jakubovics 2010).

The species-specific QS autoinducers N-acyl homoserine lactones (autoinducer-1)

have not been identified in oral bacteria (Jakubovics and Kolenbrander 2010).

However, many oral microorganisms produce and/or respond to the interspecies

signal AI-2. AI-2 is the collective term given to a number of molecules that

spontaneously form an equilibrium when 4,5-dihydroxy-2,3-pentanedione (DPD)

is dissolved in water. Bacteria produce AI-2 during amino acid metabolism as a

product of the enzyme encoded by the luxS gene. AI-2 plays an important role in

regulating the essential activities of oral pathogens. AI-2 QS regulates iron acqui-

sition in the periodontal pathogens P. gingivalis and A. actinomycetemcomitans
(Shao and Demuth 2010) and modulates protease and haemagglutinin activities in

P. gingivalis (Burgess et al. 2002). Additionally, AI-2 also regulates biofilm

formation in oral pathogens. A. actinomycetemcomitans luxS mutants are capable

of forming a mature biofilm, but they exhibit significantly lower total biomass and

biofilm depth when compared with the wild-type strain (Shao and Demuth 2010).

Similarly, luxS mutants of S. mutans form a defective biofilm compared to wild

type due to a decrease in glycosyltransferase activity, suggesting that the activity of

this enzyme is controlled by AI-2 (Huang et al. 2009; Yoshida et al. 2005).

QS inhibitors have the potential to control biofilm growth and maturation with

the advantage of reducing the generation of mutants resistant to the treatment. The

increasing interest in interfering with these signaling systems as a way of control-

ling biofilms (Quorum Quenching) is reflected by the increasing number of patents

filed using this approach (more than 45 since 2009) (Romero et al. 2012).

Recently, it was shown that two QS inhibitors (5Z )-4-bromo-5-

(bromomethylene)-2(5H)-furanone (furanone compound) and D-ribose inhibited

dual biofilm formation between Fusobacterium nucleatum and members of the

“red complex” (Porphyromonas gingivalis, Treponema denticola, and Tannerella
forsythia) (Jang et al. 2013). Fusobacterium nucleatum is the major coaggregation

bridge organism that links early colonizing commensals and late pathogenic colo-

nizers in dental biofilms via the accretion of periodontopathogens from the “red

complex.” Disturbance of coaggregation and biofilm formation between these

organisms may have an impact in controlling pathogenic biofilm. He and collabo-

rators have shown that by using the synthetic QS inhibitor furanone C-30, biofilm

formation by Streptococcus mutans was significantly reduced (He et al. 2012).

Although there are no reports that suggest production of AHLs by P. gingivalis, it
has been shown that synthetic N-acyl HSL analogues can inhibit biofilm formation

by this organism (Asahi et al. 2010). The mechanisms by which these analogues

interfere with biofilm formation in P. gingivalis are still unknown.
Although S. mutans possesses the AI-2 system (Merritt et al. 2003), its primary

QS system is comprised of the Competence Stimulating Peptide (CSP) and the

ComD/ComE two-component signal transduction system. In addition to biofilm

formation, the CSP-mediated QS system in S. mutans also affects its acidogenicity,
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aciduricity, genetic transformation, and bacteriocin production (Senadheera and

Cvitkovitch 2008). CSP is synthesized in the cell and released into the extracellular

medium. When the bacterial density increases, CSP molecules in the external

environment reach a threshold concentration and, as with other two component

systems, the expression profiles of bacteria producing the CSP molecules is mod-

ulated. When used at high concentrations, CSP can actually contribute to cell death

in S. mutans. Analogues of this QS peptide decrease biofilm formation of various

Streptococcus species and can potentially be used to control cariogenic biofilms

(LoVetri and Madhyastha 2010).

7 Biological Methods to Control Oral Biofilms

7.1 Vaccination

As antibacterial agents can be rendered ineffective by the development of resistance

in target organisms, it can be difficult to maintain a therapeutic concentration in the

oral cavity and can be toxic to the host. Thus, there is a need to develop alternative

approaches for treatment. Vaccines are proposed to be an effective therapy to

control oral biofilm and target oral pathogens. Although viruses have been impli-

cated in some cases of periodontal disease (Grinde and Olsen 2010; Slots 2010) we

will only focus on the use of vaccines against the bacterial fraction of the oral

biofilm.

An example of a recent vaccine whose strategy is to control oral biofilm rather

than target specific pathogens is a vaccine against the oral bacterium

Fusobacterium nucleatum. As previously mentioned, this organism plays a central

bridging role in the structure of pathogenic periodontal biofilms (Kolenbrander

2000; Kolenbrander et al. 2002). An antibody generated against the FomA outer

membrane protein of F. nucleatum significantly abrogated bacterial co-aggregation,

biofilm formation, and the production of volatile sulfur compounds that cause

halitosis (Liu et al. 2010).

Numerous studies have documented effective vaccination against oral patho-

gens. Most of these vaccines were developed based on the identification of viru-

lence factors that stimulate the induction of salivary immunoglobulin A antibody

responses. Primary targets have been cell-surface fibrillar proteins, which mediate

adherence to the salivary pellicle, and GFT enzymes, which synthesize adhesive

glucans and allow for microbial accumulation. Immunization when infants are

about 1 year old can establish effective immunity against ensuing colonization

attempts by mutans streptococci. Intranasal vaccines, targeting the flagellin of

S. mutans, have shown reduction of caries in animals (Shi et al. 2012; Sun

et al. 2012). Streptococcal GTF have also been demonstrated to be effective

components of dental caries vaccines, and different peptides from these proteins

have been used to design them (Culshaw et al. 2007; Russell et al. 2004).
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Another approach in designing vaccines against caries has been the use of DNA

vaccines. These vaccines are composed of bacterial plasmids that are delivered to

the host, after which some cells uptake the plasmids and begin producing the

antigen of interest. Expression plasmid DNA contains antigen-encoding sequences

cloned under heterologous promoter control that are delivered by different tech-

niques and lead to antigen expression in transfected cells in vivo (Williams

et al. 2009). Several DNA vaccines have been designed for use in caries therapy.

A fusion anti-caries DNA vaccine (pGJA-P/VAX) that encodes two important

antigenic domains (PAc and GLU) of S. mutans was successful in reducing the

levels of dental caries caused by S. mutans in gnotobiotic animals (Niu et al. 2009).

Two other vaccines, pGJGAC/VAX and pGJGA-5C/VAX, constructed by cloning

different sections of the catalytic regions of GTFs, protected against cariogenic

bacteria, and specifically against S. sobrinus (Sun et al. 2009).

Most immunization approaches, both active and passive, against periodontitis

have been focused on P. gingivalis and A. actinomycetemcomitans. As noted above,
P. gingivalis has been implicated as a major periodontopathogen in human peri-

odontitis. In this context, it has developed a variety of survival strategies enabling it

to evade host defense mechanisms. Virulence factors of P. gingivalis include

cysteine proteases, fimbriae, capsular polysaccharide (CPS), lipopolysaccharide,

and outer membrane vesicles (Holt et al. 1999).

There have also been attempts to use inactivated whole cells of P. gingivalis as
antigens in vaccine development. In a recent study, a mixed vaccine of whole

P. gingivalis and F. nucleatum cells suppressed inflammation but failed to prevent

disease progression in an animal model system (Polak et al. 2010).

RgpA and Kgp are polyprotein proteinases with C-terminal adhesin domains that

are proteolytically processed. An RgpA-Kgp complex vaccine produced a high

antibody titer in animals which protected them from a P. gingivalis challenge

(O-Brien-Simpson et al. 2003; Rajapakse et al. 2002). FimA and the 40-kDa

outer membrane protein of P. gingivalis have also been used in designing vaccines

against periodontitis (Lucchese et al. 2013; Namikoshi et al. 2003).

As in the case of caries vaccines, a new generation of DNA vaccines have also

been devised against FimA (Yu et al. 2011) and the 40-kDa outer membrane (Zhang

et al. 2009) of P. gingivalis, eliciting a protective immune response.

A. actinomycetemcomitans is considered another important pathogen in human

periodontal disease, especially in the localized form of juvenile aggressive peri-

odontitis. Honma et al. demonstrated that high salivary IgA response could be

induced against a fimbrial synthetic peptide by intranasal mucosal immunization

(Honma et al. 1999). Harano et al. using olegopeptides from frimbriae, prepared an

antiserum that blocked the adhesion of the organism to saliva-coated hydroxyapa-

tite beads, to buccal epithelial cells, and to a fibroblast cell line (Harano et al. 1995).

Also, subcutaneous and intranasal immunization of mice with a capsular serotype

b-specific polysaccharide antigen of A. actinomycetemcomitans resulted in specific

antibodies that efficiently opsonized the organism (Takamatsu-Matsushita

et al. 1996). Antibodies elicited against fimbriae composed of a 54 kDa protein

derived from A. actinomycetemcomitans protected against continued infection by
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this microorganism. IgG responses to fimbriae antigen elicited by the initial contact

with A. actinomycetemcomitans may play an important role for eliminating organ-

isms from the periodontal pockets of patients harboring high IgG antibody against

these antigens (Ishikawa et al. 1997). However, relatively few studies have been

conducted on developing vaccines against A. actinomycetemcomitans.

7.2 Probiotics

Total elimination of the oral biofilm is neither desirable nor possible, and therefore

replacement strategies with “probiotics” have been the subject of extensive

research. Recently, probiotics have been gaining interest for alleviating oral and

other health disorders. The Food and Agriculture Organization of the United

Nations has defined probiotics as “live microorganisms administered in adequate

amounts conferring beneficial health effect on the host”. Probiotics are naturally

found in food products such as yogurt and milk and have yet to cause the serious

side effects that are associated with currently available antimicrobials.

Lactobacillus and Bifidobacterium are the most commonly used genus of bac-

teria in probiotic formulations and they have been used with positive results for a

large number of different health disorders (Girardin and Seidman 2011; Kruis 2012;

Travers et al. 2011; Twetman and Stecksén-Blicks 2008; Uccello et al. 2012).

The balance between beneficial and pathogenic bacteria is essential in order to

maintain oral health. Therefore, the oral cavity has recently been suggested as a

relevant target for probiotic applications. Although it is a promising concept, there

is still not conclusive evidence that current probiotics have any beneficial effect on

oral diseases and further studies are needed to assess its value as a therapy.

One can conclude that there are three main goals that probiotics should achieve

to prove successful as therapeutics for gingivitis and periodontitis. The first goal

involves the modulation of the host’s inflammatory processes. The second goal

involves the reduction of plaque formation. Finally, the third goal is to reduce the

presence and numbers of disease promoting microorganisms. Given our focus on

biofilm control we are going to skip modulation of the host’s inflammatory response

and focus on the two latter goals.

One of the problems of probiotic therapy is colonization of the biofilm by the

probiotic bacterium. Long-term establishment of probiotics in the oral biofilm is

difficult, and detectable levels are commonly only found at the beginning of the

treatment (Twetman and Stecksén-Blicks 2008). Probably, the most successful

example of the use of probiotics in treating a disease is using “fecal transplantation”

for treating recurrent Clostridium difficile infections (Aroniadis and Brandt 2013).

Fecal microbiota transplantation (FMT) has been used as a treatment to reconstitute

the normal microbial homeostasis after the gastrointestinal microbiota has been

eliminated by antibiotic treatments, allowing for the over growth of C. difficile. It
may be possible that for the effective action of probiotics, the normal microbiota

has first to be reduced allowing for the establishment of the desired bacteria.
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Although still in its infancy there are a few examples of the use of probiotics for

controlling oral biofilm. In a randomized clinical trial, Vivekannanda and collab-

orators demonstrated that L. reuteri inhibited plaque accumulation and reduced

inflammation in patients with chronic periodontitis (Vivekananda et al. 2010).

A probiotic therapeutic formulation for oral diseases should also be capable of

reducing the prevalence of pathogenic microorganisms. Mayanagi et al. used

L. salivarius as a probiotic to demonstrate the inhibition of a series of oral

pathogens, specifically: A. actinomycetemcomitans, Prevotella intermedia,
P. gingivalis, Treponema denticola, and Tannerella forsythia (Mayanagi

et al. 2009). At the end of the study, there was a significant decrease in the numbers

of all of the periodontal pathogens in the test group compared with the control

group. In another study, Iwamoto et al. found that L. salivarius also had beneficial

effects on halitosis and periodontal pocket bleeding upon probing (Iwamoto

et al. 2010).

As aforementioned, the goals for the successful prevention of dental caries by a

therapeutic are to inhibit the proliferation of S. mutans and to inhibit its adherence

to the oral surface. Several probiotics have been assessed in clinical trials aimed to

prevent caries. Bacillus coagulans have been shown to have an inhibitory effect on

S. mutans salivary counts in children (Jindal et al. 2011). In another study, Juneja

and Kakade showed a statistically significant reduction in salivary mutans strepto-

cocci counts in children immediately after consumption of probiotic Lactobacillus
rhamnosus containing milk (Juneja and Kakade 2012), suggesting that adding

probiotics to milk may be a safe and easy way to prevent caries. Nase

et al. showed that long-term consumption of L. rhamnosus in milk had beneficial

effects in preventing dental caries especially in 3- to 4-year-old children (Näse

et al. 2001).

In addition to the classic probiotic strains, other oral residents or genetically

modified strains have also been tested for their ability to inhibit cariogenic

microbes. Hillman and colleagues engineered an S. mutans strain deficient in acid

lactic production that produced a bacteriocin active against other S. mutans strains
and could be introduced into the oral cavity to replace the naturally occurring

pathogenic strains (Hillman 2002; Hillman et al. 2000).

8 Future Directions

Total elimination of the oral biofilm is neither desirable nor possible. In the future,

strategies to control oral biofilms should aim for preserving a healthy community

and eliminating organisms with pathogenic potential or those that could shift the

homeostasis of the health-associated biofilm towards a dysbiotic one. The motiva-

tion behind devising new strategies for controlling oral biofilms is twofold. On one

hand widespread antibiotic resistance is a major incentive for the investigation of

novel ways to treat or prevent infections. On the other hand, as mentioned above,
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mechanical cleaning, although effective, is not performed at the level needed to

maintain a healthy oral biofilm without additional treatments.

Photodynamic therapy and the use of nanoparticles are promising areas of

research in the control of oral biofilms, especially when targeting oral pathogens

using the strategies mentioned above. The search for new inhibitory biofilm com-

pounds should continue but focus on shifting the biofilm to health rather than trying

to completely eliminate the oral biofilm from our mouths. Preventing the attach-

ment of specific pathogens is a promising strategy that fulfills all the requirements

for a good treatment. We now have tools available to perform in silico screening for
new products based on our previous knowledge. Chemoinformatics-assisted tech-

nologies have been used to develop new anti-biofilm compounds against Staphy-
lococcus aureus (Dürig et al. 2010).

In the field of vaccination against oral pathogens, stimulation of antigen-specific

T-cells polarized toward helper T-cells with a regulatory phenotype is a new and

promising field of research. Targeting not only a single pathogen but also

polymicrobial organisms, and targeting not only periodontal disease but also

periodontal disease-triggered systemic disease, could be a feasible goal (Choi and

Seymour 2010).

The use of probiotics is another promising area of research in the field of oral

biofilm control. However, many of the clinical studies are pilot in nature, therefore,

larger clinical trials, using probiotic strains with proven periodontal probiotic

effects in vitro, are needed. Furthermore, administration of probiotics is another

area that could be optimized. As mentioned above, “fecal transplant” has been

successful in part because of the lack of an established, stable community already

colonizing the intestinal epithelium. Thus, removing the microbiota before using

probiotics in the oral cavity may help to establish the desired, healthy microbiota

and inhibit colonization by oral pathogens.

Finally, a topic we did not describe, but that could have potential in controlling

bacterial biofilms, is the use of bacteriophage therapy. Recently, Castillo-Ruiz

showed that a bacteriophage against A. actinomycetemcomitans killed up to 99 %

of cells in a biofilm, opening a window to the possibility of using phage to modulate

the oral biofilm (Castillo-Ruiz et al. 2011).
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Control of Polymicrobial Biofilms:

Recent Trends

Derek S. Samarian, Kyung Rok Min, Nicholas S. Jakubovics,

and Alexander H. Rickard

Abstract Biofilms represent the dominant mode of bacterial existence in natural

and man-made environments. Bacteria within biofilms possess collective biofilm-

imposed properties that make them distinct from their planktonic counterparts. One

key property is an enhanced resistance to antimicrobials. Previous strategies to treat

biofilms have focused on either single or combined chemical treatments or physical

removal. Considering that many chronic bacterial illnesses are associated with

multispecies biofilms, such approaches may not be effective because juxtaposed

species can act synergistically to enhance recalcitrance to treatments, resulting in

treatment failure. This section will introduce the reader to the processes leading to

the development of human-associated polymicrobial biofilms with a particular

emphasis on multispecies succession, ecology, and integration by pathogenic

bacteria. Then, cognizant of processes and properties, newly developed or promis-

ing approaches to control pathogenic biofilm communities will be considered.

These approaches will either be preventative or therapeutic and based upon the

manipulation of biological processes (e.g., cell–cell signaling, coaggregation, treat-

ment with phage) or based purely upon technological advances (e.g., cold plasma,

modified-surface technologies, nanoparticles). The advantages and disadvantages

of the different approaches will be discussed and future prospects considered.

Recognizing the current issues associated with the spread of antimicrobial resis-

tance and the overall recalcitrance of biofilms, we propose that new technologies to
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prevent disease or approaches to craft communities to maintain health should be a

mainstay of current biofilm research.

1 Introduction

Biofilms are surface-attached or interface-attached aggregated communities of

bacteria (Costerton 1995). Most biofilms in medical and natural environments are

composed of multiple species of bacteria (Stoodley et al. 2002) and are often

referred to as “polymicrobial biofilms” (Peters et al. 2012; Wolcott et al. 2013).

Examples of such communities include dental plaque biofilms, which can contain

up to 500 species of closely located but taxonomically disparate species, and

chronic wound biofilms which can also contain hundreds of species (Kolenbrander

et al. 2006; Smith et al. 2010). A major issue associated with the formation of these

communities is their antimicrobial recalcitrance. Biofilm bacteria are up to 1,000

times more tolerant to antimicrobials than their planktonic counterparts (Mah and

O’Toole 2001; Gilbert et al. 2002) and resist abrasive removal (Gibson et al. 1999;

Paranhos et al. 2007; He and Shi 2009). Such a pronounced resistance underlies

why 23.7 % of US adults have untreated dental caries and 38.5 % have moderate to

severe periodontitis (Eke et al. 2012; National Center for Health Statistics 2012).

Similarly, the recalcitrance of chronic wound biofilms accounts for the 6.5 million

patients that are treated every year in the USA, and a financial burden of greater

than $25 billion is spent annually on treatment of chronic wounds (Sen et al. 2009).

It should be noted that from a public health perspective, the burden of oral

healthcare and wound treatment/prevention is rapidly growing, in part due to

biofilms and the spread of antimicrobial resistance, but also because of the dramatic

increases in the cost of healthcare, number of aging population, incidence of

diabetes, and increasing numbers suffering from obesity (Alanis 2005; Howell-

Jones et al. 2005; Cosgrove 2006; Allukian & Adekugbe 2008; Fisher et al. 2009;

Tsai et al. 2011). Thus, before considering strategies to control biofilm communi-

ties, an understanding and appreciation of the processes that contribute to biofilm

development and persistence are essential.

Since the first descriptions of biofilms, there has been a continual and recently

increasing interest in the processes that are important in biofilm development

(Costerton et al. 1987; Hall-Stoodley and Stoodley 2002, Kolenbrander

et al. 2006). While the excellent and often-cited model for biofilm development is

that of Pseudomonas aeruginosa described by Davies and colleagues (Stoodley

et al. 2002; Davies 2003), this model only accounts for the formation of single-

species biofilms. A more realistic model, however, is one that considers multiple

species. One such model by Rickard et al. (2003), that is based upon models of oral

biofilm formation as well as those of multispecies biofilms from other environments

(Callow 1993; Marsh and Bradshaw 1995; Wimpenny 1996; Palmer and White

1997), considers biofilm development as a successional process (Fig. 1). Succession

is the ordered and often reproducible process (from environment to environment)

by which primary colonizers adhere to conditioned surfaces and the growth of these
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pioneering species, in turn, facilitates the integration of additional species. A

conditioned surface is usually one with adsorbed proteins, polysaccharides, and

other organic materials. Primary colonizing bacteria can adhere to the conditioning

film by nonspecific electrostatic forces, Lifshitz-van der Waals forces, and Lewis

acid–base forces. Similar nonspecific forces enable the later colonizers, which are

often referred to as secondary colonizers, but also highly specific coaggregation

interactions contribute to the sequential integration of species (Rickard et al. 2003;

Hojo et al. 2009) (Fig. 1). Throughout the process of biofilm development, cells can

also produce extracellular polymeric substances (EPS) that include proteins, poly-

saccharides, and DNA which, among other roles, stabilize and strengthen the

biofilm (Flemming and Wingender 2010; Jakubovics et al. 2013). In this model,

secondary colonizers can be species that facilitate the integration of pathogens.

While such a process has been described in dental plaque biofilms (Diaz et al. 2006;

Kolenbrander et al. 2006; Palmer et al. 2006) as well as in freshwater biofilm

communities (Martiny et al. 2003; Lyautey et al. 2005), studies of other biofilms,

especially those found in environments where flowing liquid is less pronounced (e.

g., skin/wound biofilm communities), are still in their infancy. Nonetheless, the

concept of successional biofilm development has expanded into many interdisci-

plinary research fields over the last 30 years and the cellular biofilm-specific

mechanisms that promote such ordered integrations have also been studied, iden-

tified, and compared (Kjelleberg and Molin 2002; Rickard et al. 2003; Raes and

Bork 2008; Dobretsov et al. 2009; Schillinger et al. 2012). This increased under-

standing of mechanisms has been fueled by the recognition that alternative strate-

gies, that are likely to be highly effective, can be developed to prevent biofilms

from being problematic.

2 Relevance of Polymicrobial Biofilms to Human Health

Before addressing new techniques that manipulate or circumvent biofilm-specific

properties, it is important to briefly describe current approaches to control biofilms

and how effective these methods are in preventing or treating diseases. It should be

added that most approaches to date are developmentally polar: current technologies

aim to prevent initial biofilm formation (e.g., anti-biofilm coatings) or maximize

inactivation of mature biofilms (e.g., biofilm permeabilizers). Technologies that

either interfere with or retard biofilm development or that endeavor to bypass

intrinsic biofilm recalcitrance are only now becoming realized.

The concept of preventing biofilm formation is not new. One of the first

approaches to intentionally prevent biofilm formation was developed by the ancient

Carthaginians and Phoenicians who used pitch and possibly copper-based sheathing

material on the hulls of their ships (Anon. 1952). In the medical fields, one of the

oldest techniques known is debridement, which is the surgical removal of dead

tissue from a wound that can sometimes be combined with chemical treatments to

eradicate biofilms that hinder the healing process. Notably, one of the first advo-

cates for combinational debridement was Alexis Carrel, who in the early 1900s
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Fig. 1 Diagrammatic example demonstrating the successional development of a multispecies

biofilm under flowing conditions. (a) Initial attachment of primary colonizing species to a

conditioning film. (b) Growth of adherent cells and simultaneous expression of EPS to form

micro-colonies. (c) Further growth of adherent primary colonizing species and recruitment of

secondary species. Recruitment can be through specific coaggregation interactions (also called
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treated wounds with sodium hypochlorite to enhance mechanical debridement

of dead tissue and slow bacterial regrowth to facilitate the healing process

(Carrel and Dehelly 1917; Hirsch 2008). Carrel’s 227-page monograph described

in exquisite detail the decision-making process as to how to treat wounds and also

compared this strategy to others, such as those that make use of silver nitrate and

hydrogen peroxide. This combinational type of approach was particularly useful

during World War I, where wounds were common place and amputations were

often considered the only resort for severe wounds. However, it should be noted that

there were many who considered the use of antimicrobials in the debridement

process as being superfluous, especially in the treatment of war wounds. During

this time, Burghard, Leishman, Moynihan, and Wright wrote “the treatment of

suppurating wounds by means of antiseptics is illusory, and that belief in its efficacy

is founded upon false reasoning.” (Burghard et al. 1915; Hirsch 2008). However,

such opinion was not shared universally and in time it was recognized that com-

bining mechanical removal of dead material and associated biofilm with chemical

treatment was in fact beneficial. Interestingly, however, Burghard and colleagues

were actually right in their suggestion that the benefits conferred by antimicrobial

treatments can be limited, especially in the absence of other treatments, such as

mechanical removal. Why? Because undisturbed biofilm bacteria display properties

at the cellular and biofilm levels that individually and collectively contribute to

antimicrobial resistance.

Antimicrobials, whether antibiotics or biocides, represent the current mainstay

of most chemical treatment strategies to control biofilms. However, as hinted

above, most antimicrobials have a significant Achilles’ heel; their effectiveness

against bacteria within undisturbed biofilms is significantly reduced when com-

pared to planktonic bacteria. This tolerance is due to changes in bacterial cellular

properties and the gross biofilm state (Fig. 2). When considering the biofilm as a

whole, penetration of an antimicrobial can be hindered due to the expression of

extracellular polymeric substances that bind to the antimicrobial and/or by the

whole cells adsorbing or sequestering/inactivating the antimicrobial

(Xu et al. 1996; Anderl et al. 2000; Gilbert et al. 2002). This effect can be further

enhanced in multispecies (polymicrobial) biofilms whereby one species preferen-

tially binds or removes a given antimicrobial and thus protects another species

(Leriche et al. 2003; Schwering et al. 2013). Conceivably, this would be enhanced

further if the two species were intimately associated in close proximity, as opposed

to distantly located within the same biofilm (Gilbert et al. 2002). This failure to

⁄�

Fig. 1 (continued) coadhesion) and also through nonspecific interactions. Recruited secondary

colonizing cells can be as single cells, coaggregates, or aggregates of genetically identical cells

(called autoaggregates). (d) Species within the developing polymicrobial biofilm expand and

component species interact. Interactions can be positive or negative and mediated, for example

in the expanded box, through the production and detection of cell–cell signal molecules.

Coaggregation interactions may enhance the close juxtaposition of interacting species through

adhesins expressed on one cell surface binding to cognate receptors expressed on a partner cell

surface. Multiple cell–cell signal molecules may be involved in the interaction (shown as green
and purple signals). Diagram modified with permission from Rickard et al. (2003)
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penetrate, or retardation of penetration, is often referred to as reaction diffusion
limitation (Xu et al. 1996; Stewart et al. 1998). However, this process alone is not

enough to account for the enhanced tolerance to antimicrobials by biofilm bacteria,

especially for antimicrobials that are less reactive to biofilm components. Another

contributing factor is the altered growth rates, which often play an important role in

the susceptibility of a bacterium to an antimicrobial (Brown et al. 1988, Evans

et al. 1990a, b). Bacteria in biofilms are heterogeneous with respect to growth rates,

and this is due to a number of reasons including changes in the concentrations of

dissolved oxygen, nutrient, and metabolites within biofilms. For example, in an

aerobic wastewater-like environment, generally the amount of available oxygen at

the base of a biofilm will be less than at the top of the biofilm (Yu et al. 2004).

Indeed, it is this type of heterogeneity that provides different ecological niches

within a biofilm system and the expansion of bacterial populations that will benefit

from that niche (Ziegler et al. 2013). As a consequence, stratified communities with

different susceptibilities and growth rates develop. An extreme form of growth-

rate-induced reduction in antimicrobial susceptibility, at the cellular level, has been

described as the persister phenotype (Spoering and Lewis 2001; Keren et al. 2004).
First observed by Bigger (1944), it has since become evident that in any bacterial

population that is susceptible to a given antimicrobial, there is a subpopulation that

survives even the harshest of treatments by this antimicrobial. This subpopulation

can then regrow in the absence of the antimicrobial, but the regrown population still

retains the original wild-type susceptibility (i.e., this phenomenon is not due to the

selection of a resistant mutant cell line) (Sufya et al. 2003). Such a phenomenon,

which may well be linked to extremely slow growth rates or a form of quiescence

Fig. 2 Diagrammatic representation of the possible factors contributing to antimicrobial resis-

tance by biofilm bacteria, resulting in poor penetration and uneven kill. Biofilm is presented in

X–Y field of view. Key factors are growth rate (fastest at top of biofilm), nutrient depletion (closest

to the base of biofilm), the production of cell–cell signal molecules (collectively shown as

turquoise dots) that accumulate in the biofilm and some of which are released into the planktonic

phase, and the generation of persister cells that dominate in the depths of the biofilm (blue cells).
Image modified with permission from McBain et al. (2013)
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(Gilbert et al. 2002; Roberts and Stewart 2005; Klapper et al. 2007; Lewis 2010), is

enriched in biofilms as well as aged (stationary phase) planktonic cultures

(Spoering and Lewis 2001; Shapiro et al. 2011; Wang and Wood 2011). Two

other biofilm-specific phenotypes that have received attention in association with

biofilm tolerance are the expression of efflux pumps and the production of cell–cell

signaling molecules. Efflux pumps can expel chemically unrelated antimicrobial

agents from the bacterial cell, and their expression may be specific to the biofilm

mode of growth or induced by antimicrobials and the biofilm lifestyle (De Kievit

et al. 2001; Gillis et al. 2005; Hoiby et al. 2010; Coenye et al. 2011). For example,

Gillis and coworkers (2005) demonstrated, using DNA microarrays, that

P. aeruginosa PAO1 cells in biofilms that were exposed to azithromycin showed

upregulation of transcripts encoding for restriction-nodulation-cell division (RND)

efflux pumps. Specifically, both the mexAB-oprM and mexCD-oprJ operons that

code for efflux pumps were required for biofilm formation in the presence of

azithromycin, but mexCD-oprJ was a biofilm-specific mechanism for azithromycin

resistance while mexAB-oprM was indicated to be important for azithromycin

resistance in both planktonic and biofilm communities. Efflux pumps can also be

involved in cell–cell signaling (Evans et al. 1998; Pearson et al. 1999; Herzberg

et al. 2006; Buroni et al. 2009; Lamarche and Deziel 2011).

Cell–cell signaling, the production and detection of low molecular weight signal

molecules, has received increasing attention in the last decade (Dickschat 2010). In

particular, this is because biofilms not only concentrate cells but also concentrate

the signal molecules that are produced by the cells (Alberghini et al. 2009;

Kolenbrander et al. 2010). Thus, the localized increase in density of cell–cell signal

molecules within a biofilm can act as a threshold-based queue for the expression of

biofilm-specific phenotypes and probably contributes to the formation of species

mosaics (Fig. 1) (Gu et al. 2013). As a consequence of changes in cellular proper-

ties, and conceivably spatial species patterning, biofilms may also have enhanced

tolerance levels and/or alter the expression of virulence factors. For example,

numerous research studies have indicated that the intraspecies and interspecies

cell–cell signaling molecule autoinducer-2 (AI-2) is responsible for a reduced

susceptibility to antimicrobials, and the threshold concentration of AI-2 is likely

only reached in biofilms (Ahmed et al. 2007, 2009; Roy et al. 2011, 2013). While

few examples exist to date, and considering the multispecies nature of many

biofilms, it would be interesting to examine the effects of cell–cell signaling

molecules that are produced by one species on another species that does not

produce them (e.g., AHLs are not produced by any Gram positive species), to

examine the effects of foreign signal molecules on gene expression. A fascinating

study based around such a concept was presented by Duan and colleagues (2003),

which indicated that non-AI-2 producing P. aeruginosa (P. aeruginosa does not

possess the luxS gene responsible for the production of AI-2) can detect AI-2

produced by other bacteria in the human lung of cystic fibrosis patients. Genome-

wide transcriptional analysis demonstrated that approximately 4 % of the

P. aeruginosa genome responded to the presence of other bacterial species and

further experiments using exogenously added AI-2 indicated that some of these

genes were influenced by AI-2, including a number of virulence factors.
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Although only the smallest of a glimpse of the now burgeoning field of

polymicrobial research is given in the above paragraphs, it is now clear that

polymicrobial biofilms are not random assemblages of microorganisms and the

component species are far from solitary units of life (Rickard et al. 2003; Percival

et al. 2010; Bandara et al. 2012). Polymicrobial biofilms are interactive communi-

ties which are exquisitely structured through spatiotemporal developmental pro-

cesses (Palmer and White 1997; Teles et al. 2013). Such communities possess

individual and collective properties that negate or reduce the effectiveness of

antimicrobials, especially those that may only target one or a couple of species in

that community, because of interspecies protection (Bridier et al. 2011). With this

understanding, it is the aim of the following sections that are separated into

Biological strategies and Technological strategies to alert the reader to some

up-and-coming technologies to control polymicrobial biofilm communities. These

sections will be far from all-encompassing, but it is hoped the reader will gain

insight into the multitude of techniques and technologies that are currently being

developed to control polymicrobial biofilms. It is possible that one or several

combinations of these techniques can become a mainstay approach to controlling

biofilms in the future.

3 Biological Strategies

Microbiology as a field of research has developed rapidly in the last few decades

and our appreciation of the social and interactive nature of microorganisms, as well

as the biofilm forum in which they commune, has allowed us to interrogate and

discover possible chinks in the biofilm armor. One fundamental paradigm shift in

anti-biofilm approaches has been fueled by the realization that a one-step approach

to kill biofilm microorganisms is often not sufficient and sometimes not warranted.

Indeed, removal of biofilm (or removal of certain species) may be all that is

required if the component cells are washed away such as in the human oral cavity.

However, if the dispersed bacteria are likely to add additional problems, such as

spread of species to other areas of the human body, then a combined or a two-step

approach could be used in conjunction with an antimicrobial (since planktonic

bacteria are more susceptible to antimicrobials than their planktonic counterparts).

Furthermore, if the biology of polymicrobial biofilms can be manipulated by

altering the interactions between component species, by chemical means, or

through the introduction of another species, then it is possible that such an altered

community will be easier to control.

3.1 Biofilm Dispersal/De-adhesion

The concept of manipulating biofilms using technologies to cause a biofilm to be

destabilized and disperse is not new (Kaplan 2010). At least three distinct modes of
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biofilm dispersal have been identified: erosion through de-adhesion events which

increases with greater biofilm biomass and increasing fluid shear (Characklis 1990),

sloughing through the loss of large multicellular aggregates of the biofilm commu-

nity due to localized physiological and physicochemical stresses (Lappin-Scott and

Bass 2001), and seeding which represents a triggered loss of cells from the biofilm

(Boles and Horswill 2008; Davies and Marques 2009).

While some currently used antimicrobials may have de-adhesion activities, by

altering the membrane properties of biofilm bacteria resulting in the loss of cell–cell

and/or cell–surfaces adhesion (Neu 1996; Rao et al. 2011), more efficacious

approaches are currently being investigated. In particular, unlike antimicrobials

that may have secondary dispersal effects, the use of non-antimicrobial dispersal

agents will not likely have the associated problems of developing antimicrobial

resistance and will potentially be less noxious to the environment/host in which it is

deployed. One notable example of a dispersal agent is Dispersin B. Dispersin B,

also known as DspB, is a 42 kDa glycoside hydrolase that was identified as being

produced by the human oral pathogen Aggregatibacter (Actinobacillus) actinomy-
cetemcomitans (Kaplan et al. 2003). The enzyme catalyzes the hydrolysis of poly-

N-acetylglucosamine (PNAG), one of a number of polysaccharides present in EPS

that is produced by a broad taxonomic range of Gram-positive and Gram-negative

biofilm forming species (Itoh et al. 2005; Chaignon et al. 2007). Interestingly,

Dispersin B has been shown to not only disperse biofilm species but also enhance

penetration of cetylpyridinium chloride (Ganeshnarayan et al. 2009). This latter

point is particularly interesting as it raises the possibility of synergy between

Dispersin B (or any other EPS degrading enzyme) and other anti-biofilm agents

and/or antimicrobials. A fascinating example of such a combinational approach was

presented by Lu and Collins (2007), who showed that by genetically engineering

bacteriophage T7 to express Dispersin B, treated E. coli biofilms were reduced by

4.5 orders of magnitude, which was about two orders of magnitude better than

treating with non-engineered phage (Lu and Collins 2007). While phage technology

represents an interesting approach to control biofilms, albeit potentially restricted in

taxonomic breadth, the specificity of phage for host bacteria is potentially an

advantage or disadvantage depending upon applications and species composition

of a polymicrobial biofilm. This combinational approach acts in a multifaceted

manner that is potentially self-sustaining. Specifically, engineered phage remains in

biofilms as long as suitable non-dispersed cells are present. Therefore, this approach

bypasses the problems associated with contact time—the requirement for a treat-

ment regimen to be sustained for a period of time in order to be effective.

One limitation of polysaccharide lyases such as Dispersin-B is that they exhibit a

high degree of substrate specificity. This is due to the complexity of carbohydrates,

which arises from the multiple linkages that are possible between monosaccharide

units. For example, there are nine naturally occurring disaccharides formed by the

linkage of two glucose residues (Rüdiger and Gabius 2009). By contrast, proteins

and nucleic acids are linear chains that can be digested relatively easily by enzymes.

There is now strong evidence that extracellular DNA (eDNA) is an important

structural component in many different biofilms (Jakubovics et al. 2013). This
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was elegantly shown by Whitchurch et al. (2002), who observed that eDNA was

abundant in the extracellular matrix of model P. aeruginosa biofilms. Treating

biofilms with bovine DNase I removed bacterial cells from the surface. A number of

bacteria produce extracellular DNase that digest eDNA in biofilms, and these have

potential for exploitation as anti-biofilm agents. For example, studies have demon-

strated the effectiveness of NucB, a DNase from a marine isolate of Bacillus
licheniformis, at removing microbial cells from single- or mixed-species biofilms

(Shakir et al. 2012; Shields et al. 2013). In fact, NucB has been shown to cause

significant release of microorganisms from naturally occurring mixed-species

biofilms on the surfaces of tracheoesophageal speech valves recovered from

patients (Shakir et al. 2012). Such a finding not only demonstrates the potential

application of NucB against polymicrobial biofilms but also highlights the impor-

tance of eDNA in the EPS of biofilms formed on surfaces held within the human

body. The role of eDNA in biofilm development and structural integrity is receiving

increasing attention, especially as a target for biofilm destabilization (Das

et al. 2010; Jakubovics et al. 2013; Peterson et al. 2013). In fact, the potential for

the use of DNases in vivo has been demonstrated by a recent study using a mouse

model of diabetes-associated P. aeruginosa wound infections (Watters et al. 2013).

Here, the addition of DNase significantly increased the susceptibility of wound

biofilms to gentamicin. It is noteworthy that a DNase (Streptodornase) has been

used for many years in the form of “Varidase” for the treatment of chronic wounds

(Smith et al. 2013). However, Varidase is a crude mixture of many different

components, and it is not yet clear to what extent the streptodornase contributes

to the overall efficacy of Varidase in managing wound infections.

An interesting nonenzyme-based approach to potentially disrupt polymicrobial

biofilms has been presented by Davies and Marques (2009). The team demonstrated

that P. aeruginosa produces cis-2-decenoic acid, which induced the dispersion of

established biofilms and also inhibited biofilm development (Davies and Marques

2009). Although the precise mechanism of action has yet to be elucidated, of

particular interest is that the team demonstrated that the molecule was active against

a myriad of Gram-positive and Gram-negative species and the yeast Candida
albicans. Considering that the activity is in the nanomolar range, the potential

benefits of using cis-2-decenoic acid on its own or in combinational therapies

against polymicrobial biofilms are intriguing.

3.2 Cell–Cell Signaling Inhibitors

Quorum sensing, also known as cell–cell signaling, is crucial for the development

of biofilms (Dickschat 2010). So much so that the term Sociomicrobiology, which
describes cell–cell signaling in biofilms, has been proposed to be a unifying term

(Parsek and Greenberg 2005). Over the last four decades there has been increasing

interest in this avenue of research both from fundamental and applied perspectives

(Raina et al. 2009; Shank and Kolter 2009). Similarly, a perusal of published
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patents reveals considerable interest in cell–cell signaling inhibitor technology.

There are now numerous types of cell–cell signaling molecules that have been

identified and while this section cannot adequately cover every one, a notable few

will be highlighted for which inhibitors have been developed.

Acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2) have been the hot

topic of study over the last decade. AHLs are produced solely by Gram-negative

species while AI-2 is produced by both Gram-positive and Gram-negative species.

While one would automatically consider AI-2 to be more important, this conclusion

should not be hastily decided upon. A key reason why AHLs are of tremendous

importance, apart from being discovered first, include the demonstration that many

Gram-negative pathogens (with the exception of a few, including certain

Gram-negative periodontal pathogens) use AHLs for intraspecies communication.

Different species often produce one or more different forms of AHLs, and it is

unclear the degree of interspecies communication that AHLs confer, although

examples do exist (Stickler et al. 1998; Bernier et al. 2008). Fortunately, from the

standpoint of creating inhibitors, all AHLs consist of a homoserine lactone ring

moiety but differ with respect to the length, degree of saturation, and specific

substitutions within an attached acyl side chain. The differences in AI-2 structure

are not different between species, as one would expect with a cell–cell signaling

system that is proposed to be a “universal signaling system” (Xavier and Bassler

2003), although there is a much more subtle process occurring. Specifically, AI-2 is

actually an umbrella term for a collection of inter-convertible forms that are derived

from the molecule 4, 5-dihydroxy-2,3-pentanedione (DPD) which are in equilib-

rium (Chen et al. 2002; Miller et al. 2004; Thiel et al. 2009). Different forms are

recognized by different species and forms and equilibrium are modifiable by the

environment (Chen et al. 2002; Miller et al. 2004). Because AHLs and AI-2 are

responsible for a swathe of biofilm properties that are (1) species dependent,

(2) concentration dependent, (3) form/structure dependent, and (4) environment

dependent, unifying approaches using inhibitors to control polymicrobial biofilms

are not entirely clear. That being said, as a matter of completeness and recognition,

excellent studies describing inhibitors for either AI-2 or AHLs are available and

these either act on the proteins that produce the signal molecules (Chung

et al. 2011), act on the receptors that facilitate recognition (Jiang and Li 2013),

are modified to enable smart targeting of one species over another (Guo et al. 2012),

or are tethered to antimicrobials to enable enhanced uptake and killing (Eckert

et al. 2006). This latter approach, to tether antimicrobials to signal molecules, has

received increasing attention in part due to intriguing work by Eckert et al. (2006).

This group presented a fascinating study that showed that cell–cell signaling by the

cariogenic organism S. mutans can be manipulated in a manner similar to that used

by the ancient Greeks to enter the city of Troy by using the mythological Trojan

horse. Specifically, the research team demonstrated a radically new class of

pathogen-selective molecules, which they called selectively targeted antimicrobial
peptides (STAMPs). This technology was developed by creating a fusion of a

species-specific targeting peptide domain (in this case, competence stimulating

Control of Polymicrobial Biofilms: Recent Trends 337



peptide [CSP] molecules produced by S. mutans) with an antimicrobial peptide.

CSP-based STAMPs were internalized by S. mutans and this resulted in their death.
Because CSPs are strain/species specific (Suntharalingam and Cvitkovitch 2005),

S. mutans was shown to be specifically targeted while other oral streptococci were

unaffected. The team (Eckert et al. 2006) also suggested that, in the future,

STAMPs could be produced by certain nonpathogenic resident oral species to act

as artificially created probiotic organisms.

While not addressed in this section, it should be noted that the understanding of

novel approaches to inhibit the complex autoinducer peptide cell–cell signaling

system of the staphylococci are coming to fruition. Because of the strain/species

specificity of this type of cell–cell signaling system, interesting targeted approaches

have the potential to be developed (the reader is directed to the section on Staph-
ylococcus aureus biofilm inhibitors in Chap. 11, by Alex Horswill).

3.3 Manipulation of Coaggregation

Coaggregation is the specific recognition and adhesion of different species of

bacteria to one another (Kolenbrander 1988). Originally discovered in the early

1970s (Gibbons and Nygaard 1970; Cisar et al. 1979) and considered to be a simple

mechanism by which bacteria can integrate into dental plaque (Kolenbrander and

London 1993), it has become clear that coaggregation is likely essential for

numerous roles in maintaining homeostasis in multispecies biofilms in a variety

of environments and between taxonomically disparate species (Bos et al. 1999;

Rickard et al. 2003; Kolenbrander et al. 2006; Hojo et al. 2009; Shirtliff et al. 2009).

Thus, if coaggregation is integral to polymicrobial biofilm development and the

interaction of different species in a biofilm, approaches to prevent, restructure, or

destabilize polymicrobial biofilms through manipulating coaggregation interactions

would offer attractive alternatives to traditional anti-biofilm/antimicrobial

strategies.

A key role for coaggregation is to facilitate cellular juxtaposition. Work by oral

microbiologists has shown that coaggregation has roles in bringing species in close

proximity to facilitate cell–cell signaling (Fig. 1) and also for the exchange of

metabolites (Kolenbrander et al. 2010). Indeed, work by Egland et al. (2004) has

shown that in order for biofilm populations of the oral bacterium Veillonella atypica
PK1910 to grow in biofilms, the species need to be juxtaposed to S. gordonii V288.
This pair, coincidently, coaggregates strongly, and the authors speculated that

coaggregation is required to enhance the growth of V. atypica (Egland

et al. 2004; Kolenbrander et al. 2010).

The importance of coaggregation in supporting the retention of species is not

limited to dental plaque biofilms (Rickard et al. 2003). Recent work by Min and

Rickard (2009) demonstrated that coaggregation was also required by the fresh-

water bacterium Sphingomonas natatoria 2.1 in order to compete withMicrococcus
luteus 2.13. A spontaneous coaggregation-deficient mutant of S. natatoria 2.1 was
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not only unable to form substantial biofilms with M. luteus 2.13, but it was also
impaired in forming single-species biofilms suggesting a dual role for

coaggregation (cell–surface adhesion and cell–cell adhesion/coaggregation).

Thus, coaggregation could be targeted to prevent initial and later colonizing events

in biofilms. Considering the difficulties in treating freshwater biofilms and the

potential for pathogens or problematic organisms that reside in freshwater biofilms

in public, industrial, and healthcare settings (Exner et al. 2005; Simoes et al. 2008;

Declerck 2010; Vornhagen et al. 2013), such an approach to inhibit pathogen

integration that do not require the use of antimicrobials is extremely attractive.

Coaggregation may have potential to be used in a more manipulative fashion,

within polymicrobial biofilm communities. It is possible that the use of a

coaggregating organism that is antagonistic to pathogens will represent a guerrilla
warfare approach to preventing the colonization or expansion of pathogenic

populations in polymicrobial biofilms. For example, building upon early work by

Reid and coworkers (1988), recent work by Younes et al. (2012) has raised the

potential utility of coaggregation as a tool to manipulate urogenital biofilm com-

munities. Specifically, coaggregating urogenital lactobacilli have been shown to

coaggregate with urogenital pathogens and inactivate their pathogenic potential

(Reid et al. 1988; Reid and Burton 2002; Younes et al. 2012). Younes and

colleagues stated that coaggregation “creates a hostile microenvironment around

a pathogen. With antimicrobial options fading, it therewith becomes increasingly

important to identify lactobacilli that bind strongly with pathogens” (Younes

et al. 2012).

Unfortunately, approaches to use coaggregation to control polymicrobial

biofilms have yet to gain substantial traction. This is likely because coaggregation

was originally considered to be a phenomenon unique to the human oral cavity

(Handely et al. 2001). Not until the mid-1990s did coaggregation begin to receive

attention by researchers in other fields, and this attention has since accelerated

(Vandevoorde et al. 1992; Kmet et al. 1995; Drago et al. 1997; Kmet and Lucchini

1997; Egwari et al. 2000; Rickard et al. 2002; Malik and Kakii 2003; Edwards

et al. 2006; Hill et al. 2010). This is in part likely driven by increasing interest in

polymicrobial biofilm communities and the developmental processes that lead to

their development. It has now become increasingly clear that the vast majority of

coaggregation interactions between bacteria are mediated by protein lectin-like

adhesins and receptor polysaccharides on partner cells (Rickard et al. 2003). In

many instances, coaggregation can be inhibited by the addition of simple sugars or

chelating agents such as EDTA—which presumably results in competitive inhibi-

tion and the alteration of structure, respectively, of receptor polysaccharides. While

yet to be evaluated in complex polymicrobial communities, it is possible that the

addition of sugars or chelators, that inhibit coaggregation, may retard biofilm

development. Further stressing the importance of coaggregation and the possible

usefulness of inhibiting the activity of adhesins or receptors, de Toleedo and

colleagues (2012) reported that oral S. oralis coaggregation receptor polysaccha-

rides induce inflammatory responses in human aortic endothelial cells and may

contribute to the development of infective endocarditis and atherosclerosis, both of
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which can contain significant polymicrobial biofilm communities (Fitzgerald

et al. 2006; Kozarov et al. 2006; Rivera et al. 2013). Thus, control of coaggregation

in polymicrobial dental plaque biofilms may have health relevance to systemic

health, and coaggregation interactions may be a reason why poor oral health is a

risk factor for poor systemic health (Rogers 1976; Seymour et al. 2007; Kebschull

et al. 2010).

4 Technology-Based Strategies

Technology has always been at the forefront of approaches to control biofilms.

From the use of scouring pigs used for cleaning pipelines (Tiratsoo 1999) to the

ultrasonic dental hygiene devices that are used on patients in the dentist’s chair

(Walmsley et al. 1992), there has often been a link between mechanical-based and

electrical-based technology and the use of chemical antimicrobials/anti-biofilm

agents. Over the last decade, biological-based and technological-based technolo-

gies have begun to diverge in some instances. This divergence has both advantages

and disadvantages, but in general newer electrical or mechanical technologies have

the potential to meet or even exceed the ability to control polymicrobial commu-

nities. Obviously, a key concern with such a divergence is that research teams

cannot cope with a broad multi-disciplinary scope. Such a possible problem was

recognized by the Association of Professors of Medicine (APM) and the National

Institutes of Health (NIH) in the early 2000s. Subsequently, the APM made

recommendations to the NIH to support multi-disciplinary teams to overcome

structural barriers to team science (Crist et al. 2003). Similar recommendations

and supporting infrastructure changes were also implemented outside the USA by

other countries and this has, in part, led to the development of a bewildering number

of technology-based approaches to control biofilms. In this section we will, because

of the breadth of emerging technologies, cover some biofilm control technologies

that have garnered public and scientific recognition and also have the potential to

very efficiently treat different polymicrobial biofilms under a variety of environ-

mental conditions. As with the Biological Strategies section, this section is by no

means all-encompassing and only salient details are given. We suggest that where

readers take interest in a given topic area, they consider starting with the assigned

references to gain further insight before pursuing more in-depth research, especially

if the reader is not familiar with electronic, mechanical, or chemical engineering.

4.1 Photoactivation Technology

A technology that has recently been developed for use in biofilm removal is that of

photodynamic therapy. The term “photodynamic therapy” is an all-encompassing

one, describing a broad approach to using nontoxic light-sensitive compounds

which, when exposed to certain wavelengths of light, become toxic to cells
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(Hamblin and Mróz 2008). It is also known by alternate names such as “photody-

namic inactivation” or “photo-activated disinfection,” though the latter is usually

reserved exclusively for dentistry (O’Riordan et al. 2006; Bergmans et al. 2008).

Though its application for use against biofilms and bacteria is relatively recent, the

use of photodynamic therapies has been around for much longer—in fact, it has

been used against cancer cells as early as the 1970s (Dolmans et al. 2003). There are

numerous dyes that can be used as photosensitizers, but from a clinically relevant

perspective the list is more limited. This is the result of having to choose a

photosensitizer that is both nontoxic to humans in its normal state, as well as one

that is ideal for its target site. The most common photosensitizer for the purpose of

anti-biofilm use appears to be the class of phenothiazines which include toluidine

blue O and methylene blue (Usacheva et al. 2001).

Photodynamic therapy works through the introduction of various detrimental par-

ticles to a target area, such as a site of infection or a polymicrobial biofilm. Upon

excitation at a defined wavelength of light, the photosensitizer is transformed to its

active form in which free radicals and reactive oxygen species are produced (Ochsner

1997). These products are the active agents that damage the targeted cells. While

photodynamic therapy may be limited in scope due to its inability to treat systemic

infection, for more localized infections it may be more advantageous than traditional

treatments. As Demidova and Hamblin note, the actual photosensitizers themselves

can be chosen based on the target area and the light source can be aimed, thus

specifically providing a two-pronged attack as far as local specificity is concerned

(Demidova and Hamblin 2004). Further, such ability to localize the treatment can

provide a clear advantage over certain systemic therapies such as antibiotic use, which

can negatively affect other aspects of the body. This can also be considered a limitation,

however, as it is confines photodynamic therapy to localized, accessible infections.

Even more promising is the discovery that photodynamic therapy can extend beyond

just the killing of cells, by being able to destroy certain virulence factors such as LPS

from E. coli and proteases from P. aeruginosa (Kömerik et al. 2007).

One important aspect of photodynamic therapy is that it does not seem to

produce negative effects in mammalian tissue, as suggested from animal studies

(Komerik et al. 2002). This is the result of choosing photosensitizers that do not

affect mammalian cells, which may also be aided by the extremely short life of the

oxidative species (Moan and Berg 1991; Demidova and Hamblin 2004). An

additional positive aspect is the ability of photodynamic therapy to affect a wide

range of microorganisms. Unlike antibiotics, photodynamic therapy has been

shown to be effective when used not only against bacteria but also fungi and viruses

as well (Hamblin and Hasan 2004). It should be noted however that different

photosensitizers are often needed based on the nature of the target cells—for

instance, with Gram-positive and Gram-negative bacteria. Due to the cell wall

differences between these two cell types, it was found that Gram-positive species

were more susceptible to photosensitizers of virtually any charge, while Gram-

negative species were generally limited to cationic ones, unless the cell wall was

altered through additional means (Maisch 2009).

The use of photodynamic therapy has a key advantage in that bacterial resistance

is unlikely to develop (Tang et al. 2007). One of the largest clinical impacts of this
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technology seems to be in dental fields, as there are concerns that the use of current

antimicrobial formulations can select for bacterial resistance (Roberts and Mullany

2010). This is a very logical application given the tendencies of biofilms to rapidly

form in the oral cavity (Diaz et al. 2006; Teles et al. 2012) and, from a technical

standpoint, the ease of applying photosensitizers and subsequent light treatment to

the affected area. While the clinical data appear to be rather limited at this point,

there have been studies illustrating inactivation of dental plaque biofilm species and

various pathogens that are known to cause periodontal disease and dental caries

(Burns et al. 1995; Rovaldi et al. 2000). Wilson made the connection that the ability

to kill S. mutans using this technology may result in major innovations for both the

prevention and treatment of dental caries (Wilson 2004). The promise of photody-

namic therapy is immense and while it is still being successfully used in some

clinical applications, its potential in the killing of surface biofilms from the human

body is alluring.

4.2 Nonthermal Plasma Technology

One of the more exciting technologies that have recently garnered traction is that of

low-temperature or nonthermal plasma, also known as “cool plasma.” Plasma is a

unique state of matter that results from the rapid ionization of a gas (Laroussi 2012).

Plasma is commonly obtained through subjecting gas to extremely high tempera-

tures, but it can also be obtained by passing gas through high-voltage electricity

(Rupf et al. 2011; Laroussi 2012; Traba et al. 2013). The latter method allows for

the gas to be ionized into plasma at a much lower temperature, one that is cool

enough to come in close contact with tissue without risk of thermal damage (Fig. 3).

Many different gases have been used for nonthermal plasma with the most common

being argon, nitrogen, helium, or some combination of these (Rupf et al. 2011;

Gasset et al. 2012; Traba et al. 2013). Nonthermal plasma itself is not a new

technology, but its application in inactivating bacteria, even within biofilms, is

extremely innovative (Ermolaeva et al. 2011) (Fig. 3). The generation of plasma at

mild temperatures facilitates direct contact with many surfaces on the body that

might harbor biofilms including teeth, skin, and even open wounds. Fortunately,

studies have already shown that nonthermal plasma poses little immediate danger to

skin cells, as the amount of UV light that is emitted is well below the threshold for

damage and the temperatures that are generated are apparently insufficient to cause

human cell damage (Lademann et al. 2011). While this does not provide complete

assurance, to our knowledge there do not seem to be any clinical data regarding

detrimental effects from exposure to nonthermal plasma and long-term negative

effects associated with repeated use.

Nonthermal plasma is an interesting tool because it is capable of eradicating

biofilms in two ways. First, there is a direct killing of the cells which make up the

biofilm involved, and second a physical removal of the biofilm mass from the

surface occurs. Plasma kills microorganisms through the production of highly
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reactive particles that are produced during the ionization of gas including free

radicals, UV radiation, and reactive oxygen species (Ehlbeck et al. 2011).

Alkawareek et al. suggest that given all the possible cytotoxic products produced

by plasma, it is difficult to ascertain whether cell death is derived from a combined

effect or individual products of the plasma generation process (Shimizu et al. 2008;

Alkawareek et al. 2012). In the second process, the biofilm is removed through

plasma exposure in a process called “etching” and is a direct result of the binding of

reactive species to outer parts of the cells and subsequent destabilization of the

biofilm through cellular de-adhesion (Moisan et al. 2002). Low-powered and high-

powered nonthermal plasma both seem to have this ability, but there are advantages

Fig. 3 (a) Generation of

nonthermal plasma. (b)

Photograph showing a zone

of inhibition on a plate of

Staphylococcus aureus after
treatment with non-thermal

plasma for approximately

45 seconds. Images

courtesy of Mr. Luke

Raymond and Miss Ella

Dolan, University of

Michigan
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and disadvantages to each. Specifically, high-powered nonthermal plasma can kill

very effectively and quickly, but the rate at which it etches the biofilms is so fast

that often living cells are removed, potentially resulting in contamination of other

areas such as a bodily surface or medical devices. Conversely, low power plasma

takes a longer exposure time to both kill and remove cells, but because etching

happens at a much later stage in treatment, all cells are much more likely to have

been killed before they are removed (Traba et al. 2013).

These above-described characteristics make plasma a very alluring candidate for

various applications in the medical field. One major potential application is for the

cleaning of medical devices. A study done by Rupf and colleagues illustrated the

proficiency of plasma to successfully kill biofilms on titanium surfaces (Rupf

et al. 2011). This is significant because titanium is often used for medical implants

due to its unique surface properties which allows for great biocompatibility.

Unfortunately, this same surface also makes it a prime target for biofilm develop-

ment, and it can be challenging to sterilize without degrading the integrity of the

surface (Burgers et al. 2010; Traba et al. 2013). Another exciting avenue is the use

in wound treatment. Early clinical trials in humans have indicated that nonthermal

plasma can decrease bacterial load in chronic wound infections (Isbary et al. 2010),

and similar results have been reported in animal models (Ermolaeva et al. 2011).

4.3 Nanotechnology-Based Technologies

The field of nanotechnology offers a promising avenue of research in the fight

against biofilms. An example of such technology is based upon nanoparticles of

nanoparticles. Nanoparticles are extremely small bead-like structures with sizes

generally ranging between 1 and 100 nm although most are under 50 nm (Haynes

et al. 2002). A key advantage to using nanoparticles is that their physicochemical

properties (e.g., size, structure, composition, hydrophobicity, charge, etc.) may be

“tuned” by varying the precursors and procedures in their construction (Bagwe

et al. 2006; Wang et al. 2009; Cheng et al. 2013). As a consequence, nanoparticles

have found places for use in biomolecular sensing, microbiological and macro-

biological imaging (e.g., quantum dots), drug delivery, and disease therapy

(Bhardwaj et al. 2009; Wang et al. 2009). Numerous different types of

nanoparticles for use as antimicrobial agents have been documented and often

involve the use of metals. While these can be individual metals or combinations,

the most notable appears to be silver for microbial control. This is not surprising

considering that silver has long been known to have antimicrobial properties

(Slawson et al. 1992). Sondi et al. have shown that silver nanoparticles created

via the reduction of silver ions using ascorbic acid are able to prevent growth of

E. coli (Sondi and Salopek-Sondi 2004). Rather than using the nanoparticle itself as
the antimicrobial source, there are also other ways of using biologically inert

nanoparticles to deliver the antimicrobial agents. In most of these cases, the active

agent(s) are attached to the surface of the nanoparticles which acts as a carrier
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support for localized delivery to species within the polymicrobial biofilm and a

release of a much greater concentration of the antimicrobial (Wilkinson et al. 2011).

For instance, attaching nitric oxide to silica nanoparticles has proven to be

extremely potent at killing Gram-positive and Gram-negative species

within biofilms, with P. aeruginosa and E. coli being most susceptible

(Hetrick et al. 2009). Similarly, there are nanoparticles that can carry more than

one antibiotic, for simultaneous release, and different combinations of multiple

drugs on each particle can be used to overcome the antimicrobial resistance

mechanisms observed in biofilms and resident species (Pelgrift and Friedman

2013).

Perhaps one of the more interesting uses of nanoparticles is based upon the use of

liposomes. Liposomes are artificial vesicles composed of a phospholipid bilayer

that can be used to encapsulate specific molecules of interest (Zhang and Granick

2006). Liposomes can thus be used for the delivery of antimicrobials to bacteria and

even bacteria in biofilms (Jones 2005) and have a key benefit that water-soluble or

oil-soluble compounds can be delivered to targeted biofilms and the surfaces on

which they reside. Unfortunately, liposomes also have the tendency to coalesce

(fuse with one another) and have limited shelf life. Work by Zhang and colleagues

(2010) demonstrated that nanoparticles could be used to stabilize liposome struc-

ture (increasing shelf life) and also prevent them from coalescing.

4.4 Antimicrobial Surfaces and Coatings

One of the most vital components to the development of any biofilm is an appro-

priate surface to adhere, for without such a surface the complex network of cell–cell

interactions can never occur. Indeed, surface properties have been of particular

interest for exploitation in the field of marine biofouling (Tribou and Swain 2010;

Banerjee et al. 2011; Scardino and de Nys 2011). Conceivably, rendering a surface

resilient to the development of a conditioning film and/or toxic to a bacterium will

make it non-colonizable and is likley more effective than controlling established

recalcitrant biofilms. While there are many examples of variations of this technol-

ogy, a couple of interesting approaches will be briefly described.

Much effort has been invested into the design of surfaces that can prevent

biofilm formation. There is a vast array of surface types that use different strategies

to achieve anti-adhesion of bacterial cells. One such option is to coat a surface

directly with an antibiotic. For instance, coating surfaces with vancomycin and

gentamicin has been shown to be effective for prophylactic purposes (Radin

et al. 1997; Alt et al. 2006). Such coatings can be made for controlled release

over a relatively short period of time or covalently bonded to the desired surface for

long-term protection (Lucke et al. 2003; Edupuganti et al. 2007). Although what

could conceivably be considered a generally sound approach, this strategy is

inadequate against bacteria that are already resistant to the antimicrobial agent.

To overcome this shortcoming, Inbakandan and colleagues found that silver-coated
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nanoparticles can be an effective solution when used as an antifouling coating

(Inbakandan et al. 2013).

Another interesting coating material is polyethylene glycol (PEG). Although not

a relatively new technology, PEG has gained notoriety as a frequently used anti-

biofilm coating agent because it prevents the adsorption of macromolecules and

proteinaceous bacterial cell–surface appendages onto the surfaces (Park et al. 1998;

Kingshott and Griesser 1999). Indeed, using PEG technology, it has been shown

that liposomes containing ciprofloxacin that are sequestered within a PEG-gelatin

hydrogel inhibit biofilm formation on catheters (DiTizio et al. 1998; Finelli

et al. 2002). Such findings demonstrate how different technologies can be success-

fully used in concert with one another to prevent biofilm development through

inhibiting colonization.

A recent and novel approach takes an entirely different route in surface protec-

tion. This form utilizes a liquid-infused surface, rather than traditional solid sur-

faces. In this method, a liquid coating is held in place by filling in and adhering to a

very porous solid base layer (Epstein et al. 2012). This allows for the anti-biofilm

properties of the liquid, which is a result of its constant motion, to always remain as

a barrier to any potential colonization by bacteria. Remarkably, the liquid surface

has the ability to maintain its homogeneity even when submerged in another liquid,

provided that the liquid layer chosen for protection is more chemically adherent to

the porous surface than the liquid in which it is submerged (Wong et al. 2011).

Further, due to the nature of the liquid layer, it is able to self-repair damage due to

the tendency of the liquid to naturally flow to the damaged part of the layer (Wong

et al. 2011).

5 Concluding Remarks: It’s NotWhat You Have, It’s What

You Do with It

While this chapter has only scraped the surface of describing novel technologies

and approaches that are being developed to control polymicrobial biofilms, it

should be noted that many of these concepts are still in their infancy. With the

increasing concern of the spread of antimicrobial resistance and the link of numer-

ous chronic illnesses to polymicrobial biofilms (e.g., chronic wounds and periodon-

tal disease), it is clearly evident that research into these novel approaches and

technologies should be further accelerated. However, other concerns, such as

methods of study and approaches to testing, also need to be addressed. For example,

are the laboratory model systems that microbiologists typically use to assess the

effectiveness of a treatment against a polymicrobial biofilm appropriate? In 1964,

Harry Smith (1964) made the following profound and precocious statement, “While

many microbiologists advocate studying microbial behavior under natural condi-

tions, few of them do so. This is because their morale for overcoming the difficulties

is constantly sapped by the attractive ease of working with laboratory cultures.”
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Indeed, the use of growth media is extremely important and bacteria respond very

differently to challenges when grown in different growth media. As a case in point,

Umland et al. (2012) demonstrated that genes identified as being possible antimi-

crobial targets in Acinetobacter baumannii, using nutrient media, overlapped

poorly with those identified by growing the bacterium in human ascites, an

ex vivo medium that reflects the infection environment. The authors underscored

the importance of using “clinically relevant media and in vivo validation while

screening for essential genes for the purpose of developing new antimicrobials”

(Umland et al. 2012). Another example demonstrating the importance of environ-

mentally germane conditions was presented by Du and Kolenbrander (2000) who

demonstrated that various genes, including those that produce coaggregation

adhesins, are upregulated in human saliva compared with brain heart infusion

medium. Such issues are likely compounded if (as in polymicrobial biofilms)

multiple species are present in the community that is being studied because

interactions between component species may be masked (Kolenbrander 2011). In

addition, it is becoming clear that not only is growth of species in laboratory media

likely to elicit different responses by bacteria as compared to growth in real-world

environmental conditions, but repetitive growth in such un-representative labora-

tory media can lead to the clonal selection of strains with characteristics unlike the

originally isolated wild-type progenitor (Sato et al. 2002; Davidson et al. 2008;

McLoon et al. 2011). Thus, approaches to directly assess the effectiveness of new

technologies to control polymicrobial biofilms need to be performed under condi-

tions representative of the natural environment and with multispecies communities

that have not been grown in artificial conditions. Such a notion has begun to make

its way into polymicrobial biofilm research studies and model systems that are

located in the environment being studied, such as retrievable enamel chip models in

dental plaque biofilm studies (Palmer et al. 2001) or using in vivo bioluminescence-

based technologies (Chauhan et al. 2012; Vande Velde et al. 2013), are being

developed. Alternatively, models are being refined to closely replicate the original

environment by using harvested real-world milieu and polymicrobial biofilm

material. Examples range from dental plaque biofilm microfluidic devices (Nance

et al. 2013) to constant depth film fermenter domestic drain microcosms (McBain

et al. 2003). With the use of representative model systems and real-world

polymicrobial communities, the evaluation of the effectiveness of new technologies

to inhibit or control polymicrobial biofilms will likely be more sensitive and

revealing.

In conclusion, a thankfully unbridled understanding of the nature as well as

approaches to control polymicrobial communities has developed over the last few

decades. Instead of being reductionist in our approaches, we have begun to be

holistic and consider polymicrobial communities at individual and multispecies

levels. This has allowed us to unravel the reasons why bacteria within

polymicrobial biofilms possess enhanced abilities, compared to free-floating com-

munities, and why effective biological or technological strategies to control these

communities need to take into account the properties of individuals within these

communities and the properties of biofilm as a whole. The recent developments in
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biological and technological approaches to polymicrobial biofilm control offer real

prospects for developing new strategies against biofilms of relevance to healthcare

or industry alike. Nevertheless, significant hurdles remain. Finding strategies that

are both safe and efficacious is not trivial and this may explain why the road to

successful biofilm control measures has seen relatively few successes to date.

Combinations of mechanical methods with chemical agents are perhaps the most

likely candidates for successful biofilm control. However, each biofilm system is

distinct and it cannot be expected that one approach will work for all polymicrobial

biofilms. Therefore, it is important to keep developing new ideas and to maintain

the momentum for research on techniques to combat polymicrobial biofilm

communities.
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Antibiofilm Strategies in the Food Industry

Pilar Teixeira and Diana Rodrigues

Abstract Biofilms in food processing plants represent not only a problem to

human health but also cause economic losses by technical failure in several

systems. In fact, many foodborne outbreaks have been found to be associated

with biofilms. Biofilms may be prevented by regular cleaning and disinfection,

but this does not completely prevent biofilm formation. Besides, due to their

diversity and to the development of specialized phenotypes, it is well known that

biofilms are more resistant to cleaning and disinfection than planktonic micro-

organisms. In recent years, a considerable effort has been made in the prevention of

microbial adhesion and biofilm formation on food processing surfaces and novel

technologies have been introduced. In this context, this chapter discusses the main

conventional and emergent strategies that have been employed to prevent bacterial

adhesion to food processing surfaces and thus to efficiently maintain good hygiene

throughout the food industries.

1 Introduction

Food processing environments provide a diversity of favorable conditions for

biofilm formation such as the presence of nutrients and moisture and the inocula

of microorganisms from raw products. Hence, while totally undesirable, biofilms

are formed in all food processing surfaces such as plastic, glass, metal, wood, etc.

“Dead zones,” like cracks, corners, joints, and gaskets, are places where biofilm can

remain after cleaning. In addition, biofilms provide a protective environment, in

which exopolymeric substances (EPS) lead to a significantly higher tolerance of

biofilm cells to many stresses including disinfectants or sanitizers than to free-

floating cells or planktonic cells (Gilbert et al. 2001). These biofilms are potential
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sources of contamination with the consequent spoilage of foods as well as the

transmission of foodborne microorganisms. Moreover, when a biofilm detaches

from the surface, individual microorganisms can easily be spread, contaminating

the surrounding environment and causing cross and post-processing contamination.

In addition, biofilms are often responsible for the interference of mechanical locks

in the process of heat transfer, as well as for the increased rate of corrosion on

surfaces. In drinking water systems, for instance, biofilms can clog pipes, leading to

decreases in speed and capacity, which means increased energy usage. Similarly,

biofilm formation in heat exchangers and cooling towers can reduce heat transfer

and efficiency. Moreover, the ability of bacteria to persist in biofilms on the metal

surfaces of processing facilities can also cause corrosion of the surface due to acid

production by bacteria. From the above-mentioned, it can be concluded that

biofilms in food industries can cause serious health problems and large economic

losses.

Many food safety problems can be avoided if good manufacturing practices

codified in 21 CFR 110 are followed (FDA 2004). In fact, most of the problems are

due to inefficient hygienic practices among employees, language barriers, ineffec-

tive training of employees, the existence of biofilms in niche environments, ineffec-

tive use of cleaning agents/disinfectants, lack of sanitary equipment design, reactive

instead of routine maintenance, ineffective application of sanitation principles,

contamination of raw materials with microorganisms, allergens and/or toxins,

post-processing contamination microorganisms, allergens and/or toxins, incorrect

labeling or packaging, older equipment (more difficult to clean), corrosion of metal

containers/equipment/utensils, and contamination with cleaner/sanitizer residues

(FDA 2004). However, it is generally accepted that the main problem of the food

industry is the survival of foodborne pathogens or microorganisms that cause food

spoilage, due to inadequate disinfection of instruments or surfaces that come in

contact with food resulting in the formation of biofilms. Biofilms are problematic

mainly in food industry sectors such as dairy processing, brewing, fresh produce,

poultry processing, and red meat processing (Frank et al. 2003; Jessen and Lammert

2003; Somers and Wong 2004; Chen et al. 2007). These industries are the principal

reservoirs for Salmonella, Campylobacter, Listeria, Yersinia enterocolitica, and
Staphylococcus aureus worldwide, which transmit disease to consumers when the

contaminated products are inappropriately cooked (Farber and Peterkin 1991;

Dewanti and Wong 1995; Kim et al. 2008).

Since biofilms are a great concern in the food industry, many studies have been

performed in order to find an efficient strategy to their control and eradication.

However, the most important antibiofilm approach will always be to prevent

microbial adhesion and biofilm formation by regular cleaning and disinfection of

surfaces.
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2 Main Foodborne Pathogens

Illnesses caused by ingestion of contaminated food include a broad range of

diseases and are a rising global public health concern. The contamination of food

can be caused by microorganisms or chemicals, can take place at every step in the

process from food production to consumption, and might be a consequence of

environmental contamination (such as pollution of soil, air, or water). Although

the main clinical presentation of foodborne illnesses consists of gastrointestinal

symptoms, they may also have gynecological, neurological, immunological, and

other symptoms. Multiorgan breakdown and even cancer can be caused by the

intake of contaminated food and is associated with a substantial burden of disability

and mortality (WHO 2013). According to the European Food Safety Authority

(EFSA 2012), 5,262 foodborne outbreaks were reported in the European Union in

2010, leading to a large amount of human infections and hospitalizations, and

causing 25 deaths. The majority of outbreaks that occurred in 2010 were caused

by Salmonella, viruses, Campylobacter, and bacterial toxins. Besides these micro-

organisms, Listeria monocytogenes and Escherichia coli are also among the main

foodborne pathogens responsible for severe human infections. Moreover, all men-

tioned bacteria are known to form biofilms on food contact equipment and food

surfaces, causing financial losses and severe health problems (Kumar and Anand

1998; Chae and Schraft 2000; Wirtanen et al. 2000).

L. monocytogenes is a facultative intracellular bacterium that is ubiquitous in

the environment and pathogenic to humans, since it causes listeriosis—a predomi-

nately foodborne illness that has a higher mortality rate in comparison with other

foodborne diseases (EFSA 2012). This bacterium is commonly found in diverse

foodstuffs as well as in animal feed, soil, water, plants, sewage, and fecal matter

(Moltz and Martin 2005; Tompkin 2002). Moreover, ready-to-eat food, uncooked

meat products, vegetables, poultry, and soft cheeses have all been reported as

vehicles of listeriosis (Teixeira et al. 2007b; Conter et al. 2009; Jadhav

et al. 2012), with ingestion of contaminated food being the main route of transmis-

sion for humans (Dussurget 2008). Contamination of food by L. monocytogenes
may happen through several distinct routes, such as staff equipment, uncooked

materials, or contact surfaces (Møretrø and Langsrud 2004; Teixeira et al. 2008).

Nevertheless, as far as commercial foodstuff is concerned, contamination by these

bacteria is not frequently a consequence of flaws in cleaning and disinfection, but it

is due to cross-contamination in the post-processing environment (Ryser and Marth

2007; Latorre et al. 2010). This typically takes place in spaces where organic

remains accumulate and biocidal compounds have reduced access (slicers, joints,

cutting equipment, etc.), which are favorable for continuous biofilm development

and provide an opportunity for some strains to become dominant and persevere at

the food plant (Verghese et al. 2011).

Salmonella spp. are a group of food contaminant organisms with significant

importance in the food industry. Although there are currently more than 2,500

identified serotypes of Salmonella, Salmonella enterica serovars Enteritidis and
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Typhimurium most commonly cause human disease. It is believed that some

salmonellosis outbreaks were due to the inexistent or deficient cleaning and disin-

fection of surfaces and tools (e.g., Ellis et al. 1998; Reij and Aantrekker 2004;

Giraudon et al. 2009; Podolak et al. 2010). In fact, several studies have shown that

these bacteria are able to colonize various food contact surfaces (e.g., Teixeira

et al. 2007a; Oliveira et al. 2006; Rodrigues et al. 2011), and it was also reported

that Salmonella adhere and form biofilms in food processing facilities (Joseph

et al. 2001). Moreover, it has already been well established that the antimicrobial

efficiency of diverse biocidal agents is inferior against these biofilms than for their

respective planktonic cells. Accordingly, nine disinfectants usually applied in the

food industry and efficient against planktonic Salmonella cells revealed a variable

efficiency against biofilms, with products containing 70 % ethanol being most

efficient (Møretrø et al. 2009). Previous studies have also pointed out that, in

comparison to Salmonella planktonic cells, biofilms were more resistant to

trisodium phosphate (Scher et al. 2005), chlorine, and iodine (Joseph et al. 2001).

Campylobacter spp. are foodborne pathogens with the ability to colonize differ-

ent inert surfaces (Kusumaningrum et al. 2003; Sanders et al. 2007; Shi and

Zhu 2009) and are also frequently isolated from poultry and poultry processing.

Campylobacter jejuni has been the most predominant strain found in such environ-

ments (Deming et al. 1987; Sanders et al. 2007) and, consequently, several studies

have been performed in order to understand the behavior of this bacterium (Trachoo

et al. 2002; Dykes et al. 2003; Hanning et al. 2008). One of the main findings was

that, although C. jejuni does not readily form a biofilm, it does form mixed biofilms

with enterococci (Trachoo and Brooks 2005), within which it gains a higher

tolerance to various chemical biocides (Trachoo and Frank 2002). The fact that

C. jejuni adhesion and colonization of surfaces is eased by a preexisting biofilm

(Hanning et al. 2008) highlights the importance of intensifying the control of

biofilms, especially in poultry environments where these bacteria are more com-

monly found.

E. coli O157:H7 is among the most severe foodborne pathogens, with outbreaks

related mainly to ingestion of undercooked meat (Proctor et al. 2002), but also with

other contamination routes such as drinkable (Swerdlow et al. 1992) and leisure

water (Ackman et al. 1997). The adhesion and biofilm formation ability of E. coli
O157:H7 on diverse food contact surfaces existent in the meat industry has been

investigated, and it was observed that these bacteria adhered to and developed

biofilms on such materials, even at low temperatures (Dourou et al. 2011). It was

also found that the adhesion of these bacteria was affected by the existence of other

microbes on the surfaces (Klayman et al. 2009; Marouani-Gadri et al. 2009). As an

example, a study conducted by Habimana and coworkers (2010) showed that E. coli
O157:H7 cells were entrenched and enclosed in an Acinetobacter calcoaceticus
biofilm, which is in agreement with several other reports that demonstrated

multispecies biofilms enhanced the chances for pathogens to flourish in food

processing environments (Habimana et al. 2010; Stewart and Franklin 2008).

Bacillus spp. and especially Bacillus cereus are associated with food spoilage

(Andersson et al. 1995; Janneke et al. 2007). Since B. cereus is ubiquitous in the
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environment, contamination by this bacterium is quite unavoidable in food industry

facilities. As an example, over 12 % of the microbial biofilms found in a commer-

cial dairy plant corresponded to B. cereus (Sharma and Anand 2002). In addition,

this bacterium produces spores that can endure a large range of adverse conditions

and promptly attach to food contact surfaces, due to their highly hydrophobic

character (Lindsay et al. 2006). B. cereus is responsible for two kinds of gastroin-

testinal diseases, diarrheal and emetic, and the outbreaks associated with this

bacterium have been related to the ingestion of several different food items, such

as meat, fish, vegetables, rice, milk, cheeses, pasta, and foodstuff with sauces

(puddings, roasted, and salads). Moreover, between 1998 and 2008, 1,229

foodborne outbreaks reported in the USA were caused by this bacterium as well

as by Clostridium perfringens and S. aureus (Bennett et al. 2013).

3 Antibiofilm Strategies in the Food Industry

Microbial adhesion to food processing surfaces is a rather fast process, and there-

fore, cleaning and disinfection of such surfaces is often not sufficient to prevent the

adhesion of microorganisms. In fact, cleaning only removes approximately 90 % of

bacteria from surfaces and does not kill them (Srey et al. 2013), so disinfection is

crucial. Nevertheless, an adequate frequency of disinfection should be carefully

determined to avoid accumulation of both particulates and bacterial cells present on

abiotic surfaces. The main strategy to prevent biofilm formation is to avoid bacterial

adhesion by choosing the correct materials and performing the appropriate cleaning

methods. In this context, it is of utmost importance to use materials that do not

promote or even suppress biofilm formation. Antimicrobial agents should be

applied to walls, ceilings, and floors. Surfaces should have modified physicochem-

ical properties or be impregnated with biocides or antimicrobials to minimize

bacterial colonization (Rogers et al. 1995). Hydrophobic surfaces are more prone

to biofilm formation than hydrophilic ones. It is also essential that equipment design

is smooth and does not contain faults like crevices, corners, cracks, gaskets, valves,

and joints, which are vulnerable areas for biofilm accumulation and not easily

accessible to sanitizers. Cleaning and disinfection should be performed regularly

before bacteria firmly attach to surfaces. To this end, cleaning-in-place (CIP)

procedures have been used and sometimes include physical methods, such as

mechanical brushing, chemical agents, such as detergents, and biological agents,

like enzymes to obtain a biofilm-free industrial environment (Kumar and Anand

1998). Even with these procedures microorganisms can remain on surfaces. Thus,

Good Manufacturing Practice (GMP), Good Hygienic Practices (GHPs), Good

Agricultural Practices (GAPs), and Hazard Analysis and Critical Control Points

(HACCP) have been established for controlling food quality and safety (Myszka

and Czaczyk 2011). The HACCP system has the advantage of improving product

safety by anticipating and preventing health hazards before they occur. Neverthe-

less, adhesion and biofilm formation on food processing surfaces and food spoilage
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and contamination still occur. In recent years several physical and chemical

methods have been developed to avoid/control biofilm formation and will be

discussed below.

4 Current Approaches

4.1 Chemical Disinfection

To obtain an efficient disinfection, surfaces should be properly cleaned. However,

disinfection can be affected by environmental conditions such as temperature, pH,

concentration, contact time, soiling and type of surface or medium to be disinfected,

and the presence of organic substances including fat, carbohydrates and protein-

based materials (Møretrø et al. 2012). Disinfectants may also differ in their ability

to kill target microorganisms. There is a wide range of chemical disinfectants,

which can be divided according to their mode of action: oxidizing agents including

chlorine-based compounds, hydrogen peroxide, ozone and peracetic acid, surface-

active compounds including quaternary ammonium compounds (QACs) and acid

anionic compounds, and iodophores (van Houdt and Michiels 2010). Chlorine-

based compounds, such as hypochlorite, are widely used in the food industry

because chlorine has a broad spectrum of activity, acts fast, and is usually cheap.

This compound has been shown to be highly effective against biofilms (Toté

et al. 2010; da Silva et al. 2011) and has greater efficacy in low pH than alkaline

pH environments (Araújo et al. 2011).

Disinfectants containing hydrogen peroxide or peracetic acid are regarded as

environmentally friendly because they decompose into oxygen and water (or acetic

acid). Hydrogen peroxide affects the biofilm matrix, has been found to be effective

against biofilm cells and is widely used in disinfectants (Robbins et al 2005;

Shikongo-Nambabi et al. 2010). Hydrogen peroxide-based disinfectives also have

a broad spectrum of activity and act fast. Peracetic acid has the advantage of being

relatively stable in the presence of organic compounds compared to other disinfec-

tant types. Several studies have reported its efficacy against biofilms. For instance,

Cabeça et al. (2008) showed that 0.50 % w/v peracetic acid reduced 24 h-old

L. monocytogenes biofilms by 5 log. Similarly, Frank and coworkers (2003) demon-

strated that 2.0 mL/L peracetic acid reduced L. monocytogenes biofilms more than

6 log on stainless steel in the presence of fat, protein, and soil after 10 min of

exposure.

Ozone is regarded as an environmentally friendly disinfectant as it rapidly

disintegrates into water and oxygen. Unfortunately, its instability can cause it to

react and disintegrate before reaching the target organism. However, ozone is a

potent antimicrobial agent, which can be used against bacteria, fungi, viruses,

protozoa, and bacterial and fungal spores (Khardre et al. 2001).
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Quaternary ammonium compounds (QACs) are active against a range of vege-

tative bacteria and can be used over a wide temperature so they are widely used in

the food industry. However, they are usually not used in CIP because of foaming

and their activity is reduced in the presence of hard water. Also, their degradability

in the environment is slow and residues may contribute to resistance development

in bacteria.

Disinfectants based on alcohols are effective against a wide range of micro-

organisms and are relatively robust in the presence of organic material. However,

their use is limited due to safety reasons (health and flammability) and their

relatively high price. Alcohols are therefore mainly used for hand disinfection

and on equipment that does not stand in water (Møretrø et al. 2012).

Due to the abovementioned reasons, a disinfectant must be carefully chosen

according to the type of application and some aspects must be taken into account:

the disinfectant must be environmentally friendly and economical; should be safe to

use (nontoxic and nonallergenic), have no negative impact on surface materials

(corrosiveness, staining and reactivity), be stable during storage and over a wide

range of pH and temperatures, be robust to environmental factors (soil, hard water,

and dilution), and have a broad spectrum of activity (Møretrø et al. 2012). Further-

more, it is of the outmost importance to know the mode of growth of the target

organisms (i.e., planktonic, adhered, or biofilm). The efficacy of the disinfectant is

strongly dependent on this factor because cells within a biofilm are more tolerant to

antimicrobial agents than their planktonic counterparts. Wirtanen and Mattila-

Sandholm (1992) showed that increased biofilm age may also lead to enhanced

resistance against disinfectants and biocides. Usually, to obtain a good sanitary

effect, when there is a biofilm present, it is necessary to combine an extensive

mechanical action, such as scrubbing or scraping, with the use of cleaning and

sanitizing agents. Chemical disinfectants react with the exopolymeric matrix of

biofilms, which enhances the mechanical biofilm removal. Otherwise, chemical

disinfectants can kill planktonic bacterial cells, while the exopolymeric matrix

remains unaffected. Thus, chemical and mechanical treatment can have a synergis-

tic effect in biofilm removal.

4.2 Physical Methods

The most commonly used physical method to remove biofilms is the manual

cleaning of surfaces using scrubbers. Pressure washing is another approach cur-

rently being used that consists of rinsing surfaces with hot or cold water, the

application of a detergent for the required contact time, and rinsing the surface

before the application of a disinfectant. Usually, water is applied at 125 �C for

30 min and this method is considered as very effective in eliminating microbial

communities. However, Wirtanen and Matilla-Sandholm (1993) verified that

3-day-old biofilms were difficult to completely remove even at this temperature.

Kiskó and Szabó-Szabó (2011) also observed that hot water was not sufficient to
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eliminate Pseudomonas aeruginosa and Pseudomonas stutzeri biofilms from sur-

faces. The disadvantage of this method is that hot water denatures proteins and

increases the adhesion properties of equipment, which can aid in the formation of

biofilms, so it is not advisable. In order to be more efficient in biofilm removal, this

method should be combined with chemical disinfection.

Ultrasounds, the application of electrical fields and super-high magnetic fields

have been identified as newer physical methods for biofilm control. These

approaches will be addressed below.

5 Emergent Approaches

5.1 Ultrasons

Ultrasonication has been reported as an efficient biofilm removal method. This

technique is particularly useful in surface decontamination where the inrush of fluid

that accompanies cavitational collapse near a surface is nonsymmetric (Chemat

et al. 2011). The particular advantage of ultrasonic cleaning in this context is that it

can reach crevices that are not easily reached by conventional cleaning methods.

The use of ultrasound allows the destruction of a variety of fungi, bacteria, and

viruses in a much reduced processing time when compared to thermal treatment at

similar temperatures (Chemat et al. 2011). However, by itself, this technique

doesn’t eliminate all the bacteria in food industries and thus it is recommended to

be used in combination with other treatment techniques (Srey et al. 2013). In fact, it

has been postulated that ultrasound induces cavitation within the biofilm, which

increases transport of solutes, as antimicrobial agents, through the biofilm or outer

bacterial membranes (Carmen et al. 2005). Thus, there is a synergistic effect

between ultrasound and other antimicrobial agents. For instance, the combination

of ultrasound and ethylenediaminetetraacetic acid (EDTA), and ultrasound and

enzymes showed a higher efficacy in removing biofilms. Baumann and coworkers

(2009) also showed a significant effect on biofilm removal on stainless steel food

contact surfaces by combining the use of ozonation and sonication.

5.2 Electrical Methods

Electrical methods for controlling bacterial adhesion have received special atten-

tion and are regarded to be environmental friendly because they use “electrons” as

the nontoxic reaction mediator. These methods can be divided into current and

potential applications, and each application can be conducted in the cathodic,

anodic, and block (or alternating) modes (Hong et al. 2008). Electrical methods

have been applied in some studies to prevent bacterial adhesion and to detach
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adhered bacteria, but it was verified that the removed bacteria could again accu-

mulate on the surface and thus the problem of surface contamination continues.

Besides, according to Wagnera et al. (2004), when an anodic current or potential is

applied, the inactivated bacteria tend to remain on the surface providing new sites

for bacterial adhesion. Thus, the control of bacterial adhesion through the exclusive

application of anodic current is still limited. In order to try to overcome these

limitations, Hong and colleagues (2008) investigated the specific role of electric

currents in bacterial detachment and inactivation when a constant current was

applied in the cathodic, anodic, and block modes. These authors observed that the

application of cathodic current promoted the detachment of adhered bacteria by

electrorepulsive forces, but bacteria remaining on the surface were still viable.

On the other hand, the anodic current inactivates most of the remaining bacteria.

Thus, these authors concluded that the best electrical strategy for reducing bacterial

adhesion consists of the application of a block current.

Flint and coauthors (2000) observed that it may be possible to disrupt the

attachment of thermo-resistant streptococci to stainless steel by applying a small

voltage. In fact, when a voltage of 9 V and a current of 40 mA were applied to a

suspension of S. thermophilus held between stainless steel electrodes, attachment to

the cathode was reduced, whereas attachment to the anode was inhibited. This may

result from the disruption of the electrical bilayer on the substrate.

An approach using electrical current to enhance the activity of antimicrobials

against established biofilms has also been proposed. Blenkinsopp et al. (1992)

found that three common industrial biocides (glutaraldehyde, a quaternary ammo-

nium compound and kathon) exhibited enhanced action when applied against

P. aeruginosa biofilms within a low strength electric field with a low current

density.

Concerning its mode of action, it has been suggested that the mechanism of

antibacterial activity of electrical current results from the oxidation of enzymes and

coenzymes, membrane damage leading to the leakage of essential cytoplasmic

constituents, and toxic substances (e.g., H2O2, oxidizing radicals, and chlorine

molecules) produced as a result of electrolysis and/or a decreased bacterial respi-

ratory rate (del Pozo et al. 2009).

5.3 Electrolyzed Water

Electrolyzed water (EW) has been used in the food industry as a novel disinfecting

agent. This process was shown to be more efficient than water and chlorine

solutions as a sanitizer of meats, some fresh products, cutting boards, and utensils.

EW is generated in a cell containing inert positively charged and negatively

charged electrodes separated by a septum (membrane or diaphragm) (Al-Haq

et al. 2005). By electrolysis, a dilute sodium chloride solution dissociates into

acidic electrolysed water (AEW; pH between 2 and 3, oxidation–reduction poten-

tial of N1100 mV, and an active chlorine content of 10–90 mg/L), and basic
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electrolyzed water (BEW; pH between 10 and 13 and oxidation–reduction potential

of �800 to �900 mV) (Hricova et al. 2008). Neutral electrolyzed water (NEW; pH

7–8) is produced by adding hydroxyl ions to AEW or by using a single chamber

(Hricova et al. 2008). AEW has been determined to have a strong bactericidal effect

on several pathogenic food bacteria such as L. monocytogenes (Park et al. 2004),

C. jejuni (Park et al. 2002), E. coli O157:H7 (Park et al. 2004), S. Enteritidis
(Koseki et al. 2003) and others, having more antimicrobial effect than BEW.

Thus, according to Møretrø et al. (2012), a combination of BEW and AEW is

more efficient than AEW alone. AEW has also been demonstrated to have an

antibiofilm effect, namely, to inactivate L. monocytogenes biofilms on stainless

steel surfaces. Treatment with acidic EO water for 30–120 s reduced the bacteria

population by 4.3–5.2 log CFU/coupon (Ayebah et al. 2005). NEW is advantageous

because it does not promote corrosion of processing equipment or irritation of skin

and is stable because chlorine loss is significantly reduced at pH values of 6–9 (Len

et al. 2002). In general, electrolysed water is considered environmental friendly

because it is generated from water and a dilute salt solution and reverts to water

after use.

5.4 Antimicrobial Materials

Numerous efforts have been made in order to impede microbial adhesion and

biofilm development by altering surface physicochemical properties (Rodriguez

et al. 2007), integrating antimicrobial compounds into materials, and/or coating

surfaces with biocides (Gottenbos et al. 2001). As a result, a large variety of

materials and products are now available to be applied in the food industry,

household, and for personal use (e.g., conveyor belts, refrigerators, cutting boards,

and boxes for transport of food). Nevertheless, it is highly important to notice that

all these materials and products must be seen as an extra contamination obstacle and

not as a substitute for correct sanitary procedures (Kampmann et al. 2008; Møretrø

et al. 2006).

One of the main biocidal agents incorporated in materials is triclosan, which can

be applied in plastic polymers and has Microban® as a trade name (http://www.

microban.com). Although a vast amount of products available nowadays contain

this antimicrobial agent, there is evidence that its efficacy may not be satisfactory.

Accordingly, although a plastic enclosing 1.5 g/kg triclosan had restrained

S. typhimurium growth in an agar plate assay, when beef was vacuum sealed

using the same material, no effect was observed on S. typhimurium development

on meat compared to the control after up to 14 days incubation at different

temperatures (Cutter 1999). Moreover, when Rodrigues et al. (2011) compared

Salmonella Enteritidis adhesion on silestones (quartz surfaces incorporating

Microban®, used as kitchen bench stones) and on other food contact surfaces

without antimicrobial treatment, no significant effect was found. Although the

results concerning biofilm formation highlighted a potential bacteriostatic activity
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of this antibacterial agent, all materials tested did not support food safety, revealing

that these surfaces imply a cautious use and a correct sanitation when applied in

food processing areas (Rodrigues et al. 2011). Furthermore, some worries have

been associated with the wholesale application of triclosan in the household area,

mainly because of the concern about expansion of resistant bacteria (Levy 2001;

Webber et al. 2008).

5.5 Surface Coatings and Surface Modifications

Since stainless steel is one of the most commonly used materials in the food

industry and food processing areas, several modifications have been made in

order to prevent microbial colonization: coating with antimicrobial compounds;

implantation of ions to lower surface energy; creation of bioactive surfaces (e.g.,

immobilized enzymes); production of diamond-like carbon surfaces; coating with a

molecular brush (steric hindrance); development of silica surfaces to create either a

hard glass-like surface or a hydrophilic anionic surface; or integration of polytetra-

fluoroethylene (PTFE) into the surfaces. Zhao and coworkers (2005a) reported a

decrease of 94–98 % in E. coli adhesion to Ag-PTFE-coated stainless steel, in

comparison to titanium surfaces, silver coating, or uncoated stainless steel. More-

over, these same researchers also produced surfaces with particular energies known

to avoid biofouling by using coatings of PTFE, nickel, copper, and phosphorus

(Zhao et al. 2005b; Zhao and Liu 2006).

Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide

(N-TiO2) coatings are other possible forms to enhance food contact surface perfor-

mance in terms of better hygiene and easier sanitation. When Rodrigues

et al. (2013) compared L. monocytogenes viability on N-TiO2 coated and uncoated

stainless steel and glass, satisfactory results were found on the coated surfaces

since, for most conditions tested, survival rates decreased below 50 %. Neverthe-

less, no successful disinfection was accomplished, since the required bacterial

reduction of at least 3 log was not achieved (Rodrigues et al. 2013). Thus,

N-TiO2 coating still requires more investigation and enhancement in order to

become a really useful tool against microbial contamination of food contact sur-

faces. In fact, new surface coatings and different disinfectant agents are regularly

investigated worldwide, but these data have yet to be transferred to the industry due

to several reasons, such as process consistency, charges, product quality and safety,

and maintenance (Goode et al. 2013).

In work dealing with biofilm control, microparticles (CaCO3) coated with

benzyldimethyldodecylammonium chloride have successfully repelled biofilm for-

mation (Ferreira et al. 2010), and various researchers have shown that silver

coatings prevented biofilm formation (Hashimoto 2001; Knetsch and Koole

2011). Furthermore, passive coatings of organic polymers are also a promising

approach to prevent microbial contamination. Due to the propensity of some

plastics to microbial degradation, efforts have been made to integrate inhibitors
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into these materials. Price and coworkers (1991) have shown that, compared to a

control polymer, a significant decrease of attachment and viability of Klebsiella
pneumoniae, S. aureus, and P. aeruginosa was achieved on an ethylene vinyl

acetate/low-density polyethylene product containing a low-solubility commercial

quaternary amine complex. Although further studies are needed, this seems to be a

promising application to control microbial contamination on food contact surfaces.

Nevertheless, it is also important to note that not all antimicrobial coatings tested so

far have shown efficacy. For example, a polystyrene surface coated with anti-

microbial fullerene-based nanoparticles was created aiming to prevent biofilm

formation by Pseudomonas mendocina, but it actually enhanced biofilm develop-

ment (Lyon et al. 2008). This demonstrates that antibacterial nanomaterials can lose

their efficacy when applied as coatings.

Another possible way to avoid biofilm formation is by steric hindrance, or

blocking, of bacterial adhesion by means of a “molecular brush,” which involves

coating a surface with an inert material that physically prevents bacterial adhesion.

Namely, polyethylene glycol (PEG) is the most investigated molecular brush that

controls protein adsorption to materials (Jönsson and Johansson 2004). Although

the prevention of protein adsorption by a molecular brush has generally been

established, its usefulness in preventing microbial attachment is somehow contro-

versial. In fact, Wei and coworkers (2003) have reported that stainless steel coated

with PEG inhibited the adsorption of b-lactoglobulin, but did not inhibit the

adhesion of Pseudomonas sp. and L. monocytogenes cells. A possible explanation

for these observations may be related with the particular nature of the PEG layer

used, as well as the complexity of bacterial adhesion, since protein interactions are

not the only aspect that influences it.

5.6 Natural Compounds

Recently, the emergence of antibiotic-resistant strains and the reluctance of con-

sumers toward the use of chemical products, such as biocides, have led to a search

for natural alternative products. The use of biocides as sanitizers in the food

industry has associated concerns such as biocide biodegradability, their risk to

human health, and their environmental impact (Cappitelli et al. 2006). The use of

substances obtained from plants is preferred since they may have been used in

traditional medicine for a long time, they are generally considered to be safe by

consumers, and are not known to cause harm to the environment (Leonard

et al. 2010). Essential oils (EOs) or their constituents are one of the more promising

and natural alternative antimicrobial agents. EOs are volatile, natural, complex

compounds characterized by a strong odor and are obtained from plant material

(flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits, and roots).

Concerning their mode of action, they pass through the bacterial cell wall and

cytoplasmic membrane, disrupt the structure of the different layers of polysaccha-

rides, fatty acids, and phospholipids, and permeabilize them (Bakkali et al. 2008).
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Oliveira et al. (2012) evaluated the antibacterial potential of EOs from

Cinnamomum cassia bark and Melaleuca alternifolia and Cymbopogon flexuosus
leaves against planktonic and sessile cells of E. coli (EPEC) and L. monocytogenes.
These authors observed that all of the EOs and combinations tested possessed

antibacterial activity against planktonic cells; however, the EO of C. cassia was

the most effective antibiofilm agent. Jadhav et al. (2013) also observed the inhib-

itory effect of the essential oil obtained from yarrow (Achillea millefolium) against
planktonic cells and biofilms of L. monocytogenes and Listeria innocua isolates

obtained from food processing environments.

Other natural compounds are biosurfactants that are surface-active compounds

of microbial origin and have attracted attention due to their low toxicity and high

biodegradability, when compared to synthetic surfactants (Nitschke et al. 2005;

Banat et al. 2010). The adsorption of biosurfactants to a solid surface can modify its

hydrophobicity and thus bacterial adhesion and consequently biofilm formation.

One study investigated whether surfactin from Bacillus subtilis and rhamnolipids

from P. aeruginosa could reduce the adhesion and/or disrupt the biofilms of some

foodborne pathogenic bacteria (Gomes and Nitschke 2012). It was observed that

after 2 h contact with surfactin at 0.1 % concentration, the preformed biofilms of

S. aureus were reduced by 63.7 %, L. monocytogenes by 95.9 %, S. Enteritidis by
35.5 %, and the mixed culture biofilm by 58.5 %. Concerning the effect of

rhamnolipids, it was observed that, at a concentration of 0.25 %, they removed

58.5 % of the S. aureus biofilm, 26.5 % of L. monocytogenes, 23.0 % of

S. Enteritidis, and 24.0 % of the mixed species biofilm. Nevertheless, although

the replacement of synthetic surfactants by biosurfactants would provide advan-

tages such as biodegradability and low toxicity, their use has been limited by their

relatively high production cost, as well as scarce information on their toxicity in

humans (Rodrigues 2011).

5.7 Enzymes

Enzymes are biological catalysts, i.e., substances that increase the rate of chemical

reactions without being used up. In other words, enzymes are proteins capable of

lowering the activation energy of a chemical reaction; their action relies on the

possibility of interacting with the substrate to be transformed, via its active site

(Glinel et al. 2012).

Concerning their mode of action, enzymes immobilized on a material surface

and in contact with a biological environment may act against biofilm in various

ways. Enzymes may impair the initial step of surface colonization by microorgan-

isms by cleavage of proteins and carbohydrates; these types of enzymes are called

adhesive-degrading enzymes. Enzymes may also have a biocidal effect when they

compromise the viability of living organisms growing on surfaces. In the first

category, enzymes such as proteases can impede microbial adhesion by hydrolyz-

ing peptidic bonds (Rawlings et al. 2006), while glycosidases specifically break
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ester bonds of polysaccharides, which are the main constituents of microbial

adhesives (Moss 2006). van Speybroeck et al. (1996) reported the use of an

enzymatic preparation comprised of exopolysaccharide-degrading enzymes, par-

ticularly the colanic acid-degrading enzymes, derived from a strain of Streptomyces
for the removal and/or prevention of biofilm formation on surfaces.

Molobela et al. (2010) tested proteases (savinase, everlase, and polarzyme) and

amylase (amyloglucosidase and bacterial amylase novo) activity on biofilms

formed by P. fluorescens and on extracted EPS. They observed that everlase and

savinase were the most effective enzymatic treatments for removing biofilms and

degrading the EPS.

Enzymes have also been used as antibiofilm coatings. In this case, they can be

either covalently grafted onto solid substrates or incorporated into polymer matrices

to produce antibacterial coatings and it is thought that enzymes impair one or

several “bricks” of the biofilm construction (Glinel et al. 2012). Yuan and

coworkers (2011) tested a coating composed by coupling lysozyme on a PEG

layer against two different bacterial species, Gram-negative E. coli and Gram-

positive S. aureus. These authors observed that more than 90 % of S. aureus and
~80 % of E. coli that adhered to lysozyme-functionalized surfaces were damaged

within 4 h. In addition, these coatings showed long-term activity since the

antibacterial effect against S. aureus was retained after a contact time of ~36 h.

However the effect faded over time for E. coli. This result was probably due to the

fact that lysozyme is more active toward peptidoglycans present in the Gram-

positive bacterial wall than toward the double membrane of the Gram-negative

cell wall. It can be concluded that, as the structural composition of EPS varies even

among bacteria of the same species, the mode of action and the consequent

efficiency of enzymes will also be variable.

Therefore, enzymes constitute an important alternative for biofilm removal in

the food industry. Though, it must be noted that enzymes, as coatings, may

contribute to the unwanted degradation of substances surrounding the surface

coating. In addition, enzymes that produce biocidal substances have to be approved

by the appropriate legislative body before being implemented.

5.8 Quorum-Sensing Interfering Molecules

Quorum sensing (QS) or cell-to-cell communication is employed by a diverse group

of bacteria, including those commonly associated with food. Through the mecha-

nisms of QS, bacteria communicate with each other by producing the signaling

molecules known as autoinducers and are consequentially able to express specific

genes in response to population density. Since several types of signaling molecules

have been detected in different spoiled food products, disrupting the QS circuit can

potentially play a major role in controlling microbial gene expression related to

human infection and food spoilage (Bai and Rai 2011). QS inhibitors can be

372 P. Teixeira and D. Rodrigues



developed in order to target synthesis of the cell signaling molecules themselves or

to block these signaling systems (Bai and Rai 2011).

QS systems appear to be involved in all phases of biofilm formation. They

regulate population density and the metabolic activity within the mature biofilm

to fit the nutritional demands and resources available. Furthermore, bacteria within

biofilms have markedly different transcriptional programs from planktonic bacteria

of the same strain (Asad and Opal 2008).

The relation between QS and biofilm formation in food-related bacteria has been

observed by several authors. However, according to Bai and Rai (2011), though

signaling molecules have been detected in biofilms, their precise role in the

different stages of biofilm formation is still not clear.

Kerekes and coauthors (2013) investigated the effect of clary sage, juniper,

lemon, and marjoram essential oils and their major components on the formation

of bacterial and yeast biofilms and on the inhibition of AHL mediated QS and

verified that the compounds tested seemed to be good candidates for prevention of

biofilm formation and inhibition of the AHL-mediated QS mechanism.

Furanones are one of the most studied QS inhibitors and it was demonstrated that

they were able to control multicellular behavior induced by autoinducer-1

(Manefield et al. 2002) and autoinducer-2 (Ren et al. 2004) in Gram-negative

microorganisms.

5.9 Bacteriophages

Bacteriophages (phages) are viruses that infect bacteria and can be found in the

same biosphere niches as their bacterial hosts (Kutter and Sulakvelidze 2005). They

were originally found by Harkin in 1896 and were applied in the cure of microbial

infections previous to antibiotic discovery. The application of phages to control

biofilms can be a practicable, natural, harmless, and greatly specific way to deal

with numerous microorganisms implicated in biofilm formation (Kudva

et al. 1999). In fact, phages and their endolysins have already been used to stop

biofilm development by L. monocytogenes and E. coli (Gaeng et al. 2009; Sharma

et al. 2005). Accordingly, a L. monocytogenes phage (ATCC 23074-B1) was

effectively used for biofilm eradication (Hibma et al. 1997), and a synergistic effect

of an alkaline disinfectant and a phage has been described for the eradication of

E. coli O157:H7 biofilms grown on stainless steel (Sharma et al. 2005). Moreover,

Lu and Collins (2007) produced a phage that expresses a biofilm-degrading

enzyme, which attacked both biofilm bacteria and matrix, leading to more than

99.9 % elimination of the biofilm cells.

A study conducted by Sillankorva and coworkers (2008) showed that the phage

phiIBB-PF7A can be an outstanding natural agent regarding its ability to lyse

P. fluorescens biofilm cells in a very short period of time. This same phage was

also applied to control a P. fluorescens and Staphylococcus lentus mixed biofilm

and led to a remarkable decline in the attached bacterial cells (P. fluorescens).
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Moreover, it was also shown that phages can be effective in both monoculture and

mixed-culture biofilms and competently reach and lyse their specific host, despite

the coresidence of a nonvulnerable species (Sillankorva et al. 2010). When Briandet

and coworkers (2008) investigated the dispersion and response of phages within

biofilms, it was observed that phages were able to penetrate distinct biofilm

complexes. In addition, these authors found that, in general, phages within biofilms

are immobilized, reproduced, and released by a lytic cycle, connecting with their

specific binding sites on the hosts. Moreover, Tait et al. (2002) reported that phages

and bacteria were able to progressively coexist in biofilms, and therefore

recommended a combination of phages and polysaccharide depolymerases and

disinfectant for improved biofilm control. On the other hand, Brooks and Flint

(2008) have suggested that it may be productive to look for phages in biofilm

samples from food industry facilities and to apply them against microbial commu-

nities found in the same environment. Moreover, since phages are likely to be

highly host specific, this approach should not represent any danger to other fractions

of the production, even though the application of a phage mixture would likely to be

required due to arising host resistance.

Although it is already known that infection of biofilm cells by phages is highly

dependent on several factors, such as their chemical composition, phage concen-

tration, temperature, media, and growth stage (Sillankorva et al. 2004; Chaignon

et al. 2007), there is much more to explore and explain. Since dairy foodstuffs are

highly vulnerable to contamination by bacterial biofilms, the dairy industry has

become the leader of exploiting phages as an antibacterial approach (Thallinger

et al. 2013), and it is expected that the development of highly efficient and

inexpensive methods of genetic material treatment and DNA sequencing will

accelerate the finding and creation of engineered phages.

6 Conclusions

Due to the ability of foodborne pathogens to form biofilms on diverse food contact

surfaces, leading to a continuous contamination of food, prevention and elimination

of biofilms are significant concerns for the food industry. Currently, the best

practical ways to prevent biofilm development consists of a successful application

of hygienic and sanitation compounds, appropriated sanitation, and a good opera-

tion of the process line. Although much progress has been made in this area, out-of-

date prevention means are still being applied. Nevertheless, given the ability of

bacteria to become resistant and consequently to endure approaches that used to be

efficient, new methods of elimination for these microbial communities are contin-

uously required. However, a lot more is still left to discover about the effect of

antibacterial compounds on biofilms and their subsequent recovery reaction. This,

together with an improved knowledge about the mechanisms involved in biofilm

formation on food contact surfaces is of utmost importance towards the goal of

374 P. Teixeira and D. Rodrigues



achieving a novel, highly effective, cheaper, and ecological tactic to assure food

safety.
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Part III

The Future of Antibiofilm Agents



Biofilm Inhibition by Nanoparticles

D. Bakkiyaraj and S.K. Pandian

Abstract Infectious diseases are of immediate concern due to their high rate of

morbidity and mortality. Infectious diseases are life threatening in the current

scenario as the causative agents are resistant to almost all the drugs in use. Apart

from well-known factors like efflux pumps, receptor modifications, and drug

inactivation, formation of biofilms attributes to broad-spectrum resistance toward

antimicrobials. This necessitates the search for novel therapeutics that effectively

control drug-resistant pathogens. Targeting biofilm formation is one such strategy

to combat infectious diseases much more effectively. For over a decade diverse

sources of synthetic to semisynthetic agents derived from microbes to plants have

been tested for their antibiofilm potential with limited success. The birth of nano-

technology provided new insights into antibiofilm research as these nanoparticles

are highly reactive and effective in penetrating the biofilm matrix. This chapter

comprehensively summarizes the synthesis, application, weakness, and antibiofilm

potential of nanoparticles.

1 Introduction

Infectious diseases are of major concern as they can result in high mortality and

morbidity. Bacteria and fungi are the major pathogens that cause infections in

humans and development of resistance by these organisms contributes to the

severity of infections. Diseases caused by multidrug-resistant (MDR) pathogens

are extremely difficult to treat and have a major impact on the economy. Even

though numerous mechanisms like activation of efflux pumps, decreased perme-

ability to antagonists, production of enzymes (e.g., beta-lactamase to inactivate

antimicrobials), and mutation in target proteins facilitate resistance, biofilm
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formation has been the predominant mechanism of broad-spectrum tolerance.

Biofilm are complexes made up of microbes surrounded by a hydrated matrix that

is secreted by these indwelling microbes to protect or facilitate their growth in

hostile environments. Biofilms are characterized by their extracellular polymeric

substances (EPS) which contain polysaccharides, proteins, lipids, and nucleic acids.

Apart from conferring resistance to the inhabitants, biofilms also facilitate various

other functions like aggregation, retention of water and nutrients, absorption of

nutrients, protection against host immune responses, and horizontal gene transfer.

Studies have even suggested that the multicellular behavior of biofilm inhabitants is

similar to higher multicellular organisms.

In theory, antibiofilm agents are less likely to cause selective pressure for the

evolution of resistance because they do not kill pathogens as do antibiotics.

Successful antibiofilm agents can either inhibit the formation of biofilms or disrupt

mature biofilms. Antibiofilm agents are preferred over antibiotics in some instances

as they prevent or disrupt biofilms, facilitating their clearance by the host immune

system. Numerous sources from soil to sea and herbs to plants have been screened

for antibiofilm activity. Even, some antibiotics have been shown to possess

antibiofilm activity at sublethal concentrations. In addition, synthetic agents with

antibiofilm properties are of interest because of their feasibility and availability for

application.

Various agents such as synthetic chemicals, microbial secondary metabolites,

phenolic compounds and other phytochemicals from plants, antibiotics at their

sublethal concentrations, nucleases, proteases and other enzymes, peptides, etc.,

were shown to have the potential to inhibit biofilm formation and/or disrupt mature

biofilms. Numerous synthetic chemicals like thiazolidinone derivatives (Pan

et al. 2010; Rane et al. 2012), aminoimidazoles (Furlani et al. 2012), diazopyrazole

derivatives (Raimondi et al. 2012), bromopyrrole alkaloids (Rane et al. 2013), etc.,

were shown to have antibiofilm potential against Gram-positive bacterial pathogens

like Staphylococcus aureus, Streptococcus epidermidis, and Enterococcus faecalis.
Other synthetics like niclosamide (Imperi et al. 2013), esomeprazole (Singh

et al. 2012), chlorogenic acid (Karunanidhi et al. 2013), and zinc (Wu et al. 2013)

showed promising results against various Gram negative bacteria, especially Pseu-
domonas aeruginosa. Other chemicals such as caspofungin (Bink et al. 2012) and

farnesol (Ramage et al. 2002) were shown to be active against the biofilms of

Candida albicans. Lastly, antibiotics at sublethal concentrations were shown to

inhibit biofilms, which is of interest, as these sublethal concentrations are less likely

to induce the development of resistance (Balaji et al. 2013; Gilbert et al. 2002;

Latimer et al. 2012).

Various microbial extracts (Bakkiyaraj and Pandian 2010; Bakkiyaraj

et al. 2012; Nithya et al. 2010b, 2011; Nithya and Pandian 2010) and their

secondary metabolites like usnic acid and atranorin (Pompilio et al. 2013), glyco-

lipid biosurfactants (Kiran et al. 2010), phenylacetic acid (Musthafa et al. 2012b),

ophiobolins (Arai et al. 2013), and piperazinedione (Musthafa et al. 2012a) were

reported to have antibiofilm properties against bacterial and fungal pathogens.

Apart from the microbial metabolites, enzymes were also shown to inhibit the
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formation of biofilms. Alpha amylase produced by Bacillus subtilis (Kalpana

et al. 2012), acylase produced by B. pumilus (Nithya et al. 2010a), alginate lyase

(Lamppa and Griswold 2013), and protease produced by P. aeruginosa and acti-

nomycetes (Park et al. 2012a, b) were also shown to have antibiofilm potential

against human bacterial pathogens.

Numerous plants have been reported to display antibiofilm activities against

bacterial and fungal pathogens. Cinnamaldehyde (Brackman et al. 2008), methyl

eugenol (Packiavathy et al. 2012), casbane diterpene (Cardoso Sa et al. 2012),

curcumin (Packiavathy et al. 2013), taxodione derivatives (Kuzma et al. 2012),

gallic acid and ferulic acid (Borges et al. 2012), and ellagic acid (Sarabhai

et al. 2013) are the notable plant products with potential antibiofilm activity.

The latest developments in the field of antibiofilm research employ novel agents

like peptides (Amer et al. 2010; Choi and Lee 2012; Reymond et al. 2013; Zhang

et al. 2010) and nanoparticles (Anghel et al. 2012; Hernandez-Delgadillo

et al. 2012, 2013; Lellouche et al. 2012b; Durmus and Webster 2013; Martinez-

Gutierrez et al. 2013; Sawant et al. 2013) as antibiofilm agents. The synthesis,

properties, and the application of nanoparticles as antibiofilm agents will be

discussed in detail in this chapter.

2 Properties and Synthesis of Nanoparticles

Among the antibiofilm technologies that have recently emerged, nanotechnology is

one of the most promising. Nanotechnology can be defined as “a technology of

engineering functional systems at molecular scale.” Nanotechnology can also be

defined as technology involving design, synthesis, and application of materials and

devices whose size and shape have been engineered at nanoscale. Particles pro-

duced through nanotechnology are called “nanoparticles” and are typically sized

less than 100 nm. Nanoparticles are highly reactive and preferred over other

bioactive agents because of their higher surface area in contrast to their size. For

example, 1 μg of particles of 1 nm3 size have the same surface area as 1 g of

particles of size 1 mm3. Huge surface area of these nanoparticles facilitates their use

as drug carriers.

Even though diverse chemicals like chitosan (Du et al. 2008), carboxymethyl

chitosan (Zhao et al. 2013b), poly-gamma-glutamic acid (Liu et al. 2013b), cellu-

lose (Raghavendra et al. 2013), zinc oxide (ZnO) (Dutta et al. 2013; Jones

et al. 2008), magnesium fluoride (Lellouche et al. 2009, 2012b, c), polyethy-

leneimine (Beyth et al. 2010), hydroxyapatite (Evliyaoglu et al. 2011), fullerene

(Patel et al. 2013), lipids (terpinen-4-ol) (Sun et al. 2012), and silica (Besinis

et al. 2014; Li and Wang 2013) were shown to be useful, metals are the prime

component of most nanoparticles. Derivatives of metals, like their oxides, form the

base material for synthesis of many nanoparticles. Silver (Antony et al. 2013; Apte

et al. 2013b; Besinis et al. 2014; Chernousova and Epple 2013; Jain and Pradeep

2005; Mohanty et al. 2012), gold (Annamalai et al. 2013; Geethalakshmi and
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Sarada 2012; Khan et al. 2012; Naz et al. 2013; Pender et al. 2013; Ramamurthy

et al. 2013), copper (Eshed et al. 2012; Kim et al. 2006; Pandiyarajan et al. 2013;

Pramanik et al. 2012; Singh et al. 2013; Thekkae Padil and Cernik 2013), titanium

(Besinis et al. 2014; Jayaseelan et al. 2013; Li et al. 2013), and iron (Das et al. 2013;

Grumezescu et al. 2011; Leuba et al. 2013) are the predominant members of metal

oxide nanoparticles and other metals like bismuth (Hernandez-Delgadillo

et al. 2012, 2013) and cerium oxide (Shah et al. 2012) are other metal nanoparticles

shown to possess bioactive potential.

Nanoparticles are synthesized either through a scale-up process, where atoms are

grouped together, or a scale-down process, where larger molecules are minced to

nanoscale. Irrespective of the methods used, synthesis of nanoparticles involves

evaporation/dissolution, nucleation, and growth.

The synthesis of nanoparticles by scale-down or sizing-down processes can be

achieved either by attrition or milling, followed by size-dependent grouping and

selection. Scale-up processes can be broadly classified into three groups: gas phase

fabrication; liquid phase fabrication; and biosynthesis or green synthesis of

nanoparticles.

2.1 Gas or Vapor Phase Nanoparticle Fabrication

This process involves the evaporation of solid and liquid precursors to gaseous

precursors followed by supersaturation, producing an intermediate product. Nucle-

ation or condensation of these intermediate products results in primary particles.

These primary particles, upon grain growth and agglomeration, produce

nanoparticles and nanoclusters, respectively. Methods that employ gas phase fab-

rication are as follows:

1. Methods using solid precursors (Iskandar 2009)

• Inert gas condensation

• Pulsed laser ablation

• Spark discharge generation

• Ion sputtering

2. Methods using liquid or vapor precursors (Suciu et al. 2003)

• Chemical vapor synthesis

• Spray pyrolysis

• Laser pyrolysis/photochemical synthesis

• Thermal plasma synthesis

• Flame synthesis

• Flame spray pyrolysis

• Low-temperature reactive synthesis
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2.2 Liquid Phase Nanoparticle Fabrication

Liquid phase fabrication involves wet chemistry and the general process includes

the surface reaction of solid and liquid precursors to produce corresponding inter-

mediate products. Such intermediate products are converted to primary particles

either by nucleation or condensation similar to gas phase fabrication, followed by

growth or agglomeration to produce nanoparticles or nanoclusters, respectively.

Methods that employ liquid phase fabrication are:

1. Co-precipitation (Murray et al. 2000)

2. Solvothermal methods (Yang et al. 2006)

3. Sol–gel methods (Yu et al. 2004)

4. Synthesis in structure media (e.g., Microemulsion) (Capek 2004)

5. Microwave synthesis (Tsuji et al. 2005)

6. Sonochemical synthesis (Zhang and Yu 2003)

2.3 Biological Synthesis of Nanoparticles

Synthesis of nanoparticles catalyzed by bacteria or fungi or their products is of

considerable interest as it employs cleaner and greener technology. Numerous fungi

and bacteria have been utilized for the bioconversion of raw chemicals into

nanoparticles. For instance, the ability of the marine yeast Yarrowia lipolytica to

catalyze the synthesis of gold nanoparticles has been reported (Agnihotri

et al. 2009; Apte et al. 2013a, b). Biosynthesis of silver, gold, and bimetallic

nanoparticles by fungi like Phanerochaete chrysosporium, Penicillium sp., and

Neurospora crassa has also been reported (Castro-Longoria et al. 2011; Du

et al. 2010; Vigneshwaran et al. 2006). Similarly, the synthesis of silver

nanoparticles with antimicrobial potential by psychrophilic bacteria such as Pseu-
domonas antarctica and Arthrobacter kerguelensis has also been reported (Shivaji

et al. 2011). Lactobacillus fermentum (Sintubin et al. 2009) and Shewanella
oneidensis (Suresh et al. 2010) were also shown to catalyze the production of silver
nanoparticles with antimicrobial potential.

Though there are numerous reports on the microbe-mediated synthesis of

nanoparticles, very few studies have described the biomolecules involved in this

synthesis. For example, nitrate reductase along with a protein from Aspergillus
niger and nitrate reductase along with rhamnolipids from P. aeruginosa were

shown to be indispensable for the synthesis of nanoparticles (Gade et al. 2008;

Kumar and Mamidyala 2011). Similarly, the role of cell-bound melanin produced

by the yeast Y. lipolytica and certain proteins produced by marine fungi

A. tubingensis and Bionectria ochroleuca in the synthesis of silver nanoparticles

with antibiofilm activity have been reported recently (Apte et al. 2013a, b; Rodri-

gues et al. 2013).
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3 Diverse Applications of Nanoparticles

Nanoparticles or nanomaterials in general have diverse applications in various

fields.

3.1 Industrial Applications

Many microelectronic instruments such as transistors have adapted nanotechnology

(Thompson and Parthasarathy 2006). Carbon nanotubes are reported to be the

nanoscale alternatives to conventional semiconductor crystals because of their

diverse electronic properties from metallic to semiconducting (Jacoby 2002) or

superconducting (Cristina and Kevin 2005). Carbon nanotubes have been shown to

be useful in making low-voltage field-emission displays (Carey 2003).

Nanomaterials like aerogel intercalation electrode materials, nanocrystalline alloys,

nanosized composite materials, carbon nanotubes, and nanosized transition metal

oxides have shown promise in the development of lithium-ion batteries with

increased capacity and lifecycle over their conventional counterparts (Liu

et al. 2006a; Scott et al. 2011).

Nanocrystalline materials synthesized by the sol–gel technique exhibit foam-

like structures called “aerogel” which find application as insulation material in

industries because of their negligible thermal conductivity (Hrubesh and Poco

1995). Paints that have incorporated nanoparticles (Titanium oxide) demonstrate

enhanced mechanical properties, such as scratch resistance. For example, the wear

resistance of paint-nanocomposite coatings is claimed to be ten times higher than

that of conventional acrylic paints (Mochizuki et al. 2013).

In the automobile industry, nanoparticles of carbon black act as filler in the

polymer matrix of tires and are used for mechanical reinforcement.

Nanocomposites containing the flakes of clay and plastics and nanosized clay are

used in manufacturing the exteriors of cars with superior properties like scratch

resistance compared to traditional materials.

Nanoparticles have found their way into the food industry due to their antimi-

crobial properties. For example, silver-montmorillonite (Ag-MMT) nanoparticles

were used in the prevention of food spoilage (Costa et al. 2011). In addition to

preventing the growth of food-spoiling microbes, Ag-MMT nanoparticles also

preserved color, odor, and firmness of the food (Costa et al. 2011).

Nanoparticles also have potential in controlling pollution because of their ability

to catalyze the conversion of toxic gases (carbon monoxide and nitrogen oxide)

from the exhaust of vehicles and power generators. Iron nanoparticles, along with

palladium, converted detrimental products in groundwater to inert or less harmful

products (He and Zhao 2005). The nanoparticles were also shown to be effective in

removing organic chlorine (a carcinogen) from water contaminated with the

chlorine-based organic solvents (used in dry cleaners).
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3.2 Nanoparticles in Biotechnology and Medicine

Carbon nanotubes have been used as probe tips in atomic force microscopy (AFM)

which is used for high-resolution imaging of nucleic acids, immunoglobulins, etc.

(Hafner et al. 2001). Molecular recognition and the chemical forces between the

interacting molecules can be studied by attaching AFM tips bearing these bio-

molecules (Hafner et al. 2001).

Nanofiber scaffolds have been employed in the regeneration of cells and organs.

Experiments on a hamster with a detached optic tract demonstrated that a peptide

nanofiber scaffold could facilitate the regeneration of axonal tissue (Ellis-Behnke

et al. 2006). Titanium dioxide and zinc oxide are used in sunscreens and cosmetics

to absorb and reflect UV light.

Nanotube membranes can act as channels for highly selective transport of

molecules and ions between solutions that are present on both sides of the mem-

brane (Jirage et al. 1997). For instance, membranes containing nanotubes with

small inner dimensions (less than 1 nm) were useful for the separation of small

molecules on the basis of molecular size, while the nanotubes with larger inner

diameters (20–60 nm) were used to separate proteins (Martin and Kohli 2003).

The ability of nanoparticles to target and penetrate specific cells and organs has

also been explored in nanomedicine. Nanospheres made of biodegradable (facili-

tating timely release) polymers and drugs have potential applications in acidic

microenvironments as in the case of tumor tissues or sites of inflammation (Kamaly

et al. 2012). Nanoparticles acted as drug carriers for the targeted release of a

conjugate containing chlorotoxin (a peptide that selectively binds to glioblastoma

cells) and liposomes encapsulating antisense oligonucleotides or small interfering

RNAs for effective treatment of glioblastoma (Costa et al. 2013). Similarly, numer-

ous other studies have independently demonstrated the utility of nanoparticles as

drug carriers in different tumor types (Amoozgar et al. 2013; Leifert et al. 2013; Liu

et al. 2013a; Shi et al. 2013; Vivek et al. 2013).

In addition, surface-functionalized nanoparticles can be used to infuse cell

membranes at a much higher level than nanoparticles without a functionalized

surface, which can be employed for transfer of genetic material into living cells

(Lewin et al. 2000). Silica nanospheres coated with ammonium groups (cation) can

bind to DNA (anion) through electrostatic interactions, which could be used to

deliver the latter into the cells (Kneuer et al. 2000).

Nanospheres can act as carriers for antigens and toxoids for potential use in

vaccination. Studies involving antigen-coated polystyrene nanospheres as vaccine

carriers targeting human dendritic cells have been under trial for nasal vaccination

(Matsusaki et al. 2005). Studies have also unveiled the potential of nanoparticles in

the diagnosis and treatment of various cancers. For instance, a study by Yin

et al. (2013) showed enhanced anticancer action of curcumin upon coupling it

with nanoparticles made from methoxy poly(ethylene glycol)-polycaprolactone

(PCL) block copolymers (Yin et al. 2013). Similarly, the silver nanoparticles

were shown to inhibit lung cancer cells in a concentration-dependent manner
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(Sankar et al. 2013). Iron nanoparticles coupled with high-resolution MRI detected

lymph node metastases in patients with prostate cancer at a stage undetectable by

any other method (Harisinghani et al. 2003) and the gold nanoparticles were

employed for the accurate detection of matriptase—a cancer biomarker protein

overexpressed in all types of cancer (Deng et al. 2013). Lastly, nanoparticles made

of compounds with oxygen vacancies (CeO2 and Y2O3) (Schubert et al. 2006) have

been demonstrated to possess neuroprotective and anti-apoptotic properties.

3.3 Antimicrobial Activity of Nanoparticles

Nanoparticles have been considered to be some of the most effectual bioactive

agents mainly because of their large surface area to volume ratio (Hamouda 2012).

Nanopowders possess antimicrobial properties against various bacterial, fungal and

viral human pathogens (Koper et al. 2002; Bosi et al. 2003) and can rapidly kill

bacterial cells (90 % in 1 h). The antibacterial properties of silver and titanium

dioxide nanoparticles have been assessed as coatings for surgical masks

(Li et al. 2006), in addition to many other clinical uses.

Nanoparticles shown to have antimicrobial effects include silver (Lara

et al. 2010; Lok et al. 2006), titanium dioxide (Li et al. 2006), fullerenes (Bosi

et al. 2003), zinc oxide (Brayner et al. 2006), and magnesium fluoride (Lellouche

et al. 2012c). The antibacterial activity of fullerenes was reported against

Escherichia coli, Salmonella and Streptococcus spp. (Bosi et al. 2003). The ability
of zinc oxide nanoparticles to disturb the membrane permeability of E. coli has also
been reported (Brayner et al. 2006). The wide spectrum antimicrobial activity of

silver nanoparticles has been attributed to their ability to destabilize the bacterial

outer membrane and deplete adenosine triphosphate (principal form of energy) in

bacteria (Lara et al. 2010; Lok et al. 2006).

Fullerenes have also been shown to have neuroprotective, anti-apoptotic, and

anti-HIV activities (Bosi et al. 2003). Size-dependent interactions of silver

nanoparticles and HIV-1 virus were reported, which resulted in the inhibition of

host–viral interactions (Elechiguerra et al. 2005). Numerous other studies have

demonstrated the antimicrobial potential of various nanoparticles and drug–nano-

particle conjugates against bacterial, fungal, and viral pathogens (Zheng et al. 2013;

Zhao et al. 2013a; Zhang et al. 2013c; Xiong et al. 2013; Westendorf 2013; Wang

and Lim 2013; Wang et al. 2013; Vidic et al. 2013; Tavassoli Hojati et al. 2013; Su

et al. 2013; Shimizu et al. 2013; Mohanty et al. 2012; Mallick et al. 2012; Lellouche

et al. 2012a; Costa et al. 2011; Mukhopadhyay et al. 2010; Huda et al. 2010; Sanpui

et al. 2008; Pinto et al. 2013; Hernandez-Delgadillo et al. 2013; Monteiro

et al. 2012; Khan et al. 2012; Lara et al. 2010).
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4 Nanoparticles as Antibiofilm Agents

The application of nanoparticles is an emerging area of antibiofilm or

antipathogenic research. Nanoparticles are preferred over other agents due to

their acute ability to penetrate EPS and cell membranes. Nanoparticles were

found to be efficient drug carriers, effectively transporting drugs across the biofilm

matrix. Silver, iron and zinc nanoparticles have received the most attention as

antibiofilm agents. Silver nanoparticles are the predominant ones with antibiofilm

activity against Gram-positive bacteria like S. aureus, S. epidermidis, E. faecalis,
and Streptococcus mutans; Gram-negative bacteria like P. aeruginosa, Salmonella
paratyphi, E. coli, and Acinetobacter baumannii; and fungal pathogens like

C. albicans and C. glabrata. Details of nanoparticles with antibiofilm activities,

along with their target pathogens, are given in Table 1.

The use of nanoparticles in combination with other antibiotics or drugs was

found to have superior action than when alone. Chitosan nanoparticles loaded with

Tamoxifen were effective in controlling tumor development in breast cancer cell

lines (Vivek et al. 2013). Similarly, the side effects of daunorubicin were reduced

significantly when combined with titanium oxide nanoparticles, which increased

the target specificity and anticancer activity in leukemia cells (Zhang et al. 2012).

Silver nanoparticles in combination with conventional antibiotics like ampicillin,

chloramphenicol, and kanamycin have shown antibiofilm activity against Gram-

positive and negative bacterial pathogens including E. faecium, S. aureus, E. coli,
and P. aeruginosa (Hwang et al. 2012).

5 Demerits of Nanoparticles

Even though nanoparticles have historically been considered inert, they are actually

highly reactive. The large surface area of nanoparticles can be both a pro and a con

to their application in biology. Nanoparticles are commonly found in dust and

aerosols. Inhaled nanoparticles deposited in the lungs are cleared through host

processes such as mucociliary escalation into the gastrointestinal tract (from

where they are eliminated through the feces) (Semmler et al. 2004), lymphatic

system (Liu et al. 2006b), and circulatory systems (Oberdorster et al. 2005). Failure

to clear these nanoparticles results in accumulation in lungs, subsequently increas-

ing the risk of lung cancer (Borm et al. 2004). Accumulation of nanoparticles in

lungs also elicits an inflammatory response that damages host tissues (Oberdorster

et al. 1994). Adverse effects to nanoparticles include impaired phagocytosis,

inflammation, epithelial cell proliferation followed by fibrosis, emphysema, and

the initiation of tumors (Ferin 1994; Oberdorster et al. 1994; Nikula et al. 1995;

Dasenbrock et al. 1996; Driscoll et al. 1996; Borm et al. 2004).

Inhalation of nanoparticles can also result in immune suppression and reduction

in the ability of the immune system to combat infections (Lucarelli et al. 2004).
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Table 1 Antibiofilm activity of nanoparticles and their target pathogens

Nanoparticle Target organism References

Silver nanoparticles S. paratyphi,
P. aeruginosa,
S. epidermidis

Apte et al. (2013b),

Kalishwaralal

et al. (2010)

Bismuth oxide aqueous colloidal nanoparticles C. albicans, S. mutans Hernandez-

Delgadillo

et al. (2012, 2013)

Nano-oil formulation from Mentha piperita L. Staphylococcus sp. Anghel and

Grumezescu

(2013)

Nanoemulsion (detergent, oil, and water) in

combination with cetylpyridinium chloride

A. baumannii Hwang et al. (2013)

Silver and gold incorporated polyurethane,

polycaprolactam, polycarbonate, and

polymethylmethacrylate

E. coli Sawant et al. (2013)

Silver nanoparticles in combination with

nystatin and chlorhexidine

C. albicans, C. glabrata Monteiro et al. (2012,

2013)

Silver nanoparticle and

12-methacryloyloxydodecylpyridinium

bromide (MDPB)

Dental plaque micro-

cosm biofilms

Zhang

et al. (2013a, b)

Zinc Actinobacillus
pleuropneumoniae,
S. typhimurium,
Haemophilus
parasuis, E. coli,
S. aureus, S. suis

Wu et al. (2013)

Magnetite nanoparticles C. albicans Anghel et al. (2012)

Eugenia carryophyllata essential oil stabilized

by iron oxide/oleic acid core/shell

nanostructures

S. aureus Grumezescu

et al. (2011, 2012)

Zinc and copper oxide nanoparticles S. mutans Eshed et al. (2012)

Zerovalent bismuth nanoparticle S. mutans Hernandez-

Delgadillo

et al. (2012)

Silver nanoparticles in combination with

ampicillin, chloramphenicol, and kanamycin

Enterococcus faecium,
S. aureus, E. coli,
P. aeruginosa

Hwang et al. (2012)

Dextran sulfate nanoparticle complex

containing ofloxacin and levofloxacin

P. aeruginosa Cheow and Hadinoto

(2012)

PEG-stabilized lipid nanoparticles loaded with

terpinen-4-ol

C. albicans Sun et al. (2012)

Magnesium fluoride nanoparticles S. aureus, E. coli Lellouche

et al. (2009,

2012b, c)

Yttrium fluoride nanoparticles S. aureus, E. coli Lellouche

et al. (2012a)

Iron oxide/oleic acid in combination with

essential oil from Rosmarinus officinalis
C. albicans,

C. tropicalis
Chifiriuc et al. (2012)

Gold nanoparticles and methylene blue C. albicans Khan et al. (2012)

Starch-stabilized silver nanoparticles S. aureus, P. aeruginosa Mohanty et al. (2012)

(continued)
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Exposure to nanoparticles like zirconium dioxide (ZrO2) induces overexpression of

viral receptors and in turn results in hyper-reaction of the immune system and

subsequent unwarranted inflammation (Lucarelli et al. 2004). In vivo and in vitro

studies have shown the ability of nanoparticles (fullerenes, carbon nanotubes,

quantum dots, and automobile exhaust) to initiate the production of reactive oxygen

species (ROS) (Oberdorster et al. 2005), which has been shown to play a key role in

cell damage by peroxidizing lipids, damaging proteins and nucleic acids, interfering

with signaling functions, and modulating gene expression (Brown et al. 2004;

Risom et al. 2005; Peters et al. 2006; Mehta et al. 2008). Malfunction of mitochon-

dria has also been observed upon nanoparticle treatment as they effectively enter

these organelles and contribute to oxidative stress and damage (Li et al. 2003; Xia

et al. 2006; Sioutas et al. 2005). There is also evidence of the adverse effects

Table 1 (continued)

Nanoparticle Target organism References

Iron oxide–oleic acid nanofluid S. aureus Grumezescu

et al. (2011)

Chitosan, zinc oxide, nitric oxide nanoparticles E. faecalis Shrestha et al. (2010)

Quaternary ammonium polyethylenimine

nanoparticles

Oral biofilms Beyth et al. (2010)

Zinc oxide nanoparticles, chitosan

nanoparticles, and combination of both

E. faecalis Kishen et al. (2008)

Polyurethane nanocomposite S. epidermidis Styan et al. (2007)

Fig. 1 Molecular mechanisms involved in nanoparticle-induced cellular toxicity (adopted and

modified from Buzea et al. 2007)
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(appearance of thrombi) of nanoparticles on the cardiovascular system (Schulz

et al. 2005; Nemmar et al. 2002; Vermylen et al. 2005; Hoet et al. 2004). Uptake

of nanoparticles through skin results in their accumulation in the lymphatic system

causing podoconiosis (Corachan 1988; Blundell et al. 1989) and Kaposi’s sarcoma

(Montella et al. 1997; Mott et al. 2002). Molecular mechanisms involved in

nanoparticle-mediated cellular toxicity are schematically represented (Fig. 1).

6 Conclusions

Nanotechnology is a nascent field of science with promising potential in many

fields including physics, chemistry, biology, pharmacology, and medicine. As

discussed in this chapter, nanoparticles can be our friend or foe. Although there

are reports which state nanoparticles are toxic, there is always the potential for

improvement and development of safe and effective novel nanoparticles or

nanocomposites. The utility of nanoparticles as drug carriers appears to be an

important tool for targeted tumor therapy, and enhancing the efficacy of drugs

could be another attractive application for nanomaterials. Even though the use of

nanoparticles in vivo is debatable for now, their use on inanimate objects is

effective. Without any doubt, the future will witness increasing use of nanoparticles

in many fields, hopefully for the improvement of mankind.
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Drug Delivery Systems That Eradicate

and/or Prevent Biofilm Formation

Mohammad Sajid, Mohd Sajjad Ahmad Khan, Swaranjit Singh Cameotra,

and Iqbal Ahmad

Abstract The capability to form biofilms contributes significantly to the patho-

genesis of microbial infections by various mechanisms including a decrease in

susceptibility to antimicrobial agents. Over the past few years therapy against

biofilm has undergone a revolutionary shift to effectively kill biofilm-producing

microorganisms. With the advancement of biotechnology, emphasis has been made

to effectively deliver antimicrobial agents against biofilm. In this regard, particulate

materials have attracted enormous attention as drug delivery systems, not only for

the controlled release of drugs but also because of the rapid development of

synthetic methods for controlling morphology and particle size from the micro to

the nanoscale. For targeted drug delivery a number of constituents in the process of

biofilm formation have been studied as targets for novel drug delivery technologies.

In this chapter, the contribution of various drug delivery systems made up of

amphiphilic molecules (liposome, niosomes), polymer (PLGA), chitin (chitosan),

and dendrimer, and their potential to deliver antimicrobial agents against biofilm is

discussed.

1 Introduction

The age of nanostructural delivery systems began with the development of lipo-

some by Bangham et al. (1965). Since then a large number of nanoparticulate

systems have been developed and as of now, the sheer number and types of

nanoparticulate structures that have been already developed or are being researched
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is tremendous. The concept of the ‘magic bullet’ proposed a century ago by Nobel

laureate Paul Ehrlich came to reality with the recent appearance of several approved

forms of drug-targeting systems for the treatment of certain cancers and serious

infectious diseases.

The lack of newer antibiotics and the emergence of multiple drug resistant to the

conventional antibiotics have shifted research to the optimization of existing drugs.

A wide range of materials, such as natural or synthetic polymers, lipids, surfactants,

and dendrimers (Fig. 1), have been employed as drug carriers which significantly

affect the pharmokinetics and phamacodynamics of the drug (Duncan 2003, 2006;

Sampathkumar and Yarema 2005; Torchilin 2008). Therapeutic and preventive

strategies, in order to be successful, depend not only on the appropriate choice of

the active principle but also to a large extent on the use of an appropriate delivery

system. This holds true for difficult to deliver compounds; in particular drugs that

have poor solubility (hydrophobic) and poor permeability. In fact, the quest to find

the ideal therapeutic strategy will continue until a drug with maximum efficacy and

no side effects is found.

Many present day drugs are plagued by narrow therapeutic windows and toxic-

ity. These bottlenecks can be circumvented, and the therapeutic effectiveness of

existing drugs can be improved, through the use of an appropriately designed

delivery system, which can modify the distribution of the drug in the body by

targeting it to desired site and by controlling its release. These ideas are being

realized through the use of nanotechnology to develop nanoparticulate delivery

systems for drug and antigen delivery. For example, these drug delivery systems

could diffuse into the mucus environment surrounding a biofilm where local and

controlled release of the antibiofilm ingredient increases its efficacy (Meers

et al. 2008; Suk et al. 2009; Tang et al. 2009).

Fig. 1 Size ranges of various drug delivery systems
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2 Vesicular Systems

Vesicular systems are highly ordered assemblies of one or several concentric

bilayers that are formed when certain amphiphilic building blocks are dispersed

in water. A wide variety of lipids and surfactants can be used to prepare vesicular

carriers (Crommelin and Schreier 1994; Mullertz et al. 2010). The composition of

the vesicles influences their physicochemical characteristics such as size, charge,

thermodynamic phase, lamellarity, and bilayer elasticity. These physicochemical

characteristics have a significant effect on the behavior of the vesicles and hence on

their effectiveness as a drug delivery system. Vesicular systems have been able to

address the problems of drug insolubility, instability, and rapid degradation. These

systems delay elimination of rapidly metabolizable drugs and function as sustained

release systems. Encapsulation of a drug in vesicular structures can be predicted to

prolong the existence of the drug in systemic circulation, and reduce the toxicity if

selective uptake can be achieved (Todd et al. 1982). Vesicular systems can incor-

porate both hydrophilic and lipophilic drugs. Hydrophilic drugs can be entrapped

into the internal aqueous compartment, whereas amphiphilic, lipophilic, and

charged hydrophilic drugs can be associated with the vesicle bilayer by hydropho-

bic and/or electrostatic interactions (Martin and Lloyd 1992).

The applications of vesicles in drug delivery are based on physicochemical and

colloidal characterization such as composition, size, and loading efficiency and the

stability of the carrier, as well as their biological interactions with the cells. A major

interaction is lipid exchange whereby liposomal lipids are exchanged with the lipids

of various cell membranes. This depends on the mechanical stability of the bilayer

and can be reduced by the addition of cholesterol (which gives rise to greatly

improve mechanical properties, such as increased stretching elastic modulus,

resulting in stronger membranes and reduced permeability). The second major

interaction is adsorption into cells, which occurs when the attractive forces (elec-

trostatic, electrodynamic, van der walls, hydrophobic interaction, hydrogen bond-

ing, etc.) exceed repulsive forces (electrostatic, steric, hydration, undulation,

protrusion, etc.) (Lasic 1993; Lipowsky 1995; Israelachvili 1991).

2.1 Liposome-Based Drug Delivery Systems

Liposomes are globular lipid vesicles with a bilayer membrane consisting of

amphiphilic lipid molecules (Zhang and Granick 2006). The liposome or lipid

vesicles are self-forming, enclosed lipid bilayers upon hydration; liposomal drug

delivery systems have played a considerable role in the transport of potent drugs to

improve therapeutics. Liposomal drug delivery system can be made of either

natural or synthetic lipids. One of the most frequently used lipid moieties in

liposome preparations is phosphotidylcholine, which is an electrically neutral

phospholipid that contains fatty acyl chains of varying degrees of saturation and
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length. Essentially, cholesterol is incorporated into the formulation to regulate

membrane rigidity and stability. Structurally, liposomes can be classified into

multilamellar vesicles (MLVs), which consist of manifold phospholipid bilayer

membranes, and unilamellar vesicles (ULVs), which have a single lipid bilayer

(Fig. 2). ULVs can be further classified into small unilamellar vesicles (SUVs) and

large unilamellar vesicles (LUVs) according to their size range (Vemuri and

Rhodes 1995).

Types and sizes of vesicular systems

Type Specifications Diameter (μm)

MLV Multilamellar large vesicles >0.5

MVV Multivesicular vesicles 0.1–20

OLV Oligolamellar vesicles 0.1–1.0

SUV Small unilamellar vesicles 20–100

LUV Large unilamellar vesicles >100

GUV Giant unilamellar vesicles >1

Recently liposomal formulations have been designed to reduce toxicity and

increase accumulation at the target site. There are several methods of liposome

preparation based on lipid drug interaction and liposome disposition mechanisms

including the inhibition of rapid clearance of liposome by controlling particle size,

charge, and surface hydration. Most clinical applications of liposomal drug delivery

are targeted to tissue with or without expression of target identification molecules

on the lipid membrane. Liposomes are characterized with respect to physical,

chemical, and biological parameters. This approach of drug delivery provides

safer and more efficacious administration of several classes of drugs including

antiviral, antifungal, antimicrobials, vaccines, anti-tubercular drugs, and gene ther-

apeutics (Duzgunes et al. 1999; Johnson et al. 1998; Alipour et al. 2008; Watson

Fig. 2 Relative sizes of

liposomal systems
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et al. 2012; Pandey et al. 2004; Nakase et al. 2005), while also inhibiting biofilm

formation (Table 2).

One of the characteristic features of liposomes are their lipid bilayer structure,

which resembles cell membranes and can readily fuse with microbes. By directly

fusing with bacterial membranes, the drug loaded in liposomes can be released in

the cell membranes or the interior of the bacteria. The unique structure of lipo-

somes, a lipid membrane surrounding an aqueous cavity, allows them to carry both

hydrophobic and hydrophilic compounds without chemical modification. In addi-

tion, the liposome surface can be easily functionalized with “stealth” material to

increase their in vivo stability or target ligands via preferential delivery by lipo-

somes. For example, polyethylene glycol (PEG) has been frequently conjugated to

liposome surfaces to create a stealth layer that prolongs the circulation lifetime of

liposomes in the blood stream. On the other hand, by attaching targeting ligands

such as antibodies, antibody segments, aptamers, peptides, or small molecule

ligands to the surface of the liposomes, they can selectively bind to microorganisms

or infected cells and then release the drug payloads to kill or inhibit the growth of

the microorganisms (Zhang et al. 2010; Alphandary et al. 2000; Maruyama

et al. 1990).

Liposomes are appealing drug carrier systems, especially against colonizing

microorganisms, due to several factors such as good biocompatibility; their ability

to carry drugs with very different characteristics (hydrophobic to hydrophilic); and

encapsulation of the drug protects it from the biological milieu and facilitates drug

transport to a specific target site (Vyas et al. 2007; Tamilvanan et al. 2008).

2.1.1 Liposomal Formulation for Delivery of Drugs to Biofilms

Several studies have been performed investigating the interaction between lipo-

somes and bacterial biofilms (Kim and Jones 2004; Jones 2009). Halwani

et al. (2008) showed that this new strategy can be used to deliver two agents at

the same time in order to prevent Pseudomonas aeruginosa biofilm formation and

resistance in vitro. DiTizio et al. (1998) developed a liposomal hydrogel to deliver

ciprofloxacin that reduced bacterial adhesion to a silicone catheter in a rat model of

persistent P. aeruginosa peritonitis. This technique opened new avenues for the

development of novel antimicrobial peritoneal dialysis catheters as well as other

types of catheters (Finelli et al. 2002). Buckler et al. (2008) reported that liposomal

antifungal lock therapy could be a possible alternative to catheter removal. In fact,

this therapy was previously tested with success in an animal model of C. albicans
biofilm-associated CVC infection (Schinabeck et al. 2004). A different study used

liposomal amphotericin B (LAMB) at the minimal inhibitory concentration in a

catheter continuous flow model for Candida and showed that hyphae growth

diminished 20 % in comparison with the traditional antifungal therapy after 24 h

of treatment with LAMB; additionally, the extracellular matrix was undetectable

(Seidler et al. 2010). Among various liposomal delivery systems approved for

clinical use, four of them target fungi (Table 1).

Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation 411



Between the cationic and anionic liposomes used to deliver the bactericide

Triclosan to Streptococcus salivarius DBD and Streptococcus sanguis C104

biofilms and their mixed biofilms, anionic liposomes were most effective in

inhibiting the growth of S. sanguis C104 biofilms, whereas growth of

S. salivarius DBD could not be effectively inhibited by liposomal Triclosan.

Growth inhibition of mixed biofilms by liposomal Triclosan reflected the effects

found on the single species biofilms, whereas anionic liposomes inhibited the

growth of biofilms with a high content of S. sanguis C104 (Robinson et al. 2001).

Additionally, confocal laser scanning microscopy has been used to visualize the

adsorption of fluorescently labeled liposomes on immobilized biofilms of the

bacterium Staphylococcus aureus (Ahmed et al. 2002).

Liposomes can target matrix or biofilm cells by specific attachment, allowing the

drug to be released in the vicinity of the microorganisms; although, in the case of

adhesion of yeast cells to human cells, further study is needed on the ability of these

systems to prevent adhesion but not affect adhered cells. So, this nanotechnology is

indeed a promising research area, but requires more studies to fully understand the

mechanism behind the antimicrobial activity.

2.2 Niosome-Based Drug Delivery Systems

Niosomes are nonionic surfactant vesicles constructed by the hydration of synthetic

nonionic surfactants, with or without amalgamation of cholesterol or other lipids.

They are also called nonionic surfactant vesicles (NISV) or novasomes (Brewer and

Alexander 1994; Gupta et al. 1996). They are vesicular systems similar to lipo-

somes that can be used as carriers of amphiphilic and lipophilic molecules but have

a better stability and release profile (Mukherjee et al. 2007), lower cost, and less

Table 1 Liposomal formulation of antifungal agents in clinical trial

Product

name

Active

drug

Route of

injection

Approved

indication

Trial

phase Reference

Nyotran Nystatin Intravenous Systemic

fungal

infection

Phase

I/II

Immordino et al. (2006)

AmBisome Amphotericin-B Intravenous Fungal

infections

Phase

II/III

Immordino et al. (2006),

Meunier et al. (1991)

Abelcet Amphotericin-B Intravenous Sever fungal

infections

Phase

I/II

Enzon Pharmaceuticals,

Wasan and

Lopez-Berestein (1996)

Amphotec Amphotericin-B Intravenous Sever fungal

infections

Phase

II/III

Denning et al. (1994),

Three Rivers

Pharmaceuticals
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variation in purity in their manufacturing with phospholipids as compared to

liposomes (Fang et al. 2001). Niosomes are promising vehicles for drug delivery

because they are nonionic, resulting in less toxicity, and they are more specific

(Alam et al. 2009). The hydrophilic core of the molecule provides an ideal domain

for hydrophilic drugs. In addition, lipophilic compounds can incorporate into their

hydrophobic domain (Fig. 3). In addition, modification of niosomes can direct them

to specific targets. Niosomal systems can target antibiotics to the surface of

bacterial biofilms. Based on the vesicle size, niosomes can be divided into three

groups. These are small unilamellar vesicles (SUV, size ¼ 0.025–0.05 μm),

multilamellar vesicles (MLV, size¼ >0.05 μm), and large unilamellar vesicles

(LUV, size¼ >0.10 μm).

Opinions about the usefulness of niosomes in the delivery of drugs vary

depending on the use, e.g., encapsulating toxic drugs such as anti-AIDS drugs,

anticancer drugs, antiviral drugs, and antimicrobial drugs. However, they do pro-

vide a promising carrier system in comparison with ionic drug carriers, which are

relatively toxic. However, the technology utilized in niosomes is still in its infancy.

Hence, future research is required to develop an appropriate technology for large

production (Kazi et al. 2010).

3 Polymer-Based Drug Delivery Systems

Polymer-based drug delivery systems consist of hydrophilic and hydrophobic

regions. The hydrophobic part forms a polymeric core containing the drugs, while

the hydrophilic segment protects the core from degradation. A variety of biode-

gradable polymers have been used to form the hydrophobic polymeric core, includ-

ing poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactide-co-glycolide)

(PLGA), poly(carprolactone) (PCL), and poly(cyanoacrylate) (PCA), whereas

polyethylene glycol (PEG) has been commonly used for the hydrophilic segment.

Polymer-based drug delivery systems possess several unique characteristics for

antimicrobial drug delivery. They are structurally stable and can be synthesized

Fig. 3 Niosomal drug

delivery system
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with a controlled size distribution. Particle properties such as size, zeta potentials,

and drug release profiles can be precisely tuned by selecting different polymer

lengths, surfactants, and organic solvents during the synthesis. Functional groups

present on the surface of polymeric nanoparticles can be chemically modified with

either drug moieties or targeting ligands (Tanihara et al. 1999).

In the past few years, the use of biocompatible or biodegradable polymers has

gained importance in the medicinal field as antimicrobial carriers against biofilms

(Table 2). Although molecules that undergo bio-erosion are also used interchange-

ably with biodegradation, the two differ; erosion occurs by the dissolution of chain

fragments in non-cross-linked systems without chemical alterations to the molec-

ular structure, while biodegradation occurs through the covalent bond cleavage by a

chemical reaction. Both biodegradation and erosion can occur as a surface or bulk

process. In surface degradation the polymeric matrix is progressively removed from

the surface, but the polymer volume fraction remains almost unchanged. In con-

trast, during bulk degradation no significant changes occur in the physical size of

the polymer until it is nearly completely degraded or eroded. Among these prod-

ucts, polymeric microspheres, polymer micelles, and hydrogel-type materials have

been shown to be effective nanocarriers in enhancing drug targeting specificity,

Table 2 Liposomal formulations for antibiofilm drug delivery

Formulation Encapsulated drug

Biofilm-producing

target organism Reference

Liposome Penicillin G Staphylococcus
aureus

Kim and Jones (2004)

Liposome Gentamicin Pseudomonas
aeruginosa

Halwani et al. (2008)

Solid supported

liposome

Triclosan Streptococcus
oralis

Catuogno and Jones

(2003)

Liposome Vancomycin Staphylococcus
aureus

Kim et al. (1999)

Liposome Amikacin Pseudomonas
aeruginosa

Meers et al. (2008)

Cationic nanoliposomes Rifampin Staphylococcus
epidermidis

Sharif et al. (2012a, b)

Liposome Amphotericin-B Candida albicans Ramage et al. (2013)

Liposome Bismuth–thiol and

tobramycin

Pseudomonas
aeruginosa

Halwani et al. (2009)

Liposome Clarithromycin Pseudomonas
aeruginosa

Alhajlan et al. (2013)

Liposomes Bismuth–

ethanedithiol

with tobramycin

Pseudomonas
aeruginosa

Alipour et al. (2010)

Liposome combined

beta-TCP scaffold

Gentamicin Staphylococcus
aureus

Zhu et al. (2010)

Mannosylated liposome Metronidazole Staphylococcus
aureus

Vyas et al. (2007)
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lowering systemic drug toxicity, improving treatment absorption rates, and provid-

ing protection for pharmaceuticals against biochemical degradation (Sanli

et al. 2008).

3.1 Poly(DL-lactide-co-glycolide) Nanocapsule-Based Drug
Delivery Systems

PLGA is a clinically approved (FDA), biodegradable, and biocompatible polymer

considered safe for controlled release formulations (Lu et al. 2009). PLGA is poly-

ester consisting of one or more different hydroxy acid monomers, D-lactic, L-lactic,

and/or glycolic acids. In general, the polymer, can be made to be highly crystalline

[e.g., poly(L-lactic acid)], or completely amorphous [e.g., poly(DL-lactic-co-glycolic

acid)], can be processed into most any shape and size (down to �200 nm), and can

encapsulate molecules of virtually any size. PLGA is one of the most effectively used

polymers for the development of a drug delivery system because it undergoes

hydrolysis in the body to produce the biodegradable metabolite monomers, lactic

acid and glycolic acid, which are assimilated by the body, resulting in minimal

systemic toxicity (Wu 1995). Many approaches have been proposed for the prepara-

tion of PLGA particles. The emulsification–evaporation method (Sahoo et al. 2004),

the spontaneous emulsification–solvent diffusion method (SESD) (Bilati et al. 2005),

the nanoprecipitation method (Govender et al. 1999; Rivera et al. 2004), and the

spray-dryingmethod (Takashima et al. 2007; Cheng et al. 2008) are all widely used in

preparing PLGA nano/microparticles of various size.

PLGA polymers have been used to trap several antibiotics in nanoparticle

formulations, demonstrating improved delivery and antibiotic efficacy (Pillai

et al. 2008; Mohammadi et al. 2010; Kashi et al. 2012). Notably, Cheow

et al. (2010) reported the preparation of levofloxacin loaded poly(DL-lactide-co-

glycolide) (PLGA) and poly(caprolactone) (PLC) nanoparticles and showed that, to

be effective against E. coli biofilm cells, the formulation required a biphasic

extended release profile. This release profile consisted of an initial fast release,

providing high antibiotic concentrations for biofilm eradication, followed by slower

extended release that minimized biofilm growth and infection exacerbation.

Katherine et al. (2012) verified that cinnamaldehyde (CA) and carvacrol (CARV)

in solution significantly impaired bacterial growth, and therefore biofilm formation,

by E. coli, P. aeruginosa, and S. aureus at low concentrations. A PLGA formulation

of gentamicin also demonstrated improved antimicrobial effects on peritoneal

infection caused by P. aeruginosa biofilms in vivo (Sharif et al. 2012a, b).
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3.2 Others Polymer-Based Drug Delivery Systems

The University of Washington Engineered Biomaterials group has developed a

novel drug delivery polymer matrix consisting of a poly(2-hydroxyethyl methac-

rylate) hydrogel coated with ordered methylene chains that form an ultrasound-

responsive coating. This system was able to retain the drug ciprofloxacin inside the

polymer in the absence of ultrasound, but showed significant drug release when

low-intensity ultrasound was applied (Norris et al. 2005).

4 Dendrimer-Based Drug Delivery Systems

Dendrimers are highly ordered and repeatedly branched globular macromolecules

produced by stepwise iterative approaches first described by Buhleier et al. (1978).

The structure of dendrimers consists of three distinctive architectural regions: a

core, layers of branched repeat units emerging from the core, and functional end

groups on the outer layer of repeat units (Grayson and Frechet 2001). Tomalia

et al. (1984) reported the synthesis and characterization of the first family of

polyamidoamine (PAMAM) dendrimers, which has developed into one of the

most accepted dendrimers since. Two synthetic approaches, divergent and conver-

gent, have been developed to synthesize dendrimer systems for delivering various

types of drugs. In the divergent approach, synthesis initiates from a core and

emanates outward through a repetition of coupling and activation steps. During

the first coupling reaction, the peripheral functional groups of the core react with

the complementary reactive groups to form new latent branch points at the coupling

sites and increase the number of peripheral functional groups. These latent func-

tional groups are then activated to couple with additional monomers. The activation

of the latent functional groups can be achieved by removal of protecting groups,

coupling with secondary molecules, or reactive functionalization (Fig. 4). Large

excess of reagents is required to drive the activation step to completion. The

resulting dendrimer products can then be separated from the excess reagents by

distillation, precipitation, or ultrafiltration.

In contrast, the convergent approach initiates the synthesis from the periphery

and progresses inward (Fig. 5). This approach starts with coupling end groups to

each branch of the monomer, followed by the activation of a single functional group

located at the focal point of the first wedge-shape dendritic fragment or dendron.

Higher generation dendron is synthesized by the coupling of the activated dendron

to an additional monomer. After repetition of the coupling and activation steps, a

globular dendrimer is formed by attaching a number of dendrons to a polyfunctional

core. Dendrimers thus synthesized can be effectively purified. However, synthesis

of large dendrimers above the sixth generation is difficult (Grayson and Frechet

2001).
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Dendrimers acquire several unique properties that make them an excellent

platform for antimicrobial drug delivery. The highly branched nature of dendrimers

provides enormous surface area to size ratio and allows great reactivity with

microorganisms in vivo. In addition, both hydrophobic and hydrophilic agents

can be loaded into dendrimers. Hydrophobic drugs can be trapped inside the cavity

in the hydrophobic core and hydrophilic drugs can be linked to the multivalent

surfaces of dendrimers through covalent conjugation or electrostatic interaction

(Florence 2005; Gillies and Frechet 2005). The polycationic nature of dendrimer

biocides facilitates the initial electrostatic adsorption to negatively charged bacte-

ria. Glycopeptide dendrimers (branched oligopeptides) have great potential to block

P. aeruginosa biofilm formation and induce biofilm dispersal in vitro (Emma

et al. 2008) due to their high affinity toward the P. aeruginosa lectins LecB and

LecA, which are responsible for formation of antibiotic-resistant biofilms. The

dendrimeric peptide (RW) 4D has been shown to be active against multidrug-

resistant (MDR) S. aureus and E. coli (D31) as well as Acinetobacter baumannii
and E. coli RP437 (Hou et al. 2009).

5 Chitosan-Based Drug Delivery Systems

Chitosan is a natural cationic polymer that consists of D-glucosamine and N-actyl-

glucosamine linked via β-(1,4)-glycosidic bonds and is obtained by the alkaline

deacetylation of chitin. It is nontoxic, biocompatible, biodegradable, and has

Fig. 4 Divergent synthesis of dendrimer: from core to surface

Fig. 5 Convergent synthesis of dendrimer: fragment condensation
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mucusoadhesive properties due to its electrostatic interactions with the sialic groups

of mucin (Huang and Khort 2004). The chemical modification of chitosan imparts

amphiphilicity, which is an important characteristic for the formation of self-

assembled nanoparticles and biofilm delivery (Tables 3 and 4). The hydrophobic

cores of the nanoparticles can act as reservoirs or microcontainers for various

bioactive substances such as antimicrobial or anticancer agents, genes, and vac-

cines. Due to its biocompatibility, biodegradability, lack of toxicity, and adsorption

properties, chitosan is also used as a stabilizing agent to prepare silver, gold, and

platinum nanoparticles (Namasivayam and Roy 2013). Due to the cationic nature of

chitosan, it strongly binds to anionic antibiotics through the formation of ionic

complexes (Zhengbing and Sun 2009).

6 Conclusions

The biofilm matrix helps microbes to aggregate and adhere to various biological

and nonbiological surfaces. Drugs against biofilm components and the machinery

used by bacteria to establish biofilms (e.g., quorum sensing) will undoubtedly help

Table 3 Polymer-based drug delivery systems with antibiofilm activity

Delivery system Encapsulated drug

Biofilm-producing

target organism Reference

Poly(DL-lactic-co-glycolic

acid) microparticles

Rifampin,

Clindamycin

hydrochloride

Staphylococcus
aureus

Daniel

et al. (2012)

Poly(DL-lactide-co-glycolide

(PLGA) nanocapsules

Carvacrol Staphylococcus
epidermidis

Iannitelli

et al. (2011)

Polymer nano composite Silver and gold

nanoparticles

Escherichia coli Sawant

et al. (2013)

Poly(DL-lactic acid) Vancomycin Staphylococcus
aureus (MRSA)

Ravelingien

et al. (2010)

Poly(L-lactic acid) Ciprofloxacin Pseudomonas
aeruginosa

Owusu-Ababio

et al. (1995)

Table 4 Chitosan-based formulations for antibiofilm drug delivery

Delivery system

Encapsulated

drug Biofilm-producing target organism Reference

n-HA/CS/KGM Vancomycin Staphylococcus aureus Ma et al. (2011)

Chitosan Rifampin Staphylococcus epidermidis, Staphylo-
coccus aureus

Zhengbing and Sun

(2009)

Chitosan

microspheres

Tetracyclin Pseudomonas aeruginosa Nahla et al. (2012)

Chitosan Gentamicin Staphylococcus spp. clinical isolates Tunney et al. (2008)
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to combat biofilm infections. While natural compounds and synthetic analogues

have been used effectively to inhibit biofilm formation by quorum quenching, most

are still in the preclinical phase, often due to cytotoxicity, low solubility, rapid

degradation, and/or clearance in the blood stream. Drug delivery systems such as

liposomes, niosomes, polymer-based particles, and dendrimers should be able to

overcome these issues and facilitate effective delivery of antimicrobial agents to

microbial niches including the biofilm. Liposomal and niosomal materials can be

easily manipulated for the design of a new ideal temporary store to enhance

therapeutic efficacy or improve the drug release profile is of a great interest. In

addition to this, multifunctional liposome and niosome formulations with targeted

moieties such as antibodies, peptides, glycoproteins, polysaccharides, and receptors

may increase liposomal drug accumulation in the biofilm. Drug delivery using

PLGA or PLGA-based polymers is an attractive research area with the primary

goal of increasing the therapeutic effects of drugs while minimizing side effects and

should provide limitless opportunities. The therapeutic advantages of PLGA as a

drug carrier are becoming apparent and will soon be associated with every route of

drug administration, making them feasible candidates for drug delivery systems.

The medical management of malignancies has been impacted by PLGA-based drug

delivery systems, but soon, other medical specialties will also use these novel forms

of drug delivery to achieve optimal treatment success. As more clinical data

become available, our knowledge of their pharmacology and long-term health

effects will expand, leading to the development of more rationally designed and

optimized drug-loaded PLGA-based delivery systems. Ideally, these systems will

have improved selectivity, efficacy, and safety and will be fully accepted by the

market. Dendrimer and chitosan have also proved to be suitable carriers for delivery

of a variety of drugs. Surface engineering will further improve the effectiveness of

dendrimer and chitosan-based drug delivery systems against biofilm eradication. In

summary, the majority of antimicrobial drug delivery systems are presently in

preclinical development, but several have been approved for clinical use. With

the ongoing efforts in this field, there is no doubt that these drug delivery systems

will continue to improve management of bacterial infections, especially in life-

threatening diseases.

References

ABELCET-(Amphotericin-b, Dimyristoylphosphatidylcholine, dl- and Dimyristoylphosphatidyl-

glycerol, dl- injection). Enzon Pharmaceuticals, Bridgewater, NJ

Ahmed K, Gribbon PN, Jones MN (2002) The application of confocal microscopy to the study of

liposome adsorption onto bacterial biofilms. J Liposome Res 12(4):285–300

Alam M, Dwivedi V, Khan AA, Mohammad O (2009) Efficacy of niosomal formulation of diallyl

sulfide against experimental candidiasis in Swiss albino mice. Nanomedicine 4(7):713–724

Alhajlan M, Alhariri M, Omri A (2013) Efficacy and safety of liposomal clarithromycin and its

effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 57(6):

2694–2704

Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation 419



Alipour M, Halwani M, Omri A, Suntres ZE (2008) Antimicrobial effectiveness of liposomal

polymyxin B against resistant Gram-negative bacterial strains. Int J Pharm 355(1–2):293–298

Alipour M, Suntres ZE, Lafrenie RM, Omri A (2010) Attenuation of Pseudomonas aeruginosa
virulence factors and biofilms by co-encapsulation of bismuth–ethanedithiol with tobramycin

in liposomes. J Antimicrob Chemother 65:684–693

Alphandary HP, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using lipo-

somes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168

AMPHOTEC-Distributed by Three Rivers Pharmaceuticals, LLC, Warrendale, PA. (US Patent

Numbers 4,822,777; 5,032,582; 5,194,266; 5,077,057)

Bangham AD, Standish MM,Watkins JC (1965) Diffusion of univalent ions across the lamellae of

swollen phospholipids. J Mol Biol 13:238–252

Bilati U, Allemann E, Doelker E (2005) Development of a nanoprecipitation method intended for

the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

Brewer JM, Alexander J (1994) Studies on the adjuvant activity of non-ionic surfactant vesicles:

adjuvant-driven IgG2a production independent of MHC control. Vaccine 12(7):613–619

Buckler BS, Sams RN, Goei VL, Krishnan KR, Bemis MJ, Parker DP, Murray DL (2008)

Treatment of central venous catheter fungal infection using liposomal amphotericin-B lock

therapy. Pediatr Infect Dis J 27:762–764

Buhleier E, Wehner W, Vogtle F (1978) Cascade and nonskid-chainlike synthesis of molecular

cavity topologies. Synthesis 1978:155–158

Catuogno C, Jones MN (2003) The antibacterial properties of solid supported liposomes on

Streptococcus oralis biofilms. Int J Pharm 257:125–140

Cheng FY, Wang SP, Su CH, Tsai TL, Wu PC, Shieh DB, Chen JH, Hsieh PC, Yeh CS (2008)

Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes.

Biomaterials 29:2104–2112

Cheow WS, Chang MW, Hadinoto K (2010) Antibacterial efficacy of inhalable levofloxacin-

loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release

profile. Pharm Res 27:1597–1609

Crommelin DJA, Schreier H (1994) Liposomes. In: Kreuter J (ed) Colloidal drug delivery systems.

Dekker, New York, pp 73–190

Daniel M, Chessman R, Al-Zahid S, Richards B, Rahman C, Ashraf W, McLaren J, Cox H,

Qutachi O, Fortnum H, Fergie N, Shakesheff K, Birchall JP, Bayston RR (2012) Biofilm

eradication with biodegradable modified-release antibiotic pellets: a potential treatment for

glue ear. Arch Otolaryngol Head Neck Surg 138(10):942–949

Denning DW, Lee JY, Hostetler JS, Pappas P, Kauffman CA et al (1994) NIAID Mycoses Study

Group multicenter trial of oral itraconazole therapy for invasive aspergillosis. Am J Med

97:135–144

DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, DiCosmo FA (1998) Lipo-

somal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 19:

1877–1884

Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

Duncan R (2006) Polymer conjugates for drug targeting: from inspired to inspiration. J Drug

Target 14:333–335

Duzgunes N, Pretzer E, Simoes S, Slepushkin V, Konopka K, Flasher D, de Lima MC (1999)

Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected

cells. Mol Membr Biol 16(1):111–118

EmmaMVJ, Shanika AC, Elena K, LievenB, Rameshwar UK,Martina C, Kai-Malte B, Stephen PD,

Miguel C, Paul W, Remy L, Cristina N, Frank R, Karl-Erich J, Tamis D, Jean-Louis R (2008)

Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers

targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257

Fang JY, Hong CT, Chiu WT (2001) Effect of liposomes and niosomes on skin permeation of

enoxacin. Int J Pharm 219:61–72

420 M. Sajid et al.



Finelli A, Burrows LL, DiCosmo FA, DiTizio V, Sinnadurai S, Oreopoulos DG, Khoury AE

(2002) Colonization-resistant antimicrobial-coated peritoneal dialysis catheters: evaluation in

a newly developed rat model of persistent Pseudomonas aeruginosa peritonitis. Perit Dial Int

22:27–31

Florence AT (2005) Dendrimers: a versatile targeting platform. Adv Drug Deliv 57:2104–2105

Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov

Today 10:35–43

Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by

nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release

52:171–185

Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to appli-

cations. Chem Rev 101:3819–3868

Gupta RK, Varanelli CL, Griffin P, Wallach DFH, Siber GR (1996) Adjuvant properties of

non-phospholipid liposomes (Novasomes®) in experimental animals for human vaccine anti-

gens. Vaccine 14(3):219–225

Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A (2008) Co-encapsulation of

gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against

Pseudomonas aeruginosa. J Antimicrob Chemother 62:1291–1297

Halwani M, Hebert S, Suntres ZE, Lafrenie RM, Azghani AO, Omri A (2009) Bismuth–thiol

incorporation enhances biological activities of liposomal tobramycin against bacterial bio-

film and quorum sensing molecules production by Pseudomonas aeruginosa. Int J Pharm

373(1–2):141–146

Hou S, Zhou C, Liu Z, Young AW, Shi Z, Ren D, Kallenbach NR (2009) Antimicrobial dendrimer

active against Escherichia coli biofilms. Bioorg Med Chem Lett 19:5478–5481

Huang M, Khort LLY (2004) Uptake and cytotoxicity of chitosan molecule and nanoparticles:

effect of molecular weight and degree of deacetylation. Pharm Res 21:344–353

Iannitelli A, Grande R, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C,

Protasi F, Cellini L (2011) Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-

co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12(8):5039–5051

Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale,

and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

Israelachvili JN (1991) Intermolecular and surface forces. Academic, London

Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW (1998) Comparison of in vitro

antifungal activities of free and liposome-encapsulated nystatin with those of four

amphotericin B formulations. Antimicrob Agents Chemother 42(6):1412–1416

Jones MN (2009) Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol

391:211–228

Kashi TS, Eskandarion S, Esfandyari-Manesh M (2012) Improved drug loading and antibacterial

activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing

method. Int J Nanomedicine 7:221–234

Katherine RZ, Jessica DS, Menachem E (2012) Biodegradable polymer (PLGA) coatings featur-

ing cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir 28:13993–13999

Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Niosome: a

future of targeted drug delivery systems. J Adv Pharm Technol Res 1(4):374–380

Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by

use of liposomes. J Liposome Res 14:123–139

Kim HJ, Michael Gias EL, Jones MN (1999) The adsorption of cationic liposomes to Staphylo-
coccus aureus biofilms. Colloids Surf A Physicochem Eng Aspects 149:561–570

Lasic DD (1993) Liposomes, from physics to applications. Elsevier, Amsterdam

Lipowsky R (1995) Generic interactions of flexible membranes. Elsevier, Amsterdam

Lu JM, Wang X, Marin-Muller C (2009) Current advances in research and clinical applications of

PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation 421



Ma T, Shang BC, Tang H, Zhou TH, Xu GL, Li HL, Chen QH, Xu YQ (2011) Nano-hydroxyap-

atite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin:

preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater

Sci Polym Ed 22(12):1669–1681

Martin GP, Lloyd AW (1992) Basic principles of liposomes for drug use. In: Braun-Falco O

et al (eds) Liposome dermatics, Griesbach conference. Springer, Berlin, pp 20–26

Maruyama K, Kennel SJ, Huang L (1990) Lipid composition is important for highly efficient

target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 87:5744–5748

Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, Mackinson GJ, Fisher S,

Perkins WR (2008) Biofilm penetration, triggered release and in vivo activity of inhaled

liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob

Chemother 61:859–868

Meunier F, Prentice HG, Ringdén O (1991) Liposomal amphotericin B (AmBisome): safety data

from a phase II/III clinical trial. J Antimicrob Chemother 28:B83–B91

Mohammadi G, Valizadeh H, Barzegar-Jalali M (2010) Development of azithromycin-PLGA

nanoparticles: physicochemical characterization and antibacterial effect against Salmonella
typhi. Colloids Surf B: Biointerfaces 80:34–39

Mukherjee B, Patra B, Layek B, Mukherjee A (2007) Sustained release of acyclovir from nano-

liposomes and nano-niosomes: an in vitro study. Int J Nanomedicine 2(2):213–225

Mullertz A, Ogbonna A, Ren S, Rades T (2010) New perspectives on lipid and surfactant based

drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol 62(11):

1622–1636

Nahla AM, Hanaa AM, Mona TA (2012) Bactericidal activity of various antibiotics versus

tetracycline-loaded chitosan microspheres against Pseudomonas aeruginosa biofilms. Afr J

Microbiol Res 6(25):5387–5398

Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of

human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):

625–631

Namasivayam SKR, Roy EA (2013) Enhanced antibiofilm activity of chitosan stabilized

chemogenic silver nanoparticles against Escherichia coli. Int J Sci Res Publ 3:1–9
Norris P, NobleM, Francolini I, VinogradovAM, Stewart PS, Ratner BD, Costerton JW, Stoodley P

(2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly

(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention.

Antimicrob Agents Chemother 49(10):4272–4279

Owusu-Ababio G, Rogers JA, Morck DW, Olson ME (1995) Efficacy of sustained release

ciprofloxacin microspheres against device-associated Pseudomonas aeruginosa biofilm infec-

tion in a rabbit peritoneal model. J Med Microbiol 43(5):368–376

Pandey R, Sharma S, Khuller GK (2004) Liposome-based anti-tubercular drug therapy in a guinea

pig model of tuberculosis. Int J Antimicrob Agents 23(4):414–415

Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE (2008) Nafcillin loaded

PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 3:034114

Ramage G, Jose A, Sherry L, Lappin DF, Jones B, Williams C (2013) Liposomal amphotericin B

displays rapid dose dependant activity against Candida albicans biofilms. Antimicrob Agents

Chemother 57(5):2369–2371

Ravelingien M, Mullens S, Luyten J, D’Hondt M, Boonen J, Spiegeleer BD, Coenye T, Vervaet C,

Remon JP (2010) Vancomycin release from poly(DL-lactic acid) spray-coated hydroxyapatite

fibers. Eur J Pharm Biopharm 76(3):366–370

Rivera PA, Martinez-Oharriz MC, Rubio M, Irache JM, Espuelas S (2004) Fluconazole encapsu-

lation in PLGA microspheres by spray-drying. J Microencapsul 21:203–211

Robinson AM, Bannister M, Creeth JE, Jones MN (2001) The interaction of phospholipid

liposomes with mixed bacterial biofilms and their use in the delivery of bactericide.

Colloids Surf A Physicochem Eng Aspects 186:43–53

422 M. Sajid et al.



Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxelloaded

nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

Sampathkumar SG, Yarema KJ (2005) Targeting cancer cells with dendrimers. Chem Biol 12:5–6
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Eradication of Wound Biofilms by Electrical

Stimulation

Chase Watters and Matt Kay

Abstract Chronic wounds are a major clinical health problem, costing billions of

dollars and plaguing millions of people worldwide with increased morbidity and

mortality. Treatment of these wound infections is complex and can take months to

years. The length and difficulty of treating these wounds are largely attributed to the

presence of biofilms created by common microbiological contaminants in the

wounded area. Since multidrug-resistant bacterial biofilms persist in these wounds,

the biofilms are able to dodge the “magic” antibiotic bullet. Without the aid of

antimicrobials to fight off these infections, novel antimicrobials are essential.

Recently, the physical sciences have been mined for alternatives to antibiotics.

One such promising alternative therapy is the use of electrical stimulation devices

to speed the wound healing process. There are three forms of electrical stimulation

predominately utilized to treat chronic wound infections: low-intensity direct

current, high-voltage pulsed current, and alternating current. The use of these

various forms of electrical stimulation is proposed to enhance wound healing via

the stimulation of host cells and by inhibiting bacterial biofilm growth. This chapter

focuses on studies examining electrical stimulation in conjunction with host and

bacterial cells, along with relevant clinical trial studies.
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1 Introduction

1.1 Background on Chronic Wound Infections

Chronic wounds are clinically defined as any wound which fails to heal within

30 days and include diabetic foot ulcers, venous leg ulcers, arterial ulcers, and

pressure ulcers (Bradley et al. 1999; Falanga 1998). Ulcer wounds all possess one

similarity, which is that they penetrate deep into the epidermis of the skin (Robin-

son and Lynn 2008). Wound infections are usually staged with inclination to

severity based on the depth and appearance of the ulcer (The National Pressure

Ulcer Advisory Panel 1989). These wounds are resistant to natural healing and can

require long-term medical care (Beckrich and Aronovitch 1999). The chronic

wound environment supports a variety of microorganisms, including a mixture of

gram-negative, gram-positive, aerobic, and anaerobic bacteria, plus fungal cells

(Leake et al. 2009). Some of the primary bacterial pathogens most commonly

isolated from wound infections are Staphylococcus aureus, Enterococcus faecalis,
Finegoldia magna, and Pseudomonas aeruginosa (Dowd et al. 2008). Indeed,

S. aureus and P. aeruginosa are reported to infect up to 88 % and 33 % of leg

ulcers respectively (Hansson et al. 1995; Schmidt et al. 2000).

1.2 Biofilm Pathogenesis in Chronic Wounds

Microorganisms are thought to delay wound healing by causing tissue damage and

are difficult to treat because of multidrug resistance and the formation of biofilms

(Percival et al. 2010). Biofilms are a conglomerate of bacterial cells, DNA, and

proteins intercalated in a sugary slime matrix (Fuxman Bass et al. 2010). Biofilms

have been implicated to cause many chronic diseases, and when 50 clinical chronic

wounds were evaluated for the presence of biofilm, 60 % of these wounds were

biofilm positive (James et al. 2008). The continued presence of bacterial biofilms in

wounds is thought to delay wound healing for multiple reasons. The outer coating

of the biofilm, called the exopolysaccharide (EPS) matrix, acts as a mechanical

barrier to antibodies and complement, preventing biofilm penetration and

protecting bacterial cells (Thomson 2011; Jacobsen et al. 2011). The EPS may

also prevent fibroblasts, epithelial cells, and keratinocytes from migrating into the

wound bed. As long as the biofilm remains, the immune system will try and remove

it, causing prolonged inflammation and collateral damage to host tissue (Wolcott

et al. 2008). In addition, oxygen is depleted rapidly in biofilms, supporting the

growth of anaerobic bacteria and impairing host cell growth and repair. In biofilm-

associated chronic wound infections, topical and systemic antibiotics have reduced

efficacy. The bacteria within the biofilms are 500–5,000 times more tolerant to

antimicrobials than planktonic bacteria, making these infections difficult to treat

(Anwar et al. 1990). The tolerance that biofilms display is distinct from the
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classical idea of antibiotic resistance. Resistance to antibiotics refers to planktonic

or biofilm cells that exhibit a transferable genetic mutation or acquire a plasmid or

transposon, conferring protection against antimicrobials (Lewis 2007). However,

multidrug tolerance observed in biofilms implies a transient, non-heritable pheno-

typic change proposed to be caused by numerous mechanisms: delayed penetration,

stress responses to unfavorable environmental conditions, development of persister

cells, and altered microenvironment (Gefen and Balaban 2009). These hypothe-

sized mechanisms enable biofilms to dodge the “magic” antibiotic bullet. Without

the aid of antimicrobials, clinicians are left with the physical removal of biofilms as

their primary recourse. In chronic wound infections, debridement is an essential

therapy, but it is not without a cost (Game 2008). The multiple forms of wound

debridement are riddled with problems including patient pain, collateral tissue

damage, and the length and cost of treatment (Falabella 2006). Consequently, the

physical sciences have been mined for alternatives to standard wound care (SWC).

One such promising physical science strategy is electrical stimulation which will be

the focus of this chapter.

1.3 Electrical Stimulation of Chronic Wounds

Electrotherapy is already utilized by physical therapists for a wide array of treat-

ments ranging from pain management, iontophoresis, and the stimulation of tissue

repair in chronic wounds (American Physical Therapy Association 2005). After

lengthy clinical trials and review, the use of electrical stimulation for tissue healing

and repair (ESTHR) was approved in the USA as an insured treatment of chronic

wounds in 2002 (Centers for Medicare and Medicaid Services 2002). However,

insurance companies will only cover ESTHR for wounds which have been treated

with SWC for 30 days and display no quantifiable improvements in wound healing.

There are three forms of ESTHR (Fig. 1) predominately utilized to treat chronic

wound infections: low-intensity direct current (LIDC), high-voltage pulsed current

(HVPC), and alternating current (AC). Devices that produce ESTHR are typically

made up of a component that produces the electricity and an anode and cathode,

which deliver the electrical therapy to the wound site. Regardless of the specified

form of electrotherapy, clinical trials have found that ESTHR is an effective

adjunctive therapy for treating wound infections. Due to the lack of standardization

amongst ESTHR devices, some healthcare providers remain skeptical. And

although many promising clinical studies have been performed with ESTHR, it

still remains unapproved as a wound healing therapy by the Food and Drug

Administration. The contraindications reported from ESTHR treatment include

enhanced pain to the patient (Sussman and BatesJensen 1998), potential disruption

of pacemakers to those with cardiac irregularities, electrophoretic effects on ions in

some medications (zinc, mercury, silver), and collateral tissue damage (Robinson

and Snyder-Mackler 2007).
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2 Current of Injury

Measurable electrical currents that direct wound healing are found in intact and

damaged skin of amphibians, mammals, and humans (Borgens et al. 1977;

Illingsworth and Barker 1980; Barker et al. 1982; Foulds and Barker 1983; Vanable

1989; Cunliffe-Barnes 1945). Many investigators have measured electronegative

voltages from the surface of intact skin and electropositive voltages from the

dermal tissue of wounds (Illingsworth and Barker 1980; Barker et al. 1982;

Cunliffe-Barnes 1945). These measurable trans-epithelial potentials (TEPs) occur

as a result of Na+ channels in the apical membrane of the skin’s mucosal surface

that allow extracellular Na+ to diffuse between epidermal cells (Vanable 1989).

Foulds and Barker demonstrated the presence of a “skin battery,” with TEPs

ranging from 10 mV to almost 60 mV, and an average negative potential of

23.4 mV (Barker et al. 1982). This skin battery voltage effect was discovered to

be produced by charged activity in exocrine sweat glands (Wolcott et al. 1969) and

Fig. 1 Types of electrical stimulation used to treat wound infections. (A) Constant LIDC has a

monophasic waveform and is applied at low intensities ranging from 20 μA to 32 mA. (B) HVPC

has a twin-spike monophasic waveform and is thus a form of DC. HVPC devices deliver electrical

stimulation at intensities from 0 to 250 V. (C) AC refers to the continuous application of biphasic

waves. In this chapter, we focus on radio frequency alternating current, given at kHz–MHz

frequencies and low intensities
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can be blocked by applying amiloride (a compound which blocks Na+ channels in

outer epidermal membrane) to mammalian skin (Eltinge et al. 1986).

When wounding occurs in the skin, electrical leaks are produced that short-

circuit the skin battery, allowing current to flow out (Barker et al. 1982; Vanable

1989). This effect was demonstrated as early as 1847 (Matteucci 1847), but more

recent experiments have displayed currents from wounds of humans and mammals

(Barker et al. 1982; DuBois-Reymond 1843). This phenomenon of “current of

injury” is measurable in amphibians and mammals and can be sustained in moist

environments, but is shut off when a wound dries out (McGinnis and Vanable 1986;

Stump and Robinson 1986; Jaffe and Vanable 1984). In a porcine model system,

occlusive dressings applied to wounds sustained the injury current at a higher

voltage for 4 days as opposed to a sixfold lower voltage from wounds exposed to

air (Cheng et al. 1995). Wound current of injury may thereby be sustained with

occlusive, moisture-retentive bandages that contribute to the faster healing rate

(Alvarez et al. 1983; Wikter 1972). When wounds do occur in the skin, a measur-

able positive current emerges from the wound. This current can range from

140 mV/mm at wound edge to 0 mV/mm at 3 mm lateral to wound edge, which

gradually becomes reduced to nonexistence from regenerated epithelium

(McGinnis and Vanable 1986; Jaffe and Vanable 1984). Maintaining or enhancing

a “current of injury” response can evidently play a role in accelerating wound

healing.

3 Impact of Electrical Stimulation on Wound Healing

3.1 The Wound Healing Process

The normal process of wound healing is observed as occurring in three overlapping

phases: inflammatory, proliferative, and remodeling (or maturation) (Kirsner and

Bogensberger 2002). The inflammatory phase is characterized by the body’s pri-

mary response to a wound. This includes hemostasis, autolysis, and phagocytosis,

occurring 2–7 days after onset of the initial wound. The phase also stimulates

formation of connective tissues and angiogenesis by endothelial cells (Kirsner

and Bogensberger 2002). The proliferative phase spans 2–3 days to 3 weeks after

initial wound trauma. This event is characterized by fibroplasia (new granulation

tissue), re-epithelialization, neovascularization, and wound contraction. The new

tissue is formed by migration of dermal fibroblasts into the wound, which then

proliferate into the different tissue types (Kirsner and Bogensberger 2002). The

remodeling phase can last from 3 weeks to 3 years. The last phase is characterized

by degradation of the initial collagen from the first two phases being replaced by

new adult collagen. The type III (fetal) collagen is replaced by type I (adult)

collagen, with stronger tissue tension and support overall (Kirsner and

Bogensberger 2002).

Eradication of Wound Biofilms by Electrical Stimulation 429



3.2 In Vitro Studies Examining Electrical Stimulation
and Wound Healing

Many studies have been performed elucidating the various methods by which ES

enhances wound healing, such as direct cellular responses to variable electrical

currents. These include studies on changes in cell synthesis and metabolism and

effects on cell migration (Kloth 2005). For example, a continuous electrostatic field

of 1,000 V/cm through fibroblast cultures resulted in a 20 % increase in DNA and

collagen synthesis after 14 days (Bassett and Herrmann 1968). Another study

involving stimulation of human fibroblasts in cell cultures with HVPC demon-

strated fibroblast induction of increased rates of DNA and protein synthesis (up to

160 % greater in protein synthesis) (Bourguignon and Bourguignon 1987; Bour-

guignon et al. 1986, 1989). In addition, the same group of researchers reported that

within the first minute of in vitro HPVC stimulation, fibroblasts had an increase in

Ca2+ uptake, followed by upregulation of insulin receptors on fibroblast membranes

by the second minute (Bourguignon et al. 1989). Transforming growth factor-β
receptors have also been shown to be upregulated by sixfold in human dermal

fibroblasts stimulated by ES (Falanga et al. 1987). Another study involving LIDC

stimulation on rat skin reported a fivefold increase in ATP concentrations and 30–

40 % increased amino acid uptake above controls (Cheng et al. 1982).

Many investigators have also reported wound healing-related cells migrating

toward the anode or cathode of an electric field run through cell cultures (Orida and

Feldman 1982; Monguio 1933; Fukushima et al. 1953; Dineur 1891; Canaday and

Lee 1991; Erikson and Nuccitelli 1984; Yang et al. 1984; Nishimura et al. 1996;

Sheridan et al. 1996). This ability, called galvanotaxis, is the attraction of charged

cells moving toward an electric field of opposite polarity (Kloth 2005). Macro-

phages display this ability by their ability to migrate towards the anode (Orida and

Feldman 1982), while neutrophils migrate to the anode or cathode (Monguio 1933;

Fukushima et al. 1953). Others have reported that leukocytes migrate toward the

cathode in infected areas, suggesting a link between chemical and electrical

responses (Monguio 1933; Dineur 1891). Fibroblasts are known to migrate toward

the cathode (Bourguignon and Bourguignon 1987; Bourguignon et al. 1986;

Canaday and Lee 1991; Erikson and Nuccitelli 1984; Yang et al. 1984).

Researchers have also shown that exogenously applied electric fields of the same

magnitude as those found in wounded tissue can direct the migration of

keratinocytes towards the cathode (Nishimura et al. 1996; Sheridan et al. 1996;

Stromberg 1988; Cooper and Schliwa 1985).
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3.3 In Vivo Studies Examining Electrical Stimulation
and Wound Healing

In vivo studies on the effects on ES on cell migration have discovered significant

benefits: a study by Eberardt et al. found a 24 % increase in neutrophils from human

wounds stimulated by exogenous ES currents (Eberhart and Korytowski 1986),

while a study by Mertz et al. (1993) on epidermal cell migration in response to ES

demonstrated 20 % greater wound epithelialization in an ovine model. Several

models have been proposed as to how ES aids cell migration in vivo by

galvanotaxis. Movement of proteins embedded in the plasma membrane may

occur when cells are exposed to an electric field; for example, epidermal growth

factor receptors have been shown to move to the cathode side of keratinocytes in a

LIDC electric field (Fang et al. 1999). Other affected regions that ES may stimulate

to initiate galvanotaxis include membrane depolarizations due to calcium ion flow

(Bedlack et al. 1992), changes in cell form and cytoskeleton (Soong et al. 1990;

Onuma and Hui 1985, 1986; Luther et al. 1983), and protein kinase activity (Baker

and Peng 1993; Peng et al. 1993). Weak electric fields used for galvanotaxis of cells

in culture or clinically used currents for enhancement of healing of chronic wounds

may replicate the natural electric fields found in mammalian wounds (Nishimura

et al. 1996; Sheridan et al. 1996). These differential galvanic effects should be used

to plan the therapeutic treatment based on selection of the anode or cathode at

various time points for the greatest ES benefit. Although the effect of ESTHR can

be explained to some extent by stimulating host cells, there appear to be other

mechanisms important to enhance wound healing. The remainder of this chapter

will focus on the three primary forms of ESTHR, first including relevant clinical

studies and then examining studies on the specified electrical stimulation and

bacterial biofilms.

4 Low-Intensity Direct Current Background

Direct current (DC) (sometimes referred to as galvanic or continuous current) is a

form of electrical current which constantly flows in only one direction

(monophasic) and is generated by thermocouples, batteries, and solar cells. LIDC

refers to the continuous form of DC (Fig. 1A) and is applied at intensities ranging

from 20 μA to 32 mA (Feedar et al. 1991). LIDC was the first form of electrotherapy

explored as a wound care adjunctive therapy (Carey and Lepley 1962) and, not

surprisingly, remains as the most commonly researched low-intensity current

(Balakatounis and Angoules 2008). In 1962 LIDC was explored in an animal

wound model and was found to enhance wound healing and stimulate the immune

response (Carey and Lepley 1962). Shortly thereafter, clinical trials further dem-

onstrated LIDC’s potency to significantly enhance wound healing.
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5 Low-Intensity Direct Current Clinical Studies

The first in-depth electrotherapy clinical trial was performed in 1969 by Wolcott

et al. (1969), in which SWC plus LIDC was applied directly to 75 ischemic skin

ulcers over the course of a year and a half. In this nonrandom clinical trial, LIDC

treatment entailed three daily courses of LIDC, given for 2 h at an intensity range of

20 μA–1 mA. The authors reported a mean healing rate of 13.4 % per week for the

electrical treated 75 ischemic skin ulcers. A major limitation of this study was that

the LIDC-treated ischemic ulcers lacked a proper control group for comparison.

However, the authors also reported that eight patients suffered from bilateral ulcers

which were similar in size and location and thus could be utilized as ideal control

for the LIDC-treated groups. From these eight patients it was observed that the

untreated control ulcers healed at a rate of 5 % per week in comparison to 27 % per

week for the LIDC-treated group. In 1985 Carley and Wainapel conducted an

unknown blind, randomized clinical trial (RCT), treating 15 inpatient wounds

with SWC and 15 with SWC + LIDC for 5 weeks (Carley and Wainapel 1985).

For this study LIDC was given twice daily, for 2 h at an intensity of 300–700 μA.
Following 5 weeks of therapy the mean healing rate of the control group was 45 %

as compared to the 89 % in the LIDC-treated group. The authors also observed

wounds that opened up and became infected in the control group following the

5-week study. However, in the LIDC-treated group, the wounds closed and did not

experience infection. More recently, Adunsky et al. conducted a double-blind RCT

on 63 patients suffering from pressure ulcers with 8 weeks of treatment and

12 weeks of follow-up (Adunsky and Ohry 2005). Interestingly, in this study the

authors developed their own ESTHR device termed the “decubitus direct current

treatment” (DDCT), which distributed a mixture of direct and alternating current

into the wound and was able to determine wound size and record patient data and

the current of electricity in the wound before and after treatment. All patients

received SWC (debridement and colloidal dressing), while 35 patients were ran-

domly selected to receive DDCT, and 28 other patients received a placebo (sham)

treatment. The course of DCCT began with three 20-min sessions daily, but was

reduced to two daily sessions after 14 days for undeclared reasons. The electrical

parameters of DCCT were not reported. On day 45, the mean healing rate observed

in the DDCT group was 44 %, as compared to 14 % in the control group. When the

authors conducted a follow-up, they observed no significant differences in wound

closure at days 57 and 145. A clear limitation and potential counter indication for

this device are that 25 patients dropped out of the study for unstated reasons. These

studies support the use of LIDC to treat non-healing wound infections, though

further studies were done to examine what effect LIDC had on the bacterial wound

burden.
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6 Effect of Low-Intensity Current Alone Against

Bacterial Biofilms

6.1 In Vitro Studies with Low-Intensity Direct Current
and Biofilms

The antimicrobial potential of LIDC alone was first studied and shown to have a

bactericidal effect against both planktonic (Rowley 1972; Davis et al. 1989) and

bacterial biofilm cells. In 1974 Barranco et al. studied the effect of 0.4–400 μA
against S. aureus biofilms grown on agar plates. These biofilms were treated for

24 h, with the anode and cathode coated in four different materials: silver, platinum,

gold, and stainless steel. The authors reported maximal bactericidal effects at

400 μA, with both electrodes and with all four materials. However, the silver

cathode exhibited the maximal bactericidal effects at the lower intensities

(0.4 μA, 4 μA). Liu et al. (1997) went on to examine S. aureus and Staphylococcus
epidermidis biofilms treated with LIDC. Biofilms grown on agar plates were treated

with 10 μA for 16 h, and significant zones of inhibition were observed around the

cathode. Merriman et al. (2004) treated S. aureus biofilms grown on agar plates

with LIDC for 3 consecutive days and observed significant zones of inhibition. The

LIDC treatment was applied for 1 h and generated with stainless steel electrodes

producing continuous 500 μA LIDC. Del Pozo et al. (2009a) examined the antimi-

crobial effect of LIDC against mature biofilms. S. aureus, S. epidermidis, and
P. aeruginosa biofilms were grown on Teflon disks for 48 h and then treated

continuously for 2–7 days with 0.2–2 mA LIDC. When Staphylococcus biofilms

were treated for 2 days with 2 mA LIDC, a 4–6 log reduction in bacterial cells was

observed. However, P. aeruginosa biofilms had to be treated for 7 days with 2 mA

LIDC in order to cause only a 3.5–5 log reduction of bacteria. In this study the

authors coined the term, the “bioelectric effect,” to describe the bactericidal effect

of LIDC against bacterial biofilms.

6.2 In Vivo Studies with Low-Intensity Direct Current
and Biofilms

In vivo studies examining LIDC against biofilms began in 1974 when Rowley

et al. (1974) reported that 200–1,000 μA cathodic LIDC inhibited the growth of

24 h-old P. aeruginosa biofilms in rabbit dermal wounds. Van der Borden

et al. (2007) devised an interesting wound infection model where three stainless

steel pins were inserted into goat tibias and inoculated with S. epidermidis. Biofilms

were grown on two of the pins, with one receiving 100 μA LIDC and the other used

as a negative control, while the third pin acted as structural support. Electricity was

given continuously for 21 days immediately following S. epidermidis infection, and
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current was delivered to the pins via a platinum anode. The pin site wounds were

scored for infection at day 21, with infection rates of 89 % in the control group, and

only 11 % in the LIDC group. Del Pozo et al. (2009b) later tested LIDC therapy

versus antibiotic therapy in a chronic foreign body osteomyelitis rabbit model.

Osteomyelitis is very serious complication of chronic wounds and lengthens the

chronicity and difficulty in treating these infections. In this study, the tibias of

rabbits were infected with S. epidermidis and these biofilm-associated infections

went 4 weeks before therapy was applied. After 4 weeks of infection, the rabbits

were divided into three groups: a control group receiving no treatment, an antibiotic

group receiving daily intravenous doxycline, and an electrical current group receiv-

ing 200 μA of continuous LIDC. Following 4 weeks of treatment the bacterial load

was reduced by 38 % in the doxycline- and 73 % in the electrical current-treated

groups as compared to the control. These in vivo studies with LIDC appear

promising with clinically relevant electrical intensities, although the extensive

duration of electrical treatment (21 continuous days) would be clinically difficult.

6.3 Human Studies with Low-Intensity Direct Current
and Biofilms

In the first extensive clinical trial treating ischemic ulcers with LIDC (as discussed

above), Wolcott et al. (1969) reported that most initial wound swab cultures

detected the presence of the Pseudomonas and Proteus genera. However, after

several days of ES the majority of secondary wound cultures were free of patho-

gens. Bolton et al. (1980) conducted a human study investigating what effect LIDC

had on 24 h S. epidermidis biofilms inoculated on the epidermis. A 24 h treatment

with 100 μA cathodic LIDC resulted in complete eradication of S. epidermidis on
the human volunteer’s skin. An additional human study by Fakhri and Amin

examined LIDC treatment on 20 non-healing burn wound infections (Fakhri and

Amin 1987). For the study, antibiotic treatment was stopped during the electrical

stimulation therapy. At the beginning of the study, patient wound swabs cultured

positive for P. aeruginosa, S. aureus, and Escherichia coli. However, 10 min,

biweekly applications of 25 mA LIDC resulted in wound swabs that came back

as sterile or with a lowered bacterial burden. In summary these findings support the

idea that LIDC treatment alone stimulates wound healing via the eradication of the

bacterial biofilm burden in wounds.
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7 The Antibacterial Mechanisms of Low-Intensity

Direct Current

7.1 Antibacterial Mechanisms of Low-Intensity
Direct Current Alone

Numerous mechanisms have been proposed to describe the antimicrobial effect of

LIDC alone. The most popular proposed mechanism by which LIDC is able to kill

pathogens is that it causes extremely basic and acidic conditions near the electrode

capable of killing pathogens (Barranco et al. 1974; Merriman et al. 2004). Lui

et al. (1997) reported another mechanism of the bactericidal activity of LIDC,

which is the generation of toxic compounds (H202 and chlorine) as a result of

electrolysis. Yet, some assert that electrophysical changes and toxic compounds do

not completely explain the effect of LIDC on bacterial cells. Laatsch et al. (1995)

suggested two alternative mechanisms: firstly, that LIDC is able to disrupt intra-

cellular bacterial metabolism, and, secondly, that LIDC ES overwhelms microor-

ganisms with electrons which continually excites cell membranes, causing

membrane leakage of essential cellular components. Van der Borden el al. clearly

elucidated another potential mechanism, which is the dispersion and detachment of

Staphylococcus strains when biofilms were treated with 25–125 μA, causing these

cells to switch to a planktonic phenotype and become more sensitive to the immune

system and antibacterial compounds (van der Borden et al. 2004).

7.2 Antibacterial Mechanisms of Low-Intensity Direct
Current Combined with Antibiotics (“Bioelectric Effect”)

Weak direct electric currents have also been shown to enhance the effectiveness of

antibacterial agents against biofilms. This scientific peculiarity (first described with

LIDC) has been termed “the bioelectric effect” (Costerton et al. 1994). The

bioelectric phenomenon has been studied extensively in vitro with LIDC against

various bacterial biofilms: S. epidermis treated with tobramycin (Khoury

et al. 1992), P. aeruginosa with tobramycin (Jass and Lappin-Scott 1996), and

S. aureus with vancomycin (del Pozo et al. 2009a), along with a host of biofilms

made by other bacterial species. For a more comprehensive examination of the

bioelectric effect, there is a thorough review on the subject (Del Pozo et al. 2008).

Some of the proposed mechanisms explaining the bioelectric effect include alter-

ation of the EPS’s negative charge, which reduces the ability of biofilms to bind to

antibiotics, and modification of EPS integrity (Jass and Lappin-Scott 1996; Del

Pozo et al. 2008). Another very interesting mechanism was reported by Niepa

et al. (2012) in which LIDC was shown to enhance the efficacy of tobramycin

against P. aeruginosa biofilm cells, via the reduction of persister cells in the
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population. In this study, 70 mA/cm2 LIDC was applied for 1 h in order to target the

persister cells.

8 Low-Intensity Direct Current Contraindications

One of the primary problems associated with using DC against biofilms includes the

potential production of toxic compounds at the electrode interface causing collat-

eral tissue damage. Since DC cannot be generated by insulated electrodes, the

production of these toxic derivatives remains a long-term problem (Giladi

et al. 2010). Additionally, such currents may stimulate nerve or muscle cells

resulting in pain and muscular contractions in the patient. Due to these inherent

problems, it comes as no surprise that only 10 % of polled physical therapists use

LIDC on a weekly basis (Robinson and Snyder-Mackler 1988). Other electrical

stimulation modalities, with HVPC on the top of the list, are utilized by clinicians

and are the subject of research efforts.

9 High-Voltage Pulse Current Background

HVPC devices create pulsed current with maximum capacity ranging from 100 to

250 V. HVPC electricity displays a twin-peaked wave form (Fig. 1B) and lasts for a

very short time (5–100 μs). The electricity generated in HVPC can be either DC

(monophasic) or AC (biphasic), although DC is the primary electrical source

utilized. The idea behind HVPC is that it allows higher voltages to be utilized in

such fast pulses that nerve or other human cells are not excited and damaged. HVPC

was explored in the 1980s following the successful clinical application of LIDC to

wound infections in the early 1970s. The initial popularity of HVPC was linked to

the finding that electrodes from HVPC devices did not cause thermal or chemical

reactions and thus eliminated many of the unwarranted side effects associated with

LIDC (Alon and De Do-minico 1987). Pulsed current has been the most frequently

utilized form of ESTHR by physical therapists in the USA, with a reported 2/3 of

the polled therapists utilizing HVPC on a daily basis (Robinson and Snyder-

Mackler 1988).

10 High-Voltage Pulse Current Clinical Studies

One of the initial HVPC studies was conducted by Feeder and Kloth in 1988 where

they conducted a single-blinded RCT with 16 patients suffering from Stage IV

decubitus ulcers (Kloth and Feedar 1988). The patients were randomly assigned

into a SWC + ESTHR-treated group (n ¼ 9) or a control group only receiving
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SWC (n ¼ 7). Patients in the treatment group received 45 min of HVPC daily,

5 days a week. The HVPC device generated monophasic twin pulsed waves, with an

interphase interval of 50 μs, an intensity of 100–175 V, and a total pulse charge

accumulation of 342 μC/s. Over a mean length of seven and a half weeks of therapy

the wounds of the treated group healed at a mean rate of 44.8 % a week, as

compared to �11.6 % in the control group. A decade later, in 1999, the same

group performed a larger study comparing the healing of stage II, III, and IV ulcers

treated with SWC + HVPC (treated) to those given SWC + sham electrotherapy

(control) (Feedar et al. 1991). In this randomized double-blind multicenter study,

47 patients with 50 chronic wounds were randomly assigned to the treatment

(n ¼ 26) or control group (n ¼ 24). Treated wounds were given two daily doses

of 30 min HVPC at a pulse frequency of 128 pulses per second (pps), with a

maximal intensity of 29.2 mA. Following 4 weeks of therapy, the mean healing

rate in the treated group was 14 % with a wound closure rate of 67 %. Conversely in

the control group, the mean healing rate observed was 8.25 % with wound closure

rate of 44 %.

More recently, in 2010, a single-blinded RCT was conducted with 34 spinal

injury patients suffering from stage II, III, IV, and V pressure ulcers (Houghton

et al. 2010). These ulcers were examined for 3 months to compare wound size and

appearance when given SWC (control, n ¼ 18) or SWC + HVPC (treated,

n ¼ 16). HVPC was given daily for an hour, via the Micro Z device which

delivered a twin-peaked monophasic pulsed current with 50 s pulse duration and

an intensity of 50 and 150 V. Following the 3-month intervention, the authors

observed a significant decrease in wound closure in the SWC + HVPC group

(70 %) as compared to the SWC control (36 %).

11 Effect of High-Voltage Pulse Current Alone Against

Bacterial Biofilms

The three discussed RCTs clearly demonstrate that HVPC can enhance wound

healing in patients, and this could be accomplished by HVPC reducing the bacterial

burden in these wounds. This idea was first tested in 1989 by Kincaid and Lavoie

who reported that in vitro, HVPC could inhibit the bacterial biofilm growth of three

commonly isolated wound pathogens (S. aureus, E. coli, and P. aeruginosa)
(Kincaid and Lavoie 1989). Utilizing stainless steel wires connected to the sides

of plastic petri dishes, the authors observed that exposing all three pathogens to

HVPC for 2 h at 250 V with 120 pps and a 55 μs interpulse interval caused a

bacteriostatic effect at both the cathode and the anode. That same year, Guffey and

Asmussen (1989) reported that when HVPC was applied for 30 min at voltages

below 160, no effect was observed on S. aureus bacterial growth. However,

numerous authors have implied that the shorter treatment time (Merriman

et al. 2004) and use of controlled current flow (Szuminsky et al. 1994) contributed
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to their observations. Szuminsky et al. (1994) examined the impact of HVPC on

bacterial biofilm growth by four wound pathogens (E. coli, Klebsiella,
P. aeruginosa, and S. aureus). The authors reported growth inhibition at both of

the stainless steel electrodes, when biofilms on agarose plates were treated for

30 min with 500 V HVPC and a 70 μs interpulse interval. The clear limitation of

this study is that the authors used an electrical intensity almost double of what is

applied clinically, which would cause immense pain/discomfort in patients. How-

ever, the authors state that there is a significantly lower current flow in the petri

plates as compared to human skin, suggesting that utilizing lower settings clinically

could also generate bactericidal activity against the tested microorganisms

(Szuminsky et al. 1994). This study was repeated in 2004, comparing the

antibacterial effectiveness of HVPC to other three electrical modalities (Merriman

et al. 2004). The authors treated S. aureus biofilms with HVPC for 3 consecutive

days and observed significant zones of inhibition. The HVPC treatment was applied

for 1 h and was generated with stainless steel electrodes producing 250 V HVPC,

with a 70 μs interphase interval. The dose of 250 V seems excessive, but the authors

state that this intensity is tolerable to patients if the interpulse interval is long

enough (Merriman et al. 2004). Interestingly, the authors observed physical

changes from HVPC application, specifically gas formation near the cathode and

corrosive discoloration of the plates at the anode, suggesting that physical changes

occur in the area directly around the electrodes. Also, in 2004 an abstract reported

the successful inhibition of Streptococcus A biofilms in vitro with the HVPC-

negative polarity (Kuykendall et al. 2004). These make up the majority of studies

examining the antimicrobial effect of HVPC in vitro, and the only in vivo study

comes from a dissertation by Mark Campolo, who conducted the study at Seton

Hall University (Campolo 1999). Campolo utilized a rabbit wound model in which

S. aureus infection was either left untreated or treated for 1 h for 6 consecutive days
with 100 V HVPC and a 70 μs interphase interval. In this study, HVPC treatment

did not significantly reduce the bacterial biofilm burden in rabbit wounds, possibly

due to a low group number and high variability (Campolo 1999).

12 The Antibacterial Mechanisms of High-Voltage

Pulse Current

A clear gap in knowledge is the mechanism by which HVPC inhibits bacterial

growth. Szuminsky et al. (1994) tried to determine the mechanism by which 500 V

HVPC killed bacteria in vitro and came up with numerous possibilities: the direct

action of electricity on the bacteria, local heat generation, electrophoretic produc-

tion of antimicrobial factors in the media, or pH changes. The authors directly

tested temperature increases and observed minimal (<1 �C) temperature rises,

discounting heat from the equation. In addition, the authors found some evidence

suggesting that extreme pH changes cause antimicrobial effects, but overall they
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concluded that pH changes caused by HVPC are not the predominant reason for the

observed bacterial inhibition. What also negates pH change as the proposed mech-

anism is that when HVPC was applied to human tissue for 30 min it was not shown

to cause electrochemical changes at either electrode (Newton and Karselis 1983).

The reason for this is that HVPC produces a minimal average current in the tissue,

and thus there are negligible chemical reactions in tissue near the electrode (unlike

LIDC) (Campolo 1999). More in-depth studies are required to determine the exact

biofilm inhibitory mechanism of action of HVPC, and with minimal in vivo studies,

the in vitro results should be taken with caution. Other drawbacks of the current

literature examining HVPC and biofilm inhibition are that none of the studies

examined the effect of HVPC on mature biofilms and biofilm-specific experiments

were not conducted (e.g., crystal violet assays, antimicrobial tolerance, electron

microscopy). The HVPC studies used biofilms that were grown on solid, rather than

in liquid, media, or directly on the electrodes. One final gap in the current literature

is that no study to date has examined the potential of HVPC therapy to enhance

antibiotic efficacy against bacterial biofilms. This effect has clearly been

established with DC (the bioelectric effect), and hopefully future studies will

shed more light on this.

13 Alternating Current Background

AC refers to the uninterrupted bidirectional flow of charged particles which oscil-

late from a positive charge to a negative charge (Fig. 1C), based on the frequency of

the AC. Much like the “War of the Currents” in the early 1900s, DC was the first

established form of electricity used in ESTHR, but in this war AC eventually

supplanted the use of DC as the standard form of electricity used in the USA. At

present, however, there still have not been any clinical trials examining the effec-

tiveness of AC in promoting wound healing. Some authors have incorrectly

reported that the electricity supplied by transcutaneous electrical nerve stimulation

(TENS) devices is AC (Kloth 2005). Yet, TENS devices produce pulsed

monophasic pulsed current (DC) or biphasic pulsed current (AC), not continuous

AC. The studies examining this form of pulsed AC are limited and report minimal

(Maadi et al. 2010) to no effect (Merriman et al. 2004) on bacterial killing. This lack

of antibiofilm activity does not seem to only be associated with low-intensity,

low-frequency (LILF) pulsed AC, since low-intensity pulsed DC is also reported

to be similarly ineffective (Merriman et al. 2004). In addition, there are few in vitro

studies suggesting that LILF constant AC can inhibit biofilm formation (Gabi

et al. 2011; Kang et al. 2011) so this form of AC could show promise in the future.
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14 Radio Frequency Alternating Current Background

An interesting alternative to the typical LILF pulsed AC is constant radio frequency

alternating electric current (RFAC). RFAC is very clinically attractive because at

radio frequencies (hundreds of kHz/MHz) constant AC can pass through the human

body without nerve or muscle excitation, because the electricity is switching from

positive to negative so quickly that human cells are not affected. Therefore, even

though the patient has an electric current running though his/her body, no discom-

fort is felt (d’Arsonval 1894). At certain specifications RFAC can deposit heat in

the tissues and be used therapeutically. In fact, RFAC is an FDA-approved treat-

ment of tumor cells, in the form of radio frequency tumor ablation (Locklin and

Wood 2005). Radio frequency tumor ablation uses low to medium frequencies of

450 kHz and high intensity of 80–100 W to heat up tumors to the desired temper-

ature of 60–100� centigrade, resulting in tumor ablation. Many hard to reach and

inoperable tumors can be treated with radio frequency tumor ablation including

lung, liver, and bone tumors (Sharma et al. 2011). Another novel use of RFAC

against tumors has recently been demonstrated using low-intensity RFAC at fre-

quencies of 100–200 kHz (Kirson et al. 2004). Using this low-intensity,

low-frequency, heat-free form of RFAC resulted in the inhibition of cancer cell

growth, both in vitro and in vivo with no effect on normal mammalian cells. This

particular use of RFAC is termed tumor treating fields (TTFields). Unlike tumor

ablation, where heat causes tumor destruction, TTFields’ proposed mechanism of

action is that the radio fields interfere with microtubule production in cancer cells as

they multiply. By interfering with the tumor cell’s microtubules, which are needed

for chromosome alignment and separation, they cause mitotic arrest, and cell

destruction ensues (Kirson et al. 2004). The reason that normal mammalian cells

are not affected is because they do not proliferate as quickly as cancer cells and thus

are minimally affected (Kirson et al. 2007). A therapeutic form of RFAC which

combines the use of current (with minimal temperature increases) and RF radiation

would be ideal because it would not affect the host but would have potential

bactericidal activity.

15 Effect of Biofilms Radio Frequency Alternating Current

Against Bacterial Biofilms

The most clinically relevant studies concerning RFAC’s ability to inhibit bacteria

combine RFAC ablation and TTFields. This RFAC chimera features low intensity,

high frequencies, and minimal temperature increases. The effect of RFAC at

varying parameters in the presence and absence of chloramphenicol was tested on

planktonic P. aeruginosa and S. aureus (Giladi et al. 2008). The results of this

in vitro study showed that the RFAC inhibition of planktonic bacteria was intensity

(voltage) and frequency (cycles per second of AC field) dependent (Robinson and
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Snyder-Mackler 2007). Frequencies between 100 kHz and 50 MHz were examined,

and the frequency of 10 MHz was found to inhibit planktonic bacteria most

effectively. Low intensities (0–4 V/cm) were utilized and as the intensity increased

so did the inhibition of bacterial growth. RFAC was also observed to have an

additive inhibitory effect with chloramphenicol. Planktonic P. aeruginosa growth

was also shown to be reduced by RFAC in vivo (Giladi et al. 2010). Some of the

proposed mechanisms of action for RFAC’s planktonic cell reduction are as

follows: RFAC interferes with membrane proteins and enzymes, RFAC targets

FtsZ (a tubulin homologue), and lastly, RFAC affects dividing bacteria during

cytokinesis (Giladi et al. 2008). Some of these proposed bacterial targets may

translate over to RFAC treatment of biofilms. However, the key therapeutic target

to disrupt in the biofilm is ideally the EPS. E. coli biofilms were pitted against

RFAC with gentamicin and oxytetracycline in vitro (Caubet et al. 2004). Using

similar conditions from the planktonic study (10 MHz, low intensity) RFAC

decreased the amount of bacteria in a biofilm by more than 60 %, even in the

absence of antibiotics. RFAC was also found to synergize effectively with both

gentamicin and oxytetracycline. This dramatic eradication of E. coli biofilms was

proposed to be from EPS matrix alterations. As stated above, the EPS is a nega-

tively charged mechanical barrier surrounding the biofilm. The RFAC oscillates

from negative to positive and can vibrate polar/charged molecules. RFAC vibration

increases the fluidity of polar membranes. So the RFAC could be increasing fluidity

and thus weakening the EPS structure. In a more recent study, authors combined

low intensity 1.25 V/cm, 10 MHz RFAC with DC to enhance the efficacy of

gentamicin against E. coli biofilms in vitro (Kim et al. 2012). The authors did not

observe significant reductions in bacteria numbers with ES alone, but when com-

bined with gentamicin they observed a 56 % reduction in bacterial cell viability, as

compared to gentamicin treatment alone. Either way, for both planktonic bacteria

and biofilms, RFAC has been shown to inhibit growth at high frequencies/low

intensities and has the potential to be an interesting alternative ESTHR modality.

However, much more work must be pursued to find the optimal parameters and

methods to inhibit bacterial biofilms with RFAC in the presence and absence of

antibiotics.

16 Conclusions

Chronic wounds continue to be a large source of morbidity and mortality, usually

resulting in increased hospital costs during extended medical care. Largely this

effect is believed to be due to the presence of biofilms, which display resistance to

antibiotics and necessitate painful debridement. Alternative therapies for the treat-

ment of chronic wounds exacerbated by biofilm development include the use of

ESTHR devices to speed the healing process. The various forms of ESTHR include

LIDC, HVPC, and AC which can enhance wound healing by either stimulating the

current of injury or providing bactericidal effects. The normal healing process of
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wounds in skin involves the body’s innate “current of injury” electrical stimulation

to provide galvanotaxis for migrating immune cells towards wounded tissue and

stimulating fibroblasts to repair and replace dead tissue. This “current of injury”

effect has been notably increased with the use of ESTHR, specifically for the

treatment of chronic wounds which display complications in normal healing.

LIDC has been shown to have an extensive bactericidal effect against both plank-

tonic and biofilm cells. In a trial treating ischemic ulcers with LIDC, secondary

wound cultures were cleared of pathogens. LIDC appears to have a direct effect on

the physiology of bacterial cells, from disruption of the bacterial metabolism to

excitation of the cell membrane, leading to leakage of cellular components. Clin-

ically, HVPC is a much safer option than LIDC, avoiding many potential side

effects. HVPC has been shown in vitro to inhibit the bacterial biofilm growth of

common wound pathogens: S. aureus, E. coli, and P. aeruginosa. Though the actual
mechanism of bacterial disruption in HVPC treatment of wounds is unknown,

HVPC is the preferred treatment by many clinicians. RFAC has been used in

treatment of tumors in hard to reach areas of the body. The mechanism of action

is believed to be interference with microtubule production, which stops the repli-

cation of rapidly growing cancer cells. RFAC is thought to affect bacterial cells in a

similar fashion, stopping cell division of planktonic cells and disrupting the EPS

architecture of biofilm cells. In conclusion, electrical stimulation provides clini-

cians with a valuable tool to treat non-healing wound infections. The mechanisms

by which electricity can speed wound healing appear linked to increasing the

immune response to the wound site, while reducing the overall bacterial burden.

Hopefully future studies will focus on defining more standardized parameters, with

a special focus on HVPC and RFAC.
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The Effects of Photodynamic Therapy in Oral

Biofilms

Michelle Peneluppi Silva, Juliana Campos Junqueira,

and Antonio Olavo Cardoso Jorge

Abstract Increased drug resistance in pathogenic microorganisms, leading to a

decrease in the effectiveness of antibiotic, antiviral, antiparasitic and antifungal

therapy, has generated international concern. This has triggered numerous studies

seeking alternative antimicrobial technologies independent of pharmacology,

which resulted in success in therapeutic protocols. One of the most important

examples of these innovations is antimicrobial photodynamic therapy. Since the

beginning of the last century, the combined use of light and dyes has been used to

eliminate microorganisms. However, this therapy was forgotten after the discovery

of antibiotics in the 1950s and is returning to the research field today. Numerous

studies have shown that photodynamic therapy is an effective way to eliminate

microorganisms, especially those that cause infections, including those in the oral

cavity. However, it is important to realise that many infectious diseases will

continue to need systemic therapy. The rapid growth in the use of photodynamic

therapy during recent years in dentistry illustrates the number of infections that can

be treated medically in this manner in the future.

1 Historical Considerations of Photodynamic Therapy

The rapid rise in antibiotic resistance among several species of pathogenic bacteria

characterises the end of a period that extends over the past 50 years referred to as

the “antibiotic era” (Bell 2003; Hamblin and Hasan 2004). Rapid bacterial repro-

duction and mutation have contributed to the prevalence of the survival of micro-

organisms in the presence of antibiotics. In addition, genetic elements, such as

enzymes encoded by resistance plasmids and efflux pumps, can be transferred

between species. The inappropriate prescribing of antimicrobials, especially for
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e-mail: mipeneluppi@ig.com.br

K.P. Rumbaugh and I. Ahmad (eds.), Antibiofilm Agents, Springer Series on Biofilms 8,

DOI 10.1007/978-3-642-53833-9_20, © Springer-Verlag Berlin Heidelberg 2014

449

mailto:mipeneluppi@ig.com.br


viral diseases, the lack of commitment of some patients to complete the treatment

and the widespread use of antibiotics in animal feed only exacerbate the problem by

repeatedly selecting more resistant strains (Harrison and Svec 1998). Worldwide,

the inexorable growth of multiresistant bacteria has resulted in a great effort by

researchers to find alternative therapies for which microorganisms do not easily

develop resistance (Dai et al. 2009).

Reports of photodynamic therapy (PDT) date from the time of the Egyptian

civilisation through ingestion of plants (containing psoralens, furo [3,2-g] coumarin

or 6-hydroxy-5-benzofuran-acrylic acid δ-lactone) and sunlight to treat diseases

such as vitiligo (Simplicio et al. 2002) and psoriasis. Ancient documents found in

India and China also describe the use of PDT (Simplicio et al. 2002; Ochsner

1997a). In 1900, Oscar Raab, Ludwig-Maximillian University, Munich, described

the lethal action of the dye acridine and light on Paramecium, a unicellular

organism that causes malaria (Sternberg and Dolphin 1998; Kübler et al. 2001;

Pervaiz 2001; Malik et al. 2010).

The German physician Friedrich Meyer-Betz pioneered the development of

studies on phototherapy irradiation (PRT) with porphyrin in 1913. He observed

that skin inoculation with 200 mg haematoporphyrin had no effect, but when the

inoculated skin was exposed to light, the subjects developed photosensitivity that

lasted for a few months (Simplicio et al. 2002).

John Toth, product manager of Medical Devices Corp Cooper/Cooper

Lasersonics, confirmed the chemical effect of therapy using photosensitisers and

an argon laser; he wrote the first study to rename this therapy photodynamic

therapy. Currently, photodynamic therapy is used to treat various cancers and

infectious diseases (Dougherty and Marcus 1992; Lui and Anderson 1992; Ackroyd

et al. 2001).

2 Photodynamic Therapy

Photodynamic therapy is an effective alternative treatment for localised microbial

infections but also for oral ulcers and chronic infections (Wainwright and Crossley

2004). In dentistry, there is ongoing research into the treatment of periodontal

disease with photodynamic therapy as a beneficial method and complementary

treatment to conventional methods (Walker 1996; Manch-Citron et al. 2000;

Feres et al. 2002; Malik et al. 2010). Photodynamic therapy has emerged as a

new non-invasive therapeutic method to treat infections caused by various bacteria,

fungi and viruses (Jori et al. 2006).

Combining the use of a photosensitising substance and light to antibiotic treat-

ment is referred to as antimicrobial photodynamic therapy (APT), as illustrated in

Fig. 1. This therapeutic modality illustrates an important fact: without repeated

applications, there is no selective pressure for resistant bacteria, so microbial

resistance is not developed (Wainwright and Crossley 2004). Due to the
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antimicrobial action, PDT has other names, such as photodynamic inactivation

(PI) or photoactivated disinfection (PAD) (Bonsor et al. 2006; Nagata et al. 2012).

Compared with other cytotoxic therapies, photodynamic therapy has the poten-

tial to act in the infected tissue or the target cell, and the light source may relate

directly to the injury site (Demidova and Hamblin 2004). Thus, an important feature

of photodynamic therapy is the dual selectivity, first through concentration of the

photosensitiser by specific binding to target tissue, and second by restricting the

irradiation to a specific volume. In photodynamic antibacterial therapy, the

photodestruction is primarily caused by damage to the cell membrane and DNA

(Schafer et al. 1998; Bertoloni et al. 2000; Romanova et al. 2003; Soukos and

Goodson 2011).

A fundamental difference in susceptibility to PDT between Gram-positive and

Gram-negative bacteria was recognised in the 1990s (Nitzan et al. 1992). Generally,

neutral, anionic and cationic photosensitising molecules can efficiently destroy

Gram-positive bacteria, whereas only cationic photosensitisers or strategies,

which alter the permeability of Gram-negative bacteria, in combination with

non-cationic photosensitisers, are capable of inactivating Gram-negative bacteria.

This is due to the presence of a cytoplasmic membrane that is surrounded by a

relatively porous cell wall composed of peptidoglycan and lipoteichoic acid in

Gram-positive bacteria; this structure allows for the diffusion of the photosensitiser

(Nagata et al. 2012). The cell wall of Gram-negative bacteria comprises the inner

cytoplasmic membrane and the outer membrane, a periplasmic space that is inter-

spersed with peptidoglycan. The outer membrane forms an effective permeability

barrier between the external environment and the cell, binding and limiting the

penetration of the photosensitiser (Minnock et al. 2000). Studies have shown that

Gram-positive bacteria are more susceptible to photoinactivation (Malik

et al. 1992; Bertoloni et al. 1992; Soukos et al. 1998) than Gram-negative bacteria

(Nitzan et al. 1995; Soukos et al. 1998).

Photodynamic Therapy

Oxygen

Light
PS

Fig. 1 Triad formative

elements of PDT
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The fungal cell wall has a relatively thick layer of chitin and beta-glucan that has

intermediate permeability between Gram-positive and Gram-negative bacteria (Dai

et al. 2009).

3 Mechanism of Action of PDT

Photodynamic therapy is based on the concept that a particular compound, or

photosensitiser curing unit, can be preferably located in certain tissues and subse-

quently activated by light of the appropriate wavelength to generate singlet oxygen

and free radicals that are cytotoxic to the microorganisms in the target tissue

(Soukos and Goodson 2011). Photodynamic therapy involves two stages: the first

stage involves the application of a photosensitising agent, and the second stage

involves the application of light directly to the treated area. When light is combined

with the photosensitising agent, phototoxic reactions are induced to destroy the

microbial cells (Malik et al. 2010).

In this process, photon absorption only occurs when the wavelength of irradiated

light belongs to the absorption spectrum of the photosensitive substance. After

absorption of light, the photosensitiser ground state goes to the excited singlet state

with a short half-life. The compound excited singlet can return to the ground state

by emitting light in the form of fluorescence or can pass to a triplet excited state

with a long half-life through a process referred to as crossing between systems

(Ochsner 1997b; Henderson and Dougherty 1992; Malik et al. 2010). In the excited

triplet state, the photosensitiser can undergo two types of reactions: type I and type

II. In a type I reaction, there is a transfer of a proton or an electron from the

photosensitiser excited triplet state to the substrate or solvent molecules generating

an ion radical anion or cation, which reacts with the oxygen in the ground state to

form reactive species oxygen. In type II reactions, energy transfer occurs from the

photosensitiser triplet state directly to molecular oxygen, generating highly cyto-

toxic singlet oxygen (Ochsner 1997b; Castano et al. 2004; Henderson and

Dougherty 1992). Reactions can occur simultaneously and depend on the type of

photosensitiser used and the concentration of the substrate and oxygen (Castano

et al. 2004; Soukos and Goodson 2011), as shown in Fig. 2.

There are two basic mechanisms proposed to explain the lethal damage caused

by PDT in bacteria: DNA damage and cytoplasmic membrane damage, causing

leakage of cellular contents or inactivation of membrane transport systems and

enzymes. Studies have reported that treatment of bacteria with different photosen-

sitisers and light causes DNA damage. However, while DNA damage occurs, this is

not a major cause of bacterial cell death (Bertoloni et al. 2000; Hamblin and Hasan

2004).

Several microbial cells are susceptible to the photooxidation effect caused by

singlet oxygen. The photooxidation effect includes inactivation of enzymes and

other proteins and lipid peroxidation, leading to lysis of cell membranes, mitochon-

dria and lysosomes (Gonzales and Maisch 2012).
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The mechanism of photodynamic damage in fungal cells results when reactive

oxygen species cross and pierce cell walls and membranes, thereby allowing for

displacement of the photosensitiser into the cell. Afterward, oxidising species

generated by light excitation induce photodestruction of internal organelles and

cell death. Thus, singlet oxygen generated by the excitation of the photosensitiser is

an oxidising agent that the cell has no specific cellular defence against (Donnelly

et al. 2008; Gonzales and Maisch 2012). Antioxidant enzymes, such as catalase and

peroxidise, protect against certain reactive oxygen species, but not against singlet

oxygen, which inactivates certain antioxidant enzymes, such as catalase (Kim

et al. 2001; Gonzales and Maisch 2012).

Thus, the photosensitive inactivation of microorganisms is a complex phenom-

enon and is dependent on several parameters, including the probability of absorp-

tion of the photosensitiser in the outer membrane of the cell, the cell concentration

and target location (Canete et al. 1993), the microbial species and the type of

photosensitiser, light source and pre-irradiation.

3.1 Singlet Oxygen

Singlet oxygen corresponds to three electronically excited states that are higher

than molecular oxygen in the ground state, 3Σ. Thus, the oxygen molecule in its
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ground state is important for photochemical processes due to its high chemical

potential and unique characteristics of reactivity (Turro 1991). According to

Molecular Orbital Theory, the electron configuration of oxygen in the ground

state has two unpaired electrons in molecular orbital degenerates πx and πy.
These electrons tend to have the same maximum spin multiplicity and produce a

state of low energy. This is why the ground state of oxygen is a triplet. The lifetime

of singlet oxygen in solution is deeply influenced by the nature of the solvent: in

water, for example, the lifetime of singlet oxygen is approximately 4.0 μs (Ochsner
1997b; Dougherty et al. 1998). In biological systems, singlet oxygen lifetimes are

extremely low, less than 0.04 μs. Therefore, their range is very low, <0.02 μm
(Malik et al. 2010).

3.2 Photosensitiser

Initial preparations of photosensitisers for photodynamic therapy were based on a

complex mixture of porphyrins, referred to as haematoporphyrin derivatives.

Extensive chemical and biological studies have been performed in the past

20 years to identify new photosensitisers that belong to different classes of com-

pounds (Brown et al. 2004; Tardivo et al. 2005).

A photosensitiser is capable of absorbing light of a specific wavelength and

transforming it into useful energy. In PDT, the photosensitiser is responsible for the

production of cytotoxic agents, their main function being to induce a desired

biological effect (Sharman et al. 1999; Lee et al. 2012). The ideal photosensitiser

should not be toxic by itself but should exert toxicity only after activation by

irradiation, not cause allergic reactions or hypotension, be water soluble, exhibit

rapid excretion and be biologically stable. Moreover, such a photosensitiser should

be photochemically effective and selective (Meisel and Kocher 2005), have a strong

binding affinity for microorganisms, have a low affinity for mammalian cells

(avoiding photodestruction of host tissues), have a minimal risk of promoting

mutagenic processes and have low chemical toxicity (Jori et al. 2006; Soukos and

Goodson 2011).

Over 400 compounds have known photosensitising properties, including dyes,

medicines, cosmetics, chemicals and many natural substances (Malik et al. 2010).

Antimicrobial photosensitisers such as porphyrins, phthalocyanines and phenothi-

azines, such as toluidine blue O and methylene blue, have a positive charge and

may act directly on both Gram-negative and Gram-positive bacteria (Merchat

et al. 1996a; Minnock et al. 1996; Wilson et al. 1995). The positive charge appears

to promote binding of the photosensitiser to the bacterial outer membrane, inducing

localised damage and favouring penetration (Merchat et al. 1996b). Toluidine blue

and methylene blue are commonly used in oral antimicrobial photodynamic ther-

apy. Toluidine blue is vital for staining the mucus abnormalities in the cervix

and oral cavity, and, furthermore, defines the extent of injury before excision
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(Lingen et al. 2008). Also, it has been shown to be a potent photosensitiser for

destruction of oral bacteria (Wilson et al. 1995; Soukos and Goodson 2011).

Methylene blue has been used as a photosensitising agent since 1920 (Wain-

wright et al. 2007), for the detection of premalignant mucosa (Ojetti et al. 2007) and

as a marker dye in surgery (Creagh et al. 1995). The hydrophobicity of methylene

blue (Wainwright et al. 1997) along with its low molecular weight and positive

charge allows for its passage between the porin protein channels in the outer

membrane of Gram-negative bacteria (Usacheva et al. 2003).

Some photosensitisers, such as toluidine blue and methylene blue, were tested in

association with red laser low intensity to promote bactericidal effects in vivo

(Wong et al. 2005; Komerik et al. 2003). Currently, erythrosine is used clinically

as a PDT plaque disclosing agent that induces bacterial cell death (1.5 log10) in

Streptococcus mutans biofilms in vitro (Wood et al. 2006; Metcalf et al. 2006).

Erythrosine has several advantages compared to other photosensitisers, including

having no toxicity to the host and being approved for use in food products (Lee

et al. 2012).

In a search for effective photosensitisers with absorption in the red band, certain

methods were developed with the malachite green dye. This dye is a member of the

triarylmethane family, along with crystal violet, and shows strong absorption of red

light (Prates et al. 2007). Malachite green has been used in dental practice to

visualise dental biofilms and as a colourimetric test to evaluate dental erosions

(Attin et al. 2005). This photosensitiser effectively reduced the cell viability of

various microorganisms, including Aggregatibacter actinomycetemcomitans
(Prates et al. 2007), Staphylococcus, Enterobacteriaceae and Candida (Junqueira

et al. 2010; Souza et al. 2010). However, all the studies listed above were carried

out with planktonic cultures.

Low concentrations of photosensitisers are more suitable for providing low

toxicity and high solubility and are unlikely to stain teeth (Nagata et al. 2012).

3.3 Light Source

The light source also influences the effects of PDT, and the high absorption

coefficient, concentration of the photosensitiser and light energy flux incident

determine the effectiveness of phototherapy (Malik et al. 2010). In the past, the

activation of the photosensitiser was obtained through a variety of light sources,

such as argon-pumped dye laser, potassium titanyl phosphate (KTP)—or neodym-

ium: yttrium aluminium garnet (Nd/YAG)-pumped dye lasers and gold vapour- or

copper vapour-pumped dye lasers. These laser systems were complex and expen-

sive (Kübler 2005).

Currently, the literature presents three main classes of light sources in clinical

PDT: laser, LED (light-emitting diode) and halogen lamps. Lasers have certain

advantages, such as monochromaticity, high efficiency (>90 %), high power and

interstitial light delivery devices; however, they are also expensive. Activation of
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photosensitisers is also performed by diode laser-emitting light with a specific

wavelength. These devices are portable and their cost is much lower than argon

lasers. Gallium and aluminium and helium–neon have been used for PDT with

diode lasers. Diode lasers are very convenient and reliable, but possess only one

wavelength and require a separate drive for each photosensitiser because of the

different absorption wavelengths (Soukos and Goodson 2011).

Sources of non-laser light, such as LEDs, have also been applied in PDT (Allison

et al. 2004; Juzeniene et al. 2004; Pieslinger et al. 2006; Steiner 2006). LED has

become a viable technology for PDT in recent years, particularly for irradiating

easily accessible tissue surfaces. LEDs allow a greater irradiation time, are easy to

handle and have the convenience of being small and lightweight with lower costs

than lasers (Konopka and Goslinski 2007; Chen et al. 2002). The main advantages

of LED over the laser sources or laser diode are its low cost and ease of configu-

ration matrices in different irradiation geometries. As with laser diodes, LED has a

wavelength of fixed output, but the cost per watt is significantly smaller, so different

units can be built for each photosensitiser (Wilson and Patterson 2008).

Halogen lamps may be spectrally filtered to match any photosensitiser but

cannot be efficiently coupled into fibre optic bundles and cause heating. As a

broadband source, the output power of a halogen lamp is less effective compared

to the peak power laser activation of the photosensitiser (Nagata et al. 2012). It is

not an ideal light source due to the low-density light power and low-energy fluence

of the light. However, this type of lamp is already widely used as a curing unit in

dental clinics where other devices are not needed for use as a light source in PDT

(Lee et al. 2012).

The conventional lamp has an emission wavelength between 400 and 520 nm,

similar to the region of absorption of the photosensitiser erythrosine, 500–550 nm

(Vahabi et al. 2011; Bolean et al. 2010).

4 Mechanism of Action of PDT in Oral Biofilm

The oral cavity is colonised by a complex community of microorganisms and

specific relatively highly interrelated, aerobic and anaerobic bacteria, including

Gram-positive and Gram-negative bacteria, fungi, mycoplasma, protozoa and

viruses (Konopka and Goslinski 2007). Thus, oral biofilm, previously referred to

as bacterial plaque, consists of complex microbial communities embedded in a

polymer matrix of bacteria and saliva and is formed on the surface of the teeth and

soft tissues of the oral cavity (Costerton et al. 1999). Biofilm-related diseases such

as caries, periodontal disease and chronic oral infections are prevalent, placing oral

and general health at risk (Wilson et al. 1996; Meisel and Kocher 2005; Pereira

et al. 2011). Biofilm formation is a multistep process involving initial attachment to

the surface, cell growth, the formation of microcolonies and finally maturation,

resulting in a three-dimensional biofilm (Mang et al. 2012).
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The antimicrobial activity of photosensitisers is mediated by singlet oxygen,

which, due to its high chemical reactivity, directly affects extracellular molecules.

The polysaccharides present in the extracellular matrix of the biofilm are also

susceptible to photodamage. This dual activity is not exhibited by antibiotics and

is a significant advantage of antimicrobial photodynamic therapy. The disintegra-

tion of the biofilm can inhibit the exchange of plasmids involved in the transfer of

antibiotic resistance (Konopka and Goslinski 2007).

One of the main pathogenic bacteria and contributor to cariogenic biofilm

formation is Streptococcus mutans (Kreth et al. 2004). Studies have shown that

different species of yeasts and bacteria are associated with biofilm, including

Candida spp., Staphylococcus spp., Streptococcus spp., Lactobacillus spp., Pseu-
domonas spp., Enterobacter spp., and Actinomyces spp. (Glass et al. 2001; Ribeiro
et al. 2009). The initial colonisation of the tooth or repair of surfaces for various

initial colonising bacteria is replaced by later colonisers, such as S. mutans, and an

increase in the number of anaerobic bacteria that adhere to the tooth enamel or

dentin surfaces is then restored (Wei et al. 2006; Mang et al. 2012) (Fig. 3).

The microbial species that comprise the biofilm are highly interactive and use

the system of intercellular signalling or quorum sensing. This phenomenon pro-

motes collective behaviour in a microbial population by improving access to

nutrients and niches as well as promoting collective defence against other compet-

itive organisms (Williams 2007).

A related antifungal resistance and recurrence of infection are seen by Candida
spp. that also form biofilms (White et al. 1998; Chandra et al. 2001). The main

species responsible for most cases of candidiasis is C. albicans. Furthermore, this

phenotype is less susceptible to antifungal agents compared to their planktonic

counterparts (Ramage et al. 2001). For this reason, alternatives are needed for

effective treatment of superficial infections caused mainly by cells in biofilms.

Although biofilms formed by fungi exhibit more complex structures than those

formed by bacteria, studies indicate that this factor does not affect the photody-

namic processes in such cells (Paardekooper et al. 1995; Donnelly et al. 2008). For

this reason, the Candida cell can be destroyed by anionic photosensitisers (Bliss

et al. 2004).

Fungal cells may be inactivated using photosensitisers under the same conditions

used for other microbial classes. The phenothiazine photosensitiser toluidine blue

has been shown to be highly effective in photodynamic inactivation of C. albicans.
In contradiction to bacteria, yeasts appear to be susceptible to photosensitisers

regardless of load, most likely reflecting differences in the outer cell architecture.

However, similarities of yeast with mammalian cells should be considered, espe-

cially given that cationic photosensitisers have better uptake by mammalian cells

(Wainwright and Crossley 2004).

Studies analysed the effect of antimicrobial photodynamic therapy in biofilms of

C. albicans mediated by the photosensitiser toluidine blue and lighting with a

Paterson lamp (635 nm). Higher concentrations of the photosensitiser associated

with increased incubation time were required for the biofilms to achieve microbial

reduction equivalent to planktonic cells. The low susceptibility of biofilms
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presented by C. albicans can be explained by the structural differences between

biofilm bacteria and yeast or failure of light to penetrate thick biofilms formed by

Candida (Lee et al. 2004).

There are differences in physiological and environmental bacteria growing in

biofilms compared to planktonic counterparts. In biofilms, bacteria respond best to

the antimicrobial methods of nutrient deprivation, pH changes, oxygen radicals,

and antibiotics compared to bacteria in the planktonic form (Wei et al. 2006).

Some phenotypic changes may render the bacteria more resistant to environ-

mental changes as they move from the planktonic to the sessile state of biofilm,

Fig. 3 Scanning electron microscope of different biofilms. Image (a) refers to control biofilms of

Staphylococcus aureus not sensitised with methylene blue (MB) and not exposed to laser light and

(b) shows biofilms sensitised with MB for 5 min and exposed to laser for 98 s. Image (c) refers to

control biofilms of Candida albicans, Staphylococcus aureus and Streptococcus mutans not

sensitised with MB and not exposed to laser light and (d) shows sensitised biofilms with MB for

5 min and exposed to laser for 98 s. Magnification ¼ �10,000. Partially reproduced from Pereira

et al. (2011). Lasers in medical science by European Laser Association, Reproduced with

permission of Springer-Verlag, London Ltd
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including, for example, enhanced resistance to acid generated in the formation of

dental caries (Welin et al. 2003). During the last decade, there has been interest in

the possibility of replacing or supplementing conventional mechanical therapeutic

measures to remove biofilms with chemical agents, such as antiseptics or antibi-

otics. Due to various limitations of antibacterial measures, including antibiotic

resistance, attempts are being made to introduce photodynamic therapy as an

alternative to antibacterial and mechanical measures (Mang et al. 2012).

Bacteria isolated from the oral cavity, including pathogenic, periodontal and

cariogenic bacteria associated with endodontic lesions, are sensitive to PDT (Lee

et al. 2012; Giusti et al. 2008; Garcez et al. 2008), showing susceptibility to

different therapeutic protocols applied in vitro and in vivo (Bliss et al. 2004; Foschi

et al. 2007). Several studies have concluded that photosensitisers combined with

suitable light sources are capable of destroying a variety of microorganisms in

localised infections, experimental models and planktonic cultures (Meisel and

Kocher 2005; Hamblin and Hasan 2004; Araujo et al. 2010).

Bacteria in biofilms are less accessible to antibiotics due to their protection

within the polymer matrix and the bacterial adhesion to teeth or epithelia (Vitkov

et al. 2002). In vitro susceptibility tests in model biofilms revealed significant

microorganism survival after treatment with antibiotics (Biel 2010). The absorption

of photosensitisers into the matrix is prevented in the same way as antibiotics.

Device ultrasonics or photomechanical waves can improve the absorption effi-

ciency of these substances (Qian et al. 1997). The photodynamic treatment also

influences the structure of the biofilm, decreasing layer thickness and biomass

(Malik et al. 2010).

The application of PDT in the maintenance treatment of periodontal disease

removes biofilms in residual pockets and makes mechanical treatment, by means of

scraping the root, no longer necessary. Thus, the patient may experience less tooth

hypersensitivity. PDT may decrease the risk of bacteraemia, which usually occurs

after periodontal treatment procedures. On the other hand, there is unequivocal

evidence demonstrating the risk of periodontal systemic diseases, such as cardio-

vascular disease and diabetes (Greenwell and Bissada 2002). If antibiotic resistance

continues to increase, PDT could be a valuable alternative for most indications in

which antibiotics have been administered previously without satisfactory results.

The number of immunocompromised patients can generate new challenges for

treatment strategies (Malik et al. 2010).

In the future, difficulties with antibiotic therapy may arise due to increased

resistance to antibiotics commonly used in periodontics, an increase in the number

of immunocompromised patients (Ryder 2002) and periodontal infections caused

by various pathogens requiring different antibiotics that cause adverse reactions

(Muller et al. 2002).
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5 PDT in the Treatment of Oral Biofilms

As one of the leading causes of bacterial infections in humans, biofilms pose a

serious problem for health care (Donlan 2001). Professor Michael Wilson and

colleagues (Wilson 1993), Eastman Dental Institute, University College London,

UK, pioneered the application of photodynamic therapy as an alternative to

mechanical and antimicrobial regimens in eliminating microbial species present

in the oral biofilm (Soukos and Goodson 2011).

In the literature, there are a number of studies showing a variety of protocols for

the use of PDT, but it is necessary to fully analyse the properties of photosensitisers

and light sources used in dentistry to develop a successful treatment.

Lee and colleagues (2012) confirmed the positive effect of PDT in the reduction

of biofilms formed by S. mutans using erythrosine and halogen light. Thus, a

significant reduction of biofilm formation of S. mutans in response to PDT could

be obtained in most dental offices for no expense given that erythrosine and halogen

light are conventionally used in dental offices. Four treatment conditions were

established: no photosensitiser or irradiation (control), photosensitiser alone,

photosensitiser and irradiation and irradiation alone. It was observed that only the

combination treatment resulted in significant increases in microbial destruction,

with rates of 75 % and 55 % after 8 h of incubation and 74 % and 42 % after 12 h of

incubation for biofilms in a brain heart infusion broth supplemented with 0 % or

0.1 % sucrose, respectively.

Mang et al. (2012) evaluated the effect of PDT using 25–125 μg/mL porfimer

sodium with a photosensitiser laser (light source) at 630 nm for 5 min in the

treatment of localised infections caused by S. mutans biofilms. The authors dem-

onstrated that there was a significant reduction of S. mutans. Maximum efficiency

was observed when the biofilms were exposed to a combination of the

photosensitiser and light. Porfimer sodium at 25 μg/mL with an incubation time

shorter than 5 min (30 J/cm2) resulted in a significant reduction in the viability of

bacteria in biofilms. Optimal parameters were obtained at a concentration of

125 μg/mL with an incubation of 5 min (60 J/cm2). From the results of this study,

it was concluded that the microbial reduction was significant even when the

bacteria were incorporated into an extracellular matrix because the photosensitiser

was combined with the appropriate wavelength of emitted light.

Studies performed by Li et al. (2013) evaluated the efficacy of 5-aminolevulinic

acid (ALA) associated with the laser (0, 100, 200 and 300 J/cm2) in photodynamic

therapy in biofilms formed by S. aureus and S. epidermidis resistant to methicillin.

The treatment showed great potential for elimination of biofilm strains resistant to

methicillin, dependent on the density of light energy. Also, as a natural precursor of

protoporphyrin IX [PpIX], ALA can be used in the treatment of infectious diseases

through local, systemic and oral administration.

Garcez et al. (2007) developed a real-time method using bioluminescent bacteria

and a camera that provided low light images to evaluate the antimicrobial effects in

the treatment of root canal infections caused by Proteus mirabilis and
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P. aeruginosa biofilms. These authors quantitatively compared conventional end-

odontic treatment with PDT combination. For the PDT treatment, conjugated

polyethylenimine and chlorine (e6) were used as photosensitisers and a 660 nm

laser was emitted into the root canal by a 200 μm optical fibre. The PDT treatment

was compared and combined with standard endodontic treatment, mechanical

debridement and antiseptic irrigation. Endodontic therapy alone reduced bacterial

bioluminescence by 90 % and PDT treatment alone reduced it by 95 %. The

combination of these treatments caused greater than 98 % reduction and showed

lower bacterial growth after 24 h compared to either treatment alone. The results

suggested efficacy in the use of PDT as an adjunct to conventional endodontic

treatment.

Eick et al. (2013) studied the effect of photoactivated disinfection (PAD) using

toluidine blue and LED (625–635 nm) in species of microorganisms associated with

periodontal, peri-implant and periodontopathic biofilm-forming bacteria. Sixteen

microbial species, including P. gingivalis and A. actinomycetemcomitans, and a

mixture consisting of 12 species suspended in saline, with or without 25 % human

serum, were exposed to photoactivation. In addition, monotypic biofilms,

consisting of P. gingivalis and A. actinomycetemcomitans, and heterotypic biofilms

were grown on titanium discs in 24-well plates, and artificial periodontal pockets

were exposed to PAD with or without pre-treatment with 0.25 % hydrogen perox-

ide. Analysing the results together, the authors concluded that the photoactivated

disinfection with LED is effective against periodontopathic microbial species, even

in the presence of serum. PAD with or without hydrogen peroxide reduced the

viability of monotypic biofilms, while heterotypic biofilms were less sensitive. In

this study, we observed that complete elimination of multi-species biofilms with

PAD is unlikely, highlighting the importance of prior mechanical removal. We also

observed increased antimicrobial activity after photoactivated disinfection with

hydrogen peroxide, indicating the relevant potential for this method in adjunctive

antimicrobial treatment of periodontal infections and peri-implants.

Andrade et al. (2013) evaluated the effects of pre-irradiation time (PIT) in

photodynamic therapy mediated by curcumin (CUR) in planktonic and biofilm

cultures of strains of C. albicans, C. glabrata and C. dublinienses. Suspensions
and biofilms of Candida spp. remain in contact with different concentrations of

CUR at time intervals of 1, 5, 10 and 20 min prior to irradiation and activation by

LED. Control samples received no light or CUR. After PDT, the suspensions were

plated on Sabouraud dextrose agar, and the plaque results were obtained using the

XTT reduction method. Different PIT showed no significant differences in

PDT-mediated CUR suspensions of Candida spp. There was complete inactivation

of the three species of Candida with the combination of 20.0 mM CUR after 5, 10

and 20 min of PIT. The biofilms showed a significant reduction in cell viability after

PDT. Generally, the three Candida species evaluated showed greater reductions in

cell viability with 40.0 mM CUR and 20 min of PIT.

Vilela and colleagues (2012) compared the action of malachite green with the

phenothiazine photosensitisers methylene blue and toluidine blue (concentrations

ranging from 37.5 to 3,000 μM) in biofilms of S. aureus and Escherichia coli with a
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660 nm laser diode. The authors concluded that the most significant microbial

reduction was achieved with the photosensitiser malachite green at higher concen-

trations than those used for the phenothiazine dyes. However, to establish the safety

of malachite green as a photosensitiser for PDT, studies in human cells are

necessary.

The environment of the oral cavity is completely different from laboratory

culture or an in vitro environment, making it difficult to provide an ideal condition

for the study of PDT. However, despite these limitations, in general, the research

shows promising results in this field.

6 Advantages of PDT

The use of antimicrobial photodynamic therapy has advantages such as the

following:

• The lack of genotoxicity and mutagenicity to microorganisms and human cells,

favouring long-term safety (Gonzales and Maisch 2012).

• Photosensitiser and subsequent localised reactions do not damage the surround-

ing tissue or harm the resident microbiota in the tissue (Alvarez et al. 2012).

• Possibility of reduced treatment time, even in individuals more susceptible to

infections and particularly prone to develop resistance (Gonzales and Maisch

2012).

• Not only inactivation of microorganisms inhabiting the biofilm but also the

biofilm structures (Kishen et al. 2010; Collins et al. 2010; Saino et al. 2010).

• Direct action on extracellular molecules, such as polysaccharides present in the

extracellular polymeric substances, inhibits the exchange of plasmids and, thus,

the transfer of antibiotic resistance, avoiding new colonisation and preventing

recurrence of infection due to the high chemical reactivity of singlet oxygen and

other reactive oxygen species (Wainwright and Crossley 2004).

• Do not induce resistance, so repeated applications of PDT can be performed if

treatment is not sufficient to disrupt biofilm structures and inactivate cells

(Nagata et al. 2012).

• Easy access to superficial infections (Gonzales and Maisch 2012).

• Ability of reactive oxygen species in inactivating virulence factors secreted by

microorganisms, especially proteins that can cause tissue damage and may

remain even after efficient microbial reduction (Yordanov et al. 2008).

7 Conclusion

This chapter sought to provide the reader with a description of the use of photody-

namic therapy in oral biofilms by presenting an overview of the concept and

mechanism of the action of PDT. There have been studies reported on oral biofilms

for the development of therapeutic agents that block their formation or promote the
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disintegration of the biofilm microbial community to control the growth of micro-

organisms in the oral cavity. Thus, PDT may be an alternative to conventional

periodontal therapeutic methods. Although PDT is still in the experimental stage of

development and testing, the method can be an adjunct to conventional antibacterial

measures in periodontology in places of difficult access for mechanical treatment

(Malik et al. 2010). PDT is a safe, minimally invasive and non-toxic treatment to

control biofilm formation (Lee et al. 2012; Soukos and Goodson 2011).

It is indeed hoped that this therapy will be applied for future clinical use in

dentistry. The success of PDT depends on the choice of the most appropriate dose of

the photosensitiser and the optimal administration time of the photosensitiser after

light activation.
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Clinical and Regulatory Development

of Antibiofilm Drugs: The Need,

the Potential, and the Challenges

Brett Baker, Patricia A. McKernan, and Fred Marsik

Abstract Escalating rates of mortality and morbidity associated with chronic,

recurrent, persistent, and increasingly antibiotic-resistant bacterial infections have

generated an extremely urgent unmet need for new antibiotics, particularly those

with new mechanisms and targets of action. Over 80 % of all infections are

associated with biofilms, a growth condition that not only increases their resistance

to currently available antibiotics but also enhances their capability for evading

many host defenses. Targeting biofilms may therefore be one of the most important

new strategies available for the development of novel antibacterials. In spite of this,

biofilms remain underappreciated as targets by the current global healthcare sys-

tem. Deterrents to their clinical development are primarily associated with the

antimicrobial regulatory approval process and insufficient financial incentives

offered to pharmaceutical developers—issues which are just now becoming recog-

nized by governments and professional health associations around the world. To

facilitate the development of antibiofilm drugs, it is critical that infectious disease

stakeholders engage in an ongoing dialog with regulatory agencies to develop

standardized methods with respect to (a) the rapid, effective diagnostic assessment

of biofilm-related infections and (b) the clinical assessment of antibiofilm drug

efficacy. It is also imperative that regulatory agencies are willing to exercise

maximum flexibility in approving these innovative and much needed new drugs.
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1 Microbial Biofilms: Age-Old Life Form, Cutting-Edge

Science, Key Component of Antibiotic Resistance

Bacteria living in the highly resistant biofilm phenotype are estimated to account

for over 99 % of all bacteria and approximately half of the biomass on Earth. With

the fossil record extending billions of years into Earth’s past, microbial biofilms are

apparently the most successful, persistent form of life that this planet has known.

Even so, our knowledge of biofilms, particularly with respect to health-related

matters, has only been collected very recently. Over the past two decades, the

nascent science of medical biofilms has benefited from an explosion of research

activity. Over 98 % of PubMed’s several thousand publications on biofilms have

been published since 1994 (Bjarnsholt 2013). This impressive body of biofilm

research is now growing at a rapid pace, with over 2000 new scientific journal

articles being published each year (ibid). Many of these studies have firmly

demonstrated the strong relationship between microbial biofilms, antibiotic-

resistant infections, and chronic, recurrent, and persistent infections.

Biofilm resistance and tolerance to antibiotics has been described as follows

(Ciofu and Tolker-Nielsen 2011):

One of the most important features of microbial biofilms is their tolerance to antimicrobial

agents and components of the host immune system. The difficulty of treating biofilm

infections with antibiotics is a major clinical problem. Although antibiotics may decrease

the number of bacteria in biofilms, they will not completely eradicate the bacteria in vivo

which may have important clinical consequences in the form of relapses of the infection.

Therefore, common antibiotic regimes for treating biofilm-associated infections imply the

removal of infected tissues or implanted devices (if possible) associated with long-term

anti-microbial therapy. In some cases chronic suppressive therapy with antibiotics may be

necessary.

The difficulty of treatment of biofilm infections involves the inefficacy of the immune

system to eradicate the biofilm-embedded microorganisms as well as the recalcitrance of

biofilms to antimicrobial therapy.

The recalcitrance of biofilms to antimicrobial drugs is related to a range of mech-

anisms including (a) restricted penetration of antimicrobial drugs, (b) differential

physiological activity within different regions of biofilms, (c) development of

persister cells and phenotypic variants, (d) genetic tolerance mechanisms conferred

by gene products produced specifically in biofilms, and (e) other tolerance mech-

anisms that are not related specifically to biofilms, such as the production of

antibiotic-degrading enzymes (Ciofu and Tolker-Nielsen 2011; Fux et al. 2005).

In addition to the combined contributions of these various mechanisms of antibiotic

tolerance, biofilms themselves are hypermutable, leading to de novo development

of antibiotic resistance within biofilms which may not have initially contained

antibiotic-resistant bacteria (Ciofu and Tolker-Nielsen 2011).

Biofilm infections frequently lead to recurrent infections, chronic/persistent

infections, amputations, reoperations, implant revisions, disabilities, and particu-

larly in elderly or immune-compromised populations, death. Clearly these
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infections contribute an extremely heavy burden to overall healthcare costs. The

cost in human terms is unacceptable.

2 Lag in Antibiofilm Drug Development Despite

Acute Need for New Anti-infectives

Typically there is a lag time between the development of a convincing new body of

health-related science—in this case the role of biofilms in infections—and the

development of drugs to address the newly identified therapeutic targets. The lack

of development of new drugs to deal with biofilm-related infections is taking place

concurrently with four serious global conditions and unmet needs, creating a

‘perfect storm’ that is subjecting public health on a global scale to unnecessary

and increasingly life-threatening health consequences.

First, over the past 20 years, a steadily diminishing number of antibacterial drug

products have been developed and approved, due to a combination of very demand-

ing regulatory requirements (and associated costs) and insufficient financial incen-

tives for pharmaceutical companies. For many years the Food and Drug

Administration (FDA) did not revise its guidances for antibacterial drug develop-

ment, thus leaving in place many unaddressed barriers to development. Accord-

ingly, the approval of new antibacterial drugs has essentially come to a standstill.

With respect to drugs targeting biofilms, the FDA and other regulatory agencies

have also lacked access to standardized test methods to assess antibiofilm clinical

effects since many of these standardized methods are only now in the early stages of

development.

Second, antibiotic resistance is spreading with amazing speed on a global basis.

Substantially higher rates of mortality and morbidity are associated with antibiotic-

resistant infections—infections that are often very difficult or impossible to treat

with current antibiotics. Accordingly, health agencies around the world are voicing

urgent requests for the development of new antibiotics, particularly those with
new mechanisms and targets of action, even as regulatory approvals for new

antibacterial agents have essentially dried up. While microbial biofilms and anti-

biotic resistance are clearly and often causally related, biofilms have not been a

focus of the pharmaceutical industry due to unclear regulatory guidelines, lack of

diagnostic methods to demonstrate biofilms at the site of infections, and lack of

standardized methods to demonstrate in vitro and in vivo correlation of antibiofilm

activity with clinical outcomes.

Third, increasing rates of diabetes and obesity as well as aging populations in

North American and Europe are leading to an increasing number of chronic and

recalcitrant infections. It has been estimated that over 80 % of all infections are

related to biofilms and that biofilms have an “almost ubiquitous involvement” in

chronic infectious diseases and in many acute infections (Costerton et al. 1999; NIH

1999, 2002). Many long-term, chronic infections involve slow-growing or
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non-multiplying bacteria, against which current antibiotics are minimally effective.

A partial list of these conditions include endocarditis, pulmonary infections asso-

ciated with cystic fibrosis, recurrent urinary tract infections, chronic otitis media,

chronic rhinosinusitis, Crohn’s disease, musculoskeletal infections, osteomyelitis,

bacterial prostatitis, necrotizing fasciitis, periodontitis chronic wound infections,

fistulas, and infections associated with indwelling medical devices including cath-

eters, stents, orthopedic devices, contact lenses, implantable electronic devices,

cardiac devices, and breast implants (Costerton et al. 1999; Claret et al. 2007;

Lynch and Robertson 2008; Rieger et al. 2013).

And fourth, there is a very great unmet need for rapid, reliable, and affordable

biofilm diagnostic technologies. Until rapid, practical diagnostic tools are available

to clinicians, the biofilm component of most infections will continue to be

unrecognized and untreated, resulting in unacceptable rates of morbidity and all

too frequently mortality.

Taken together, these global trends and conditions have generated an extremely

urgent unmet need for new antibacterials, particularly those with new mechanisms

of action and targets of action such as would be provided by agents with antibiofilm

activity. Considering the ubiquity of the biofilm phenotype in nature and in the

majority of infections, targeting biofilms may be one of the most important inno-

vations in the history of antibacterial drug development. Standing in the way of the

rapid development of biofilm drugs are the four serious global conditions described

above, which make the development of this strategic approach an extremely long,

risky, expensive, and arduous process. Extended lag time and virtual barriers to

entry for antibiofilm drugs are not acceptable if global antibiotic resistance and

chronic infectious diseases are to be treated in a timely and clinically relevant

manner.

3 Increasingly Urgent Warnings of Global Antibiotic

Resistance Issued by Health Agencies, Organizations

and Governments

There is currently an urgent and expanding global need to advance the clinical and

regulatory development of new anti-infective drugs, as evidenced by the positions

taken by leading national and international organizations, government health offi-

cials, and infectious disease experts.

In 2011, the World Health Organization (WHO) announced their global cam-

paign to focus attention on combating antimicrobial resistance (WHO 2011). In the

keynote address at the 2012 European Union conference on “Combating Antimi-

crobial Resistance: Time for Action”, Dr. Margaret Chan, Director General of the

WHO, stated:

“Hospitals have become hotbeds for highly resistant pathogens, like MRSA, ESBL, and

CPE, increasing the risk that hospitalization kills instead of cures.” (Chan 2012)
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David Livermore, the director of antibiotic resistance monitoring at the UK’s

Health Protection Agency stated:

“So much of modern medicine —from gut surgery to cancer treatment to transplants—

depends on our ability to treat infection. If resistance destroys that ability then the whole

edifice of modern medicine crumbles.” (Stovall 2011)

Also in 2011, the European Commission recognized the urgent need for a “new

business model” for the development of new antibiotics. This new model would

benefit from an unprecedented and collaborative effort between the government and

companies developing new antibiotics to combat antibiotic-resistant infections

(European Commission 2011).

In 2012, the US Congress reauthorized the Food and Drug Administration Safety

and Innovation Act (FDASIA) that contains new legislation entitled “Generating

Antibiotic Incentives Now” (GAIN) in its Title VIII (United States Senate Bill

S.3187 2012). This legislation provides new pathways to improve the speed of the

regulatory review process for new antibiotics with the potential to overcome

antibiotic-resistant infections and provides incentives to companies for their devel-

opment such as extending the period of market exclusivity within the USA.

Congress, by establishing the GAIN Act, has clearly demonstrated that develop-

ment of new antibiotic drugs to address antibiotic resistance is a critical priority.

A letter from the Infectious Disease Society of America (IDSA) written in

support of the GAIN Act (Infectious Disease Society of America 2011) stated that:

Antibiotic-resistant infections significantly increase both health care and societal costs and

hospital stays as demonstrated by an analysis of antibiotic-resistant infection data from a

study conducted at Chicago Cook County Hospital (Roberts et al. 2009). Extrapolating that

analysis nationwide, the authors concluded antibiotic-resistant infections cost the

U.S. health care system in excess of $20 billion annually, $35 billion in societal costs,

and more than 8 million additional days spent in the hospital. The cost to society of

antimicrobial resistant infections in terms of lives lost and the economy will only rise as

antimicrobial resistance continues to spread.

The urgent calls to action, as well as the global infectious crisis itself, have

continued to grow more desperate during 2013. The United Kingdom’s Chief

Medical Officer, Dame Sally Davies, recommended that antibiotic-resistant bacte-

ria be “. . .ranked alongside terrorism and climate change on the list of critical risks

to the nation” (McCarthy 2013).

In September of 2013, the CDC announced in a 114-page report entitled

Antibiotic Resistance Threats in the United States, 2013 (CDC 2013) that in the

USA alone, over two million people become infected with antibiotic-resistant

bacteria each year and that at least 23,000 people die as a direct result of those

infections annually. The CDC stated that these estimates are “minimum estimates.”

While there are many unmet needs in health care today, there are none with more

far-reaching, potentially catastrophic consequences on a global level, than

antibiotic-resistant infectious disease.

In light of so many urgent calls for (a) new mechanisms of action, (b) new

targets, and (c) new strategies to overcome infectious diseases, it is of great concern
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that the novel, high-potential antibiofilm strategy for treatment of infection faces so

many barriers and challenges to clinical implementation.

4 Current Regulatory Guidances: Emphasis on New

Treatments for Serious, Antibiotic-Resistant Infections,

But No Provision for Antibiofilm Mechanism

While there are a series of FDA clinical/antimicrobial guidances related to the

development of antibacterials for the treatment of a variety of infections (FDA

website: Guidance Compliance Regulatory Information, Guidances), none of the

guidances address the development of antimicrobial drugs targeting biofilms or any

other specific microbial targets (e.g., virulence factors). Likewise, the European

Medicines Agency document titled “Guideline on the evaluation of medicinal

products indicated for the treatment of bacterial infections” (European Medicines

Agency website) also does not address the issue of the treatment of infections

related to biofilms.

Even so, the July 2013 FDA guidance titled “Guidance for Industry:

Antibacterial Therapies for Patients with Unmet Medical Need for the Treatment

of Serious Bacterial Diseases” (FDA 2013) provides a discussion that indicates

(a) the urgent unmet need for new antibacterial drugs, (b) the difficulty in carrying

out antimicrobial regulatory studies, and (c) the effort that the FDA is making to

encourage antimicrobial drug development, particularly for life-threatening

infections.

Over the past few decades, efforts to develop new antibacterial drugs have declined

substantially. Over this same time period antibacterial drug resistance has become more

common even in settings in which attempts were made to slow the rate at which bacterial

pathogens become resistant, such as the prudent use of antibacterial drugs and adherence to

infection control procedures. As a result, an increasing number of patients are suffering

from bacterial diseases that do not respond to currently available antibacterial drugs, with

serious consequences, including increased mortality.

Clinical trials for antibacterial drugs can be challenging for a number of reasons, including:

(1) for a serious bacterial disease, there is a need to urgently initiate empiric antibacterial

drug therapy, which may obscure the effect of the antibacterial drug under study because

patients receive effective antibacterial therapy before enrolling in the trial; (2) patients with

serious acute bacterial diseases can be acutely ill (e.g. delirium in the setting of acute

infection) and obtaining informed consent and performing other trial enrollment procedures

in a timely fashion may be difficult; (3) there may be diagnostic uncertainty with respect to

the etiology of the patients’ underlying disease, including identifying a bacterial etiology;

and (4) there may be a need for concomitant antibacterial drug therapy with a spectrum of

activity that may overlap with the antibacterial drug being studied.

A decreased rate of antibacterial drug development poses a significant public health

concern. As bacteria continue to develop resistance because of selection pressures from

empiric and/or inappropriate use of currently available antibacterial therapies, increased
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numbers of patients will have unmet medical needs related to effective antibacterial drug

therapy. Therefore, it is important for the public health that new antibacterial drugs be

developed while also considering how best to ensure appropriate use.

To foster development of new antibacterial therapies for the treatment of serious bacterial

diseases, we are exploring approaches that may help streamline development programs for

antibacterial drugs, especially for drugs that could address an unmet medical need. As

recognized in FDA regulations for the evaluation of drugs intended to treat life-threatening

and severely debilitating illnesses.

“The Food and Drug Administration (FDA) has determined that it is appropriate to exercise

the broadest flexibility in applying the statutory standards, while preserving appropriate

guarantees for safety and effectiveness. These procedures reflect the recognition that

physicians and patients are generally willing to accept greater risks or side effects from

drugs that treat life-threatening and severely-debilitating illnesses, than they would accept

from drugs that treat less serious illnesses. These procedures also reflect the recognition that

the benefits of the drug need to be evaluated in the light of the severity of the disease being

treated” (ibid).

Despite the FDA’s efforts to “exercise the broadest flexibility in applying the

statutory standards,” a regulatory pathway that specifically enables and facilitates

antibiofilm drug development remains to be defined.

5 Current Regulatory Path for Antibiofilm Agents

and Challenges for Development of an Antibiofilm-

Specific FDA Guidance

There are two types of categories of antibiofilm agents: (1) those with both

conventional antibacterial activity against planktonic bacteria and antibiofilm activ-

ity and (2) those with antibiofilm activity, but without potent conventional antimi-

crobial activity, an example of which may be certain biofilm dispersants. Under

current FDA guidances the two categories of agents are likely to face very different

regulatory hurdles (Figs. 1 and 2). As of October 2013, the FDA has not yet granted

a label claim related specifically to activity against biofilms for either category of

agent, despite the fact that some antibacterial FDA-approved drugs have been

demonstrated in nonclinical studies to have antibiofilm activity and also indirectly

to be effective against infections related to biofilms (Bjarnsholt 2013).

Importantly, agents in the first category (those that can achieve FDA approval

based on conventional antimicrobial activity) have a current, viable path to regu-

latory approval, as outlined in existing FDA guidances. This path is feasible

because in vitro, in vivo, and clinical antimicrobial efficacies can be evaluated

using a substantial body of existing standardized methodologies that are acceptable

and well known to the FDA. It can therefore be expected to result in the availability

of new drugs with antibiofilm activity to treat patients who are in dire need of new

treatment strategies. Thus while these new, innovative drugs can be granted label
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claims related to conventional antimicrobial activity and efficacy against specific

infectious pathogens or diseases, at this time, their labels will not be able to

communicate claims of antibiofilm activity.

Fig. 1 Challenges to development of new antibacterial drugs (with or without antibiofilm activity)

Fig. 2 Challenges to development of new antibiofilm drugs (without conventional antibacterial

activity)
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Until a substantial body of standardized biofilm testing and diagnostic method-

ologies is developed for use in the analysis of biofilms and antibiofilm activity,

claims related to biofilms are not likely to be awarded. For those agents with

antibiofilm effects but without conventional antibacterial activities, an even higher

level of regulatory scrutiny is likely to be applied as a direct result of the lack of

standardized, clinically relevant methods to evaluate antibiofilm drugs. Drugs

seeking antibiofilm claims would likely be required to demonstrate activity against

bacteria living in a sessile, non-multiplying or persister (biofilm) clinical state—and

that is currently far less than straightforward, particularly from a clinical perspec-

tive. True, a plethora of knowledge now exists describing the various stages of

biofilm development and the role of biofilms in infections (Bjarnsholt 2013), and

animal models of biofilm infection are increasingly available. Continual expansion

of this body of knowledge will eventually lead us to effective control of microbial

biofilms by drugs with biofilm claims. However, with only rare exceptions, stan-

dardized methods to detect and assess biofilms and antibiofilm efficacy in vitro, in

animal models, and in clinical studies have not yet been approved by reputable

standardization organizations. To date, a total of five methods developed by the

Center for Biofilm Engineering at Montana State University and others have been

approved by ASTM (American Society for Testing and Materials) International as

standardized biofilm testing methods (ASTM 2011). This is a very important start,

but much more expansive work is urgently needed in terms of the development of

many more necessary, standardized clinically relevant biofilm tests.

6 Call to Action for the Biofilm Community, Infectious

Disease Stakeholders, and Regulatory Agencies

It is incumbent upon those working in the biofilm arena to engage with the FDA, the

infectious disease community, the pharmaceutical industry, and healthcare organi-

zations (e.g., Cystic Fibrosis Society) to raise the awareness of the need to develop

criteria that could be used to provide satisfactory clinical evidence that antibiofilm

agents provide novel and effective treatments for antibiotic-resistant infections. It

will be critical for these diverse stakeholders to work together to define and develop

a coherent strategy for development of the necessary methodology that will subse-

quently support a clear and approachable regulatory path for antibiofilm agents.

An example of this type of cooperation occurred in the drug manufacturing

arena. The Parenteral Drug Association (PDA) organized a task force composed of

European and North American pharmaceutical manufacturers, suppliers of cleaning

chemicals, and consultants to formulate and enact a new paradigm to address

contamination control in healthcare product manufacturing processes, in part to

address the need for prevention and elimination of the microbial biofilms (Madsen

and Moldenhauer 2013; PDA 2012).
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In 2014, the Center for Biofilm Engineering at Montana State University is

taking the initiative to create the first opportunity to bring key industry, academic,

and regulatory stakeholders together. Together with FDA, they co-sponsored a

conference, “Biofilms, Medical Devices, and Anti-biofilm Technology: Challenges

and Opportunities” in the Washington, DC, area to create an opportunity for FDA

scientists and administrators to engage in dialog with members of the pharmaceu-

tical, industrial, and academic community. FDA’s co-sponsorship of the conference

is a clear indication of the agency’s increasing awareness of the need for engage-

ment, communication, and collaboration to solve the challenges of developing

standardized test methods and a regulatory path for antibiofilm agents.

Moving forward, the challenge for government agencies such as NIH, CDC, and

the scientific and medical communities at large will be the commitment of substan-

tial resources to the development of standardized evaluation procedures relevant to

(a) the role of biofilms in infections, (b) diagnosis of biofilm infections in patients,

and (c) evaluation of antibiofilm drug activity both clinically and in vitro. Such

methodology development will allow for a more clinically equivalent and efficient

comparison of diagnosis and treatment outcomes. It can be anticipated due to the

heterogeneous and obscure nature of biofilms that many new methods and pro-

cedures will be required.

7 Potentially Expedited Paths for Antibiofilm Agents

That Have Conventional Antimicrobial Activity

Professional organizations such as the Infectious Diseases Society of America

(IDSA) are actively lobbying Congress for the development of exceptions to

existing regulatory pathways to rapidly facilitate the development of drugs to

treat patients with severe and life-threatening infections. The IDSA is encouraging

the development of legislation providing for a new Limited Population

Antibacterial Drug (LPAD) approval mechanism and is further encouraging the

FDA, even in the absence of such legislation, to enact the LPAD mechanism under

its current statutory authority. From the perspective of the IDSA,

FDA has an essential role to play in ensuring that Americans have access to safe and

effective drugs. But, in so doing, the agency must ensure that the risks associated with

approving new products are appropriately balanced with the need to provide patients in

desperate need with access to beneficial products. To date, when it comes to antibiotics, and

particularly antibiotics needed to treat patients with the most serious bacterial infections,

FDA’s benefit-risk equation has been out of balance.

LPAD will rebalance the benefit/risk equation and provide an important new approval

pathway option for companies interested in and able to develop antibacterial drugs that treat

the most serious infections where insufficient satisfactory therapeutic options currently

exist. At least 15 companies and 24 medical and public health organizations including the

American Medical Association (AMA) have lined up with IDSA in support of LPAD’s

creation.
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Why do we need LPAD? It is not feasible for antibacterial drugs that treat serious infections

due to highly resistant bacterial pathogens to be developed using traditional, large scale

clinical trials due to the limited numbers of patients in which such serious infections occur.

Examples of these organisms include Acinetobacter baumannii (which is threatening

soldiers returning from Afghanistan as well as patients throughout the U.S. and the

world), carbapenemase-producing Klebsiella pneumoniae, and Pseudomonas aeruginosa.
Such infections kill an astonishingly high percentage of infected patients (e.g., greater than

50%–60% of patients with infection in the blood, greater than 40%–50% of patients with

lung infection, etc.) despite any available treatment. Furthermore, extended-spectrum beta

lactamase (ESBL)-producing Enterobacteriaceae (e.g., Escherichia coli [E. coli] and

Enterobacter spp.), which often are resistant to all orally administered antibiotics, have

spread through health care systems and more recently into communities.

“For serious diseases for which few if any acceptable treatments are available, the tolerable

level of uncertainty regarding a potentially life-saving drug’s effectiveness and safety

profile is much greater. As an example, before the first HIV drug was approved, even

highly toxic drugs were appropriately deemed approvable, because the infection itself

caused nearly a 100% mortality rate. As more and more new anti-HIV drugs were

approved, the death rate from HIV infection plummeted, and there was an increasingly

safe group of antiretroviral drugs already on the market. As such, the tolerability for risk for

each successively approved new agent became lower and lower, appropriately so. Similar

to the early years of HIV drug development, the benefit-risk ratio of approved LPAD drugs

will be quite different than for antibiotics approved under traditional development pro-

grams where the drug is indicated for use more broadly.” (FDA Docket No. 2012-N-1248

2013).

The precedent for regulatory flexibility extended to AIDs drugs is highly relevant to

the current need for regulatory facilitation of new treatments for infections caused

by antibiotic-resistant bacteria, including antibiofilm agents. As reported by CDC

researchers (Klevens et al. 2007), in 2005 there were an estimated 94,000 life-

threatening MRSA infections in the USA, resulting in 18,650 deaths, more than the

estimated 17,011 Americans who died of AIDs that same year (CDC 2007 revised).

“Under the LPAD approval mechanism, an antibacterial drug’s safety and effectiveness

would be studied in substantially smaller, more rapid, and less expensive clinical trials—

much like the Orphan Drug Program permits for other rare diseases. LPAD products then

would be narrowly indicated to be marketed to and used in small, well-defined populations

of patients for whom the drugs’ benefits have been shown to outweigh their risks. Many

bacterial diseases have a broad spectrum of severity. The LPAD mechanism is intended to

address the needs of a special population of patients with serious manifestations of such

diseases who lack satisfactory treatments. In caring for such severely ill patients with

limited treatment options, the patients, health care providers, regulators, and society can

tolerate a greater degree of uncertainty about overall risk associated with a drug than can be

tolerated in patients with milder manifestations of the disease, or those who have more

satisfactory therapeutic options. The LPAD mechanism will not be used to approve

antibacterial products that treat more common, less serious infections or infections where

sufficient alternative therapeutic options exist” (FDA Docket No. FDA-2012-N-1248

2013).

In the Personal Views section of the March 2013 issue of Lancet Infectious

Diseases, a group of pharmaceutical company physicians and researchers proposed

a four-tiered regulatory framework for registration of new treatments that address
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the unmet need for new antibacterial drugs (Rex et al. 2013). This approach would

provide expedited regulatory pathways that incorporate concepts from orphan drug

registration and other existing registration pathways to balance clinical efficacy

requirements with seriousness of the unmet medical need. The authors make the

case that the conventional registration requirement for two Phase 3 clinical studies

(Tier A in their model) will result in excessive delays in bringing new antibacterials

to market, particularly for agents that have narrow-spectrum activity or those that

are directed at emerging resistant pathogens, due to the limited number of patients

available for enrollment. They propose creation of two new approval tiers that fall

between the conventional Tier A requirements and the Animal Rule approval path

(their Tier D). Tier C is pathogen-focused, would require only small comparative

and descriptive human clinical studies, and would apply to antibacterials with

efficacy against uncommon pathogens or mechanisms of resistance. Tier B would

be intermediate between Tier A and C and would require only one Phase 3 random-

ized controlled trial plus Tier C type small comparative and descriptive studies. The

label for Tier B and C agents would communicate the limitations, risks, and

uncertainties of the clinical data used in support of registration.

The 2012 passage of the GAIN Act as Title VIII of the Food and Drug

Administration Safety and Innovation Act and the potential adoption of the

LPAD approval process represent avenues of regulatory development that may be

utilized to speed the development of antibiofilm drugs, as long as such drugs can

also demonstrate the ability to effectively overcome antibiotic-resistant bacteria.

This latter attribute may make such drugs eligible for FDA Qualified Infectious

Disease Product (QIDP) designation, or, if the LPAD approval process is adopted,

demonstrate the ability to effectively treat infections associated with unmet needs.

Considering the contribution of microbial biofilms both to antibiotic-resistant

infections and to life-threatening persistent infections, these exceptions to the

standard FDA regulatory process may indeed be available to aid in the advancement

of antibiofilm drugs.

A limited number of drug candidates with likely, purported, or proven

antibiofilm activity are currently undergoing clinical development (see Table 1),

while many other antibiofilm agents are in pre-clinical or research stages of

development. It is indeed notable that three of the eight drug candidates listed in

this table have been granted the QIDP designation by the FDA. It is perhaps even

more notable that these QIDP designations have been granted to drug candidates

with potential antibiofilm activity given that QIDP designation has only been

awarded to a total of approximately sixteen drug candidates overall (some candi-

dates have multiple designations for multiple formulations), as of October 2013.

The FDA’s QIDP designation is anticipated to speed and prioritize the development

of these drug candidates, while also extending and fortifying the period of market

exclusivity for these drug candidates, if and when approved.
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8 Summary of the Challenge of Antibiofilm Drug

Development

In summary, the challenges facing clinical medicine and the regulatory arena are

related to the comparatively recent scientific recognition of the role that biofilms

play in the majority of human infections and the urgent need to facilitate methods

for the development of antibacterials to address these ubiquitous microbial phe-

nomena. The challenges are primarily associated with the antimicrobial regulatory

approval process and insufficient financial incentives offered to pharmaceutical

developers. These substantial barriers to entry have been recognized by govern-

ments around the world and initial steps are being taken to both streamline the

development of antimicrobial drugs and to improve the financial incentives asso-

ciated with new antimicrobial development.

As a result of the expanding global crises relating to antimicrobial resistance and

chronic infectious diseases, there is now an extremely urgent need to rapidly

develop new drugs that have antibiofilm capabilities. To this end biofilm drug

developers must develop standardized protocols for evaluation of biofilm activity,

as well as rapid, effective biofilm diagnostic technologies. It is also imperative that

regulatory agencies exercise maximum flexibility in approving these innovative

new drugs. As was done in the early development of drugs to treat AIDS, regulatory

agencies need to encourage the development of new drugs targeting microbial

biofilms in recognition of the role the biofilms play in the majority of infectious

diseases. It is time for the biofilm research and product development communities

to make our voices heard, to connect the dots between antibiotic-resistant infections

and biofilms, and to bring attention to the fact that biofilm strategies may offer one

of the most timely and critically important answers to the global, expanding

infectious disease crisis.
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