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Foreword

Recently, two disciplines – geospatial analysis and environmental health began to
interact with each other. Each of them emerged from a decade of growth in their
knowledge base, numbers of engaged professionals, and validated methodologies.
Out of these separate growths, a new interdisciplinary area of study, geospatial anal-
ysis and environmental health, has emerged and this book captures this moment.
It is an area of practice as well as an area of knowledge, because many studies
in this area lead to policy changes and actions directly associated with improved
health outcomes for affected populations. Studies in this area directly contribute to
accelerating the health transition in those areas and populations where society is dis-
posed to go from knowledge to action when environmental causes of ill-health are
identified.

“Environment” in “environmental health” is broadly defined. From physical ele-
ments such as water, air, toxic materials; to the built environment with its access
to elements that promote well-being or that promote poor diets and little physi-
cal exercise; to societal decisions that promote health or more negatively increase
health risks. All these elements have spatial patterns and populations differ in their
interactions with them. Advances in methods of measuring, storing, and access-
ing such data have brought the concept of geospatial data into prominence and an
increasing recognition that exposures to these elements by individuals or groups
can be measured using geospatial methods. Along with developments in measuring
human exposure to environmental factors comes the search for relationships, if any,
between measures of environmental exposure and health outcomes. After relation-
ships are established, questions arise about placing responsibilities for reducing the
risks of exposures, particularly those that are experienced by vulnerable population
groups.

This useful and timely book provides examples of the principles described above
as well as descriptions of recently developed methods such as participatory map-
ping, spatial regression and distance decay methods that are often used in studies
of the environment and health. This book brings together the kind of studies that
are more often widely distributed among specialist journals that are difficult to
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vi Foreword

find and access. It will be valuable especially for students and the general public
whose widespread interest in population health is coupled with their commitment to
developing a more healthy environment for the future.

Iowa City, IA Gerard Rushton
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Part I
General Considerations in Geospatial

Analysis of Environmental Health



Chapter 1
Environmental Health and Geospatial
Analysis: An Overview

Juliana A. Maantay and Sara McLafferty

Abstract This chapter provides a brief overview of the use of geographic
information science (GISc) in environmental health research and reviews the main
themes and concepts highlighted in each chapter. We summarize applications
of GISc in environmental hazard surveillance, exposure assessment and health
outcomes surveillance. Challenges of using geospatial tools and methods are dis-
cussed. The final sections briefly review the contributions of each chapter and the
connections among chapters.

Keywords GISc · Environmental health · Hazard surveillance · Exposure
assessment · Outcomes surveillance · GISc limitations

1.1 Introduction

Environmental health research is at an exciting point in its use of geospatial
technologies, and there are many researchers in a number of different disciplines
working on innovative approaches. Heretofore, these studies have not been compiled
into one volume, and this book is the first to focus specifically on the field of envi-
ronmental health and geospatial sciences. We believe that this book is very timely
and allows for an important scholarly contribution in updating and showcasing cur-
rent perspectives on using geospatial methods for environmental health research.
At the present time, research published on the topic of environmental health spatial
sciences is dispersed throughout a number of public health, geography, epidemiol-
ogy, sociology, and environmental science journals, and we believe there is a need
to gather good illustrative examples of the state-of-the-science of this research in

J.A. Maantay (B)
Earth, Environmental, and Geospatial Sciences Department; MPH Program, Department of Health
Sciences; Urban GISc Laboratory, Lehman College, City University of New York, Bronx, NY,
USA; Earth and Environmental Sciences Doctoral Program, City University of New York Graduate
Center, New York, NY, USA
e-mail: Juliana.maantay@lehman.cuny.edu

3J.A. Maantay, S. McLafferty (eds.), Geospatial Analysis of Environmental Health,
Geotechnologies and the Environment 4, DOI 10.1007/978-94-007-0329-2_1,
C© Springer Science+Business Media B.V. 2011



4 J.A. Maantay and S. McLafferty

a comprehensive volume which can be more readily and conveniently accessed by
students and professionals.

This volume, Geospatial Analysis of Environmental Health, provides an
overview of the major issues in the field of Environmental Health Spatial Sciences
today. Each chapter contains original research which utilizes a geotechnical
tool (e.g., Geographic Information Systems, remote sensing, Global Positioning
Systems) to address an environmental health, environmental health justice, and/or
environmental health disparities problem. The chapter authors are among the
leading researchers and practitioners in the field of environmental health spatial sci-
ences, and their work represents the wide range of topics currently being addressed,
as well as newly emerging concerns in the field of environmental health geograph-
ics. The editors of this volume have themselves published widely on the subject, and
some of their research is also included here.

We anticipate that the book will have broad appeal to professionals in all the affil-
iated disciplines connected to environmental health spatial sciences. Additionally,
the book is structured so that it can be easily used as a course compendium text
for a class on environmental health and Geographic Information Science (GISc).
Our objective was to compile a thorough exposition of environmental health spatial
sciences research, but we also wanted to address a need we believe exists, as borne
out by our own experiences in teaching college undergraduate and graduate courses:
the lack of a book specifically geared towards courses on environmental health and
GISc. Such courses are rapidly becoming required or strongly recommended elec-
tive course offerings at many schools of public health, in MPH and doctoral public
health programs, as well as in health geography, environmental sciences, and urban
environmental planning programs. How can GISc and other geospatial technologies
inform our analyses of environmental health?

1.2 The Role of GISc in Environmental Health Research

The World Health Organization estimates that environmental hazards account for
one-quarter of the global burden of disease (WHO, 2008). Environmental hazards
include biological factors such as bacteria in food or drinking water, and disease car-
rying insect vectors; chemical factors such as lead in soil and housing, or chemicals
emitted from industrial sites; and physical factors related to, for example, the design
of housing and transportation systems. Environmental health is concerned with the
impacts on human health of these diverse environmental factors and the design of
effective public health policies to mitigate these impacts (US Department of Health
and Human Services, 1998). Key issues in environmental health include monitoring
the uneven and changing distribution of hazards within the environment, under-
standing people’s exposures to environmental hazards, and assessing the impacts
on human health. Not just a field of scientific inquiry, environmental health is an
essential body of knowledge for use in planning interventions to improve population
health. Many of the most significant advances in human health have been achieved
through environmental interventions – improvements in public water supply,
sanitation, housing, and food supply. These continue to be critically important as
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we take steps to address the wide inequalities in health across places and popula-
tions, and as we attempt to understand the health implications of global and local
economic, demographic, and environmental transformations.

The concept of environment is fundamental to environmental health.
“Environment” refers to the lived space outside the person. It includes elements
of the natural environment such as climate, soils, water, and insects, as well as the
characteristics of the built environment such as housing, transportation, land use,
open space, facilities and services. Although not typically encompassed in defini-
tions of environmental health, socio-cultural factors including social interactions
and institutions, have important roles in environmental health through their impacts
on the built and natural environments and their effects on human vulnerability to
environmental hazards.

Environmental health has been divided into three areas of inquiry that describe
different components of environmental health surveillance (Thacker et al., 1996).
In this context, surveillance refers to the process of understanding and monitoring
the impacts on health of environmental hazards. Hazard surveillance describes the
process by which environmental hazards are identified, monitored, and modeled;
exposure surveillance examines how people are exposed to particular hazardous
environmental agents and the biological processes through which the agent produces
an unhealthy effect; outcome surveillance focuses on recording and monitoring the
clinical manifestations of ill-health. These three components are clearly intercon-
nected. Because the health effects of many environmental features are unknown,
an important task for environmental health is to evaluate hypothesized connections
between hazard, exposure and outcome to determine if empirical data support the
existence of a health effect.

Space and location are important in each of the three types of environmental
health surveillance (Cromley and McLafferty, 2011). Both environmental hazards
and the human activities that put people at risk vary over space, and co-location
of people and environmental hazards in space and time is a necessary, although
not sufficient, condition for health impacts to occur. People’s vulnerability to envi-
ronmental hazards and their deleterious health effects also varies geographically.
Moreover, people and hazards move through space creating continually evolving
patterns of exposure and risk. Thus, geography and spatial relationships are central
to understanding how environmental factors influence health.

With their emphasis on space and location, GISc and spatial analysis methods
are uniquely suited to environmental health investigations, and they have played an
important role in environmental health studies for several decades. Early GISc appli-
cations in environmental health include Openshaw, Charlton, and Craft’s (1988)
analysis of spatial clustering of childhood leukemia in relation to nuclear facilities in
England, a study that laid the groundwork for the extensive body of research on GIS-
based analysis of spatial disease clusters. Other early studies include McMaster’s
(1988) GIS assessment of community vulnerability to hazardous materials and
Wartenberg, Greenberg, and Lathrop’s (1993) use of GIS to characterize populations
living near high-voltage transmission lines. By the early 1990s, GIS were also being
used in vector-borne disease studies to determine the associations between environ-
mental features and vector concentrations (e.g. Glass et al., 1994). Reviews of the
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literature on health applications of GISc first appeared in the mid-1990s (Clarke
et al., 1996; Nyerges et al., 1997). Since that time, use of GISc has expanded rapidly
both in environmental health research investigations and in public health planning.

How is GISc used in each of the three areas of environmental health surveillance?
A detailed discussion is provided in Cromley and McLafferty (2011); here we offer
a brief overview focusing on each type of surveillance. Additionally, the chapters in
this book represent the rich diversity of potential GISc applications and the range of
innovative data sources and methods of analysis.

1.2.1 Hazard Surveillance

GIS have long been used to map the uneven spatial distribution of environmental
hazards and to manage the large geospatial data sets about hazard locations and
intensities. Many governmental agencies routinely collect data on air, water, and soil
contamination. Collected at discrete sampling points, these data can be entered in
GIS via the process of geocoding and then mapped to display geographic variation.
Sometimes environmental hazard data are made available to the public, as in the
EPA’s Toxics Release Inventory Explorer system, an on-line mapping system which
can be used to create dynamic maps of chemical releases. For hazards ranging from
soil lead, to particulates in the air, to disease carrying mosquitoes, researchers have
used GIS to investigate where hazards exist in the environment and to model their
spatial distributions (Glass et al., 1995; Guthe et al., 1992). Many of the chapters
in this book, including chapters by Cromley (Chapter 12), Margai (Chapter 13),
Grady (Chapter 15) and Yu et al. (Chapter 24), illustrate the use of GIS for hazard
surveillance.

Although many environmental hazards are distributed continuously over space,
for example air and soil contamination, hazard data are typically collected at a few
discrete locations. To estimate concentrations of contaminants at locations where
no measurements exist, researchers have used spatial interpolation methods such as
inverse distance weighting and kriging (Aelion, Davis, Lawson, and McDermott,
2009). The end result is a map representing the intensity of environmental hazard as
a continuous surface with peaks indicating areas of high intensity. Root and Emch’s
chapter in this book uses these methods not for hazard assessment, but to estimate a
disease risk surface. These methods can also be extended to estimate the changing
geographic concentrations of pollutants over time (see Chapter 24 by Yu et al.).

Using innovative new geospatial technologies to monitor environmental hazards
has emerged as an important area of research in the past decade. Devices mounted
on vehicles or carried in backpacks, and distributed “sensor grid” networks present
exciting opportunities for real-time environmental monitoring. Satellite data also
hold promise for near – real-time monitoring of environmental hazards. Orbiting
the globe at frequent and regular intervals, satellites provide a continuous stream of
remotely-sensed data recorded over a grid of “pixels” (small regularly-sized square
areas) on the Earth’s surface. Although satellite data have mostly been used to char-
acterize vegetation, recent research suggests that they may be useful in monitoring
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particulate matter, an air pollutant linked to asthma and other respiratory concerns.
The chapters by Hu et al. and Setton et al. in this volume shows the kinds of
insights and challenges associated with using satellite data in environmental health
investigations.

Because many environmental hazards flow through air, water, and human interac-
tions from place to place, understanding how hazards move through time and space
is important. Known as fate and transport, these processes can be modeled using
GISc tools and methods. An early example is Chakraborty and Armstrong’s (1995)
use of GIS-based “plume” (dispersion) models to model atmospheric dispersion of
chemicals around accident sites involving transport of hazardous materials. In this
volume, Chapter 22 by Viel provides a fine example of fate and transport modeling.
Models are also available for estimating dispersion of pollutants from non-point
sources such as pesticide/herbicide applications. Hydrologic models of surface and
groundwater systems and network models of municipal water supply can be used
to trace the waterborne flows of pollutants (Root and Emch, 2010). GIS has also
been applied to depict mobile hazards associated with, for example, traffic flows
and transportation of hazardous wastes (Lovett et al., 2006). Advances in geospatial
technologies and space-time methods are greatly enhancing our ability to model and
monitor the spatial distributions and flows of environmental hazards.

Built environments include an array of features that can be hazardous or benefi-
cial (health-promoting) for human health. Health promoting features include parks
and recreational facilities, high-quality housing, and supermarkets that offer an array
of food products at reasonable prices. These kinds of features can be mapped and
visualized using the same suite of GIS methods as are applied to hazardous environ-
mental features. Chapter 10 (Byron et al.) illustrates such an approach for studying
access to supermarkets.

1.2.2 Exposure Surveillance

Exposure surveillance examines how people are exposed to environmental hazards
and the processes through which exposure results in an adverse health effect. GIS
applications mainly focus on the social and environmental processes that influ-
ence human contact with hazardous agents. Understanding the spatial distribution
of hazards, discussed above, is a critical component of exposure assessment, but
knowledge of the locations of people and their activities is also essential. GISc has
proven to be a very valuable tool for linking the two types of data – population data
and environmental hazard data – that are required in exposure assessment (Jerrett
et al., 2005). When the two coincide in time and space, “exposure” occurs.

GIS techniques such as overlay and spatial buffering have been widely used
for estimating populations exposed to environmental hazards. Overlay is the link-
ing of mapped variables based on geographic location. In spatial buffering, GIS
is used to identify the zone that falls within a particular distance of a point, line
or area. Detailed discussions of these and other methods for exposure model-
ing are provided in Chapter 3 (Setton, Allen, Hystad and Keller) and Chapter 5
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(Chakraborty and Maantay). Other chapters present case studies of the applica-
tion of GISc methods for particular kinds of exposure assessment. These include
Chapter 17 (Chakraborty) on air pollution exposure, Chapter 18 (Avina et al.) on
exposure to Lyme disease in Texas, Chapter 19 (Downey and Crowder) on exposure
to hazardous facilities.

Many GIS-based studies focus on people’s residential location as a site of
exposure; however, people also come into contact with environmental hazards
(and health-promoting features) during the course of their everyday activities.
Workplaces have long been recognized as sites of health-related exposures, but
places like schools, shopping and recreational facilities, and transportation corri-
dors are also important. Researchers are increasingly using models of time-space
activity patterns to understand health-related exposures outside the home (Gulliver
and Briggs, 2005). GPS-enabled cell phones are also being employed to record peo-
ple’s everyday activity patterns (Wiehe et al., 2008). An emerging approach is to
use GPS-enabled personal monitoring devices to record, for example, exposure to
air particulates in real-time (Adams et al., 2009). Although there are many chal-
lenges to analyzing real-time exposure data in GIS, the data offer a rich resource for
environmental health assessment.

In analyzing exposure, it is also important to recognize social differences in pop-
ulation vulnerability to environmental hazards. Age, income, gender, and ethnicity
affect people’s activity patterns, thus affecting their encounters with and experi-
ences of environmental hazards. Vulnerable populations may be more exposed to
environmental hazards because they live in places where hazards are concentrated.
Environmental (in) justice, the structuring of exposure to environmental hazards by
class, race, and ethnicity, has been widely studied using GIScience tools and meth-
ods, and it is a central theme of many of the chapters in this volume. It has also been
noted by researchers that less-affluent populations and communities of color are not
only more likely to live in close proximity to environmentally burdensome facilities
and thus be more exposed to pollution, but that the health effects of exposure to
these burdens are further modified by socio-economic status, and “due to material
deprivation and psychosocial stress [these populations] may be more susceptible to
the health effects of air pollution,” (O’Neill et al., 2003, 1861).

1.2.3 Outcomes Surveillance

Outcomes surveillance involves tracing the health impacts of environmental expo-
sures. Researchers have used GIS to create maps of health outcomes and to analyze
associations between outcome data and environmental hazards and exposures. For
centuries, maps have been employed to display geographic variation in health out-
comes and to reveal spatial concentrations, or “clusters”, of health events. There
are well-developed methods for mapping health data, and Maantay and Maroko’s
chapter (Chapter 2 by Maroko, Maantay, and Grady, this book) provides a detailed
discussion focusing on environmental health applications. Other chapters provide
examples of outcomes mapping for conditions such as asthma, West Nile virus,
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Lyme disease, respiratory infections, and maternal and infant health. Another impor-
tant component of outcomes surveillance is to analyze spatial clusters or “hotspots”
of health outcomes. Hotspots are important because they may signal the presence
of an environmental hazard that is responsible for the spatial clustering of ill-health.
Many spatial statistical methods have been developed for detecting hotspots, and
these methods are often employed in investigating environmental health outcomes
(see Chapter 23 by Yiannakoulias).

How are health outcomes related to environmental hazards and exposures?
Answering this important question requires linking data on hazards, exposures and
outcomes, a task that can be accomplished effectively with GIS. Sometimes this
linking is part of an exploratory analysis to determine if the incidence or prevalence
of a health outcome is associated with an environmental hazard. Such exploratory
analyses may provide important clues about disease etiology by indicating potential
environmental triggers. Exploratory studies of outcomes, hazards and exposures are
well represented in this book covering a diverse range of infectious and degenerative
diseases and reproductive health concerns.

GIS is a very valuable tool in these investigations because it enables us to link
data from different sources, measured at different levels of geography and for dif-
ferent geospatial units. For example, we might have data on asthma cases by zip
code, measurements of air pollution at monitoring sites, and indicators of housing
quality by census block. The data management and spatial analysis capabilities of
GIS make it possible to transform these data to consistent geospatial units so that
health outcomes and environmental hazards can be directly compared. Procedures
for transforming data from one set of geographic units to another include spatial
aggregation, areal interpolation, dasymetric mapping and many others.

Along with assessing hazards, exposures and health outcomes, geospatial tech-
nologies have an important role in planning public health interventions to mitigate
environmental health concerns. Such interventions include environmental modifi-
cations to reduce disease transmission and exposure to hazards; medical strategies
including vaccination and treatment; mobility strategies to alter human activity pat-
terns and interactions; and behavioral strategies that focus on knowledge, education
and experiences (McLafferty, 2010). A large body of research shows that public
health interventions are most effective if they are geographically targeted to the
places and population most in need. Although most of the chapters in this book
do not address specific public health interventions, they provide maps and geospa-
tial analyses that can inform the design of such interventions. Chapter 6 by Fuller
and Chapter 16 by Dongus et al. also highlight “participatory” GIS as a means of
enhancing community involvement in public health planning.

In summary, the links between environmental hazards, exposures and health out-
comes are fundamentally spatial, depending on the interactions between people and
hazards in space and time. The data management, geovisualization and spatial anal-
ysis capabilities of GIS make them a very valuable tool for environmental health
assessment. From basic procedures such as mapping and overlay to more complex
kinds of spatial analysis, GIS enable researchers and public health analysts to char-
acterize health-related hazards and opportunities in people’s everyday environments
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and to evaluate hypothesized impacts on health. New geospatial technologies includ-
ing global positioning systems, environmental sensors and satellite imaging systems
make it possible to monitor environmental hazards and exposures on an almost
real-time basis, creating new frontiers for environmental health research.

1.3 Limitations of Geospatial Methods for Environmental
Health Research

As we have seen above, there are many benefits and advantages derived from
using geospatial technologies for environmental health research, and indeed, many
research questions simply would not be easily or accurately answerable without the
use of GISc and other spatial analysis methods. However, there are also a num-
ber of important limitations and drawbacks inherent in GISc analyses, particularly
when used for epidemiological purposes. Knowledge of these limitations will hope-
fully inform and inspire the next wave of data and methodological breakthroughs in
research, and so it is useful to review these limitations to understand what still has
to be done to improve methods and data for environmental health research.

Additionally, in order to design robust and meaningful research projects, it is nec-
essary to understand exactly what GISc and other geospatial methods are not able to
do, so that we can avoid overreliance on possibly faulty models, misinterpretations
of analyses, misleading results, and data and methods that foster false precision.
The limitations are discussed below under the broad categories of data deficiencies;
data aggregation issues; accuracy of locational data; technological limitations; lack
of temporal data on residential history and daily locations; and constraints in using
exposure proxies. These topics are re-visited in more detail in many of the chapters.

1.3.1 Data Deficiencies

Many of the limitations and shortcomings of geospatial analyses of environmen-
tal health are due to data deficiencies and constraints, particularly the lack of
comprehensive health data, and the lack of access to patient-level health data. In
attempting to connect environmental factors and health outcomes, the nuances can-
not be gauged, and certainly causality cannot be ascribed, without fine-grained
health outcome data. Due to issues of patient confidentiality, these data are not
readily available, thus restricting the analyses to the use of health data aggregated
by relatively large geographic units, making the spatial correspondence between
environmental factors and health outcomes difficult to pinpoint, and therefore
conclusions more tenuous.

In addition to lack of high resolution health data, many health outcomes are
not systematically tracked at any level in the US., although this differs in other
countries. Records on health outcomes such as diabetes, obesity, asthma, and car-
diovascular disease, for example, are kept independently by private doctors, clinics,
and out-patient facilities, and are not routinely compiled into one master database.
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In lieu of disease incidence data, researchers generally have to resort to hospitaliza-
tion data, which in the US is typically maintained by the state, and is available to
researchers only on an aggregated basis, and more rarely at the individual patient-
level. However, hospital admissions data is a poor proxy for actual prevalence of the
disease, since hospitalizations for a given health outcome represent only a small seg-
ment of the population affected by the disease or condition, albeit the most serious
cases.

Data about general population numbers and characteristics can also be prob-
lematic. Population data are necessary in order to calculate disease rates and the
extent of the population affected by environmental exposures. The primary source
for population data in most countries is the national census, and the US Census,
for instance, serves as a useful source of data related to socio-demographic char-
acteristics such as age, race, ethnicity, income, and educational level, although it is
often recognized as being ambiguous, incomplete, and inconsistent (Maantay et al.,
2010: 13). It is acknowledged as having a systemic undercounting of certain pop-
ulation groups, which makes it less useful for some types of health research, and
it is only a static snapshot of population numbers and residential locations every
10 years, which renders the validity of research on time periods at the end of the
census period somewhat dubious. Additionally, the census data is aggregated by
enumeration units which may be too large to adequately account for environmental
exposures, especially in hyper-heterogeneous micro-environments.

Useful information about current environmental conditions is also very often in
short supply and of questionable accuracy. Data about air pollution emissions from
industrial and municipal facilities, for instance, are often based on self-reported
estimates rather than actual monitored amounts. Additionally, data on pollution
emissions from facilities are generally annual averages. This fails to capture acci-
dental releases which may result in contaminant concentrations much higher than
the thresholds deemed to be safe to human health, but which may appear to be within
acceptable limits when bundled into an annual average.

Information on ambient air quality, even when based on actual monitored data,
can be less than optimally useful, since the monitors may be so sparsely located
as to make interpolation of pollutant concentration values assigned to unmonitored
locations inaccurate, and drawing inferences about ambient levels of pollution from
federal or state environmental agency monitors can therefore be quite misleading.
Many air pollution dispersion models require very detailed data as inputs, such as
hourly meteorological conditions, smokestack height, exit velocity and temperature
of the emissions, topographical factors and nearby building data to calculate down-
wash. Groundwater flow and transport models require equally detailed and complex
data sets. These data are rarely readily available, making quantitative analyses about
existing environmental conditions and predictions about future conditions under dif-
ferent scenarios very cumbersome and expensive to produce. Chapter 3 by Setton
et al. reviews some of these issues and, as evidenced by a number of other case
studies and methods chapters in this volume, data availability and data access drive
research design in many cases.
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1.3.2 Data Aggregation Issues and Other Concerns
with Spatial Data

Much of the health, population, and even environmental data are gathered and
reported by geographic units such as census tracts, postal codes, counties, and so
forth. We generally have no choice but to use data aggregated at these levels, which
are provided in whatever unit of aggregation the primary data collection is carried
out, to suit the purposes of the primary data gathers, not necessarily for the con-
venience of the secondary data users. The only other option is to perform our own
inventories and surveys, and gather the data on our own, which is not usually feasible
or practicable, especially for population and health data. However, using data aggre-
gated by administrative or political units, while expedient and convenient, poses a
number of difficulties.

A well-known problematic factor in geographic analyses is the “Modifable Areal
Unit Problem,” or MAUP. “The issue here is that the aggregation units used are
arbitrarily with respect to the phenomena under investigation, yet the aggregation
units used will affect statistics determined on the basis of data reported in this way,”
(O’Sullivan and Unwin, 2003, 30). In numerous studies it has been shown that by
altering the unit of aggregation, or even the configuration of the boundaries of the
units, results can differ sharply (Anderton et al., 1994; Cutter et al., 1996; Glickman
and Hersh, 1995; McMaster et al., 1997; Openshaw and Taylor, 1979). For example,
after analyzing data aggregated by census tract, one is likely to get different results
if the analysis is repeated using the same data aggregated by a smaller or larger unit
of analysis. The differences could be dramatic: in one instance, the analysis may
show an environmental impact upon a population, and in the next instance, show no
impact whatsoever, with the only change being the level of aggregation used. The
unit of analysis used is therefore of paramount importance, and depending upon the
unit used, very different patterns and relationships may be exhibited.

Another problem of aggregating data by artificial administrative units is that envi-
ronmental features such as air and water do not respect the boundaries of these units,
and will not stop at the borders, but will continue on through in a continuous fashion.
Data aggregated by administrative units do not take natural features into account,
and for expediency’s sake, many studies are by necessity based on the assump-
tion that environmental phenomena are contained within discrete bounded units.
Contrariwise, population and health data are not, as a rule, collected at the water-
shed level or by air quality zone, so there, again, is a conflict of non-coinciding data
units that must be resolved when working with all these types of data sources. This
can be particularly troublesome when dealing with areas of suspected air or water
quality impact, since the boundaries of the impact zones are likely to be more amor-
phous and fluid than the administrative or political units that capture the population
and health data. Methods have been developed to make the units mesh sufficiently so
that data can be used from disparate shapes and sizes of units whose boundaries do
not coincide. These methods of reapportioning the data into new areal units include
areal interpolation, filtered areal weighting, transformation of discrete data into con-
tinuous surfaces, and various forms of dasymetric mapping (Eicher and Brewer,
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2001; Flowerdew and Green, 1994; Goodchild et al., 1993; Gotway and Young,
2002; Holt et al., 2004; Maantay et al., 2007; Martin, 2006; Mennis and Hultgren,
2005). Some of these methods are discussed further in Chapters 2 and 5.

A number of other, somewhat inter-related aspects of spatial data also need to be
considered when undertaking statistical analysis with a geographical focus. These
include the problems of ecological fallacy; the non-uniformity of space; scale; edge
effects; and spatial autocorrelation. We will touch briefly on them here, although
a more thorough description of the concepts will be necessary in order to develop
effective and accurate research designs.

“Ecological fallacy,” a concept somewhat related to the MAUP issue, refers to
the fact that things that are true or valid at one level of data aggregation may not
hold true at a higher or lower level of aggregation. For instance, there may be a
relationship between asthma hospitalization rates and low-income populations at
the zip code level, but we cannot assume from this that low-income individuals are
necessarily more prone to be hospitalized for asthma. We can only conclude from
the relationship that zip codes comprised of high proportions of low-income people
also tend to have high asthma hospitalization rates. We cannot infer anything about
individuals, nor can we ascribe any health outcome to people at certain income
levels, except at the unit of aggregation that was used for the analysis. In general,
the larger the unit of aggregation, the more likely it is that bias will be introduced due
to heterogeneity across and within these units (Maroko et al., 2009) and ecological
fallacy may result.

“Non-uniformity of space” is the idea that phenomena vary over space and are
not homogeneously distributed, especially with respect to the underlying geography
and its attributes. For instance, we might be able to detect what appear to be clusters
of a particular disease within a city – “hotspots” – where it looks like there may
be concentrations of the disease. However, this clustered distribution may merely
reflect the underlying population density of the city, with the understanding that
where there are more people, there is a greater likelihood of there being a higher
incidence of disease, as well. We cannot infer from this that there is something in
that locality’s environment “causing” the disease cluster, aside from a higher number
of potential susceptible receptors (in other words, more people).

“Scale,” or the geographic extent of the study area, is another factor that will
influence the outcome of GISc analyses, and how the study area is bounded needs
to be considered carefully when designing a study. “To reflect a potential environ-
mental health-based concept of risk, the boundaries should relate to exposure or
risk from the site; however, a single boundary reflecting all variations in toxicity
and contaminant fate and transport for each chemical present plus variabilities in
the duration of human exposure and vulnerability would be virtually impossible. . .
The scale of analysis chosen is often dictated by expediency, determined by how
existing data bases are aggregated,” (Zimmerman, 1993, 650).

“Edge effects” is a concept related to scale that addresses the fact that study
extents are bounded and have edges, and there will not be as many data observations
in all directions at the edges of the study area as there will be in the center of the
study area. Of course, in reality, the phenomena under investigation do not stop at
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the boundaries of the study area – this is an artifact of how the study area is defined,
and the fact that usually our data values cease at the boundaries of our study area.
Therefore, the skewed distribution of the values over space has to be taken into
account, although techniques to do this are only beginning to be developed (Yamada
and Rogerson, 2003).

“Spatial autocorrelation,” often called the First Law of Geography (Tobler,
1979), simply means that near things tend to be more closely related to each other
than they are to distant things. Values of points close to each other in geographic
space will be similar, and the values of distant points will be less similar. Traditional
statistics rely on an assumption of random samples, which makes it difficult to apply
conventional statistical tests to spatial data, since spatial data are not randomly dis-
tributed, but correlated based on distance. This problem and its possible solutions
are discussed in several of the chapters, notably in Chapter 17 by Chakraborty.

1.3.3 Accuracy of Locational Information

Geospatial analysis for environmental health studies depends on accurate locational
information. One of the main functions of GISc is the ability to plot locations of
geographic entities, such as polluting facilities or residences of patients, in order to
investigate spatial correspondence amongst the features. However, there are many
points in the process where inaccuracies of various types can creep in, both spa-
tial inaccuracies, as well as inaccuracies with non-spatial attribute information.
We often receive locational information about polluting facilities, for instance,
in the form of an address table, which then has to be spatialized by a process
called geocoding. This entails taking street addresses, transforming them to x, y
coordinates, and plotting them on a map.

Geocoding is a fairly automated process, but there are several points along the
way where the process can break down and result in inaccurate or incomplete map-
ping. First, not all the facilities may have “matchable” addresses. If the address has
been entered into the table incorrectly, if there is a spelling error in the street or
number, or if the geocoding program used does not recognize the street or build-
ing number in its address-matching database, the program will be unable to plot the
location. This is then referred to as an “unmatched” location, and generally speak-
ing a match rate of 85% or better is considered very good. But that means up to
15% or more of the addresses do not appear on the map or show up in incorrect
locations. Secondly, the geocoding process usually maps addresses using a math-
ematical algorithm to figure out where on a street segment that particular building
number is likely to be, which is not the same as mapping the location to an actual
building number. This yields results within a certain threshold of accuracy, but can
be off by 50–100 ft or more, having implications for fine-gained impact analysis.
Aside from geocoding issues, often times the address data itself is faulty, with the
address shown being the location of the owner’s business office, company headquar-
ters, mailing address, home address, or someplace other than the actual site of the
polluting facility. This clearly would impact the validity of the analysis.
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In addition to geocoding, there are other ways of transferring locational data to
maps, such as digitizing hard copies of maps with a digitizing tablet; scanning paper
maps; or manually locating points or polygons by heads-up (or on-screen) digitizing.
None of these can claim infallible accuracy, either. The salient point here is that all
locational data created through geocoding or any other means of transforming data
into digital maps have the potential to be inaccurate, with the possibility of serious
ramifications to the results of any health analysis based on the locations as plotted.

1.3.4 Technological Limitations

Researchers and analysts new to GIScience often do not appreciate the very real
technical limitations of geospatial technologies. GISc enthusiasts and software
manufacturers frequently extol the virtues of GIS, unwittingly giving novices an
unrealistic and overly-rosy perception of what GIS can do. Although it can do many
complex things, it cannot do everything, and the mechanical use of a technology
without a thorough understanding of it is also no substitute for a well-thought out
and well-crafted research design.

One of the most obvious technical limitations is that although many compu-
tational processes are automated in GIS, the user/analyst still has to make any
number of important decisions and be able to justify assumptions, which require
some knowledge of statistics and quantitative reasoning. One can, of course, just
rely on the default settings, but this may lead to incorrect analyses and difficulties
in interpreting the results accurately. It is also crucial that the analysts possess a
deep familiarity with their datasets and geographic study locations, without which
all the technology in the world will not compensate. Chapter 2 by Maroko et al.
emphasizes the necessity of the researcher/analyst having or obtaining an intimate
knowledge of their data and study extent.

There is a fairly high level of skill required in order to go beyond basic mapping
functions. In the past decade, GIS software has been improved and functionality
has been expanded significantly, and the interfaces have become much more user-
friendly and simplified. Gone are the days of needing to know complex computer
programming codes to operate most GIS software packages, and these have by and
large been replaced by the familiar drop-down menus and plain language options
now common in desk top applications. A benefit of this is that mapping technology
is now easier to use and therefore available to many more people, including non-
experts, making the technology more democratic, as described in Fuller’s Chapter 6.
However, many aspects of using geotechnologies are not intuitive, especially when
applied to the increasingly complex analyses required by environmental health
research. Obtaining the correct data in the proper formats and being able to manip-
ulate and prepare the data for analysis requires a fairly high degree of expertise and
proficiency with large datasets, as well as statistical and geographic computer soft-
ware, which is another potential drawback for conducting such research using GISc.
The learning curve for much of this work is steep, and the technical support, spe-
cialized expertise, and hardware and software necessary to carry it out may not be
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accessible or affordable, especially in less affluent countries, thereby limiting who
can perform this type of research.

The development of mathematical or cartographic models for use in environmen-
tal health research is also fraught with difficulties, as there are many environmental
and health processes that we simply do not understand well enough to model, or
which do not lend themselves to quantification. Such processes, when shoe-horned
into an inappropriate, incomplete, or inaccurate model format, will not be well-
represented by the model, and therefore the model results must be viewed with
skepticism and less than full confidence that they reflect reality. If these are sub-
models that are then inserted into larger models, there is a cascade effect of the
results being further and further removed from reality. Even when environmen-
tal and health processes are well understood, modeling these processes requires
many assumptions to be made by the analyst, and often yields few solid and certain
results.

Although we have mentioned above the difficulties with obtaining data neces-
sary for environmental health research, remote-sensing technology has the potential
to provide us with almost unlimited amounts of data about the earth. Satellites orbit-
ing the earth and geostationary satellites are streaming millions of pixel’s worth of
information back to us each day – so much data, in fact, that only a small percent-
age of it can be utilized at the present time, given person-power limitations, and the
time and skill required for image processing. Unfortunately, remotely-sensed data
is typically of a resolution too coarse to be used for many environmental health
studies.

“Remote sensing (RS) could be a tremendous asset to health geography as
remotely sensed images are updated frequently and cover large, often not easily
accessible, areas. It would hypothetically be possible to use RS data to estimate
exposure by incorporating GIS population and health data. Unfortunately, RS data
are often unreliable over urban areas due to high spatial and spectral variabil-
ity, as well as the irregular size, shape and orientation of objects. . . Additionally,
there is a scalar mismatch in the definition of “high spatial resolution” between
remote sensing scientists and health geographers. An area like NYC may be viewed
as very small and homogeneous by remote sensing standards, whereas it is often
viewed extremely large and heterogeneous by the standards of health geographers,”
(Maroko, 2010, 104).

Nevertheless, there are excellent applications of using remotely-sensed images
for health research, including using the data for estimating open space and green
spaces; for modeling vegetation as a component in vector-borne disease studies; to
calibrate and validate land use regression models; as ancillary data sets in dasy-
metric mapping to spatially disaggregate variables; for global studies of issues like
vegetation change and disease spread; and for estimating air particulate concen-
trations (See Chapter 20 by Hu et al., Albert et al., 2000; Anyamba et al., 2002;
Bavia et al., 2001; Beck et al., 2000; Brooker et al., 2002; Brooker and Michael,
2000; Estrada-Peña, 1998; Goetz et al., 2000; Green and Hay, 2002; Hay, 2000; Lo
and Quattrochi, 2003; Lobitz et al., 2000; Rogers, 2000; Rogers et al., 1996; Seto
et al., 2002; Tatem and Hay, 2004; Tran et al., 2002; Ward et al., 2000). But unfor-
tunately, remotely-sensed data has not proved to be central to environmental health



1 Environmental Health and Geospatial Analysis 17

research except mainly in studies dealing with continental, regional, or other large
geographic extents. In just a few years, resolution of some types of remotely-sensed
data has improved from pixels representing kilometers to those whose resolution is
measured in meters or smaller, and there is every reason to believe that the resolu-
tion will continue to be enhanced in the future, to the point where it is more useful
for analysis of hyper-heterogeneous urban environments. The use of remote sens-
ing has increased dramatically in the past decade for answering many health-related
research questions, and will likely assume a greater importance in future years.

1.3.5 Drawbacks Pertaining to Temporal Data on Residential
History and Daily Locations

A major stumbling block with trying to find spatial correspondence between health
outcomes and the presences of environmental burdens is the fact that many, if not
most, diseases are not acute. In other words, people most often do not develop symp-
toms upon first exposure to an environmental hazard. Some health outcomes, like
many forms of cancer, have very long latency periods, and in order to draw the
links between health outcome and hazard, we must have more information than
the current address of the person. The necessity of residential history is the subject
of Chapter 4 by Boscoe, and while it is becoming increasingly important to take
this into account for accurately portraying the risks of environmental exposures,
residential history is rarely available, and usually not at the spatial extent required.

Another temporal issue with data is the lack of information on day-time locations
of people, which is a major impediment in measuring disparities in proximity or
exposure to environmental health hazards accurately and comprehensively. Except
for perhaps young children and the elderly, most people do not spend the majority
of their time in the home, but go further afield to schools, workplaces, etc., all of
which can result in exposures that right now are not being accounted for in most
environmental health studies. However, researchers are increasingly using real-time
data sets derived in some cases from personal monitoring devices in order to estab-
lish exposures, as mentioned above. This type of information will become crucial in
more accurately estimating exposures.

Because we rely so heavily on census data to tell us the locations of popula-
tions, and census data only reports on where people live, we are restricted to the
so-called “night-time” locations of the majority of the population. New methods
must be developed, and new data sources tapped, to enable us to calculate environ-
mental health burdens for the workplace populations, and in general, to account for
the mobility of people as they move through space engaging in the various activities
of their daily lives.

1.3.6 Exposure Proxies and Misclassification of Exposures

In environmental health research using GISc, we frequently use exposure proxies as
crude indicators of individual exposure to ambient conditions, or of body or target
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organ doses. As discussed above, very often there is no way to obtain measurements
of actual pollutant concentrations, and even if there were, for many pollutants there
is no definite threshold value established for human health safety. So we must rely on
proximity to the environmental hazard, in many cases, to draw connections between
environmental burdens and health effects. However, from the point of view of draw-
ing causal links between health outcomes and environmental burdens, relying on
exposure proxies such as proximity buffers to indicate where health risk is greatest
is rife with uncertainties, because it is unknown how much of the pollution hazard
(e.g., air pollution emissions) is reaching and impacting any specific individual, how
much of it is being absorbed into the individual’s body through breathing, ingestion,
or dermal contact, and how much is reaching a sensitive organ and potentially caus-
ing an adverse health outcome. Chapter 5, by Chakraborty and Maantay, discusses
the implications of proximity analysis in more detail.

A fundamental concern with mapping environmental health is that it does not
yield definitive findings about actual exposure levels or health outcomes for the
population in proximity to the noxious facilities or land uses. The difficulties of
linking proximity and exposure make these studies less useful in conclusively
demonstrating (and measuring) the correspondence between the location of poten-
tial environmental burdens, exposures, and health effects. Additionally, exposure
assignment is frequently based on one address, such as address at birth, diagnosis,
or death, which potentially introduced exposure misclassification by not accounting
for residential mobility, as mentioned in the discussion above about the drawbacks
pertaining to temporal data.

To summarize and conclude the discussion on limitations, environmental health
research using GISc and other geospatial techniques is still in its infancy, but by
studying the limitations of the methods and the currently available data, we can
learn a great deal about what we must work on in order to move forward. We are
hopeful that this book will help in that regard to advance research.

1.4 The Structure of the Book

Geospatial Analysis of Environmental Health is divided into three major sections,
starting first with a section on general considerations in using geospatial analysis
for environmental health, including some of the main uses and issues. The sec-
ond section contains case study examples using geospatial analysis in examining
environmental health issues, and we coordinated these chapters so that they loosely
follow the table of contents of some of the leading environmental health textbooks
currently in use, featuring those topics that are most frequently covered in such
books. The third section reviews some of the principal methodological techniques
of geospatial analysis for environmental health research, including some of the cur-
rent innovative methods, like geographically weighted regression, spatio-temporal
analysis, distance decay techniques, and Bayesian analysis. By necessity, there is
a certain amount of overlap amongst the topics in all three sections, and we have
cross-referenced many of the chapters with other chapters in this book.
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1.4.1 Section I: General Considerations in Geospatial
Analysis of Environmental Health

Section I consists of a suite of six chapters that reviews and illustrates some of the
important concerns and issues in using geospatial analysis for environmental health
research, starting with this chapter, Chapter 1, which outlines the development and
the principal benefits and limitations of geotechnologies and environmental health,
and introduces some of the key concepts. Many of these are discussed in more detail
and amplified further in the chapters that follow.

In Chapter 2, Using GeoVisualization and Geospatial Analysis to Explore
Respiratory Disease and Environmental Health Justice in New York City, Maroko
et al. illustrate how complex issues in environmental health justice analysis can ben-
efit from geovisualization and exploration within a Geographic Information Science
(GISc) framework. Geovisualization is the process of using spatial data to conduct
exploratory data analysis to “see the unseen” in these large data sets. With GISc
it is possible to look at the data in many new and novel ways, and from multiple
perspectives. By mapping the data, reclassifying it, manipulating the data, examin-
ing its statistics, and utilizing various other approaches in exploratory data analysis,
we can often find relationships and linkages that would not be apparent in any other
way. Chapter 2 uses both a hypothetical data set and a real-world example of respira-
tory disease to illustrate these concepts, and serves as a basic primer for conducting
exploratory spatial data analysis through geovisualization and geospatial analysis.

Outdoor Air Pollution and Health – A Review of the Contributions of
Geotechnologies to Exposure Assessment, Chapter 3 by Setton et al., is a com-
prehensive overview of exposure assessment with geotechnologies, focusing on
air pollution, and reviews two major types of studies: epidemiological studies that
look for associations between health outcomes and exposures to air pollution; and
exposure studies that attempt to predict or explain who is exposed, and by how
much. In the first case, epidemiological studies provide important information on
which air pollutants are associated with harmful health effects. In the second case,
population exposure studies provide important information for reducing exposures
to pollutants known or suspected to be harmful to particular population groups and
communities, and for prioritizing regulatory policy in terms of potential number of
people affected.

In Chapter 4, The Use of Residential History in Environmental Health Studies,
Boscoe surveys the current uses and application of residential history data in the
field of environmental health, considers the implications of incorporating residen-
tial history data into disease surveillance, and discusses the reasons why it poses
more challenges than are commonly assumed. Residential histories are used in envi-
ronmental health investigations to establish the likelihood of past exposures and to
ascertain past social and economic conditions. The long latency of many diseases
makes it crucial to know the residential history of cases. Many studies only use
information on current residential address, but this practice can be very misleading
and will provide less than accurate results for many health outcomes. Because past
environmental exposures are believed to impact current health, the incorporation
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of residential history information makes it more likely that an environment-disease
link will be identified correctly.

Proximity Analysis Methods for Exposure Assessment in Environmental Health
Justice Research, Chapter 5, by Chakraborty and Maantay, provides an historical
overview of methods, models, and data used to measure proximity to environmental
hazards and potential exposure to their adverse health effects in the environmental
justice (EJ) research literature. It explores how the assessment of disproportionate
proximity and exposure has evolved from comparing the prevalence of minority or
low-income residents in geographic entities hosting pollution sources, to the use
of discrete fixed-distance impact buffer zones as proxies for exposure, to more
refined techniques that utilize continuous distances, pollutant fate-and-transport
models, and estimates of health risk from toxic exposure. It also reviews ana-
lytical techniques used to determine the characteristics of populations residing in
areas potentially exposed to environmental hazards, as well as emerging geospatial
techniques, such as Geographically Weighted Regression, that are often more appro-
priate for spatial analyses than conventional statistical methods. A number of these
themes are addressed in detail in later chapters illustrating the use of these methods.

Section I concludes with Chapter 6, by Fuller, on an increasingly important
aspect of using geospatial technologies in environmental health studies – the partic-
ipation by non-specialists in map creation, spatial analysis, and data collection. For
instance, the recent emergence of the Volunteered Geographic Information (VGI)
phenomenon has, to a large extent, democratized the way maps are used, interpreted,
and created (Elwood, 2008). Michael Goodchild (2007) states “there has been an
explosion of interest in using the Web to create, assemble, and disseminate geo-
graphic information provided voluntarily by individuals. Sites such as Wikimapia
and OpenStreetMap are empowering citizens to create a global patchwork of geo-
graphic information, while Google Earth and other virtual globes are encouraging
volunteers to develop interesting applications using their own data.” The new web
sites and other digital sources that allow the input of geo-referenced data and/or
interactive mapping accessible to almost anybody has the potential to provide more
timely and up-to-date data, as well as permit laypeople to become key players in
producing and using geographic knowledge about their communities.

There has also been an interest by community organizations and advocacy groups
in “counter-mapping,” an activity tangentially related to VGI that entails mapping
as a means for progressive change from and against dominant power structures
(Maantay, 1996; Peluso, 1995). Although counter-mapping has been used most
often and very effectively by indigenous peoples to reclaim traditional rights to land
and resources, urban communities have also used it to good effect. According to
Nancy Peluso, the goal of counter-mapping “is to appropriate the state’s techniques
and manner of representation to bolster the legitimacy of “customary” claims to
resources,” (Peluso, 1995:384). In the case of urban and non-indigenous rural pop-
ulations, these claims to resources consist of the right to breathe clean air, or the
right to refuse to have sewage sludge applied to their open lands. Mapping has
proved to be an effective means of communicating to decision-makers and elected
officials about disproportionate environmental burdens and health impacts. “Street
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Scientists” have also pointed out the value of citizen mapping and spatial analy-
sis as part of the effort to legitimize the work of community scientists and reach
parity with the technical-scientific experts, by using community data, community
know-how, and local knowledge bases in order to effect constructive change that the
technical-scientific experts alone would not be able to do (Corburn, 2005; Maantay,
1996; Maantay and Ziegler, 2006).

Chapter 6, Their Data, Our Cause: An Exploration of the Form, Function, and
Deployment of Maps among Environmental Justice Groups, by Fuller, surveys the
use of GIS by a selection of community-based environmental justice organizations.
His inquiry into how GISc is being used by these groups points out some of the
drawbacks and difficulties in community-based GISc as well as the benefits that can
accrue in the process. This topic of participatory GISc is picked up again in Section
III’s Chapter 16 by Dongus et al. on malaria vector control in Tanzania using locally
produced maps and spatial inventories. In many parts of the developing world, the
contribution of local people in environmental health spatial analysis is proving to
be of vital importance. Since a lack of governmental resources may prevent such
analyses from being undertaken through official channels or by technical “experts,”
geospatial health surveys and mapping by the local community are often the only
means of accomplishing the task.

1.4.2 Section II: Impacts on Environmental Health
(Topical Case Studies)

Section II contains 9 chapters, representing case study examples covering a wide
array of environmental hazards and risks, and using various geospatial methods to
examine and analyze them. These topical issues are at the heart of environmen-
tal health concerns, and by and large constitute the initial impetus for developing
geospatial methods for health research.

1.4.2.1 Zoonotic and Vector-Borne Diseases

Vector-borne and zoonotic diseases, such as malaria, Lyme disease, viral menin-
gitis, hantavirus, Dengue Fever, Yellow Fever, and rabies, among others, continue
to be serious environmental health concerns in most parts of the world, including,
increasingly, the more developed countries. Many of the vector-borne and zoonotic
diseases long thought to be confined primarily to the developing world have made a
dramatic resurgence in the developed world, in part due to the increase in population
movement and displacement, migration, and international travel, and in part due to
the effects of global climate change, which are redefining and expanding the habit-
able ranges of some of the vectors. Ghosh’s Geospatial Analysis of West Nile Virus
(WNV) Incidences in an Urban Environment (Chapter 7), analyzes the association
of urban environmental features that facilitate the viral activities of the mosquito-
borne WNV infection in the Minneapolis-Saint Paul metro area, and addresses the
question of how urban morphology affects human health. Using a combination of
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factorial ecology, geospatial techniques, and hierarchical cluster analysis, urban
landscape classes are derived from the environmental and built environment risk-
factors hypothesized to be associated with WNV transmission. The infection rate
among birds, mosquitoes, and human cases are then compared to these urban classes
to better understand the characteristics of those landscape classes most conducive
to the proliferation of the virus. The analysis of vector-borne disease is covered
again in Chapter 18 by Avina et al., who investigate Lyme disease in Texas, and
in Chapter 16 by Dongus et al., who use participatory mapping as a strategy in
controlling the malaria vector in Tanzania.

1.4.2.2 Toxic Metals and Elements

When we think of environmental hazards, very often the first thing that springs to
mind is toxic elements and metals such as lead, cadmium, chromium, arsenic, mer-
cury, and nickel, which are all considered by the US. Agency for Toxic Substances
and Disease Registry to be “major toxic metals with multiple health effects.” Most
toxic metals are carcinogenic, and the effects of heavy metal poisoning can be fatal.
They can also cause respiratory problems; adverse pregnancy outcomes; severe
developmental disorders in children; degenerative diseases of the nervous system,
including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis (MS);
problems with skeletal development and maintenance (e.g. osteoporosis); kidney
disorders; blood disorders; and many other serious acute and chronic health impacts.
The metals are ubiquitous in our environment, in developed as well as developing
countries, and are introduced into the environment and our bodies through both nat-
ural pathways (such as volcanoes or rainwater dissolving metals that are present in
rocks and ores), as well as through the combustion of coal and crude oil, battery
manufacturing, or the ingestion of fish and other food that have been contaminated
by toxic elements and metals in the water.

In many landscapes, toxic metals and other toxic substances have contaminated
the environment through a number of pathways, including unsafe manufacturing
processes and fossil fuel combustion by power plants and vehicles, which can result
in deposition of toxic substances to the soil. These hyper-contaminated lands, pri-
marily located in urban and suburban areas, have been termed “brownfields,” and
in the past two decades many municipalities have become interested in reclaiming
and cleaning up these oftentimes abandoned industrial lands for much needed hous-
ing or other development projects in order to remove the hazard, make the properties
productive again, and restore them to the property tax rolls. In Chapter 8, The Health
Impacts of Brownfields in Charlotte NC: A Spatial Approach, Wang describes such
a situation in Charlotte, North Carolina, where brownfields have been identified for
redevelopment, but no health impact study on the effects of living in close proximity
to a brownfield has been undertaken by the city. This chapter analyzes the possi-
ble association between proximity to brownfield sites and the reproductive health
outcome of low birth weight in infants, by means of a geospatial analysis of the
relationship amongst the health outcome, the socio-demographic characteristics of
the populations, and location, density, and size of the brownfield sites.
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1.4.2.3 Water Quality

Water quality is another leading environmental health concern, from the multiple
standpoints of access to and availability of clean drinking water; the dangers of
water-borne contaminants affecting the food supply; and also the threat of general
environmental degradation and habitat destruction for other species caused by water
pollution. Water can be polluted by toxic metals or chemicals from industrial and
agricultural uses, from flooding and stormwater runoff, as well as by disease-causing
bacteria, such as the cholera bacterium and e. coli, often from untreated sewage
discharged to water supplies. The adverse health impacts of water pollution are well-
known, and can cause both chronic and acute effects, sometimes life-threatening.
Dehydration from diarrheal diseases is the second leading cause of death for
children under the age of five globally. Nearly 1.5 million children, mainly in
developing countries, die each year due to diarrhea, often caused by water con-
tamination. This accounts for about 20% of all child deaths (UNICEF/WHO, 2009).
Root and Emch (Chapter 9, Regional Environmental Patterns of Diarrheal Disease
in Bangladesh: A Spatial Analytical and Multilevel Approach) describe the spa-
tial distribution of childhood diarrhea to examine its correspondence to land use
types characterized by flood inundation levels, household and community character-
istics, and information about water supply and sanitation infrastructure. The topic of
water-borne diseases is visited again in Chapter 22, where Yiannakoulias uses clus-
ter detection methods to investigate schistomsomiasis infection in Kenya, which is
caused by a water-borne parasite.

1.4.2.4 Food Safety/Food Security

Food safety, food security, and access to healthy foods are issues that have far-
reaching effects on health, including hunger and malnutrition; disease outbreaks
from bacteria and parasite-infected foods; various vitamin deficiency diseases; dia-
betes and the obesity epidemic now occurring in many developed countries (and
in those developing countries that are unfortunately copying the poorer aspects of
Western eating habits). Access to healthy foods has become a hot button issue, with
the realization by public health officials and the general public that many people,
even those in densely settled urban areas, lack ready access to fresh fruits and
vegetables and other healthy food choices, while at the same time suffering no
lack of fast food establishments and corner shops, generally selling less healthy
alternatives.

These areas of healthy food deprivation have been termed “food deserts,” and
have been deemed at least partially responsible for the growing obesity prob-
lem. One mitigating factor in some inner-city areas has been the development of
food-producing community gardens and other applications of urban agriculture.
Regularly-held farmers’ markets and cooperative agreements with local farmers
called Community Supported Agriculture (or CSAs) have also helped to combat-
the problem of food deserts, and have encouraged people in all walks of life and
living in a wide spectrum of communities to become “locavores,” eating produce
and other food products “in season” that are grown locally. This consumption of
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locally produced food has a significant health benefit due to the freshness of the
foods and the higher vitamin content, by virtue of having been ripened in place and
shipped to nearby places, avoiding a long transit where much of the nutritional value
can be lost. Eating locally grown foods also has additional environmental benefits
of cutting down on long-distance truck traffic to haul food stuffs from one end of
the country to the other, as well as cutting back on wasteful practices like airplane
loads of fresh raspberries bound for US markets from southern continents in January.
Reduction in plastic packaging also results from the locavore lifestyle, making some
inroads into the solid waste conundrum we face.

However, many of us still need to do at least some if not a majority of our food
shopping in a food store, and by all accounts, a full-service supermarket provides
the best option for both selection and pricing. Additionally, many supermarkets now
have jumped on the organic and locally-grown bandwagon, too, making it possible
to shop in a convenient way while still adhering to smart environmental and health
practices. Yet supermarkets are not evenly distributed across the landscape, making
it difficult for many people to shop effectively for healthy foods, especially those
in economically-depressed areas that are shunned by major supermarket chains.
Developing a Supermarket Need Index, Chapter 10, by Byron et al., details the diffi-
culties in measuring access to supermarkets, and the development of a supermarket
need index which takes into account not only access to full-service supermarkets,
but also the prevalence of diet-related diseases by neighborhood. Their analysis
reveals that three million New York City residents are living in “food deserts,” with
all that implies for their health and well-being.

1.4.2.5 Air Quality

In Chapter 11, Asthma, Air Quality, and Environmental Justice in Louisville,
Kentucky, Hanchette et al. discuss air quality, specifically criteria pollutants and
volatile organic compounds, and their relationship with childhood asthma hospi-
talization rates. Spatial clustering of areas having high asthma rates and poor air
quality point to a problem of health inequities, since these areas tend to be populated
by the less affluent and by people of color. The case study described in Chapter 11
is an example of how adverse health outcomes, disproportionate pollution burdens,
and environmental justice intersect to create health disparities, which in this case
especially affect children. Asthma is a disease with uncertain and probably mul-
tiple causes, exacerbated by many different triggers, and it is debilitating as well
as sometimes fatal. It is the third leading cause of childhood hospitalization in the
US, and tends to particularly affect those living in industrialized areas and places
with high traffic volumes. In many urban areas, children suffering from asthma
are ubiquitous, and regardless of whether the high asthma hospitalization rates are
due to environmental causes or are primarily the result of issues related to poverty
and other socio-demographic factors, this asthma epidemic points to a health and
environmental justice crisis.

A meta-analysis of EJ literature (Maantay et al., 2010) reveals that a large pro-
portion of EJ studies to date focus on the linkages amongst exposure to air pollution,
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the socio-demographic characteristics of the proximate population, and respiratory
illness, as opposed to any other of the many possible combinations of environmen-
tal hazards and health outcomes. Because of these very visible and wide-ranging
impacts, it is no wonder that so many environmental health justice studies focus
on air pollution and respiratory disease, and asthma in particular, despite the fact
that air pollution is an especially complicated environmental hazard to quantify,
measure, and accurately assess exposure. Air quality is one of the most stringently
regulated environmental media in much of the developed world, and although great
strides have been made in past decades to reduce air pollution, it remains a seri-
ous threat, and is one of the root causes of health disparities and disproportionate
impacts. In addition to respiratory diseases, air pollution has also been connected
to strokes and other cardiovascular diseases, Non-Hodgkins Lymphoma, various
types of adult onset cancers, childhood brain cancers, childhood leukemia, and
adverse pregnancy outcomes, such as stillbirths, pre-term births, low birth weight
babies, neural tube defects, congenital malformations, chromosomal abnormalities,
and spina bifida (Maantay et al., 2010). Air quality analysis features prominently in
this volume, especially in later Chapters 20, 21, 22, and 24, each of which bring a
different method to the examination of the health impacts of air pollution.

1.4.2.6 Solid and Liquid Waste

Solid waste disposal is a growing environmental concern, especially in these
NIMBY “Not In My Backyard” times we live in. An inordinate amount of solid
waste is generated by residents and businesses every day, which is part and parcel
of the overconsumption-waste cycle prevalent in most developed countries. But few
people will voluntarily live near the final resting place of the garbage. For years,
many municipalities have been landfilling their solid waste in parts of their own
cities, which tended to be in the less affluent areas or in communities of color,
where the community’s lack of political capital negated or muted their attempts at
resistance. When the municipalities finally started running out of room within their
cities, they then began exporting their waste to other (usually poorer) regions in their
own states, or to other poorer parts of the country, where this was often viewed by
local officials (and sometimes the residents) as a sound economic development strat-
egy, bringing welcome jobs to depressed regions. When all else fails, the garbage is
exported to other countries, generally in the less developed world. Who, after see-
ing them, can forget the pictures of the infamous “garbage barge,” carrying over
3,000 tons of solid waste, which in the summer of 1987 circled desperately from
New York City down the entire eastern seaboard of the US, thorough much of the
Gulf Coast of Mexico, Central America, and various Caribbean Islands, looking for
a place to dump its load? No one would accept it, and so it ended up in Brooklyn,
where it was finally incinerated many months after embarking on its forlorn voyage.
Incineration of solid waste, of course, produces its own deleterious environmental
and health impacts in the way of air pollution from combustion, and the resulting
production of toxic ash, which in turn needs disposal. Parenthetically, the garbage
barge incident occurred while New York City was still (legally) dumping much of its
sewage sludge and medical and industrial waste into an underwater site 12 miles off
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the coast in the Atlantic Ocean. This was subsequently banned by EPA, and NYC
ceased ocean dumping in 1992, making its solid waste disposal problem even more
acute since one of its major “sinks” was now off-limits.

Not only is landfilling the ultimate waste of land, since the land is generally never
able to be returned to productive purposes (occasional recreational reuses such as
conversion to parkland notwithstanding), but there are serious environmental risks
to solid waste disposal, including polluted leachate from buried garbage impact-
ing water quality; methane gas emissions from the decomposing garbage; increased
air pollution due to air-borne particulate matter from the garbage itself when it is
dumped; and the air quality, noise, and traffic congestion impacts of thousands of
garbage-hauling trucks accessing the landfill each day. Additionally, solid waste is
an environmental problem long before it reaches its ultimate landfill destination.
One manifestation of this problem is that it creates significant impacts on those
communities hosting solid waste transfer stations, such as municipal solid waste
transfer stations (including those handling putrescible garbage), construction and
demolition debris transfer stations, recycling facilities, and hazardous and medical
waste transfer and disposal facilities, where solid waste is hauled in and then gen-
erally hauled out again after sorting and separation for shipping to different places.
For instance, in the South Bronx NYC, which is part of the poorest Congressional
District in the United States and has an almost 100% minority population, it is not
uncommon for over 1,000 trucks per day to access one solid waste transfer station,
and there are over 60 solid waste transfer stations of one type or another in this area
(Maantay, 2007). Not coincidentally, this area has the highest asthma hospitalization
and asthma death rates in the city.

Chapters 12 and 13 each deal with different aspects of the waste disposal issue. In
Cromley’s chapter, The Impact of Changes in Municipal Solid Waste Disposal Laws
on Proximity to Environmental Hazards, we see how changes in policies intended to
improve municipal solid waste disposal at the state level can actually have a deleteri-
ous impact on communities of color and the less affluent by concentrating the waste
sites closer to them. Rather than keeping the waste within each locale’s municipal
borders, as in the past, the regulatory change redirected flows of waste to a more
centralized network of transfer stations and trash-to-energy plants, usually located
in closer proximity to the predominantly minority and less affluent areas. This brings
up the interesting fact that environmental hazards are not necessarily static in space,
and sometimes, as in this case, there is a changing geography of environmental haz-
ards. Policy-makers need to take into account environmental justice impacts such as
these when re-crafting policies and regulations.

1.4.2.7 Environmental Justice

Environmental Justice (EJ) is defined broadly as the problematic of the dispropor-
tionate distribution of environmental “goods” and “bads,” with the burden of the
“bads” and the dearth of the “goods” falling mainly on racial, ethnic, and reli-
gious minorities, immigrants, the less affluent, and other vulnerable groups, with
concomitant deleterious impacts on health and quality-of-life for these populations.
EJ concerns have been linked to the vital issues of health disparities; inequity in
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housing; residential segregation based on racial, ethnic, and religious characteri-
zation; reduction in quality-of-life factors and lack of urban amenities; increased
vulnerability and risk of certain sub-populations to natural, technological, and
human-made disasters; and environmental degradation.

In Chapter 13, Global Geographies of Environmental Injustice and Health: The
Case of Illegal Hazardous Waste Dumping in Côte d’Ivoire, Margai shows us how
multinational corporations operate in disposing of toxic waste in a less developed
country, where the residents are even more vulnerable and less likely to have access
to health care than the populations in those countries where the waste is generated.
Unfortunately, this scenario is repeated in many places all over the world, and is one
of the reasons that it is impossible to think of achieving environmental justice except
at a global level. “Until all are free, then none are free,” applies to environmental
justice as well as to civil rights, because EJ achieved in one location may just mean
that the problem (the environmental hazard) is pushed to an even poorer or more
vulnerable place somewhere else in the city, state, country, or world.

The dumping of toxic waste has serious health consequences, especially because
in many cases the nearby populations may be unaware of the dangers, and have
no idea what they are dealing with. Even if they do know, oftentimes they have no
choice but to use the water, breathe the air, and till the soil, all of which may be
contaminated and slowly killing them. We don’t have to look back very far in our
own history in the US to understand that people often don’t know the dangers they
live with on an intimate and daily basis until it is too late and the health damages
have begun to be felt. Most times, it is precisely the onset of health impacts that
first alerts residents that something is terribly wrong in their living environment. In
the infamous case of Love Canal in upstate New York, toxic waste was buried by
the owners of the land, a chemical manufacturer, and then the land subsequently
sold for a new housing development which was built on top of the dump site. This
case, as well as a similarly tragic case in Times Beach, Missouri, became notorious
in the media, a cause célèbre in environmental circles, and created a groundswell
of grassroots agitation for better environmental protection. These cases and others
like them led to the creation of the federal Comprehensive Environmental Response
Compensation and Liability Act (CERCLA), commonly known as Superfund, after
the fund set up within the Act to help pay for clean-up of the most egregious of these
sites. Unfortunately, there are hundreds of housing developments in the US today
which in the past 30–50 years were knowingly or unknowingly built on top of toxic
waste dumps. In the developing countries, the dumping of toxic waste where people
live is still occurring on a regular basis.

1.4.2.8 Health Disparities in Women

Environmental injustice and health inequities tend to affect women’s health espe-
cially severely. Gender is an important determinant in health outcomes, particularly
in less developed countries, as women there are usually more economically vulner-
able and have less access to health care than men do, often because of cultural and
religious imperatives. Due to the additional riskiness and frequency of childbearing
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and the lower status of women in many less developed countries, health outcomes
can be particularly dire. As usual all over the world, the adverse impacts of gen-
der and poor environmental quality are mediated by income and class, with more
affluent and well-educated women having better health, thanks to access to care,
clean water, safer sanitary provisions, and better housing conditions. In Chapter 14,
Environmental and Health Inequalities of Women in Different Neighbourhoods
of Metropolitan Lagos, Nigeria, Nwokoro and Agbola employ GIS to show the
spatial variation of health status of women across neighborhoods, and describe
the factors involved in the apparent health inequities of women in the different
neighborhoods.

1.4.2.9 Urbanization and Impacts of the Built Environment

In recent years the public health field has renewed its historic focus on the impacts of
urbanization and the built environment on health. Public health as a discipline began
in the nineteenth century by making the linkages between the living environments
of people and their health conditions. The nascent urban planning profession and the
City Beautiful movements went hand-in-hand with public health goals. In the US.,
we obtained most of our housing regulations and land use zoning due to the public
health professionals’ outcry against over-crowded and unsanitary living conditions
in dense urban settlements (Maantay, 2001). Tenement housing with inadequate or
non-existent water supply, toilet facilities, ventilation, heat, and light were seen as
the primary reason for the high rates of mortality and morbidity amongst the urban
poor and working classes. Despite a century and a half of housing and zoning legis-
lation expressly designed to protect and improve the health, lives, safety, properties,
and welfare of the population, sub-standard conditions in the built environment
continue to have adverse effects on public health. Research has also linked residen-
tial segregation based on race, ethnicity, or religion with adverse health outcomes
(Morello-Frosch and Jesdale, 2006).

Grady’s Housing and Racial Disparities in Low Birth Weight: A GIS Risk
Assessment, Chapter 15, looks precisely at this issue of how housing conditions
and deficiencies affect health, using low birth weight as an indicator. She argues
that there are racial disparities involved in both of these factors, which is an impor-
tant finding for policy- and decision-makers to understand and take into account in
their work.

1.4.3 Section III – Geospatial Methods in Investigating
Environmental Health

The book’s final section focuses on advanced GISc methods and their use in analyz-
ing environmental health issues. Although all chapters in the book utilize methods
of some sort, what distinguishes the chapters in this section is their detailed cover-
age of methods and their emphasis on innovative new methods of spatial analysis.
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Methods encompass both quantitative approaches that involve mathematical-
statistical analysis of numerical data and qualitative methods including textual
analysis, interpretive methods and participatory approaches to understanding. For
most of its history, GISc has been associated with quantitative methods, and such
methods continue to dominate the field. The 2- (or 3-)dimensional structure of GIS
data makes it uniquely suited to various types of quantitative data analysis. Yet,
there is also heightened interest in incorporating qualitative data such as video,
photos and interviews in GIS and in using GIS to facilitate qualitative and participa-
tory kinds of analyses. This section also includes some examples of national-scale
studies that rely on large, dynamic spatial and spatiotemporal datasets.

Chapter 16, Participatory Mapping as a Component of Operational Malaria
Vector Control in Tanzania, by Dongus et al., is the only chapter in this section
emphasizing qualitative methods. The authors describe the use of participatory map-
ping to guide mosquito control efforts within small areas of the city of Dar es
Salaam. As described earlier, participatory mapping involves incorporating local
knowledge, maps and preferences in decision-making processes to give community
members a voice in decisions that affect them. In Dongus et al.’s chapter, sketch
maps of small neighborhood areas identifying features, households and land own-
ership are hand-drawn and linked with aerial photos. Not only are the maps used in
tailoring malaria control strategies to detailed local conditions, but also they can be
easily updated and shared with other health and social agencies.

The remaining chapters focus on quantitative spatial analytic methods. In
Chapter 17, Revisiting Tobler’s First Law of Geography: Spatial Regression Models
for Assessing Environmental Justice and Health Risk Disparities, Chakraborty pro-
vides a detailed and comprehensive summary of spatial regression analysis, a
method increasingly applied in environmental health research studies. Situating his
chapter in relation to Tobler’s Law, which serves as a foundation for geospatial
analysis, Chakraborty discusses the theoretical underpinnings of spatial regression
analysis and issues related to application and interpretation. An environmental jus-
tice example, investigating the uneven effects of vehicular pollution on racially-
and economically-marginalizaed groups, is provided to guide the reader through a
practical application. Note that several other chapters in this book use spatial regres-
sion analysis for modeling spatial relationships between environmental hazards and
health outcomes.

There is growing interest in integrating models of hazard, exposure and outcome
in environmental health studies. Using Lyme disease in Texas as a case study, Avina
et al.’s chapter, A Spatially Explicit Environmental Health Surveillance Framework
for Tick-Borne Diseases, (Chapter 18) describes how GISc can be used to facilitate
such integration. Using GIS-based map algebra tools, data on ticks, tick habitats and
population distribution are combined in estimating Lyme disease risk. The authors
apply maximum entropy modeling and geographically-weighted regression to map
and predict geographic variation in the prevalence of Lyme-infected ticks across the
state.

Environmental justice analysis is the topic of Downey and Crowder’s
chapter, Using Distance Decay Techniques and Household-Level Data to Explore
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Regional Variation in Environmental Inequality. Although many environmental
justice studies rely on a simple “container” approach in modeling exposure to haz-
ardous facilities, Downey and Crowder adopt a much more rigorous distance-based
approach in analyzing racial and economic disparities in environmental burdens.
Their grid-based method estimates a population’s exposure to hazardous emis-
sions based on distance to facilities and volume of emissions. They apply these
computationally-intensive methods in a national-scale analysis of environmental
justice, and findings show substantial regional differences in the unequal burdens
of hazardous emissions among demographic and racial groups.

Studies of health and environment increasingly rely on information gathered
from satellites, but in most applications the data are used in analyzing vegeta-
tion or “green” spaces. The chapter by Hu et al., Merging Satellite Measurement
with Ground-Based Air Quality Monitoring Data to Assess Health Effects of Fine
Particulate Matter Pollution, discusses an emerging area of application – use of
satellite data on aerosol optical depth (AOD) to estimate fine particulate matter
concentrations. Fine particulates are thought to trigger asthma and other respira-
tory conditions in susceptible populations, so analyzing the associations between
particulates and health is an important research endeavor. Using geographically-
weighted regression and Bayesian hierarchical modeling, Hu et al. analyze the
associations between local AOD measurements, fine particulate concentrations
and health outcomes. Looking ahead, their research raises the exciting possibility
that other important environmental indicators might be tracked and modeled with
satellite data.

Bayesian statistical methods are the subject of two papers in this section,
Chapter 21 by Rojas (Poverty Determinants of Acute Respiratory Infections in the
Mapuche Population of Ninth Region of Araucania, Chile (2000–2005): A Bayesian
Approach with Time-Space Modelling) and Chapter 24 by Yu et al. (Spatiotemporal
Analysis of PM2.5 Exposure in Taipei (Taiwan) by Integrating PM10 and TSP
Observations). Some statisticians believe that Bayesian methods offer a superior
approach to spatial and temporal modeling than more traditional frequentist sta-
tistical methods. Rojas uses a Bayesian time-space nested model to assess the
relationships between poverty and health in the Araucania region of Bolivia. Poverty
and spatial segregation emerge as key determinants of ill-health among the highly
vulnerable Mapuche population. In the Yu et al. chapter, Bayesian space-time meth-
ods serve as a tool for estimating local concentrations of particulates in Taiwan
over space and time. Although mathematically challenging, these chapters show
that the environmental analyst’s geospatial toolkit is rapidly expanding to include
more accurate and rigorous spatial statistical methods.

Modeling dispersion of air pollutants is the topic of Chapter 22 (GIS and
Atmospheric Diffusion Modeling for Assessment of Individual Exposure to Dioxins
Emitted from a Municipal Solid Waste Incinerator) by Viel. As in Downey and
Crowder’s chapter, the goal is to estimate concentrations of pollutants in areas near
hazardous facilities; however, Viel’s chapter examines this topic at a local scale.
Viel uses GIS-based plume models to estimate dioxin concentrations around munic-
ipal solid waste incinerators in Besancon, France. Dioxin is a known carcinogen,
and the health impacts of dioxin released from municipal facilities are of great
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concern. To make accurate predictions, Viel uses a plume model of atmospheric
dispersion which incorporates local weather patterns, including prevailing winds
and the impacts of topography. Reflecting atmospheric processes, plume models are
superior to distance-based methods for air pollution modeling. Viel’s chapter also
takes the next step, analyzing associations between modeled dioxin concentrations
and cancer outcomes via multilevel modeling.

Identifying spatial clusters of health events is a critically important task for
public health agencies concerned with improving environmental health. A spatial
cluster is a geographical area in which the incidence or prevalence of disease is
unusually high (Waller and Gotway, 2004). Clusters are important because, for
example, they may signal an unexpected outbreak of infectious disease, or the
presence of hazardous material(s) in the environment resulting in adverse health
effects. Chapter 23, Synthesizing Waterborne Infection Prevalence for Comparative
Analysis of Cluster Detection Methods, by Yiannakoulias, develops and implements
a new method for spatial cluster detection (the “greedy growth scan”) that can
identify irregularly-shaped clusters. Most existing methods seek out clusters that
have compact geometric shapes (e.g. circular, rectangular); Yiannakoulias’ method
focuses on elongated, “snake-shaped” clusters that might emerge along waterways,
roads, or powerlines. Using GIS-based synthesized data on Schistosomiasis infec-
tion in two regions of Kenya, he compares the new method’s ability to detect clusters
with that of the commonly used spatial scan statistic, finding significant advantages
of the new method in detecting outbreaks of water-borne disease.

1.5 Recurrent Themes

In conclusion, these chapters highlight a number of important themes in research
with GISc. Many of the chapters emphasize the multi-factorial nature of envi-
ronmental health issues and the fact that they involve a complex mix of social,
ecological, and physical environmental causes. Other recurrent themes are the
impacts of the built environment on health, and the challenge of linking environ-
mental exposure and health outcomes. A number of the chapters develop innovative
methods for addressing these challenges.

Environmental justice and the associated issue of health disparities are recurrent
themes running through many of the chapters in this book. The editors strongly
believe that innovative geospatial tools and methods can be effectively employed in
understanding and tackling environmental justice and health disparities, two of the
most significant public health challenges of our time. The chapters in this volume
provide an important step in that direction.
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Chapter 2
Using Geovisualization and Geospatial
Analysis to Explore Respiratory Disease
and Environmental Health Justice
in New York City

Andrew Maroko, Juliana A. Maantay, and Kristen Grady

Abstract The goal of this chapter is to illustrate how complex issues in
environmental health justice analysis can benefit from geovisualization and explo-
ration within a Geographic Information Science (GISc) framework. Individual
health outcome variables, such as hospitalizations due to respiratory disease, can
be very difficult to interpret without a geographic context; and interactions amongst
variables such as disease, socio-demographic characteristics, or environmental
exposures, further complicate an accurate interpretation of the data. Data explo-
ration and visualization through mapping and spatial analysis often provides a more
robust understanding of the data, as well as improved clarity in viewing the phenom-
ena under study, which will lead to better design of further analyses and additional
hypothesis generation, in an iterative fashion. In the first part of this chapter, we use
a hypothetical data set to illustrate some of the data exploration, geovisualization,
statistical methods, and geospatial analyses. In the second part of the chapter, we
use a worked example of respiratory disease and socio-demographic variables in
New York City to assess potential environmental justice impacts, in order to further
demonstrate the importance of geovisualization and geospatial analysis in achieving
a better understanding of environmental health issues.

Keywords Geovisualization · Geostatistics · New York City · Asthma ·
Environmental Justice · Environmental Health

2.1 Introduction

The goal of this chapter is to illustrate how complex issues in environmental
health justice analysis can benefit from geovisualization and exploration within
a Geographic Information Science (GISc) framework. Individual health outcome
variables, such as hospitalizations due to respiratory disease, can be very difficult
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to interpret without a geographic context; and interactions amongst variables such
as disease, socio-demographic characteristics, or environmental exposures, further
complicate an accurate interpretation of the data. Data exploration and visualization
through mapping and spatial analysis often provides a more robust understanding of
the data, as well as improved clarity in viewing the phenomena under study, which
will lead to better design of further analyses and additional hypothesis generation,
in an iterative fashion.

Geovisualization is defined as “the use of computer technology for explor-
ing data in visual form. . . . and the use of computer graphics for acquiring a
deeper understanding of data” (Visvalingam, 1994). Visualization can also be
thought of as “the interplay between technology and the human mind” (Davies and
Medyckyj – Scott, 1994). The impetus behind such a geovisualization process is to
“see the unseen” in these increasingly large and complex datasets, where, without
computational exploratory mapping, it is unlikely that we would be able to ferret
out many of these “unseen” relationships (Orford, 2005).

Maps are, and always have been, rich sources of data. GISc increases the richness
of the data, and the functions of GISc make it possible to look at the data in many
different ways and from various viewpoints. We can manipulate the data, examine its
statistics, plot graphs of it, classify and reclassify it with different schemes of class
breaks and classification methods, and look at multiple views of the data at the same
time. This kind of geovisualization has become easier and more productive since the
advent of accessible forms of GISc software and their computerized cartographic
capabilities (Kraak and Orneling, 1996; MacEachern and Kraak, 1997).

In the first part of this chapter, we use a hypothetical data set to illustrate some of
the data exploration, geovisualization, statistical methods, and geospatial analyses.
In the second part of the chapter, we use a worked example of respiratory disease and
socio-demographic variables in New York City to assess potential environmental
justice impacts, in order to further demonstrate the importance of geovisualization
and geospatial analysis in achieving a better understanding of environmental health
issues.

2.2 Environmental Health Justice

Environmental Justice (EJ), as a research framework, is the attempt to document
and address the disproportionate environmental and health burdens borne by the
poor, people of color, and other vulnerable populations. In a broader context, EJ the-
ory encompasses everything that is unsustainable about the world we have created,
including rampant population growth, industrialization, pollution, consumption pat-
terns, energy use, food production, and resource depletion. “The EJ movement
has sought to redefine environmentalism as much more integrated with the social
needs of human populations, and, in contrast with the more eco-centric environ-
mental movement, its fundamental goals include challenging the capitalist growth
economy, as well” (Pellow and Brulle, 2005, 3).

Environmental Justice, both as an advocacy movement and as a field of research,
came into being over 20 years ago, and ever since that time, Geographic Information
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Science has been used to examine the spatial realities of environmental injustice
(Boer et al., 1997; Bowen et al., 1995; Burke, 1993; Chakraborty and Armstrong,
1997; Chakraborty et al., 1999; Maantay et al., 1997; Maantay, 2002; Morello-
Frosch et al., 2001; Neumann et al., 1998; Perlin et al., 1995; Pollock and Vittas,
1995; Sheppard et al., 1999).

GISc methods have been used in environmental justice research primarily to
analyze the spatial relationships between sources of pollution burdens and the socio-
demographic characteristics of potentially affected populations, and for the most
part, researchers have found strong associations between race, class, and environ-
mental burdens. More recently, health outcomes and exposure measures have also
been included in order to draw more definite connections between pollution, poor
people, communities of color, other vulnerable populations, and adverse health out-
comes. GISc technology is particularly well-suited for EJ research because it allows
for the integration of multiple data sources (e.g., location of polluting facilities, pop-
ulation characteristics, and disease rates), representation of geographic data in map
form, and the application of various spatial analytic techniques (e.g., buffering) for
proximity analysis (Zandbergen and Chakraborty, 2006).

2.3 Data Exploration Example Using Hypothetical Data Set

GISc can be invaluable in data exploration. Looking at data spatially allows a much
more holistic and complete view of the phenomena or processes under study. Spatial
analysis requires data with a geographic identifier: any data that has a locational
component (e.g., a street address, latitude/longitude, zipcode, census tract) can be
mapped and analyzed with GISc.

When starting the process of data analysis, it is traditional to run some basic
descriptive statistics (e.g. mean, median, mode, standard deviation, etc.) on the
pertinent datasets. Although these numbers can provide some extremely useful sum-
maries of the data, they do not provide a spatial understanding – that is, they do not
show how values vary from place to place. For instance, if you are presented with
a dataset that contains thousands of samples (e.g., census tracts), each of which has
information regarding the population and a disease of interest, an a-spatial analy-
sis may not provide you with all the information that is required for a complete
interpretation, vis-à-vis, how disease varies across geographic space.

To illustrate this point, a hypothetical study area was created containing a 30 × 30
grid of cells (n = 900), each of which could be considered the geographic unit of
analysis (resolution) in a GISc study. Each cell is 1,000 by 1,000 ft, and contains
a value for population data as well as disease data. A random population between
500 and 600 was given to each unit. Disease data, however, was not randomly dis-
tributed. Instead, “disease centers” were defined around two locations. Geographic
units that were greater than 5,000 ft from either of the source points were assigned a
random disease rate between 1 and 2 cases per 100 persons. As the distance from a
cell to either of the centers decreases, the rates increase. In other words, the rates in
the geographic units proximal to the disease centers were calculated as higher than
distant geographic units.
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If this data were to be looked at tabularly (Table 2.1) or with a graph (Fig. 2.1),
relatively few inferences could be made regarding the nature of the phenomenon,
how it is distributed in space, and any relationship between the areas and the rates.
However, by mapping the data, spatial patterns can emerge, and provide more
explanatory power in terms of the geographic context. The relative clarity of the
spatial patterns depends on many things, such as the choice of data classification
method (e.g. natural breaks, quantile, etc.) and the type of thematic map (e.g. dot
density for number of cases, choropleth for rates, etc.), as discussed below.

Data Classification Process: When mapping quantitative information, it is usual
to classify the numerical data into ranges of numbers. This is done for convenience
and for ease of reading and interpreting the information on the map, since it is often
impossible or impractical to represent every unique value in the data with a different
unique symbol on the map.

Table 2.1 Tabular view of the first eleven records in the hypothetical dataset

Cell id Population Number of cases Disease rate (×100)

1 571 10 1.7513
2 553 8 1.4467
3 558 9 1.6129
4 529 7 1.3233
5 530 7 1.3208
6 577 10 1.7331
7 501 5 0.9980
8 578 33 5.7093
9 576 10 1.7361

10 581 11 1.8933
11 571 10 1.7513
. . . . . . . . . . . .

Frequency Histogram of Disease Rates

0

10

20

30

40

50

60

70

80

90

100

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Disease Rate (x 100)

F
re

q
u

en
cy

Fig. 2.1 Graph (histogram) of the hypothetical dataset
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There are a number of data classification methods that are commonly used, and
which one is selected will depend to a large degree on the dataset being mapped –
its content, configuration, and its “shape.” This entails, for instance, whether or not
the data has a normal distribution, and other particularities of the data set, which
can be ascertained in general terms by running some basic descriptive statistics. The
data classification method ultimately chosen will affect the emphasis of the mapped
data, and some cartographers maintain that the “best” way to present quantitative
data is by classifying it in several different ways, allowing the analyst to piece them
together and form a composite picture of different aspects of the data.

The data classification methods briefly described here are the ones most generally
available with standard GIS software packages – equal interval, quantile, natural
breaks, and standard deviation – and these tend to cover most circumstances. There
are other useful methods, such as arithmetic, geometric, harmonic, and nested mean,
which can be used in a GIS software program by manually calculating and setting
the class breaks.

Equal Interval: in some ways this is the easiest classification method to under-
stand and use, and maps created with equal interval class breaks have an inherent
logic and intuitive feel about them. With this method, the data range is broken into
classes, each containing the same interval. For instance, if we were interested in
mapping percent minority population by census tract for a city, and our data range
was 1–100 (1 being the minimum value and 100 being the maximum value) and
we wanted five classes, our classes would be 1–20; 21–40; 41–60; 61–80; 81–100.
This method works well for a dataset that has a normal distribution of values. The
drawback to Equal Interval comes if your dataset contains values that primarily fall
in just one or two of the classes. The resulting map would show only one or two
classes leaving other classes unrepresented. As such, little useful information about
the spatial distribution of the variable would be visible.

Quantile: this method produces a map in which every class has an equal number
of areal units or observations. Let us imagine that we have the same dataset as above
with percent minority population (data range: 1–100) which are aggregated into
200 census tracts (i.e. n = 200). If we want five classes again, then each class will
have 40 census tracts in it, and that will determine the class breaks. If the data
values are arrayed in order of magnitude, the class breaks would be drawn so that
each class includes a set of 40 census tracts, consecutively based on the data values.
Although this method produces a map that can be more visually interesting than that
produced by equal interval (because by definition, each class will have some units
in it) it can also be misleading to the map viewer, since the map will show each data
class with equal weight (the same number of areal units per class) even if the values
are not that different between classes. This method tends to work best when data is
aggregated by areal units that are roughly the same size. Additionally, outliers may
be de-emphasized in the quantile method, due to the grouping of values by ordinal
ranking.

Natural Breaks: very often, this is the default classification method in GIS soft-
ware. The assignment of class breaks in this method is very dependent on the
dataset you are working with. It uses an algorithm to create classes which are
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as homogeneous as possible internally, while maximizing differences amongst the
classes. It does this by organizing an array of the data, and then finding the “natu-
ral” break points or discontinuities in the array, thus combining the values that are
similar into classes. Very often, this is the most realistic or “true” view of the data,
since each class is internally consistent. The drawback is that map viewers may
have a more difficult time interpreting maps made with natural breaks, since the
class ranges in the map legend may appear random and arbitrary, and some classes
may be overly inclusive, and other classes may contain very few data values.

Standard Deviation: The standard deviation method of classification groups the
data values into classes based on the mean and the standard deviation of the data
set. Each class represents one (or one half, one third, etc.) standard deviation above
or below the mean (the arithmetic average) of the dataset. The standard deviation
classification can result in classes containing class break values outside the actual
range of the data, due to the way standard deviations are constructed. The standard
deviation classification method is especially useful when performing longitudinal
studies (comparing different time periods) or for comparisons amongst datasets that
vary widely in their mean, median, or other measurement of central tendency. In
standard deviation classification, the mean and the standard deviation are the basis
of the class boundary formation, and so the mean and standard deviation are more
comparable across datasets with varying ranges.

The process of data classification is itself a type of data exploration. It allows the
analysts to familiarize themselves with the data, and see if and how the map changes
based on the classification method used. This can reveal information about the data
and affect the ease of data interpretation. Maps made with the exact same data but
using different classification methods will, more often than not, look markedly dif-
ferent. In addition to the classification method selected, factors such as how many
classes are created and how many areal units are included in the data set, will also
have an impact on the map’s appearance and its interpretation. Below is a graphic
representation of how different classification methods would group the data from
our 900 sample hypothetical dataset of disease rates differently in terms of class
breaks (Fig. 2.2) as well as number of samples per class (frequency, Fig. 2.3).

Types of Thematic Maps: The types of maps usually used for data exploration
and geovisualization are, broadly speaking, thematic maps, and they can be either
quantitative or qualitative in nature. Thematic maps express a “theme” of informa-
tion, as opposed to a reference map, which is used for way-finding and identifying
actual locations. Although it is common for a thematic map to only represent one
“theme” or variable, effective maps can also be made to show multiple variables,
often by employing several types of thematic maps in one. The following types of
thematic maps are used most frequently for data exploration and visualization:

• Dot density
• Choropleth
• Proportional symbol
• Isoline
• Continuous surface (interpolation of point data)
• Cartogram
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Fig. 2.3 Frequency of geographic units per class using four classification methods (hypothetical
data)

Dot Density Maps: A dot density map is used to plot the absolute numbers of
things – people, cases, or events – as aggregated by a geographic area. Usually, each
dot represents a certain number of the things being mapped, e.g., one dot equals 10
cases of tuberculosis. The dots are not intended to correspond to the actual locations
of these things, but rather are a random distribution of the points within each area
of aggregation. Dot density maps are very useful for obtaining a “snapshot” of the
distribution of the variable within the larger geography, and are often used for data
exploration with the dots “on top” of a choropleth map showing rates or percentages
of another variable. This is an easy way to investigate the potential spatial correspon-
dence of two or more variables, or different aspects of the same variable. Dot maps
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have been in use for hundreds of years, for instance, John Snow’s dot map of cholera
deaths in Soho in nineteenth century London (Fig. 2.4), which is a modified use of
a dot map, where one dot equals one event at its actual location.

In their simplest form, one dot equals one case. Figure 2.5 depicts how alter-
ing the dot value changes our perception and possible interpretation of the data,
and reveals why it is important to select the dot value wisely. As with many carto-
graphic decisions, there is no necessarily “right” choice, but through a process of

Fig. 2.4 By plotting deaths from cholera on to a map and revealing the geographical relation-
ship between deaths and the location of the Broad Street pump, Dr. Snow had showed how maps
could provide a unique insight into the patterns, processes, and relationships of spatial phenomena.
The relationship between polluted drinking water and cholera was not self-evident and had to be
graphically displayed before the connection could be made. (Orford, 2005:190–191). This seminal
thematic dot map by Dr. John Snow of deaths from Cholera in 19th century London, as reproduced
in E.W. Gilbert’s 1958 article, is often thought to be the inspiration for the discovery of the water-
borne nature of the disease’s transmission (although this commonly-held idea of the map’s role in
this discovery is disputed as apocryphal by several authors, notably Tom Koch in Cartographies
of Disease, and Orford in Visualization and Cartography). Map Source: “Pioneer Maps of Health
and Disease in England,” Geographical Journal, 124 (1958), 172–183
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Fig. 2.5 Dot density maps of hypothetical data showing how dot value selection can affect ease of
visual interpretation (left) shows 1 dot = 50 cases (right) shows 1 dot = 5 cases

“intelligent” trial and error, one can find the optimal way to present the data graphi-
cally in order to show the greatest detail and meaning in the data, and to distinguish
any spatial pattern.

Choropleth maps: Choropleth maps, also called graduated color maps, are used
to show rates, percentages, or ratios of a phenomenon, as aggregated by some geo-
graphical unit, such as a census tract, zip code, county, or state. In a choropleth map,
each unit receives a color, pattern, or tone that designates the value range of the vari-
able. These colors or tones are graduated in hue or intensity to denote the relative
magnitude of the variable. Intuitively, the progression of shades makes sense: as the
rate or percentage increases, the color deepens. It is easy to compare two choropleth
maps showing different variables in order to ascertain geographic distributions and
any spatial correspondence amongst the mapped variables, provided the maps have
the same extent and unit of analysis. Using the natural breaks classification method
on the hypothetical dataset, a choropleth map was created that renders the areas with
unusually high disease rates easily identifiable (Fig. 2.6).

Proportional symbol: A proportional symbol map, also called a graduated sym-
bol map, shows relative or absolute amounts of the variable by using a symbol
placed at the corresponding point on the map, or at the centroid of each unit of
aggregation. Data can be utilized in the form of absolute numbers or counts, or in
the form of percentages, ratios, or proportions. Proportional symbol maps can also
depict ordinal, or ranked, data, such as small, medium and large, or high, medium,
and low density. These maps are useful to obtain an overview of the variable, and
are particularly informative when used in combination with other types of thematic
maps. Using proportional symbols on the hypothetical data, areas of high disease
rates are again easily visible (Fig. 2.7).
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Fig. 2.6 Choropleth map of hypothetical data using “natural breaks” classification

Fig. 2.7 Proportional symbol map of the hypothetical data
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Continuous Surface: When data is presented as a continuous surface, spa-
tial trends can often be intuitively and easily seen. A surface can be created by
interpolating values between sampled points, essentially estimating values between
the known samples, thereby “smoothing” the raw data. Although continuous sur-
faces are most often used to represent environmental data such as temperature,
rainfall, air quality, and elevation, they can be used for nearly any type of dataset.
However, caution must be used when interpolating sparse data (i.e. few sample
points) or data that is inherently delineated by discrete boundaries (e.g. legal juris-
dictions). There are many ways to achieve this interpolation, including inverse
distance weighting, spline, and Kriging. Although an in depth discussion of each
technique is beyond the scope of this chapter, the nature of the data being analyzed
and the desired product will often dictate which methodology is most appropriate.
In our hypothetical dataset, ordinary Kriging was used to estimate the values of
points between the centroids of the original polygons. The output is in raster for-
mat (gridded) and can be viewed as either a true continuous surface where there
are no classified divisions in the data (i.e. “stretched”) or as a classified surface
utilizing the same classification schemes discussed earlier (Fig. 2.8). Just as with
other techniques, classification choices, as well as additional choices which must
be made regarding interpolation, can profoundly affect the appearance and ease of
interpretation of the product.

Isoline: Isoline maps, or contour maps, are made from a continuous variable,
by connecting places of equal value of the variable. All points along any given
line are presumed to have the same value for the particular variable being mapped.
As isolines are essentially an alternate way to represent a continuous surface, dis-
crete occurrences of a phenomenon (e.g. land use) should not be mapped using
this method. Although topography is the most common variable used with isolines,

Fig. 2.8 Continuous surface of hypothetical dataset (left) shows a “stretched” surface and (right)
shows a classified continuous surface
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Fig. 2.9 Isolines of the hypothetical dataset derived from the continuous surface

any continuous data, such as most environmental variables as well as some human
variables (e.g. median housing costs, population density, and disease rates) can be
mapped in this fashion. For the hypothetical dataset, isolines were created based on
the interpolated surface described above (Fig. 2.9).

Cartograms: Cartograms are not very commonly used in public health mapping,
but deserve a wider exposure, as they can be quite effective in helping to visualize
data. Cartograms have been used to good effect, for instance, in Danny Dorling’s
World Mapper cartogram series (Dorling, accessed 2010), which includes maps that
informatively present complex and varied data in a “snapshot” way, and are espe-
cially useful for displaying data at a global extent. They have also been used in
environmental health literature to illustrate the spatiality of environmental public
health research (Sui and Holt, 2008; Houle et al., 2009). Cartograms can help in
visually comparing regions and variables across regions at a glance, but are less
useful for determining actual quantities. Therefore, they are primarily used as work-
ing or exploratory maps to indicate potential areas for more detailed study, and as
presentation maps to inform and communicate to the public about different issues.

A cartogram, also called a “density-equalizing map,” “equal-area map,” “isode-
mographic map,” and “value-by-area map,” shows land areas sized to reflect the
magnitude of the variable being mapped. Normally, the geographic units shown on
maps reflect their real geographic size. Not cartograms – cartograms ignore true
geographic size. In other quantitative thematic maps, data is mapped by symboliz-
ing the variable’s quantity and placing the symbol in or on the geographic units. In
the cartogram, the size of the geographic unit itself is intended to communicate the
variable’s quantity. For instance, in a cartogram of world population by country, the
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geographic size of the countries would be drawn in proportion to their population
size, not to their geographic size. China, India, the United States, and Indonesia,
the world’s four most populous countries, would therefore be drawn with the largest
geographic extents. The size of the country itself on the map thereby represents the
variable of population size. The cartogram does not lose data by classification or
generalization, as do choropleth maps, for instance. However, the map user may
find it difficult to understand the cartogram, depending on the map user’s existing
knowledge of and familiarity with the geography being portrayed. Many mapmak-
ers choose to include a small inset map with the cartogram. The inset map can
be used to remind the map user of the real relationship and physical sizes of the
geographic units being mapped, so the information embedded in the altered sizes
of the geographic units in the cartogram can be more easily interpreted. The geo-
graphic shapes on many cartograms can be highly generalized, often with box-like
forms that make no attempt to conform to true shape, resulting in a map that looks
more like an organizational chart (Maantay and Ziegler, 2006). Cartograms are often
used in combination with other thematic mapping methods, such as choropleth or
proportional symbol maps, which add richness and nuance to the data presentation.

The cartograms contained in this chapter are density-equalizing cartograms, in
which areal units are drawn proportionally to the salient population character-
istics. The benefit of this type of cartogram is to overcome the inevitability in
non-cartogramatic maps for a variable to “show high incidence in cities and low
incidence in rural areas, solely because more people live in cities,” (Gastner and
Newman, 2004, 7499). The maps below (Fig. 2.10) show the juxtaposition of the
choropleth and cartogram of the hypothetical data disease rates. Notice how the two
“disease centers” are not only brought out by the shading, but are also enlarged
cartogramatically for a dramatic visual effect.

Fig. 2.10 Choropleth (left) and cartogram (right) of the hypothetical dataset
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Geostatistics is a branch of statistics which focuses on the analysis of spatial data.
As was demonstrated with the simple hypothetical example above, the locational
dimension of a dataset is tremendously important in understanding environmental
and health concerns. What follows is not meant to be an exhaustive discussion of
geostatistics or geospatial analysis by any means, but rather a simple demonstration
of how this type of quantitative exploration can help the researcher to better under-
stand the nature of what is under investigation. This is done by working through
only a few techniques: Moran’s I and Local Indicators of Spatial Autocorrelation
(LISA) are introduced below; and Geographically Weighted Regression is intro-
duced in the next section. Many other measures and analyses could have been used
(e.g. Getis-Ord G or Gi∗, spatial autoregressive models, etc.), but that is beyond the
scope of this introductory chapter. For more information see Chapters 17 and 20
(Chakraborty; Hu et al).

Spatial autocorrelation is an important concept in spatial analysis. If the value
in one geographic unit is correlated with the values in neighboring units, a vari-
able can be considered spatially autocorrelated (Cliff and Ord, 1973). Moran’s
I is a global measure for autocorrelation which ranges from –1 to 1. When values
approach 0, there is no spatial autocorrelation; as the Moran’s I approaches 1 or –1,
there is positive (clustering) or negative (dispersion) autocorrelation, respectively.
A standardized Z score can be used to assess significance (with the null hypothesis
representing a random spatial distribution). In order to calculate a Moran’s I, a spa-
tial weights matrix must first be defined. This matrix defines the spatial relationship
among the samples (e.g. census tracts). There are many options regarding the def-
inition of the spatial weights matrix, the most common of which include polygon
contiguity, simple distance threshold, distance decay, and k-nearest neighbors. For
more information regarding spatial autocorrelation, see Chapter 17 by Chakraborty,
in this book.

The Moran’s I for our dataset suggests a statistically significant clustering of
disease rates (I = 0.62 when first order contiguity is used, Z Score = 26.4). This
clustering can be further explored using local indicators of spatial autocorrelation
(LISA). A LISA can be used to quantify spatial autocorrelation locally by calculat-
ing a Moran’s I and an associated significance level for each spatial unit. The sum of
all of the LISAs will be proportional to the global measure of spatial autocorrelation
(Anselin, 1995). When our dataset is looked at in this fashion, once again using first
order contiguity, the areas with local clusters of high disease rates can be clearly
seen (p<0.01) (Fig. 2.11). It is important to note that what is being seen in this map
are the local clusters of similar or dissimilar rates (neighboring geographic units in
this case), rather than the rates themselves.

These types of visualization and simple spatial analysis methods can lead to inter-
esting findings and raise interesting new questions. For instance, in our hypothetical
data, what may be causing these clusters of elevated disease rates? Is there a pollu-
tion source or other environmentally burdensome land use? Are there populations
who are particularly vulnerable due to demographic, genetic, or social characte-
ristics? These types of questions often can only be answered with a good knowledge
of the study area’s physical and social environments.

20
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Fig. 2.11 Local Indicators of
Spatial Autocorrelation
(LISA) clusters of disease
rates in the hypothetical
dataset. High/high suggests
local clusters of high disease
rates (high values surrounded
by neighbors of similarly high
values). Low/low indicates
local clusters of low disease
rates. High/low and low/high
suggest local statistical
outliers (high values
surrounded by low values or
low values surrounded by
high values, respectively)

When the number of variables or the complexity of the relationships increase, it
can be very useful to explore the phenomena through more complex statistics rather
than simply cartographically visualizing the individual variables. There are many
ways to look at this data statistically, and each dataset may lend itself to one tech-
nique or another. A common approach when trying to quantify relationships among
variables is regression analysis. Similar to the previously discussed exploratory
techniques, regressions can be approached a-spatially or spatially. Ordinary least
squares regression (OLS) results in summary statistics for the entire study area (i.e.
global), however if the relationship(s) being examined are geographic in nature and
have a truly spatial component, it can be beneficial to perform the regressions geo-
graphically (e.g. spatial regressions) or even locally (e.g. geographically weighted
regression). The remainder of this chapter will go through a worked real-world
example demonstrating the utility of data visualization and geostatistics.

2.4 Respiratory Disease and Environmental Health
Justice in New York City

Respiratory disease rates can be a major concern in urban environments. One of
the causes of high rates of respiratory disease may be poor air quality due to close
proximity of residential areas to areas with high vehicular traffic, industrial land
uses, high population densities, and other environmentally burdensome land uses
(Aylin et al., 2001; Edwards et al., 1994; Maantay et al 2008; Smargiassi et al.,
2009). Respiratory disease is an environmental justice concern that combines issues
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of socio and economic vulnerability with unequal environmental exposure. Some
research has suggested that not only are lower-income populations and communities
of color more likely to live in close proximity to environmentally burdensome facil-
ities and thus be more exposed to pollution, but that the health effects of exposure to
these burdens are further modified by socio-economic status, and “due to material
deprivation and psychosocial stress [these populations] may be more susceptible to
the health effects of air pollution,” (O’Neill et al., 2003, 1861). Therefore, vulnera-
ble populations, such as those with limited income or educational attainment, may
suffer more from the same exposures when compared to other groups. What fol-
lows serves as an example of how geovisualization and exploratory spatial analysis
can be used to examine respiratory disease vis-à-vis socio-demographic variables in
New York City in order to assess potential environmental justice impacts.

Data: The data used in these analyses are all publically available information
aggregated to the census tract, and includes socio-demographic information from
the 2000 US. census and health information (hospital admissions) from New York
Statewide Planning and Research Cooperative System (SPARCS) via Infoshare.org.
The socio-demographic data consist of adults (> 25) who do not have a high school
diploma, non-Hispanic black persons, Hispanic persons, and persons below the fed-
eral poverty level. Other variables were explored as well; however, due to concerns
such as excessive colinearity, they were not included in these analyses. All of these
variables were examined as rates (e.g. percentage of population that is below poverty
thresholds, per census tract). As can be seen by examining the maps (choropleth and
cartograms), the socio-demographic variables are not evenly distributed across NYC
(Figs. 2.12 and 2.13).

Health outcomes were represented by the number of individuals who were hos-
pitalized for respiratory illness, geocoded to the census tract of their residence.
The SPARCS data was queried using ICD-9 codes for acute respiratory infections
(ICD-9: 460–466), chronic obstructive pulmonary diseases and allied conditions
(ICD-9: 490–496), and pneumonoconioses and other lung diseases from external
agents (ICD-9: 500–508). Five years of data were combined (1998–2002, inclusive)
and averaged in order to stabilize the rates. To further stabilize the rates, census
tracts with fewer 250 persons or fewer than 20 people hospitalized for respira-
tory disease over the 5 years were excluded from the analysis. It is important to
note that “persons hospitalized” is not necessarily equivalent to incidence or preva-
lence. Even though our previous research studies have used hospitalization records
for health outcomes, the data has limitations and may be biased due the way in
which NYC residents utilize hospitals and how existing disease is managed due
to differences in health insurance coverage, physical access to primary care treat-
ment and prevention, education regarding maintenance of health conditions, and
other social and economic issues (Maantay 2007; Maantay et al., 2007, 2009a, b).
The NYC respiratory hospitalization data was then age-adjusted using New York
State as the standard population. As can be seen in Fig. 2.14 (left), there are high
rates of respiratory hospitalizations in certain areas of NYC, which are indicated
by the dramatically ballooned sizes of the affected census tracts. Some of these
areas correspond to areas of high poverty and high minority population as is shown
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Fig. 2.12 Percentage of adults without a high school diploma and percent below poverty by census
tract in NYC using choropleth mapping and cartograms

in Figs. 2.11 and 2.12. Once again, the utilization of cartograms can allow for an
effective visualization of the data (Fig. 2.14, right).

Analysis: When the number of variables or the complexity of the relationships
increase, it can be very useful to explore data statistically to augment the visualiza-
tion of the variables individually. With a study such as this one, multiple ordinary
least squares regression (OLS) is a natural choice. Age-adjusted rates for persons
hospitalized for respiratory disease were used as the dependent variable, and per-
cent Hispanic, percent non-Hispanic black, percent of adults without a high school
education, and percent of people living below poverty were used as the independent
variables. Note that there is no exposure estimate in the model, simply the health
outcome versus the socio-demographic variables. Once again, rates were stabilized
by excluding census tracts with fewer than 250 people or fewer than 20 people hos-
pitalized between 1998 and 2002, inclusive (n = 1,880 tracts). The hospitalization
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Fig. 2.13 Percent non-hispanic black and percent Hispanic by census tract in NYC using
choropleth mapping and cartograms

data was log10 transformed in order to approximate a normal distribution in the
residuals.

Ultimately, the model had an R2 value of 0.50, suggesting that approximately
50% of the variance in the hospitalization rates can be explained by the socio-
demographic measures. All of the SES variables showed a significant (p<0.01)
positive association with respiratory hospitalization rates except for the education
variable which was not significant (Table 2.2).

It can be informative to map out some of the OLS results, particularly the resid-
uals, in order to get a more complete geographic understanding of the results. As
can be seen in the map, there appears to be clustering of tracts with similar val-
ues. For example, the Whitestone/College Point neighborhoods in Queens show
a group of tracts where the OLS underestimated the hospitalization rate (area of
interest in Fig. 2.15). The Moran’s I statistic (I = 0.23 with first order contiguity,
Z Score = 16.93) statistically confirms spatial autocorrelation. This suggests that
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Fig. 2.14 Age-adjusted respiratory hospitalization rates in NYC visualized using a choropleth
map (left) and cartogram (right)

Table 2.2 OLS parameter estimates

Parameter Estimate Std err t value

Intercepta 0.29848 0.0128328 23.26
Pct without HS diploma −0.00020 0.0007151 –0.29
Pct below povertya 0.00919 0.0006683 13.75
Pct non-Hispanic blacka 0.00276 0.0001960 14.07
Pct Hispanica 0.00533 0.0003606 14.78

a p<0.01.

the residuals of the OLS were not randomly distributed which is a violation of OLS
assumptions.

It may be illuminating, then, to examine the local nature of relationships between
respiratory health and the socioeconomic variables. Geographically weighted
regression (GWR) is a technique developed by Fotheringham et al. (1998) which
quantifies locally varying relationships among data, rather than computing a global
relationship as OLS does (similar to the distinction between Moran’s I and a LISA).
Instead of calculating global parameter estimates based on one regression, GWR
performs many local regressions, each of which is influenced by the surrounding
data resulting in a set of summary statistics for each regression point. In this way,
GWR shows local variations in the regression relationships and is able to account
for potential spatial non-stationarity, where the relationships among the indepen-
dent and dependent variables vary over space. Locally varying relationships may
suggest a number of things, including possible model misspecification, sampling
variation, or simply a relationship that intrinsically varies over space (Fotheringham
et al., 2002). In this study, GWR was used as an exploratory tool to discover
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Fig. 2.15 OLS regression model residuals

how the relationships may vary and hypothesize as to why they may be spatially
heterogeneous.

The GWR model was specified in the same way as the OLS, with respiratory rate
as the dependent variable, and race/ethnicity, education, and poverty as the indepen-
dent variables. GWR requires that the analyst specify a kernel bandwidth (distance
radius) for the model identifying the size/radius of the area in which the local regres-
sion model is estimated. The two most common choices are a fixed (Gaussian) or
adaptive (bi-square) kernel. The fixed kernel uses a constant radius, whereas the
adaptive kernel involves varying the radius across the study area. The adaptive ker-
nel works in a similar way to k-nearest neighbors, selecting a certain number of
samples per local regression. As such, the adaptive kernel is able to “grow” when
the samples are sparse, and “shrink” when there is a high density of sample points.
Both fixed and adaptive bandwidths weight distant samples less heavy than proximal
ones.

In our case study, a fixed bandwidth (rather than adaptive kernel) was assigned
using an iterative process within the GWR3 software designed to minimize the
Akaike Information Criterion (AIC) – a diagnostic statistic which describes the
performance of the model. The result was a bandwidth of just under 1.5 miles.
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Table 2.3 Comparison of OLS and GWR model diagnostics

Diagnostic OLS GWR

Residual sum of squares 104.3 72.2
Standard error 0.236 0.202
Akaike information criterion −88.8 −570.8
R2 0.501 0.655
Ra

2 0.500 0.635

Table 2.4 Five number summaries for GWR parameters. A Monte Carlo test of the local
parameter estimates reveals significant spatial variability for all of the variables (p<0.01)

Parameter Minimum 1st quartile Median 3rd quartile Maximum

Intercept –0.2300 0.2366 0.2802 0.3661 1.3016
Pct without HS

diploma
–0.0671 −0.0014 0.0007 0.0042 0.0767

Pct below poverty –0.0423 0.0050 0.0081 0.0105 0.0620
Pct non-Hispanic

Black
–0.0861 0.0023 0.0030 0.0037 0.0655

Pct Hispanic –0.0424 0.0041 0.0057 0.0075 0.0304

Diagnostics of the GWR results suggest that it performed better than the global
estimate as can be seen by the decrease in AIC, increase in R2, and changes in other
diagnostics such as residual sum of squares and standard error (Table 2.3).

Examining parameter estimates can be a bit more difficult in a GWR than an
OLS. Global OLS regression results in one set of summary statistics for each
parameter; however GWR has a set for each regression point, which in this case
is each census tract centroid. Although it is not uncommon to report the results
as a five number summary (Table 2.4), it is much more revealing to examine
the geographically-varying parameters cartographically. This can include mapping
values for the local R2, error, parameter estimates, Cook’s distance, or t-values.

When the t-values of the GWR results are mapped by interpolating the values
between regression points (creating a continuous surface), the spatial variability in
the relationships becomes visible. For instance, the relationship between percent
non-Hispanic black and respiratory hospitalization rate are relatively stable while
adjusting for the other variables, with only one area showing a negative associ-
ation (area of interest in Fig. 2.16). The relationships with percent Hispanic and
percent below poverty behave similarly to one another. They are somewhat stable,
although both show significant negative relationships near the Whitestone/College
Point neighborhoods of Queens (areas of interest in Figs. 2.17 and 2.18). Mapping
the t-values for the percent of adults without a high school diploma, a variable that
had no significance in the OLS, reveals that although the majority of NYC does not
show a significant relationship, distinct areas of negative and positive associations
can be identified (Fig. 2.19). The area with the positive relationship is, once again,
around the Whitestone/College Point neighborhoods of Queens. The educational
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Fig. 2.16 GWR output – percent non-Hispanic black t-values

attainment variable must be interpreted with caution however, since the relation-
ships are relatively weak and inconsistent. Also, excessive colinearity with other
variables (e.g. poverty) may be skewing the results.

The potential spatial non-stationarity revealed by the GWR can identify areas
of interest for further investigation. For instance, it may be useful to conduct a
more qualitative assessment of the Whitestone/College Point neighborhoods, which
suffer from high hospitalization rates and have high OLS residuals, in order to
hypothesize about possible causes of the varying relationships of respiratory hospi-
talizations with percent Hispanic, poverty, and educational attainment. It is possible
that these discrepancies are due to particular environmental conditions (built, physi-
cal or social) occurring in the area, which is information not available in the data sets
used for the geovisualization. Such information could form the basis for additional
questions and hypotheses which could be examined using more in-depth qualitative
and quantitative methods.

Results Summary: As can be seen in Tables 2.2, 2.3, and 2.4, both the OLS and
GWR suggest that there are measurable associations between hospitalizations for
respiratory disease and selected socio-demographic variables. More specifically,
as the percent of the population that is below the poverty level, non-Hispanic
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Fig. 2.17 GWR output – poverty rate t-values

black, or Hispanic increases, so do the hospitalization rates for respiratory dis-
ease. Approximately 50% of the variance of the hospitalization data is predicted by
race/ethnicity and poverty status in the OLS model (AIC: –88.9) – approximately
64% is explained in the GWR (AIC: –570.8). Even though the OLS results in a
high R2, according to the AIC the local analysis (GWR) outperforms the global
analysis (OLS). This appears to be mainly due to the non-stationary nature of the
relationships around the Whitestone/College Point neighborhoods of NYC.

2.5 Conclusions

Geovisualization is an “intelligent” trial and error iterative process, involving vari-
ous types of thematic mapping, data classification schemes, and geospatial analysis
and geostatistics. It can be extremely useful in developing further hypotheses for
testing, as well as guiding future analyses. It can also, in its own right, be helpful in
answering questions about complex geospatial problems.

However, interpretation of the geovisualized results will have a higher degree of
reliability if the analyst has a holistic and intimate knowledge of not only the data
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Fig. 2.18 GWR output – percent Hispanic/Latino t-values

itself, but also the geography of the study area and familiarity with the built, natural,
and social environments. Otherwise, the explanatory power of geovisualization will
be limited, and explications of any anomalous situations will be highly speculative,
if they are possible at all.

As shown in the example of respiratory disease and environmental health justice
in New York City, geovisualization techniques identified areas of concentrations of
individual variables and potential spatial co-incidences amongst them, as well as
geostatistical trends and anomalies. For instance, although most of NYC exhibits a
positive relationship between census tracts with high proportion of non-Hispanic
Black residents, Hispanic residents, and those below poverty with respiratory
disease hospitalization rates, there are areas which suggest a spatially varying rela-
tionship. This is clearly seen when the results of the GWR are mapped, but may
have otherwise not been detected.

The geospatial analysis gave us some answers, but also presented new ques-
tions, which led us to plans for a more detailed qualitative and quantitative analyses
to ferret out some of the spatially inconsistent associations which only became
observable with the geovisualization of the data and statistical results.
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Fig. 2.19 GWR output – rate of adults with no high school diploma t-values
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Chapter 3
Outdoor Air Pollution and Health – A Review
of the Contributions of Geotechnologies
to Exposure Assessment

Eleanor M. Setton, Ryan Allen, Perry Hystad, and C. Peter Keller

Abstract An individual’s exposure to air pollution is affected by the variability of
pollution concentrations at different locations and times. The most accurate mea-
sures of exposure incorporate personal monitoring, but as the number of people
included in a study increases, the feasibility of conducting individual-level monitor-
ing quickly decreases, thus requiring the development of more practical approaches,
sometimes at the cost of capturing these key sources of variability. In this chapter,
we focus on how geotechnologies contribute to characterizing variable air pollu-
tion levels and individual geographic mobility with respect to exposure assessment
for epidemiological and exposure determinants studies. Rather than an exhaustive
literature review, we provide a general discussion of geotechnology uses, include
representative examples from epidemiological or exposure determinants studies,
and identify limitations and future potential applications. Approaches discussed
include simple proximity-to-source or monitor methods, dispersion models, spatial
interpolation techniques, and the potential for using satellite-derived air pollution
estimates and global positioning systems. The use of time-activity patterns and
travel surveys is also included. Finally, an annotated list of recommended review
articles is provided for readers interested in more in-depth treatment of many of the
topics presented in this chapter.

Keywords Interpolation · Land-use regression · Global positioning systems ·
Remote sensing · Dispersion models · Exposure simulation
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CALIOP Cloud Aerosol LIdar with Orthogonal Polarization
CAMx Comprehensive Air quality Model with Extensions
CMAQ Community Multi-scale Air Quality modelling system
GASP GOES Aerosol Smoke Products
GIS Geographic Information System
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HAPEM Hazardous Air Pollution Exposure Model
MISR Multi-angle Imaging SpectroRadiometer
MODIS MODerate Resolution Imaging SpectroRadiometer
USEPA United States Environmental Protection Agency

How does air pollution affect health? Which health effects are associated with which
pollutants and at what concentrations do health effects occur? What determines why
some people are more or less exposed than others? These questions have been, and
continue to be, the subject of much interest around the world. Over time, meth-
ods for studying these questions have become increasingly sophisticated, but the
approach remains relatively simple. To examine health effects: conduct an epidemi-
ological study looking for variations in health outcomes given variations in exposure
levels. To examine determinants of exposure: conduct a study looking for variations
in exposure levels given variations in individual or population characteristics. No
matter the question, the common need is some measure or estimate of exposure – it
is in this realm that geotechnologies contribute.1

Exposure assessment includes widely varying methods such as using biomarkers,
in which samples of blood, hair, and other biological samples are analyzed for indi-
cators of exposure, to simply classifying an individual as exposed or not exposed
depending on the city in which they live or their proximity to pollution sources.
Exposure measurement methods can be generally described as either direct or indi-
rect (Duan, 1982; Ott, 1985). For exposure to air pollutants, direct measurements of
exposure are most often gathered by monitoring each subject individually over time
with portable personal monitors. Sometimes the monitors are capable of measuring
and logging pollutant concentrations every few minutes, in other cases, the moni-
tors absorb or collect pollutants on a filter, thus providing a single measure for the
entire duration over which the monitor is exposed to the air. The resulting measure
of exposure reflects the varying pollution levels encountered in different locations,
and subjects often keep detailed time-activity diaries to support the identification
of potential determinants of exposure. In contrast (and at least in theory), expo-
sure to air pollution also can be measured indirectly by placing monitors at each

1Exposure assessment is also a key component of risk assessment, which is conducted to identify
or predict exposed populations and the level of health risk attributable to that exposure. We do
not discuss risk assessment as a specific topic here, given that the exposure assessment methods
for outdoor air pollution are generally similar to those used for epidemiological and exposure
determinants studies, with similar associated issues, application of geotechnologies and emerging
trends.
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of the locations (called microenvironments) in which a subject spends time, then
calculating the total exposure of an individual by weighting the microenvironmental
measurements by the amount of time spent in each microenvironment.

Assessing exposure using either the direct or indirect approach captures two
important aspects of exposure, namely (1) pollution concentrations vary over space
and time, and (2) individuals move about through space and time. As the number of
people included in a study increases, the feasibility of conducting individual-level
monitoring, either directly or indirectly, quickly decreases, thus requiring the devel-
opment of more practical approaches, but sometimes at the cost of capturing these
key sources of variability in exposure.

In this chapter, we focus on how geotechnologies contribute to characterizing
variable air pollution levels and individual geographic mobility with respect to expo-
sure assessment for epidemiological and exposure determinants studies. Rather than
an exhaustive literature review, we provide a general discussion of geotechnology
uses, include several (but by no means all) representative examples from epi-
demiological or exposure determinants studies, and identify limitations and future
potential applications. Also included is an annotated list of recommended articles
that provide reviews on many of the topics included in this chapter but in more
detail than is possible here. For our purposes, geotechnologies are defined as any
instrument that produces geo-referenced data, such as Global Positioning Systems
or remote sensing platforms, as well as air quality modelling applications that have
spatial inputs and outputs, and, of course, geographic information systems (GIS),
including the spatial analytical tools included therein.

3.1 Using Geotechnologies to Estimate Variations
in Outdoor Pollution Levels

An air quality monitoring instrument for every subject or in every microenvironment
visited by a subject may be ideal, but often not feasible. Instead, air quality models
and geographic information systems are increasingly being used to produce spa-
tial estimates of exposures or pollution concentrations. In this section we describe
approaches ranging from the basic identification of subjects’ proximity to sources
or monitors to more elaborate spatial models that predict pollution levels at all loca-
tions within a study area. The emerging use of remotely sensed data, and their
potential to augment (or even replace) ground-level monitoring is also discussed.
Given the range of possible methods, this section concludes with examples of inte-
grating several methods into a single exposure assessment, and briefly considers the
issue of air pollution infiltration into residences.

3.1.1 Proximity to Sources or Monitors

Studies employing the proximity to source approach are common, given digital
maps of sources and the residential location of each subject. In the simplest case,
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study subjects can be categorized as either exposed or not exposed, based on their
proximity to a particular source of pollution. This implicitly assumes that all sub-
jects inside a zone defined by a specific distance have the same level of exposure all
the time (hence the exact pollution level is not required), and that it is higher than
the exposure experienced by subjects outside the zone. More recently, GIS has been
used to incorporate modifying factors such as source density or size, and simple
wind direction indicators.

The proximity approach is often used in studies of traffic-related air pollution. In
a study of biomarkers of inflammation and cellular immune function for 115 women
in Seattle, exposure metrics included a simple presence/absence classification for
roads of a given type (freeway, arterial, or truck route) within 150 m of a residence,
as well as a classification of subjects into groups based on distance from roads of a
given type, i.e., 0–50 m, 50–100 m, and so on, with those living more than 500 m
considered as unexposed (Williams et al., 2009). Other studies have incorporated
traffic volume information from local government transportation planning depart-
ments to provide additional indicators of traffic density, sometimes by vehicle types
(i.e., heavy duty vehicles), and sometime employing distance weighting to improve
the basic proximity metric, for example, de Medeiros et al. (2009) (perinatal mortal-
ity in Sao Paulo, Brazil); Margolis et al. (2009) (pulmonary function of 214 children
in Fresno, California); and Kim et al. (2008) (respiratory symptoms in 1,080
children in San Francisco). These last two studies also incorporated local weather
and wind direction information in order to account for short term variations in
regional pollution levels (Margolis et al., 2009) and to identify locations down-
wind from sources (Kim et al., 2009). Notably, Kim et al. (2009) also conducted a
field monitoring campaign to evaluate how well the indicators characterized spatial
gradients in traffic-related air pollution, which is highly recommended but seldom
performed when using general indicators of exposure.

The proximity approach is also commonly used for point sources of air pollution.
For example, the effects of exposure to fumes from aviation fuels and heavy traf-
fic associated with airports on hospitalizations for respiratory symptoms have been
studied in New York state (Lin et al., 2008). All residents within five miles of three
large airports (Rochester, LaGuardia, and MacArthur International) were considered
to be exposed, while all residents living between 5 and 12 miles from the airports
were classified as unexposed. A basic downwind indicator was also employed. In
Spain, a recent study of lung, laryngeal, and bladder cancer in residents of com-
munities near industrial combustion facilities assigned exposure based on distance
from the community centre to the nearest facility, and incorporated a classification
based on the type of fuel used (coal, fuel oil, natural gas) (Garcia-Perez et al., 2009).

Rather than using proximity to sources, a large number of studies have used
measurements made at nearby government-operated air quality monitoring stations
to estimate exposure.2 At its simplest, it is assumed that all subjects residing in the

2Non-GIS-based applications of this approach compare health outcomes of long-term air pollution
exposure among populations residing in different cities using a single central monitor in each area
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Fig. 3.1 Assigning pollutant concentration at nearest monitor to indicate exposure

monitor area experience the same pollution levels all the time, and a GIS is usu-
ally used to identify the nearest monitor, given digital maps of monitor and subject
locations (Fig. 3.1). A recent study of air pollution effects on birth weight in Los
Angeles County assigned exposure to each subject using the pollution concentra-
tion at the air quality monitor nearest to home, and also included a distance from
monitor category (within one mile, more than one mile) that allowed an investiga-
tion of how distance from the monitor affected the results (Wilhelm and Ritz, 2005).
In the same region, Ritz et al. (2006) studied the effects of air pollution on infant
mortality. Pollution concentrations from the nearest monitor were averaged over
2 weeks, 1 month, 2 months and 6 months prior to death, and assigned based on
subjects’ residential zipcode location. The choice of nearest monitor was modified
using information on wind flow patterns and geographic features.

The use of GIS to assign exposure based on proximity or nearest monitors is
no longer considered to be innovative, due to increasingly available digital datasets

as the exposure measure, for example Frye et al. (2003), Peters et al. (1999), Raizenne et al. (1996),
and Laden et al. (2000). Similarly, another large area of air pollution and health effects research
examines acute health effects using time-series models that relate day to day changes in health
events (i.e., hospitalizations or mortalities) in large populations to day to day changes in pollution
concentrations measured at a single, central air quality monitor, for example, Breitner et al. (2009),
Moura et al. (2009), and Vedal et al. (2009).
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(or datasets that can be quickly geocoded using postal code or street address infor-
mation) and the relative simplicity of the approaches. While these types of studies
continue to grow in number, it is clearly recognized that there may be a signif-
icant oversimplification of the true spatial variability in pollutant concentrations
and therefore individual exposure may be misrepresented. Moreover, the proximity
approach may be less useful in determining associations between a single pollutant
and a health outcome when the source produces multiple pollutants with similar
effects. For example, traffic produces both air and noise pollution, both of which
may be linked to cardiovascular morbidity (Allen et al., 2009), and so it may be
difficult to assess which pollutant has the greater influence. While some of the
examples provided above have employed methods to capture some aspect of the
variability, others have attempted to address this major limitation through the use of
more sophisticated spatial models.

3.1.2 Dispersion Models

Modelling the fate and transport of air pollutants is a long-established field, and
over time, a wide range of models have been developed, from simple plume dis-
persion models used for a single point or line source, to numerical grid models that
incorporate interactions among numerous pollutants and produce three-dimensional
spatial estimates for relatively large regions. While it is impossible to adequately
cover this complex topic here, a few examples of health studies that have used air
quality models are provided here, along with a discussion of typical limitations.

Several recent studies have used dispersion models to study air quality and respi-
ratory health in children. Smargiassi et al. (2009) used AERMOD to assess exposure
to refinery-related sulphur dioxide in Montreal, Canada, and its effects on hospital-
izations for asthmatic episodes in young children. Asthma hospitalization rates were
assessed for areas around a number of point sources in the Bronx, US., using disper-
sion model results to define exposure areas and associated emission rates (Maantay
et al., 2009). In Sweden, a birth cohort of 4,089 children was evaluated for respira-
tory symptoms, function and allergies based on exposure to air pollution (Nordling
et al., 2008). The study used a dispersion model to develop concentration estimates
at different scales: 500 × 500 m for regional/countryside areas; 100 × 100 m for
urban areas, and 25 × 25 m for inner-city areas. Detailed data were required for
inner-city areas, including traffic flow, speed, heavy traffic share, and number of
stops per km for each street segment.

Health outcomes for relatively large regions have also been analysed with respect
to air pollution through the use of air quality models. Scoggins et al. (2004) used
CALGRID, a photochemical air quality model designed to estimate regional ozone
and its precursors, to produce a 3 × 3 km grid of estimates of annual average nitro-
gen dioxide for the Auckland region of New Zealand. Concentrations in census area
units were calculated using an area-weighted average of the portions of all 3 × 3 km
grid cells falling with the census area unit, and mortality rates for each unit were
compared with respect to variations in pollutant concentration.
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Input data required for these models include, at a minimum, source charac-
teristics (i.e., geographic coordinates, and for point sources, stack height and
emissions temperature among other parameters), the emission rate, meteorologi-
cal information (wind speed and direction, atmospheric stability, mixing height, and
temperature) and locations of receptors at which pollutant concentrations will be
estimated. More advanced models include parameters on chemical interactions to
characterize the formation of secondary pollutants, require a high level of training to
run properly, and can be time-consuming to execute on current desktop computers.

3.1.3 Geographic Information System-Based Spatial Models

The use of GIS for producing spatial estimates of pollution concentrations has
developed somewhat in parallel to, although more recently than, that of dispersion
modelling, due to the increasing availability of off-the-shelf, easy-to-use GIS appli-
cations, and lower input data requirements. All of the GIS-based approaches are
based on monitoring data, and employ the basic spatial analytical tools inherent to
GIS; however, in some cases additional statistical software applications are used to
develop models, using GIS-derived inputs.

3.1.3.1 Spatial Interpolation

Interpolation of values between monitor locations is an approach that can be com-
pleted entirely within a GIS. One common technique is inverse distance weighted
interpolation. For any given location in the study area (i.e. each study subject’s res-
idential address or postal code), a weighted average concentration is developed,
with the highest weight given to the nearest monitors, thereby producing a con-
tinuous pollution surface (Fig. 3.2). There are a number of pre-defined weighting
options available, one of which must be selected by the user, as must a minimum
number of monitors to include or a threshold distance to exclude monitors that are
too distant. Kriging is a more sophisticated interpolation approach that allows the
selection of included monitors to vary from point to point, depending on the spa-
tial autocorrelation structure of the monitoring data, and has the added benefit of
producing information about the uncertainty of the estimate at any given location.
A further refinement, called co-kriging, incorporates additional information from
spatially correlated predictor variables (e.g., elevation).

A study of adverse birth outcomes conducted in Vancouver, Canada, employed
(among other measures) an estimate based on inverse distance weighting of the mon-
itored levels for a range of pollutants (Brauer et al., 2008). The number of monitors
available varied from seven (fine particulates) to 24 (ozone). Monitored levels were
aggregated into monthly averages; these formed the basis for assigning exposure
for each month of pregnancy at subjects’ residential postal code locations, using
inverse distance weighting based on the three closest monitors within 50 km. At
a much larger geographic scale, Liao et al. (2009) made use of the United States
Environmental Protection Agency (US EPA) air quality monitoring data for the con-
tinental US. and kriging to estimate daily levels of particulates for 57,422 female
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Fig. 3.2 An inverse-distance-weighted interpolation of monitored levels to estimate a pollution
concentration at each residence

subjects in 24 states. Exposure metrics for each subject included average particu-
lates on the day of an electrocardiogram, as well as an average over previous 2 days,
30 days, and 365 days.

A critical consideration in applying these interpolation methods is the number of
monitors present in the study area. For kriging, the general rule is that at least 50
data points (monitors) are required to reliably measure the spatial autocorrelation
functions (Hengl, 2007). Otherwise, inverse distance weighted interpolation may be
used for a smaller number of monitors, but fewer monitors will capture less local
variability in pollutant concentrations, and so may not provide much improvement
over a nearest monitor approach. Another consideration is the “edge effect”, which
refers to poor quality interpolation results at locations near the perimeter of the
monitored area. Ideally, the interpolation would include a monitored area somewhat
larger than the area containing the study population, thus increasing the number
of monitors required. For some pollutants, particularly those associated with traf-
fic, variability over distances of several hundred meters can be high depending on
proximity to roads, and a vast number of appropriately located monitors would be
required to capture this variability adequately for any sizeable study area.

3.1.3.2 Land-Use Regression

Land use regression is a method of spatial interpolation that has become very
popular in recent years and therefore deserves particular attention here. Typically,
temporary monitors (usually between 40 and 100) are deployed throughout the study
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area, with locations chosen to represent the full range of pollutant concentrations
expected. Techniques for selecting sampling locations have ranged in sophistication
from informal site selection based on local knowledge of the study area (e.g., (Lebret
et al., 2000)) to location allocation methods that identify areas of expected pol-
lution variability and relatively high population density (Kanaroglou et al., 2005).
For each measurement location, a series of predictor variables are produced for a
range of buffer distances using GIS, and usually include length of roads by road
class, area of residential or commercial development, population density, and so on.
Theoretically, these predictor variables represent emission sources for the pollutant
of interest. Given the measured pollution concentration and the predictor variables
in GIS format for each monitor, standard statistical software applications are use to
develop a regression-based model. This model, in the form of an equation, is then
applied via GIS to calculate the pollution concentration for each point of a fine grid
covering the study area. The result is an estimate of concentrations at a high spatial
resolution, often in the range of 5–10 m, so that it is possible to assign a unique
exposure to each study subject at a given location (Fig. 3.3). The number of stud-
ies using the land use regression approach is rapidly increasing. Hoek et al. (2008)
identify 25 recent studies and provide an excellent review of emerging applications
and improvements. In general, studies comparing the land use regression approach
with other methods suggest that results are as good as, or better in some cases, as
those derived with dispersion or numerical models, but with much less complicated
input data.

The land use regression approach has been applied most often to estimating
annual average concentrations of pollutants, given that the predictor variables do

Fig. 3.3 A land use
regression-based estimate of
pollution levels providing a
concentration for each
residence



76 E.M. Setton et al.

not change much over the course of a year (or even several years), but some have
attempted to adjust for shorter term variations in pollution levels by adjusting the
annual average up or down using local monitoring data from existing long-term sta-
tions, for example, Nethery et al. (2008). Increasingly sophisticated methods are
being used to consider space-time interactions (i.e. spatial differences in temporal
patterns and/or temporal changes in spatial patterns) in exposure models. Yanosky
et al. (2008) describe a method that uses measured concentrations, meteorologi-
cal data, and land-use regression-type variables to estimate monthly exposure to
particulates over a number of years within a generalized additive model framework.

3.1.4 Satellite Data

Remotely sensed data from instruments mounted on satellites above the Earth’s
atmosphere have been used in a variety of air quality applications over the past
three decades. Most simply, images of large weather systems provide synoptic infor-
mation about current and near-future weather patterns and are used for short-term
weather and air quality forecasting. Here, we focus on the application of satellite-
derived estimates for more general exposure assessment to particulates, ozone,
nitrogen dioxide, sulphur dioxide and methane. A key advantage of these satellite-
based estimates is the continuous spatial coverage for vast areas of the globe, thereby
reducing reliance on extensive ground-level monitoring. Disadvantages can include
the relatively coarse spatial and temporal resolution of the data, the interference of
cloud, snow and ice, and the difficulty in determining how much of the pollutant is
actually at ground-level (in the cases of ozone and particulates).

With typical spatial resolutions of 4–10 km or more, satellite-derived atmo-
spheric data do not currently meet the increasing demand for high resolution
(10–100 s of metres) estimates of pollution needed to support exposure assessment
at the postal code or street address level (Fig. 3.4). In terms of temporal resolution,
many satellites currently producing data useful for air pollution estimates have sun-
synchronous orbits, i.e., they are overhead at about the same local time on every
pass, providing a consistent illumination angle, and therefore a single instantaneous
snapshot of conditions at the time of overpass. How pollution levels derived from
these data relate to the hourly, daily, seasonal or annual averages at that same loca-
tion is a key consideration in determining how useful satellite-derived estimates are
for exposure assessment. An exception is the GOES/GASP product, which is col-
lected from a geo-synchronous satellite, and therefore collects data over the same
location every 30 min; however, the data are not as precise as those gathered by other
satellites with less temporal coverage (MODIS or MISR) (Prados et al., 2007).

With one exception (CALIOP), the on-board instruments currently used are pas-
sive sensors, meaning that they record the amount of solar radiation reflected from
the earth’s surface and atmosphere or the amount of infrared (thermal) emission
(Martin, 2008). Estimates of air pollution are therefore not based on direct mea-
sures, but rather on models using determinants of pollution concentrations that best
fit the reflectance data. These models apply only when there is a clear view from the
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Fig. 3.4 Typical resolution of satellite-based pollution concentration estimates

top of the atmosphere to the Earth’s surface, and so when clouds are present, no pol-
lution estimate is possible. Snow and ice can also interfere, and pollution estimates
may not be available in winter for regions with cold climates.

Since the satellite-based data relate to the entire column of atmosphere, it is not
always possible to determine the pollution concentration at ground-level, which
is of most interest for exposure assessment. Some pollutants, particularly nitro-
gen dioxide and sulphur dioxide are relatively confined to near-surface boundary
layer of the atmosphere, while this is not the case for ozone, carbon monoxide,
and particulates (Martin, 2008). In the case of fine particulates, good agreement
between satellite-derived estimates and ground-level monitoring data, at least in
eastern North America, has been achieved recently by incorporating information on
atmospheric stability and/or mixing height (Liu et al., 2004, 2007; Paciorek et al.,
2008; van Donkelaar et al., 2006).

Satellite-derived air pollution concentration estimates are not yet commonly used
in conjunction with individual-level health-related data; however, this is a rapidly
emerging area of research. A number of studies looking specifically at smoke from
wildfires have employed satellite-based data to aid in the development of estimates
useful for exposure assessment. Delfino et al. (2009) make use of MODIS images
of forest fire plumes as an additional indicator of elevated fine particulate levels in
their study of the impact of wildfires in California on respiratory and cardiovascu-
lar hospital admissions. The satellite data were used to predict particulate values at
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monitors with missing data, then complete datasets (measured and estimated) were
used as inputs for inverse distance weighted interpolation, kriging, and co-kriging
in support of assigning exposures at the zip code level (Wu et al., 2006). Henderson
et al. (2008) also employed MODIS data to estimate exposure to wildfire smoke in
south-eastern British Columbia, Canada. Data included active fire detects, aerosol
optical thickness estimates, and true colour images. The fire detection data, which
include fire location and radiative power, were used to develop an emissions inven-
tory for input to a dispersion model. MODIS aerosol optical depth values and true
colour images were used to evaluate the dispersion model results. More recently,
MODIS data have been used in support of an ecological study of fine particulates
and chronic ischemic heart disease – mean aerosol optical depth (the MODIS data
component that relates to particulates) for counties in the eastern United States was
seen to be related to race and age standardized county-level mortality rates (Hu and
Rao, 2009). While the study should be considered as exploratory due to the ecologi-
cal design, it does illustrate the current value in developing simple health-related air
quality indicators using remotely-sensed data, and the immense future potential for
using satellite-based air pollution estimates as spatial resolution becomes finer.

3.1.5 Integrating Multiple Methods

Clearly, there are many potential methods for estimating air pollution concentra-
tions, in support of exposure assessment. The emerging question is: which method
is “best”? The answer, of course, depends on many factors, including the size and
geographic location of the study population, the pollutant of interest and its asso-
ciated scale of spatial variation, and data quality and availability, among others.
Even so, there may be numerous possible approaches. Recent studies comparing
estimates using different methods for the same study area suggest the following
conclusions: (1) epidemiological analyses using different exposure methods for the
same study population may yield different estimates of effects (Bell, 2006; Brauer
et al., 2008; Ryan et al., 2007); and, (2) different methods capture different aspects
of a pollutant’s spatial variation (Marshall et al., 2008). In the first case, there are no
standard guidelines, although the trend appears to be including various metrics and
addressing differences explicitly in the interpretation of the results. In the second
case, one way forward is to integrate a combination of methods to develop a single
individual-level exposure measure, as the following studies illustrate.

The individual-level air pollution exposure assessment for the Netherlands
Cohort Study (approximately 120,800 subjects) consists of three separate, additive
components: (1) regional background, based on inverse distance weighted interpo-
lation of black smoke and nitrogen dioxide levels measured at national air quality
monitoring stations; (2) urban levels, based on a land use regression approach
including address density as a predictor variable; and (3) local influences, indi-
cated by living with 50 m of a major urban road and/or within 100 m of a freeway
(Hoek et al., 2001; 2002). More recent studies of this cohort have expanded the
land use regression-based urban component with additional variables, and added
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traffic intensity to the local component (Beelen et al., 2007, 2008). Estimates of
long-term exposure to nitrogen dioxide on heart rate variability in a Swiss cohort
study of 1,408 adults incorporate several approaches. For each sub-region in the
study area, regression models with inputs from a dispersion model are used to char-
acterize urban background pollution levels. GIS-based residence-specific variables
(e.g., distance to major street, traffic volume within 200 m, etc), temperature and
space-time interactions are also included, but vary among sub-regions in order to
capture more local influences. The sub-region-specific model outputs (bi-weekly
nitrogen dioxide concentration estimates) were then aggregated to annual averages
and assigned to residential locations (Dietrich et al., 2008).

3.1.6 Estimating Residential Infiltration of Outdoor
Air Pollutants

Finally, an area in which GIS has the potential to contribute to the study of outdoor
air pollution and health deserves some attention. Few large epidemiological stud-
ies have considered the movement of outdoor pollution to indoor environments as
part of their exposure assessment. Exposure assessments have focused on estimat-
ing outdoor pollutant concentrations at or near residences; however, when at home,
most people are indoors, where, depending on local weather, windows and doors
may be closed and outdoor-generated air pollution levels may be relatively low.
Recent work has examined how housing characteristics affect the amount of outdoor
pollution that infiltrates indoors. Hystad et al. (2006) acquired residence-specific
housing characteristics from spatial property tax assessment data and included them
in a model of particulate infiltration, an approach that could be applied in large
epidemiological studies, given the residential address of each subject.

3.2 Using Geotechnologies to Incorporate Individual Mobility

Although not discussed in detail in the previous section, the majority of epidemi-
ological studies of large populations use estimates of air pollution concentration
at the residential address of each subject, since individual addresses are generally
available from large health databases, can be readily geocoded, and most people
spend a majority of their time at home (Klepeis et al., 2001). Still, it is widely rec-
ognized that exposure occurring away from home may be important, and the use of
a residence-only based exposure may introduce errors that undermine subsequent
health effects estimates (Huang and Batterman, 2000), particularly for working
adults, school-aged children, and others who spend significant time away from
home. Some health studies with relatively small study populations have used home
and school locations (Brunekreef et al., 1997; Hirsch et al., 1999; Kramer et al.,
2000), and some have incorporated work locations (Beeson et al., 1998), but this
is not currently widely practiced. In this section, the emerging potential for using
global positioning systems to track individual mobility is discussed, followed by an



80 E.M. Setton et al.

overview of how mobility is incorporated in population-level exposure simulation
models.

3.2.1 GPS and Time-Activity Patterns

The last decade has seen rapid growth in the use of GPS for personal and business
uses; however, large scale use of GPS technology for air pollution exposure assess-
ment in epidemiological studies has not yet occurred, likely due to the relatively high
administrative cost of deploying personal monitors of any kind, including GPS, for
populations larger than a few hundred people. There have been recent uses of GPS,
however, among relatively small study populations.

An early evaluation of GPS technology for personal location tracking was con-
ducted by Phillips et al. (2001) in Oklahoma, primarily as an aid to validating
time-activity diaries completed by study subjects. Technical specifications for the
GPS included position logging every 5–15 min, storage for 16–24 h of data, and
battery life requiring at most 2 battery changes per 24 h period. The selected GPS
unit weighed 2 kg and had an external antenna roughly the size of a deck of play-
ing cards. Out of 25 trials, the GPS units operated properly only about 30% of
the time, but when operating, the GPS data did appear to add useful detail to
the time-activity diaries filled out by the participants. Since then, several research
groups have developed customized GPS units to overcome some of the issues with
battery life, portability, and speed of signal acquisition (Elgethun et al., 2003;
Rainham et al., 2008), but commercially available GPS have improved signifi-
cantly as well. In a study of 62 pregnant women in Vancouver, Canada, Nethery
et al. (2008) used commercial GPS units (about half the size of a deck of play-
ing cards, including an internal antenna) fitted with a long-life battery pack to
record subjects’ geographic mobility. Subjects also completed time-activity diaries
and wore monitors measuring fine particulates, nitric oxide and nitrogen dioxide.
Overall, many of the issues identified by Phillips et al. (2001) remained: loss of
signal and/or battery failure limited the number of complete records. Interestingly,
Nethery et al. (2008) overlayed the GPS tracks on a land use regression-derived
estimate of nitrogen dioxide to develop an exposure estimate, and these were
seen to be more accurate than exposures assigned solely on subjects’ residential
locations.

GPS-enable cell phones are quickly becoming more common and have also been
evaluated for use in tracking individual locations (Wiehe et al., 2008), but perhaps of
most interest is the emerging integration of GPS with air pollution sensors and cell
phones or other mobile wireless devices. Widely covered by the popular media was
the 2006 release of homing pigeons outfitted with GPS units, real time air pollution
sensors, and cell phone transmitters by a researcher in California (da Costa et al.,
2009). Similarly (although using human subjects), Kanjo et al. (2008) describes
the use of a cell phone as a noise monitor, and as a data logger via a bluetooth
connection to a small portable carbon monoxide monitor, both with associated GPS
location data.
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3.2.2 Modelling Population Exposures and Determinants

Up to this point, the discussion and examples have focused mainly on how
geotechnologies are being used to produce or improve air pollution estimates for
epidemiological studies. Modelling population-level exposures and determinants
via simulation is a related branch of exposure assessment that is more concerned
with understanding the probable range of exposures experienced in a particular
population (i.e., of an entire urban region, or a demographic subgroup), in support
of setting regulatory thresholds and prioritizing exposure reduction efforts.

The exposure simulation approach has been used most extensively by the US
EPA, beginning as early as the mid-1980s (Johnson, 1995; McCurdy, 1995) and by
researchers in Europe in this decade as part of the EXPOLIS study (Hanninen et al.,
2003; Kruize et al., 2003) and is based on the indirect exposure approach. Briefly,
instead of using measurements of pollution levels in each location a person might
visit, a range of possible values for typical locations (i.e., indoor at home, outdoors,
indoor at work, and so on) can be substituted. The range of pollution values might
come from limited monitoring in representative locations, or may be based on a vari-
ety of spatial models of pollution levels, including many of the aproaches discussed
earlier. Similarly, instead of collecting a unique time-activity diary for each sub-
ject, a set of population representative time-activity diaries (including age, sex and
other demographic information) can be substituted. By randomly choosing a time-
activity diary, and randomly selecting from the ranges of possible pollution values
at typical locations, a probable exposure can be calculated for a “simulate” person.
With enough repetitions of this procedure, a distribution of probable exposures can
be simulated, and used to estimate the mean and variance of probable exposure,
and other meaningful statistics for comparison purposes (Fig. 3.5). The geographic
mobility of the population is captured by running the model in many sub-regions
of the study area (often census tracts) and including a work flow matrix (usually
based on census or transportation planning data). Additional refinements can be
made by matching the time-activity patterns available for selection to the census
tract population based on demographic characteristics, and by including age- and
activity-specific breathing rates. The output is a single probability distribution of all
possible exposures.

The US EPA has developed a number of simulation models. The Hazardous
Air Pollutant Exposure Model (HAPEM) is a relatively simple example, and was
first developed in 1985 to estimate exposure to non-reactive pollutants from mobile
sources. The current model, HAPEM4, has been used to predict annual average
exposure levels for each census tract in the US, as part of the National-Scale Air
Toxics Assessment program. For each census tract in the US., HAPEM4 randomly
selects daily time-activity patterns for a summer weekday, a non-summer weekday,
and a weekend from a database, then combines them into a single time activity
pattern, using weights based on the number of summer weekdays, non-summer
weekdays, and weekends per year. This is done 100 times for each of 10 pre-defined
demographic groups, and then 30 of these aggregated time-activity patterns are ran-
domly selected to represent the population of the demographic group in that census
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Fig. 3.5 Procedure for simulating exposure using time activity patterns

tract (Cook et al., 2007; United States Environmental Protection Agency 2008).
The US EPA “Assessment System for Population Exposure Nationwide” (ASPEN)
dispersion-based model is used to estimate daily pollution levels for each census
tract in the assessment, which are then aggregated into annual averages. US Census
Bureau data on work flows among census tracts is used to characterize the geo-
graphic mobility of people who work in census tracts in which they do not reside.
Results of the HAPEM4 model have been used map median exposure concentra-
tion estimates at the county-level for the entire US., and support the assessment
of cancer and non-cancer health risks due to the inhalation of a broad range of
air pollutants. Similarly, the more detailed SHEDS model (described more fully in
Burke et al. (2001)) has been used to simulate population exposure to air pollu-
tants, using spatial estimates of concentrations derived by interpolation of existing
monitoring data (Kibria et al., 2002), by the Models 3/CMAQ numerical air quality
model (Georgopoulos et al., 2005), and by a combination of CMAQ and AERMOD
air quality models (Isakov et al., 2009).

Some improvements have been made to the simulation approach as described
above, mainly in the use of the shortest path GIS function. Gulliver and Briggs
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(2005) describe the Space-Time Exposure Modelling System, which is used to simu-
late the exposures of 50 school children in Northampton, UK. Each subject provided
a time-activity diary with home and school locations; GIS was used to identify the
shortest walking route and extract pollution concentrations developed by combin-
ing dispersion and traffic models. More recently, Setton et al. (2008) incorporated
additional spatial data on residential and commercial building locations, and GIS-
based shortest path analysis to refine a simulation of exposures to traffic-related air
pollution. An estimate of nitrogen dioxide concentrations developed using the land
use regression approach was used as a basis for estimating exposure distributions
in each of 382 census tract in the Greater Vancouver Regional District of British
Columbia, Canada. Their study identified spatial variations in exposure that were
associated specifically with geographic location instead of individual demographic
characteristics.

An alternative approach, based on the use of origin-destination surveys in
conjunction with spatial models of pollutant concentrations, has recently been
employed by researchers in the United States to investigate exposure determi-
nants. Marshall et al. (2006) estimate intake rates (a measure of exposure) for

Fig. 3.6 Procedure for estimating exposure using travel surveys
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each of 28,746 person-days included in the Southern California Association of
Government transportation survey (conducted in 2000). The survey was conducted
to support transportation planning, and so included not only typical time-activity
and demographic information, but also the geographic locations for trip origins and
destinations, as well as the start time of each trip and its duration. These geocoded
surveys were then overlaid with pollution estimates (at a 2 × 2 km resolution) pro-
duced using the CAMx air quality model (Fig. 3.6). Like the US EPA models,
representative breathing rates according to activity were employed, and an intake
rate calculated for each survey record (Marshall et al., 2006).

3.3 Conclusion

Geotechnologies have been, and will continue to be, used in a wide variety of ways
to support epidemiological and exposure studies of outdoor air pollution, and while
some of those uses have been recognized for several decades, others are just now
beginning to emerge as technology and spatial data resources advance.

Cohort, case-control and cross-sectional epidemiological studies require
individual-level exposure estimates, and depending on the health outcome of inter-
est, relatively large populations may be required to support statistical inference.
The larger the population, however, the more difficult it becomes to conduct the
“gold standard” personal monitoring, and it is this reality that has lead to the
increasingly common use of surrogate exposures developed via geotechnologies.
In the past decade, research has focused on developing increasingly higher resolu-
tion spatial estimates of pollution, ostensibly to better reflect the spatial variability
in concentrations. Given this drive for high-resolution pollution estimates, some
approaches that have merit are not being fully embraced, for example, the use of
satellite-derived data, which are currently not available at high resolution scales.
The integration approach should be more commonly used than it currently is, as it
allows for using different models or datasets to capture different scales of pollu-
tant variability, and thus would allow for the integration of satellite-based data. The
emerging trend of using several exposure metrics serves in some way as a sensitiv-
ity analysis, in that the robustness of the health effect results in the face of different
exposure measured is explicitly addressed; however, there is some danger in pro-
ducing voluminous results which may be difficult to interpret and compare, given a
lack of clear theory underlying the exposure assessment and why differences might
exist. Little focus has been brought to bear on including geographic locations away
from home, and it may be that improvements in exposure assessment can be real-
ized by linking administrative health databases with income tax records that would
allow for the identification of work locations, or with education databases that iden-
tify school locations. Even in the face of these kinds of improvements regarding
geographic mobility, given the difficulty in accurately characterizing spatial vari-
ations in pollution over short periods of time (even with complex air quality or
spatio-temporal models) and developing individual-level mobility data required to
match the same temporal scale, these approaches may be better suited to studies of
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long-term exposures or to populations that are less mobile in general (small children
or seniors, for example).

Estimating population-level exposures via simulation is an interesting area of
research, but one that fills a relatively narrow niche, given its suitability for regula-
tory purposes rather than health effects studies. The underlying model of exposure
has remained the same since its inception, and improvements have consisted mainly
of incorporating “better” (i.e., higher resolution) spatial estimates of pollution con-
centrations and refining the input distributions of population characteristics. The
recent use of geocoded origin-destination surveys by Marshall et al. (2006) illus-
trates the novel use of a dataset that may exist in any number of large cities across
the globe, and there is some potential for growth in this area.

Arguably, the highest potential for improving exposure assessments is in the
realm of personal monitoring with integrated GPS. It is difficult to predict how
technology will improve in the next decade, but given the advances seen in the last
decade, it does not seem unreasonable to envision small, dependable air pollution
sensors with GPS and wireless communication functionality at relatively low costs.
Whether these kinds of equipment become inexpensive enough to deploy with large
populations remains to be seen, but their use for validating exposure assessments
developed via other approaches could prove invaluable.

3.4 Recommended Reviews

For the purposes of brevity, we have organized this chapter based on two key com-
ponents of exposure to outdoor air pollution: variability in pollutant concentrations
over time and space; and variability in individuals’ geographic locations over time
and space. Some aspects of exposure to outdoor air pollution have thus been omit-
ted, but should not be considered as unimportant, including which approaches are
better suited to which study designs, and also to which pollutants, given the different
spatial variability among outdoor air pollutants. We leave it to the reader to further
explore these issues, and recommend the following articles as a starting point.

Briggs D (2005) The role of GIS: coping with space (and time) in air pollution
exposure assessment. J Toxicol Environ Health-Part A-Curr Issues 68:1243–1261.

This review summarizes potential applications of GIS for air pollution exposure assess-
ment. Topics include simple proximity methods, interpolation methods such as inverse
distance weighting and kriging, and ‘dynamic modeling’ including dispersion models and
the incorporation of human time-location patterns into exposure assessments.

Chen H, Goldberg M, Villeneuve P (2008) A systematic review of the relation
between long-term exposure to ambient air pollution and chronic diseases. Rev
Environ Health 23(4):244–297

This comprehensive review of epidemiological studies provides detail on the exposure
assessment methods used in each reviewed study.
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Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P et al (2008)
A review of land-use regression models to assess spatial variation of outdoor air
pollution. Atmos Environ 42:7561–7578

A summary of 25 land use regression (LUR) studies in North America and Europe, includ-
ing descriptions of air pollution data sources, monitoring site locations and numbers,
predictor variables, and model performance. The authors conclude that in urban areas LUR
performs as well or better than geostatistical methods and dispersion models. Suggestions
for areas of further research include LUR model ‘transferability,’ inclusion of additional
data sources, consideration of temporal variability, and personal exposure validation studies.

Huang YL, Batterman S (2000) Residence location as a measure of environmen-
tal exposure: a review of air pollution epidemiology studies. J Expo Anal Environ
Epidemiol 10:66–85

This review summarizes 45 epidemiologic studies in which residential location was used to
estimate environmental exposures, including air pollutants, metals, and pesticides. Studies
are categorized based on the availability of measurements and/or dispersion models and
whether statistically significant associations with health endpoints are reported. The authors
conclude that residence location is most appropriately used in combination with other
sources of data, such as pollution measurements and/or models of pollutant emissions and
transport.

Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T et al
(2005) A review and evaluation of intraurban air pollution exposure models. J Expo
Anal Environ Epidemiol 15:185–204

A thorough review of interpolation methods including simple proximity approaches,
interpolation models (such as inverse distance weighting and kriging), LUR models,
dispersion models, integrated meteorological-emissions models, and hybrid approaches
combining multiple interpolation techniques. Methods are described and evaluated, and the
applicability of each method to health effects research is discussed.

Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ
42:7823–7843

This review discusses satellite remote sensing of surface air pollutants including aerosols,
ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde (HCHO), and
sulphur dioxide (SO2). Topics include a general overview of remote sensing and satellites,
as well as applications of satellite remote sensing to forecasting air quality events, surface
air quality evaluation, and emissions assessments.

Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R (2006) New developments
in exposure assessment: the impact on the practice of health risk assessment and
epidemiological studies. Environ Int 32:996–1009

Advances in environmental exposure assessment since the mid-1990s are described.
Exposure biomarkers, deterministic and GIS-based models (including LUR, satellite
remote sensing), and statistical methods (including source apportionment, Monte Carlos
simulation, and Bayesian statistics) are discussed.

Reid N, Misra PK, Amman M, Hales J (2007) Air quality modeling for policy
development. J Toxicol Environ Health-Part A-Curr Issues 70:295–310
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This review discusses atmospheric dispersion and transport models and distinguishes
between models used for research purposes and those applicable to policy development.
The focus is on the latter, and these models are distinguished into those applied on the local
(e.g. Gaussian plume models), regional (e.g. Lagrangian models), and global spatial scales
(e.g. Eulerian models). Examples of models used in policy development are given.

Touma JS, Isakov V, Ching J, Seigneur C (2006) Air quality modeling of haz-
ardous pollutants: Current status and future directions. J Air Waste Manag Assoc 56:
547–558

This paper describes models for hazardous air pollutants (generally categorized as source-
based dispersion models and grid-based chemical transport models), a discussion of model-
ing challenges, and recommendations for addressing those challenges. Model applications
at the national, regional, and neighbourhood scale are discussed.

Author Biographies

Eleanor M. Setton, Ph.D., Adjunct Assistant Professor in the Department of Geography at the
University of Victoria, in Victoria, British Columbia, Canada. Her research interests lie mainly
in investigating links between environmental quality and human health. This includes monitoring
and modelling environmental quality, with a current focus on air pollution as well as carcino-
genic pollutants in all media. She is also interested in how exposure measurement error affects
statistical analyses of dose-response relationships. Her use of a spatial perspective and geomat-
ics as a methodological basis for research serves to highlight innovative applications of accepted
techniques.

Ryan Allen, Ph.D., Assistant Professor, Faculty of Health Sciences, Simon Fraser University,
British Columbia, Canada. Dr. Allen’s research is focused on air pollution exposure assessment
and epidemiology. Areas of particular interest include improved exposure assessment in large
epidemiologic studies, estimating the impact of pollution from outdoor sources on indoor environ-
ments, and studying the links between combustion-derived air pollution and adverse respiratory
and cardiovascular health effects.

Perry Hystad, Ph.D. Candidate, School of Population and Public Health, University of British
Columbia, Canada. Mr. Hystad is Ph.D. candidate supported by two national and one provincial
research fellowship. His research focuses on environmental health risks, cancer primary prevention
and spatial epidemiology. He is a researcher with CAREX Canada, and a member of the Expert
Environmental Working Group for the Canadian Cancer Cohort.

Dr. C. Peter Keller, Professor, Geography, Dean of Social Sciences, University of Victoria, British
Columbia, Canada. Dr. Keller is recognized as a leader in developing GIS-based decision sup-
port systems with a particular emphasis on policy development and change. Recent research in
the environmental health field includes using high resolution GIS datasets for exposure and risk
assessment, and the development of online health atlases.

References

Allen RW, Davies H, Cohen MA, Mallach G, Kaufman JD, Adar SD (2009) The spatial relationship
between traffic-generated air pollution and noise in 2 US cities. Environ Res 109:334–342

Beelen R, Hoek G, Fischer P, van den Brandt PA, Brunekreef B (2007) Estimated long-term out-
door air pollution concentrations in a cohort study. Atmos Environ 41:5552 (vol 41, pg 1343,
2007)



88 E.M. Setton et al.

Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ et al (2008) Long-
term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study).
Environ Health Perspect 116:196–202

Beeson WL, Abbey DE, Knutsen SF (1998) Long-term concentrations of ambient air pollutants
and incident lung cancer in California adults: results from the AHSMOG study. Environ Health
Perspect 106:813–822

Bell ML (2006) The use of ambient air quality modeling to estimate individual and population
exposure for human health research: a case study of ozone in the Northern Georgia Region of
the United States. Environ Int 32:586–593

Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (2008) A cohort study of traffic-
related air pollution impacts on birth outcomes. Environ Health Perspect 116:680–686

Breitner S, Stolzel M, Cyrys J, Pitz M, Wolke G, Kreyling W et al (2009) Short-term mortality
rates during a decade of improved air quality in erfurt, Germany. Environ Health Perspect
117:448–454

Brunekreef B, Janssen NAH, de Hartog J, Harssema H, Knape M, van Vliet P (1997) Air pollu-
tion from truck traffic and lung function in children living near motorways. Epidemiology 8:
298–303

Burke JM, Zufall MJ, Ozkaynak H (2001) A population exposure model for particulate matter:
case study results for PM2.5 in Philadelphia, PA. J Expo Anal Environ Epidemiol 11:470–489

Cook R, Strum M, Touma JS, Palma T, Thurman J, Ensley D et al (2007) Inhalation exposure and
risk from mobile source air toxics in future years. J Expo Sci Environ Epidemiol 17:95–105

da Costa B, Hazegh C, Ponto K. 2009. PigeonBlog. In http://www.beatrizdacosta.net/pigeonblog.
php

de Medeiros APP, Gouveia N, Machado RPP, de Souza MR, Alencar GP, Novaes HMD et al
(2009) Traffic-related air pollution and perinatal mortality: a case-control study. Environ Health
Perspect 117:127–132

Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M et al (2009) The relationship of respira-
tory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup
Environ Med 66:189–197

Dietrich DF, Gemperli A, Gaspoz JM, Schindler C, Liu LJS, Gold DR et al (2008) Differences
in heart rate variability associated with long-term exposure to NO2. Environ Health Perspect
116:1357–1361

Duan N 1982. Models for human exposure to air pollution. American association for the
advancement of science abstracts of papers of the national meeting 148:59

Elgethun K, Fenske RA, Yost MG, Palcisko GJ (2003) Time-location analysis for exposure assess-
ment studies of children using a novel global positioning system instrument. Environ Health
Perspect 111:115–122

Frye C, Hoelscher B, Cyrys J, Wjst M, Wichmann HE, Heinrich J (2003) Association of lung
function with declining ambient air pollution. Environ Health Perspect 111:383–387

Garcia-Perez J, Pollan M, Boldo E, Perez-Gomez B, Aragones N, Lope V et al (2009) Mortality
due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion
installations. Sci Total Environ 407:2593–2602

Georgopoulos PG, Wang SW, Vyas VM, Sun Q, Burke J, Vedantham R et al (2005) A source-to-
dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a
summer 1999 episode. J Expo Anal Environ Epidemiol 15:439–457

Gulliver J, Briggs DJ (2005) Time-space modeling of journey-time exposure to traffic-related air
pollution using GIS. Environ Res 97:10–25

Hanninen O, Kruize H, Lebret E, Jantunen M (2003) EXPOLIS simulation model: PM2.5 appli-
cation and comparison with measurements in Helsinki. J Expo Anal Environ Epidemiol
13:74–85

Henderson SB, Burkholder B, Jackson PL, Brauer M, Ichoku C (2008) Use of MODIS products
to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment.
Atmos Environ 42:8524–8532

http://www.beatrizdacosta.net/pigeonblog.php
http://www.beatrizdacosta.net/pigeonblog.php


3 Outdoor Air Pollution and Health 89

Hengl T 2007. A practical guide to geostatistical mapping of environmental variables. Joint
Research Centre, Institute for Environment and Sustainability, European Commission.
European Communities, Luxembourg.

Hirsch T, Weiland SK, von Mutius E, Safeca AF, Grafe H, Csaplovics E et al (1999) Inner city air
pollution and respiratory health and atopy in children. Eur Respir J 14:669–677

Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P et al (2008) A review of
land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ
42:7561–7578

Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between
mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet
360:1203–1209

Hoek G, Fischer P, van den Brandt P, Goldbohm S, Brunekreef B (2001) Estimation of long-term
average exposure to outdoor air pollution for a cohort study on mortality. Epidemiology 12:
508

Hu ZY, Rao KR (2009) Particulate air pollution and chronic ischemic heart disease in the eastern
United States: a county level ecological study using satellite aerosol data. Environ Health 12:26

Huang YL, Batterman S (2000) Residence location as a measure of environmental exposure: a
review of air pollution epidemiology studies. J Expo Anal Environ Epidemiol 10:66–85

Hystad P, Setton E, Keller P, Allen R, Cloutier-Fisher D, Foster L et al (2006) Predicting ambient
PM2.5 infiltration for individual residences at a regional scale. Epidemiology 17:S113

Isakov V, Touma JS, Burke J, Lobdell DT, Palma T, Rosenbaum A et al (2009) Combining regional-
and local-scale air quality models with exposure models for use in environmental health studies.
J Air Waste Manag Assoc 59:461–472

Johnson TR (1995) Recent advances in the estimation of population exposure to mobile source
pollutants. J Expo Anal Environ Epidemiol 5:551–571

Kanaroglou PS, Jerrett M, Morrison J, Beckerman B, Arain MA, Gilbert NL et al (2005)
Establishing an air pollution monitoring network for intra-urban population exposure assess-
ment: a location-allocation approach. Atmos Environ 39:2399–2409

Kanjo E, Benford S, Paxton M, Chamberlain A, Fraser DS, Woodgate D et al (2008) MobGeoSen:
facilitating personal geosensor data collection and visualization using mobile phones. Pers
Ubiquit Comput 12:599–607

Kibria BMG, Sun L, Zidek JV, Le ND (2002) Bayesian spatial prediction of random space-time
fields with application to mapping PM2.5 exposure. J Am Stat Assoc 97:112–124

Kim JJ, Huen K, Adams S, Smorodinsky S, Hoats A, Malig B et al (2008) Residential traffic and
children’s respiratory health. Environ Health Perspect 116:1274–1279

Kim SY, Sheppard L, Kim H (2009) Health effects of long-term air pollution influence of exposure
prediction methods. Epidemiology 20:442–450

Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al (2001) The national
human activity pattern survey (NHAPS): a resource for assessing exposure to environmental
pollutants. J Expo Anal Environ Epidemiol 11:231–252

Kramer U, Koch T, Ranft U, Ring J, Behrendt H (2000) Traffic-related air pollution is associated
with atopy in children living in urban areas. Epidemiology 11:64–70

Kruize H, Hanninen O, Breugelmans O, Lebret E, Jantunen M (2003) Description and demon-
stration of the EXPOLIS simulation model: two examples of modeling population exposure to
particulate matter. J Expo Anal Environ Epidemiol 13:87–99

Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from
different sources with daily mortality in six US cities. Environ Health Perspect 108:941–947

Lebret E, Briggs D, van Reeuwijk H, Fischer P, Smallbone K, Harssema H et al (2000) Small
area variations in ambient NO2 concentrations in four European areas. Atmos Environ 34:
177–185

Liao DP, Whitsel E, Duan YK, Lin HM, Quibrera PM, Smith R et al (2009) Ambient particulate air
pollution and ectopythe environmental epidemiology of arrhythmogenesis in women’s health
initiative study, 1999–2004. J Toxicol Environ Health A Curr Issues 72:30–38



90 E.M. Setton et al.

Lin S, Munsie JP, Herdt-Losavio M, Hwang SA, Civerolo K, McGarry K et al (2008) Residential
proximity to large airports and potential health impacts in New York State. Int Arch Occup
Environ Health 81:797–804

Liu Y, Franklin M, Kahn R, Koutrakis P (2007) Using aerosol optical thickness to predict ground-
level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS.
Remote Sensing Environ 107:33–44

Liu Y, Park RJ, Jacob DJ, Li QB, Kilaru V, Sarnat JA (2004) Mapping annual mean ground-level
PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness
over the contiguous United States. J Geophys Res Atmos 109:D22206

Maantay JA, Tu J, Maroko AR (2009) Loose-coupling an air dispersion model and a geographic
information system (GIS) for studying air pollution and asthma in the Bronx, New York City.
Int J Environ Health Res 19:59–79

Margolis HG, Mann JK, Lurmann FW, Mortimer KM, Balmes JR, Hammond SK et al (2009)
Altered pulmonary function in children with asthma associated with highway traffic near
residence. Int J Environ Health Res 19:139–155

Marshall JD, Granvold PW, Hoats AS, Mckone TE, Deakin E, Nazaroff WW (2006) Inhalation
intake of ambient air pollution in California’s South Coast Air Basin. Atmos Environ 40:
4381–4392

Marshall JD, Nethery E, Brauer M (2008) Within-urban variability in ambient air pollution:
comparison of estimation methods. Atmos Environ 42:1359–1369

Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42:7823–7843
McCurdy T (1995) Estimating human exposure to selected motor vehicle pollutants using

the NEM series of models: lessons to be learned. J Expo Anal Environ Epidemiol 5:
533–550

Moura M, Junger WL, Mendonca GAES, de Leon AP (2009) Air quality and emergency pediatric
care for symptoms of bronchial obstruction categorized by age bracket in Rio de Janeiro, Brazil.
Cadernos de Saude Publica 25:635–644

Nethery E, Leckie SE, Teschke K, Brauer M (2008) From measures to models: an evaluation of air
pollution exposure assessment for epidemiological studies of pregnant women. Occup Environ
Med 65:579–586

Nordling E, Berglind N, Melen E, Emenius G, Hallberg J, Nyberg F et al (2008) Traffic-related
air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 19:
401–408

Ott WR (1985) Total human exposure. Environ Sci Technol 19:880–886
Paciorek CJ, Liu Y, Moreno-Macias H, Kondragunta S (2008) Spatiotemporal associations between

GOES aerosol optical depth retrievals and ground-level PM2.5. Environ Sci Technol 42:
5800–5806

Peters JM, Avol E, Navidi W, London SJ, Gauderman WJ, Lurmann F et al (1999) A study of
twelve southern California communities with differing levels and types of air pollution – I.
Prevalence of respiratory morbidity. Am J Respir Crit Care Med 159:760–767

Phillips ML, Hall TA, Esmen NA, Lynch R, Johnson DL (2001) Use of global positioning system
technology to track subject’s location during environmental exposure sampling. J Expo Anal
Environ Epidemiol 11:207–215

Prados AI, Kondragunta S, Ciren P, Knapp KR (2007) GOES aerosol/smoke product (GASP) over
North America: comparisons to AERONET and MODIS observations. J Geophys Res Atmos
112:D15201

Rainham D, Krewski D, McDowell I, Sawada M, Liekens B (2008) Development of a wearable
global positioning system for place and health research. Int J Health Geogr 7:59

Raizenne M, Neas LM, Damokosh AI, Dockery DW, Spengler JD, Koutrakis P et al (1996) Health
effects of acid aerosols on North American children: Pulmonary function. Environ Health
Perspect 104:506–514

Ritz B, Wilhelm M, Zhao YX (2006) Air pollution and infant death in southern California, 1989–
2000. Pediatrics 118:493–502



3 Outdoor Air Pollution and Health 91

Ryan PH, LeMasters GK, Biswas P, Levin L, Hu SH, Lindsey M et al (2007) A comparison of
proximity and land use regression traffic exposure models and wheezing in infants. Environ
Health Perspect 115:278–284

Scoggins A, Kjellstrom T, Fisher G, Connor J, Gimson N (2004) Spatial analysis of annual air
pollution exposure and mortality. Sci Total Environ 321:71–85

Setton EM, Keller CP, Cloutier-Fisher D, Hystad PW (2008) Spatial variations in estimated chronic
exposure to traffic-related air pollution in working populations: a simulation. Int J Health Geogr
7:39

Smargiassi A, Kosatsky T, Hicks J, Plante C, Armstrong B, Villeneuve PJ et al (2009) Risk of
asthmatic episodes in children exposed to sulfur dioxide stack emissions from a refinery point
source in montreal, Canada. Environ Health Perspect 117:653–659

United States Environmental Protection Agency (2008) Further Technical Details about
HAPEM4. In

van Donkelaar A, Martin RV, Park RJ (2006) Estimating ground-level PM2.5 using aerosol optical
depth determined from satellite remote sensing. J Geophys Res Atmos 111:D21201

Vedal S, Hannigan MP, Dutton SJ, Miller SL, Milford JB, Rabinovitch N et al (2009) The den-
ver aerosol sources and health (DASH) study: overview and early findings. Atmos Environ
43:1666–1673

Wiehe SE, Carroll AE, Liu GC, Haberkorn KL, Hoch SC, Wilson JS et al (2008) Using GPS-
enabled cell phones to track the travel patterns of adolescents. Int J Health Geogr 7:22

Wilhelm M, Ritz B (2005) Local variations in CO and particulate air pollution and adverse birth
outcomes in Los Angeles County, California, USA. Environ Health Perspect 113:1212–1221

Williams LA, Ulrich CM, Larson T, Wener MH, Wood B, Campbell PT et al (2009) Proximity
to traffic: inflammation, and immune function among women in the seattle, Washington, Area.
Environ Health Perspect 117:373–378

Wu J, Winer AM, Delfino RJ (2006) Exposure assessment of particulate matter air pollution before,
during, and after the 2003 Southern California wildfires. Atmos Environ 40:3333–3348

Yanosky JD, Paciorek CJ, Schwartz J, Laden F, Puett R, Suh HH (2008) Spatio-temporal modeling
of chronic PM10 exposure for the nurses’ health study. Atmos Environ 42:4047–4062



Chapter 4
The Use of Residential History
in Environmental Health Studies

Francis P. Boscoe

Abstract Residential histories – listings of the places and dates where people have
lived over their lives – are useful for assessing lifetime proximity to environmental
hazards. When past residences are ignored, as is the norm, results are biased against
finding an association between exposure and disease. I conducted a comprehensive
review of 26 published environmental epidemiological studies using residential his-
tories to assess current practice. Most often, studies collect all of a person’s exact
lifetime addresses resided in for at least 1 year, and exclude missing data – rea-
sonable, though not necessarily optimal, choices. Residential histories are complex
and time-consuming to collect, and must be researcher-initiated, as they are not an
element of any population-based disease surveillance systems in the United States.
Indeed, surveillance systems often have difficulty collecting even basic demographic
items. As such, residential histories are best suited for focused research studies
involving direct contact with subjects through interviews or questionnaires.

Keywords Residential history · Disease surveillance · Life course epidemiology ·
Geocoding · Mobility · Migration

4.1 Background

4.1.1 Introduction

When conducting an environmental health investigation, it is useful to have
residential histories, a listing of the places and dates where people have lived
throughout their lives. This information can be used to estimate past exposures to
hazards, which can then be linked to health outcomes. Such exposure estimates are
necessarily crude ones, especially since information on occupation, daily activity
patterns, and other behavioral and lifestyles variables is often lacking. Still, this
approach is an improvement over the usual alternative, which is to use only the
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current address or the address at the time of disease diagnosis. A single address may
say very little about disease risk or etiology, given that cancer and certain chronic
diseases have long latency periods. Also, as I will explain, the use of a single address
is generally biased against finding associations between environment and disease.
As a consequence, some scientists and advocates have called for residential his-
tory to be more routinely incorporated into case-control studies (Han et al., 2004;
Jacquez et al., 2007; Urayama et al., 2009) and to be collected by population-based
disease surveillance systems (Chittleborough et al., 2006; Office on Women’s Health
and Department of Health and Human Services, 2003).

This chapter surveys the current usage and application of residential history data
in the field of environmental health. I begin with a brief summary of how past envi-
ronmental exposures are believed to impact current health. Next, I explain how
the incorporation of residential history information makes it more likely that an
environment-disease link will be identified if one truly exists. I then review 26
recently published environmental health studies making use of residential history
information in order to assess the kinds of research questions being asked and
whether a standardized approach is being applied. Finally, I discuss the difficul-
ties of collecting residential history in population-based surveillance systems, in
part by giving the example of my own lengthy residential history. I conclude that
residential histories are best suited for focused research studies that allow direct
contact with subjects. My hope is that this chapter will provide a useful point of
reference for researchers, advocates, and public health professionals interested in
better measuring how past exposures may influence present health outcomes.

4.1.2 How Past Environmental Conditions
Impact Current Health

Broadly speaking, one’s lifetime residences – from in utero through infancy,
childhood, adolescence and adulthood – influence current health in two primary
ways. First, one’s socioeconomic environment, as measured by levels of afflu-
ence, employment, education, safety, and quality of physical surroundings, directly
bear on the prevalence of chronic and psychosocial conditions ranging from heart
disease, stroke, diabetes and cancer to obesity, depression and teenage pregancy
(Ben-Shlomo and Kun, 2004; Barker, 1998; Jelleyman and Spencer, 2008; Power
et al., 2005). Second, specific chemical exposures from the air, soil, and water can
directly contribute to ill health, particularly in the form of cancer and birth defects
(United Nations Environment Programme, 2000). The quality of the socioeconomic
environment and the physical environment are often correlated, though this is not
always so.

These two forms of environmental exposure have given rise to two distinct
research streams that approach residential history very differently (Mackenbach
and Howden-Chapman, 2003). Researchers focused on the socioeconomic envi-
ronment typically seek general indicators rather than exact residential addresses.
When interviewing subjects, they typically collect historical information about
items such as income, occupation, housing tenure, home ownership versus rental,
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neighborhood characteristics, and physical condition of housing. For some data
items, this approach is less than optimal as better accuracy could be obtained by
collecting addresses and linking them to historic census data. For example, peo-
ple may better remember their address at the time they began school than detailed
neighborhood characteristics from that time. Still, a review of over forty studies
of this type identified only one that made specific use of past addresses, while all
of the rest relied on self-reported descriptive information (Chittleborough et al.,
2006).

Studies focused on chemical exposures, in contrast, rely extensively on residen-
tial addresses. In these studies, addresses are converted into point locations and
predicted chemical exposures assigned based on these locations. Predicted expo-
sures are usually derived from data collected by government agencies independently
of the study, though researchers may collect their own primary environmental data
by taking air, soil or water samples. Obtaining exposure information through inter-
view or questionnaire is rarely possible because contaminants are so often invisible,
as with radiation and trace contaminants in drinking water. For reasons of simplic-
ity and economy, studies typically only consider a single address per person. This is
most often the address at the time of the study, the address at time of disease diag-
nosis, or the address at time of birth. This chapter is focused on the relatively few
studies that allow for multiple addresses per person.

Though it seems obvious that one’s current health would be related to lifetime
historic exposures, this is a relatively recent consensus (Ben-Shlomo and Kuh, 2002;
Blane et al., 2007). Even within this “life course epidemiology” paradigm, the exact
mechanisms by which past exposures influence current health remain a matter of
debate. There are two major explanatory models. The critical period or biologi-
cal programming model holds that specific periods of adverse exposure (whether
socioeconomic or chemical) influence long-term health independently of eventual
adult circumstances. The cumulative model holds that the intensity and duration of
adverse exposure throughout life affects health in a dose-response fashion (Ljung
and Hallqvist, 2006; Pensola and Martikainen, 2003). For example, in a study of
asthma development, the critical period model might emphasize exposures to sec-
ondhand smoke below age one, while the cumulative model might equally weight all
childhood exposure. These two models are not incompatible, and numerous hybrids
have been offered (Ben-Shlomo and Kuh, 2004; Blane et al., 2007).

4.1.3 Why Residential History Matters

To illustrate how residential history adds clarity to an analysis, suppose that natu-
rally occurring arsenic found in well water in certain regions of the United States
promotes bladder cancer in a dose-response fashion such that people with the high-
est exposures have a doubled risk.1 Without residential history information, it is

1The highest arsenic levels in the US are not especially high by world standards, particularly com-
pared to those in developing countries where industrial pollution is the major source. The positive
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unlikely that a retrospective epidemiological study would be able to accurately mea-
sure this risk Because population mobility in the United States is high and regions
with high arsenic levels are few, it is likely that many of the people presently exposed
to arsenic have not been exposed for most of their lives. For these people, their true
exposure is lower than their address would imply. If participants in a study only
lived in a high-arsenic area for 25% of their lives on average, a measured relative
risk of 1.25 would be expected, all other things being equal. Warner and others
illustrate this concept in detail using the example of radon and lung cancer (Warner
et al., 1996). Like arsenic, radon is not a widespread phenomenon nationally and
exposure depends not just on local geology but on the structural properties of the
residence. If a current residence shows high radon readings, it is likely that other life-
time residences would have had little or no radon exposure, substantially reducing
the apparent risk for most people.

Another potential source of bias results from the fact that even correctly assigned
exposures are heavily weighted toward exposures occurring at older ages. Because
the median age of diagnosis of bladder cancer is 68, a study using the address at time
of diagnosis will mostly identify exposures occurring in the years just preceding age
68. If in utero or childhood or young adult exposure is more relevant than recent
exposure, then this would yield a further downward bias in observed risk.

These biases may be partially offset in the presence of selective geographic
migration to and from polluted and/or economically deprived areas (Rogerson and
Han, 2002; Boyle 2004; Connolly et al., 2007). In general, those with greater means
are more likely to migrate from such areas and are also likely be in better health
than those remaining behind. Conversely, those migrating into such areas are likely
to be in poorer health than those they replaced. This would tend to falsely inflate
apparent associations between health and local pollution sources.

Without consideration of residential histories, it is impossible to quantify these
complex sources of bias. When residential histories are available, this ceases to be
an issue.

4.2 Geotechnology and Residential History

Geotechnical tools naturally lend themselves for use in studies incorporating res-
idential history. Common to all such studies is the need to convert residential
addresses into point locations, a process known as geocoding. Geocoding involves
comparing the text elements of an address against a database containing a com-
plete set of addresses and their corresponding latitudes and longitudes. Traditionally
this has been accomplished with either specialized software or by using a module
within geographic information system (GIS) software. More recently, free on-
line geocoding solutions have emerged that directly or indirectly make use of the
databases behind powerful mapping web sites such as Google Maps or Yahoo! Maps

association between bladder cancer and arsenic is well-established in developing countries, but less
so in the United States (Navarro Silvera and Rohan, 2007; Chu and Crawford-Brown, 2007).
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(University of Southern California, 2009). GIS software also provides an ideal plat-
form for managing and manipulating data with space and time elements and for
assigning exposures based on location. Most of the studies to be discussed later
in this chapter make explicit reference to the use of a GIS. GIS software is not
essential, though. With some knowledge of computational geometry – the study
of algorithms and data structures involving points, lines, and areas (de Berg et al.,
1998) – it is possible to perform the necessary analyses using any robust statistical
software package.

Jacquez and colleagues have been actively advancing the geotechnical toolkit
for analyzing residential history data (Jacquez et al., 2005; Jacquez et al., 2006;
Jacquez et al., 2007; Meliker and Jacquez, 2007). For example, their Q statistics
measure global, local and focused clustering that accounts for residential mobility.
Global clustering describes the tendency of a data set as a whole to be clustered,
local clustering identifies specific locations where clustering occurs, and focused
clustering measures clustering around specific points of interest, such as industrial
sites. The Q statistic measures the tendency of a case to be closer to another case
versus a control, or more specifically, to be closer to m cases out of its n nearest
neighbors. Whether the ratio m/n is statistically meaningful is determined through
simulating large numbers of plausible data configurations. Using a preliminary data
set from an ongoing case-control study, the authors have identified the existence of a
cluster dating to 1929. Further enhancements to their methods address the estimation
of induction and latency periods, age-specific susceptibility, and critical exposure
time points. Whether these methodological advances will have wide applicability
remains to be seen, but they illustrate that the full range of uses for residential history
data is yet to be realized.

4.3 Review of Environmental Health Studies
Using Residential History

I conducted a comprehensive review of published environmental epidemiolog-
ical studies where residential history was explicitly mentioned in the abstract.
Searches were conducted on PubMed and Web of Science using the terms “residen-
tial history”, “residential mobility”, and “population mobility”, with forward and
backward citation searches conducted on relevant articles. Papers were limited to
those published since 2002 in order to ensure that recent advances in geocoding
and geographic information systems were available to the researchers. The pri-
mary focus was on North American studies, but a Swedish, Taiwanese, and two
multinational studies were included to provide additional diversity and context.
Ultimately, twenty-six distinct studies were identified. This is but a tiny fraction
of the total number of studies relating disease and exposure that are limited to a
single residential location.

I noted the disease or condition being studied, the hypothesis being tested,
and whether an association was found (Table 4.1). I also recorded the type of
study and number of subjects, how the residential history was obtained (interview,
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questionnaire, review of historical records), the time points of interest (entire life,
last 10 years, birth and age five, etc.), the level of geographic detail (coordinates
taken from an aerial photograph, street address, zip code, etc.), how incomplete
or partial information was handled, whether there was a minimum threshold for
residence duration, and whether there were any notable methodological innovations.
I identified several instances where multiple published papers made use of the same
data set, and these were counted only once. The papers by Jacquez et al. discussed
previously were excluded given their methodological emphasis.

In terms of geographic location, Long Island (New York) and Cape Cod
(Massachusetts) appeared three times each, reflecting the influence of the Long
Island Breast Cancer Study Project (Winn, 2005) and ongoing research at the Silent
Spring Institute (2009). The other studies were in widely scattered locations, includ-
ing a number of multi-city studies. Cancer was by far the most common condition
studied, accounting for 23 of the 26 studies. Of these, there were seven breast cancer
studies, six skin cancer, four leukemia, two bladder, one each of non-Hodgkin lym-
phoma, brain, and osteosarcoma, and one that examined multiple cancer sites. The
non-cancer studies included one each of atherosclerosis, myocardial infarction, and
adverse birth outcomes. Twenty-three of the studies followed a case-control design,
and there were three cohort studies. Sample sizes, combining cases and controls,
ranged from 300 to 6,000.

Environmental hazards spanned the gamut from ultraviolet radiation (in most
of the skin cancer studies) to hazardous waste to traffic to various forms of con-
tamination of drinking water. Several studies did not identify any specific hazard,
but compared long-term and short-term residents, whether cases had different
demographic characteristics than controls, or evaluated overall mobility patterns.

All but one of the studies obtained residential histories through interviews or
questionnaires. In general, interviews refer to information collected orally, and ques-
tionnaires to information collected in writing or electronically, though some authors
used the terms interchangeably. An interview was the more popular method, with
telephone interviews favored over in-person interviews. One Canadian study com-
piled residential histories entirely through administrative records, and the Swedish
study used administrative records to augment its primary data collection. There
were no United States studies where administrative or surveillance data were used
for this purpose. Many authors noted the labor-intensive nature of interviews and
questionnaires.

Most studies (16) collected address over the entire life course, with a few extend-
ing this to the year before birth. Five studies considered only the duration of current
residence, two were limited to addresses in the past 20 years, and two collected only
addresses at birth and in the year before birth. One study obtained addresses only at
specific age points.

Seventeen of the studies collected exact addresses. One requested only county of
residence, one city of residence, and five were unspecified. The two Canadian stud-
ies both used postcodes, which in most of the country describe a precise geographic
location.



4 The Use of Residential History in Environmental Health Studies 103

The most common minimum residence time requested was 1 year, used in eight
studies. Eight studies used something shorter than this: 6 months (4), 1 month (2),
or no minimum (2). Three studies used ten or more years at a residence, and for the
remaining seven studies this information was not specified.

For time periods where a person could not recall a previous address, ten studies
excluded these person-years from the analysis. Three of these ten provided detail
on the extent of missing data. Four studies imputed or interpolated missing infor-
mation, and two claimed to have no missing data. The remaining ten studies did
not specify how missing data were handled; presumably it was excluded, because
it seems unlikely that an interpolation or imputation process would be used and not
mentioned.

To the degree there is a consensus across these studies, it is to collect all of a
person’s exact lifetime addresses resided in for at least 1 year beginning at birth, and
to exclude data that could not be recalled. With continued advances and awareness
of methods for handling missing data, the latter issue should be expected to diminish
(Buhi et al., 2008). An open question is whether the minimum residential duration
of 1 year and a start time of birth is adequate or should be tightened or relaxed. As
I will show, collecting residence data from before birth (and even early childhood)
and on short-term residences poses difficult challenges.

4.4 Difficulties in Collecting Residential History Information

There is a popular perception, at least among those who have never attempted it,
that a residential history is an easy matter to compile, something that could be done
in a few minutes in a waiting room, or perhaps over the phone with a receptionist.
An attempt to compile my own residential history reveals this as a fallacy. If I, as
someone with a focused research interest in this area, have difficulty with this task,
then it is safe to assume that plenty of Americans would have even more difficulty.

The year before birth presents my first challenge. In early 1968, I was conceived
while my father was stationed at a military base in Germany. I believe this was in
Würzburg, but I am not certain. My mother returned to the states when she was about
5 or 6 months pregnant, and I do not know where she lived for the next few months.
Of course, I could ask her, but that is not something I could assume I could do on
demand at a doctor’s office or hospital, particularly if I was at a more typical age to
be diagnosed with cancer, when it is unlikely she would still be alive. My mother,
now in her 60s, no longer has the ability to ask her late parents exactly where they
lived when they were young.

I believe my father was discharged just before I was born and the family reunited
in the first of several apartments in the outer suburbs of Philadelphia, Pennsylvania.
I think there were three apartments in total from August, 1968 to circa 1972 as the
family grew to three children; I know of two town names. I believe I could locate
one of the apartments using Google Earth, assuming it is still standing, since it was
on a major road and for years afterward my parents would pass it from time to time
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and point it out. With this one possible exception, I am analytically nearly useless
in terms of having exposures assigned to me before about age four.

From that point through age seventeen I had three more addresses in rural
eastern Pennsylvania, all of which I remember exactly. The first two were rural
route addresses, and the names of the roads would probably allow geocoding to
within one-mile accuracy. The third was in a village of 900 people – my first truly
geocodeable address, at the age of 15.

In 1986, I went off to college in Pittsburgh, Pennsylvania. Throughout my col-
lege years and those immediately following I moved every single year, motivated
by a constant quest for low rent, dependable roommates, and the need for band
rehearsal space. I count seven places in 6 years, including a summer sublet. I can def-
initely recall all of the streets, though not all of the house numbers. Also during this
period I spent one summer on the Greenland ice sheet doing ice-core research, where
there is no address to be recorded, but I could provide an approximate latitude and
longitude.

In 1992, after 2 years with a regular paycheck as an entry-level environmen-
tal engineer and tiring of the nomadic lifestyle, I bought a house. It was virtually
the cheapest one I could find, in a struggling neighborhood close to Three Rivers
Stadium in Pittsburgh. Fixing it up proved to be somewhat beyond my talents, and
before I knew it I met my future wife and decided to go to graduate school. I never
even spent that much time in the Pittsburgh house, as the engineering job took me to
hazardous waste sites near Harrisburg, Pennsylvania and Oklahoma City for many
months at a time. The corresponding Days Inns and La Quinta Inns would seem to
qualify for my residential history, though with exact addresses unknown. Certainly
my air quality, traffic, ultraviolet radiation, and drinking water exposures all changed
considerably during these work assignments, even ignoring any exposure from the
hazardous waste sites themselves.

In the fall of 1994 I began my master’s degree in geography in Kent, Ohio. For the
next 2 years I shuttled between Kent and my future wife’s apartment in Pittsburgh.
At first I rented an apartment in Kent, but then discovered that they allowed students
to stay in one of the dorms, hotel-style, for under $10 a night (alas, the name of the
dorm escapes me). Also during this time, I spent a summer on an archaeology crew
in Hurricane, West Virginia.

After Kent, I moved on to get my Ph.D. in geography at Penn State. Here there
were two addresses, an initial apartment and then a larger one that was needed once
my son was born. My dissertation research then took me to Philadelphia, where I
spent a year before getting hired by the New York State Department of Health in
Albany, New York in 1999, where I remain today.

Even with long-term, stable employment, residential stability has continued to
be elusive. We have had six addresses in 10 years, moving from an initial rental to
a starter home to something a bit larger to accommodate my retired father-in-law’s
extended visits. These were sandwiched around a 6 month posting in Washington,
DC at the National Cancer Institute.

All told, that is 20–30-plus addresses in 40 years, depending on how the shorter-
term addresses are counted, with just over half of them geocodeable to precise
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latitude and longitude coordinates. While I have been more mobile than the aver-
age American – a widely cited figure is ten or eleven addresses per lifetime (Long,
1988) – I do not believe my situation is unusual compared with other academics or
professional scientists. Certainly I am not near the fringe of mobility represented by
military personnel, migrant farm workers, and the indigent.

While my evidence for the difficulty of developing a residential history is anec-
dotal, there have been researchers who have considered the issue more formally.
These studies have consistently found that a substantial majority of subjects can
recall basic details about their living environment after 50 years with useful accu-
racy, as measured by comparing recalled information with historic records (Blane,
1996). Recall can be further improved by providing a temporal reference system
such as a timeline or calendar, with major personal or historic events included, and
by interviewing spouses jointly (Blane, 1996; Zahm et al., 2001). Few of these stud-
ies evaluated the recall of addresses, however. In one of the few studies that did,
subjects had good recall for street names but not specific house numbers (Berney
and Blane, 1997). By extension, some of the geographical precision afforded by
Canadian postal codes would be offset by peoples’ difficulty in remembering
them.

The exact implications of incompletely recalled residential histories in environ-
mental studies are unclear, and I am unaware of any examples of sensitivity analyses
having been performed. Put simply, though, research results from a partial residen-
tial history should fall between those based on a complete residential history and
those based only on a single address. Such results would be expected to be biased
toward the null hypothesis, but to a lesser degree than when only a single address
is used. So it would seem that even my messy and incomplete residential history
merits inclusion in a case-control study.

This does not mean it also merits inclusion in a population-based disease surveil-
lance system. The main problem with expanding such a system to include residential
histories is the difficulty and complexity of data collection. Demographic informa-
tion currently collected typically includes name, birth date, gender, race/ethnicity,
birth place (at the level of state or country), marital status, and current address.
Some data systems also specify the collection of occupation, religion, tobacco use,
and alcohol use. The fields that are used by hospitals for patient identification and
billing (name, address, birth date, gender, and various identification numbers) tend
to be highly complete and accurate. Beyond this, quality is less certain. Race and
ethnicity are generally dependable when self-reported, but this information may be
assigned by a clerk based on name or appearance, or omitted altogether. Standards
are inconsistent – in some data systems, race and ethnicity are treated as separate
constructs, but in others they are conflated. Cancer registries in the United States use
a detailed scheme which incorporates specific Asian, Pacific Islander, and Hispanic
subgroups, raising additional complications (Pinheiro et al., 2009; Schymura et al.,
2007). Though straightforward and unambiguous, place of birth is typically miss-
ing in over half of case reports submitted to central cancer registries. In terms of
marital status, useable distinctions can be made between never-married, married,
and formerly married, but finer distinctions of divorced, separated and widowed are
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problematic. Occupation, religion, and behavioral variables are seldom collected
and reported at all.

Residential histories are much more complex than these basic demographic data
elements that have proven difficult to collect. Country or state of birth is a one-word
response translatable into a 3-digit code; my residential history comprises over 30
addresses, cities, states, zip codes, start dates and end dates. It is hard to imagine a
hospital clerk working with anxious patients to jog the names of their freshman dor-
mitories or past military posts. Accordingly, there are no examples of surveillance
systems in the United States that attempt to collect residential history.

“Years at current residence” has been offered as a compromise: a simple, easy-
to-collect variable that may be well-suited for surveillance systems. This variable
could allow epidemiologic studies to be limited to long-term residents of the areas
under study and for recent in-migrants to be excluded (O’Leary et al., 2004).
Unfortunately, even with this simpler approach, there remains the problem of how
to obtain corresponding information on individuals without disease. It is not help-
ful to count those with breast cancer who have not moved in 10 years unless you
also know the total population of those who have not moved in 10 years. Census
data relating to mobility and migration are too crude and limited to be invoked for
this purpose. What is needed is the identification, contacting, and interviewing of
a suitable population control group, which negates much of the advantage of using
surveillance systems toward this purpose.

To summarize, disease surveillance systems are designed to collect basic infor-
mation about the entire population for the purposes of disease control, identifying
trends, detecting emerging problems, and guiding policy and interventions. Such
systems are designed to be quick, inexpensive (at least on a per capita basis), and
coarse. In a surveillance context, knowing where people currently live is more rele-
vant than knowing where they have previously lived. Research studies, in contrast,
are deliberative, costly, and detailed. This is the best forum for investigating ques-
tions of disease etiology, and here is where the collection of residential histories is
a more natural fit.

4.5 Conclusions

Residential histories add value to environmental health studies by reducing bias that
tends to understate the relationship between exposure and disease. Despite the clear
advantages of incorporating residential history data into a study, relatively few have
done so. This chapter will hopefully serve as a catalyst towards promoting wider
incorporation of these data. Residential histories do have limitations – collecting
the information is labor-intensive and subject to recall gaps, especially for the pre-
natal and early childhood periods and for those with highly mobile lifestyles. For
researchers lacking GIS experience, the task may seem daunting. But continuing
improvements in the availability of reference data, computing speed, and statistical
methodology has made the incorporation of residential history data into analyses
easier than ever.
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This chapter has made a conceptual argument for the usefulness of residen-
tial history data. Further work is needed to provide more specific guidance on
how these data should best be collected and analyzed: whether it is safe to ignore
short-term residences, how to approach missing or imprecise data, and under what
conditions it makes sense to limit analysis to the residentially stable. It is impor-
tant to keep in mind that residential location can never be more than a crude
proxy for exposure. Going forward, biomonitoring, the measurement of chemicals
in human tissues and fluids, offers the promise of much more accurate exposure
assessment for a wide range of chemical insults (Angener et al., 2007). But there
will long remain a demand for residence-based analyses, particularly for questions
involving otherwise-unmeasured past exposures and for diseases with long latency
periods.
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Chapter 5
Proximity Analysis for Exposure Assessment
in Environmental Health Justice Research

Jayajit Chakraborty and Juliana A. Maantay

Abstract This chapter provides a historical overview and constructive critique of
analytical approaches and methods that have been used to measure proximity to
environmental health hazards and potential exposure to their adverse effects in the
environmental justice (EJ) research literature. After providing an introduction to
environmental health justice research and key findings, we examine how quantitative
EJ analysis has emerged from comparing the prevalence of minority or low-income
populations in spatial units hosting environmental hazards and circular buffer zones
to more advanced techniques that utilize GIS, pollution plume models, and esti-
mates of health risk from ambient exposure to multiple pollutants and emission
sources. We also review spatial analytical approaches used in previous studies to
determine the demographic and socioeconomic characteristics of people residing
in areas potentially exposed to environmental hazards, as well as newly emerg-
ing geostatistical techniques that are more appropriate for spatial analysis of EJ
than conventional statistical methods used in prior research. The concluding section
focuses on highlighting the key limitations and identifying future research needs
associated with assessment of environmental health justice.

Keywords Environmental health justice · Proximity analysis · Buffer analysis ·
Areal interpolation · Dispersion model · Spatial regression · Geographically
weighted regression

5.1 Environmental Health Justice

Environmental Justice, both as a term in our vocabularies and as a movement, came
into being more than 20 years ago. Narrowly interpreted, Environmental Justice
(EJ) is the attempt to document and address the disproportionate environmental and
health burdens borne by the poor and people of color. In a broader context, EJ
theory encompasses everything that is unsustainable about the world we have
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created, including rampant population growth, industrialization, pollution, con-
sumption patterns, energy use, food production, and resource depletion. “The EJ
movement has sought to redefine environmentalism as much more integrated with
the social needs of human populations, and, in contrast with the more eco-centric
environmental movement, its fundamental goals include challenging the capitalist
growth economy, as well,” (Pellow and Brulle, 2005, 3).

A definition of environmental justice is “the provision of adequate protection
from environmental toxicants for all people, regardless of age, ethnicity, gender,
health status, social class, or race” (Nordenstam, 1995:52), and the proximity
of noxious land uses to populated areas is believed to jeopardize environmental
health and justice. Although many researchers have focused on the dispropor-
tionate environmental burdens borne by the poor and communities of color,
others have expanded the definition of environmental justice to include additional
vulnerable populations, such as the very young, the elderly, the infirm and immune-
compromised, pregnant women, immigrants, and future generations (Greenberg,
1993). The term “Environmental Health Justice” was born of the need to clarify and
emphasize why Environmental Justice is important: proximity to environmental bur-
dens is detrimental to human health, and results in health disparities and inequities
for some populations.

5.1.1 The Role of GIS in Environmental Health Justice Research

Since the late 1980s and beginning in earnest in the early 1990s, Geographic
Information Systems have been used to examine the spatial realities of environmen-
tal injustice (Boer et al., 1997; Bowen et al., 1995; Burke, 1993; Chakraborty and
Armstrong, 1997; Chakraborty et al., 1999; Maantay et al., 1997; Maantay, 2002;
Morello-Frosch et al., 2001; Neumann et al., 1998; Perlin et al., 1995; Pollock and
Vittas, 1995; Sheppard et al., 1999).

GIS methods have been used in environmental justice research primarily to
analyze the spatial relationships between sources of pollution burdens and the socio-
demographic characteristics of potentially affected populations. GIS technology is
particularly well-suited for EJ research because it allows for the integration of multi-
ple data sources (e.g., location of polluting facilities and population characteristics),
representation of geographic data in map form, and the application of various spa-
tial analytic techniques (e.g., buffering) for proximity analysis (Zandbergen and
Chakraborty, 2006).

With GIS, it has become increasingly prevalent to try to map instances of
environmental injustice, usually by geographically plotting facilities or land uses
suspected of posing an environmental and human health hazard or risk, and then
determining the racial, ethnic, and socioeconomic characteristics of the potentially
affected populations compared with a reference population. This often results in dra-
matic maps showing toxic facilities concentrated in areas with high proportions of
African-Americans, Latinos, or Native Americans (Burke, 1993; Clarke and Gerlak,
1998; Glickman and Hersh, 1995; Maantay et al., 1997; United Church of Christ,
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1987, 2007). Mapping became a favored method among researchers attempting to
determine the existence of environmental injustice. Additionally, the wealth of envi-
ronmental and socio-demographic data now available on the Internet, as well as
the proliferation of websites with interactive mapping applications available, have
brought environmental justice mapping within reach of virtually anyone.

Although such maps can be unusually effective in visually demonstrating the
disproportionate spatial distribution of noxious or hazardous facilities, these maps
have also been criticized for being misleading and inaccurate, and their findings
have often been contradicted by other spatial analyses. Mapping a phenomenon
such as environmental injustice is not a straightforward exercise, and the difficul-
ties encountered in producing such spatial analyses leave the maps open to a variety
of interpretations and second-guessing. Just as no map can be viewed as an objec-
tive embodiment of the real world, maps depicting environmental injustice are also
social constructions, and therefore subjective and based on assumptions (Dorling
and Fairbairn, 1997; Wood, 1992).

The efficacy of GIS to pinpoint environmental injustices and, especially, the
health impacts of pollution, has been questioned, and many researchers who use
GIS have commented upon the challenges and limitations inherent in this method
of spatial analysis (Clarke et al., 1996; Dunn et al., 2001; FitzGerald et al., 2004;
Jacquez, 2000; Jarup, 2004; Kulldorff, 1999; Maantay, 2002; McMaster et al.,
1997; Moore and Carpenter, 1999; Richards et al., 1999; Rushton et al., 2000;
Sheppard et al., 1999; Vine et al., 1997; Wall and Devine, 2000; Yasnoff and
Sondik, 1999). These publications document many of the spatial and attribute data
deficiencies and methodological problems of using GIS to make the connections
amongst proximity to pollution, exposure, health outcomes, and the location of vul-
nerable populations. For instance, geographic considerations in research design that
can significantly influence the analysis and results but can be difficult to optimize
include the delineation of the study area extent, determining the level of resolu-
tion and the unit of spatial data aggregation, and estimating the areal extent of
exposure, as well as the various problems encountered in trying to statistically ana-
lyze and summarize spatial data. Due to the principle of spatial autocorrelation,
which states that data from locations near one another in space are more likely
to be similar than data from locations remote from one another, spatial data is
by its very nature not randomly distributed, as traditional statistical approaches
require (Tobler, 1979). Spatial autocorrelation, which is an inherent characteristic
of geographically referenced data, thus becomes an impediment to the application
of conventional statistical tests. These limitations are discussed in more detail in
Chapter 17.

However, it is feasible to develop methods and tools for producing more mean-
ingful spatial analyses, and recently health geographers and other researchers have
been using GIS techniques effectively to show the correspondence amongst factors
such as proximity to hazardous facilities and land uses, adverse health outcomes,
disproportionate exposure and risk, and health disparities. This chapter reviews
and assesses the methods most commonly used by environmental health justice
researchers, as well as some of the more recent cutting-edge methods.
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5.1.2 Environmental Justice Research Findings

The independent variables for most EJ studies are the population characteristics of
the proximate and the reference populations, which typically include both socioeco-
nomic status (SES) and race/ethnicity, or, occasionally, one or the other. Variables
serving as proxies for SES are median household income, per capita income, per-
cent owner-occupied homes, percent with public assistance income, percent below
poverty level, and percent without a high school diploma, or some combination of
several. The US. Census is usually the source for this socio-demographic informa-
tion, although it is recognized as being incomplete and inconsistent from census to
census, and even within any given census. Racial categories especially are fraught
with ambiguity, and have changed dramatically over the decades, making longitu-
dinal studies difficult and inaccurate. Residential segregation is a less-commonly
explored factor, but one which poses environmental justice implications that could
likely shed light on the connections between race and SES, as well as exposure to
hazardous sites (Morello-Frosch and Jesdale, 2006).

Air pollution is the most common environmental burden examined in EJ studies,
which typically measure residential proximity to sites that are pollution sources,
including high-volume roads, power plants, and industrial facilities emitting air pol-
lution. The dependent variable has been measured in various ways (as outlined more
fully in a following section): presence of hazards, number or density of hazards, dis-
tance to hazards, or a measure of its magnitude, in terms of quantity of pollutants,
toxicity, or health risk.

Aside from air pollution, other EJ studies focus on environmental burdens such
as proximity to industrial zones and the characteristics of populations living near
intensification of major industrial zones (Maantay, 2001); access (and lack thereof)
to parks and active recreational spaces (Maroko et al., 2009; Talen, 1997; Talen and
Anselin, 1998; Wolch et al., 2005); proximity to flood-prone areas (Maantay and
Maroko, 2009); Superfund sites (Baden et al., 2007; Cutter et al., 1996); hazardous
waste transfer, storage, and disposal facilities (TSDFs) (Anderton et al., 1994; Boer
et al., 1997; Bolin et al., 2002; Cutter et al., 1996; Fricker and Hengartner, 2001;
Goldman and Fitton, 1994); solid waste landfills (Been and Gupta, 1996; Higgs and
Langford, 2009; Mohai and Saha, 2007; and the US. GAO, 1995); and noise pol-
lution from airports (Most et al., 2004). The preponderance of these studies also
found a positive spatial correspondence between minority/socio-economic status
and proximity to hazards.

In many of the EJ studies, race has a consistent spatial correspondence with
the location of hazardous facilities and land uses, and a concomitant potential for
disproportionate environmental exposures and disease burdens (Apelberg, 2005;
Chakraborty, 2009; Grineski, 2007; Linder et al., 2008; McMaster et al., 1997;
Mirabelli et al., 2006; Morello-Frosch et al., 2001; Morello-Frosch and Jesdale,
2006; Pastor et al., 2005; Perlin et al., 1995; Pollock and Vittas, 1995). A previous
literature review by Maantay (2002) on studies conducted throughout the 1990s
overwhelmingly found disproportionate burdens based on race, and most of the



5 Proximity Analysis for Exposure Assessment 115

studies also found disproportionate burdens based on income. However, race tended
to be predictive of disproportion even when controlling for SES.

The rest of this chapter explores how proximity to environmental hazards and
potential exposure to their adverse health effects have been analyzed in previous EJ
studies. More specifically, we examine how the assessment of differential proxim-
ity to environmental health hazards in quantitative EJ research has evolved from
comparing the prevalence of minority or low-income populations in pre-defined
units hosting pollution sources and discrete buffer zones to more refined methods
that utilize precise distances between hazards and people, air dispersion models,
and modeled estimates of health risk from ambient toxic exposure. Methods used
to estimate the number and socio-demographic characteristics of people residing
in areas potentially exposed to hazards are also discussed, as well as emerging
geostatistical techniques that address specific limitations of conventional statistical
methods.

5.2 Estimating the Boundaries of Adverse
Environmental Exposure

A variety of spatial analytical approaches have been used in EJ research to mea-
sure proximity to environmental hazard sources and estimate the boundaries of
areas potentially exposed to their adverse effects. In spite of specific differences,
the methodologies that have been employed can be classified into three broad cat-
egories, as described in this section: spatial coincidence analysis, distance-based
methods, and pollutant fate and transport modeling.

5.2.1 Spatial Coincidence Analysis

Spatial coincidence, in context of EJ research, refers to a technique that assumes
potential exposure to environmental health hazards is restricted to the boundaries
of pre-defined geographic entities or administrative units (e.g., ZIP codes, census
tracts, or block groups) that contain such hazards. Several different methods have
been used to quantify potential exposure to hazards within census unit, as shown
in Table 5.1. The most widely used and traditional approach, referred to as unit-
hazard coincidence (Mohai and Saha, 2006), utilizes the location of a hazard within
each spatial unit as a surrogate for environmental exposure. The socio-demographic
characteristics of units containing a hazard (host units) are statistically compared
to all others (non-host units) in the study area to evaluate disproportionate prox-
imity or exposure. Several influential and widely-cited EJ studies conducted at the
national level have used the presence or absence of hazardous facilities within ZIP
codes (e.g., United Church of Christ, 1987; Goldman and Fitton, 1994) or census
tracts (e.g., Anderton et al., 1994; Been, 1995) to determine disproportionate risk
burdens. National and state level studies have even used the county as a spatial unit
for coincidence analysis (e.g., Hird, 1993; Daniels and Friedman, 1999).
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Table 5.1 Methodology for spatial definition of proximity and potential exposure to
environmental hazards

Approach Risk indicator Examples: author and year of study

Spatial
coincidence
analysis

Presence of
hazard
(unit-hazard
coincidence)

United Church of Christ 1987; Burke, 1993; Hird, 1993;
Anderton et al., 1994; Goldman and Fitton, 1994;
Been, 1995; Been and Gupta, 1996; Cutter et al.,
1996; Boer et al., 1997; Daniels and Friedman, 1999;
Fricker and Hengartner, 2001; Boone, 2002; Taquino
et al., 2002; Walker et al., 2005; Baden et al., 2007

Total number or
density of
hazards

Burke, 1993; Cutter and Solecki, 1996; Ringquist, 1997;
Tiefenbacher and Hagelman, 1999; Fricker and
Hengartner, 2001; Mennis and Jordan, 2005

Total quantity of
emitted
pollutants

Bowen et al., 1995; Kriesel et al., 1996; Boer et al.,
1997; Tiefenbacher and Hagelman, 1999; Daniels and
Friedman, 1999; Bolin et al., 2000

Toxicity-weighted
quantity of
pollutants

Bowen et al., 1995; Perlin et al., 1995; McMaster et al.,
1997; Brooks and Sethi, 1997; Bolin et al., 2000

Distance-based
analysis

Discrete distance
from hazards
(fixed buffer)

Glickman, 1994; Zimmerman, 1994; US GAO 1995;
Glickman and Hersh, 1995; Chakraborty and
Armstrong, 1997; Neumann et al., 1998; Perlin et al.,
1999, 2001; Sheppard et al., 1999; Bolin et al., 2000,
2002; Altas, 2002; Baden and Coursey, 2002; Boone,
2002; Pastor et al., 2004; Mohai and Saha, 2006,
2007; Walker et al., 2005; United Church of Christ,
2007; Kearney and Kiros, 2009; Mohai et al., 2009

Continuous
distance from
hazards

Pollock and Vittas, 1995; Gragg et al., 1996; Stretesky
and Lynch, 1999; Cutter et al. 2001; Margai, 2001;
Mennis, 2002; Waller et al., 1999; Zandbergen and
Chakraborty, 2006; Downey, 2006; Chakraborty and
Zandbergen, 2007; Fitos and Chakraborty, 2010

Pollutant fate and
transport
modeling

Geographic plume
analysis

Glickman, 1994; Glickman and Hersh, 1995;
Chakraborty and Armstrong, 1997, 2001;
Chakraborty et al., 1999; Chakraborty, 2001; Margai,
2001; Dolinoy and Miranda, 2004; Most et al., 2004;
Fisher et al., 2006; Bevc et al., 2007; Maantay, 2007

Plume-based
health risk
estimate

Morello-Frosch et al., 2001; Bouwes et al., 2001; Ash
and Fetter, 2004; Apelberg et al., 2005; Pastor et al.,
2005; Morello-Frosch and Jesdale, 2006; Sicotte and
Swanson, 2007; Gilbert and Chakraborty, 2008;
Linder et al., 2008; Chakraborty, 2009; Williams,
2010

The choice of spatial unit to represent the host area has been subject of con-
siderable debate in the EJ literature (McMaster et al., 1997; Mennis, 2002) and
researchers have examined how EJ results from the unit-hazard coincidence method
vary across multiple spatial scales (Glickman and Hersh, 1995; Cutter et al., 1996;
Taquino et al., 2002; Baden et al., 2007). Although these studies are not compa-
rable because of specific dissimilarities in study area and hazard examined, their
findings suggest that different units of analysis potentially lead to different con-
clusions regarding explanatory factors such as race or income. Data aggregated at
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higher levels such as a county or metropolitan area (coarse spatial resolution), how-
ever, have been documented to be less reliable as indicators of disproportionate
burdens than data aggregated to smaller units (finer spatial resolution) such as cen-
sus block groups (McMaster et al., 1997; Sheppard et al., 1999; Maantay, 2002). It
is generally acknowledged that using the smallest practicable unit of analysis yields
the most accurate results (Maantay, 2007), while the use of larger areal units often
increases the strength and significance of statistical relationships between environ-
mental risk indicators and socio-demographic variables (Cutter et al., 1996; Taquino
et al., 2002).

Regardless of the areal unit selected, there are several limitations associated with
the unit-hazard coincidence method. First, most applications do not usually distin-
guish between spatial units that host one environmental hazard and those in which
multiple hazards are located. Second, this approach does not account for boundary
or edge effects. These effects deal with the possibility that a hazardous facility could
be so close to the boundary of its host spatial unit that a neighboring non-host unit
could be equally exposed to pollution. Unless the hazard is located near the cen-
ter of the spatial unit, the representativeness of the socio-demographic data used
to analyze EJ becomes questionable. Third, the unit-hazard coincidence method
assumes that the adverse impacts of environmental hazards are confined only to
the boundaries of their host units. However, pre-defined geographic entities such as
census units or ZIP code areas are unlikely to represent the shape or size of the area
potentially exposed to the entire range of health hazards associated with a polluting
facility.

Figure 5.1 depicts the location of industrial toxic facilities across census tracts in
a hypothetical county and illustrates the limitations of the unit-hazard coincidence

Fig. 5.1 Spatial coincidence analysis: selection of host census units
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method. Most of these facilities are located near the boundaries of multiple tracts
and closer to adjacent non-host tracts than to the far end of their own host tract.
Given the spatial distribution of these toxic facilities, it appears unlikely that their
adverse effects are confined solely to their host units. An additional limitation is that
all host tracts are treated equally, although the number of facilities within each host
tract ranges from one to three.

The inability to distinguish between host units based on the number or mag-
nitude of hazards can be addressed by summing the number of facilities or the
amount of pollutants released within each unit. Several EJ studies have extended
the basic spatial coincidence approach by estimating the frequency of toxic facili-
ties within census tracts (Burke, 1993; Fricker and Hengartner, 2001) and ZIP codes
(Ringquist, 1997), as well as the number of airborne toxic releases within counties
(Cutter and Solecki, 1996; Tiefenbacher and Hagelman, 1999). Since certain EPA
databases such as the Toxic Release Inventory (TRI) provide detailed data on annual
quantities of toxic chemicals released at each facility, a more refined assessment of
the magnitude of pollution released within each host unit is possible. While sev-
eral EJ studies have relied on the pounds of emitted pollutants from TRI facilities,
others have used chemical toxicity indicators to weight annual release for each spa-
tial unit, as indicated in Table 5.1. Since the TRI database does not include toxicity
data for released chemicals, researchers have utilized surrogate measures such as
threshold limit values (TLVs) to weight the pounds of emissions for each pollutant.
Although TLVs are available for many TRI chemicals, it remains a problematic
index for health risk and equity assessment because it was developed and intended
to only assess occupational safety among a healthy worker population (Maantay,
2002).

The incorporation of data on the quality and quantity of pollution emitted from
each hazard source have allowed researchers to distinguish between host spatial
units on the basis of the magnitude of potential environmental risk and improve upon
the unit-hazard coincidence method that examines the mere presence of hazards.
Applications of spatial coincidence analysis that utilize emissions or toxicity data,
however, are still limited by their inability to: (a) consider the exact geographic
location of the hazard within the host spatial unit, and (b) determine the geographic
extent of potential exposure to the hazard.

5.2.2 Distance-Based Analysis

Several limitations of the spatial coincidence approach can be addressed by mea-
suring disproportionate proximity or exposure on the basis of the distance from
environmental hazards to surrounding spatial units. A variety of simple and
advanced distance-based techniques have been suggested and implemented in the
EJ research literature. The most widely used method is buffer analysis, a spatial ana-
lytic technique provided by GIS software for creating new polygons around point,
line, or area features on a map. A large number of EJ studies have used GIS-based
circular buffers around point sources of hazards to identify areas and populations
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Fig. 5.2 Circular buffers of 0.5 mile radius around toxic facilities

exposed to their adverse effects (Table 5.1). The socio-demographic characteristics
of areas lying inside buffer zones are statistically compared to the rest of the study
area (outside the buffers) to determine disproportionate proximity or exposure to
the hazards of concern. Figure 5.2 provides a typical example of buffer analysis,
based on circles of radii one-half mile centered at each toxic facility. The radius of
circular buffers in EJ studies have ranged from 100 yards (Sheppard et al., 1999)
to 3 miles (Mohai and Saha, 2006). Distances of 0.5 and 1.0 mile from facilities of
concern have been used most frequently (Glickman, 1994; Zimmerman, 1994; US
GAO, 1995; Chakraborty and Armstrong, 1997; Neumann et al., 1998; Bolin et al.,
2000; Baden and Coursey, 2002; Boone, 2002; Maantay, 2007; Mohai and Saha,
2007; Mohai et al., 2009; Kearney and Kiros, 2009). Instead of using a single radius
or buffer, several studies have constructed multiple circular rings at increasing dis-
tances from hazard sources (e.g., Neumann et al., 1998; Perlin et al., 1999, 2001;
Sheppard et al., 1999; Atlas, 2002; Pastor et al., 2004; Walker et al., 2005). To dif-
ferentiate between buffers, some EJ studies have even estimated release volumes or
toxicity-weighted emissions within a fixed radius of each TRI facility in the study
area (e.g., Neumann et al., 1998; Bolin et al., 2002).

Buffer analysis provides a more accurate geographic representation of environ-
mental exposure than the spatial coincidence because it does not assume that the
adverse effects are confined to the boundaries of host spatial units. There are, how-
ever, several limitations associated with its application in EJ analysis. First, the
facility or hazard representing the center of the circle is assumed to be small enough
to be treated as a point. For undesirable land uses such as Superfund sites that are
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large in size, a circular buffer may not accurately depict the area surrounding the site
if the radius is too small. Some hazardous sites need to be delineated as a polygon
instead of a point and the buffer should be constructed around the polygon (Liu,
2001). Although previous EJ studies have not considered this issue, the shape and
size of the hazard source needs to be first examined before deciding which type of
buffer is appropriate.

A second limitation is that radius of the circular buffer is usually chosen arbitrar-
ily and buffers around all hazards in a study area have the exact same radius. The
nature and quantity of hazardous substances stored or released at each individual
facility have been rarely incorporated in the determination of buffer radii to reflect
the spatial extent of potential exposure. The operational parameters of emission
releases (e.g., release height, exit velocity, exit temperature) are also not typically
considered in the determination of the buffer size. A third problem is the underlying
assumption that the adverse effects of a hazard are restricted only to the speci-
fied circular area or distance, while and areas outside the buffer remain unaffected.
While this binary or dichotomous assumption makes comparisons convenient, the
results are highly sensitive to the choice of buffer radius, as demonstrated in EJ
studies utilizing more than one circle around facilities of concern. In addition, a
discrete measurement (e.g., within 1 mile of a facility) is unlikely to reflect a more
continuous or gradual reduction in environmental exposure with distance from the
hazard. Using multiple circular buffers can overcome this limitation to a certain
degree, but the determination of the number of buffers to use and choice of radii
remain ambiguous and do not necessarily result in a more accurate representation
of potential exposure (Zandbergen and Chakraborty, 2006).

Continuous distances, based on the calculation of the exact distance between
locations of the potentially exposed population and environmental hazards, repre-
sent an alternative to the use of discrete buffer analysis. Several EJ studies have
utilized the distance from the centroid of each census tract or block group to their
nearest hazard source as an indicator of proximity (Pollock and Vittas, 1995; Gragg
et al., 1996; Stretesky and Lynch, 1999; Margai, 2001; Mennis, 2002). The analy-
sis of continuous distances can be enhanced by utilizing a cumulative distribution
function (CDF). A CDF is typically depicted as a graph that provides the number
or percentage of observations falling below every threshold value. Applied to any
set of hazard sources, a CDF can be plotted to indicate how the size of a potentially
exposed population (as a percentage of the total in the study area) increases with
proximity.

Figure 5.3 depicts a pair of CDF curves that compare the location patterns of
two racial subgroups with respect to a set of hazardous facilities in a hypotheti-
cal county. The CDFs representing the cumulative proportions of the non-White
and White population in the county are depicted as a function of distance to the
nearest facility, estimated using block group data. The collective percentage of peo-
ple in both subgroups increases (0–100) as distance from the facilities increase. If
the CDF curve for non-Whites is higher than the curve for Whites at any specific
distance, the percentage of the county’s non-White population residing within that
distance of their nearest facility exceeds the percentage of the White population. The
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Fig. 5.3 Cumulative distribution functions for hazard proximity: comparing racial characteristics
of the population

limitations of conventional buffer analysis based on arbitrary and discrete distance
values can also be assessed from Fig. 5.3. A circular buffer of radius smaller than
0.75 mile would indicate almost similar percentages of non-White and White res-
idents, or no evidence for disproportionate proximity. A buffer analysis based on
a radius of 1 or 2 miles, in contrast, would yield a significantly higher non-White
proportion and a different result. Since discrete buffer distances are typically cho-
sen without knowledge of the actual empirical CDF, our example indicates that this
approach could lead to an inaccurate characterization of environmental exposure and
biased results. Several EJ studies have demonstrated that the CDFs are particularly
well-suited for assessing disproportionate proximity because they overcome the lim-
itations of choosing arbitrary and discrete buffer distances (Waller et al., 1999;
Zandbergen and Chakraborty, 2006; Chakraborty and Zandbergen, 2007; Fitos and
Chakraborty, 2010).

Instead of assuming that the adverse effects of a hazard decline with distance
in a linear fashion, a few studies have utilized curvilinear distance decay functions
to model residential proximity. Pollock and Vittas (1995) hypothesized three func-
tional forms of exposure (linear, square root, and natural logarithm) with respect
to distance from TRI facilities in Florida, and selected the natural logarithm of
the distance to the nearest facility as a proxy for exposure. A GIS-based distance
decay modeling technique was developed by Downey (2006) and applied to exam-
ine proximity to TRI facilities in Detroit. While this technique was found to be
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flexible enough to incorporate any appropriate distance decay function, several
different curvilinear and reverse curvilinear functions were used to estimate neigh-
borhood proximity to TRI activity. An inherent limitation of this distance decay
approach is that researchers are unaware of the actual and precise rate at which
the adverse impacts of a hazard decline with increasing distance. The mathematical
functions used to calculate distance decay are typically based on assumptions about
the distance decay process rather than precise knowledge (Downey, 2006).

Although distance-based approaches for EJ analysis have evolved from the use
of discrete circular buffers to continuous functions, there are still limited by the
fact that proximity many not always provide a valid proxy for exposure to pol-
lution. Additionally, distance-based methods fails to consider directional biases in
the distribution of environmental hazards by assuming that their adverse effects are
identical and uniform in all directions. Although physical processes do not always
operate in a symmetrical or isotropic manner, distance-based analyses assume that
toxic exposure is not dependent on wind direction and the factors that influence the
movement and dispersal of pollutants.

5.2.3 Pollutant Fate and Transport Modeling

To provide a more accurate spatial representation of the area potentially exposed to
the adverse effects of a hazard, several EJ studies have used detailed information
on toxic chemical emissions and local weather conditions to model the environ-
mental fate and dispersal of pollutants released from the hazard source. Geographic
plume analysis is a methodology that integrates air dispersion modeling with GIS
to estimate areas and populations exposed to airborne releases of toxic substances
(Chakraborty and Armstrong, 1996, 1997). Dispersion models typically combine
data on the volume and physical properties of a released chemical with site-specific
information and atmospheric conditions to estimate pollutant concentrations down-
wind from the emission source. This information is used to identify the spatial
extent or boundary of the area potentially exposed to the chemical’s spreading
plume, or the plume footprint. The footprint represents the area where ground-
level concentrations of the pollutant are predicted to exceed a user-specified limit
(Fig. 5.4).

EJ studies using geographic plume analysis have often relied on ALOHA (Areal
Locations of Hazardous Atmospheres), an air dispersion model developed by the
National Oceanic and Atmospheric Administration (NOAA) and the EPA to sup-
port emergency responses to hazardous chemical accidents. The ALOHA model
has been applied to generate, at each facility of concern, a single plume foot-
print (Chakraborty and Armstrong, 1996), a composite footprint based on historical
weather patterns (Chakraborty and Armstrong, 1997, 2004), or plume-based cir-
cular buffers whose radii are based on worst-case chemical release scenarios
(Chakraborty, 2001; Margai, 2001; Chakraborty and Armstrong, 2001). EJ studies
have also utilized the Industrial Source Complex Short Term (ISCST) air disper-
sion model (Dolinoy and Miranda, 2004; Fisher et al., 2006; Maantay et al., 2009),
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Fig. 5.4 A typical plume footprint for a hypothetical chlorine release scenario using the ALOHA
model

ash deposition models (Bevc et al., 2007), and various noise pollution models
(Chakraborty et al., 1999; Most et al., 2004).

The application of pollutant fate and transport modeling allows the concentration
of toxic pollutants released from a hazard source and their estimated health risks to:
(a) decline continuously with increasing distance from the release source; and (b)
vary according to compass direction. Plume modeling thus addresses the problems
of previous analytical approaches which assume that residing in either a census unit
containing a hazard (spatial coincidence analysis) or within a specific distance from
a hazard (distance-based analysis) leads to environmental exposure or adverse health
risk. There are, however, certain limitations associated with this approach. First, dis-
persion models typically require large volumes of site-specific and facility-specific
information, such as the facility’s stack height and diameter, gas exit velocity and
exit temperature, detailed emissions data on each chemical released (e.g., average
hourly quantities and rates), and meteorological information (e.g., average monthly
or hourly wind speed and direction, often for an entire year). The input data neces-
sary for plume modeling is rarely available for all hazard sources in a study area.
Second, some dispersion models such as ALOHA assume that topography is always
flat and are unable to provide accurate concentration estimates when the atmosphere
is stable or wind speeds are low. Third, the task of creating a plume modeling data
set that includes all toxic facilities and chemical emissions in a large study area can
be difficult, time-consuming, and expensive. As a consequence, a limited number of
national or regional scale plume model data sets have been constructed and those
that exist focus only on specific types of hazards.
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Data sets derived from pollutant fate and transport modeling that cover the entire
US include the Risk-Screening Environmental Indicators (RSEI) and National-
Scale Air Toxic Assessment (NATA). These national scale databases developed
by the EPA are particularly suitable for EJ research, not only because they allow
researchers to estimate the potential health risks associated with specific environ-
mental hazards and analytical units, but also because the plume modeling and risk
assessment techniques used to derive these data take into account a number of fac-
tors such as wind speed, wind direction, air turbulence, smokestack height and the
rate of chemical decay and deposition.

The RSEI model can be used to estimate potential human health risks from air
pollutants based on toxicity and atmospheric dispersion of chemicals emitted by
facilities in the EPA’s TRI database. For each individual TRI site and pollutant, the
RSEI integrates information on the facility location, the quantity and toxicity of the
chemical, fate and transport through the environment, the route and extent of human
exposure, and the number of people affected for up to 44 miles (101 km) from the
source of release. The ambient concentrations of each TRI pollutant is determined
for each square kilometer of the 101-km by 101-km grid in which the facility is
centered. EJ studies have merged risk scores from the RSEI grids with census socio-
demographic data to analyze disproportionate exposure to TRI pollutants in the
entire US (Bouwes et al., 2001; Ash and Fetter, 2004) and in Philadelphia (Sicotte
and Swanson, 2007) and Tampa Bay (Williams, 2010). Since the toxic pollution
plumes used to obtain the risk estimates can extend in any direction for up to 44
miles from a TRI facility, the RSEI modeling technique had the advantage of allow-
ing hazards and emissions in one spatial unit to affect people living in other units.

The NATA was designed to guide air pollution reduction and related priori-
tization efforts, has also emerged as a valuable data set for estimating exposure
concentrations and public health risks associated with inhalation of air toxics from
different types of emission sources. While criteria air pollutants include common
contaminants such as particulate matter or ozone, air toxics (also known as haz-
ardous air pollutants) include 188 specific substances identified in the Clean Air Act
Amendments of 1990 that are known to or suspected of causing cancer and other
serious health problems, including respiratory, neurological, immune, or reproduc-
tive effects (US EPA, 2008). Tract level estimates of lifetime cancer risk from the
1996 NATA have been utilized for EJ analysis in Maryland (Apelberg et al., 2005),
California (Pastor et al., 2005) and 309 metropolitan areas of the US (Morello-
Frosch and Jesdale, 2006). Recent studies have used the 1999 NATA to examine
the disproportionate distribution of cancer and respiratory risks in Florida (Gilbert
and Chakraborty, 2008, 2011), and the metropolitan areas of Houston (Linder et al.,
2008) and Tampa Bay (Chakraborty, 2009). An important advantage of the NATA
is spatial compatibility with census socio-demographic data–the modeled risk esti-
mates are available at the level of spatial units (e.g., tracts) that provide residential
population data. Additionally, it provides health risk estimates for ambient exposure
to multiple categories of emission sources. The NATA thus allows EJ analysis to
extend beyond major stationary sources such as TRI facilities and include smaller
emitters, as well as various off-road and on-road mobile sources.
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Although plume modeling techniques and data sets represent a significant
improvement over the spatial coincidence and distance-based approaches, these are
often based on necessary and problematic assumptions and may not be as accu-
rate as many researchers think. More importantly, their use is limited to studies that
focus on specific types of public health risks and hazards. It is important to con-
sider that health risks associated with exposure to pollution may not be the only
set of risks imposed by environmental hazards. The presence of a hazard can also
adversely affect nearby property values, perceptions of local health risks, psycholog-
ical stress, local employment opportunities, sense of community and local economic
activity (Downey, 2006). These potential negative consequences cannot be analyzed
on the basis of plume modeling methods and data.

5.3 Estimating Population Characteristics of Proximate Areas

After delineating the boundaries of areas where people living could potentially be
exposed to the adverse effects of environmental hazards, EJ studies have employed a
variety of techniques to estimate the number and socio-demographic characteristics
of people residing in such areas. These techniques can be classified into two basic
categories, depending on the level of spatial aggregation of the residential popu-
lation data: point interpolation and areal interpolation. When the addresses of all
individuals or households relevant to the study are available and can be located on
a map, point interpolation is the appropriate method. Street address information
is typically used in conjunction with a detailed street network, and the geocod-
ing tools of GIS software are utilized to determine an accurate location of each
individual or household in the study area. The number and the socio-demographic
characteristics of individuals or households potentially exposed to a hazard can be
estimated based on points located inside a distance-based or plume-based buffer
(point-in-polygon overlay). The earliest application of this method can be found
in a study conducted by Mohai and Bryant (1992) on hazardous waste facilities in
Detroit. Data from a probability sample survey were utilized to determine if the
racial and economic status of respondents living within circular buffers of radii 1
and 1.5 miles were different from those residing outside the buffers. Subsequent EJ
studies have relied on point interpolation to determine the number of self-identified
individuals with special needs in Cedar Rapids, Iowa (Chakraborty and Armstrong,
2001), characteristics of survey respondents in Fort Lauderdale, Florida (Bevc et al.,
2007), and the racial/ethnic status of school children in Orange County, Florida
(Chakraborty and Zandbergen, 2007). A recent study (Mohai et al., 2009) utilized
addresses of survey respondents in the American Changing Lives Study to exam-
ine the socio-demographic characteristics of residents living within one mile of TRI
facilities.

Although point interpolation can be easily implemented, it requires data on the
street addresses of all individuals relevant to the analysis. Data on demographic
and socioeconomic characteristics of individuals or households not publicly avail-
able and can only be obtained through an extensive social survey that encompasses
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the entire study area. Consequently, EJ studies have relied mainly on socio-
demographic information collected by the US. Census and other agencies that are
aggregated at the level of pre-defined administrative boundaries or census units. If
the area potentially exposed to a hazard is represented by a distance-based or plume-
based buffer, the shape and size of the buffer area is unlikely to match the underlying
census units that contain aggregated population data (see Fig. 5.2 or Fig. 5.4).
A method of areal interpolation (polygon-on-polygon overlay) is necessary to trans-
fer data from census units to the boundaries of areas potentially exposed to the
adverse effects of a hazard. Several different areal interpolation techniques have
been utilized in previous EJ studies. These are illustrated in Fig. 5.5, using a circular
buffer around a single facility of concern.

The simplest method is polygon containment, where all spatial units or census
polygons that either intersected or entirely enclosed by a distance-based or plume-
based buffer are selected (Chakraborty and Armstrong, 1997). Also referred to as
adjacency analysis (Most et al., 2004) or the boundary intersection method (Mohai
and Saha, 2006), population characteristics of any given buffer zone are derived
through a simple aggregation of all census units that are within or in contact with

a b

c

Fig. 5.5 Using areal interpolation to select census polygons within circular buffer. a Polygon
containment. b Centroid containment. c Buffer containment
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the buffer (Fig. 5.5). This method also does not make any distinction between cen-
sus polygons that are completely enclosed and those that are partially enclosed by
the original buffer. It could lead to an overestimation of the potentially exposed pop-
ulation if people residing in a partially enclosed census unit are concentrated in a
location that falls outside the buffer boundary. A variation of this method is to use a
cutoff criteria to exclude certain census units that are partially contained within the
buffer. The most common application is to only include census units that have more
than half of their area within the buffer zone, referred to as 50% area containment
method (Mohai and Saha, 2006, 2007).

The second method for estimating population characteristics within a buffer zone
is known as centroid containment (Chakraborty and Armstrong, 1997; Maantay
and Maroko, 2009). This technique selects only those census polygons whose geo-
graphic centers or centroids are located within the buffer, thus limiting the number
of census units that can be included (Fig. 5.6). The effective buffer zone obtained
through both polygon and centroid containment, however, will not resemble the
original (distance-based or plume-based) buffer because it is based on the bound-
aries of the selected census polygons. Additionally, this method is likely to provide
inaccurate estimates of the potentially exposed population if the actual residences
of people in census units intersected by the buffer are not concentrated near their
centroid.

The third and most widely-used method is buffer containment (Chakraborty and
Armstrong, 1997). This method includes all census units lying within the buffer and
a fraction of the population from units that are intersected by the buffer. Recent stud-
ies have referred to this approach as the areal apportionment method (Mohai and
Saha, 2006; Kearney and Kiros, 2009). This particular method has the advantage

Fig. 5.6 Cadastral dasymetric mapping: using land parcels to estimate households within a buffer
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of retaining the area and shape of the original circle or plume used to delineate the
buffer zone. An areal weighting technique is typically utilized to determine the pop-
ulation characteristics of the buffer zone (Maantay and Maroko, 2009). Specifically,
the population of each census unit is weighted by the proportion of its area that falls
inside the circular or plume-based buffer. An important limitation is the assumption
that the population of a census unit and all its characteristics are distributed uni-
formly within its boundary. This could thus to inaccurate estimates of if the actual
residences of people within a census unit are concentrated in specific areas instead
of being dispersed throughout the unit.

As an alternative to areal interpolation, one EJ study has utilized a hybrid method
known as cross-area transformation (Most et al., 2004). The population charac-
teristics of census units that are intersected or partially contained within a buffer
are estimated by borrowing data from the completely contained census units, based
on the remaining area of the buffer zone that falls outside the boundaries of all
fully contained units. In addition to completely excluding census units intersected
by the buffer, this method assumes that any census unit completely enclosed by
a given buffer will adequately reflect the characteristics of people living in the
larger area.

All of these methods have been widely employed in EJ analysis and no single
best technique has emerged. The application of dasymetric mapping in combination
with areal interpolation has been suggested as a promising approach (Holt et al.,
2004; Zandbergen and Chakraborty, 2006; Maantay et al., 2007). This technique
that uses ancillary information such as land use or land cover to redistribute spatial
data in a more accurate and logical manner (Mennis, 2002). Recent studies sug-
gest that cadastral dasymetric mapping represents a meaningful improvement on
the use of the aggregated data when geocoded locations of individuals are unavail-
able (Maantay and Maroko, 2009; Maantay et al., 2008). Figure 5.6 depicts how
boundaries of land parcels can be used to estimate households within a circular
buffer. Additional details such as housing tenure, ownership, and values can also be
utilized to assess socioeconomic characteristics of proximate households.

5.4 Geostatistical Methods

A variety of statistical methodologies have been used to determine if race/ethnicity
or SES is related to indicators of proximity or exposure to environmental hazards. To
compare the characteristics of areas potentially exposed to hazards with those that
are not exposed, two-sample inferential tests of means and proportions have been
utilized. Most EJ studies, however, have relied on linear correlation or multivariate
regression analysis to measure the statistical significance of the association between
environmental risk and relevant socio-demographic characteristics of the residential
population. While least squares regression is an effective and widely used technique
for measuring the strength and significance of relationships between the dependent
and multiple explanatory factors, it is based on two assumptions that are rarely met
by spatially distributed data and variables: independence and homogeneity.
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The independence assumption of linear regression ignores the notion that loca-
tional proximity often results in value similarity when most socio-demographic
variables are mapped. This fundamental concept was articulated by Tobler (1970:
236) as “everything is related to everything else, but near things are more related
than distant things” and is known as Tobler’s first law (TFL) of geography. The
practical implication of TFL is that observations from nearby locations are often
more similar than what can be expected on a random basis. This phenomenon is
known as spatial dependence, and more formally as (positive) spatial autocorrela-
tion. The presence of such autocorrelation can be problematic for standard statistical
tests such as correlation and regression that assume independently distributed obser-
vations and errors. Although EJ analysis is based on spatial data and spatially
distributed variables, most previous studies have assumed observations and error
terms to be independent, thus violating one of the classical regression assump-
tions and ignoring spatial effects that could lead to incorrect inferences about the
significance of explanatory variables representing race/ethnicity or SES.

A large body of literature in geographic analysis has focused on the development
of methods that can be used to detect violations of the independence assumption
and models that account for spatial autocorrelation (Cliff and Ord, 1981; Anselin
and Bera, 1998; Anselin, 2005). Spatial regression models, such as simultaneous
autoregressive (SAR) models, are statistical models that consider spatial dependence
as an additional variable in the regression equation and estimate its effect simultane-
ously with effects of other explanatory variables. The use of spatial regression has
increased in recent years, in part, due to the availability of GIS and user-friendly
spatial analysis software programs such as GeoDa (Anselin, 2005) that are that
capable of implementing the underlying spatial econometric techniques. Recent EJ
studies have utilized spatial regression to explicitly consider the effects of spatial
autocorrelation (Pastor et al., 2005; Grineski and Collins, 2008; Chakraborty, 2009).
Chapter 17 of this volume demonstrates how SAR models can be used to address the
limitations of conventional regression analysis and account for spatial dependence
in EJ analysis.

In addition to independence, the classical linear regression model assumes a gen-
erating process that is considered to be stationary or homogeneous. When applied to
a regression model, this means that a single set of global parameters is adequate to
describe the process and there are no spatial variations in the relationships between
the dependent and independent variables. The use of a single or “global” regression
model for an entire study area, however, assumes model parameters do not vary spa-
tially and ignores local differences in statistical associations between dependent and
independent variables. Since conventional regression models used in EJ research do
not account for this spatial variability and only provide global results for the whole
study region, they have the potential to mask important geographic disparities in
statistical relationships relevant to EJ. Geographically weighted regression (GWR)
is a local spatial statistical technique used to analyze spatial nonstationarity, defined
as when the measurement of relationships among variables differs from location to
location (Fotheringham et al., 2002). Instead of generating a single global regression
equation or one set of regression parameters for an entire study area, GWR produces
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a separate regression equation or a unique set of parameters for each observation or
spatial unit in the study area. Maps generated from GWR analysis can then be used
to investigate how regression diagnostics and the strength of statistical relationships
differ from place to place within a study area, as demonstrated in recent EJ stud-
ies conducted in New Jersey (Mennis and Jordan, 2005), New York (Maroko et al.,
2009), and Florida (Gilbert and Chakraborty, 2011).

Figure 5.7 illustrates, for example, how the nature and significance of the statis-
tical association (values of t-statistic) between cumulative cancer risk from ambient
exposure to hazardous air pollutants, derived from the 1999 NATA, and specific
explanatory variables vary across census tracts in Florida. For each variable or
GWR model coefficient, these maps indicate how the relation between cancer risk
and the proportion of minority or impoverished residents could be significantly
positive in some areas, significantly negative in other areas, and not significant at

Fig. 5.7 Using geographically weighted regression to explore relationships between cumulative
cancer risk from all sources of air toxics (1999) and explanatory variables (2000) in Florida: distri-
bution of local t-statistic by census tract. a Proportion hispanic. b Proportion below poverty line.
c Population per square mile
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other locations, within the same study region (Florida). Traditional multivariate
regression, however, is incapable of uncovering such spatial variation and could
potentially lead to incorrect conclusions regarding disproportionate exposure to
environmental hazards.

5.5 Concluding Discussion

This review has explored how the assessment of proximity and potential expo-
sure to environmental hazards in quantitative EJ research has emerged from
simple coincidence or distance-based methods to more sophisticated techniques
that utilize pollutant fate and transport models or provide modeled estimates of
health risks from cumulative exposure to multiple pollutants and emission sources.
Methodological debates have also evolved from the choice of ZIP code or census
tract for coincidence analysis to the selection of appropriate distance decay func-
tions or geostatistical techniques that are more suitable for analyzing spatial data,
variables, and relationships.

In spite of the methodological improvements in measuring disproportionate prox-
imity and exposure to environmental hazards, EJ research still remains constrained
by several limitations. First, a majority of studies have focused exclusively on night-
time exposure by relying on socio-demographic data from the US. Census. Since
census variables represent residential or night-time populations, they cannot be used
to assess day-time risk. Most studies implicitly assume that people are non-mobile
and are not exposed to pollution at non-residential locations. However, daily mobil-
ity typically results in residents moving to and from various locations, such as to
work or to school. The journey-to-work commute between the suburbs and central
cities could have important implications for EJ research and policy (Chakraborty,
2009). More affluent and White suburban residents, for example, could be spending
a considerable amount of time during the day in census units near downtown loca-
tions that are exposed to adverse health risks. At the same time, minority residents
who commute daily to suburban job locations may face lower levels of exposure
for most of the day, thus reversing the inequity patterns reported in empirical stud-
ies. Future EJ research, however, should explore the use of additional data sources
to construct temporally sensitive models that examine the day-time distribution of
urban populations. Available data that can be used for this purpose include those on
employment and people in day-time institutions such as schools and daycare centers
(McMaster et al., 1997). Such information can be utilized to develop an independent
model of the population distribution for the hours of 7 am to 5 pm to complement
census residential data.

Another limitation in assessing disproportionate proximity or adverse health
effects is the difficulty in obtaining data at a spatial resolution that is sufficiently
detailed to reliably demonstrate the connection between environmental conditions
and the socio-demographic characteristics of populations at risk. As mentioned pre-
viously, the lack of address-specific and individual level data forces most researchers
to use aggregated census data tied to pre-defined geographic entities and rely on
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areal interpolation techniques that are based on simplistic assumptions about the
population distribution. Although interpolation inaccuracies can be reduced by
using spatial units that are smaller in size (i.e., census blocks), socioeconomic vari-
ables are not published by the US. Census at the block level of aggregation. Survey
data has been proposed as an expensive, but useful alternative to examine individ-
ual or household level racial/ethnic and socioeconomic disparities in proximity to
environmental hazards (Mohai et al., 2009). Future EJ research needs to incorpo-
rate local household surveys and techniques such as cadastral dasymetric mapping
to enhance areal interpolation and estimate the characteristics of at-risk individuals
more accurately.

It is also important to consider that although conventional statistical methods
such as linear correlation or multivariate regression are used extensively to analyze
EJ and health disparities, these techniques may not be appropriate for analyzing
geospatial data because they violate classical statistical assumptions of indepen-
dence and homogeneity. Instead of relying only on traditional statistical methods,
future research needs to incorporate geostatistical techniques that are suitable for
analyzing spatial data, variables, and relationships. Increased education in tech-
niques such as SAR or GWR modeling is necessary to encourage new research
incorporating these methods and assist researchers in developing new techniques
that address the limitations of conventional approaches to environmental health
justice analysis.

As scientists continue to examine proximity to environmental hazards and health
disparities by race and SES in order to better understand the persistence of inequity
in exposure to environmental hazards and associated health risks, Morello-Frosch,
Pastor, and Sadd succinctly state their recommended objectives for future research
that scientists should aim to “elucidate how institutional discrimination, uneven
regional development, and a spatialized political economy shape distributions of
environmental hazards, which in turn determine variations in community exposures
and susceptibility to environmental hazards” (Morello-Frosch et al., 2001:572).
Increased access to geographically detailed data sets such as EPA’s NATA, which
offers ongoing evaluations of air toxics and estimates of related health risk, as well
as the refinement of GIS techniques, geospatial analyses, and dasymetric mapping,
provide multiple opportunities for an increasing rigor in environmental health justice
research that can even more effectively serve to advance just and equitable policy.
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Chapter 6
Their Data, Our Cause: An Exploration
of the Form, Function, and Deployment
of Mapping Technologies among Community
Environmental Justice Organizations

Trevor Fuller

Abstract The field of environmental justice offers many examples of the utility
of maps and GIS for illustrating the disproportionate levels of environmental risk
being endured by disadvantaged or marginalized racial, ethnic or income groups.
However, these have predominantly focused on the distribution of environmen-
tal risk rather than focusing on the map-making parties themselves. This research
directs attention towards the use of maps and GIS by “local” environmental justice
organizations in their calls for environmental justice. I focus on activist engagement
with maps and mapping technologies like GIS. Through a survey of community-
based environmental organizations, I examine whether these organizations use maps
and if so, how maps are produced including the sources of mapping knowledge used
in the map-making process. By examining how and why such organizations map
environmental hazards and use GIS, this chapter provides insights into the notion
of GIS mapping as an empowering practice. I assess the types of maps produced
and the data sources used in order to see more clearly potential restrictions on the
power and ability of organizations to counter dominant narratives of their commu-
nities. This research reveals that while these organizations recognize the importance
of maps to their efforts, there are significant differences in the resources and abilities
of environmental justice organizations.

Keywords Environmental justice · Maps · GIS · Community organizations ·
Environmental hazards

6.1 Introduction

The environmental justice movement has long embraced maps as powerful visual-
izations of the environmental burdens faced by minority and low-income citizens.
The field of environmental justice offers many examples of researchers examining
the uneven spatial distributions of environmental hazards (negatives) and positive
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features in relation to the socio-demographic characteristics of places. Research has
revealed many examples of maps and GIS illustrating the disproportionate levels of
environmental risk being endured by disadvantaged or marginalized racial, ethnic
or income groups.

In this chapter, I step away from the academic-centered debates regarding
methodologies for visualizing environmental injustice to instead focus on activist
engagement with maps and mapping technologies through GIS. By conducting a
survey of community-based environmental organizations, I examine whether these
organizations use maps and if so, how maps are produced including the sources of
mapping knowledge used in the map-making process. By examining how and why
such organizations map environmental hazards and use GIS, this chapter will pro-
vide insights into the notion of GIS mapping as an empowering practice. I assess
the types of maps produced and the data sources used in order to see more clearly
potential restrictions on the power and ability of organizations. In particular, this
research seeks to answer the following research questions:

1. Do environmental justice organizations use maps in their efforts? What types of
maps are produced and what sources of data are used?

2. Are these organizations predominantly dependent upon secondary sources of
spatial hazards data, or do they collect their own?

3. How does community-collected environmental hazards data, differ from data
from government sources?

4. How do these organizations perceive the value and power of mapping environ-
mental hazards?

6.2 Literature Review

Environmental justice is defined as “the fair treatment and meaningful involvement
of all people regardless of race, color, national origin, or income with respect to
the development, implementation, and enforcement of environmental laws, regu-
lations, and policies” (US EPA Office of Environmental Justice 2006). Concern
regarding the unequal distribution of environmental hazards first began to enter
public discourse in response to two high profile cases involving allegations by
two predominantly African-Americans communities that were disproportionately
exposed to environmental hazards (Bullard, 1990; United Church of Christ 1987;
US GAO, 1983). This spurred academic research into environmental justice with the
vast majority of studies demonstrating a disproportionate burden of environmental
hazards on minority/low-income populations (Anderton et al., 1994; Bullard, 1990;
Pulido, 2000; Pastor et al., 2001; Buzzelli et al., 2003). More recently, researchers
have begun to examine residents’ activism in response to environmental hazards
(Chambers, 2007; Checker, 2008; Elliott et al., 1999, Wakefield et al., 2001, 2006).
One of the tools community-based environmental groups use in responding to envi-
ronmental injustice is GIS mapping. However, their use (or non-use) of mapping
reflects diverse group and community characteristics.
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6.2.1 Uneven Ability to Map

Environmental justice organizations, like other community organizations, often
need to establish networks of support that cross multiple scales and ideologies, as
they seek funding for training, technologies, and staff (Elwood, 2006). The ability of
groups to engage with “scalar politics and creative alliances”, including the ability
to garner support for GIS assisted activities is uneven (Ghose, 2007). Environmental
justice groups possess different abilities and resources with respect to creating
and maintaining support networks and technological capabilities. Because of these
unequal abilities to access resources (Elwood, 2006; Ghose, 2007; Rouse et al.,
2007), we see wide variation in the funding and skill-set of environmental justice
organizations. Groups that establish strong networks with particular actors gain a
distinct advantage (Ghose, 2007). Uneven abilities to create networks of support
and “professional-looking” visualizations of hazards affect not only groups’ fund-
ing, but also their ability to effectively counter the efforts of more powerful actors.
Gaining access to GIS is what sets the study organizations here apart from one
another.

6.2.2 Co-optation/Resistance

Community groups also adopt different strategies in promoting environmental jus-
tice. Elwood (2006) refutes the notion that community groups must either assume
the role of a “co-opted” group or a resistance group. Rather, groups can shift
their politics in order to “simultaneously cultivate multiple roles”. These multiple
roles, utilized to effect change, play out through three different types of politics
according to Elwood (2006): spatial, institutional, and knowledge. GIS can be
used to convey a group’s spatial knowledge in a way that refutes that of other
actors, and it can be used to claim a particular physical area. Some community
environmental justice organizations recognize the influence GIS has on planning
decisions and the inherent “professionalism” it carries. These organizations are able
to shape and display their protests in a manner amenable to government agencies and
policymakers.

6.2.3 Mapping the Omissions/Emissions

What is mapped is also important. Harley (1989) discusses how maps are social
constructions which are dependent upon the particular agenda of the map-maker. As
such, maps often omit as much information as they reveal (Harley, 1989). Further,
state-created maps are often accepted as legitimate as a map’s ‘authoritative power’
comes from “the scientific aura and official status that accompanies its construc-
tion (Bassett, 1993, p. 2)”. In this way, government-created maps of environmental
hazards may not only present an incomplete picture of the hazard landscape, but
they are often accepted and utilized by the very people living within that hazard
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landscape. However, the power of maps and GIS can also be harnessed to counter
government-created maps (Peluso, 1995) that omit hazards, such as small environ-
mental spills and illegal dumping. To redirect the power of maps for the benefit of
citizens, participatory GIS and community mapping have developed, which can act
as effective counters to the uneven distribution of power and knowledge (Peluso,
1995). McLafferty (2002) illustrated how residents produced a “counter-narrative”
with the aid of outside GIS expertise.

In approaching questions of environmental justice, it is important to account for
“people”s subjective experiences of everyday life’ and their perceptions of envi-
ronmental hazards (Knigge and Cope, 2006; Kwan, 2008). GIS provides a canvas
on which the spatio-temporal components of context can be visualized. Given that
environmental justice is rooted in the “lived spaces” of daily life, GIS offers com-
munity organizations opportunity to record their encounters with environmental
hazards in their neighborhoods. The widespread use of geo-technologies means that
more “ordinary people” are using GIS to create and visualize spatial data and to
represent “everyday life” (Elwood, 2006). This visualization can be powerful as a
“counter-narrative” and is often complemented by other media (photographs, oral
histories, videos).

These literatures suggest that environmental justice organizations may recognize
a power and value in maps for their efforts, but that adoption of mapping will vary
among organizations. I also expect that although most organizations that use GIS
will rely on secondary data, some will generate their own data as a way of creating
counter-narratives.

6.3 Methodology

To assess the use of GIS and mapping by environmental justice organizations, this
research relied upon two data collection methods: (1) an internet-based inventory
of environmental justice organizations’ web pages (see Table 6.1) and (2) an eight-
item questionnaire regarding data sources and perceptions and use of maps. These
two methods were applied in search of the abilities, perspectives, and perceptions of
these organizations regarding the utility and power of maps and GIS in their efforts.

The internet inventory (Fig. 6.1) gathered information regarding whether each of
the organizations use maps and if so, how they use them, who created them and with
what data. 22 environmental justice organizations were selected for this inventory
via a Google-powered search for “community environmental justice organizations.”
This revealed many listings, so the selection of groups was further refined to the
“local” scale (i.e. the city-neighborhood level). The 22 groups have web pages
and as such, are privileged over other organizations that may not have access to
computer-based resources, including mapping technologies. Thus, the sample is
probably not representative of all local environmental justice organizations in the
US. Among this sample, organizations that do use maps were chosen as participants
in the questionnaire.
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Fig. 6.1 Distribution of environmental justice organizations

The web-based inventory revealed that 82% (18 of 22) of the study organiza-
tions use maps (see Table 6.1). To probe in more depth the use of maps by these
organizations, I distributed by email a questionnaire comprising eight open-ended
questions. The questions were designed to elicit information about the organiza-
tion’s familiarity with mapping environmental hazards, the technology/data used,
and the group’s perceptions of the value of maps for their efforts. Eight of 18 orga-
nizations responded to the questionnaire for a 44% response rate. Results of the
survey are discussed in the Discussion section.

6.4 Results

The types of maps produced by these organizations are similar in terms of environ-
mental hazards displayed, such as Toxic Release Inventory sites, Superfund sites,
and hazardous waste treatment, storage, and disposal facilities (TSDFs). What vary
among these organizations are the mapmakers and data sources. Most of the organi-
zations are the sole creators of the maps used although roughly 1/3 rely on outside
groups or firms for map production. In terms of data sources, all of the study orga-
nizations use environmental hazards data provided by some level of government
environmental agency. 55% of the study organizations only use data from the US.
EPA or a government environmental agency. However, 44% of the organizations
gather their own data to supplement government data.
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While most of the maps used by these groups can be accessed by the public
via web pages, only 11% (2 of 18) of the maps can be modified by the public
interactively. Those two organizations are the Little Viejo Environmental Justice
Organization (LVEJO) and Detroiters Working for Environmental Justice (DWEJ).
The amount of modification that can be performed on these maps varies as well
with LVEJO using a Google Earth framework and providing instructions as to how
someone can add their own data to the map. DWEJ offers a US. EPA-created map
(EnviroMapper) described as an “environmental justice geographic assessment
tool” (http://epamap13.epa.gov/ej/EMej.asp?xl=-88.23333&yt=40.135189&xr=-
88.190565&yb=40.083506) and has a limited potential for modification.

6.5 Discussion

Environmental justice organizations use GIS to visualize their daily “life spaces”.
The map(s) they produce are “doing work” by revealing the issues participants face
as these organizations and their constituents struggle “to hold industry and gov-
ernment officials accountable for toxic pollution in their neighborhoods” (www.
lvejo.org). Visualizing this data has power. This power of the map is perceived by
some respondents as being a “mechanism for informing residents” (Greenaction)
and a way to improve residents’ personal knowledge of and response to envi-
ronmental hazards. A map is seen as a tool for advocacy as well as for docu-
menting environmental injustice. As one respondent stated, mapping offers: “an
excellent opportunity to manipulate data and visually see cumulative impacts”
(Ironbound).

Respondents perceive maps as having a power to influence. According to one
respondent, “visual articulation of data can prompt a better understanding of the
issues, and potentially assist change” (Invisible 5). Another impression of maps
is that they “provide credibility for us when advocating for changes” (EHC). By
displaying the disproportionate burden of environmental hazards within predomi-
nantly low-income/minority communities the injustice of this distribution might be
better understood. While these organizations attribute a certain power to the map
itself, the amount of power varies with the types of maps produced. Compare the
mapping activities of LVEJO and the South Jersey Environmental Justice Alliance
(SJEJA). The SJEJA uses maps and provides access to them on their web page. What
it provides is a link to a page named “i-Map NJDEP”, a mapping tool created and
provided by the New Jersey Department of Environmental Protection (NJDEP). The
tool is described by the NJDEP as a mapping tool that can be used by homeowners
to “see what’s in their backyard” (http://www.sjenvironmentaljustice.org/education/
maps.htm). Once at the i-Map web page the NJDEP provides an additional link to
a newer mapping tool titled “NJ-GeoWeb”. The data available for mapping comes
from NJDEP and is therefore restricted to the types of data that the agency wishes
to make available. The mapping tool cannot be modified by the public other than
through selection of data layers. No new data layers can be added by the public.
In this top-down GIS, residents are told by an authoritative party what constitute

http://epamap13.epa.gov/ej/EMej.asp?xl=-88.23333&yt=40.135189&xr=-88.190565&yb=40.083506
http://epamap13.epa.gov/ej/EMej.asp?xl=-88.23333&yt=40.135189&xr=-88.190565&yb=40.083506
www.lvejo.org
www.lvejo.org
http://www.sjenvironmentaljustice.org/education/maps.htm
http://www.sjenvironmentaljustice.org/education/maps.htm
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environmental hazards. Local concerns not captured by NJDEP are omitted from
the GIS maps.

In contrast to the SJEJA GIS, LVEJO provides two interesting examples that real-
ize the “democratizing potential” (Harley, 1989) of mapping and GIS. The first is
a “toxic tour”, which leads participants through the Chicago, Illinois neighborhood
of Little Village, stopping at particular environmental hazards or parks/schools to
not only discuss the impacts of hazards on the community, but also powerfully
place the participant within an environmentally unjust landscape. This perspec-
tive may promote a deeper understanding of the environmental burdens residents
endure. Residents also become more familiar with their neighborhood and the haz-
ards they negotiate along their daily paths. These “toxic tours’ have been a tool of
environmental justice organizations across the US. and this research included three
organizations that offer such tours. LVEJO has taken an additional step by putting
the map of the tour route on its web page so that the public can trace the route and
sites visited. The second form of participatory mapping was created by LVEJO’s
youth organization, El Cilantro. This map rests within a Google Earth frame with a
satellite image of the neighborhood as a backdrop (http://www.elcilantro.org/?page_
id=6). Using the open source Google Earth “MyMap” tool, map readers can collabo-
rate with the organization to become co-producers of an environmental justice map.
Citizens are able not only to add sites to the map, but also to write text describ-
ing each hazard and select symbology that adds to the overall message of the map.
Organizations and citizens alike can contextualize local environmental injustices
by contributing powerful qualitative data. In this way, this map of environmental
injustice is continuously changing and “becoming” (Kitchin and Dodge, 2007).

While many of the study organizations rely partially, if not wholly, upon gov-
ernment sources of data, several of the organizations supplement such data with
self-generated data, also known as “volunteered” geographic data. In this way, orga-
nizations recognize that the data and maps provided by government agencies are
often replete with “omissions” (Harley, 1989). While government data are not nec-
essarily seen as inaccurate, they are often seen as presenting a partial view of the
environmental hazards landscape. Hazards that are seen as too small or innocu-
ous in the eyes of environmental agencies might include illegal dumps, auto shops,
metals/plating shops, or unregulated generators of small quantities of hazardous
waste. Adding local knowledge of these facilities enlarges the maps of environ-
mental hazards. Groups such as EHC have walked “neighborhoods such as San
Diego’s Barrio Logan, and marked the sites of industries that used toxic materials
on maps” (EHC). However, some organizations are restricted by lack of time and/or
funding to engage in local mapping, as explained by one respondent, “Mapping can
be very time-consuming and we haven’t got that kind of time” (Ironbound). Even if
organizations are unable to use GIS to produce new maps, organizations still seize
and attempt to politically recharge the government-created maps by placing them
within an activist setting.

Most of the sampled organizations rely on the US. EPA’s Toxics Release
Inventory database (http://www.epa.gov/TRI/), which is a reporting requirement for

http://www.elcilantro.org/?page_id=6
http://www.elcilantro.org/?page_id=6
http://www.epa.gov/TRI/
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certain facilities as mandated by the Emergency Planning and Community Right-
to-Know Act (EPCRA). Launched in 1988, the TRI database includes information
regarding releases of approximately 650 chemicals. TRI is a robust repository of
information that can be easily accessed and mapped by those with GIS resources.
Although informative, TRI has important limitations that make its widespread use
troubling (Maantay, 2007). Not only does TRI omit small hazardous facilities, but
reporting requirements have changed over time. These changes “eliminated detailed
reports from more than 5,000 facilities that release up to 2,000 pounds of chemicals
very year” (Bullard et al., 2007, p. 13). Reporting of releases was changed from
yearly to every 2 years and the threshold amount of contaminants needed to report
a release was increased. These changes have undermined the value and accuracy
of toxic release information across the US., leaving environmental justice organiza-
tions without crucial data. However, some organizations are able to counter this by
gathering their own data and finding sites the government misses or ignores. Some
organizations also account for omissions by contextualizing maps with qualitative
data describing people’s daily encounters with their unjust local landscapes. While
many recognize the need to supplement and contextualize TRI data, some respon-
dents lack the funds and expertise needed to do so. These environmental justice
organizations not only recognize the value and power of maps but also the ways in
which they can produce even more powerful maps through GIS visualizations of
their “own” data.
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Chapter 7
Geospatial Analysis of West Nile Virus (WNV)
Incidences in a Heterogeneous Urban
Environment: A Case Study in the Twin
Cities Metropolitan Area of Minnesota

Debarchana Ghosh

Abstract West Nile virus (WNV) infected dead bird sites and human cases are
frequently located in the densely populated, urban areas primarily because they are
reported by people. However, the spatial pattern (i.e. morphology) of the urban land-
scape features could also contribute to the location of WNV incidences. This study
has two objectives: (1) analyzing the association of urban environmental features
that facilitated the viral activities of WNV infection in the TCMA from 2002 to
2007 and (2) comparing the spatial association between WNV infected mosquito
pools and human cases with heterogeneous urban characteristics. It also addresses
the question of how urban morphology affects human health. Using a combina-
tion of factorial ecology, geospatial techniques, and hierarchical cluster analysis,
urban landscape classes are derived from the environmental and built environment
risk-factors hypothesized to be associated with WNV transmission. The infection
rate among, birds, mosquitoes, and human cases are then compared to these urban
classes. Results indicate that the WNV infection rate is considerably higher in the
urban class located just outside the cities of Minneapolis and Saint Paul. The domi-
nant features of this class are close proximity to bogs and swamps, parks, sewerage
system, waste water discharge sites, trails, high density of catch basins, moderate
density of single family houses, and medium vegetation cover with stagnant waters.
In general, the rate of infection decreases with increasing distance from the urban
core. This is critical, in terms of vector control policies, because two out of four
WNV carrying vectors, Culex restuans and Culex pipiens are predominantly urban
mosquitoes.
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7.1 Introduction

West Nile virus (WNV) is a vector-borne infectious disease of global public health
concern. It is transmitted to humans and other mammals by the bite of the infected
mosquito, which acquires the virus by feeding on infected or dead birds. In the
United States, the virus first appeared in New York in 1999 and since then it has
spread rapidly, causing significant outbreaks in the densely populated urban areas.
The metropolitan areas of Midwestern United States have exhibited strong spatial
clustering of WNV infection among, birds, mosquitoes, and humans. In 2002, the
states like Illinois and Michigan led the nation with 884 and 664 infected human
cases respectively. Spatially, most of these disease incidents were clustered around
the urban areas of Chicago and Detroit. In 2003, when the WNV infection reached
a level of epidemic in Minnesota (MDH, 2003), significant clusters of infected dead
birds and human cases were found in the urban areas of the Twin Cities Metropolitan
Area (TCMA).

These outbreaks occur in a diverse mixture of buildings (old and new), sprawl-
ing development, transportation routes, vegetation (open green space, parks, trees,
shrubs etc.), pockets of natural areas (lakes, reservoirs, golf courses, unpaved trails,
etc), and people. However the role of these contextual factors is often neglected
in research related to disease transmission. It is important to understand how these
urban features affect disease pattern, especially for multi-host pathogens, such as
WNV, where birds and mosquitoes and their interaction with the natural and built
environment are fundamental to disease transmission to humans. Ruiz et al., con-
ducted an comparative analysis of association of WNV infected human cases and
urban landscape features in Chicago and Detroit (Ruiz et al., 2007). In both the study
sites, infected cases were significantly higher in the urban suburbs. The dominating
urban features were high housing density, 1940–1960 period housing, and moderate
vegetation cover (Ruiz et al., 2007). However, the study only explored the associa-
tion of infected human cases. The occurrence of WNV infection among mosquitoes
is a necessary precursor for human infection and therefore it is important for effec-
tive intervention strategies to explore whether the spatial variability of association
of mosquito infection follows the same pattern as found in human illness. This study
fills this research gap. The objectives are as follows: (1) analyzing the association of
urban environmental features that facilitated the viral activities of WNV infection
in the TCMA from 2002 to 2007 and (2) comparing the spatial association between
WNV infected mosquito pools and human cases with heterogeneous urban features.

The ongoing urbanization in the seven county metropolitan area, including coun-
ties of Anoka, Hennepin, Ramsey, Dakota, Scott, Carver and Washington, has
profound implications to shape the environmental and socioeconomic characteris-
tics of the region (Fig. 7.1). This 7,700 km2 seven-county area is the economic hub
of a multistate region. Home to 2.8 million people, and forecasted to top 3.5 million
by 2020, it is also a major center of sprawl (Ghosh and Manson, 2008). The rapid
expansion of rural areas into urban, suburban, and exurb agglomerations, buffered
from others by undeveloped land, is an ideal setting for examining the association
of urban features and disease transmission. The WNV infection first appeared in the
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Fig. 7.1 The study: Twin Cities Metropolitan Area of Minnesota

TCMA in 2002. In 2003, clusters of WNV incidences were found in the Twin Cities
of Minneapolis and Saint Paul and its surrounding suburban areas. Again in 2006,
there was evidence of strong spatial clustering with 480 infected dead birds and
approximately 1500 mosquitoes in 90 WNV-positive mosquito pools. These pools
are mosquito traps designed to collect mosquitoes of different species for viral anal-
ysis on a weekly basis (MMCD, 2004). MMCD has three types of collection traps
for mosquitoes, which are distributed throughout the metropolitan area. The trap
types are CO2 traps, gravid traps, and sweep nets. The CO2 traps are elevated in
the tree canopy and are used for collecting female mosquito samples in their host-
seeking phase. The gravid traps, located on the ground are designed to attract female
mosquitoes that are seeking oviposition sites (i.e., places to lay eggs). The pattern is
shown distinctly in Fig. 7.2.

This chapter is organized as follows. Section 2 briefly discusses the wide
range of geospatial applications to address health and environmental issues in
urban areas. Section 3 describes the data used, their sources, and how statis-
tics and Geographic Information Science (GIS) techniques are combined in this
study. Section 4 interprets the results and finally section 5 provides discussion and
conclusion.

7.2 Urban Health and Geospatial Analysis

One could point to a plethora of research studies that have developed and applied
geospatial techniques to study environmental health, conservation, neighborhood
effects, and health disparities in urban areas (Ghosh and McMaster, 2010). There
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Fig. 7.2 Spatial clustering of West Nile virus occurrences in the urban and suburban areas of Twin
Cities Metropolitan Area

have been numerous studies linking urban sprawl, congestion, traffic, urban waste,
disturbance of natural areas within a city, and pollution (air, water, and noise) to
various health effects. Health outcomes range from mental health (Leventhal and
Brooks-Gunn, 2003; Watson et al., 2008; Howell and McFeeters, 2008; Clark et al.,
2008; Gary et al., 2007), obesity (Ewing et al., 2003b; Saelens et al., 2003), water
related infections (Drechsel et al., 2008; Greenberg et al., 2003; Aramaki et al.,
2006), vector-borne diseases (Wartenberg, 1992; CDC, 1997), exposure to radioac-
tive materials (Henriques and Spengler, 1999), lead poisoning (Wartenberg, 1992;
CDC, 1997), pedestrian-vehicle accidents (Ewing et al., 2003a), to asthma and other
respiratory ailments (Grineski, 2008; Oudinet et al., 2006; Schikowski et al., 2008;
Jones et al., 2008; Kyrkilis et al., 2007).

In these studies, geospatial techniques are used in myriad ways. For example,
GIS functions are used to identify at-risk population (maps) exposed to radioactive
iodine and lead poisoning (Wartenberg, 1992; CDC, 1997). These risk maps are
often used by the local health departments to prioritize interventions, while min-
imizing travel time and expenses in congested urban areas. Recently, in response
to the need for spatio-temporal disease diffusion models or risk assessment mod-
els, a STIS – a Space Time Information System within a GIS environment – has
been developed to visualize and analyze disease rates simultaneously through space
and time (G. M. Jacquez and Greiling, 2003; G. M. Jacquez, D. A. Greiling, and
A. M. Kaufmann, 2005; Ghosh et al., 2010). There are also several examples where
a combination of GIS and Remote Sensing (RS) could prove effective control-
ling efforts for mosquito-borne infectious diseases such as LaCrosse encephalitis
(Kitron, 1997), malaria (Beck et al., 1994), and West Nile Virus (Ruiz et al., 2004;
Ozdenerol et al., 2008; Leblond et al., 2007; Zou et al., 2006; Ghosh and Guha,
2010).

Cancer is one such disease where GIS is extensively used to identify clusters
(Kulldorff, 1997; Rushton et al., 2004; Lian et al., 2008; Matthews, 2007; Hsu, 2007;
Kingsley, 2007; Albert, 2004; G. M. Jacquez and Greiling, 2003; G. M. Jacquez,
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D. A. Greiling, and A. M. Kaufmann, 2005; Heineman, 2001; Peleg, 2000; Smith,
1995) and target areas or urban communities in need for screening, education, and
testing. Given the wide range of useful applications of geospatial technologies in
health research, this study combines statistics with GIS functions to assess the
association of WNV infection and urban landscape features.

7.3 Data and Methodology

The incidence data on WNV infected dead birds, mosquito pools, and human cases
are obtained from the Minnesota Department of Health and Metropolitan Mosquito
Control District. The risk factors associated with the urban morphology of the
TCMA area are divided into three categories of environmental, built-environment,
and proximity factors. The Table 7.1 summarizes the variables selected for this study

Table 7.1 Description of urban landscape features hypothesized to be associated with West Nile
virus transmission

Categories Risk factors Sources References

Incidence data (birds,
mosquito pools, and
human cases)

MDH,
MMCD

Environmental Land Cover (14 classes),
density of streams/
sq.mile, elevation

NLCD,
MnDNR,
MetroGIS

Brownstein et al., 2002;
(Ruiz et al., 2004)

Built-environment Density of urban catch
basins/sq. mile (dry),
density of urban catch
basins/sq. mile (wet),
density of ditches/sq.
mile, housing
density/acre, age of
houses, density of
roads/sq. mile, density
of population

MMCD,
MnDOT,
MPCA,
MetroGIS,

MMCD 2004;
Ruiz et al., 2004;
Huhn et al. 2005;
Gibbs et al. 2006;
Ruiz et al., 2007

Proximity Distance to 8 types of
wetlands, distance to
lakes, distance to open
green space, distance to
sewers, distance to waste
water discharge points,
distance to streams,
distance to golf courses,
distance to trails, distance
to bike paths, distance to
impaired lakes

MMCD,
TLG,
MnDNR,
MetroGIS

Rappole et al. 2000;
Cooke et al. 2006;
(Zou et al., 2006)

MDH, Minnesota Department of Health; MMCD, Metropolitan Mosquito Control District;
NLCD, National Land Cover Data; MnDNR, Minnesota Department of natural Resources;
MnDOT, Minnesota Department of Transportation; MPCA, Minnesota Pollution Control Agency;
TLG, The Lawrence Group.
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with data sources and related literature. The data, both for incidence and risk factors,
were obtained from multiple sources and are aggregated to the zip code level.

The study uses a combination of factorial ecology approach (FA) and geospatial
analysis. The FA typically uses Factor Analysis or Principal Component Analysis
(PCA) to derive uncorrelated metrics or indices from a set of correlated variables
(Berry, 1971). PCA is a powerful multivariate statistical technique that can be used
to simplify a dataset by reducing the number of correlated variables into a smaller
number of uncorrelated principal components (PCs). The advantages of using PCA
are as follows: (1) it reduces the dimensionality of a dataset by retaining PCs which
explains the maximum amount of variation, (2) because the PCs are uncorrelated,
multicollinearity can be avoided by using the components in place of the origi-
nal variables, and (3) it is an exploratory tool to identify patterns and relationships
among groups of related variables. In this analysis, 40 correlated variables, describ-
ing environment and built-environment factors conducive for the transmission of
WNV in the TCMA, are reduced to a much smaller number of uncorrelated com-
ponents. The Principal Component function in the “stats” package of R statistical
programming language is used for this purpose.

The next important step is to extract the relevant PCs for further analysis. The
goal here is to retain the number of components that account for as much varia-
tion as possible with the fewest meaningful components. Typically a subset of k<p
of components are selected by a three-part process (p = total number of PCs and
k = selected PCs). First, the number of PCs is retained by examining the slope of
the “scree-plot” (refer to glossary). Second, usually PCs with eigenvalues (refer to
glossary) greater than one are selected. Third, through sequential selection, PCs
that explain 90% of the cumulative variation of the entire data set are retained.
Once the important PCs are retained, factor scores are calculated for each record
(zip codes).

Hierarchical agglomerative cluster analysis (refer to glossary), developed within
a Geographic Information Science (GISc) environment is conducted with the fac-
tor scores as input data. The output of the cluster analysis is the formation of
five classes or groups with zip codes showing similar urban landscape character-
istics. For the next part, analyzing the association between derived urban classes
and WNV infected mosquitoes and human cases; two incidence rates per 100,000
people are calculated. First, the incidence rate of mosquitoes in the WNV infected
pools and second, the incidence rate of human cases. A GIS overlay operation
is used to explore the spatial association of WNV infected mosquito and human
incidence rates with the urban classes. Further, in order to assess the differences
in the degree to which urban classes affected the transmission, ANOVA is com-
puted on the zip code means of the incidence rates for the different classes. The
null hypothesis is H0: There is no difference of WNV incidence rates among
the urban classes. Since the Levene’s test for homogeneity of variance revealed
non-constant variances, Brown-Forsythe ANOVA is used instead. This function
does not assume normal distribution and homogeneity of variance. Figure 7.3
highlights the important steps of the methodological framework described
above.
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Fig. 7.3 Methodological framework

7.4 Results

Table 7.2 shows eigenvalues and cumulative variation explained by the first 10 PCs.
The first five PCs together account for 84% of the total variation. The first PC
explains 40% and the second 21%. There is a significant drop in the amount of
variance explained from PC1 to PC2. Also, beyond PC5, the eigenvalues of the
remaining components drops below one.

The scree plot (Fig. 7.4) also confirms the drop in the eigenvalues beyond PC5.
When read left to right across the X-axis, this plot shows a clear separation between
PCs with high-explained variance versus low-explained variance at PC5. This point
of separation is termed as elbow. Thus, based on Table 7.2 and Fig. 7.3, the first
five PCs are retained for further analysis. In the next step, factor scores are calcu-
lated for each PC, resulting in five new variables: Score1, Score2, Score3, Score4,
and Score5. These new uncorrelated variable represent the features of 40 original
risk factor variables. Finally, cluster analysis is conducted with these variables to
obtain urban landscape classes. Figure 7.5 is a dendogram (refer to glossary), which



160 D. Ghosh

Table 7.2 Variance Explained by the selected Principal Components

Principal components Eigen values Variation (%) Cumulative variation (%)

1 12.000 40.40 40.40
2 7.240 21.10 61.500
3 2.620 10.00 71.500
4 2.070 7.30 78.800
5 1.700 5.20 84.000
6 0.470 1.10 85.100
7 0.360 0.90 86.000
8 0.180 0.06 86.060
9 0.120 0.04 86.103

10 0.060 0.01 86.113

Note: The variances for the selected principal components are in bold.
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Fig. 7.4 Scree plot showing the eigen values obtained from the principal component analysis with
40 urban variables

is a graphical representation of hierarchical clustering based on similarities and dis-
similarities of factor scores obtained from the PCA. The red rectangles show the
grouping of zip codes into five groups. Here parsimony is achieved with a small
number of clearly defined urban classes.

The five urban landscape classes and their dominant characteristics are as
follows:

1. City, High Density – high density of urban catch basins, open green space within
a distance of 1 mile, high housing density, some 70–75 year-old housing, smaller
distance to sewers, and developed high density of development.
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Fig. 7.5 Dendogram showing the hierarchical clustering of zip codes into 5 classes of urban
landscape in Twin Cities Metropolitan Area

2. City, Medium Density – presence of wetlands like swamps and bogs, high density
of urban catch basins, open green space within a distance of 0.5 mile, hous-
ing belonging to 1940–1960s period, and developed medium density land cover
class.

3. Suburb – developed low density land cover class, low housing density, pres-
ence of more natural features like lakes, parks, shallow fresh marsh, and diverse
vegetation.

4. Outer Suburb 1 – Recent development houses between 20 and 25 years old,
shallow fresh marsh, lakes, and diverse vegetation in the form of shrubs, pastures,
and deciduous forest.

5. Outer Suburb 2 – Agricultural area, pasture, open green space, and deciduous
forest land cover.

The spatial distribution of urban classes shows a concentric pattern. The City-
High Density class in the center occupies the cities of Minneapolis and Saint Paul.
The City-Medium Density encircles the first class and includes cities such as Golden
Valley, St. Louis Park, Bloomington, and Richfield. The Suburb class is on the cusp
between more urban classes (City-High Density and City-Medium Density) and
relatively rural classes (Outer Suburb 1 and Outer Suburb 2). Some of the important
small cities and towns classified in the Suburb class are Coon Rapids, Shoreview,
and White Bear Lake in the North, and Shakopee, Inner Grove Heights, Rosemount,
and Lakeville in the south. From Outer Suburb 1 class one can start to see relatively
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Fig. 7.6 Five urban landscape classes in Twin Cities Metropolitan Area

rural characteristics, which extended further to the Outer Suburb 2. Figure 7.6 shows
the spatial distribution of the urban classes.

Overlay of infected dead birds, positive mosquito pools, and human cases on
the five urban landscape classes in TCMA depicts a strong spatial association with
the City-High density and the City-Medium density classes consistently from 2002
to 2007 (Fig. 7.7). In general the rate of WNV infection decreases with increasing
distance from the core urban areas of TCMA.

The highest incidence rate of WNV infected dead birds is found in the City-
Medium Density class (1,956.95 per 100,000 people) and the rate of infected
dead bird reporting declines significantly in the outer suburb classes (Table 7.3).
However, this pattern could be due to urbanization and higher population density. It
is possible that in the developed areas, dead birds are easily sighted (and reported)
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Fig. 7.7 Spatial “overlay” of West Nile virus incidences on the derived urban landscape classes in
Twin Cities Metropolitan Area, 2002–2007

Table 7.3 Twin Cities Metropolitan urban classes with West Nile virus case rates among reported
infected dead birds, positive mosquito pools, and humans from 2002 to 2006

Urban
class Description

Number
of zip
codes Population

WNV dead
birds per
100 k

Mosquitoes in
WNV infected
pool per 100 k

WNV human
cases per
100 k

1 City-high density 27 545,267 912.89 88, 204.06 9.19
2 City-medium

density
36 842,625 1, 956.95 66, 162.71 11.12

3 Suburban 46 928,789 1, 071.54 29, 440.40 6.18
4 Outer suburb 1 28 360,382 809.12 10, 127.02 2.85
5 Outer suburb 2 22 152,398 706.39 5, 085.07 2.91

than less developed areas. Also, in remote rural areas there are fewer people to notice
dead birds. In the case of vector population, the City-High density urban class has
the highest incidence rate of mosquitoes tested from the infected mosquito pools
(88,202.06 per 100,000 people). This rate also declines further as we move outwards
from the core cities of Minneapolis and Saint Paul. The Outer Suburb 2 has the low-
est vector incidence rate of 5,085.07. Following the similar trend of WNV illness
among birds and mosquitoes, the highest incidence rate among humans is reported
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Table 7.4 ANOVA results of incidence rate of mosquitoes

Urban classes Estimate T-value P-value Sig.

City-high density 1, 838.61 2.235 0.0269 ∗
City-medium density 3, 035.70 2.907 0.0042 ∗∗
Suburb 743.85 0.203 0.8393
Outer suburb 1 130.50 0.126 0.8999
Outer suburb 2 +

F-statistic: 3.535 on 4 and 154 DF, p-value: 0.00863. +, Reference class.
∗ 95% significance level.
∗∗ 99% significance level.

in the City-Medium Density class, with 11.12 cases per 100,000 people. This is four
times higher than the lowest rate of 2.85 cases found in the Outer Suburb 2 class and
it was almost two times the rate found in the Suburb class (6.18). ANOVA tests for
differences in zip code mean values further demonstrate the variation in incidence
rate of mosquitoes among the urban classes. The mean values of City-High and
City-Medium density classes are significantly higher than the Outer Suburb 2 class
(reference class) with p-values as 0.0269 and 0.0042 respectively (Table 7.4).

7.5 Discussion and Conclusion

Utilizing a combination of factorial ecology and geospatial approach, the derived
urban landscape classes indicate a variable association with WNV illness in the
TCMA. The rate of WNV infection among mosquitoes and humans are highest
in the core urban classes of City-High Density and City-Medium Density classes
and the rate decreases with increasing distance from the urban core. It is typical
to assume that more natural areas found away from urbanized areas would pro-
vide more potential habitats for mosquitoes. However, the degree to which an area
is natural does not decrease linearly along a transect line outward from the urban
core. This generalization is often simplistic. In the City-High and City-Medium den-
sity classes, along with significant presence of built area, there are natural areas in
the form of lakes, parks, wetlands, golf courses, trails, older residential and com-
mercial buildings, and wedges along old transportation routes, which could very
well provide suitable habitats for mosquito breeding. Some of the features of built-
environment, such as urban storm water catch basins, construction sites, stock pile
of abandoned tires, and swimming pools in the backyards of residential houses, are
attractive breeding grounds for mosquitoes. Such composition of urban landscape
with natural and man-made features, typically affected by past land use and plan-
ning, creates an urban heterogeneous environment suitable for mosquito habitats
and thus increase the risk of WNV transmission. This is critical because two out of
four WNV carrying vectors, Culex restuans and Culex pipiens, are predominantly
urban mosquitoes.
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The specific urban features that contributed to the viral activities of WNV are
catch basins, housing density, age of houses, and proximity to lakes, swamps, bogs,
and parks. Density of urban catch basins and storm water ponds, built primarily
to accumulate polluted urban run-off, emerged both as a predominant feature of
urban structure and is strongly associated with WNV occurrences. The flow of water
(which would lessen during droughts) and the presence of organic matter in these
catch basins would positively affect the breeding conditions for Culex mosquitoes
(Shaman et al., 2005). Housing characteristics, namely the density of buildings (both
residential and commercial) and the age of housing, play an important role in the
viral activity of the virus (Ruiz et al., 2007). The age of housing, especially “older
houses” approximately 50–60 years old, emerges as an important factor. Plausible
explanation for this could be that in lower income neighborhoods older houses are
not well maintained. However, future analysis including the interaction effect of
income and age of houses could better explain this positive association. Additional
variables differentiating residential, commercial, and industrial use, impervious sur-
face, and knowledge of soil characteristics could also be helpful. These variables
could provide a better understanding of natural open space and impervious surface,
which would be helpful in identification of potential mosquito habitats.

Since, in a typical WNV transmission cycle, infected mosquitoes are a nec-
essary prerequisite for human infections, this study analyzed whether the spatial
variability of mosquito infection shows the same patterns as those found in human
cases in the TCMA. The GIS overlay shows a strong spatial clustering of WNV
infected dead birds, positive mosquito pools, and human cases in the urban/suburban
areas (Fig. 7.7). The incidence rate of human cases per 100,000 people is high-
est in the City-Medium Density class followed by City-High Density and Suburb
class. City-High density class shows the highest rate of mosquitoes tested in the
infected mosquito pools. The difference in incidence rates for the mosquitoes and
humans between the City-High and City-Medium density is not large. In addition,
the ANOVA results statistically demonstrated that the means of mosquito incidence
rates for zip codes in City-Medium and City-High density urban classes are signif-
icantly different than the other classes. Thus, the results ranging from exploratory
to confirmatory analysis provide evidences that both the incidence rates of infected
mosquitoes and human cases follow similar spatial pattern.

The derived urban landscape classes could further provide a basis for the selec-
tion of field sites for MMCD for mosquito traps, collection, and treatment. Finally,
this study also contributes to the broader research question in the field of medical
and health geography, i.e., how the heterogeneous urban environment affects human
health and disease patterns.

7.6 Glossary

Eigenvalue: A vector which, when acted on by a particular linear transfor-
mation, produces a scalar multiple of the original vector. In the context of
Principal Component and Factor Analysis, eigenvalues are column sums
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of squared loadings for a factor. It conceptually represents that amount of
variance accounted for by a factor.

Scree Plot: A scree diagram plots the variances of principle components on the
y-axis against the component number on the x-axis. The term scree refers to
the fact that the variance curve resembles the side of a mountain with a scree,
or rock debris, at the base. When read left to right across the x-axis, this plot
shows a clear separation between principle components with high-explained
variance versus low-explained variance. Typically the variance curve takes a
shape of a half folded arm and the point of separation is termed as “elbow”.

Hierarchical Clustering: Cluster Analysis is a process involving grouping a col-
lection of objects (also called observations, individuals, cases, or data rows)
into subsets or “clusters”, such that those within each cluster are more closely
related to one another than objects assigned to different clusters. Central to
all of the goals of cluster analysis is the notion of degree of similarity (or
dissimilarity) between the individual objects being clustered. There are two
major methods of clustering – hierarchical clustering and k-means cluster-
ing. In hierarchical clustering the data are not partitioned into a particular
cluster in a single step. Instead, a series of partitions takes place, which may
run from a single cluster containing all objects to n clusters each containing a
single object. Hierarchical Clustering is subdivided into agglomerative meth-
ods, which proceed by series of fusions of the n objects into groups based on
the degree of similarity (or dissimilarity).

Dendogram: Dendogram is a branching (tree) diagram representing the steps in
a hierarchical cluster analysis. The tree starts with a single cluster (including
all the observations) and then branches out into n clusters of observation
based on the degree of similarity (or dissimilarity) of the observations.
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Chapter 8
The Health Impacts of Brownfields
in Charlotte, NC: A Spatial Approach

Junfeng Wang

Abstract Brownfield redevelopment in Charlotte, North Carolina has been a
success in terms of leveraging private investment, increasing tax bases, and creating
job opportunities. Little is known, however, about the potential health impacts of
these brownfield sites in the city. This research intends to fill this gap by exam-
ining the effect of brownfield sites on neighborhood Low Birth Weight (LBW)
rate. The health impact is measured as a function of proximity to brownfield sites,
inactive hazardous site density, population’s economic status, and the community’s
socio-economic attributes. The analyses show that being close to brownfield sites
is not significantly related to having a higher rate of Low Birth Weight, but the
density of brownfields in the census block group is related to a higher LBW rate.
The Geographically Weighted Regression (GWR) model reveals that there is a con-
siderable spatial variation in the strength of the health impacts. The local health
department has indicated lack of capacity to examine the variation in community
health status. The findings of this study can serve as the starting point for local
health professionals to identify communities that are impacted by brownfields the
most, and therefore more actively participate in brownfield redevelopment.

Keywords Brownfield · Low birth weight · Geographically weighted regression ·
Buffer · Census block group

8.1 Introduction

Brownfields are “real properties, the expansion, redevelopment, or reuse of which
may be complicated by the presence or potential presence of a hazardous substance,
pollutant, or contaminant” (Public Law 107–118; H.R. 2869). The EPA estimates
that there are more than 450,000 brownfields in the US, most of which are the result
of past industrial activities that included the release of hazardous substances to the
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soil or water on the property. Many of these sites no longer support active industrial
or commercial uses and have been abandoned.

Brownfields can be found in most US cities that were centers of industrial activity
in the nineteenth century, but whose economies have largely changed in recent years
to service and financial sectors. The numbers, sizes, and contamination severity of
brownfields in a city depend on its industrial structure. For instance, after the Civil
War, the City of Charlotte became a cotton processing center and a railroad hub for
the Piedmont region of the Carolinas. In the 1970s, Charlotte started emerging as
a banking and finance center. Closed textile facilities became important brownfield
redevelopment targets.

A variety of toxicants have been found in brownfields such as heavy metals,
solvents, arsenic, polycyclic aromatic hydrocarbons, plasticizers, and insecticides.
EPA divides toxicants into two categories: carcinogens and non-carcinogens.
Carcinogens are toxicants that are known or suspected to cause cancer. The US
EPA Region 9’s preliminary remediation goal (PRG) Table provides a reference
of chemical concentrations that correspond to fixed levels of risks in soil, air, and
water (i.e. a one-in-one million (10–6) cancer risk). Each state then develops its own
remediation goals according to the EPA standards.

The exposure risk is the chemical concentration found on site divided by the PRG
reference dose for that particular chemical and then multiples by 10–6. For multiple
toxicants, simply add the risk for each chemical. Table 8.1 displays the carcinogens
found in Charlotte brownfield sites that are above the EPA remediation standards.
The last column shows the potential cancer risk that is associated with particular
sites.

In October 1996, Charlotte received its first Brownfields Assessment
Demonstration Pilot grant of $200,000 from the EPA. The former industrial area
known as the South End and the nearby economically depressed Wilmore neighbor-
hood were selected for the pilot program. The Brookhills neighborhood, another
depressed area contiguous with Wilmore, was later added to the area to be
redeveloped.

Once a blighted area, thousands of people currently are working in the South End.
This area has attracted $800 million new development investment (New Ventures,
2006). The great success of the South End redevelopment made Charlotte a national
example of brownfields cleanup and reuse.

In May 1999, EPA awarded Charlotte a $500,000 Brownfields Cleanup
Revolving Loan Fund (BCRLF) grant. In March 2000, Charlotte received a sup-
plemental assistance grant of $100,000 from EPA for its Brownfields Assessment
Demonstration Pilot. With these two grants and a City appropriation of $140,000,
the Charlotte City Council approved the creation of the City’s Brownfield
Assessment Program and started offering environmental assessment and clean up
assistance throughout Charlotte’s entire distressed geographic areas.

Charlotte’s brownfield program has demonstrated its effectiveness in terms of
its impact on the local tax base, employment, and other socio-economic measures
(Bacot and O’dell, 2006; Schwarz and Hanning, 2007; Chilton, 2007). What is not
clear concerning the development of the Charlotte Brownfield Program is whether
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public health was considered in these policy decisions. Using low birth weight
(LBW) rates as an example of potential adverse health outcomes, this study fills the
gap by examining the association between brownfield and nearby neighborhoods
LBW rates.

8.2 Exposure to Hazardous Waste Sites and Low Birth Weight

Two politically influential and well-cited works by the General Accounting Office
(GAO, 1983) and the United Church of Christ (UCC, 1987) found that a high pro-
portion of minority and poor lived in communities with large number of hazardous
waste sites. However, the extent to which these hazardous waste sites affect public
health in surrounding communities remains uncertain.

Multiple studies have found that low birth weight was significantly elevated in
the exposure zones closest to hazardous sites (Vianna and Polan, 1984; Goldman
et al., 1985; Goldberg et al., 1995; Baibergenova et al., 2003). Other studies have
indicated that the magnitude of the effect was either in the range of birth weight
reduction due to smoking during pregnancy (Berry and Bove, 1997), or disappeared
after taking into account risk factors such as smoking, chronic disease, and young
maternal age (Oliveira et al., 2002).

Socio-economic and demographic variables such as education, race/ethnicity,
and income have been studied extensively in epidemiological research, and these
factors could explain much of the observed differences in health status (Jolley et al.,
1992; Sexton et al., 1993; Adler and Ostrove, 1999). These studies generally con-
cluded that disadvantaged and minority groups who live in areas with high levels of
pollution suffer higher rates of disease and death, even after controlling for social
class and ethnicity/race.

8.3 Data and Analytical Method

Before the year 2000, only a few brownfield sites were redeveloped in Charlotte.
This study assesses the relationship between the health outcomes, measured by
census block group LBW rates in the year 2000, and brownfields which have not
been redeveloped yet. Data were collected from the North Carolina State Center
for Health Statistics, the North Carolina Department of Environment and Natural
Resources, the Charlotte Economic Development Office, the US Census, and the
Charlotte Chamber of Commerce.

The study is conducted at the census block group level. Previous studies that
examined the relationships between toxic sites and public health typically were
conducted at the census tract or zip code levels. By focusing on a smaller geo-
graphic unit, this study revealed more detailed and accurate information about
the potential associations among health problems, socio-economic status, and
brownfields.
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8.3.1 Study Area

Charlotte is the largest city in North Carolina and is the county seat of Mecklenburg
County. There are 373 census block groups in Mecklenburg County. Using the
“Clip” function in GIS, whereby the boundaries of one feature are clipped as with a
“Cookie-cutter” by the boundaries of another feature, the 329 block groups within
the Charlotte city boundary were selected. The selection criterion was that if the
centroid of the block group is located within the city boundary, then the block group
is considered in the analysis.

8.3.2 Dependent Variables

In this study, low birth weight infants are those live singleton infants with a birth
weight less than 2,500 g. Low birth weight rate is then defined as the number of low
birth weight infants divided by the total live singleton infants. Figure 8.1 shows that

Fig. 8.1 Low birth weight rate, Charlotte, 2000
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LBW rates in block groups located in the west of the city were more likely to be
higher than other areas in the year 2000.

Birth weight is one of the strongest predictors of the risk of infant mortality
(Institute of Medicine, 1985). If the risk of mortality were same for black and white
newborns, over 60% of the deaths of black infants, or about 5,000 deaths in the
US, would be averted each year (Sastry and Hussey, 2003). The impacts of low
birth weight extend well beyond infant survival. Studies have found that significant
associations between birth weight and physiological, developmental, reproductive
outcomes, and chronic diseases (Avchen et al., 2001; Rich-Edwards et al. 1997;
Reichman, 2005).

8.3.3 Independent Variables

A common weakness in epidemiologic studies is the lack of a measure of the direct
exposure to toxicants. When exposure monitoring is unavailable, whether and to
what extent chemicals from hazardous waste sites reach the host is largely unknown.
One approach is to estimate the exposure based on the presence of hazardous sites.
For example, Baibergenova et al. (2003) defined the exposed groups as residing in
a zip code containing a PCB site, and comparison groups were defined as resid-
ing in a zip code that did not have a PCB site. More commonly, the distance from
mother’s residence to landfill is used as the measure for exposure (Goldberg et al.,
1995; Berry and Bove, 1997; Oliveira et al., 2002). These studies have employed
Geographic Information System (GIS) and quantitative techniques to assess the
association between hazardous waste sites and adverse reproductive outcomes. The
limitations of these methods to estimate exposure are discussed fully in Chakraborty
and Maantay’s Chapter 5 of this volume.

This study considers brownfields that have enrolled in the Charlotte Brownfield
Program. Figure 8.2 shows the geographic locations of Charlotte brownfield sites.
These brownfield sites are concentrated in areas around the city center and along
highway I-77. This concentration reflects the old land use pattern in Charlotte, as
these areas are the old business corridors, and also because the city intentionally
encourages redevelopment in these areas. From the very beginning of the Charlotte
Brownfield Program, the Economic Development Office, which administrates the
program, has put economic success as the top priority. The South End area has
the most market potential and was redeveloped first. Then the city decided to
expand the Brownfield Program to all sites within the Charlotte Business Corridor
Revitalization Geography (Fig. 8.3).

The impact of brownfields is first measured in brownfield density, which is the
size of total acres of brownfields in a census block group dividing by the land size
of the census block group. To capture the impact of nearby brownfields outside the
census block group, a 0.5 mile buffer was created for each brownfield site (Fig. 8.3).

The selection of 0.5 mile is based on the assumption that brownfields outside
this buffer have negligible health impacts (Lybarger et al., 1998). Each block group
could contain parts of multiple buffers. The number of buffers that completely or
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Fig. 8.2 Charlotte brownfield sites

partially overlap a block group is used as one indicator for the proximity to brown-
fields. Regardless the percentage of the block group that falls into the 0.5 mile buffer
from the brownfield, as long as the block group intersects with the buffer, this block
group is assumed to be affected by the brownfield.

The North Carolina Division of Waste Management administrates the Inactive
Hazardous Sites Program. Inactive Hazardous Sites include facilities in a variety of
property types where a hazardous substance was released. These facilities can be
either abandoned facilities or ones still in operation. The term “inactive” refers to
the fact that cleanup was inactive at the time of program enactment. Usually devel-
opers of inactive hazardous sites are owners, while developers of brownfields are
not. The reason is that owners of brownfields often do not qualify for government
subsidy if they contributed to the pollution. In some sense, inactive hazardous sites
are potential brownfields but administrated by a different government agency. This
study includes these inactive hazardous sites in the model. The variable is mea-
sured as the acreage of inactive hazardous sites divided by census block group land
acreage.
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Fig. 8.3 One half mile
buffers around brownfields

Olden (1998) found that persons with lower socio-economic status are more
likely to live in economically distressed areas and work in more hazardous
occupations. Since a primary goal of the Charlotte Brownfield Program is to act
as an incentive for redevelopment in distressed areas, the following variables which
indicate the level of economic distress in block groups were examined:

Percentage of the population that is African-American
Percentage of people aged 25 and above with less than a high school degree
Percentage of the population living in poverty
Median household income

Figure 8.4 shows a high racial segregation pattern in Charlotte. African-Americans
are more likely to live in the western and northern parts of the city.

Median household income shows a similar cluster pattern as in African-
American population distribution. There are more poor communities in the western
and the northern parts of the city than in the southern areas (Fig. 8.5). There are
a few block groups with extremely high unemployment rates around the central
city (Fig. 8.6). The west and the northeast sides of the city have relatively higher
unemployment rate than other areas.
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Fig. 8.4 African-American population distribution

8.3.4 Methods

Ordinary least squares regression (OLS) and geographically weighted regression
(GWR) are commonly used to examine the correlations between the presence of
hazardous sites and health outcomes. OLS assumes spatial stationarity of the rela-
tionship between the dependent variable and the independent variables. It generates
a single regression coefficient for each independent variable, and is considered a
global regression. GWR, on the other hand, examines the spatial heterogeneities in
the relationship, and is considered a local regression. At each data point, it generates
a local regression coefficient for each independent variable.

Although GWR has been widely applied in various studies, this technique is
prone to the multicollinearity problem. The regression model may not be stable
as it depends on the joint-distribution of exogenous variables. The local regression
coefficients can be correlated when actually they are not. If two or more exogenous
variables are highly correlated, the situation will get even worse. Researchers may
misinterpret the meaning of coefficients and reach inaccurate conclusions (Wheeler
and Tiefelsdorf, 2005; Griffith, 2008; Ogneva-Himmelberger, Pearsall, and Rakshit,
2009).
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Fig. 8.5 Median household income distribution

The binary correlation table shows that the “percentage of African-Americans,”
“percentage of people aged 25 and above with less than a high school degree,” and
“percentage of population living in poverty” have correlation coefficients that are
close to or larger than 0.7 (Table 8.2).

This indicates a possible multicollinearity problem among these three variables.
Tolerance is a measure of collinearity reported in statistics software SPSS. A small
tolerance value indicates a multicollearity problem. The Variance Inflation Factor
(VIF) measures the impact of collinearity among the variables in a regression model.
A larger VIF value confirms the multicollinearity problem. A collinearity statistic
reveals that the tolerance value of the variable percentage of people aged 25 and
above with less than a high school degree is smaller than 0.3 and its VIF value is
above 4. To be on the conservative side, this study uses tolerance value of 0.3 and
VIF value of 4 as thresholds in identifying the multicollinearity problem. This prob-
lem is solved by only including the variable “percentage of African-Americans,”
“unemployment rate” and “median household income” in both the OLS and the
GWR models.

8.4 Findings

The OLS model explains about 47% of the variance in census block group low
birth weight rates. Table 8.3 indicates that census block groups that contain high
densities of brownfields have a statistically significant association with low birth



182 J. Wang

Fig. 8.6 Unemployment rate distribution

Table 8.2 Summary of binary correlation

Black Education Unemployment Income

Black 1 0.784a 0.494a 0.689a

Education 0.784a 1 0.454a 0.724a

Unemployment 0.494a 0.454a 1 0.587a

Income 0.689a 0.724a 0.587a 1

N = 329.
aCorrelation is significant at the 0.01 level (2-tailed).

weight rates. However, being close to multiple brownfields, measured by the number
of brownfield buffers, is not associated with LBW rates. Consistent with previ-
ous research, being African-American is an important determinant of low birth
weight.

Local Indicators of Spatial Association (LISA) is a spatial analysis technique that
gives an indication of the extent of the spatial clustering of similar values around an
observation. This study uses GeoDa to conduct this analysis.
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Table 8.3 Summary of OLS N=329 census block groups

Coefficients P-value

Intercept 4.77 0.000
Brownfield density 0.19 0.025
Brownfield buffer −0.11 0.039
Inactive sites density 0.03 0.709
Percent of African-Americans 0.06 0.000
Percent of unemployment rate 0.12 0.000
Median household income 0.00 0.052
Adjusted R2 0.47

There are five categories in a LISA cluster map legend:

• Not significant (Areas that are not significant at default significance level of 0.05)
• High-High (High values surrounded by high values)
• Low-Low (Low values surrounded by low values)
• Low-High (Low values surrounded by high values)
• High-Low (High values surrounded by low values).

In the LBW case, high-high and high-low areas may indicate potential problems. In
Fig. 8.7, the west/northwest cluster indicates that LBW rates in these block groups
are high, and their nearby block groups have similar situation.

LISA Cluster Map

Not Significant
High-High
Low-Low

Low-High
High-Low

measure: low birth weight rate

Fig. 8.7 Low birth weight Lisa cluster map
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Fig. 8.8 Local R2 GWR coefficients

Mapping the GWR coefficient pattern associated with each independent variable
is a common procedure to display the spatial variation of the relationship. This study
also presents the coefficients for the variables of brownfield density, percentage of
African-American, and Unemployment rate. The local R2 values in the GWR model
are positive in all 329 block groups and range up to 56%. In one third of the census
block groups the R2 values are higher than the global R2 value. The model has
the highest explanatory power in the west, and the lowest explanatory power in the
south of Charlotte (Fig. 8.8). In general, residents in the west of Charlotte are more
likely to be African-Americans, unemployed, and close to brownfield sites.

The coefficients between brownfield density and low birth weight rate are pos-
itive in 328 out of 329 census block groups. This strongly suggests an association
between LBW rate and brownfield density. The GWR coefficients for brownfield
density are the highest in eastern part of the city, where there is a large Hispanic
population. Unlike African-Americans, Hispanic populations tend to show a LBW
rate similar to Whites, and therefore relatively lower than the African-American
rate. Therefore, brownfield density becomes the strongest explanatory variable in
the eastern of Charlotte than in the rest of the city (Fig. 8.9).
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Fig. 8.9 Brownfield density GWR coefficients

The percentage of African-American population in a census block group is
another strong indicator of low birth weight rate. Fewer of the brownfields included
in this study are in the southern part of the city as compared to other parts of the city.
There, African-American population becomes the most important indicator of LBW
rate. From the south to the north in the city, African-American population increases.
However, the brownfield density also increases. Therefore the association between
percentage of African-American population and LBW rate weakens (Fig. 8.10).

The unemployment rate has a positive local R2 value in all 329 census block
groups as the Percent African-Americans, but has a very different pattern of explana-
tory power (Fig. 8.11). It has the highest explanatory power in areas with low
unemployment rate.

8.5 Discussion and Conclusion

This study employed both the OLS and GWR tools to examine the relationship
between neighborhood low birth weight rates and the existence of brownfields.
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Fig. 8.10 Percent African-American GWR coefficients

The GWR model explained more variance in the dependent variable in one third
of the census block groups.

The results show that there is a positive relationship between low birth weight and
brownfield density, the percentage of African-Americans, and the unemployment
rate at the census block group level. The maps of GWR coefficients help to clarify
the spatial variation of these relationships.

Public health was not considered in the city’s decision to subsidize brown-
field projects. One of the reasons was the lack of information on the association
between brownfields and public health. At the early stage of brownfield redevel-
opment, Mecklenburg County Health Department staff was consulted about the
targeted areas of the South End and Wilmore. They attended initial community
meetings to respond to any possible health concerns, but public health never came
up as an issue. This does not mean that Charlotte has no areas where public
health indicators show high rates of health problems. The Mecklenburg Health
Department has identified “the crescent area” as having the greatest health con-
cerns. This area spans across the city from the western part of the city over the
middle of uptown to the northeast areas. The health department has not conducted
a formal study to determine the “why” behind the “what” regarding certain rates
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Fig. 8.11 Unemployment
rate GWR coefficients

of disease or public health measures in the these neighborhoods (Zimmerman,
2007). Among the possible explanations of the health problems in the crescent are:
(1) the lower economic status groups that reside in these areas tend to dis-
play unfavorable health behaviors such as poor diet, obesity, drinking, smoking
and drug use; (2) the population has limited access to health care and public
health services (Zimmerman, 2007); and (3) toxic sites in the area exacerbate
the effects of race, class, and ethnicity, as well as other factors that might make
these populations more vulnerable to adverse health outcomes, such as residential
segregation.

Using multiple data sources, GIS analysis, and various regression tools, this study
found that brownfields were more likely to be located in low socio-economic sta-
tus neighborhoods. These neighborhoods also had above-average low birth weight
rates. This indicates that although policymakers and developers did not intention-
ally include public health outcomes as an important factor in choosing brownfield
sites, brownfield cleanup and reuse probably has had positive impacts for social and
environmental justice.
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Chapter 9
Regional Environmental Patterns of Diarrheal
Disease in Bangladesh: A Spatial Analytical
and Multilevel Approach

Elisabeth D. Root and Michael Emch

Abstract This study investigates diarrheal disease distributions in Bangladesh
using nationally representative household-level survey data integrated with land
type maps that characterize flood inundation levels. The spatial distribution of
childhood diarrhea is mapped throughout the country and diarrhea rates are strat-
ified by individual, household, and regional-level variables. This study describes
national-level trends by integrating spatially-referenced household characteristics
and regional-level information on water and sanitation. The world saw dramatic
improvements in water availability during the 1980s, designated “International
Water Supply and Sanitation Decade” by the UN. Nevertheless, reductions in
diarrheal morbidity in much of the developing world have been modest, pos-
sibly because of a lack of sufficient parallel improvements in sanitation and
hygiene (Levine et al., Lancet 2(7976):86–89, 1976; Esrey et al., Bull World
Health Organ 63:757–772, 1985; Hoque et al., Bull World Health Organ 74:
431–437, 1996). In a recent meta-analysis of 64 studies, Fewtrell and Colford
(Health, Nutrition, Population Discussion Paper, World Bank, Washington
DC, http://www1.worldbank.org/hnp/Pubs_Discussion/Fewtrell&ColfordJuly2004.
pdf, 2004) found that water supply, water quality, hygiene, and sanitation programs
all reduce diarrheal disease mortality and morbidity. However, multiple interven-
tions did not reduce diarrheal disease any more than approaches that involved only
one intervention. This suggests that a better fundamental understanding of the rela-
tionship between water, sanitation, household characteristics and diarrheal disease
is needed to optimize future interventions. This study begins to investigate these
relationships using data at different collected at multiple scales.
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9.1 Background

Diarrheal diseases cause more deaths among children under five than any other dis-
ease in Bangladesh (Hoque and Hoque, 1994). Over the past 2 decades, millions of
rural households across Bangladesh, a country with a per capita GNP of US$400,
have installed private tube wells in the hope of improving their health. This US$500
million effort was the response of international organizations, including UNICEF,
the Bangladesh government and many NGOs, in order to reduce infant mortality
by encouraging a switch from surface water to groundwater, which is generally
less contaminated with human pathogens. Because limited resources must be used
wisely in countries such as Bangladesh, it is necessary to identify risk factors so
preventative health programs can focus on specific interventions. Assessing risk for
diarrheal disease requires knowledge of the complex and dynamic interaction of bio-
logical, socioeconomic, behavioral, and environmental factors. The objective of this
study is to advance such knowledge in the context of rural Bangladesh. Specifically,
the study identifies the variables related to diarrheal disease risk and analyzes the
spatial patterns of diarrhea.

In Bangladesh, diarrheal diseases are caused by many disease agents (Table 9.1).
A detailed study of the etiological burden was conducted in a rural area of
Bangladesh and included estimates of the diarrheal disease burden in the hospital
and in the community (Baqui et al., 1991, 1992). Hospitalized cases represent more
severe diarrheal disease overall compared to community based disease burden val-
ues. Cholera, which is a disease caused by the bacterium Vibrio cholerae 01, is the
most common agent leading to diarrheal hospitalization followed by shigella which
is bacterial dysentery. In contrast, diarrhea in the community is mostly caused by

Table 9.1 Diarrheal etiological agents in rural Bangladesh

Disease agent
Percentage detected
in community

Percentage detected
in hospital

Vibrio cholerae 01 0.4 39
Vibrio cholerae non 01 2.9 3
Shigella 8.6 11
Enterotoxigenic Esherichia coli 12.2 14
Campylobacter 17.6 11
Salmonella 0.1 1
Enteroadhesive Esherichia coli 34.3 –
Enteropathogenic Esherichia coli 13.5 –
Aeromonas 2 –
Pleismonas 0.1 –
Rotavirus 4.3 –
Entaemoeba histolytica 0.4 2
Giardia lamblia 2.2 2
Cryptosporidium 1.9 –
No agent detected 42.1 –

–, Lab test not done.
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different forms of Esherichia coli. In an ongoing study by one of the authors (Emch,
unpublished) it was found that in rural Bangladesh shallow tubewells (<100 ft) are
contaminated with Esherichia coli more than half of the time and more often during
the monsoon season. Thus, it is hypothesized in the present study that areas more
prone to flooding will have higher diarrheal disease rates.

9.2 Study Data

The primary source of data for this study is the Bangladesh Demographic and Health
Survey (BDHS) collected in 1999/2000 (NIPORT et al., 2001). The BDHS relies on
a two-stage sample, stratified by urban/rural status, and selected using the Integrated
Multi-Purpose master Sample (IMPS) which was created on the basis of 1991 cen-
sus data by the Bangladesh Bureau of Statistics. The master sample consists of 500
primary sampling units (PSUs), selected with sampling probability proportional to
the population of the census enumeration area (NIPORT et al., 2001). A total of
341 PSUs were used for the 1999–2000 BDHS (99 in urban and 242 in rural areas).
A systematic sample of 30 households was selected from each primary sampling
unit and all ever-married women age 10–49 interviewed. Response rates were very
high (96.9%), and the final sample consisted of 9,854 households from which 10,544
women were interviewed.

The Women’s Questionnaire was used to collect information from eligible
women. Women were asked various questions on health and personal/household
characteristic including the health of children under the age of five within their
households. The question used to determine prevalence of diarrhea among children
was whether a given child under the age of 6 years “Had diarrhea recently?” in
the last 24 hours, last week, or longer periods. The BDHS also asked questions
related to: breastfeeding and weaning practices; household specific characteristics
such as household size, source of drinking water, existence of toilets and condi-
tion of housing, and; maternal characteristics such as age, education and literacy.
Sample weights were generated and normalized such that the weighted number of
cases is identical to the unweighted number of cases when using the full dataset
with no selection. Sample weights were used to weight all tabulations examined
in this study. Also recorded is the geographic cluster (PSU or census enumeration
area) to which the household belongs, enabling researchers to link survey data to
outside data sources using geographic location. We obtained the geographic coordi-
nates (latitude and longitude) for the centroid of each geographic cluster and linked
survey data to these clusters using the unique cluster identification code assigned to
each household.

The data used in this study consisted of a record for each child for which data
was reported by the mother. A value of 0 was assigned if the mother did not report
that the child “Had diarrhea recently?” while a value of 1 was assigned if a child
had diarrhea in the “last 24 hours” or “last 2 weeks”. Children for whom data was
missing were removed from the dataset. Each child was also assigned household
variables and maternal characteristics including: the number of children under 5
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Table 9.2 Desriptive characteristics of the sample

Variable
Children with diarrhea
(n = 361)

Children without
diarrhea (n = 4,775)

Number of children 5 years or younger in the
household (mean/SD)

1.7 (0.92) 1.6 (0.95)

Latrine type
septic tank
pit/open/hanging
no facility

5 (1.3)
264 (73.3)
92 (25.4)

186 (3.9)
3,477 (72.8)
1,112 (23.3)

Currently breastfeeding 254 (70.6) 2,881 (60.3)
Child given water 341 (94.5) 4,254 (89.1)
Land type

highland
medium highland
lowland

157 (43.7)
164 (45.5)
39 (10.8)

2216 (46.4)
2216 (46.4)
343 (7.2)

in the household, total number of household members, household drinking water
source (piped water, tubewell or surface water source), type of latrine facility (sep-
tic tank/toilet, pit/open/hanging latrine or no facility), housing material (natural,
rudimentary or bring/cement/tin walls), maternal literacy (reads easily or with diffi-
culty vs. cannot read), whether or not the child was still breastfeeding (yes vs. no),
whether or not the child is given water to drink (yes vs. no). Table 9.2 displays
descriptive statistics for the study.

The spatial data are derived from the Bangladesh National Database Project
(NDP), a geographic information system (GIS) developed to assist in planning and
managing spatial data for the Flood Action Plan (FAP) in Bangladesh (ISPAN,
1995). The NDP provided geographic boundary files for districts as well as flood
inundation land type, which displays “normal” flood depths during the monsoon
season. Using elevation and soil type data, land is classified into several categories:
non-flood (highland), medium flood (medium highland and medium lowland), deep
flood and very deep flood (lowland) and urban areas. The coordinates of the geo-
graphic cluster data obtained from the BDHS were used to assign the flood category
to each household used in this study. Figure 9.1 illustrates the different geographic
data layers used.

9.3 Methods

Methods include a combination of GIS analyses and statistical modeling. A GIS
database was created to integrate the BDHS data with flood maps, to visualize
diarrheal distributions, and multilevel models were used to measure associations
between these distributions. We first assigned each geographic BDHS cluster a
corresponding land type/flood classification code using overlay operations with
Hawth’s Analysis Tools in ArcGIS 9.2 (Beyer, 2004). Hawth’s Tools is a free
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Fig. 9.1 Cluster locations, district boundaries and land type (by flood classification)

extension for ESRI’s ArcGIS (specifically ArcMap). It is designed to perform spa-
tial analysis and functions that cannot be conveniently accomplished with out-of-
the-box ArcGIS. Overlay operations involve the placement of one map layer (clus-
ters) on top of a second map layer (land type) to create a new map layer that is some
combination of the two. Hawth’s Tools has specific raster-vector overlay operations
not available in ArcMap whereby attributes of a raster dataset can be assigned to
observations in a vector dataset. This allowed us to integrate environmental data
with the BDHS survey data and assign each household to a land type category.
Households assigned to a cluster surrounded by a non-flood area (highlands) were
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Table 9.3 Number of cases, number of children 5 years or younger, and diarrhea rate by land
use type

Land use type
No. of diarrhea
cases

No. of children
5 or under

Rate per 1,000
children

Highland 157 2, 408 65.2
Medium 167 2, 415 69.2
Lowland 39 389 100.3
Urban 10 98 102.0
Total 373 5, 310 70.2

given this land type value for subsequent regression analyses. We chose to group
land types into four categories based on similarities in flood inundation levels: high
land, medium highland, lowland, and urban land. Table 9.3 shows the number of
clusters, cases of diarrhea and children under 5 by land type category.

We first conducted a data visualization step to qualitatively assess spatial patterns
of diarrhea prevalence in Bangladesh. Several maps of diarrhea rates were created
at different levels of spatial aggregation and using different methods in ArcGIS 9.2
(ESRI, 2007). Diarrhea data were aggregated to the district level and rates (per 1,000
children under 5 years) displayed using district boundaries. Proportional symbol
maps allowed us to display the magnitude of diarrheal events in combination with
land type. Finally, we created a diarrheal disease prevalence surface using an inter-
polation technique called kriging. Spatial interpolation is a process of estimating
unknown data values for specific locations using the known data values for other
points. In this study, we created a continuous diarrheal disease surface using the
known diarrheal rates for each discrete cluster location. Kriging is a specific method
for spatial interpolation which creates unbiased weighted averages of the data with
minimum variance (Oliver and Webster, 1990; Oliver, 1996).

After examining results from the data visualization step, we chose to exclude
individuals living in an urban land type classification from our regression analyses
because these areas are located in a variety of land type areas (e.g., both highland
and lowland), have different methods for coping with flood events and, therefore,
different risk factors for diarrheal disease.

To estimate the risk of a diarrheal event associated with land type, maximum
likelihood estimates of odds ratios (OR) and 95% confidence intervals (CI) were cal-
culated from multilevel logistic regression models (Diez Roux, 2001; Raudenbush
and Bryk, 2002). Children living within the different land use classifications are sub-
ject to intraclass correlation, which could lead to overestimation of the significance
of the risk factor. Intraclass correlation occurs when individual-level observations
are not independent because they share some factor, in this case a specific land use
type. Thus, children living in the same land use type will be more similar (probably
due to shared risk factors) than children living in different land use types. To account
for intraclass correlation, a multilevel model with SAS PROC GLIMMIX procedure
(SAS Institute, 2007) was used, which permits the incorporation of random effect
terms (e.g., land type). These random effect terms are a method of “controlling for”
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possible intraclass correlation. Multilevel models combine individual-level (level-1)
and area-level (level-2) predictors into one regression equation (a “full” or “com-
bined” model). For this study level-1 predictors include child-specific and maternal
characteristics derived from the BDHS and the level-2 predictor is the land type
associated with each cluster. We estimated multilevel logistic regression models
with a fixed slope value for each predictor variable and random intercepts for each
land type. Probability of diarrhea occurrence can be evaluated with the following
equation:

log

(
�ij

1 −�ij

)
= β0 + β1Xij + u0i + eij

where:

Pij = Pr(Yij = 1), the probability of the jth child (level-1) nested within the ith
land type (level-2) having a diarrheal event

β0, β 1 are level-2 coefficients (also called fixed effects)
Xij represents a vector of variables that are level 1 predictors of the outcome

variable (maternal and child characteristics)
eij is a level-1 random effect (error term)
u0j is a level-2 random effect (error terms)

The combined influence of individual- and area-level indicators was examined to
determine whether risk for children living in a lowland or flood-prone region varied
even after controlling for individual characteristics. Considered as potential con-
founders were number of children under 5 in the household, household drinking
water source (piped water, tubewell or surface water source), type of latrine facil-
ity (septic tank/toilet, pit/open/hanging latrine or no facility), breastfeeding status
(still breastfeeding vs. not breastfeeding) and whether the child was given water to
drink (yes vs. no). Only those covariates that showed a significant risk associated
with diarrhea during univariate and multivariate analyses were included in the area-
level analysis. Univariate analysis, logistic regression and multilevel modeling were
conducted in SAS version 9.2 software (SAS Institute, 2008).

9.4 Results

Figure 9.2 shows diarrhea rates for children 5 years or younger aggregated by dis-
tricts while Fig. 9.3 shows the rate for each geographic cluster. There appears to
be significant spatial variation in diarrhea rates with some locations experiencing
no diarrhea and several districts reporting more than 300 cases per 1,000 children.
Figure 9.3 shows no clear correlation between high diarrhea rates and land type,
though a qualitative assessment of the lowland areas near the two major rivers sug-
gests rates may be higher in these areas. The most affected regions appear to lie in
the north central area of the country. Figure 9.4, the interpolated prevalence surface,
confirms this spatial pattern, and suggests that areas of high risk mirror the major
rivers in Bangladesh.
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Fig. 9.2 Diarrhea rates aggregated by districts

Table 9.2 shows the characteristics of the sample used for the regression analysis.
After excluding records with missing level-1 or level-2 covariates, and applying the
sample weights, we obtained a weighted sample size of 5,136 children 5 years of age
or under, 361 with a diarrheal event and 4,775 with no recorded diarrheal episode.
Table 9.3 shows that the rate of diarrhea per 1,000 children 5 years of or younger
varied by land use type, with highland areas reporting a rate of 65.2 and lowland
areas reporting a rate of 100.3.

Table 9.4 displays the results of the logistic and multilevel logistic regression
models. Model 1 examines the odds of a diarrheal event controlling for individual-
level factors only. The odds of diarrheal disease increased with the number of
children in the household. Children living in households using a latrine with a septic
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Fig. 9.3 Proportional symbol map showing diarrhea prevalence and land type

tank had the lowest odds of diarrheal disease followed by households using a pit,
open or hanging latrine. Children with no latrine facility present had the greatest
odds of a diarrheal event. Breastfeeding was also significantly associated with a
higher risk of a diarrheal event, though not in the expected direction, while children
who received water to drink had a higher odds of diarrhea even than children who
only breastfeed. While children who receive drinking water can be expected to have
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Fig. 9.4 Rate of diarrhea per 1,000 children 5 years or under: surface interpolated using kriging
technique

higher odds of diarrhea due to exposure from drinking water sources, breastfed chil-
dren should have lower odds of diarrheal disease because they are not exposed to
other contaminated water sources. The unexpected result may be due to the fact that
the survey does not distinguish between exclusive and partial breastfeeding so chil-
dren who are reportedly being breastfeed also receive other foods or liquids which
may be subject to contamination. Model 2 examines the odds of a diarrheal even
for each land type, but not considering any individual-level factors. Children living
in lowland areas had significantly higher odds of a diarrheal event when compared
to children living in a highland area. Children living in the midland areas, however,
did not show increased risk for a diarrheal event.
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Table 9.4 Logistic and multilevel logistic regression model results

Covariate Model 1 Model 2 Model 3

Individual-level
(level 1) variables

Number of children 5 years
or younger in the
household

1.17 (1.04–1.33) 1.17 (1.03–1.32)

Latrine type
septic tank
pit/open/hanging
no facility

0.32 (0.13–0.83)
0.94 (0.74–1.21)
1.0

0.32 (0.13–0.84)
0.93 (0.72–1.19)
1.0

Currently breastfeeding 1.81 (1.42–2.30) 1.82 (1.43–2.31)
Child given water 2.63 (1.64–4.20) 2.66 (1.66–4.25)
Area-level (level 2)

variables
Land type

Highland
Medium high-/lowland
Lowland

1.0
1.03 (0.83–1.29)
1.56 (1.08–2.25)

Random effects
Between-land type

variation
0.04 (0.06)

Model 3 examines the odds of a diarrheal event using a random intercept
model. Intercepts were allowed to vary by land type and the odds of a diarrheal
event controlled for individual-level predictors. Allowing intercepts to vary by land
type changed the odds ratios very little. The random effects represent the residual
between-land type variation in the outcome after accounting for the individual-level
covariates. These can also be interpreted as the residual within land type clustering
of the outcome. The estimated variance of the land type intercepts was 0.04 with a
standard error of 0.06. In this case, the residual between land type variance is not
statistically significant, which is not surprising since the odds of diarrhea for indi-
viduals living in medium high-/lowland areas was not significantly different from
individuals living in highland areas. The fixed individual-level effects more strongly
influence diarrhea outcomes that land type.

Table 9.5 lists, for each combination of land types, the estimated relative risk and
associated p-values calculated from the multilevel logistic regression models. The
relative risk is a measure of risk due to one land type classification relative to each

Table 9.5 Relative risk and 95% confidence intervals of a diarrheal event by land type

Land type
Relative risk
(95% CI) p-value

Highland vs. medium high-/lowland 0.96 (0.78–1.19) 0.708
Highland vs. lowland 0.72 (0.53–0.99) 0.044
Medium high-/lowland vs. lowland 0.75 (0.54–1.03) 0.077
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of the other land type classifications. These results suggest that children living in
highland areas had 28% less risk of a diarrheal event relative to children living in
a lowland area. Children living in a highland and medium high-/lowland area had
similar risk for diarrheal event, suggesting these two areas have similar patterns of
diarrheal events. Children living in medium high-/lowland areas had approximately
25% less risk of a diarrheal event than children in lowland areas, though this was
only borderline significant. Overall, these results suggest that children living in low-
land areas have greater risk of a diarrheal event than children living in the other two
land types.

9.5 Conclusions

There is much regional variation in diarrheal disease in Bangladesh. Maps reveal
that the highest rates of childhood diarrhea are in the northern region of Bangladesh
near the Brahmaputra River (Figs. 9.1–9.4). Households with latrines that have
septic tanks have significantly lower diarrheal disease rates, suggesting that good
sanitation is one of the most important factors in lowering the risk of diarrhea among
children. Giving young children water to drink increases their risk of diarrheal dis-
ease, probably because the water is contaminated with a variety of pathogens that
cause diarrhea. This is particularly problematic because children do not have immu-
nity against diarrheal pathogens while adults do. This is both because children have
not been exposed to the agents and their immune systems are not fully developed
yet. Children living in lowland areas are more prone to diarrheal diseases than those
living in upland areas. This study indicates a 28% increase in risk of diarrhea among
children living in a lowland area relative to children living in a highland area. This
is likely due to flooding which inundates sanitation systems and also infiltrates
the shallow aquifer thus spreading diarrheal pathogens and contaminating tubewell
water sources.

Overall, the effects of land use type (level-2 effects) on the risk of childhood
diarrheal disease are smaller than the impact of individual and family characteris-
tics, but this does not preclude land use from playing an important role in disease
transmission in Bangladesh. Direct behaviors and interactions that place children at
risk for contracting diarrheal disease are expected to have the strongest influence,
which the results clearly indicate. But area-level factors, such as land use, can also
impact child health, though they are often modified by individual-level behaviors.
The fact that children living in lowland areas do experience a significant increase in
risk of diarrhea when compared to children living in highland areas does indicate
some protective effect of living outside of a flood zone.

The geographic approach used in this study reveals that when controlling for
individual and household-level variables known to be related to diarrheal disease,
there are still regional differences in childhood diarrhea rates which may be related
to environmental factors such as flood levels. Using spatial visualization methods,
such as maps and kriging, along with multilevel statistical models can reveal more
information than traditional univariate data analysis and regression models. This
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study used a GIS primarily to integrate different data sets based on common geog-
raphy thus allowing for the inclusion of map data in multilevel models. The GIS
was also used to map and visualize the spatial patterns of the disease. Large datasets
including the BDHS often include spatial coordinates collected with global posi-
tioning system receivers. This study provides not only empirical results about risk
of diarrheal disease in Bangladesh but can also serve as an example of how to con-
duct this type of spatial study using household-level point data along with digital
map data in a multilevel framework.
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Chapter 10
Developing a Supermarket Need Index

Laura Smith, Chris Goranson, Jodi Bryon, Bonnie Kerker, and Cathy Nonas

Abstract The New York City Department of City Planning with assistance from the
New York City Department of Health and Mental Hygiene developed a supermarket
need index to determine the areas in the city with the highest levels of diet-related
diseases and largest populations with limited opportunities to purchase fresh foods.
The index was created using Geographic Information Systems to measure the need
for supermarkets based on high population density, low access to a car at the house-
hold level, low household incomes, high rates of diabetes, high rates of obesity, low
consumption of fresh fruits and vegetables, low share of fresh food retail, and capac-
ity for new stores. The resulting index identified areas of acute need for additional
full-line grocery stores, encompassing portions of the city where approximately
three million New Yorkers reside.

Keywords Food environment · Built environment · Food planning · Health policy

10.1 Background

In many neighborhoods across the country, access to healthy foods is limited.
The USDA Economic Research Service estimates that 23.5 million people nation-
wide live in low-income communities called food deserts with little or no access
to a supermarket or large grocery store within one mile of their home (USDA,
2009). These neighborhoods suffer from higher rates of obesity, diabetes, and
other diet-related diseases. Studies have shown that when people have access to
supermarkets that offer healthy food, they tend to be less obese (Morland et al.,
2006). Furthermore, these neighborhoods do not experience the additional bene-
fits that supermarkets may provide, including economic vitality and increased job
opportunities.
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In 2004, the Food Trust in Pennsylvania formed a successful public/private
partnership to offer flexible loans and grants to supermarkets that opened in
underserved areas. In 2007, with the help of a small start-up grant from
New York City’s (NYC) Office of the Mayor under Mayor Bloomberg, the
Food Trust began organizing a similar initiative in New York that included a
revolving loan fund and zoning and tax incentives for supermarkets that devel-
oped new markets in low-income communities. Recently this initiative received
national recognition. The federal government has allocated over $400 million for
the Healthy Food Financing Initiative, which will establish grocery stores and
other healthy food retailers in underserved urban and rural communities across
America.

In early 2007, the New York City Department of City Planning (DCP) was
asked by the Mayor’s Office to explore issues related to supermarket need in the
city, in response to growing concerns over a shortage of supermarkets. The study,
conducted with assistance from the New York City Food Policy Task Force, the
NYC Economic Development Corporation (NYCEDC) and the NYC Department
of Health and Mental Hygiene (DOHMH), showed a widespread shortage of super-
markets and neighborhood grocery stores in the city. The analysis identified the
areas with the greatest level of need for fresh food purveyors based on neighbor-
hoods with the highest levels of diet-related diseases and largest populations with
limited opportunities to purchase fresh foods, and determined that approximately
three million New Yorkers live in high need areas.

The supermarket needs index used data on a variety of food retail, community
health and socioeconomic variables to assess levels of need for full line grocery
stores in small, walkable neighborhoods of NYC. However, many of the original
data sets comprising the index were collected for larger administrative boundaries
and statistical geographic entities at varying spatial resolutions. For example, some
data were available at the census block or census tract level, while other data
were aggregated to a ZIP code. Still others were aggregated to NYC Community
Districts or United Hospital Fund (UHF) neighborhoods. As a result, the project
depended on the ability to evaluate a number of variables across these different
geographies. Since many of these areas overlap and cannot be cleanly aggregated
into one another, this posed a particular problem. For instance, NYC Community
Districts do not align cleanly within UHF neighborhoods or vice versa. If they did,
one approach would be to simply aggregate all datasets up to the largest coincident
boundary. One downside to this approach is that it creates much more generalized
data for smaller areas, and the pockets of high or low density areas scattered within
ZIP codes are averaged out as a result.

Geographic Information Systems (GIS) provided the tools necessary to compare
different datasets with different spatial resolutions, and eventually derive an index
that was representative of all the variables combined. This ability was critical to
developing the supermarket needs index.

The goal of this chapter is to illustrate how a real-world analysis used varying
types of information to collectively say something about newly created geographical
regions. Because of this methodology, the participating agencies were able to assess
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access to supermarkets by neighborhood, and identify barriers to access and oppor-
tunities for encouraging the development of supermarkets in underserved areas. As
a result of these findings, the NYC DCP proposed a zoning text amendment to
increase the number of full-line supermarkets and neighborhood grocery stores in
some of the city’s highest need areas. The city continues a multi-agency effort to
address additional need for fresh food retailers throughout the city, focusing on the
areas identified through the DCP’s supermarket needs index.

10.2 Literature Review

The influence of the built environment on food systems and dietary patterns is
complex. More accurate metrics that reflect this complexity are needed to guide
community and regional food-related economic development planning (American
Planning Association, 2007). In response, this study created a Supermarket Needs
Index (SNI) to weigh a number of diverse factors in order to identify high
supermarket need areas.

Current research demonstrates a number of trends that highlight the urgent need
for more supermarkets to locate in low-income inner-city areas across the country.
A 1995 study conducted by the Food Marketing Policy Center at the University
of Connecticut confirmed the existence of an “Urban Grocery Store Gap” through-
out the country (Cotterill and Franklin, 1995). The study analyzed the country’s
top twenty-one major metropolitan areas and showed that ZIP codes with high
percentages of low-income residents contained fewer supermarkets per capita than
wealthier areas. In addition, the study showed that these areas also have the lowest
car ownership rates (Cotteril and Franklin, 1995).

The lack of accessible supermarkets in low-income neighborhoods is a contribut-
ing factor to high rates of obesity and diabetes, in addition to other health related
issues (Gallagher, 2006). Research has shown that a poor diet is a key contributor to
obesity (DHHS, 2001) and that a supermarket carries a wider variety of fresh pro-
duce than any other food store type (Morland and Filomena, 2007). Specifically,
one study found that, holding education and income constant, as grocery store
access decreases, obesity increases (Gallagher, 2006). Further evidence of the link
between a healthy diet and accessible supermarkets is documented in three indi-
vidual studies where respondents reported an increase in fresh fruit and vegetable
consumption once it became easily accessible (Moreland et al., 2002; Wrigley et al.,
2002; Floumoy and Treuhaft, 2005).

Despite the well documented lack of supermarkets in many inner-city low-
income neighborhoods, there is evidence of a large unrealized market potential in
these areas. In a 1995 analysis completed by Public Voice for Food and Health
Policy, it was estimated that as much as $1 billion in Food Stamp Program
purchasing power is lost annually as a result of people not having access to
competitively-priced stores in their neighborhoods (Weinberg, 1995). In addition,
certain supermarket chains, for example, Pathmark and Super Stop and Shop, have
found that their highest grossing stores are in low-income communities (The Food
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Trust, 2004). Furthermore, data from a Pathmark that opened in Harlem in 1999
show that this supermarket “met or exceeded industry averages in almost every cat-
egory” and, that as of 2005, this store had one of the largest produce departments in
New York City (Turcsik, 1999). There are a number of documented advantages to
locating in inner-cities such as: density of purchasing power, limited competition,
and available labor force (Floumoy and Treuhaft, 2005). One of the main reasons
current market analyses fail to capture this market potential is because they tend to
rely on average income as opposed to the high aggregate purchasing power that
exists in dense urban areas (Floumoy and Treuhaft, 2005). Accordingly, current
research points to an information gap between supermarket operators and actual
market conditions (Floumoy and Treuhaft, 2005; Pothukuchi, 2005).

This study is presented as an example of how a raster-based index can account
for the variability in data. This study is the first city-wide comprehensive policy
to provide a combination of zoning and financial incentives to address the urban
grocery gap.

10.3 Supermarket Need Index

The Supermarket Need Index (SNI), developed by the NYC DCP, is a multi-criteria
index that reflects both the health status of local populations and the economic and
geographic barriers they face in acquiring fresh food. Using GIS and geospatial
analysis, the index identifies areas in the city where large populations with lim-
ited opportunities to purchase fresh food also have the highest levels of diet-related
diseases. Specifically, the index measures the need for supermarkets based on the
following factors: high population density, low access to a car at the household
level, low household incomes, high rates of diabetes, high rates of obesity, low con-
sumption of fresh fruits and vegetables, low share of fresh food retail, and lack of
stores.

10.3.1 Methodology: Data Selection

As has been highlighted, the Supermarket Need Index was progressive in its con-
sideration of multiple health- and land-use related variables to determine areas of
New York City with the greatest need for additional fresh food retail. The process
of identifying the appropriate data to incorporate into the index involved consult-
ing with multiple city agencies, but final decisions were left to the NYC DCP. This
collaborative effort to acquire the desired data, and the processes of converting mul-
tiple data formats from a variety of sources, are where this chapter seeks to be most
instructive.

Data used to develop the SNI existed at several incongruent geographies, which
posed a particular problem. Some variables – population, household income, access
to a car – came from the 2000 Census at either the census block or census tract level.
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Data on the proportion of fresh food retail to all food retail came from the 2007
ZIP Business Patterns. ZIP code areas are commonly used as geographic zones
because they attach a more specific geography to a location than a state or county,
but do not require an individual providing an actual street address. However, ZIP
codes are challenging to use since they are defined on the basis of US mail carrier
routes (USPS, 2010). As such, ZIP codes as represented on maps are often general-
ized collections of similar routes (Manifold System, 2010). In GIS, this would mean
that the carrier routes are best represented as line features, not polygons, or areas.
Since there is a desire to collect information by ZIP Code, the lines are transformed
into areas, but as a result lose some definition. Thus, data are assigned to areas that
provide relatively good approximations for location, but are not perfect. The ZIP
code data included information on the number of food retail establishments and
each establishment’s appropriate standard industry classification code. Using this
code, the determined the type of establishments most likely to sell fresh food, and
NYC DCP then calculated the ratio of numbers of stores likely to sell fresh foods
to the total of all food retailers by ZIP code. These data were then joined to the ZIP
code boundary shapefiles, available through the 2000 Census Tiger website.

To incorporate poverty data, census tract boundaries, which were downloaded
through the 2000 Census Tiger file, were merged with data compiled by the NYC
DCP that identified Community Development Block Grant (CDBG) eligibility. The
CDBG designation identifies the percent of those living in households with incomes
below 80% of the median household income, which was $47,100 for a 4-person
household in 2000 (NYC DCP, 2010). Tracts where at least 51% of residents are
defined as low- or moderate- income based on this income limit are designated as
CDBG eligible, and receive CDBG funds. A tract’s CDBG eligibility status was
used as a proxy for the Supermarket Need Index’s determination of poverty among
census tracts citywide.

Census block group boundaries were downloaded through the 2000 Census Tiger
file website and were loaded with data on the number of households without access
to a car and on the population density of each block group (number of people per
acre) from Census 2000 American Factfinder.

In contrast, data from the NYC DOHMH files came from the Community Health
Survey (CHS) and were geographically much larger than census blocks, census
tracts, or ZIP code areas. The survey samples the population using the United
Hospital Fund’s 42 (UHF) neighborhood designations, which are aggregations of
contiguous ZIP codes. For use on the CHS, these neighborhoods have been modi-
fied slightly for the addition of new ZIP codes since UHF’s initial definitions (NYC
DOHMH, 2010). UHF Neighborhoods are used because most people know their
own ZIP code, so it is easier to collect this information on a self-reported survey
than other geographic boundaries.

The CHS provides a wide range of estimates of chronic disease and behavioral
risk factors collected annually through a telephone survey of approximately 10,000
New Yorkers (NYC DOHMH, 2010). Among the questions asked during the survey
were questions that assess fruit and vegetable consumption, obesity and diabetes.
For example, in 2004 respondents were asked, “How many total servings of fruit
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and/or vegetables did you eat yesterday?” Choices included “none”, “1–4” or “5 or
more” (NYC DOHMH, 2010). When age-adjusted, these estimates contribute to a
picture of fresh fruit and vegetable consumption in the city. The NYC DCP received
the UHF neighborhood shapefiles with these three data points pre-loaded into the
attribute tables.

The NYC DCP and DOHMH agreed that these fruit and vegetable consumption
and diabetes and obesity rates provided useful guidance in identifying popula-
tions in the greatest need of healthy food intervention. While numerous other
health variables could have been incorporated into the index as indicators of poor
diet, the three chosen sufficiently highlight high need areas for the purpose of
the NYC DCP’s policy goals. The NYC DOHMH looks more closely at diet-
related diseases and food consumption for their own intervention and outreach
activities.

10.3.2 Methodology: Shapefile Creation, Hot Spot Analysis,
Trade Area Determination

As has been highlighted, the Supermarket Need Index was progressive in its con-
sideration of multiple health- and land-use related variables to determine areas of
New York City with the greatest need for additional fresh food retail. The process
of identifying the appropriate data to incorporate into the index involved consulting
with multiple city agencies. The collaborative effort to acquire the desired data, and
the processes of converting multiple data formats from a variety of sources, is where
this chapter seeks to be most instructive.

The first step in creating the index was to prepare the data. For two of the vari-
ables, Getis-Ord Gi∗ hot spot analyses were run in order to identify spatial clusters
so that the variables could be easily incorporated in the SNI. The two variables
were: number of households without access to a car, and number of people per
acre within each census block group. A distance threshold of 1,320 ft, or 1/4 mile
was used. The NYC DCP defined this 1/4 mile distance as being the general dis-
tance a resident is willing to walk to access daily goods and services. This distance
thus approximates a person’s neighborhood. The resulting hot spot renderings high-
lighted neighborhoods where there are clusters of residents without access to a car,
and where there are clusters of high population density. Block groups with fewer
than 100 residents were excluded from the analysis, so that non-residential block
groups did not influence the identification of hot spots.

Estimates for trade areas illustrating the possible market reach for supermarkets
were constructed using the Thiessen Polygon tool provided in the ArcInfo analy-
sis toolbox. The input points were existing supermarkets, as provided by the NY
State Department of Agriculture and Markets. Each resulting polygon contained
only one point (supermarket), and bounded an area where “any location within a
polygon is closer to its associated point than to the point of any other polygon”
(ESRI, 2010). The attribute table for the Thiessen polygons contained all of the data
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for the individual grocery stores around which the polygons were created – so each
polygon had a store name and store size associated with it.

The population living within each supermarket trade area was determined by
converting census block group polygons into centroid points, with each block group
population tied to its centroid point. This was done to avoid errors during the spatial
join. These block group points were then spatially joined with the trade area poly-
gons, so that the populations associated with each block group were joined with the
supermarket trade areas that contained their centroid. Block group populations were
summed by Theissen polygon, providing an estimate of the total population within
each supermarket trade area.

10.3.3 Methodology: Raster Analysis and Index Calculation

These eight shapefiles, representing vector data, were then converted into raster lay-
ers using the Features to Raster tool in Spatial Analyst. Each raster layer consisted
of a series of cells, or pixels, with each cell representing a 611′ × 611′ area on the
map. Furthermore, each raster cell included some measure of the layer – an actual
integer score assigned to each pixel based on the value of the earlier vector layer.
For example, the raster cell might indicate a population density, while another might
be the percent of persons within a particular area who were diabetic.

In each case, the data were assigned a weight to represent the perceived influence
of the variable, as determined through discussion internally at the NYC DCP, and
in consultation with partners at NYC DOHMH. For each variable, the pixel values
were reclassified on an integer scale from 0 to 3. For example, diabetes rates were
reclassified from their original percentages, so that a value of 0 represented an area
where the diabetes rate was at or below the citywide average, and a 1 represented
an area where diabetes rates were above the citywide average. This reclassification
methodology provided a convenient way to aggregate a pixel’s scores on a number
of different variables and come up with a representative total score for that spe-
cific pixel, on the map. Furthermore, each variable could be weighted in the final
calculation based on its perceived influence

The raster layers, shown below, were used in creating an index score that repre-
sents the need for and access to supermarkets in each square (pixel) in the map. The
index represents the sum of the integer scores for that pixel of the eight variables
described above.

Index formula:
SNI = [POP] + [CAR] + [LOWINC] + [DIAB] + [OBES] + [5FRV] + [FFRET]

+ [CAP]
POP = Population density (high density ranks higher)
CAR = Access to a car (low access ranks higher)
LOWINC = Low income, defined by CDBG eligibility (eligible tracts ranks

higher)
DIAB = Diabetes rates by UHF (high rates rank higher)
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OBES = Obesity rates by UHF (high rates rank higher)
5FRV = Daily consumption of fresh fruits and vegetables (low rates rank

higher)
FFRET = Share of fresh food retail (low rates rank higher)
CAP = Population capacity for new stores (more people served by less

supermarket square footage ranks higher)

The combined weighted values at every pixel produced an overall index of need,
categorized on a three-tiered scale from less to moderate to high. Pixels with a com-
bined score of 0–5 were determined to have Minimal Need; those with a score of
6–8 were classified as having Moderate Need; 9–12 were classified as being in High
Need of additional fresh food retail. This categorization was based on natural breaks
in the data when divided into three groups.

Table 10.1 – SNI index variable weights below illustrates how variables were
weighted.

Health data (obesity, diabetes, fruit/vegetable consumption) were weighted 0 or
1, depending on whether the pixel had a value below the citywide average for diet-
related diseases (1) and whether the consumption of fruits and vegetables among
residents in each UHF was above the citywide average (1).

For the food retail variable, raster cells with values at or below the citywide
average (where the share of fresh food retail to all food retail was at or lower than
average) were weighted 0; those with values above the citywide average share were
weighted 2.

Neighborhood clusters of car access were weighted with values of 0 or 2. Cells
where the Getis Ord Gi∗ z score indicated no apparent spatial concentration of
residents without access to a car were weighted 0, and cells where the Getis Ord
Gi∗ z score indicated a high concentration of residents lacking access to a car was
weighted 2. The assumption was that spatially-clustered neighborhoods where pop-
ulations lack access to a car are less likely to have cars available for driving to the
grocery store.

Neighborhood clusters of population density were weighted in thirds. Pixels
where the Getis Ord Gi∗ z score indicated no apparent concentration of popula-
tion density were weighted 0, those with a moderate population density spatial
association were weighted 1, and pixels with a z score indicating a strong spatial
concentration of population density were weighted 2.

Pixels representing areas with low incomes as defined by CDBG funding were
weighted 3, while those in tracts with higher income (ineligible for funding) were
weighted 0. Since NYC DCP believes that poverty and income play a large role in
a family’s ability to conveniently access fresh and healthy foods, areas eligible for
CDBG funding were weighted heavily.

Pixels from the individual supermarket Thiessen polygons, representing super-
market coverage per population size, were also scored. The supermarket database,
received from the New York State Department of Agriculture and Markets, included
the store sizes of all food retailers in the City. The Urban Land Institute’s Shopping
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Center Handbook (Casazza, 1985) helped NYC DCP to approximate a supermar-
ket industry trade area standard of 30,000 ft2 of supermarket square footage for
10,000 people. This ratio took into account the general trade area captured in a
neighborhood shopping center developed in the Northeast United States and fac-
tored in New York City’s densely developed neighborhoods. The ratio helped NYC
DCP to approximate how well served a neighborhood was in supermarket square
footage and the extent to which capacity for additional supermarket square footage
existed. A trade area that was over capacity in its ratio of supermarket square footage
to population was weighted 0; a trade area with the capacity for up to one additional
30,000 ft2 store was weighted 1; a trade area with capacity for up to two additional
stores was weighted 2; and a trade area with a capacity for more than two 30,000 ft2

stores was weighted 3. The 30,000 ft2 store model was used to simplify the index
results; New York City could attract several smaller stores and still achieve the goal
of reaching the 30,000 ft2 per 10,000 people ratio.

Land use and economic related variables (share of fresh food retail to all food
retail; percent of households with no car; population within trade area that cannot
be accommodated by an existing store in the trade area; neighborhood clusters of
population density; and CDBG eligibility) had a higher maximum possible weight
than the diet-related variables (percent of population with diabetes; percent of pop-
ulation that is obese; percent of population that did not consume a fruit of vegetable
the day before), which were scored no higher than 1. This was done for two reasons:
since diet-related diseases (in this case diabetes and obesity) are often correlated,
assigning a lower weight to these variables guarded against the double-counting
or overemphasis of these variables. Emphasizing zoning and land use data in the
SNI produced findings that enabled the NYC DCP to focus on the areas where it
can have the greatest influence, neighborhoods with the greatest physical barriers
to fresh food access. Future collaboration efforts may incorporate additional health-
and land-use variables as participating agencies see fit. The NYC DOHMH, for
example, might have a greater interest in developing an index that will illuminate
neighborhoods with specific health considerations, or focus specifically on areas
with large vulnerable populations, like children or the elderly.

10.4 Results

The resulting total index score provided a measure that took into account the values
of each of the separate variables. Combined raster cells with a total score of 0–5
were determined to have Minimal Need; those with a score of 6–8 were classified
as having Moderate Need; 9–12 were classified as being in High Need of additional
fresh food retail. The raster cells that scored highest were identified as areas that had
residents with low access to fresh food, low consumption of fresh food, pervasive
health problems, low income, few existing stores but a population capacity to sup-
port new ones, high population density and low rates of car ownership. The highest
need areas had near-maximum scores for all eight variables. Figure 10.1 also shows
the boundaries of the NYC DOHMH’s District Public Health Offices (DPHOs),
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Fig. 10.1 Supermarket Need Index with District Public Health Office boundaries

communities that receive targeted programming to reduce health inequalities across
New York City due to their high levels of poverty, disease and premature death. The
high need areas encompass the DPHOs and thereby reinforce the necessity for coor-
dinated efforts to create conditions that will enable New Yorkers to make healthier
choices to lead healthier lives. Figure 10.2 illustrates the final Supermarket Need
Index against the original United Hospital Fund boundaries.

10.5 What We Learned and What We Could Do Differently

The NYC DCP developed this index and the weighting methodology based on the
agency’s understanding of supermarket need, and the agency’s ability to influence
policy around land use and the built environment. Data from the NYC DOHMH
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Fig. 10.2 Supermarket Need Index with United Hospital Fund neighborhoods

provided an additional and valuable perspective on the relationship between health,
diet-related diseases, and the built environment. As previously discussed, however,
land use variables were given more weight in the NYC DCP index because this
agency’s policies can only influence land use, and by extension, the retail landscape.

Some specific lessons were learned through the development of the Supermarket
Need Index. The use of 611′ × 611′ rasters yielded results at a geographic level that
was somewhat arbitrary; a recalculation of the rasters at a square footage size that
is more meaningful might be preferable. For example, 528′ × 528′ rasters could
be generated, yielding an area that is 1/10th mile long by 1/10th mile wide, about
2 Manhattan blocks – a distance that is familiar to most New York City residents.
By doing this, no background knowledge of the study and no experience with raster
data would be needed to measure distances using the cell size or identify meaningful
geographies portrayed on the final map. Having each raster cell represent an area
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that people can generally visualize and mentally map could help the SNI reach a
wider audience and would allow people to translate areas on a map into distances
they are familiar with in their own neighborhoods.

There were also some limitations to the data used to develop the index. More
time and/or specific resources might have allowed the NYC DCP to utilize a differ-
ent methodology for determining the trade areas for existing stores. For example,
the current methodology assumes all residents shop at the store that is physically
closest to their homes. This does not take into account highways or natural barri-
ers that might compel a pedestrian shopper to visit the store that is on the more
walkable path, rather than a store that is geographically closer but less accessible.
Nor does it take into account one’s perception of or preference for particular areas
or stores. The methodology also did not recognize quality differences among food
retailers that might compel someone to travel to a “destination” grocery store, nor
the fact that many residents may pick up groceries near their place of employment,
school, etc. That said, because city policy aims to increase and improve fresh food
retail at the neighborhood level, and because most residents do rely on the gro-
cer closest to their home to meet their daily food needs, identifying neighborhoods
with limited options for full-line grocery shopping was considered a valuable find-
ing. Also, because the index considered automobile access in its calculation of high
need, there is an understanding that transportation options might be more limited in
areas identified as being in high need of additional stores.

For these reasons, trade area definitions and the determination of the capacity
for additional food retail square footage were based on an assumption that people
shop exclusively at the supermarket closest to where they live and are not drawn
to stores outside of their neighborhood. Making fresh food retail available within
walking distance from residents is a priority in the city’s dense, pedestrian-oriented
neighborhoods.

10.6 Future Applications

Rather than considering the results of the data calculations and resulting index as a
definitive measure of the need for additional supermarkets, city agencies might want
to consider the index as a tool for policy development. Incorporating land use vari-
ables and weighting them more heavily than other data allowed the NYC DCP to
focus more closely on elements of supermarket access that the agency can directly
influence. An index that gives additional weight to health variables, childhood indi-
cators, economic variables, and other factors might be a possibility for agencies
dealing with non-land use related aspects of fresh food access and health policy.
The use of multiple such indices may lead to the identification of further policy
alternatives that could contribute to addressing this issue.

To help community leaders identify the food deserts in their area, USDA recently
launched a Food Environment Atlas (www.ers.usda.gov/FoodAtlas/). This new
online tool allows for the identification of counties where, for example, more than

www.ers.usda.gov/FoodAtlas/
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40% of residents have low incomes and live more than one mile from a grocery
store.

Although this type of mapping is a start, many additional elements must
be defined before this initiative can accurately pinpoint neighborhoods with the
greatest need for new markets. For New York, one aspect of the learning curve
was recognizing and adapting to the differences in the urban environments of
Philadelphia and New York City. For example, in New York City there are fewer
large, convertible spaces for supermarkets to occupy, a greater number of neighbor-
hoods, and fewer cars. Therefore, it was incumbent upon those working in the city
to rethink the mapping of this project: Hence, the supermarket index.

Appendix: Data Sources and Tools Used

Data were collected from several sources, including the NYC Department of City
Planning, the US Census, The NYC Department of Health and Mental Hygiene,
the Bureau of Labor Statistics, and the NY State Department of Agriculture and
Markets. Using ArcGIS 9.2 with Spatial Analyst, this information was mapped to
reveal diet-related data and land-use conditions across New York City. The bound-
aries of variables were non-coterminous in some instances, but generally captured
similar demographics.

Data and shapefiles came from city and state agencies:

Supermarkets database – New York State Department of Agriculture and
Markets

Obesity and diabetes – NYC Department of Health and Mental Hygiene
Consumption of fresh fruits and vegetables – NYC Department of Health and

Mental Hygiene
Share of fresh food retailers to all food retailers – Bureau of Labor Statistics
Population density – US Census 2000
Car ownership – US Census 2000
CDBG eligibility – NYC Department of City Planning
Geographic shapefiles – NYC Department of City Planning

ESRI ArcGIS 9.2 was used to create the index; generally, the ArcView license
with extensions contained the tools needed for this process. An ArcInfo license was
required for the Thiessen Polygon analysis.

The following ArcToolbox tools were used:
For specific variable calculations:

Getis Ord analysis: Geoprocessing tool reference > Spatial Statistics toolbox
> Mapping Clusters toolset > Tools – Getis Ord: Use to identify population
density and car ownership hot spots, to isolate areas of truly high density
and high/low car ownership and not just capture, for example, a single dense
building among a more suburban landscape
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Thiessen Polygon creation: Geoprocessing tool reference > Analysis toolbox >
Proximity toolset > Tools – Thiessen Polygons: Used to develop approximate
trade areas for existing supermarkets in our database – City Planning wanted
to capture the areas closest to each existing store and estimate the population
living closer to that store than to any other store, in order to determine how
well existing stores are able to serve their neighborhood populations.

Feature to Point conversion: Geoprocessing tool reference > Data Management
toolbox > Features toolset > Tools – Feature to point: Used to convert block
group polygons (and the population data associated with these polygons) into
points, allowing City Planning to capture the residential population within
each supermarket trade area.

For general analysis:

Conversion to Raster
Spatial Analysis Raster Reclassification
Raster Calculator

Obesity, diabetes and fruit vegetable consumption variables from Epiquery: NYC
Interactive Health Data System – Community Health Survey 2004. Body Mass
Index (BMI) is calculated based on respondents’ self-reported weight and height. A
BMI between 25.0 and 29.9 is classified as overweight and a BMI of 30 or greater
is classified as obese. Diabetes: The exact survey question was: Have you ever been
told by a doctor that you have diabetes? Fruit/vegetable consumption: The exact
survey question was: How many total servings of fruit and/or vegetables did you eat
yesterday? Age-adjusted estimates.
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Chapter 11
Asthma, Air Quality and Environmental
Justice in Louisville, Kentucky

Carol Hanchette, Jong-Hyung Lee, and Tim E. Aldrich

Abstract Many analyses have demonstrated that environmental hazards tend to be
concentrated in areas with higher numbers of low-income populations and people
of color. We used geographic information science (GISc) and statistical analyses
to examine issues of air quality and asthma occurrence among urban children in
Louisville, Kentucky. The results of our analyses indicate that there is a well-
defined spatial cluster of high rates of childhood asthma hospitalizations in western
Louisville, an area of the city that is notorious for its poor air quality and the poor
economic and physical health of its residents. Analyses also confirmed a strong sea-
sonal pattern to asthma, with a fall peak. The multi-factorial etiology of asthma
makes it difficult to pinpoint specific triggers for acute asthma episodes. Analyses
of EPA criteria pollutants and volatile organic compounds from local air monitoring
sites showed very little correlation with hospital admissions, although acetone, acry-
lonitrile and chloroform manifested similar seasonal patterns. In order to address the
environmental justice concerns of disproportionate siting vs. minority move-in, we
used GISc to examine patterns of residential mobility in western Louisville over
a 60-year period. The polluting industries in western Louisville’s “Rubbertown”
preceded the local in-migration of African-Americans, the majority of which took
place from 1960 to 1970. While the increasing African-American presence in the
community has resulted in a community with greater social cohesion over time and
successful community-based initiatives to reduce air toxics emissions have been
implemented, significant health disparities in western Louisville must continue to
be addressed.
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11.1 Introduction

Many analyses have demonstrated that environmental hazards, such as air pollution
and contamination from toxic wastes, are not equitably distributed. They tend to be
concentrated in areas with higher numbers of low-income populations, people of
color, and less-advantaged social classes. In this book chapter, we aim to examine
issues of air quality and asthma occurrence among urban children in Louisville,
Jefferson County, Kentucky, with a particular focus on the western industrial area
of “Rubbertown,” an area that is notorious for its poor air quality and the poor
economic and physical health of its residents. The fate and transport of polluting
substances, residential mobility and economic/political processes may all play a
role in western Louisville’s high asthma rates. All of these factors are inherently
spatial, and geographic information science (GISc) provides an ideal approach for
analyzing their impacts on health.

11.2 Background

11.2.1 Asthma Epidemiology

Asthma is one of the most common serious chronic diseases of childhood and is the
third leading diagnosis for hospitalization among children (Akinbami et al., 2009,
ALA, 2008). For the latter portion of the twentieth century, asthma was a vague
diagnosis, representing a mosaic of conditions characterized by respiratory defi-
ciency. However, it has gradually emerged as a distinct disease entity. It is not only
an inflammatory process, as may characterize bronchitis or other respiratory infec-
tions; nor is it simply bronchial constriction, as may occur with allergic reactions.
In fact, asthma is comprised of both bronchial inflammation and constriction. It is a
reactive airway condition induced by irritation of the bronchial tree as illustrated by
inhalation of fine particles, or breathing during high ambient temperatures (Helms,
2000). While the exact causes of asthma are hard to pinpoint, known triggers include
dust mites, molds, cockroaches, pet dander, secondhand smoke, ozone and partic-
ulate matter, and leaf mold, particularly alternaria and cladosporium (Alp et al.,
2001; Arbes et al., 2003; Lwebuga-Mukasa et al., 2004)

Unfortunately, no population-based data on asthma prevalence in the US exist.
Most national and state statistics are based on information from the National
Health Interview Survey, the National Survey of Children’s Health, the Behavioral
Risk Factor Surveillance System (BRFSS), the National Ambulatory Medical Care
Survey, and asthma hospital discharges. In 2006, nearly 23 million people in the
United States had asthma. Over 6.8 million of them were children, a number that
represents over 9% of US children (Akimbami et al., 2009, ALA, 2008). Asthma
prevalence rates are highest in the 5–17 year age group, at 106.3 per 1,000 popula-
tion (ALA, 2008). In children, prevalence is higher in boys (ALA, 2008; Bjornson
and Mitchell, 2000); in adults, females have higher rates (ALA, 2008). In general,
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rates are higher among people of color and in families with lower incomes (ALA,
2008; Aligne et al., 2000).

The estimated prevalence of asthma in children varies geographically, with high
prevalence rates in states in the industrial northeastern US, including Kentucky
(ALA, 2009). Year 2007 data from Kentucky’s most recent Asthma Surveillance
Report indicate that asthma prevalence for children 11 years and younger was
10.6%. The rates were higher for middle and high school students, at 13.6 and
11.8%, respectively. Rates for Kentucky’s African-Americans were higher for
all age groups, with the largest disparity among high school students – 22.4%
for blacks, 11.3% for whites (Nunn et al., 2009). Geographically, asthma preva-
lence is highest in the southeastern portion of Kentucky (Appalachia). However,
the Allergy and Asthma Foundation of America included Louisville (located in
Jefferson County, north central Kentucky) in the top 100 worst cities in America
for people with asthma, with a ranking of 53. Louisville ranked number three in the
nation for spring allergies (AAFA, 2009a, b).

Information about asthma morbidity is also available from hospital discharge
databases. In 2006, the US hospital discharge rate for asthma as a primary diag-
nosis was 149 per 100,000 (ALA, 2009). In 2007, the overall age-adjusted rate for
Kentucky was 145.7 per 100,000 and the highest age-specific rate was for the age
group 0–4 at 424 per 100,000 (Nunn et al., 2009).

Unfortunately, hospital discharge data do not always provide a good estimate
of asthma prevalence. Patients who lack good preventive care and/or health insur-
ance may be more likely to seek primary care in hospital emergency rooms. They
may also live farther from a primary care physician (Jones et al., 2004). However,
for many local areas, such as Louisville, hospital records often provide the only
available source of data. Our analysis uses hospital discharge data to examine
geographical and social inequalities in asthma in Louisville and to explore the
determinants of geographic variations.

11.2.2 Asthma in Louisville: Recent Studies

Recent studies of asthma in Louisville have indicated that there are strong spa-
tial and seasonal variations. Using hospital discharge data from 2000 to 2001,
Jones et al. (2004) reported a band of zip codes with high pediatric asthma hos-
pitalization rates extending from northwestern Louisville to the central portion of
Jefferson County, with the highest rates in northwestern Louisville. This band cor-
responded with a spatial distribution of poverty, low educational attainment and
African-American population. A similar geographic pattern was mapped by the
Louisville Metro Housing Coalition (2005), using hospital admissions data from
2000 to 2003. Jones et al. (2004) illustrated that the locations of pediatric practices
were mutually exclusive of the residential areas in Louisville that had the greatest
numbers of emergency department admissions.

Asthma hospitalizations vary seasonally as well as spatially. Statewide, the
highest percentage of Kentucky hospitalizations occur in winter (29.5%) and fall
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(27.5%) (Nunn et al., 2009). The pattern appears to be slightly different in Louisville
where Lee (2006) documented a strong, statistically significant seasonal pattern to
childhood asthma hospital admissions, using 2003–2004 data: a summer trough
followed by a strong fall peak.

The spatial patterns noted by Jones et al. (2004) and the Louisville Metro
Housing Coalition (2005) identify high rates of pediatric asthma in areas with
high poverty and high concentrations of African-American populations. Because
the northwestern corner of Jefferson County is an area known for its poor air qual-
ity, a major environmental justice concern is whether environmental exposures are
associated with a spatial concentration of poor health outcomes such as asthma in
nearby residential areas.

11.3 Spatial Analysis of Hospital Discharge Data, 2005–2008

Since the Jones et al. (2004) study, successful community-based initiatives to reduce
air toxics emissions have been implemented. The company responsible for the
largest 1,3-butadiene emissions has installed technology to significantly reduce
them. The Louisville Metro Air Pollution Control Board has implemented a series of
regulations that go above and beyond EPA air quality measures. This program, the
Strategic Toxic Air Reduction (STAR) Program, was approved in 2005 and requires
nearly 200 companies that emit polluting chemicals to develop plans to reduce emis-
sions. The primary purpose of our analysis is to utilize GISc and spatial analyses to
examine patterns of asthma hospitalizations since the implementation of the STAR
program.

11.3.1 Hospital Discharge Data

After obtaining Institutional Review Board approval from the Kentucky Cabinet for
Health and Family Services (CHFS), we obtained hospital discharge records from
Kentucky’s Office of Health Policy for all Jefferson County residents with a primary
diagnosis of asthma (diagnosis codes 493.0–493.99) for years 2005–2008. These
data consisted of 5,347 total hospitalizations with 1,856 (34.7%) hospitalizations of
children ages 0–19. Each record was stripped of personal identifiers and included
admission and discharge dates, patient age and gender, zip code of residence, diag-
nosis codes, referral sources, treatment costs, and insurance types. While the dataset
included fields for race and ethnicity, these were rarely populated. All records are
for inpatient hospitalizations. CHFS did not collect outpatient data during the study
period. Each record represents a single hospital admission/discharge, thus the time
unit of analysis is daily.

Table 11.1 shows demographic characteristics of Jefferson County children hos-
pitalized for asthma. A comparison of this table with a similar table in the Jones
et al. (2004) study reveals interesting differences. First, a much larger percentage
of hospitalizations occurred among children (34.7 now vs. 12.7% in 2000–2001).
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Table 11.1 Demographic characteristics of children hospitalized for asthma, Jefferson County,
Kentucky, 2005–2008

Characteristic Number of cases Percent of casesa

Gender
Male 1, 078 58.1
Female 778 41.9

Age in years
0–4 930 50.1
5–9 495 26.7
10–14 261 14.1
15–19 170 9.2

Referral source
Physician 389 21.0
Emergency department 1, 456 78.4
Other 11 0.6

Insurance type
Commercial 452 24.4
Federal program 1, 245 67.1
Other 159 8.6

Total 1, 856 100

aDue to rounding, percentages may not add up to 100.

The gender breakdown in 2005–2008 is nearly the inverse of 2000–2001. The age
distribution of cases has changed as well. While the largest percent of hospital-
izations was still in the 0–4 age group, the percent drops off steadily with age. In
2000–2001, the percentage in the 15–19 year age group was only slightly lower
than that in the 0–4 year age group (38.4 vs. 37.2%), whereas in 2005–2008, it
was substantially lower. This may be due to the fact that smoking rates among
Kentucky high school students declined dramatically from 2000 to 2006 (Jones,
2007). Unfortunately, rates increased slightly in 2008 (Tooms, 2009). The referral
source in the two studies is a near mirror image, with only 34.3% of cases referred
from emergency departments in 2000–2001. Another striking difference is the flip in
insurance type. In 2000–2001, commercial insurance accounted for 71.1% of cases.
Now, the predominant source is federally-funded programs, including Louisville’s
Medicaid managed care program, Passport.

Over the 4-year period, the hospitalization rate per 100,000 was 248.70.
Jefferson County intercensal estimates were used as population denominators (US
Census Bureau, 2010). There was an overall trend for increasing rates over time
(Table 11.2).

11.3.2 Spatial Analysis

We computed hospital discharge rates for all Jefferson County mappable zip codes
(n = 36), using 2007 age/race/sex population estimates from GeoLytics (2007) as
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Table 11.2 Hospital discharge rates per 100,000, children 0–19

Year No. of discharges Population Rate per 100,000

2005 424 184,564 229.73
2006 421 185,620 226.81
2007 484 186,963 258.87
2008 527 189,122 278.66
All years 1, 856 746,269 248.70

Fig. 11.1 Childhood asthma hospital discharge rates, Jefferson County ZIP codes, 2005–2008.
Map source: ESRI Data (ESRI, Redlands, CA)

the denominator. We made the decision to use US Postal Service (USPS) boundaries
as opposed to the Census Bureau’s Zip Code Tabulation Areas (ZCTAs) because the
asthma database used the former. ArcGIS 9.3 (ESRI, Redlands, CA) was used for
mapping and GIS analysis. Figure 11.1 shows the spatial distribution of asthma
discharge rates by zip code, using a Jenks natural breaks classification.

The spatial distribution of hospital discharge rates is striking. Two patterns stand
out. The first is the concentration of high rates in the northwesternmost zip codes
of the county, in the vicinity of the Rubbertown chemical/industrial complex. The
second is the divide between the eastern part of the county (higher income, mostly
white population) and the western portion.
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Fig. 11.2 Cluster of high hospitalization rates, northwestern Jefferson County

Figure 11.1 should be interpreted with some caution, however, due to small num-
bers in the rate numerator. Six of the zip codes had fewer than 10 discharges. For
that reason, we used the local index of spatial autocorrelation (LISA), GeoDa 0.9.5-i
software, to determine whether there were any significant clusters of high rates
(Anselin, 2003). Due to the instability of the rates, we used the Empirical Bayes
LISA option, with queen’s contiguity and a spatial lag of 1. The result in shown
in Fig. 11.2. The rates are highly clustered (Moran’s I = 0.5961) and significant at
p = 0.01. A cluster of high rates is comprised of six zip codes in the Rubbertown
area: 40203, 40210, 40211, 40212, 40215 and 40216. A cluster of low rates exists
in the eastern portion of the county, but is not shown in Fig. 11.2.

The remainder of our analyses, i.e. an examination of seasonal trends and the
relationship of asthma hospital admission rates to air pollution, focuses on chil-
dren residing in the Rubbertown area, the Jefferson County asthma “hot spot.” This
region of Louisville (hitherto referred to as the “West End”), is an area with many
environmental and social justice issues. It is notorious for the poor quality of its air
and the poor economic and physical health of its residents.

11.4 Environmental Justice: Disproportionate Siting Versus
Minority Move-In

Environmental justice, also referred to as “environmental racism,” or “environmen-
tal equity,” was termed the “fastest growing social movement in recent years” by
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Brown (1995, p. 15). Behind the movement is the basic precept that environmen-
tal hazards are inequitably distributed and that low income populations, people of
color, and those in less-advantaged social classes bear a disproportionate burden of
exposure to these hazards.

The movement had its origins in Warren County, North Carolina, where residents
and activists protested the burial of polychlorinated biphenyls (PCBs) in 1978 in
a rural area inhabited predominantly by poor African-Americans (Brown, 1995).
The United Church of Christ (UCC) Commission on Racial Justice also played an
important role in raising public awareness about environmental equity (Coughlin,
1996). In February 1994, President Clinton issued an Executive Order requiring
federal agencies to work toward resolving environmental justice issues and reducing
the disproportionate amount of exposure of low income and minority populations to
environmental hazards.

Environmental justice research encompasses a wide range of environmental con-
cerns and health outcomes. Brown (1995) identified several environmental justice
concerns: (1) proximity to hazardous waste sites and facilities, (2) differences in
exposure to air pollution, (3) differences in exposure to other environmental hazards
(e.g. TRI sites), (4) differences in procedures carried out at NPL (and other) sites,
(5) differences in regulatory action, (6) differences in health outcomes due to envi-
ronmental exposures, and (7) siting decisions. Bullard and Wright (1993) included
pesticides as an additional area of concern. Several recent studies have utilized GISc
to examine asthma within an environmental/social justice framework (Corburn et al.,
2006; Maantay, 2007).

Environmental justice issues can result from the disproportionate siting of
hazardous facilities in minority/low-income neighborhoods or from changing resi-
dential patterns, i.e. minority move-in to these neighborhoods, or both (Pastor et al.,
2001). Brown (1995) refers to these processes as a “causal” argument, with the
deliberate placement of environmental hazards in poor and minority neighborhoods,
or a “drift” argument, where poor and minority populations moved into an area with
environmental hazards. In the case of the latter, i.e. minority move-in, it is impor-
tant to seek an understanding of the historical, economic and political processes that
have resulted in population mobility and their contribution to environmental and
social justice issues. Hanchette (2008) has demonstrated this using lead poisoning
as an example. In this section, we examine the primary sources of Louisville’s air
pollution and the neighborhood composition of western Louisville.

Louisville’s West End is notorious for its industrial pollution. The West End is
home to Rubbertown, a chemical/industrial complex that started with a Standard Oil
of Kentucky refinery in 1918. During World War II, the US was cut off from 90% of
its natural rubber supply and synthetic rubber production (and associated chemicals)
was established in Rubbertown, hence its name (Kleber, 2001). Western Louisville
is home to the bulk of the county’s Toxic Release Inventory Sites. Figure 11.3 shows
Rubbertown’s location in western Louisville and its proximity to the cluster of zip
codes comprising Louisville’s asthma hot spot.

Louisville’s environmental justice issues stem predominantly from minority
move-in, which Pastor et al. (2001) note is a market-driven trade-off: increased
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Fig. 11.3 The Rubbertown chemical/industrial area, adjacent to the Ohio River, is circled in white.
The study area is outlined in black. Downtown Louisville is to the east. To the west of the Ohio
River are the bisected hills of southern Indiana. Topographically, Louisville is in a basin, and
polluted air is often trapped by temperature inversions. Location of criteria pollutant monitors is
indicated by pollutant. Map source(s): ESRI, Redlands, CA

neighborhood health risks for better housing. In the 1940s and 1950s, many West
End neighborhoods were inhabited by middle- to upper-income whites. Areas close
to the river are characterized by distinctive craftsman-style homes and a park
designed by Frederick Law Olmstead. The past 60 years have seen dramatic neigh-
borhood changes in racial makeup, the most significant of which were described by
Anderson (1980). Today, with the exception of the Portland community in the north,
the area is largely African-American (Fig. 11.4).

Prior to the twentieth century, Louisville’s African-American residents were dis-
persed throughout the city. By the mid-1900s, there were several identifiable clusters
of neighborhoods with African-American majorities. These are shown in Fig. 11.4;
shaded areas represent census tracts with an African-American population over
50%. The most dramatic changes took place from 1960 to 1970, with “white flight”
to the eastern suburbs and neighboring Oldham County. Anderson (1980) noted that
in this decade, over 40,000 people were involved in a massive property exchange
that occurred over in nine census tracts. Although the changes from 1970 to 2000
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1940 1960

1970 2000

Fig. 11.4 Change in major African-American residential areas, Louisville, Kentucky, 1940–2000.
Shading represents areas with an African-American population greater than 50%. Source: National
Historic Geographic Information System (2009); US Census (1990); US Census (2000)

are less dramatic by decade, the year 2000 map in Fig. 11.4 shows the heavy con-
centration of the African-American population in the West End. This area is also
predominantly poor, as indicated by the map in Fig. 11.5. The greatest spatial
concentration of poverty is located in the West End, which supports the minority
move-in hypothesis. Over several decades, higher-income white populations were
replaced by lower-income populations of color.

For over two decades, residents of the West End have expressed concern over air
quality and exposure to dangerous chemicals, including 1,3-butadiene. The Agency
for Toxic Substances and Disease Registry (ATSDR) published a report on the
area in 1992, with inconclusive results due to a paucity of air monitoring data. In
response to citizen concerns, the Jefferson County Division of Environmental Health
and Protection established the West Jefferson County Community Task Force in
1999, a citizens group that identified environmental concerns in western Louisville
neighborhoods. Funding was obtained for an intensive air toxics monitoring net-
work, with ten sites in the West End and two control sites located farther away
(Fig. 11.6). Samples of over 50 volatile organic chemicals (VOCs) were monitored
from 2000 to 2005 to determine whether residents were being exposed to toxic air
pollutants that posed risks to human health. This project was a collaboration among
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Fig. 11.5 Poverty by census tract. The shaded areas represent tracts with a poverty rate higher
than the county average of 12%. Source: US Census (2000)

the Louisville Metro Air Pollution Control District, the University of Louisville,
the Commonwealth of Kentucky, and the West Jefferson County Community Task
Force.

The resulting West Louisville Air Toxics Study, carried out by an indepen-
dent research organization, documented high concentrations of harmful air toxics,
including carcinogens, in Louisville’s West End (Sciences International, Inc. 2006).
As a result of the study, the Louisville Metro Air Pollution Control District imple-
mented the Strategic Toxic Air Reduction (STAR) program. Ongoing monitoring of
air toxics is being carried out at six of the original sites by the Air Quality Lab at
the University of Louisville.

11.5 West Louisville Study Area

The asthma hot spot identified by mapping and subsequent spatial autocorrelation
analysis consists of six Louisville zip codes. During the 2005–2008 study period,
there were 832 asthma hospitalizations for children ages 0–19 in the study area.
The characteristics of these children differ from the county-wide study popula-
tion (Table 11.1) in the following ways. A lower percentage of children are in the
0–4 year age group (45.1 vs. 50.1%), indicating a slight weight towards school-
aged children. Emergency department referral sources are higher, at 82.2%. Finally,
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Fig. 11.6 West Louisville air toxics monitoring sites. Source: West Jefferson County Community
Task Force (2009). The Firearms Training monitoring site is circled

a higher percentage of children are on federal health insurance programs (81.7 vs.
67.1%).

11.5.1 Seasonal Trends in Asthma Hospitalizations

In order to understand the potential relationship between asthma hospitalizations
and polluted air, we first examined seasonal trends in asthma rates and air pollution
measurements. All dates used in these analyses were hospital admission dates (as
opposed to discharge dates).

Evidence of seasonal patterns has been reported in previous studies (Chen et al.,
2000; Hashimoto et al., 2004; Ivey et al., 2001, 2003; Lee, 2006; McConnell et al.,
2002). One study took place in Louisville. Using weekly asthma inpatient and out-
patient data from Norton/Kosair hospitals, Lee (2006) reported a strong seasonal
trend in Louisville, with high rates in fall and low rates in summer. In an attempt
to explain seasonal patterns, Lee examined correlations between asthma hospital-
izations and the following: temperature, humidity, precipitation, wind speed, wind
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direction, particulate matter (P.M2.5), carbon monoxide, and sulfur dioxide. Most
correlations were low or negative, with the exception of precipitation (R = 0.28)
and P.M2.5 (R = 0.32).

Our air pollution analysis attempts to address the following questions: (1) do
seasonal peaks in Jefferson County (specifically West End) asthma hospitalizations
persist through time and, if so, (2) are they related to air pollutants not analyzed
by Lee? These would include ozone and several chemicals and volatile organic
compounds (VOCs), the latter emitted by industries in western Louisville.

Figure 11.7 shows the distribution of asthma hospitalizations in the study area,
by year and season. Seasons were delineated according to solstice and equinox dates
for each year. Four-year totals are shown in Table 11.3. It is obvious that the highest
number of admissions consistently occurs in the fall.

We used a one-way ANOVA procedure with a square-root transformation of
counts, to determine whether there was a significant difference in asthma admissions
by season. Our results indicate that there was, F(3,592) = 5.623, p = 0.01. Post-hoc
tests, Tukey’s honestly significant difference and least significant difference (LSD),
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Fig. 11.7 Graphs of asthma admissions, by season, 2005–2008

Table 11.3 Number and
percent of asthma
hospitalizations by season, all
years combined

Year/season Number Percent

Winter 146 17.5
Spring 169 20.3
Summer 187 22.5
Fall 330 39.7
Total 832 100.0
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indicated that the largest difference was between Fall vs. all other seasons. While
our findings support Lee’s earlier (2006) results, the summer trough noted by Lee is
not present after 2005.

A closer examination of the timing of asthma hospitalizations revealed that the
“fall peak” doesn’t actually begin in fall. Asthma rates jump in mid-August, which
corresponds closely with the start date of Louisville’s public school year. This is
especially obvious when weekly rates are examined, as they were in an earlier study.
We obtained academic calendars from Jefferson County Public Schools for the study
years 2005–2008. We categorized all days during the 4-year period using a binary
system (0 = not in school, 1 = in school) which accounted for summers, weekends,
and all school holidays, including teacher work days. In-school and out-of-school
rates were calculated for each year, using hospital admissions as the numerator
and school vs. non-school days as the denominator. Table 11.4 shows the categor-
ical rate differences. For all years, in-school rates were higher than out-of-school
rates.

11.5.2 Air Pollutants

Nearly all of the criteria air pollutants monitored by the EPA have been associated
with asthma and other respiratory diseases. Chen et al. (2000) examined the rela-
tionship of carbon monoxide (CO), ozone (O3) and particulate matter (PM10) with
elementary school absenteeism in Nevada. O3 and CO were the only pollutants that
were positively correlated with the absentee rate. Hagen et al. (2000) reported an
association between respiratory disease hospitalizations and PM2.5 (RR = 1.038).
Lee’s (2006) analysis of asthma hospitalizations in Louisville showed the high-
est correlation with PM2.5. A Los Angeles-based study found positive associations
between asthma and O3, NO2, SO2, and PM10 (Delfino et al., 2003).

We downloaded yearly raw data files for the following pollutants from the EPA
Air Quality System website (EPA, 2009): CO, NO2, O3, PM2.5 and SO2, for the
Jefferson County monitor closest to the West End study area, for each respective
pollutant. Monitor locations are shown in Fig. 11.3. Unfortunately, not all pollu-
tants were monitored at sites within the study area. NO2 and CO were monitored
at sites east of downtown, and O3 was monitored at the Watson Lane site south of
Rubbertown. We used data for all 4 years, 2005–2008, with the exception of SO2.
The 2005–2007 data files were corrupted so we used only 1 year of data, 2008.

Table 11.4 Hospital
admission rates by school
calendar

Year In school rate Out of school rate

2005 0.8851 0.4712
2006 0.75 0.5078
2007 0.8994 0.5484
2008 0.9881 0.6263
All years 0.8802 0.5391
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Most pollutants were monitored continuously, with 1-h averages recorded. The
exception was PM2.5 which was recorded as a daily 24-h average. Ozone is only
monitored in Louisville from March 1 to October 31. For each continuously-
monitored pollutant, we analyzed daily and seasonal average and maximum
values.

We also examined six chemical compounds monitored at the Lousville Police
Firearms Training Site (Site #1, Fig. 11.6), which is located in the heart of the study
area: 1,3-butadiene, acetone, acrylonitrile, benzene, chloroform and toluene. The
sampling frequency for acetone, benzene and toluene was every 12 days. The fre-
quency for the others varied, and was lower. We did not use readings that did not
meet the Minimum Quantitation Limit (MQL) of the chemical. Three of the com-
pounds – chloroform, 1,3 butadiene, and acrylonitrile – were selected because of
their recognized capability to serve as respiratory irritants. A fourth compound,
formaldehyde, is perhaps the most well established respiratory irritant, but there
was a dearth of monitoring data for it in Louisville (Liteplo and Meek, 2003).
Chloroform has an exceptionally low vapor pressure and is well linked to bronchial
constriction. 1,3 butadiene is particularly associated with rubber production, a
prominent portion of the Louisville industry. Acrylonitrile is less studied than the
other three respiratory antagonists, but it is regarded as a pulmonary carcinogen
(Palmer et al., 2002; Schneider and Freeman, 2001).

In addition, we selected three “marker” chemicals for exposure to possible
“mixtures” of respiratory irritants (Cassee et al., 1996). The light aromatic hydro-
carbon compounds of toluene, benzene, and acetone were defined in this role. From
early times with studies of off-site migration of hazardous substances, there has
been a practice of identifying “markers” that would be readily identified and that
might serve to describe the distribution of myriad and unspecified compounds (Kim
et al., 1980). These three agents are widely prevalent with the industrial processes in
Louisville, and are actively reported in monitoring studies. Again, it not the asthma-
linked effect of these compounds (although they have very low vapor pressures and
trigger inhalation sensitivity), rather it is their value for these studies to describe
a “general” exposure to respiratory hazards within Louisville. Hagen et al. (2000)
reported the strongest associations with benzene, toluene and formaldehyde in their
study of respiratory diseases. Positive associations between childhood asthma and
benzene, formaldehyde, acetone, 1,3-butadiene and toluene (among others) were
reported in a Los Angeles study (Delfino et al., 2003).

Figure 11.8 shows seasonal averages and maximums for the five criteria pollu-
tants and six chemical compounds. Few of the pollutants have a fall peak. Ozone,
which is commonly regarded as an asthma trigger, is highest in spring and summer,
with a high summer maximum. Particulate matter (PM2.5) is highest in summer, and
sulfur dioxide has a spring average high with a winter maximum high. Nitrogen
oxide is the only criteria pollutant with a high fall average; however its maxi-
mum is lowest in fall. Four of the chemical compounds show fall highs: acetone,
acrylonitrile, benzene (maximum only) and chloroform.

We computed bivariate correlations for all criteria pollutants and chemical com-
pounds. Several studies have indicated that models with air pollution concentrations
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Fig. 11.8 Graphs of seasonal averages and maximums for air pollutants

at an exposure lag of zero (i.e. same day) have stronger associations with asthma
and respiratory diseases than models with a time lag (Delfino et al., 2003; Hagen
et al., 2000). For this reason, we correlated same-day pollution measures (exposure
lag 0) with daily hospital admission counts. Distributions of criteria pollutants were
normal; chemical compounds and hospital admissions were left-skewed. The for-
mer were normalized with log transformations, but many dates had zero hospital

Table 11.5 Correlation of chemical compounds with daily asthma rates

Pollutant/VOC Sampling frequency No. of records Days with cases R

1,3-Butadiene Varied 54 24 −0.134
Acetone 12 days 108 48 0.034
Acrylonitrile Varied 34 19 0.199
Benzene 12 days 106 48 −0.099
Chloroform Varied 41 20 −0.130
Toluene 12 days 107 47 0.030
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admission counts. Correlation coefficients are Spearman’s rank. All correlations
with criteria pollutants (daily average and maximums) were slightly negative and
are not shown here. Correlations between asthma admissions and the six VOCs were
all negative or near zero, with the exception of acrylonitrile (R = 0.199, Table 11.5).
In interpreting these results, it should be noted that lack of data aggregation (i.e.
daily counts vs. weekly or monthly rates) may be partly responsible for low
coefficients.

11.6 Discussion and Conclusions

The results of our analyses indicate that there is a well-defined spatial pattern of
high rates of childhood asthma hospitalizations in western Louisville. Analyses also
confirmed a strong seasonal pattern to asthma for all study years, with a fall peak.
The seasonality of asthma is well-documented, across different climates (Crighton
et al., 2001; Langley-Turnbaugh et al., 2005). The spatial cluster of high rates in
western Louisville does not appear to have diminished with the implementation of
the STAR program. However, the program’s compliance deadline is nearly 3 years
away. The multi-factorial etiology of asthma makes it difficult to pinpoint specific
triggers for acute asthma episodes, and it is difficult to tie criteria pollutants and
specific chemical compounds to asthma hospitalizations. Some of this may be due
to spatial location of EPA monitoring sites and the time interval (minimum 12 days)
between chemical compound samples. The higher admission rates while school is in
session raises some interesting questions. Future research should include an exami-
nation of pollutant measurements at school sites (Spira-Cohen et al., 2010) as well
as traffic analysis in western Louisville.

In order to address the environmental justice concerns of disproportionate sit-
ing vs. minority move-in, we used GISc to examine patterns of residential mobility
in western Louisville over a 60-year period. The polluting industries in western
Louisville’s “Rubbertown” preceded the local in-migration of African-Americans,
the majority of which took place from 1960 to 1970. Although used in a differ-
ent context, Pastor et al. (2001) referred to this rapid shift in population as “ethnic
churning” – a time of racial/ethnic tensions and lowered social capital. While the
increasing African-American presence has resulted in a community with greater
social cohesion over time and successful community-based initiatives to reduce air
toxics emissions have been implemented, significant health disparities in western
Louisville must continue to be addressed.

The use of geographic information science was critical to our analysis. We used
it to map asthma rates in Jefferson County and identify a statistically significant
cluster of high rates, which we then designated as our study area. GISc allowed
us to perform visual analyses of population changes over time and was used to
select appropriate monitoring sites for our air pollution and VOC analyses. Because
geographic information system software contains both spatial and non-spatial data,
most of our asthma and air pollution data were analyzed in a GIS environment.
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Chapter 12
The Impact of Changes in Municipal Solid
Waste Disposal Laws on Proximity
to Environmental Hazards: A Case
Study of Connecticut

Ellen K. Cromley

Abstract Environmental policies affect proximity to environmental hazards. In
the late 1980s, the State of Connecticut implemented mandatory recycling laws to
improve management of municipal solid waste. At that time, more than 80% of
the State’s 169 towns disposed of trash within their own borders. The regulatory
change redirected flows of waste to transfer stations and trash-to-energy plants. To
assess changes in the proximity to hazards associated with this shift, the origins
and destinations of solid waste shipment flows are modeled using data for 2008.
Ton-weighted distances to disposal are estimated for 2008 and compared to the
distances if solid waste had continued to be disposed of within towns. Changes
in municipal solid waste management in Connecticut have differentially impacted
local communities. Residents of the Town of Hartford, particularly low-income
minority residents in the North End, have been affected by the operation of munici-
pal solid waste management facilities in Hartford, which receive waste from almost
half the towns in the state. The implementation of environmental policies intended
to improve municipal solid waste disposal at the state level adversely affected prox-
imity to environmental hazards in selected communities and the abilities of local
communities to improve environmental quality in their own jurisdictions.

Keywords Municipal solid waste · Trash-to-energy · Recycling · Waste flows ·
Weighted distance

12.1 Background

12.1.1 Flows of Municipal Solid Waste

This case study assesses changes in proximity to environmental hazards associated
with changes in municipal solid waste disposal practices in Connecticut. A number
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of chapters in this book are concerned with the measurement of distances to environ-
mental hazards in studies modeling environmental exposure and patterns of health
and disease. These hazards are often viewed as fixed in terms of their locations
and zones of impact. In reality, however, the geography of environmental hazards is
dynamic.

The research presented in this case study is an initial attempt to look at how
we can develop GIS-based methods for investigating the changing geography of
environmental hazards. Municipal solid waste disposal is an appropriate subject for
study using these methods. Municipal solid waste (MSW), what we commonly think
of as “trash,” is the stream of material collected through community sanitation pro-
grams. It is generated by households, businesses, and organizations. Industrial waste
and medical waste are generally not included in MSW. Paper and yard waste, such
as leaves and clippings, account for a sizeable share of the municipal waste stream
in the US (Environmental Protection Agency, 2009).

The US Environmental Protection Agency’s municipal solid waste hierarchy
ranks methods for dealing with MSW (Environmental Protection Agency, 2008).
Source reduction, also referred to as waste prevention, is the most environmentally
sound method. It involves reducing the amount and toxicity of materials enter-
ing the solid waste stream by changing the design, manufacture, packaging, and
use of materials. Recycling, including composting, is next in the hierarchy. In the
US, about 33% of MSW generated annually is recycled (Environmental Protection
Agency, 2009). At the bottom of the waste hierarchy is disposal, which includes
dumping in landfills and combustion in incinerators. Some combustion facilities use
the heat from incineration to generate electricity, and this energy recovery provides
some benefits over incineration of MSW alone (Michaels, 2007).

In practice, communities use a mix of methods to manage solid waste. There
have been important shifts in these methods over time, in response to changing
regulations at the federal and state levels. Connecticut has made a significant shift
to combustion with energy recovery along with recycling over the last 20 years.

12.1.2 The Connecticut Context

In 1989, the State of Connecticut enacted legislation requiring mandatory recy-
cling of certain types of municipal solid waste effective January 1, 1991, with a
goal of recycling 25% of the state’s solid waste stream by that date (Connecticut
Department of Environmental Protection, 2005). Connecticut is one of only a hand-
ful of states with mandatory recycling, although there are a number of counties and
municipalities which have adopted mandatory recycling. This initiative was taken
for several reasons: many municipal landfills were reaching their permitted capaci-
ties; there were new federal regulatory standards for landfills which many existing
landfills did not meet; and there was concern that some landfills posed a contamina-
tion threat to groundwater that served as a source of public drinking water. Much of
the drinking water in Connecticut is taken from groundwater.
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To meet this goal, nine items were designated for mandatory recycling rather than
disposal. These items include: glass food and beverage containers, used motor oil,
vehicle (lead-acid) batteries, scrap metal, corrugated cardboard, newspaper, metal
food and beverage containers, leaves, white office paper (private residences exempt).
On May 1, 1996, nickel-cadmium batteries were added to the list of mandatory recy-
clables. Instead of being recycled curbside, these batteries are recycled at retailers,
businesses, municipalities and other sites though a take-back program sponsored by
the battery manufacturers. As of October, 1998, grass clippings were banned from
solid waste disposal facilities. In 1993, Connecticut’s General Assembly passed leg-
islation which, among other provisions, raised the state’s recycling/source reduction
goal to 40% by the year 2000. To help achieve this goal, many municipalities have
added additional items to their programs including plastic resins #1 and #2, maga-
zines and junk mail, and even textiles. Connecticut’s recycling/source reduction rate
was about 30% for fiscal year 2005. The rate does not include redeemable deposit
containers (Connecticut is a bottle bill state), auto scrap, or certain other commercial
recyclables.

Along with the effort to increase recycling, Connecticut also took steps to
develop plants for combustion with energy recovery, trash-to-energy plants referred
to as “Resource Recovery Facilities.” The Connecticut General Assembly passed the
law (Public Act 73-549) establishing the Connecticut Resources Recovery Authority
(CRRA) in 1973 and Bridgeport, Connecticut, was selected as its first site for a
regional trash-to-energy project (Connecticut Resources Recovery Authority, 2009).
After a lengthy development effort including malfunctions and bankruptcy, the
Bridgeport plant went into operation in 1988. Hartford was selected as the site
of the second plant and the plant began operation in 1987. In 2008, Connecticut
had 6 trash-to-energy plants in operation, about 7% of the total number of plants
operating across 25 states in the US (Michaels, 2007). Trash-to-energy plants
are more common in many European countries, but many states and munici-
palities in the US have been reluctant to embrace the technology (Rosenthal,
2010).

As a consequence of changes in federal and state regulations, the landscape of
municipal solid waste disposal changed dramatically. Town landfills were closed
and in some cases became transfer stations for recyclables (Fig. 12.1). Towns
are the basic units of local government in Connecticut and other New England
states. Connecticut has 169 towns which cover the entire state; there are no unin-
corporated areas in Connecticut. As the town landfills were closed, intermediate
processing centers and transfer stations for un-recycled municipal solid waste devel-
oped (Fig. 12.2). Trash-to-energy plants were built (Fig. 12.3), and ash landfills
were created to handle the ash produced by incineration (Fig. 12.4). Connecticut’s
experience over the last 20 years in shifting from landfills to recycling and trash-to-
energy provides useful information for communities considering making a similar
shift. The experience in Connecticut illustrates the consequences of these shifts on
proximity to hazards. The impacts of these changes are geographically uneven. GIS-
based methods can be used to improve our understanding of the impacts by revealing
differences across places.
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Fig. 12.1 A town landfill, now closed, is operated by the town as a transfer station for recy-
clables. Individuals who are town residents can drop off paper, plastics, and other material for
recycling

Fig. 12.2 This company provides a wide range of recycling and waste management services. It is
an intermediate processing center for recyclables and it is also a transfer station for municipal solid
waste collected in towns and transferred to trash-to-energy plants
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Fig. 12.3 The mid-Connecticut resource recovery facility developed on the site of an existing
utility plant on the banks of the Connecticut River. The facility operates continuously and can burn
coal if solid waste is not available

Fig. 12.4 The Hartford landfill is on a site in North Hartford next to the Connecticut River which
was opened by the City of Hartford in 1940 for use as a town landfill. After the Connecticut
resources recovery authority leased the landfill in 1982, the site was developed into an 80-acre
municipal solid waste landfill and a 16-acre ash landfill. The landfill accepted its final deliveries
on December 31, 2008. Disposal of 10 million cubic yards of solid waste on the site resulted in the
138-ft high hill seen in this photograph
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12.2 Methods

12.2.1 Data

The Connecticut Department of Environmental Protection publishes data on solid
waste and recycling. Data on tons of un-recycled municipal solid waste generated in
each town and disposed of within the state in FY 2008 were obtained from a series
of these reports Connecticut Department of Environmental Protection, (2009a, b, c).
The 2008 data were the most recent data available at the time of this research. Data
on flows out of state, by-pass waste not processed at trash-to-energy facilities but
sent elsewhere for disposal, and other non-processible wastes are not included in
this study.

A GIS application was developed and data layers were created modeling
the origins and destination of MSW flows in the state. These GIS data lay-
ers included town centroids, transfer stations, resource recovery facilities, active
landfills, and ash landfills in 2008 (Fig. 12.5). Next, GIS line data layers were
created using straight lines to connect the origins and destinations of solid waste
flows. Three sets of flows were modeled: flows directly from towns to active
landfills and to resource recovery facilities (Fig. 12.6), indirect flows from towns
through transfer stations to active landfills and to resource recovery facilities
(Fig. 12.7), and flows of ash from resource recovery facilities to the two active
ash landfills (Fig. 12.8). The number of tons of MSW associated with a partic-
ular flow from an origin to a destination was added as an attribute of each line
segment.

12.2.2 Methods

Understanding the impact of solid waste management practices requires us to under-
stand how solid waste is transported from the places where it is generated to the
places where it is transshipped or incinerated, and to the places where it is ultimately
disposed in landfills. In order to assess the impact of the changing state policies on
municipal solid waste disposal, tons of MSW were weighted based on the distances
they were moved in the state.

First, the distance-weighted tons of MSW that would have resulted if the 2008
waste had been disposed of within the town where the waste originated was esti-
mated by multiplying the number of tons generated in the town by a distance equal
to one-half the radius of a circle with the same area as the town. This provides an
estimate of in-town movement of solid waste from households and businesses to a
hypothetical in-town disposal site such as a town-operated landfill of the sort closed
following the introduction of mandatory recycling.

Next, the actual distance-weighted tons of MSW in FY 2008 were estimated by
multiplying the number of tons shipped over each of the links by the straight-line
distance of the link from flow origin to flow destination. Data on the actual routes of
shipment were not available so network distances could not be used. The difference
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Fig. 12.5 Facilities handling municipal solid waste generated in Connecticut’s 169 towns include
landfills, ash landfills, transfer stations, and trash-to-energy plants. These facilities are located near
major highways in most cases

in distance-weighted tons of MSW indicates the distance effects of the change in
state municipal solid waste disposal policy.

Finally, the distance-weighted tons of MSW ending up in each town are mapped
for both the hypothetical flows and for the actual flows in FY 2008. The populations
in towns receiving most of the waste are compared to the population in the state as
a whole.

12.3 Results

A total of 2,366,908 tons of MSW were generated in towns and disposed of in-
state in 2008. The ton-distance for hypothetical in-town disposal was estimated to
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Fig. 12.6 Direct flows of municipal solid waste to trash-to-energy plants and landfills from town
centroids

be 6,802,911 because most trash would travel only 1 or 2 miles for disposal within
a town. In this hypothetical scenario, the pattern of distance-weighted tons of MSW
ending up in each town is similar to population distribution by town in the state
(Fig. 12.9a).

Under the actual system, the same number of tons of trash originating in towns
was sent directly to trash-to-energy plants and landfills or indirectly to them through
transfer stations. As noted, there were 2,366,908 tons of MSW generated in towns
and disposed of in-state in 2008 which were shipped to transfer stations or directly
to trash-to-energy plants or landfills. Of these, 769,094 tons of MSW were first sent
to transfer stations and then shipped to trash-to-energy plants or landfills. The trash-
to-energy plants shipped 489,060 tons of ash to one of two active ash landfills for a
total of 3,625,062 tons of materials moved. The actual ton-distance was 57,065,989
(about 8 times greater than the total for hypothetical in-town disposal) because trash
was shipped over much longer distances.

The pattern of distance-weighted tons of MSW ending up in each town under
the actual patterns of MSW flow in FY 2008 shows that waste disposal is much
more concentrated under the system of recycling and combustion in trash-to-
energy plants. Only 24 of the state’s 169 towns received MSW from other towns
(Fig. 12.9b). The maps use the same class intervals to aid comparison, except for
the minimum and maximum amounts which differ for the two distributions.

In terms of community impacts, Hartford, the state capital, has been the most
severely affected by the shift in policy over the last 20 years. In FY 2008, the
Town of Hartford had located within its borders one of the two large-capacity
trash-to-energy plants in the state, a landfill, and one of the two ash landfills in
the state. It also had an intermediate processing facility for recyclables. Eight-
five towns and transfer stations located around the state shipped 1,004,296 tons of
MSW to the Hartford Landfill and/or the Hartford trash-to-energy plant in FY 2008
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Fig. 12.7 Indirect flows of municipal solid waste from town centroids to transfer stations and from
transfer stations to trash-to-energy plants and landfills

(Figs. 12.6 and 12.7). In addition, 155,640 tons of ash were deposited in its ash
landfill (Fig. 12.8). This means that 32% of all tons of MSW and ash moved in the
state ended up in Hartford.

Hartford’s population fell from 139,739 in 1990 to 121,067 in 2009 (Connecticut
Department of Economic and Community Development, 2010), a decline of 13%
during the period when the trash-to-energy plant was operating. During this period,
the population of Hartford County increased about 3% and the population of
Connecticut increased 6%. Hartford’s median household income in 2009 was
$30,379 compared to $64,189 in Hartford County and $68,055 in the state. More
than 30% of the town’s population lived in poverty in 1999. About 62% of Hartford’s
population is minority compared to 29% in Hartford County and 21% in the state.
The existing landfill and power plant coupled with Hartford’s central location in the
state, good highway access, and relatively large population are factors that made
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Fig. 12.8 Flows of ash from trash-to-energy plants to ash landfills. Most ash is sent to the ash
landfill in Putnam, Connecticut. The trash-to-energy plant located in Bristol sends it ash out of
state to a landfill in New York State

Hartford a reasonable choice for locating MSW management facilities there. The
degree to which Hartford became the destination for MSW solid waste and recy-
clables from so many other communities in the state, however, has had a major
impact on the town.

In 1994, a Hartford-based community organization petitioned the Agency for
Toxic Substances and Disease Registry to examine the impact of the Hartford
Landfill on the health of residents (Agency for Toxic Substances and Disease
Registry, 1998). The Hartford Landfill site includes an 80-acre municipal solid waste
landfill and a 16-acre ash landfill (Fig. 12.4). In 2008, 25 towns across the state sent
MSW for disposal to the Hartford Landfill. At the time of the study conducted in
1994, approximately 10,000 people lived within 1 mile of the landfill. The report
concluded that, because of the presence of hydrogen sulfide, residents who were
sensitive to unpleasant odors might experience episodes of nausea or headaches as
a result of the short-term maximum peaks in hydrogen sulfide concentration.
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Fig. 12.9 The top figure shows the distance-weighted tons of MSW by town if the actual tons of
MSW generated by each town in FY 2008 had been disposed of in-town. The bottom figure shows
the distance-weighted tons of MSW by town based on actual flows of MSW in FY 2008. Some
towns which generate large amount of MSW have no waste disposed of in-town
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12.4 Discussion

State environmental policies have radically re-structured the geography of waste dis-
posal in Connecticut. The scale of facilities has increased and MSW management
is more concentrated in a handful of towns in the state. The shift to recycling and
incineration of un-recycled solid waste emphasizes two intermediate levels in the
EPA solid waste hierarchy. Recycling ranks higher than disposal in the hierarchy,
but not as high as source reduction. Incineration with energy recovery is considered
by some to be superior to disposal by incineration without energy recovery and to
disposal in landfills. However, the capital costs of trash-to-energy plants are high,
especially when bonding and operating costs are considered. Operation of these
plants has created new and powerful quasi-private corporate entities with a need to
secure waste streams for several decades to cover their costs. The 2008 data used
in this study are the last that will be reported by towns. Beginning in 2009, the
contractors who transport the waste will be responsible for reporting. As the initial
contracts with towns negotiated decades ago are ending in 2012, some towns, work-
ing through regional councils of government and regional planning organizations,
are trying to work together to address solid waste disposal needs (Leavenworth,
2010; Smith, 2010).

Transporting waste out of communities increases transportation costs and envi-
ronmental costs associated with trucking waste around the state. The Connecticut
Resources Recovery Authority noted that shipping ash to the Putnam ash landfill in
the northeast corner of the state from Hartford after the Hartford ash landfill closed
added $9 (15%) to the $69-per-ton cost communities pay to dispose of their MSW.
This was a factor in the Authority’s proposal to develop a 90- to 100-acre landfill in
the town of Franklin in eastern Connecticut, a proposal which was defeated due to
opposition from some state government officials and the public (Owens, 2009).

The impacts on selected communities, like Hartford, have been significant. Under
the new system, with the shift to a few, large-scale MSW facilities, it is clear that not
every town will have to manage its solid waste in the town. In this situation, the goal
of towns becomes preventing the location of MSW facilities in their towns, despite
the costs of arranging for out-of-town disposal. At present, CRRA has suspended its
efforts to develop an ash landfill anywhere in the state.

12.5 Conclusion

Almost 20 years after the change in state MSW policy in Connecticut, challenges in
dealing with MSW remain. Population and per capita waste generation rates have
increased since the introduction of mandatory recycling. In addition, rates of recy-
cling of the increased per capita MSW generated have stagnated since 1995 at
around 30% (Connecticut Department of Environmental Protection, 2006), well
below recycling rates in many European countries some of which recycle 60–70%
of MSW (Eurostat, 2010) and in some cities in the US such as San Francisco
which recycles 72% of its waste (Barringer, 2008). It is interesting to speculate
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whether removal of waste has contributed to complacency about source reduction
and recycling in towns that ship their waste to other locations in the state.

Some advocates of combustion with power generation point to the costs of trans-
porting MSW to out-of-state landfills as a reason for developing trash-to-energy
facilities. Although Connecticut has made trash-to-energy a centerpiece of its MSW
policies for the last two decades, Connecticut’s reliance on out-of-state disposal
is growing. From 1994 to 2004, out-of-state disposal of Connecticut generated
MSW increased from 27,000 tons per year to 327,000 tons per year (Connecticut
Department of Environmental Protection, 2006). Connecticut sends municipal solid
waste to New York, Massachusetts, Ohio, and Pennsylvania, and it is beginning to
receive solid waste from some other states, especially Rhode Island.

Trash-to-energy plants may be valuable facilities in the municipal solid waste dis-
posal system after high rates of source reduction and recycling have been achieved,
if there is a sufficient stream of remaining waste in a localized area to support the
capital investment in the plant, and if disposal of ash waste can be managed with-
out shipping the waste long distances. There is a great need for better modeling
of solid waste disposal facilities, flows, transport costs, and community impacts.
Spatial analyses, aided by geographic information systems, can play a role in this
endeavor, if data are publicly available. These analyses would make it clear who
pays and who benefits in the complex geography of solid waste management.
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Chapter 13
Global Geographies of Environmental Injustice
and Health: A Case Study of Illegal Hazardous
Waste Dumping in Côte d’Ivoire

Florence M. Margai and Fatoumata B. Barry

Abstract Global environmental injustice, the unfair distribution of hazardous
activities and materials in disadvantaged communities, is increasingly evident in
the African continent through transboundary pollution and illegal disposal of haz-
ardous wastes. Studies are needed to uncover the underlying factors that account
for these trends and the detrimental health effects in the host communities. This
chapter examines a recent incident involving the disposal of hazardous wastes in
Abidjan, Cote d’Ivoire. Specifically, in August 2006, hazardous wastes consisting
of mercaptans, hydrogen sulfide, phenols, and hydrocarbons were dumped illegally
in seventeen locations resulting in approximately fifteen deaths and thousands of
injuries. The chapter examines the circumstances under which the incident occurred
and the communities that were most affected by the incident. Atmospheric disper-
sion models are used to delineate the plume footprints of the hazardous releases
in Abidjan. The generalized risk zones are then integrated into a Geographic
Information Systems (GIS) to assess the environmental impacts of exposure and
the demographic profile of residents within these high risk zones.

Keywords Global environmental justice · Environmental health · Hazardous
wastes · Transboundary pollution · Atmospheric dispersion modeling · GIS

13.1 Introduction

Nearly three decades since the emergence of the environmental justice (EJ) move-
ment in North Carolina, the story of environmental pollution and injustice continues
to unfold within and beyond the borders of the United States to include new nar-
ratives of resource exploitation, toxic contamination, and transnational pollution.
Scientific accounts show that these environmental hazards are increasingly global
in scope, though their attendant impacts on residents remain highly contextualized
and disproportionately distributed by race, ethnicity and class (Westra and Lawson,
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2001; Adeola, 2001; Bullard, 2005; Betsill et al., 2006; Grineski and Collins, 2008;
Myers, 2008; Steady, 2009). In both rich and poor economies, including those
known to be egalitarian societies such as Sweden, researchers have found that res-
idents in the low income, working class, minority and/or indigenous communities
remain by far, the ones that are most impacted and unfairly harmed by these environ-
mental hazards (Chaix et al., 2006; Fairburn et al., 2009; Adeola, 2009; Higgs and
Langford, 2009). They are also the least likely to benefit from environmental reme-
diation, risk compensation, or legislative efforts designed to redress the problems.

As global accounts of EJ struggles unfold, the emerging literature remains
highly focused on the plight of residents in the wealthy industrialized nations, the
Global North (Su et al., 2009; Chakraborty, 2009; Crowder and Downey, 2010;
Landrigan et al., 2010; Martuzzi et al., 2010). More recently however, there has
been a definitive shift toward the examination of these concerns within the Global
South, notably in African and Latin American countries (Bullard, 2005; Betsill et al.,
2006; McCaffrey, 2008; Myers, 2008; Carruthers, 2008; Phalane and Steady, 2009;
Barry, 2010). Some scholars now contend, and rightly so, that in these countries, the
struggles for environmental justice existed all along, albeit in disparate forms of con-
sciousness, practice, and mobilization, and therefore unrecognized in the Western
World (Carruthers, 2008; Myers, 2008). These recent efforts by various scholars
and activists are designed to bring attention to these concerns, and more impor-
tantly, deepen our understanding of the root causes and the emerging health risks
facing the residents in the host communities.

The research described in this chapter falls within the realm of these latest stud-
ies, seeking to explore the emerging geographies of global environmental injustices
through GIS and spatial analytical methods that delineate the exposure risks and
potential health effects among vulnerable populations. The overall objectives are
two-fold. The first is to conceptualize the global dynamics of EJ by examining the
underlying mechanisms and drivers behind the expansion and cross-border trans-
fer of polluting industries and products into poor countries. Using transboundary
hazardous flows as an example, a two-way conceptualization is offered to explain
the reasons for industrial flight in the Global North, and the emergence of pollu-
tion havens in the Global South. The second objective is to showcase the use of
geospatial methodologies to assess the differential patterns of population exposure
to these hazards. The EJ literature offers many examples of robust GIS/statistical
techniques for validating EJ concerns, but these have been traditionally employed
in settings within the developed world (Mennis, 2002; Harner et al., 2002; Mennis
and Jordan, 2005; Fairburn et al., 2009). In this chapter, we hope to apply a few of
these approaches in a developing country by examining the environmental health
risks arising from an illegal hazardous waste disposal incident in Abidjan, Côte
d’Ivoire. Of particular interest is the Toxic Demographic Difference Index (TDDI),
one of many EJ indices proposed by Harner et al. (2002), and the atmospheric dis-
persion modeling approach previously used by Chakraborty and Armstrong (1996)
and Margai (2001). Using these approaches, we will examine the spatial extent and
variability of the chemical exposure risks resulting from this incident. Atmospheric
dispersion models will be used to generate the toxic plume footprints and identify
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the demographic profile of the residents that are most likely to suffer adverse health
consequences from the incident.

13.2 The Global Expansion of EJ: The Case of Hazardous
Industries, Products and Wastes

Environmental health injustices may be defined as the disproportionate and unfair
distribution of hazardous substances and other environmental hazards in disadvan-
taged communities with crippling impacts on the health of the residents (Bullard,
2005; Maantay, 2002; Landrigan et al., 2010). In this new millennium, often dubbed
the era of corporate hegemony and globalization, the spatial dimensions of these
injustices are inherently global in scope, and more readily manifested in myriad
forms that reflect the operations and practices of transnational corporations (TNCs).
Alongside the usual documentation of toxic waste inequities in industrialized coun-
tries, EJ studies now include many examples of corporate activities that significantly
impact the living environments of the poor and indigenous groups in developing
regions notably in Latin America and sub-Saharan Africa (Westra and Lawson,
2001; Adeola, 2001; Betsill et al., 2006; Steady, 2009). Accounts of corporate
environmental injustice range from oil, gas and mineral resource exploitation or
“megamining” operations, to deforestation and use of harmful pesticides in agribusi-
nesses, hazardous waste shipments, and overall threats to communal property rights,
land use, and traditional lifestyles (Westra and Lawson, 2001; Bullard, 2005; Bury,
2007; Steady, 2009). Of interest in this chapter are the health threats that arise from
hazardous materials and electronic wastes originating from developed countries.
The characteristics and trends in the production and movement of these hazards
are briefly described below.

13.3 Trends in the Production and International Shipment
of Hazardous Materials and Wastes

The characterization of hazardous materials vary by chemical composition and geo-
graphic origin, however, these are generally regarded as substances that are toxic,
flammable, explosive, or corrosive, and can cause significant adverse health effects
when exposed to humans, animals or the environment. Estimates show that approx-
imately 300–500 million tons of hazardous wastes are generated globally each
year and nearly 90% of these wastes are produced in the wealthy industrialized
countries (UNEP, 2006a). Though most of these wastes are handled internally in
these countries, about 2% is exported to other countries. According to Kocasoy
(2003), the leading global exporters of hazardous waste are all located in the
Global North and include: Germany, the Netherlands, USA, Canada, Switzerland,
Austria, Sweden, Norway, Italy, Spain, France, Denmark, Finland, Portugal and
Great Britain. Between 1993 and 2001, transnational shipments of wastes increased
from 2 million tons to more than 8.5 million tons (UNEP, 2006). Further, since the
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early 1980s, increasingly large amounts of these wastes have been sent to poorer
nations for disposal (Lipman, 2002; Clapp, 2001; Gbadegesin, 2001).

Electronic wastes (e-wastes) have also been added to the mix of international
shipments. Globally, it is estimated that 20–25 million tons are produced each year,
primarily in Europe, the US and Australia (Robinson, 2009). India, China and
many African countries have been the most actively involved in the importation
of these wastes. Scientific studies show that these products contain harmful con-
taminants including Polychlorinated Biphenyls (PCBs), Polybrominated Diphenyl
Ethers (PBDEs), dioxins and furan (PCDD/Ff) and heavy metals particularly anti-
mony, lead, mercury, cadmium, and nickel (Wong et al., 2007; Robinson, 2009;
Frazzoli et al., 2010).

Concerns about the emergent health risks associated with the international
transfer of these hazardous materials previously led to a number of multilateral
environmental agreements including the Basel Convention (ratified in 1992), and
the Bamako Convention, which became effective in 1998 (UNEP, 1992; Basel
Convention, 2007). However, serious doubts remain over the effectiveness of these
international treaties for a number of reasons. First, official reports of the shipments
are often incomplete, and may under-represent the true volume of the hazardous
flows between the countries. Further, to circumvent environmental regulations, some
of these materials, particularly the e-wastes, may be labeled as reusable or recy-
clable products since they sometimes contain valuable metals such as copper and
platinum. It is evident that most of the shipments that arrive in developing countries
are misclassified, often containing products that are obsolete, and completely unus-
able (Schmidt, 2004; The Basel Action Network, 2007). Additionally, these low
income countries may not have the proper tools, technologies or expertise to effi-
ciently reprocess or recover these materials. Workers rely instead on crude recycling
practices such as dissolving the e-products in strong acids, or burning different parts
to reclaim the materials. Unused materials are later disposed through open burning,
at local dumpsites, or abandoned along roadsides, endangering the lives of the local
residents and ecosystems.

13.4 Conceptualizing Transboundary Industrial Operations
and Waste Flows

When examining the root causes behind the expansion of toxic operations and
related waste flows into developing countries, many scholars contend that these
activities are directly linked to political and economic globalization (Frey, 2003;
Asante-Duah, 1992; Asante-Duah and Nagy, 2001; Gbadegesin, 2001; Adeola,
2001; McCurdy, 2001; Lipman, 2002). Over the years, previous barriers to the
international flow of goods and services have been removed through the enactment
of trade liberalization policies and the formation of regional and supranational
organizations. These changes have resulted in new economic structures, and greater
interdependence between countries. TNCs have willingly responded to these
changes by leveraging their economies of scale to reduce costs while expanding
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Fig. 13.1 Root causes and drivers of global environmental injustices

their global assets. Drawing on these discussions in the literature, the conceptual-
ization offered in Fig. 13.1 specifies the core drivers and mechanisms that account
for these toxic flows to low income countries. These are characterized here as the
push and pull factors.

13.4.1 Push Factors of Hazardous Flows

The push factors are affiliated with the hazardous operations and waste products
generated in the source regions. These factors contribute to “industrial flight”, and/or
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the transfer of the waste materials generated from corporate activities to low income
countries. For example, in most of the wealthy industrialized countries, the acqui-
sition of permits for waste treatment and disposal has become increasingly difficult
and costly due to the prevailing economic and environmental regulations (Kocasoy,
2003; Coe et al., 2007). TNCs are faced with stringent environmental laws, yearly
increases in operational costs through excise taxes, increases in future liability
charges, or compensatory charges for environmental pollution in the industrialized
nations. One or more of these factors may force the companies to relocate elsewhere
with less stringent environmental laws.

There is also the persistent problem of finding the most suitable site for noxious
facilities, often characterized as Locally Unwanted Land Uses (LULUs). Companies
have to convince the local residents and their workers that these operations are
environmentally benign. Recent trends in suburbanization, urban sprawl and the
housing construction boom have dramatically reduced the space needed for these
corporate operations. Further, mounting pressures from environmental activists and
greater awareness of environmental justice among residents in these countries have
forced corporations to look beyond their borders for siting of their operations and/or
disposal of their wastes.

13.4.2 Pull Factors of Hazardous Flows

The pull factors attract the inward movement of TNC operations and their waste
flows into other countries. The easiest targets are the developing countries, the so
called “pollution havens” (Frey, 2003; Asante-Duah and Nagy, 2001; Steady, 2009).
Given their economic plight, the governments of developing countries are desperate
for new opportunities to jumpstart their economies. In many instances, the belief is
that economic development outweighs environmental harm. Not surprisingly, they
turn to foreign companies for investment regardless of the type of operations and
its potential health risks on the indigenous populations. Many of these scenarios
abound in the literature including instances of governmental reforms designed to
incorporate the economies into the global market (Frey, 2003; Coe et al., 2007;
Bury, 2007; Steady, 2009). Examples include eliminating restrictions on remittances
of corporate profits, royalties, providing access to domestic credit, offering tax sta-
bility packages, privatizing different sectors of the economy, and ratifying trade
agreements (Bury, 2007). Countries offering such incentives often become attrac-
tive destination points for waste handlers or companies seeking to relocate their
base operations away from more expensive or environmentally conscious locations.

There are also lower operational costs in low income countries. These may orig-
inate from the natural endowments of these countries such as the availability of
land, resources, and characteristics of the local population (who are perhaps less
cognizant or aware of the EJ issues). For example, while treating or disposing of a
hazardous waste material is estimated to cost an average of $2,000–$3,000 per ton
in a wealthy industrialized country, through illicit negotiations, it could be a meager
$2.50 a ton for the same material in an African country (Gbadegesin, 2001). Not
surprisingly, there have been many scandals of illicit hazardous waste exports in the
region (Gbadegesin, 2001; Kocasoy, 2003; Bullard, 2005; Steady, 2009). Political
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instability also accounts for the importation of hazardous materials, as previously
demonstrated in Somalia (Hussein, 2001) and Guinea-Bissau (Clapp, 2001). Foreign
companies and governments take advantage of situations during which they are least
likely to face governmental resistance, public opposition, or large expense in their
negotiations to relocate or transfer their waste products.

Finally, as noted earlier, many of the hazardous wastes transactions involve the
lack of full disclosure of the true content of the wastes (Morton, 1996). The receiving
countries may not be fully aware of the toxicological properties of the wastes that
are being imported either because the transactions are made between unscrupulous
individuals or the wastes are mislabeled to disguise the true contents. Further, the
receiving countries may not have the waste handling facilities or the technical exper-
tise to evaluate the contents of the waste shipment. Without the right equipment and
technical expertise to test, recycle, treat or dispose of these wastes the end result is
improper disposal through open burning, or dumping on residential properties.

Overall, Fig. 13.1 shows that the international movement of transnational opera-
tions and wastes are driven in part by the conditions in the source areas, and those
within the destination areas. Organizing these factors in a conceptual framework
allows for a better understanding of the motives and mechanisms underlying these
flows. The prevailing conditions, or the observed differences in physical, politi-
cal, economic, demographic and environmental characteristics between the source
and the destination countries contribute to the geographic expansion of these toxic
operations (Castleman and Navarro, 1987; Kocasoy, 2003; Coe et al., 2007; Steady,
2009). The observed differential is characterized here as the global toxicity gradient,
such that the greater the difference between the countries, the greater the likelihood
of transfer of toxic operations between countries, thus producing new geographies of
global environmental injustice. TNCs take advantage of these differentials by imple-
menting new global strategies that enable the international outsourcing of some or
all of their production processes to low income countries. We proceed next to the
discussion of the case study completed in Cote d’Ivoire.

13.5 A Geographic Case Study of Illegal Dumping
of Hazardous Wastes in Cote d’Ivoire

Cote d’Ivoire is a low income developing country of roughly 21 million people,
residing along the Gulf of Guinea, in West Africa. In August 2006, hazardous mix-
tures of mercaptans, hydrogen sulfide, phenols, and hydrocarbons originating from
the Netherlands, were dumped illegally around the port city of Abidjan, resulting in
several deaths and injuries. The political environment and economic circumstances
leading up to this incident, underscore many of the points noted above.

13.5.1 Conditions Preceding the Hazardous Waste Incident

Historically, France had a great presence in Cote d’Ivoire from 1647 until 1960
when it gained independence. Thereafter, the country went through a long period
of relative political stability and economic growth under the leadership of their first
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president, Félix Houphouët-Boigny. This peaceful period ended in 1993 following
his death. Successive presidents were criticized for being corrupt, and inept in the
management of the country’s finances. Rebel factions and coup attempts repeatedly
destabilized their governments notably in 1999 and 2002. A related area of concern,
politically, was linked to the issue of citizenship, “Ivorianness”, or one’s status as an
“Ivoirite” (Skogseth, 2006). This issue came up because of the significant influx of
immigrants resulting from ongoing conflicts in other parts of West Africa. In 2006,
proof of citizenship became a hotly debated issue especially for the 3.5 million
people without the proper credentials. The courts were ordered to examine the plight
of these residents, but the proceedings were interrupted by groups opposed to the
hearings. Violence ensued and this created the threat of another coup.

13.5.2 Hazardous Waste Incident

It was against the backdrop of immigrant xenophobia, political and economic insta-
bility that the hazardous wastes incident occurred. On August 19th 2006, the Probo
Koala, a Panamanian registered ship arrived at the Abidjan port. Though registered
in Panama, the ship (owned by a Greek company), had been chartered by Trafigura,
the world’s third largest independent oil trader with global assets and employees in
over forty countries. With its base operations in Amsterdam and London, most of
the company’s oil storage and delivery facilities, were located elsewhere, in Africa,
Central and South America (Kao and Bosley, 2009).

Trafigura contends that the ship’s contents were “slops” or wastewater from the
washing of ship tanks. However, detailed news accounts released since the initiation
of this study show that the hazardous materials originated from “coker gasoline”,
a type of fuel that contains large amounts sulphur and silica (Duckett, 2009). This
fuel was being produced by Pemex, a Mexican based company. Due to some oper-
ational difficulties and the lack of storage to store the excess gasoline, Pemex
sold about 84,000 tons of this gasoline to Trafigura. The product was trucked
to Brownsville, Texas, and subsequently loaded on board the Probo Koala. The
ship later anchored in Gibraltar, and on board, it is widely believed that Trafigura
embarked on an experimental process to strip the sulphurous products off the coker
gasoline. The end product, Naptha, was reportedly resold for a profit. Unfortunately,
this experimental process also generated about 500 tons of harmful waste materials
that could not be readily discarded.

The Probo Koala initially transported the wastes to Amsterdam, and there they
would have been charged 500,000 Euros to properly treat and dispose the materials.
After several inquiries, they successfully negotiated a deal with a subcontractor in
Ivory Coast to dispose of the wastes for a significantly lower price of 18,500 Euros.
Upon arrival in Abidjan, the first tanker from the Probo Koala disposed of its initial
load of toxic wastes at a local waste dump located in Akouedu, the Southern part
of the city. Over the course of the next several days, tankers disposed the rest of the
wastes across 16 other sites around Abidjan. Subsequent investigations by UNEP
led to the identification of all but two of these locations.
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Fig. 13.2 Location of the illegal dumpsites in Abidjan

Figure 13.2 shows the distribution of these sites relative to the hydrological fea-
tures and residential settlement in the city. Aside from Akouedu which is a primary
landfill, field evaluation of these sites shows that they are either near open vege-
tated or forested areas dispersed around the city, or along roadsides, creeks, sewage
systems and lagoons (See Fig. 13.3a through d for a sampling of these sites).

13.6 Geographic Data Sources and Preprocessing

Demographic Data: In this study, we used the 2005 Cote d’Ivoire data acquired
through the Demographic and Health Survey (DHS), a standardized survey that is
administered periodically by ICF Macro in over 50 developing countries (DHS,
2005). For Cote d’Ivoire, this large national database consisted of 9,686 records
of individuals interviewed during the survey period. Using a multistage probability
sampling approach, this nationally representative dataset was compiled from 253
population clusters, or census enumeration areas. Geographically referenced data,
including the longitude, latitude and altitudinal information, were collected for each
cluster enabling the integration of the data into a GIS. Within each cluster, house-
holds were randomly selected, and adults (women of reproductive ages 15–49 and
men aged 15–59 years) within those households were subsequently interviewed.
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Site 2 Site 5

Site 15Site 7

Fig. 13.3 Sample pictures of illegal dumpsites

The average size of the sample or “take” per cluster varied from about 30 to 40
households in rural areas, and 20–25 households in urbanized locations. Of the 253
clusters, about 26% (66) of the sample with 1,708 individuals were from Abidjan,
where the hazardous incident occurred.

The national DHS data was first brought into the SPSS 16.0 statistical soft-
ware, and following the preprocessing of the data, including the application of
sampling weights, several variables were selected for inclusion in the study: locale
(rural/urban), ethnicity, religiosity, age, education, housing characteristics (owner-
ship, length of stay), employment, and access to basic amenities such as electricity,
piped water, sanitation, radio, and a vehicle. Also included was a wealth index, a
proxy measure of socio-economic status (SES) computed by DHS.

The analysis of ethnicity required a few extra steps given the diverse composition
of the Ivorian population. There are over sixty ethnic groups in the country and these
are often organized into four major clusters based on their linguistic commonalities
and other cultural attributes: Mande, Gur, Krou and the Kwa (Skogseth, 2006). In
this study, we chose to focus on the Kwa and Krou ethnicities for two reasons. First,
there are regional differences in the distribution of the four ethnic clusters. The Kwas
and Krous reside primarily in the subtropical areas of the country, particularly along
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the coastal areas of the south where the hazardous incident occurred. The Mande
and Gur ethnicities were not included because they tend to reside mostly in the
Savannah regions of the North, and therefore least likely to be impacted by the inci-
dent. A second reason for choosing the Kwa and Krou ethnicities is that they both
represent the population groups of interest in terms of majority/minority relations.
In this study, as with most EJ applications, the goal was to examine the distribu-
tion of environmental risks among residents that belong to either the majority or
minority population groups. The Kwa cluster represents the ethnic majority in the
country comprising about 44% of the population (Skogeth, 2006). This cluster is
characterized by subgroups such as Ajoukrou, Abbey, Aboure, Alladian, Abidji,
Abron, and Agni people. As part of the preprocessing of the data therefore, all
individuals who self-identified as belonging to the any of these subgroups were
classified as Kwa, the ethnic majority. At the other end of the ethnic spectrum
is the Krou cluster representing the ethnic minority, and constituting only about
12% of the Ivorian population. This ethnic cluster is characterized by the Ahizi
along with subgroups such as the Bakwe and Didi people. Those who self-identified
with these subgroups were placed in the Krou cluster, and designated as ethnic
minorities.

In this study, we also considered religiosity which is another notable source of
group marginalization, conflict, and environmental inequity in many world regions.
Preliminary review of the literature on Ivorian religiosity suggested a mixture of
religious beliefs that included Islam, Christianity, and traditional animistic views
(Skogeth, 2006). The religious differences also tended to conform to the ethnic
regional boundaries noted earlier with Moslems residing mostly in the northeast-
ern/Sahelian reaches of the country, and Christians (mostly Catholics) residing
within the urbanized areas and along coastal regions, the original points of contact
with European missionaries. Over the years however, these distinctive religious pat-
terns have been altered by rural-urban migration and group intermixing. Though,
both the Kwas and Krous are more likely to be Christians than their counter-
parts in the North, a crosstabulation of these two groups using the national DHS
data showed significant differences in religious composition. Of the roughly 43.7%
who self-identified as Moslems, only about 36.3% belonged to the Kwa major-
ity, and the others were ethnic minorities (Table 13.1). The national sample also
revealed that approximately 37% of the population self-reported as Christians
of which 52% were Catholics, 24% Protestants, and the rest belonged to other
denominations. Overall, based on the data, there appeared to be a fairly equi-
table distribution of both Christians (37%) and Moslems (44%) within the general
population but with observable differences in religious beliefs among the major
ethnicities.

Hazardous Waste Data: The details regarding the incident were garnered in 2006
by contacting officials in the United Nations Institute for Training and Research
(UNITAR), and the Operational Satellite Applications Program (UNOSAT). These
agencies were the lead coordinators in the emergency response to the incident. The
data acquired consisted of the geographic coordinates of the disposal sites, the type
and amount of chemicals released, and official injury statistics.
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Table 13.1 Crosstabulation of national DHS respondents by ethnicity and religiosity

KWA

Other KWA majority Total

Religion Catholic Count 153 1, 696 1, 849
% within KWA 9.1 21.2 19.1
% of total 1.6 17.5 19.1

Protestant Count 32 825 857
% within KWA 1.9 10.3 8.9
% of total 0.3 8.5 8.9

Other Christian
religions

Count 77 796 873

% within KWA 4.6 10.0 9.0
% of total 0.8 8.2 9.0

Moslem Count 1, 322 2, 902 4, 224
% within KWA 79.0 36.3 43.7
% of total 13.7 30.0 43.7

Tribal religions Count 84 1, 694 1, 778
% within KWA 5.0 21.2 18.4
% of total 0.9 17.5 18.4

Other religions Count 5 84 89
% within KWA 0.3 1.1 0.9
% of total 0.1 0.9 0.9

Total Count 1, 673 7, 997 9, 670
% within KWA 100.0 100.0 100.0
% of total 17.3 82.7 100.0

Religion ∗ KWA Ethnicity Crosstabulation using National DHS sample.
Pearson’s Chi square = 1,042.8(df 5,1); p<0.0001.

The United Nations Disaster Assessment and Coordination (UNDAC) team was
specifically in charge of investigating the causes and effects of the hazardous dis-
posal. They confirmed that roughly 528 tons of hazardous wastes were dispensed
from the ship. Also prior to the Probo Koala’s departure to Cote d’Ivoire, sam-
ples of the ship’s content had been tested in Amsterdam. These results along with
the field samples taken from dumpsites in Cote d’Ivoire confirmed that the wastes
consisted primarily of the following chemicals: hydrogen sulfide, mercaptans, phe-
nols, hydrocarbons (a mixture of olefins, naphtenes, parrafins, and aromatics). All
of these chemicals were known to be harmful to human health following expo-
sure through various environmental routes and pathways. According to UNDAC
however, groundwater wells were distant from the polluted sites and therefore, no
immediate health risks were expected from the drinking water sources. The primary
concern was with atmospheric dispersal of the pollutants and contamination through
inhalation.

Additional data regarding the toxicity of these chemicals were obtained from a
report compiled for Trafigura, after the incident had occurred. This report corrob-
orated most of the environmental health concerns identified by the UN agencies.
Further, the analysts categorized the chemicals into three groups: (i) those that are
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harmful only on close contact; (ii) those that are volatile and may achieve atmo-
spheric concentrations that are harmful at some distance; and (iii) those that are
harmful only on close contact, but may degrade further into substances that are
volatile and cause harm at some distance (Minton, 2006).

Since the incident, the injury statistics have fluctuated over time, however, the
original records show that by September 18th 2006, health care professionals had
treated over 44,000 people (UNEP, 2006). A total of 15 were believed to have died
shortly after exposure to the contaminants (Agence France-Presse, 2007). UNDAC
reported that future health problems should not be expected because the chemicals
found in the wastes generally had short periods of toxicity, and less likely to be
persistent or bioaccumulative. However, the nauseous odors can still be smelled
around some of the dumping sites 3 years after the incident (Koffi, 2009).

13.7 Analytical Procedures and Results

As stated earlier, our primary goal in this case study was to use GIS-based meth-
ods to evaluate the spatial distribution of the illegal dumpsites and determine the
likelihood of disproportionate exposures to these hazardous releases based on the
demographic attributes of the residents. From an EJ perspective, one could argue
that the entire country was unfairly targeted by the illicit activities of the TNC.
However, we were primarily interested in learning more about the local geographies
of injustice, in particular the demographic characteristics of the neighborhoods and
residents that were most impacted by this incident. Were these likely to be the neigh-
borhoods of poor families, of religious or ethnic minority groups? Were these recent
immigrants, unemployed, or residents with low educational attainment? Was their
profile generally consistent with what we know about other EJ communities around
the world? Addressing these questions was important not only for profiling global
EJ populations with significant environmental exposures, but also planning for a
more extensive environmental epidemiological study. The geospatial analysis was
performed in a four stage sequence as described below.

13.7.1 Geo-Demographic Analysis Using Data Generated
from Sampled Points

The first step involved the analysis of the demographic data to generate maps depict-
ing the distributional patterns of the population. The DHS data, as noted earlier, were
collected from 253 residential clusters of which 66 of these sampled communities
were from the city of Abidjan, providing a good representation of the study area.
Using SPSS, we first obtained the univariate estimates of the variables. The relevant
information was then integrated into ESRI’s ArcGIS 9.3.

Within the GIS, the DHS data were mappable at multiple spatial scales including
the cluster level, and administrative areal levels 2 and 1. We started the analysis
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first at the cluster level, and then aggregated upwards to administrative level 2,
the smallest areal unit available. Since the demographic data were based on
sampling points across the country, the ordinary kriging approach was used to gen-
erate predictive maps for each of the demographic indicators. For each variable, we
first examined the data distribution, and variograms, before deciding on the best
model for spatial interpolation. Figure 13.4a to b are examples of maps generated
from the geostatistical analysis of two of these variables, religiosity (Moslems)
and Education. The maps reveal the national distribution of these variables at
administrative level 2, and the insets show the more localized distributions within
Abidjan.

13.7.2 Delineation of Chemical Impact Zones

The next step involved the delineation of impact zones or “footprints” of the chem-
ical releases within which residents were at highest risk of suffering adverse health
consequences. For this, we used ALOHA 5.4.1.2 (Areal Location of Hazardous
Atmospheres), a modeling program developed by the US. NOAA (National Oceanic
and Atmospheric Administration) and EPA (Environmental Protection Agency).
The program calibrates the threat zones of hazardous releases based on the toxi-
cological properties of the chemical, the amount and location of release, and the
atmospheric conditions at the time of an incident. The footprints that are generated
are transportable into GIS packages.

Using the information supplied by UNDAC, the dumpsites were spatially ref-
erenced in the modeling environment. As with most risk assessment studies, the
analytical emphasis in the ALOHA program was based on the worst case scenarios.
So, of all the chemicals detected at the disposal sites, we chose to model Hydrogen
Sulfide and Mercaptans (methyl and ethyl), these being the most volatile chemicals
in the wastes. These substances were also identified as the ones producing the most
harmful atmospheric effects during the incident (UNEP, 2006).

An estimate of 7.75 tons of hydrogen sulfide (H2S) deposited per site produced
a footprint with a 2.2-mile radius of excess risk (Immediately Dangerous to Life or
Health: IDLH), and an overall risk zone stretching up to 6 miles (See Fig. 13.5a).
According to the ATSDR database (accessed in 2007), exposures to lower con-
centrations of this chemical often result in irritation of the throat, nose and eyes
and respiratory problems. Inhaling or ingesting hydrogen sulfide at high levels may
cause coma and death. These health effects were corroborated in the Minton report,
which characterized H2S as a corrosive and highly toxic gas with negative health
effects at levels as low as 20 ppm (parts per million). At levels between 250 and
500 ppm, pulmonary edema can occur and exposures beyond these levels result in
breathing difficulties, loss of consciousness and death. All of these prognoses are
consistent with the health problems observed among some residents at the time of
the incident in Abidjan.

For the mercaptans, an estimated amount of 7.75 tons of methyl mercaptan per
site led to a 1.4 mile zone of excess risk (See Fig. 13.5b). Mercaptans have very
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Fig. 13.4 Predictive maps of selected demographic indicators in Cote d’Ivoire

strong, unpleasant odors and are also known to result in nausea, headaches, and
breathing difficulties. ATSDR reports show that high levels of prolonged exposure
to these chemicals cause anemia, coma, and death (ATSDR, 2006).

Beyond the two chemicals noted above, additional health risks reported during
the Abidjan incident included skin burns and ulcerations. These are believed to have
been caused by direct or close contact with some of the other chemicals such as
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Fig. 13.5 Footprint of hazardous chemicals released during the 2006 incident in Abidjan.
a Footprint of the hydrogen sulfide gas release. b Footprint of the methyl mercaptan gas release

sodium hydroxides, and the byproducts of the reaction between hydrogen sulfides
and sodium hydroxides (Minton, 2006).

Figure 13.6 shows the integration of the footprint generated for hydrogen sul-
fide at one of the hazardous sites. Three zones are shown, at 0.1 ppm, 30 ppm,
100 ppm along with their corresponding confidence intervals. The risk zone at
100 ppm, approximately 2.2 times from the toxic sites, is the IDLH area deemed
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Fig. 13.6 Integration of Aloha chemical footprints into ArcGIS

to be the most dangerous to life and health. For the purposes of this study, we chose
this 2.2 mile radius as the generalized risk zone around each dumpsite, the highest
threat zone over which the most harmful effects of these chemicals were likely to
be felt.

13.7.3 Linking the Threat Zones to the Demographic
Data Layers

The third stage of the analysis involved a detailed evaluation of the communities
that were within the threat zones delineated in the preceding step. To create a demo-
graphic profile of these risk zones, a spatial query was performed in ArcGIS to
identify all residential clusters that fell within or part of the 2.2 mile risk zone of each
dump site. Nineteen of the city’s 66 residential clusters in the sampled DHS database
fell into this buffer (Fig. 13.7). These areas were designated as high impact areas and
all others were characterized as low impact areas. The demographic characteristics
of the residents (religiosity, ethnicity, age, education, employment, wealth, hous-
ing composition and length of stay) of these buffer zones were then extracted and
exported into SPSS for statistical analysis.
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Fig. 13.7 Location of the population clusters within the areas of excessive risk in Abidjan

13.7.4 Statistical Comparison of Threat Zones

The final stage of the analysis involved a computation of univariate measures, the
calibration of Toxic Demographic Difference Index (TDDI) for each variable, fol-
lowed by multivariate analysis using stepwise logistic regression. The univariate
statistics generated for the Abidjan sample are reported in Table 13.2. The major-
ity of the residents are Kwa, and surprisingly, no foreigners were identified in the
DHS database. About 42% of the respondents have no formal education and about a
third fall into the middle and lower rankings of the wealth index. The proportion of
Christians and Moslems is fairly even in the sample taken in Abidjan and appears to
be nationally representative. The average age of respondents is 27.8 years, and they
live with an average of 8 members in their households, both characteristics fairly
typical of many African communities.

The TDDI is a variant of the independent samples t-test that compares the mean
differences among variables measured across two different samples. This proce-
dure was applied to the DHS sample extracted for Abidjan which consisted of 796
individuals residing within the 19 clusters identified as high risk areas and 912 indi-
viduals within the 47 clusters identified as low risk areas. The results of the TDDI
are reported in Table 13.3. Those who faced the greatest risk of exposure to the
chemical hazard were long term residents and therefore less likely to be immi-
grants (Table 13.3). A greater proportion of the residents in the high risk zones
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Table 13.2 Frequency distribution of selected attributes of residents in Abidjan

Categorical variable N = 1,708 (%)

Hazardous risk zones
Low 53.4
High 46.6
Kwa 80.9
Ahizi 19.0
Foreigners 0
Employed 65.7

Religion
Christians 44.4
Moslems 42.9
Other 12.8

Education
No education 41.9
Incomplete primary 19.2
Complete primary 3.3
Incomplete secondary 26.0
Complete secondary 1.3
Higher 8.4

Wealth index
Poorest 10.7
Poorer 11.2
Middle 13.5
Richer 24.2
Richest 40.3

were Moslems as well. The analysis also revealed that the housing conditions in the
high risk zones were substandard with residents less likely to have access to piped
water, electricity and other basic amenities. When compared to the low risk zones,
the household sizes were larger, and also likely to have more children under the age
of five.

Further analysis using logistic regression analysis involved the use of the risk
zone as a binary outcome (dependent variable). The odds of being exposed to
the hazardous chemicals were expressed as a function of the following indepen-
dent variables: wealth index, education, religiosity, ethnicity, employment, length
of stay in the community, and access to piped water, flush toilet, and electricity
(See Table 13.4). A stepwise procedure was employed to minimize the likelihood of
multicollinearity among the variables. The model derived at the end of the iterative
procedure consisted of six variables: education, wealth, access to piped water, flush
toilet, household size, ethnicity and length of stay in the community (Table 13.4).

The exposure risk model was highly significant with a Nagelkerke R2 of 0.584.
This measure belongs to a family of statistical tests that are commonly used to assess
the overall fit of regression models by examining the collective contribution of the
independent variables in explaining or predicting the outcome (dependent) variable.
In logistic regression analysis, variants of this test include Hosmer and Lemeshow’s
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Table 13.3 Toxic demographic difference indices for hazardous risk zones

Riskzone N Mean Std. deviation T test TDDI (1-p)

Current age –
respondent

Low risk 912 27.55 8.637 –1.306 0.806
High risk 796 28.12 9.404

Length of stay Low risk 874 9.2197 11.03404 –12.131∗ 1.00
High risk 740 17.6662 15.99013

Kwa Low risk 912 0.8114 0.39140 0.255 0.202
High risk 796 0.8065 0.39526

Ahizi Low risk 912 0.1886 0.39140 –0.124 0.099
High risk 796 0.1910 0.39330

Working Low risk 912 0.6009 0.48999 –5.351∗ 1.00
High risk 796 0.7224 0.44812

Moslem Low risk 912 0.3443 0.47540 –7.631 1.00
High risk 796 0.5251 0.49968

PPwater Low risk 912 0.9167 0.27654 18.255∗ 1.00
High risk 796 0.5540 0.49739

Electric Low risk 912 0.8914 0.31125 21.355∗ 1.00
High risk 796 0.4548 0.49826

No. of household
members

Low risk 912 7.93 4.664 –4.154∗ 1.00
High risk 796 8.97 5.498

No. of children 5
and under

Low risk 912 0.99 1.071 –7.211∗ 1.00
High risk 796 1.48 1.672

∗Significant at p < 0.01.

Table 13.4 Stepwise logistic regression of exposure risk to hazardous chemical releases

Variables in the equation B S.E. Wald df Sig. Exp(B)

Education 8.830 3 0.032
higher education (reference)
No education 0.702 0.243 8.320 1 0.004 2.017
Primary 0.606 0.248 5.958 1 0.015 1.833
Secondary 0.440 0.233 3.559 1 0.059 1.553
No. of house members 0.043 0.013 10.996 1 0.001 1.044
Access to piped water −1.914 0.191 100.254 1 0.000 0.147
Access to flush toilet −1.162 0.177 43.197 1 0.000 0.313
Wealth index 61.716 4 0.000
richest group (reference)
Poorest 21.151 2777.017 0.000 1 0.994 1.533E9
Poorer 2.879 0.373 59.677 1 0.000 17.805
Middle 0.304 0.212 2.047 1 0.153 1.355
Richer 0.169 0.174 0.940 1 0.332 1.184
Length of stay 0.036 0.006 41.269 1 0.000 1.037
KWA ethnic group −0.904 0.200 20.425 1 0.000 0.405

Model summary
Final step –2 log likelihood Cox and snell R2 Nagelkerke R2

1,308.431 0.438 0.584
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R2, and Cox and Snell’s R2, all of which typically compare the baseline regression
model (without the independent variables) to the final model (obtained by including
the relevant predictor variables). The interpretation of the Nagelkerke R2, and along
with the related measures is consistent with the interpretation used for the traditional
R2 statistic in ordinary regression analysis, such that a value close to 0 indicates a
poor model fit, whereas a value close to 1 suggests a near perfect fit. Thus, in this
study, one can conclude that almost 60% of the spatial variability in exposure risk to
the chemicals can be explained or predicted by the independent variables that were
included in the model. Judging from the regression coefficients{B} and related odds
ratios {EXP (B)}, the strongest predictor was the wealth index. Those who were
poor in the city faced the greatest risk of exposure to these chemicals. The odds ratio
also showed that residents with little or no formal education, were twice as likely to
be exposed. The odds declined with increasing education but education remained a
significant predictor overall. When examining the characteristics of the household
environment, residents without the basic amenities such as piped water and modern
sanitation facilities were the most likely to suffer from this tragedy. The odds were
only slightly higher (4%) for those who had lived in these communities longer and
lived in large units with several members. Finally, the Kwa majority group faced a
slightly lower risk of exposure to the toxic chemicals when compared to the other
minority groups; and unlike the TDDI results, religiosity was not a significant factor
in this multivariate model, a finding that is probably linked to the stepwise procedure
used to create a parsimonious model with only a subset of variables that account for
the most variance in exposure risk.

13.8 Discussion and Conclusions: EJ Lessons Learned
from This Study

This study has sought to document the root causes underlying cross-border trans-
fers of hazardous operations and products, and the emerging health risks in low
income countries. Using the case study from Cote d’Ivoire, the results underscore
many of the salient themes associated with the emerging global geographies of EJ:
(i) the involvement of transnational companies; (ii) the international mobility of the
wastes and related products; (iii) the leveraging of global economies of scale by
profiting off of the reprocessing and sale of naptha, while embarking on cost-saving
measures to dispose of the harmful waste products in a developing country; (iv) the
selection of a country that was politically and economically unstable at the time of
the negotiation; (v) the illicit nature of the operations involving an incompetent local
subcontractor, along with the lack of full disclosure of the true composition of the
wastes; and (vi) the significant health impacts on residents in the local communi-
ties. In this case study, at least four countries were involved, the most important one
being the Netherlands, the headquarters of the TNC.

The use of GIS and statistically based methodologies to uncover the local geogra-
phies of EJ was perhaps the most beneficial in this study. The ALOHA dispersion
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models helped define the general radius of the threat zone based on the atmo-
spheric conditions and the toxicological properties of the most dangerous chemicals.
Subsequent analysis using the GIS buffers, the TDDI and logistic regression mod-
els produced results that were fairly consistent with other EJ communities around
the world. Even though an entire country was targeted for the waste delivery, the
localized effects of the hazard were most evident in the low income neighborhoods.
Ethnic minorities and long term residents with low educational attainment and lim-
ited access to basic amenities faced greater risks of exposure than their counterparts.
Further, even though the country had a fairly balanced distribution of Christians and
Moslems, the TDDI results showed that Moslems were more likely to be exposed
to the hazardous releases, though the variable failed to enter the final multivariate
model derived from logistic regression analysis.

The study further illustrates the functionality of geographic tools and method-
ologies in the analytical evaluation of global EJ concerns. To our knowledge, most
studies of global EJ have so far been theoretical in scope, and few have attempted to
apply these tools to validate the claims. This research offers a structured approach
toward addressing these issues by integrating GIS, atmospheric dispersion mod-
eling and statistical methods. The results however must be interpreted as only a
first step toward a more detailed epidemiological investigation that requires long
term biomonitoring of the affected groups, environmental remediation of the pol-
luted sites, and the implementation of environmental regulations that would prevent
such incidents from recurring. It is only through these collective efforts that true
environmental justice can be achieved.
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Chapter 14
Environment and Health Inequalities
of Women in Different Neighbourhoods
of Metropolitan Lagos, Nigeria

Immaculata I.C. Nwokoro and Tunde S. Agbola

Abstract Despite all the policies evolved by the various governments in Nigeria
to maintain a healthy environment, inequalities in health persist among women in
Lagos. This study examines the nature of the relationship between environmental
health factors and health status of women in different neighbourhoods of metropoli-
tan Lagos. All the 17 local government areas (LGAs) were selected to achieve 100%
representation. Questionnaires (no = 1,150) were administered to randomly selected
women aged 18 years and above. A total of 9 Focus Group Discussions (FGDs)
were held with women of same age from different neighbourhoods. Data analysis
was by descriptive statistics, chi-square tests, one-way ANOVA and logistic regres-
sion. GIS was employed to show the spatial variation of health status of women
across neighbourhoods. Results show that the mean of environmental diseases expe-
rienced by women varied among income neighbourhoods but while the difference
in means between the low and medium income groups was highly significant at
p < 0–5, that of the medium and high income groups was not. GIS highlighted
the high income neighbourhood as having women in the highest health status. The
more the access to pipe borne water, the lower the incidence of diarrhea (Wald =
19.125, p < 0.05) Also, diarrhea increased with age, irrespective of neighbour-
hood location. The FGDs identified stress as a major cause of ill health among
women across neighbourhood groups. The study identified various neighbourhood
environmental factors that affect the health of women. Improved environmental
conditions are germane to improving the health status of women in metropolitan
Lagos while emphasis is placed on attending to the stressors that affect women’s
health.
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14.1 Introduction

Inequalities in health in society are often a key concern for health policy makers.
Stephens et al. (1992) observed that over the last few decades, there have been
many studies highlighting the health problems of the urban poor in the cities of
Africa, Asia and Latin America. Yet, a review of the international literature reveals
that, until recently, the extent of intra-urban differentials in social, environmental
and health conditions between groups in cities has been poorly understood (World
Health Organization WHO, 1994). Many global summits and international fora, as
well as researchers like Wagstaff et al. (1999), and Whitehead (1999) have shown
ample evidences pointing to the substantial differences in expectancy and general
health conditions between rich and poor people in Europe and in most develop-
ing countries like Nigeria. They are also concerned that despite overall economic
growth, the health status of women, particularly in developing countries, has not
been given adequate attention.

Several major demographic shifts which began after World War II have contin-
ued unabated and have even accelerated in some regions. Accordingly, Metropolitan
Lagos has experienced a very high rate of urbanization over the last years. The
United Nations Commission on Human Settlements (UNCHS), 2001 estimates that
by 2015, the population of Lagos will be in excess of 20 million, making it the
world’s third largest mega-city. Associated with this intense urbanization are observ-
able problems and challenges posed by deteriorating housing conditions, inadequate
infrastructure facilities, human and environmental poverty, and declining quality
of life among other issues. Stephens (1992) observed that the process of urban-
ization has differential impacts on a city’s environmental, socioeconomic, health
and political conditions. She was particularly emphatic about the relationship of the
environment to its health consequences.

According to MacArthur and Bonnefoy (1998), environmental health involves
those aspects of public health concerned with the factors, circumstances, and condi-
tions in the human surroundings that can exert an influence on health and well-being.
Some environmental health factors examined include sources of water, sanitation
methods, sources of energy for cooking, and drainage conditions. Usually, vulnera-
ble groups (women, children and, the poor) are most strongly affected (Population
Reference Bureau, USA, 2004).

The major concern of this research, therefore, is to unravel the observable health
inequalities existing among women of different socio economic groups living in
different neighbourhoods. This investigation will lead to the understanding of the
nature of environmental health inequalities that exist among women in Metropolitan
Lagos. It further investigates if differences between women in health status vary by
their social status and also examines the environmental factors that affect women’s
health in the study area. In addition, the research tries to show spatially the health
inequalities across the socio economic neighbourhoods of women in Metropolitan
Lagos.
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14.2 Context of the Research – Metropolitan Lagos

The study area is located in the South Western part of Nigeria on the narrow coastal
plain of the Bight of Benin. The metropolitan area, centrally located within the
coastal frontage of Lagos state, comprises seventeen (17) Local Government Areas
(LGAs) (Fig. 14.1) while the non metropolitan area comprises 3 LGAs. The wards
are classified into low, medium and high income groups. The Lagos metropolitan
area comprises 88.7% of Lagos state, a total of 19.87 km2. Formerly the capital of
Nigeria, Lagos is a huge metropolis which originated on islands separated by creeks,
such as Lagos Island.

Lagos is the most populous conurbation in Nigeria with 7,937,932 inhabitants at
the 2006 census (Federal Government of Nigeria official gazette, 2007). It is cur-
rently the second most populous city in Africa, and also estimated to be the second
fastest growing city in Africa and the 7th fastest in the world (City Mayors), http://
en.wikipedia.org/wiki/Lagos-cite_note-2 immediately following Bamako, the cap-
ital city of Mali, Africa. The city is the economic and financial capital of Nigeria.
“Such a growing population, especially coupled with weak urban planning and
management machinery is one of the main causes of environmental degradation.
The growing population and increasing living standards are often accompanied
by pressure on existing infrastructural facilities like housing, water, electricity and
telecommunication” (State of Lagos Mega city, 2004, p. 40).

The State of Lagos Mega City Report (2004) notes that residential density is as
high as 4,000 people per ha in several parts of the city due to its small land area har-
bouring a large population. It further reveals that 53.3% of poor neighbourhoods in
Lagos depend on water from wells, while only 10.5% of same group of people have
access to pipe borne water. The rest of these groups of people purchase water from
water vendors. Due to the absence of pipe borne water supply in the low income
areas of Lagos, 55.5 and 32.5% of residents still use pit and bucket latrines respec-
tively. Only 10% of residents have access to water closet toilet systems. These are
very critical issues for health.

It is important to highlight some of the major health indicators of Lagos State.
According to Lagos State Government (2002), state health institutions (government
general hospitals and health centres) are 30 in number, malaria is the most common
disease with about 60% of out patient visit to health centres, Infant mortality rate
is 85 deaths per 1,000 live births (LB), Under- five mortality rate is 150 deaths
per 1,000 live births, Maternal mortality rate is 650 deaths per 100,000 live births,
Immunization coverage is 40% of children and HIV/AIDS prevalence is 6.6%.

Another problem of urbanization in Lagos and indeed the whole of Nigeria is
that of urban poverty. Poverty is defined as those living on less than US$1.00 per
day. The United Nations Development Programme (UNDP), 2003 found that the
average levels of urban poverty in Lagos were 50% for men and 56% for women.
One of the major reasons adduced for this is that women in Nigeria find it easier to
get jobs in the informal than in the formal sector, most of which are of low incomes
and low productivity. This is another concern of this research.

http://en.wikipedia.org/wiki/Lagos-cite_note-2
http://en.wikipedia.org/wiki/Lagos-cite_note-2
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Fig. 14.1 Map of Nigeria showing Lagos metropolitan and non-metropolitan LGAs with selected
wards

14.3 Literature Review and Conceptual Issues

The models and concepts adopted as framework for investigating the factors influ-
encing the health of women include “The Health Field Model” (Evans and Stoddart,
1990), “Feminist Political Ecology” (Rocheleau et al., 1996) and the Concept of
“Equity and Health” (WHO, 1999; Gwatkin, 2002).
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The Health Field Model, proposed by Evans and Stoddart (1990) provides a
broad conceptual framework for considering the factors that influence health in a
community. It is different from a biomedical model that views health as merely the
absence of disease. The health field model, in addition to including functional capac-
ity and well-being as health outcomes, also emphasizes general factors that affect
many diseases or the health of large segments of the population rather than specific
factors that account for small changes in health at the individual level. The authors
note the factors that contribute to differences in heath status as social, environmen-
tal, physical, economic, behavioral, and genetic factors. The model established that
health outcomes are the product of complex interactions of factors rather than of
individual factors operating in isolation.

Although this model provides a good understanding of the research topic in terms
of environmental and socio-economic factors that influence health outcomes for
large groups of people, it fails to address the gender aspect of this research. Kawachi
et al. (1999) define gender as “a social construct regarding culture-bound conven-
tions, roles, and behaviors for, as well as relations between and among, women and
men and boys and girls”. Annandale and Hunt (2000) observed that gender inequal-
ities in health have been a major area of sociological research interest since the early
1970s. They also stated that “rising to prominence on a wave of interest in the social
relations of gender which challenged the empirical, theoretical and methodological
core of sociology during the 1970s and early 1980s, the search for an explanation
for differences in male and female morbidity and mortality, alongside interest in the
relationship between variations in women’s social circumstances and their health
has been a vital part of feminists attempts to challenge the detrimental effects of
patriarchy on women’s health.” (Annandale and Hunt, 2000, p. 1) According to the
authors, by the 1980s, the focus of research changed to women-only samples and
works that examined differences in health among women. Still, few of these stud-
ies embraced the concept of gender as something other than biological conditions.
The research challenge, therefore, is to explore the ways in which gender continues
to be an important representation of inequality, while recognizing the diversity of
experiences within the category of women.

The aspect of health inequality most relevant to this study is spatial inequalities
in health. According to Graham (2000), inequalities between places are marked by
inequalities between individuals. However, Macintyre (1997) argues that areas have
an effect on spatial inequalities in health, although individual factors are the primary
cause. In operational terms, pursuing equity in health can be defined as striving to
eliminate disparities in health between more and less advantaged social groups, that
is, groups that occupy different positions in a social hierarchy (Gwatkin, 2002).
This is useful to this work in terms of different socio-economic groups of women
as identified in Metropolitan Lagos. The most important issues in discussing equity
are health status, allocation of resources, and access to and utilization of services.
Philips (1990) observed that there are apparent disparities in the geographical dis-
tribution of health facilities, for example, between regions, between urban and rural
areas, between rural areas and within urban areas. This study is related to the dispar-
ity within urban areas in distribution of health facilities. The study is also concerned
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with the type and level of access of women from different socio-economic groups
to health care facilities.

Coming from the feminist perspective, another model that appears useful in
explaining these relationships is “Feminist Political Ecology” by Rocheleau et al.
(1996) which deals with the complex context in which gender interacts with class,
race, culture and national identity to shape our experience of and interests in the
environment. “While there are several axes of power that may define people’s access
to resources, their control over their workplace and home environments and their
definitions of a healthy environment, we focus on gender as one axis of identity and
difference that warrants attention” (Rocheleau et al., 1996, p. 5). The major flaw
of this theory to this study is that it has not considered the relationship between
the environment of women and health. At this point, we may begin to tease out
the relationships between society, place, gender and health and how they play out
in the world, particularly as the focus on women’s health begins to move away
from medicine. From the above debates on the link between gender, environment
and inequality in health, it does appear that there is no one single model or con-
cept that encapsulates these complex relationships. Nevertheless, each aspect of this
discourse has presented a rich understanding of this research. For a more compre-
hensive outlook suitable for this research, the Health Field Model, was modified
by adding gender and class to the determinants of health and changing some of the
arrows to be in double direction as shown in Fig. 14.2.

Social
Environment

Physical
Environment

Genetic
Endowment

Gender

Class

Health
CareDiseaseHealth

and
Function

Individual
Response

• Behaviour
• Biology

Well-Being Prosperity

Fig. 14.2 A model of the determinants of health, modified after Evans and Stoddart (1990)
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Environmental health practice addresses emerging health risks arising from
the pressures that human development places on the environment. World Health
Organization (WHO), and other national and international organisations indicate
that the interaction between environment and health is far more complex than
is commonly understood. As observed by Bradley et al. (1992), around 25–33%
of the burden of disease in industrialised countries can be attributed to environ-
mental factors, with the bulk of these affecting children and vulnerable groups
especially women. For example, in a 1999 survey, the WHO observed that some
89% of people are concerned about the potential impact of the environment on
their health. Some researches confirm the influence of environmental health fac-
tors on health. Guerrant et al. (1983) observed that diarrhoea rates at all ages
in 297 study participants were statistically significantly higher in poor urban
and poor rural areas of Brazil than the non-poor central urban area. They also
noted that diarrhoea risks were 2.2 times higher for children in households with-
out pit toilets, compared to those with pit toilets. Also a study from Monrovia,
Liberia by Molbak et al. (in Bradley et al., 1992) concludes that water related
environmental health problems in urban areas are linked to storage and hygiene
factors as well as to safe water variables. Similarly, Surjadi et al. (1993) and
McGranahan and Kjellen (1994), in a household survey undertaken in Jakarta found
indoor air pollution from cooking, crowding, humidity and poor ventilation to
be important factors for predicting respiratory illness, particularly among female
householders.

All the above findings suggest that more work need to be done in understand-
ing the impact of the environment on health of different socio economic classes of
women, especially, in Metropolitan Lagos.

14.4 Research Methods

Qualitative and quantitative methods of data collection were used in this study.
Focus Group Discussions (FGDs) were held with women of age 18 years and above
in three local government areas (LGAs) four groups from the low income areas,
three from the medium and two from the high. Each group consisted of ten women
drawn from different wards, educational, social and professional backgrounds. Also
each group was met four times to ascertain consistency of comments. The choice of
the number of groups from each local government area was informed by the find-
ings in the literature which showed that women from the low income group are more
vulnerable to environmental health problems.

The household questionnaire was structured into eleven sections where informa-
tion were elicited on variables like age, Income in Naira (N) per month, family size,
level of education, occupation, housing conditions, environmental health conditions,
nutritional values, health status of the women and policy issues. The study required
the classification of the study area into income neighbourhoods as follows; Low
income/high density (LI/HD), Medium income/medium density (MI/MD), High
income/low density (HI/LD). The income indicators used here are socio-economic
characteristics of neighbourhoods for example, type of accommodation (rooming,
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flat, bungalow, duplex, etc); crowded compounds (accommodating 6 or more house-
holds); and monthly income of household (those earning less than the minimum
wage of N7,500 per month). The neighbourhoods were then classified according
to an urban pathology index (UPI) based on percentage scores on socio economic
characteristics as mentioned above. These variables agree with those used as indica-
tors of socio economic status in Urban Ecology Analysis (Berry and Horton, 1970;
Timms, 1971). This could not be achieved effectively at the local government level
because they are too heterogeneous and large. Some LGAs have some mixed income
neighbourhoods. To avoid this problem, the classification was done at the ward level
which is a smaller unit with more homogenous characteristics.

All the 17 Metropolitan LGAs were selected to achieve a 100% spatial represen-
tation of the study area from where 72 wards were selected for the study. Selection
of wards from each local government area was based on proportional representa-
tion, both in size and population. Out of the 72 wards, 43 were LI, 22 MI and 7
HI neighbourhoods. At the household level, 1,150 copies of a questionnaire were
administered to randomly selected women aged 18 years and above.

Health survey records were obtained from the Lagos State Ministry of Health,
LGAs and one hospital within each sampled ward. Maps of Nigeria showing Lagos
State in various contextual details, were all transferred from the analogue to dig-
ital state using Geographic Information System (GIS). These maps did not only
describe the study area but were useful in the spatial analysis of data from the field.
The political map of Nigeria (1:100,000) by Federal Surveys (1968) was scanned,
geo-referenced and vectorized using ArcGIS 9.2 software by ESRI. The Lagos
state map (1:25,000) was also scanned, geo-referenced and digitized. Features such
as LGAs boundaries, water bodies and wards (in polygons) were extracted as
themes. Roads, railways and state boundaries were digitized as polygons. Attributes
tables were then updated to accommodate the questionnaire survey based on ward
level. Query builder was used to obtain results shown in Figs. 14.3, 14.4, 14.5,
and 14.6.

Data analysis was done using descriptive statistics (tables, graphs, mean), chi-
square tests, one-way ANOVA and logistic regression analysis. This study utilised
the logistic regression model to determine the risk of occurrence of environmen-
tal health diseases using some environmental factors. The data sets for the study
which are in binary variables also justify the use of logistic regression. Geographic
Information Systems (GIS) was employed to show the spatial variation of health
status of women across various income groups.

14.5 Results and Discussions

This section discusses the major findings of the research. The subsections include
socio economic conditions, health conditions, neighbourhood environmental con-
ditions of women in metropolitan Lagos as well as analysis of Focus Group
Discussions. The major limitation of the GIS research results is that they are based
on percentage of total number of respondents instead of the actual number.
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14.5.1 Socio Economic Conditions of Women

It is interesting to find a substantial number of women in the low and medium
income groups earning above N45,000 per month due to joint earnings from two
jobs. There is also a significant difference between the earning capacities of income
of the women across the income groups. The results are shown in Tables 14.1 and
14.2. Other socio economic conditions considered in the analysis are age and educa-
tional attainment of the women. However, they are discussed along with the health
conditions of women in the next sub section to ascertain how they affect their health
status. Figure 14.3 also shows the spatial distribution of women that earn less than
N15,000 monthly. Most of the women are in the low income group.

Table 14.1 Relationship between (N) per month and income classification (%)

Income (N) LI MI HI

< 15,000 40.1 18.4 5.0
15,000–30,000 27.2 14.4 7.5
30,001–45,000 8.6 18.4 15.0
> 45,000 24.1 48.9 72.5
Total 100

(732)
100
(305)

100
(40)

Source: Field work, 2006.
LI, low income, MI, medium income, HI, high income.

Table 14.2 Chi-square test for income (N) per month and income classification (%)

Value Df Asymp sig. (2-sided)

Pearson chi square 79.777 6 0.000

Source: Field work, 2006.

14.5.2 The Health Conditions of Women in Metropolitan Lagos

According to Newbold (1999), a major barrier for women in the achievement of the
highest attainable standard of health is inequality, both between men and women
and among women in different geographical regions, social classes and indigenous
and ethnic groups. This section discusses the health conditions and status of women
in different income groups. It also examines inequality of health among women
of different income groups and investigates the rationale for the differences. The
variables considered for this analysis are: disease pattern of women, most frequently
experienced diseases, and mortality rate.

Table 14.3 reveals that the most reported disease by the low income women is
diarrhoea, while respiratory infection was the most reported by the medium and high
income women. The analysis of the secondary based data from hospitals and Lagos
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Fig. 14.3 Result of query showing wards with women earning less than N15,000 per month
(> = 80%)

Table 14.3 Disease prevalence of women according to income groups in the past 1 year (%)

Type of disease L1 M1 H1

Malaria 65.4 40.0 62.5
Diarrhoea 74.9 65.6 37.5
Dysentery 58.3 51.5 32.5
Typhoid fever 70.1 71.1 55.0
Cholera 35.8 25.9 20.0
Respiratory infection 58.5 75.4 62.5
Tuberculosis 33.6 14.8 30.0
Others 37.8 43.9 42.5

Source: Authors field work, 2006.
Note: Multiple responses possible.

State Ministry of Health show that the most reported diseases are malaria, respira-
tory diseases and typhoid fever. These confirm the results from the questionnaire
interviews. Figure 14.4 further highlights the spatial analysis of malaria prevalence,
that is women that have suffered from this disease at more than four times in the
year. The GIS results show that malaria prevalence cuts across all income groups.
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Fig. 14.4 Result of query showing malaria prevalence (more than 4 times per year) amongst
women in different income groups in Lagos metropolis
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The detailed analysis confirm that inequality exist in certain aspects of their
health. The lower the income, the higher the diseases experienced, and also the
higher the mortality rate. To further ascertain the health status of women in the
different income groups, first, the number of diseases experienced by each woman
was counted without considering the severity of the diseases. The co-morbidities
considered are malaria, typhoid fever, diarrhoea, dysentery, tuberculosis, respiratory
infection and cholera. These are those that are usually associated with the neighbour-
hood environment. For example, Benneh et al. (1993); McGranahan (1991) utilised
these diseases in their various works on household environment and health. The
next step was to find the mean of all diseases for all women in all the three neigh-
bourhoods using the ANOVA method as shown in Table 14.4. The mean of diseases
experienced for the low income group is 4.3434, medium income is 3.8852 and,
high income is 3.4250. Also, Table 14.5 shows the means of diseases experienced
for all income groups. While the difference in means between the low income and
the medium groups was highly significant p < 0.05, the difference in means between
the medium and the high income groups was not statistically significant.

Table 14.4 One-way ANOVA for the means of diseases experienced

Income group No. of respondents Mean of diseases

LI 731 4.3434
MI 305 3.8852
HI 40 3.4250
Total 1, 076 4.1794

Table 14.5 Post hoc tests – mean differences

Income group
Income
classification

Mean
difference Significance

LI MI
HI

0.4581a

0.9184a
0.001
0.007

MI LI
HI

–0.4581a

0.4602
0.001
0.307

HI LI
MI

–0.9184a

–0.4602
0.007
0.307

Source: Authors field work, 2006.
aMean difference is significant at 0.05 level.

The next step was to classify the means as previously discussed to get three
classes of women. Those with low disease experience, or good health, medium
disease experience or fair health and high disease experience or poor health. To
find out the health status of women in Metropolitan Lagos, a cross-tabulation was
done for health status and income classification. Results also confirmed that there
is no significant difference between the health status of medium and high income
women.



14 Environment and Health Inequalities of Women in Different Neighbourhoods 295

One out of every 3 women has poor health status in the low income group while
only 10% of women in the high income group have poor health status. However,
results from the GIS query in Fig. 14.5 show that women with the poorest health
(above 80%) are mostly in the low and medium income groups. Consequently, there
is ample evidence that inequality exists in health of the women in Metropolitan
Lagos.

Relating the health status of women and their socio economic conditions, results
show that women who are in the best health status fall within ages 21 and 40 consid-
ered the most reproductive and productive (See Tables 14.6 and 14.7). However, age

Fig. 14.5 Result of query in GIS showing wards with higher (> 80%) poor health status

Table 14.6 Relationship between the health status and age of all women (%)

Health status <20 21–30 31–40 41–50 51–60 >60

Good 16.3 21.1 19.1 16.1 6.9 17.2
Fair 64.9 55.0 47.8 48.4 53.4 63.5
Poor 18.8 23.9 33.0 35.5 39.7 19.3
Total 100 100 100 100 100 100

Table 14.7 Chi-square test for health status and age for all women (%)

Value Df Asymp sig. (2-sided)

Pearson chi square 33.829 10 0.000

Source: Authors field work, 2006.
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has a significant relationship with the health status of women only in the low and
medium income groups, while level of educational attainment shows no significant
relationship in any of the income groups.

14.5.3 Neighbourhood Environmental Conditions of Women
in Metropolitan Lagos

One of the greatest challenges to environmental health research is the fact that envi-
ronmental contributors to diseases are multi-faceted and not limited to one specific
agent. The environmental health variables measured include, sources of water sup-
ply, drainage condition, type of toilet facilities, sources of energy for cooking and,
nature of building (Ventilation). The null hypothesis tested in this section is that
there is no significant relationship between neighbourhood environmental factors
and the health conditions of women. Chi square tests and logistic regression analyses
were used to buttress the relationships and establish variations within and between
the income groups. A summary of the Chi – square tests for all environmental vari-
ables and income classification (sig. <0.05) show very significant associations. This
means that the different environmental variables differ between the income groups
and consequently the women’s choices of living environments vary with income
level. For example, out of all the sources of water investigated, the use of well water
and water from hawkers at home showed a significant relationship with the health
status of all women.

Six major sources of water were used for the study The major sources investi-
gated are stream/pond, well, piped water, borehole, street hawker and other sources
(not specified). These were further regrouped into two for the purpose of this dis-
cussion. Thus, if stream/pond, well and street hawker, it means a poor source but
otherwise good. Results in Table 14.8 reveal that the major source of water used
by the low income respondents at home is street hawker which accounts for 77.5%.
These are the people who get water for residents in gallons or tins for a fee. The
sources of the water are not usually known and the water is usually contaminated
before it gets to the final user. Only 37.4% of the respondents use piped water. For
medium income respondents, 51.4% use well, 51.8% piped water and 49.8% street

Table 14.8 Relationship between sources of water supply at home and income classification (%)

Source of water LI MI HI

Stream/pond 44.5 33.8 17.5
Well 70.5 54.4 35.0
Piped water 37.4 51.8 87.5
Borehole 25.1 36.4 85.0
Street Hawker 77.5 49.8 42.5
Others 33.6 16.4 22.5

Source: Authors field work, 2006.
Note: Multiple responses possible.
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hawker. However, 87.5% of the high income respondents have access to piped water,
85.0% use borehole and 42.5% still patronize street hawkers. 33.1% of women that
use well water at home have poor health status. In summary, while piped water and
borehole sources are used mostly by the high income respondents at home, well,
piped water and street hawkers by the medium income, the low income respondents
use mainly the street hawkers and well sources.

Another environmental factor considered was drainage condition. Only 3 wards
in the low income neighbourhood had poor drainage facilities as highlighted in
Fig. 14.6. Most of the drainage facilities across all income neighbourhoods had fair
drainage conditions.

Fig. 14.6 Result of query in GIS showing wards with poorest drainage system (> 67%)

To ascertain whether diarrhoea depends on any of the environmental factors
earlier mentioned, a logistic regression analysis was conducted. The parameter esti-
mates table summarizes the effect of each predictor. The ratio of the coefficient to
its standard error, squared, equals the Wald statistic. If the significance level of the
Wald statistic is small (less than 0.05) then the parameter is useful to the model. The
predictors and coefficient values shown in the last step are used by the procedure to
make predictions. The logistic regression results showed in Table 14.9 established
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Table 14.9 Logistic regression for all income group diarrhoea as the dependent variable against
all water sources, amount spent monthly on water, toilet facilities, method of excreta disposal,
access to nearest piped borne water and distance of well from septic tank variables

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 5(e) Stream water source 1.351 0.654 4.272 1 0.039 3.861
Other water sources 0.570 0.218 6.808 1 0.009 1.768
Access to nearest piped

borne water
–0.245 0.056 19.125 1 0.000 0.782

Toilet facilities –0.078 0.033 5.727 1 0.017 0.925
Diarrhoea as a result of

poor excreta disposal
method

0.110 0.020 31.248 1 0.000 1.116

Constant –1.868 0.780 5.738 1 0.017 0.154
a Variable(s) entered on step 1: stream water source
b Variable(s) entered on step 2: other water sources
c Variable(s) entered on step 3: access to nearest piped borne water
d Variable(s) entered on step 4: toilet facilities
e Variable(s) entered on step 5: diarrhea as a result of poor excreta disposal method

Source: Authors field work, 2006.

some causality between diarrhoea and some environmental factors. The most sig-
nificant for all the income groups is that the poorer the method of excreta disposal,
the higher the incidence of diarrhoea. For the high income group, the farther the
well from septic tank/soak away, the less the incidence of diarrhoea. The logistic
regression also confirmed existing studies that the more the access to pipe borne
water, the lower the incidence of diarrhoea, (Wald = 19.125, p < 0.05). However,
the incidence of diarrhea increased with age irrespective of neighbourhood loca-
tion. The relationship between other environmental factors and the health of women,
although significant, were not strong enough to establish causalities. The answer to
this emerged from the FGDs.

14.5.4 Analysis of Focus Group Discussions

In an attempt to authenticate and corroborate the information from the questionnaire
survey, additional information was sought through the FGD, a time tested and reli-
able method in healthcare research and investigation. The discussions with diverse
groups of women have produced a wealth of information about the ways in which
different women perceive the environments they inhabit. The diversity of responses
among and within groups suggests that the environmental influences on women’s
health are far more complex than is generally recognized. Since the research was
focused on women, all participants were women. This was to give them the freedom
of speech and expression, especially in the discussion of sensitive issues on diseases
concerning them.
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Perhaps the most interesting result on the health condition of the women that
manifested from the FGDs is stress. Women from all the three groups said that
stress, in addition to bad environment, affects their health. They further said that
although the condition of the environment can affect their health, there are other
associated factors of which stress is the most prominent. This is well captured by
participant 7, a middle aged woman in the low income group who stated that:

Stress is a major cause of ill-health for me. In the morning before 5am, I wake up, bath the
children and prepare them for school, cook for the family, and then go to market where I
hawk. I do not have a house help to assist in all these chores and my husband does not care
to help. I get home late to continue caring for the family.

Participants from the medium and high income neighbourhoods shared similar expe-
riences. However, the impact of stress differed in their ability to manage it among
the different income groups. The professional woman in the high income group is
able to afford the services of a house help which to an extent reduces her stress and
consequently less impact on her health. Here lies the inequality in their health status.
As corroborated by women in the focus groups, access to healthcare and facilities
do not only depend on affordability but also by choice and preferences. Discussions
on the socio economic factors did not deviate from the results of the household
questionnaire. The low and medium income women report the absence of drainages
in their environment and where they exist, are blocked by refuse dumps. However,
their report on the type of water supply used agrees with the household question-
naire interview. While the low and medium income women use mainly well and
street hawkers, the high income women use mainly piped water in addition to well.

14.6 Conclusions and Policy Statements

The most important socio economic factor in the health status of women is the
income earned monthly. This is most apparent in the low and medium income
groups. It also does appear that having high income status is a precondition for
healthier environments and better health services, given competing demands on
resources.

The study identified various neighbourhood environmental factors that affect the
health of women. It is important for the state government to ensure the availability
of and universal access to safe drinking water and sanitation. This will reduce the
amount of money spent buying water from local vendors. It will also ensure that the
women drink clean and healthy water, thereby reducing the incidence of diarrhea.
It is also necessary to ensure full and equal access to health-care infrastructure and
services for women of all social and income groups in metropolitan Lagos Since
poverty was identified as one of the major reasons of not getting adequate medical
care, programmes aimed at eliminating it should be encouraged. The Lagos state
government should pursue social, human development, education and employment
policies to eliminate poverty among women in order to reduce their susceptibility to
ill health and to improve their health.
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The Focus Group Discussions across all income groups identified stress as a seri-
ous cause of ill health. This factor should be taken seriously in further planning for
women in Metropolitan Lagos. Men should be encouraged to share equally in child
care and household work and to provide their share of financial support for their
families. This will reduce the disproportionate and increasing burden on women
who have multiple roles within the family and the community.

In conclusion, improved environmental conditions are germane to improving the
health status of women in metropolitan Lagos while emphasis is placed on attending
to the stressors that affect women’s health.

14.6.1 Areas for Further Research

This study mainly focused on the health inequalities among women of different
neighbourhood income groups. It did not do any comparison with the men. It will
be interesting to have a comparative analysis of this kind of study. Such informa-
tion will be necessary in reducing the perceived health inequalities that exist among
men and women. It will also be informative to consider the severity of diseases in
analyzing health status, for example, considering diseases that are mild, severe, and
deadly or terminal.

Most importantly, the issue of stress as highlighted by women during the focus
group discussions should be critically looked into. This is the major area of further
research from this study. The reasons for the stress, the nature of the stress and the
group of women mostly affected should form some of the research questions.
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Chapter 15
Housing Quality and Racial Disparities
in Low Birth Weight: A GIS Assessment

Sue C. Grady

Abstract Geospatial technologies such as geographic information systems (GIS)
and spatial statistics allow researchers to analyze conceptually meaningful spatial
datasets on environmental health topics to target interventions and generate new
hypotheses for future research. This environmental health study focuses on the
relationship between racial residential segregation, housing quality and value and
low birth weight in the city of Flint, Michigan. A GIS was constructed with aerial
imagery as the base; and maps of racial residential segregation and tax parcels -i.e.,
building footprints overlaid to examine the effect of maternal exposure to hous-
ing quality and value on low birth weight in these neighborhoods. Geographically
weighted regression (GWR) was used to analyze these spatial datasets. The find-
ings from this research showed that substandard and well-maintained housing were
dispersed throughout the city of Flint, with a higher density of substandard hous-
ing in areas of segregation and concentrated poverty. Pregnant mothers living in
well-maintained housing in racially mixed neighborhoods received some protection
compared to similar mothers living in housing with minor disrepairs. This protection
was not observed for mothers living in well-maintained housing in highly segregated
neighborhoods, controlling for the same risk factors. GIS and spatial statistics were
essential tools in this environmental health study.

Keywords Environmental health · GIS · Low birth weight · Housing ·
Neighborhoods · Spatial statistics

15.1 Introduction

Housing is an important social determinant of health and substandard housing
is reported to be a major public health problem (Greenberg, 1999; Krieger and

S.C. Grady (B)
Michigan State University, East Lansing, MI 48824, USA
e-mail: gradys@msu.edu

303J.A. Maantay, S. McLafferty (eds.), Geospatial Analysis of Environmental Health,
Geotechnologies and the Environment 4, DOI 10.1007/978-94-007-0329-2_15,
C© Springer Science+Business Media B.V. 2011



304 S.C. Grady

Higgins, 2002; Shaw, 2004; Breysee et al., 2004; Acevedo-Garcia et al., 2004;
Hood, 2005; Lawrence, 2006; Rauh et al., 2008). Housing is shaped by the social
and structural context of neighborhood environments, and poor individuals may be
more exposed to environmental hazards in their homes than individuals of higher
socioeconomic status because of their personal inability to tackle disrepairs in addi-
tion to the structural constraints imposed upon them. Over the last three decades,
economic restructuring and the decentralization of jobs from the city to the suburbs
have affected many US cities especially in the Midwest and Northeast Regions. This
trend increased class isolation with high unemployment in the inner cities and eco-
nomic growth in the suburbs. Racial barriers in social mobility limited the movement
of African-Americans out of the inner cities into the suburbs resulting in an increase
in class and racial isolation, which today is referred to as concentrated poverty.
The links between racial residential segregation, concentrated poverty, housing and
health is an area of intense investigation.

This study on housing and health takes place in Flint, Michigan an urban area
that is highly segregated by race and concentrated poverty. A case study assessing
the effect of maternal exposure to substandard housing on low birth weight out-
comes is presented. It is hypothesized that (a) the odds of delivering a low birth
weight infant will be higher for mothers living in substandard housing than in well-
maintained housing; (b) the untoward effect of living in substandard housing will
be stronger in racially segregated neighborhoods; and (c) the protective effect of
living in well-maintained housing will be stronger in racially mixed neighborhoods.
Substandard housing refers to housing that has major or moderate disrepairs. Well-
maintained housing refers to housing without disrepairs. Since housing condition
is highly correlated with housing value it is assumed that substandard housing will
be concentrated in poor neighborhoods and well-maintained housing will be con-
centrated in higher income neighborhoods, regardless of level of racial residential
segregation. Substandard housing located in areas of concentrated poverty and high
racial segregation is expected to have the lowest value because of the combined
structural constraints imposed on these neighborhoods.

The health outcome studied is low birth weight (LBW) defined as infants born
less than 2,500 g. Low birth weight infants are at increased risk of infant mortality or
development disorders after birth and later on in life (McCormick, 1985; Ellenberg
and Nelson, 1979; Daghistani et al., 2002). Low birth weight is therefore, a critically
important public health problem in the US. Research shows that the incidence of
LBW is especially among infants born to African-American mothers living in highly
segregated US cities (Grady, 2006).

This study also demonstrates the utility of geospatial technologies in envi-
ronmental health research. Geospatial technologies are becoming widely used in
environmental health research and practice because of the ability to integrate and
analyze hazard + exposure + health outcome datasets within and across “places”.
These tools are used in the study to conduct a small area analysis of the association
between housing and low birth weight in racially segregated and mixed neighbor-
hoods. A geographic information system (GIS) is constructed in ArcGIS version 9.3
(ESRI, 2010) with aerial imagery as the base, providing a pictorial representation
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Fig. 15.1 Diagram of GIS and data layers

of Flint’s physical and built environment infrastructure. Maps of racial segregation
are created at the census tract level and overlaid onto the aerial imagery to display
highly segregated and racially mixed neighborhoods. Digitized tax parcels – i.e.,
digital building footprints for the city of Flint are also added to examine the spatial
patterns of housing disrepairs and value within these neighborhoods. Vital statistics
birth data are geocoded to the parcels to identify the houses in which mother’s lived
at the time of their infant’s birth. Figure 15.1 displays the GIS constructed for this
research and the geographic and attribute datasets input to build the data layers.

Two types of geographic data are used in this study (a) vector data – e.g.,
geocoded low birth weight records, streets, railroads, census tracts and parcels rep-
resented as points, lines and polygons and (b) raster data – i.e., aerial imagery
represented as grid cells. Attribute data that describes characteristics of mothers
and infants and housing condition and value are joined to the geographic files and
mapped to visualize their spatial patterns. These data are further analyzed using
spatial regression models. This case study highlights the value of implementing
geospatial technologies in environmental health research and practice.

15.2 Flint, Michigan

In an attempt to address substandard housing in inner cities in Michigan,
the Michigan legislature passed Public Act 123, the Delinquent Property Tax
Foreclosure Act (Legislative Council, State of Michigan, 2009) in 1999 giving
counties a choice to take control of foreclosed properties or to leave them to the
responsibility of the State (Kildee, 2004; CRC, 1999). Counties that chose to take
control of foreclosed properties were given powers to create a county-level “Land
Bank” that would manage the foreclosed properties (Kildee, 2005). Land Banks are
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advantageous for addressing urban abandonment and blight by offering expedited
foreclosure processes and financial tools to support actions like planning, property
demolition, and rehabilitation (M. Bassett, personal communication, 2007).

In 2002, Genesee County became the foreclosing unit for the City of Flint.
Since that time the Genesee County Land Bank acquired through tax foreclosure
more than 4,400 blighted and abandoned residential, commercial and industrial
properties in the City of Flint. A majority of these properties were located in the
northwest side of Flint, the area with the most severe racial residential segregation
and the highest level of poverty. Today the Land Bank runs several programs to
improve the neighborhood environment in the City of Flint including, inspecting
and evaluating each individual property upon acquisition and those buildings that
are extremely deteriorated are demolished and salvageable properties are boarded
up and scheduled for rehabilitation work. Parcels adjacent to an owner-occupied
home are transferred through a “side lot sale” to interested owners. Other vacant
parcels are maintained – i.e., grass cut and debris removed through the Land Bank’s
Clean and Green Program (Genesee Land Bank, 2009).

Housing may have an effect on maternal and infant health through three exposure
pathways: quality of life, environmental risks and infectious disease transmission.
Indoor environmental quality (IEQ) assessments consist of measuring air tempera-
ture, humidity and dampness, air pollutants, disease vectors (e.g., mouse allergens
and cockroaches), the presence of overcrowding and broken structures in the home.
These hazards may contribute to psychological distress (Morbidity and Mortality
Weekly Report, 2001; Hyndman, 1990; Krieger and Higgins, 2002; Rich-Edwards
and Grizzard, 2005; Borders et al., 2007), reduced quality of life, acute or chronic
lung conditions (Rosenstreich et al., 1997; Dejmek et al., 2000; Choi et al., 2006),
viral or bacterial pneumonia (Pearl et al., 1998; Marsh et al., 1999) and/or trau-
matic injuries (Tinetti et al., 1988; Shenassa et al., 2004). Such social and biological
changes may contribute to low birth weight through neuroendocrine, immune, vas-
cular and/or behavioral mechanisms (Valero de Bernabé et al., 2004). This GIS
provides a baseline from which to study housing impacts on low birth weight. Data
layers will be updated or added in the future to more fully assess the above exposure
pathways and changes in maternal and infant health as a result of the Genesee Land
Bank’s initiative to rehabilitate houses and properties in Flint.

15.3 Data and Methods

15.3.1 Study Area

Flint is located in central Michigan. Aerial imagery of 6-ft resolution – i.e., the
grid cell size = 6 × 6 ft obtained for the year 2006 was downloaded from the
Michigan Center for Geographic Information – Geographic Data Library’s website
at http://www.michigan.gov (MCGI, 2010) and input into the GIS to visualize land
use and land cover (Fig. 15.2). The city is physically divided by the Flint River that
runs northeast to southwest; two Interstate highways, I496 and I69, that also run
north-south and east-west; and railroad tracks running in parallel to the highways.

http://www.michigan.gov
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Fig. 15.2 Study area: aerial
imagery of Flint, Michigan,
2006

These physical landmarks also act as social barriers limiting the interaction of racial
and ethnic groups. African-Americans live primarily north of the Flint River and
west of I496 and whites and other racial and ethnic groups live in the remaining
parts of the city. While area-level poverty is highly correlated with racial segregation
suggestive of concentrated poverty (data not shown), there are also black segregated
neighborhoods that are not poor – e.g., western side of Flint and south of the Flint
River and poor neighborhoods that are not black segregated – e.g., mid-city east of
the Flint River. The spatial isolation of racial groups by socioeconomic status and
the high rate of low birth weight infants among African-American mothers in Flint
make this an ideal study location for this health geographic research. Figure 15.3
shows the general locations of industry and commercial establishments, vacant and
green space in Flint.

15.3.2 Study Population

The study population comprises all live births in the city of Flint between 1995 and
2006 (n = 27,983). During this time period a majority of mothers were African-
American (53.6%) and mothers of other racial groups were reported as White,
Asian, American Indian and Hawaiian and Pacific Islanders. In 2003 the estimated
population was 120,292 people, which represented a 3.7% decrease in population
from year 2000 and an 11.6% decrease in population between 1990 and 2000 (US
Bureau of the Census, 2000). Over the last two decades the population of Flint has
declined following the elimination of jobs in the auto industry.
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Fig. 15.3 Land use and land cover by level of racial residential segregation in Flint, Michigan
2000

15.3.3 Methods

Parcel data for the city of Flint was used to assess level of housing disrepair
and value. Parcel data are digital “building footprints” digitized from tax parcel
maps. Attributes of the buildings used in this study were building type – e.g.,
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residential, commercial or industrial and tax assessor value for all single-family
dwellings. In 2000 the Genesee County Land Bank and the city of Flint extended
their routinely collected data on parcels to include a more in-depth “environmental
baseline assessment” (EBA) by driving through neighborhoods and documenting
the quality of housing characteristics, such as the condition of sidewalks, founda-
tion, exterior, stairs and roof and the extent of water, fire and smoke disrepairs.
These attributes were graded and summed into the disrepair categories “major dis-
repair” (n = 98), “moderate disrepair” (n = 1,312), “minor disrepair” (n = 6,778)
and “well-maintained” (n = 4,153). For this analysis houses of major or moder-
ate disrepair were grouped together (n = 1,410) and referred to as “substandard”
housing.

At the neighborhood level racial residential segregation indices were calculated
using data on race from the US Bureau of the Census (2000) for the year 2000 at
the census tract level. A spatial isolation index developed by Wong (2002) was uti-
lized in this study. The spatial isolation index measures the likelihood that African
Americans living in a census tract will come into contact with another racial or
ethnic group. The index ranged from 1 = high black isolation to 0 = low black
isolation. In this study, 0.7 or above was used to indicate highly segregated neigh-
borhoods and less than 0.7 represented racially mixed neighborhoods (Massey and
Denton, 1993). For a complete description of the method used to calculate the spa-
tial isolation index used in this study, please refer to the publication by Dr. Wong
(2002).

Vital statistics birth records in the city of Flint were obtained from the Michigan
Department of Community Health (MDCH, 2009) for the years 1995 to 2006. The
addresses of mothers at the time of their infant’s birth were geocoded to the parcel
data. Geocoding to parcel data is less common than geocoding to street addresses
because parcel data are less available in cities and virtually absent for rural areas.
Geocoding to parcel data is more accurate than geocoding to street files because the
birth data are matched to the centroid (middle) of the building; whereas, records
geocoded to street files are interpolated between street numbers with the x, y coor-
dinates located in reference to the street and not the home. In general geocoding to
parcel data results in higher positional accuracy than geocoding to street files but the
match rate is lower (Cayo and Talbot, 2003). In this study 23,684 of birth records
were automatically or interactively (manually) geocoded to the parcel data result-
ing in an 85% match rate. Those birth records that did not geocode to parcels (n =
4,299) were removed from the analysis.

Low birth weight defined as infants born less than 2,500 g was the adverse
birth outcome studied. Other maternal and infant characteristics including weeks
of gestation (continuous), race (African-American = 1), maternal age (less than
20 years = 1), mother’s education (less than high school = 1), prenatal care (no
care or no care during first trimester = 1), health insurance (Medicaid = 1), smoking
(Yes = 1) and maternal medical risk conditions (Yes = 1) were used as control vari-
ables to better understand the effects of substandard (=1) or well-maintained (=1)
(base, minor disrepairs = 0) housing on low birth weight outcomes, independent of
maternal and infant characteristics.
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Spatial regression models were estimated using GeoDa freeware software
(Anselin, 2004). The advantage of spatial regression analysis over ordinary least
squares regression analysis is that these models incorporate basic diagnostics of
spatial autocorrelation (Tobler, 1979; Anselin, 2004). In this study, spatial autocor-
relation among mothers of similar race was assumed to be high due to the high
levels of racial residential segregation in the City of Flint. The spatial regression
analyses were therefore, stratified by highly segregated versus racially mixed neigh-
borhoods to allow for the comparison of low birth weight outcomes of mothers
living in substandard or well-maintained housing in these areas. The estimation of
spatial regression models in GeoDa is best using a continuous dependent variable;
therefore, birth weight in grams was used as a dependent variable.

15.4 Results

15.4.1 Descriptive Analyses

A majority of mothers in Flint lived in general housing (96.2%) and fewer lived in
high rise residential buildings (1.5%), mobile homes (2.2%) or commercial build-
ings converted to residential (<1%). A majority (99.7%) of mothers also rented
their homes. The mean value of houses for African-American mothers was substan-
tially less, $23,843 than that for mothers of other racial and ethnic groups, $50,103.
Stratified by race and housing condition there was a decrease in almost all maternal
risk factors and low birth weight incidence with increasing housing quality; how-
ever, racial disparities in these outcomes persisted (Table 15.1). For example, the
rate of low birth weight for African-American mothers decreased as the quality of
housing improved (range, major-moderate disrepairs = 16.3% to well-maintained =
14.9%) but racial disparities in low birth weight persisted – i.e., African-American
mothers living in well-maintained houses (14.9%) were almost twice as likely as
other mothers also living in well-maintained housing (7.7%) to have a low birth
weight infant. Similar findings were observed for the known risk factors for low
birth weight – e.g., young age, low education, lack of prenatal care, Medicaid
insurance, smoking during pregnancy and medical risk factors.

Figure 15.4 shows that substandard housing is dispersed throughout the city
of Flint but there is a higher density in highly segregated neighborhoods. Well-
maintained housing is also dispersed throughout the city. In highly segregated
neighborhoods, there is a high concentration of well-maintained housing along the
northwest side of Flint.

Figure 15.5 is a map of housing value in the City of Flint. A high density of
low value housing – i.e., less than $60,000 is located in highly segregated neigh-
borhoods north and west of the Flint River. There is also a high density of homes
of similar value east and south of the river outside of the central business district
located near the city-center. Housing of higher value – i.e., $60,000–$120,000 is
located along the periphery of the city in highly segregated, moderately segregated
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Fig. 15.4 Housing assessment by disrepair status in Flint, Michigan, 2000–2001

and low segregated areas. High valued homes – i.e., greater than $120,000 are pri-
marily located in racially mixed neighborhoods of Flint, especially east of the central
business district and in the southwest corner of the city. There are also high value
homes in the highly segregated areas of the city but those are dispersed across this
area rather than clustered.
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Fig. 15.5 Housing value in Flint, Michigan 2000

15.4.2 Spatial Analyses

The results from the spatial regression models are presented in Tables 15.2 and 15.3.
Infants born to mothers in racially mixed neighborhoods were on average 460.0 g
heavier than infants of mothers born in racially segregated neighborhoods, control-
ling for socio-demographic risk factors. Infants of African-American mothers born
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Table 15.2 Global spatial regression analysis – infant’s born into highly segregated areas of flint
controlling for housing major/moderate disrepair and well-maintaineda

Housing condition by race B Std error t-statistic p-value

Low birth weight intercept −1606.39 56.38 −28.48 0.00
Gestation 127.26 1.35 93.83 0.00
African-American −135.86 18.75 −7.24 0.00
Age < 22 years −13.39 10.58 −1.26 0.20
Education < high school −59.77 10.90 −5.48 0.00
No prenatal care 23.07 30.06 0.76 0.44
Medicaid −29.15 11.26 −2.58 0.00
Smoking −125.47 13.40 −9.36 0.00
Major/moderate disrepair −12.49 15.39 −0.81 0.41
Well maintained −9.21 11.09 −0.83 0.40

Adjusted R2 = 0.465; AIC = 164355.
aIncluding other risk factors presented in Table 15.2.

Table 15.3 Global spatial regression analysis – infant’s born into moderate and less segregated
areas of flint controlling for housing major/moderate disrepair and well-maintaineda

Variables B Std error t-statistic p-value

Low birth weight intercept −2066.43 62.05 −33.30 0.00
Gestation 140.70 1.58 88.82 0.00
African-American −188.98 10.95 −17.25 0.00
Age < 22 years −57.19 9.58 −5.96 0.00
Education < high school −40.94 11.11 −3.68 0.00
No prenatal care 6.63 39.09 0.16 0.86
Medicaid −4.44 9.75 −0.45 0.64
Smoking −185.41 10.61 −17.46 0.00
Major/moderate disrepair 24.85 17.36 1.43 0.15
Well maintained 18.60 9.30 1.99 0.04

Adjusted R2 = 0.411; AIC = 197347.
aIncluding other risk factors presented in Table 15.3.

in highly segregated neighborhoods were on average –53.3 g lighter than African-
American infants born in racially mixed neighborhoods, controlling for the same
risk factors. Smoking, the most important determinant of low birth weight sig-
nificantly reduced birth weight by –125.4 g in highly segregated neighborhoods
and –185.41 g in racially mixed neighborhoods. Importantly, the birth weight of
infants born to mothers living in housing with major/moderate disrepairs was not
significantly less than that of infants born to mothers living in housing with minor
disrepairs, in both highly segregated and racially mixed neighborhoods. However,
in racially mixed neighborhoods, infants born to mothers living in well-maintained
housing had significantly increased birth weight (+18.6 g, p-value = 0.04) compared
to infants born to mothers living in housing with minor disrepairs. This prelimi-
nary finding suggests that pregnant mothers living in well-maintained housing in
racially mixed neighborhoods receive some protection from potential detrimental
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exposures compared to similar mothers living in housing with minor disrepairs. This
protection was not observed for mothers living in well-maintained housing in highly
segregated neighborhoods (–12.4 g, p-value = 0.41), controlling for the same risk
factors.

15.5 Discussion

The purpose of this chapter was to demonstrate the utility of geospatial technolo-
gies in an environmental health research project. This pilot case study assessed the
effects of maternal exposure to housing on low birth weight outcomes in an urban
area with high levels of racial residential segregation and concentrated poverty.
A GIS was constructed that included data layers to visualize the physical and built
environment, the social environment – i.e., racial residential segregation and hous-
ing levels of disrepair and value in relation to birth outcomes. Spatial regression
analyses were implemented to estimate the effect of substandard or well-maintained
housing on birth weight, controlling for maternal and infant risk factors and stratified
by highly segregated and racially mixed neighborhoods. Importantly, substandard
housing was not found to be significantly associated with reduced birth weight in
infants born to mothers living in highly segregated or mixed neighborhoods. This
study however, did show preliminary evidence that living in well-maintained hous-
ing in racially mixed neighborhoods provided some infant birth weight protection.
Why this protective effect was observed in racially mixed neighborhoods and not in
highly segregated neighborhoods warrants further investigation.

Future research should more fully describe the characteristics of housing and
how housing conditions are shaped by racial residential segregation and concen-
trated poverty in order to further disentangle housing versus neighborhood effects
on low birth weight incidence in these areas. This could be accomplished by, updat-
ing and adding additional data layers to the GIS that are “conceptually” relevant and
meaningful for this research. For example, the EBA assessment could be expanded
to include additional attribute information on indoor environmental quality as well
as the socioeconomic status of residents. In this study it was difficult to determine
if the protective effect of well-maintained housing on low birth weight was due to
improved indoor environmental quality, higher socioeconomic status of residents,
higher socioeconomic status of the neighborhood, or a combination of all three
conditions. An updated EBA assessment joined to the parcel data would help to
answer this question. At the neighborhood level concentrated poverty is character-
ized by high unemployment resulting in a reduced tax base and reduction in services
and amenities – e.g., schools, mass transportation facilities and park maintenance
normally found in these locations. Private business owners may also flee to more
prosperous areas leaving neighborhoods without amenities to support personal and
family health such as grocery stores, pharmacies and other retail – e.g., clothing out-
lets. Since housing is shaped by the social and structural context of neighborhood
environments, adding additional data layers on available resources and amenities to
the GIS would provide additional opportunity to explore the pathway(s) by which
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distal (neighborhood) and proximal (housing) exposures impact maternal health and
infant health in Flint.

Qualitative data on resident’s perception of their housing (Dunn, 2002) and
neighborhood could also be added to the GIS. This approach of acquiring qualitative
data for input into a GIS is called “participatory GIS” and is becoming widely used
in the field of GIScience. For example, Greenberg’s (1999) qualitative assessment
of residents living in severely deprived – i.e., blighted and distressed neighborhoods
in New Jersey described their experience as “dispiriting, demeaning and profoundly
dehumanizing” (Lewis et al., 1973 in Greenberg, 1999) with feelings of “a loss of
control” (Greenberg, 1999). The inability to reconcile these structural constraints
crime and violence and untoward stress-reducing behavior such a smoking, alcohol
and illicit drug use increased and neighborhoods become unsafe. Greenberg (1999)
reports a “hierarchy of needs” perceived by residents to improve blighted-distressed
neighborhoods beginning with the elimination of crime and removal of severe physi-
cal blight followed by the rehabilitation of existing buildings and housing. Residents
perceived that these changes would result in a greater sense of safety and security in
their neighborhoods and quality of life at home. Future research should therefore,
incorporate “participatory GIS” in environmental health studies to further under-
stand how residents perceive the indoor environmental quality of their homes as
well as their personal ability/inability – i.e., socioeconomic status to maintain dis-
repairs. Using GIS, these data could also be mapped to visualize how residents’
responses vary across neighborhoods.

15.6 Conclusions

This study represented a small area analysis because it focused on localized vari-
ation in hazards and health outcomes within an urban area. Other environmental
health projects may require the researcher to examine larger or smaller areas
depending on the type of hazard being measured, the pathway(s) of exposure and/or
the demographic characteristics of population(s) at risk of acquiring the disease
being investigated. Geospatial technologies such as GIS and spatial statistics allow
the researcher to incorporate conceptually meaningful datasets – e.g., quantita-
tive and qualitative data on an environmental health topic at a multitude of scales
over time – to assess their relationships for planning interventions and to generate
new hypotheses for future research. The merger of techniques from the fields of
GIScience and public health offers promising new approaches to study and respond
to detrimental environmental impacts on health.
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Chapter 16
Participatory Mapping as a Component
of Operational Malaria Vector Control
in Tanzania
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Abstract Global efforts to tackle malaria have gained unprecedented momentum.
However, in order to move towards the ambitious goal of eliminating and eventu-
ally eradicating malaria, existing tools must be improved and new tools developed.
The City of Dar es Salaam, Tanzania, is home to the first operational community-
based larviciding programme targeting malaria vectors in modern Africa. In an
attempt to optimize the accuracy of the application of larvicides, a participatory
mapping and monitoring approach was introduced that includes (1) community-
based development of sketch maps of the target areas, and (2) verification of
the sketch maps using laminated aerial photographs in the field which are later
digitized and analyzed using Geographical Information Systems (GIS). The par-
ticipatory mapping approach developed enables gap-free coverage of targeted areas
with mosquito larval habitat control, and more equal distribution of the workload
of field staff. The procedure has been tested, validated and successfully applied
in 56 km2 of the city area. Currently, the approach is being scaled up to an area
of about eight times that size, thus covering most of the urban area of Dar es
Salaam. The procedure is simple, straightforward, replicable and at relatively low
cost. It requires only minimal technical skills and equipment. In the case of Dar
es Salaam, the resulting database provides a spatial resolution of administrative
boundaries that is almost 50 times higher than that of previously available data.
This level of detail can be very useful for a wide range of other purposes rather
than merely malaria control, for example implementation of council programmes
in a variety of sectors and spatially-explicit analyses for research and evaluation
purposes.
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16.1 Background: Malaria

Malaria is one of the most serious health problems the developing world is fac-
ing. Despite enormous and diverse control efforts, recent estimates of the World
Health Organization indicate that almost one million people die of malaria every
year. About 90% of malaria-related deaths occur in sub-Saharan Africa, and most
of the victims are children under 5 years of age. Most importantly, the global bur-
den of malaria entails around 45 million DALYs (disability adjusted life years), i.e.
45 million healthy years of life are lost every year due to malaria (WHO, 2009).

Malaria is caused by protozoan parasites, Plasmodia spp., that are transmitted
to humans by the bites of infected Anopheles mosquitoes. Typical symptoms of
the disease are fatigue, headache, dizziness, body pain, chills, nausea and vomiting
(Warrell and Gilles, 2002). In African children, the most frequent presentations of
malaria are severe anemia and cerebral malaria (Greenwood et al., 2005). This pre-
sentation of the disease often leads to coma, and if untreated, to the death of the
patient.

The larvae of Anopheles mosquitoes generally breed in temporary small ponds,
pools and puddles, and in more permanent habitats such as marshes. Most aquatic
habitats are freshwater, although some Anopheles species also breed in saline
waters. Most anophelines avoid polluted waters for breeding (Warrell and Gilles,
2002, p. 70), although this seems to change especially in relatively polluted envi-
ronments such as urban areas (Sattler et al., 2005). Examples for important breeding
sites are shallow open sun-lit pools such as borrow pits, drains, car tracks, hoof
prints around ponds and water holes, and pools resulting from the overflow of rivers
or left by receding rivers, and rainwater collecting in natural depressions (Gillies
and De Meillon, 1968, p. 209).

Global efforts to tackle malaria have gained unprecedented momentum after
a paradigm shift from malaria control to malaria eradication following the Gates
Malaria Forum in Seattle in October 2007 (Roberts and Enserink, 2007). However,
in order to move towards the ambitious goal of eliminating and eventually eradicat-
ing malaria, existing tools must be improved and new tools developed. Such tools
need to be cost-effective, scalable, and compatible to prevailing health and social
systems (Tanner and de Savigny, 2008).

The most important and widely applied malaria control tools available today
comprise artemisinin-based combination therapies for treatment, intermittent pre-
ventive treatment in pregnancy, rapid and reliable diagnosis of malaria, and vector
control by insecticide-treated bednets as well as indoor residual spraying (WHO,
2009). Complementary vector control measures aimed at source reduction that can
play an important role in specific settings are biological larviciding (Fillinger et al.,
2008; Mukabana et al., 2006) and environmental management (Castro et al., 2009;
WHO, 1982, 2004).

Particularly in urban areas, measures aimed at source reduction by larviciding
can be a complementary strategy (Castro et al., 2004; Chaki et al., 2009; Fillinger
et al., 2008; Geissbühler et al., 2009). Half of the population of Africa will soon
live in urban areas (UN, 2008), which offers an opportunity to tackle the malaria
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problem at its source, as urban breeding sites of malaria transmitting mosquitoes
are limited and relatively easy to access.

Maps that are tailored to fulfil the specific needs of field teams as well as their
supervisors and programme managers are a prerequisite for successful implemen-
tation of such community-based larviciding interventions (Dongus et al., 2007;
Fillinger et al., 2008). In areas with limited data availability such as urban sub-
Saharan Africa, such maps can be created by participatory use of aerial imagery and
simple GIS applications. This chapter describes how an operational malaria vec-
tor larviciding programme in the City of Dar es Salaam, Tanzania, is applying this
approach as one of its components.

16.2 Community-Based Larviciding of Malaria Vector
Mosquitoes in Dar es Salaam, Tanzania

Dar es Salaam, the largest city and de facto capital of Tanzania (Fig. 16.1) with an
estimated 2.9 million inhabitants in 2007 (UN, 2008), is home to the first operational
community-based larviciding programme in modern Africa, the Dar es Salaam
Urban Malaria Control Programme (UMCP). The UMCP has been initiated by the
Dar es Salaam City Council as a pilot program to develop sustainable and affordable
systems for larval control as part of routine municipal services (Castro et al., 2004;
Mukabana et al., 2006). Specifically, the UMCP implements the regular application
of microbial larvicides (Fig. 16.2) through community-based but vertically man-
aged delivery systems. The current phase of the UMCP launched in March 2004
has achieved a substantial impact on reduction of malaria transmission intensity
(Fillinger et al., 2008; Geissbühler et al., 2009).

Fig. 16.1 Map of Africa and Tanzania
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Fig. 16.2 a UMCP field worker searching for Anopheles larvae; b example for Anopheles breeding
site; c microbial larvicide granules (Bacillus thuringiensis var. israelensis); d UMCP field worker
applying larvicide

The UMCP is fully integrated into the existing local administrative system of
the Dar es Salaam City Council with the endorsement of the Ministry of Health. It
operates on all five administrative levels of the city (listed in hierarchical order): city
council, municipalities, wards, neighbourhoods, and more than 3,000 so-called ten-
cell-units (TCUs). The main tasks on the four upper levels are project management
and supervision, whereas the actual mosquito larval control is organized and imple-
mented at the level of the smallest administrative units, the TCUs. A TCU typically
comprises about ten houses, in some cases even more than one hundred. Each TCU
is headed by an elected chairperson representing the ruling party.

16.3 Development of Participatory Mapping Procedure

The UMCP aims at identifying and larviciding all breeding sites of malaria vectors
in the programme’s intervention area. The operational challenges of such a large-
scale programme with exhaustive coverage call for very simple implementation
protocols that can be executed by community-level staff with minimal education.
One of the approaches used is participatory mapping of the target areas. The par-
ticipatory mapping approach was developed with the aim of enabling complete
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coverage of targeted communities with larval control by optimizing the quality and
spatial coverage of community-derived sketch maps. The overall goal of developing
this procedure was to improve programme management systems in a way that makes
routine larval surveillance and control truly effective, while enabling the integration
of the valuable knowledge of community members. The approach should be easily
replicable, adaptable and transferable to any other comparable city in Tanzania or
Africa, provided the necessary resources and policy support are available. It should
particularly take into account the resource situation and limited availability of maps
and remote sensing data in such settings, which cannot be compared to western
countries yet. The following paragraphs describe the features of the procedure (for
a more detailed description please refer to Dongus et al., 2007).

16.3.1 The Preliminary Sketch Map

As the first activity in the mapping sequence, the UMCP field workers draw pre-
liminary sketch maps (Fig. 16.3a) of their areas of responsibility, with training and
support from UMCP staff. The purpose of the sketch maps is to enable the UMCP
field workers to assign a unique number to any larval habitat found within a plot,
and to enable supervisory staff to identify it unambiguously during spot checks in
the field. Features included in the sketch maps are roads, pathways, drains or other
landmarks for better orientation, boundaries of the TCUs, and a subdivision of the
whole TCU area into individually numbered plots based on regular use or own-
ership. Attached to every sketch map is a form describing details about each plot
such as the house number, the name of the household head, and the number of
households. There is one sketch map for each TCU. The sketch maps do not nec-
essarily look like the area itself from the air (Fig. 16.3b), but nevertheless provide
good guidance for the UMCP field workers. The system corresponds to the existing
administrative boundaries. This makes it easier for the UMCP field workers to ori-
ent themselves in the field, as most community members are aware of the number
of the TCU or the name of the TCU leader their household is located in, and thus
can be asked if in doubt.

16.3.2 Technical Mapping with Aerial Photographs

The next step, referred to as “technical mapping” as opposed to “sketch mapping”,
entails verifying, correcting and formalizing the preliminary sketch maps in the
field by a technical team in collaboration with the UMCP field workers. By using
aerial photographs, all boundaries of TCUs, neighbourhoods and wards are formally
mapped. The basis for the technical mapping is a digital aerial picture in color.
For the first 15 wards that have been mapped, the picture used was from 2002,
with a ground resolution of 0.5 m (produced by Geospace International, Pretoria,
South Africa). The relevant segments of the picture are color printed as a mosaic of
A4 pages at a scale of 1:3,000. The prints are laminated in order to protect them
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Fig. 16.3 a – Sketch map of a ten-cell-unit drawn by and used as a reference for community-based
larval control staff. Features comprise individual plots, streets, drains, agricultural areas and ponds.
b – The same area on an aerial picture. c – The same area on a laminated aerial photograph used for
verification mapping in the field. The features to be mapped (boundaries of ten-cell-units and their
numbers) were marked with non-permanent marker pens. d – Project management team discussing
over result map, and deciding on necessary follow-up actions. e and f – Final maps after digitization
in a GIS. The shaded regions indicate areas that were not part of the sketch map system yet, but
could be included into the malaria control programme after their identification by the participatory
mapping strategy. g – Digitized, printed and laminated maps of programme intervention areas in
the UMCP management office at the city council. h – Supervisory programme staff explaining the
laminated ward map displayed in the ward office
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during intensive use in the field, and to allow drawing on the transparent surface
with non-permanent marker pens that can easily be erased again for corrections
(Fig. 16.3c). Finished parts of the map are covered with transparent sticky tape for
protection of the drawings. At initial meetings with all stakeholders at the local
government offices, the technical team shows a sample map so that everybody can
understand how the technical map should appear in the end (Fig. 16.3d). The techni-
cal team and the responsible field workers then go to all TCUs he or she is working
in, one after the other. After reaching a TCU boundary, the position is marked on the
laminated photograph as the starting point. The team then walks along the boundary
with the neighbouring TCU, while the boundary is continuously marked on the pho-
tograph. As soon as another border with a different adjoining TCU is reached, the
team marks the three-way intersection of the TCU being mapped and the two adja-
cent TCUs. This procedure is continued until the starting point is reached again. If
it is not possible to walk along the boundary due to construction or other obstacles,
it is ensured that what is marked in the technical map represents the actual agreed
border. With the same procedure, all existing TCUs within a ward are mapped. By
doing so, previously unsurveyed areas are identified and included into the sketch
maps (Fig. 16.3e, area shaded in grey).

16.3.3 Identification of Missing Areas and Correction
of Sketch Maps

Some of the identified unsurveyed areas are relatively small and easy to integrate
into the sketch maps, whereas others are quite large and require a more complex
follow-up action by inclusion into newly created TCUs. Most problems can be
solved directly on the spot, while more complex ones are discussed by the project
management team. After the technical mapping of each single TCU, the team thor-
oughly checks for unsurveyed areas within that TCU. The sketch map has to cover
exactly the same area as marked on the aerial photograph, and all areas within the
TCU have to be assigned to specific plots. Omissions of certain areas from the sketch
maps are immediately corrected by assigning a new plot number or by adding an
area to an existing plot on the sketch map. Any unsurveyed areas included by the
technical team are included in the sketch maps and description forms immediately.
In the case of relatively large unsurveyed areas that do not belong to any TCU, new
TCUs are created. Thus, the TCUs defined by the UMCP are not always identical to
administrative TCUs in terms of their boundaries. Finally, the new sketch maps are
formalized and corrected in exactly the same way as described above.

16.3.4 Digitization of Technical Maps
and Provision for Operational Teams

As the last step, the technical maps based on the aerial imagery are digitized on
screen. In our case, this is done by using the GIS software package MapInfo
Professional R© 7.0 (MapInfo Corporation, One Global View, Troy, New York
12180). Separate polygon layers are created for TCUs, neighbourhoods, wards, and
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unsurveyed areas, with attribute data such as TCU numbers, names of wards, neigh-
bourhoods, and automatically calculated sizes of each polygon. After digitization,
each ward and the mapped features are printed as color maps (Fig. 16.3f). One color
map per ward is kept on file at the city office (Fig. 16.3g) together with copies
of all corrected sketch maps and description forms. A large-scale color print of
each ward map is laminated and returned to the respective local government offices
(Fig. 16.3h), where the originals of the sketch maps and description forms are stored
while not in use. During operations, the color maps are mostly used by supervisory
staff for evaluation of the field workers’ performance and assurance of complete
larval control coverage.

16.4 Results

16.4.1 Phase 1 – Pilot Areas

The procedure was first tested in the year 2005 in three wards (Fig. 16.4), covering
an area of 16.8 km2, consisting of 12 neighbourhoods with a total of 128,000 inhab-
itants (National Bureau of Statistics, 2003). We identified 589 TCUs in that area.
The total time needed for the actual work was six months, with a technical mapping
team consisting of two persons. The costs for the participatory mapping of one TCU
during this pilot phase proved to be relatively modest with about USD 25 per TCU.
During this phase, it was found that before the technical mapping, only 83% of the
study area had been included in TCUs, and only 68% of the study area had been
surveyed for mosquito larval habitats by UMCP field staff. All shortcomings were
solved by either adding areas to existing sketch maps, or by creating new TCUs and
corresponding sketch maps where necessary.

In the course of the technical mapping, shortcomings of the TCU-based control
system were identified and eliminated. All of them initially contributed to gaps in
terms of areas where mosquito larval habitats were not treated with larvicide. Non-
residential areas such as industrial areas, commercial areas and open spaces are not
usually part of any TCU or residential lists. Therefore, they were often not included
in preliminary sketch maps. Other initially unsurveyed areas resulted from misinter-
pretation of actual TCU boundaries by the UMCP field workers, for example where
the boundaries between TCUs did not coincide with intuitive landmarks such as
roads, but were located in less structured areas such as river valleys without residen-
tial areas. In such cases, all responsible staff members including those from adjacent
TCUs and the technical team revisited the area. The borders between their respective
areas could then be assessed properly with full participation by all responsible for
and familiar with the area. In general, it was found that the collaboration with staff
on all administrative levels stimulated creative, participatory and solution-oriented
action.

The participatory mapping procedure led to a more accurate mapping of
mosquito breeding sites and to a more equitable distribution and allocation of the
work areas per field worker. Additional field workers were recruited and trained
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Fig. 16.4 Areas of Dar es Salaam included in participatory mapping procedure

where necessary, which very likely improved the overall quality of work. Before the
sketch maps were corrected, some UMCP field workers had been assigned relatively
small areas, whereas others were responsible for much larger areas.

16.4.2 Phase 2 – Whole UMCP Area

After the test phase involving three wards, the mapping approach was expanded and
validated in twelve additional wards in 2006 and 2007 (Fig. 16.4). The maps are
now used by project staff in the local government offices as well as the programme
management at the city council. The total fifteen mapped wards represent the whole
intervention area of the UMCP, covering an area of 56 km2, 67 neighbourhoods with
more than 610,000 inhabitants (National Bureau of Statistics, 2003) and about 3200
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TCUs as identified by the mapping team. The approach used was identical to the
one developed during the pilot phase described above. Interestingly, it was found
that compared to the pilot phase, far less unsurveyed areas were identified. This was
probably a result of the informal information dissemination that took place amongst
UMCP staff members after the pilot phase of the mapping. It is likely that as a
consequence, the responsible staff in the remaining areas proactively made an extra
effort to ensure that all areas were included and covered by sketch maps before the
technical teams arrived in their respective wards.

16.4.3 Phase 3 – Going to Scale – The City Level

Since 2008, the participatory mapping approach is being applied in 43 additional
wards. This activity is ongoing and expected to be fully accomplished by mid 2010.
The total mapped area including 58 wards will then cover almost 450 km2 of the
Dar es Salaam region. Based on the most recent census data available, 2.1 mil-
lion people were residing in this area in 2002 (National Bureau of Statistics, 2003).
A total of about 11,500 TCUs were identified by the mapping team.

With the start of this mapping phase, some adaptations were made to the
approach. The reason for these adaptations was to not only provide the basis for
scaling up the UMCP, but also to make the database more valuable for other pro-
grammes, sectors and applications. It was therefore decided to include the names of
the respective TCU leaders and the number of households per plot in the data col-
lection. The latter can serve as an indicator for the population density in each TCU.
Both the TCU leader’s names and household numbers per plot were retroactively
included also for the areas mapped in phases 1 and 2.

16.5 Conclusions

16.5.1 Usefulness for Community-Based Malaria Vector Control

For the purpose of community-based malaria vector control, corrected sketch maps,
description forms and formalized color maps based on aerial photographs are
available for and used in the complete intervention area. This serves as the basis
for achieving 100% spatial coverage of community-based mosquito larval habitat
control.

From the point of view of the UMCP field workers, the sketch maps and asso-
ciated detailed plot descriptions are indispensable guidance tools. The sketch map
system accommodates the different cognitive abilities of the field workers, as the
map style can be adapted according to their personal preferences in order to achieve
optimal orientation. However, only few field workers are generally comfortable to
use an aerial photograph as a basis for their work, which rules out the option of
replacing all sketch maps with formalized maps.

From a programme management perspective, the sketch maps are an ideal
method to assign a unique number to each plot, whereas the technical mapping
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approach with aerial imagery is essential for the verification and correction of the
sketch maps. Moreover, the georeferenced color maps that show the demarcations
and locations of TCUs enable management staff to assess and analyze the data col-
lected by the UMCP field workers, and to conduct targeted spot checks. The use of
GIS software in the mapping approach is extremely helpful for programme manage-
ment and supervision of field activities, although only basic functions are utilized.
The approach does not require any electronic devices such as GPS receivers in the
field, as aerial imagery is sufficient for orientation in urban areas. In addition, if
digital aerial imagery is available, costly equipment like digitizing tablets or large
format scanners are not needed.

The use of GIS has also proven to be useful in other malaria control programmes,
although on lower spatial resolutions. For example, a Malaria Information System
(MIS) has been established for parts of South Africa (Martin et al., 2002), where a
GIS-supported management system has been used to monitor insecticide consump-
tion and spraying coverage (Booman et al., 2003). In the context of public health
challenges in general, another GIS feature considered to be valuable is the spatial
modelling capacity for understanding spatial variations of diseases, and their rela-
tionship to environmental factors and the health care system (Tanser and Le Sueur,
2002).

16.5.2 Potential and Restrictions for Other Applications

The entire GIS database as well as all subsequent updates thereof has been made
available to the Dar es Salaam City Council and the Ifakara Health Institute, one
of the leading institutions in East Africa in applied health research. It can be shared
with other sectors and organizations and thus be used as a basis for a variety of appli-
cations, including health research and interventions, waste management programs,
and urban planning, to name a few. In general, in can be used for spatially-explicit
analyses for research and evaluation purposes with an unprecedented level of detail,
as it allows aggregating datasets on the level of TCUs.

The participatory mapping procedure has been developed specifically for the
purpose of optimizing community-based malaria control, notably funded to large
parts by international donors in the health sector. One priority of the mapping was
to unambiguously assign all areas of the city to certain TCUs. In some cases, for
project operational purposes, this implied assigning uninhabited areas such as river
valleys, swamps or industrial areas to specific TCUs, although these are not included
on residential lists. Using the data for other purposes than operational larviciding of
mosquitoes is therefore possible, but limited to certain purposes. For example, the
data is ideal for scientific use related to spatial analysis, which has already been
done in relation to malaria control (Castro et al., 2009; Geissbühler et al., 2009).
Other potential scientific applications would be to georeference the homes of health
facility attendants suffering from specific diseases. This could be done by includ-
ing the TCU number and TCU leader’s name in the respective study questionnaires.
Figure 16.5 illustrates the high spatial resolution that can be achieved merely by
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Fig. 16.5 Spatial resolution of administrative boundaries in Dar es Salaam available before and
after participatory mapping. While the highest available resolution before the participatory map-
ping was wards and neighbourhoods (left), now the boundaries of ten-cell-units are available as
maps and data layers, with an average of almost 50 ten-cell-units per neighbourhood (right). The
figure also illustrates differences between planned and unplanned settlements: where the latter are
found, the boundaries of the ten-cell-units appear much more dense and irregular on the map (right)

this system, without having to make any additional GPS measures. Given that a
neighbourhood was found to consist of an average of almost 50 TCUs, the available
spatial resolution is now about 50 times higher than before. However, governmen-
tal use for example related to censuses will probably be restricted unless it will be
validated by the relevant authorities.

The mapping approach adheres to the existing administrative boundary sys-
tem in Tanzania, referring to the ten-cell-units. In a dynamic environment such
as the rapidly growing City of Dar es Salaam, this allows optimal orientation for
community-based programme staff in the field, without having to create entirely
new sets of artificial boundaries. It is argued that this approach has practical
programmatic advantages over imposed raster grid systems, because it considers
user-definable boundaries that can be agreed in a participatory manner on the ground
and that can be readily recognized by community-based staff without access to, or
the necessary education to use, GIS technology. In this way, GIS can be partici-
patory, with the potential to enhance community involvement. In the operational
context of malaria control Dar es Salaam, this rather basic but straightforward way
of applying GIS is advantageous, as resources in terms of available data and expert
personnel are limited.

The system of TCUs in Dar es Salaam is probably slightly different to the admin-
istrative systems in countries other than Tanzania. Therefore, applying this mapping
approach to other regions of Africa and beyond will require the adaptation to the par-
ticular systems of each country. In such cases, the smallest existing administrative
units in those countries can be used as adequate substitutes for ten-cell-units.
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The TCU system has been established by the ruling party in Tanzania, which
has been governing the country since its independence in the 1960s. Therefore, the
TCUs are not officially recognized as administrative units. Nevertheless, the TCUs
do exist and have identifiable boundaries. Basically everyone knows and uses the
system, which makes it an ideal reference system for a wide range of purposes,
provided that potential changes are regularly updated in the maps.

Regular updating of the maps is crucial in order to account for dynamic changes.
As an example for this, since the time the mapping procedure has started in Dar
es Salaam, some informal settlements have been demolished and turned into indus-
trial areas. In addition, TCU leader’s names change regularly where new leaders are
being elected. In those parts of the city where the UMCP programme is operational,
such changes are constantly updated. The field staff informs the project manage-
ment where changes took place, and this information is integrated in the database.
However, for the newly mapped expansion areas in phase 3, a different routine
updating procedure will be needed. UMCP mapping staff will regularly consult the
respective local government officials on ward level. After integrating any changes
in the GIS database, the respective wards will be provided with new printouts of the
ward maps if necessary.

The community-based participatory mapping represents a very useful tool for
urban mosquito larval control, and has become an integral part of the Dar es Salaam
Urban Malaria Control Programme. The resulting map data is most valuable also
for a variety of other applications. After completion of the participatory mapping
process in the city of Dar es Salaam, digital GIS layers with a spatial resolution
of administrative boundaries that is almost 50 times higher than that of previously
available data is are now available. This level of detail can be very useful for a wide
range of other purposes rather than merely malaria control, for example implemen-
tation of council programmes in a variety of sectors and spatially-explicit analyses
for research and evaluation purposes.
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Chapter 17
Revisiting Tobler’s First Law of Geography:
Spatial Regression Models for Assessing
Environmental Justice and Health Risk
Disparities

Jayajit Chakraborty

Abstract Multivariate regression has been used extensively to determine if
race/ethnicity or socioeconomic status is related to presence of pollution sources,
quantity of pollutants emitted, toxicity of emissions, and other indicators of envi-
ronmental health risk. Most previous studies assume observations and error terms to
be spatially independent, thus violating one of the standard regression assumptions
and ignoring spatial effects that potentially lead to incorrect inferences regarding
explanatory variables. This chapter focuses on the problem of spatial autocorrela-
tion in geospatial analysis of environmental justice and explores the application of
simultaneous autoregressive (SAR) models to control for spatial dependence in the
data. A case study uses both traditional and SAR models to examine the distribution
of cancer risk from exposure to vehicular emissions of hazardous air pollutants in the
Tampa Bay MSA, Florida. Several approaches are explored to augment the standard
regression equation, identify the neighborhood structure of each tract, and specify
the spatial weights matrix that accounts for variations in cancer risk not predicted by
explanatory variables. Results indicate that conventional regression analysis could
lead to erroneous conclusions regarding the role of race/ethnicity if spatial auto-
correlation is ignored, and demonstrate the potential of SAR models to improve
geospatial analysis of environmental justice and health disparities.
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NATA National-Scale Air Toxic Assessment
SAR Spatial autoregressive model
TFL Tobler’s First Law of Geography

17.1 Introduction

During the last 2 decades, increasing attention has been paid to the fact that geospa-
tial data analysis requires specialized approaches that are different from those used
to analyze non-spatial data. A number of conventional techniques documented in
statistics textbooks and taught in classrooms confront substantial difficulties when
applied to the analysis of geographically referenced data. Traditional statistical tests
of inference, for example, do not consider that locational proximity often results
in value similarity for geospatial data. This fundamental concept was articulated
in a simple statement by Waldo Tobler (1970, p. 236) as “everything is related
to everything else, but near things are more related than distant things” and is
known as Tobler’s first law (TFL) of geography (Sui, 2004). The practical impli-
cation of TFL is that observations from nearby locations are often more similar than
would be expected on a random basis. This phenomenon is also known as spatial
dependence, and more formally as positive spatial autocorrelation. The presence of
such autocorrelation can be problematic for standard statistical tests such as cor-
relation and regression which assume independently distributed observations and
errors. Regression analysis of spatially distributed variables can thus lead to incor-
rect statistical inference regarding model coefficients when spatial autocorrelation is
present and when model specifications fail to include proper corrections for spatial
dependence.

Empirical research on the disproportionate distribution of environmental pollu-
tion and concomitant health risks has traditionally relied on correlation or regression
analysis to determine the existence of racial/ethnic and socioeconomic inequities.
In conjunction with geographic information systems (GIS) software and US Census
data, multivariate regression models have been used in numerous environmental
justice studies to identify population characteristics that are spatially and statisti-
cally associated with the location of toxic emission sources, proximity to emission
sources, quantity or toxicity of emissions, and other indicators of environmental
exposure or health risk. Most prior studies, however, have assumed observations and
error terms to be spatially independent, thus violating at least one of the classical
regression assumptions and ignoring spatial effects that potentially lead to incorrect
inferences about the significance of key explanatory variables such as the presence
of racial/ethnic minorities or people in poverty.

This chapter examines the problem of spatial autocorrelation in geospatial analy-
sis of environmental justice and health risk disparities, and explores the application
of regression models that account for spatial dependence in the data. It discusses the
nature of the problem, methods that are used to detect it, and statistical techniques
appropriate for analyzing spatially aggregated data. The case study used to accom-
plish these objectives seeks to evaluate racial/ethnic and socioeconomic inequities
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in the distribution of cancer risk from inhalation exposure to vehicular emissions
of hazardous air pollutants in the Tampa Bay Metropolitan Statistical Area (MSA),
Florida. The goal is to systematically investigate the potential of spatial regression
models to address spatial autocorrelation, as well as the implications of various
analytical choices associated with the practical application of such models. The
emphasis on cancer also addresses the urgent need for environmental justice anal-
ysis to make a systematic connection between disproportionate exposure to toxic
pollution and its public health outcomes (Grineski, 2007; Maantay, 2007).

17.2 Spatial Autocorrelation in Geospatial
Analysis of Environmental Justice

Formally defined as the correlation of a variable with itself in space (Anselin, 2009),
spatial autocorrelation represents a basic concept in geospatial analysis that has been
discussed for several decades. The earliest mention can be found in brief paper by
census statistician who was concerned with the use of census data in social research
and introduced the problem as: “data of geographic units are tied together, like
bunches of grapes, not separate, like balls in an urn” (Stephan, 1934, p. 165). While
TFL formalized the notion of spatial dependence, Cliff and Ord (1973, 1981) were
the first to recognize that models which required traditional statistics for their eval-
uation were misspecified if spatial autocorrelation in the data was not considered,
now referred to as the misspecification problem in geospatial analysis (Getis, 2007).
In the presence of significant spatial autocorrelation, analytical units do not satisfy a
formal statistical test of randomness and thus fail to meet a key assumption of classi-
cal statistics: independence among observations. With respect to statistical analyses
that presume such independence (e.g., linear regression), positive autocorrelation
implies that the spatially autocorrelated observations bring less information to the
model estimation process than the same number of independent observations (Voss
et al., 2006). A bigger problem relates to the inflation of type I errors, which means
that confidence intervals are incorrectly estimated when observations are depen-
dent and classical tests of significance for regression coefficients become biased
and inconsistent (Legendre, 1993).

Since the 1980s, quantitative studies on environmental justice and risk dispar-
ities have used multivariate regression to analyze the presence of toxic emission
sources (Burke, 1993; Fricker and Hengartner 2001; Pastor et al. 2004), proxim-
ity to toxic emissions (Pollock and Vittas 1995; Stretesky and Lynch 1999; Margai
2001), quantity of emitted pollutants (Bowen et al., 1995; Ringquist, 1997; Daniels
and Friedman 1999), toxicity-weighted risk scores (Ash and Fetter 2004; Sicotte
and Swanson 2007), and estimated health risks of exposure to air toxics (Morello-
Frosch et al. 2001; Pastor et al., 2005; Gilbert and Chakraborty 2008). For these
studies, independent variables describing the racial/ethnic and socioeconomic char-
acteristics of the residential population have been derived from the US Census
at the county, census tract or block group levels. Although environmental justice
analysis is based on geospatial data and spatially distributed variables, only a few
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published studies have utilized regression techniques that explicitly account for spa-
tial autocorrelation (Pastor et al., 2005; Grineski and Collins 2008; Chakraborty,
2009). Statistical associations between environmental health risk and race/ethnicity,
for example, could be spurious if these variables individually tend to cluster, or
are dependent on their values in neighboring spatial units. Regression techniques
that control for potential spatial dependence or mitigate spatial autocorrelation are
thus necessary to clarify whether racial/ethnic and socioeconomic variables are truly
robust in the analysis of disproportionate exposure to environmental health risks.

The incorporation of spatial effects in a statistical model can overcome the com-
plications of space and error dependence, improve the specification of models based
on geospatial data, and provide parameter estimates that are less subject to statistical
bias, inconsistency, or inefficiency. In addition, such approaches can contribute to
theoretical notions regarding the role of space in social relationships and processes
(Voss et al., 2006). Although several statistical techniques for incorporating spatial
effects in regression analysis have been suggested since the late 1970s (Paelinck and
Klaassen 1979; Cliff and Ord 1981; Anselin, 1988), their empirical application has
been limited for a long time because these techniques are computationally intensive
and mathematically complex (Kissling and Carl 2008). The use of spatial regres-
sion models, however, has increased since the advent of geographic information
systems (GIS) and the recent availability of user-friendly spatial analysis software
capable of implementing the spatial econometric techniques derived from earlier
theoretical work. This chapter aims to systematically explore the methods and ana-
lytical choices associated with the measurement of spatial autocorrelation and the
use of regression techniques which address this problem. Since the emphasis here is
on practical application instead of the theoretical concepts related to spatial econo-
metrics, the case study utilizes an open-source spatial analysis software program,
GeoDa (Anselin, 2005), which is free to download and is thus easily accessible to
researchers and practitioners.

17.3 Data and Variables

17.3.1 Study Area

The case study focuses on the Tampa-St. Petersburg-Clearwater Metropolitan
Statistical Area (MSA), also known as the Tampa Bay MSA, which occupies
approximately 6,616 km2 on Florida’s west central coast. As shown in Fig. 17.1,
the MSA includes four counties, is bordered on the west by the Gulf of Mexico, and
is intersected by three major interstate highways. With a total population of about
2.4 million inhabitants (2000), the Tampa Bay MSA is the second largest MSA in
Florida and the 19th largest in the US Although its official census name is derived
from the three major cities shown in Fig. 17.1, this MSA also encompasses five other
unincorporated urban areas with a population between 50,000 and 100,000, and
a variety of farmlands and preserves. Non-Hispanic Whites comprise about 75%
of this MSA’s population, with Hispanics (12%) and non-Hispanic Blacks (11%)
representing the two largest minority groups.
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Fig. 17.1 Location of the Tampa Bay Metropolitan Statistical Area (MSA), Florida

Transportation-related air pollution, the focus of this study, is also a public health
concern in this area. The Tampa Bay MSA is ranked fifth among all US metropoli-
tan areas in terms of the increase (1990–2005) in total vehicle miles traveled (VMT)
annually and eighth in the US for daily VMT per capita in 2005 (FHWA, 2008).
While the population of this area has increased substantially since 1990, the annual
VMT in Tampa Bay increased by about 83% between 1990 and 2005, potentially
exposing a large segment of the population to various adverse health risks. In terms
of hazardous air pollutants, the average individual’s added cancer risk from mobile
source emissions is at least three times higher than cancer risk from point source
emissions in all four counties in the Tampa Bay MSA (Environmental Defense Fund
2008). There is thus an urgent need to investigate if minority and low-income com-
munities in this metropolitan area are disproportionately exposed to adverse health
risks associated with vehicular air pollution.

17.3.2 Cancer Risks from On-Road Emission
Sources of Air Toxics

Hazardous air pollutants, also known as air toxics, include 188 specific substances
identified by in the Clean Air Act Amendments of 1990 that are known to or sus-
pected of causing cancer or other serious health problems, including respiratory,
neurological, immune, or reproductive effects (EPA, 2008a). In order to measure
cancer risks from ambient exposure to vehicular sources of hazardous air pollutants,
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this case study uses data from the US EPA’s National-Scale Air Toxics Assessment
(NATA) – an important tool for estimating exposure concentrations and health risks
associated with inhalation of air toxics from different sources. The 1999 NATA
provides exposure and risk assessment (cancer and non-cancer) for 133 different
air toxics and diesel particulate matter, based on available information on adverse
health effects, current EPA risk assessment and risk characterization guidelines, and
estimated population exposures (EPA, 2008b).

The methodology used to generate estimates of health risk for the 1999 NATA
comprises several steps (EPA, 2008c). The 1999 National Emissions Inventory
(NEI) serves as the data source on air toxics emissions used in the 1999 NATA. The
NEI provides estimates of annual air pollutant emissions from several categories
of outdoor emission sources (point, non-point, and mobile) in all US counties. The
on-road mobile source category, the focus of this study, includes motorized vehicles
that normally operate on public roadways and comprises passenger cars, motorcy-
cles, minivans, sport-utility vehicles, trucks, and buses (EPA, 2004). The NATA uses
the 1999 NEI data as input to a Gaussian dispersion model [Assessment System for
Population Exposure Nationwide (ASPEN)] that accounts for atmospheric decay
to provide an estimate of the annual ambient concentration of air toxics. Estimates
of ambient concentrations from the ASPEN are then included as input in an inhala-
tion exposure model [Hazardous Air Pollution Exposure Model 5 (HAPEM5)]. This
model incorporates activity patterns that may influence personal exposure to ambi-
ent pollutants. From these concentration estimates, the NATA estimates potential
public health risks (e.g., cancer) from inhalation of air toxics following the EPA’s
risk characterization guidelines which assume a lifelong exposure to 1999 levels
of outdoor air emissions. The census tract is the smallest spatial unit for which
estimates of health risk are provided.

Cancer risk estimates are computed using inhalation unit risk (IUR) factors,
which are a measure of carcinogenic potency for each pollutant (EPA, 2008c). For
each census tract, the individual lifetime cancer risk associated with each toxic
air pollutant is calculated by multiplying the concentration of the pollutant by its
IUR estimate. Although the type of cancer (e.g., liver, blood, lung) and available
evidence (known, suspected, or possible) varies by chemical, the cancer risks of
different air pollutants are assumed to be additive and are summed to estimate
an aggregate lifetime cancer risk for each tract, measured in persons per million.
A lifetime cancer risk of N in a million, for example, implies that N out of one
million equally exposed people would contract cancer if exposed continuously
(24 h/day) to the specific concentration over a lifetime (70 years), in addition to
those cancer cases that would normally occur in an unexposed population of one
million people (EPA, 2008a).

For this study, estimates of lifetime cancer risk (persons per million) from inhala-
tion exposure to on-road sources of air toxics were obtained from the 1999 NATA
(EPA, 2008b) for all census tracts in the Tampa Bay MSA and used to represent the
dependent variable. Descriptive statistics for this variable are provided in Table 17.1.
The values of estimated cancer risk range from 2.7 to 33.2 per million and exceed
the Clean Air Act goal (1990) of one in a million in all tracts in this MSA.
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Table 17.1 Summary statistics for variables, Tampa Bay MSA, 2000 (N = 547)

Min Max Mean Std. Dev.

Lifetime cancer risk (persons/million) 2.683 33.243 10.388 4.173
Population per square mile 17 16,088 3,122 2,107
Proportion African-American 0.000 0.985 0.115 0.201
Proportion Hispanic 0.002 0.706 0.104 0.109
Proportion below poverty 0.000 0.768 0.120 0.095
Proportion owner-occupied homes 0.000 1.000 0.646 0.224

17.3.3 Explanatory Variables

Inequities in the distribution of estimated cancer risks are analyzed using a set of
demographic and socioeconomic variables from US Census 2000 (Summary File 3)
for the Tampa Bay MSA at the census tract level. Instead of including a wide and
exhaustive range of variables, the focus here was on developing a regression model
with census variables that are frequently used in studies on environmental justice
and health disparities. To examine the effect of race/ethnicity, the analysis includes
separate variables representing the two largest minority groups in the MSA: the
proportion of persons identified as non-Hispanic Black and the proportion of per-
sons identified to be of Hispanic or Latino origin. Socioeconomic variables include
the proportion of the population with an annual income below the federal poverty
level (poverty rate) and the proportion of occupied housing units that are owner-
occupied (home ownership rate). Population density is a commonly used control
variable in environmental justice analysis because densely populated areas are more
likely to contain more pollution-generating activities. While population density is
typically measured as the number of people per square mile, the natural logarithm
of this value was taken in order to account for the diminishing effect of higher num-
bers, as suggested in previous studies (e.g., Pastor et al., 2005; Chakraborty, 2009).
Descriptive statistics for the explanatory variables are provided in Table 17.1; all
variables show substantial variability within the Tampa Bay MSA.

17.4 Detecting Spatial Autocorrelation

In any analysis of geospatial data, cartographical visualization is an important first
step in investigating whether a given distribution suggests any patterns or relation-
ships among mapped features. In this context, GIS software serves as a particularly
useful tool for mapping the dependent and explanatory variables relevant to the
analysis, and exploring how their values vary spatially within the study area. The
geographic distribution of estimated cancer risk from on-road sources of air toxics,
the dependent variable for this study, is depicted in Fig. 17.2. For this choropleth
representation, census tracts are classified into four quartiles based on the values
of lifetime cancer risk. Tracts facing the greatest cancer risk (top 25%) are located
in the most densely populated urban areas of this region and near major highway
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Fig. 17.2 Lifetime cancer risk from on-road sources of air toxics by census tract, Tampa Bay
MSA, 1999

interchanges. A majority of tracts in highest quartile of cancer risk are immediately
adjacent to tracts in the third quartile and most tracts in the lowest quartile are con-
tiguous with tracts in the second quartile. Although the map suggests clustering of
similar values across space, visual evidence can be tenuous and the presence of spa-
tial dependence needs to be validated with formal quantitative evidence or statistical
testing.

17.4.1 Spatial Definition of Neighbors

Before testing a variable for spatial autocorrelation, it is necessary to determine
which units of observation are contiguous or sufficiently close together for spatial
interaction to occur. For this purpose, a connectivity or spatial weights matrix is used
to specify, for each spatial unit, which other units are “neighbors” and may influence
its values (Cliff and Ord 1981; Pastor and Scoffins 2008). Since the structure of spa-
tial dependence among analytical units in a study area is not known in advance,
the specification of this weights matrix is a matter of considerable arbitrariness
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and a wide range of suggestions can be found in the literature (Anselin and Bera
1998). Software programs such as GeoDa, however, provide two basic approaches
for defining the neighbors of a spatial unit: contiguity-based or distance-based. The
contiguity-based approach to neighbor identification is usually based on either the
rook or queen selection method. A queen weights matrix defines neighbors as spatial
units that either share a common boundary or vertex, while a rook weights matrix
only includes units that share boundaries. A second approach to neighbor identifi-
cation is based on measuring the centroid-to-centroid distance between spatial units
in a study area. Neighbors can be defined as units whose centroids fall within a
user-specified radius (distance band) around the centroid of each unit, or by using
a more complex technique that gives closer neighbors higher weights, such as scal-
ing the weights according to the inverse of the distance between centroids (Pastor
and Scoffins 2008). Regardless of the approach utilized to define neighbors, the for-
mal result is a spatial weights matrix (W) that summarizes the nature and degree of
interdependence among analytical units in a study area. While several methods are
available for coding a spatial weights matrix, row standardization is commonly used
to determine weights (Kissling and Carl 2008). In GeoDa, neighbors are defined on
the basis of a binary (0, 1) row-standardized weights matrix. A weights matrix is
row-standardized when the values of each of its rows sum to one. Each observation
is represented by a row and a column in the matrix, with neighbors coded as 1 and
all other units including the location itself coded as 0.

The application of both contiguity-based and distance-based approaches are
explored to define the spatial weights matrix in this study. For the contiguity-based
approach, the first-order queen method is used to define neighbors as adjacent cen-
sus tracts that share a common boundary or vertex with a given tract. The difference
between the rook and queen selection methods is expected to be minimal when
units are irregular in size and shape, unlike squares on a grid (Anselin, 2009). For
the distance-based approach, the extent or radius of the distance band for select-
ing neighbors is an important consideration. Since census tracts vary widely in size
according to population density, a small radius will cause larger tracts in less urban-
ized areas to have no neighbors, while a large radius will cause smaller tracts in
densely populated areas to have an excessively high number of neighbors. The
literature suggests that the choice of this distance should reflect the theoretical
understanding of the process or variable being mapped (Odland, 1988; Anselin,
1988). For ambient exposure to traffic-related air pollution, 2,000 m from a road-
way has been assumed to represent the maximum distance for adverse health effects
in previous studies (Venn et al., 2001; Wu and Batterman 2006). The distance-based
spatial weights matrix selected for this study thus considers any two tracts to be
neighbors if their centroids are within 2,000 m from each other. The results from
the spatial regression models used in this study were also found to be robust to
minor increases or decreases of this distance. An inverse distance weighting scheme
was not utilized because this option is not available in GeoDa.

It is important to consider the spatial implications of the two different approaches
for neighbor definition in the Tampa Bay MSA. Figure 17.3 provides connectiv-
ity histograms that depict the characteristics of the two spatial weights matrices.
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Fig. 17.3 Frequency distribution of neighbor relationships for contiguity-based and distance-
based spatial weight matrices in the Tampa Bay MSA

When the contiguity-based (first-order queen) approach is used, the distribution of
neighbors is reasonably symmetrical. With the exception of few island tracts near
the western coastline, almost all tracts in the MSA have at least three neighbors.
Nearly 75% of tracts in this area contain five to seven neighbors and about 20%
of tracts encompass eight or more neighbors. In contrast, the frequency distribution
of neighbors based on the distance-based (2,000 m) approach is highly skewed to
the right. Almost 75% of tracts in the MSA contain less than four neighbors, and
30% of tracts do not have a tract centroid within 2,000 m. Only 4% of all tracts in
the MSA, located predominantly in the densely populated areas, encompass eight
or more neighbors for this distance band.

These differences can be explained, in part, by the fact that tracts vary substan-
tially in shape and size across this metropolitan area, as shown in Fig. 17.2. Tracts
that are larger in size and located in the less populated northern counties of this MSA
do not contain neighbors when the 2,000 m distance band is utilized. However, the
same set of tracts selects multiple contiguous tracts as neighbors when the queen
method is applied. Contiguity-based methods for selecting neighbors are thus likely
to overstate spatial effects in areas when spatial units are larger in size, compared to
the use of fixed distance bands.

17.4.2 Measuring Spatial Autocorrelation

All variables listed in Table 17.1 were first tested for the presence of spatial auto-
correlation. This was based on the global Moran’s I statistic – a measure describing
the general extent of spatial clustering of a variable in a given area, conditional on
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the specific neighborhood structure imbedded in the chosen weights matrix (Moran,
1950). This Moran’s I is typically scaled to an interval ranging from –1.0 to +1.0,
where a large positive value indicates value similarity among neighbors (clustering,
or positive spatial autocorrelation), a large negative value indicates value dissimilar-
ity (dispersion, or negative spatial autocorrelation), and a value near zero suggests
the lack of spatial autocorrelation. In GeoDa, the pseudo statistical significance
of the global Moran’s I is estimated using a permutation approach that compares
the observed value to a reference distribution of Moran’s I values generated under
conditions of spatial randomness (Anselin, 2009).

For both the contiguity-based and distance-based approaches to defining neigh-
bors, Table 17.2 indicates that the global Moran’s I for lifetime cancer risk from
on-road air toxics is highly significant and greater than zero. This strong statisti-
cal evidence of positive spatial autocorrelation confirms the clustering of similar
values initially suggested by the map (Fig. 17.2). The queen method produces
greater spatial autocorrelation than the distance band, possibly because the use
of contiguity exaggerates spatial effects for larger tracts in the MSA. While the
most important autocorrelation test is for the dependent variable, the Moran’s I for
each independent variable is also provided in Table 17.2. The inclusion of vari-
ables on the right-hand side of the regression equation that are spatially dependent
and correlated with the response variable can partially mitigate the extent of spa-
tial autocorrelation in the resulting error term, making the regression coefficients
and standard errors more reliable (Odland, 1988). Regardless of the approach used
to define neighbors, all explanatory variables show significant and positive spatial
autocorrelation within the Tampa Bay MSA, suggesting their potential effective-
ness as spatial controls. While home ownership rate produces the lowest Moran’s
I, the highest amount of spatial clustering is indicated by the Black and Hispanic
proportions.

17.4.3 Traditional Multiple Regression

The next step consisted of conducting a standard multiple regression analysis of
lifetime cancer risk from on-road sources of air toxics, based on the six independent
variables and the ordinary least squares (OLS) technique commonly utilized in prior

Table 17.2 Moran’s I tests for spatial autocorrelation

Contiguity-based
(1st order queen)

Distance-based
(2,000 m radius)

Lifetime cancer risk (persons/million) 0.728∗ 0.523∗
Population per square mile 0.532∗ 0.260∗
Proportion Black 0.682∗ 0.695∗
Proportion Hispanic 0.596∗ 0.491∗
Proportion below poverty 0.566∗ 0.579∗
Proportion owner-occupied homes 0.390∗ 0.340∗

∗p < 0.001.
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Table 17.3 Conventional least squares regression of lifetime cancer risk (natural log)

Variable Coefficient t-value

Population per sq mile (natural log) 1.210 9.138∗
Proportion black 3.909 3.656∗
Proportion hispanic 9.470 6.803∗
Proportion below poverty 3.218 1.261
Proportion owner-occupied homes −2.388 −3.803∗
Constant 0.858 0.656
N − 547
F statistic − 58.656∗
Adjusted R-squared − 0.352
Multicollinearity condition index − 23.940
Residual Moran’s I (1st order queen) − 0.556∗∗
Residual Moran’s I (2,000 m radius) − 0.450∗∗

∗p < 0.01; ∗∗p < 0.001.

studies on environmental justice and health disparities. This basic multivariate OLS
model can be summarized as:

y = α +
∑

k

βkxk + e (17.1)

where y equals the estimated tract level cancer risk, α equals the intercept (con-
stant), x represents each independent variable, k equals the number of independent
variables, and e represents the random error term (difference between the observed
and predicted values of y).

The results of this conventional regression analysis are summarized in Table 17.3.
The OLS regression model appears to perform reasonably well for this data. The
ANOVA F-test indicates statistical significance for the overall model (p < 0.001)
and the value of the adjusted R-squared (0.352) suggests a respectable goodness-
of-fit. The multicollinearity condition index is also smaller than 30, indicating the
absence of serious collinearity problems among the independent variables. With the
exception of the proportion below poverty, parameter estimates for all explanatory
variable are strongly significant with anticipated signs. Population density, pro-
portion Black, and proportion Hispanic are significantly and positively associated
with lifetime cancer risk, while the proportion of owner-occupied homes is nega-
tively related to cancer risk. The traditional multivariate regression analysis provides
strong evidence to suggest that cancer risk from on-road sources of air toxics is
distributed inequitably with respect to race, ethnicity, and home ownership in the
Tampa Bay MSA.

It is important to investigate if the error from this OLS model satisfies the stan-
dard linear regression assumption of independence. For this purpose, the Moran’s
I test for residual spatial autocorrelation is utilized (Anselin and Bera 1998). The
regression residuals associated with both the contiguity-based and distance-based
spatial weights matrices show a significantly positive Moran’s I of 0.556 and 0.450,
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respectively. The spatial autocorrelation tests clearly indicate that the residuals are
spatially dependent with respect to their values in neighboring tracts. Since this is
a serious violation of an OLS assumption, inferences drawn from the traditional
multiple regression model in Table 17.3 could be seriously flawed.

A comparison of the residual spatial autocorrelation (I = 0.556/0.450) in the OLS
model with the spatial autocorrelation for the dependent variable (I = 0.728/0.523)
suggests that spatial dependence in one or more independent variables poten-
tially explains a portion of the spatial autocorrelation in the dependent variable.
As mentioned previously, it is possible for explanatory variables in a regression
model to completely account for the spatial autocorrelation in a dependent variable,
thus removing a problematic spatially autocorrelated residual. Since the residual
spatial autocorrelation in this OLS model remains statistically significant, the inde-
pendent variables do not adequately account for spatial dependence in the data
and a correction to the traditional OLS model is necessary to incorporate spatial
externalities.

17.5 Addressing Spatial Autocorrelation
with Spatial Regression Analysis

Spatial regression models, such as simultaneous autoregressive (SAR) models, are
statistical models that consider spatial autocorrelation as an additional variable in
the regression equation and estimate its effect simultaneously with effects of the
other explanatory variables. This additional term is implemented with the spatial
weights matrix which accounts for patterns in the dependent variable that are not
predicted by explanatory variables, but are instead related to values in neighboring
locations. Most software packages such as GeoDa provide two ways to incorporate
spatial dependence in a regression model, depending on where spatial autocorrela-
tion is assumed to occur (Anselin, 2005). The spatial error model assumes that only
the error term is spatially autocorrelated, while the spatial lag model assumes that
autocorrelation is an inherent characteristic of the dependent variable. The param-
eters for both types of SAR models are estimated using the maximum likelihood
method.

For the spatial error model, the standard OLS regression equation is aug-
mented by a term (λWe) which represents the spatial structure (λW) of the spatially
dependent error term (e).

y = α +
∑

k

βkxk + λWe + u (17.2)

where λ is the spatial autoregressive coefficient (error parameter); W is the spatial
weights matrix; e is the random error term in the OLS model; and u is the spatially
independent error term.

The spatial lag model includes a term (ρW) for the spatial autocorrelation in the
dependent variable (y), in addition to the standard terms used in the OLS regression
model.
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y = α +
∑

k

βkxk + ρWy + u (17.3)

where ρ is the spatial autoregressive coefficient (lag parameter).
The choice of SAR model specification (lag or error) to account for spatial auto-

correlation should be based on the theory of the process under investigation. In most
practical situations, however, this decision is guided by the Lagrange Multiplier
test statistics provided by GeoDa (Anselin, 2005). Since this case study focuses
on exploring the implications of different analytical choices associated with spatial
regression, both lag and error SAR models are utilized to analyze the distribution of
cancer risk in the Tampa Bay MSA.

17.5.1 Comparison of Regression Model Performance

The results from the two SAR models, based on the two different spatial weights
matrices, are summarized in Table 17.4. The first column provides the corre-
sponding coefficients and diagnostics from the OLS regression model to allow a
comparison of the statistical results. Following Kissling and Carl (2008), the com-
parison of SAR models is based on the following criteria: (a) minimum residual
autocorrelation; (b) maximum model fit; and (c) the Akaike Information Criterion
(AIC). The Moran’s I test statistic for the regression residuals in all four SAR mod-
els is smaller than 0.10, pointing to a substantial decline in spatial autocorrelation
with respect to the original OLS model. With the exception of the distance-based lag
model, the residual Moran’s I in the SAR models is not significantly different from
zero (p > 0.05). This suggests that the inclusion of the spatial autoregressive term in
these models has effectively eliminated spatial dependence of residuals. Compared
to the conventional regression model which yielded an adjusted R-squared of 0.352,
Table 17.4 shows that the R-squared for the SAR models range from 0.509 to 0.759,
suggesting a considerable improvement in model fit. Since the SAR model param-
eters are estimated using the maximum likelihood method, the pseudo R-squared
from a SAR model is not directly comparable to the adjusted R-squared from OLS
regression. The AIC is considered to be a more appropriate metric for comparing the
SAR model with the OLS model because it provides a compromise between model
fit and the number of parameters (parsimony). While AIC is a relative measure and
cannot be interpreted on its own, a lower AIC score between competing models is
indicative of the more correct or valid model (Grove et al., 2006). Table 17.4 indi-
cates that the AIC scores from all four SAR models are substantially lower than
the AIC from the OLS model, suggesting a sizeable improvement in model per-
formance. The contiguity-based SAR models show larger declines in AIC than the
distance-based SAR models.

Table 17.4 also provides the results of the Lagrange Multiplier (LM) test
statistics, which can be used to guide our choice of SAR model specification.
Although both the robust LM error and LM lag statistics are significant for all
models, the decision rule suggested by Anselin (2005) would lead to the selec-
tion of the distance-based spatial error model because it provides the largest
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value of the LM statistic. This is also the SAR model which yields the smallest
Moran’s I (closest to zero), or is the most effective in eliminating residual spatial
autocorrelation.

17.5.2 Comparison of Regression Model Coefficients

The most statistically significant coefficient (p < 0.001) in all four SAR models
is the spatial lag or error parameter, confirming again the utility of including this
additional term in the equation and the limitation of OLS regression to account for
spatial autocorrelation in the data. While the inclusion of the spatial autoregressive
coefficient minimizes residual spatial autocorrelation and improves overall model
fit considerably, the estimated parameters for most explanatory variables in all SAR
models show a decrease in absolute value with respect to those in the OLS model.
The largest declines in SAR model coefficients are indicated by the racial/ethnic
variables that were significant and positive in the OLS model. While the parameters
for Black and Hispanic proportions remain large enough to be significant at the 5%
level in the distance-based SAR models, these are not significantly different from
zero (p > 0.10) in the contiguity-based models. In contrast, the proportion below
poverty was non-significant in the OLS model, but its coefficient is large enough to
be positive and significant in the contiguity-based SAR model.

While the significance and signs of model parameters in the distance-based SAR
models are generally consistent with those in the original OLS model, contiguity-
based SAR models yield very different results. An analysis of environmental justice
or health risk disparity utilizing a contiguity-based SAR model would lead to the
conclusion that poverty is a significant predictor of cancer risk from on-road air tox-
ics in the Tampa Bay MSA, instead of race or ethnicity. It is important to consider,
however, that contiguity-based spatial weights matrix is likely to overemphasize
spatial effects when tracts are irregular in size across the area, or unusually large in
certain areas. The overestimation of the effect of spatial neighbors in the regression
equation, as represented by a large and highly significant spatial autoregressive coef-
ficient, could lead to a potential underestimation of another model parameter (e.g.,
Black proportion) resulting in a non-significant coefficient. The extent of this under-
estimation appears to be smaller in the distance-based SAR model, based on the
relative decline in estimated parameters associated with the explanatory variables.

17.6 Concluding Discussion

The concept of positive spatial autocorrelation is viewed as the operationalization
of Tobler’s first law (TFL) of geography which suggests that closer areas are more
similar in value than distant ones. The presence of such autocorrelation violates
the key assumption of independence for traditional statistical tests such as linear
regression. When spatial dependence exists in the data but is ignored in regres-
sion analysis, standard tests of significance for model coefficients are likely to
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be biased. Although the concepts of TFL and spatial autocorrelation have been
known for several decades, numerous empirical studies have used ordinary least
squares (OLS) regression of spatially aggregated data to determine the existence
of racial/ethnic and socioeconomic inequities in the distribution of environmental
pollution and related health risks. To derive reliable results for geospatial analysis
of environmental injustice and health risk disparities, there is growing need to uti-
lize analytical techniques that acknowledge TFL and control for the effects of spatial
autocorrelation.

This chapter has explored the implementation of regression models that can be
used to minimize spatial autocorrelation and provide a more valid statistical basis
for inferences regarding the significance of explanatory variables such as race or
poverty, using a user-friendly spatial analysis software package. The results sug-
gest that the application of conventional OLS regression to analyze cancer risk from
on-sources of air toxics in the Tampa Bay MSA could lead to erroneous conclu-
sions, because the variables and model residuals display significant and positive
spatial autocorrelation. The findings of this study clearly demonstrate the poten-
tial of simultaneous autoregressive (SAR) models in reducing or removing spatial
dependence of residuals and thus satisfying the assumption of independently dis-
tributed errors in regression analysis of geospatial data. The results also support
previous findings that type I errors and parameters estimated from traditional regres-
sion analysis are strongly inflated when spatial autocorrelation is present (Kissling
and Carl 2008). The statistical effect of race and ethnicity on cancer risk, for exam-
ple, declines when a spatial autoregressive parameter is included in the model.
This shift in parameter estimates between non-spatial and spatial regression can
be explained, in part, by the fact that both Black and Hispanic proportions show
the greatest spatial autocorrelation within the MSA compared to other independent
variables.

The study indicates that SAR model performance and results depend on sev-
eral analytical choices related to model specification (lag or error) and the approach
used to select neighbors for defining the spatial weights matrix. Although the SAR
models based on the contiguity-based approach show the largest improvement in
model fit, diameters of census tracts vary considerably across this MSA, rang-
ing from 500 to 10,000 m. Unless spatial units are represented by square grids
of similar size, the use of rook or queen contiguity could lead to an inconsis-
tent estimation of neighbor effects. This issue has also been mentioned in recent
environmental justice studies to justify a distance-based weights matrix for spatial
regression with census tract data (Pastor et al., 2005; Chakraborty, 2009). In this
study, spatial autocorrelation in model residuals is found to be non-significant and
smallest in the distance-based spatial error model, which is also the recommended
model according to Anselin’s (2005) decision rule. The spatial error specifica-
tion operationalized by a distance-based (2,000 m) spatial weights matrix provides
the most theoretically and empirically valid SAR model for this data and study
area.

While this chapter emphasizes the implementation of spatial regression models,
it also demonstrates the utility of GIS for geospatial analysis of disproportionate
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environmental health impacts. GIS software allows a researcher to: (a) integrate
various data sets necessary for such analysis (e.g., pollution indicators and popula-
tion characteristics); (b) represent such data in cartographic or map form; (c) apply
spatial analytic techniques that can be used to identify neighbors and compute spa-
tial weights; and (d) visually examine the spatial distribution of statistical analysis
results (e.g., regression model performance and errors). Additionally, it is important
to consider that spatial analysis software programs such as GeoDa are designed to
complement GIS functionalities, and not serve as a substitute. Several fundamen-
tal GIS operations that are relevant to the construction of spatial weight matrices
and regression analysis (e.g., map projections, merging, dissolving, or modifying
data/shape files) are not available in GeoDa.

In conclusion, more systematic empirical research is clearly necessary to evalu-
ate the usefulness and performance of spatial regression models for different data
resolutions, neighbor definitions, spatial weights matrices, and geographic scales.
Instead of choosing either the spatial lag or error specification, future work should
also explore the application of models that includes both types of spatial autore-
gressive coefficients, as suggested in recent research (Kissling and Carl 2008). The
problems and analytical techniques discussed in this chapter, however, are criti-
cally important for researchers and practitioners involved with geospatial analysis
of environmental health data.
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Chapter 18
A Spatially Explicit Environmental
Health Surveillance Framework
for Tick-Borne Diseases

Aldo Aviña, Chetan Tiwari, Phillip Williamson,
Joseph Oppong, and Sam Atkinson

Abstract We demonstrate how applying a spatially explicit context to an existing
environmental health surveillance framework is vital for more complete surveil-
lance of disease, and for disease prevention and intervention strategies. To illustrate
this framework, we present a case study that involves estimating the risk of
human exposure to Lyme disease. The spatially explicit framework divides the
surveillance process into three components: hazard surveillance, exposure surveil-
lance, and outcome surveillance. The components are used both collectively and
individually, to assess risk of exposure to infected ticks. By utilizing all surveil-
lance components, we identify different areas of risk which would not have been
identified otherwise. Hazard surveillance uses maximum entropy modeling and
Geographically Weighted Regression analysis to create spatial models that pre-
dict the geographic distribution of ticks in Texas. Exposure surveillance uses
GIS methods to estimate the risk of human exposures to infected ticks, result-
ing in a map that predicts the likelihood of human-tick interactions across Texas,
using LandScan 2008TM population data. Lastly, outcome surveillance uses kernel
density estimation-based methods to describe and analyze the spatial patterns of
tick-borne diseases, which results in a continuous map that reflects disease rates
based on population location. Data for this study was obtained from the Texas
Department of Health Services and the University of North Texas Health Science
Center. The data includes disease data on Lyme disease from 2004 to 2008, and
the tick distribution estimates are based on field collections across Texas from 2004
to 2008.
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18.1 Introduction

18.1.1 Environmental Public Health Surveillance Framework

Several factors must be taken into consideration when performing environmen-
tal public health surveillance or examining how environmental factors influence
public health. Public health surveillance is the “ongoing systematic collection, anal-
ysis, and interpretation of data on specific health events affecting a population,
closely integrated with the timely dissemination of these data to those respon-
sible for prevention and control (Thacker et al., 1996, p. 633).” According to
Thacker et al. (1996), environmental public health surveillance can be divided into
three interrelated components: hazard, exposure and outcome. Hazard surveillance
tracks a disease agent in the environment; exposure surveillance identifies trans-
mission/contact mechanisms between the agent and human populations; outcome
surveillance tracks the observed number of cases that are clinically apparent as a
result of such exposures. This framework provides an effective set of guidelines,
rooted in public health and epidemiology, for performing environmental public
health surveillance.

Although this model of the surveillance process provides an important frame-
work, it does not explicitly address the geographical context of each component.
Space and location are central to each component, but efforts towards developing
such geographical dimensions have been relatively limited. Nuckols et al. (2004)
provide a comprehensive review of exposure assessment studies that utilize a GIS-
based approach to address at least one of the components stated in the environmental
public health surveillance framework. Although these studies represent a diversity of
GIS and spatial analytic approaches, most focus on exposure assessment as the end
goal and do not attempt to combine the other components of Thacker’s model within
a spatial framework. This chapter illustrates such a comprehensive spatial frame-
work in examining the incidence of Lyme disease in Texas. Specifically, we develop
spatial analysis methods that use ecological variables to model the detailed geo-
graphic distribution of ticks in Texas and link this with information with exposures
and outcomes. This research shows that adding a spatial component enhances the
disease prediction and surveillance capabilities of the Thacker et al.’s framework,
thereby improving its utility for environmental health surveillance.

18.1.2 Lyme Disease Within Texas

In the United States, Lyme disease is the most common vector-borne disease with
over 20,000 confirmed new cases reported each year (Centers for Disease Control,
2007). The black-legged tick, Ixodes scapularis, is the primary vector of Borrelia
burgdorferi, the bacteria that causes Lyme disease in humans (Dennis et al., 1998).
In 2008 alone, New Hampshire and Delaware saw the highest rates of Lyme disease
at 92.0 and 88.4 cases per 100,000 people, respectively, up from 17.4 and 40.8 per
100,000 in 2004. The national rate was 9.4 per 100,000 in 2008 (DVBID, 2010).
The presence of Lyme disease in a population presents both an epidemiological
and economic burden due to the high cost of diagnosis and treatment. In a study
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Fig. 18.1 Trend of Lyme disease in Texas, 2000–2009. ∗Totals 2008 and after include number of
probable cases and number of confirmed cases. ∗∗Case definition change

performed in eastern Maryland, the average expected cost related to Lyme disease
was $1,965 per patient, in year 2000 dollars (Zhang et al., 2006).

Figure 18.1 shows the trend of Lyme disease in Texas from 2000 to 2009. It
should be noted that beginning in 2008, both probable and confirmed cases are used
to calculate the prevalence of the disease, whereas earlier only confirmed cases were
included. Additionally, a change in the case definition for Lyme disease in 2009
resulted in a significant increase in the case count from 2008 to 2009, although the
trend in the latter part of the decade indicates cases may be on the rise.

The uncertainties in understanding the burdens of Lyme disease due to under-
reporting and changes in case definitions are further compounded by the fact that
the spatial distribution of ticks that are vectors for Lyme disease has not been
investigated at high geographic resolution in Texas. Knowing the detailed spatial
distribution of I. scapularis in Texas may help identify areas of increased disease
risk. Geographically-driven prevention and control measures can mitigate the risk
of Lyme disease and other tick-borne diseases in Texas.

18.2 Data and Methods

A spatially-explicit framework involves understanding where a disease agent exists
in the environment, where exposure between the agent and the population occurs,
and where the burden of the agent on the population is most significant. There
are several considerations to be made when fully developing such a framework –
the questions asked, the data used, and the statistics applied all play a role in how
well the study addresses an environmental health problem (Elliot and Wartenberg,
2004). Following the public health surveillance framework discussed earlier, we
provide a spatial context to the surveillance of Lyme disease in Texas. A spatially
explicit predictive model is used to determine the geographic distribution of infected
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Fig. 18.2 A flowchart showing a possible decision-making process when performing spatially
explicit environmental health surveillance

I. scapularis ticks across Texas. Estimates of human exposure to infected ticks are
determined using a GIS-based approach. Finally, disease maps representing the inci-
dence of Lyme disease across Texas are produced using kernel density estimation
methods. From a public health perspective, the results of each surveillance com-
ponent can be compared to develop relevant intervention and prevention strategies.
This approach, shown in Fig. 18.2, may be applied by public health officials for
more effective surveillance, using a geographic point of view.

18.2.1 Hazard Surveillance

It has been shown that the presence of I. scapularis increases the risk of Lyme
disease (Eisen et al., 2006; Glass et al., 1995; Kitron and Kazmierczak, 1997).
However, public health efforts to determine the spatial distributions of tick pop-
ulations in Texas and in other parts of the country remain inadequate due to
insufficient data collection (Dennis et al., 1998). Ticks have certain ecological and
climatic requirements that create a suitable habitat for existence (Glass et al., 1995;
Brownstein et al., 2003). In short, to predict the distribution of tick populations,
we have to relate their occurrence in the environment, through observation, to their
environmental requirements (Guisan and Zimmermann 2000). Previous literature
suggests that the following environmental variables are most indicative of I. scapu-
laris presence: Maximum, minimum, and mean temperature and precipitation, vapor
pressure, soil types, and forest cover.
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In a study in Baltimore, the environmental make-up surrounding the residences
of Lyme disease cases was analyzed to determine the environmental variables asso-
ciated with Lyme disease exposure (Glass et al., 1995). The study showed that
residential areas that are near forested areas and sit on soils with medium- to high-
water capacity correlate with areas of high Lyme prevalence. Since ticks are the
primary vector for Lyme disease, these variables are also indicative of environments
that are suitable for tick populations. In another study, Brownstein et al. (2003)
predict the distribution of I. scapularis using maximum, minimum, and mean tem-
perature, and vapor pressure. These studies show that specific environmental factors
are indicative of tick presence.

This study utilizes the environmental determinants mentioned above and tick
occurrence data in conjunction with a maximum-entropy modeling method, Maxent,
to predict the distribution of I. scapularis in Texas. Maxent works well with limited,
presence-only datasets, and quickly processes data to create probability distribu-
tions based on environmental parameters and species occurrence (Phillips et al.,
2006). The model computes an area under the curve (AUC) value, which is a calcu-
lation of how well the model predicts the observed data on a scale from 0 to 1. This
AUC value is a measure of model performance based on observed data, but because
Maxent is so novel, we also test the data using other proven methods. To increase
our confidence and to test the accuracy of the results, we also use Geographically
Weighted Regression (GWR), which analyzes the spatial relationship between the
dependent variable and the independent variables, and how the relationship differs
across geographic space (Fotheringham et al., 2002). GWR yields a map of the
predicted presence of I. scapularis at the zip-code level, which is compared to the
Maxent results. A chi-squared goodness of fit test is then used to determine how
well the GWR predicts actual tick data.

The tick occurrence data was generated between 2004 and 2008 from submis-
sions to the Texas Department of State Health Services (TX DSHS). The occurrence
data was aggregated to the zip-code level. Molecular screening for tick-borne
pathogens, including Borrelia burgdorferi, was performed by the University of
North Texas Health Science Center (Williamson et al., 2010). Maxent requires point
data, while the existing data is aggregated to the zip code. The data is scaled down to
the point level by randomly distributing tick occurrences within the corresponding
zip code. This allows us to distribute the tick data across the entire zip code, rather
than just at its centroid, which can cause autocorrelation problems. The points are
randomly distributed and run through Maxent 30 times, and the results are averaged.
Scaling down the tick data does present problems, which are discussed later, but is
done due to the lack of point-level data. Performing a GWR, however, allows us to
compare the results of scaling down the data.

The environmental parameters input into Maxent are shown in Table 18.1
(National Elevation Dataset, 2010; WorldClim.org, 2005; PRISM Climate Group,
2009; National Land Cover Dataset, 2009; Soil Survey Geographic Database,
2009). These parameters were chosen based on the studies discussed ear-
lier, which demonstrated key ecological variables associated with I. scapularis
presence.
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Table 18.1 Data, sources, and purpose for usage

Data Source Purpose

Elevation National elevation dataset Determine if elevation is a factor
of tick presence in Texas

Temperatures WorldClim.org Ticks sensitive to temperature
extremes

Precipitation PRISM climate group Tick presence is dependent on
moisture availability

Land use/land cover National land cover dataset Forest cover relates to tick
suitability

Soil texture Soil survey geographic database Soil texture influences moisture
content

By mapping the distribution of I. scapularis, something which has not been done
at this scale before, we can perform an exposure risk assessment based on the loca-
tion of these ticks. Populations living in areas that have increased probability of tick
suitability will have a higher risk of tick exposure.

18.2.2 Outcome Surveillance

To better understand the characteristics of Lyme disease in Texas, we must map the
disease incidence. Understanding the spatial patterns of disease allows researchers
to make more informed observations and decisions regarding the prevention and
control of the disease. Our Lyme disease case data is aggregated to the zip code level,
and is susceptible to instable incidence rates due to the small population denomina-
tors in zip codes with low populations – the small numbers problem. In order to
reduce the influence of the small numbers problem, it is necessary to smooth the
disease count data using GIS and kernel density estimation methods. Using ker-
nel density estimation allows us to normalize incidence rates that would otherwise
be over or underestimated, creating a more accurate representation of disease inci-
dence (Tiwari and Rushton, 2005). For example, a zip code with one Lyme disease
case with a population of 75 results in a rate of 1,333 cases per 100,000 people –
an extraordinarily high incidence rate. To address this problem, instead of only
counting the population of that one zip code, we also count the populations of the
surrounding zip codes, up to a certain threshold, and produce a more representative
rate.

To implement this procedure, we lay a 10-mile grid across the study area. Each
grid point has a rate calculated based on the number of cases and the population
that falls within its spatial filter (kernel). In this case, a population threshold of
10,000 is chosen. The spatial filter increases in size outward from the grid point
until it contains a minimum of 10,000 people counted from the surrounding zip code
centroids. Next, the total numbers of disease cases in the zip codes whose centroids
fall within the filter are used to calculate the incidence rate at that respective grid
point. Each grid point in the study area now has a calculated incidence rate, and
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these rates are interpolated using the Inverse Distance Weighted method, creating a
smoothed map. For a more complete description of this method, including diagrams,
see Tiwari and Rushton (2005).

The size of the kernels or spatial filters depends on the density of the underlying
population. Note that larger filters are used in sparsely populated areas and smaller
filters are used in densely populated areas. Larger filters provide more smoothing,
but also result in loss of geographic detail whereas smaller filters provide greater
geographic detail. Because the adaptive filter method is based on varying filter sizes
that adapt to population density, we are able to produce maps that provide high
geographic resolution in those areas where such detail is expected while maintaining
rate stability in rural areas with sparse populations.

Web-based GIS software (Tiwari, online) is used to apply the spatially adaptive
filters method to Lyme disease cases in Texas, and create a smoothed representation
of Lyme disease burden in Texas. Such maps can be used to identify areas of high or
low disease burdens. The case data, which are reported to the CDC, were obtained
from the Texas DSHS at the zip-code level for the study period 2004–2008. For
national reporting, the CDC classifies a confirmed case of Lyme disease as a case
with either typical skin lesions (erythema migrans) or a case with late manifestations
(non-specific symptoms) confirmed by laboratory testing.

18.2.3 Exposure Surveillance

In tick-borne disease studies, exposure risk can be estimated by performing an
agent-based study, incidence-based study, or both (LoGiudice et al., 2003; Glass
et al., 1995; Eisen et al., 2006). An agent-based approach assesses exposure risk
based on the presence and location of a disease-causing agent; an incidence-based
approach assesses exposure risk based on the occurrence of disease. This case study
uses the former method to estimate the risk of exposure to I. scapularis infected
with B. burgdorferi in Texas. Eisen et al. (2006) previously used such an approach
to identify the spatial patterns of Lyme disease risk in California by identifying the
relationship between locations of disease cases and locations where infected ticks
are likely to be present. It should be noted that the presence of measurement errors,
mobility in human populations, and uncertainties in the geocoding process make
it difficult to accurately estimate human exposures to environmental risks (Eisen
et al., 2006; Glass et al., 1995; Kitron and Kazmierczak, 1997). The availability of
high-resolution data on environmental hazards and human populations reduces the
uncertainty in such agent-based risk assessment approaches (Elliot and Wartenberg,
2004).

The goal of our exposure surveillance is to produce an exposure risk map that
allows us to identify areas of greater population exposure to infected I. scapularis
ticks. Populations in those areas can be warned about their increased risk of com-
ing into contact with infected ticks. Exposure risk is calculated by multiplying
for each pixel (1000 m2 small area) the infection rate of I. scapularis with
B. burgdorferi in Texas by the estimated number of I. scapularis in the pixel,
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Fig. 18.3 Agent-based exposure risk assessment of Lyme disease

generated by Maxent. This results in a detailed map that portrays the estimated
distribution of infected I. scapularis ticks. To estimate disease risk, the distribution
of infected ticks obtained from the previous step is multiplied by population of the
pixel (Fig. 18.3). This results in a map the shows the potential number of infections
per pixel. Population data were obtained from Oak Ridge National Laboratory’s
LandScan data set. Note that the geographic resolutions of the two rasters (infected
tick distribution and human population) are consistent at approximately 1,000 m2

(LandScan 2008TM).

18.3 Results

18.3.1 Hazard Surveillance

Figure 18.4 shows the Maxent output of the estimated distribution of Ixodes scapu-
laris, based on environmental suitability. The areas of highest suitability occur in
eastern and northeastern Texas.

The reliability of the Maxent output is assessed using an Average Area Under
the Curve (AUC) number. This represents probability that a randomly selected pixel
would be correctly classified by the model as being positive or negative for occur-
rence of ticks (Phillips et al., 2004). The AUC number of the map in Fig. 18.4 is
0.92. Note that a high AUC does not necessarily mean that the output is valid, rather
that the model predicted the tick distribution well, according to the available data.

To check the robustness of these results, we compare the predicted tick distribu-
tion based on a Geographically Weighted Regression (GWR) model with the results
of the maximum entropy model. Figure 18.5 shows the results of running GWR
on the zip code level tick data; the map on the left in Fig. 18.5 shows the distribu-
tion of predicted tick locations, classified by standard deviation. Areas with higher
values are expected to have higher numbers of ticks. The GWR model shows a
similar pattern to that of our Maxent results, with higher tick suitability in eastern
Texas. Results from the chi-square goodness-of-fit test, which measures the differ-
ence between what is predicted by the GWR and what is observed, is shown on the
right in Fig. 18.5. The chi-square test outlines areas of over-prediction, especially a
small cluster in east Texas.

Because of the favorable results from the chi-square test and the strong corre-
spondence between the Maxent and GWR results, we continue to use the maximum
entropy results to estimate the presence of tick hazard.
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Fig. 18.4 Estimated distribution of Ixodes scapularis, based on environmental suitability

18.3.2 Outcome Surveillance

Figure 18.6 presents the smoothed map of Lyme disease incidence rates in Texas. It
indicates that the highest burdens occur in central and southern Texas, outside of the
most populous cities and away from areas of high tick suitability, according to our
Maxent results. At this point it is unknown why some areas experience higher inci-
dence rates than others. Some can be due to populations’ accessibility to hike and
bike trails, greenbelts, and campgrounds – areas where people are exposed to ticks.
Another reason is that areas that would normally not be suitable for I. scapularis
become suitable when agricultural and irrigation processes change the landscape in
a way that creates a suitable and sustainable habitat for the ticks or its reservoirs.
These agricultural processes were not incorporated in the tick hazard model. Also,
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Fig. 18.5 Results from running Geographically Weighted Regression (GWR). The map on the left
shows the distribution of predicted tick occurrences. The map on the right tests model performance,
based on a chi-square goodness of fit test

Martinez et. al. (1999) has discovered B. burgdorferi in deer in northeastern Mexico.
Lyme disease cases may be transported from (or to) Mexico, affecting Lyme dis-
ease incidence estimates in the US-Mexico border region. More localized research
must be done to accurately assess the origins of Lyme disease risk in specific
regions.

18.3.3 Exposure Surveillance

Exposure risk is defined as the risk associated with living in an area with high
infected tick suitability. Figure 18.7 shows the geographic variation in risk of Lyme
disease, expressed as a rate for every 100,000 people. The output of the model is ini-
tially the raw number of people that could be potentially exposed to B. burgdorferi,
but changed to a rate to reflect whole numbers rather than decimal numbers. For
example, a pixel with a value of 110 would indicate that for every 100,000 people
living in the pixel, an estimated 110 would be exposed to an infected I. scapularis
tick. These values are based on the assumption that every person living in the pixel
has equal chance of coming into contact with an infected tick – an unrealistic
assumption. However, the values provide a measure of relative population exposure
in different geographic areas that may be useful in planning Lyme disease education
and prevention programs.
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Fig. 18.6 Rates of Lyme disease based on cumulative cases from 2004 to 2008, standardized by
the 2007 population

18.4 Discussion

Using Lyme disease as a case-study, we have shown that implementing a spatially
explicit context to an existing environmental health surveillance framework allows
for a more well-rounded surveillance study. Many studies assess exposure risk based
on one surveillance component or another, while this study suggests that considering
all the surveillance components is necessary to appropriately understand the patterns
of disease, and the potential risk associated with it.

Agent-based risk maps are useful in identifying populations at greatest risk of
exposure to the Lyme disease vector. Because the exposure risk is based on tick
presence, it naturally follows the estimated tick distribution. This agent-based risk
map serves as tool for guiding public health intervention strategies. The agent-based
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Fig. 18.7 Agent-based risk map of Lyme disease, multiplied by a population of 100,000. Based on
the cumulative number of ticks collected from 2004 to 2008 and the population per pixel. Source:
LandScan, 2008TM, ORNL, UT-Battelle, LLC

map shows that areas of increased risk are located in the eastern portions of Texas,
while the pattern of actual Lyme disease incidence is more prevalent in central to
western Texas. Reasons for this difference need to be further investigated. As of now,
we can only conjecture that it may be due mainly to insufficient tick sampling, peo-
ple traveling to and becoming exposed in high-risk areas or the small possibility that
B. burgdorferi is being spread by another species of tick. Areas that are highly suit-
able for tick presence that overlap areas with high Lyme disease prevalence could
be targeted for intervention and prevention strategies.

Adding more data, both on tick locations and disease cases, will help in under-
standing why there is a geographic dissimilarity between I. scapularis distribution
and Lyme disease incidence. Yet, these results indicate that by utilizing several
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components of surveillance, many more observations can be made about Lyme dis-
ease in Texas than would be possible with a single surveillance approach. Some
observations include the geography of the overlap of Lyme disease incidence and
high agent-based risk, and the fact that most areas of high Lyme disease inci-
dence and tick suitability fall in different portions of Texas. Also, applying a
spatial context to the environmental health surveillance framework, allows for more
selectively-targeted and specific disease intervention and prevention strategies.

Although the Geographically Weighted Regression (GWR) results in Fig. 18.5
showed a promising degree of confidence in the results from the maximum entropy
model, tick field surveys should be the next step, not only to confirm the results
of the tick distribution map, but also to improve them. Scaling zip code data down
to point data, as done in this study, is not realistic or practical, and creates errors
in modeling tick distributions. With finer scale GPS data, one can better model
the environmental determinants of tick distributions, leading to better statistical
validation.

18.4.1 Conclusion

By implementing a spatially explicit context to an existing environmental health
surveillance framework, and utilizing hazard, exposure, and outcome surveillance
as a whole, rather than parts of a whole, it has been possible to examine the bur-
dens of Lyme disease in Texas. Even though Texas is not heavily affected by the
disease, the disease represents a potential threat that needs to be understood. Lyme
disease in Texas has not been investigated in great detail, nor has the distribution of
I. scapularis in the state been estimated and mapped. Although the results cannot be
held with a high degree of confidence because of insufficient data, the concept of a
spatially explicit environmental health surveillance framework is realistic, practical,
and practicable. The distribution of the agent in question was predicted, the current
distribution of Lyme disease incidence was mapped, and an exposure assessment
was performed, uniting the three components of environmental health surveillance
for understanding Lyme disease in Texas.

This study also reinforces the importance of using geographic information sci-
ence in environmental health studies, as GIS was a critical component of the analysis
and framework. Such a spatially explicit framework can be applied to many environ-
mental health studies and to many kinds of environmental health concerns. Adding
the dimension of space to environmental health analyses allows investigators to
discover more meaningful results that can result in more effective public health
intervention and prevention strategies.
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Chapter 19
Using Distance Decay Techniques and
Household-Level Data to Explore Regional
Variation in Environmental Inequality

Liam Downey and Kyle Crowder

Abstract This chapter links individual- and household-level data from the
nationally representative Panel Study of Income Dynamics (PSID) with
neighborhood-level environmental hazard data derived from the Environmental
Protection Agency’s (EPA) Toxics Release Inventory (TRI) in order to determine
whether regional differences in environmental inequality exist at the household
level. The data cover nearly every metropolitan area in the contiguous US from 1990
to 2005, we divide the contiguous US into nine regions, and we use Geographic
Information System (GIS) software to weight the potential impact of each TRI
facility inversely according to geographic distance. Results indicate that the exis-
tence and magnitude of environmental racial inequality, as well as the role that
race, income and other household characteristics play in shaping this inequality,
vary in important ways across the nine regions of the country. This has important
implications for environmental inequality and public health research.

Keywords Environmental inequality · Health · Geographic information systems ·
Distance decay indicators

19.1 Introduction

The goal of this chapter is to determine whether environmental racial inequality
levels vary across regions of the United States, using facility-based environmen-
tal hazard data drawn from the Environmental Protection Agency’s (EPA) Toxics
Release Inventory (TRI), individual- and household-level demographic data drawn
from the nationally representative Panel Study of Income Dynamics (PSID), and a
Geographic Information System (GIS) technique that weights the potential impact
of each TRI facility inversely according to geographic distance. This distance
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decay technique generates more precise hazard proximity estimates than those
used in most prior environmental inequality research, thereby providing important
advantages for researches interested in studying environmental inequality and the
relationship between environmental inequality and public health.

We begin by discussing the background and rationale for the study. We then
describe the theoretical models and GIS technique we use in the chapter and present
our empirical analyses. The results of these analyses point to profound racial and
ethnic differences in proximity to neighborhood pollution but suggest that the mag-
nitude and sources of this environmental inequality vary sharply across regions of
the country.

19.2 Background and Rationale for Study

A relatively new approach to explaining persistent racial and ethnic health dispar-
ities focuses on the role that residential segregation and environmental inequality
play in placing members of different racial and ethnic groups in neighborhoods with
varying environmental health risks (Evans and Kantrowitz, 2002; Gee and Payne-
Sturgess, 2004; Lopez, 2002; Morello-Frosch and Jesdale, 2006; Morello-Frosch
and Lopez, 2006; Northridge et al., 2003). This new approach draws upon a large
body of environmental inequality research that shows that neighborhood environ-
mental quality tends to be negatively associated with neighborhood income levels
(Ash and Fetter, 2004; Derezinski et al., 2003; Downey, 2005; Morello-Frosch et al.,
2001) and positively associated with neighborhood percent minority (Mohai and
Saha, 2007; Morello-Frosch et al., 2001; Stretesky and Lynch, 2002).

However, while providing basic evidence of environmental inequality along both
race and class lines, past research on the topic suffers from a number of important
shortcomings. First, prior research relies almost exclusively on neighborhood-
level demographic data, allowing researchers to assess the correspondence between
neighborhood sociodemographic composition and neighborhood hazard levels, but
making it impossible for them to (a) link specific individuals to specific neigh-
borhood environmental conditions or (b) determine the role that individual and
household characteristics play in shaping race/ethnic differences in exposure to
neighborhood environmental health risks. Thus, while prior environmental inequal-
ity research provides an important foundation for the argument that unequal
exposure to neighborhood environmental health risks likely shapes racial and ethnic
health disparities, it does not utilize the individual and household-level data needed
to substantiate this claim.

Using neighborhood-level demographic data to conduct environmental inequal-
ity research is also problematic because conclusions based on such data may be
subject to ecological fallacy and because several of the most widely employed the-
oretical models in the literature make predictions about individual- and household-
level outcomes and behaviors (Crowder and Downey, 2010). As a result, using
neighborhood-level demographic data to conduct environmental inequality research
is likely to produce erroneous conclusions and prevent researchers from (a) testing
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extant theory and (b) examining the individual- and household-level mechanisms
that this theory suggests most strongly shape environmental inequality.

A second shortcoming in the literature is that researchers tend to focus on either
the nation as a whole (Hunter et al., 2003; Perlin et al., 1995), the nation’s urban
areas as a whole (Ash and Fetter, 2004; Oakes et al., 1996;) or a single or limited
number of metropolitan areas at a time (Brown et al., 1997; Downey, 2005; Pastor
et al., 2002). This is potentially problematic because prior research suggests that
patterns of environmental inequality may vary according to region of the country
(Downey, 2006a). Thus, research that examines one or a few metropolitan areas
at a time is not broadly generalizable while research that examines the nation as
a whole may gloss over regional differences that have important implications for
public health outcomes.

Finally, environmental inequality researchers have yet to fully explore the many
ways in which Geographic Information System (GIS) software can be used to esti-
mate local environmental health risks. Important exceptions do, of course, exist.
For example, Mennis (2002, p. 281) uses GIS to create “statistical surface repre-
sentations of both socioeconomic character and environmental risk,” Mohai and
Saha (2006) develop an aerial apportionment method to measure neighborhood
proximity to hazardous waste sites, and Maantay (2007) uses proximity buffers
to examine the association between residential proximity to hazards and asthma.
But as Downey (2006b) and Mohai and Saha (2006) point out, most environmen-
tal inequality researchers simply sum up the number of environmental hazards or
pounds of pollutants in each of their units of analysis and assume that anyone living
in an analysis unit with a hazard is residentially proximate to that hazard, while any-
one living outside that unit is not residentially proximate to the hazard, even if they
live across the street from it. As a result, most environmental inequality research
relies on measures that only weakly capture residential proximity to environmental
hazards.

The study presented in this chapter addresses these shortcomings in the literature
by linking individual- and household-level data from the nationally representa-
tive Panel Study of Income Dynamics with neighborhood-level environmental
hazard data derived from the Environmental Protection Agency’s Toxics Release
Inventory. These data cover nearly every metropolitan area in the contiguous US
from 1990 to 2005, and allow us to examine regional differences in environmental
racial inequality while simultaneously controlling for individual and household-
level characteristics that likely shape household proximity to environmental hazards.
Thus, in this chapter, we examine differences in neighborhood hazard levels
between Hispanic, non-Hispanic black, and non-Hispanic white households both
within and across 9 regions of the contiguous US, and present results both
before and after controlling for theoretically relevant individual and household-level
characteristics.

Finally, in order to better estimate neighborhood environmental hazard levels,
we utilize a GIS technique described in Downey (2006b) to weight the potential
impact of each TRI facility inversely according to geographic distance. As previ-
ously noted, this technique not only allows us to measure hazard proximity more
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precisely than has been possible in most prior research, it also allows us to demon-
strate the advantages of incorporating GIS into environmental inequality and public
health research.

19.3 Theoretical Explanations for Environmental Inequality

Key theoretical models of environmental inequality tend to focus on hazardous
facility siting decisions and household-level residential attainment processes.
Unfortunately, however, the TRI, like other environmental hazard datasets employed
in the literature, does not provide researchers with facility siting data. Thus, we
restrict our theoretical discussion to two models that make predictions about the
household-level residential attainment processes that likely concentrate socioeco-
nomically disadvantaged groups in areas with high levels of pollution. The first
of these models, the racial income inequality thesis (Downey, 2005), holds that
property values and rents tend to be relatively low in environmentally hazardous
neighborhoods, making such neighborhoods more attractive to lower-income fam-
ilies, among which non-white families are overrepresented, and less attractive to
higher income families, among which white families are overrepresented. This
argument is consistent with the more general spatial assimilation model found in
residential attainment research that holds that residential differentiation by social
class emerges as persons match their own socioeconomic status with that of
their neighborhood. Thus, these models suggest that racial differences in residen-
tial proximity to environmental hazards are due largely to group differences in
socioeconomic resources such as income and education.

In contrast, the residential discrimination thesis (Bullard, 1993) holds that racial
differences in mobility into and out of environmentally hazardous neighborhoods
result from housing market discrimination. Consistent with the broader place strat-
ification perspective that informs research on residential attainment and mobility
(Alba et al., 1999; Crowder and South, 2005), the residential discrimination the-
sis assumes that discriminatory actions by real estate agents (Yinger, 1995), local
governments (Shlay and Rossi, 1981), and mortgage lenders (Ross and Yinger,
2002) create barriers to residential attainment for minority homeseekers (Massey
and Denton, 1993). These barriers are assumed to reduce the ability of minority
families to move out of, or avoid moving into, hazardous neighborhoods, thereby
creating or maintaining environmental racial inequality. Thus, in direct contrast to
the racial income inequality thesis, the residential discrimination thesis suggests
that racial differences in residential proximity to pollution should persist even after
controlling for household socioeconomic status.

Finally, prior research indicates that residential attainment is also shaped by
the age and sex of the household head (Crowder and South, 2005; South and
Crowder, 1997). These characteristics, as well as respondent income and educa-
tion and the average neighborhood pollution proximity value in each respondent’s
metropolitan area, will be controlled for in the regression models presented
below.
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19.4 Data and Methods

19.4.1 Environmental Hazard Data

This study relies on data from the Panel Study of Income Dynamics linked to
neighborhood-level environmental hazard data derived from the EPA’s Toxics
Release Inventory. The TRI, which is the most comprehensive and detailed, pub-
licly available national record of industrial facility activity available to researchers,
records the number of pounds of specified toxic chemicals released into the environ-
ment each year by industrial facilities that fall into one of seven industrial categories
(manufacturing, metal mining, coal mining, electric generating facilities that com-
bust coal or oil, chemical wholesale distributors, petroleum terminals, and bulk
storage), employ the equivalent of ten or more full-time workers, and manufacture,
process, or otherwise use the specified chemicals in specified quantities.

TRI data were first collected in 1987, but because there are some questions about
the accuracy of the first few years of the data, our study utilizes only 1990–2005
TRI data. In addition, in order to improve the accuracy of our hazard estimates, we
include only those TRI facilities that the EPA estimates were located within 200 m
of the latitude and longitude coordinates provided in the TRI dataset. Thus, our data
incorporate information from a total of 38,212 facilities in the contiguous United
States between 1990 and 2005, with facility counts ranging from 18,758 to 21,462
per year.

We use the TRI to create a continuous, tract-level measure of neighborhood prox-
imity to TRI facility air, water, and land pollution that weights the potential effect
of each TRI facility inversely according to geographic distance from the facility,
thereby incorporating both the level of toxic emissions produced by each TRI facil-
ity and facility proximity to the center of each census tract. The variable is calculated
as follows. First, for each year of TRI data, we locate each TRI facility on a census
tract map of the contiguous US, using latitude-longitude coordinates provided by the
EPA to locate each facility. This map is then overlaid with a rectangular grid made
up of 400-foot square grid cells. For each grid cell we then calculate a distance-
weighted sum of the pounds of air, water, and land pollutants emitted that year by
all TRI facilities located within 1.5 miles of that grid cell (we combine air, water,
and land pollution in a single measure, rather than examining them separately, in
order to be consistent with most prior research). For example, if two TRI facilities,
emitting 10,000 and 2,000 pounds of pollutants per year respectively, are located
within 1.5 miles of grid cell A, and the distance-based weights for these facilities are
1.0 and 0.62 respectively, then grid cell A receives a proximate industrial pollution
value of (1.0×10,000) + (0.62×2000), or 11,240.

Figure 19.1 illustrates this GIS estimation process for a small sample of
California census tracts. The first map in Fig. 19.1 shows a set of census tract bound-
aries, two TRI facilities (facilities A and B), and a circle with a 1.5 mile radius that
is centered over facility A. Map 2 places a set of 400-ft2 grid cells over Map 1. One
of these grid cells (grid cell A) is centered around facility A. Due to software limi-
tations, not every grid cell in Map 2 can be individually represented. Nevertheless,
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Fig. 19.1 Illustration of the distance decay method

it is possible to identify grid cell A (it is the cell hidden by facility A), the set of grid
cells immediately surrounding grid cell A, the set of cells immediately surrounding
these cells, and so on.

In Fig. 19.1, facility A has a weight of 1.0 for grid cell A because it is located in
grid cell A, while facility B, which is approximately 4,600 ft from grid cell A, has
a weight of 0.62 for grid cell A. Conversely, the grid cell containing facility B (grid
cell B, which is hidden by facility B) is assigned a weight of 1.0 for facility B and a
weight of 0.62 for facility A. Thus, as previously calculated, grid cell A receives a
pollution value of 11,240 if facilities A and B emit 10,000 and 2,000 pounds of pol-
lutants per year respectively, while grid cell B receives a value of (0.62×10,000) +
(1.0×2,000), or 8,200.

The weights used in this study and in the previous set of calculations were derived
from a 1.5 mile curvilinear distance decay function that is graphed in Fig. 19.2 (see
the curve that is furthest to the right in the figure). Figure 19.2 demonstrates that
various distance-decay functions can be used to calculate distance decay hazard
proximity indicators and shows that the curvilinear function we use in this study
declines from one to zero as distance from the grid cell increases until distance
reaches 1.5 miles (after which the weight remains constant at zero).1

1In this study, the average number of grid cells per tract is 54 with a minimum of 1 and a maximum
of 1,176. Since researchers have not developed a commonly accepted distance decay weighting
scheme, we have experimented with alternative distance decay functions to estimate proximity
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Fig. 19.2 Three distance decay curves

After assigning pollution values to each grid cell in the contiguous US, we cal-
culated an average grid cell value for each census tract in the country. We did this
separately for each census tract by summing up the grid cell values in each tract and
then dividing this tract-specific sum by the number grid cells in that tract, assigning
to each tract only those grid cells whose center points were located inside the tract
(this included cells that crossed tract boundaries).

Finally, because these grid cell and census tract values can be very large, and
because emissions from specific facilities sometimes fluctuate considerably from
year to year, we (a) calculated the average level of industrial pollution in and around
each census tract across the 3 years bounding the observation year (for example, for
2000, we calculated this average using pollution values from 1999 to 2001) and
(b) divided these 3 year averages by 1000. The resulting tract-level, hazard-
proximity score provides a more precise estimate of the level of proximate industrial
pollution in and around US census tracts than has been utilized in most prior
research.

Before proceeding, it is important to note that our proximate industrial pollution
measure cannot be interpreted in absolute terms. Because the measure incorporates
distance-weighted information about pollution from TRI facilities located not only

to industrial hazards. In doing this, we have altered not only the equations, but also the size of
the grid-cells and the distance at which industrial sites are no longer considered influential (the
threshold distance at which the distance decay weights reach zero). However, in prior research,
altering the distance decay model in these ways has had only minor substantive impact on our
results (see Crowder and Downey, 2010).
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inside, but also outside (but within 1.5 miles) of the tract, the scores on this variable
do not refer to the total pounds of pollutants emitted in each census tract in each
year or to the pounds of pollutants emitted in the average census tract grid cell each
year. Instead, they are estimates of the relative, non-exposure related influence of all
nearby TRI facilities on environmental conditions in each census tract and as such,
must be interpreted relative to one another. For example, a score of 1,000 on this
variable indicates twice the estimated proximate industrial pollution in and around
the tract as a score of 500 (see Downey, 2006b).

Also noteworthy is the fact that our TRI-based measure does not represent pol-
lution concentrations in the census tract or exposure to pollution for the individuals
occupying these areas. While health researchers are understandably interested in
exposure and concentration data, our use of proximity data is justified on several
grounds. First, prior research has found residential proximity to environmental haz-
ards to be negatively associated with psychological well-being in both Detroit and
a subset of Illinois counties (Boardman et al., 2009; Downey and Van Willigen,
2005), suggesting that hazard proximity may affect not only mental health, but also
racial disparities in mental health. Second, the cost of obtaining pollution expo-
sure and concentration data for large geographic areas is beyond the means of most
researchers, and those datasets that do provide concentration data for the nation as a
whole are either available for only a small number of years (the EPA’s Cumulative
Exposure Project and National Air Toxics Assessment datasets) or are available in a
form that is not useful to most researchers (the EPA’s Risk Screening Environmental
Indicators dataset, or RSEI). This, of course, severely limits the ability of researchers
to examine the effect of environmental inequality on health outcomes over large geo-
graphic areas, making it critical that researchers who examine these kinds of effects
include in their methodological toolboxes GIS techniques such as the one employed
in this chapter.

19.4.2 Individual and Household Data

We merge our environmental hazard data with individual- and household-level
sociodemographic data by attaching our tract-level measure of local industrial pol-
lution to the individual records of the Panel Study of Income Dynamics (PSID). The
PSID is a well-known longitudinal survey of US residents and their families begun
in 1968 with approximately 5,000 families (about 18,000 individuals). Members of
panel families were interviewed annually between 1968 and 1997 and every 2 years
thereafter. New families have been added to the panel as children and other members
of original panel families form their own households.

PSID data are collected for a diverse national sample and contain rich informa-
tion on a variety of individual- and household-level characteristics that are central to
the study of residential attainment. In addition, the PSID’s supplemental Geocode
Match Files make it possible to link the addresses of individual respondents at
each interview to their corresponding census tract identifiers, allowing us to merge
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respondent information with our tract-level pollution proximity scores. As a result,
we know the proximate industrial pollution value associated with each respondent’s
tract of residence at each interview from 1990 to 2005.

Our effective sample consists of 15,653 PSID household heads, including 3,747
Hispanics, 5,048 non-Hispanic blacks, and 7,358 non-Hispanic whites who were
interviewed between 1990 and 2005 and resided in a census-defined Metropolitan
Statistical Area (MSA) at the time of the interview. One key drawback of the PSID
for this study is that Hispanics are substantially underrepresented in the sample since
the original panel was selected in 1968, just prior to the rapid increase of this popula-
tion. The representation of Hispanics in the sample was increased between 1990 and
1995 with the incorporation of members from the Latino National Political Survey
(LNPS) and in 1997 and 1999 with the addition of 511 panel families headed by
post-1968 immigrants or their adult children. Thus, our sample includes Hispanics
who were incorporated as part of these sample additions as well as those who
were part of, or married into, original PSID panel families. Nevertheless, given
the small size and questionable representativeness of the Hispanic sample, infer-
ences drawn about the residential experiences of this group should be made with
caution.

As previously noted, we focus on racial and ethnic differences in proximal pol-
lution at the household level between 1990, the first year in which reliable TRI data
are available, and 2005, the latest year for which PSID data are available. In order to
minimize the effect of group differences in household size on calculated differences
in average neighborhood pollution, we include in our sample only those individuals
who were household heads at the time of the PSID interview. In addition, we focus
exclusively on metropolitan residents in order to enhance comparability with past
environmental inequality research, much of which focuses on aggregate population
patterns within metropolitan areas. Focusing on metropolitan residents also allows
us to calculate more precise pollution proximity estimates because metropolitan area
census tracts tend to be smaller than non-metropolitan area census tracts. With these
sample restrictions our analyses include data on households distributed across 314
of the 329 metropolitan areas in the contiguous US.

Finally, assessing racial disparities in residential proximity to neighborhood haz-
ards is complicated by the fact that respondents’ location near industrial pollution
can change over time as a result of residential mobility and fluctuations in the level
of pollution in and around the neighborhood of residence. Thus we take full advan-
tage of the longitudinal nature of the PSID and pollution data by structuring the data
as a series of person-periods with each observation describing the characteristics of
an individual panel member and their neighborhood at the time of a particular PSID
interview. This eliminates the need to focus on a single, arbitrary point in time,
allowing us to examine differences in average levels of neighborhood pollution for
members of different racial and ethnic groups across the entire span of the avail-
able data. The 15,653 individual householders in the sample each contribute, on
average, just over 4.6 person-period observations for a total sample size of 72,938
observations.
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19.4.3 Analytic Strategy

In order to examine regional differences in environmental racial inequality, we
divide the contiguous US into nine regions based on the US Census Bureau’s “cen-
sus division” classification system. The nine regions are the Pacific, Mountain, West
North Central, West South Central, East North Central, East South Central, New
England, Mid-Atlantic, and South Atlantic divisions (see Fig. 19.3). It is impor-
tant to note that some of the race/ethnic groups included in this study are poorly
represented in some of these regions. In particular, black respondents are poorly
represented in New England and the Mountain region and Hispanic respondents are
poorly represented in the East South Central, West North Central, and New England
divisions. Thus, results for these groups in these regions should be interpreted with
caution.

We begin by comparing the proximate industrial pollution values of the average
non-Hispanic black (hereafter “black”), non-Hispanic white (hereafter “white”), and
Hispanic respondent (household head) in each region of the contiguous US. This
initial analysis does not include any control variables, which (a) allows us to easily
compare gross race/ethnic differences in pollution proximity both within and across
the nine regions and (b) provides us with a baseline description of environmental
racial inequality in each region of the US.

We then test potential explanations for these region-specific racial disparities by
controlling for theoretically-relevant socioeconomic, life-cycle, and demographic
characteristics shown in past research to affect residential attainment. Our primary
indicators of socioeconomic status are education, measured by years of school-
ing completed by the household head, and total family (head and spouse) taxable

Fig. 19.3 US census divisions
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income, measured in thousands of constant 2,000 dollars. Inserting these variables
into the regression models allows us to test the racial income inequality thesis pre-
diction that race/ethnic differences in pollution proximity will be attenuated with
controls for socioeconomic status.

Key demographic and life-cycle predictors of residential attainment include age,
age-squared, and the sex of the household head, which is captured by a dummy
variable scored 1 for females and 0 for males.2 In all models we also control for
the year of observation to account for both temporal trends in pollution levels and
the uneven distribution of observations for Hispanic householders across the years
of the PSID data. We also control for the pollution level of the average tract in each
respondent’s metropolitan area. We include this control because overall pollution
levels vary widely across metropolitan areas, and blacks, Hispanics, and whites are
not distributed uniformly across these areas.

Thus, the regression analyses presented below allow us to assess differences
in the level of neighborhood industrial pollution experienced by black, Hispanic,
and white householders with similar sociodemographic characteristics and living in
metropolitan areas with similar levels of pollution.

19.5 Results

19.5.1 Do Environmental Inequality Outcomes Vary
Across Regions of the United States?

We begin our analysis with an assessment of gross racial differences in proxim-
ity to industrial pollution at the household level in each of the nine regions of the
US (see Fig. 19.4 and Table 19.1). For example, the first row of data on the left-
hand side of Table 19.1 shows that during the average observation period in New
England, the average black, average Hispanic, and average white respondent lived
in a neighborhood with a pollution proximity value of 33,058, 29,093, and 16,214
respectively.3

2Residential mobility researchers also routinely employ variables such as marital status, the pres-
ence of children in the family, home ownership, and household crowding. However, we do not
include these controls in our models because they are predictors of the decision to move rather
than of residential location.
3A small, but statistically influential, number of Hispanic respondents in the East North Central
region lived in a single tract with extremely high pollution proximity values (in our sample, very
few census tracts have multiple respondents during any single year). Thus, to avoid biasing the
results for this region, we restricted the region’s observations to respondents living in neighbor-
hoods with pollution proximity scores of less than 1,000. Restricting the data in this way greatly
reduces the gross Hispanic pollution proximity value for the region, while reducing the proximity
values for blacks and whites in the region only slightly. As a result, these findings and the regres-
sion results reported below may underestimate the Hispanic/black and Hispanic/white pollution
gap in the East North Central region.
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Fig. 19.4 Gross racial differences in pollution levels by region

The findings in Fig. 19.4 and Table 19.1 are notable in at least two respects. First,
there are substantial inter-regional differences in the levels of proximate industrial
pollution experienced by households of the same race/ethnic group. For example,
the level of neighborhood pollution experienced by the average black respondent in
the West North Central region (61,227) is over three times as high as the level of
pollution experienced by the average black respondent in the South Atlantic region
(20,200). Pollution values for a pooled sample of all respondents also vary across
regions, as indicated by the fourth data column in Table 19.1.

Second, and more important for our purposes, environmental racial inequality
levels (as represented by race/ethnic differences in pollution proximity) vary con-
siderably across regions. The last three columns of Table 19.1 provide the clearest
picture of these variations by presenting the ratios of black to white, Hispanic to
white, and black to Hispanic pollution proximity and by indicating whether inter-
group differences within each region are statistically significant as determined by
Scheffe’s test for Analysis of Variance results (significant results indicate signifi-
cantly different means rather than ratios that are significantly different from one).
For example, the second row of data on the right-hand side of Table 19.1 shows
that in the Mid-Atlantic region, the average black respondent lived in a neighbor-
hood with 1.83 times the pollution proximity value of the average white respondent
and that this difference in pollution proximity is statistically significant at the 0.001
alpha level.

Overall, Fig. 19.4 and Table 19.1 show that black respondents lived in neighbor-
hoods with higher pollution proximity scores than did white respondents in eight
of the nine regions, with the environmental inequality ratio in these eight regions
ranging from 1.28 in the Pacific region to 4.26 in the West South Central region.
Conversely, in the Mountain region, where black and white pollution proximity
scores are fairly low, white respondents lived in neighborhoods that had proximity
scores that were, on average, 4.17 times greater (1/0.24 = 4.17) than the score for
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the average black respondents’ neighborhood. However, given that there were only
167 black respondents in the Mountain region, this difference is not statistically
significant and should be interpreted with caution.

Turning our attention to the Hispanic/white pollution proximity ratios, we see
that the average white respondent lived in a more polluted neighborhood than the
average Hispanic respondent in the East South Central region, but again, this differ-
ence is not statistically significant. Hispanic respondents, on the other hand, lived
in neighborhoods with significantly larger pollution proximity scores than did their
white counterparts in six of the nine regions, with Hispanic to white ratios in these
regions ranging from 1.43 in the Pacific region to 2.73 in the West North Central
region.

Finally, the last column in Table 19.1 shows that in two regions – the East North
Central and Mountain regions – the average Hispanic householder lived in a neigh-
borhood with a significantly higher pollution proximity score than did the average
black householder. However, the level of pollution experienced by the average black
householder was significantly higher than that of the average Hispanic householder
in the West North Central, West South Central, and South Atlantic regions.

The data clearly show, then, that environmental racial inequality is pervasive
across the nine regions of the country, with significant group differences in neigh-
borhood pollution proximity existing for at least one group pair in each of the
nine regions. However, there is also tremendous variation in pollution proximity
and environmental inequality across the regions, with (a) the magnitude of inequal-
ity, the overall and race-specific levels of pollution proximity, and the hierarchy
of environmental burden among the race/ethnic groups differing greatly across the
regions and (b) all three group contrasts statistically significant in only two of the
nine regions (the East and West North Central Regions).

Thus, any effect that environmental inequality and pollution proximity might
have on racial and ethnic health disparities is likely to vary according to region of
the country, with the effect negligible for some groups in some regions and possibly
highly significant for some groups in some regions.

19.5.2 Do Differences in Household Characteristics Explain
Environmental Inequality at the Regional Level?

The results presented in the previous section clearly demonstrate that environmental
inequality outcomes vary greatly across the nine regions of the country, suggest-
ing that theoretical explanations of environmental racial inequality may not work
equally well in each of these regions. In this section we ask whether this is the case
by presenting regression analyses for each region of the country that test predictions
drawn from the racial income inequality and racial discrimination theses.

As noted earlier, the racial income inequality thesis suggests that environmental
racial inequality exists because minorities tend to possess lower levels of socioeco-
nomic resources than do whites. Prior research also suggests that group differences
in life-cycle and demographic characteristics may play a role in creating and



19 Using Distance Decay Techniques and Household-Level Data 387

maintaining environmental racial inequality. Alternatively, the racial discrimina-
tion thesis suggests that even when compared to whites with similar characteristics,
minority households will still be restricted to neighborhoods with relatively high
levels of pollution. Thus, controlling for household characteristics and examining
the net effect of race on proximity to neighborhood pollution provides an opportu-
nity to assess the relative veracity of these perspectives within different regions of
the country.

To this end, Table 19.2 presents a series of regression models in which prox-
imate industrial pollution (in 1000s) is regressed on a set of dummy variables
indicating the race/ethnic status of the respondent (with white respondents as the
omitted category), controlling (sequentially) for the year of observation, individual
and household characteristics, and the average pollution level in each respondent’s
metropolitan area. We present separate models for each of the nine regions, all the

Table 19.2 Explaining race/ethnic differences in pollution proximity within regions

Region Independent variables Model 1a Model 2 Model 3 Model 4

New England Hispanic 8.15 3.36 1.95 2.60
Black 18.46∗ 15.25† 14.89† 11.63
Constant 25.70∗∗∗ 43.35∗∗∗ 52.72∗∗ 46.96∗∗

Mid-Atlantic Hispanic 18.22∗∗∗ 14.75∗∗ 13.02∗∗ 13.05∗∗
Black 16.92∗ 14.69† 12.11† 14.40∗
Constant 26.75∗∗∗ 42.21∗∗∗ 56.40∗∗ 11.25

E. N. Central Hispanic 37.18∗∗∗ 32.09∗∗∗ 30.74∗∗∗ 32.68∗∗∗
Black 17.58∗∗∗ 12.96∗∗ 11.27∗ 13.82∗
Constant 54.33∗∗∗ 84.12∗∗∗ 102.46∗∗∗ 106.73∗∗∗

W. N. Central Hispanic 24.44∗∗ 25.41∗∗ 23.72∗∗ 32.47∗∗
Black 44.27∗∗∗ 44.42∗∗∗ 42.02∗∗∗ 37.02∗∗∗
Constant 24.89∗∗∗ 13.21 21.64 51.06†

South Atlantic Hispanic −1.27 −1.92 −1.53 3.94
Black 6.83∗ 5.83† 4.24 5.48
Constant 17.92∗∗∗ 18.58∗∗∗ 24.49∗ 12.67

E. S. Central Hispanic −2.96 −2.26 −5.09 −1.85
Black 30.78∗∗∗ 29.64∗∗∗ 25.71∗∗ 28.12∗
Constant 39.92∗∗∗ 31.58∗ 39.21 12.99

W. S. Central Hispanic 0.14 −3.86 −4.43 −6.52
Black 32.85∗∗ 29.63∗∗ 28.71∗∗∗ 10.98†

Constant 21.66∗∗∗ 45.39∗∗ 39.50∗ 44.13†

Mountain Hispanic 8.77∗∗ 7.67∗∗ 7.21∗∗ 10.17∗∗
Black −5.37∗∗∗ −5.94∗∗∗ −7.41∗∗∗ −4.77∗
Constant 10.11∗∗∗ 16.35∗∗∗ 23.51∗∗ 14.03†

Pacific Hispanic 5.04† 4.47 3.70 3.40
Black 4.33 4.37 4.57 4.07
Constant 28.46∗∗∗ 32.31∗∗∗ 56.63∗∗∗ 22.73†

†p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
aControl variables: Model 1 (Year), Model 2 (Year, Income, Education), Model 3 (Year, Income,
Education, Age, Age squared, Female), Model 4 (Year, Income, Education, Age, Age Squared,
Female, Average pollution value in metropolitan area).
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variables in these models are measured at the time of the PSID interview, and we
use Stata’s “cluster” procedure to account for the non-independence of observations
related to the same individual householder (as previously noted, we use individual-
and household-level data, rather than census tract demographic data, because con-
clusions drawn from tract-level demographic data are subject to ecological fallacy
and because the theoretical perspectives tested in this chapter make predictions
about individual- and household-level outcomes).

Due to space limitations, we only present coefficients representing the associa-
tion between the race/ethnicity dummy variables and the dependent variable, with
the constant term representing the proximate industrial pollution value for whites in
the region. Model 1 of Table 19.2 shows that controlling for the year of observa-
tion has only a small effect on the overall pattern of results found in Table 19.1. For
example, in every region except the Mountain region, black householders experience
higher pollution levels than do white householders, and these differences are statis-
tically significant in all of these regions except the Pacific even after controlling for
temporal trends in the data. Interestingly, the relative pollution advantage for black
householders observed in the Mountain region in Table 19.1 becomes statistically
significant with the control for year of observation.

In contrast, once the year of observation is controlled for, the Hispanic/white
pollution proximity gap becomes statistically non-significant in New England
and marginally significant in the Pacific region; and there is now virtually no
Hispanic/white pollution gap in the West South Central region. But otherwise the
basic pattern of results for Hispanics and whites differs little from that found in
Table 19.1.

Model 2, which controls for the income level of the family and the level of edu-
cation of the individual householder, as well as for the year of observation, provides
some support for the racial income inequality thesis in some regions of the coun-
try but not others. Unreported coefficients show, for example, that individual-level
income and/or education are significantly and negatively associated with pollution
proximity in four regions – the New England, Mid-Atlantic, East North Central, and
South Atlantic regions. Moreover, the second column of Table 19.2 shows that in
three of these regions (New England, the Mid-Atlantic, and the South Atlantic), the
coefficients indicating the black/white pollution gap are reduced and become only
marginally significant when group differences in socioeconomic characteristics are
controlled.

But otherwise, inserting householder education and family income into the
regression equations has virtually no effect on the pattern of significant results found
in Model 1. The Hispanic coefficients and coefficient significance levels are virtually
unchanged from Model 1 to Model 2 in two of the four regions where the signif-
icance of the black coefficient declined (the Mid-Atlantic and East North Central
regions); in the other two regions where the significance of the black coefficient
declined (New England and the South Atlantic), the Hispanic coefficient is non-
significant in both Model 1 and Model 2; in the Pacific region, the only region in
which the Hispanic coefficient declined to non-significance, the p-value in Model 1
already equaled.092; and in the remaining regions, the Hispanic coefficient changes
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little from Model 1 to Model 2. Moreover, unreported regression results indicate
that inserting householder education and family income into the model has virtually
no effect on the Hispanic/black pollution gap.

Thus, model 2 suggests that the racial income inequality thesis is partially sup-
ported for blacks and whites in the New England, Mid-Atlantic, and South Atlantic
regions, unsupported for these groups in the remaining regions, and unsupported for
Hispanics and whites in all nine regions. In addition, the unreported results indicate
that the racial income inequality thesis is not supported for blacks and Hispanics in
the five regions where the Hispanic/black pollution gap was statistically significant
in model 1 (the East North Central, South Atlantic, East and West South Central,
and Mountain regions).

Prior research suggests, of course, that race/ethnic differences in pollution prox-
imity may be due to other respondent and family characteristics, such as the age
and sex of the household head. However, as shown in Model 3 of Table 19.2, con-
trolling for these characteristics has very little effect on most of the black and
Hispanic coefficients, though it does tend to reduce their magnitude, such that in
the South Atlantic region the black/white pollution gap is no longer statistically
significant. The only other notable effect of inserting householder age and sex into
the model is that the constant term for the East South Central Region is no longer
statistically significant, suggesting that in this region, white pollution proximity
is explained primarily by household characteristics that distribute whites differen-
tially across neighborhoods. Finally, adding these controls has virtually no effect
on the unreported regression model results comparing black and Hispanic pollution
outcomes.

Of course, the unequal environmental distribution of whites, Hispanics, and
blacks within regions may arise because these groups are not distributed evenly
across metropolitan areas which, in turn, vary greatly in terms of the amount of
pollution their industries produce (Downey, 2007). Model 4 examines this possibil-
ity by inserting a variable for the average tract-level proximate industrial pollution
value in each respondent’s metropolitan area.

After including this control, the black coefficients in New England and the West
South Central region become non-significant and marginally significant respec-
tively, suggesting that even after controlling for age, sex, education, and income,
blacks in these regions still live in more polluted metropolitan areas than do their
white counterparts. In contrast, controlling for metropolitan area pollution levels
increases the statistical significance of the positive black coefficient in the Mid-
Atlantic region, reduces the magnitude of the significant negative black coefficient
in the Mountain region by approximately one-third, and increases the size of the
significant positive Hispanic coefficients in the West North Central and Mountain
regions by more than one-third. Moreover, controlling for metropolitan area pollu-
tion levels has little effect on the size and significance of the Hispanic coefficient in
the Mid-Atlantic region or the black coefficients in the West North Central and East
South Central regions.

This suggests that after controlling for age, sex, education, and income, blacks
in the Mid-Atlantic and Mountain regions, and Hispanics in the West North Central
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and Mountain regions, live in less, not more, polluted metropolitan areas than do
their white counterparts. It also suggests that net of these controls, Hispanics in the
Mid-Atlantic region and blacks in the West North Central and East South Central
regions live in similarly polluted metropolitan areas as their white counterparts.

The effect of metropolitan area pollution levels on the black/Hispanic pollution
gap is also region-specific, with unreported results suggesting that net of individual-
and family-level characteristics, Hispanics live in less polluted metropolitan areas
than do blacks in the South Atlantic, East South Central, and West South Central
regions, and in similarly polluted metropolitan areas as blacks in the remaining
regions. As a result, after controlling for metropolitan area pollution levels, the black
pollution disadvantage (relative to Hispanics) decreases in the South Atlantic and
West South Central regions and becomes non-significant in the South Atlantic and
East South Central regions.

Thus, like the preceding Models, Model 4 suggests that not only do environmen-
tal inequality outcomes vary significantly across regions of the country, so too do
the factors that explain these outcomes.

But perhaps the most notable finding from Table 19.2 is that even after con-
trolling for group differences in sociodemographic characteristics and the uneven
distribution of pollution across metropolitan areas, there still remain significant
racial and ethnic differences in proximate industrial pollution at the household level.
Specifically, in four regions – the Mid-Atlantic, East North Central, West North
Central, and Mountain – Hispanic householders still face significantly higher levels
of neighborhood pollution than do their white counterparts even after controlling
for these factors. Thus, these differences cannot be attributed to group differences in
income, education, or other factors typically associated with residential attainment.
Similarly, while black householders in the Mountain region (an admittedly small
population) continue to face a slight but statistically significant pollution-proximity
advantage relative to whites after controlling for these factors, black household-
ers in five of the nine regions (the Mid-Atlantic, East North Central, West North
Central, East South Central, and West South Central) face higher levels of pollution
proximity relative to similarly positioned whites.

Thus, consistent with the racial discrimination thesis, race remains an impor-
tant determinant of access to low-pollution neighborhoods in several regions of
the United States even after controlling for other theoretically relevant factors.
Nevertheless, the magnitude and nature of environmental racial stratification, as well
as the role that race, income and other household and metropolitan characteristics
play in shaping this stratification, varies in important ways across the nine regions
of the country.

19.6 Conclusion

The findings reported in this chapter differ from those reported in prior environmen-
tal inequality research because this is the first study ever to compare environmental
inequality outcomes across different regions of the country, and one of only two
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environmental inequality studies to employ PSID data and distance decay proxim-
ity indicators (the other study is Crowder and Downey, 2010). Thus, while several
studies have found persistent associations between levels of pollution and concen-
trations of racial and ethnic minority populations at the neighborhood level, this
study highlights the existence of racial/ethnic disparities in pollution proximity at
the household level that persist after controlling for family income, householder
education, and other factors affecting residential attainment. Moreover, this is the
first study to show that these micro-level patterns of environmental inequality and
the factors shaping them vary across regions of the country.

With the exception of Crowder and Downey (forthcoming in, 2010), this is also
the only environmental inequality study that we are aware of that is able to directly
test the individual- and household-level predictions made by the racial discrimina-
tion and racial income inequality theses. As a result, this is the first study ever to
demonstrate that these theoretical models receive support in some regions of the
country but not others.

Because this study is so unique, it has several potentially important (and fairly
specific) implications for environmental inequality and health disparities research.
First, the regional variation in overall and race-specific pollution proximity levels
highlighted in Table 19.1 suggests that the public health implications of pollution
proximity will be more serious in some regions of the country than others. Second,
regional differences in the existence and magnitude of environmental racial inequal-
ity, as well as in the hierarchy of environmental burden among race/ethnic groups,
suggest that the role that environmental inequality plays in shaping racial health
disparities is also likely to vary greatly across regions, with the effect negligible
for some groups in some regions and possibly highly significant for some groups
in some regions. Third, regional variation in the ability of theoretical models and
theoretically relevant predictors to explain racial differences in pollution proximity
suggests that solutions to pollution-based racial health disparities will likewise vary
across regions of the country.

Of course, further research is necessary to confirm these results. For example, our
findings might have differed if we had examined a different type of environmental
hazard, employed pollution concentration or exposure data, used a different set of
distance decay equations to estimate pollution proximity, or defined the regions of
the US according to a different classification scheme than that provided by the US
Census Bureau.

Nevertheless, this study strongly suggests that environmental inequality and pub-
lic health researchers need to take regional variation into account when developing
and testing theoretical models of the relationship between environmental inequality
and racial health disparities.

This study also demonstrates some of the important advantages of using GIS to
estimate pollution proximity. Specifically, by employing a relatively low cost GIS
technique (in terms of both time and money) that provides more accurate pollution
proximity estimates than those typically found in the literature, this study illustrates
how researchers can use GIS to estimate neighborhood environmental quality over
large geographic areas for an extended period of years. This is important because as
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previously noted, there are only a limited number of national pollution concentration
or exposure datasets, such datasets are very expensive and difficult to create, and
those that exist tend to be available for either a limited number of years or in a form
that is difficult for researchers to use. Moreover, it is very difficult to establish an
empirical association between health outcomes and pollution proximity or exposure
based on only 1 or 2 years of data.

However, using the kinds of GIS techniques employed in this study, researchers
can create national, longitudinal datasets that merge precise neighborhood-level pol-
lution proximity estimates with individual- and household-level sociodemographic
and health data (such as that available in the PSID). Such data can be used to (a)
track the movement, over time, of specific individuals and households into and out
of environmentally hazardous neighborhoods; (b) estimate the length of time these
individuals and households spent living in neighborhoods of varying environmental
quality; and (c) link respondent’s health data to their pollution proximity biogra-
phies. And this information, in turn, can be used to examine both the association
between environmental inequality and racial health disparities and the residential
mobility processes that likely play an important role in shaping these two racially
inequitable outcomes.

Thus, while this is only one among several GIS techniques that researchers can
use to estimate pollution proximity, and while researchers should put pressure on
the EPA to release more usable national and longitudinal pollution concentration
datasets, it should be apparent that GIS provides researchers with several important
tools for conducting environmental inequality and racial health disparities research.
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Chapter 20
Merging Satellite Measurement
with Ground-Based Air Quality
Monitoring Data to Assess Health Effects
of Fine Particulate Matter Pollution

Zhiyong Hu, Johan Liebens, and K. Ranga Rao

Abstract Geospatial technologies have been widely used in environmental health
research, including air pollution and human health. This chapter demonstrates the
potential of integrating satellite air quality measurement with ground-based PM2.5
data to explore health effects of fine particulate air pollution. This study assesses
the association of estimated PM2.5 concentration with chronic coronary heart dis-
ease (CCHD) mortality. Years 2003 and 2004 daily MODIS (Moderate Resolution
Imaging Spectrometer) Level 2 AOD images were collated with US EPA PM2.5
data covering the conterminous USA. Pearson’s correlation analysis and geograph-
ically weighted regression (GWR) found that the relationship between PM2.5 and
AOD is not spatially consistent across the conterminous states. GWR predicts well
in the east and poorly in the west. The GWR model was used to derive a PM2.5 grid
surface for the eastern US (RMSE = 1.67 μg/m3). A Bayesian hierarchical model
found that areas with higher values of PM2.5 show high rates of CCHD mortal-
ity: βPM2.5= 0.802, posterior 95% Bayesian credible interval (CI) = (0.386, 1.225).
Aerosol remote sensing and GIS spatial analyses and modelling could help fill per-
vasive data gaps in ground-based air quality monitoring that impede efforts to study
air pollution and protect public health.

Keywords Remote sensing · GIS · Aerosol optical depth · MODIS · Particulate
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List of Abbreviations

AIC Akaike Information Criterion
AOD Aerosol optical depth
AQS Air Quality System
BUGS Bayesian inference using Gibbs sampling
CAR Conditional auto-regression
CCHD Chronic coronary heart disease

Z. Hu (B)
Department of Environmental Studies, University of West Florida, Pensacola, FL 32514, USA
e-mail: zhu@uwf.edu

395J.A. Maantay, S. McLafferty (eds.), Geospatial Analysis of Environmental Health,
Geotechnologies and the Environment 4, DOI 10.1007/978-94-007-0329-2_20,
C© Springer Science+Business Media B.V. 2011



396 Z. Hu et al.

EPA Environmental Protection Agency
GOES Geostationary Operational Environmental Satellite
GWR Geographically weighted regression
ICD-10 International Classification of Disease, 10th Revision
LIDAR Light detection and ranging
MCMC Markov chain Monte Carlo
MODIS Moderate Resolution Imaging Spectrometer
PM Particulate matter
SMR Standardized morbidity/mortality rate
USGS US Geological Survey

20.1 Introduction

Geospatial technologies have been widely used in environmental health research,
including air pollution and human health. This chapter demonstrates the poten-
tial of integrating satellite air quality measurement with ground-based PM2.5 data
to explore health effects of fine particulate air pollution. To this end, a suite of
geospatial technologies has been used in a geographic information system (GIS)
environment which provides a framework for integrating layers of spatially refer-
enced air pollution and health data, analyzing the data to reveal spatial patterns, and
modelling the spatial relationship between environment and health.

Air pollution epidemiological studies often rely on ambient observations from
pollution monitoring sites to provide metrics of exposure. Methods of exposure
assessment in those studies include averaging multiple monitors within each enu-
meration unit or study site (Klot et al., 2005; Murakami and Ono, 2006; Zanobetti
and Schwartz, 2005), assigning the exposure value of the nearest monitor to
each case/control (Mille et al., 2007; Peters et al., 2001) and spatial interpo-
lation/modelling methods (Maheswaran et al., 2005). Such ground monitoring
data lack spatially complete coverage. Ground monitors are rare in rural areas.
Assessment of the exposure to air pollution using in situ observations is hampered
by the sparse and unbalanced spatial distribution of the monitors.

The repetitive and broad-area coverage of satellites may allow atmospheric
remote sensing to offer a unique opportunity to monitor air quality at continental,
national and regional scales. Recent studies have established quantitative relation-
ships between satellite derived aerosol optical depth (AOD), which describes the
mass of aerosols in an atmospheric column, and fine particulate matter (particles
smaller than 2.5 μm, PM2.5) using linear regression models (Kumar et al., 2007;
Liu et al., 2007; Schafer et al., 2008; van Donkelaar et al., 2006; Vidot et al.,
2007). Except in long-range dust or pollution transport events, AOD is dominated
by near-surface emissions sources (Seinfeld and Pandis, 1998). AOD retrieved at
visible wavelengths is most sensitive to particles between 0.1 and 2 μm (Kahn
et al., 1998). Several studies have merged AOD with ground PM2.5 measurements to
derive PM2.5 surfaces (Apituley et al., 2008; Helix-Atlanta, 2009; Liu et al., 2009).
A study in a region centered in Massachusetts (Liu et al., 2009) examined the
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benefits of using AOD retrieved by the Geostationary Operational Environmental
Satellite (GOES) in conjunction with land use and meteorological information to
estimate ground-level PM2.5 concentrations. Another project (Helix-Atlanta, 2009)
combined MODIS (Moderate Resolution Imaging Spectrometer) AOD data with
US EPA PM2.5 data to estimate a PM2.5 surface in Atlanta, Georgia. Existing studies
estimating PM2.5 surfaces using AOD data use uniform linear relationships between
AOD and PM2.5. However, studies have found that the correlation between PM2.5
and AOD is not spatially consistent (Engel-Cox et al., 2004) due to variation in
terrain, land cover, selection of aerosol model in the AOD retrieval algorithm and
meteorological factors such as mixing height.

Numerous epidemiological studies indicate that exposure to PM2.5 is associated
with asthma, respiratory infections, lung cancer, cardiovascular problems, and pre-
mature death (Anderson et al., 2003; Hu et al., 2008; Peters et al., 2001; Pope,
2000; Zanobetti and Schwartz, 2005). A few studies have examined coronary heart
disease, finding evidence for acute effects on mortality and hospital admissions (Le
Tertre et al., 2002; Poloniecki et al., 1997; Schwartz, 2000). Recently, attention has
focused on whether there is an association between chronic exposure to air pollu-
tion and coronary heart disease (Maheswaran et al., 2005). An ecological study at
the census enumeration district level found an association between nitrogen oxides,
and to a lesser extent particulate matter (PM10) and carbon monoxide, and coronary
heart disease mortality in Sheffield, UK (Maheswaran et al., 2005).

This chapter assesses the association between PM2.5 and chronic coronary heart
disease (CCHD). The study quantitatively examines the relationship between PM2.5
ground measurements and MODIS AOD data in the conterminous USA using
Pearson’s correlation analysis and geographically weighted regression (GWR). For
the region with high correlations, the GWR model was used to calculate a PM2.5 sur-
face based on the AOD data and the spatially varying relationships between PM2.5
and AOD. A Bayesian hierarchical model was used to link PM2.5 with CCHD.

20.2 Methods

20.2.1 MODIS Data

The MODIS sensor flies on polar-orbiting and sun-synchronous Terra and Aqua
satellites. MODIS performs measurements in the visible to thermal infrared spec-
trum region. The MODIS sensor was expected to be the key for monitoring global
aerosol properties. Not only have MODIS aerosol products been used to answer
scientific questions about radiation and climate, they are being used for applica-
tions not previously intended, including monitoring surface air quality for health
(Al-Saadi et al., 2005; Chu et al., 2003; Gupta et al., 2006; Hutchison, 2003;
Hutchison et al., 2005).

One of the fundamental aerosol products from MODIS is spectral AOD. MODIS
files are produced every day at a spatial resolution of 10 × 10 km (at nadir).
To retrieve aerosol information, the aerosol retrieval algorithm makes use of seven
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wavelength bands (channels 1–7) and a number of other bands to help with
cloud rejection and other screening procedures. Different dynamic aerosol mod-
els (biomass burning, dust aerosol, and aerosol from industrial/urban origin) are
used to determine the aerosol optical properties used in the algorithm for differ-
ent areas of the US. For the eastern US, the urban/industrial aerosol model is used
while the biomass burning/dust model is used in the west. The splitting line is at
approximately –100◦ longitude.

Daily level 2 MODIS data (2003–2004) were obtained from the NASA
Level 1 and Atmosphere Archive and Distribution System (LAADS Web). Using
a map algebra function in a GIS environmental, a 2-year average AOD raster data
layer (10 km by 10 km grid) was calculated. Data from both Terra and Aqua satel-
lites were used. MODIS AOD data are not available every day due to cloud cover.
Data for cold seasons (October to March) were not used since cloud cover, snow
reflectivity, and diminished vertical mixing all reduce the accuracy of ground-level
pollutant levels measured in winter. During warm seasons, vertical columns in the
atmosphere are more integrated. AOD measures correlate best with ground-based
monitoring in warm months, likely because of stronger boundary layer mixing
during the warmer months (Tinkle et al., 2007).

20.2.2 Associations Between AOD and Ground PM2.5

To determine if AOD measurements accurately reflect ground PM2.5 levels, we
examined correlations between AOD levels and corresponding ground PM measure-
ments. PM2.5 ground data was obtained from US EPA Air Quality System (AQS)
online Data Mart (US EPA). There were 877 monitoring sites for the contermi-
nous US. PM2.5 data was collated with AOD both temporally and spatially. For
each MODIS AOD image scene and each monitor within the scene, a PM2.5 mea-
surement within 1 h of the imaging time was assigned to the pixel containing the
monitor using a GIS spatial join function. Pearson’s correlation coefficient was cal-
culated for each monitoring site. The Pearson’s correlation analysis examined the
temporal relationship between PM2.5 and AOD for each site. The relationship shows
how AOD changes as PM2.5 changes over time at a sampling site.

A geographically weighted regression (GWR) model was also fitted to examine
the relationship between PM2.5 (dependent variable) and AOD (independent vari-
able) using the 2-year average PM2.5 and AOD values. GWR is a local form of
regression modelling used to model spatially varying relationships among variables
(Fotheringham et al., 2002). GWR is one of several spatial regression techniques,
increasingly used in geography and other disciplines. GWR involves fitting a regres-
sion equation to every feature in the dataset based on data within a local “window”
of the feature. Values of the dependent and explanatory variables of features falling
within the kernel window are used in estimating the local regression equation. GWR
accounts for the effect of local spatial autocorrelation which occurs when the val-
ues for a particular explanatory variable cluster spatially. GWR creates coefficient
raster surfaces for the model intercept and coefficients for each explanatory variable.
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In this study, GWR analyzed the spatially varying relationship between 2-year mean
AOD and mean PM2.5. GWR revealed how the relationship between AOD and
PM2.5 changes across the space. In this study, a fixed kernel was used to fit the
regression. The bandwidth (kernel radius) value was chosen by using the corrected
Akaike Information Criterion (AICc). To account for varying number of air quality
monitors in different areas, spatial weights were applied to individual monitoring
sites so that places with more samples are weighted higher.

The GWR model was used to estimate PM2.5 values across the study area based
on AOD measurements. Using map algebraic function in a GIS environment, Local
AOD values were substituted into the local regression equation to compute the pre-
dicted PM2.5 level yielding a surface of PM2.5 values. The accuracy of the estimated
PM2.5 surface was assessed using a “bootstrapping” (or “leave-one-out”) proce-
dure. The procedure was developed using ArcGIS 9.1 ArcObjects and Arc Macro
Language (AML). The procedure omitted one observation, fit GWR and calculated
a 2-year average PM2.5 surface using N-1 observations, then compared the value
of the surface at the location of the omitted observation with the observed 2-year
average PM2.5 value. A root mean square error (RMSE) was calculated after the
process was repeated for all observations.

20.2.3 Health Outcomes Data

Health outcomes (CCHD) data at the county level were extracted for the period
from 2003 to 2004 from the National Center for Health Statistics Compressed
Mortality File 1999–2005 in the CDC WONDER online database (US CDC, 2008).
CCHD was defined by the International Classification of Disease version 10 codes:
I25.0–I25.6, I25.8, and I25.9. CCHD count and population at risk were retrieved
by county, race (White, Black or African-American, Other race) and age. CCHD
data has age groups at 5 year intervals from 1–4 to 85+. Aggregated CCHD mortal-
ity count and population at risk were also retrieved by race and age groups for the
whole focused study area to be used in calculating mortality rates by age and race.

Race and age adjusted rates were calculated using indirect standardization
(Mausner and Kramer, 1985) for each county. Rate adjustment is a technique for
removing the effects of race and age from crude rates, so as to allow meaningful
comparisons across populations with different underlying race and age structures.
An internal standard population (a super-population containing the counties in the
eastern US) was used to standardize rates. The indirect standardization first cal-
culated expected number of CCHD for each county. The calculated count is the
number of cases that would be expected in the county if people in the county died
from CCHD at the same rate as people in the standard population. Standardized mor-
tality rates (SMRs) were calculated by dividing the observed count by the expected
value.

According to Curtin and Klein (1995), one of the problems with rate adjust-
ment is that rates based on small numbers of deaths will exhibit a large amount
of random variation. In the aggregate CCHD mortality count and population data
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set, observed counts of twenty or less were flagged as statistically “unreliable”.
CCHD counts were “suppressed” when the data meets the criteria for confidential-
ity constraints. CCHD counts for counties with census year populations of less than
100,000 were replaced with “suppressed” if the number of cases is five or less and
the count is based on only 1 or 2 years of data. All unreliable and suppressed data
were not used in calculating standardized rates and spatial analysis and modelling
thereafter.

20.2.4 Calculating County Average PM2.5 for Ecological
Modelling of Health Effects

To link health outcomes with air pollution, the 2003–2004 mean PM2.5 raster grid
surface calculated using the GWR model was first resampled so that each 10 km
by 10 km grid cell was subdivided into 10 by 10 smaller cells retaining the orig-
inal PM2.5 values. The purpose of the resampling procedure was to divide 10 km
cells located on county boundaries into separate parts for neighbouring counties to
achieve higher accuracy in calculating county average PM2.5. The resampled PM2.5
grid was then overlaid with the health outcome maps. A GIS zonal statistical func-
tion was used to calculate the mean PM2.5 value for each county. The mean PM2.5
value was calculated by averaging PM2.5 values of all cells whose centroids are
within the county.

20.2.5 Bayesian Hierarchical Modelling of CCHD and PM2.5

A Bayesian hierarchical model was used to explore the association between CCHD
mortality and PM2.5. Simulation-based algorithms for Bayesian inference allow us
to fit very complicated hierarchical models, including those with spatially correlated
random effects. The following model was fitted allowing a convolution prior for the
random effects:

Oi ∼ Poisson(μi) (20.1)

logμi = log Ei + β0 + β1PM2.5 + bi + hi (20.2)

where i is the index for a county, O is observed CCHD death count, E is expected
death count reflecting race-age-standardized values. For model specification, an
improper (flat) prior for the intercept parameter β0 and a uniform prior distribu-
tion for the fixed-effect parameters (β1) were assumed. By fixed effect we mean
it applies equally to all the counties. Two sets of county-specific random effects
were included in the model. The first set bi is a spatially structured random effect
assigned an intrinsic Gaussian conditional auto-regression (CAR) prior distribution
(Besag et al., 1991). The second set of random effects hi is assigned an exchange-
able (non-spatial) normal prior. The random effect for each county is thus the sum
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of a spatially structured component bi and an unstructured component hi. This
is termed a convolution prior (Besag et al., 1991; Mollie, 1986). The model is
more flexible than assuming only CAR random effects, since it allows the data to
decide how much of the residual disease risk is due to spatially structured variation,
and how much is unstructured over-dispersion. To complete the model specifica-
tion, conjugate inverse-gamma prior distributions were assigned to the variance
parameters associated with the exchangeable and/or CAR priors. The Markov chain
Monte Carlo (MCMC) simulation computation technique and Gibbs sampling algo-
rithm were used to fit the Bayesian model. Summaries of the post-convergence
MCMC samples provide posterior inference for model parameters. The result of
such analysis is the posterior distribution of an intensity function with covariate
effects.

The model was fitted using the WinBUGS software – an interactive Windows ver-
sion of the BUGS (Bayesian inference Using Gibbs Sampling) program for Bayesian
analysis of complex statistical models using MCMC techniques (Lunn et al., 2000).
A queen’s case spatial adjacency matrix (wij = 1 when county i and j share a
boundary or a vertice, wij = 0 otherwise) that is required as input for the condi-
tional autoregressive distribution was created using the Adjacency for WinBUGS
Tool developed by the Upper Midwest Environmental Sciences Center of the US
Geological Survey (USGS).

20.3 Results

20.3.1 Pearson’s Correlation and GWR

The average correlation between PM2.5 measured at fly-over time and AOD is 0.67
to east of the –100◦ longitude line and 0.22 to the west. Of the 20 monitoring sites
with top significant correlations (r > 0.8, p < 0.05), 18 are located east of the –100◦
longitude line.

Results from the GWR using the 2-year average PM2.5 and AOD values show that
all the monitoring sites have a condition number less than 30. The condition num-
ber evaluates local collinearity. In the presence of strong local collinearity, results
become unstable. Results associated with condition numbers larger than 30 may be
unreliable. Figure 20.1 shows a map of local R square. R2 values range between
0.0 and 1.0 and indicate how well the local regression model fits observed PM2.5
values. Very low values indicate the local model is performing poorly. It can be
seen that GWR generally predicts well in the eastern USA and poorly in the west.
Figure 20.2 shows the coefficient raster surface for the explanatory variable AOD.
The map exhibits regional variation in the explanatory variable. The relationship
between PM2.5 and AOD is not spatially consistent (stationary) across the con-
terminous states. Like Pearson’s correlation, AOD coefficient values are higher in
the eastern USA, while values in the west are generally lower. Even negative val-
ues are found in part of the western region. The Pearson’s correlation and GWR
analyses revealed that it is appropriate to estimate a PM2.5 surface using AOD for
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Fig. 20.1 Local R square of geographically weighted regression

Fig. 20.2 Coefficient raster surface for AOD from geographically weighted regression of PM2.5
against AOD

disease modelling for the region to the east of –100◦ longitude. Application of the
GWR model to the 2-year mean AOD raster resulted in a continuous PM2.5 surface
(Fig. 20.3) with a RMSE of 1.67 μg/m3. Compared to the average PM2.5 value of
10.18 μg/m3 for all the monitors in the east (PM2.5 min= 3.71 μg/m3, PM2.5 max =
26.77 μg/m3, standard deviation = 3.25 μg/m3), the PM2.5 estimation achieved an
accuracy of 84%.
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Fig. 20.3 PM2.5 surface calculated by merging MODIS AOD and EPA PM2.5 ground measure-
ments

20.3.2 Bayesian Model of CCHD SMR and PM2.5

Modelling of health outcomes and PM2.5 was focused on the east region where
AOD and ground PM2.5 measurements were most strongly correlated. The number
of counties to the east of the –100◦ longitude is 2,506. With 200 counties which
have suppressed or unreliable data omitted from the analysis, the number of data
points (counties) in the Bayesian modelling is 2,306. Table 20.1 provides the esti-
mated posterior mean, median, and associated 95% credible set for each of the fixed
effects. A 95% credible set defines an interval having a 0.95 posterior probability
of containing the parameter of interest. Standard deviations and Monte Carlo (MC)
errors were calculated to assess the accuracy of the simulation. As a rule of thumb,
the simulation should be run until the Monte Carlo error for each parameter of inter-
est is less than about 5% of the sample standard deviation. The MC errors calculated
from iterations 60,001 to 80,000 for both parameters are less than 5% of the corre-
sponding standard deviations, suggesting an accurate estimate for each parameter.
The result in Table 20.1 shows an association between PM2.5 pollution and CCHD.
The 95% credible set covers positive values: βPM2.5= 0.802, CI = (0.386, 1.225).
The positive boundary values of the CI indicate that areas with higher values of
PM2.5 also show high rates of CCHD mortality.

Table 20.1 Results of Bayesian hierarchical modellinga

Fixed effects Posterior mean
Posterior
median

Standard
deviation MC error 95% credible set

β0 0.264 0.273 0.064 0.003 (–0.366, –0.117)
β1 0.802 0.812 0.223 0.010 (0.386, 1.225)

aPosterior means, medians, and 95% credible sets are based on 20,000 post-convergence iterations
(from 60,001 to 80,000). Fixed effects are: β0 – intercept, β1 – effect of PM2.5.
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20.4 Discussion and Conclusions

This chapter has demonstrated the use of a suite of geospatial technologies in air pol-
lution and public health research. The geospatial technologies range from remote
sensing of air quality, integration of data of varying sources and formats, spatial
data handling, spatial analyses, and spatial statistical modelling. Aerosol remote
sensing could help fill pervasive data gaps that impede efforts to study air pol-
lution and protect public health. The GIS’s ability to manage both attribute and
spatial data was important in joining the health outcome data to the county map and
linking it to the air pollution data. A GIS spatial join operation was used to col-
late satellite imagery with ground-based PM2.5 measurement so that AOD-PM2.5
relationships could be examined. As a spatial statistical function, the GWR model
is tightly coupled with ArcGIS, and the model directly uses integrated GIS data.
GIS made it possible to define the kernel and spatial weights for running the GWR
model. Map algebra functions in a GIS environmental were adopted to calculate
the 2-year average AOD raster data layer and the PM2.5 surface using the AOD
data and the GWR model. The GIS zonal statistical function was used to calcu-
late the mean PM2.5 value for each county. The bootstrapping procedure developed
using ArcGIS 9.1 ArcObjects and Arc Macro Language (AML) demonstrates how
repetitive tasks can be easily implemented by using GIS’ customized programming
capability.

The Pearson’s correlation and GWR analyses found that the relationship between
PM2.5 and MODIS AOD is not spatially consistent across the conterminous states.
In the west AOD poorly correlates with PM2.5. The east region exhibits high positive
correlations between PM2.5 and AOD, and a PM2.5 surface can be estimated using
AOD data for assessment of PM2.5’s effect on disease. The difference in correla-
tion is likely due to differences in terrain, the AOD retrieval algorithm (Engel-Cox
et al., 2004) and meteorological conditions. The algorithm is based on dark sur-
face pixels and contains assumptions about the types of pollutants and the terrain
(Remer et al., 2006). The lower correlations in the more arid parts of the west-
ern US reflect the higher surface reflectance which reduces contrasts and the fact
that the model assumes more dust and smoke than typically exists in the west.
The MODIS aerosol retrieval algorithm uses the urban/industrial aerosol model
for eastern USA and other densely populated regions, such as Western Europe and
eastern China (Remer et al., 2005). Urban – industrial aerosols are mainly from
fossil fuel combustion in populated industrial regions and are dominated by fine
particles. The positive relationship in the east is likely to exist in other regions of
the world where the aerosol retrieval algorithm uses the urban/industrial aerosol
model. The inherent differences in the datasets may also explain some of the
geographic variation in association (Engel-Cox et al., 2004). MODIS AOD mea-
sures aerosol scattering in a total column from ground to satellite while EPA PM
monitors measure a size-based subset of PM in the boundary layer in a specific
location.

The Bayesian model found a spatial association between age-race-standardized
mortality rate of chronic coronary heart disease and PM2.5. There is an excess risk of
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CCHD mortality in areas with high PM2.5 levels. Fine aerosol particles tend to pene-
trate into the gas-exchange regions of the lung, and ultrafine particles are able to pass
through the lungs to enter the blood circulation and affect other organs (Nemmar
et al., 2002). Studies indicate that PM2.5 leads to high plaque deposits in arteries,
causing vascular inflammation and atherosclerosis – a hardening of the arteries that
reduces elasticity, which can lead to heart attacks and other cardiovascular problems
(Pope et al., 2002; Suwa et al., 2002). The associations between CCHD mortality
and PM2.5 revealed by the ecological models can be taken as indicative (though
not necessarily causative) of a potential air pollution effect. The associations call
for further toxicological studies to investigate the biological mechanisms by which
fine particulate air pollution adversely affects CCHD. The evidence of elevated inci-
dence of CCHD mortality risks in high pollution areas would support targeting of
policy interventions in such areas to reduce pollution levels.

The study calculated a PM2.5 surface by merging satellite derived AOD with
ground measurements using GWR. To our knowledge, no applications of satellite
remote sensing data in spatial modeling of regional PM2.5 concentrations have con-
sidered spatially varying relationships. Existing studies often use a uniform linear
relationship to estimate PM2.5 using AOD (Helix-Atlanta, 2009; Kumar et al., 2007;
Liu et al., 2007). While the uniform relationship could apply to a smaller region
such as a metropolitan area, it might not work for a larger region such as the eastern
US. The MODIS aerosol data lends itself to population-based exposure assessment
and the ecological approach. Moderate resolution satellite image pixels and disease
data enumeration districts are both area features and thus can easily be compared.
Derivation of a continuous PM2.5 surface using AOD alleviates the challenges of
comparing discrete point monitoring data with area-aggregated disease data. A con-
tinuous PM2.5 surface accounting for spatially-varying correlations between AOD
and ground measurements better represents exposure than one based on a single
global correlation.

There are also several limitations to this study. First, the use of aggregated data
means that inferences cannot be directly transferred to the individual level. An inher-
ent limitation of an ecological study is that it uses aggregate data and does not
incorporate individual information. This ecological study also suffers the modifi-
able areal unit problem. Second, the correlation and GWR analyses did not account
for meteorological parameters (such as mixing height, relative humidity, air temper-
ature, and wind speed), aerosol vertical distribution, and aerosol properties. Those
parameters could also modify the relationship between AOD and PM2.5 concentra-
tions, as shown by existing research (van Donkelaar et al., 2006; Liu et al., 2009).
Third, the study estimated an ambient PM2.5 surface to assess the association of
fine particulate air pollution with county-level rates for CCHD. However, ambient
concentrations do not necessarily represent actual individual exposures, which can
be influenced by the infiltration of ambient pollution into indoor facilities (such
as automobiles, homes, schools, and work places) and the activity of individuals
(such as outdoor exercise, walking, commuting, etc.). This population-based eco-
logical analysis also did not consider population dynamics, for example, population
migration.
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Furthermore, the use of county-scale health indicators is problematic in that
county populations vary significantly in socio-economic characteristics and envi-
ronmental exposures. Other social-economic variables known to influence CCHD
risk have not been controlled in this study. Last, it must be noted that there are
limitations of AOD data. AOD is a quantitative measure of total column aerosol,
which is the mass of aerosols within a measured column extending from Earth to
the satellite sensor. AOD does not correlate well with PM2.5 during cold seasons.
This study used warm season AOD data but the disease data covered all seasons.
In addition, AOD does not differentiate between fine and course particles. Ideally,
fine-mode optical depth should be used for the health effect assessment because fine
mode particles which dominate urban/industrial pollution are thought to cause the
most severe health problems. However, land-based measures of fine-mode fraction
of AOD can only be used as a qualitative indicator of whether AOD values are dom-
inated by natural or anthropogenic emissions (Remer et al., 2006). Additionally,
AOD does not specify the location of aerosols within a column and the AOD val-
ues do not necessarily represent ground conditions. Long-range dust or pollution
transport events can contribute PM25 in the column well above ground level. This
lack of vertical information emphasizes the importance of combining the satellite
image with vertical profiles. Emerging Light Detection and Ranging (LIDAR) sys-
tems could provide vertical resolution for AOD and quantify pollutant levels on the
ground.
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Chapter 21
Poverty Determinants of Acute Respiratory
Infections in the Mapuche Population of Ninth
Region of Araucanía, Chile (2000–2005): A
Bayesian Approach with Time-Space Modeling

Flavio Rojas

Abstract This chapter highlights the relationship between poverty and disease
among Mapuche indigenous peoples vis-à-vis the local population and ultimately,
tests comparative differentials in mortality rates. First of all, we offer an overview
of the destitute poverty in which Mapuche live and the consistency among all mea-
surements including Census data, educational achievement scores and vulnerability
index from school children. Although aggregate information gives a valuable and
fair description of the problem, additional tests and GIS-based maps highlight the
internal structures of inequalities among neighborhoods and the sharp territorial
contrasts between Mapuche and non-Mapuche living conditions. GIS-based poverty
maps display the territorial distributions of deprivation, whereas specific clusters of
diseases are tested to verify whether such configurations are random or spatially
dependent. Tobbler’s “first law of geography” is discussed and eventually tested in
this section. Since the study data is longitudinal, test for autocorrelation is intro-
duced with Bayesian time-space modelling. Conclusively, Mapuche people die at
higher rates than non-Mapuches as well as show significantly higher rates of dis-
ease. Consistently, this ethnic group also represents the most impoverished and
marginalized one of Chilean society, both at regional and national levels.

Keywords Mapuche-Chile · Poverty-based disease · GIS-maps · Tobbler’s first
law of geography · Indigenous peoples · Deprivation and epidemiological
maps · Bayesian time-space models
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CASEN Caracterización Socio-económica Nacional (National Socio-
Economic Characterization)

CELADE Centro Latinoamericano de Demografía (United Nations Center
for Latin American Demography)

C.I. Coefficient of Interval
FPS Ficha de Protección Social (Social Protection Records)
GLMM General Linear Mixed Models
ICD-10 International Code for Diseases, Version 10
ILPES Instituto Latinoamericano y del Caribe de Planificación

Economica y Social (Latin American and Caribbean Institute of
Economic and Social Planning)

INE Instituto Nacional de Estadísticas (National Institute of
Statistics)

JUNAEB Junta Nacional de Auxilio Escolar y Becas (National School
Assistance and Scholarship. Board)

MAUP Modifiable Area Unit Problem
MIDEPLAN Ministerio de Planificación (Ministry of Planning)
MINEDUC Ministerio de Educación (Ministry of Education)
MINSAL Ministerio de Salud (Ministry of Health)
PROC MEANS Procedure Means
REDATAM Recuperación de Datos de Areas Pequeñas por Microcomputador

(Microcomputer Based System for Small Area Data Retrieval)
RR Relative Risk
RUT Rol Unico Tributario (Unique Tax Roster)
SIMCE Sistema Nacional de Medición de la Calidad de la Educación

(National System for Measurment the Quality of Education)
SMR Standardized Morbidity Rates or Standardized Mortality Rates.

21.1 Introduction

This chapter concerns health inequalities in rates of respiratory infectious diseases
affecting the Mapuche population of Araucanía Region, Chile. Only very recently
has it been possible to obtain a count of Chile’s largest ethnic population, and only
very recently are there medical records to establish the ethnicity of patient popu-
lations accessing the hospital system. In this way, the present study has brought
out from the closet an important, yet historically neglected segment of the Chilean
population: the Mapuche People.

Differing perspectives have been taken to study this ethnic group. For many
years anthropologists and historians alone offered exclusive accounts of the long
and fierce struggles of these people to preserve their identity. Never conquered by
the Spanish Conquistador and never subjugated by the Inca Empire, the Mapuche
People remained free and autonomous until 1875, when the Chilean army invaded
their territories in the so called “Pacification of Araucanía”. Their bravery however,
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proved no match when ultimately fighting against a well organized army which only
a few years later would defeat Peru and Bolivia in a bloody war (1879–1884).

The Chilean nationally awarded (1992) historian, Sergio Villalobos, proposed a
controversial thesis of the “assimilation” of Mapuches to the predominant Chilean
society. Assimilation implied willingness from within Mapuches as well as the
results of frontier contacts, bribes from the Spanish Conquistador, trading (loot-
ing) and “sexual contact” on both sides leading to racially mixed offspring –the
mestizo (Villalobos, 1995). From this viewpoint, there would be “no ancestral
rights” (Villalobos, 2000) and no true Mapuche identities today. Mapuches or
“Araucanos” as he calls them “are not indigenous peoples but racially mixed mesti-
zos just like anybody else in Chile”. Therefore there would be no “historical debts”
of Chilean society with them (Villalobos, 2009). At a time when Mapuche leaders
are presenting a lawsuit for defamation before the Chilean Justice system against
Villalobos, the chapter questions Villalobos’ assimilation thesis by means of its
empirical research concerning environmental poverty-related issues. First of all, this
study operationally distinguishes Mapuche people as an ethnically distinct group
by using the Population Census’ “self-definitions of ethnic belonging” and by the
use of individual (persons) ancestral surnames from Hospital Discharge Records.
Secondly this study applies a statistical framework with the goal of testing poverty
attributes across individuals’ above-defined ethnicity and via aggregates, specifi-
cally geographic clusters of poverty. Finally, this chapter analyzes whether such
poverty aggregates are linked to disproportionally higher rates of respiratory infec-
tions and mortality burden among Mapuche vis-à-vis the rest of the population. Such
empirical findings and the statistical testing of ethnic inequalities in morbidity and
mortality rates may provide initial evidence to think of Mapuches as an indigenous
population unable to reproduce itself and doomed to perish rather than a population
in a continuous process of “assimilation” as proposed by Villalobos.

Intrinsically joined to this population analysis is the concept of randomness. If
one ethnic group displays comparatively higher risks of disease and mortality than
the other, it is necessary to test statistically whether these events are random or actu-
ally reveal historical and geographic (or both) patterns across-time. It is reasonable
not only to test for a covariate, (in this case, poverty) to evaluate possible statisti-
cal associations between respiratory infections and material deprivation, but such
a probe should also rule out (adjust) for other confounding factors as geographical
(spatial) proximity and time.

Finally, Bayesian methods for disease mapping are incorporated as a way to
address all the above together and simultaneously while keeping rate estimates
and relative risk stable across time. See further elaboration of these terms in the
Methods Section 21.2.2. Multilevel methods to fit clustered data visualized by GIS
are employed here to provide estimates of Comunas, or counties, displaying race-
age-specific respiratory infections (spatial heterogeneity). Time-frames for these
events are analyzed using a nested model where hierarchical specification is applied
to each year of data separately (Leyland and Goldstein, 2001). This Bayesian
methodological strategy constitutes an alternative to that performed in a previous
investigation by Rojas (2007) based on a frequentist General Linear Mixed Model
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(GLMM) approach for cross-sectional data. Bayesian methods provide greater flex-
ibility and precision for simultaneously analyzing longitudinal and cross-sectional
spatial data. Finally, dynamic models in a Bayesian framework are used to produce
smoothness in time trends, so that estimates for any particular time could “borrow
strength” from data at adjacent times (Knorr-Held and Besag, 1998).

21.1.1 The Study Area

There is little doubt that the subject of environmental justice has provided in the
last 10 years a solid framework for understanding how certain groups of society
and subpopulations can experience disproportionate burdens of pollution, danger-
ous waste, habitat deterioration and poverty. Hazardous components such as lead in
water pipes and the presence of asbestos in house dwellings clearly link living con-
ditions to unhealthy environments. When analyzed for racial and ethnicity attributes,
there is evidence for spatial segregation which influences “the unequal distribution
of environmental risk” (Brulle and Pellow, 2006). Behind this lens, social context
and spatial segregation become intimately linked to environmental risks. Although
both are associated, the direction of causality is elusive. Does poverty lead to envi-
ronmental risk or is it the latter which results in human deprivation? The analysis of
time-sensitive data stemming from individuals and contextual factors as they affect
health outcomes over a time period allows an identification of directionality in the
associations. To overcome this complex mix, one would require extensive statistics
or costly surveys centered on individual risk behaviors.

In sum, traditionally, individual attributes have been hard to aggregate and validly
establish inferences when data has been collected at an individual level with con-
clusions made at an aggregate level. These problems may introduce ecological bias
and originate from a modifiable areal unit problem (MAUP) where the scale of data
aggregated to a particular set of districts may change if one aggregates the same
underlying data to a different set of districts (Waller and Gotway, 2004). With the
recent development of hierarchical models in biostatistics, it is now possible to inte-
grate in a simultaneous manner links between individuals and their social contexts
while adjusting for proximity and variations over time (Wakefield and Shaddick,
2006). This chapter considers poverty (material deprivation) as a contextual fac-
tor defined by a set of hierarchies ranging from individuals, to neighborhoods, to
Comunas (counties) of the Ninth Region of Araucanía, Chile. See Fig. 21.1.

Multilevel modeling allows for the exploration of individual and contextual
aspects of variation in exposure Soobaden et al., (2006; Goldstein, 2003; Leyland
and Goldstein, 2001; Subramanian and Kawachi, 2006). The Ninth Region of
Araucanía is one of 15 administrative regions of Chile comprising an area of
31.842,3 km2 (12,294.264 mi2) and with a population of 869,535 according to
the latest 2002 Population Census Instituto Nacional de Estadísticas, INE, (2002);
of that total, 204,195 or 23.4% self-declared to be of Mapuche ethnicity. In turn,
the Araucanía is administratively divided into 31 Comunas Instituto Nacional de
Estadísticas, INE, (2002a). After the Census, one Comuna (Nueva Imperial) was in
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turn subdivided and named Chol-Chol. The Comuna of Temuco, in which the cap-
ital of the Region is located, bears the largest population with 245,347 inhabitants.
In terms of poverty rates, this Region ranks second highest in the country with a
20.1% poverty rate overall compared to 13.7 % of national average; however, almost
a quarter (24.7%) of the Mapuche indigenous population is identified as impover-
ished versus 18.2% of non-Mapuches. This percentage is highest for the youngest
Mapuche age-group of under 30 years old, with 57.7% living in poverty (Ministerio
de Planificación y Cooperación, Gobierno de Chile, MIDEPLAN, 2006). Strictly
defined, every 2 years MIDEPLAN compiles poverty rates on the basis of national
surveys following “the poverty line method” MIDEPLAN, (2006b). The data
present many advantages, but do not allow for disaggregating figures beyond
municipal level.

Census data, on the other hand, are useful for providing complete counts of the
population and housing and also are helpful in describing individual attributes such
as ethnicity, age, literacy, economically active or unemployed persons and other
household-level information such as crowding, availability of piped water, electric-
ity and sewage connection, as well as quality of dwellings. A disaggregation and
combination of attributes measuring conditions in which people live establishes
the Index of Deprivation and a Basic Need Satisfaction Scale ranging from 0 (no
deprivation, all basic needs satisfied) to 1 (maximum deprivation, all basic needs
unsatisfied). These measures of deprivation have geo-spatial referents which may
be disaggregated to permit rapid tabulation for any area down to city block Conning
et al. (1989).

A third tool, Ficha CAS-2/Familia poverty assessments are used in this study
area. In many aspects these are best suited because they incude both of the two
aforementioned poverty measurement tools, but go further in-depth: (1) they pro-
vide continuous poverty levels from individual persons and families living under a
same household, but on a continuously updated basis; (2) they integrate CASEN and
Census measures and dimensions such as income, educational attainment, employ-
ment and quality of house construction, but in greater detail. Furthermore, Ficha
CAS-2/Familia poverty assessments are municipal instruments filled out by social-
workers and verified in-situ with data from families and individuals in poverty
applying for social programs. Therefore, the data are highly reliable because they
are generated by professional staff under the supervision of Municipalities and the
resulting statistics stem from the Ministry of Planning. Finally, just as the Census
Tracts, this tool can be geo-referenced at any level from individual-household level
to neighborhood units and Comuna, but with the greater advantage of possible geo-
referencing even to household/individual person level. A note: as of 2006, Ficha
CAS-2/Familia was modified; it is now called Ficha de Proteccion Social (FPS) and
includes additional variables, such as health risk and family needs (MIDEPLAN,
2006c).

Other similar disadvantaged patterns can be corroborated through educational
achievement tests. The Region displays significantly lower educational achieve-
ment rates than the rest of the country in math, science, language, social and
natural sciences (Ministerio de Educación, MINEDUC, 2007). Within the Region,
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Mapuche students have significantly lower educational achievement scores than
non-Mapuches as measured by SIMCE standardized achievement tests. In terms
of the Index of Student Vulnerability (IVE) generated by the Junta Nacional de
Auxilio Escolar y Becas (JUNAEB, 2006), Mapuche students also have higher vul-
nerability scores on average in every level of poverty compared to the same poverty
gradients of the non-Mapuche student population. IVE evaluates biometric informa-
tion such as number of dental cavities, weight/hight ratio, quality of eye vision and
socio-economic indicators such as parental education attained, family income and
employment and housing conditions JUNAEB, (2010).

Given these overall aggregate contextual attributes, one important aspect of
the study consists in employing GIS tools to analyze spatial segregation, testing
at Comuna levels whether cluster configurations of poverty pockets are linked to
Mapuche Indigenous Populations. First, there is an important element of visualiza-
tion, for which GIS-based maps are helpful particularly in their use of color contrasts
which identify cluster-like poverty configurations. Second, GIS programs incorpo-
rate formal statistical testing methods for spatial configurations or “hot-spots”(i.e.
Global Morans and Gettis-Ord). Third, in order to combine spatial modeling with
time effects GIS offers mapping capabilities that may be combined with other
Bayesian software (WinBUGS-GeoBUGS) to produce space-time estimates and
interactions which ultimately may be exported back to GIS to take advantage of
its accurate mapping capacities.

21.1.2 Use of Small Area Statistics

Employed here are small area statistics in order to identify subsets of the territory
with the goal of scrutinizing distributions and event relationships which otherwise
would be hidden from analysis. From a practical point of view, policy makers need
a way to assess targeting, they need effective monitoring, and finally, timely follow-
up based on information as disaggregated as possible geographically according to
number of incidents and on an individual level. Practical disaggregation of data from
larger geographic units to smaller units leads to some challenging methodological
issues of event data variation. Variations of observed and expected rates of diseases
in large areas with small populations and small areas with large populations may
generate unstable rates over time, so that although the standardization in some sense
yields comparability of means, the unequal base from region to region results in
unequal variances (Cressie, 1992). Thus, variances larger than the mean in count
data open up the existence of unknown, unmeasured, underlying residual variation
of risk. Count data frequently display overdispersion. Hierarchical Poisson models
have been found to be effective in capturing overdispersion (SAS Institute, 2010). In
this study, questions could be raised with respect to nested hierarchies and the extent
to which nearby observations are in fact, correlated whereas more distant events are
less related. Tobler’s “Fist law of geography” states that “everything is related to
everything else, but near things are more related than distant things” (Tobler, 2004,
1970). This first law of geography provides a fundamental tool for testing spatially
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correlated data and clustered structures and the presence of over-dispersion which
otherwise would remain hidden in the territorial aggregates. Over-dispersed data
can have serious effects on testing whether regression coefficients are zero or not
(Haining et al., 2009).

21.1.3 Spatial-Temporal Analysis

Another source of spatial autocorrelation comes not from geographical distribu-
tions of observations and the clusters which may be detected when moving from
one to another level of aggregation or across areas, but is produced by dynamic
variations over time. Unlike the simple spatial analysis described above and at one
point in time, analysis of spatial-temporal data must take into account both spa-
tial and temporal correlations (Suchindran and Rojas, 2009). Usually, when spatial
clustering is assessed by the spatial distribution of incidence within a defined time
period, or over other time frames, some evidence for the variation in spatial dis-
tribution will be lost (Lawson, 2006). In the present case, repeated measures of
poverty over the years were modeled so that more robust estimates of the relative
risks might be obtained Lawson (2006). Although the more conventional appli-
cation of logistic models employs repeated measures of the same individual over
time, here the repeated measures are applied to groups of individuals who share the
same environment (poverty exposure) over time. The focus here primarily lies on
the spatial-temporal variations of relative risk. The most common format for obser-
vations is a count of cases of disease within small areas that are then available for a
sequence of T time periods (Lawson et al., 2003).

21.2 Data and Methods

The sections outlined before presented several ways to measure living conditions
of a population. These conceptual tools were introduced as relevant for under-
standing the contextual milieu of the study area. Census data provide the most
comprehensive and complete coverage of the population every 10 years. Operational
aspects of Census such as hierarchies and the proper combination of variables
(social attributes and housing quality conditions) are also important. A resultant
Deprivation Index and geographical references have been created under the supervi-
sion of the Instituto Latinoamericano de Planificación Económica y Social (ILPES,
1995) and the United Nations, Centro Latinoamericano de Demografía (CELADE)
which developed software for accessing Small-Area Census data as territorial ref-
erents (REDATAM). Other socio-economic deprivation indices constructed from
the Census and applied for small areas using a GIS-based method can be found in
(Bell et al., 2007). Of greatest methodological importance here is the linking of the
Census Deprivation Index to the actual data provided by CAS-2/Familia poverty
records in order to compare territorially how equivalent or divergent both measures
may be. Census data have another important methodological contribution which is
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the possibility of generating standardized morbidity and mortality rates (SMR’s) by
means of direct and indirect methods, then using SMR’s to compare different study
groups and the relative risk between the standard population and the population
under study (Pan American Health Organization, PAHO, 2002). Population Census
serves in this study as the denominator, providing the total number of people by
ethnicity, age-groups and gender at Comuna level.

Hospital Discharge Records (Egreso Hospitalario) are used to generate the
numerator of crude (unstandardized) rates of disease (ICD-10 codes). A hospi-
tal discharge is defined by the formal release of a patient who has occupied a
hospital bed and clinical services from a medical facility where he/she stayed
with the purpose of observation, care, diagnostic or treatment. A discharge is pro-
duced by death or a cure to return home (Ministerio de Salud, MINSAL, 2004).
It does not include clinical visits, ambulatory treatments or primary care visits.
Emergency Room visits are also considered if the patient is later transferred to
a bed or dies. Ethnicity is classified if either surname of a patient is Mapuche or
non-Mapuche (Hispanic or European), by age (falling into one of the 8 age group
categories) and gender. This information is collected at the time of discharge. In the
Araucanía Region there are 28 hospitals (6 private, and 22 public) with differing
levels of complexity. Administratively, these hospitals depend on two health ser-
vices, “Araucanía Norte” and “Araucanía Sur”. The compilation of data includes all
Hospital Discharge Records (Egreso Hospitalario) from 2000 to 2005 as normed
by the Chilean Ministry of Health (Ministerio de Salud, MINSAL, 2007) corre-
sponding to diseases classified as “respiratory infections” (codes, J00-J06, J10-J18,
J20-J22, H65-H66). A total of 14,202 geo-referenced records of individual patients
treated for respiratory infections were compiled. A patient may have more than one
record. Individual poverty records were obtained from Ficha CAS-2/Familia for
the 31 Comunas of Araucanía Region. These records have detailed socio-economic
information and are filled individually by persons who apply for social programs,
government subsidies or unemployment benefits. A total of 527,539 individuals
and 94,131 families filed for social benefits in that Region since 1980. One impor-
tant aspect allowing the integration of health records with Ficha CAS-2/Familia is
that each individual person is identified by a unique ID labeled “RUT” (Rol Unico
Tributario, Unique Tax Roster), equivalent to the Social Security Number of the
United States. Geographical areas of Ficha CAS-2/Familia are classified accord-
ing to “neighborhood units”. Several neighborhood units aggregated constitute a
Comuna level. Both, Ficha CAS-2/Familia and Hospital Discharge Records, are
also longitudinally organized. A summary of the data structure generated and used
in this chapter by levels and sources is presented on Fig. 21.2.

Figure 21.3 compares poverty scores as spatially distributed by Ficha CAS-2/
Familia records in quintiles with the Index of Deprivation provided by Census
Districts. Both are highly consistent and identify the same areas of poverty and
deprivation. The Maps displayed align Ficha CAS-2/Familia’s 439 Neighborhood
Units and their respective poverty gradients with Census 297 Disricts and corre-
sponding deprivation values. While the Census Index combines several indicators
of the quality of dwelling with social attributes such as age, literacy and economic
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dependency of individual households, CAS-2 directly points to income, educa-
tion, employment and housing quality as fundamental dimensions of poverty. The
weights and variables are also different. The quality of a dwelling is estimated by
Ficha CAS-2 according to fewer items directly related to building standards such
as wall, floor and roof, water access, sewage and shower, and crowding, whereas
the Census assesses more items such as ownership, types of dwelling, power line
installation, telephone and TV, which are not necessarily related to precarious liv-
ing conditions. Education attained is assessed by Ficha CAS-2 through number of
years of schooling, whereas the Census focuses on assessing reading and writing
and types of school attended. Ethnicity in Census data is self-declared by household
respondents whereas CAS-2 the same idea is operationalized by whether a person
lives or not in an Indigenous Reservation. Despite the aforementioned differences,
Census and CAS-2 are highly consistent and identify the same areas towards the
sea-coast (left side of the map) and towards the Andes Mountains (right side of the
map). The few pink areas are urban ones, that is, cities which display better living
conditions (low deprivation/lower poverty scores). These are islands of prosperity
in the sea of deprivation. The red dots display locations of Mapuche reservations.
Note that most of them are located within or overlap the most impoverished areas
of the Region.

While descriptive maps of poverty distribution are useful for identifying contex-
tual areas in which individuals reside, this chapter concerns the link of individuals’
poverty scores aggregated in those areas as we move from individuals to Comunas,
as well as their corresponding incidence rates of respiratory infections as we move
from individuals aggregated to Comunas, while adjusting for time effects and spatial
proximity.

21.2.1 Census Data

If Census data and the Deprivation Index are consistent with CAS-2/Family scores,
then the latter scores may be validly used to test the association between poverty
and health outcomes at individual patient levels. Because of privacy norms, Census
data cannot provide individual information at household levels to link that informa-
tion with individual health outcomes. Ficha CAS-2 does allow for this. Even more
importantly, these individual level scores may be used to test the extent to with
which contextual levels across-Comunas are associated with higher relative risks of
respiratory infections for the population in them.

Data for the health outcome variable are generated by the application of indirect
standardization methods to obtain standardized rates of respiratory infections by
each Comuna over time, adjusted by age, sex and ethnicity. This method compares at
Comuna level the actual number of events with the expected number of events when
factor-specific rates, age, sex and ethnicity are taken into account from a reference
population and applied to the local population (Roalfe et al., 2008). The Reference
Population is the regional population of Araucanía according to the Population
Census of 2002 by Comuna, age-groups, gender and ethnicity. It is essential that
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rates for different years be adjusted to the same standard population before mak-
ing comparisons between Mapuches versus non-Mapuche population. Conceptually,
any population distribution can be used as the standard, but that choice must not
have a great effect on the relative levels of the age-sex-ethnic adjusted rates that are
being compared. One author suggests that with indirect standardization, estimates
have lower variances. This internal standard is especially important for small areas
such as counties and Census tracts, and constitutes a method of choice for maps
with estimates of multiple areas showing geographical variation (Kulldorff, 2003).
In particular, if we wish to compare indirectly standardized rates between counties
within the same state, we may wish to use data from the entire state as the standard
population to obtain rates for each county (Waller and Gotway, 2004).

21.2.2 Methods

Figure 21.2 provides an organizational glimpse of levels, sources and data structure
for this research. The methods used should account for a nested, yet hierarchical
order of levels and how across-level data are related to health outcomes. Specifically,
individuals are nested (part of) household units, household units are subsets of
neighborhoods, and neighborhoods are components of Comunas, with 31 Comunas
conforming the Region of study.

This element of nesting reveals that observations are not independent. Therefore,
multilevel techniques explicitly are used to model correlated data where the assump-
tion of independence between observations is violated and conventional ordinary
least square techniques are not appropriate (Soobaden et al., 2006). Recently, many
applied Bayesian methods using hierarchical models have appeared. For example,
an important application of hierarchical models is “small area estimation” in which
estimates of population characteristics for local areas are improved by combining
the data from each area with information from neighboring areas (Gelman et al.,
2003). These methods, “borrow strength” from adjacent areas, thus making local
estimators more stable. A Conditionally Autoregressive model (CAR) is used here
to provide spatial smoothing to improve local area estimates. CAR models are a
more common way of dealing with the spatial correlation between neighboring
areas, since we cannot fit spatially-correlated effects at differing levels of geogra-
phy (Lawson et al., 2003). Generalized linear mixed models (GLMM) have been
applied by both Classical Frequentist statistics and Bayesian methods to handle
correlated data. Bayesian methods here incorporate CAR to smooth unstable dis-
ease rates. When handling spatial lattices, CAR is commonly used and accounts
for random effects included for each subregion. Here, the CAR model accounts for
real risk heterogeneity among subregions/Comunas, resulting from undermeasured
risk factors, following (Escaramìs et al. 2008). Finally, this hierarchical order is
subject to change over time and subsequently this research involves variabilities
simultaneously occurring in a span of 6 years.

A combination of descriptive methods and Bayesian time-space nested models
were used to respond to the questions of poverty, location of impoverished areas
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and severity of poverty gradients in the population of the Araucanía Region and
the outcome variable: SMR’s and the expected Relative Risk. The SMRs are the
maximum likelihood estimates of the relative risk under a Poisson model for the
observed number of deaths/disease (Heistercamp et al., 1993). Indirect standarized
methods were used here. These methods compare the actual number of events in a
local area (i.e. Comunas) with the number expected when factor-specific rates (age,
sex and ethnicity) in a reference population (the population of Araucania Region)
are applied to the local population.

Directly standardized rates were also obtained for aggregate comparisons of the
incidence of morbidity and mortalities by years, age-groups and ethnicity. Since
these are not samples, strictly-speaking, confidence intervals are not really nec-
essary; nevertheless, the calculation of limits based on gamma distribution was
accomplished using the Anderson-Rosemberg method recommended by the NCHS
(1998), DUG2 for the directly standardized rates. I am thankful to Professor
Emeritus, Dana Quade for his SAS macro programming and advice.

The scores from Ficha CAS-2/Familia records are routinely calculated by munic-
ipalities under the technical supervision of MIDEPLAN of Chile. These scores are
applied to individuals and to each member of the family living in the same house-
hold. Scores are obtained at neighborhood-level units (Unidades Vecinales, UV)
and Comunas are averaged using PROC MEANS statement SAS Version (9.2) by
Year and Comuna. Whereas borders and jurisdictions provide an identification of
the geographical distributions, poverty scores and the application of quintiles allow
for assessment of the intensity of poverty and the establishment of orderly gradients
at lowest levels of aggregation or Unidades Vecinales, as well as at Comuna levels.

These unique individual poverty records were later seamlessly merged with
patients’ Hospital Discharge Records as compiled by every hospital of the
Araucanía Region, including information on patients’ sex, age, ethnicity, and dis-
ease, home address, Comuna of residence and unique ID identity card number
(RUT).

A second methodological step consisted in linking individual patients’ attributes
(observed count data) to standardized morbidity rates with geographical areas. We
assume here that counts of observed respiratory infections have a Poisson distribu-
tion with expected value Eitθ it where variations of disease occur by Comuna but
also over time. Thus, i = 1,. . . . . .31 Comunas and t = 1,. . . . . .6 years. For each
Comuna and for each year, the standardized morbidity rate defined as the observed
divided by the expected number of cases – was calculated. Next, following Waller
et al. (1997) and Lawson et al. (2003) nd, a nested model was used in which the
hierarchical specification of Besag et al. (1991) was applied to each year-point
separately. From a Bayesian approach perspective, the posterior mean of the rel-
ative risk (RR) in the overall map for the ith area is the weighted average of the
SMR for the ith area. This weight is inversely related to the variance of the SMR
(Lawson et al., 2003). As this variance is large for rare diseases and for small areas,
this weight is small and the posterior mean tends towards a global mean thereby
producing a smoothed map (Gilks et al., 1998). Previous work has incorporated
observed health outcomes as well as social indicators of deprivation into a more
comprehensive model, but for psychiatric morbidity, and also has allowed the data
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to determine the appropriate level of spatial smoothing (Congdon, 2009). An equiv-
alent Bayesian approach establishing the association between socioeconomic and
racial disparities as related to stroke mortality using spatial smoothing for unstable
local rates is found in Tassone et al. (2009). Spatial smoothing techniques specified
under CAR model also were used to link asthma incidence by time and positive
effects for the percent Non-white variable in North Carolina (Suchindran and Rojas,
2009). Further contributions for the Bayesian analytical framework and methods
are found in (Dunson, 2001). In this research, the log of the relative risk for the
space-time model is parameterized as:

Log θit = α + μ
(t)
i + ν

(t)
i +	β1x(t)

1i (1)

where α is an overall level of the relative risk μi
(t) and νi

(t) are the correlated
and uncorrelated heterogeneity terms that can vary in time (random effects for the
Comuna i th in time (t)) and β1 x(t)

1i the poverty score of Comuna i th in time (t).
α and β1 are fixed effects. The software WinBUGS was used to fit the model of
Spiegelhalter et al. (2003). With respect to number of iterations after convergence,
the more samples that are saved, the more accurate the posterior means estimates
(Spiegelhalter et al., 2003). Another additional 50,000 iterations were run, 501 was
used as the starting point for the second run of final iterations, instead of 1 as used
in the previous burn-in as the starting point. The WinBUGS code and correspond-
ing convergence diagnostic for the overall level of relative risk α and poverty score
parameter β are presented in Appendix 1. The historical time-series plot of Alpha
chains 1:3 seems to converge very well since all 3 chains reveal to be overlapping
one another. Note that the center of the parameter of Interest β1 (poverty) appears to
be around –0.03 with very small fluctuations. This means that the Gibbs Sampler has
eventually reached a stationary condition. The aspects of stationarity that are most
recognizable from a trace plot are of relatively constant mean and variance (SAS
Institute, 2010); it is the absence of any systematic change in the mean or variance
(King et al., 2009). Operationally, effective convergence of Markov chain simula-
tion has been reached when inferences for quantities of interest do not depend on the
starting point of the simulations (Brooks and Gelman, 1998). The data of relative
risks (thetas) was generated and GeoBUGS was used to visualize and interpret the
outcomes. Finally, the resulting information was exported to ArcView to generate
the final maps.

21.3 Results

Differential rates of disease are exhibited by the Mapuche versus non-Mapuche pop-
ulation, both by age-groups and for the 6 consecutive years of respiratory infectious
diseases investigated.

In Table 21.1, Relative Risk (RR) represents the relative risk of Mapuche to non-
Mapuche to contract respiratory infections. The evidence indicates that Mapuche
children younger than 5 years old experience recurrently higher rates of respiratory
infections over time with a peak in the year 2001. Mapuche children also exhibit



426 F. Rojas

Ta
bl

e
21

.1
R

es
pi

ra
to

ry
in

fe
ct

io
ns

-r
el

at
ed

,m
or

bi
di

ty
ra

te
s

co
m

pa
re

d
by

ye
ar

ag
e

gr
ou

p
an

d
et

hn
ic

ity
.D

ir
ec

tly
st

an
da

rd
iz

ed
ra

te
s

pe
r

1,
00

0.
N

in
th

R
eg

io
n

of
A

ra
uc

an
ía

,C
hi

le
20

00
–2

00
5

M
ap

uc
he

C
.I

.9
5%

N
on

-M
ap

uc
he

C
.I

.9
5%

M
ap

uc
he

L
ow

er
U

pp
er

N
on

-
M

ap
uc

he
L

ow
er

U
pp

er
R

R

N
=

77
53

20
00

<
5

61
.4

57
.5

65
.5

54
.7

52
.6

56
.8

1.
12

5–
14

5.
9

5.
2

6.
7

6.
2

5.
7

6.
7

0.
96

15
–2

9
1.

0
0.

7
1.

3
1.

1
0.

9
1.

3
0.

90
30

–4
4

1.
8

1.
4

2.
3

1.
3

1.
2

1.
6

1.
33

45
–5

9
3.

0
2.

4
3.

8
2.

1
1.

8
2.

5
1.

42
60

–6
9

8.
0

6.
6

9.
7

5.
8

5.
0

6.
7

1.
38

70
–7

9
21

.1
17

.6
25

.0
16

.3
14

.7
18

.1
1.

29
80

>
38

.8
33

.2
45

.2
41

.7
38

.0
45

.6
0.

93
N

=
87

35
20

01
<

5
81

.0
97

.8
85

.8
62

.2
58

.6
64

.5
1.

30
5–

14
5.

6
6.

7
6.

4
5.

4
4.

8
5.

9
1.

04
15

–2
9

1.
6

1.
6

2.
0

1.
2

1.
0

1.
4

1.
31

30
–4

4
1.

9
2.

0
2.

4
1.

4
1.

2
1.

6
1.

31
45

–5
9

4.
1

5.
6

4.
9

3.
0

2.
3

3.
4

1.
38

60
–6

9
11

.0
12

.8
13

.0
7.

4
5.

6
8.

4
1.

49
70

–7
9

19
.4

23
.0

23
.4

16
.9

14
.1

18
.7

1.
15

80
>

52
.8

61
.9

61
.4

43
.9

37
.8

47
.9

1.
20

N
=

70
97

20
02

<
5

64
.3

60
.3

68
.5

50
.0

48
.0

52
.1

5
1.

28
5–

14
5.

3
4.

5
6.

1
5.

2
4.

8
5.

62
1.

02
15

–2
9

1.
0

0.
7

1.
4

1.
0

0.
9

1.
20

0.
96

30
–4

4
1.

6
1.

3
2.

0
1.

2
1.

0
1.

35
1.

40
45

–5
9

2.
7

2.
2

3.
4

2.
0

1.
7

2.
35

1.
35

60
–6

9
7.

7
6.

4
9.

3
4.

6
3.

9
5.

42
1.

66
70

–7
9

17
.2

14
.2

20
.6

13
.9

12
.4

15
.5

1
1.

24
80

>
40

.6
34

.5
47

.6
40

.9
37

.3
44

.8
5

0.
99



21 Poverty Determinants of Acute Respiratory Infections in the Mapuche Population 427

Ta
bl

e
21

.1
(c

on
tin

ue
d)

M
ap

uc
he

C
.I

.9
5%

N
on

-M
ap

uc
he

C
.I

.9
5%

M
ap

uc
he

L
ow

er
U

pp
er

N
on

-
M

ap
uc

he
L

ow
er

U
pp

er
R

R

N
=

62
84

20
03

<
5

77
.0

72
.2

82
.1

27
.4

25
.9

28
.8

2.
82

5–
14

6.
5

5.
6

7.
6

3.
3

3.
0

3.
6

1.
99

15
–2

9
1.

2
0.

9
1.

6
0.

6
0.

5
0.

7
2.

13
30

–4
4

2.
1

1.
5

2.
7

0.
7

0.
6

0.
9

2.
89

45
–5

9
4.

3
3.

3
5.

6
1.

6
1.

3
1.

8
2.

76
60

–6
9

16
.9

13
.3

21
.1

4.
5

3.
9

5.
2

3.
74

70
–7

9
36

.8
30

.1
44

.6
13

.6
12

.3
15

.1
2.

70
80

>
60

.7
50

.9
71

.9
28

.8
26

.0
31

.8
2.

11
N

=
64

10
20

04
<

5
76

.8
71

.4
82

.4
28

.4
26

.9
29

.9
2.

71
5–

14
6.

6
5.

7
7.

6
2.

7
2.

4
3.

0
2.

43
15

–2
9

1.
4

1.
1

1.
8

0.
7

0.
6

0.
8

2.
02

30
–4

4
1.

4
1.

1
1.

8
0.

7
0.

5
0.

8
2.

10
45

–5
9

4.
8

3.
8

6.
1

1.
6

1.
3

1.
8

3.
07

60
–6

9
10

.4
8.

4
12

.6
4.

4
3.

8
5.

1
2.

35
70

–7
9

42
.2

34
.7

50
.8

13
.4

12
.1

14
.9

3.
14

80
>

65
.4

55
.5

76
.4

33
.0

30
.0

36
.1

1.
98

N
=

62
81

20
05

<
5

76
.4

71
.0

82
.0

28
.4

27
.0

29
.9

2.
69

5–
14

7.
0

5.
9

8.
2

3.
9

3.
6

4.
2

1.
80

15
–2

9
1.

4
1.

0
2.

0
0.

6
0.

4
0.

7
2.

59
30

–4
4

1.
5

1.
1

2.
0

0.
5

0.
4

0.
7

2.
87

45
–5

9
4.

6
3.

2
6.

4
1.

5
1.

2
1.

7
3.

14
60

–6
9

12
.3

9.
2

16
.3

4.
2

3.
6

4.
9

2.
91

70
–7

9
40

.8
32

.8
50

.3
11

.9
10

.7
13

.2
3.

44
80

>
73

.1
61

.3
86

.4
28

.5
25

.8
31

.5
2.

56

So
ur

ce
:O

w
n,

ba
se

d
on

H
ea

lth
Se

rv
ic

es
A

ra
uc

an
ia

N
or

th
an

d
So

ut
h

H
os

pi
ta

ld
is

ch
ar

ge
re

co
rd

s.
R

es
pi

ra
to

ry
in

fe
ct

io
ns

,I
C

D
-1

0
C

od
es

,J
00

-J
06

,J
10

-J
18

,J
20

-J
22

,H
65

-H
66

.



428 F. Rojas

higher relative risks than the non-Mapuche for the same age cohort during all
6 consecutive years. Overall, Relative Risk shows a significantly larger value for the
Mapuches (i.e. C.I.’s for the RR > 1, not shown here). Another important finding
is that even for middle-age groups, which according to life-course perspectives are
the least vulnerable groups, respiratory infections among Mapuches are also higher
than that of non-Mapuches in all 6 years from 2000 to 2005, with peaks in years
2003–2005 or twice the historical trend of years 2000–2002. Conclusively, relative
risks for respiratory infections across 2000–2005 are predominantly higher for all
Mapuche age-groups, but worsen in the years 2003–2005.

An area of even greater concern is whether such diseases turn out more deadly
when comparing groups. Evidence of ethnically-based mortality rates would pro-
vide an important argument against the “assimilation thesis” of Villalobos. In this
case, directly standardized mortality rates were calculated using the same method
and program as used for calculating morbidity rates. Table 21.2 indicates that mor-
tality rates are also highest among Mapuche children, with the exception of year
2004. Years 2005 and 2002 display twice and thrice the relative risks as compared
to the same non-Mapuche group. Middle age deaths are also higher for 30–44
and 45–59 age-group categories for the Mapuche group, when compared to the
non-Mapuche. In 2001, 2002 and 2005, the relative risk of dying from respiratory
infections for Mapuche middle-age group 30–44 peaks with values of 7.12, 4.79,
and 8.70 respectively. Such high peaks of mortality lead the investigator to pon-
der time effects of higher relative risk of disease and death of Mapuches over the
years 2000–2005. One final empirical probe remains: to establish the association
between poverty and disease over time, and the extent to which higher relative risks
of respiratory infections are most likely found among the poor.

The following model estimated the relative risks of respiratory infectious dis-
eases (posterior expected risk) between 2000 and 2005 for the population of
Araucanía Region. The practical understanding of disease as a preceding cause of
death led us to estimate the association between poverty and respiratory infections
over time.

Table 21.3 shows posterior values for the parameters of the model after 55,000
iterations for the alpha (overall level of the relative risk) and β1 nodes. For a techni-
cal discussion of the required iterations of Gibbs sampler (See, Raftery and Lewis,
1991). Both fall between Bayesian Credible Intervals (CI). The latter displays a
negative sign, indicating that the lower the scores (the poorer an area) the higher the
relative risk of respiratory infections for those living in that area. Note that credi-
ble intervals are quite narrow, indicating precise estimates, that is, influence of the
covariate is significant. A Credible Interval in the Bayesian approach is equivalent to
the “Confident Interval” created through point estimation in Frequentist Statistics,
as it constitutes a posterior probability interval used for interval estimation.

Table 21.4 presents the posterior statistics and 95% credible intervals of the vari-
ance components for the clustering effects model τu over time (t). The values reveal
that between 2000 and 2002 a variability in the relative risk is observed, suggesting
that there is a temporal trend for the first three years. This increase is explained more
by the clustering effects over time than spatially uncorrelated extra-variation. The
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Table 21.3 Posterior statistics for the estimates of the relative risks time-space model

Node Mean SD 2.50% 97.50%

alpha 0.01014 0.003746 0.002834 0.01756
beta1 –0.02665 0.003692 –0.03391 –0.Ta01944

Table 21.4 Posterior statistics of the variance components for the clustering effects over time T

Node Mean SD 2.50% 97.50%

tau.u[2000] 2,491 1,895 422.0 7,481
tau.u[2001] 2,536 1,918 418.7 7,588
tau.u[2002] 2,046 1,737 281.1 6,689
tau.u[2003] 2,129 1,720 364.8 6,769
tau.u[2004] 2,311 1,820 382.6 7,173
tau.u[2005] 2,580 1,926 451.6 7,648

Table 21.5 Posterior mean of the un-correlated heterogeneity effect

Node Mean SD 2.50% 97.50%

tau.v[2000] 2,188 1,528 569.8 6,293
tau.v[2001] 2,467 1,698 617.9 7,016
tau.v[2002] 1,898 1,427 463.8 5,794
tau.v[2003] 3,197 2,065 772.7 8,569
tau.v[2004] 2,882 1,923 679.6 7,902
tau.v[2005] 3,691 2,204 987.6 9,341

posterior mean of the uncorrelated heterogeneity τv does not seem to provide addi-
tional extra variation in the data beyond that correlated with neighboring Comunas
(Table 21.5).

Maps for the posterior expected relative risk are presented next.
The relative risk estimates presented include the locations of indigenous reser-

vations. If contextual poverty overlaps the areas where indigenous reservations are
located, it is important to visualize whether relative risk rates also overlap across
the same areas. As displayed by Fig. 21.3, the highest relative risks are observed
towards areas of the right and left side of these maps, thus overlapping with the
areas of poverty identified before with Fig. 21.2. The Figure also illustrates red dots
representing indigenous reservations which are mostly located in the areas where
highest risk rates are observed. It seems that clustering effects over time explain
the variability of the relative risk in the first 3 years 2000–2002, as only 11 or 12
Comunas exhibit expected relative risks over 1; however, after 2002 these variations
are explained more by uncorrelated heterogeneity than by spatially structured clus-
ter over-time. After 2002, 16–20 Comunas exhibit expected relative risks over 1.
We may conclude that once respiratory infections gain ground over time, there are
spurt-like clustered configurations that may reverberate and expand the disease to
other areas (Fig. 21.4).
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21.4 Discussion

For many years, the ethnic components of the Chilean population remained dis-
tant, if not hidden from research scrutiny. Most approaches to the indigenous people
came from anthropology with field work and case studies very difficult to com-
pare and generalize. With the Population Census of 2002 and the establishment of
questions concerning respondents’ ethnic self-identification, including several cate-
gories of response, the result was a numeric count of several ancestral groups and
cultures as well as their geographic locations. Similarly, after a long and tedious
process of compilation of Hospital Discharge Records, it is now possible to incor-
porate real ethnic data into analyses of health inequalities. One caveat should be
mentioned with respect to ethnicity, this is, that the definition of ethnicity by the
Office of the Census differs in some respect from ethnicity as categorized by
the health authorities. In the former, it is a self-definition from the respondent
according to several alternatives of ethnicity provided; in the latter, ethnicity is
determined by surnames of patients. Concordance statistics between Census and
Hospital Records were not tested and this may be a limitation of the study; although
Gini Coefficients here (Elliot et al., 2009) may have been used, the test would
have required a hefty work of spatial concordance of Census districts with Ficha
CAS-2/Familia UVs (Neighborhood Units). Given that Mapuche People now in
fact, can be studied quantitatively, the important possibility exists of linking this
group to other statistics and datasets provided by medical records, as well as to
other social gradients, such as educational achievement tests. In many ways, this
study confirms similar findings on ethnic minorities, such as research concerning
the living conditions of ancestral vis-à-vis European, white populations in Australia
and New Zealand or research examining non-white ethnicity and asthma incidences
in North Carolina (Suchindran and Rojas, 2009). More specifically, in a previous
study Rojas (2007) used General Linear Mixed Models (GLMM) to provide evi-
dence that Mapuche people experience higher levels of poverty than the general
population; in that case, spatial segregation measures indicated higher rates of res-
piratory infections as well as sadly, higher mortality rates produced by them. This
chapter has taken a different approach and strategy, yet there are convergences in
the outcomes: ethnicity and poverty are powerful predictors of health inequalities of
disease.

Perhaps the most pervasive finding worth discussion in the present study is the
vulnerability and actual mortality of Mapuche children < 5 years old vis-à-vis the
non-Mapuches. In the beginning of this chapter, environmental risk was described
as a disproportionate burden that some groups experience from unhealthy envi-
ronments. In this investigation, we have also found that very early in their lives,
Mapuche children disproportionately experience the burden of poverty by residing
in highly precarious areas with higher material deprivation and which eventually
may trigger respiratory infections leading to higher mortality rates. Other than
higher material deprivation, there are other covariates and factors which are known
to be associated with respiratory infections, for instance, winter-time. Respiratory
infections peak during winter-time (June-August in Chile) when cold weather and
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temperatures are lowest. The space-time model used here is set-up on a yearly basis
(2000–2005), meaning that seasonal factors are averaged out and not entered in
the model. Cold weather in that Region facilitates indoor permanency around the
fireplace, thus facilitating lengthy exposure to polluting agents as presented in a
study of Temuco’s daycare children (Rivas et al., 2008). Distance from hospitals,
isolation of rural communities, poor and muddy roads in winter-time and cultural
handling of diseases by the Mapuche healers known as “Machi” may also delay
prompt treatment of patients and cause early deaths, particularly among children
and the elderly. In fact, in 2005 Mapuche children displayed twice the risk of dying
than non-Mapuche infants for the same age-group; in 2002, the risk was three times
the risk for the same age-group. Moreover, if harsh conditions were found to be
present at the earliest and most tender age in life, it is not surprising that as shown
by data presented here, this vulnerability among the Mapuche people is carried over
into middle-agers when the human body should be strongest, more immune to health
hazards, and human life reaches its peak of productivity.

Precarious living and material poverty may be statistically linked to disease, but
other covariates such as nutrition and soil productivity should also be explored.
Proper representation of soil fertility and seasonal variations may also be integrated
to the GIS and remote sensing techniques employed to assess the links between
small-size property where Mapuche live, the nutritious value of their food intake
and subsequent depletion of vegetal layer of their land. Disease may be linked to
material deprivation and an ethnically-based disproportionate share of the relative
risks, but also to other covariates that trigger disease events.

These grim statistical findings in ethnicity should alert policy experts as well as
International Law practitioners concerned with human rights violations. Although
individual human rights violations of political nature are easier to scrutinize, these
collective violations of human rights which result from systematic neglect in health
conditions are crucial and difficult, but not impossible to establish. We hope the
avenues opened by this research may be widened by additional medical-spatial
evidence.

The route from disease to the end of life caused by a preventable disease is a
complex one. Here we have singled out one aspect, that is, higher prevalence of
poverty rates among Mapuches. There may be other predictors, such as biomass
fuels habitually used by Mapuches to cook inside their huts in wintertime; an inter-
esting finding has been that respiratory infections peak precisely in winter time (data
not included in this chapter). Indoor biomass fuel use may be another covariate that
perhaps moderates the effects of poverty and disease on differential mortality rates
found here. Other covariates may be related to cultural perceptions of disease and
Mapuche initial use of ethnic medicine, causing delays in reaching the established
“western” medical treatment provided by the hospital system in the Araucania
Region.

With respect to the “assimilation” thesis by Villalobos with which we opened
this chapter, it was possible beyond doubt to statistically identify a Mapuche pop-
ulation and establish their relative vulnerabilities (material and health), including
a death toll significantly higher than the rest of the population. This evidence
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redefines the suggestion that this ancestral subpopulation has been absorbed by
another dominant one, ceasing to exist as separate entity. Consequently, we must
confront the possible fate of a minority ethnically-based materially deprived pop-
ulation which dies at higher rates of respiratory infections than that of the rest
of the population. Furthermore, Jordan et al. (2006) and Prescott et al. (2003)
have directly tested poverty in diverse populations with mortality as outcome
variable, resulting in a statically significant fatal relationship. Additional research
should directly link Mapuche individual mortality to the poverty gradients of that
population.

Unless ethnically sensitive and targeted health interventions are employed in
Chile, the Mapuche will likely fail to survive. If Mapuche birth rates are compa-
rable to those of the general population, they are failing to reproduce themselves.
Not the sword, but germs, poverty and inequalities are key factors resulting in the
decimation of ancestral populations according to works by Diamond (2005, 1997)
and Farmer (2005). The Mapuche People, besieged by poverty which then detonates
into infectious communicable diseases, stands at risk of succumbing to the same fate
of elimination.
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Appendix 1 The Model Used, WinBUGS Code

model
{
for (t in 1:T)
{
for (i in 1:m)
{

# Poisson likelihood for observed counts
y[i,t]~dpois(mu[i,t])
log(mu[i,t])<-log(e[i,t])+alpha+beta1∗scoresPov[i,t]+u[i,t]+v[i,t]
# Relative Risk
theta[t,i]<-exp(u[i,t]+v[i,t])

}
}
# CAR prior distribution for spatial correlated heterogeneity
u1[1:m]~car.normal(adj[],weights[],num[],tau.u[1])
u2[1:m]~car.normal(adj[],weights[],num[],tau.u[2])
u3[1:m]~car.normal(adj[],weights[],num[],tau.u[3])
u4[1:m]~car.normal(adj[],weights[],num[],tau.u[4])
u5[1:m]~car.normal(adj[],weights[],num[],tau.u[5])
u6[1:m]~car.normal(adj[],weights[],num[],tau.u[6])
for(i in 1:m)
{
u[i,1]<-u1[i]
u[i,2]<-u2[i]
u[i,3]<-u3[i]
u[i,4]<-u4[i]
u[i,5]<-u5[i]
u[i,6]<-u6[i]
}
# Prior distributions for the Uncorrelated Heterogeneity
for(i in 1:m)
{
v1[i]~dnorm(0,tau.v[1])
v2[i]~dnorm(0,tau.v[2])
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v3[i]~dnorm(0,tau.v[3])
v4[i]~dnorm(0,tau.v[4])
v5[i]~dnorm(0,tau.v[5])
v6[i]~dnorm(0,tau.v[6])
}

for (i in 1:m)
{
v[i,1]<-v1[i]
v[i,2]<-v2[i]
v[i,3]<-v3[i]
v[i,4]<-v4[i]
v[i,5]<-v5[i]
v[i,6]<-v6[i]
}
# Weights
for(k in 1:sumNumNeig)
{

weights[k]<-1
}
# Improper prior distribution for the mean relative risk in the study region
alpha~dflat()
mean<-exp(alpha)
beta1 ~ dnorm(0.015, 0.002) # vague prior on covariate effect

# Hyperprior distributions on inverse variance parameter of random effects
for (i in 1:T)
{

tau.v[i]~dgamma(0.5,0.0005)
tau.u[i]~dgamma(0.5,0.0005)

}
}



438 F. Rojas

FINAL 50000 ITERATIONS for alpha

alpha chains 3:1

iteration
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Historical time-series

alpha chains 1:3
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−0.01

0.0

0.01

0.02

0.03

node mean sd MC error 2.5%
alpha 0.01014 0.003746 1.791E-5 501 163500
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iteration
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start-iteration
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median 97.5% start sample
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FINAL 50000 ITERATIONS for Beta1

beta1 chains 3:1

iteration

549505490054850

−0.04

−0.03

−0.02

−0.01

beta1 chains 1:3 sample: 163500

−0.05 −0.03 −0.01

0.0
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150.0

beta1 chains 1:3

iteration
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−0.05

−0.04

−0.03

−0.02

−0.01

beta1 chains 3:1

iteration
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−0.035
−0.03

−0.025
−0.02

−0.015

beta1 chains 1:3

start-iteration

773 10000 20000

0.0

0.5

1.0

beta1 chains 1:3

lag

0 20 40

−1.0
−0.5

0.0
0.5
1.0

node mean sd MC error 2.5%
beta1 −0.02665 0.003692 1.597E-5 501 163500−0.03391 −0.02664 −0.01944

median 97.5% start sample
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Chapter 22
GIS and Atmospheric Diffusion Modeling
for Assessment of Individual Exposure
to Dioxins Emitted from a Municipal
Solid Waste Incinerator

Jean-François Viel

Abstract The most potent dioxin congener (2,3,7,8-TCDD) is classified as a
human carcinogen. Municipal solid waste incinerators (MSWI) are one of the major
sources of dioxins and are therefore a cause of public concern. Blood dioxin levels
are considered the best estimates of actual exposure, but they are costly and tech-
nically difficult to gather from individuals and to measure consistently. However,
dioxins are good candidates for a combined GIS-modeling-based approach to sim-
ulate the ways in which they propagate in the environment, and the exposures that
occur as a result. Dioxins are released into the air by a few known industrial point
sources, and their environmental concentrations can therefore be estimated through
plume modeling. Furthermore, they are known to be resistant to environmental and
biological degradation, and accumulate in soils. We conducted a sequential epi-
demiologic investigation in the vicinity of a MSWI with high dioxin emission levels
(Besançon, France). Contours of modeled ground-level air concentrations were
used to assign a dioxin exposure category for any inhabitant of the town. Exposure
accuracy was assessed through dioxin measurements from soil samples. In a mixed
individual/ecological case-control study, a higher risk for non-Hodgkin lymphoma
was found among individuals living in the area with the highest dioxin concentration
(odds ratio 2.5, 95% confidence interval 1.4–4.5). The replication of these findings
at the nationwide level added further evidence. GIS and exposure modeling can be
considered innovative and appropriate for the assessment of dioxin exposure, mov-
ing from source identification to personal exposure estimates using environmental
surrogates.
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List of Acronyms and Abbreviations

2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
APC3 Air Pollution Control 3
CI Confidence interval
DL-PCB Dioxin-like polychlorinated biphenyls
EU European Union
GIS Geographic information system
IARC International Agency for Research on Cancer
ICD-O International Classification of Diseases for Oncology
I-TEQ International toxic equivalency factor
MSWI Municipal solid waste incinerator
NHL Non Hodgkin lymphoma
OR Odds ratio
PCB Polychlorinated biphenyls
US-EPA US Environmental Protection Agency

22.1 Introduction

Exposure in environmental epidemiology can be assessed in different ways. If avail-
able, personal measurements (personal exposure meter, biomarkers) are considered
the best estimates of actual exposure, but they are costly and technically difficult
to gather from individuals and to measure consistently. Environmental epidemi-
ology has therefore generally relied on environmental measurements or models
(Nieuwenhuijsen et al., 2006). Although these methods do not take into account
differences in route of administration, activity, and physiology, a good correlation
between environmental and personal exposure estimates can be achieved, provided
that adequate data and models are used (Beyea and Hatch, 1999). According to the
National Research Council (1994), such quantified area measurements rank second
in the hierarchy of exposure measurements with respect to the true exposure.

Most pollution is derived from specific sources and tends to spread out with pro-
gressively lower concentrations, showing considerable systematic spatial variation.
Different geographical approaches (greatly strengthened by the use of geographi-
cal information systems – GIS) can therefore be used to assess levels of exposure
to environmental pollution. One important factor that distinguishes among these
approaches is whether they are based on monitored pollution data, or whether they
are estimated using data on source activities. In the first case, local pollution patterns
are modeled on the basis of monitored data to fit a surface through the available
monitored data, in order to predict pollutant concentrations at sites where measure-
ments have not been taken (Nieuwenhuijsen et al., 2006). Geostatistical techniques
are increasingly being used in this respect. However, these geographical methods
require a wide range of retrospective data over large study areas. If available, these
data, usually collected for other purposes (routine monitoring. . .), tend to be far
from optimal (Colville et al., 2003).
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Where there is little monitored data on pollution concentrations, source-receptor
modeling becomes important. Simple proxies, such as distance from a source (fac-
tory, incinerator, road, or landfill) have frequently been used. However, distance
and proximity measures imply that pollution spreads uniformly away from its
source, whatever the pollutant or the exposure pathway. Inherently non-specific,
these measures are therefore difficult to interpret (Briggs, 2003). When the distri-
bution of pollutants is better understood, more sophisticated models can be used
to simulate both the processes and the pathways of pollutant propagation in the
environment, and to estimate historical levels of contaminants due to point sources
(e.g. smokestack) or nonpoint sources (e.g. groundwater). Owing to the knowledge
gained on the physics and environmental processes of air pollution transport in
recent decades, atmospheric dispersion modeling is now more firmly established.
Dispersion is often modeled as a plume that shows a normal distribution of concen-
tration in the vertical and horizontal directions (although the vertical concentration
distribution can be a skewed Gaussian in convective conditions). This so-called
Gaussian model is appropriate when modeling in the near field (0–100 km), and
provides a lot of information about the distribution of pollutant concentrations in
the environment downwind of the source (Colville et al., 2003). GIS can be used in
combination with dispersion models to simulate the ways in which pollutants propa-
gate in the environment, and the exposures that occur as a result (Briggs, 2003). In a
GIS environment, maps of iso-dose or iso-risk contours can be displayed. Resulting
pollution surfaces can then be overlaid onto georeferenced data to assign exposure
to individuals at their place of residence or work. Such exposures can then be used
in other study designs, such as case-control (Vine et al., 1997).

The US Environmental Protection Agency and the International Agency for
Research on Cancer have classified 2,3,7,8-TCDD (the most potent dioxin con-
gener) as a human carcinogen (US-EPA, 1994; IARC, 1997). Dioxin emissions from
municipal solid waste incinerators (MSWI) are one of the major sources of dioxins
and are therefore an exposure source of public concern. Our team had previously
examined the spatial distribution of non-Hodgkin lymphomas (NHL) around one of
these polluting MSWIs (Besançon, eastern France). Using a spatial scan statistic,
we found evidence for a cluster, composed of two electoral wards (one of them,
Besançon city, containing the MSWI), with a standardized incidence ratio of 1.3
(95% confidence interval (CI) 1.1–1.4) (Viel et al., 2000). However, this cluster
investigation relied on distance as a proxy for exposure. Our goal was therefore
twofold: (1) to use GIS-based technology to refine exposure measurements, improv-
ing sensitivity and specificity beyond a simple proximity metric, and (2) to use these
environmental exposure estimates as a tool to enhance epidemiologic case-control
investigations.

Dioxins are indeed good candidates for a combined GIS modeling-based
approach:

• while the majority of hazardous chemicals are emitted from countless, diffuse
sources, dioxins are released into the air by a few known industrial point sources
(residential burning of wood and road traffic constituting the background level),



446 J.-F. Viel

and their environmental concentrations can therefore be estimated through plume
modeling;

• they are known to be resistant to environmental and biological degradation, are
chemically stable, poorly metabolized, and accumulate in soils; this matrix is
therefore considered an adequate environmental monitor for assessing long-term
exposure to dioxins.

22.2 Study Site

MSWIs are usually installed in broad industrial parks where other factories may also
play a role in dioxin emission into the atmosphere, making the sources of the dioxins
difficult to discern. The MSWI of Besançon is very unique in this respect. Located
4 km west of the city center, it has no adjacent industrial sources of exposure
(no cement kilns, iron or steel works, or foundries). Polluting industries in this area
were replaced two decades ago by small-scale advanced technologies.

Combustion chambers 1 and 2 (each with a capacity of 2.1 metric tons/h) were
put into operation in 1971. In 1976, a third combustion chamber was opened (with
a capacity of 3 metric tons/h). In 1998, approximately 67,000 metric tons of waste
were processed. Some legal guidelines for incinerator emissions have not been fol-
lowed at this location. For example, in 1997, dust and hydrogen emission levels
were higher than prescribed and exhaust gases were not maintained at temperatures
of more than 850◦C for the legally prescribed time (≥ 2 s), allowing dioxins to
be emitted. The first time that the dioxin concentration of an exhaust gas was ever
measured (in December 1997), it was found to be 16.3 ng international toxic equiva-
lency factor (I-TEQ)/m3, whereas the European guideline value is 0.1 ng I-TEQ/m3.
Combustion chamber 1 (the most polluting) was shut down on December 31, 1998.
Combustion chamber 2 was replaced by a new one with up-to-date pollution controls
(combustion chamber 4), which started operation in late 2003.

22.3 Dioxin Exposure Assessment Through Geographic
Modeling

22.3.1 Plume Modeling

We took advantage of a first-generation Gaussian-type dispersion model created
in 1999 with the Air Pollution Control 3 software (APC3 – Aria Technologies,
Colombes, France). This subcontracting company intervened in the framework of
an environmental impact statement (supervised by the district council) to predict
the future impact of dioxin emissions both from the old (but renewed) combus-
tion chamber 3 and from the new combustion chamber 4 with up-to-date pollution
controls. Dispersion modeling being heavily influenced by factors that are stable
over time (mean meteorological conditions, terrain elevations and stack height), we
assumed that contour shapes (as a direct output from the prediction model), were
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reliable estimates of past dioxin deposition profiles, provided that relative figures
rather than absolute figures were used.

The model took into account meteorological data (5 years of data for wind speed,
wind direction, pressure, temperature, and Pasquill atmospheric stability classes),
simplified surface topography, plume rise, stack characteristics, and the future
dioxin emission rate from the MSWI to assess average concentrations in hundreds of
meteorological conditions (one Gaussian plume for each particular meteorological
condition). The respective contours of these modeled ground-level air concentra-
tions, a priori determined by the subcontracting company (< 0.0001, 0.0001–0.0002,
0.0002–0.0004, 0.0004–0.0016 pg/m3), were digitalized and transferred onto the
surface of a map.

22.3.2 GIS-Based Exposure

Intending to use dioxin ground-level concentrations as relative figures rather than
absolute figures to estimate past exposure, the exposure areas defined by contour
lines were then classified as very low (modeled ground-level dioxin concentration
< 0.0001 pg/m3 zone), low (modeled ground-level dioxin concentration 0.0001–
0.0002 pg/m3 zone), intermediate (modeled ground-level dioxin concentration
0.0002–0.0004 pg/m3 zone), and high (modeled ground-level dioxin concentration
0.0004–0.0016 pg/m3 zone) exposure areas (Fig. 22.1).

The concentration map with a dragonfly wing shape clearly shows that:

• the concentration bands are not circular, but are stretched along the north-east and
south-westerly direction due the foot-hills of the Jura mountains, which channel
the wind preferentially in these two directions (Fig. 22.2);

• the maximum concentration is not immediately adjacent to the plant, but is rather
about 2 km to the north-east and south-west, where the elevated plume touches
down, because the pollution does not disperse vertically downwards from the
elevated source;

• the concentration falls off rapidly with distance from the source.

Using GIS technology (Star GIS software, Star Informatic, Liege, Belgium),
a dioxin concentration category was attributed to each of the 705 city blocks (the
smallest level of geographic resolution in the French census database, typically a
quadrangle bounded by four streets, and averaging 161 inhabitants), and 52 block
groups (averaging 2,183 inhabitants) of the city of Besançon (provided that half or
more of their area was within a given contour). Moreover, by matching a file con-
taining addresses (street and number) against a street network file, we were able to
pinpoint the location of any residence. We could therefore assign a dioxin exposure
category and obtain a risk field classification for any inhabitant of Besançon, what-
ever the spatial resolution of the place of residence (exact coordinates, block, block
group). The geographic coordinates were expressed in the Lambert two French
plane coordinate system (conformal conic projection, Clarke 1880 spheroid, 1st
standard parallel: 45◦53′56.11′′, 2nd standard parallel: 47◦41′45.65′′).
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Dioxin concentrations
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N

Fig. 22.1 Modeled ground-level dioxin concentrations and soil sample locations around the
municipal solid waste incinerator in Besancon, France. Adapted from Floret et al. (2003) with
permission from Lippincott Williams & Wilkins
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These modeled ground-level concentrations represented the best available sur-
rogates for past dioxin exposure measurements from the local MSWI, given that
no earlier measurements had been taken (the first and only data available was one
concentration in 1997).

22.4 Validation of GIS-Based Dioxin Exposure

Validation is often overlooked in the exposure assessment process. A fundamental
rule in environmental modeling is to not transfer use of a model from one geographic
region to another without validating it with measurement data from the new study
area (Nuckols et al., 2004). The accuracy of this modeled exposure, therefore had
to be assessed. We achieved this through dioxin measurements from soil samples,
but unfortunately did so retrospectively (after having completed a NHL case-control
study) due to fundraising difficulties.

Seventy-five sampling points were selected for their homogeneous geological
and topographical conditions (Floret et al., 2006). To our knowledge, this is the
only study ever performed with this large a number of soil samples, yielding fairly
representative and precise estimates. Dioxin concentration, pH, organic carbon con-
centration, cation exchange capacity, and geomorphology and ecology features were
assessed for each soil sample. The study design employed a stratified random selec-
tion process, involving the four quadrants around the incinerator, with an emphasis
on sampling in the quadrants that were historically downwind from the incinerator:
the northeast and the southwest quadrants (Fig. 22.1). The precise position of each
sampling site was determined to maintain homogeneous geological and topographi-
cal conditions and vegetation across samples. The following conditions were sought
during site selection: (1) level, undisturbed soil; (2) away from trees; (3) not adja-
cent to roads or railway lines, and (4) not known or suspected to have high dioxin
concentrations for any other reason. In July 2002, 75 soil samples were collected in
the vicinity of the facility, between 97 m and 12 km from the stack. Each sample site
consisted of an area of 10×10 m. Aliquots were collected at each corner and at the
center of the sites. Soil samples were taken from the upper 10 cm of soil, without
vegetation. All the borehole aliquots collected in the same sampling site were mixed
to obtain a composite sample of about 500 g.

Soil dioxin concentrations ranged from 0.25 to 28.06 pg I-TEQ/g dry mat-
ter. Dioxins measured in soil samples showed fairly similar exposure profiles to
modeled air concentrations. In fact, an interaction between measured dioxin concen-
trations and topography complexity (simple terrain on the northeast side with gentle
hills of moderate slope, and complex terrain on the southwest side with more pro-
nounced hills and valleys) was found (Table 22.1). An upward trend was noticeable
across modeled exposure categories, only in the northeast direction.

These results were confirmed by multivariate models, adjusting for organic
carbon concentration and altitude after stepwise regression. In simple terrain, a
significant association was observed between modeled ground-level air dioxin con-
centrations and log-transformed measured soil dioxin concentrations, with a strong
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Table 22.1 Means (standard deviations) of dioxin soil concentrations (I-TEQ/g dry matter), by
geographic-based exposure and topography complexity categories (Besançon, France)

Modeled dioxin exposure Very low Low Intermediate High

Complex topography 1.09 (1.76) 2.44 (3.53) 1.91 (1.12) 1.37(0.21)
Simple topography 1.81 (1.14) 1.99 (1.37) 3.53 (2.30) 11.25(12.39)

gradient across exposure categories. Conversely, in a complex topography situation,
the model overestimated ground-level air concentrations, particularly in the high
exposure zone.

Several limitations of APC3 software could explain these results. First, only a
simplified topography was modeled, ignoring complex terrain with hills and chan-
nels. Second, the model assumed that turbulence generated in one place tends not
to persist for any significant distance downwind (the so-called equilibrium of tur-
bulence), not accounting for the turbulence boundary layer between surface and air.
Third, surface roughness, which affects the vertical profiles of wind and temperature
and the dispersion rates in the surface layer, was not accounted for. A short rough-
ness length (0.2 m for open grassland and 2–3 m for arable crops, compared to 5–10
m typically in urbanized areas) leads to significant decreases in particle deposition
velocity and, therefore, lower local deposition of dioxins. Fourth, the low height of
the stack (40 m) represented an additional variable, making the fraction of dioxin
emissions deposited locally very sensitive to the treatment of dispersion. We con-
cluded that first-generation modeling provided a reliable proxy for dioxin exposure
in simple terrain. However, a more advanced atmospheric diffusion model should
have been used for a refined assessment in complex terrain.

A later study attempted to examine the nature of the dioxin soil contamination
in the surroundings of the MSWI to characterize whether more than one poten-
tial emission source could explain the presence of the dioxins (Floret et al., 2007).
Dioxin congener profiles were compared according to the most environmentally
impacted zones and to various spatial contrasts. Two different clustering algorithms
identified the same main cluster (consisting of 73 samples). The remaining two soil
samples composed either one or two clusters. All clusters showed similar congener
profiles. Moreover, no contrast was observed for congener distributions between
complex and simple topographies, inside and outside the city boundary, or the two
most and the two least exposed areas, reflecting a common fingerprint. Congener
profiles therefore indicated that the area impacted by the MSWI was not subject to
other point sources of dioxins.

Beside a potential aerial route, we assumed that exposure to airborne dioxins
via the food chain could represent a significant pathway for people residing near
the MSWI of Besançon. In this setting, the consumption of local foods, resulting
from the practice of shopping in popular open markets where locally raised products
are sold, may be elevated relative to more urban areas. To this aim, a pilot survey
of dioxins and dioxin-like PCB (DL-PCB) congeners in eggs was conducted. The
pathways of soil-related exposure of free-range chickens are mainly ingestion of
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Table 22.2 Dioxin and dioxin-like PCB concentrations (pg I-TEQ/g fat) in 6-egg pooled samples
(Besançon, France, 2006)

Sample Modeled dioxin exposure DL-PCBsa Dioxins Total

1 Intermediate 3.8 1.9 5.7
2 High 22.0 5.6 27.6
3 High 10.0 43.0 53.0

aDioxin-like PCBs.

soil and ingestion of soil organisms (worms, insects). High concentrations in the
soil lead to increased dioxin levels in the eggs of foraging chickens. The regular
consumption of eggs from highly contaminated areas can result not only in increased
intake, but also in significantly elevated concentrations in the bodies of exposed
individuals.

We identified three private gardens located under the prevailing wind stream
(northeast) where chickens were foraging: two in the high exposure area, and one in
the intermediate exposure area. The chickens were allowed to forage, but were also
fed table scraps and commercial grain. For each site, dioxins and DL-PCBs were
measured in a 6-egg pooled sample. The two samples collected in the high expo-
sure area contained dioxin and furan levels above the 3 pg I-TEQ/g fat maximum
level applied in Europe, the second sample containing one of the highest dioxin lev-
els ever reported in eggs laid by chickens reared in the vicinity of a MSWI (43 pg
I-TEQ/g fat) (Table 22.2). Soil dioxin contamination profiles closely matched those
in eggs for samples 1 and 3, but did so more loosely for sample 2. The DL-PCB
levels exceeded the proposed EU limit in hen eggs (3 pg I-TEQ/g fat), and were the
main contributors to the total I-TEQ values for samples 1 and 2.

When interpreting these results, one must bear in mind that the type of housing,
grazing habits, contamination of feedstuffs, foraging behaviors. . ., can be signifi-
cantly associated with pollutant concentrations in eggs. Moreover, the levels found
in sample 3 could be partly explained by the fact that the site was formerly a local
sawmill. Spills of chemicals or drippage from freshly treated timber could have
resulted in localized contamination of the ground with both pentachlorophenol and
its associated dioxin contaminants. Nevertheless, as a result of this pilot survey,
chicken owners were advised by local authorities to no longer eat home-produced
eggs.

At the end of this exposure assessment process, we concluded that modeled envi-
ronmental concentrations of dioxins (originally expressed in pg/m3) were good
surrogates for exposure concentrations (i.e. presence of dioxins at the point of
contact with receptors), expressed in a four-category ordinal scale.

22.5 Mixed Individual/Ecological Case-Control Study

To further explore the environmental route suggested by the initial cluster investi-
gation, we carried out a population-based case-control study at the Besançon city
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scale (therefore excluding 29,000 inhabitants of the second electoral ward) since
detailed census data (needed to sample population controls) were available only for
this area (Floret et al., 2003). We capitalized on the existence of modeled data for
the exposure measure, but used individual data to support the MSWI-dioxin-NHL
hypothesis.

We compared 222 incident cases of NHL diagnosed between 1980 and 1995
and population controls. We obtained NHL incidence data from the Doubs cancer
registry (International Classification of Disease for Oncology (ICD-O) morphology
codes: 9590/3-9595/3, 9670/3-9723/3 and 9761/3). This registry was established
in 1976 and is complete for NHL cases, as ascertained by the ratio of the num-
ber of deaths to the number of cases registered during 1983–1987, which, at 47%
(for the Doubs region), is very similar to those reported in other Western coun-
tries. Virtually all cases were verified histologically (97% among men and 99%
among women). We collected data concerning the patients’ address at diagnosis,
date of birth, gender, cancer diagnosis, and age at diagnosis from their medical
records.

We selected controls from a reliable and accessible database, the 1990 popula-
tion census. Because of French privacy laws and confidentiality requirements, the
only individual data available to researchers were sex, age categories (0–19, 20–39,
40–59, 60–74 and 75+ years), and residence in a given block. We randomly selected
population-based controls, according to a 10-to-1 matching procedure. Matching
criteria were sex and age, yielding 10 strata. Risk factor data were limited to what
was available through the census either on an individual level or on a block group
level (educational, occupational, household-based indicators).

A dioxin exposure category was attributed to exact residential addresses (for
cases), and blocks of residence (for controls) (see Section 22.3.2 GIS-based
exposure). Multilevel models were run to explain the outcome (case/control
status) defined at the individual level, while introducing risk factors at the
individual level (dioxin exposure) and the block group level (socio-economic
characteristics).

The risk of developing NHL was 2.3 times higher (95% CI 1.4–3.8) among
individuals living in the area with the highest dioxin concentration than among
those living in the area with the lowest dioxin concentration. No increased risk was
observed for the intermediate dioxin exposure categories (Table 22.3). Adjustment

Table 22.3 Association of non-Hodgkin lymphoma with dioxin exposure categories (Besançon,
France, 1980–1995)

Modeled dioxin
exposure Cases Controls OR (95% CIa)

Very low 42 441 1.0
Low 91 952 1.0 (0.7–1.5)
Intermediate 58 681 0.9 (0.6–1.4)
High 31 146 2.3 (1.4–3.8)

aConfidence interval.
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for a wide range of socioeconomic characteristics at the block group level did not
alter the results.

We re-analyzed the data once the validation study was completed, to check
whether the diffusion model’s inaccuracy in complex terrain challenged the initial
findings. We were fortunate that only 10.5% of cases and 9.3% of controls were
concerned. When restricting the study to cases and controls residing on the north-
east side, an increased odds ratio (OR) in the highest dioxin exposure area was still
found (OR = 2.5, 95% CI 1.4–4.5).

These findings were in line with the results obtained by Bertazzi et al. (2001a)
on the 20-year mortality of the Seveso population. People in the Seveso cohort had
mean TCDD blood lipid concentrations of 136 ng TCDD/kg, which falls between
the typical occupational dioxin levels (> 1,000 ng TCDD/kg) and background levels
(2–3 ng TCDD/kg). Allowing for a latency time window of 15–20 years, results for
NHL clearly did stand out, according to Bertazzi et al. (2001b), with a relative risk
of 2.8 (95% CI 1.1–7.0).

We concluded that our results lend support to the hypothesis that environmen-
tal dioxins increase the risk of NHL among populations living in the vicinity of a
MSWI.

22.6 External Consistency

External consistency is a key issue in environmental studies. We attempted therefore
to replicate our findings at the nationwide level with a similar exposure assessment
approach (Viel et al., 2008). The study area consisted of four French administra-
tive departments, comprising a total of 2,270 block groups. NHL cases that were
diagnosed during the period of 1990–1999, and were aged 15 years and over, were
considered. Each case was assigned a block group by residential address geocoding.
The Atmospheric Dispersion Model System version 3 (Cambridge Environmental
Research Consultants, Cambridge, UK), a second generation Gaussian model, was
used to estimate immissions in the surroundings of 13 incinerators that operated
in the study area. Then, cumulative ground-level dioxin concentrations were cal-
culated for each block group. Poisson multiple regression models, incorporating
penalized regression splines to control for covariates and dealing with Poisson
overdispersion, were used. Five confounding factors were considered: population
density, urbanization, socio-economic level, airborne traffic pollution, and industrial
pollution.

A total of 3,974 incident NHL cases were observed (2,147 among males, and
1,827 among females) during the 1990–1999 time period. A statistically significant
relationship was found at the block group level between risk for NHL and dioxin
exposure, with a relative risk (RR) of 1.1 (95% CI 1.0–1.3) for persons living in
highly exposed census blocks compared to those living in slightly exposed block
groups. Population density appeared to be positively linked to both risk for NHL and
dioxin exposure. Subgroup multivariate analyses per gender yielded a statistically
significant RR for females only (RR = 1.2, 95% CI 1.0–1.4).
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This study, in line with previous results obtained in the vicinity of the incinerator
located in Besançon, added further evidence to the link between NHL incidence and
exposure to dioxins emitted by municipal solid waste incinerators.

22.7 Conclusion

Our goal was not to carry out a top-down human health risk assessment for var-
ious stakeholders involved. We rather used a bottom-up sequential epidemiologic
approach, starting from crude investigations, gradually refining to specific, aimed
studies to address the following issue: although intake from food is assumed to
account for over 90% of the burden of dioxins in the general human population,
could this assumption not hold for people living in the vicinity of a MSWI?

In no instance was actual individual exposure measured; rather, it was estimated
using exposure zones. Residence location as a surrogate for exposure cannot dis-
tinguish between contributions from direct (vapor inhalation or dermal absorption)
and indirect (ingestion of particulate emissions deposited onto soil and plants and
subsequently eaten by grazing animals or foraging chickens) exposure pathways.
At first glance, the so-called “geophysical plausibility” Nuckols et al., (2004) was
challenged. Although the aerial route of transport for the contaminant between the
source and the receptor was plausible, an unresolved issue was how well our individ-
ual exposure metric estimated personal dose (i.e. the amount of dioxins that actually
entered the human body).

Since most of the meats and dairy products consumed are not produced locally,
but have been transported over hundreds or thousands of kilometers, the majority of
dioxin exposure does not come from local dioxin sources. However, local commu-
nities whose diets consist significantly of foodstuffs grown/reared in the vicinity of
an incinerator may have significantly elevated serum dioxin levels. Goldman et al.
(2000) showed that the consumption of both home-produced eggs and meat for
2–15 years was associated with a significant 2- to 6-fold increase in serum levels
of dioxin-like chemicals. In another study, concentrations of dioxins in subjects liv-
ing around two old incinerators in Belgium increased proportionally to their intake
of local animal fat, with almost a doubling in subjects with a fat intake higher than
150 g of fat per week Fierens et al., (2003). Fruit and vegetables grown locally can
also become contaminated by incinerator emissions. After analyzing fruit (apples)
and vegetable (zucchini, lettuce, potatoes) samples, Lovett et al. (1997) concluded
that consuming these foodstuffs would represent an additional 8% of the normal
dietary intake for dioxins.

We lacked the necessary bioassay data (actual blood dioxin levels), which is
expensive and time-consuming to collect, to validate the prediction of GIS-based
exposure in terms of dose. We note, however, that the ecologic classification of
exposure status based on soil levels around Seveso was not refuted by classification
based on blood dioxin measurements available from a sub-sample (Bertazzi et al.,
2001a).
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Geographic modeling strives to create the equivalent of a hypothetical ideal
monitoring system that would have measured the concentration of pollutants at
all locations and times in the medium and domain under study (Beyea and Hatch,
1999). GIS and exposure modeling can be considered innovative and appropriate for
the assessment of dioxin exposure, moving from source identification to personal
exposure estimates using environmental estimates.
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Chapter 23
Synthesizing Waterborne Infection
Prevalence for Comparative Analysis
of Cluster Detection Methods

Niko Yiannakoulias

Abstract When water is an important direct or indirect facilitator in the
transmission of disease it is reasonable to expect that clusters of disease may occur
near or along these water sources. As such, searching for water-related disease clus-
ters can be an important part of spatial analysis process, particularly when there
may be unknown spatial heterogeneities in the relationship between proximity to
water and illness. We illustrate the value of using a new class of disease clus-
ter detection methods in the spatial analysis of diseases suspected to emerge in
unusual and irregular spatial patterns. Our experiment uses synthetic Schistosoma
mansoni prevalence data created from information on environmental factors known
to influence risk of infection. Our simulations suggest that cluster detection meth-
ods that assume circular cluster shapes are less precise in the delineation of cluster
areas, even when the difference between cluster and non-cluster areas is large. We
conclude that methods able to find irregularly shaped disease clusters are particu-
larly well suited to applications in which features of the physical environment are
suspected to influence risk of illness or infection.

Keywords Data synthesis · Cluster detection · Waterborne diseases

23.1 Background

23.1.1 Water-Related Disease and Distance to Water

For many diseases, nearness to surface water can be an important predictor of
risk, particularly in parts of the world without indoor plumbing. Close proximity
to contaminated surface water is important for describing the spatial variability in
cholera prevalence in Rural Bangladesh (Ali et al., 2002). Living near some surface
water sources is associated with greater infection by Helicobacter pylori in Ethiopia
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(Lindkvist et al., 1998). Living close to fresh or marine water sources contaminated
with sewage can spread Escherichia coli and other pathogens through consump-
tion of fish or seafood living near the shore (El-Shenaw and El-Shenaw, 2005).
Even in regions of the world with indoor plumbing, breakdowns in water treatment
infrastructure often result in geographic patterns that express a strong relationship
between distance to water and infection.

Although drinking contaminated water is perhaps the most common route of
exposure for infectious water-related diseases, other routes exist. Schistosomiasis,
for example, is spread when persons come into physical contact with water popu-
lated by snails infected with the schistosome parasite. Proximity to surface water
has shown a particularly strong relationship with infection by the schistosomiasis
pathogen at local (Booth et al., 2004) and regional (Brooker and Clements, 2009)
geographic scales. In several studies in different regions of Africa, persons living
within roughly 4–5 km of permanent water sources have considerably higher levels
of infection with schistosome parasites than persons living further away (Amazigo
et al., 1997; Handzel et al., 2003; Booth et al., 2004; Clements et al., 2006).

For vectorborne diseases, proximity to water can be important for determining
human exposure to a pathogen since disease-transmitting vectors often lay their eggs
in water. Malaria prevalence is higher in densely populated areas near egg-laying
and breeding sites (Kleinschmidt et al., 2001; Le Manach et al., 2005; Manga et al.,
1993; Sabatinelli et al., 1986; Staedke et al., 2003). This relationship is most likely
due to the travel behaviour of mosquitoes; greater distances between egg-laying sites
and human blood meals decrease the efficiency of mosquitoes to infect humans (Le
Manach et al., 2005). These observations may also be true for mosquitoes carrying
dengue fever (Vanwambeke et al., 2006) and diseases spread by other arthropods.
For example, while not a key factor in describing the geographic distribution of
disease, distance to water may also influence the likelihood of exposure to ticks
carrying Lyme disease (Bunnell et al., 2003) and even prevalence of the human
plague (Eisen et al., 2007).

Distance may also be a consideration for health conditions associated with chem-
ical contamination of water. Deep tube wells with lower arsenic contamination are
more likely to be used by households within a reasonable walking distance (Hassan,
2005). Living in regions where groundwater is in contact with natural geological
sources of radon may increase risks of cancer through inhalation of radon released
into the air through domestic water use or the ingestion of dissolved radon (Bean
et al., 1982; Hopke et al., 2000). Fish consumers living near water sources with
high levels of mercury often have higher than average mercury exposure, and have
been found to suffer disproportionately from the neurological effects of mercury
poisoning (Boischio and Hensheld, 1996; Dolbec et al., 2000).

Health care planning and intervention often requires information about where
risk of disease is particularly high; knowing that persons in a particular locale have
disproportionately high risk allows for the allocation of resources to the people in
need. When there is a strong relationship between distance to water and risk of dis-
ease, a map of communities within a particular distance of a water source may be
the simplest method of communicating key risk information. However, if there are
anomalies within the baseline association between risk of illness/infection and prox-
imity to water – for example, because certain regions are better transmission sites
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than others – then these maps could be enhanced by spatial analysis methods that
can identify such anomalies. This spatial exploration process is particularly impor-
tant when the local factors that may interact with proximity to water are unknown,
and cannot be explicitly modelled.

23.1.2 Finding Clusters of Water-Related Disease

Geographic information systems have a well established role in identifying the
“where” of infectious disease, and in turn, supporting decision makers and the
community in planning interventions Abdel-Rahman et al., (2001; Beck et al.,
1994; Booman et al., 2000; Carter et al., 2000; Gamperli et al., 2006; Nihei et al.,
2006). Within most geographic information systems are analytical tools that help
explore and characterize spatial patterns in disease. Cluster detection methods are
particularly useful for identifying spatial anomalies or “heterogeneities” in disease
risk. Cluster detection methods are usually subdivided into several methodological
groups based on the specific question being asked. Tests for global clustering (e.g.,
Tango, 1995; Whittemore et al., 1987) identify whether or not cases of disease tend
to be close together in general, without specifically identifying cluster locations.
Focussed cluster detection tests (e.g., Stone, 1988; Tango, 1995) identify whether
or not cases of disease tend to occur around hypothesized sources of risk (such
as contaminated wells, pulp mills or factories). Local cluster detection tests (e.g.,
Openshaw et al., 1988; Turnbull et al. 1990; Kulldorff, 1997) identify the location
and statistical noteworthiness of local clusters or “hot-spots” of disease. Of these
three general approaches, the local cluster detection tests are of the most use in
exploring spatial heterogeneities of risk related to water since they can be used to
help identify the locations where risk is higher than expected. When a local cluster
is found, we are informed about the location where risk is anomalously high, and in
turn, where the intervention may be most needed.

Over the past decade, the widespread use of the spatial scan cluster detection
method (Kulldorff, 1997) illustrates a general interest in identifying local clusters
in health research, surveillance, and a variety of other fields. In its most common
form, the spatial scan involves searching for geographic clusters in a study area in
order to determine which cluster is most likely to be a geographical anomaly. The
original spatial scan uses a large number of circular “windows” of different sizes and
at different locations in this search process; each window is evaluated as a potential
cluster. The potential cluster most likely to reject a null hypothesis of constant risk
is identified as a “primary” cluster. This primary cluster represents the geographic
subset of observations that is most likely to be a geographic anomaly, and is tested
for significance using Monte Carlo methods.

The circular search windows of the spatial scan make this approach less effec-
tive at identifying clusters that occur in non-circular shapes. This poses a particular
problem when interested in exploring disease clusters associated with proximity
to water, since the geometry of the real cluster is likely to at least partly reflect the
geometry of the water source, which is often irregularly shaped. Fortunately, numer-
ous recent methodological advancements have expanded the ability of the spatial
scan to detect clusters of irregular shape (Duczmal and Assunção 2004; Tango and
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Takahashi, 2005; Assunção et al. 2006; Yiannakoulias et al., 2007; Duczmal et al.,
2008). Approaches outside the spatial scan paradigm have also been developed for
detecting irregularly shaped clusters (Aldstadt and Getis, 2006; Wieland et al., 2007;
Jacquez, 2009).

23.1.3 Geographic Information Systems as Data Synthesis Tools

While the theoretical benefits of irregularly-shaped cluster detection methods are
clear, there is a dearth of research evaluating the ways in these methods may be use-
ful for exploring patterns of disease that are likely to occur in the real world. Most
comparative research to date has relied on a small number of arbitrary and unreal-
istic synthetic data sets as a baseline for comparison. In most of these applications,
synthetic cluster areas are assigned a high risk level, all other areas a lower risk
level, and methods are judged based on their ability to distinguish these areas from
each other. This approach assumes that risk is spatially homogenous within these
areas, which makes cluster detection relatively easy. The complex and highly local-
ized spatial heterogeneities found in the real world differ greatly from most existing
experiments using synthesized data, and in turn, most comparative research to date
lacks the rigour to effectively compare different methods.

In this study, we use a geographic information system to build realistic synthetic
data sets of Schistosoma mansoni infection prevalence. S. mansoni is a waterborne
parasite responsible for schistosomiasis, an infection with serious and often long-
term public health impacts, particularly in Africa. Our objective is to conduct a
geo-computational experiment in which we evaluate how well two cluster detection
methods are able to detect clusters of infection that are likely to follow the shape of
permanent water sources. S. mansoni infection prevalence is strongly influenced by
proximity to water, but also other features of the physical and social environment.
A key component of the experiment is that these synthesized data are a realistic rep-
resentation of infection prevalence, and display variations in S. mansoni infection
prevalence that are likely to be seen in the real world. These data are created by
combining environmental and socioeconomic information into a geographic infor-
mation system to produce a surface of synthesized prevalence. From this surface we
generate a large number of synthetic data sets which are then analyzed for clusters
using the two different methods. We then use a geographic information system to
display the results of the analysis, and compare the effectiveness of the different
methods.

23.2 Methods

23.2.1 Data

This experiment is based on real data from two different regions of Kenya which
have been used in previous empirical studies on prevalence and infection intensity
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Fig. 23.1 Map of two study regions in Kenya

of S. mansoni (Fig. 23.1). Region A, which surrounds the northeast shore of Lake
Victoria, includes 12 districts within the Nyanza province, and region B, located
southeast of Nairobi, includes 3 districts within the Eastern province. Our analysis
is at the location level, the smallest administrative unit for which there are data
from the Kenyan Census. There are 343 locations in region A, and 168 locations in
region B.

Population and socioeconomic data are from the 1999 Census, available for
download from the World Resources Institute (http://www.wri.org/publication/
content/9291). Elevation data are based on the USGS GTOPO30 global digital
elevation model. Precipitation data were obtained from WorldClim (http://www.
worldclim.org) (Hijmans et al., 2005). Although there is little population-based
empirical research showing the general functional relationship between elevation,
precipitation and S. mansoni infection prevalence, research in the region has shown

http://www.wri.org/publication/content/9291
http://www.wri.org/publication/content/9291
http://www.worldclim.org
http://www.worldclim.org
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that S. mansoni infection is rare at elevations above 1,400 m, and low in areas
with less than 900 mm of annual rainfall (Kabatereine et al., 2004). Therefore, we
created binary variables that identify places with elevation or rainfall below these
threshold values to be used in the simulation. We created a third binary variable –
within 5 Km of a permanent surface water – to account for the relationship between
proximity to water and infection observed in previous research (Booth et al., 2004;
Kabatereine et al., 2004). Our final model variable was the proportion of persons
below the poverty line, which is defined based on the ability of individuals to meet
minimum daily calorie requirements (Central Bureau of Statistics, 2003). We con-
sidered including temperature in the model, but the temperature profiles of both
study regions was relatively homogenous after accounting for elevation, and fell
within the range of temperatures supporting infection (Malone et al., 2001).

These four datasets were combined to generate synthesized S. mansoni infection
prevalence for each location in both study regions. This synthesized data reflects
the distribution of infection prevalence as a function of key social and physical
environmental features in the two study regions. In addition, subsets of contigu-
ous locations within each of the study regions were classified as synthesized cluster
areas. These synthesized clusters are chosen arbitrarily, but both are near permanent
water sources (the northeast shore of Lake Victoria for study region A, and a small
network of permanent rivers in study region B). The following logistic function,

pi = 1
/(

1 + e−intercept + E∗
i 2.5+SES∗

i 1.5+C∗
i 2), (1)

provides synthetic prevalence p at all locations i. Term E is elevation below 1,400
m, R is rainfall greater than 900 mm per year, W is an indicator of whether or not
the location includes or is within 5 Km of a surface water source, and SES is a
measure of poverty as specified above. The term C identifies whether or not a loca-
tion is within a synthesized cluster; a value of “1” means the location is inside the
synthesized cluster, a value of “0” means that it is not. For the final synthesized
surface, relative risk inside the cluster area in region A was 3.3, and the relative risk
inside the cluster area in region B was 5.2. The high relative risk is due partly to the
value of the coefficient associated with cluster areas (2), and partly due to the fact
that the cluster areas are located in regions baseline prevalence is already high. The
other model coefficients (2.5, 1, 2.5 and 1.5) and intercept were determined by trial
and error so that the map of synthesized prevalence generated patterns of similar
to findings in previous research. This map is not a true representation of infection
prevalence, but we believe it represents a reasonable baseline for the experiment.

Based on these synthesized prevalence values, we randomly assign status as a
case or non-case to persons within each location, where the probability of an indi-
vidual being a case is a function of the value of p at the location i in which they
reside. We used 0.1% samples of the population counts at the location level as our
sampling population. We do this because comprehensive population-wide data of S.
mansoni prevalence would be expensive and time consuming to collect, and there-
fore, any future surveillance would likely be based on population samples. A 0.1%
sample results in populations of 4,107 in region A and 2,028 in region B. In total,
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1,000 data sets are created for both study regions. Each of these synthesized data
sets is then analyzed using the two different cluster detection methods. Results are
mapped in order to identify the relative success of these methods at identifying the
zones with highest risk.

23.2.2 Greedy Growth Scan

The traditional spatial scan and the greedy growth scan method are identical except
in how they identify potential clusters. While the spatial scan is typically understood
as a search using circular windows, it can also be understood as a search based on
nearest neighbours. Starting at any zone (a “seed” zone), this zone is considered
a potential cluster. Next, the nearest geographic neighbour (typically based on the
distance between the centroids of the two zones) is added to form a new potential
cluster that now includes two zones (the seed zone and a new zone). The next nearest
neighbor to the seed zone is then added, forming yet another potential cluster now
consisting of three zones. This process continues until some threshold size has been
met (typically, 50% of the zone populations). This process is then repeated so that
each zone in the study region is treated as a seed zone of this nearest-neighbour
search procedure. This process creates a large set of “circular” potential clusters,
from which the potential cluster with the largest log-likelihood ratio is identified as
the most-likely to cause a rejection of a null hypothesis that there are no clusters.

The greedy growth scan also creates a large set of potential clusters, but adds
neighbours that explicitly maximize the test statistic (e.g., the Poisson log-likelihood
test statistic) rather than in order of closest neighbours. The method is greedy since
it involves incrementally agglomerating zones into new potential clusters in a way
that immediately maximizes the test statistic objective function. This is distinguish-
able from methods that make short-term sub-optimal potential clusters to find other
potential clusters with more generally optimal characteristics (e.g., Duczmal and
Assunção 2004). The only constraint to the search process is that all clusters must
be topologically connected, which in most geographic applications, means geo-
graphically contiguous. To ensure that the algorithm searches an entire study area
thoroughly, the search processes initiates from all zones within a study region. Once
a search over a study area is completed, the potential cluster with the highest test
statistic is tested for significance using Monte Carlo methods in a manner similar to
the traditional spatial scan.

While all potential clusters found by the greedy growth scan are contiguous,
topological connectivity can vary considerably between them. Topological connec-
tivity can describe the shape and structure of a cluster based on the adjacency of
zones rather than a particular geometric form. Some potential clusters consist of
long chains in which each zone is neighbour to only one or two other zones, and
other clusters are compact, with most zones adjacent to three, four or even more
neighbouring zones. Cluster detection methods like the greedy growth scan some-
times find clusters that are highly-irregular in shape – often of large “octopus-like”
forms. This is because there are no restrictions on what shape a cluster may take.
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While these clusters may sometimes represent statistical anomalies, they are less
conceptually meaningful, and difficult to interpret. To deal with this problem, we
apply a non-connectivity penalty based on the gamma index, originally used in
the structural analysis of transportation networks (Taaffe and Gauthier 1973). In
this application, the gamma index is the ratio of the total observed neighbouring
connections between zones in a potential cluster to the total possible number of
neighbouring connections between zones in a potential cluster. We define a neigh-
bourhing connection as a situation in which two locations are immediately adjacent
to one another. Potential clusters with a high degree of topological connectivity
(such as roughly circular-shaped clusters) have higher values of the gamma index
than elongated or octopus-like clusters. One can apply the gamma index directly to
the test statistic (the log-likelihood ratio) associated with potential clusters in order
to offset the method’s tendency to identify most-likely clusters of very irregular
shape. This non-connectivity penalized likelihood ratio is

PLR(Z,α) = LR(Z)K(Z)α (2)

where

K(Z) = e(Z)

3(v(Z) − 2)
. (3)

LR(Z) is the likelihood test statistic typically used in the spatial scan, and depends
on the particular statistical model chosen (see Kulldorff, 1997). K(Z) is the ratio of
the observed number of neighbours in a potential cluster (e(Z)) to the total possible
number of neighbours in a potential cluster, which can be determined from the num-
ber of zones (v(Z)) in a potential cluster. The value of α determines the strength of
the penalty; larger values indicate a stronger penalty, and a greater penalty against
detecting highly irregular clusters. In this application, we apply a weak penalty
(α = 0.25), because the synthesized cluster areas are designed to be irregularly
shaped; a stricter penalty would make it more difficult for the greedy growth scan
to find clusters of irregular shape, resulting in clusters similar to those found by the
circular spatial scan method.

23.3 Results

Figures 23.2 and 23.3 illustrate the spatial pattern of synthesized prevalence for
regions A and B respectively. These prevalence levels are based on Eq. 1. Prevalence
in region A is relatively geographically homogenous, and most locations have
synthesized prevalence over 50%. Prevalence is lower in region B, and is more het-
erogeneous. In both regions, the synthesized cluster area is located where prevalence
is already high.

Figures 23.4a, b and 23.5a, b display the sensitivity and specificity of the two
cluster detection methods for each of the 1,000 simulated data sets for both study
areas. If a method worked perfectly, it would identify all the locations in the cluster
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Fig. 23.2 Location-level synthesized prevalence for region A

area as part of the cluster area (perfect “sensitivity”), and all the locations outside the
cluster area as not part of the cluster area (perfect “specificity”) for each of the 1,000
data sets. This information is represented on the maps using shading: the higher
the mapped values (and the darker the shading) in the synthesized cluster area, the
greater the sensitivity of the method, and the higher the mapped values outside the
synthesized cluster areas (the darker the shading), the greater the specificity of the
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Fig. 23.3 Location-level synthesized prevalence for region B

method. A method that identifies all the locations in the synthesized cluster area as
part of a cluster, and all other locations as not part of a cluster would produce a
map with sensitivity and specificity equal to 1, and all locations would be shaded
dark. A lightly shaded location inside the cluster area indicates low sensitivity for
inclusion of that location in clusters found by the method. A lightly shaded location
outside the cluster area indicates low specificity for exclusion in clusters found by
the method.

For study region A, Both methods appear to have high sensitivity; most locations
inside the synthesized cluster area have sensitivity, with most locations correctly
included in found clusters over 90% of the time (Fig. 23.4a, b). Both methods appear
able to successfully identify the locations inside the synthesized cluster areas. The
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Fig. 23.5 Sensitivity and specificity of detection, region B

methods differ more with respect to specificity; the circular spatial scan has lower
specificity in the regions along the shore of Lake Victoria, illustrated by a large
lightly shaded circle of locations with low specificity. This suggests that the method
probably found the same large cluster in most of the simulated data sets. The greedy
growth scan has a less regular pattern of specificity. There are areas with moderate
to low specificity, particularly on the north shore of Lake Victoria. However, the
clusters found by the greedy growth scan were probably not the same across the
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simulated data sets, and exhibit greater variation in specificity when compared to
the results of the circular spatial scan.

Figures 23.5a, b display the sensitivity and specificity for each location in region
B. Sensitivity for all locations is high in the greedy growth scan. For the circular
spatial scan, sensitivity is high for some locations, but very low for others. As above,
the circular spatial scan shows more regularity in the characterization of locations
as part of and not part of found clusters. While the circular spatial scan has lower
sensitivity in some parts of the synthesized cluster area, it has higher specificity than
the greedy growth scan. Only a handful of locations have low specificity in the case
of the circular spatial scan. The greedy growth scan has high sensitivity to detect
locations as part of found clusters, but has the tendency to also incorrectly include
locations to the southwest as part of detected clusters.

23.4 Discussion

As spatial analytic methodology advances, and the number of methods available
increases, comparing the effectiveness of different methods is becoming increas-
ingly important. This is especially true for methods that are, or are likely to become,
integrated into geographic information systems. Geographic information systems
are most often platforms for general use, and support the analysis of a wide vari-
ety of problems across many different disciplines. Within sub-disciplines of health
research likely to apply geographic information systems – such as environmental
health and infectious disease epidemiology – specific analytical requirements may
demand a particular subset of the tools available in standard geographic information
systems. It is important that such methodological tools are evaluated and tested in
ways that are meaningful to these specialised applications.

Formally evaluating the effectiveness of different spatial analytic methods is
challenging, however. Comparing how different methodologies perform on real data
does not provide enough range for generalization; a method may prove very effec-
tive in the analysis of one data set, but less effective with another. Further, when
using real data, there is no formal benchmark for comparison; if two different meth-
ods provide different analytical information when using the same data set, there is no
simple way of determining which method better represents the data, or best accom-
plishes the specific analytical goals. As a result, synthetic data are more frequently
used for comparing different methodologies, though they are not without their own
shortcomings. First, there are no widely accepted standards for creating synthetic
data. Comparative studies using different synthetic data sets in their analysis are
not often identical, so conflicting findings do not provide an obvious answer about
which is correct. Second, there is often little assurance that synthetic data represent
something that could occur in the real world. Experimenting with unrealistic syn-
thetic data may create a false impression of how different methods would perform
in real world applications.

Our goal was to generate synthesized data to provide a realistic framework for
comparing how well two different disease cluster detection methods identify clusters
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that are likely to follow the shape of a permanent surface water source. We generated
these synthesized data by combining four publicly available data sets of environ-
mental and population data into a geographic information system. These data were
then used to generate a simple model of prevalence of S. mansoni infection for each
location in the two study areas. We then used this baseline map of prevalence to
create 1,000 synthetic data sets. Each of these data sets was analyzed by the greedy
growth scan and the circular spatial scan methods of cluster detection. Our results
illustrate how these two methods perform on realistic synthetic data, and provide a
credible comparison of how the methods may perform when used to analyze real
data that exhibit similar patterns.

The results from our experiments provide evidence that when real clusters of
infection prevalence are irregularly shaped, the greedy growth scan is a suitable
cluster detection method. The circular spatial scan is restricted to a simpler geom-
etry, and unable to identify the location of a synthesized cluster without falsely
including a large number of non-cluster locations in identified clusters. However,
the greedy growth scan may have lower specificity than the circular spatial scan. To
some degree, the greedy growth scan is a victim of its own success; it is so good at
identifying locations where risk is high that it will do so at the expense of finding
clusters that have believable and environmentally meaningful shapes. While this can
be controlled by imposing a stronger non-connectivity penalty, there are no general
rules as to what these penalties should be a priori. This points to one of the great
advantages of the circular spatial scan: it requires very little pre-specification, and
is therefore less likely to introduce pre-specification biases.

Methods based on connectivity (rather than spatial proximity) have a capacity
to explore patterns with more complex topological structures than traditional spa-
tial modelling and cluster detection methods. Spatial connectivity is a particularly
important concept for water-related diseases, since locations connected by water
sources may exhibit greater similarity in risk than locations that are geographically
proximate (Xu et al., 2006). Water flowing downstream from a site of contamina-
tion may transport risk downstream, thereby connecting distant places to a common
source of hazard. Places along a shoreline or islands in a single body of water may
be considered connected to a common hazard when water is a source of exposure,
even if the places are geographically distant. The greedy growth scan is particularly
suited to the analysis of clusters that may follow water sources because the search
method, including penalization, is based on topological connectivity rather than dis-
tance. This flexibility is an advantage when the physical structure of the environment
influencing risk of disease or infection may have distant, but important, connections.

23.5 Conclusion

Geographic information systems have many uses in applied environment and health.
They can be used to combine different sources of information to build models of
exposure, map variations in relative risk, and estimate relationships between envi-
ronmental exposures and particular health outcomes. Here we used a geographic
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information system to generate synthetic data that allowed us to compare how well
two different methods of cluster detection are able to find clusters of irregular shape.
Given the many diseases for which water environments may be important in envi-
ronmental exposure, it is important to know what methods may be best able to find
spatial anomalies that could occur in the shape of surface water sources.

Exploratory methods of spatial analysis can be useful for detecting geographic
patterns of disease related to features of the environment. These methods can be
applied to routine surveillance activities, but also research in environment and
health, particularly when disease aetiology is not well understood. The experiments
presented here illustrate the value of using a geographic information system to gen-
erate synthetic spatial data for the comparison of different cluster detection methods.
While cluster detection methods with a fixed geometry have a number of advan-
tages (simplicity, speed, and greater power to detect a signal in sparse data) the
information these methods offer is often geographically ambiguous. Relaxing the
fixed geometry by basing searches on topological relationships allows cluster detec-
tion methods to find patterns or processes responsible for interesting geographic
variations in disease.
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Chapter 24
Spatiotemporal Analysis of PM2.5 Exposure
in Taipei (Taiwan) by Integrating PM10
and TSP Observations

Hwa-Lung Yu, Chih-Hsin Wang, George Christakos, and Yu-Zhang Wu

Abstract Many studies have shown a significant association between human
exposure to Particulate Matter (PM) and population health effects (premature mor-
tality, respiratory and cardiovascular diseases, emergency room visits, and systemic
inflammation). Fine PM particles (PM2.5) are believed to be more dangerous than
PM10 because fine particles are easier inhaled and accumulated deeply into human
lungs. Taipei is the largest city in Taiwan, where a variety of industrial and traf-
fic emissions are continuously generated across space and time. Thus, it is crucial
for health agencies to improve their understanding of spatiotemporal PM2.5 expo-
sure of people living in Taipei city. The Bayesian Maximum Entropy (BME) theory
of spatiotemporal statistics and science-based mapping provides valuable infor-
mation about population exposure to PM2.5 pollution in Taipei. PM-related data
(PM10, PM2.5 and Total Suspended Particles, TSP) are collected by different central
and local government institutes. BME analysis introduces concepts and techniques
that have a number of important features (theoretical and computational): several
kinds of site-specific data and core knowledge bases are integrated that are associ-
ated with different physical scales; a variety of uncertainty sources are taken into
account; non-linear, in general, PM estimators are used at unobserved locations;
non-Gaussian laws are automatically incorporated; and a complete characteriza-
tion of the dynamic PM distribution is obtained in terms of the probability density
function at each space-time point rather than a single PM value. These BME advan-
tages have considerable consequences as far as health risk analysis is concerned.
Detailed space-time PM2.5 maps account for (i) composite space-time dependence
structure of PM values, (ii) hard and soft datasets available about PM2.5, PM10 and
TSP, and (iii) empirical evidence about the PM2.5

PM10
and PM10

TSP ratios. PM measures are
investigated, including the fraction of fine particles that vary considerably across
space-time. BME analysis properly identifies and quantifies factors that influence
the spatiotemporal patterns of these measures, such as weather conditions and land
use (e.g., the PM distributions in highly-developed commercial or industrial areas
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generally have higher fine particle fractions). Information generated by rigorous
BME analysis and mapping across space-time constitutes valuable input to health
management and decision-making under conditions of uncertainty.

Keywords Spatiotemporal analysis · BME · PM2.5 · Exposure · PM2.5/PM10 ratio

24.1 Introduction

Many studies have shown a significant association between human exposure to
Particulate Matter (PM) and population health effects (premature mortality, respi-
ratory and cardiovascular diseases, emergency room visits, and systemic inflamma-
tion). Particulate matter (PM) refers to a suspension of solid, liquid or a combination
of solid and liquid particles in the air Wilson et al., (2005). Fine PM particles (PM2.5,
particulate matter particles with aerodynamic diameter ≤ 2.5 μm) are believed to
be more dangerous than PM10 because fine particles are easier inhaled and accu-
mulated deeply into human lungs (Dockery et al., 1993; Pope 2000a, b; Pope
et al., 2004). Taiwan Environmental Protection Agency (TWEPA) has set National
Ambient Air Quality Standards (NAAQS) in 1992 for six criteria pollutants, includ-
ing PM, ozone, nitrogen dioxide, sulfate dioxide, carbon monoxide, and lead. These
pollutants are considered potentially the most harmful to human health and the envi-
ronment. Among them, two PM indicators, total suspended particle (TSP) and PM10
(PM particles with aerodynamic diameter ≤ 10 μm), are used by TWEPA to assess
the exposure level. TWEPA has regularly recorded the ambient pollutants and mete-
orological covariates throughout the island since September, 1993. However, the
TWEPA PM2.5 monitoring network did not begin to operate regularly until 2004.

From the analysis of air quality data during 1994–2003, Chang and Lee (2008)
identified the three main contributors to air pollution in the Taipei area, which are
traffic emissions, photochemical pollution, e.g. ozone, and transboundary pollution,
e.g. sand storm. In addition, the meteorological condition (wind speed, wind direc-
tion, precipitation and temperature) are important contributors to the general air
quality trend (e.g., PM concentration), as well. The bad air quality during win-
tertime can often be characterized by high atmospheric pressure, low wind speed,
less precipitation. Chen et al., (1999; Tsai et al., 2007; Yang, 2002). Recent studies
have indicated that the assumption of homogeneous intra-urban concentrations can
lead to errors in long-term exposure assessment (Wilson and Zawar-Reza, 2006).
To account for the spatial heterogeneity of air pollution, studies applying GIS and
spatial analysis to exposure assessment are rapidly growing due to its capability
to associate spatial information, e.g. land use, with health data and account for the
uncertainty of the dataset collected in complex space-time environment Jerrett et al.,
(2005b; Liao et al., 2005). The application of GIS to environmental health studies
can possibly investigate the health risks at specific space/time locations Jerrett et al.,
(2005a). Given that traffic emissions dominate air quality in Taipei, understanding
the spatiotemporal pattern of air quality at the scale of the Taipei city is an important
prerequisite for rigorous risk assessment of human health and ecological systems.
Chen and Mao (1998) showed that significant fluctuations of PM10 concentrations
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exist among the eighty-four PM10 samples collected at different locations and times
within Taipei city. At the same spatial location s, e.g., at time t the PM concentration
value can be 4–8 times the PM value at a different time t′ 	= t. On the other hand, at
the same time t, the concentration value at location s can be 9–10 times the value at
a different location s′ 	= s (note that the monitoring sites along the roadside have the
greatest level of PM concentration, which is due mainly to traffic emissions (Chen
et al., 1999)).

In addition to the spatiotemporal variation of PM measurements, the PM particle
size distribution can also vary across space and time. In general, fine particles are
anthropogenic (e.g., industrial combustion and traffic emission). Coarse particles are
mainly formed by mechanical processes, e.g., wind erosion and mineral dust, and
significant portions of these particles originate in natural systems. The PM2.5

PM10
ratio is

usually used to characterize the PM particle size distribution. The average ratio of
PM2.5
PM10

in northern Taiwan is about 54–59% (Chen et al., 1999). However, the ratio
values observed within Taipei change significantly from one location to another;
e.g., the ratio is about 0.82 around the incinerator, 0.68 in high traffic areas, and
0.57 in downtown areas (Li and Lin, 2002). For comparison purpose, the average
PM2.5
PM10

ratio in Taipei, Taiwan, is at a similar level as that of Los Angeles, USA; and
it is higher than the corresponding ratio in Phoenix, USA (Li and Lin, 2002).

In order to obtain a more comprehensive and informative understanding of the
spatiotemporal PM2.5 distribution, the present study investigates the improvement
of spatiotemporal PM2.5 prediction by incorporating relevant PM information about
PM10 and TSP. The spatiotemporal ratios of PM2.5

PM10
and PM2.5

TSP are considered as the
indicators of the spatial emission patterns varying across time, which are closely
associated with the local land use and meteorological conditions. We integrated
PM10 and TSP data with PM2.5 measurements by using the ratios to estimate the
monthly PM2.5 concentrations over Taipei city during 2004–2007. The spatiotem-
poral mapping of PM2.5 and ratios were performed in Quantum GIS with the
QtBME toolbox (Ku, 2010), in which Bayesian maximum entropy (BME) method
(Christakos, 1990, 2000) is implemented to enhance the spatiotemporal functional-
ity of the Quantum GIS software. The cross-validation was implemented to compare
the PM2.5 prediction performance between (a) the dataset of PM2.5-only data and
(b) the datasets of PM2.5, PM10 and TSP observations.

24.2 Materials

24.2.1 Study Area

Taipei, located in northern Taiwan, is the largest metropolitan area in Taiwan,
including Taipei city and Taipei county, with the vehicle density as high as over
6,000 vehicles per km2. Except for traffic emissions, the three incineration plants are
the major stationary sources in the area (Chang and Lee, 2007). Taipei is the second
largest basin in Taiwan which is bounded by mountains, i.e. Yangming mountains
to the north, Linkou mesa to the west, and ridge of Snow mountains to the southeast
(Fig. 24.1).
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Fig. 24.1 Topographic map of Taipei area/city (areas bounded by outer/inner solid lines)
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24.2.2 Data

TWEPA has regularly recorded the ambient pollutants and meteorological covari-
ates throughout the Taiwan island since September, 1993. Among them, there are 23
stations located within Taipei city. However, the TWEPA network did not system-
atically record PM2.5 until 2004. Both PM10 and PM2.5 hourly observations from
TWEPA during 2004–2007 are included in this analysis. In addition to TWEPA,
Department of Environmental Protection at local governments of Taipei city and
Taipei county (TPEDEP) also both independently collect PM data during the study
period. Both local governments regularly records TSP data monthly from total of
thirty-nine stations. However, PM10 were only observed by Taipei city government
daily from eight stations. Table 24.1 shows the sampling frequency and instruments
of the stations used in this study. As seen in Fig. 24.2, the combination of the PM
monitoring networks from central and local governments, i.e. TWEPA and TPEDEP,
can provide much better spatial coverage of the study area. To obtain the monthly
maps of PM2.5, data of PM2.5, PM10 and TSP from institutes were all re-organized
into monthly data following the “three-fourths” criterion that the monthly data can
be derived only if the number of daily or hourly measurements should cover over
three-fourths of the month; otherwise, the monthly estimation is considered as the
missing data (Yu et al., 2009b).

24.3 Method

24.3.1 Brief Review of the BME Method

Since the late 1980s, the implementation of BME theory has allowed the study of
attribute distributions in a composite space-time domain, accounting for different
kinds of general and site-specific knowledge bases; it does not make any restrictive
or unrealistic assumptions (linearity, Normality, independency etc.), and it provides
a complete probabilistic characterization at each space-time point instead of a sin-
gle value. The BME conceptual framework and methods avoid the serious faults
of many data-driven techniques of statistical air pollution analysis Dominici et al.,
(2003a, b; Samet et al., 2000; Smith et al., 2003). Beyond environmental pollution

Table 24.1 Sampling methods of the particulate matter stations

PM2.5 PM10 TSP

Frequency Continuous automatic
monitoring (hourly
average value)

Continuous automatic
monitoring (hourly
average value)

Continuous automatic
monitoring (monthly
average value)

Instruments Beta attenuation monitor Beta attenuation
monitor/Tapered
element oscillating
microbalance (TEOM)

Dusttrak aerosol sampler
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Fig. 24.2 Air quality
monitoring stations in Taipei
(circle: TWEPA PM2.5
stations; triangle: TWEPA
PM10 stations; square:
TPEDEP PM10 stations; solid
circle: TPEDEP TSP
stations). The areas of darker
and lighter colors are the
Taipei City and Taipei county,
respectively

and human exposure, in recent times the BME methods have been used in many
other scientific and engineering disciplines with considerable success (Bogaert,
2002; Bogaert and D’Or, 2002; Christakos et al., 2005; Douaik et al., 2004; Kolovos
et al., 2002; Lee et al., 2008; Orton and Lark, 2007; Serre and Yu, 2003; Serre, 1999;
Yu et al., 2007b).

In BME, the air pollution attributes (PM2.5, PM10, and TSP) are mathematically
represented in terms of spatiotemporal random fields (S/TRF; Christakos 1992). Let
Xp = Xs,t denote a S/TRF of a pollution attribute; the vector p = (s, t) denotes a
spatiotemporal point (s is geographical location and t is time). The model is viewed
as the collection of all physically possible realizations of the attribute we seek to
represent mathematically under conditions of uncertainty. The S/TRF model is fully
characterized by its probability density function (pdf), fKB, where the subscript KB
denotes the ‘knowledge base’ used to construct the pdf. In particular, BME considers
a distinction between:

a. General or core KB, denoted as G-KB, it includes physical and biological laws,
primitive equations, and theoretical models for statistical moments. For the air pol-
lution studies, G-KB may include theoretical space-time dependence models (mean,
covariance, variogram, generalized covariance, multiple-point statistics, and hetero-
geneity orders) of the air pollution attribute Xp (Kolovos et al., 2002; Porcu et al.,
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2008). Among them, the mean and covariance (variogram) are the most commonly
used functions in air pollution studies.

b. Site-specific KB, denoted as S-KB, which includes, (b1) exact numerical val-
ues of the attribute across space-time (hard data); and (b2) uncertain information,
like interval attribute values (there is not a unique value available at a space-time
point but, instead, an interval of possible values), and probability functions of the
possible attribute values (the datum at the specified space-time location has the
form of a probability distribution). The S-KB is associated with the vector pdata of
space-time points where site-specific information is available. In atmospheric PM
modelling studies, the χdata of the S-KB can include both hard and soft datasets,
i.e., χdata = (χhard, χ soft) = (χ1, ... , χm) obtained at points pi (i = 1, 2, ..., m) of
the specified geographical area. In this case, the χhard = (χ1, ..., χmh

) denotes hard
data, i.e. exact PM measurements at points pi (i = 1, 2, ..., mh). In other words,
the χhard occurs with probability one. And the vector χ soft = (χmh+1, ..., χm)
denotes soft data at points pi (i = mh + 1, ..., m) that may include uncertain evi-
dence and other sorts of secondary information. For illustration, assume that 32
exact PM10 observations are available at the space-time points phard = (p1, ..., p32),
i.e. Xp1 = 5.1 , ... , Xp32 = 9.3 (in suitable units); and that 55 uncertain PM10
data are available at the points psoft = (p33, ..., p87), say of the interval form 3.2 <
Xp33 < 4.1 , ... , 5.2 < Xp87 < 6.4 (in suitable units). This sort of site-specific
information is mathematically expressed by PS[Xp1 = 5.1 , ... , Xp32 = 9.3 ] = 1
and PS[3.2 < Xp33 < 4.1 , ... , 5.2 < Xp87 < 6.4 ] = 1, respectively. More
generally, assume that at point p24 the uncertain datum is expressed by the density
function fS(p24); then, PS[Xp24 < χ ] = ∫ χ

−∞ dχ fS(p24). For several examples, see
(Wibrin et al., 2006; Yu et al., 2007b).

The total KB is denoted by K = G ∪ S, i.e. it includes both the general and
the site-specific KB. BME method assimilates the KBs by the principle of maxi-
mum entropy and operational Bayesian method and generates the spatiotemporal
distribution of the attributes in probabilistic forms (Christakos, 2000, 2002). The
fundamental BME equations are as follows (for technical details, see (Christakos,
2000; Christakos et al., 2005))

∫
dχ (g − g) eμ

T g = 0∫
dχ ξS eμ

T g − A fK = 0

⎫⎪⎬
⎪⎭ , (1)

where g is a vector of gα-functions (α = 1, 2, ...) that represents stochastically the
G-KB under consideration (the bar denotes statistical expectation), μ is a vector of
μα-coefficients that depend on the space-time coordinates and is associated with g
(i.e., the μα express the relative significance of each gα-function), the ξS represents
the S-KB available, A is a normalization parameter, and fK is the pollutant or expo-
sure pdf at each space-time point where a space-time prediction (or estimation) is
sought – the subscript K means that fK is based on the blending of the core and site-
specific KB. Herein we use the terms “prediction” and “estimation” interchangeably
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to denote the stochastic approximation of unknown PM concentrations across space-
time. The g and ξS are the inputs in Eq. (1), whereas the unknowns are the μ and
fK across space-time. As shown Eq. (1), BME method is a nonlinear estimator with-
out any distributional assumption of the interested attributes. Unlike the common
spatiotemporal interpolation methods, e.g. kriging method, they usually assume the
linearity and Gaussian-distributed among the space-time attributes.

The pdf fK in Eq. (1) represents the pdf of the attribute values at each predic-
tion (estimation) point pk in light of the total K-KB. Given fK at each pk, different
estimates of pollutant concentrations can be derived at the nodes of the mapping
grid (most probable, error minimizing etc. estimates), depending on the objec-
tives of the study. The error minimizing prediction (BMEmean), e.g., is given by
Xpk = ∫ ∞

−∞ dχk χk fK at each grid node pk, and the corresponding BME estimation
error variance (BMEvar) is as follows, σ 2

Xpk
= ∫ ∞

−∞ dχk(χk − Xpk)2fK . Depending
on the situation, the BMEmode, BMEmedian and other kind of attribute estimates
across space-time can be also calculated from fK , which does not have a Gaussian
shape, in general. The BME method is routinely implemented by means of the
several publicly available software libraries, such as SEKS-GUI (Kolovos et al.,
2006; Yu et al., 2007b) and QtBME (Ku, 2010), which is a toolbox in the open-
sourced Quantum GIS software. In visualization terms, one can generate a series of
highly informative space-time maps of the attributes of interest and the associated
uncertainties (e.g., see later, Figs. 24.4, 24.5, and 24.6).

24.3.2 BME Spatiotemporal Modelling of PM2.5

Let the S/TRF Xp = Xs,t denote PM2.5 concentration and the Yp = Ys,t represent
PM10 or TSP concentrations across space-time (Yu et al., 2009b). The PM2.5

PM10
or PM2.5

TSP

ratios can be represented as rp = Xp Y−1
p , where t is associated with the time period

2004–2007. From existing evidence, the rp-values change spatially and temporally
but the distribution of rp is yearly-invariant. This assumption implies that the space-
time patterns of natural and human pollution sources and the urban and suburban
land uses do not change significantly from year to year.

The rs,t can be estimated monthly at every PM monitor station (PM10, PM2.5
and TSP stations) based on the recorded or estimated PM data, which can be hard
data associated with the existing observations; or soft information (probabilistic or
interval types), which is generated by using univariate BME (U-BME) estimation
of PM values at missing data locations. In other words, U-BME estimation makes
available the three PM measures (in the form of either hard data or soft informa-
tion) at all monitoring stations, i.e. stations of TWEPA and TPEDEP. Note that in
the univariate case, the ratio estimates use only hard data (PM2.5, PM10, and TSP
observations). Based upon the elaborated PM datasets, soft information of rp can be
obtained in terms of the equations in Table 24.2. Assuming independence between
the ratios and the concentrations of PM10 or TSP, the spatiotemporal posterior pdf,
fK(χk), of PM2.5 at any space-time estimation point pk can be expressed as
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Table 24.2 Deriving soft information of rp

PM2.5 PM10 or TSP Ratio

Xp Yp rp

Xp = χ Yp = ψ rp = χ ψ−1

Xp = χ Yp ∼ fS(ψ) rp ∼ fS(χ r−1
p )| − χ r−2

p |, where χ is a constant
Xp ∼ fS(χ) Yp = ψ rp ∼ fS(χ ψ)|ψ |
Xp ∼ fS1 (χ) Yp ∼ fS2 (ψ) rp ∼ ∫

ψ
dψ fS(rp ψ ,ψ)|ψ |

Note: fS(χ) and fS(ψ) can be any pdf representing soft information; in this study, it is the
knowledgable fK ‘s from the BME univariate estimations.

fK(χk) =
∫ 1

0
drk r−1

k fS1 (rk)fS2 (χkr−1
k ) (2)

where rk are the estimated ratios at point pk; S1 and S2 denote the soft information
of ratios and secondary PM data (i.e., PM10 and TSP), respectively.

24.4 Results

As shown in Fig. 24.2, the PM2.5 and PM10 data from TWEPA are mostly collo-
cated, which can provide the required hard information for the PM2.5

PM10
ratio. In order

to have a more comprehensive spatial coverage of ratio values, spatiotemporal PM2.5
estimates were generated by the BME method with space-time PM2.5 data at the
PM10 and TSP stations (obtained from the TPEDEP network). Using the new PM2.5
values along with the existing PM10 observations, new soft information about the
PM2.5
PM10

ratios at the PM10 stations can complement the spatial coverage of the orig-

inal PM2.5
PM10

dataset. To characterize the spatiotemporal dependence among the PM2.5
PM10

ratios, the nested non-separable covariance model below is used as part of the core
KB (Fig. 24.3),

c(h, τ ) = c0 e
−3

(
h2

a2
r1

+ τ2

a2
τ1

)
+ c1e

−3

(
h2

a2
r2

+ τ2

a2
τ2

)
, (3)

where I(ar2) is a 0–1 indicator (it is zero when h > ar2); [c0, c1] = [0.0067, 0.003],
[ar1, ar2, at1, at2] = [10 Km, 6 Km, 550 mo, 6 mo] –“Km” means kilometers and
“mo” means months. By properly integrating the hard and soft ratio data, the BME
method generates the spatiotemporal distribution of the PM2.5

PM10
ratios every month

during the period 2004–2007. Figure 24.4 shows the spatial distributions of PM2.5
PM10

from January to October of 2006, considered in 3-month intervals.
Similarly, in order to obtain the PM2.5

TSP ratios, the BME method was used to esti-
mate PM2.5 and TSP concentrations at the monitoring stations of TSP and PM2.5,
respectively. The soft data of the PM2.5

TSP ratios can be accordingly generated by means
of the equations of Table 24.2. A nested non-separable model was used for the
spatiotemporal covariance of PM2.5

TSP ,



482 H.-L. Yu et al.

Fig. 24.3 Spatiotemporal covariance of PM2.5
PM10

ratios in a space (c(h, τ = 0)) and b time (c(h =
0, τ )), where circles and lines denote empirical covariance and theoretical covariance model

c(h, τ ) = c0 e
−3

(
h2

a2
r1

+ τ2

a2
τ1

)
+ c1

(
1 − 3

2

h

ar2
+ 1

2

(
h

ar2

)3)
I(ar2)e

− 3τ
aτ2 , (4)

where I(ar2) is a 0–1 indicator (it is zero when h > ar2); [c0, c1] =
[0.004, 0.0079], [ar1, ar2] = [20, 15] Km, and [aτ1, aτ2] = [5, 110] months.
Figure 24.5 shows the spatiotemporal PM2.5

TSP ratios in the same months as in Fig. 24.4.
Following Eq. (2), soft PM2.5 data of a variety of probabilistic types can be
generated at every PM10 and TSP station over time.

The more informative spatiotemporal distribution of PM2.5 can be obtained by
the BME method that assimilates the soft and hard PM2.5 data (Fig. 24.6). The PM2.5
distribution is characterized by the following nested, non-separable spatiotemporal
covariance,

c(h, τ ) = c0e
−3

(
3 h
ar1

+ 3τ
aτ1

)
+ c1

(
1 − 3

2

h

ar2
+ 1

2

(
h

ar2

)3)
I(ar2)e

− 3τ
aτ2 , (5)
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Fig. 24.4 Spatiotemporal distributions of PM2.5
PM10

ratios in a January, 2006, b April, 2006, c July,

2006, and d October, 2006 (unit: μg/m3)

where I(ar2) is a 0–1 indicator (it is zero when h > ar2);[c0, c1] = [32.9, 57.1]
and [ar1, ar2, aτ1, aτ2] = [80 Km, 10 Km, 550 mo, 8 mo]. All the spatiotemporal
fitting was performed by an automatic scheme discussed in (Yu et al., 2009a).

Cross-validation was performed at every TWEPA station of PM2.5 data monitor-
ing. Figure 24.7 shows the comparison between the PM2.5 estimates vs. observations
at the stations of Sihlin, Guting, Xizhi, and Cailiao. In addition, cross-validation was
performed when only PM2.5 data were used for prediction. The comparison of the
cross-validation results are shown in Table 24.3.

24.5 Discussion

This study uses the BME approach of spatiotemporal statistics to integrate obser-
vations of several PM measures in the prediction (estimation) of fine particulate
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Fig. 24.5 Spatiotemporal distributions of PM2.5
TSP ratios in a January, 2006, b April, 2006, c July,

2006, and d October, 2006 (unit: μg/m3)

matter concentrations across space-time. This study accounts for different kinds of
core and site-specific knowledge bases, without making any restrictive or unre-
alistic assumptions (linearity, Normality, independency etc.), which are some of
the drawbacks that characterize the data-driven statistical models used in other
environmental pollution and human exposure studies (Dominici et al., 2003a).

Most of the PM2.5 monitoring networks worldwide were established on a sys-
tematic basis during this decade when the importance of human exposure to PM2.5
and its health effects began to be appreciated. The present study presents an effec-
tive way to improve the resolution and PM2.5 prediction in composite space-time
domain. It involves the original PM2.5 monitoring network, and can be useful in the
prediction of PM2.5 concentration at space-time points where or when the PM2.5
observations are absent or limited. In addition to PM2.5 prediction and mapping, the
modeling of the spatiotemporal ratios PM2.5

PM10
and PM2.5

TSP can provide valuable insight
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Fig. 24.6 Spatiotemporal distributions of PM2.5 concentrations in a January, 2006, b April, 2006,
c July, 2006, and d October, 2006 (unit: μg/m3)

about the underlying PM patterns and mechanisms across space and time. More
specifically, the higher ratios of PM2.5

PM10
implies that the higher portions of particu-

late matters are generated by anthropogenic emissions, such as traffic and industrial
emissions. The causes of high ratios of PM2.5

TSP can be more complicated which can
result from either the high PM2.5 concentration due to the anthropogenic emissions
or the low TSP concentration owing to certain geographic or atmospheric reasons.

As shown in Eq. (3), the PM2.5
PM10

exhibits two processes with different space-time
ranges, which characterize the spatiotemporal patterns of the PM size distribution
over the Taipei area. The two space-time ranges, [10 km, 155 months] and [6 km,
6 months], show that the PM2.5

PM10
can be dominated by the local emissions with the

spatial extent about 10 and 6 km wide while distinct temporal ranges which imply
the long-term pattern and seasonal variations of the ratios. The spatial ranges of the
ratios generally correspond to the ranges of traffic emissions and changes of land
use patterns within the city. It implies the spatial distribution of PM2.5

PM10
is persistent
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Fig. 24.7 The comparison between PM2.5 observations (solid line) and estimations (dash line) at
the four PM2.5 stations a Shilin station, b Xizhi station, c Cailiao station, and d Guting station

over time with mild seasonal variations. This fact is shown in Fig. 24.4 in which the
hotspot of higher PM2.5

PM10
values is located at the southwest of Taipei area, where is

the area of major transportation hub of the city, i.e. Taipei main station. The shape
of the PM2.5

PM10
hotspot is generally elliptic with longer East-West axis along the civic

boulevard, which connects the major commercial and industrial areas of the city.
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Table 24.3 Results of cross-validation (observed-estimated)

Data availability
Mean
(μg/m3)

Standard
deviation
(μg/m3)

Median
(μg/m3)

Min value
(μg/m3)

Max value
(μg/m3)

PM2.5 + PM10
and TSP

2.115 1.845 –0.467 –11.516 10.556

PM2.5 only 3.242 2.469 –0.456 –11.058 12.917

Similar to the ratios of PM2.5
PM10

, the spatiotemporal patterns of PM2.5
TSP ratios are

also dominated by two local processes with similar spatial ranges, i.e. about 15
and 20 km, and distinct temporal ranges that represent the long-term and seasonal
changes of the ratios respectively. It implies the local emissions are the major con-
tributing factor to the spatiotemporal characteristics of size distribution of PM.
Figure 24.5 shows that the high PM2.5

TSP values are observed at the areas which are
major connections to commute in and out of the city, i.e. the location where is the
highway exit from the major freeway (Sun-Yat-Sen freeway) at the northern Taipei,
and the area around Fu-He bridge which connects Yong-He city (the major res-
idential area) and Taipei, as well as the areas along the Da-Shui river by which
Huan-He and Shui-Yuan highways are surrounded. In general, the high PM2.5

TSP gen-
erally exhibits at the major roads which are either at the boundary (i.e. Dan-shui
river) of the Taipei downtown or connect the surrounding cities to Taipei by cross-
ing the river. These major road connections generally have relatively high traffic
volume with higher PM2.5 emissions, yet relatively low TSP values since Taipei
city is surrounded by rivers. During the winter, the concentration of high PM2.5
plays more important role to PM2.5

TSP patterns that the high PM2.5
TSP follows Jian-Kuo

elevated highway, the most important road connecting city north and south.
The space-time maps of Fig. 24.6 present PM2.5 concentrations during 2006

in the downtown Taipei area in which higher density of commercial activities are
exhibited, and at the west boundary between Taipei city and Taipei county, where the
high traffic density over time from the commuters between the two areas. The PM2.5
concentrations are generally reduced in summer over the entire study area which
contrasts the results of temporal PM2.5 distribution in North Carolina (Yu et al.,
2007a). This fact can be due to the summer meteorological conditions in Taipei
when the higher frequency of precipitation, higher speed of wind, and lower atmo-
spheric pressure contribute to the lower PM2.5 concentrations (Tsai et al., 2007). The
spatiotemporal mapping of PM2.5 as well as the ratios of PM2.5

PM10
and PM2.5

TSP show that

the areas of high PM2.5 closely correspond with the areas of high PM2.5
PM10

. It implies
that the spatial variations of PM2.5 are primarily dominated by traffic emissions.
The traffic centers have high PM2.5 and PM2.5

PM10
over the entire study period, even in

summer.
For comparison purposes, the cross-validation results in Table 24.3 are used next.

The BME estimation of PM2.5 by assimilating additional information from PM10
and TSP can improve the spatiotemporal prediction of PM2.5 concentration over
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Taipei during the study period, in the sense that the reduction of the average, stan-
dard deviation, maximum, and minimum of the prediction (estimation) errors (i.e.,
“observed- estimated” PM2.5). Figure 24.7, shows a comparison at the four selected
stations that represent different regions of Taipei, i.e. the commercial area (Sihlin),
the commercial-residential mixture area (Guting and Xizhi), and the commercial-
industrial-residential area (Cailiao), show the good agreement of PM2.5 predictions
over space and time by the BME approach. The spatiotemporal distribution of PM2.5
can be used to identify where and when the PM2.5 concentrations can be harmful to
the health of people living in Taipei. Since the PM2.5 standards are still not available
in Taipei, in Fig. 24.8, it shows the spatial and temporal distributions of the proba-
bility that average monthly PM2.5 distribution exceeds the PM2.5 standard of daily
average designated by USEPA. As shown in Fig. 24.8, the area of higher nonattain-
ment probability is located at southwestern Taipei, especially at the neighborhoods
of the Taipei Bridge and Chung-Shan Freeway which are the major connections
between Taipei city and Taipei county. BME analysis can not only show the nonat-
tainment areas but show their associated probability (or risk). The results can be a
reference for the agencies of public health and environmental protection in Taiwan
for the future environmental health policy.

24.6 Conclusion

It is important for environmental health studies to investigate health outcomes
resulting from PM exposure by considering its spatiotemporal heterogeneity. This
study applied BME method to generate PM2.5 maps in a composite space-time
domain, which are informative and incorporate secondary information; BME is a
non-linear approach that provides the complete PM probability distribution, gener-
ally non-Gaussian, at each point across space-time. When core knowledge in the
form of epidemiologic laws, scientific theories, physical models etc. is available,
BME integrates it with multi-sourced site-specific information at various scales.
The results show that the incorporation of multi-sourced soft and hard informa-
tion by BME analysis and mapping can effectively improve the accuracy of PM2.5
estimation across space-time. The PM2.5 estimations can be represented in proba-
bilistic form and therefore the nonattainment map of PM2.5 can also be expressed
as well as its uncertainty. Our results of spatiotemporal mapping can be compared
with other geographic data under GIS platform to reveal environmental health infor-
mation, e.g. causal relationship and high health risk area, which can be important
good references for governmental agencies. This analysis also demonstrates that the
two dominant space-time mechanisms underlying PM2.5 space-time distributions
in Taipei are associated with local emissions and seasonal effects. Our modelling
results agree with the physical interpretation suggested in relevant substantive
studies.
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Fig. 24.8 a Spatial distribution and b temporal distribution of the average probability of monthly
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