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Introduction

The prevalence of paradoxes in probability theory can be judged against a subject
famous for its paradoxes—mathematical logic, in which there are about half a
dozen that are notable. (Russell’s, Cantor’s, Berry’s, Burali-Forti’s, Richard’s,
Grelling’s and the Liar (Fraenkel et al. 1984) and (Heijenoort 1967)). Except for
the Liar they all arose during the foundational period in the late nineteenth and
early twentieth centuries. In probability theory (Szekely 1986) covers more than
eighty paradoxes. (More advanced material of a paradoxical nature can be found in
Romano and Siegel 1986). One can practically trace the whole history of proba-
bility theory in terms of paradoxes. And the probability paradoxes keep coming.
Older paradoxes, settled and well understood, retain the capacity to instruct,
astonish, and delight, but the paradoxes I have chosen remain controversial or are
settled in a manner I believe to be incorrect.

We shall see time and again that the paradoxical nature of the materials drives
analysts to resort to exotic, innovative, untested, fanciful, and otherwise dubious
techniques. Proposed solutions are often as paradoxical as the original problems
and only add to the mystification. The antidote is exclusive use of the near uni-
versally accepted elementary rules of probability theory. Five of these paradoxes
have been widely discussed (Open Box and Card Experiment are new). Only two,
the Betting Crowd and Two-Envelopes, are probability paradoxes in the narrowest
sense. The others bear on questions of human nature, causality, human survival,
cooperation, and controlling outcomes by actions. Each nevertheless hinges on the
correct application of probability theory. The first three concern correct use of the
concept of randomness, the second three the question of how probabilities should
shape action. These problems are subject to definitive resolution in a manner that is
routine in mathematics, but is in sharp contrast to the continual reassessment of old
questions which is characteristic of philosophy. I claim that in every case correct
application of probability concepts is the key to resolution of the paradox and that
none of these applications are embroiled in foundational disputes. In other words,
these are the kinds of probability problems whose solutions are independent
of how one decides certain philosophical questions. The last claim rests
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uncomfortably with the fact that much of the dispution on these paradoxes is found
in philosophical publications. Paradox itself invites philosophical treatment; after
all, the greatest paradoxes from Zeno to Russell have been philosophical. My
contention is that patient application of near universally accepted probability
concepts is enough to resolve each paradox. Probability theory gives definite
answers to well posed questions; in particular probability theory cannot give
inconsistent answers to an unambiguous question. Ultimately there are no prob-
ability paradoxes, only probability fallacies. There are profound philosophical
problems associated with probability concepts: determinism, the open future,
subjectivity, induction—all of these and more have been brought into disputations
over these paradoxes. They just happen to be irrelevant to this set of problems. In
briefest terms there are three issues:

(1) The validity of a certain kind of Anthropic reasoning (Doomsday, Betting
Crowd, Simulation)

(2) The role of dominance principles in decision making (Newcomb, Open Box,
Card Experiment)

(3) The treatment of divergent expected value expressions (Two-Envelopes).

The required applications of probability theory are unambiguous for three
reasons: (i) only discrete probability theory is needed. There is no call for the
continua of real analysis. (ii) these problems are finitary in nature; the exception is
the Two-Envelopes paradox but even here a finitary version can be developed
(9.6.3). (iii) the solution to these paradoxes are independent of foundational
questions such as Bayesianism versus frequentism. Since the subjective proba-
bilities in these paradoxes can be cast in terms knowledge of frequencies, Bayesian
and frequentist demonstrations run in parallel. In finitary probability problems
dependant on observable frequencies, there is little space in which ambiguity and
equivocation can hide.

The last four paradoxes concern the optimality of strategies. Treatment of such
problems needs principles of decision making to link probabilities to evaluations
and actions. Its desirable that such principles be intuitively obvious, e.g., the player
should prefer the larger monetary payoff to the smaller one. I wish to promote
three such principles that I take to be incontestable.

(1) The Symmetrical Ignorance Principle: symmetrical ignorance forestalls
rational preference.
Suppose everything a person knows about either of two options applies
equally to both of them; then the person has no grounds on which to base a
preference.

(2) The Advisory Principle: one should not recommend a strategy as optimal that
fails to be optimal when the strategy in question is undertaken because of a
recommendation.
There may be initial doubt as to whether such strategies exist, but there is no
denying that if there are strategies that do not work when recommended,
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then someone who wants what’s best for the player should not recommend
such strategies.

(3) The Coherence Principle: problems in outcome alignment should be played
in the same way.
Suppose two games are played in a series of rounds. On any given round if the
games are played the same way, they always yield the same payoff. This may
be a different payoff than last time this strategy was tried, but on any round,
the payoffs are the same if the strategy used in both games is the same. The
coherence principle states that if one game has a best strategy, that strategy is
also best in the other game.

It is difficult to see any reason to deny validity to (1) or (2) as decision prin-
ciples; moreover, there seems to be no motive for contesting them. Matters are
different with (3). It is as obvious and compeling as the other two, but if (3) is
granted (with support from (2)) a solution to Newcomb’s problem ineluctably
follows that most experts consider completely wrong. On the conceptually
treacherous terrain of Newcomb’s problem, one may be reluctant to accept even
the most transparently obvious assertion, at least until one can examine its con-
sequences. The reader who has reservations about the status of (3) can read
Chap. 4 as placing upon proponents of any other solution the added burden of
explaining why two problems that have exactly the same responses to player
strategies should be treated differently.

The short and infrequent bursts of mathematics in this book, mostly in the
chapter on the Two-Envelopes paradox, are of the sort that some find elementary
and others impenetrable. I have tried to make it possible to bypass the mathe-
matical parts with minimal loss, but they are needed for a full understanding of
Two-Envelopes and Newcomb’s problem. I wanted the argument to be compelling
enough for dissenters to feel the need to locate a specific mistake. Both rigor and
transparency can compel, but they are somewhat at odds with one another. I can
only hope I’ve struck a good balance.
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Chapter 1
Seven Paradoxes

A Summary of the Paradoxes

1.1 The Doomsday Argument

How long will the human race survive? The Doomsday argument has been pro-
posed not as paradox, but as a serious proposal about the prospects of human
survival. It is paradoxical because elementary probability reasoning is used to go
from a mundane fact to a truly extraordinary conclusion. As with any probability
paradox it is a question of locating the fallacy.

Suppose a ticket is drawn from one of two lotteries, a small lottery with ten
tickets, numbered 1 through 10, and a large lottery with a thousand tickets, numbered
1 through 1,000. A coin is tossed to determine from which lottery a random ticket is
to be drawn. You are informed that the number drawn was 7, but not which lottery it
came from. Although it could have been drawn from the large lottery, 7 is much
more likely to have come from the small lottery. Bayes’ Theorem can be used to
show that the probability that the drawing was from the smaller lottery has shifted
from 0.5 to nearly 0.99 (see Sect. 9.1). In the Doomsday argument popularized by
John Leslie (Leslie 1990, 1992) an analogue of this reasoning is employed to make
discoveries about the fate of the human race. This has stirred up considerable
controversy. Leslie’s argument, which he attributes to Brandon Carter, suggests the
end of the human race may be much closer than we generally suppose, even in our
current mode of ecological pessimism. The argument can be summarized as follows:
among all people who have ever lived, our current birth-order rank is something like
60 billion. If humanity is to continue as long as we usually suppose, then we shall
have a quite low rank among all who ever live. According to Leslie, this should be
considered unlikely; it is more probable that we have middling rank among all who
ever live, in which case doomsday will be much sooner than we generally suppose.
In effect, one’s birth is treated as though it were a random drawing from a lottery of
unknown size, consisting of all humans who ever live. One’s own rank in the
drawing is used to estimate the size of the entire lottery pool. This suggests that the
entire human lottery is not large relative to our rank, i.e., doomsday is likely to be
relatively soon.
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1.2 The Betting Crowd

The Shooting Room Paradox was devised by John Leslie to justify his Doomsday
argument. In fact it does the opposite, serving to reveal the fallacious nature of
Doomsday reasoning. In the original formulation, losing players are shot, but this
gruesomeness distracts from the true paradox. I have replaced the jarring and
irrelevant human carnage with betting. I call this the Betting Crowd: successive
groups of individuals are brought together and are required to make the same
wager; betting $100 that the ‘‘House,’’ with fair dice, rolls anything but double
sixes. Whenever the crowd wins its bets, ten times as many people as have played
so far are recruited for the next round and a new roll of the dice. Once the House
wins, the game series is over. So the House can truthfully announce before any
games are played at least 90 % of all players will lose. The puzzle is that these bets
appear to be both favorable and unfavorable, favorable because double sixes are
rare, unfavorable because the great majority of players lose.

1.3 The Simulation Argument

Assuming technology advances, it should be possible to create sims (simulations
that don’t know they are simulations). Given enough time, sims should vastly
outnumber real people. Since we cannot directly ascertain which we are, we’re
much more likely to be sims.

1.4 Newcomb’s Problem

In Newcomb’s problem the player is shown two boxes and given the choice of
taking either the 1st box or both boxes. The first box is either empty or contains
$1 million; the second box invariably contains $1000 and can be transparent.
These boxes have been prepared by a resourceful entity, the predictor, a shadowy
figure with an uncanny ability to judge which choice contestants will make. The
predictor prepares the boxes according to the following rule: If the player is going
to choose both boxes, leave the first box empty; if, however, the player is going to
choose the 1st box only, place $1 million in that box. The predictor’s abilities are
such that it scores a consistent 90 percent in following the rule. The reason for
either the predictor’s successes or its failures is generally not given. What is best,
to take one box or two? Either choice can be supported by a seemingly airtight
argument:

(1) The one-boxer argument. The predictor may be mysterious, but the resultant
monetary payoffs and their probabilities are precisely defined. The best course
is to maximize expected value. Taking one-box leads to a payoff of $1 million
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90 % of the time and zero dollars 10 % of the time, for an expected value of
$900,000. Taking two-boxes leads to a payoff of one thousand dollars 90 %
of the time and one of $1,001,000, 10 % of the time, for an expected value of
$101,000. By this criterion the one-box strategy is far superior.

(2) The two-boxer argument. Let X represent the unknown contents of the 1st box.
The player can choose one box and receive X, or choose two boxes and
receive X ? $1,000. Whatever the value of X, X ? $1000 is always to be
preferred, so the two boxers’ strategy is consistently superior.

1.5 The Open Box Game

This is Newcomb’s problem with both boxes open. In the first four paradoxes the
conflict is evident. In the open box game it is difficult to find a paradox at all. The
obvious answer seems to be the right answer; there seems to be no other side. One
who has uncovered the paradox is well on the way to solving it. This matter is
better left until Newcomb’s Problem has been solved (Chap. 5).

1.6 The Hadron Collider Card Experiment

This paradox springs from a radical theory in physics that gives an astonishing
explanation for various difficulties suffered by CERN’ Large Hadron Collider,
namely ‘‘something’’ in the future is trying by any means available to prevent the
production of certain elementary particles called Higgs bosons. Operating from the
future, unprecedented means are available.

1.7 The Two-Envelopes Paradox

There are two paradoxes called Two-Envelopes. Although related, they require
different treatments.

The blind game: You’re presented two envelopes, identical in appearance, and
are informed that one envelope contains twice as much money as the other. (To
conceal quantities, these can be checks.) You are randomly allotted one (we call
this the 1st envelope) and then are offered the opportunity to switch envelopes.
Since you have exactly the same knowledge concerning each envelope, the only
reasonable conclusion is that you should value the envelopes equally, and hence be
indifferent between switching or not switching. Alongside this is placed a
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paradoxical argument: suppose the 1st envelope contains F, then the other contains
2F half the time and F/2 half the time. So the other envelope is worth

1=2ð Þ2F þ 1=2ð ÞF=2 ¼ 5F=4

an amount greater than F. This remarkable equation promises a 25 % average
profit just from switching envelopes. However, this line of reasoning collides with
itself: we can as easily denote the amount in the 2nd envelope by F, then sym-
metrical reasoning yields (1/2)2F ? (1/2)F/2 = 5F/4 for the value of the 1st
envelope, so by this account each envelope is worth 25 % more than the other.

The informed game: suppose the player is permitted to look into the 1st
envelope before making the decision whether to switch. The amount in the 2nd
envelope remains concealed until after the player’s decision. Observing the
amount in the 1st envelope breaks the symmetry of the game. Once the player
learns F—the amount in the 1st envelope—she knows the 2nd envelope contains
either F/2 or 2F. If, furthermore, she knows the probability distribution S from
which the amounts were selected, she can determine the probabilities p and 1 - p
of these alternatives. The expected value of the other envelope is

p F/2ð Þ þ 1� pð Þ 2Fð Þ

This is greater than F if an only if (1 - p) [ p/2; that is, it is favorable to
switch when the probability of doubling is more than 1/2 the probability of
halving. One can find a distribution for which this relation holds for each value
of F. For such distributions it would seem a winning policy to switch irrespective
of the value of F. This policy can be fully implemented without opening the 1st
envelope which brings us back to the first Two-Envelopes paradox and its insane
advocacy for switching under symmetrical conditions.

References

Leslie, J. (1990). Is the end of the world nigh? The Philosophical Quarterly, 40(158), 65–72.
Leslie, J. (1992). Time and the anthropic principle. Mind, 101(403), 521–540.

4 1 Seven Paradoxes



Part I
Anthropic Fallacies



Chapter 2
DOOMSDAY!

The Doomsday argument concerns a question sure to arouse interest—the survival
of the human race. It is rivaled only by the Simulation argument in attempting to
address profound questions of human nature and destiny through elementary
probability calculations. Proponents of the argument maintain that we are ran-
domly selected from among all who ever live. This randomness makes it unlikely
that we are among the earliest humans. A calculation demonstrates that if we are
not among the earliest humans, then the human race has less time left than is
usually allotted to it. Among all people who have ever lived, our current birth-
order rank is something like 60 billion. If humanity is to continue as long as we
usually suppose with the population sizes of the modern world,1 then we shall have
a quite low rank among all who ever live. This should be considered unlikely; it is
more probable that we have an average rank among all who ever live, in which
case doomsday will be much sooner than we generally suppose. Your birth rank
(one plus the number of humans born before you) which can be estimated, cor-
responds to the number on the lottery ticket drawn (see 1.1). This rank is used to
infer whether you are part of a big lottery (prolonged existence of the human race)
or a small lottery (early doom). This suggests that the entire human lottery is not
large relative to our rank, i.e., doomsday is likely to be relatively soon.

The ease with which the Doomsday argument extracts from a quite modest
investment of current fact, substantial information about the remote future has
provoked suspicion in most quarters; however, critiques that have not been snidely
dismissive have tended to be as mystifying as the Doomsday argument itself. The
Doomsday argument is a worthy paradox in that it is much easier to see the
conclusion is unwarranted than to locate the fallacy. Bostrom (2002, p. 109)
reports having heard more than one hundred attempted refutations of the
Doomsday argument. The Babel of conflicting objections indirectly lends credence
to the argument—more than a hundred attacks and still standing.

1 It is the number of future individuals, not the amount of time to Doomsday, that allegedly
regulates the sampling probabilities. Although we’ve had a fairly long history with low populations,
the Doomsday argument indicates that assuming large populations, we have a short future.
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Proponents of the Doomsday argument base their reasoning on Bayes’ Theo-
rem, an uncontroversial proposition of probability theory (see 9.1). Use of Bayes’
theorem should not be confused with Bayesianism, a controversial viewpoint on
the nature of probability associated with subjectivism and the claim that correct
statistical inference depends crucially on assessment of prior distributions. The
most avid frequentist has no quarrel with Bayes’ Theorem proper. Leslie blurs this
distinction in a manner that allows him to portray the Doomsday argument as an
application of a controversial doctrine (Bayesianism) to a straightforward fact of
our existence (birth rank) with the suggestion that the argument, although a little
dubious, may, along with Bayesianism, turn out to be fundamentally sound.
However, Bayes’ Theorem is rigorously demonstrable (Feller 1968, p. 124); if the
premises of the theorem are fulfilled, the conclusion follows with the force of
logic. As with other rigorous results, the sticking point in applications is not
whether the theorem is correct, but the extent to which the premises are fulfilled.
The Doomsday argument should be seen as a straightforward application of an
uncontroversial theorem (Bayes’) to data produced from a highly questionable
assumption (HR examined below). For this paradox and the next two, the fallacy is
most easily traced in two stages: randomness in reference class and retrocausality.

2.1 Randomness in Reference Class

Bayes’ Theorem permits the derivation of a conditional dependence from the
converse dependence, in the presence of the right kind of background information.
If our birth rank can tell us via Bayes’ Theorem something about the likelihood of
Doomsday, then it has to be because Doomsday can tell us something about our
birth rank; there is no way around this. Doomsdayers make this connection by
means of an assumption: the Human Randomness Assumption (HR): We can
validly consider our birth rank as generated by random or equiprobable sampling
from the collection of all persons who ever live. (I may have been the first to
articulate this assumption (Eckhardt 1997, p. 248). Under HR the probability one
has a given birth rank is inversely proportional to how many ranks exist. Chancing
to have a birth rank as low as we do then makes it likely there are relatively few
ranks available overall. Without HR the proposed application of Bayes’ Theorem
is trivial and fruitless, with HR the reasoning runs smoothly to its alarming con-
clusion. For a true lottery with an unknown quantity of tickets consecutively
numbered, starting with 1, the random drawing of a ticket does indeed give us
information about the probable size of the ticket pool. The issue in the Doomsday
argument is whether such random lotteries constitute appropriate models, that is,
whether HR is true.2

2 In light of this Leslie’s copious urn and lottery examples can all be seen to be question begging;
each one assumes equiprobability of sampling, precisely what must be established to validate
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If we are random3 humans, are we also random primates? random vertebrates?
random readers of English? Leslie proposes that a single human be taken as a
random sample from the class of all humans and from the class of all mammals
(Leslie 1993, p. 491). One cannot be random in more than one among such diverse
classes. Suppose x were a random human and a random mammal. x is human, and
hence a most unusual mammal; conversely a random mammal should not be a
human except by the most freakish chance. How would you go about selecting x?
Choose from among humans and it is not a random mammal, choose a random
mammal and it is almost surely not a human; keep choosing random mammals
until you get a human and you have spoiled the randomness of your mammal
selection. The instruction to select an x that is random in both these classes is
incoherent. Since different randomness reference classes yield different statistics
and different conclusions for Doomsday reasoning, on what grounds choose
humans as the unique class for the argument? Doomsdayers appear at times to take
this choice for granted, at other times to suggest alternatives that contradict it, such
as that the reference class should be all intelligent individuals including extra-
terrestrials or simulated people.

Examine how the allegedly random user of the Doomsday argument is selected.
Self-selection is undertaken only after the Doomsday argument, or its central
concept that we are randomly selected humans, is invented. HR amounts to the
claim that we can select ourselves as random, on the basis of the invention of the
Doomsday argument. Inventions are chancy but not purely random, e.g., they are
closely related to the technological and cultural conditions of the time and are not
equally likely to appear at one time as another. Since there is no reason to believe
this invention occurs randomly, there is no reason to believe that self-selection
dependent on the invention yields a random human.

2.2 Retrocausality

Even if the considerable problems of reference class were resolved, there looms a
more serious obstacle. The HR assumption stipulates a quantitative relationship
between the probability of having your birth rank and the number of people who

(Footnote 2 continued)
Doomsday reasoning. (In response to my objection to the assumption of random human sampling
in the Doomsday argument, Leslie produced additional urn and lottery analogies presupposing
random sampling (Leslie 1993)). Leslie seems to believe these matters can be settled through
sheer weight of accumulated analogies. Although of possible pedagogic or heuristic value, such
analogical reasoning can at best support only the preliminary stages of investigation, whereafter it
becomes incumbent to find nonanalogical evidence or otherwise to investigate the validity of the
analogies.
3 I use random only to refer to an equiprobable sampling on a finite set, i.e., probability 1/N is
assigned to each of N objects.
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come after you. For the argument to be valid, the crucial sampling probability has
to be based not only on how many were born before you but also how many are to
be born after you. How it is possible in the selection of a random rank to give the
appropriate weight to unborn members of the population? In presuming that
unborn populations have somehow been factored into the current selection pro-
cedure the Doomsday reasoners tacitly presuppose retro-causal effects that is, the
effects comes before the cause. Suppose some crucial event prevents a catastrophe
in the year A.D. 2050 and doom is thereby delayed a thousand years. By
Doomsday reasoning, the probability of having your birth rank is therefore lower
than it would have been were humans to become instinct in 2050. The Doomsday
argument tacitly requires that future events influence current ones. You have a
random birth rank whose expected value consequently depends on the total
number who ever live which itself depends on the number who come after you.
Consider a standard lottery with numbered tickets to which higher numbers are
subsequently added; this addition raises the average value of a number drawn.
Similarly, for HR to hold, all humans, even unborn ones, must be accorded their
appropriate weight in the selection of a random birth rank. The Doomsday argu-
ment hinges on correlation4 between your allegedly random birth rank and the size
of future populations because a protracted future tends to boost random birth ranks,
and a short future tends to depress them. Only if future populations exert this kind
of influence on current births can knowledge of the relative lowness of your birth
rank be so informative about the distant future. Such retrocausal influence is not
inconceivable; however, the need for it further compromises the already tattered
plausibility of the Doomsday argument.
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Chapter 3
The Betting Crowd

Of the seven paradoxes the Betting Crowd is the easiest to penetrate. Therein lies
its value; analysis of the fallacious aspects of the Betting Crowd can greatly help in
negotiating the more treacherous terrain of the Doomsday and Simulation argu-
ments. The non-murderous version we examine concerns bets on dice, making
fallacies easier to spot. The Betting Crowd game consists of one or more rounds.
For each round a certain number of players enter a region and they each bet even
money against double sixes on a single roll of the dice (so they all win or lose
together). If the players win, they leave the region and a number of new players are
brought in that equals ten times the number of players that have won so far. The
dice are rolled again. The rounds continue until the house wins on double sixes at
which point the game is over. This guarantees that 90 % of all those who play lose.
Two trains of thought collide: "ð Þ since double sixes occur less than 3 % of the
time and a player stands to win about 97 % of the time, the bet is highly favorable;
#ð Þ since 90 % of all players are destined to lose, the bet is highly unfavorable.

Before the dice are rolled, how should a player in the crowd regard her pros-
pects? The house has a scheme that assures it a final profit because eventually
double sixes turn up. For #ð Þ to be true the future profitability of this scheme would
need to seep back into the current roll of the dice—a retrocausal influence. Neither
the house’s strategy, nor the fortunes of other players, nor the play in other rounds,
can alter the favorability of betting against double sixes in a roll of fair dice. The
House triumphs not by increasing the likelihood of double sixes but by the sheer
number of players that lose when double sixes occur. It is the likelihood of double
sixes not the contrived arithmetic of the room populations that matters to the
individual player placing a bet. We conclude "ð Þ is undoubtedly correct, and #ð Þ is
wholly fallacious.

There is solid dependence among outcomes for the players in a single round—
they all win or they all lose together. If five players lose independently at a given
kind of wager, that may constitute, in a loose sense, five reasons not to play, but if
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a million players all lose the same wager at once, that constitutes, in the above
sense, one reason not to play.1 It has long been known that by successively
increasing bet size in a sequence of unfavorable bets one can theoretically obtain
winning results (e.g., (Epstein 1977, pp. 52–56) this is the basis of various infa-
mous doubling systems in Roulette and other games. In the Betting Crowd game it
is the House that carries out the ‘‘multiplicative’’ betting scheme. A player ought to
reason thus: 90 % of all players will lose, but I have less than a 3 % chance of
belonging to that losing majority. This is no paradox; each player is prospectively
likely to be in the minority, since he or she is prospectively likely to win and
winning itself causes there to be enough subsequent players to guarantee the
winner is in the minority.

Suppose one player has the opportunity to play in hundreds of different Betting
Crowd series. Since rolls of the dice are independent of one another, she would
lose about one game in 36 and win in the other 35. There would be statistical
variation in these results, but how could the teeming multitudes of losing players
make her more likely to lose? Such freakish behavior could only mean the dice
were blatantly rigged. With the fair dice specified in the problem she would with
high probability win close to 97 % of her games, thereby netting many thousands
of dollars playing games which are unfavorable to the player according to those
who succumb to the paradox.

3.1 Randomness and Reference Class

Before the dice are rolled there is no appropriate reference class for the player. Her
prospects are governed by the dice probabilities which are not reflected in any
group in the story. (One might artificially pick out a group with the required
proportions, but this group would play no role in the game.) Randomness in a
reference class is an unwieldy concept in open ended processes such as human
survival, Betting Crowd series, or the sim production of the next paradox, at least
until the process is completed.

In the Betting Crowd story the final frequencies are known beforehand with
unusual precision. This can make it appear that the determinate statistics of the
final pool are already operative when the dice are rolled. Before the role of the dice
the player has only about a 3 % chance of belonging to the 90 % majority. What
lends an air of paradox is that an unlikely event makes a group of players typical.
The player should not consider herself a typical member of the population unless

1 It has been remarked that an insurance company would go broke insuring all the players in the
[Shooting Room] as though they had a 97 % chance of winning. And so might any insurance
company that treats highly dependent events as though independent—a diversified company that
finds it rarely receives simultaneous flood claims and decides to insure everyone living on the
banks of the Mississippi.
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she receives double sixes. This means the player should not consider herself
random until the game series is over.

3.2 Retrocausality

The Betting Crowd paradox rests on an unconvincing appeal to a retrocausal
influence: the sheer quantity of the eventual losers is said to dampen the player’s
prospects in the present. Of the seven only the Betting Crowd paradox harbors so
blatant a fallacy; its importance resides in its mimicry of the more confounding
fallacies of the Doomsday and Simulation arguments.

Summary: There are parallels between Doomsday reasoning and fallacious
reasoning in the Betting Crowd. In both the assumption of the user’s randomness is
needed for the argument to proceed. In both this randomness implies an influence
from the future. In the Betting Crowd this kind of thinking can be made to yield
absurd and contradictory results; in the case of the Doomsday argument, the
elusiveness and ambiguity of human destiny help to conceal the argument’s
invalidity.
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Chapter 4
The Simulation Argument

A sim is a conscious simulation that does not know it is a simulation. Current
enthusiasm notwithstanding, it is a distinct possibility that creating this good a sim
is either unfeasible or impossible in which case the Simulation argument does not
get started. Bostrom (2003) discusses possible developmental paths a technolog-
ical civilization might take that would forestall the creation of superabundant sims.
Since I’m interested in the validity of the underlying argument, not the question of
what technologies might arise, I make technological and sociological assumptions
conducive to the argument, namely, that it is ultimately easy to proliferate sims,
and that eventually sims greatly outnumber the unsimulated.

The Simulation argument has a disarming simplicity. If overall there are many
more sims than real people, and you cannot tell which you are, then you are most
likely a sim. There is no tricky reasoning about birth rank as in the Doomsday
argument, yet both arguments conclude it is later than we think, the first by
shortening humanity’s future, the second by lengthening humanity’s past.

4.1 Randomness and Reference Class

The quandaries of reference class in the Doomsday argument transfer to this case: if
simulated, are you random among human sims? hominid sims? conscious sims? The
Simulation argument requires an extended randomness (ER) assumption for which
the reference class commingles both real people and sims. This heterogeneity makes
it harder to justify a seamless equiprobability spread evenly throughout the class as
randomness demands. Moreover, HR and ER are incompatible. If you are a sim,
then your birth rank is much higher than 60 billion. Writing in 1993, in advance of
the Simulation argument, I employed the now quaint idea of human brains inside of
robots to suggest that Sim-like considerations undercut the Doomsday argument:
‘‘Suppose in one hundred years people stop reproducing in the way that is currently
customary and for the next million years the human race consists of human brains
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inside of robots. Is this a confirmation of the doomsday reasoning because among all
flesh and blood humans we then have average rank? Or is it a disconfirmation
demonstrating the need for some reason as to why we chanced to be born so early in
the history of the race that we are not brains inside of robots?’’ (Eckhardt 1993,
p. 484).

4.2 Retrocausality

Suppose enough time has passed since the advent of sim technology that there
are now vastly more sims than real people. It would then be reasonable to
conclude that a random birth is almost surely a sim, just as it is reasonable
to conclude that a random birth is more likely to be in Asia than Iceland. How do
we get from the concession that at some point in history sims definitively come
to dominate the population to the conclusion that we now live at such a time and
are sims? Only by means of ER: if you are random among all sims and people
and if nearly all of these are sims, then you are almost surely a sim. According to
this reasoning, every sim, even an as yet uncreated one, increases the probability
you are a sim.

The Doomsday argument mimics predictive inference since current knowledge
of birth rank is used to make inferences about future doom, but beneath the surface
it runs in the opposite direction: later doom induces higher average birth ranks.
With the Simulation argument the temporal inversion is more explicit: the case for
future sim creation leads to inferences of past and present sim creation. Proponents
of the Doomsday or Simulation argument must not only overcome the consider-
able case against the existence of any kind of (observable) time-reversed causation
(see Eckhardt 2006), but must also find specific justification for the peculiar effect
unborn populations are claimed to have on one’s birth rank.

In the Betting Crowd once it is realized the bets should be judged by same rules
as any bets on dice, it becomes an excellent proving ground for the other two
paradoxes. Consider the results of applying the ‘‘Anthropic’’ reasoning of the
Doomsday and Simulation arguments to the Betting Crowd.
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Doomsday Simulation

I am random among
humans, therefore
my birth rank is
average among
humans.

There are sims and real
people, but I do not
know which I am.
Ultimately there are 
vastly more sims than
real people, so I’m more 
likely to be a sim.

Betting Crowd

I am random among
players and nine out
of ten players lose,
so I’ll probably lose.

There will be winners
and losers, but I do not
know to which I belong.
Ultimately there are
many more losers than 
winners, so I’m more
likely to lose

By this reasoning greater future populations increase the probability you have a
higher birth rank; greater populations of future sims increase the probability you
are a sim, and greater populations of eventual losers in the game increase the
probability you will lose. It does not bode well for its application to nebulous
questions that this kind of reasoning fails outright when applied to a clear case.

4.3 Summary

Two arguments, one that the end of humanity is closer than we might otherwise
expect and another that our world is most likely a simulation, are quite similar
despite starkly different conclusions. Each depends crucially on a problematic kind
of human ‘‘randomness’’, each suffers from gross indeterminacy as to the correct
group displaying this randomness, and each relies on an implied influence of the
future upon the present.
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Dilemmas of Cooperation



Chapter 5
Newcomb’s Problem

5.1 Preliminaries

The first three paradoxes revolved around questions of what would be factually
true, given certain assumptions. The rest concern questions of what someone
called the player should do given certain situations,1 thereby entering the realm of
decision theory. To guard the claim that these paradoxes depend on probability
concepts, the possible meanings of ‘‘should’’ must be severely curtailed. This can
be accomplished by stipulating a few intuitively obvious rules such as that given a
choice between two options, the player should take the one of greater value, and
also by stipulating the values assigned to relevant elements in the problem.

In an oversimplification of the history of empirical science we might say that
experiments inspire theories, and theories suggest experiments. In decision theory,
which purports to be the science of decision making, experimentation has a
different status.2 Although there are significant disagreements among variant
decision theories, the question of experimental investigation as a means of settling
theoretical disputes does not arise. The specifications of a typical decision problem
are such that it is easy to predict average results in a long series of trials. It would
indeed be pointless to resort to experimental trials when the results of such trials
are easily and reliably predicted. What is unexpected is that all current contenders
for the ‘‘correct’’ decision theory at one point or another fly in the face of what
such experimental trials would reveal. There exist a variety of arguments both for
and against one-boxing, but in keeping with the design of this book, I search for an
incontrovertible argument. (Of course it will be controverted.)

1 The Betting Crowd is superficially of this form (note the players aren’t given a choice) but the
betting is as eliminable as the shooting. The core paradox rests on a probability question: on any
round before the dice are rolled, does the player have a higher probability of winning or losing?
2 We are speaking exclusively of normative decision theory which seeks the rational or optimal
decision; descriptive decision theory, which seeks to understand human decision making
behavior, is an experimental science in the standard sense.

W. Eckhardt, Paradoxes in Probability Theory, SpringerBriefs in Philosophy,
DOI: 10.1007/978-94-007-5140-8_5, � The Author(s) 2013
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We narrow attention to problems of a quite specific form: a player faces one of
two possible situations and can make a binary choice. If these factors together
determine the result, there are four possible outcomes. We use C and D as labels
for the binary choice offered to the player. In an important class of games—
cooperation games—C stands for ‘‘cooperation’’ and D for ‘‘defection’’ The
common structure facilitates comparisons. We use ‘‘problem’’ and ‘‘game’’
interchangeably; we also make no distinction among ‘‘action’’, ‘‘choice’’, and
‘‘decision’’. ‘‘Correlation’’ and ‘‘independence’’ are probabilistic, unless they are
specifically identified as causal.

5.2 Three Problems, Four Theories

The question we address is how to factor into decision making various kinds of
correlations between actions and outcomes. We review three storylike problems
that have proven crucial to this question.

I repeat the description of Newcomb’s problem: the player is shown two boxes
and given the choice of taking either the 1st box or both boxes. The first box is
either empty or contains 1 million3; the second box invariably contains 1,000 and
can be transparent. These boxes have been prepared by a resourceful entity, the
predictor, a shadowy figure with an uncanny ability to judge which choice con-
testants will make. The predictor prepares the boxes according to the following
rule: If the player is going to choose both boxes, leave the first box empty; if,
however, the player is going to choose the 1st box only, place 1 million in that
box. The predictor’s abilities are such that it scores a consistent 90 % in following
the rule. The reason for either the predictor’s successes or its failures is generally
not given. What is best, to take one box or two? Either choice can be supported by
a seemingly airtight argument:

(1) The one-boxer argument. The predictor may be mysterious, but the resultant
monetary payoffs and their probabilities are precisely defined. The best course
is to maximize expected value. Taking one-box leads to a payoff of 1 million
90 % of the time and zero dollars 10 % of the time, for an expected value of
900,000. Taking two-boxes leads to a payoff of one thousand 90 % of the time
and one of 1,001,000, 10 % of the time, for an expected value of $101,000. By
this criterion the one-box strategy is far superior.

(2) The two-boxer argument. Let X represent the unknown contents of the 1st box.
The player can choose one box and receive X, or choose two boxes and
receive X ? 1,000. Whatever the value of X, X ? 1,000 is always to be
preferred, so the two boxers’ strategy is consistently superior.

3 I omit the dollar signs from monetary amounts and expected values; the numbers can then be
interpreted as money or as units of utility. In the latter case ‘‘expected value’’ should be replaced
with ‘‘expected utility’’.
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Since the problem’s publication, it has generated a sizeable literature. Abstruse
elaborations and amendments to decision theory have been proposed in an effort to
arrive at the ‘correct’ response to Newcomb’s problem; free will, the open future
and the nature of mind, have been brought into the fray. Most effort on this subject
has been to bring decision theories to a two-box conclusion. This is the primary
motivation for the sundry causal decision theories and of the various ramified or
diachronic reformulations of evidential decision theory, proposed in the late 20th
century.

The Prisoner’s Dilemma has been the focus of vast amounts of discussion and
analysis. It’s realism contrasts favorably with the fantastical aspects of Newcomb’s
game and the Solomon story. In this much scrutinized predicament, two prisoners
have to decide individually and independently—that is, without any communi-
cation between them—whether to confess or not. The consequences, known to
both parties, are as follows: (1) if both confess, both serve 5 years. (2) if neither
confess, both serve 1 month (on a technicality). (3) if one confesses and one
doesn’t, the first goes free and the second serves 10 years (the first has turned
‘‘states evidence’’ against the second). The only way a prisoner can effectively
guard against disastrous consequences of being the only one not to confess is to
confess himself. The situation in which both prisoners confess has a perverse kind
of optimality in that either prisoner does much worse by unilaterally changing
strategy, but each would do much better if both changed strategy; both prisoners
are stuck in an ‘‘optimum’’ that falls far short of what they could obtain if there
were some mechanism to assure cooperation. There has arisen a firm body of
opinion that defection is the appropriate strategy in this game, even though mutual
cooperation offers a much more favorable joint payoff. However, there have been
sundry arguments advanced for cooperation in the Prisoner’s Dilemma, most based
on alleged correlations between the prisoners’ behavior. To emphasize the role of
player correlation we define the tribal PD, a prisoner’s dilemma in which players
are drawn from a population made up of two tribes that are distrustful of one
another. It is found that prisoners drawn from the same tribe cooperate 90 % of the
time, whereas prisoners from different tribes defect 90 % of the time. Prisoners
from the same tribe correlate by cooperating more, and prisoners from different
tribes correlate by defecting more.

Less attention has been paid to the Solomon story, a parody of Newcomb’s
problem that allegedly reveals the folly of one-boxing. Solomon is an ancient
monarch vaguely reminiscent of the Israelite King. (Every part of this story is
Biblically inaccurate.) He is pondering whether to summon Bathsheba, another
man’s wife. But Solomon is also fully informed as to the peculiar connection
between his choice in this matter and the likelihood of his eventually suffering a
successful revolt: ‘Kings have two basic personality types, charismatic and
uncharismatic. A king’s degree of charisma depends on his genetic make-up and
early childhood experiences, and cannot be changed in adulthood. Now charis-
matic kings tend to act justly and uncharismatic kings unjustly. Successful revolts
against charismatic kings are rare, whereas successful revolts against uncharis-
matic kings are frequent. Unjust acts themselves, though, do not cause successful
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revolts… Solomon does not know whether or not he is charismatic; he does know
that it is unjust to send for another man’s wife.’ (Gibbard and Harper 1978) It is
intuitively evident that Solomon’s restraining himself from summoning Bathsheba
does not lessen the likelihood of revolt. Since the problem does not include the
negative moral value of this action, it would seem the optimal course for Solomon
is to summon.

Newcomb’s problem has fractured decision theory into a host of warring parties
and engendered formulations that are complicated, inelegant, and, I would venture,
incorrect. These newer theories share a common trait: they are all more or less
self-conscious attempts to secure a two-boxer resolution to Newcomb’s problem.
Most disagreement between experts on this subject concerns the correct way to
reach this conclusion. This entire edifice, its concordances and its disputes, are
vulnerable to the possibility that two-boxing is the wrong way to play.

Four kinds of decision theory are relevant to Newcomb’s problem.

(1) Evidential decision theory (E). (Jeffery 1965). In this theory, what matters is
the degree to which one’s action modifies the probabilities of outcomes. The
recommendation is always to take the action with the greatest expected value.

(2) Causal decision theories (C). This refers to a group of essentially equivalent
formulations (Gibbard and Harper 1978; Lewis 1981; Skyrms 1982) all based
on the principle that it is exclusively the causal consequences of one’s acts that
are relevant to decision. The only relevant probabilities are the probabilities
that a given action would cause a given outcome. In Newcomb’s problem, the
causal decision theorist reasons as follows: the player’s choice can have no
possible causal influence on the box contents; if the 1st box contains X, both
boxes together contain X ? $1,000, which is always to be preferred to X
alone. This is the classic two-boxing rationale in Newcomb’s game.

(3) Reformed evidential decision theories. This refers to a heterogeneous group
of formulations, e.g., (Eells 1982, 1984; Jeffery 1983 and Kyburg 1980) that
seek to obtain most of the recommendations of causal decision theory by
evidential means.

(4) Coherent decision theory (D), the formulation proposed in this article.

The case for rejecting the evidential theory is impressive. It would have you not
confess in the Prisoner’s Dilemma, evidently in a misguided attempt to influence the
other prisoner, who will not even know of your decision, and would have Solomon
not summon Bathsheba in what is evidently an even more misguided attempt to alter
his own past. The Solomon story, a parody of Newcomb’s problem, was explicitly
designed to foil the evidential theory and seems to have succeeded in this task.

There have been a variety of arguments and counterarguments about the right
way to play in Newcomb’s problem, mostly a contest between an inchoate intu-
ition that one-boxing provides a great opportunity and a closed dogma that one-
boxing is for fools. Instead of adding to this din (I do that in Sect. 9.4) I outline a
procedure for solving all decision problem of a certain kind including Newcomb’s
problem. The procedure is somewhat roundabout: virtual experiments are
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proposed in which a game under investigation is repeatedly played under con-
trolled conditions. Certain flawed experimental designs must be avoided. The
results of such experiments are calculated, and from this it is deduced how the
game should be played. This procedure is also used to treat the next two
paradoxes.

5.3 Correlation

Probabilistic independence of X and Y means P(XY) = P(X)P(Y). Suppose
neither P(X) nor P(Y) is zero. Then PðY XÞ = P(XY)/P(Y) = P(X);j similarly
PðY XÞ = P(Y).j These express that Y does not change P(X) and X does not change
P(Y). IF X and Y are not independent, then they correlate. Proponents of a
probabilistic approach to causality speak of screening off. It turns out this is
another name for conditional independence. Basically, Z screens X off from Y, if
correlation between X and Y originates in Z or passes through Z.4 There are
essentially three sources of correlation:

(1) Causal correlation. This refers only to the correlation of a cause with its
effect. A cause is screened off from its effect by any intermediate stage of the
causal process. For example, in most cases, lighting the end of the fuse causes
a firecracker to explode; the lighting correlates with the exploding. If the
middle of the fuse is burning, the firecracker is equally likely to explode
whether the end of the fuse was lighted or not (e.g., the middle may be burning
because the end had been lighted or because the middle had been lighted). The
burning of the middle of the fuse screens off the explosion from the lighting of
the end.

(2) Common-cause correlation refers to the correlation between two effects of
one cause. This is usually called causally spurious correlation but this cor-
relation is causal in origin and not at all spurious. The common cause of effects
screens off the causally spurious correlation between the effects. A famous but
somewhat outdated example is that lung cancer correlates with yellow stained
fingers. (Cigarette smoking used to leave yellow stains on certain fingers.) A
person with yellow stained fingers is more likely to have lung cancer than a
person with unstained fingers. This correlation owes to a common cause of
both—cigarette smoking. Conditional on cigarette smoking, these no longer
correlate, i.e., conditional on smoking, the probability of lung cancer is the
same with or without yellow fingers; conditional on not smoking, the proba-
bility of lung cancer is the same with or without yellow fingers. This is no

4 The usual definition of screening off is PðX YZÞ = P(X Z).jj (Eells 1991 p. 223) This can be

rewritten P(XYZ)
P(YZ) = P(XZ)

P(Z) : Multiply both sides by P(YZ)/P(Z). Then P(XYZ)
P(Z) = P(XZ)

P(Z)
P(YZ)
P(Z)

which is P(XY Z) = P(X Z)P(Y Z)jjj the definition of independence conditional on Z.
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paradox since independence is conditional. Are stork populations independent
of car sales? Yes, conditional on being on Earth. Drop this tacit condition and
you find both storks and cars on Earth but neither elsewhere in the Universe.
The correlation is spectacular! Arguably all events correlate because of
common cause correlation from the Big Bang; then, in our world at least,
independence is always conditional.

Causal and common cause correlations can comingle; in Newcomb’s problem
the correlation between boxing choice and receiving the thousand is causal that
between boxing choice and receiving the million is common cause.

(3) Chance. Randomness can take on the appearance of correlation, e.g., coin-
cidence. This is a challenge for the statistician, but in typical decision prob-
lems relevant probabilities (and at times irrelevant ones!) are precisely
specified so correlations can be calculated; one need not be concerned about
how to treat experimental flukes.

The key problems all turn on the status of common cause correlations. In
Newcomb’s problem it is presumably prior traits of the player that cause both the
player’s decision and the predictor’s forecast. In the Prisoner’s Dilemma, any
correlation between the prisoners’ decisions can only arise from factors such as
culture or human nature that influence both of them prior to their seclusion. In the
Solomon story charisma is the common cause both of summoning and of revolt.

A decision theory T can be characterized in terms of its relevance set
R(T) which describes the kinds of act-outcome correlations the theory accepts as
relevant to decision making. Familiar examples are R(C) the causal correlations,
and R(E), the evidential correlations. A decision theory T is acceptable if RðCÞ �
R(TÞ � RðEÞ: No one would endorse a decision theory that ignored causal con-
sequences of the outcome of the recommended course of action, so causal act-
outcome correlations need to be in R(T). At the other extreme if an event is
uncorrelated with a choice, i.e., performing the chosen action neither raises nor
lowers the probability of the event, then the event does not count as an outcome of
the action, and there is no reason to consider the event in assessing the value of the
action. Therefore nothing outside of R(E) belongs in a relevance set. If RðCÞ 6�
RðTÞ; T is negligent; if RðTÞ 6� RðEÞ; T is superstitious and irrational. From this
point on ‘‘decision theory’’ means acceptable decision theory.

5.4 Advisors

A decision theory’s recommendations should accord with well designed experi-
ments for testing such recommendations. It’s necessary to specify what constitutes
a well designed experiment in this context and to determine what can be inferred
from such experiments. In this section virtual experiments are defined for any
problem of the designated form; in the next it’s shown how the optimal choice in a
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problem can be determined from the experimental results. The experiments are
organized as a sequence of trials. Each entry in a player sequence consists of a
player, a choice, and an outcome. For each trial a player, who is randomly drawn
from a large population, makes a choice in the problem and receives an outcome. It
greatly facilitates analysis of a player sequence for the trials to be independent and
identically distributed; to this end we make the following stipulations: the setup,
including the predictor, does not improve or degrade as matters proceed; players
play only once; they are sampled with replacement; if a player is resampled, he is
associated with the same choice and outcome as before.

Advisory Principle: a decision theory should not recommend actions as
optimal that fail to be optimal when the actions in question are performed because
of recommendations.

Violation of this principle opens the door to bad recommendations. If there are
indeed strategies that lose their ‘‘optimality’’ when recommended, it’s transpar-
ently obvious that such strategies ought not to be recommended. I take it to be a
fundamental principle of decision theory. For a recommendation to be judged
optimal, the alternative strategies have to be assessed in terms of their values as
recommendations. A well designed experiment then needs an apparatus for making
recommendations to players. I follow the natural procedure of supposing the
recommendations come from persons acting as advisors (alternatives are reviewed
in Sect. 9.4). Each entry in an advisor sequence consists of an advisor, a player, a
choice and an outcome. Each player is randomly paired with an advisor, drawn
from a large populations of advisors. The pairings are known to all parties. We
attribute the following characteristics to advisors:

1. advisors participate only once and are sampled with replacement; an advisor
who happens to be resampled may be randomly associated with a new player,
but the advisor brings with her the same recommendation and outcome as
before.

2. an advisor has to recommend what she truly believes to be best for the player
(no undecided advisors).

3. it has to be the recommendation of an acceptable decision theory.
4. a player has to follow this advice; the player has no influence at all on the

advisor.

((1) assures that trials originating from advisor sequences are independent and
identically distributed. (2) and (3) assure that advisors play a role analogous to that
of decision theory whose purpose is to determine what is best for the player or
decision maker without mendacity or malevolence. As for (4), to rule otherwise
would be to unleash unpredictable advisor-player negotiations that would have no
bearing on the original problems.)

Advisors model the role of a decision theory; they recommend what they truly
take to be in the player’s best interests, and the advised player follows a recom-
mendation rather than his own inclinations. Advisors make recommendations like
a decision theory and make decisions like a player. To prevent violation of the
advocacy principle, well designed experiments can employ advisor sequences.
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Since advisors are randomly paired with players, advisors induce random variation
in the players’ choices. The resulting the act-outcome correlations measure the
extent to which outcomes can be manipulated through arbitrary alterations of the
choices made.

A causal problem is one in which the choice-outcome correlations owe
exclusively to the causal influence of choice upon outcome5; in this case a causal
chain extends from advisor to player to choice to outcome, and the choice screens
off the advisor or player from the outcome. A deterministic problem is one in
which choice-outcome correlations are perfect. In this case the outcome of a given
choice is always the same. A problem that is not deterministic is probabilistic.
Regarding ‘‘causal’’ and ‘‘deterministic’’ neither implies the other: CA(0.9, 0.9) is
causal and probabilistic, NP(1, 1) is deterministic and non-causal (symbols defined
below).

An originally deterministic problem can be rendered probabilistic by means of
an external probability source. This is a Bernoulli process B(p) that is consulted
on each trial. A fraction p of the time B(p) registers a success, and the deter-
ministic problem proceeds as usual; a fraction (1 - p) of the time B(p) registers a
failure, and the results of the deterministic process are switched, e.g., an empty 1st
box is filled or a full 1st box is emptied. A deterministic problem can as well be
externally sourced by two Bernoulli processes, B(p1) for C-players (cooperators)
and B(p2) for D-players (defectors).

Let NP(q1, q2) be a Newcomb’s game in which the predictor’s success rate is q1

for one-boxers and q2 for two-boxers. Let CA(p1, p2) be a purely causal problem
which uses B(p1) and B(p2) as external probability sources in the following way:
the player chooses one box or two; a clerk records this decision and places one
million in the 1st box if the player chose one box, and leaves the box empty if the
player chose two boxes. The only snag is that the clerk first consults one of two
Bernoulli processes. B(p1) for one-boxers, B(p2) for two-boxers. If the Bernoulli
process in question registers a success, matters proceed as above. If the Bernoulli
process registers a failure, the allocation is switched: empty box for one-boxers,
the million in the box for two-boxers. For high values of p1, the player’s one-
boxing causes the box to have the million even though this does not work a small
percentage of the time. (The marksman causes the bullet to hit the target; this does
not mean she never misses.) We use NP and CA for NP(0.9, 0.9) and CA(0.9, 0.9)
respectively.

Two problems are outcome aligned or in outcome alignment if on any trial in
which advisors direct the same choice in each problem, the players receive
identical outcomes. Two problems are outcome alignable if they can be brought
into outcome alignment. Problems that vary independently of one another cannot

5 Jeffery (1983, p. 20) speaks of ‘‘the central heartland of decision theory, where probabilities
conditionally on acts are expectations of their influence on relevant conditions’’. This is the
territory of causal problems where all decision theories work together in harmony.
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be in outcome alignment. There are three ways in which outcome alignment is
possible.

1. The problems are deterministic. For instance NP(1, 1) and CA(1, 1) are in
outcome alignment even though one is non-causal and the other causal. NP(0,
0) and CA(0, 0) are also in outcome alignment.

2. The problems begin as deterministic but share an external probability source.
For instance NP(1, 1) and CA(1, 1) can share a B(0.9) probability source so that
both problems have their outcomes switched on the same trials. The resulting
problems which resemble NP and CA are outcome aligned.

3. One problem is probabilistic and the other begins as deterministic. The prob-
abilistic problem acts as the external probability source of the deterministic
problem, bringing them into outcome alignment. For instance NP and CA can
be brought into outcome alignment if NP is played first, and on those trials in
which the predictor errs the results are switched in CA.

How should outcome aligned problems be played separately, i.e., with separate
players, each having no monetary interest in the other game? (The correlation
between the games complicates the question of how the games should be played
together, i.e., with the same player in both games.) For (1) it is clear that neither
problem has any effect on the other. Outcome alignment results from the internal
operation of each problem. The fact of outcome alignment does not alter the way
in which either problem should be played whether separately or together. In
(2) once B(p1) or B(p2) is consulted, each problem proceeds along separate
channels. Choices or outcomes in one problem have no effect on outcomes in the
other. Outcome alignment has no effect on how the problems should be played
whether together or separately. In (3) the probabilistic problem exerts an influence
on the deterministic problem; however, this does not affect how the games should
be played separately. The source arrangement has no effect on how the probabi-
listic problem should be played since it is completed before the other problem
begins. As for the other problem it does not matter to optimal play whether the
Bernoulli processes that source it arises from spinners, random number tables, or a
Newcomb’s problem. Therefore the player in each problem in outcome alignment
should play the same way he would if the two problems were unconnected.

The standard Newcomb’s problem NP is outcome alignable with CA. In the
ordinary operation of NP the predictor’s success or failure on any trial is inde-
pendent of its successes and failures on other trials; Newcomb’s problem thus
generates two B(0.9) processes, one from its one-boxers, the other from its two-
boxers. This is precisely what CA requires from its external source. On any given
trial in which the predictor errs, the allocation is switched in CA. On trials in
which the predictor scores a success, if both players one-box, both receive
1,000,000; if both players two-box, both receive 1,000. On trials in which the
predictor errs, if both players one-box, they both receive 0; if both players two-
box, they both receive 1,001,000. On a given trial, if the games are played the
same way, then the outcomes are identical. (If the games are played differently, the
outcomes are of course different.)
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By the same reasoning NP(p, p) is outcome alignable with CA(p, p) for any p. If
p1 6¼ p2 the alignment construction is slightly different. The player choice in both
games is always known before the box preparation in CA(p1, p2) is determined. If
the players play the same way, proceed as above; if the players play differently,
then consult some other B(p1) or B(p2) process. NP(p1, p2) is therefore outcome
alignable with CA p1; p2ð Þ:

When NP and CA are in outcome alignment the following is true on every trial:
if the advisor recommends one-boxing in NP, she knows her player will receive
the same outcome as someone one-boxing in CA. If she recommends two-boxing
in NP, she knows her player will receive the same outcome as someone two-
boxing in CA. It is certain that one-boxing is best in CA. When in outcome
alignment with CA, NP should be one-boxed, but in such alignment NP is no
different that any other Newcomb’s game. Therefore, against all orthodoxy, one-
boxing is best in Newcomb’s problem. The fools are correct.

To summarize, Newcomb’s game is outcome alignable with CA. According to
any decision theory, Newcomb’s game alone should be played in the same way as
when in this alignment. Since CA unquestionably should be one-boxed, so should
N. This resolves Newcomb’s problem the target paradox of this chapter. Readers
uninterested in the solution to other cooperation problems can safely proceed to
the next chapter.

5.5 Coherence

Outcome alignment can only occur if the problems have the same possible out-
comes. We take the standard outcomes to be those of Newcomb’s problem:
0 � 1;000 � 1; 000; 000 � 1; 001; 000:6

Proposition 1: Any problem P with standard outcomes is outcome alignable with
CA(p1, p2) for some p1 and p2.

Proof In P let p1 be the probability of receiving 1,000,000, if C is played, and p2

the probability of receiving 1,000 if D is played. If P is used to produce the
Bernoulli processes B(p1) and B(p2) needed to source CA(p1, p2), then P and
CA(p1, p2) will be in outcome alignment. On any trial if the players both choose C
in their individual games, there is a probability p1 both receive 1,000,000 and a
probability 1 - p1 both receive 0; if both choose D, there is a probability p2 both
receive 1,000 and a probability 1 - p2 both receive 1,001,000. h

6 They are the clearest; the Solomon story is tarnished by the staggering immorality of
Solomon’s using his royal status to coerce a married woman into adultery, the prisoner’s dilemma
by gains obtained through betrayal, both of which the analyst is supposed to ignore because no
evaluation is assigned to these moral matters in the problem’s specifications.
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C and D are the player choices; denote by C0 or D0 the cooperation or defection of
the ‘‘other’’ which may be a player (Prisoner’s Dilemma) an entity (Newcomb’s
problem) a player characteristic (charisma) a chance device, etc. If players or advisors
are sampled with replacement from a fixed population, the associated choice-out-
come pairs in the experimental data represent independent sampling from a stationary
process, that is, the process does not change during the sampling. Essentially three
numbers can be estimated from such data. r, the relative proportion of cooperators is a
feature of the population not a feature of the problem. The other two, crucial to
choice-outcome correlations, are PðC0 CÞj and PðD0 DÞj We call these probabilities
the advisor probabilities p1 and p2 or the player probabilities q1 and q2 depending
on whether advisor sequences or unadvised player sequences are at issue.

We have seen that problems in outcome alignment are for practical purposes the
same. Decision theory is intended to give recommendations that are practical in
the context of the problem. To agree with experimental results a decision theory
must give the same solution to problems in outcome alignment.

The Coherence Principle: problems in outcome alignment should be played in
the same way.

A decision theory is coherent if it assigns the same optima to outcome alig-
nable problems.

Proposition 2: Causal decision theory, as well as the various reformed evidential
theories, are incoherent.

Proof All of the aforementioned recommend one-boxing in CA and two-boxing in
NP, which are outcome alignable. h

Let v1 through v4 be the four possible outcomes, namely,

v1 ¼ v C; D0ð Þ

v2 ¼ v D; D0ð Þ

v3 ¼ v C; C0ð Þ

v4 ¼ v D; C0ð Þ

where v is value to the player. The expected values of the player choices are

EðCÞ¼ PðD0 CÞv1þPðC0 CÞv3j
�
� ¼ ð1� p1Þv1þp1v3

EðDÞ¼ PðD0 DÞv2þPðC0 DÞv4

�
�

�
� ¼ p2v2þð1� p2Þv4

Given v1 through v4; the question of optimality is completely determined by the
values of p1 and p2. With the standard outcomes E(C) [ E(D) if and only if
p1þp2 [ 1:001:

A problem is a cooperation problem if the player’s choices C or D and the
contribution of the ‘‘other’’ C0 or D0 are such that: (1) relative to a particular
contribution of the other, D is better for the player than C, (2) relative to a particular
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choice of the player’s, D0 is worse for the player than C0. Then v1\v2\v3\v4.
Unless noted otherwise all problems we consider are cooperation problems.
(1) assures that the causal theory advises defection in all cooperation problems.

Proposition 3: In a coopertion problem if p1þp2� 1; then defection is optimal.

Proof

E Dð Þ � E Cð Þ ¼ p2v2 þ 1� p2ð Þv4 � 1� p1ð Þv1 � p1v3

¼ p2v2 þ v4 � p2v4 � v1 þ p1v1 � p1v3

¼ v4 � v1 þ p1 v1 � v3ð Þ þ p2 v2 � v4ð Þ

Since p1 þ p2� 1;

p1 v1 � v3ð Þ þ p2 v2 � v4ð Þ� p1 þ p2ð Þmin v1 � v3; v2 � v4ð Þ[ p1 þ p2ð Þ v1 � v4ð Þ� v1 � v4

so E Dð Þ � E Cð Þ� 0: h

If p1 þ p2 [ 1; then the optimal course depends on the vi’s. For standard out-
comes, cooperation is optimal if p1 þ p2 [ 1:001.

We can now solve the key problems:

(1) In the Solomon story the player probabilities q1 ¼ Pð�Rj�SÞ and q2 ¼ P(RjS)
are high since �R and �S are both caused by C, and R and S are both caused by
�C: Use of advisors severs this correlation of summoning to revolution because
revolution is governed by the player’s charisma status, but the choice is
directed by the advisor. In this case p1 ¼ P �Rj�Sð Þ¼ P �Rð Þ and p2 ¼ PðRjSÞ ¼
PðRÞ so p1 ? p2 = 1. Summoning (defection) is therefore optimal.

(2) In the tribal PD the player probabilities are both 0.9, and hence sum to 1.8. By
this calculation cooperation is optimal since it gives a high probability to the
other player’s cooperation. However, an advisor for the designated
player would sever the correlation between the designated player’s choice and
the other player’s tribal affiliation. p1¼ PðC0 Cj Þ ¼ PðC0Þ and p2¼ PðD0 Dj Þ ¼
PðD0Þ so p1 ? p2 = 1, and confession is optimal. Each player would like the
other to cooperate, but there exist no means of bringing this about. New-
combian problems are different in that the player and predictor can each foster
cooperation in the other, albeit by non-causal means.

(3) In Newcomb’s problem the expected value calculation based on player
sequences shows one-boxing to be superior. The predictor’s task with advisors
is the same as its task with players. Under the rules the player makes what he
takes to be the best choice, and the advisor recommends what she takes to be
the best choice. There are no grounds whatever for claiming that the predictor,
so accurate with players, should be helpless against advisors. One-boxing,
which is to say cooperation, is therefore optimal.

A coherent decision theory is one whose solutions are consistent with those
derivable from advisor sequences. Since advisor sequences of sufficient length
give a solution to every well defined problem, there is only one coherent decision
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theory, which we denote by D. R(D) consists of those act-outcome correlations
generated by random advisor sequences. If R Dð Þ 6� R Tð Þ; T assigns different
optima to a pair of outcome alignable problems; if R Tð Þ*R Dð Þ; T gives a rec-
ommendation based on correlations that do not appear in advisor sequences and
hence do not pertain to recommendations. D is the only decision theory that avoids
both pitfalls.

According to D, three kinds of correlation need to be distinguished: causal,
mimetic, and specious. ‘‘Mimetic’’ refers to non-causal correlations that survive
the transition from player to advisor sequences; ‘‘specious’’ refers to non-causal
correlations that are eliminated by this transition. If the goal is to manipulate
outcomes by means of decision, mimetic manipulation of outcome by act, what-
ever its philosophical status may be, is as reliable as causal manipulation.

5.6 The Perils of Incoherence

By black box data for a problem we mean choice-outcome data from an advisor
sequence for the problem, in which only the choices, C or D, and the outcomes are
displayed. Given unlimited amounts of black box data for a problem, what can be
inferred about the optimal choice? According to any incoherent decision theory the
surprising answer is: practically nothing.

Two problems are distinguishable if an observer can distinguish black box data
from the problems on the basis of the appropriate statistical tests for Bernoulli
variables (or simply because the possible outcomes are different). If the outcomes
were manipulable to a different degree in two problems, this could be determined
from black box data, that is, the problems would be distinguishable.

In this idealized setting even the slightest difference in the advisor probabilities
of two problems would eventually be detectable from the problems’ black box
data. We can therefore define P with advisor probabilities p1 and p2 to be indis-
tinguishable from P0 with advisor probabilities p01 and p02 if and only if
p1 = p01 and p2 = p02 and the possible outcomes of the two problems are the same.
If two problems are indistinguishable, then C fosters a given outcome in one
problem to the same degree as it does in the other problem, similarly for D and
some given outcome.

Although indistinguishability makes no reference to probability source
arrangements or to correlation between the problems, indistinguishability is nev-
ertheless closely related to outcome alignability. If P and P0 are indistinguishable,
they have the same advisor probabilities p1 and p2, and are each outcome alignable
with K(p1, p2). Hence indistinguishability is the transitive closure of outcome
alignability.

Suppose T is incoherent; then T rejects some mimetic correlation or accepts
some specious correlation or both. Given only black box data, it is impossible to
tell if it reflects mimetic correlations that T would reject or eliminates specious
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correlations that T would accept. This can be true for any black box data and can
make a difference to optimality. The proponent of incoherent T must maintain that
one cannot at all determine the optimal choice from unlimited amounts of anon-
ymized data; one needs to look into the black box. Decision theoretic incoherence
has a powerful anti-empiricist strain. Among decision theories only D is qualified
to assess black box data.

Black box data may be insufficient to investigate the internal functioning of the
process generating the act-outcome pairings, however such data tells the decision
maker precisely what she needs to know, namely, how reliable a given action is for
assuring a given outcome, when the action is performed under the guidance of a
theory of optimality. The inability of incoherent decision theories to make prin-
cipled use of black box data is a severe drawback.

Summary: Coherence is defined as agreement with the results of certain
experiments that test recommendations. There is only one coherent decision the-
ory. None of the traditional formulations are coherent. The coherent theory rec-
ommends taking one box in Newcomb’s problem yet confessing in the prisoner’s
dilemma. An incoherent decision theory is incapable of drawing conclusions from
unlimited amounts of anonymized act-outcome data.
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Chapter 6
The Open Box Game

The Open Box game (OB) is a standard Newcomb problem except that the 1st box
is open; the player can see whether the 1st box is full or empty before making a
boxing decision. There are four possible strategies in the Open Box game:

• The Saint: take one box no matter what you see in that 1st box, i.e., cooperate
even in the face of the Predictor’s defection.

• The Good Sport: take one box if it contains the million, take two boxes if the
first box is empty, i.e., cooperate if the Predictor does.

• The Spoiler: take one box, if it is empty, take two boxes if the first box has the
million, i.e., play so as to make the Predictor incorrect.

• The Defector: take two boxes no matter what.

Proposition 4: If a decision theory recommends the saint strategy in OB, then it
recommends one-boxing in Newcomb’s problem; if it recommends the defector
strategy in OB, then it recommends two-boxing in Newcomb’s problem.

Proof Newcomb’s game is a probability mixture of the two cases in the open box
game. By Savage’s sure-thing principle, since the saint (respectively the defector)
make the same choice for each component of the mixture, that same course is optimal
for the mixture itself. Since the sure-thing principle is itself a dominance principle,
we repeat the argument more carefully. With the sport or spoiler strategy, the player
can declare the strategy in advance, but to reduce this strategy to a choice (take one or
two boxes) the player has to see or otherwise know which of the two situations he
faces. For the saint or defector strategy, the player makes the same choice in either
situation, and can declare this in advance of seeing the open boxes. But these are
exactly the circumstances of a player in Newcomb’s problem. h

The open box game is not completely defined without specification of the
predictor’s intended responses to the four strategies. This is best discussed in terms
of predictor motives. In Newcomb’s problem the predictor’s motive can be to
maintain its success rate or to induce the player to one-box (for which it needs to
maintain a good success rate). These lead to the same conclusions, which is not the
case when these predictor motivations are transferred to the open box game.
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(1) The predictor’s goal is accurate prediction. Predicted saints would receive the
million, predicted defectors the empty box. Since the predictor cannot fail
against a sport nor succeed against a spoiler, their payouts are indeterminate; if
the predictor is presumed to refrain from giving out prizes for no reason, then
predicted sports or spoilers receive an empty box. This interpretation has two
defects: (a) The predictor cannot maintain a success rate of p if the fraction of
spoilers in the player population is greater than 1-p. (b) In the open box game
as distinct from NP or CA the predictor’s box preparation has a causal
influence on the player. There is no monetary incentive to be a spoiler, and
many would-be saints, when confronted with an empty box, would defect.
With a normal human population the predictor should be able to exceed a
success rate of 90 % simply by giving everyone an empty box. Ironically the
emphasis on the predictor’s success rate trivializes it.

(2) The predictor’s goal is to induce players to one-box. Predicted sports get the
million; predicted defectors and spoilers the empty box. The payout for saints
is indeterminate. The predictor can afford to give a true saint an empty box;
however, if a predicted saint is more likely to lapse on an empty box, the
predictor might elect to give a predicted saint the million.

We adopt the second predictor motivation for a predictor that is 90 % correct
with one-boxers, and more successful with two-boxers (as explained above, this is
easy). If the 1st box contains a million, the player probabilities are p1 = 1 and
p2 = 0; if the 1st box is empty, the player probabilities are p1 = 0 and p2 = 1. In
either case they sum to 1 indicating defection which is two-boxing. To determine
the advisor probabilities consider that the advisor is not influenced by the player
with whom she is randomly paired; the advisor must accordingly be prepared to
give advice for either case, a full or empty 1st box—she has to have settled on one
of the four strategies. There is no monetary rationale for recommending the spoiler
strategy; an advisor who used the player to spite the predictor would break the
rules of advisorship. Players who are advised to be sports (and are hence bound to
that strategy) fare decidedly better than those advised to be defectors and have
more assurance than those advised to be saints. It comes down to sport vs. defector
(perhaps with the stray saint). Advisor probabilities are p2 [ p1 = 0.9, that is,
p1 ? p2 [ 1.8, indicating cooperation—one-boxing on a full 1st box.

In OB there is a more than the usual split between intention and action. In the
other problems there is no reason to expect a player to act otherwise than he
intended. In OB many players who sincerely intend to be sports would upon seeing
the million be overcome by the idea that they could now take the 1,000 with
impunity. Such players are likely to receive an empty 1st box in the first place.
Effective play in OB requires a fusion of preliminary intention and subsequent
action. There are telling parallels with story of Odysseus and the Sirens. Odysseus
can safely listen to the Sirens’ song only if he can prevent his own mid-course
defection, otherwise listening will be disastrous. Only by binding himself to his
original strategy, much as his crew binds him to the mast, does he succeed.
Another example: suppose two medical treatments administered 24 h apart are
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effective in curing a certain illness, but the first treatment alone has negative side
effects, including development of a phobia against taking the second treatment.
The second treatment neutralizes these side effects, and cures the illness. Taking
the first treatment is foolhardy without making provisions to have the second
forced upon you. Like Odysseus and like the player in OB, it is crucial to prevent
your own defection.

The coherent and the evidential theorist agree that the sport strategy has the
greatest expected value. However, once the open boxes are presented, the
evidential approach succumbs to a Siren song: no matter what may have originally
been optimal, it is now better to take two boxes. Conditional on current circum-
stances, the expected value of two boxes is indeed a thousand more than the
expected value of one box. The evidential theorist undergoes a mid game change
of perspective.1 In advance of setting up the game the evidential theory assesses
the sport strategy to be the best, but when the boxes are presented, it recommends
defection. This falls short of logical contradiction, but such dithering cannot be
sound. There is no rationale for planning one action, then performing another; in
particular nothing in the problem’s specifications suggests those who plan to be
sports and then defect fare better than those who plan to be defectors and then
defect.

Unless explicitly assigned a negative value, the psychological difficulty of
making a certain decision is not supposed to detract from the value of that choice.
If a player has a psychological compulsion to make the wrong choice, the counsel
of decision theory is nevertheless to make the right choice. If player psychology
interferes with analysis, it is the task of decision theory to circumvent this obstacle.
The reasoning underlying the two-boxing defector strategy seems compelling
because it is founded on a psychological compulsion that is so powerful it blinds
two-boxers to the plain fact that one-boxers secure substantially better outcomes
not only according to disputable expected value calculations, but by post game
tallies of results. It may be worthwhile to tabulate a representative 60 trial
sequence (see table). With a million in the 1st box, two-boxers do better; with an
empty 1st box, two-boxers do better, and together these comprise all cases.
Nevertheless on average one-boxers make 900,000 and two-boxers 21,000.

1st box Choice Outcome No. of cases

Million 1 Box 1,000,000 9
Million 2 Box 1,001,000 1
Empty 1 Box 0 1
Empty 2 Box 1,000 49

1 This should not be confused with the reasonable policy of updating a strategy in light of new
information. Seeing the boxes provides no information that was not already taken into account in
the original strategy.
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In this problem dominance reasoning is so compelling that it is extremely
difficult for the player, as distinct from the advisor, to see his way around it. The
best way to play is for the player to make a binding contract in a public manner to
follow the sport strategy or forfeit all proceeds. If this is done before the box
preparation, it virtually guarantees the million; if it is done after the box prepa-
ration, it still nets the million nine times out of ten.
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Chapter 7
The Hadron Collider Card Experiment

In a series of papers (Nielsen and Froggatt 1996; Nielsen and Ninomiya 2006,
2007, 2008, 2009) Holger B. Nielson and Masao Ninomiya present a reformulation
of physical theory1 which if correct would have paradoxical consequences for the
long awaited production of a Higgs boson. According to this theory any attempt to
produce a Higgs boson—a prime goal of the recently built Large Hadron Col-
lider—is subject to anomalous disruptions from the future that are directed toward
preventing this production.2 Among these retrocausal influences (by which we
mean influences in which the effect precedes the cause) the authors place the
recent accident at the Large Hadron Collider, the political cancellation of the
Supercollider by the United States Congress in 1993, and possible bankruptcies,
political coups, and natural disasters, all of which have served or would serve to
undermine production of this elusive boson. Since the latter could well be costly in
terms of lives and property, the authors propose an astonishing Collider Card
Experiment. Simulate a card drawing with one message card which we call the
jackpot card and somewhere between 200,000 and 1 million blank losing cards.
The jackpot card says ‘‘Stop the Collider’’.3 CERN and other parties responsible
are supposed to agree to stop all attempts at Higgs boson production if the jackpot
card is drawn, the rationale being that this statistical near impossibility can only be
interpreted as a message from the boson avoiding future. The authors envision this
future constraint acting upon current attempts at Higgs boson production through a
kind of path of least resistance, for example, the authors wish not to set the jackpot

1 The Lagrangian possesses an imaginary part as well as the customary real part. The addition
makes little difference (it tends to be self-cancelling) except near the Big Bang or in the vicinity
of Higgs boson production. The value of this Lagrangian ‘‘pre-arranges’’ the initial conditions of
the Universe for complete avoidance or severe restriction of this production.
2 The future constraint does not absolutely preclude Higgs boson production but severely limits
it. The argumentation in this article can be recast in terms of avoiding production of all but a very
few Higgs bosons, replacing ‘‘no-boson’’ by ‘‘few-bosons’’, etc.
3 Refinements to the card experiment have been proposed which give the future constraint other
more nuanced messages to send. Since the arrangement described above reflects the essential
feature of the experiment—the retrocausal message—we disregard these further complications.
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probability too low for the reason that if it were lower than the probability of a
disaster that would destroy the Collider, the boson-avoiding future might favor the
disaster over the card game as a means of preventing Higgs boson production. We
refer to this radical formulation of physical theory or to some close analogue along
with the perplexing conclusions the authors draw about Collider operation as the
Higgs anomaly. In the likely event that the Higgs anomaly is non-existent, the
experiment is a pointless exercise. Accordingly in preliminary discussion of the
card experiment we presuppose the reality of the Higgs anomaly.

The authors candidly admit that their startling conclusions have a low proba-
bility of being correct; they even factor this into a cost-benefit analysis of the
Collider Card Experiment. In the context of decision theory, what is most
important is not the reality of the Higgs anomaly but the decision problem pre-
sented by it and the correct solution.

7.1 Another Open Box Game

The Card Experiment has the same structure as other problems considered: the
player has a binary choice of stopping or not stopping the Collider; there are four
possible outcomes: either a blank card or the jackpot card is drawn, either the
Collider is stopped or not. If J represents drawing the jackpot card and H
continuing to operate the Collider, the four outcomes in order of ascending value
are: JH=�JH=J�H=JH: The Collider Card Experiment is a cooperation game, fur-
thermore it is decision theoretically equivalent to the Open Box game.

The predictor operates from the past whereas the no-boson constraint operates
from the future. However, the infallible predictor’s uncanny ability to anticipate
player choice means the predictor’s earlier preparation of the box is determined by
the player’s later decision, thereby creating a mimetic influence of the Player’s
decision on the Predictor’s earlier preparation. In decision theory one cannot make
a distinction between how to behave in the face of a true retro-influence and how
to behave in the presence of something that is rigged to act exactly as though there
were a retro-influence. What matters is that both the Predictor and the future
constraint can in a mysterious manner reward co-operation and punish defection.

The no-boson constraint acting from the future, is best modeled as 100 %
successful like the infallible predictor. Appealing to the open box game further
cements the analogy with the Card Experiment since the player knows whether he
has drawn the jackpot card before making the decision whether to continue
operating the Collider. What we can learn from OB is that knowing whether
you’ve won in the Newcomb game before you make your boxing choice, makes it
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quite difficult to make the right choice. In the high stakes Collider Card Experi-
ment, the temptation to defect is even greater: if you draw the jackpot card,4 you
would want to learn more by running the Collider anyway; you might also want to
defect in order to foil the ‘‘infallible’’ future constraint. There would additionally
be economic, institutional, and political incentives to continue running the Col-
lider. The greater the benefits of continuing to run the Collider, the less credible is
a decision to cooperate, and hence the less likely it is for the message to be sent.

The Collider Card Experiment is then an open box game with an infallible
predictor. If a blank card is drawn, the 1st box is empty, otherwise the box contains
the Jackpot card; the 2nd box contains the possibility of continuing to run the
Collider. As always the player can take either the first box or both boxes.

The causal theory dictates that defection in the Card Experiment is the rational
course. The Card Experiment attempts to trade the running of the Collider for the
message from the future, but once the message from the future is received, one is
free to continue running the Collider anyway. The alternatives are ‘‘having the
message’’ and ‘‘having the message and continuing to run the Collider’’. The
second is always worth more than the first, so defection after receiving the mes-
sage is the optimal strategy. Continuing to run the Collider is the causally dom-
inant choice no matter what card is drawn. The only way the causal decision
theorist can receive the jackpot is randomly, something everyone agrees will not
happen, and would be a meaningless fluke if it did, so the exercise is pointless.
This inability to place any value in the card game should not be interpreted as a
prescient rejection of the Higgs anomaly; decision theory is not equipped to make
that judgement. Even if the Higgs anomaly exists and operates as the authors
imagine, causal decision theory would demand the card game be conducted in a
futile manner. Causal decision theory gives no useful guidance in the matter.

In the Card Experiment, the defector assures a blank card; the saint and the
spoiler stop the Collider on a blank card, the worst idea of all. The optimal strategy
is the sport—stop the Collider on the jackpot card, otherwise let the Collider
continue to operate. This is the only strategy that has a shot at hitting the jackpot.

To clarify the underlying parallelism between the Collider Card Experiment
and OB we group corresponding elements from each problem.

A. The future constraint corresponds to the Newcombian Predictor; these are what
make a Newcomb’s game possible.

B. The card drawing corresponds to the Predictor’s box preparation—the jackpot
card to a million dollar box, a blank card to an empty box—these are under the
control of (A).

4 It is only under assumption of the Higgs anomaly that the card game is a Newcomb game. In
practice, drawing a blank card (empty first box) would be taken to disconfirm the Higgs anomaly
and indicate that we were not playing a Newcomb game after all. In this case it would be folly to
‘‘cooperate’’. This makes the Card Experiment even trickier than the Open Box game since with
the latter, one is sure at least to be playing a Newcomb game.
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C. Stopping/not stopping the Collider corresponds to the Player’s boxing choice;
these are under the control of the Player.

Using arrows to represent causal or simulated connections, we see that in terms
of the directions of the arrows [see Fig. 7.1] the diagrams for the two problems are
the same: two arrows leave (C) and two arrows converge on (B). In both diagrams
the (C) to (A) and (A) to (B) arrows induce a relationship between (C) and (B).
The nature of this connection is determined by the arrows that induce it. This is the
key both to Newcomb’s problem and the card experiment. In both games the rest
of the setup serves to induce a mimetic retrocausal relation between (C) and (B): it
is as though one-boxing results in a previously filled box; it is as though stopping
the Collider results in the earlier drawing of the jackpot card (Fig. 7.2).

causal determination 

retrocausal determination 

mimetic retrocausal determination 

Future Constraint (A) 

Card Drawing (B) 

Stopping Collider (C) 

Player Choice (C) 

Predictor (A) 

Box Preparation (B) 

time 

Fig. 7.1 (A) refers to Newcombian factors, (B) to matters under the control of (A), and (C) to
matters under Player control

Player/Other Outcome Newc. PD Sol. Card

C D0 v1 0 10 years R 0
D D0 v2 1,000 5 years SR H
C C0 v3 1,000,000 1 month 0 J
D C0 v4 1,001,000 0 S JH
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For the player, cooperation (C) is one-boxing/not confessing/not summoning/
stopping the Collider; defection (D) is two-boxing/confessing/summoning/running
the Collider. For the other, cooperation is full box/not confessing/charisma/jackpot
card; defection is empty box/confessing/no charisma/blank card. The other sym-
bols are: revolt (R), summoning (S), running the (Hadron) Collider (H), jackpot
card (J).

causal determination 

retrocausal determination 

mimetic retrocausal determination 

Future Constraint (A) 

Card Drawing (B) 

Stopping Collider (C) 

Big Bang 

Fig. 7.2 According to the physical theory behind the Higgs anomaly, the (A) to (B) connection is
itself mimetic retrocausal, induced by means of true retrocausal action of (A) upon the initial
conditions of the Universe. Note that if the two mimetic arrows are removed, there remains a
causal progression from stopping the Collider to drawing the jackpot card

Decision theories Evidential Coherent Causal

Problems Tribal PD C D D
Solomon C D D
Newcomb’s problem C C D
Open box game C then D C D
Collider card Experiment C then D C D

7.1 Another Open Box Game 43



References

Nielsen, H.B., Froggatt, C. (1996). Influence from the Future, arXiv:hep-ph/9607375v1.
Nielsen, H. B., & Ninomiya, M. (2006). Future dependent initial conditions from imaginary part

in lagrangian, arXiv:hep-ph/0612032v2.
Nielsen, H. B., & Ninomiya, M. (2007). Search for effect of influence from future in large Hadron

Collider, arXiv:0707.1919v3 [physics.gen-ph].
Nielsen, H. B., & Ninomiya, M. (2008). Test of effect from future in large Hadron Collider, a

proposal, arXiv:0802.2991v2 [physics.gen-ph].
Nielsen, H. B., & Ninomiya, M. (2009). Card game restriction in LHC can only be successful!,

arXiv:0910.0359v1 [physics.genph].

44 7 The Hadron Collider Card Experiment



Part III
Mystifying Envelopes



Chapter 8
The Two-Envelopes Problem

The Two-Envelopes problem involves no questions of human nature or survival,
nor any dubious assumptions such as human randomness. There are no issues of
cooperation or defection, no dominance principles at stake. The problem is game
theoretically trivial since the player has no opponent. It is a purely causal problem,
so from the viewpoint of decision theory there should be no disagreements about
how to play. Yet there is a tremendous amount of disagreement on this subject: at
least three mutually inconsistent false approaches have been developed, as well as
some minor misses. The Two-Envelopes problem which shouldn’t be a paradox at
all has nevertheless been the subject of arcane and perplexing disputes.

Unlike the other paradoxes, the Two-Envelopes game brushes against infinity,
but all that is needed for its solution are a few facts about infinite series, known
since the 19th century. Evidently the paradoxical implications of divergent series,
long resolved in mathematics, retain the ability to bewilder in a probability
context.

The blind game: You’re presented two envelopes, identical in appearance, and
are informed that one envelope contains twice as much money as the other. (To
conceal quantities, these can be checks.) You are randomly allotted one (we call
this the 1st envelope) and then are offered the opportunity to switch envelopes.
Since you have exactly the same knowledge concerning each envelope, the only
reasonable conclusion is that you should value the envelopes equally, and hence be
indifferent between switching or not switching. Alongside this is placed a para-
doxical argument: suppose the 1st envelope contains F, then the other contains 2F
half the time and F/2 half the time. So the other envelope is worth

1=2ð Þ2F þ 1=2ð ÞF=2 ¼ 5F=4

an amount greater than F. This remarkable equation promises a 25 % average
profit just from switching envelopes. However this line of reasoning collides with
itself: we can as easily denote the amount in the 2nd envelope by F, then sym-
metrical reasoning yields
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1=2ð Þ2F þ 1=2ð ÞF=2 ¼ 5F=4

for the value of the 1st envelope, so by this account each envelope is worth 25 %
more than the other.

The blind version of the paradox rests on a simple equivocation. The first
occurrence of F refers to the case when F is the smaller amount, the second
occurrence to the case when F is the larger amount. In a polynomial expression a
variable must represent the same thing, whether known or unknown, at each of its
occurrences. The symbol F has been used for two different random variables so the
resultant expression is incoherent. Let S and 2S represent the unknown amounts in
the two envelopes. The player’s envelope is equally likely to contain S or 2S so the
expected value of this envelope is 3S/2. Now it’s true the other envelope is equally
likely to contain half or twice the player’s envelope: with probability 1/2 the other
envelope contains half as much, but that is when the player’s envelope contains
2S; this gives 1/2(1/2)2S = S/2; with probability 1/2 the other envelope
contains twice as much, but this is when the player’s envelope contains S, giving
(1/2)2S = S; these two sum to 3S/2. Both envelopes have exactly the same
expected value. There is no expected gain in switching.1

The correct conclusion in the blind version can be derived from a fundamental
principle, without appeal to expected values. Say an agent is symmetrically
ignorant with respect to the choice of two options, if everything the agent knows
about either option applies equally to both of them. It automatically satisfies this
definition if the agent knows nothing about the options; on the other hand the agent
can know quite a lot about how the options are similar and nonetheless be sym-
metrically ignorant as to some distinguishing feature. The symmetrical ignorance
principle states that symmetrical ignorance forestalls rational preference.
A warranted preference implies an asymmetry, surely a sound principle for
rational decision making. As compelling as the expected-value argument may be,
the proof based on the symmetrical ignorance principle is more fundamental and
decidedly more general.

8.1 Opening the Envelope

The blind version, based on a miscalculation, stands as a cautionary example in the
misuse of elementary expected value formulas, but the informed version, hinging
on the subtleties of operating with the infinite, can be put to service in shattering
some compelling illusions that arise when expected valued expressions form
divergent series.

1 The favorability of switching randomized envelopes is subjected to criticism in Bruss (1996);
Bruss and Ruschendorf (2000), Clark and Shackel (2000) and Katz and Olin (2007) but the
sophistication of the techniques and the complexity of the arguments obscure the simplicity of the
fallacy.

48 8 The Two-Envelopes Problem



The informed game: suppose the player is permitted to look into the 1st
envelope before making the decision whether to switch. The amount in the 2nd
envelope remains concealed until after the player’s decision. Observing the
amount in the 1st envelope breaks the symmetry of the game. Once the player
learns F—the amount in the 1st envelope—she knows the 2nd envelope contains
either F/2 or 2F. If, furthermore, she knows the probability distribution S from
which the amounts were selected, she can determine the probabilities p and 1-p of
these alternatives. The expected value of the other envelope is

p F/2ð Þ þ 1� pð Þ 2Fð Þ

This is greater than F if an only if (1-p) [ p/2; that is, it is favorable to switch
when the probability of doubling is more than 1/2 the probability of halving. One
can find a distribution for which this relation holds for each value of F. For such
distributions it would seem a winning policy to switch irrespective of the value of
F. This policy can be fully implemented without opening the 1st envelope which
brings us back to the first Two-Envelopes paradox and its insane advocacy for
switching under symmetrical conditions.

Notation: i, j, k, n and N are nonnegative integers. I choose a single series of

possible envelope contents f2igi� 0. In other words the contents of an envelope is
always a power of 2, including 20 = 1. Let Si denote that 2i is selected hence 2i

and 2i+1 are placed in the envelopes, Fj that 2j is found in the 1st envelope; SiFj

means they happen together. Since Si implies either Fi or Fi+1, P(SiFj) is nonzero
only if j = i or j = i ? 1. SW refers to the strategy of always switching, PS to the
strategy of always passing (= not switching). Let Pi ¼ P Sið Þ be the probability 2i

is drawn. To make it favorable to switch in each case, we need to assure
Pi+1 [ Pi/2. The easiest way to accomplish this is to keep the ratio Pi+1/Pi constant
by giving the Si amounts a geometric distribution Pi = (1-r)ri with 1/2 \ r \ 1.
For numerical results I use r = .75. Both switching and passing net more money
than not playing, hence the profitability of switching in any context should be
judged relative to that of passing. A strategy X should be assessed relative to
the benchmark performance of PS; it’s the difference X-PS that matters. By the
favorability or profitability of a strategy X we always mean the favorability or
profitability of X-PS. The player knows the distribution from which the envelope
amounts have been selected and can calculate the relevant probabilities.

I’ve chosen to prove results for an infinite class of geometric distributions with
special attention to the case r = .75. This makes arguments less abstract. This
reasoning can be generalized to any distribution for which it is individually
favorable to switch on a chosen amount, no matter what that amount is. These
include all the distributions for which there arises a Two-Envelopes paradox. In
other words this treatment is adaptable to any Two-Envelopes paradox.

Consider two expected value computations: (i) For any Si selected the 1st
envelope contains 2i half the time and 2i+1 half the time. Then SW - PS makes 2i

half the time (when Fi = 2i) and loses 2i half the time (when Fi = 2i+1). For any Si

switching and passing are worth exactly the same: E SW -PS Sijð Þ¼ 0. (ii) When
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the 1st envelope contains F0 = 1, switching is a sure profit. For j � 1; the expected
value of switching on Fj is 2j-1(2r-1)/(1 ? r) (see Sect. 9.6). For r = 0.75 this is
(0.29)2j-1, which is positive and increases exponentially in j. From (i) we learn that
SW and PS are equally good for all Si; from (ii) that SW is better than PS for all
Fj. Yet the Si and Fj series each cover all possible cases, albeit with different
groupings. It’s worthwhile to compare these conflicting expected value calcula-
tions to those of Newcomb’s problem. In Newcomb’s problems the conflicting
calculations proceed under different rules—one incorporates mimetic correlations
and the other ignores them, so of course they come to different results. In the Two
Envelopes the collision is head-on. The calculations are of the same kind taking
into consideration the same factors. Moreover, (i) and (ii) are completely routine,
in fact unassailable, yet they appear to come to contradictory conclusions. This is
the (informed) Two-Envelopes paradox which has prompted a number of in-
equivalent, indeed mutually inconsistent, resolutions. In order to sort through this
material I identify three pivotal assertions; all major approaches to the paradox are
determined by the truth values assigned to these assertions.

EC (each case): in the open game it’s favorable to switch on each Fj considered
individually. This is because E SW -PS Fj

�
�

� �

[ 0 for each Fj. The validity of EC is
assured by the choice of distribution, virtually by stipulation. EC like each of the
other two assertions, has been rejected by some parties to the debate, but it has never
been explained what could possibly be wrong with it. There is an occasional dark
pronouncement about the perils of infinite expected value, but once the player learns
the amount in the 1st envelope, the ocean of unrealized possibilities of what might
have been in the envelope is removed from an expected value assessment. Infinite
expected values evaporate once the 1st envelope is opened, leaving EC free of the
infinities and divergences that can complicate analysis of SYM and AL. The argu-
ment that it’s profitable to switch on an individual Fj is routine, finitary, and airtight.

SYM: in the informed game the strategies of switching for all Fj or of passing for
all Fj each finish with the larger amount half the time and the smaller amount half
the time; SW has absolutely no advantage over PS. The following reasoning
establishes SYM. The symmetrical ignorance principle shows that SW has no
expected advantage over PS in the blind game. The informed-game player is not
symmetrically ignorant, but by playing an unconditional strategy, SW or PS, she
achieves exactly the same results as her blind-game counterparts. The randomi-
zation of the envelopes deprives the player of reasons to prefer SW or PS. Since SW
and PS have infinite expected values, some care must be taken in comparing them;
SYM asserts that SW and PS are equally good in the sense that they have precisely
the same distribution of outcomes—the same outcomes with the same frequencies.

AL (always): in the informed game the strategy of always switching, no matter
what amount is found in the 1st envelope, is a better strategy than passing—SW is
better than PS. AL states that SW is better than PS, whereas SYM claims they are
perfectly equivalent; thus AL contradicts SYM. The inflexible SW strategy can be
carried out without opening the envelope, so AL justifies the profitability of
switching in the blind game. Proponents of AL face the hopeless task of avoiding
this unwelcome conclusion (see the 1st and 3rd approaches below) (Fig. 8.1).

50 8 The Two-Envelopes Problem

http://dx.doi.org/10.1007/978-94-007-5140-8_9


We have seen that AL and SYM contradict one another. The other crucial
relationship is that between EC and AL, specifically does EC imply AL? In
briefest terms the argument for EC! AL is: if it is good to switch in each case,
then it is good always to switch. Logical interrelationships among these statements
are delineated in the following.

Proposition 1: Among EC, SYM, and EC! AL the conjunction of any two
implies the third is false.

Proof: (i) Given EC and EC! AL; AL follows which contradicts SYM.
(ii) Given SYM and EC! AL; SYM implies :AL; the conjunction of EC! AL
and :AL implies :EC. (iii) Given EC and SYM, SYM implies :AL; the con-
junction of EC and :AL contradicts EC! AL. h

The path to the correct solution has been cleared. EC and SYM are well
established through independent arguments (expected value calculations and the
symmetric ignorance principle, respectively) while EC! AL places a wedge of
contradiction between them. Moreover the only reason to believe AL is the com-
bination of EC and EC! AL. Therefore, EC and SYM are true; AL and EC!
AL are false. But strong conceptual forces obscure this path; commentators have
made mystifying, preposterous or self-contradictory claims about the problem.
Before examining the consequences of this solution, we review the history of the
paradox in terms of three mistaken approaches, distinct attempts to avert or sup-
press the inconsistency and absurdity which follow upon acceptance of EC! AL:

1st Approach: All three assertions are true. Historical recommendation:
switching in the blind game yields no advantage, but always switching after the
envelope is opened does yield an advantage.

This attempt to retain all three assertions is hopelessly self-contradictory2 which
may explain why its proponents tend to express dissatisfaction with it. For instance

Approach Accepts // Rejects Drawback Recommended 
Strategy 

1st EC, SYM, AL self-contradictory anything 

2nd SYM // EC, AL violates expected 
value principle 

never switch 

3rd EC, AL // SYM violates symmetric 
ignorance principle 

always switch 

4th EC, SYM // AL M(2n ) 

Fig. 8.1 Summary of approaches to the paradox

2 It’s not unprecedented to hold contradictory conclusions when it comes to the infinite.
Compare three Medieval reactions to the paradox that two infinite magnitudes are unequal if one

8.1 Opening the Envelope 51



Sobel (1994, p. 94) claims there are conditions under which you should always
prefer to pass before opening the envelope and always prefer to switch after
opening it but concedes this ‘‘makes you less than a perfect practical intellect’’.
Brams and Kilgour (1996) hold that symmetry makes always switching and always
passing equivalent yet that under certain conditions it’s always favorable to switch;
they say this ‘‘cries out for further explanation’’. Efforts at reconciling the con-
tradictory belong to the early history of the problem; 21st century commentators
have settled for other absurdities.

2nd Approach: SYM is true, but EC and AL are false. Recommendation:
whatever amount appears in the 1st envelope, switching and passing are equally
good.

If SYM and EC! AL are accepted, then since AL contradicts SYM, EC must
be rejected. In this supposed contest between EC and SYM the intuitively
transparent SYM, requiring no calculations for its justification, appears to cut
through all the knotty details and demonstrate the equivalence of switching and
passing once and for all. Proponents of this approach maintain that EC rests on
some kind of illusion. Clark and Schackel (2003, pp. 699–700) write ‘‘opening the
envelope makes no difference to the contents of the envelopes, so cannot make any
difference to the correct application of decision theoretic calculations.’’ This is
sheer nonsense. Suppose a card is dealt face down to each of two players, to be
followed by a round of betting on who has the higher card. Apply the afore-
mentioned rule to this case: looking at my card makes no difference to my card or
my opponent’s card, so it cannot make any difference to the correct application of
decision theory. Observing the amount in the envelope introduces the possibility of
selective strategies that are better than SW or PS and hence improve the expected
value of subsequent play. The authors themselves give evidence against their
astonishing futility claim: ‘‘If all those cases where you have 2 in your envelope
are picked out then the average gain for them is likely to be positive’’ (Clark and
Schackel 2000, p. 430). This essentially concedes EC which nudges their position
into internal contradiction. To defuse the admission they continue ‘‘In considering
the average gain for a given value in your envelope we are not considering a truly
representative sample, one for which we are as likely to have the larger sum in our
envelope as the smaller.’’ A sample consisting only of instances of switching on 2
is indeed not representative of general switching; that’s what allows the case of
switching on 2 to be profitable. In other words, by looking into the 1st envelope the
player can segregate those non representative cases of F = 2 for special treatment.
This secures the positive average gain the authors concede for switching on 2 and
otherwise gains zero by passing (see 8.7.1). Switching only on 2, which requires
looking into the 1st envelope, beats any strategy that can be implemented without
knowledge of F. Precisely the same reasoning applies to the strategy of switching

(Footnote 2 continued)
is a proper part of the other, yet equal because both are infinite: (1) infinites do not exist (2)
‘‘equal’’ and ‘‘unequal’’ do not apply to infinites (3) infinities can be at once equal and unequal
(Kretzmann et al. 1982 pp. 569–571).
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only on a particular higher power of 2. Each of the Fj represents a subsample that is
nonrepresentative of switching generally.

3rd Approach: EC and AL are true, but SYM is false. Recommendation:
always switching is better than always passing.

If EC and EC! AL are accepted, AL follows, and SYM must be rejected. This
skirts the internal contradictions of the 1st approach; the cost is a preposterous
violation of the logic of symmetric ignorance. Meacham and Weisberg (2003)
adopt aspects of this approach but strive to evade its unpalatable consequences. In
an attempt to avert the clash between SYM and AL, they assign each a separate area
of application. Symmetry considerations are claimed to apply only to the blind
game whereas unconditional switching is advocated only for the informed game.

The most direct way to disprove AL is as follows: AL says it is favorable
always to switch in the open game. Since this inflexible strategy can be carried out
without opening the 1st envelope, it is favorable to switch in the closed game also,
but this contradicts the symmetrical ignorance principle. The authors seek to
forestall a reducio ad absurdam by denying that AL carries this implication for the
blind game; specifically they claim it is a profitable strategy to switch in the
informed game but not profitable to do the same in the blind game. They defend
this perplexing combination as free from ‘‘inconsistency’’ or ‘‘logical contradic-
tion’’. The matter can be resolved by going beyond mere logical consistency to
include everyday causal realism. We are accustomed to the idea that additional
information, such as the amount in the 1st envelope, can improve one’s results in a
game, but the authors claim the information that allegedly brings about the
improvement need not be used in any way. This faces the unanswerable objection
that opening the envelope or learning its content would need to exert a miraculous
influence over the outcome of switching. Unconditional switching has to work
equally well in the blind game as in the informed game. By the symmetrical
ignorance principle it gives no advantage in the blind game, so AL is false. The
affirmation of AL in this approach is a mistake from which there is no recovery.

For Clark and Shackel learning the amount in the 1st envelope is of no use,
hence of no benefit to the player. For Meacham and Weisberg as well as Dietrich
and List (see Sect. 9.6.1) learning the amount benefits the player but in an
unexplained manner that does not entail use of this information. In the next
approach it is shown that learning the amount in the 1st envelope is beneficial if
this information is used to improve play.

4th Approach: As intimated above, EC and SYM are true, but AL and EC!
AL are false. Recommendation: SW and PS are perfectly equivalent, but there are
better strategies.

The strategy SW - PS has no expected value. The series corresponding to the
expression E(SW - PS) is divergent in the sense that the sum fails to exist
(in contrast, the expected value of SW or PS diverges to an infinite positive sum.)
It’s been known since the 19th century that grouping the terms of a divergent
series can create a convergent series and that different ways of grouping the terms
can lead to different sums. Let

P

i;j ðPi=2Þ E SW SiFj

�
�

� �

� E PS SiFj

�
�

� �� �

be a series
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expansion of E(SW - PS). Suppose terms with the same Si are grouped. Since SW
and PS have exactly the same expected values on 2i and 2i+1 each gaining half the
time and losing half the time, the sum of the terms in each Si group is zero, so all
groups sum to zero. If terms with the same Fj are grouped, the result is starkly
different. The active strategy of playing for 2jþ1 fares better than the passive one of
keeping 2j. Each group sums to a higher positive number than the one before it; the
sum for all these groups is infinite. These calculations involve no trickery or
distortion: the infinite sum F-grouping points to the truth of EC just as the zero
sum S-grouping points to the truth of SYM; there is no inconsistency since the
original series has no sum.

Clark and Schackel (2000, p. 426) write ‘‘In the paradoxical envelope cases
only one of the three results on swapping—(1) positive average gain, (2) zero
average gain, (3) average loss—can be correct’’. There is a fourth answer—there is
no average gain hence it’s neither positive, negative, nor zero. The series corre-
sponding to E(SW-PS) is divergent since only divergent series can be bracketed
in ways that produce different sums.

In Fig. 8.2 the solid line is a graph of the cumulative expected value of SW-PS.
Summing conditional on F-values catches this sequence at its peaks, summing
conditional on S-values catches the sequence at its troughs. The advantage of
switching on 2j and doubling is canceled by the disadvantage of switching on 2j+1 and
halving, since both events have probability Pj/2. Although switching on an individual
Fj truly has positive expected value, switching for every Fj cancels all advantages. An
infinite number of advantageous opportunities can indeed ‘‘add up’’ to breaking even.

As paradoxical as a disparity between better for each case (EC) and better
overall (AL) may seem, it originates in the fact that alternative groupings of the

Fig. 8.2 E(SW - PS) vs. E(M(32) - PS)
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terms of a divergent series can have different convergence properties or different
sums. Ordinary language is ill equipped to maintain the distinction, since with
finitely many alternatives ‘‘better for each case’’ does indeed imply ‘‘better
overall’’. An expression such as ‘‘it’s favorable to switch for every amount’’ can
shift between EC and AL like a semantic Necker cube.

EC! AL is based on a fallacy of composition: individually profitable strat-
egies that do not interfere with one another can always be assembled into an
overall profitable strategy. The informed game illustrates that on the contrary the
composition of an infinite number of profitable selective strategies can yield an
unprofitable, unselective strategy. It demonstrates the hold the paradox retains that
a well defined problem with exact probabilities and payoffs is thought to demand,
not standard probability theory, but original principles and new techniques.
Scholars have displayed ingenuity in devising ways to defuse EC, circumvent
SYM, or blunt the disruptive potential of EC! AL: This has served only to
prolong the career of the paradox. This problem requires not innovation but
application of long accepted principles. If a problem can be solved using the
standard axioms of probability theory along with the theory of infinite series, it is
gratuitous to resort to novel, exotic, or untried techniques. In particular the
problem does not call for uniquely Bayesian analysis (Christensen and Utts 1992)
Markov kernels and conditionally specified distributions (Bruss and Ruschendorf
2000) non standard utility functions, (Horgan 2000) nested expected value for-
mulas and variant decision theories (Clark and Schackel 2000) or subjunctive
conditionals defined over possible worlds (Katz and Olin 2007).

Summary: under symmetrical circumstances as in the blind game, switching has
no advantage over passing. Learning the amount in the 1st envelope breaks this
symmetry, and each possible envelope amount reveals an asymmetric opportunity
for expected gain in switching. If the informed-game player elects to exploit all
these opportunities by adopting a pure switching strategy, the asymmetries cancel
one another, restoring symmetry and erasing the profitability of switching.

8.2 How to Play

Given the energies devoted to theoretical disputation on the two-envelopes game,
it’s odd that antagonists don’t try playing the game. The erroneous approaches
outlined all conclude there is no way to profit from knowledge of the specific
amount in the 1st envelope.3 Whatever reasons are given for switching on a
particular 2j seem to transfer to all other 2k, leaving the impression that the only

3 A similar tendency to disregard useful information is seen in the more elementary Monte Hall
problem. One of three boxes contains a (fixed) prize and the player is randomly given one box. A
moderator who knows the location of the prize reveals one of the other two boxes to be empty;
it’s always possible to do this. The player is offered the choice to switch for the remaining
unopened box. One time in three she already possesses the prize and loses it by switching but two
times out of three, she has an empty box and wins the prize by switching. Nonetheless many who
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principled strategies are the inflexible ones—always switching or always passing.
To see this is not the case we consider multiple rounds of play. Suppose a sample
of size N is drawn from S in order to play N rounds of the game. Conditional on
the sample, E(SW) and E(PS) are finite and equal, so E(SW-PS) = 0, but this
result is not spread uniformly throughout the sample. For instance, if the largest
amount selected is 2n, then switching on Fn ? 1 means certain loss and at the
highest stakes of the N rounds. More generally the negative expected value of
switching on the few, typically sparse highest Fj’s generated by the sample
counterbalances the positive expected value of switching on the other Fj’s.4 Even
though the finite expected values of SW and PS are equal, in a series of trials SW
tends to generate positive expected value relative to PS for lower value and middle
values of 2j and negative expected value relative to PS for the highest values. A
judicious switching strategy can exploit the bias.

Only the 4th approach accords with the fact that knowing the amount in the 1st
envelope is useful for improving the player’s results. Clark and Shackel judge
opening the envelope and the information it reveals to be worthless. Meacham,
Weisberg, Dietrich, and List ascribe a miraculous value to opening the envelope
but find no use for the information it reveals.

We define two conditional strategies: O(2j) switches only on 2j and otherwise
passes; M(2j) switches on 2j and all smaller amounts but passes on amounts greater
than 2j. M(2n) - PS has a positive expected value that increases with n (see Sect. 9.6).
In Fig. 8.2 the dashed line represents E(M(32) - PS). It behaves like SW - PS up to
and including S5F5, then behaves like PS - PS, thereby retaining the profitability of
switching on S5F5. For large n, M(2n) - PS’s expected gain of ð1� r)(2r)n=2 ffi
0:125ð1:5Þn depends on a windfall tied to a long shot. If n escapes to infinity, the
windfall vanishes. In the limit SW - PS is equally balanced in SW’s and PS’s favor.

The two-envelopes game is not an unrealizable thought experiment—it can be
played, painstakingly with envelopes, notes, etc., or rapidly through computerized
simulation.5 The latter requires simulation of drawing Si from the geometric

(Footnote 3 continued)
should have known better declared the information revealed by the moderator to be useless for
improving play.
4 This is most easily seen in a large sample. Let C(2i) be the number of cases of S = 2i in the
sample. Irrespective of the original probabilities, it is favorable over this particular sample to
switch on 2i+1 if and only if C(2i+1) [ C(2i)/2. This inequality tends to be true for the large counts
that accompany small values of i, since Pi+1 [ Pi/2. But for the small counts that accompany the
sparsely sampled highest values of i, it often happens that C(2i+1) \ C(2i)/2, making it
unfavorable to switch on 2i+1.
5 Meacham and Weisberg (2003) write as though expected value calculations and repeated trials
are opposed in this problem: ‘‘it is misleading to speak of the expected utility (EU) of repeated
trials, since in the peeking case the question is whether or not one should swap in a particular
case, given that one has seen a particular amount in envelope A. … one’s decision regarding
whether or not to swap in the peeking case should be determined by the EU of swapping for a
particular value of A not on whether the EU of swapping is better ‘on average’ over repeated
trials.’’ This misses the possibility of using repeated trials to test not only SW but selective
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distribution P Sið Þ ¼ 0:25 0:75ð Þi and of tossing a coin to decide which envelope
receives Si and which 2Si. All that remains is player choice; however, we need to
test strategies not people; and strategies are also easily automated. Despite the
volume of theoretical disputation on the game, every matter in contention can be
settled by means of experimental trials. I have tabulated millions of trials of this
game. These confirm that SW is no better than PS and that for a large enough
sample, a strategy such as M(32) - PS tends to perform near its expected value of
0.125(1.5)5 ffi 0.949 per trial. (see Fig. 8.3) The two-envelopes paradox is that rare
philosophical problem that can be definitively resolved by means of computer.

In the two-envelopes game can be found a moral worthy of Aesop: reach for a
giant portion and gain nothing; settle for a moderate share and succeed.

8.3 Summary

The case for switching envelopes under symmetrical conditions rests on equivo-
cation. For the version in which one looks into the envelope before deciding
whether to switch, new puzzles arise. Attempts to resolve this paradox can be
categorized in terms of the truth values attributed to three key assertions. This

Fig. 8.3 This is a record of 1,000 trials of the strategy M(32) - PS, which made a total profit of
881; it represents the median outcome of 11 series, ranging in profit from 350 to 1485

(Footnote 5 continued)
strategies that depend on the particular amount A. With an exact model as in the two-envelope
problem, expected value calculations and repeated trials ought to agree to within sampling error.
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creates a three part division among mistaken attempts. A fourth approach avoids
inconsistency and paradox. The dilemma-like conflicting arguments for the ben-
efits of always switching and for the uselessness of ever switching are both wrong.
There is a hybrid strategy for winning in the two-envelopes game. An examination
of eleven thousand trials confirms the favorability of this strategy.
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Chapter 9
Odds and Ends

9.1 Doomsday

Let A0, A1, A2,… be a set of alternatives that are mutually exclusive and
exhaustive, i.e., P(AiAj) = 0 if i 6¼ j, and

P

i PðAiÞ ¼ 1: Let R be a condition,
according to Bayes’ Theorem.

PðAi RÞj ¼
PðR AiÞPðAiÞ

�
�

P

j PðR AjÞPðAjÞ
�
�

This can be applied to the lottery example in Sect. 1.1. Let A0 be the small
lottery with ten numbers and A1 the big lottery with a thousand numbers. Let R be
the fact of drawing a seven. P(A0) = P(A1) = 1/2, PðR A0Þ ¼ 1=10;j
PðR A1Þ ¼ 1=1; 000:j By Bayes’ Theorem,

PðA0 Rj Þ ¼ ð1=10Þð1=2Þ
ð1=10Þð1=2Þ þ ð1=1; 000Þð1=2Þ ffi 0:99

Drawing a seven shifts the likelihood it is the smaller lottery from 50 to 99 %.

Suppose Ai means ‘‘doom occurs when the total cumulative human populations
reaches i’’ and R stands for the fact that one’s birth rank is r. We then know
P(Ak) = 0 for all k corresponding to people already born, since we know doom
has not befallen us yet. HR requires a finite, albeit unknown number N, that is the
total number of humans that ever live. If there exists no such number N, or if N
turns out to be infinite, there can be no random selection from among N humans,
and HR fails.

The crucial probability in this application of Bayes’ Theorem is P R Aj i

� �

; the
probability of having birth rank r given that doom will occur at cumulative pop-
ulation i. If, quite reasonably, one supposes that the probability of having birth
rank r remains the same as one runs through various later doom scenarios, the
Doomsday argument stops in its tracks; for then P Ai Rjð Þ is just P(Ai) and the prior

W. Eckhardt, Paradoxes in Probability Theory, SpringerBriefs in Philosophy,
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probabilities are left unrevised. To secure Doomsdayer conclusions, we need HR
from which it follows that P R Aijð Þ ¼ i�1: Then

P Ai Rjð Þ ¼ i�1P Aið Þ
P

j j�1PðAjÞ
:

Prior probabilities P Aið Þf g: shift to i�1P Aið Þ
.
P

j j�1P Aj

� �n o

under the impact

of the HR assumption.
Suppose Ai and Ak are two doom scenarios with nonzero prior probability and

such that upon application of the transformation Ai gains in likelihood and Ak

loses; then

i�1P Aið Þ
S

� P Aið Þ[ 0 [
k�1P Akð Þ

S
� P Akð Þ

where S =
P

j j�1P Aj

� �

: Since P Aið Þ and P Akð Þ are positive i�1

S �

1 [ 0 [ k�1

S � 1. Then 1/iS [ 1 [ 1/kS and i \ k. Therefore, it is always earlier

scenarios that gain likelihood from later scenarios.
Nielsen (1989, pp. 454–459] and Gott III (1993) have published similar argu-

ments purporting to show that the time left until the end of the human race may be
shorter than we generally suppose. The treatments differ from Leslie’s mainly in
emphasis. Gott’s article has more mathematical trappings and brims with specu-
lation; he also considers questions other than that of human survival.

Leslie expends not a little effort countering the somewhat fatuous objection that
future humans are not alive to observe anything (Leslie 1996, pp. 19–21, 214–218,
246–247, 1993, pp. 489–490) in which, unaccountably, this objection is ascribed to
me. The issue is not what unborn humans can or cannot do, but what we can infer
about their numerosity from our birth rank.

Leslie’s views on the regulating role of determinism in the Doomsday and
kindred arguments are unjustified. According to him, this kind of reasoning works
excellently under determinism, but as we slide along the scale of increasing
indeterminism Doomsday arguments become progressively undermined until for
the case of radical indeterminism they may fizzle altogether (Leslie 1992, pp. 537,
1996, pp. 188, 233, 234). However, if there existed a mode of statistical inference
that were valid according to the extent that determinism were true, then by
repeatedly testing the accuracy of this type of statistical inference, one could gauge
the correctness of determinism. Since this conclusion is highly implausible it is a
safe bet that statistical inferences, including those that underlie the Doomsday
argument, do not hinge on the truth of determinism. That is why the determinism
question is not a burning issue among say, insurance companies.

I would like to disentangle the problem from certain perennially unresolved
philosophical issues with which it has come to be associated. As long as the
validity of the Doomsday argument is made to hinge on whether the future is open
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or fixed, or whether the future is fully implicit in the present, we can rest assured
we are not going to settle the question of the argument’s validity.

Leslie asserts that both the truth of indeterminism and its importance modulate
the impact of the Doomsday argument. He claims that an open future ‘‘reduces the
power of [doomsday] reasoning, instead of destroying it’’ (Leslie 1992, pp. 537)
but gives as explanation only the possibility that indeterminism may not matter
much to human survival. Yet all the key ingredients of the argument—Bayes’
theorem, our birth rank, and our prior expectation of doomsday—are such that one
cannot say why determinism should make a difference to them. Leslie does not
mention determinism either in his central presentation of the argument or in
numerous collateral examples. It is unclear what step of the argument a failure of
determinism is supposed to weaken. In fact, the issue of determinism is a red
herring. Determinist and indeterminist are on exactly the same footing when it
comes to making probabilistic inferences. The practicing statistician need not be
concerned with questions of whether physical process is ultimately deterministic
or whether the future is open or fixed.1

9.2 The Betting Crowd

An event or a condition does not have a probability but rather numerous proba-
bilities relative to numerous conditions. Conditional of being a member of the final
population, the probability of wining is 1/10; conditional on being a member of a
particular crowd, the probability of wining is 35/36. The question is which of these
conditional probabilities is relevant to the player’s prospects as she enters the
crowd. It’s the dice and not the final population that controls the player’s outcome.

9.3 Sims

The Doomsday and Simulation arguments can be rephrased to make the retro-
causal undercurrents explicit.

1 The impression that determinism is relevant to the Doomsday argument may be motivated by
the following inchoate reasoning: if I am to be a random member of the total human population,
my expected rank needs to be the average human rank, but the average human rank depends on
how many come after me. If the population to come after me were subsequently increased, say
through the intervention of a benevolent angel, it would be unreasonable to suppose that my
expected rank would be retroactively increased; we can only conclude that such unforeseeable
additions to the human pool would compromise my status as random. The assumption of
determinism serves to keep this potentially unruly future under control.
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Doomsday: if we were not near the end of humanity’s lifespan, the large
implied future populations would have boosted our random birth ranks more than
actual future populations did; therefore, we are near the end.

Simulation: if there ever are sims, their extraordinary population numbers
would boost our random birth rank by such grandiose amounts that we ourselves
would most likely be sims. Furthermore, if we are not sims, it is because there are
insufficient sims in our future to boost random birth ranks. (This may shed light on
Bostrom’s claim ‘‘Unless we are now living in a simulation, our descendents will
almost certainly never run an ancestor simulation’’ (Bostrom 2003, pp. 255).

9.4 Newcomb’s Problem

The advisor sequence approach can only test problems in which there is room for
disagreement about how to play. If all decision theories agree about the optimal
choice, then one cannot obtain legitimate advisor or players that favor the inferior
choice. This can happen in two ways. (1) The problem is causal, therefore all
decision theories agree on expected values and hence on optimal play. In this case
advisors can be replaced by a Bernoulli process B(r) that ‘‘advises’’ cooperation
with probability r. In a causal problem the choice screens the outcome off from a
player or advisor, so random manipulation of choice is sufficient. (2) The problem
is not causal, therefore there is disagreement about expected values, but it is not
great enough to produce disagreement as to optima. We cannot employ B(r) in this
case because randomization of the choice variable can neutralize non-causal
correlations. The solution is to add a constant—a fixed cost or reward to one of the
choices so that in the revised problem how one treats noncausal correlations does
tip the scales. (None of the problems we treat require this adjustment.) In this way
advisor probabilities are assigned to every problem.

9.4.1 Alternatives to Advisors

Use of advisor sequences assures compliance with the advisory principle. Some
alternatives to advisors fall short in this regard. In addressing the question of
whether and to what extent outcome can be manipulated by choice, it would
perhaps be more straightforward to randomize the choice directly, e.g., have the
player flip a coin to make his decision. This procedure would serve to eliminate the
common cause correlations in the Solomon story and the prisoner’s dilemma,
showing defection to be optimal. In Newcomb’s problem there are two possible
assumptions that can be made about the predictor:

1. The most reasonable is that the predictor cannot foresee the results of coin
tosses in which case the coin toss would sever the correlation of player choice
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to box contents. In a sufficiently long sequence of coin tossers, two-boxers
would perform better than one-boxers. However, a player who two-boxed on
the basis of this experiment would behave predictably and would most likely
receive an empty 1st box. The experiment yields no coherent recommendation,
e.g., take two-boxes, but toss a coin to decide this. In Solomon and the Pris-
oner’s dilemma decision by coin flip violates no condition of the problem. In
Newcomb’s problem making the boxing decision by coin toss breaks the act-
outcome correlation by neutralizing the paramount feature of a Newcombian
game—the predictor’s success rate. If the predictions are worthless, then of
course two-boxing is optimal, but this is not Newcomb’s problem. The
befuddled player of the Solomon game or the prisoner’s dilemma who resorts to
tossing a coin, decides the original problem by this toss. The player in New-
comb’s problem who resorts to a coin toss creates a new problem.

2. The predictor can foresee the results of coin tosses. In this case the choice-
outcome correlations persist, forcing a one-boxing conclusion. But this is
obtained through the artificiality of stipulating the coin tosses are predictable in
the way human decisions are. Why not use human decision makers as advisors?
Similar remarks, apply to decision theories, robots, artificial intelligences,
extraterrestrials. They are either too predictable (decision theories, robots) or
unpredictable in incomprehensible ways. Human advisors provide a better
model than any of these.

9.4.2 The Consequence of Randomization

If randomization takes place at the level of advisor, through random sampling, this
defines an advisor sequence. The result is the coherent theory. If randomization
takes place at the level of player (for unadvised player sequences in which player
preference matters) this defines a player sequence. The result is the evidential
theory since player sequences leave intact all the act-outcome correlations that
arise from the specifics of the problem. If randomization takes place at the level of
the choice, say, by tossing a coin, the result is the causal theory. This is because the
coin toss screens off any possible correlation owing to player or advisor such as
common cause correlations; those that remain are purely causal. Finally ran-
domization at the level of the outcome alters the game itself, since there remain no
act-outcome correlations. In this case all decision theories make the same rec-
ommendation, e.g., if the contents of the 1st box is randomly chosen, all theories
recommend two-boxing.
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9.4.3 Liebnitzian Lethargy

Liebnitz famously maintained that monads (his term for ultimate individual
entities) do not interact, rather each develops independently of the others.
Apparent causal interactions among monads are maintained by pre-established
harmony, i.e., the monads are synchronized to behave as though interacting. In our
terminology all causal relations among separate monads are mimetic. Suppose a
causal decision theorist Theo sits in an office in which there is a time bomb set to
detonate. Since Theo and bomb are composed of different monads, the relationship
of Theo to the bomb fits the definition of mimetic causation—Theo’s behavior is
indicative of the bomb’s behavior, just as the player’s choice is indicative of the
box contents, but one does not cause the other. The bomb’s exploding or not is a
matter internal to its own monads which is already a fixed development irre-
spective of what Theo does. Hence Theo cannot justify the extra effort to dismantle
the bomb. He would defect and get blown to bits. One can object that it is
Liebnitzian causality that is bogus, not the dominance principle, but even so the
example illustrates that where causality is simulated, causal decision theory is the
wrong tool.

On a different topic dispute between evidential and causal decision theories has
often been mischaracterized as a conflict between expected value and dominance
reasoning. Each version of decision theory—evidential, causal, or the mediate
theory outlined below, has its own version of expected value reasoning and each
has its own dominance principle. The usual practice is to pit evidential expected
value against causal dominance, so of course there is conflict. On the question of
whether the choice of X or X ? 1,000 is better, the causal dominance principle
states that choosing X ? 1,000 is better except possibly for cases in which the
choice itself influences the value of X. The evidential dominance principle states
that choosing X ? 1,000 is better except possibly for cases in which the choice
itself is probabilistically correlated to the value of X.2 The corresponding expected
value maximization principles are complimentary, not contradictory, to the
dominance principles. The causal (evidential) expected value maximization
principle states that the best choice is the one that maximizes expected value,
taking into account all act-outcome correlations that are causal (evidential).

Proposition 1: If RðT1Þ � RðT2Þ; then T2 has a narrower dominance principle and
a broader expected value maximization principle than T1.

2 Causal dominance refers to a causal exception to dominance reasoning. Suppose I can steal a
sum of money. If I don’t go to jail, I’m better off with the money than without it; if I do go to jail,
I’m better off with the money than without it. What makes this reasoning laughable is that it
overlooks the causal relation between the theft and going to jail which precludes use of the causal
dominance principle. Similarly the evidential dominance principle states that any kind of act-
outcome correlation can provide exceptions to dominance reasoning.
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Proof Relative to R(T1), R(T2) contains extra exceptions to the dominance
principle and extra factors in expected value maximization. h

We endorse only the coherent dominance principle (exceptions are made for
causal and mimetic influences) and the coherent expected value maximization
principle.

9.4.4 Coherence Implies Stability

A problem that afflicts most decision theoretic formulations is decision instability:
the decision calculation can vacillate without coming to a settled conclusion.
Neither player nor advisor sequences can be unstable in this sense; they are both
convergent sampling processes. We consider two examples (these are not coop-
eration problems). In the first (Gibbard and Harper 1978) the player has the choice
of going to Damascus or Aleppo, in an attempt to avoid Death, but Death has
predicted his choice and will be there to meet him. Vacillation results because
when he considers choosing Damascus, Aleppo becomes the best choice and vice
versa. The coherent solution is obvious: advisors who recommend Damascus
would have players who fared just as poorly as those who were advised to go to
Aleppo. Advisor sequences indicate this is a no-win situation with both alterna-
tives equally bad. This is another illustration of the decision theoretic equivalence
of causal and mimetic correlations. It should not matter to the player whether
Death and the player correlate mimetically because Death predicts the player’s
choice or causally because the Death trails the player to the city.

The second is a game called ‘‘button’’ (Richter 1984). As in the prisoner’s
dilemma, this game has two players who are held incommunicado. The players are
clones who are expected to act in the same way. Each must decide to push or not
push a button. If both push, they each win 10. If one pushes and the other does not,
they both win 100. If both refrain from pushing, they both lose 1,000. The
instability results because as soon as the player decides to push and concludes his
cohort will push, it becomes better not to push. Similar reasoning applied to the
decision not to push, leads to the conclusion it is imperative to push, and back and
forth it goes.

The evidential theorist should reason that the only outcomes are that both push
or neither pushes, of which the first is much preferred, so the optimal choice is to
push.3 This argument overreaches as can be seen by introducing advisor

3 Compare Davis’s symmetry argument for the prisoner’s dilemma (Davis 1985). Rational
players necessarily play the same way. Of the four combinations that leaves only two: both
cooperate or both defect. Of these the first is better, so cooperation is optimal. This argument
overlooks that only one of the four combinations is rational, and this happens to be mutual
defection.
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sequences. Let P represent the designated player’s decision to push, P0 the other
player’s decision to push.

EðPÞ ¼ P P0jPð Þ10þ P P0jP
� �

100

Eð�PÞ ¼ P P0j�Pð Þ100� P P0jP
� �

1; 000

Advisors eliminate clonal correlation. Let r = P(P0) = the fraction of the
player population that pushes. The value of r can be estimated from advisor
sequence data.

E Pð Þ ¼ 10 rþ 100 1� rð Þ

Eð�PÞ ¼ 100r � 1;000 1� rð Þ

Then E(P) [ E(�P) if and only if r \ 0.924… Pushing is usually optimal, but for
r [ 0.924… not pushing is best. Decision instability cannot occur in this format.

9.5 Is the Card Game at all Feasible?

Since there are earnest proposals for performing the Collider card game, we pause
to address its feasibility. Many factors conspire to make this a futile exercise. A
negative result would surely be meaningless—most likely it would not even
prevent the experimenter from trying again. But what about a positive result? The
parallels to Newcomb’s problem were all drawn under the assumption that the
radical theory as well as Nielson’s interpretation of the mathematics were both
correct. Without this assurance, justification of the card experiment presents for-
midable problems. There would be too many other ways to interpret a positive
result (God, Satan, extraterrestrials, telekinesis, fraud) making it impossible to
know if it were wise to cooperate.

In the standard Newcomb game the inducement to defect is relatively small; this
is appropriate since the dominance principle is considered airtight by two-boxers, so
a small inducement should be enough. A convinced one-boxer would presumably
not find the strategy psychologically difficult to carry out. In OB it might be easy to
intend to play the sport strategy and easy to recommend it sincerely, but it is
decidedly more difficult to carry it out. In the Collider card game the temptation to
defect is nearly irresistible. Assuming the Higgs anomaly is real, the only way
CERN could run the card game so as to be likely to draw the jackpot card, would be
to bind itself irrevocably to abide by its intention to close down the collider upon
drawing the jackpot card. Expressed in causal terms the only way to obtain the
million in OB, apart from predictor error, is to arrange matters so that reception of
the million causes one-boxing. In the card game the only way to draw the jackpot
card, apart from the negligible chance of accomplishing it randomly, is to arrange
matters so that selection of the jackpot card causes abandonment of the collider.
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9.6 Two Envelopes

EðSW � PS F0j Þ¼ 1 and PðF0Þ = P0=2¼ ð1� r)/2: For i� 1; Fi happens half the
time Si happens in which case SW - PS looses 2i - 1 and Fi happens half the
time. Si� 1 happens in which case SW - PS makes 2i. Hence
PðFiÞ = Pi� 1=2 + Pi=2 = (1� r)ri� 1=2 + (1� r)ri/2 = ri� 1ð1� r)(1 + r)/2

Cancelling the 2-1 factors,

EðSW� PS Fij Þ =
Pi� 12i

Pi� 1 + Pi

+
Pið�2i� 1Þ
Pi� 1 + Pi

=
r

1 + r
2i

� 1
1 + r

2i� 1 =
2ir � 2i� 1

1 + r
:

Since M(2n) passes on Fn ? 1 and higher,

E(M(2n) - PS) =
Xi¼ n

i¼ 0
E(SW-PS Fi)P(Fi)j

=
1 - r

2
+
Xi¼ n

i¼ 1

2ir--2i�1

1 + r

� �
ri�1(1 - r)(1 + r)

2

� �

=
1 - r

2
+

(2r - 1)(1 - r)
2

Xi¼ n

i¼ 1
(2r)i� 1

=
1 - r

2
+

-(1 - 2r)(1 - r)
2

1 - (2r)n

1 - 2r

� �

=
(2r)n(1 - r)

2

The value of E(M(2n) - PS) can also be derived as follows: for i \ n,
M(2n) - PS breaks even on all Si. For i [ n, M(2n) - PS = 0. On Sn, M(2n) -

PS makes 2n with probability Pn/2 which equals (2r)n(1 - r)/2.

9.6.1 Additional Approaches?

Some authors pursue uniquely Bayesian analyses of the problem; these are dis-
tractions since the two-envelopes game has payoffs and probabilities that are fully
specified and stipulated to apply exactly. This leaves no maneuvering room for
obtaining different Bayesian and frequentist solutions, just as there is no dis-
agreement as to the probability of heads for a perfectly unbiased coin.

Sobel (1994) and Blackman et al. (1996) make monetary boundedness a decisive
factor in how to play. Real money is bounded, and even if we play using meaningless
numbers, these are bounded by limitations on paper, ink, storage capacity, etc. It’s
not absurd to model the envelope amounts as unbounded; this is after all a problem in
probability theory, not economics. What is absurd is to suppose an astronomical
bound alters whether one should switch on a small amount. Should the analysis of a
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player whose 1st envelope contains 22 be driven by whether an envelope containing
2101 occurs once in two million years or instead never?

Meacham and Weisberg (2003) use A and B as symbols for the amounts in the
1st and 2nd envelopes respectively. The authors advocate AL admitting this ‘‘is
bound to raise the old worry that if swapping is a good idea regardless of the value
of A, it must be a good idea to swap even if one does not know the value of A. Thus
one should swap in the no-peeking case.’’ (p. 688). They seek to avoid this dis-
comfiting conclusion by appeal to the difference between always switching in the
informed game and always switching in the blind game. ‘‘inferring from the
peeking case that swapping is a good idea in the no-peeking case amounts to…
infer[ring] E(B - A) [ 0 from the fact that EðB � A A¼ 2nÞ[ 0j for all natural
n.’’ (p. 688). Weisberg and Meacham conclude ‘‘There is no inconsistency in
maintaining that swapping is unhelpful in the no-peeking case but beneficial in the
peeking case.’’ (p. 688).

Meacham and Weisberg claim that the strategy of always switching with
knowledge of the amount in the 1st envelope is superior to the strategy of always
switching without this knowledge. Readers for whom this is clearly ridiculous may
wish to skip ahead to (9.6.2) to avoid the following post mortem.

In any play of the informed or blind game the outcome of switching depends on
two numbers—the amount in the 1st envelope and the amount in the 2nd envelope.
Merely opening the 1st envelope or learning its contents has no effect on either of
these numbers; accordingly it can have no effect on the outcome of invariably
switching. (Learning the contents of the first envelope can indeed be useful, but not
to a player determined not to act upon this information.) In the idiom of Chap. 5,
when the drawing from S and the envelope randomization are used as a shared
probability source, the blind and informed games are in outcome alignment.

Let E1 be the statement ‘‘EðB � A A = 2nÞ [ 0j for all n’’ and E2 the statement
‘‘EðB � A) [ 0’’ Assume the envelopes in the blind game to be prepared the same

way as in the informed game and that the player knows this. LetdAL be the assertion
concerning the blind game that AL makes concerning the informed game, namely
that it is favorable to switch unconditionally. The authors’ argument can be sum-

marized as follows: AL raises the worry that AL!dAL; but AL!dAL amounts to

the fallacious E1 ! E2; there is no inconsistency in AL&:dAL:
This reasoning relies on two misidentifications. First E1 is interpreted to mean

AL. Since E1 is a direct statement of EC this amounts to tacit assumption of the
fallacious EC! AL: Second, E1 ! E2 in the two envelopes game is taken to

mean AL!dAL instead of EC! AL: This interpretation faces insurmountable
difficulties: (1) E1 ! E2 concerns the aggregation of individual switching strate-
gies into one comprehensive switching strategy, whereas no aggregation occurs in
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AL!dAL; both AL and dAL refer to comprehensive switching strategies4 (2) In
the expression E1 ! E2 symbols such as A or B must be given the same meaning

in each occurrence. In contrast AL and dAL refer to distinct games. An accurate
retort would be that the blind and informed games are sufficiently similar that the
same symbols can be used in referring to each one. This leaves Meacham and
Weisberg with a dilemma. If the symbols A and B can be consistently used in the
informed and blind games, then the expression E(B - A) has the same value (or

lack of value) for both games; therefore AL and dAL have the same truth value,
which is what the authors wish to deny. If instead the expression E(B - A) has
different values in the informed and blind games, this belies the contention that the
same symbols can be consistently used for both games. (3) Meacham and Weis-
berg appeal to the falseness of E1 ! E2; Dietrich and List (Dietrich and List 2005)
to the falseness of a generalization of E1 ! E2 that they call the event-wise
dominance principle,5 and both articles refer to a more general formulation
enunciated by Chalmers. These expressions are true in some cases and false in
others, so as generalizations they are false, but this would not entail the falseness

of AL!dAL even if the latter were an instance of the former. In fact the three
principles generalize the fallacious EC! AL:

Dietrich and List (2005) defend two assertions: ‘‘Switch after opening together
with the event-wise dominance principle contradicts indifference before opening’’
and ‘‘without the event-wise dominance principle there is no logical contradiction
between switch after opening and indifference before opening.’’ (p. 245) Switch

after opening (AL) contradicts indifference before opening ð:dALÞ for reasons
such as everyday causal realism6; the dominance principle does not enter into it.
Regarding the second assertion, if there is no logical contradiction between two
policies or attitudes, then this surely remains the case after the removal of an
irrelevant principle (the consistency of a formal system cannot be disrupted by
removing an axiom). The second assertion may be technically correct, but the
event-wise dominance principle is pure red herring.

This also give examples that purport to show that the perplexing AL&:dAL is
one of a class of similar results with the implication that this renders it less
objectionable. They define two decision rules: of two options, maximin (often
called minimax) takes the option with the smallest possible loss while maximax
takes the option with the largest possible gain. If the two envelopes are prepared by
independent drawings from the open interval (0, 1) then the maximiner is

4 E1 ! E2 does imply EC! AL: In the informed game, EC! E1 and E2 ! AL; hence
E1 ! E2 implies EC! AL: In going from EC to AL individual cases are aggregated into one
case, just as in going from E1 to E2.
5 ‘‘Let P be a partition of the setoff all possible states of the world into non-empty events. For
any two lotteries L1 and L2 conditional on observing event E for every E in P, then you strictly
prefer L1 to L2 unconditionally’’.
6 All that needs to be ruled out is magic with no magician and no explanation, physical or extra-
physical. Prehistoric animists would probably consent to this exclusion.
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indifferent to switching before, but always against switching after he opens his
envelope. The maximaxer is indifferent to switching before, but always in favor of
switching afterwards.

In spite of its importance in two-person game theory, maximin can be made to
give foolish answers in decision problems in which there is no opponent and
consequently no good reason to concentrate exclusively on the worst case (Cox
and Hinckley, p. 434). Maximin and maximax are both known to give arbitrarily
bad advice in certain contrived decision problems, e.g., the maximiner will pass up
a good chance at a million dollars to shave a penny off his possible loss; the
maximaxer will risk a million dollars to add a penny to his possible gain (for other
examples see (Berger 1980, pp. 371–376). We focus on the maximaxer since it

most closely fits the analogy with AL and dAL that the authors wish to press. If the
maximaxer finds 0.9999 in his envelope, the maximax rule recommends switching
since the unknown envelope has a higher possible profit. Yet in switching he has a
very small chance to gain a miniscule amount and a large chance to lose hundreds
or thousands of times more. The maximaxer does not hold that always switching is
better in the sense that it gives better outcomes. He follows a rule that recommends
switching even though it is not better. These are excellent examples of the failure
of maximin and related decision rules; like other such examples they do not
transfer to expected value or expected utility maximization.

9.6.2 Causal Structure

In their attack on EC Clark and Shackel intimate that EC results from a misstep
similar to the ones causal decision theorists see in evidential treatments of New-
comb’s problem or the prisoner’s dilemma. Causal decision theory however does
not routinely disagree with the evidential varieties. If they were in disagreement
about, say, whether it’s profitable to play casino Roulette on an unbiased wheel,
we wouldn’t need esoterica such as Newcomb’s problem or the Solomon story to
decide between them. In the cases that have conflicting evidential and causal
solutions, such as the Prisoner’s Dilemma or Newcomb’s problem, the evidential
reasoner uses his own choice as evidence of what the other prisoner will do or what
the predictor has done. This is without question an incorrect procedure in the
Prisoner’s Dilemma. In Newcomb’s problem, the waters are muddied by the
activity of the mysterious and confounding Newcombian predictor. There is
nothing remotely like this in the proof of EC, which depends on routine expected
value calculations like those for Roulette. Despite the aura of paradox, decisions in
the two-envelopes game belong to the majority for which causal and evidential
theories concur.

Clark and Schackel contend that the ‘‘correct’’ series is the one that corresponds
to the causal structure of the game that this is uniquely the S-series. Useful
decision theoretic formulas should observe causal aspects of the game, but this
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does not mean that all relevant causal aspects can be encapsulated in a single
series. The possibility and profitability of switching only on Fj also deserves to be
considered part of the causal structure of the game. This is recorded in the F-series.

9.6.3 The Finite Two-Envelopes Game

Virtually all participants in the two envelopes debates agree on one matter: the
paradox turns on the infinitary features of the game, especially the infinite
expected values and the attendant divergences. The standard infinitary version may
be more striking or more elegant, but relevant features of the informed game
paradox can be presented in a finitary setting in which it is easier to uncover non
sequitors and reconcile conflicting strands of the argument. The correct approach
can be studied ‘‘in miniature’’ and transferred to the infinite case. For contrast we
refer to the informed game considered up to this point as the infinite game. The
finite game results through stipulating a maximum possible amount for S: all
amounts from 20 to 299 occur with the same probability as before

P Sið Þ ¼ Pi ¼ 0:5 0:75ð Þi; i \ 100
� �

while 2100 receives the remaining tail

probability7 of 4P100 (for i [ 100, P(Si) = 0; P(S100Þ = 4P100¼ ð0:75Þ100 ffi 3:2 �
10�13Þ: This makes F = 2101 so rare it would take on average about two million
years for it to occur if the game were played once every second.

EC says every O(2j) is favorable. This is true in the finite game except for
O(2101), the preposterous policy of switching only on 2101 (which as a practical
matter is indistinguishable from PS). So EC is true in each case except for one of
absurdly low probability.

SYM holds exactly as in the infinite game. Symmetrical ignorance applies
irrespective of how the randomized envelopes are prepared.

AL says SW is better than PS. In the infinite game the divergence of E(SW - PS)
makes it harder to state the sense in which SW and PS are equivalent and perhaps
easier to evade the consequences of this equivalence. In the finite game AL is false

for elementary reasons. E(SW) = E(PS) =
Pi¼ n

i¼ 0 P(SiÞð2iþ2iþ1Þ=2 a finite sum.
SW and PS are equally good. In the finite game EC is nearly universally true while
AL is outright false, a good finite approximation to the falseness of EC! AL in the
infinite game.

Since E(SW - PS) forms a convergent series, grouping the terms does not
change the sum. Grouping terms with the same value of S yields a series of zeroes,
summing to zero, and grouping terms with the same value of F, yields a series with
increasing positive terms, summing higher and higher, except there is one last

7 The probability of exceeding a certain value, called a tail probability, takes a simple form in the
geometric distribution: P(S [ 2n) = rn (Balakrishnan and Nevzorov, p. 64) for r = 0.75, this is
(0.75)n = 4Pn.
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negative term, corresponding to switching on F = 2101, that cancels all previous
terms and brings the sum to zero. The give-back on F = 2101 makes the invalidity
of AL transparent and the paradox evaporates. In the infinite game, the give-back
is repeated endlessly but never definitively.

Every pertinent feature of the informed game paradox and of its resolution
survives the transition to the finite game. On any reasonable time scale the out-
comes of finite and infinite games are identical with virtual certainty. (For instance
in the eleven thousand trials mentioned above, the highest value of S selected was
237. The negligible difference between playing the finite and infinite games would
not have affected these results.) A flukish exception at the fringes of possibility
may enter into a rigorous calculation but should not affect practical play. The
infinite game displays the paradox in a starker exception free form, but the finite
game reveals its structure in a context that avoids the subtleties and complications
of infinite series.

9.6.4 Ross’s Theorem

Ross (1994) proved a result that’s played an interesting role in interpretations of
this paradox. The theorem, not itself in doubt, has been misinterpreted in ways
much like the paradox from which it sprang. We’ve seen that some forms of M(2n)
are good strategies in the informed game but this depends crucially on the fact that
Pi \ 2Pi+1 for all i. Brams and Kilgour (Brams and Kilgour 1998) claimed this rule
was ‘‘shown to be optimal’’ Blackman, Christensen, and Utts (Blachman et al.
1996) that ‘‘even without a prior distribution’’ one ‘‘can do better than always
trading envelopes’’. Although undoubtedly of interest in its own right, the theorem
gives no guidance whatever as to how to play a two-envelopes game. Ross’s
Theorem does demonstrate that knowledge of the amount in the 1st envelope can
be exploited for profit, but this can already be seen in the ordinary version of the
game. The theorem is not informative about how to play; in particular it does not
imply that M(t) is in any sense a ‘‘good’’ strategy.

Ross proves the theorem for probabilistic (or mixed) strategies and for con-
tinuous money. The issue however can be well encapsulated using the discrete
monetary amounts 2i and the deterministic strategy M(2n). Let {pi} be any
probability distribution on {2i},

P1
i¼0 pi¼ 1: 2i and 2i+1 are placed in the envelopes

with probability pi.

Ross’s Theorem (discrete version). If pi 6¼ 0; E(M(2i) - ST) [ 0.

Proof If 2j is drawn with j \ i, then M(2i) - ST breaks even on average since the
strategy switches on 2j and 2j ? 1. If 2k is drawn with k [ i, M(2i) - ST is exactly
zero. If 2i is drawn, M(2i) - ST switches on 2i and passes on 2i ? 1 for a gain of
2i. E(M(2i) - ST) is then 2ipi/2 = 2i - 1pi. h

A good example is pi = (0.75)(0.25)i, a geometric distribution with r = 0.25.
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The formulas from (9.6) apply, so for i [ 0 EðSW � PS Fij Þ¼ ð2ið0:25Þ �
2i� 1Þ=ð1:25Þ¼ ð2i� 2 � 2i� 1Þ=ð1:25Þ¼ � 2i� 2=1:25\0: Yet E(M(2i) -

PS) = (0.5)i(0.75)/2 = 0.375(0.5–i) [ 0 in accordance with Ross’s Theorem.
Although switching is unfavorable in every case except F = 20, M(2i) is always
better than PS. (It should be noted how paltry this expected value can be.
EðM(210Þ � PS) ffi 0:00037; even though in the crucial cases the envelope con-
tains 1024 or 2048.) Switching on the lowest possible amount is always favorable;
however, there need not be a lowest possible amount, e.g., there could be arbi-
trarily small positive amounts but no zero amount, or there could be arbitrarily low
negative amounts. One can therefore find distributions for which switching is
unfavorable in every single case, yet M(x) - PS makes a profit for every possible
amount x. This can be considered a third Two-Envelopes paradox.
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Epilogue
Anthropic Eden

We consider three stories Bostrom (2002, pp. 142–150) calls the Adam and Eve
Experiments, concerning a couple who for unspecified reasons are the only two
people to exist so far. Bostrom refers to such stories as ‘‘paradoxes of the self-
sampling assumption’’ but I see them as refutations of Anthropic reasoning.

1st experiment: if Adam and Eve reproduce, they will be expelled from the
garden and subsequently have billions of descendants. A Serpent advises them that
they can mate with abandon since any reproduction would result in their having
such a preposterously low birth rank among the billions that follow that successful
reproduction is nearly ruled out.

2nd experiment: this time they form the firm intention to have a child unless a
wounded deer limps into their cave. Bostrom equips the cave with advanced in
vitro fertilization technology, evidently to assure there are no slip-ups in this
regard. Their birth rank if they reproduce will be so improbably low that it’s
reasonable to expect the deer to limp in.

3rd experiment: the couple decide to retro-actively make the top card in a deck
shuffled this morning be the queen of spades, using the same threat as above.

For simplicity it is assumed Adam and Eve either do not reproduce at all or
have billions of descendants. In the first case with only two possible birth ranks,
they possess likely ranks; in the second case their birth ranks are wildly
improbable. The prevention of this improbability is said to bring about the sterility,
prompt the entrance of the limping deer, or permit retroactive stacking of the deck.
This bears a striking resemblance to the Higgs anomaly with babies in place of
bosons, except that Nielsen and Ninomiya provide a physical theory to account for
retrocausal effects, Bostrom attempts this through HR gymnastics alone. (After
intricate peregrinations Bostrom concludes a portion of the absurdity can be
averted without abandoning HR).

True to tradition, the Serpent lies. It relies on that old devil—human
randomness—to persuade the naive couple. In their unique circumstances it is
especially fatuous for Adam and Eve to be considered random individuals.
According to these stories there will be large future populations only if Adam
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and Eve reproduce, but according to HR large future populations render such
reproduction highly unlikely. Large future populations make their own cause
unlikely. This snarled conclusion indicates that once again human randomness
reasoning has gone awry. The absurdities of limping deer and card trick are also
illustrative nonsequitors. Let R be reproduction, and D the limping deer (or the
card trick). HR implies P(R) is near zero. Adam and Eve intend to keep P(R or D)
very near one. The only outlet then is for P(D) to be near one. However, they can
keep P(R or D) near one only by making R very likely if D doesn’t happen. If D
doesn’t happen, the HR-induced low probability of R makes it impossible to keep
P(R or D) near one. The high-tech equipment doesn’t help: the easier is for them to
reproduce, the greater the conflict with HR.

All three stories betray the Original Sin of Anthropic reasoning: using
probability concepts in disregard of their causal implications. In any event, having
begun with Doomsday, it’s fitting to end with the Garden of Eden.
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